xref: /linux/mm/memory_hotplug.c (revision 544029862cbb1d7903e19f2e58f48d4884e1201b)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page, unsigned int order);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 /* add this memory to iomem resource */
100 static struct resource *register_memory_resource(u64 start, u64 size)
101 {
102 	struct resource *res, *conflict;
103 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 	if (!res)
105 		return ERR_PTR(-ENOMEM);
106 
107 	res->name = "System RAM";
108 	res->start = start;
109 	res->end = start + size - 1;
110 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 	conflict =  request_resource_conflict(&iomem_resource, res);
112 	if (conflict) {
113 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 			pr_debug("Device unaddressable memory block "
115 				 "memory hotplug at %#010llx !\n",
116 				 (unsigned long long)start);
117 		}
118 		pr_debug("System RAM resource %pR cannot be added\n", res);
119 		kfree(res);
120 		return ERR_PTR(-EEXIST);
121 	}
122 	return res;
123 }
124 
125 static void release_memory_resource(struct resource *res)
126 {
127 	if (!res)
128 		return;
129 	release_resource(res);
130 	kfree(res);
131 	return;
132 }
133 
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135 void get_page_bootmem(unsigned long info,  struct page *page,
136 		      unsigned long type)
137 {
138 	page->freelist = (void *)type;
139 	SetPagePrivate(page);
140 	set_page_private(page, info);
141 	page_ref_inc(page);
142 }
143 
144 void put_page_bootmem(struct page *page)
145 {
146 	unsigned long type;
147 
148 	type = (unsigned long) page->freelist;
149 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
151 
152 	if (page_ref_dec_return(page) == 1) {
153 		page->freelist = NULL;
154 		ClearPagePrivate(page);
155 		set_page_private(page, 0);
156 		INIT_LIST_HEAD(&page->lru);
157 		free_reserved_page(page);
158 	}
159 }
160 
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
163 static void register_page_bootmem_info_section(unsigned long start_pfn)
164 {
165 	unsigned long *usemap, mapsize, section_nr, i;
166 	struct mem_section *ms;
167 	struct page *page, *memmap;
168 
169 	section_nr = pfn_to_section_nr(start_pfn);
170 	ms = __nr_to_section(section_nr);
171 
172 	/* Get section's memmap address */
173 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
174 
175 	/*
176 	 * Get page for the memmap's phys address
177 	 * XXX: need more consideration for sparse_vmemmap...
178 	 */
179 	page = virt_to_page(memmap);
180 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
182 
183 	/* remember memmap's page */
184 	for (i = 0; i < mapsize; i++, page++)
185 		get_page_bootmem(section_nr, page, SECTION_INFO);
186 
187 	usemap = ms->pageblock_flags;
188 	page = virt_to_page(usemap);
189 
190 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
191 
192 	for (i = 0; i < mapsize; i++, page++)
193 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
194 
195 }
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
197 static void register_page_bootmem_info_section(unsigned long start_pfn)
198 {
199 	unsigned long *usemap, mapsize, section_nr, i;
200 	struct mem_section *ms;
201 	struct page *page, *memmap;
202 
203 	section_nr = pfn_to_section_nr(start_pfn);
204 	ms = __nr_to_section(section_nr);
205 
206 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
207 
208 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
209 
210 	usemap = ms->pageblock_flags;
211 	page = virt_to_page(usemap);
212 
213 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
214 
215 	for (i = 0; i < mapsize; i++, page++)
216 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
217 }
218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
219 
220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
221 {
222 	unsigned long i, pfn, end_pfn, nr_pages;
223 	int node = pgdat->node_id;
224 	struct page *page;
225 
226 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
227 	page = virt_to_page(pgdat);
228 
229 	for (i = 0; i < nr_pages; i++, page++)
230 		get_page_bootmem(node, page, NODE_INFO);
231 
232 	pfn = pgdat->node_start_pfn;
233 	end_pfn = pgdat_end_pfn(pgdat);
234 
235 	/* register section info */
236 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
237 		/*
238 		 * Some platforms can assign the same pfn to multiple nodes - on
239 		 * node0 as well as nodeN.  To avoid registering a pfn against
240 		 * multiple nodes we check that this pfn does not already
241 		 * reside in some other nodes.
242 		 */
243 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
244 			register_page_bootmem_info_section(pfn);
245 	}
246 }
247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
248 
249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
250 		struct vmem_altmap *altmap, bool want_memblock)
251 {
252 	int ret;
253 
254 	if (pfn_valid(phys_start_pfn))
255 		return -EEXIST;
256 
257 	ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
258 	if (ret < 0)
259 		return ret;
260 
261 	if (!want_memblock)
262 		return 0;
263 
264 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
265 }
266 
267 /*
268  * Reasonably generic function for adding memory.  It is
269  * expected that archs that support memory hotplug will
270  * call this function after deciding the zone to which to
271  * add the new pages.
272  */
273 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
274 		unsigned long nr_pages, struct vmem_altmap *altmap,
275 		bool want_memblock)
276 {
277 	unsigned long i;
278 	int err = 0;
279 	int start_sec, end_sec;
280 
281 	/* during initialize mem_map, align hot-added range to section */
282 	start_sec = pfn_to_section_nr(phys_start_pfn);
283 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
284 
285 	if (altmap) {
286 		/*
287 		 * Validate altmap is within bounds of the total request
288 		 */
289 		if (altmap->base_pfn != phys_start_pfn
290 				|| vmem_altmap_offset(altmap) > nr_pages) {
291 			pr_warn_once("memory add fail, invalid altmap\n");
292 			err = -EINVAL;
293 			goto out;
294 		}
295 		altmap->alloc = 0;
296 	}
297 
298 	for (i = start_sec; i <= end_sec; i++) {
299 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
300 				want_memblock);
301 
302 		/*
303 		 * EEXIST is finally dealt with by ioresource collision
304 		 * check. see add_memory() => register_memory_resource()
305 		 * Warning will be printed if there is collision.
