1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/interrupt.h> 11 #include <linux/pagemap.h> 12 #include <linux/compiler.h> 13 #include <linux/export.h> 14 #include <linux/pagevec.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/sysctl.h> 18 #include <linux/cpu.h> 19 #include <linux/memory.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/highmem.h> 22 #include <linux/vmalloc.h> 23 #include <linux/ioport.h> 24 #include <linux/delay.h> 25 #include <linux/migrate.h> 26 #include <linux/page-isolation.h> 27 #include <linux/pfn.h> 28 #include <linux/suspend.h> 29 #include <linux/mm_inline.h> 30 #include <linux/firmware-map.h> 31 #include <linux/stop_machine.h> 32 #include <linux/hugetlb.h> 33 #include <linux/memblock.h> 34 #include <linux/bootmem.h> 35 36 #include <asm/tlbflush.h> 37 38 #include "internal.h" 39 40 /* 41 * online_page_callback contains pointer to current page onlining function. 42 * Initially it is generic_online_page(). If it is required it could be 43 * changed by calling set_online_page_callback() for callback registration 44 * and restore_online_page_callback() for generic callback restore. 45 */ 46 47 static void generic_online_page(struct page *page); 48 49 static online_page_callback_t online_page_callback = generic_online_page; 50 static DEFINE_MUTEX(online_page_callback_lock); 51 52 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 53 static struct { 54 struct task_struct *active_writer; 55 struct mutex lock; /* Synchronizes accesses to refcount, */ 56 /* 57 * Also blocks the new readers during 58 * an ongoing mem hotplug operation. 59 */ 60 int refcount; 61 62 #ifdef CONFIG_DEBUG_LOCK_ALLOC 63 struct lockdep_map dep_map; 64 #endif 65 } mem_hotplug = { 66 .active_writer = NULL, 67 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 68 .refcount = 0, 69 #ifdef CONFIG_DEBUG_LOCK_ALLOC 70 .dep_map = {.name = "mem_hotplug.lock" }, 71 #endif 72 }; 73 74 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 75 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 76 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 77 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 78 79 void get_online_mems(void) 80 { 81 might_sleep(); 82 if (mem_hotplug.active_writer == current) 83 return; 84 memhp_lock_acquire_read(); 85 mutex_lock(&mem_hotplug.lock); 86 mem_hotplug.refcount++; 87 mutex_unlock(&mem_hotplug.lock); 88 89 } 90 91 void put_online_mems(void) 92 { 93 if (mem_hotplug.active_writer == current) 94 return; 95 mutex_lock(&mem_hotplug.lock); 96 97 if (WARN_ON(!mem_hotplug.refcount)) 98 mem_hotplug.refcount++; /* try to fix things up */ 99 100 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 101 wake_up_process(mem_hotplug.active_writer); 102 mutex_unlock(&mem_hotplug.lock); 103 memhp_lock_release(); 104 105 } 106 107 static void mem_hotplug_begin(void) 108 { 109 mem_hotplug.active_writer = current; 110 111 memhp_lock_acquire(); 112 for (;;) { 113 mutex_lock(&mem_hotplug.lock); 114 if (likely(!mem_hotplug.refcount)) 115 break; 116 __set_current_state(TASK_UNINTERRUPTIBLE); 117 mutex_unlock(&mem_hotplug.lock); 118 schedule(); 119 } 120 } 121 122 static void mem_hotplug_done(void) 123 { 124 mem_hotplug.active_writer = NULL; 125 mutex_unlock(&mem_hotplug.lock); 126 memhp_lock_release(); 127 } 128 129 /* add this memory to iomem resource */ 130 static struct resource *register_memory_resource(u64 start, u64 size) 131 { 132 struct resource *res; 133 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 134 BUG_ON(!res); 135 136 res->name = "System RAM"; 137 res->start = start; 138 res->end = start + size - 1; 139 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 140 if (request_resource(&iomem_resource, res) < 0) { 141 pr_debug("System RAM resource %pR cannot be added\n", res); 142 kfree(res); 143 res = NULL; 144 } 145 return res; 146 } 147 148 static void release_memory_resource(struct resource *res) 149 { 150 if (!res) 151 return; 152 release_resource(res); 153 kfree(res); 154 return; 155 } 156 157 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 158 void get_page_bootmem(unsigned long info, struct page *page, 159 unsigned long type) 160 { 161 page->lru.next = (struct list_head *) type; 162 SetPagePrivate(page); 163 set_page_private(page, info); 164 atomic_inc(&page->_count); 165 } 166 167 void put_page_bootmem(struct page *page) 168 { 169 unsigned long type; 170 171 type = (unsigned long) page->lru.next; 172 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 173 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 174 175 if (atomic_dec_return(&page->_count) == 1) { 176 ClearPagePrivate(page); 177 set_page_private(page, 0); 178 INIT_LIST_HEAD(&page->lru); 179 free_reserved_page(page); 180 } 181 } 182 183 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 184 #ifndef CONFIG_SPARSEMEM_VMEMMAP 185 static void register_page_bootmem_info_section(unsigned long start_pfn) 186 { 187 unsigned long *usemap, mapsize, section_nr, i; 188 struct mem_section *ms; 189 struct page *page, *memmap; 190 191 section_nr = pfn_to_section_nr(start_pfn); 192 ms = __nr_to_section(section_nr); 193 194 /* Get section's memmap address */ 195 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 196 197 /* 198 * Get page for the memmap's phys address 199 * XXX: need more consideration for sparse_vmemmap... 200 */ 201 page = virt_to_page(memmap); 202 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 203 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 204 205 /* remember memmap's page */ 206 for (i = 0; i < mapsize; i++, page++) 207 get_page_bootmem(section_nr, page, SECTION_INFO); 208 209 usemap = __nr_to_section(section_nr)->pageblock_flags; 210 page = virt_to_page(usemap); 211 212 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 213 214 for (i = 0; i < mapsize; i++, page++) 215 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 216 217 } 218 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 219 static void register_page_bootmem_info_section(unsigned long start_pfn) 220 { 221 unsigned long *usemap, mapsize, section_nr, i; 222 struct mem_section *ms; 223 struct page *page, *memmap; 224 225 if (!pfn_valid(start_pfn)) 226 return; 227 228 section_nr = pfn_to_section_nr(start_pfn); 229 ms = __nr_to_section(section_nr); 230 231 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 232 233 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 234 235 usemap = __nr_to_section(section_nr)->pageblock_flags; 236 page = virt_to_page(usemap); 237 238 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 239 240 for (i = 0; i < mapsize; i++, page++) 241 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 242 } 243 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 244 245 void register_page_bootmem_info_node(struct pglist_data *pgdat) 246 { 247 unsigned long i, pfn, end_pfn, nr_pages; 248 int node = pgdat->node_id; 249 struct page *page; 250 struct zone *zone; 251 252 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 253 page = virt_to_page(pgdat); 254 255 for (i = 0; i < nr_pages; i++, page++) 256 get_page_bootmem(node, page, NODE_INFO); 257 258 zone = &pgdat->node_zones[0]; 259 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) { 260 if (zone_is_initialized(zone)) { 261 nr_pages = zone->wait_table_hash_nr_entries 262 * sizeof(wait_queue_head_t); 263 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT; 264 page = virt_to_page(zone->wait_table); 265 266 for (i = 0; i < nr_pages; i++, page++) 267 get_page_bootmem(node, page, NODE_INFO); 268 } 269 } 270 271 pfn = pgdat->node_start_pfn; 272 end_pfn = pgdat_end_pfn(pgdat); 273 274 /* register section info */ 275 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 276 /* 277 * Some platforms can assign the same pfn to multiple nodes - on 278 * node0 as well as nodeN. To avoid registering a pfn against 279 * multiple nodes we check that this pfn does not already 280 * reside in some other nodes. 