xref: /linux/mm/memory_hotplug.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 /* add this memory to iomem resource */
100 static struct resource *register_memory_resource(u64 start, u64 size)
101 {
102 	struct resource *res, *conflict;
103 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 	if (!res)
105 		return ERR_PTR(-ENOMEM);
106 
107 	res->name = "System RAM";
108 	res->start = start;
109 	res->end = start + size - 1;
110 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 	conflict =  request_resource_conflict(&iomem_resource, res);
112 	if (conflict) {
113 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 			pr_debug("Device unaddressable memory block "
115 				 "memory hotplug at %#010llx !\n",
116 				 (unsigned long long)start);
117 		}
118 		pr_debug("System RAM resource %pR cannot be added\n", res);
119 		kfree(res);
120 		return ERR_PTR(-EEXIST);
121 	}
122 	return res;
123 }
124 
125 static void release_memory_resource(struct resource *res)
126 {
127 	if (!res)
128 		return;
129 	release_resource(res);
130 	kfree(res);
131 	return;
132 }
133 
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135 void get_page_bootmem(unsigned long info,  struct page *page,
136 		      unsigned long type)
137 {
138 	page->freelist = (void *)type;
139 	SetPagePrivate(page);
140 	set_page_private(page, info);
141 	page_ref_inc(page);
142 }
143 
144 void put_page_bootmem(struct page *page)
145 {
146 	unsigned long type;
147 
148 	type = (unsigned long) page->freelist;
149 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
151 
152 	if (page_ref_dec_return(page) == 1) {
153 		page->freelist = NULL;
154 		ClearPagePrivate(page);
155 		set_page_private(page, 0);
156 		INIT_LIST_HEAD(&page->lru);
157 		free_reserved_page(page);
158 	}
159 }
160 
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
163 static void register_page_bootmem_info_section(unsigned long start_pfn)
164 {
165 	unsigned long *usemap, mapsize, section_nr, i;
166 	struct mem_section *ms;
167 	struct page *page, *memmap;
168 
169 	section_nr = pfn_to_section_nr(start_pfn);
170 	ms = __nr_to_section(section_nr);
171 
172 	/* Get section's memmap address */
173 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
174 
175 	/*
176 	 * Get page for the memmap's phys address
177 	 * XXX: need more consideration for sparse_vmemmap...
178 	 */
179 	page = virt_to_page(memmap);
180 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
182 
183 	/* remember memmap's page */
184 	for (i = 0; i < mapsize; i++, page++)
185 		get_page_bootmem(section_nr, page, SECTION_INFO);
186 
187 	usemap = ms->pageblock_flags;
188 	page = virt_to_page(usemap);
189 
190 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
191 
192 	for (i = 0; i < mapsize; i++, page++)
193 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
194 
195 }
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
197 static void register_page_bootmem_info_section(unsigned long start_pfn)
198 {
199 	unsigned long *usemap, mapsize, section_nr, i;
200 	struct mem_section *ms;
201 	struct page *page, *memmap;
202 
203 	section_nr = pfn_to_section_nr(start_pfn);
204 	ms = __nr_to_section(section_nr);
205 
206 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
207 
208 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
209 
210 	usemap = ms->pageblock_flags;
211 	page = virt_to_page(usemap);
212 
213 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
214 
215 	for (i = 0; i < mapsize; i++, page++)
216 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
217 }
218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
219 
220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
221 {
222 	unsigned long i, pfn, end_pfn, nr_pages;
223 	int node = pgdat->node_id;
224 	struct page *page;
225 
226 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
227 	page = virt_to_page(pgdat);
228 
229 	for (i = 0; i < nr_pages; i++, page++)
230 		get_page_bootmem(node, page, NODE_INFO);
231 
232 	pfn = pgdat->node_start_pfn;
233 	end_pfn = pgdat_end_pfn(pgdat);
234 
235 	/* register section info */
236 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
237 		/*
238 		 * Some platforms can assign the same pfn to multiple nodes - on
239 		 * node0 as well as nodeN.  To avoid registering a pfn against
240 		 * multiple nodes we check that this pfn does not already
241 		 * reside in some other nodes.
242 		 */
243 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
244 			register_page_bootmem_info_section(pfn);
245 	}
246 }
247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
248 
249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
250 		bool want_memblock)
251 {
252 	int ret;
253 	int i;
254 
255 	if (pfn_valid(phys_start_pfn))
256 		return -EEXIST;
257 
258 	ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn);
259 	if (ret < 0)
260 		return ret;
261 
262 	/*
263 	 * Make all the pages reserved so that nobody will stumble over half
264 	 * initialized state.
265 	 * FIXME: We also have to associate it with a node because page_to_nid
266 	 * relies on having page with the proper node.
267 	 */
268 	for (i = 0; i < PAGES_PER_SECTION; i++) {
269 		unsigned long pfn = phys_start_pfn + i;
270 		struct page *page;
271 		if (!pfn_valid(pfn))
272 			continue;
273 
274 		page = pfn_to_page(pfn);
275 		set_page_node(page, nid);
276 		SetPageReserved(page);
277 	}
278 
279 	if (!want_memblock)
280 		return 0;
281 
282 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
283 }
284 
285 /*
286  * Reasonably generic function for adding memory.  It is
287  * expected that archs that support memory hotplug will
288  * call this function after deciding the zone to which to
289  * add the new pages.
290  */
291 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
292 			unsigned long nr_pages, bool want_memblock)
293 {
294 	unsigned long i;
295 	int err = 0;
296 	int start_sec, end_sec;
297 	struct vmem_altmap *altmap;
298 
299 	/* during initialize mem_map, align hot-added range to section */
300 	start_sec = pfn_to_section_nr(phys_start_pfn);
301 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
302 
303 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
304 	if (altmap) {
305 		/*
306 		 * Validate altmap is within bounds of the total request
307 		 */
308 		if (altmap->base_pfn != phys_start_pfn
309 				|| vmem_altmap_offset(altmap) > nr_pages) {
310 			pr_warn_once("memory add fail, invalid altmap\n");
311 			err = -EINVAL;
312 			goto out;
313 		}
314 		altmap->alloc = 0;
315 	}
316 
317 	for (i = start_sec; i <= end_sec; i++) {
318 		err = __add_section(nid, section_nr_to_pfn(i), want_memblock);
319 
320 		/*
321 		 * EEXIST is finally dealt with by ioresource collision
322 		 * check. see add_memory() => register_memory_resource()
323 		 * Warning will be printed if there is collision.
