xref: /linux/mm/memory_hotplug.c (revision 447e140e66fd226350b3ce86cffc965eaae4c856)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 #include "shuffle.h"
43 
44 enum {
45 	MEMMAP_ON_MEMORY_DISABLE = 0,
46 	MEMMAP_ON_MEMORY_ENABLE,
47 	MEMMAP_ON_MEMORY_FORCE,
48 };
49 
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51 
52 static inline unsigned long memory_block_memmap_size(void)
53 {
54 	return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55 }
56 
57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
58 {
59 	unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60 
61 	/*
62 	 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 	 * vmemmap size to cover full pageblocks. That way, we can add memory
64 	 * even if the vmemmap size is not properly aligned, however, we might waste
65 	 * memory.
66 	 */
67 	if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 		return pageblock_align(nr_pages);
69 	return nr_pages;
70 }
71 
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73 /*
74  * memory_hotplug.memmap_on_memory parameter
75  */
76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77 {
78 	int ret, mode;
79 	bool enabled;
80 
81 	if (sysfs_streq(val, "force") ||  sysfs_streq(val, "FORCE")) {
82 		mode = MEMMAP_ON_MEMORY_FORCE;
83 	} else {
84 		ret = kstrtobool(val, &enabled);
85 		if (ret < 0)
86 			return ret;
87 		if (enabled)
88 			mode = MEMMAP_ON_MEMORY_ENABLE;
89 		else
90 			mode = MEMMAP_ON_MEMORY_DISABLE;
91 	}
92 	*((int *)kp->arg) = mode;
93 	if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 		unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95 
96 		pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 			     memmap_pages - PFN_UP(memory_block_memmap_size()));
98 	}
99 	return 0;
100 }
101 
102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104 	int mode = *((int *)kp->arg);
105 
106 	if (mode == MEMMAP_ON_MEMORY_FORCE)
107 		return sprintf(buffer, "force\n");
108 	return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109 }
110 
111 static const struct kernel_param_ops memmap_mode_ops = {
112 	.set = set_memmap_mode,
113 	.get = get_memmap_mode,
114 };
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 		 "With value \"force\" it could result in memory wastage due "
118 		 "to memmap size limitations (Y/N/force)");
119 
120 static inline bool mhp_memmap_on_memory(void)
121 {
122 	return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123 }
124 #else
125 static inline bool mhp_memmap_on_memory(void)
126 {
127 	return false;
128 }
129 #endif
130 
131 enum {
132 	ONLINE_POLICY_CONTIG_ZONES = 0,
133 	ONLINE_POLICY_AUTO_MOVABLE,
134 };
135 
136 static const char * const online_policy_to_str[] = {
137 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139 };
140 
141 static int set_online_policy(const char *val, const struct kernel_param *kp)
142 {
143 	int ret = sysfs_match_string(online_policy_to_str, val);
144 
145 	if (ret < 0)
146 		return ret;
147 	*((int *)kp->arg) = ret;
148 	return 0;
149 }
150 
151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
152 {
153 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154 }
155 
156 /*
157  * memory_hotplug.online_policy: configure online behavior when onlining without
158  * specifying a zone (MMOP_ONLINE)
159  *
160  * "contig-zones": keep zone contiguous
161  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
163  */
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166 	.set = set_online_policy,
167 	.get = get_online_policy,
168 };
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
172 		"Default: \"contig-zones\"");
173 
174 /*
175  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176  *
177  * The ratio represent an upper limit and the kernel might decide to not
178  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179  * doesn't allow for more MOVABLE memory.
180  */
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 		"in percent for \"auto-movable\" online policy. Default: 301");
186 
187 /*
188  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189  */
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194 		"Consider numa node stats in addition to global stats in "
195 		"\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
197 
198 /*
199  * online_page_callback contains pointer to current page onlining function.
200  * Initially it is generic_online_page(). If it is required it could be
201  * changed by calling set_online_page_callback() for callback registration
202  * and restore_online_page_callback() for generic callback restore.
203  */
204 
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
207 
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209 
210 void get_online_mems(void)
211 {
212 	percpu_down_read(&mem_hotplug_lock);
213 }
214 
215 void put_online_mems(void)
216 {
217 	percpu_up_read(&mem_hotplug_lock);
218 }
219 
220 bool movable_node_enabled = false;
221 
222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223 int mhp_default_online_type = MMOP_OFFLINE;
224 #else
225 int mhp_default_online_type = MMOP_ONLINE;
226 #endif
227 
228 static int __init setup_memhp_default_state(char *str)
229 {
230 	const int online_type = mhp_online_type_from_str(str);
231 
232 	if (online_type >= 0)
233 		mhp_default_online_type = online_type;
234 
235 	return 1;
236 }
237 __setup("memhp_default_state=", setup_memhp_default_state);
238 
239 void mem_hotplug_begin(void)
240 {
241 	cpus_read_lock();
242 	percpu_down_write(&mem_hotplug_lock);
243 }
244 
245 void mem_hotplug_done(void)
246 {
247 	percpu_up_write(&mem_hotplug_lock);
248 	cpus_read_unlock();
249 }
250 
251 u64 max_mem_size = U64_MAX;
252 
253 /* add this memory to iomem resource */
254 static struct resource *register_memory_resource(u64 start, u64 size,
255 						 const char *resource_name)
256 {
257 	struct resource *res;
258 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259 
260 	if (strcmp(resource_name, "System RAM"))
261 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262 
263 	if (!mhp_range_allowed(start, size, true))
264 		return ERR_PTR(-E2BIG);
265 
266 	/*
267 	 * Make sure value parsed from 'mem=' only restricts memory adding
268 	 * while booting, so that memory hotplug won't be impacted. Please
269 	 * refer to document of 'mem=' in kernel-parameters.txt for more
270 	 * details.
271 	 */
272 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 		return ERR_PTR(-E2BIG);
274 
275 	/*
276 	 * Request ownership of the new memory range.  This might be
277 	 * a child of an existing resource that was present but
278 	 * not marked as busy.
279 	 */
280 	res = __request_region(&iomem_resource, start, size,
281 			       resource_name, flags);
282 
283 	if (!res) {
284 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 				start, start + size);
286 		return ERR_PTR(-EEXIST);
287 	}
288 	return res;
289 }
290 
291 static void release_memory_resource(struct resource *res)
292 {
293 	if (!res)
294 		return;
295 	release_resource(res);
296 	kfree(res);
297 }
298 
299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300 {
301 	/*
302 	 * Disallow all operations smaller than a sub-section and only
303 	 * allow operations smaller than a section for
304 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 	 * enforces a larger memory_block_size_bytes() granularity for
306 	 * memory that will be marked online, so this check should only
307 	 * fire for direct arch_{add,remove}_memory() users outside of
308 	 * add_memory_resource().
309 	 */
310 	unsigned long min_align;
311 
312 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 		min_align = PAGES_PER_SUBSECTION;
314 	else
315 		min_align = PAGES_PER_SECTION;
316 	if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 		return -EINVAL;
318 	return 0;
319 }
320 
321 /*
322  * Return page for the valid pfn only if the page is online. All pfn
323  * walkers which rely on the fully initialized page->flags and others
324  * should use this rather than pfn_valid && pfn_to_page
325  */
326 struct page *pfn_to_online_page(unsigned long pfn)
327 {
328 	unsigned long nr = pfn_to_section_nr(pfn);
329 	struct dev_pagemap *pgmap;
330 	struct mem_section *ms;
331 
332 	if (nr >= NR_MEM_SECTIONS)
333 		return NULL;
334 
335 	ms = __nr_to_section(nr);
336 	if (!online_section(ms))
337 		return NULL;
338 
339 	/*
340 	 * Save some code text when online_section() +
341 	 * pfn_section_valid() are sufficient.
342 	 */
343 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 		return NULL;
345 
346 	if (!pfn_section_valid(ms, pfn))
347 		return NULL;
348 
349 	if (!online_device_section(ms))
350 		return pfn_to_page(pfn);
351 
352 	/*
353 	 * Slowpath: when ZONE_DEVICE collides with
354 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 	 * the section may be 'offline' but 'valid'. Only
356 	 * get_dev_pagemap() can determine sub-section online status.