281 */ 282 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node)) 283 register_page_bootmem_info_section(pfn); 284 } 285 } 286 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 287 288 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn, 289 unsigned long end_pfn) 290 { 291 unsigned long old_zone_end_pfn; 292 293 zone_span_writelock(zone); 294 295 old_zone_end_pfn = zone_end_pfn(zone); 296 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 297 zone->zone_start_pfn = start_pfn; 298 299 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - 300 zone->zone_start_pfn; 301 302 zone_span_writeunlock(zone); 303 } 304 305 static void resize_zone(struct zone *zone, unsigned long start_pfn, 306 unsigned long end_pfn) 307 { 308 zone_span_writelock(zone); 309 310 if (end_pfn - start_pfn) { 311 zone->zone_start_pfn = start_pfn; 312 zone->spanned_pages = end_pfn - start_pfn; 313 } else { 314 /* 315 * make it consist as free_area_init_core(), 316 * if spanned_pages = 0, then keep start_pfn = 0 317 */ 318 zone->zone_start_pfn = 0; 319 zone->spanned_pages = 0; 320 } 321 322 zone_span_writeunlock(zone); 323 } 324 325 static void fix_zone_id(struct zone *zone, unsigned long start_pfn, 326 unsigned long end_pfn) 327 { 328 enum zone_type zid = zone_idx(zone); 329 int nid = zone->zone_pgdat->node_id; 330 unsigned long pfn; 331 332 for (pfn = start_pfn; pfn < end_pfn; pfn++) 333 set_page_links(pfn_to_page(pfn), zid, nid, pfn); 334 } 335 336 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or 337 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ 338 static int __ref ensure_zone_is_initialized(struct zone *zone, 339 unsigned long start_pfn, unsigned long num_pages) 340 { 341 if (!zone_is_initialized(zone)) 342 return init_currently_empty_zone(zone, start_pfn, num_pages, 343 MEMMAP_HOTPLUG); 344 return 0; 345 } 346 347 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, 348 unsigned long start_pfn, unsigned long end_pfn) 349 { 350 int ret; 351 unsigned long flags; 352 unsigned long z1_start_pfn; 353 354 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn); 355 if (ret) 356 return ret; 357 358 pgdat_resize_lock(z1->zone_pgdat, &flags); 359 360 /* can't move pfns which are higher than @z2 */ 361 if (end_pfn > zone_end_pfn(z2)) 362 goto out_fail; 363 /* the move out part must be at the left most of @z2 */ 364 if (start_pfn > z2->zone_start_pfn) 365 goto out_fail; 366 /* must included/overlap */ 367 if (end_pfn <= z2->zone_start_pfn) 368 goto out_fail; 369 370 /* use start_pfn for z1's start_pfn if z1 is empty */ 371 if (!zone_is_empty(z1)) 372 z1_start_pfn = z1->zone_start_pfn; 373 else 374 z1_start_pfn = start_pfn; 375 376 resize_zone(z1, z1_start_pfn, end_pfn); 377 resize_zone(z2, end_pfn, zone_end_pfn(z2)); 378 379 pgdat_resize_unlock(z1->zone_pgdat, &flags); 380 381 fix_zone_id(z1, start_pfn, end_pfn); 382 383 return 0; 384 out_fail: 385 pgdat_resize_unlock(z1->zone_pgdat, &flags); 386 return -1; 387 } 388 389 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, 390 unsigned long start_pfn, unsigned long end_pfn) 391 { 392 int ret; 393 unsigned long flags; 394 unsigned long z2_end_pfn; 395 396 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn); 397 if (ret) 398 return ret; 399 400 pgdat_resize_lock(z1->zone_pgdat, &flags); 401 402 /* can't move pfns which are lower than @z1 */ 403 if (z1->zone_start_pfn > start_pfn) 404 goto out_fail; 405 /* the move out part mast at the right most of @z1 */ 406 if (zone_end_pfn(z1) > end_pfn) 407 goto out_fail; 408 /* must included/overlap */ 409 if (start_pfn >= zone_end_pfn(z1)) 410 goto out_fail; 411 412 /* use end_pfn for z2's end_pfn if z2 is empty */ 413 if (!zone_is_empty(z2)) 414 z2_end_pfn = zone_end_pfn(z2); 415 else 416 z2_end_pfn = end_pfn; 417 418 resize_zone(z1, z1->zone_start_pfn, start_pfn); 419 resize_zone(z2, start_pfn, z2_end_pfn); 420 421 pgdat_resize_unlock(z1->zone_pgdat, &flags); 422 423 fix_zone_id(z2, start_pfn, end_pfn); 424 425 return 0; 426 out_fail: 427 pgdat_resize_unlock(z1->zone_pgdat, &flags); 428 return -1; 429 } 430 431 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn, 432 unsigned long end_pfn) 433 { 434 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat); 435 436 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 437 pgdat->node_start_pfn = start_pfn; 438 439 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) - 440 pgdat->node_start_pfn; 441 } 442 443 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn) 444 { 445 struct pglist_data *pgdat = zone->zone_pgdat; 446 int nr_pages = PAGES_PER_SECTION; 447 int nid = pgdat->node_id; 448 int zone_type; 449 unsigned long flags; 450 int ret; 451 452 zone_type = zone - pgdat->node_zones; 453 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages); 454 if (ret) 455 return ret; 456 457 pgdat_resize_lock(zone->zone_pgdat, &flags); 458 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages); 459 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn, 460 phys_start_pfn + nr_pages); 461 pgdat_resize_unlock(zone->zone_pgdat, &flags); 462 memmap_init_zone(nr_pages, nid, zone_type, 463 phys_start_pfn, MEMMAP_HOTPLUG); 464 return 0; 465 } 466 467 static int __meminit __add_section(int nid, struct zone *zone, 468 unsigned long phys_start_pfn) 469 { 470 int ret; 471 472 if (pfn_valid(phys_start_pfn)) 473 return -EEXIST; 474 475 ret = sparse_add_one_section(zone, phys_start_pfn); 476 477 if (ret < 0) 478 return ret; 479 480 ret = __add_zone(zone, phys_start_pfn); 481 482 if (ret < 0) 483 return ret; 484 485 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 486 } 487 488 /* 489 * Reasonably generic function for adding memory. It is 490 * expected that archs that support memory hotplug will 491 * call this function after deciding the zone to which to 492 * add the new pages. 493 */ 494 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn, 495 unsigned long nr_pages) 496 { 497 unsigned long i; 498 int err = 0; 499 int start_sec, end_sec; 500 /* during initialize mem_map, align hot-added range to section */ 501 start_sec = pfn_to_section_nr(phys_start_pfn); 502 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 503 504 for (i = start_sec; i <= end_sec; i++) { 505 err = __add_section(nid, zone, i << PFN_SECTION_SHIFT); 506 507 /* 508 * EEXIST is finally dealt with by ioresource collision 509 * check. see add_memory() => register_memory_resource() 510 * Warning will be printed if there is collision. 