324 		 */
325 		if (err && (err != -EEXIST))
326 			break;
327 		err = 0;
328 		cond_resched();
329 	}
330 	vmemmap_populate_print_last();
331 out:
332 	return err;
333 }
334 EXPORT_SYMBOL_GPL(__add_pages);
335 
336 #ifdef CONFIG_MEMORY_HOTREMOVE
337 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
338 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
339 				     unsigned long start_pfn,
340 				     unsigned long end_pfn)
341 {
342 	struct mem_section *ms;
343 
344 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
345 		ms = __pfn_to_section(start_pfn);
346 
347 		if (unlikely(!valid_section(ms)))
348 			continue;
349 
350 		if (unlikely(pfn_to_nid(start_pfn) != nid))
351 			continue;
352 
353 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
354 			continue;
355 
356 		return start_pfn;
357 	}
358 
359 	return 0;
360 }
361 
362 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
363 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
364 				    unsigned long start_pfn,
365 				    unsigned long end_pfn)
366 {
367 	struct mem_section *ms;
368 	unsigned long pfn;
369 
370 	/* pfn is the end pfn of a memory section. */
371 	pfn = end_pfn - 1;
372 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
373 		ms = __pfn_to_section(pfn);
374 
375 		if (unlikely(!valid_section(ms)))
376 			continue;
377 
378 		if (unlikely(pfn_to_nid(pfn) != nid))
379 			continue;
380 
381 		if (zone && zone != page_zone(pfn_to_page(pfn)))
382 			continue;
383 
384 		return pfn;
385 	}
386 
387 	return 0;
388 }
389 
390 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
391 			     unsigned long end_pfn)
392 {
393 	unsigned long zone_start_pfn = zone->zone_start_pfn;
394 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
395 	unsigned long zone_end_pfn = z;
396 	unsigned long pfn;
397 	struct mem_section *ms;
398 	int nid = zone_to_nid(zone);
399 
400 	zone_span_writelock(zone);
401 	if (zone_start_pfn == start_pfn) {
402 		/*
403 		 * If the section is smallest section in the zone, it need
404 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
405 		 * In this case, we find second smallest valid mem_section
406 		 * for shrinking zone.
407 		 */
408 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
409 						zone_end_pfn);
410 		if (pfn) {
411 			zone->zone_start_pfn = pfn;
412 			zone->spanned_pages = zone_end_pfn - pfn;
413 		}
414 	} else if (zone_end_pfn == end_pfn) {
415 		/*
416 		 * If the section is biggest section in the zone, it need
417 		 * shrink zone->spanned_pages.
418 		 * In this case, we find second biggest valid mem_section for
419 		 * shrinking zone.
420 		 */
421 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
422 					       start_pfn);
423 		if (pfn)
424 			zone->spanned_pages = pfn - zone_start_pfn + 1;
425 	}
426 
427 	/*
428 	 * The section is not biggest or smallest mem_section in the zone, it
429 	 * only creates a hole in the zone. So in this case, we need not
430 	 * change the zone. But perhaps, the zone has only hole data. Thus
431 	 * it check the zone has only hole or not.
432 	 */
433 	pfn = zone_start_pfn;
434 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
435 		ms = __pfn_to_section(pfn);
436 
437 		if (unlikely(!valid_section(ms)))
438 			continue;
439 
440 		if (page_zone(pfn_to_page(pfn)) != zone)
441 			continue;
442 
443 		 /* If the section is current section, it continues the loop */
444 		if (start_pfn == pfn)
445 			continue;
446 
447 		/* If we find valid section, we have nothing to do */
448 		zone_span_writeunlock(zone);
449 		return;
450 	}
451 
452 	/* The zone has no valid section */
453 	zone->zone_start_pfn = 0;
454 	zone->spanned_pages = 0;
455 	zone_span_writeunlock(zone);
456 }
457 
458 static void shrink_pgdat_span(struct pglist_data *pgdat,
459 			      unsigned long start_pfn, unsigned long end_pfn)
460 {
461 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
462 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
463 	unsigned long pgdat_end_pfn = p;
464 	unsigned long pfn;
465 	struct mem_section *ms;
466 	int nid = pgdat->node_id;
467 
468 	if (pgdat_start_pfn == start_pfn) {
469 		/*
470 		 * If the section is smallest section in the pgdat, it need
471 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
472 		 * In this case, we find second smallest valid mem_section
473 		 * for shrinking zone.
474 		 */
475 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
476 						pgdat_end_pfn);
477 		if (pfn) {
478 			pgdat->node_start_pfn = pfn;
479 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
480 		}
481 	} else if (pgdat_end_pfn == end_pfn) {
482 		/*
483 		 * If the section is biggest section in the pgdat, it need
484 		 * shrink pgdat->node_spanned_pages.
485 		 * In this case, we find second biggest valid mem_section for
486 		 * shrinking zone.
487 		 */
488 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
489 					       start_pfn);
490 		if (pfn)
491 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
492 	}
493 
494 	/*
495 	 * If the section is not biggest or smallest mem_section in the pgdat,
496 	 * it only creates a hole in the pgdat. So in this case, we need not
497 	 * change the pgdat.
498 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
499 	 * has only hole or not.
500 	 */
501 	pfn = pgdat_start_pfn;
502 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
503 		ms = __pfn_to_section(pfn);
504 
505 		if (unlikely(!valid_section(ms)))
506 			continue;
507 
508 		if (pfn_to_nid(pfn) != nid)
509 			continue;
510 
511 		 /* If the section is current section, it continues the loop */
512 		if (start_pfn == pfn)
513 			continue;
514 
515 		/* If we find valid section, we have nothing to do */
516 		return;
517 	}
518 
519 	/* The pgdat has no valid section */
520 	pgdat->node_start_pfn = 0;
521 	pgdat->node_spanned_pages = 0;
522 }
523 
524 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
525 {
526 	struct pglist_data *pgdat = zone->zone_pgdat;
527 	int nr_pages = PAGES_PER_SECTION;
528 	unsigned long flags;
529 
530 	pgdat_resize_lock(zone->zone_pgdat, &flags);
531 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
532 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
533 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
534 }
535 
536 static int __remove_section(struct zone *zone, struct mem_section *ms,
537 		unsigned long map_offset)
538 {
539 	unsigned long start_pfn;
540 	int scn_nr;
541 	int ret = -EINVAL;
542 
543 	if (!valid_section(ms))
544 		return ret;
545 
546 	ret = unregister_memory_section(ms);
547 	if (ret)
548 		return ret;
549 
550 	scn_nr = __section_nr(ms);
551 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
552 	__remove_zone(zone, start_pfn);
553 
554 	sparse_remove_one_section(zone, ms, map_offset);
555 	return 0;
556 }
557 
558 /**
559  * __remove_pages() - remove sections of pages from a zone
560  * @zone: zone from which pages need to be removed
561  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
562  * @nr_pages: number of pages to remove (must be multiple of section size)
563  *
564  * Generic helper function to remove section mappings and sysfs entries
565  * for the section of the memory we are removing. Caller needs to make
566  * sure that pages are marked reserved and zones are adjust properly by
567  * calling offline_pages().