306 		 */
307 		if (err && (err != -EEXIST))
308 			break;
309 		err = 0;
310 		cond_resched();
311 	}
312 	vmemmap_populate_print_last();
313 out:
314 	return err;
315 }
316 
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
320 				     unsigned long start_pfn,
321 				     unsigned long end_pfn)
322 {
323 	struct mem_section *ms;
324 
325 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
326 		ms = __pfn_to_section(start_pfn);
327 
328 		if (unlikely(!valid_section(ms)))
329 			continue;
330 
331 		if (unlikely(pfn_to_nid(start_pfn) != nid))
332 			continue;
333 
334 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
335 			continue;
336 
337 		return start_pfn;
338 	}
339 
340 	return 0;
341 }
342 
343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
345 				    unsigned long start_pfn,
346 				    unsigned long end_pfn)
347 {
348 	struct mem_section *ms;
349 	unsigned long pfn;
350 
351 	/* pfn is the end pfn of a memory section. */
352 	pfn = end_pfn - 1;
353 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
354 		ms = __pfn_to_section(pfn);
355 
356 		if (unlikely(!valid_section(ms)))
357 			continue;
358 
359 		if (unlikely(pfn_to_nid(pfn) != nid))
360 			continue;
361 
362 		if (zone && zone != page_zone(pfn_to_page(pfn)))
363 			continue;
364 
365 		return pfn;
366 	}
367 
368 	return 0;
369 }
370 
371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
372 			     unsigned long end_pfn)
373 {
374 	unsigned long zone_start_pfn = zone->zone_start_pfn;
375 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
376 	unsigned long zone_end_pfn = z;
377 	unsigned long pfn;
378 	struct mem_section *ms;
379 	int nid = zone_to_nid(zone);
380 
381 	zone_span_writelock(zone);
382 	if (zone_start_pfn == start_pfn) {
383 		/*
384 		 * If the section is smallest section in the zone, it need
385 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
386 		 * In this case, we find second smallest valid mem_section
387 		 * for shrinking zone.
388 		 */
389 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
390 						zone_end_pfn);
391 		if (pfn) {
392 			zone->zone_start_pfn = pfn;
393 			zone->spanned_pages = zone_end_pfn - pfn;
394 		}
395 	} else if (zone_end_pfn == end_pfn) {
396 		/*
397 		 * If the section is biggest section in the zone, it need
398 		 * shrink zone->spanned_pages.
399 		 * In this case, we find second biggest valid mem_section for
400 		 * shrinking zone.
401 		 */
402 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
403 					       start_pfn);
404 		if (pfn)
405 			zone->spanned_pages = pfn - zone_start_pfn + 1;
406 	}
407 
408 	/*
409 	 * The section is not biggest or smallest mem_section in the zone, it
410 	 * only creates a hole in the zone. So in this case, we need not
411 	 * change the zone. But perhaps, the zone has only hole data. Thus
412 	 * it check the zone has only hole or not.
413 	 */
414 	pfn = zone_start_pfn;
415 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
416 		ms = __pfn_to_section(pfn);
417 
418 		if (unlikely(!valid_section(ms)))
419 			continue;
420 
421 		if (page_zone(pfn_to_page(pfn)) != zone)
422 			continue;
423 
424 		 /* If the section is current section, it continues the loop */
425 		if (start_pfn == pfn)
426 			continue;
427 
428 		/* If we find valid section, we have nothing to do */
429 		zone_span_writeunlock(zone);
430 		return;
431 	}
432 
433 	/* The zone has no valid section */
434 	zone->zone_start_pfn = 0;
435 	zone->spanned_pages = 0;
436 	zone_span_writeunlock(zone);
437 }
438 
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 			      unsigned long start_pfn, unsigned long end_pfn)
441 {
442 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 	unsigned long pgdat_end_pfn = p;
445 	unsigned long pfn;
446 	struct mem_section *ms;
447 	int nid = pgdat->node_id;
448 
449 	if (pgdat_start_pfn == start_pfn) {
450 		/*
451 		 * If the section is smallest section in the pgdat, it need
452 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 		 * In this case, we find second smallest valid mem_section
454 		 * for shrinking zone.
455 		 */
456 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
457 						pgdat_end_pfn);
458 		if (pfn) {
459 			pgdat->node_start_pfn = pfn;
460 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
461 		}
462 	} else if (pgdat_end_pfn == end_pfn) {
463 		/*
464 		 * If the section is biggest section in the pgdat, it need
465 		 * shrink pgdat->node_spanned_pages.
466 		 * In this case, we find second biggest valid mem_section for
467 		 * shrinking zone.
468 		 */
469 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
470 					       start_pfn);
471 		if (pfn)
472 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
473 	}
474 
475 	/*
476 	 * If the section is not biggest or smallest mem_section in the pgdat,
477 	 * it only creates a hole in the pgdat. So in this case, we need not
478 	 * change the pgdat.
479 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 	 * has only hole or not.
481 	 */
482 	pfn = pgdat_start_pfn;
483 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
484 		ms = __pfn_to_section(pfn);
485 
486 		if (unlikely(!valid_section(ms)))
487 			continue;
488 
489 		if (pfn_to_nid(pfn) != nid)
490 			continue;
491 
492 		 /* If the section is current section, it continues the loop */
493 		if (start_pfn == pfn)
494 			continue;
495 
496 		/* If we find valid section, we have nothing to do */
497 		return;
498 	}
499 
500 	/* The pgdat has no valid section */
501 	pgdat->node_start_pfn = 0;
502 	pgdat->node_spanned_pages = 0;
503 }
504 
505 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
506 {
507 	struct pglist_data *pgdat = zone->zone_pgdat;
508 	int nr_pages = PAGES_PER_SECTION;
509 	unsigned long flags;
510 
511 	pgdat_resize_lock(zone->zone_pgdat, &flags);
512 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
514 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
515 }
516 
517 static int __remove_section(struct zone *zone, struct mem_section *ms,
518 		unsigned long map_offset, struct vmem_altmap *altmap)
519 {
520 	unsigned long start_pfn;
521 	int scn_nr;
522 	int ret = -EINVAL;
523 
524 	if (!valid_section(ms))
525 		return ret;
526 
527 	ret = unregister_memory_section(ms);
528 	if (ret)
529 		return ret;
530 
531 	scn_nr = __section_nr(ms);
532 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
533 	__remove_zone(zone, start_pfn);
534 
535 	sparse_remove_one_section(zone, ms, map_offset, altmap);
536 	return 0;
537 }
538 
539 /**
540  * __remove_pages() - remove sections of pages from a zone
541  * @zone: zone from which pages need to be removed
542  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543  * @nr_pages: number of pages to remove (must be multiple of section size)
544  * @altmap: alternative device page map or %NULL if default memmap is used
545  *
546  * Generic helper function to remove section mappings and sysfs entries
547  * for the section of the memory we are removing. Caller needs to make
548  * sure that pages are marked reserved and zones are adjust properly by
549  * calling offline_pages().