511 */ 512 if (err && (err != -EEXIST)) 513 break; 514 err = 0; 515 } 516 517 return err; 518 } 519 EXPORT_SYMBOL_GPL(__add_pages); 520 521 #ifdef CONFIG_MEMORY_HOTREMOVE 522 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 523 static int find_smallest_section_pfn(int nid, struct zone *zone, 524 unsigned long start_pfn, 525 unsigned long end_pfn) 526 { 527 struct mem_section *ms; 528 529 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 530 ms = __pfn_to_section(start_pfn); 531 532 if (unlikely(!valid_section(ms))) 533 continue; 534 535 if (unlikely(pfn_to_nid(start_pfn) != nid)) 536 continue; 537 538 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 539 continue; 540 541 return start_pfn; 542 } 543 544 return 0; 545 } 546 547 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 548 static int find_biggest_section_pfn(int nid, struct zone *zone, 549 unsigned long start_pfn, 550 unsigned long end_pfn) 551 { 552 struct mem_section *ms; 553 unsigned long pfn; 554 555 /* pfn is the end pfn of a memory section. */ 556 pfn = end_pfn - 1; 557 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 558 ms = __pfn_to_section(pfn); 559 560 if (unlikely(!valid_section(ms))) 561 continue; 562 563 if (unlikely(pfn_to_nid(pfn) != nid)) 564 continue; 565 566 if (zone && zone != page_zone(pfn_to_page(pfn))) 567 continue; 568 569 return pfn; 570 } 571 572 return 0; 573 } 574 575 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 576 unsigned long end_pfn) 577 { 578 unsigned long zone_start_pfn = zone->zone_start_pfn; 579 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 580 unsigned long zone_end_pfn = z; 581 unsigned long pfn; 582 struct mem_section *ms; 583 int nid = zone_to_nid(zone); 584 585 zone_span_writelock(zone); 586 if (zone_start_pfn == start_pfn) { 587 /* 588 * If the section is smallest section in the zone, it need 589 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 590 * In this case, we find second smallest valid mem_section 591 * for shrinking zone. 592 */ 593 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 594 zone_end_pfn); 595 if (pfn) { 596 zone->zone_start_pfn = pfn; 597 zone->spanned_pages = zone_end_pfn - pfn; 598 } 599 } else if (zone_end_pfn == end_pfn) { 600 /* 601 * If the section is biggest section in the zone, it need 602 * shrink zone->spanned_pages. 603 * In this case, we find second biggest valid mem_section for 604 * shrinking zone. 605 */ 606 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 607 start_pfn); 608 if (pfn) 609 zone->spanned_pages = pfn - zone_start_pfn + 1; 610 } 611 612 /* 613 * The section is not biggest or smallest mem_section in the zone, it 614 * only creates a hole in the zone. So in this case, we need not 615 * change the zone. But perhaps, the zone has only hole data. Thus 616 * it check the zone has only hole or not. 617 */ 618 pfn = zone_start_pfn; 619 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 620 ms = __pfn_to_section(pfn); 621 622 if (unlikely(!valid_section(ms))) 623 continue; 624 625 if (page_zone(pfn_to_page(pfn)) != zone) 626 continue; 627 628 /* If the section is current section, it continues the loop */ 629 if (start_pfn == pfn) 630 continue; 631 632 /* If we find valid section, we have nothing to do */ 633 zone_span_writeunlock(zone); 634 return; 635 } 636 637 /* The zone has no valid section */ 638 zone->zone_start_pfn = 0; 639 zone->spanned_pages = 0; 640 zone_span_writeunlock(zone); 641 } 642 643 static void shrink_pgdat_span(struct pglist_data *pgdat, 644 unsigned long start_pfn, unsigned long end_pfn) 645 { 646 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 647 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 648 unsigned long pgdat_end_pfn = p; 649 unsigned long pfn; 650 struct mem_section *ms; 651 int nid = pgdat->node_id; 652 653 if (pgdat_start_pfn == start_pfn) { 654 /* 655 * If the section is smallest section in the pgdat, it need 656 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 657 * In this case, we find second smallest valid mem_section 658 * for shrinking zone. 659 */ 660 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 661 pgdat_end_pfn); 662 if (pfn) { 663 pgdat->node_start_pfn = pfn; 664 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 665 } 666 } else if (pgdat_end_pfn == end_pfn) { 667 /* 668 * If the section is biggest section in the pgdat, it need 669 * shrink pgdat->node_spanned_pages. 670 * In this case, we find second biggest valid mem_section for 671 * shrinking zone. 672 */ 673 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 674 start_pfn); 675 if (pfn) 676 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 677 } 678 679 /* 680 * If the section is not biggest or smallest mem_section in the pgdat, 681 * it only creates a hole in the pgdat. So in this case, we need not 682 * change the pgdat. 683 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 684 * has only hole or not. 685 */ 686 pfn = pgdat_start_pfn; 687 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 688 ms = __pfn_to_section(pfn); 689 690 if (unlikely(!valid_section(ms))) 691 continue; 692 693 if (pfn_to_nid(pfn) != nid) 694 continue; 695 696 /* If the section is current section, it continues the loop */ 697 if (start_pfn == pfn) 698 continue; 699 700 /* If we find valid section, we have nothing to do */ 701 return; 702 } 703 704 /* The pgdat has no valid section */ 705 pgdat->node_start_pfn = 0; 706 pgdat->node_spanned_pages = 0; 707 } 708 709 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 710 { 711 struct pglist_data *pgdat = zone->zone_pgdat; 712 int nr_pages = PAGES_PER_SECTION; 713 int zone_type; 714 unsigned long flags; 715 716 zone_type = zone - pgdat->node_zones; 717 718 pgdat_resize_lock(zone->zone_pgdat, &flags); 719 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 720 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 721 pgdat_resize_unlock(zone->zone_pgdat, &flags); 722 } 723 724 static int __remove_section(struct zone *zone, struct mem_section *ms) 725 { 726 unsigned long start_pfn; 727 int scn_nr; 728 int ret = -EINVAL; 729 730 if (!valid_section(ms)) 731 return ret; 732 733 ret = unregister_memory_section(ms); 734 if (ret) 735 return ret; 736 737 scn_nr = __section_nr(ms); 738 start_pfn = section_nr_to_pfn(scn_nr); 739 __remove_zone(zone, start_pfn); 740 741 sparse_remove_one_section(zone, ms); 742 return 0; 743 } 744 745 /** 746 * __remove_pages() - remove sections of pages from a zone 747 * @zone: zone from which pages need to be removed 748 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 749 * @nr_pages: number of pages to remove (must be multiple of section size) 750 * 751 * Generic helper function to remove section mappings and sysfs entries 752 * for the section of the memory we are removing. Caller needs to make 753 * sure that pages are marked reserved and zones are adjust properly by 754 * calling offline_pages(). 