357 	 */
358 	pgmap = get_dev_pagemap(pfn, NULL);
359 	put_dev_pagemap(pgmap);
360 
361 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 	if (pgmap)
363 		return NULL;
364 
365 	return pfn_to_page(pfn);
366 }
367 EXPORT_SYMBOL_GPL(pfn_to_online_page);
368 
369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 		struct mhp_params *params)
371 {
372 	const unsigned long end_pfn = pfn + nr_pages;
373 	unsigned long cur_nr_pages;
374 	int err;
375 	struct vmem_altmap *altmap = params->altmap;
376 
377 	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 		return -EINVAL;
379 
380 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381 
382 	if (altmap) {
383 		/*
384 		 * Validate altmap is within bounds of the total request
385 		 */
386 		if (altmap->base_pfn != pfn
387 				|| vmem_altmap_offset(altmap) > nr_pages) {
388 			pr_warn_once("memory add fail, invalid altmap\n");
389 			return -EINVAL;
390 		}
391 		altmap->alloc = 0;
392 	}
393 
394 	if (check_pfn_span(pfn, nr_pages)) {
395 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 		return -EINVAL;
397 	}
398 
399 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 		/* Select all remaining pages up to the next section boundary */
401 		cur_nr_pages = min(end_pfn - pfn,
402 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
403 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 					 params->pgmap);
405 		if (err)
406 			break;
407 		cond_resched();
408 	}
409 	vmemmap_populate_print_last();
410 	return err;
411 }
412 
413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 				     unsigned long start_pfn,
416 				     unsigned long end_pfn)
417 {
418 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 		if (unlikely(!pfn_to_online_page(start_pfn)))
420 			continue;
421 
422 		if (unlikely(pfn_to_nid(start_pfn) != nid))
423 			continue;
424 
425 		if (zone != page_zone(pfn_to_page(start_pfn)))
426 			continue;
427 
428 		return start_pfn;
429 	}
430 
431 	return 0;
432 }
433 
434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 				    unsigned long start_pfn,
437 				    unsigned long end_pfn)
438 {
439 	unsigned long pfn;
440 
441 	/* pfn is the end pfn of a memory section. */
442 	pfn = end_pfn - 1;
443 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 		if (unlikely(!pfn_to_online_page(pfn)))
445 			continue;
446 
447 		if (unlikely(pfn_to_nid(pfn) != nid))
448 			continue;
449 
450 		if (zone != page_zone(pfn_to_page(pfn)))
451 			continue;
452 
453 		return pfn;
454 	}
455 
456 	return 0;
457 }
458 
459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 			     unsigned long end_pfn)
461 {
462 	unsigned long pfn;
463 	int nid = zone_to_nid(zone);
464 
465 	if (zone->zone_start_pfn == start_pfn) {
466 		/*
467 		 * If the section is smallest section in the zone, it need
468 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 		 * In this case, we find second smallest valid mem_section
470 		 * for shrinking zone.
471 		 */
472 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 						zone_end_pfn(zone));
474 		if (pfn) {
475 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 			zone->zone_start_pfn = pfn;
477 		} else {
478 			zone->zone_start_pfn = 0;
479 			zone->spanned_pages = 0;
480 		}
481 	} else if (zone_end_pfn(zone) == end_pfn) {
482 		/*
483 		 * If the section is biggest section in the zone, it need
484 		 * shrink zone->spanned_pages.
485 		 * In this case, we find second biggest valid mem_section for
486 		 * shrinking zone.
487 		 */
488 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 					       start_pfn);
490 		if (pfn)
491 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 		else {
493 			zone->zone_start_pfn = 0;
494 			zone->spanned_pages = 0;
495 		}
496 	}
497 }
498 
499 static void update_pgdat_span(struct pglist_data *pgdat)
500 {
501 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 	struct zone *zone;
503 
504 	for (zone = pgdat->node_zones;
505 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 		unsigned long end_pfn = zone_end_pfn(zone);
507 
508 		/* No need to lock the zones, they can't change. */
509 		if (!zone->spanned_pages)
510 			continue;
511 		if (!node_end_pfn) {
512 			node_start_pfn = zone->zone_start_pfn;
513 			node_end_pfn = end_pfn;
514 			continue;
515 		}
516 
517 		if (end_pfn > node_end_pfn)
518 			node_end_pfn = end_pfn;
519 		if (zone->zone_start_pfn < node_start_pfn)
520 			node_start_pfn = zone->zone_start_pfn;
521 	}
522 
523 	pgdat->node_start_pfn = node_start_pfn;
524 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525 }
526 
527 void __ref remove_pfn_range_from_zone(struct zone *zone,
528 				      unsigned long start_pfn,
529 				      unsigned long nr_pages)
530 {
531 	const unsigned long end_pfn = start_pfn + nr_pages;
532 	struct pglist_data *pgdat = zone->zone_pgdat;
533 	unsigned long pfn, cur_nr_pages;
534 
535 	/* Poison struct pages because they are now uninitialized again. */
536 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 		cond_resched();
538 
539 		/* Select all remaining pages up to the next section boundary */
540 		cur_nr_pages =
541 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 		page_init_poison(pfn_to_page(pfn),
543 				 sizeof(struct page) * cur_nr_pages);
544 	}
545 
546 	/*
547 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 	 * we will not try to shrink the zones - which is okay as
549 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550 	 */
551 	if (zone_is_zone_device(zone))
552 		return;
553 
554 	clear_zone_contiguous(zone);
555 
556 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 	update_pgdat_span(pgdat);
558 
559 	set_zone_contiguous(zone);
560 }
561 
562 /**
563  * __remove_pages() - remove sections of pages
564  * @pfn: starting pageframe (must be aligned to start of a section)
565  * @nr_pages: number of pages to remove (must be multiple of section size)
566  * @altmap: alternative device page map or %NULL if default memmap is used
567  *
568  * Generic helper function to remove section mappings and sysfs entries
569  * for the section of the memory we are removing. Caller needs to make
570  * sure that pages are marked reserved and zones are adjust properly by
571  * calling offline_pages().
572  */
573 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 		    struct vmem_altmap *altmap)
575 {
576 	const unsigned long end_pfn = pfn + nr_pages;
577 	unsigned long cur_nr_pages;
578 
579 	if (check_pfn_span(pfn, nr_pages)) {
580 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 		return;
582 	}
583 
584 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 		cond_resched();
586 		/* Select all remaining pages up to the next section boundary */
587 		cur_nr_pages = min(end_pfn - pfn,
588 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
589 		sparse_remove_section(pfn, cur_nr_pages, altmap);
590 	}
591 }
592 
593 int set_online_page_callback(online_page_callback_t callback)
594 {
595 	int rc = -EINVAL;
596 
597 	get_online_mems();
598 	mutex_lock(&online_page_callback_lock);
599 
600 	if (online_page_callback == generic_online_page) {
601 		online_page_callback = callback;
602 		rc = 0;
603 	}
604 
605 	mutex_unlock(&online_page_callback_lock);
606 	put_online_mems();
607 
608 	return rc;
609 }
610 EXPORT_SYMBOL_GPL(set_online_page_callback);
611 
612 int restore_online_page_callback(online_page_callback_t callback)
613 {
614 	int rc = -EINVAL;
615 
616 	get_online_mems();
617 	mutex_lock(&online_page_callback_lock);
618 
619 	if (online_page_callback == callback) {
620 		online_page_callback = generic_online_page;
621 		rc = 0;
622 	}
623 
624 	mutex_unlock(&online_page_callback_lock);
625 	put_online_mems();
626 
627 	return rc;
628 }
629 EXPORT_SYMBOL_GPL(restore_online_page_callback);
630 
631 void generic_online_page(struct page *page, unsigned int order)
632 {
633 	/*
634 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
635 	 * so we should map it first. This is better than introducing a special
636 	 * case in page freeing fast path.
637 	 */
638 	debug_pagealloc_map_pages(page, 1 << order);
639 	__free_pages_core(page, order);
640 	totalram_pages_add(1UL << order);
641 }
642 EXPORT_SYMBOL_GPL(generic_online_page);
643 
644 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
645 {
646 	const unsigned long end_pfn = start_pfn + nr_pages;
647 	unsigned long pfn;
648 
649 	/*
650 	 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
651 	 * decide to not expose all pages to the buddy (e.g., expose them
652 	 * later). We account all pages as being online and belonging to this
653 	 * zone ("present").