550  */
551 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
552 		 unsigned long nr_pages, struct vmem_altmap *altmap)
553 {
554 	unsigned long i;
555 	unsigned long map_offset = 0;
556 	int sections_to_remove, ret = 0;
557 
558 	/* In the ZONE_DEVICE case device driver owns the memory region */
559 	if (is_dev_zone(zone)) {
560 		if (altmap)
561 			map_offset = vmem_altmap_offset(altmap);
562 	} else {
563 		resource_size_t start, size;
564 
565 		start = phys_start_pfn << PAGE_SHIFT;
566 		size = nr_pages * PAGE_SIZE;
567 
568 		ret = release_mem_region_adjustable(&iomem_resource, start,
569 					size);
570 		if (ret) {
571 			resource_size_t endres = start + size - 1;
572 
573 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
574 					&start, &endres, ret);
575 		}
576 	}
577 
578 	clear_zone_contiguous(zone);
579 
580 	/*
581 	 * We can only remove entire sections
582 	 */
583 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
584 	BUG_ON(nr_pages % PAGES_PER_SECTION);
585 
586 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
587 	for (i = 0; i < sections_to_remove; i++) {
588 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
589 
590 		cond_resched();
591 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
592 				altmap);
593 		map_offset = 0;
594 		if (ret)
595 			break;
596 	}
597 
598 	set_zone_contiguous(zone);
599 
600 	return ret;
601 }
602 #endif /* CONFIG_MEMORY_HOTREMOVE */
603 
604 int set_online_page_callback(online_page_callback_t callback)
605 {
606 	int rc = -EINVAL;
607 
608 	get_online_mems();
609 	mutex_lock(&online_page_callback_lock);
610 
611 	if (online_page_callback == generic_online_page) {
612 		online_page_callback = callback;
613 		rc = 0;
614 	}
615 
616 	mutex_unlock(&online_page_callback_lock);
617 	put_online_mems();
618 
619 	return rc;
620 }
621 EXPORT_SYMBOL_GPL(set_online_page_callback);
622 
623 int restore_online_page_callback(online_page_callback_t callback)
624 {
625 	int rc = -EINVAL;
626 
627 	get_online_mems();
628 	mutex_lock(&online_page_callback_lock);
629 
630 	if (online_page_callback == callback) {
631 		online_page_callback = generic_online_page;
632 		rc = 0;
633 	}
634 
635 	mutex_unlock(&online_page_callback_lock);
636 	put_online_mems();
637 
638 	return rc;
639 }
640 EXPORT_SYMBOL_GPL(restore_online_page_callback);
641 
642 void __online_page_set_limits(struct page *page)
643 {
644 }
645 EXPORT_SYMBOL_GPL(__online_page_set_limits);
646 
647 void __online_page_increment_counters(struct page *page)
648 {
649 	adjust_managed_page_count(page, 1);
650 }
651 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
652 
653 void __online_page_free(struct page *page)
654 {
655 	__free_reserved_page(page);
656 }
657 EXPORT_SYMBOL_GPL(__online_page_free);
658 
659 static void generic_online_page(struct page *page, unsigned int order)
660 {
661 	__free_pages_core(page, order);
662 	totalram_pages_add(1UL << order);
663 #ifdef CONFIG_HIGHMEM
664 	if (PageHighMem(page))
665 		totalhigh_pages_add(1UL << order);
666 #endif
667 }
668 
669 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
670 {
671 	unsigned long end = start + nr_pages;
672 	int order, onlined_pages = 0;
673 
674 	while (start < end) {
675 		order = min(MAX_ORDER - 1,
676 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
677 		(*online_page_callback)(pfn_to_page(start), order);
678 
679 		onlined_pages += (1UL << order);
680 		start += (1UL << order);
681 	}
682 	return onlined_pages;
683 }
684 
685 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
686 			void *arg)
687 {
688 	unsigned long onlined_pages = *(unsigned long *)arg;
689 
690 	if (PageReserved(pfn_to_page(start_pfn)))
691 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
692 
693 	online_mem_sections(start_pfn, start_pfn + nr_pages);
694 
695 	*(unsigned long *)arg = onlined_pages;
696 	return 0;
697 }
698 
699 /* check which state of node_states will be changed when online memory */
700 static void node_states_check_changes_online(unsigned long nr_pages,
701 	struct zone *zone, struct memory_notify *arg)
702 {
703 	int nid = zone_to_nid(zone);
704 
705 	arg->status_change_nid = NUMA_NO_NODE;
706 	arg->status_change_nid_normal = NUMA_NO_NODE;
707 	arg->status_change_nid_high = NUMA_NO_NODE;
708 
709 	if (!node_state(nid, N_MEMORY))
710 		arg->status_change_nid = nid;
711 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
712 		arg->status_change_nid_normal = nid;
713 #ifdef CONFIG_HIGHMEM
714 	if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
715 		arg->status_change_nid_high = nid;
716 #endif
717 }
718 
719 static void node_states_set_node(int node, struct memory_notify *arg)
720 {
721 	if (arg->status_change_nid_normal >= 0)
722 		node_set_state(node, N_NORMAL_MEMORY);
723 
724 	if (arg->status_change_nid_high >= 0)
725 		node_set_state(node, N_HIGH_MEMORY);
726 
727 	if (arg->status_change_nid >= 0)
728 		node_set_state(node, N_MEMORY);
729 }
730 
731 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
732 		unsigned long nr_pages)
733 {
734 	unsigned long old_end_pfn = zone_end_pfn(zone);
735 
736 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
737 		zone->zone_start_pfn = start_pfn;
738 
739 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
740 }
741 
742 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
743                                      unsigned long nr_pages)
744 {
745 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
746 
747 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
748 		pgdat->node_start_pfn = start_pfn;
749 
750 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
751 }
752 
753 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
754 		unsigned long nr_pages, struct vmem_altmap *altmap)
755 {
756 	struct pglist_data *pgdat = zone->zone_pgdat;
757 	int nid = pgdat->node_id;
758 	unsigned long flags;
759 
760 	clear_zone_contiguous(zone);
761 
762 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
763 	pgdat_resize_lock(pgdat, &flags);
764 	zone_span_writelock(zone);
765 	if (zone_is_empty(zone))
766 		init_currently_empty_zone(zone, start_pfn, nr_pages);
767 	resize_zone_range(zone, start_pfn, nr_pages);
768 	zone_span_writeunlock(zone);
769 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
770 	pgdat_resize_unlock(pgdat, &flags);
771 
772 	/*
773 	 * TODO now we have a visible range of pages which are not associated
774 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
775 	 * expects the zone spans the pfn range. All the pages in the range
776 	 * are reserved so nobody should be touching them so we should be safe
777 	 */
778 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
779 			MEMMAP_HOTPLUG, altmap);
780 
781 	set_zone_contiguous(zone);
782 }
783 
784 /*
785  * Returns a default kernel memory zone for the given pfn range.
786  * If no kernel zone covers this pfn range it will automatically go
787  * to the ZONE_NORMAL.