568  */
569 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
570 		 unsigned long nr_pages)
571 {
572 	unsigned long i;
573 	unsigned long map_offset = 0;
574 	int sections_to_remove, ret = 0;
575 
576 	/* In the ZONE_DEVICE case device driver owns the memory region */
577 	if (is_dev_zone(zone)) {
578 		struct page *page = pfn_to_page(phys_start_pfn);
579 		struct vmem_altmap *altmap;
580 
581 		altmap = to_vmem_altmap((unsigned long) page);
582 		if (altmap)
583 			map_offset = vmem_altmap_offset(altmap);
584 	} else {
585 		resource_size_t start, size;
586 
587 		start = phys_start_pfn << PAGE_SHIFT;
588 		size = nr_pages * PAGE_SIZE;
589 
590 		ret = release_mem_region_adjustable(&iomem_resource, start,
591 					size);
592 		if (ret) {
593 			resource_size_t endres = start + size - 1;
594 
595 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
596 					&start, &endres, ret);
597 		}
598 	}
599 
600 	clear_zone_contiguous(zone);
601 
602 	/*
603 	 * We can only remove entire sections
604 	 */
605 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
606 	BUG_ON(nr_pages % PAGES_PER_SECTION);
607 
608 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
609 	for (i = 0; i < sections_to_remove; i++) {
610 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
611 
612 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
613 		map_offset = 0;
614 		if (ret)
615 			break;
616 	}
617 
618 	set_zone_contiguous(zone);
619 
620 	return ret;
621 }
622 #endif /* CONFIG_MEMORY_HOTREMOVE */
623 
624 int set_online_page_callback(online_page_callback_t callback)
625 {
626 	int rc = -EINVAL;
627 
628 	get_online_mems();
629 	mutex_lock(&online_page_callback_lock);
630 
631 	if (online_page_callback == generic_online_page) {
632 		online_page_callback = callback;
633 		rc = 0;
634 	}
635 
636 	mutex_unlock(&online_page_callback_lock);
637 	put_online_mems();
638 
639 	return rc;
640 }
641 EXPORT_SYMBOL_GPL(set_online_page_callback);
642 
643 int restore_online_page_callback(online_page_callback_t callback)
644 {
645 	int rc = -EINVAL;
646 
647 	get_online_mems();
648 	mutex_lock(&online_page_callback_lock);
649 
650 	if (online_page_callback == callback) {
651 		online_page_callback = generic_online_page;
652 		rc = 0;
653 	}
654 
655 	mutex_unlock(&online_page_callback_lock);
656 	put_online_mems();
657 
658 	return rc;
659 }
660 EXPORT_SYMBOL_GPL(restore_online_page_callback);
661 
662 void __online_page_set_limits(struct page *page)
663 {
664 }
665 EXPORT_SYMBOL_GPL(__online_page_set_limits);
666 
667 void __online_page_increment_counters(struct page *page)
668 {
669 	adjust_managed_page_count(page, 1);
670 }
671 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
672 
673 void __online_page_free(struct page *page)
674 {
675 	__free_reserved_page(page);
676 }
677 EXPORT_SYMBOL_GPL(__online_page_free);
678 
679 static void generic_online_page(struct page *page)
680 {
681 	__online_page_set_limits(page);
682 	__online_page_increment_counters(page);
683 	__online_page_free(page);
684 }
685 
686 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
687 			void *arg)
688 {
689 	unsigned long i;
690 	unsigned long onlined_pages = *(unsigned long *)arg;
691 	struct page *page;
692 
693 	if (PageReserved(pfn_to_page(start_pfn)))
694 		for (i = 0; i < nr_pages; i++) {
695 			page = pfn_to_page(start_pfn + i);
696 			(*online_page_callback)(page);
697 			onlined_pages++;
698 		}
699 
700 	online_mem_sections(start_pfn, start_pfn + nr_pages);
701 
702 	*(unsigned long *)arg = onlined_pages;
703 	return 0;
704 }
705 
706 /* check which state of node_states will be changed when online memory */
707 static void node_states_check_changes_online(unsigned long nr_pages,
708 	struct zone *zone, struct memory_notify *arg)
709 {
710 	int nid = zone_to_nid(zone);
711 	enum zone_type zone_last = ZONE_NORMAL;
712 
713 	/*
714 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
715 	 * contains nodes which have zones of 0...ZONE_NORMAL,
716 	 * set zone_last to ZONE_NORMAL.
717 	 *
718 	 * If we don't have HIGHMEM nor movable node,
719 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
720 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
721 	 */
722 	if (N_MEMORY == N_NORMAL_MEMORY)
723 		zone_last = ZONE_MOVABLE;
724 
725 	/*
726 	 * if the memory to be online is in a zone of 0...zone_last, and
727 	 * the zones of 0...zone_last don't have memory before online, we will
728 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
729 	 * the memory is online.
730 	 */
731 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
732 		arg->status_change_nid_normal = nid;
733 	else
734 		arg->status_change_nid_normal = -1;
735 
736 #ifdef CONFIG_HIGHMEM
737 	/*
738 	 * If we have movable node, node_states[N_HIGH_MEMORY]
739 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
740 	 * set zone_last to ZONE_HIGHMEM.
741 	 *
742 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
743 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
744 	 * set zone_last to ZONE_MOVABLE.
745 	 */
746 	zone_last = ZONE_HIGHMEM;
747 	if (N_MEMORY == N_HIGH_MEMORY)
748 		zone_last = ZONE_MOVABLE;
749 
750 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
751 		arg->status_change_nid_high = nid;
752 	else
753 		arg->status_change_nid_high = -1;
754 #else
755 	arg->status_change_nid_high = arg->status_change_nid_normal;
756 #endif
757 
758 	/*
759 	 * if the node don't have memory befor online, we will need to
760 	 * set the node to node_states[N_MEMORY] after the memory
761 	 * is online.