755 */ 756 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 757 unsigned long nr_pages) 758 { 759 unsigned long i; 760 int sections_to_remove; 761 resource_size_t start, size; 762 int ret = 0; 763 764 /* 765 * We can only remove entire sections 766 */ 767 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 768 BUG_ON(nr_pages % PAGES_PER_SECTION); 769 770 start = phys_start_pfn << PAGE_SHIFT; 771 size = nr_pages * PAGE_SIZE; 772 ret = release_mem_region_adjustable(&iomem_resource, start, size); 773 if (ret) { 774 resource_size_t endres = start + size - 1; 775 776 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 777 &start, &endres, ret); 778 } 779 780 sections_to_remove = nr_pages / PAGES_PER_SECTION; 781 for (i = 0; i < sections_to_remove; i++) { 782 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 783 ret = __remove_section(zone, __pfn_to_section(pfn)); 784 if (ret) 785 break; 786 } 787 return ret; 788 } 789 EXPORT_SYMBOL_GPL(__remove_pages); 790 #endif /* CONFIG_MEMORY_HOTREMOVE */ 791 792 int set_online_page_callback(online_page_callback_t callback) 793 { 794 int rc = -EINVAL; 795 796 get_online_mems(); 797 mutex_lock(&online_page_callback_lock); 798 799 if (online_page_callback == generic_online_page) { 800 online_page_callback = callback; 801 rc = 0; 802 } 803 804 mutex_unlock(&online_page_callback_lock); 805 put_online_mems(); 806 807 return rc; 808 } 809 EXPORT_SYMBOL_GPL(set_online_page_callback); 810 811 int restore_online_page_callback(online_page_callback_t callback) 812 { 813 int rc = -EINVAL; 814 815 get_online_mems(); 816 mutex_lock(&online_page_callback_lock); 817 818 if (online_page_callback == callback) { 819 online_page_callback = generic_online_page; 820 rc = 0; 821 } 822 823 mutex_unlock(&online_page_callback_lock); 824 put_online_mems(); 825 826 return rc; 827 } 828 EXPORT_SYMBOL_GPL(restore_online_page_callback); 829 830 void __online_page_set_limits(struct page *page) 831 { 832 } 833 EXPORT_SYMBOL_GPL(__online_page_set_limits); 834 835 void __online_page_increment_counters(struct page *page) 836 { 837 adjust_managed_page_count(page, 1); 838 } 839 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 840 841 void __online_page_free(struct page *page) 842 { 843 __free_reserved_page(page); 844 } 845 EXPORT_SYMBOL_GPL(__online_page_free); 846 847 static void generic_online_page(struct page *page) 848 { 849 __online_page_set_limits(page); 850 __online_page_increment_counters(page); 851 __online_page_free(page); 852 } 853 854 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 855 void *arg) 856 { 857 unsigned long i; 858 unsigned long onlined_pages = *(unsigned long *)arg; 859 struct page *page; 860 if (PageReserved(pfn_to_page(start_pfn))) 861 for (i = 0; i < nr_pages; i++) { 862 page = pfn_to_page(start_pfn + i); 863 (*online_page_callback)(page); 864 onlined_pages++; 865 } 866 *(unsigned long *)arg = onlined_pages; 867 return 0; 868 } 869 870 #ifdef CONFIG_MOVABLE_NODE 871 /* 872 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have 873 * normal memory. 874 */ 875 static bool can_online_high_movable(struct zone *zone) 876 { 877 return true; 878 } 879 #else /* CONFIG_MOVABLE_NODE */ 880 /* ensure every online node has NORMAL memory */ 881 static bool can_online_high_movable(struct zone *zone) 882 { 883 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY); 884 } 885 #endif /* CONFIG_MOVABLE_NODE */ 886 887 /* check which state of node_states will be changed when online memory */ 888 static void node_states_check_changes_online(unsigned long nr_pages, 889 struct zone *zone, struct memory_notify *arg) 890 { 891 int nid = zone_to_nid(zone); 892 enum zone_type zone_last = ZONE_NORMAL; 893 894 /* 895 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 896 * contains nodes which have zones of 0...ZONE_NORMAL, 897 * set zone_last to ZONE_NORMAL. 898 * 899 * If we don't have HIGHMEM nor movable node, 900 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 901 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 902 */ 903 if (N_MEMORY == N_NORMAL_MEMORY) 904 zone_last = ZONE_MOVABLE; 905 906 /* 907 * if the memory to be online is in a zone of 0...zone_last, and 908 * the zones of 0...zone_last don't have memory before online, we will 909 * need to set the node to node_states[N_NORMAL_MEMORY] after 910 * the memory is online. 911 */ 912 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 913 arg->status_change_nid_normal = nid; 914 else 915 arg->status_change_nid_normal = -1; 916 917 #ifdef CONFIG_HIGHMEM 918 /* 919 * If we have movable node, node_states[N_HIGH_MEMORY] 920 * contains nodes which have zones of 0...ZONE_HIGHMEM, 921 * set zone_last to ZONE_HIGHMEM. 922 * 923 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 924 * contains nodes which have zones of 0...ZONE_MOVABLE, 925 * set zone_last to ZONE_MOVABLE. 926 */ 927 zone_last = ZONE_HIGHMEM; 928 if (N_MEMORY == N_HIGH_MEMORY) 929 zone_last = ZONE_MOVABLE; 930 931 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 932 arg->status_change_nid_high = nid; 933 else 934 arg->status_change_nid_high = -1; 935 #else 936 arg->status_change_nid_high = arg->status_change_nid_normal; 937 #endif 938 939 /* 940 * if the node don't have memory befor online, we will need to 941 * set the node to node_states[N_MEMORY] after the memory 942 * is online. 943 */ 944 if (!node_state(nid, N_MEMORY)) 945 arg->status_change_nid = nid; 946 else 947 arg->status_change_nid = -1; 948 } 949 950 static void node_states_set_node(int node, struct memory_notify *arg) 951 { 952 if (arg->status_change_nid_normal >= 0) 953 node_set_state(node, N_NORMAL_MEMORY); 954 955 if (arg->status_change_nid_high >= 0) 956 node_set_state(node, N_HIGH_MEMORY); 957 958 node_set_state(node, N_MEMORY); 959 } 960 961 962 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 963 { 964 unsigned long flags; 965 unsigned long onlined_pages = 0; 966 struct zone *zone; 967 int need_zonelists_rebuild = 0; 968 int nid; 969 int ret; 970 struct memory_notify arg; 971 972 mem_hotplug_begin(); 973 /* 974 * This doesn't need a lock to do pfn_to_page(). 975 * The section can't be removed here because of the 976 * memory_block->state_mutex. 977 */ 978 zone = page_zone(pfn_to_page(pfn)); 979 980 ret = -EINVAL; 981 if ((zone_idx(zone) > ZONE_NORMAL || 982 online_type == MMOP_ONLINE_MOVABLE) && 983 !can_online_high_movable(zone)) 984 goto out; 985 986 if (online_type == MMOP_ONLINE_KERNEL && 987 zone_idx(zone) == ZONE_MOVABLE) { 988 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) 989 goto out; 990 } 991 if (online_type == MMOP_ONLINE_MOVABLE && 992 zone_idx(zone) == ZONE_MOVABLE - 1) { 993 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) 994 goto out; 995 } 996 997 /* Previous code may changed the zone of the pfn range */ 998 zone = page_zone(pfn_to_page(pfn)); 999 1000 arg.start_pfn = pfn; 1001 arg.nr_pages = nr_pages; 1002 node_states_check_changes_online(nr_pages, zone, &arg); 1003 1004 nid = pfn_to_nid(pfn); 1005 1006 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1007 ret = notifier_to_errno(ret); 1008 if (ret) { 1009 memory_notify(MEM_CANCEL_ONLINE, &arg); 1010 goto out; 1011 } 1012 /* 1013 * If this zone is not populated, then it is not in zonelist. 1014 * This means the page allocator ignores this zone. 1015 * So, zonelist must be updated after online. 