654 	 * When using memmap_on_memory, the range might not be aligned to
655 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
656 	 * this and the first chunk to online will be pageblock_nr_pages.
657 	 */
658 	for (pfn = start_pfn; pfn < end_pfn;) {
659 		int order;
660 
661 		/*
662 		 * Free to online pages in the largest chunks alignment allows.
663 		 *
664 		 * __ffs() behaviour is undefined for 0. start == 0 is
665 		 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
666 		 * the case.
667 		 */
668 		if (pfn)
669 			order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
670 		else
671 			order = MAX_PAGE_ORDER;
672 
673 		(*online_page_callback)(pfn_to_page(pfn), order);
674 		pfn += (1UL << order);
675 	}
676 
677 	/* mark all involved sections as online */
678 	online_mem_sections(start_pfn, end_pfn);
679 }
680 
681 /* check which state of node_states will be changed when online memory */
682 static void node_states_check_changes_online(unsigned long nr_pages,
683 	struct zone *zone, struct memory_notify *arg)
684 {
685 	int nid = zone_to_nid(zone);
686 
687 	arg->status_change_nid = NUMA_NO_NODE;
688 	arg->status_change_nid_normal = NUMA_NO_NODE;
689 
690 	if (!node_state(nid, N_MEMORY))
691 		arg->status_change_nid = nid;
692 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
693 		arg->status_change_nid_normal = nid;
694 }
695 
696 static void node_states_set_node(int node, struct memory_notify *arg)
697 {
698 	if (arg->status_change_nid_normal >= 0)
699 		node_set_state(node, N_NORMAL_MEMORY);
700 
701 	if (arg->status_change_nid >= 0)
702 		node_set_state(node, N_MEMORY);
703 }
704 
705 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
706 		unsigned long nr_pages)
707 {
708 	unsigned long old_end_pfn = zone_end_pfn(zone);
709 
710 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
711 		zone->zone_start_pfn = start_pfn;
712 
713 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
714 }
715 
716 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
717                                      unsigned long nr_pages)
718 {
719 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
720 
721 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
722 		pgdat->node_start_pfn = start_pfn;
723 
724 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
725 
726 }
727 
728 #ifdef CONFIG_ZONE_DEVICE
729 static void section_taint_zone_device(unsigned long pfn)
730 {
731 	struct mem_section *ms = __pfn_to_section(pfn);
732 
733 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
734 }
735 #else
736 static inline void section_taint_zone_device(unsigned long pfn)
737 {
738 }
739 #endif
740 
741 /*
742  * Associate the pfn range with the given zone, initializing the memmaps
743  * and resizing the pgdat/zone data to span the added pages. After this
744  * call, all affected pages are PG_reserved.
745  *
746  * All aligned pageblocks are initialized to the specified migratetype
747  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
748  * zone stats (e.g., nr_isolate_pageblock) are touched.
749  */
750 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
751 				  unsigned long nr_pages,
752 				  struct vmem_altmap *altmap, int migratetype)
753 {
754 	struct pglist_data *pgdat = zone->zone_pgdat;
755 	int nid = pgdat->node_id;
756 
757 	clear_zone_contiguous(zone);
758 
759 	if (zone_is_empty(zone))
760 		init_currently_empty_zone(zone, start_pfn, nr_pages);
761 	resize_zone_range(zone, start_pfn, nr_pages);
762 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
763 
764 	/*
765 	 * Subsection population requires care in pfn_to_online_page().
766 	 * Set the taint to enable the slow path detection of
767 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
768 	 * section.
769 	 */
770 	if (zone_is_zone_device(zone)) {
771 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
772 			section_taint_zone_device(start_pfn);
773 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
774 			section_taint_zone_device(start_pfn + nr_pages);
775 	}
776 
777 	/*
778 	 * TODO now we have a visible range of pages which are not associated
779 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
780 	 * expects the zone spans the pfn range. All the pages in the range
781 	 * are reserved so nobody should be touching them so we should be safe
782 	 */
783 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
784 			 MEMINIT_HOTPLUG, altmap, migratetype);
785 
786 	set_zone_contiguous(zone);
787 }
788 
789 struct auto_movable_stats {
790 	unsigned long kernel_early_pages;
791 	unsigned long movable_pages;
792 };
793 
794 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795 					    struct zone *zone)
796 {
797 	if (zone_idx(zone) == ZONE_MOVABLE) {
798 		stats->movable_pages += zone->present_pages;
799 	} else {
800 		stats->kernel_early_pages += zone->present_early_pages;
801 #ifdef CONFIG_CMA
802 		/*
803 		 * CMA pages (never on hotplugged memory) behave like
804 		 * ZONE_MOVABLE.
805 		 */
806 		stats->movable_pages += zone->cma_pages;
807 		stats->kernel_early_pages -= zone->cma_pages;
808 #endif /* CONFIG_CMA */
809 	}
810 }
811 struct auto_movable_group_stats {
812 	unsigned long movable_pages;
813 	unsigned long req_kernel_early_pages;
814 };
815 
816 static int auto_movable_stats_account_group(struct memory_group *group,
817 					   void *arg)
818 {
819 	const int ratio = READ_ONCE(auto_movable_ratio);
820 	struct auto_movable_group_stats *stats = arg;
821 	long pages;
822 
823 	/*
824 	 * We don't support modifying the config while the auto-movable online
825 	 * policy is already enabled. Just avoid the division by zero below.
826 	 */
827 	if (!ratio)
828 		return 0;
829 
830 	/*
831 	 * Calculate how many early kernel pages this group requires to
832 	 * satisfy the configured zone ratio.
833 	 */
834 	pages = group->present_movable_pages * 100 / ratio;
835 	pages -= group->present_kernel_pages;
836 
837 	if (pages > 0)
838 		stats->req_kernel_early_pages += pages;
839 	stats->movable_pages += group->present_movable_pages;
840 	return 0;
841 }
842 
843 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844 					    unsigned long nr_pages)
845 {
846 	unsigned long kernel_early_pages, movable_pages;
847 	struct auto_movable_group_stats group_stats = {};
848 	struct auto_movable_stats stats = {};
849 	pg_data_t *pgdat = NODE_DATA(nid);
850 	struct zone *zone;
851 	int i;
852 
853 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
854 	if (nid == NUMA_NO_NODE) {
855 		/* TODO: cache values */
856 		for_each_populated_zone(zone)
857 			auto_movable_stats_account_zone(&stats, zone);
858 	} else {
859 		for (i = 0; i < MAX_NR_ZONES; i++) {
860 			zone = pgdat->node_zones + i;
861 			if (populated_zone(zone))
862 				auto_movable_stats_account_zone(&stats, zone);
863 		}
864 	}
865 
866 	kernel_early_pages = stats.kernel_early_pages;
867 	movable_pages = stats.movable_pages;
868 
869 	/*
870 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
871 	 * memory within the same group. Remove the effect of all but the
872 	 * current group from the stats.
873 	 */
874 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
875 				   group, &group_stats);
876 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
877 		return false;
878 	kernel_early_pages -= group_stats.req_kernel_early_pages;
879 	movable_pages -= group_stats.movable_pages;
880 
881 	if (group && group->is_dynamic)
882 		kernel_early_pages += group->present_kernel_pages;
883 
884 	/*
885 	 * Test if we could online the given number of pages to ZONE_MOVABLE
886 	 * and still stay in the configured ratio.
887 	 */
888 	movable_pages += nr_pages;
889 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
890 }
891 
892 /*
893  * Returns a default kernel memory zone for the given pfn range.
894  * If no kernel zone covers this pfn range it will automatically go
895  * to the ZONE_NORMAL.
896  */
897 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
898 		unsigned long nr_pages)
899 {
900 	struct pglist_data *pgdat = NODE_DATA(nid);
901 	int zid;
902 
903 	for (zid = 0; zid < ZONE_NORMAL; zid++) {
904 		struct zone *zone = &pgdat->node_zones[zid];
905 
906 		if (zone_intersects(zone, start_pfn, nr_pages))
907 			return zone;
908 	}
909 
910 	return &pgdat->node_zones[ZONE_NORMAL];
911 }
912 
913 /*
914  * Determine to which zone to online memory dynamically based on user
915  * configuration and system stats. We care about the following ratio:
916  *
917  *   MOVABLE : KERNEL
918  *
919  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
920  * one of the kernel zones. CMA pages inside one of the kernel zones really
921  * behaves like ZONE_MOVABLE, so we treat them accordingly.