788  */
789 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
790 		unsigned long nr_pages)
791 {
792 	struct pglist_data *pgdat = NODE_DATA(nid);
793 	int zid;
794 
795 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
796 		struct zone *zone = &pgdat->node_zones[zid];
797 
798 		if (zone_intersects(zone, start_pfn, nr_pages))
799 			return zone;
800 	}
801 
802 	return &pgdat->node_zones[ZONE_NORMAL];
803 }
804 
805 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
806 		unsigned long nr_pages)
807 {
808 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
809 			nr_pages);
810 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
811 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
812 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
813 
814 	/*
815 	 * We inherit the existing zone in a simple case where zones do not
816 	 * overlap in the given range
817 	 */
818 	if (in_kernel ^ in_movable)
819 		return (in_kernel) ? kernel_zone : movable_zone;
820 
821 	/*
822 	 * If the range doesn't belong to any zone or two zones overlap in the
823 	 * given range then we use movable zone only if movable_node is
824 	 * enabled because we always online to a kernel zone by default.
825 	 */
826 	return movable_node_enabled ? movable_zone : kernel_zone;
827 }
828 
829 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
830 		unsigned long nr_pages)
831 {
832 	if (online_type == MMOP_ONLINE_KERNEL)
833 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
834 
835 	if (online_type == MMOP_ONLINE_MOVABLE)
836 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
837 
838 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
839 }
840 
841 /*
842  * Associates the given pfn range with the given node and the zone appropriate
843  * for the given online type.
844  */
845 static struct zone * __meminit move_pfn_range(int online_type, int nid,
846 		unsigned long start_pfn, unsigned long nr_pages)
847 {
848 	struct zone *zone;
849 
850 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
851 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
852 	return zone;
853 }
854 
855 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
856 {
857 	unsigned long flags;
858 	unsigned long onlined_pages = 0;
859 	struct zone *zone;
860 	int need_zonelists_rebuild = 0;
861 	int nid;
862 	int ret;
863 	struct memory_notify arg;
864 	struct memory_block *mem;
865 
866 	mem_hotplug_begin();
867 
868 	/*
869 	 * We can't use pfn_to_nid() because nid might be stored in struct page
870 	 * which is not yet initialized. Instead, we find nid from memory block.
871 	 */
872 	mem = find_memory_block(__pfn_to_section(pfn));
873 	nid = mem->nid;
874 
875 	/* associate pfn range with the zone */
876 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
877 
878 	arg.start_pfn = pfn;
879 	arg.nr_pages = nr_pages;
880 	node_states_check_changes_online(nr_pages, zone, &arg);
881 
882 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
883 	ret = notifier_to_errno(ret);
884 	if (ret)
885 		goto failed_addition;
886 
887 	/*
888 	 * If this zone is not populated, then it is not in zonelist.
889 	 * This means the page allocator ignores this zone.
890 	 * So, zonelist must be updated after online.
891 	 */
892 	if (!populated_zone(zone)) {
893 		need_zonelists_rebuild = 1;
894 		setup_zone_pageset(zone);
895 	}
896 
897 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
898 		online_pages_range);
899 	if (ret) {
900 		if (need_zonelists_rebuild)
901 			zone_pcp_reset(zone);
902 		goto failed_addition;
903 	}
904 
905 	zone->present_pages += onlined_pages;
906 
907 	pgdat_resize_lock(zone->zone_pgdat, &flags);
908 	zone->zone_pgdat->node_present_pages += onlined_pages;
909 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
910 
911 	if (onlined_pages) {
912 		node_states_set_node(nid, &arg);
913 		if (need_zonelists_rebuild)
914 			build_all_zonelists(NULL);
915 		else
916 			zone_pcp_update(zone);
917 	}
918 
919 	init_per_zone_wmark_min();
920 
921 	if (onlined_pages) {
922 		kswapd_run(nid);
923 		kcompactd_run(nid);
924 	}
925 
926 	vm_total_pages = nr_free_pagecache_pages();
927 
928 	writeback_set_ratelimit();
929 
930 	if (onlined_pages)
931 		memory_notify(MEM_ONLINE, &arg);
932 	mem_hotplug_done();
933 	return 0;
934 
935 failed_addition:
936 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
937 		 (unsigned long long) pfn << PAGE_SHIFT,
938 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
939 	memory_notify(MEM_CANCEL_ONLINE, &arg);
940 	mem_hotplug_done();
941 	return ret;
942 }
943 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
944 
945 static void reset_node_present_pages(pg_data_t *pgdat)
946 {
947 	struct zone *z;
948 
949 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
950 		z->present_pages = 0;
951 
952 	pgdat->node_present_pages = 0;
953 }
954 
955 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
956 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
957 {
958 	struct pglist_data *pgdat;
959 	unsigned long start_pfn = PFN_DOWN(start);
960 
961 	pgdat = NODE_DATA(nid);
962 	if (!pgdat) {
963 		pgdat = arch_alloc_nodedata(nid);
964 		if (!pgdat)
965 			return NULL;
966 
967 		arch_refresh_nodedata(nid, pgdat);
968 	} else {
969 		/*
970 		 * Reset the nr_zones, order and classzone_idx before reuse.
971 		 * Note that kswapd will init kswapd_classzone_idx properly
972 		 * when it starts in the near future.
973 		 */
974 		pgdat->nr_zones = 0;
975 		pgdat->kswapd_order = 0;
976 		pgdat->kswapd_classzone_idx = 0;
977 	}
978 
979 	/* we can use NODE_DATA(nid) from here */
980 
981 	pgdat->node_id = nid;
982 	pgdat->node_start_pfn = start_pfn;
983 
984 	/* init node's zones as empty zones, we don't have any present pages.*/
985 	free_area_init_core_hotplug(nid);
986 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
987 
988 	/*
989 	 * The node we allocated has no zone fallback lists. For avoiding
990 	 * to access not-initialized zonelist, build here.
991 	 */
992 	build_all_zonelists(pgdat);
993 
994 	/*
995 	 * When memory is hot-added, all the memory is in offline state. So
996 	 * clear all zones' present_pages because they will be updated in
997 	 * online_pages() and offline_pages().
998 	 */
999 	reset_node_managed_pages(pgdat);
1000 	reset_node_present_pages(pgdat);
1001 
1002 	return pgdat;
1003 }
1004 
1005 static void rollback_node_hotadd(int nid)
1006 {
1007 	pg_data_t *pgdat = NODE_DATA(nid);
1008 
1009 	arch_refresh_nodedata(nid, NULL);
1010 	free_percpu(pgdat->per_cpu_nodestats);
1011 	arch_free_nodedata(pgdat);
1012 	return;
1013 }
1014 
1015 
1016 /**
1017  * try_online_node - online a node if offlined
1018  * @nid: the node ID
1019  * @start: start addr of the node
1020  * @set_node_online: Whether we want to online the node
1021  * called by cpu_up() to online a node without onlined memory.