1016 */ 1017 mutex_lock(&zonelists_mutex); 1018 if (!populated_zone(zone)) { 1019 need_zonelists_rebuild = 1; 1020 build_all_zonelists(NULL, zone); 1021 } 1022 1023 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1024 online_pages_range); 1025 if (ret) { 1026 if (need_zonelists_rebuild) 1027 zone_pcp_reset(zone); 1028 mutex_unlock(&zonelists_mutex); 1029 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n", 1030 (unsigned long long) pfn << PAGE_SHIFT, 1031 (((unsigned long long) pfn + nr_pages) 1032 << PAGE_SHIFT) - 1); 1033 memory_notify(MEM_CANCEL_ONLINE, &arg); 1034 goto out; 1035 } 1036 1037 zone->present_pages += onlined_pages; 1038 1039 pgdat_resize_lock(zone->zone_pgdat, &flags); 1040 zone->zone_pgdat->node_present_pages += onlined_pages; 1041 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1042 1043 if (onlined_pages) { 1044 node_states_set_node(zone_to_nid(zone), &arg); 1045 if (need_zonelists_rebuild) 1046 build_all_zonelists(NULL, NULL); 1047 else 1048 zone_pcp_update(zone); 1049 } 1050 1051 mutex_unlock(&zonelists_mutex); 1052 1053 init_per_zone_wmark_min(); 1054 1055 if (onlined_pages) 1056 kswapd_run(zone_to_nid(zone)); 1057 1058 vm_total_pages = nr_free_pagecache_pages(); 1059 1060 writeback_set_ratelimit(); 1061 1062 if (onlined_pages) 1063 memory_notify(MEM_ONLINE, &arg); 1064 out: 1065 mem_hotplug_done(); 1066 return ret; 1067 } 1068 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1069 1070 static void reset_node_present_pages(pg_data_t *pgdat) 1071 { 1072 struct zone *z; 1073 1074 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1075 z->present_pages = 0; 1076 1077 pgdat->node_present_pages = 0; 1078 } 1079 1080 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1081 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1082 { 1083 struct pglist_data *pgdat; 1084 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1085 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1086 unsigned long start_pfn = PFN_DOWN(start); 1087 1088 pgdat = NODE_DATA(nid); 1089 if (!pgdat) { 1090 pgdat = arch_alloc_nodedata(nid); 1091 if (!pgdat) 1092 return NULL; 1093 1094 arch_refresh_nodedata(nid, pgdat); 1095 } 1096 1097 /* we can use NODE_DATA(nid) from here */ 1098 1099 /* init node's zones as empty zones, we don't have any present pages.*/ 1100 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1101 1102 /* 1103 * The node we allocated has no zone fallback lists. For avoiding 1104 * to access not-initialized zonelist, build here. 1105 */ 1106 mutex_lock(&zonelists_mutex); 1107 build_all_zonelists(pgdat, NULL); 1108 mutex_unlock(&zonelists_mutex); 1109 1110 /* 1111 * zone->managed_pages is set to an approximate value in 1112 * free_area_init_core(), which will cause 1113 * /sys/device/system/node/nodeX/meminfo has wrong data. 1114 * So reset it to 0 before any memory is onlined. 1115 */ 1116 reset_node_managed_pages(pgdat); 1117 1118 /* 1119 * When memory is hot-added, all the memory is in offline state. So 1120 * clear all zones' present_pages because they will be updated in 1121 * online_pages() and offline_pages(). 1122 */ 1123 reset_node_present_pages(pgdat); 1124 1125 return pgdat; 1126 } 1127 1128 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1129 { 1130 arch_refresh_nodedata(nid, NULL); 1131 arch_free_nodedata(pgdat); 1132 return; 1133 } 1134 1135 1136 /** 1137 * try_online_node - online a node if offlined 1138 * 1139 * called by cpu_up() to online a node without onlined memory. 1140 */ 1141 int try_online_node(int nid) 1142 { 1143 pg_data_t *pgdat; 1144 int ret; 1145 1146 if (node_online(nid)) 1147 return 0; 1148 1149 mem_hotplug_begin(); 1150 pgdat = hotadd_new_pgdat(nid, 0); 1151 if (!pgdat) { 1152 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1153 ret = -ENOMEM; 1154 goto out; 1155 } 1156 node_set_online(nid); 1157 ret = register_one_node(nid); 1158 BUG_ON(ret); 1159 1160 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1161 mutex_lock(&zonelists_mutex); 1162 build_all_zonelists(NULL, NULL); 1163 mutex_unlock(&zonelists_mutex); 1164 } 1165 1166 out: 1167 mem_hotplug_done(); 1168 return ret; 1169 } 1170 1171 static int check_hotplug_memory_range(u64 start, u64 size) 1172 { 1173 u64 start_pfn = PFN_DOWN(start); 1174 u64 nr_pages = size >> PAGE_SHIFT; 1175 1176 /* Memory range must be aligned with section */ 1177 if ((start_pfn & ~PAGE_SECTION_MASK) || 1178 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1179 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1180 (unsigned long long)start, 1181 (unsigned long long)size); 1182 return -EINVAL; 1183 } 1184 1185 return 0; 1186 } 1187 1188 /* 1189 * If movable zone has already been setup, newly added memory should be check. 1190 * If its address is higher than movable zone, it should be added as movable. 1191 * Without this check, movable zone may overlap with other zone. 1192 */ 1193 static int should_add_memory_movable(int nid, u64 start, u64 size) 1194 { 1195 unsigned long start_pfn = start >> PAGE_SHIFT; 1196 pg_data_t *pgdat = NODE_DATA(nid); 1197 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE; 1198 1199 if (zone_is_empty(movable_zone)) 1200 return 0; 1201 1202 if (movable_zone->zone_start_pfn <= start_pfn) 1203 return 1; 1204 1205 return 0; 1206 } 1207 1208 int zone_for_memory(int nid, u64 start, u64 size, int zone_default) 1209 { 1210 if (should_add_memory_movable(nid, start, size)) 1211 return ZONE_MOVABLE; 1212 1213 return zone_default; 1214 } 1215 1216 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1217 int __ref add_memory(int nid, u64 start, u64 size) 1218 { 1219 pg_data_t *pgdat = NULL; 1220 bool new_pgdat; 1221 bool new_node; 1222 struct resource *res; 1223 int ret; 1224 1225 ret = check_hotplug_memory_range(start, size); 1226 if (ret) 1227 return ret; 1228 1229 res = register_memory_resource(start, size); 1230 ret = -EEXIST; 1231 if (!res) 1232 return ret; 1233 1234 { /* Stupid hack to suppress address-never-null warning */ 1235 void *p = NODE_DATA(nid); 1236 new_pgdat = !p; 1237 } 1238 1239 mem_hotplug_begin(); 1240 1241 new_node = !node_online(nid); 1242 if (new_node) { 1243 pgdat = hotadd_new_pgdat(nid, start); 1244 ret = -ENOMEM; 1245 if (!pgdat) 1246 goto error; 1247 } 1248 1249 /* call arch's memory hotadd */ 1250 ret = arch_add_memory(nid, start, size); 1251 1252 if (ret < 0) 1253 goto error; 1254 1255 /* we online node here. we can't roll back from here. */ 1256 node_set_online(nid); 1257 1258 if (new_node) { 1259 ret = register_one_node(nid); 1260 /* 1261 * If sysfs file of new node can't create, cpu on the node 1262 * can't be hot-added. There is no rollback way now. 1263 * So, check by BUG_ON() to catch it reluctantly.. 1264 */ 1265 BUG_ON(ret); 1266 } 1267 1268 /* create new memmap entry */ 1269 firmware_map_add_hotplug(start, start + size, "System RAM"); 1270 1271 goto out; 1272 1273 error: 1274 /* rollback pgdat allocation and others */ 1275 if (new_pgdat) 1276 rollback_node_hotadd(nid, pgdat); 1277 release_memory_resource(res); 1278 1279 out: 1280 mem_hotplug_done(); 1281 return ret; 1282 } 1283 EXPORT_SYMBOL_GPL(add_memory); 1284 1285 #ifdef CONFIG_MEMORY_HOTREMOVE 1286 /* 1287 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1288 * set and the size of the free page is given by page_order(). Using this, 1289 * the function determines if the pageblock contains only free pages. 