922  *
923  * We don't allow for hotplugged memory in a KERNEL zone to increase the
924  * amount of MOVABLE memory we can have, so we end up with:
925  *
926  *   MOVABLE : KERNEL_EARLY
927  *
928  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
929  * boot. We base our calculation on KERNEL_EARLY internally, because:
930  *
931  * a) Hotplugged memory in one of the kernel zones can sometimes still get
932  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
933  *    There is no coordination across memory devices, therefore "automatic"
934  *    hotunplugging, as implemented in hypervisors, could result in zone
935  *    imbalances.
936  * b) Early/boot memory in one of the kernel zones can usually not get
937  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
938  *    with unmovable allocations). While there are corner cases where it might
939  *    still work, it is barely relevant in practice.
940  *
941  * Exceptions are dynamic memory groups, which allow for more MOVABLE
942  * memory within the same memory group -- because in that case, there is
943  * coordination within the single memory device managed by a single driver.
944  *
945  * We rely on "present pages" instead of "managed pages", as the latter is
946  * highly unreliable and dynamic in virtualized environments, and does not
947  * consider boot time allocations. For example, memory ballooning adjusts the
948  * managed pages when inflating/deflating the balloon, and balloon compaction
949  * can even migrate inflated pages between zones.
950  *
951  * Using "present pages" is better but some things to keep in mind are:
952  *
953  * a) Some memblock allocations, such as for the crashkernel area, are
954  *    effectively unused by the kernel, yet they account to "present pages".
955  *    Fortunately, these allocations are comparatively small in relevant setups
956  *    (e.g., fraction of system memory).
957  * b) Some hotplugged memory blocks in virtualized environments, esecially
958  *    hotplugged by virtio-mem, look like they are completely present, however,
959  *    only parts of the memory block are actually currently usable.
960  *    "present pages" is an upper limit that can get reached at runtime. As
961  *    we base our calculations on KERNEL_EARLY, this is not an issue.
962  */
963 static struct zone *auto_movable_zone_for_pfn(int nid,
964 					      struct memory_group *group,
965 					      unsigned long pfn,
966 					      unsigned long nr_pages)
967 {
968 	unsigned long online_pages = 0, max_pages, end_pfn;
969 	struct page *page;
970 
971 	if (!auto_movable_ratio)
972 		goto kernel_zone;
973 
974 	if (group && !group->is_dynamic) {
975 		max_pages = group->s.max_pages;
976 		online_pages = group->present_movable_pages;
977 
978 		/* If anything is !MOVABLE online the rest !MOVABLE. */
979 		if (group->present_kernel_pages)
980 			goto kernel_zone;
981 	} else if (!group || group->d.unit_pages == nr_pages) {
982 		max_pages = nr_pages;
983 	} else {
984 		max_pages = group->d.unit_pages;
985 		/*
986 		 * Take a look at all online sections in the current unit.
987 		 * We can safely assume that all pages within a section belong
988 		 * to the same zone, because dynamic memory groups only deal
989 		 * with hotplugged memory.
990 		 */
991 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
992 		end_pfn = pfn + group->d.unit_pages;
993 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
994 			page = pfn_to_online_page(pfn);
995 			if (!page)
996 				continue;
997 			/* If anything is !MOVABLE online the rest !MOVABLE. */
998 			if (!is_zone_movable_page(page))
999 				goto kernel_zone;
1000 			online_pages += PAGES_PER_SECTION;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Online MOVABLE if we could *currently* online all remaining parts
1006 	 * MOVABLE. We expect to (add+) online them immediately next, so if
1007 	 * nobody interferes, all will be MOVABLE if possible.
1008 	 */
1009 	nr_pages = max_pages - online_pages;
1010 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1011 		goto kernel_zone;
1012 
1013 #ifdef CONFIG_NUMA
1014 	if (auto_movable_numa_aware &&
1015 	    !auto_movable_can_online_movable(nid, group, nr_pages))
1016 		goto kernel_zone;
1017 #endif /* CONFIG_NUMA */
1018 
1019 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1020 kernel_zone:
1021 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1022 }
1023 
1024 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1025 		unsigned long nr_pages)
1026 {
1027 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1028 			nr_pages);
1029 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1030 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1031 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1032 
1033 	/*
1034 	 * We inherit the existing zone in a simple case where zones do not
1035 	 * overlap in the given range
1036 	 */
1037 	if (in_kernel ^ in_movable)
1038 		return (in_kernel) ? kernel_zone : movable_zone;
1039 
1040 	/*
1041 	 * If the range doesn't belong to any zone or two zones overlap in the
1042 	 * given range then we use movable zone only if movable_node is
1043 	 * enabled because we always online to a kernel zone by default.
1044 	 */
1045 	return movable_node_enabled ? movable_zone : kernel_zone;
1046 }
1047 
1048 struct zone *zone_for_pfn_range(int online_type, int nid,
1049 		struct memory_group *group, unsigned long start_pfn,
1050 		unsigned long nr_pages)
1051 {
1052 	if (online_type == MMOP_ONLINE_KERNEL)
1053 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1054 
1055 	if (online_type == MMOP_ONLINE_MOVABLE)
1056 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1057 
1058 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1059 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1060 
1061 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1062 }
1063 
1064 /*
1065  * This function should only be called by memory_block_{online,offline},
1066  * and {online,offline}_pages.
1067  */
1068 void adjust_present_page_count(struct page *page, struct memory_group *group,
1069 			       long nr_pages)
1070 {
1071 	struct zone *zone = page_zone(page);
1072 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1073 
1074 	/*
1075 	 * We only support onlining/offlining/adding/removing of complete
1076 	 * memory blocks; therefore, either all is either early or hotplugged.
1077 	 */
1078 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1079 		zone->present_early_pages += nr_pages;
1080 	zone->present_pages += nr_pages;
1081 	zone->zone_pgdat->node_present_pages += nr_pages;
1082 
1083 	if (group && movable)
1084 		group->present_movable_pages += nr_pages;
1085 	else if (group && !movable)
1086 		group->present_kernel_pages += nr_pages;
1087 }
1088 
1089 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1090 			      struct zone *zone, bool mhp_off_inaccessible)
1091 {
1092 	unsigned long end_pfn = pfn + nr_pages;
1093 	int ret, i;
1094 
1095 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1096 	if (ret)
1097 		return ret;
1098 
1099 	/*
1100 	 * Memory block is accessible at this stage and hence poison the struct
1101 	 * pages now.  If the memory block is accessible during memory hotplug
1102 	 * addition phase, then page poisining is already performed in
1103 	 * sparse_add_section().
1104 	 */
1105 	if (mhp_off_inaccessible)
1106 		page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1107 
1108 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1109 
1110 	for (i = 0; i < nr_pages; i++)
1111 		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1112 
1113 	/*
1114 	 * It might be that the vmemmap_pages fully span sections. If that is
1115 	 * the case, mark those sections online here as otherwise they will be
1116 	 * left offline.
1117 	 */
1118 	if (nr_pages >= PAGES_PER_SECTION)
1119 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1120 
1121 	return ret;
1122 }
1123 
1124 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1125 {
1126 	unsigned long end_pfn = pfn + nr_pages;
1127 
1128 	/*
1129 	 * It might be that the vmemmap_pages fully span sections. If that is
1130 	 * the case, mark those sections offline here as otherwise they will be
1131 	 * left online.
1132 	 */
1133 	if (nr_pages >= PAGES_PER_SECTION)
1134 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1135 
1136         /*
1137 	 * The pages associated with this vmemmap have been offlined, so
1138 	 * we can reset its state here.
1139 	 */
1140 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1141 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1142 }
1143 
1144 /*
1145  * Must be called with mem_hotplug_lock in write mode.