762 	 */
763 	if (!node_state(nid, N_MEMORY))
764 		arg->status_change_nid = nid;
765 	else
766 		arg->status_change_nid = -1;
767 }
768 
769 static void node_states_set_node(int node, struct memory_notify *arg)
770 {
771 	if (arg->status_change_nid_normal >= 0)
772 		node_set_state(node, N_NORMAL_MEMORY);
773 
774 	if (arg->status_change_nid_high >= 0)
775 		node_set_state(node, N_HIGH_MEMORY);
776 
777 	node_set_state(node, N_MEMORY);
778 }
779 
780 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
781 		unsigned long nr_pages)
782 {
783 	unsigned long old_end_pfn = zone_end_pfn(zone);
784 
785 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
786 		zone->zone_start_pfn = start_pfn;
787 
788 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
789 }
790 
791 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
792                                      unsigned long nr_pages)
793 {
794 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
795 
796 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
797 		pgdat->node_start_pfn = start_pfn;
798 
799 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
800 }
801 
802 void __ref move_pfn_range_to_zone(struct zone *zone,
803 		unsigned long start_pfn, unsigned long nr_pages)
804 {
805 	struct pglist_data *pgdat = zone->zone_pgdat;
806 	int nid = pgdat->node_id;
807 	unsigned long flags;
808 
809 	if (zone_is_empty(zone))
810 		init_currently_empty_zone(zone, start_pfn, nr_pages);
811 
812 	clear_zone_contiguous(zone);
813 
814 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
815 	pgdat_resize_lock(pgdat, &flags);
816 	zone_span_writelock(zone);
817 	resize_zone_range(zone, start_pfn, nr_pages);
818 	zone_span_writeunlock(zone);
819 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
820 	pgdat_resize_unlock(pgdat, &flags);
821 
822 	/*
823 	 * TODO now we have a visible range of pages which are not associated
824 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
825 	 * expects the zone spans the pfn range. All the pages in the range
826 	 * are reserved so nobody should be touching them so we should be safe
827 	 */
828 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, MEMMAP_HOTPLUG);
829 
830 	set_zone_contiguous(zone);
831 }
832 
833 /*
834  * Returns a default kernel memory zone for the given pfn range.
835  * If no kernel zone covers this pfn range it will automatically go
836  * to the ZONE_NORMAL.
837  */
838 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
839 		unsigned long nr_pages)
840 {
841 	struct pglist_data *pgdat = NODE_DATA(nid);
842 	int zid;
843 
844 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
845 		struct zone *zone = &pgdat->node_zones[zid];
846 
847 		if (zone_intersects(zone, start_pfn, nr_pages))
848 			return zone;
849 	}
850 
851 	return &pgdat->node_zones[ZONE_NORMAL];
852 }
853 
854 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
855 		unsigned long nr_pages)
856 {
857 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
858 			nr_pages);
859 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
860 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
861 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
862 
863 	/*
864 	 * We inherit the existing zone in a simple case where zones do not
865 	 * overlap in the given range
866 	 */
867 	if (in_kernel ^ in_movable)
868 		return (in_kernel) ? kernel_zone : movable_zone;
869 
870 	/*
871 	 * If the range doesn't belong to any zone or two zones overlap in the
872 	 * given range then we use movable zone only if movable_node is
873 	 * enabled because we always online to a kernel zone by default.
874 	 */
875 	return movable_node_enabled ? movable_zone : kernel_zone;
876 }
877 
878 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
879 		unsigned long nr_pages)
880 {
881 	if (online_type == MMOP_ONLINE_KERNEL)
882 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
883 
884 	if (online_type == MMOP_ONLINE_MOVABLE)
885 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
886 
887 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
888 }
889 
890 /*
891  * Associates the given pfn range with the given node and the zone appropriate
892  * for the given online type.
893  */
894 static struct zone * __meminit move_pfn_range(int online_type, int nid,
895 		unsigned long start_pfn, unsigned long nr_pages)
896 {
897 	struct zone *zone;
898 
899 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
900 	move_pfn_range_to_zone(zone, start_pfn, nr_pages);
901 	return zone;
902 }
903 
904 /* Must be protected by mem_hotplug_begin() or a device_lock */
905 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
906 {
907 	unsigned long flags;
908 	unsigned long onlined_pages = 0;
909 	struct zone *zone;
910 	int need_zonelists_rebuild = 0;
911 	int nid;
912 	int ret;
913 	struct memory_notify arg;
914 
915 	nid = pfn_to_nid(pfn);
916 	/* associate pfn range with the zone */
917 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
918 
919 	arg.start_pfn = pfn;
920 	arg.nr_pages = nr_pages;
921 	node_states_check_changes_online(nr_pages, zone, &arg);
922 
923 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
924 	ret = notifier_to_errno(ret);
925 	if (ret)
926 		goto failed_addition;
927 
928 	/*
929 	 * If this zone is not populated, then it is not in zonelist.
930 	 * This means the page allocator ignores this zone.
931 	 * So, zonelist must be updated after online.
932 	 */
933 	if (!populated_zone(zone)) {
934 		need_zonelists_rebuild = 1;
935 		setup_zone_pageset(zone);
936 	}
937 
938 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
939 		online_pages_range);
940 	if (ret) {
941 		if (need_zonelists_rebuild)
942 			zone_pcp_reset(zone);
943 		goto failed_addition;
944 	}
945 
946 	zone->present_pages += onlined_pages;
947 
948 	pgdat_resize_lock(zone->zone_pgdat, &flags);
949 	zone->zone_pgdat->node_present_pages += onlined_pages;
950 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
951 
952 	if (onlined_pages) {
953 		node_states_set_node(nid, &arg);
954 		if (need_zonelists_rebuild)
955 			build_all_zonelists(NULL);
956 		else
957 			zone_pcp_update(zone);
958 	}
959 
960 	init_per_zone_wmark_min();
961 
962 	if (onlined_pages) {
963 		kswapd_run(nid);
964 		kcompactd_run(nid);
965 	}
966 
967 	vm_total_pages = nr_free_pagecache_pages();
968 
969 	writeback_set_ratelimit();
970 
971 	if (onlined_pages)
972 		memory_notify(MEM_ONLINE, &arg);
973 	return 0;
974 
975 failed_addition:
976 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
977 		 (unsigned long long) pfn << PAGE_SHIFT,
978 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
979 	memory_notify(MEM_CANCEL_ONLINE, &arg);
980 	return ret;
981 }
982 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
983 
984 static void reset_node_present_pages(pg_data_t *pgdat)
985 {
986 	struct zone *z;
987 
988 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
989 		z->present_pages = 0;
990 
991 	pgdat->node_present_pages = 0;
992 }
993 
994 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
995 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
996 {
997 	struct pglist_data *pgdat;
998 	unsigned long zones_size[MAX_NR_ZONES] = {0};
999 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1000 	unsigned long start_pfn = PFN_DOWN(start);
1001 
1002 	pgdat = NODE_DATA(nid);
1003 	if (!pgdat) {
1004 		pgdat = arch_alloc_nodedata(nid);
1005 		if (!pgdat)
1006 			return NULL;
1007 
1008 		arch_refresh_nodedata(nid, pgdat);
1009 	} else {
1010 		/*
1011 		 * Reset the nr_zones, order and classzone_idx before reuse.
1012 		 * Note that kswapd will init kswapd_classzone_idx properly
1013 		 * when it starts in the near future.