1022  *
1023  * Returns:
1024  * 1 -> a new node has been allocated
1025  * 0 -> the node is already online
1026  * -ENOMEM -> the node could not be allocated
1027  */
1028 static int __try_online_node(int nid, u64 start, bool set_node_online)
1029 {
1030 	pg_data_t *pgdat;
1031 	int ret = 1;
1032 
1033 	if (node_online(nid))
1034 		return 0;
1035 
1036 	pgdat = hotadd_new_pgdat(nid, start);
1037 	if (!pgdat) {
1038 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1039 		ret = -ENOMEM;
1040 		goto out;
1041 	}
1042 
1043 	if (set_node_online) {
1044 		node_set_online(nid);
1045 		ret = register_one_node(nid);
1046 		BUG_ON(ret);
1047 	}
1048 out:
1049 	return ret;
1050 }
1051 
1052 /*
1053  * Users of this function always want to online/register the node
1054  */
1055 int try_online_node(int nid)
1056 {
1057 	int ret;
1058 
1059 	mem_hotplug_begin();
1060 	ret =  __try_online_node(nid, 0, true);
1061 	mem_hotplug_done();
1062 	return ret;
1063 }
1064 
1065 static int check_hotplug_memory_range(u64 start, u64 size)
1066 {
1067 	unsigned long block_sz = memory_block_size_bytes();
1068 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1069 	u64 nr_pages = size >> PAGE_SHIFT;
1070 	u64 start_pfn = PFN_DOWN(start);
1071 
1072 	/* memory range must be block size aligned */
1073 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1074 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1075 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1076 		       block_sz, start, size);
1077 		return -EINVAL;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int online_memory_block(struct memory_block *mem, void *arg)
1084 {
1085 	return device_online(&mem->dev);
1086 }
1087 
1088 /*
1089  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1090  * and online/offline operations (triggered e.g. by sysfs).
1091  *
1092  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1093  */
1094 int __ref add_memory_resource(int nid, struct resource *res)
1095 {
1096 	u64 start, size;
1097 	bool new_node = false;
1098 	int ret;
1099 
1100 	start = res->start;
1101 	size = resource_size(res);
1102 
1103 	ret = check_hotplug_memory_range(start, size);
1104 	if (ret)
1105 		return ret;
1106 
1107 	mem_hotplug_begin();
1108 
1109 	/*
1110 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1111 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1112 	 * this new range and calculate total pages correctly.  The range will
1113 	 * be removed at hot-remove time.
1114 	 */
1115 	memblock_add_node(start, size, nid);
1116 
1117 	ret = __try_online_node(nid, start, false);
1118 	if (ret < 0)
1119 		goto error;
1120 	new_node = ret;
1121 
1122 	/* call arch's memory hotadd */
1123 	ret = arch_add_memory(nid, start, size, NULL, true);
1124 	if (ret < 0)
1125 		goto error;
1126 
1127 	if (new_node) {
1128 		/* If sysfs file of new node can't be created, cpu on the node
1129 		 * can't be hot-added. There is no rollback way now.
1130 		 * So, check by BUG_ON() to catch it reluctantly..
1131 		 * We online node here. We can't roll back from here.
1132 		 */
1133 		node_set_online(nid);
1134 		ret = __register_one_node(nid);
1135 		BUG_ON(ret);
1136 	}
1137 
1138 	/* link memory sections under this node.*/
1139 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1140 	BUG_ON(ret);
1141 
1142 	/* create new memmap entry */
1143 	firmware_map_add_hotplug(start, start + size, "System RAM");
1144 
1145 	/* device_online() will take the lock when calling online_pages() */
1146 	mem_hotplug_done();
1147 
1148 	/* online pages if requested */
1149 	if (memhp_auto_online)
1150 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1151 				  NULL, online_memory_block);
1152 
1153 	return ret;
1154 error:
1155 	/* rollback pgdat allocation and others */
1156 	if (new_node)
1157 		rollback_node_hotadd(nid);
1158 	memblock_remove(start, size);
1159 	mem_hotplug_done();
1160 	return ret;
1161 }
1162 
1163 /* requires device_hotplug_lock, see add_memory_resource() */
1164 int __ref __add_memory(int nid, u64 start, u64 size)
1165 {
1166 	struct resource *res;
1167 	int ret;
1168 
1169 	res = register_memory_resource(start, size);
1170 	if (IS_ERR(res))
1171 		return PTR_ERR(res);
1172 
1173 	ret = add_memory_resource(nid, res);
1174 	if (ret < 0)
1175 		release_memory_resource(res);
1176 	return ret;
1177 }
1178 
1179 int add_memory(int nid, u64 start, u64 size)
1180 {
1181 	int rc;
1182 
1183 	lock_device_hotplug();
1184 	rc = __add_memory(nid, start, size);
1185 	unlock_device_hotplug();
1186 
1187 	return rc;
1188 }
1189 EXPORT_SYMBOL_GPL(add_memory);
1190 
1191 #ifdef CONFIG_MEMORY_HOTREMOVE
1192 /*
1193  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1194  * set and the size of the free page is given by page_order(). Using this,
1195  * the function determines if the pageblock contains only free pages.
1196  * Due to buddy contraints, a free page at least the size of a pageblock will
1197  * be located at the start of the pageblock
1198  */
1199 static inline int pageblock_free(struct page *page)
1200 {
1201 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1202 }
1203 
1204 /* Return the pfn of the start of the next active pageblock after a given pfn */
1205 static unsigned long next_active_pageblock(unsigned long pfn)
1206 {
1207 	struct page *page = pfn_to_page(pfn);
1208 
1209 	/* Ensure the starting page is pageblock-aligned */
1210 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1211 
1212 	/* If the entire pageblock is free, move to the end of free page */
1213 	if (pageblock_free(page)) {
1214 		int order;
1215 		/* be careful. we don't have locks, page_order can be changed.*/
1216 		order = page_order(page);
1217 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1218 			return pfn + (1 << order);
1219 	}
1220 
1221 	return pfn + pageblock_nr_pages;
1222 }
1223 
1224 static bool is_pageblock_removable_nolock(unsigned long pfn)
1225 {
1226 	struct page *page = pfn_to_page(pfn);
1227 	struct zone *zone;
1228 
1229 	/*
1230 	 * We have to be careful here because we are iterating over memory
1231 	 * sections which are not zone aware so we might end up outside of
1232 	 * the zone but still within the section.