1146  */
1147 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1148 		       struct zone *zone, struct memory_group *group)
1149 {
1150 	unsigned long flags;
1151 	int need_zonelists_rebuild = 0;
1152 	const int nid = zone_to_nid(zone);
1153 	int ret;
1154 	struct memory_notify arg;
1155 
1156 	/*
1157 	 * {on,off}lining is constrained to full memory sections (or more
1158 	 * precisely to memory blocks from the user space POV).
1159 	 * memmap_on_memory is an exception because it reserves initial part
1160 	 * of the physical memory space for vmemmaps. That space is pageblock
1161 	 * aligned.
1162 	 */
1163 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1164 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1165 		return -EINVAL;
1166 
1167 
1168 	/* associate pfn range with the zone */
1169 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1170 
1171 	arg.start_pfn = pfn;
1172 	arg.nr_pages = nr_pages;
1173 	node_states_check_changes_online(nr_pages, zone, &arg);
1174 
1175 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1176 	ret = notifier_to_errno(ret);
1177 	if (ret)
1178 		goto failed_addition;
1179 
1180 	/*
1181 	 * Fixup the number of isolated pageblocks before marking the sections
1182 	 * onlining, such that undo_isolate_page_range() works correctly.
1183 	 */
1184 	spin_lock_irqsave(&zone->lock, flags);
1185 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1186 	spin_unlock_irqrestore(&zone->lock, flags);
1187 
1188 	/*
1189 	 * If this zone is not populated, then it is not in zonelist.
1190 	 * This means the page allocator ignores this zone.
1191 	 * So, zonelist must be updated after online.
1192 	 */
1193 	if (!populated_zone(zone)) {
1194 		need_zonelists_rebuild = 1;
1195 		setup_zone_pageset(zone);
1196 	}
1197 
1198 	online_pages_range(pfn, nr_pages);
1199 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1200 
1201 	node_states_set_node(nid, &arg);
1202 	if (need_zonelists_rebuild)
1203 		build_all_zonelists(NULL);
1204 
1205 	/* Basic onlining is complete, allow allocation of onlined pages. */
1206 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1207 
1208 	/*
1209 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1210 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1211 	 * zone to make sure the just onlined pages are properly distributed
1212 	 * across the whole freelist - to create an initial shuffle.
1213 	 */
1214 	shuffle_zone(zone);
1215 
1216 	/* reinitialise watermarks and update pcp limits */
1217 	init_per_zone_wmark_min();
1218 
1219 	kswapd_run(nid);
1220 	kcompactd_run(nid);
1221 
1222 	writeback_set_ratelimit();
1223 
1224 	memory_notify(MEM_ONLINE, &arg);
1225 	return 0;
1226 
1227 failed_addition:
1228 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1229 		 (unsigned long long) pfn << PAGE_SHIFT,
1230 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1231 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1232 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1233 	return ret;
1234 }
1235 
1236 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1237 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1238 {
1239 	struct pglist_data *pgdat;
1240 
1241 	/*
1242 	 * NODE_DATA is preallocated (free_area_init) but its internal
1243 	 * state is not allocated completely. Add missing pieces.
1244 	 * Completely offline nodes stay around and they just need
1245 	 * reintialization.
1246 	 */
1247 	pgdat = NODE_DATA(nid);
1248 
1249 	/* init node's zones as empty zones, we don't have any present pages.*/
1250 	free_area_init_core_hotplug(pgdat);
1251 
1252 	/*
1253 	 * The node we allocated has no zone fallback lists. For avoiding
1254 	 * to access not-initialized zonelist, build here.
1255 	 */
1256 	build_all_zonelists(pgdat);
1257 
1258 	return pgdat;
1259 }
1260 
1261 /*
1262  * __try_online_node - online a node if offlined
1263  * @nid: the node ID
1264  * @set_node_online: Whether we want to online the node
1265  * called by cpu_up() to online a node without onlined memory.
1266  *
1267  * Returns:
1268  * 1 -> a new node has been allocated
1269  * 0 -> the node is already online
1270  * -ENOMEM -> the node could not be allocated
1271  */
1272 static int __try_online_node(int nid, bool set_node_online)
1273 {
1274 	pg_data_t *pgdat;
1275 	int ret = 1;
1276 
1277 	if (node_online(nid))
1278 		return 0;
1279 
1280 	pgdat = hotadd_init_pgdat(nid);
1281 	if (!pgdat) {
1282 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1283 		ret = -ENOMEM;
1284 		goto out;
1285 	}
1286 
1287 	if (set_node_online) {
1288 		node_set_online(nid);
1289 		ret = register_one_node(nid);
1290 		BUG_ON(ret);
1291 	}
1292 out:
1293 	return ret;
1294 }
1295 
1296 /*
1297  * Users of this function always want to online/register the node
1298  */
1299 int try_online_node(int nid)
1300 {
1301 	int ret;
1302 
1303 	mem_hotplug_begin();
1304 	ret =  __try_online_node(nid, true);
1305 	mem_hotplug_done();
1306 	return ret;
1307 }
1308 
1309 static int check_hotplug_memory_range(u64 start, u64 size)
1310 {
1311 	/* memory range must be block size aligned */
1312 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1313 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1314 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1315 		       memory_block_size_bytes(), start, size);
1316 		return -EINVAL;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static int online_memory_block(struct memory_block *mem, void *arg)
1323 {
1324 	mem->online_type = mhp_default_online_type;
1325 	return device_online(&mem->dev);
1326 }
1327 
1328 #ifndef arch_supports_memmap_on_memory
1329 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1330 {
1331 	/*
1332 	 * As default, we want the vmemmap to span a complete PMD such that we
1333 	 * can map the vmemmap using a single PMD if supported by the
1334 	 * architecture.
1335 	 */
1336 	return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1337 }
1338 #endif
1339 
1340 bool mhp_supports_memmap_on_memory(void)
1341 {
1342 	unsigned long vmemmap_size = memory_block_memmap_size();
1343 	unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1344 
1345 	/*
1346 	 * Besides having arch support and the feature enabled at runtime, we
1347 	 * need a few more assumptions to hold true:
1348 	 *
1349 	 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1350 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1351 	 *    other memory blocks)
1352 	 *
1353 	 * b) The vmemmap pages (and thereby the pages that will be exposed to
1354 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1355 	 *    code requires applicable ranges to be page-aligned, for example, to
1356 	 *    set the migratetypes properly.
1357 	 *
1358 	 * TODO: Although we have a check here to make sure that vmemmap pages
1359 	 *       fully populate a PMD, it is not the right place to check for
1360 	 *       this. A much better solution involves improving vmemmap code
1361 	 *       to fallback to base pages when trying to populate vmemmap using
1362 	 *       altmap as an alternative source of memory, and we do not exactly
1363 	 *       populate a single PMD.
1364 	 */
1365 	if (!mhp_memmap_on_memory())
1366 		return false;
1367 
1368 	/*
1369 	 * Make sure the vmemmap allocation is fully contained
1370 	 * so that we always allocate vmemmap memory from altmap area.
1371 	 */
1372 	if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1373 		return false;
1374 
1375 	/*
1376 	 * start pfn should be pageblock_nr_pages aligned for correctly
1377 	 * setting migrate types
1378 	 */
1379 	if (!pageblock_aligned(memmap_pages))
1380 		return false;
1381 
1382 	if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1383 		/* No effective hotplugged memory doesn't make sense. */
1384 		return false;
1385 
1386 	return arch_supports_memmap_on_memory(vmemmap_size);
1387 }
1388 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1389 
1390 static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1391 {
1392 	unsigned long memblock_size = memory_block_size_bytes();
1393 	u64 cur_start;
1394 
1395 	/*
1396 	 * For memmap_on_memory, the altmaps were added on a per-memblock
1397 	 * basis; we have to process each individual memory block.