1014 		 */
1015 		pgdat->nr_zones = 0;
1016 		pgdat->kswapd_order = 0;
1017 		pgdat->kswapd_classzone_idx = 0;
1018 	}
1019 
1020 	/* we can use NODE_DATA(nid) from here */
1021 
1022 	/* init node's zones as empty zones, we don't have any present pages.*/
1023 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1024 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1025 
1026 	/*
1027 	 * The node we allocated has no zone fallback lists. For avoiding
1028 	 * to access not-initialized zonelist, build here.
1029 	 */
1030 	build_all_zonelists(pgdat);
1031 
1032 	/*
1033 	 * zone->managed_pages is set to an approximate value in
1034 	 * free_area_init_core(), which will cause
1035 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1036 	 * So reset it to 0 before any memory is onlined.
1037 	 */
1038 	reset_node_managed_pages(pgdat);
1039 
1040 	/*
1041 	 * When memory is hot-added, all the memory is in offline state. So
1042 	 * clear all zones' present_pages because they will be updated in
1043 	 * online_pages() and offline_pages().
1044 	 */
1045 	reset_node_present_pages(pgdat);
1046 
1047 	return pgdat;
1048 }
1049 
1050 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1051 {
1052 	arch_refresh_nodedata(nid, NULL);
1053 	free_percpu(pgdat->per_cpu_nodestats);
1054 	arch_free_nodedata(pgdat);
1055 	return;
1056 }
1057 
1058 
1059 /**
1060  * try_online_node - online a node if offlined
1061  *
1062  * called by cpu_up() to online a node without onlined memory.
1063  */
1064 int try_online_node(int nid)
1065 {
1066 	pg_data_t	*pgdat;
1067 	int	ret;
1068 
1069 	if (node_online(nid))
1070 		return 0;
1071 
1072 	mem_hotplug_begin();
1073 	pgdat = hotadd_new_pgdat(nid, 0);
1074 	if (!pgdat) {
1075 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1076 		ret = -ENOMEM;
1077 		goto out;
1078 	}
1079 	node_set_online(nid);
1080 	ret = register_one_node(nid);
1081 	BUG_ON(ret);
1082 out:
1083 	mem_hotplug_done();
1084 	return ret;
1085 }
1086 
1087 static int check_hotplug_memory_range(u64 start, u64 size)
1088 {
1089 	u64 start_pfn = PFN_DOWN(start);
1090 	u64 nr_pages = size >> PAGE_SHIFT;
1091 
1092 	/* Memory range must be aligned with section */
1093 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1094 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1095 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1096 				(unsigned long long)start,
1097 				(unsigned long long)size);
1098 		return -EINVAL;
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static int online_memory_block(struct memory_block *mem, void *arg)
1105 {
1106 	return device_online(&mem->dev);
1107 }
1108 
1109 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1110 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1111 {
1112 	u64 start, size;
1113 	pg_data_t *pgdat = NULL;
1114 	bool new_pgdat;
1115 	bool new_node;
1116 	int ret;
1117 
1118 	start = res->start;
1119 	size = resource_size(res);
1120 
1121 	ret = check_hotplug_memory_range(start, size);
1122 	if (ret)
1123 		return ret;
1124 
1125 	{	/* Stupid hack to suppress address-never-null warning */
1126 		void *p = NODE_DATA(nid);
1127 		new_pgdat = !p;
1128 	}
1129 
1130 	mem_hotplug_begin();
1131 
1132 	/*
1133 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1134 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1135 	 * this new range and calculate total pages correctly.  The range will
1136 	 * be removed at hot-remove time.
1137 	 */
1138 	memblock_add_node(start, size, nid);
1139 
1140 	new_node = !node_online(nid);
1141 	if (new_node) {
1142 		pgdat = hotadd_new_pgdat(nid, start);
1143 		ret = -ENOMEM;
1144 		if (!pgdat)
1145 			goto error;
1146 	}
1147 
1148 	/* call arch's memory hotadd */
1149 	ret = arch_add_memory(nid, start, size, true);
1150 
1151 	if (ret < 0)
1152 		goto error;
1153 
1154 	/* we online node here. we can't roll back from here. */
1155 	node_set_online(nid);
1156 
1157 	if (new_node) {
1158 		unsigned long start_pfn = start >> PAGE_SHIFT;
1159 		unsigned long nr_pages = size >> PAGE_SHIFT;
1160 
1161 		ret = __register_one_node(nid);
1162 		if (ret)
1163 			goto register_fail;
1164 
1165 		/*
1166 		 * link memory sections under this node. This is already
1167 		 * done when creatig memory section in register_new_memory
1168 		 * but that depends to have the node registered so offline
1169 		 * nodes have to go through register_node.
1170 		 * TODO clean up this mess.
1171 		 */
1172 		ret = link_mem_sections(nid, start_pfn, nr_pages);
1173 register_fail:
1174 		/*
1175 		 * If sysfs file of new node can't create, cpu on the node
1176 		 * can't be hot-added. There is no rollback way now.
1177 		 * So, check by BUG_ON() to catch it reluctantly..
1178 		 */
1179 		BUG_ON(ret);
1180 	}
1181 
1182 	/* create new memmap entry */
1183 	firmware_map_add_hotplug(start, start + size, "System RAM");
1184 
1185 	/* online pages if requested */
1186 	if (online)
1187 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1188 				  NULL, online_memory_block);
1189 
1190 	goto out;
1191 
1192 error:
1193 	/* rollback pgdat allocation and others */
1194 	if (new_pgdat && pgdat)
1195 		rollback_node_hotadd(nid, pgdat);
1196 	memblock_remove(start, size);
1197 
1198 out:
1199 	mem_hotplug_done();
1200 	return ret;
1201 }
1202 EXPORT_SYMBOL_GPL(add_memory_resource);
1203 
1204 int __ref add_memory(int nid, u64 start, u64 size)
1205 {
1206 	struct resource *res;
1207 	int ret;
1208 
1209 	res = register_memory_resource(start, size);
1210 	if (IS_ERR(res))
1211 		return PTR_ERR(res);
1212 
1213 	ret = add_memory_resource(nid, res, memhp_auto_online);
1214 	if (ret < 0)
1215 		release_memory_resource(res);
1216 	return ret;
1217 }
1218 EXPORT_SYMBOL_GPL(add_memory);
1219 
1220 #ifdef CONFIG_MEMORY_HOTREMOVE
1221 /*
1222  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1223  * set and the size of the free page is given by page_order(). Using this,
1224  * the function determines if the pageblock contains only free pages.