1290 * Due to buddy contraints, a free page at least the size of a pageblock will 1291 * be located at the start of the pageblock 1292 */ 1293 static inline int pageblock_free(struct page *page) 1294 { 1295 return PageBuddy(page) && page_order(page) >= pageblock_order; 1296 } 1297 1298 /* Return the start of the next active pageblock after a given page */ 1299 static struct page *next_active_pageblock(struct page *page) 1300 { 1301 /* Ensure the starting page is pageblock-aligned */ 1302 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1303 1304 /* If the entire pageblock is free, move to the end of free page */ 1305 if (pageblock_free(page)) { 1306 int order; 1307 /* be careful. we don't have locks, page_order can be changed.*/ 1308 order = page_order(page); 1309 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1310 return page + (1 << order); 1311 } 1312 1313 return page + pageblock_nr_pages; 1314 } 1315 1316 /* Checks if this range of memory is likely to be hot-removable. */ 1317 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1318 { 1319 struct page *page = pfn_to_page(start_pfn); 1320 struct page *end_page = page + nr_pages; 1321 1322 /* Check the starting page of each pageblock within the range */ 1323 for (; page < end_page; page = next_active_pageblock(page)) { 1324 if (!is_pageblock_removable_nolock(page)) 1325 return 0; 1326 cond_resched(); 1327 } 1328 1329 /* All pageblocks in the memory block are likely to be hot-removable */ 1330 return 1; 1331 } 1332 1333 /* 1334 * Confirm all pages in a range [start, end) is belongs to the same zone. 1335 */ 1336 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) 1337 { 1338 unsigned long pfn; 1339 struct zone *zone = NULL; 1340 struct page *page; 1341 int i; 1342 for (pfn = start_pfn; 1343 pfn < end_pfn; 1344 pfn += MAX_ORDER_NR_PAGES) { 1345 i = 0; 1346 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1347 while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i)) 1348 i++; 1349 if (i == MAX_ORDER_NR_PAGES) 1350 continue; 1351 page = pfn_to_page(pfn + i); 1352 if (zone && page_zone(page) != zone) 1353 return 0; 1354 zone = page_zone(page); 1355 } 1356 return 1; 1357 } 1358 1359 /* 1360 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages 1361 * and hugepages). We scan pfn because it's much easier than scanning over 1362 * linked list. This function returns the pfn of the first found movable 1363 * page if it's found, otherwise 0. 1364 */ 1365 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1366 { 1367 unsigned long pfn; 1368 struct page *page; 1369 for (pfn = start; pfn < end; pfn++) { 1370 if (pfn_valid(pfn)) { 1371 page = pfn_to_page(pfn); 1372 if (PageLRU(page)) 1373 return pfn; 1374 if (PageHuge(page)) { 1375 if (is_hugepage_active(page)) 1376 return pfn; 1377 else 1378 pfn = round_up(pfn + 1, 1379 1 << compound_order(page)) - 1; 1380 } 1381 } 1382 } 1383 return 0; 1384 } 1385 1386 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1387 static int 1388 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1389 { 1390 unsigned long pfn; 1391 struct page *page; 1392 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1393 int not_managed = 0; 1394 int ret = 0; 1395 LIST_HEAD(source); 1396 1397 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1398 if (!pfn_valid(pfn)) 1399 continue; 1400 page = pfn_to_page(pfn); 1401 1402 if (PageHuge(page)) { 1403 struct page *head = compound_head(page); 1404 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1405 if (compound_order(head) > PFN_SECTION_SHIFT) { 1406 ret = -EBUSY; 1407 break; 1408 } 1409 if (isolate_huge_page(page, &source)) 1410 move_pages -= 1 << compound_order(head); 1411 continue; 1412 } 1413 1414 if (!get_page_unless_zero(page)) 1415 continue; 1416 /* 1417 * We can skip free pages. And we can only deal with pages on 1418 * LRU. 1419 */ 1420 ret = isolate_lru_page(page); 1421 if (!ret) { /* Success */ 1422 put_page(page); 1423 list_add_tail(&page->lru, &source); 1424 move_pages--; 1425 inc_zone_page_state(page, NR_ISOLATED_ANON + 1426 page_is_file_cache(page)); 1427 1428 } else { 1429 #ifdef CONFIG_DEBUG_VM 1430 printk(KERN_ALERT "removing pfn %lx from LRU failed\n", 1431 pfn); 1432 dump_page(page, "failed to remove from LRU"); 1433 #endif 1434 put_page(page); 1435 /* Because we don't have big zone->lock. we should 1436 check this again here. */ 1437 if (page_count(page)) { 1438 not_managed++; 1439 ret = -EBUSY; 1440 break; 1441 } 1442 } 1443 } 1444 if (!list_empty(&source)) { 1445 if (not_managed) { 1446 putback_movable_pages(&source); 1447 goto out; 1448 } 1449 1450 /* 1451 * alloc_migrate_target should be improooooved!! 1452 * migrate_pages returns # of failed pages. 1453 */ 1454 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0, 1455 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1456 if (ret) 1457 putback_movable_pages(&source); 1458 } 1459 out: 1460 return ret; 1461 } 1462 1463 /* 1464 * remove from free_area[] and mark all as Reserved. 1465 */ 1466 static int 1467 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1468 void *data) 1469 { 1470 __offline_isolated_pages(start, start + nr_pages); 1471 return 0; 1472 } 1473 1474 static void 1475 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1476 { 1477 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1478 offline_isolated_pages_cb); 1479 } 1480 1481 /* 1482 * Check all pages in range, recoreded as memory resource, are isolated. 1483 */ 1484 static int 1485 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1486 void *data) 1487 { 1488 int ret; 1489 long offlined = *(long *)data; 1490 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1491 offlined = nr_pages; 1492 if (!ret) 1493 *(long *)data += offlined; 1494 return ret; 1495 } 1496 1497 static long 1498 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1499 { 1500 long offlined = 0; 1501 int ret; 1502 1503 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1504 check_pages_isolated_cb); 1505 if (ret < 0) 1506 offlined = (long)ret; 1507 return offlined; 1508 } 1509 1510 #ifdef CONFIG_MOVABLE_NODE 1511 /* 1512 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have 1513 * normal memory. 1514 */ 1515 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1516 { 1517 return true; 1518 } 1519 #else /* CONFIG_MOVABLE_NODE */ 1520 /* ensure the node has NORMAL memory if it is still online */ 1521 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1522 { 1523 struct pglist_data *pgdat = zone->zone_pgdat; 1524 unsigned long present_pages = 0; 1525 enum zone_type zt; 1526 1527 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1528 present_pages += pgdat->node_zones[zt].present_pages; 1529 1530 if (present_pages > nr_pages) 1531 return true; 1532 1533 present_pages = 0; 1534 for (; zt <= ZONE_MOVABLE; zt++) 1535 present_pages += pgdat->node_zones[zt].present_pages; 1536 1537 /* 1538 * we can't offline the last normal memory until all 1539 * higher memory is offlined. 