1398 	 */
1399 	for (cur_start = start; cur_start < start + size;
1400 	     cur_start += memblock_size) {
1401 		struct vmem_altmap *altmap = NULL;
1402 		struct memory_block *mem;
1403 
1404 		mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1405 		if (WARN_ON_ONCE(!mem))
1406 			continue;
1407 
1408 		altmap = mem->altmap;
1409 		mem->altmap = NULL;
1410 
1411 		remove_memory_block_devices(cur_start, memblock_size);
1412 
1413 		arch_remove_memory(cur_start, memblock_size, altmap);
1414 
1415 		/* Verify that all vmemmap pages have actually been freed. */
1416 		WARN(altmap->alloc, "Altmap not fully unmapped");
1417 		kfree(altmap);
1418 	}
1419 }
1420 
1421 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1422 					    u64 start, u64 size, mhp_t mhp_flags)
1423 {
1424 	unsigned long memblock_size = memory_block_size_bytes();
1425 	u64 cur_start;
1426 	int ret;
1427 
1428 	for (cur_start = start; cur_start < start + size;
1429 	     cur_start += memblock_size) {
1430 		struct mhp_params params = { .pgprot =
1431 						     pgprot_mhp(PAGE_KERNEL) };
1432 		struct vmem_altmap mhp_altmap = {
1433 			.base_pfn = PHYS_PFN(cur_start),
1434 			.end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1435 		};
1436 
1437 		mhp_altmap.free = memory_block_memmap_on_memory_pages();
1438 		if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1439 			mhp_altmap.inaccessible = true;
1440 		params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1441 					GFP_KERNEL);
1442 		if (!params.altmap) {
1443 			ret = -ENOMEM;
1444 			goto out;
1445 		}
1446 
1447 		/* call arch's memory hotadd */
1448 		ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1449 		if (ret < 0) {
1450 			kfree(params.altmap);
1451 			goto out;
1452 		}
1453 
1454 		/* create memory block devices after memory was added */
1455 		ret = create_memory_block_devices(cur_start, memblock_size,
1456 						  params.altmap, group);
1457 		if (ret) {
1458 			arch_remove_memory(cur_start, memblock_size, NULL);
1459 			kfree(params.altmap);
1460 			goto out;
1461 		}
1462 	}
1463 
1464 	return 0;
1465 out:
1466 	if (ret && cur_start != start)
1467 		remove_memory_blocks_and_altmaps(start, cur_start - start);
1468 	return ret;
1469 }
1470 
1471 /*
1472  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1473  * and online/offline operations (triggered e.g. by sysfs).
1474  *
1475  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1476  */
1477 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1478 {
1479 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1480 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1481 	struct memory_group *group = NULL;
1482 	u64 start, size;
1483 	bool new_node = false;
1484 	int ret;
1485 
1486 	start = res->start;
1487 	size = resource_size(res);
1488 
1489 	ret = check_hotplug_memory_range(start, size);
1490 	if (ret)
1491 		return ret;
1492 
1493 	if (mhp_flags & MHP_NID_IS_MGID) {
1494 		group = memory_group_find_by_id(nid);
1495 		if (!group)
1496 			return -EINVAL;
1497 		nid = group->nid;
1498 	}
1499 
1500 	if (!node_possible(nid)) {
1501 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1502 		return -EINVAL;
1503 	}
1504 
1505 	mem_hotplug_begin();
1506 
1507 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1508 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1509 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1510 		ret = memblock_add_node(start, size, nid, memblock_flags);
1511 		if (ret)
1512 			goto error_mem_hotplug_end;
1513 	}
1514 
1515 	ret = __try_online_node(nid, false);
1516 	if (ret < 0)
1517 		goto error;
1518 	new_node = ret;
1519 
1520 	/*
1521 	 * Self hosted memmap array
1522 	 */
1523 	if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1524 	    mhp_supports_memmap_on_memory()) {
1525 		ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1526 		if (ret)
1527 			goto error;
1528 	} else {
1529 		ret = arch_add_memory(nid, start, size, &params);
1530 		if (ret < 0)
1531 			goto error;
1532 
1533 		/* create memory block devices after memory was added */
1534 		ret = create_memory_block_devices(start, size, NULL, group);
1535 		if (ret) {
1536 			arch_remove_memory(start, size, params.altmap);
1537 			goto error;
1538 		}
1539 	}
1540 
1541 	if (new_node) {
1542 		/* If sysfs file of new node can't be created, cpu on the node
1543 		 * can't be hot-added. There is no rollback way now.
1544 		 * So, check by BUG_ON() to catch it reluctantly..
1545 		 * We online node here. We can't roll back from here.
1546 		 */
1547 		node_set_online(nid);
1548 		ret = __register_one_node(nid);
1549 		BUG_ON(ret);
1550 	}
1551 
1552 	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1553 					  PFN_UP(start + size - 1),
1554 					  MEMINIT_HOTPLUG);
1555 
1556 	/* create new memmap entry */
1557 	if (!strcmp(res->name, "System RAM"))
1558 		firmware_map_add_hotplug(start, start + size, "System RAM");
1559 
1560 	/* device_online() will take the lock when calling online_pages() */
1561 	mem_hotplug_done();
1562 
1563 	/*
1564 	 * In case we're allowed to merge the resource, flag it and trigger
1565 	 * merging now that adding succeeded.
1566 	 */
1567 	if (mhp_flags & MHP_MERGE_RESOURCE)
1568 		merge_system_ram_resource(res);
1569 
1570 	/* online pages if requested */
1571 	if (mhp_default_online_type != MMOP_OFFLINE)
1572 		walk_memory_blocks(start, size, NULL, online_memory_block);
1573 
1574 	return ret;
1575 error:
1576 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1577 		memblock_remove(start, size);
1578 error_mem_hotplug_end:
1579 	mem_hotplug_done();
1580 	return ret;
1581 }
1582 
1583 /* requires device_hotplug_lock, see add_memory_resource() */
1584 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1585 {
1586 	struct resource *res;
1587 	int ret;
1588 
1589 	res = register_memory_resource(start, size, "System RAM");
1590 	if (IS_ERR(res))
1591 		return PTR_ERR(res);
1592 
1593 	ret = add_memory_resource(nid, res, mhp_flags);
1594 	if (ret < 0)
1595 		release_memory_resource(res);
1596 	return ret;
1597 }
1598 
1599 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1600 {
1601 	int rc;
1602 
1603 	lock_device_hotplug();
1604 	rc = __add_memory(nid, start, size, mhp_flags);
1605 	unlock_device_hotplug();
1606 
1607 	return rc;
1608 }
1609 EXPORT_SYMBOL_GPL(add_memory);
1610 
1611 /*
1612  * Add special, driver-managed memory to the system as system RAM. Such
1613  * memory is not exposed via the raw firmware-provided memmap as system
1614  * RAM, instead, it is detected and added by a driver - during cold boot,
1615  * after a reboot, and after kexec.
1616  *
1617  * Reasons why this memory should not be used for the initial memmap of a
1618  * kexec kernel or for placing kexec images:
1619  * - The booting kernel is in charge of determining how this memory will be
1620  *   used (e.g., use persistent memory as system RAM)
1621  * - Coordination with a hypervisor is required before this memory
1622  *   can be used (e.g., inaccessible parts).
1623  *
1624  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1625  * memory map") are created. Also, the created memory resource is flagged
1626  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1627  * this memory as well (esp., not place kexec images onto it).
1628  *
1629  * The resource_name (visible via /proc/iomem) has to have the format
1630  * "System RAM ($DRIVER)".
1631  */
1632 int add_memory_driver_managed(int nid, u64 start, u64 size,
1633 			      const char *resource_name, mhp_t mhp_flags)
1634 {
1635 	struct resource *res;
1636 	int rc;
1637 
1638 	if (!resource_name ||
1639 	    strstr(resource_name, "System RAM (") != resource_name ||
1640 	    resource_name[strlen(resource_name) - 1] != ')')
1641 		return -EINVAL;
1642 
1643 	lock_device_hotplug();
1644 
1645 	res = register_memory_resource(start, size, resource_name);
1646 	if (IS_ERR(res)) {
1647 		rc = PTR_ERR(res);
1648 		goto out_unlock;
1649 	}
1650 
1651 	rc = add_memory_resource(nid, res, mhp_flags);
1652 	if (rc < 0)
1653 		release_memory_resource(res);
1654 
1655 out_unlock:
1656 	unlock_device_hotplug();
1657 	return rc;
1658 }
1659 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1660 
1661 /*
1662  * Platforms should define arch_get_mappable_range() that provides
1663  * maximum possible addressable physical memory range for which the
1664  * linear mapping could be created. The platform returned address
1665  * range must adhere to these following semantics.