1233 	 * We have to take care about the node as well. If the node is offline
1234 	 * its NODE_DATA will be NULL - see page_zone.
1235 	 */
1236 	if (!node_online(page_to_nid(page)))
1237 		return false;
1238 
1239 	zone = page_zone(page);
1240 	pfn = page_to_pfn(page);
1241 	if (!zone_spans_pfn(zone, pfn))
1242 		return false;
1243 
1244 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1245 }
1246 
1247 /* Checks if this range of memory is likely to be hot-removable. */
1248 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1249 {
1250 	unsigned long end_pfn, pfn;
1251 
1252 	end_pfn = min(start_pfn + nr_pages,
1253 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1254 
1255 	/* Check the starting page of each pageblock within the range */
1256 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1257 		if (!is_pageblock_removable_nolock(pfn))
1258 			return false;
1259 		cond_resched();
1260 	}
1261 
1262 	/* All pageblocks in the memory block are likely to be hot-removable */
1263 	return true;
1264 }
1265 
1266 /*
1267  * Confirm all pages in a range [start, end) belong to the same zone.
1268  * When true, return its valid [start, end).
1269  */
1270 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1271 			 unsigned long *valid_start, unsigned long *valid_end)
1272 {
1273 	unsigned long pfn, sec_end_pfn;
1274 	unsigned long start, end;
1275 	struct zone *zone = NULL;
1276 	struct page *page;
1277 	int i;
1278 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1279 	     pfn < end_pfn;
1280 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1281 		/* Make sure the memory section is present first */
1282 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1283 			continue;
1284 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1285 		     pfn += MAX_ORDER_NR_PAGES) {
1286 			i = 0;
1287 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1288 			while ((i < MAX_ORDER_NR_PAGES) &&
1289 				!pfn_valid_within(pfn + i))
1290 				i++;
1291 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1292 				continue;
1293 			/* Check if we got outside of the zone */
1294 			if (zone && !zone_spans_pfn(zone, pfn + i))
1295 				return 0;
1296 			page = pfn_to_page(pfn + i);
1297 			if (zone && page_zone(page) != zone)
1298 				return 0;
1299 			if (!zone)
1300 				start = pfn + i;
1301 			zone = page_zone(page);
1302 			end = pfn + MAX_ORDER_NR_PAGES;
1303 		}
1304 	}
1305 
1306 	if (zone) {
1307 		*valid_start = start;
1308 		*valid_end = min(end, end_pfn);
1309 		return 1;
1310 	} else {
1311 		return 0;
1312 	}
1313 }
1314 
1315 /*
1316  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1317  * non-lru movable pages and hugepages). We scan pfn because it's much
1318  * easier than scanning over linked list. This function returns the pfn
1319  * of the first found movable page if it's found, otherwise 0.
1320  */
1321 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1322 {
1323 	unsigned long pfn;
1324 
1325 	for (pfn = start; pfn < end; pfn++) {
1326 		struct page *page, *head;
1327 		unsigned long skip;
1328 
1329 		if (!pfn_valid(pfn))
1330 			continue;
1331 		page = pfn_to_page(pfn);
1332 		if (PageLRU(page))
1333 			return pfn;
1334 		if (__PageMovable(page))
1335 			return pfn;
1336 
1337 		if (!PageHuge(page))
1338 			continue;
1339 		head = compound_head(page);
1340 		if (hugepage_migration_supported(page_hstate(head)) &&
1341 		    page_huge_active(head))
1342 			return pfn;
1343 		skip = (1 << compound_order(head)) - (page - head);
1344 		pfn += skip - 1;
1345 	}
1346 	return 0;
1347 }
1348 
1349 static struct page *new_node_page(struct page *page, unsigned long private)
1350 {
1351 	int nid = page_to_nid(page);
1352 	nodemask_t nmask = node_states[N_MEMORY];
1353 
1354 	/*
1355 	 * try to allocate from a different node but reuse this node if there
1356 	 * are no other online nodes to be used (e.g. we are offlining a part
1357 	 * of the only existing node)
1358 	 */
1359 	node_clear(nid, nmask);
1360 	if (nodes_empty(nmask))
1361 		node_set(nid, nmask);
1362 
1363 	return new_page_nodemask(page, nid, &nmask);
1364 }
1365 
1366 static int
1367 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1368 {
1369 	unsigned long pfn;
1370 	struct page *page;
1371 	int ret = 0;
1372 	LIST_HEAD(source);
1373 
1374 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1375 		if (!pfn_valid(pfn))
1376 			continue;
1377 		page = pfn_to_page(pfn);
1378 
1379 		if (PageHuge(page)) {
1380 			struct page *head = compound_head(page);
1381 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1382 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1383 				ret = -EBUSY;
1384 				break;
1385 			}
1386 			isolate_huge_page(page, &source);
1387 			continue;
1388 		} else if (PageTransHuge(page))
1389 			pfn = page_to_pfn(compound_head(page))
1390 				+ hpage_nr_pages(page) - 1;
1391 
1392 		/*
1393 		 * HWPoison pages have elevated reference counts so the migration would
1394 		 * fail on them. It also doesn't make any sense to migrate them in the
1395 		 * first place. Still try to unmap such a page in case it is still mapped
1396 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1397 		 * the unmap as the catch all safety net).
1398 		 */
1399 		if (PageHWPoison(page)) {
1400 			if (WARN_ON(PageLRU(page)))
1401 				isolate_lru_page(page);
1402 			if (page_mapped(page))
1403 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1404 			continue;
1405 		}
1406 
1407 		if (!get_page_unless_zero(page))
1408 			continue;
1409 		/*
1410 		 * We can skip free pages. And we can deal with pages on
1411 		 * LRU and non-lru movable pages.
1412 		 */
1413 		if (PageLRU(page))
1414 			ret = isolate_lru_page(page);
1415 		else
1416 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1417 		if (!ret) { /* Success */
1418 			list_add_tail(&page->lru, &source);
1419 			if (!__PageMovable(page))
1420 				inc_node_page_state(page, NR_ISOLATED_ANON +
1421 						    page_is_file_cache(page));
1422 
1423 		} else {
1424 			pr_warn("failed to isolate pfn %lx\n", pfn);
1425 			dump_page(page, "isolation failed");
1426 		}
1427 		put_page(page);
1428 	}
1429 	if (!list_empty(&source)) {
1430 		/* Allocate a new page from the nearest neighbor node */
1431 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1432 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1433 		if (ret) {
1434 			list_for_each_entry(page, &source, lru) {
1435 				pr_warn("migrating pfn %lx failed ret:%d ",
1436 				       page_to_pfn(page), ret);
1437 				dump_page(page, "migration failure");
1438 			}
1439 			putback_movable_pages(&source);
1440 		}
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 /*
1447  * remove from free_area[] and mark all as Reserved.