1540 */ 1541 return present_pages == 0; 1542 } 1543 #endif /* CONFIG_MOVABLE_NODE */ 1544 1545 static int __init cmdline_parse_movable_node(char *p) 1546 { 1547 #ifdef CONFIG_MOVABLE_NODE 1548 /* 1549 * Memory used by the kernel cannot be hot-removed because Linux 1550 * cannot migrate the kernel pages. When memory hotplug is 1551 * enabled, we should prevent memblock from allocating memory 1552 * for the kernel. 1553 * 1554 * ACPI SRAT records all hotpluggable memory ranges. But before 1555 * SRAT is parsed, we don't know about it. 1556 * 1557 * The kernel image is loaded into memory at very early time. We 1558 * cannot prevent this anyway. So on NUMA system, we set any 1559 * node the kernel resides in as un-hotpluggable. 1560 * 1561 * Since on modern servers, one node could have double-digit 1562 * gigabytes memory, we can assume the memory around the kernel 1563 * image is also un-hotpluggable. So before SRAT is parsed, just 1564 * allocate memory near the kernel image to try the best to keep 1565 * the kernel away from hotpluggable memory. 1566 */ 1567 memblock_set_bottom_up(true); 1568 movable_node_enabled = true; 1569 #else 1570 pr_warn("movable_node option not supported\n"); 1571 #endif 1572 return 0; 1573 } 1574 early_param("movable_node", cmdline_parse_movable_node); 1575 1576 /* check which state of node_states will be changed when offline memory */ 1577 static void node_states_check_changes_offline(unsigned long nr_pages, 1578 struct zone *zone, struct memory_notify *arg) 1579 { 1580 struct pglist_data *pgdat = zone->zone_pgdat; 1581 unsigned long present_pages = 0; 1582 enum zone_type zt, zone_last = ZONE_NORMAL; 1583 1584 /* 1585 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1586 * contains nodes which have zones of 0...ZONE_NORMAL, 1587 * set zone_last to ZONE_NORMAL. 1588 * 1589 * If we don't have HIGHMEM nor movable node, 1590 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1591 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1592 */ 1593 if (N_MEMORY == N_NORMAL_MEMORY) 1594 zone_last = ZONE_MOVABLE; 1595 1596 /* 1597 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1598 * If the memory to be offline is in a zone of 0...zone_last, 1599 * and it is the last present memory, 0...zone_last will 1600 * become empty after offline , thus we can determind we will 1601 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1602 */ 1603 for (zt = 0; zt <= zone_last; zt++) 1604 present_pages += pgdat->node_zones[zt].present_pages; 1605 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1606 arg->status_change_nid_normal = zone_to_nid(zone); 1607 else 1608 arg->status_change_nid_normal = -1; 1609 1610 #ifdef CONFIG_HIGHMEM 1611 /* 1612 * If we have movable node, node_states[N_HIGH_MEMORY] 1613 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1614 * set zone_last to ZONE_HIGHMEM. 1615 * 1616 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1617 * contains nodes which have zones of 0...ZONE_MOVABLE, 1618 * set zone_last to ZONE_MOVABLE. 1619 */ 1620 zone_last = ZONE_HIGHMEM; 1621 if (N_MEMORY == N_HIGH_MEMORY) 1622 zone_last = ZONE_MOVABLE; 1623 1624 for (; zt <= zone_last; zt++) 1625 present_pages += pgdat->node_zones[zt].present_pages; 1626 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1627 arg->status_change_nid_high = zone_to_nid(zone); 1628 else 1629 arg->status_change_nid_high = -1; 1630 #else 1631 arg->status_change_nid_high = arg->status_change_nid_normal; 1632 #endif 1633 1634 /* 1635 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1636 */ 1637 zone_last = ZONE_MOVABLE; 1638 1639 /* 1640 * check whether node_states[N_HIGH_MEMORY] will be changed 1641 * If we try to offline the last present @nr_pages from the node, 1642 * we can determind we will need to clear the node from 1643 * node_states[N_HIGH_MEMORY]. 1644 */ 1645 for (; zt <= zone_last; zt++) 1646 present_pages += pgdat->node_zones[zt].present_pages; 1647 if (nr_pages >= present_pages) 1648 arg->status_change_nid = zone_to_nid(zone); 1649 else 1650 arg->status_change_nid = -1; 1651 } 1652 1653 static void node_states_clear_node(int node, struct memory_notify *arg) 1654 { 1655 if (arg->status_change_nid_normal >= 0) 1656 node_clear_state(node, N_NORMAL_MEMORY); 1657 1658 if ((N_MEMORY != N_NORMAL_MEMORY) && 1659 (arg->status_change_nid_high >= 0)) 1660 node_clear_state(node, N_HIGH_MEMORY); 1661 1662 if ((N_MEMORY != N_HIGH_MEMORY) && 1663 (arg->status_change_nid >= 0)) 1664 node_clear_state(node, N_MEMORY); 1665 } 1666 1667 static int __ref __offline_pages(unsigned long start_pfn, 1668 unsigned long end_pfn, unsigned long timeout) 1669 { 1670 unsigned long pfn, nr_pages, expire; 1671 long offlined_pages; 1672 int ret, drain, retry_max, node; 1673 unsigned long flags; 1674 struct zone *zone; 1675 struct memory_notify arg; 1676 1677 /* at least, alignment against pageblock is necessary */ 1678 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1679 return -EINVAL; 1680 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1681 return -EINVAL; 1682 /* This makes hotplug much easier...and readable. 1683 we assume this for now. .*/ 1684 if (!test_pages_in_a_zone(start_pfn, end_pfn)) 1685 return -EINVAL; 1686 1687 mem_hotplug_begin(); 1688 1689 zone = page_zone(pfn_to_page(start_pfn)); 1690 node = zone_to_nid(zone); 1691 nr_pages = end_pfn - start_pfn; 1692 1693 ret = -EINVAL; 1694 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages)) 1695 goto out; 1696 1697 /* set above range as isolated */ 1698 ret = start_isolate_page_range(start_pfn, end_pfn, 1699 MIGRATE_MOVABLE, true); 1700 if (ret) 1701 goto out; 1702 1703 arg.start_pfn = start_pfn; 1704 arg.nr_pages = nr_pages; 1705 node_states_check_changes_offline(nr_pages, zone, &arg); 1706 1707 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1708 ret = notifier_to_errno(ret); 1709 if (ret) 1710 goto failed_removal; 1711 1712 pfn = start_pfn; 1713 expire = jiffies + timeout; 1714 drain = 0; 1715 retry_max = 5; 1716 repeat: 1717 /* start memory hot removal */ 1718 ret = -EAGAIN; 1719 if (time_after(jiffies, expire)) 1720 goto failed_removal; 1721 ret = -EINTR; 1722 if (signal_pending(current)) 1723 goto failed_removal; 1724 ret = 0; 1725 if (drain) { 1726 lru_add_drain_all(); 1727 cond_resched(); 1728 drain_all_pages(zone); 1729 } 1730 1731 pfn = scan_movable_pages(start_pfn, end_pfn); 1732 if (pfn) { /* We have movable pages */ 1733 ret = do_migrate_range(pfn, end_pfn); 1734 if (!ret) { 1735 drain = 1; 1736 goto repeat; 1737 } else { 1738 if (ret < 0) 1739 if (--retry_max == 0) 1740 goto failed_removal; 1741 yield(); 1742 drain = 1; 1743 goto repeat; 1744 } 1745 } 1746 /* drain all zone's lru pagevec, this is asynchronous... */ 1747 lru_add_drain_all(); 1748 yield(); 1749 /* drain pcp pages, this is synchronous. */ 1750 drain_all_pages(zone); 1751 /* 1752 * dissolve free hugepages in the memory block before doing offlining 1753 * actually in order to make hugetlbfs's object counting consistent. 1754 */ 1755 dissolve_free_huge_pages(start_pfn, end_pfn); 1756 /* check again */ 1757 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1758 if (offlined_pages < 0) { 1759 ret = -EBUSY; 1760 goto failed_removal; 1761 } 1762 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages); 1763 /* Ok, all of our target is isolated. 