1666  *
1667  * - range.start <= range.end
1668  * - Range includes both end points [range.start..range.end]
1669  *
1670  * There is also a fallback definition provided here, allowing the
1671  * entire possible physical address range in case any platform does
1672  * not define arch_get_mappable_range().
1673  */
1674 struct range __weak arch_get_mappable_range(void)
1675 {
1676 	struct range mhp_range = {
1677 		.start = 0UL,
1678 		.end = -1ULL,
1679 	};
1680 	return mhp_range;
1681 }
1682 
1683 struct range mhp_get_pluggable_range(bool need_mapping)
1684 {
1685 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1686 	struct range mhp_range;
1687 
1688 	if (need_mapping) {
1689 		mhp_range = arch_get_mappable_range();
1690 		if (mhp_range.start > max_phys) {
1691 			mhp_range.start = 0;
1692 			mhp_range.end = 0;
1693 		}
1694 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1695 	} else {
1696 		mhp_range.start = 0;
1697 		mhp_range.end = max_phys;
1698 	}
1699 	return mhp_range;
1700 }
1701 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1702 
1703 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1704 {
1705 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1706 	u64 end = start + size;
1707 
1708 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1709 		return true;
1710 
1711 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1712 		start, end, mhp_range.start, mhp_range.end);
1713 	return false;
1714 }
1715 
1716 #ifdef CONFIG_MEMORY_HOTREMOVE
1717 /*
1718  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1719  * non-lru movable pages and hugepages). Will skip over most unmovable
1720  * pages (esp., pages that can be skipped when offlining), but bail out on
1721  * definitely unmovable pages.
1722  *
1723  * Returns:
1724  *	0 in case a movable page is found and movable_pfn was updated.
1725  *	-ENOENT in case no movable page was found.
1726  *	-EBUSY in case a definitely unmovable page was found.
1727  */
1728 static int scan_movable_pages(unsigned long start, unsigned long end,
1729 			      unsigned long *movable_pfn)
1730 {
1731 	unsigned long pfn;
1732 
1733 	for (pfn = start; pfn < end; pfn++) {
1734 		struct page *page, *head;
1735 		unsigned long skip;
1736 
1737 		if (!pfn_valid(pfn))
1738 			continue;
1739 		page = pfn_to_page(pfn);
1740 		if (PageLRU(page))
1741 			goto found;
1742 		if (__PageMovable(page))
1743 			goto found;
1744 
1745 		/*
1746 		 * PageOffline() pages that are not marked __PageMovable() and
1747 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1748 		 * definitely unmovable. If their reference count would be 0,
1749 		 * they could at least be skipped when offlining memory.
1750 		 */
1751 		if (PageOffline(page) && page_count(page))
1752 			return -EBUSY;
1753 
1754 		if (!PageHuge(page))
1755 			continue;
1756 		head = compound_head(page);
1757 		/*
1758 		 * This test is racy as we hold no reference or lock.  The
1759 		 * hugetlb page could have been free'ed and head is no longer
1760 		 * a hugetlb page before the following check.  In such unlikely
1761 		 * cases false positives and negatives are possible.  Calling
1762 		 * code must deal with these scenarios.
1763 		 */
1764 		if (HPageMigratable(head))
1765 			goto found;
1766 		skip = compound_nr(head) - (pfn - page_to_pfn(head));
1767 		pfn += skip - 1;
1768 	}
1769 	return -ENOENT;
1770 found:
1771 	*movable_pfn = pfn;
1772 	return 0;
1773 }
1774 
1775 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1776 {
1777 	unsigned long pfn;
1778 	struct page *page, *head;
1779 	LIST_HEAD(source);
1780 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1781 				      DEFAULT_RATELIMIT_BURST);
1782 
1783 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1784 		struct folio *folio;
1785 		bool isolated;
1786 
1787 		if (!pfn_valid(pfn))
1788 			continue;
1789 		page = pfn_to_page(pfn);
1790 		folio = page_folio(page);
1791 		head = &folio->page;
1792 
1793 		if (PageHuge(page)) {
1794 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1795 			isolate_hugetlb(folio, &source);
1796 			continue;
1797 		} else if (PageTransHuge(page))
1798 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1799 
1800 		/*
1801 		 * HWPoison pages have elevated reference counts so the migration would
1802 		 * fail on them. It also doesn't make any sense to migrate them in the
1803 		 * first place. Still try to unmap such a page in case it is still mapped
1804 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1805 		 * the unmap as the catch all safety net).
1806 		 */
1807 		if (PageHWPoison(page)) {
1808 			if (WARN_ON(folio_test_lru(folio)))
1809 				folio_isolate_lru(folio);
1810 			if (folio_mapped(folio))
1811 				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1812 			continue;
1813 		}
1814 
1815 		if (!get_page_unless_zero(page))
1816 			continue;
1817 		/*
1818 		 * We can skip free pages. And we can deal with pages on
1819 		 * LRU and non-lru movable pages.
1820 		 */
1821 		if (PageLRU(page))
1822 			isolated = isolate_lru_page(page);
1823 		else
1824 			isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1825 		if (isolated) {
1826 			list_add_tail(&page->lru, &source);
1827 			if (!__PageMovable(page))
1828 				inc_node_page_state(page, NR_ISOLATED_ANON +
1829 						    page_is_file_lru(page));
1830 
1831 		} else {
1832 			if (__ratelimit(&migrate_rs)) {
1833 				pr_warn("failed to isolate pfn %lx\n", pfn);
1834 				dump_page(page, "isolation failed");
1835 			}
1836 		}
1837 		put_page(page);
1838 	}
1839 	if (!list_empty(&source)) {
1840 		nodemask_t nmask = node_states[N_MEMORY];
1841 		struct migration_target_control mtc = {
1842 			.nmask = &nmask,
1843 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1844 			.reason = MR_MEMORY_HOTPLUG,
1845 		};
1846 		int ret;
1847 
1848 		/*
1849 		 * We have checked that migration range is on a single zone so
1850 		 * we can use the nid of the first page to all the others.
1851 		 */
1852 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1853 
1854 		/*
1855 		 * try to allocate from a different node but reuse this node
1856 		 * if there are no other online nodes to be used (e.g. we are
1857 		 * offlining a part of the only existing node)
1858 		 */
1859 		node_clear(mtc.nid, nmask);
1860 		if (nodes_empty(nmask))
1861 			node_set(mtc.nid, nmask);
1862 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1863 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1864 		if (ret) {
1865 			list_for_each_entry(page, &source, lru) {
1866 				if (__ratelimit(&migrate_rs)) {
1867 					pr_warn("migrating pfn %lx failed ret:%d\n",
1868 						page_to_pfn(page), ret);
1869 					dump_page(page, "migration failure");
1870 				}
1871 			}
1872 			putback_movable_pages(&source);
1873 		}
1874 	}
1875 }
1876 
1877 static int __init cmdline_parse_movable_node(char *p)
1878 {
1879 	movable_node_enabled = true;
1880 	return 0;
1881 }
1882 early_param("movable_node", cmdline_parse_movable_node);
1883 
1884 /* check which state of node_states will be changed when offline memory */
1885 static void node_states_check_changes_offline(unsigned long nr_pages,
1886 		struct zone *zone, struct memory_notify *arg)
1887 {
1888 	struct pglist_data *pgdat = zone->zone_pgdat;
1889 	unsigned long present_pages = 0;
1890 	enum zone_type zt;
1891 
1892 	arg->status_change_nid = NUMA_NO_NODE;
1893 	arg->status_change_nid_normal = NUMA_NO_NODE;
1894 
1895 	/*
1896 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1897 	 * If the memory to be offline is within the range
1898 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1899 	 * the zones in that range will become empty after the offlining,
1900 	 * thus we can determine that we need to clear the node from
1901 	 * node_states[N_NORMAL_MEMORY].
1902 	 */
1903 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1904 		present_pages += pgdat->node_zones[zt].present_pages;
1905 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1906 		arg->status_change_nid_normal = zone_to_nid(zone);
1907 
1908 	/*
1909 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1910 	 * does not apply as we don't support 32bit.
1911 	 * Here we count the possible pages from ZONE_MOVABLE.
1912 	 * If after having accounted all the pages, we see that the nr_pages
1913 	 * to be offlined is over or equal to the accounted pages,
1914 	 * we know that the node will become empty, and so, we can clear
1915 	 * it for N_MEMORY as well.