1448  */
1449 static int
1450 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1451 			void *data)
1452 {
1453 	__offline_isolated_pages(start, start + nr_pages);
1454 	return 0;
1455 }
1456 
1457 static void
1458 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1459 {
1460 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1461 				offline_isolated_pages_cb);
1462 }
1463 
1464 /*
1465  * Check all pages in range, recoreded as memory resource, are isolated.
1466  */
1467 static int
1468 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1469 			void *data)
1470 {
1471 	int ret;
1472 	long offlined = *(long *)data;
1473 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1474 	offlined = nr_pages;
1475 	if (!ret)
1476 		*(long *)data += offlined;
1477 	return ret;
1478 }
1479 
1480 static long
1481 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1482 {
1483 	long offlined = 0;
1484 	int ret;
1485 
1486 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1487 			check_pages_isolated_cb);
1488 	if (ret < 0)
1489 		offlined = (long)ret;
1490 	return offlined;
1491 }
1492 
1493 static int __init cmdline_parse_movable_node(char *p)
1494 {
1495 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1496 	movable_node_enabled = true;
1497 #else
1498 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1499 #endif
1500 	return 0;
1501 }
1502 early_param("movable_node", cmdline_parse_movable_node);
1503 
1504 /* check which state of node_states will be changed when offline memory */
1505 static void node_states_check_changes_offline(unsigned long nr_pages,
1506 		struct zone *zone, struct memory_notify *arg)
1507 {
1508 	struct pglist_data *pgdat = zone->zone_pgdat;
1509 	unsigned long present_pages = 0;
1510 	enum zone_type zt;
1511 
1512 	arg->status_change_nid = NUMA_NO_NODE;
1513 	arg->status_change_nid_normal = NUMA_NO_NODE;
1514 	arg->status_change_nid_high = NUMA_NO_NODE;
1515 
1516 	/*
1517 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1518 	 * If the memory to be offline is within the range
1519 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1520 	 * the zones in that range will become empty after the offlining,
1521 	 * thus we can determine that we need to clear the node from
1522 	 * node_states[N_NORMAL_MEMORY].
1523 	 */
1524 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1525 		present_pages += pgdat->node_zones[zt].present_pages;
1526 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1527 		arg->status_change_nid_normal = zone_to_nid(zone);
1528 
1529 #ifdef CONFIG_HIGHMEM
1530 	/*
1531 	 * node_states[N_HIGH_MEMORY] contains nodes which
1532 	 * have normal memory or high memory.
1533 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1534 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1535 	 * we determine that the zones in that range become empty,
1536 	 * we need to clear the node for N_HIGH_MEMORY.
1537 	 */
1538 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1539 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1540 		arg->status_change_nid_high = zone_to_nid(zone);
1541 #endif
1542 
1543 	/*
1544 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1545 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1546 	 * as well.
1547 	 * Here we count the possible pages from ZONE_MOVABLE.
1548 	 * If after having accounted all the pages, we see that the nr_pages
1549 	 * to be offlined is over or equal to the accounted pages,
1550 	 * we know that the node will become empty, and so, we can clear
1551 	 * it for N_MEMORY as well.
1552 	 */
1553 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1554 
1555 	if (nr_pages >= present_pages)
1556 		arg->status_change_nid = zone_to_nid(zone);
1557 }
1558 
1559 static void node_states_clear_node(int node, struct memory_notify *arg)
1560 {
1561 	if (arg->status_change_nid_normal >= 0)
1562 		node_clear_state(node, N_NORMAL_MEMORY);
1563 
1564 	if (arg->status_change_nid_high >= 0)
1565 		node_clear_state(node, N_HIGH_MEMORY);
1566 
1567 	if (arg->status_change_nid >= 0)
1568 		node_clear_state(node, N_MEMORY);
1569 }
1570 
1571 static int __ref __offline_pages(unsigned long start_pfn,
1572 		  unsigned long end_pfn)
1573 {
1574 	unsigned long pfn, nr_pages;
1575 	long offlined_pages;
1576 	int ret, node;
1577 	unsigned long flags;
1578 	unsigned long valid_start, valid_end;
1579 	struct zone *zone;
1580 	struct memory_notify arg;
1581 	char *reason;
1582 
1583 	mem_hotplug_begin();
1584 
1585 	/* This makes hotplug much easier...and readable.
1586 	   we assume this for now. .*/
1587 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1588 				  &valid_end)) {
1589 		ret = -EINVAL;
1590 		reason = "multizone range";
1591 		goto failed_removal;
1592 	}
1593 
1594 	zone = page_zone(pfn_to_page(valid_start));
1595 	node = zone_to_nid(zone);
1596 	nr_pages = end_pfn - start_pfn;
1597 
1598 	/* set above range as isolated */
1599 	ret = start_isolate_page_range(start_pfn, end_pfn,
1600 				       MIGRATE_MOVABLE,
1601 				       SKIP_HWPOISON | REPORT_FAILURE);
1602 	if (ret) {
1603 		reason = "failure to isolate range";
1604 		goto failed_removal;
1605 	}
1606 
1607 	arg.start_pfn = start_pfn;
1608 	arg.nr_pages = nr_pages;
1609 	node_states_check_changes_offline(nr_pages, zone, &arg);
1610 
1611 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1612 	ret = notifier_to_errno(ret);
1613 	if (ret) {
1614 		reason = "notifier failure";
1615 		goto failed_removal_isolated;
1616 	}
1617 
1618 	do {
1619 		for (pfn = start_pfn; pfn;) {
1620 			if (signal_pending(current)) {
1621 				ret = -EINTR;
1622 				reason = "signal backoff";
1623 				goto failed_removal_isolated;
1624 			}
1625 
1626 			cond_resched();
1627 			lru_add_drain_all();
1628 
1629 			pfn = scan_movable_pages(pfn, end_pfn);
1630 			if (pfn) {
1631 				/*
1632 				 * TODO: fatal migration failures should bail
1633 				 * out
1634 				 */
1635 				do_migrate_range(pfn, end_pfn);
1636 			}
1637 		}
1638 
1639 		/*
1640 		 * Dissolve free hugepages in the memory block before doing
1641 		 * offlining actually in order to make hugetlbfs's object
1642 		 * counting consistent.
1643 		 */
1644 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1645 		if (ret) {
1646 			reason = "failure to dissolve huge pages";
1647 			goto failed_removal_isolated;
1648 		}
1649 		/* check again */
1650 		offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1651 	} while (offlined_pages < 0);
1652 
1653 	pr_info("Offlined Pages %ld\n", offlined_pages);
1654 	/* Ok, all of our target is isolated.