1225  * Due to buddy contraints, a free page at least the size of a pageblock will
1226  * be located at the start of the pageblock
1227  */
1228 static inline int pageblock_free(struct page *page)
1229 {
1230 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1231 }
1232 
1233 /* Return the start of the next active pageblock after a given page */
1234 static struct page *next_active_pageblock(struct page *page)
1235 {
1236 	/* Ensure the starting page is pageblock-aligned */
1237 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1238 
1239 	/* If the entire pageblock is free, move to the end of free page */
1240 	if (pageblock_free(page)) {
1241 		int order;
1242 		/* be careful. we don't have locks, page_order can be changed.*/
1243 		order = page_order(page);
1244 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1245 			return page + (1 << order);
1246 	}
1247 
1248 	return page + pageblock_nr_pages;
1249 }
1250 
1251 /* Checks if this range of memory is likely to be hot-removable. */
1252 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1253 {
1254 	struct page *page = pfn_to_page(start_pfn);
1255 	struct page *end_page = page + nr_pages;
1256 
1257 	/* Check the starting page of each pageblock within the range */
1258 	for (; page < end_page; page = next_active_pageblock(page)) {
1259 		if (!is_pageblock_removable_nolock(page))
1260 			return false;
1261 		cond_resched();
1262 	}
1263 
1264 	/* All pageblocks in the memory block are likely to be hot-removable */
1265 	return true;
1266 }
1267 
1268 /*
1269  * Confirm all pages in a range [start, end) belong to the same zone.
1270  * When true, return its valid [start, end).
1271  */
1272 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1273 			 unsigned long *valid_start, unsigned long *valid_end)
1274 {
1275 	unsigned long pfn, sec_end_pfn;
1276 	unsigned long start, end;
1277 	struct zone *zone = NULL;
1278 	struct page *page;
1279 	int i;
1280 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1281 	     pfn < end_pfn;
1282 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1283 		/* Make sure the memory section is present first */
1284 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1285 			continue;
1286 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1287 		     pfn += MAX_ORDER_NR_PAGES) {
1288 			i = 0;
1289 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1290 			while ((i < MAX_ORDER_NR_PAGES) &&
1291 				!pfn_valid_within(pfn + i))
1292 				i++;
1293 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1294 				continue;
1295 			page = pfn_to_page(pfn + i);
1296 			if (zone && page_zone(page) != zone)
1297 				return 0;
1298 			if (!zone)
1299 				start = pfn + i;
1300 			zone = page_zone(page);
1301 			end = pfn + MAX_ORDER_NR_PAGES;
1302 		}
1303 	}
1304 
1305 	if (zone) {
1306 		*valid_start = start;
1307 		*valid_end = min(end, end_pfn);
1308 		return 1;
1309 	} else {
1310 		return 0;
1311 	}
1312 }
1313 
1314 /*
1315  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1316  * non-lru movable pages and hugepages). We scan pfn because it's much
1317  * easier than scanning over linked list. This function returns the pfn
1318  * of the first found movable page if it's found, otherwise 0.
1319  */
1320 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1321 {
1322 	unsigned long pfn;
1323 	struct page *page;
1324 	for (pfn = start; pfn < end; pfn++) {
1325 		if (pfn_valid(pfn)) {
1326 			page = pfn_to_page(pfn);
1327 			if (PageLRU(page))
1328 				return pfn;
1329 			if (__PageMovable(page))
1330 				return pfn;
1331 			if (PageHuge(page)) {
1332 				if (page_huge_active(page))
1333 					return pfn;
1334 				else
1335 					pfn = round_up(pfn + 1,
1336 						1 << compound_order(page)) - 1;
1337 			}
1338 		}
1339 	}
1340 	return 0;
1341 }
1342 
1343 static struct page *new_node_page(struct page *page, unsigned long private,
1344 		int **result)
1345 {
1346 	int nid = page_to_nid(page);
1347 	nodemask_t nmask = node_states[N_MEMORY];
1348 
1349 	/*
1350 	 * try to allocate from a different node but reuse this node if there
1351 	 * are no other online nodes to be used (e.g. we are offlining a part
1352 	 * of the only existing node)
1353 	 */
1354 	node_clear(nid, nmask);
1355 	if (nodes_empty(nmask))
1356 		node_set(nid, nmask);
1357 
1358 	return new_page_nodemask(page, nid, &nmask);
1359 }
1360 
1361 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1362 static int
1363 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1364 {
1365 	unsigned long pfn;
1366 	struct page *page;
1367 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1368 	int not_managed = 0;
1369 	int ret = 0;
1370 	LIST_HEAD(source);
1371 
1372 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1373 		if (!pfn_valid(pfn))
1374 			continue;
1375 		page = pfn_to_page(pfn);
1376 
1377 		if (PageHuge(page)) {
1378 			struct page *head = compound_head(page);
1379 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1380 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1381 				ret = -EBUSY;
1382 				break;
1383 			}
1384 			if (isolate_huge_page(page, &source))
1385 				move_pages -= 1 << compound_order(head);
1386 			continue;
1387 		} else if (thp_migration_supported() && PageTransHuge(page))
1388 			pfn = page_to_pfn(compound_head(page))
1389 				+ hpage_nr_pages(page) - 1;
1390 
1391 		if (!get_page_unless_zero(page))
1392 			continue;
1393 		/*
1394 		 * We can skip free pages. And we can deal with pages on
1395 		 * LRU and non-lru movable pages.
1396 		 */
1397 		if (PageLRU(page))
1398 			ret = isolate_lru_page(page);
1399 		else
1400 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1401 		if (!ret) { /* Success */
1402 			put_page(page);
1403 			list_add_tail(&page->lru, &source);
1404 			move_pages--;
1405 			if (!__PageMovable(page))
1406 				inc_node_page_state(page, NR_ISOLATED_ANON +
1407 						    page_is_file_cache(page));
1408 
1409 		} else {
1410 #ifdef CONFIG_DEBUG_VM
1411 			pr_alert("failed to isolate pfn %lx\n", pfn);
1412 			dump_page(page, "isolation failed");
1413 #endif
1414 			put_page(page);
1415 			/* Because we don't have big zone->lock. we should
1416 			   check this again here. */
1417 			if (page_count(page)) {
1418 				not_managed++;
1419 				ret = -EBUSY;
1420 				break;
1421 			}
1422 		}
1423 	}
1424 	if (!list_empty(&source)) {
1425 		if (not_managed) {
1426 			putback_movable_pages(&source);
1427 			goto out;
1428 		}
1429 
1430 		/* Allocate a new page from the nearest neighbor node */
1431 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1432 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1433 		if (ret)
1434 			putback_movable_pages(&source);
1435 	}
1436 out:
1437 	return ret;
1438 }
1439 
1440 /*
1441  * remove from free_area[] and mark all as Reserved.
1442  */
1443 static int
1444 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1445 			void *data)
1446 {
1447 	__offline_isolated_pages(start, start + nr_pages);
1448 	return 0;
1449 }
1450 
1451 static void
1452 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1453 {
1454 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1455 				offline_isolated_pages_cb);
1456 }
1457 
1458 /*
1459  * Check all pages in range, recoreded as memory resource, are isolated.