1764 We cannot do rollback at this point. */ 1765 offline_isolated_pages(start_pfn, end_pfn); 1766 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1767 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1768 /* removal success */ 1769 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1770 zone->present_pages -= offlined_pages; 1771 1772 pgdat_resize_lock(zone->zone_pgdat, &flags); 1773 zone->zone_pgdat->node_present_pages -= offlined_pages; 1774 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1775 1776 init_per_zone_wmark_min(); 1777 1778 if (!populated_zone(zone)) { 1779 zone_pcp_reset(zone); 1780 mutex_lock(&zonelists_mutex); 1781 build_all_zonelists(NULL, NULL); 1782 mutex_unlock(&zonelists_mutex); 1783 } else 1784 zone_pcp_update(zone); 1785 1786 node_states_clear_node(node, &arg); 1787 if (arg.status_change_nid >= 0) 1788 kswapd_stop(node); 1789 1790 vm_total_pages = nr_free_pagecache_pages(); 1791 writeback_set_ratelimit(); 1792 1793 memory_notify(MEM_OFFLINE, &arg); 1794 mem_hotplug_done(); 1795 return 0; 1796 1797 failed_removal: 1798 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n", 1799 (unsigned long long) start_pfn << PAGE_SHIFT, 1800 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1801 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1802 /* pushback to free area */ 1803 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1804 1805 out: 1806 mem_hotplug_done(); 1807 return ret; 1808 } 1809 1810 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1811 { 1812 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 1813 } 1814 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1815 1816 /** 1817 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1818 * @start_pfn: start pfn of the memory range 1819 * @end_pfn: end pfn of the memory range 1820 * @arg: argument passed to func 1821 * @func: callback for each memory section walked 1822 * 1823 * This function walks through all present mem sections in range 1824 * [start_pfn, end_pfn) and call func on each mem section. 1825 * 1826 * Returns the return value of func. 1827 */ 1828 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1829 void *arg, int (*func)(struct memory_block *, void *)) 1830 { 1831 struct memory_block *mem = NULL; 1832 struct mem_section *section; 1833 unsigned long pfn, section_nr; 1834 int ret; 1835 1836 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1837 section_nr = pfn_to_section_nr(pfn); 1838 if (!present_section_nr(section_nr)) 1839 continue; 1840 1841 section = __nr_to_section(section_nr); 1842 /* same memblock? */ 1843 if (mem) 1844 if ((section_nr >= mem->start_section_nr) && 1845 (section_nr <= mem->end_section_nr)) 1846 continue; 1847 1848 mem = find_memory_block_hinted(section, mem); 1849 if (!mem) 1850 continue; 1851 1852 ret = func(mem, arg); 1853 if (ret) { 1854 kobject_put(&mem->dev.kobj); 1855 return ret; 1856 } 1857 } 1858 1859 if (mem) 1860 kobject_put(&mem->dev.kobj); 1861 1862 return 0; 1863 } 1864 1865 #ifdef CONFIG_MEMORY_HOTREMOVE 1866 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1867 { 1868 int ret = !is_memblock_offlined(mem); 1869 1870 if (unlikely(ret)) { 1871 phys_addr_t beginpa, endpa; 1872 1873 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1874 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1875 pr_warn("removing memory fails, because memory " 1876 "[%pa-%pa] is onlined\n", 1877 &beginpa, &endpa); 1878 } 1879 1880 return ret; 1881 } 1882 1883 static int check_cpu_on_node(pg_data_t *pgdat) 1884 { 1885 int cpu; 1886 1887 for_each_present_cpu(cpu) { 1888 if (cpu_to_node(cpu) == pgdat->node_id) 1889 /* 1890 * the cpu on this node isn't removed, and we can't 1891 * offline this node. 1892 */ 1893 return -EBUSY; 1894 } 1895 1896 return 0; 1897 } 1898 1899 static void unmap_cpu_on_node(pg_data_t *pgdat) 1900 { 1901 #ifdef CONFIG_ACPI_NUMA 1902 int cpu; 1903 1904 for_each_possible_cpu(cpu) 1905 if (cpu_to_node(cpu) == pgdat->node_id) 1906 numa_clear_node(cpu); 1907 #endif 1908 } 1909 1910 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 1911 { 1912 int ret; 1913 1914 ret = check_cpu_on_node(pgdat); 1915 if (ret) 1916 return ret; 1917 1918 /* 1919 * the node will be offlined when we come here, so we can clear 1920 * the cpu_to_node() now. 1921 */ 1922 1923 unmap_cpu_on_node(pgdat); 1924 return 0; 1925 } 1926 1927 /** 1928 * try_offline_node 1929 * 1930 * Offline a node if all memory sections and cpus of the node are removed. 1931 * 1932 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1933 * and online/offline operations before this call. 1934 */ 1935 void try_offline_node(int nid) 1936 { 1937 pg_data_t *pgdat = NODE_DATA(nid); 1938 unsigned long start_pfn = pgdat->node_start_pfn; 1939 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1940 unsigned long pfn; 1941 int i; 1942 1943 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1944 unsigned long section_nr = pfn_to_section_nr(pfn); 1945 1946 if (!present_section_nr(section_nr)) 1947 continue; 1948 1949 if (pfn_to_nid(pfn) != nid) 1950 continue; 1951 1952 /* 1953 * some memory sections of this node are not removed, and we 1954 * can't offline node now. 1955 */ 1956 return; 1957 } 1958 1959 if (check_and_unmap_cpu_on_node(pgdat)) 1960 return; 1961 1962 /* 1963 * all memory/cpu of this node are removed, we can offline this 1964 * node now. 1965 */ 1966 node_set_offline(nid); 1967 unregister_one_node(nid); 1968 1969 /* free waittable in each zone */ 1970 for (i = 0; i < MAX_NR_ZONES; i++) { 1971 struct zone *zone = pgdat->node_zones + i; 1972 1973 /* 1974 * wait_table may be allocated from boot memory, 1975 * here only free if it's allocated by vmalloc. 1976 */ 1977 if (is_vmalloc_addr(zone->wait_table)) 1978 vfree(zone->wait_table); 1979 } 1980 1981 /* 1982 * Since there is no way to guarentee the address of pgdat/zone is not 1983 * on stack of any kernel threads or used by other kernel objects 1984 * without reference counting or other symchronizing method, do not 1985 * reset node_data and free pgdat here. Just reset it to 0 and reuse 1986 * the memory when the node is online again. 1987 */ 1988 memset(pgdat, 0, sizeof(*pgdat)); 1989 } 1990 EXPORT_SYMBOL(try_offline_node); 1991 1992 /** 1993 * remove_memory 1994 * 1995 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1996 * and online/offline operations before this call, as required by 1997 * try_offline_node(). 1998 */ 1999 void __ref remove_memory(int nid, u64 start, u64 size) 2000 { 2001 int ret; 2002 2003 BUG_ON(check_hotplug_memory_range(start, size)); 2004 2005 mem_hotplug_begin(); 2006 2007 /* 2008 * All memory blocks must be offlined before removing memory. Check 2009 * whether all memory blocks in question are offline and trigger a BUG() 2010 * if this is not the case. 2011 */ 2012 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 2013 check_memblock_offlined_cb); 2014 if (ret) 2015 BUG(); 2016 2017 /* remove memmap entry */ 2018 firmware_map_remove(start, start + size, "System RAM"); 2019 2020 arch_remove_memory(start, size); 2021 2022 try_offline_node(nid); 2023 2024 mem_hotplug_done(); 2025 } 2026 EXPORT_SYMBOL_GPL(remove_memory); 2027 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2028