1655 	   We cannot do rollback at this point. */
1656 	offline_isolated_pages(start_pfn, end_pfn);
1657 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1658 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1659 	/* removal success */
1660 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1661 	zone->present_pages -= offlined_pages;
1662 
1663 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1664 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1665 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1666 
1667 	init_per_zone_wmark_min();
1668 
1669 	if (!populated_zone(zone)) {
1670 		zone_pcp_reset(zone);
1671 		build_all_zonelists(NULL);
1672 	} else
1673 		zone_pcp_update(zone);
1674 
1675 	node_states_clear_node(node, &arg);
1676 	if (arg.status_change_nid >= 0) {
1677 		kswapd_stop(node);
1678 		kcompactd_stop(node);
1679 	}
1680 
1681 	vm_total_pages = nr_free_pagecache_pages();
1682 	writeback_set_ratelimit();
1683 
1684 	memory_notify(MEM_OFFLINE, &arg);
1685 	mem_hotplug_done();
1686 	return 0;
1687 
1688 failed_removal_isolated:
1689 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1690 failed_removal:
1691 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1692 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1693 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1694 		 reason);
1695 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1696 	/* pushback to free area */
1697 	mem_hotplug_done();
1698 	return ret;
1699 }
1700 
1701 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1702 {
1703 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1704 }
1705 #endif /* CONFIG_MEMORY_HOTREMOVE */
1706 
1707 /**
1708  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1709  * @start_pfn: start pfn of the memory range
1710  * @end_pfn: end pfn of the memory range
1711  * @arg: argument passed to func
1712  * @func: callback for each memory section walked
1713  *
1714  * This function walks through all present mem sections in range
1715  * [start_pfn, end_pfn) and call func on each mem section.
1716  *
1717  * Returns the return value of func.
1718  */
1719 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1720 		void *arg, int (*func)(struct memory_block *, void *))
1721 {
1722 	struct memory_block *mem = NULL;
1723 	struct mem_section *section;
1724 	unsigned long pfn, section_nr;
1725 	int ret;
1726 
1727 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1728 		section_nr = pfn_to_section_nr(pfn);
1729 		if (!present_section_nr(section_nr))
1730 			continue;
1731 
1732 		section = __nr_to_section(section_nr);
1733 		/* same memblock? */
1734 		if (mem)
1735 			if ((section_nr >= mem->start_section_nr) &&
1736 			    (section_nr <= mem->end_section_nr))
1737 				continue;
1738 
1739 		mem = find_memory_block_hinted(section, mem);
1740 		if (!mem)
1741 			continue;
1742 
1743 		ret = func(mem, arg);
1744 		if (ret) {
1745 			kobject_put(&mem->dev.kobj);
1746 			return ret;
1747 		}
1748 	}
1749 
1750 	if (mem)
1751 		kobject_put(&mem->dev.kobj);
1752 
1753 	return 0;
1754 }
1755 
1756 #ifdef CONFIG_MEMORY_HOTREMOVE
1757 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1758 {
1759 	int ret = !is_memblock_offlined(mem);
1760 
1761 	if (unlikely(ret)) {
1762 		phys_addr_t beginpa, endpa;
1763 
1764 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1765 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1766 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1767 			&beginpa, &endpa);
1768 	}
1769 
1770 	return ret;
1771 }
1772 
1773 static int check_cpu_on_node(pg_data_t *pgdat)
1774 {
1775 	int cpu;
1776 
1777 	for_each_present_cpu(cpu) {
1778 		if (cpu_to_node(cpu) == pgdat->node_id)
1779 			/*
1780 			 * the cpu on this node isn't removed, and we can't
1781 			 * offline this node.
1782 			 */
1783 			return -EBUSY;
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 /**
1790  * try_offline_node
1791  * @nid: the node ID
1792  *
1793  * Offline a node if all memory sections and cpus of the node are removed.
1794  *
1795  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1796  * and online/offline operations before this call.
1797  */
1798 void try_offline_node(int nid)
1799 {
1800 	pg_data_t *pgdat = NODE_DATA(nid);
1801 	unsigned long start_pfn = pgdat->node_start_pfn;
1802 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1803 	unsigned long pfn;
1804 
1805 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1806 		unsigned long section_nr = pfn_to_section_nr(pfn);
1807 
1808 		if (!present_section_nr(section_nr))
1809 			continue;
1810 
1811 		if (pfn_to_nid(pfn) != nid)
1812 			continue;
1813 
1814 		/*
1815 		 * some memory sections of this node are not removed, and we
1816 		 * can't offline node now.
1817 		 */
1818 		return;
1819 	}
1820 
1821 	if (check_cpu_on_node(pgdat))
1822 		return;
1823 
1824 	/*
1825 	 * all memory/cpu of this node are removed, we can offline this
1826 	 * node now.
1827 	 */
1828 	node_set_offline(nid);
1829 	unregister_one_node(nid);
1830 }
1831 EXPORT_SYMBOL(try_offline_node);
1832 
1833 /**
1834  * remove_memory
1835  * @nid: the node ID
1836  * @start: physical address of the region to remove
1837  * @size: size of the region to remove
1838  *
1839  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1840  * and online/offline operations before this call, as required by
1841  * try_offline_node().
1842  */
1843 void __ref __remove_memory(int nid, u64 start, u64 size)
1844 {
1845 	int ret;
1846 
1847 	BUG_ON(check_hotplug_memory_range(start, size));
1848 
1849 	mem_hotplug_begin();
1850 
1851 	/*
1852 	 * All memory blocks must be offlined before removing memory.  Check
1853 	 * whether all memory blocks in question are offline and trigger a BUG()
1854 	 * if this is not the case.
1855 	 */
1856 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1857 				check_memblock_offlined_cb);
1858 	if (ret)
1859 		BUG();
1860 
1861 	/* remove memmap entry */
1862 	firmware_map_remove(start, start + size, "System RAM");
1863 	memblock_free(start, size);
1864 	memblock_remove(start, size);
1865 
1866 	arch_remove_memory(nid, start, size, NULL);
1867 
1868 	try_offline_node(nid);
1869 
1870 	mem_hotplug_done();
1871 }
1872 
1873 void remove_memory(int nid, u64 start, u64 size)
1874 {
1875 	lock_device_hotplug();
1876 	__remove_memory(nid, start, size);
1877 	unlock_device_hotplug();
1878 }
1879 EXPORT_SYMBOL_GPL(remove_memory);
1880 #endif /* CONFIG_MEMORY_HOTREMOVE */
1881