1460  */
1461 static int
1462 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1463 			void *data)
1464 {
1465 	int ret;
1466 	long offlined = *(long *)data;
1467 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1468 	offlined = nr_pages;
1469 	if (!ret)
1470 		*(long *)data += offlined;
1471 	return ret;
1472 }
1473 
1474 static long
1475 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1476 {
1477 	long offlined = 0;
1478 	int ret;
1479 
1480 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1481 			check_pages_isolated_cb);
1482 	if (ret < 0)
1483 		offlined = (long)ret;
1484 	return offlined;
1485 }
1486 
1487 static int __init cmdline_parse_movable_node(char *p)
1488 {
1489 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1490 	movable_node_enabled = true;
1491 #else
1492 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1493 #endif
1494 	return 0;
1495 }
1496 early_param("movable_node", cmdline_parse_movable_node);
1497 
1498 /* check which state of node_states will be changed when offline memory */
1499 static void node_states_check_changes_offline(unsigned long nr_pages,
1500 		struct zone *zone, struct memory_notify *arg)
1501 {
1502 	struct pglist_data *pgdat = zone->zone_pgdat;
1503 	unsigned long present_pages = 0;
1504 	enum zone_type zt, zone_last = ZONE_NORMAL;
1505 
1506 	/*
1507 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1508 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1509 	 * set zone_last to ZONE_NORMAL.
1510 	 *
1511 	 * If we don't have HIGHMEM nor movable node,
1512 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1513 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1514 	 */
1515 	if (N_MEMORY == N_NORMAL_MEMORY)
1516 		zone_last = ZONE_MOVABLE;
1517 
1518 	/*
1519 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1520 	 * If the memory to be offline is in a zone of 0...zone_last,
1521 	 * and it is the last present memory, 0...zone_last will
1522 	 * become empty after offline , thus we can determind we will
1523 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1524 	 */
1525 	for (zt = 0; zt <= zone_last; zt++)
1526 		present_pages += pgdat->node_zones[zt].present_pages;
1527 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1528 		arg->status_change_nid_normal = zone_to_nid(zone);
1529 	else
1530 		arg->status_change_nid_normal = -1;
1531 
1532 #ifdef CONFIG_HIGHMEM
1533 	/*
1534 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1535 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1536 	 * set zone_last to ZONE_HIGHMEM.
1537 	 *
1538 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1539 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1540 	 * set zone_last to ZONE_MOVABLE.
1541 	 */
1542 	zone_last = ZONE_HIGHMEM;
1543 	if (N_MEMORY == N_HIGH_MEMORY)
1544 		zone_last = ZONE_MOVABLE;
1545 
1546 	for (; zt <= zone_last; zt++)
1547 		present_pages += pgdat->node_zones[zt].present_pages;
1548 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1549 		arg->status_change_nid_high = zone_to_nid(zone);
1550 	else
1551 		arg->status_change_nid_high = -1;
1552 #else
1553 	arg->status_change_nid_high = arg->status_change_nid_normal;
1554 #endif
1555 
1556 	/*
1557 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1558 	 */
1559 	zone_last = ZONE_MOVABLE;
1560 
1561 	/*
1562 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1563 	 * If we try to offline the last present @nr_pages from the node,
1564 	 * we can determind we will need to clear the node from
1565 	 * node_states[N_HIGH_MEMORY].
1566 	 */
1567 	for (; zt <= zone_last; zt++)
1568 		present_pages += pgdat->node_zones[zt].present_pages;
1569 	if (nr_pages >= present_pages)
1570 		arg->status_change_nid = zone_to_nid(zone);
1571 	else
1572 		arg->status_change_nid = -1;
1573 }
1574 
1575 static void node_states_clear_node(int node, struct memory_notify *arg)
1576 {
1577 	if (arg->status_change_nid_normal >= 0)
1578 		node_clear_state(node, N_NORMAL_MEMORY);
1579 
1580 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1581 	    (arg->status_change_nid_high >= 0))
1582 		node_clear_state(node, N_HIGH_MEMORY);
1583 
1584 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1585 	    (arg->status_change_nid >= 0))
1586 		node_clear_state(node, N_MEMORY);
1587 }
1588 
1589 static int __ref __offline_pages(unsigned long start_pfn,
1590 		  unsigned long end_pfn)
1591 {
1592 	unsigned long pfn, nr_pages;
1593 	long offlined_pages;
1594 	int ret, node;
1595 	unsigned long flags;
1596 	unsigned long valid_start, valid_end;
1597 	struct zone *zone;
1598 	struct memory_notify arg;
1599 
1600 	/* at least, alignment against pageblock is necessary */
1601 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1602 		return -EINVAL;
1603 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1604 		return -EINVAL;
1605 	/* This makes hotplug much easier...and readable.
1606 	   we assume this for now. .*/
1607 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1608 		return -EINVAL;
1609 
1610 	zone = page_zone(pfn_to_page(valid_start));
1611 	node = zone_to_nid(zone);
1612 	nr_pages = end_pfn - start_pfn;
1613 
1614 	/* set above range as isolated */
1615 	ret = start_isolate_page_range(start_pfn, end_pfn,
1616 				       MIGRATE_MOVABLE, true);
1617 	if (ret)
1618 		return ret;
1619 
1620 	arg.start_pfn = start_pfn;
1621 	arg.nr_pages = nr_pages;
1622 	node_states_check_changes_offline(nr_pages, zone, &arg);
1623 
1624 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1625 	ret = notifier_to_errno(ret);
1626 	if (ret)
1627 		goto failed_removal;
1628 
1629 	pfn = start_pfn;
1630 repeat:
1631 	/* start memory hot removal */
1632 	ret = -EINTR;
1633 	if (signal_pending(current))
1634 		goto failed_removal;
1635 
1636 	cond_resched();
1637 	lru_add_drain_all();
1638 	drain_all_pages(zone);
1639 
1640 	pfn = scan_movable_pages(start_pfn, end_pfn);
1641 	if (pfn) { /* We have movable pages */
1642 		ret = do_migrate_range(pfn, end_pfn);
1643 		goto repeat;
1644 	}
1645 
1646 	/*
1647 	 * dissolve free hugepages in the memory block before doing offlining
1648 	 * actually in order to make hugetlbfs's object counting consistent.
1649 	 */
1650 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1651 	if (ret)
1652 		goto failed_removal;
1653 	/* check again */
1654 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1655 	if (offlined_pages < 0)
1656 		goto repeat;
1657 	pr_info("Offlined Pages %ld\n", offlined_pages);
1658 	/* Ok, all of our target is isolated.
1659 	   We cannot do rollback at this point. */
1660 	offline_isolated_pages(start_pfn, end_pfn);
1661 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1662 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1663 	/* removal success */
1664 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1665 	zone->present_pages -= offlined_pages;
1666 
1667 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1668 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1669 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1670 
1671 	init_per_zone_wmark_min();
1672 
1673 	if (!populated_zone(zone)) {
1674 		zone_pcp_reset(zone);
1675 		build_all_zonelists(NULL);
1676 	} else
1677 		zone_pcp_update(zone);
1678 
1679 	node_states_clear_node(node, &arg);
1680 	if (arg.status_change_nid >= 0) {
1681 		kswapd_stop(node);
1682 		kcompactd_stop(node);
1683 	}
1684 
1685 	vm_total_pages = nr_free_pagecache_pages();
1686 	writeback_set_ratelimit();
1687 
1688 	memory_notify(MEM_OFFLINE, &arg);
1689 	return 0;
1690 
1691 failed_removal:
1692 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1693 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1694 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1695 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1696 	/* pushback to free area */
1697 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1698 	return ret;
1699 }
1700 
1701 /* Must be protected by mem_hotplug_begin() or a device_lock */
1702 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1703 {
1704 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1705 }
1706 #endif /* CONFIG_MEMORY_HOTREMOVE */
1707 
1708 /**
1709  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1710  * @start_pfn: start pfn of the memory range
1711  * @end_pfn: end pfn of the memory range
1712  * @arg: argument passed to func
1713  * @func: callback for each memory section walked
1714  *
1715  * This function walks through all present mem sections in range
1716  * [start_pfn, end_pfn) and call func on each mem section.
1717  *
1718  * Returns the return value of func.
1719  */
1720 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1721 		void *arg, int (*func)(struct memory_block *, void *))
1722 {
1723 	struct memory_block *mem = NULL;
1724 	struct mem_section *section;
1725 	unsigned long pfn, section_nr;
1726 	int ret;
1727 
1728 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1729 		section_nr = pfn_to_section_nr(pfn);
1730 		if (!present_section_nr(section_nr))
1731 			continue;
1732 
1733 		section = __nr_to_section(section_nr);
1734 		/* same memblock? */
1735 		if (mem)
1736 			if ((section_nr >= mem->start_section_nr) &&
1737 			    (section_nr <= mem->end_section_nr))
1738 				continue;
1739 
1740 		mem = find_memory_block_hinted(section, mem);
1741 		if (!mem)
1742 			continue;
1743 
1744 		ret = func(mem, arg);
1745 		if (ret) {
1746 			kobject_put(&mem->dev.kobj);
1747 			return ret;
1748 		}
1749 	}
1750 
1751 	if (mem)
1752 		kobject_put(&mem->dev.kobj);
1753 
1754 	return 0;
1755 }
1756 
1757 #ifdef CONFIG_MEMORY_HOTREMOVE
1758 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1759 {
1760 	int ret = !is_memblock_offlined(mem);
1761 
1762 	if (unlikely(ret)) {
1763 		phys_addr_t beginpa, endpa;
1764 
1765 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1766 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1767 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1768 			&beginpa, &endpa);
1769 	}
1770 
1771 	return ret;
1772 }
1773 
1774 static int check_cpu_on_node(pg_data_t *pgdat)
1775 {
1776 	int cpu;
1777 
1778 	for_each_present_cpu(cpu) {
1779 		if (cpu_to_node(cpu) == pgdat->node_id)
1780 			/*
1781 			 * the cpu on this node isn't removed, and we can't
1782 			 * offline this node.
1783 			 */
1784 			return -EBUSY;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 static void unmap_cpu_on_node(pg_data_t *pgdat)
1791 {
1792 #ifdef CONFIG_ACPI_NUMA
1793 	int cpu;
1794 
1795 	for_each_possible_cpu(cpu)
1796 		if (cpu_to_node(cpu) == pgdat->node_id)
1797 			numa_clear_node(cpu);
1798 #endif
1799 }
1800 
1801 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1802 {
1803 	int ret;
1804 
1805 	ret = check_cpu_on_node(pgdat);
1806 	if (ret)
1807 		return ret;
1808 
1809 	/*
1810 	 * the node will be offlined when we come here, so we can clear
1811 	 * the cpu_to_node() now.
1812 	 */
1813 
1814 	unmap_cpu_on_node(pgdat);
1815 	return 0;
1816 }
1817 
1818 /**
1819  * try_offline_node
1820  *
1821  * Offline a node if all memory sections and cpus of the node are removed.
1822  *
1823  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1824  * and online/offline operations before this call.
1825  */
1826 void try_offline_node(int nid)
1827 {
1828 	pg_data_t *pgdat = NODE_DATA(nid);
1829 	unsigned long start_pfn = pgdat->node_start_pfn;
1830 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1831 	unsigned long pfn;
1832 
1833 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1834 		unsigned long section_nr = pfn_to_section_nr(pfn);
1835 
1836 		if (!present_section_nr(section_nr))
1837 			continue;
1838 
1839 		if (pfn_to_nid(pfn) != nid)
1840 			continue;
1841 
1842 		/*
1843 		 * some memory sections of this node are not removed, and we
1844 		 * can't offline node now.
1845 		 */
1846 		return;
1847 	}
1848 
1849 	if (check_and_unmap_cpu_on_node(pgdat))
1850 		return;
1851 
1852 	/*
1853 	 * all memory/cpu of this node are removed, we can offline this
1854 	 * node now.
1855 	 */
1856 	node_set_offline(nid);
1857 	unregister_one_node(nid);
1858 }
1859 EXPORT_SYMBOL(try_offline_node);
1860 
1861 /**
1862  * remove_memory
1863  *
1864  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1865  * and online/offline operations before this call, as required by
1866  * try_offline_node().
1867  */
1868 void __ref remove_memory(int nid, u64 start, u64 size)
1869 {
1870 	int ret;
1871 
1872 	BUG_ON(check_hotplug_memory_range(start, size));
1873 
1874 	mem_hotplug_begin();
1875 
1876 	/*
1877 	 * All memory blocks must be offlined before removing memory.  Check
1878 	 * whether all memory blocks in question are offline and trigger a BUG()
1879 	 * if this is not the case.
1880 	 */
1881 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1882 				check_memblock_offlined_cb);
1883 	if (ret)
1884 		BUG();
1885 
1886 	/* remove memmap entry */
1887 	firmware_map_remove(start, start + size, "System RAM");
1888 	memblock_free(start, size);
1889 	memblock_remove(start, size);
1890 
1891 	arch_remove_memory(start, size);
1892 
1893 	try_offline_node(nid);
1894 
1895 	mem_hotplug_done();
1896 }
1897 EXPORT_SYMBOL_GPL(remove_memory);
1898 #endif /* CONFIG_MEMORY_HOTREMOVE */
1899