1916 	 */
1917 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1918 
1919 	if (nr_pages >= present_pages)
1920 		arg->status_change_nid = zone_to_nid(zone);
1921 }
1922 
1923 static void node_states_clear_node(int node, struct memory_notify *arg)
1924 {
1925 	if (arg->status_change_nid_normal >= 0)
1926 		node_clear_state(node, N_NORMAL_MEMORY);
1927 
1928 	if (arg->status_change_nid >= 0)
1929 		node_clear_state(node, N_MEMORY);
1930 }
1931 
1932 static int count_system_ram_pages_cb(unsigned long start_pfn,
1933 				     unsigned long nr_pages, void *data)
1934 {
1935 	unsigned long *nr_system_ram_pages = data;
1936 
1937 	*nr_system_ram_pages += nr_pages;
1938 	return 0;
1939 }
1940 
1941 /*
1942  * Must be called with mem_hotplug_lock in write mode.
1943  */
1944 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1945 			struct zone *zone, struct memory_group *group)
1946 {
1947 	const unsigned long end_pfn = start_pfn + nr_pages;
1948 	unsigned long pfn, system_ram_pages = 0;
1949 	const int node = zone_to_nid(zone);
1950 	unsigned long flags;
1951 	struct memory_notify arg;
1952 	char *reason;
1953 	int ret;
1954 
1955 	/*
1956 	 * {on,off}lining is constrained to full memory sections (or more
1957 	 * precisely to memory blocks from the user space POV).
1958 	 * memmap_on_memory is an exception because it reserves initial part
1959 	 * of the physical memory space for vmemmaps. That space is pageblock
1960 	 * aligned.
1961 	 */
1962 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1963 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1964 		return -EINVAL;
1965 
1966 	/*
1967 	 * Don't allow to offline memory blocks that contain holes.
1968 	 * Consequently, memory blocks with holes can never get onlined
1969 	 * via the hotplug path - online_pages() - as hotplugged memory has
1970 	 * no holes. This way, we e.g., don't have to worry about marking
1971 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1972 	 * avoid using walk_system_ram_range() later.
1973 	 */
1974 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1975 			      count_system_ram_pages_cb);
1976 	if (system_ram_pages != nr_pages) {
1977 		ret = -EINVAL;
1978 		reason = "memory holes";
1979 		goto failed_removal;
1980 	}
1981 
1982 	/*
1983 	 * We only support offlining of memory blocks managed by a single zone,
1984 	 * checked by calling code. This is just a sanity check that we might
1985 	 * want to remove in the future.
1986 	 */
1987 	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1988 			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1989 		ret = -EINVAL;
1990 		reason = "multizone range";
1991 		goto failed_removal;
1992 	}
1993 
1994 	/*
1995 	 * Disable pcplists so that page isolation cannot race with freeing
1996 	 * in a way that pages from isolated pageblock are left on pcplists.
1997 	 */
1998 	zone_pcp_disable(zone);
1999 	lru_cache_disable();
2000 
2001 	/* set above range as isolated */
2002 	ret = start_isolate_page_range(start_pfn, end_pfn,
2003 				       MIGRATE_MOVABLE,
2004 				       MEMORY_OFFLINE | REPORT_FAILURE,
2005 				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
2006 	if (ret) {
2007 		reason = "failure to isolate range";
2008 		goto failed_removal_pcplists_disabled;
2009 	}
2010 
2011 	arg.start_pfn = start_pfn;
2012 	arg.nr_pages = nr_pages;
2013 	node_states_check_changes_offline(nr_pages, zone, &arg);
2014 
2015 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2016 	ret = notifier_to_errno(ret);
2017 	if (ret) {
2018 		reason = "notifier failure";
2019 		goto failed_removal_isolated;
2020 	}
2021 
2022 	do {
2023 		pfn = start_pfn;
2024 		do {
2025 			/*
2026 			 * Historically we always checked for any signal and
2027 			 * can't limit it to fatal signals without eventually
2028 			 * breaking user space.
2029 			 */
2030 			if (signal_pending(current)) {
2031 				ret = -EINTR;
2032 				reason = "signal backoff";
2033 				goto failed_removal_isolated;
2034 			}
2035 
2036 			cond_resched();
2037 
2038 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
2039 			if (!ret) {
2040 				/*
2041 				 * TODO: fatal migration failures should bail
2042 				 * out
2043 				 */
2044 				do_migrate_range(pfn, end_pfn);
2045 			}
2046 		} while (!ret);
2047 
2048 		if (ret != -ENOENT) {
2049 			reason = "unmovable page";
2050 			goto failed_removal_isolated;
2051 		}
2052 
2053 		/*
2054 		 * Dissolve free hugetlb folios in the memory block before doing
2055 		 * offlining actually in order to make hugetlbfs's object
2056 		 * counting consistent.
2057 		 */
2058 		ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2059 		if (ret) {
2060 			reason = "failure to dissolve huge pages";
2061 			goto failed_removal_isolated;
2062 		}
2063 
2064 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2065 
2066 	} while (ret);
2067 
2068 	/* Mark all sections offline and remove free pages from the buddy. */
2069 	__offline_isolated_pages(start_pfn, end_pfn);
2070 	pr_debug("Offlined Pages %ld\n", nr_pages);
2071 
2072 	/*
2073 	 * The memory sections are marked offline, and the pageblock flags
2074 	 * effectively stale; nobody should be touching them. Fixup the number
2075 	 * of isolated pageblocks, memory onlining will properly revert this.
2076 	 */
2077 	spin_lock_irqsave(&zone->lock, flags);
2078 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2079 	spin_unlock_irqrestore(&zone->lock, flags);
2080 
2081 	lru_cache_enable();
2082 	zone_pcp_enable(zone);
2083 
2084 	/* removal success */
2085 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2086 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2087 
2088 	/* reinitialise watermarks and update pcp limits */
2089 	init_per_zone_wmark_min();
2090 
2091 	/*
2092 	 * Make sure to mark the node as memory-less before rebuilding the zone
2093 	 * list. Otherwise this node would still appear in the fallback lists.
2094 	 */
2095 	node_states_clear_node(node, &arg);
2096 	if (!populated_zone(zone)) {
2097 		zone_pcp_reset(zone);
2098 		build_all_zonelists(NULL);
2099 	}
2100 
2101 	if (arg.status_change_nid >= 0) {
2102 		kcompactd_stop(node);
2103 		kswapd_stop(node);
2104 	}
2105 
2106 	writeback_set_ratelimit();
2107 
2108 	memory_notify(MEM_OFFLINE, &arg);
2109 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2110 	return 0;
2111 
2112 failed_removal_isolated:
2113 	/* pushback to free area */
2114 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2115 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2116 failed_removal_pcplists_disabled:
2117 	lru_cache_enable();
2118 	zone_pcp_enable(zone);
2119 failed_removal:
2120 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2121 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2122 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2123 		 reason);
2124 	return ret;
2125 }
2126 
2127 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2128 {
2129 	int *nid = arg;
2130 
2131 	*nid = mem->nid;
2132 	if (unlikely(mem->state != MEM_OFFLINE)) {
2133 		phys_addr_t beginpa, endpa;
2134 
2135 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2136 		endpa = beginpa + memory_block_size_bytes() - 1;
2137 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2138 			&beginpa, &endpa);
2139 
2140 		return -EBUSY;
2141 	}
2142 	return 0;
2143 }
2144 
2145 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2146 {
2147 	u64 *num_altmaps = (u64 *)arg;
2148 
2149 	if (mem->altmap)
2150 		*num_altmaps += 1;
2151 
2152 	return 0;
2153 }
2154 
2155 static int check_cpu_on_node(int nid)
2156 {
2157 	int cpu;
2158 
2159 	for_each_present_cpu(cpu) {
2160 		if (cpu_to_node(cpu) == nid)
2161 			/*
2162 			 * the cpu on this node isn't removed, and we can't
2163 			 * offline this node.
2164 			 */
2165 			return -EBUSY;
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2172 {
2173 	int nid = *(int *)arg;
2174 
2175 	/*
2176 	 * If a memory block belongs to multiple nodes, the stored nid is not
2177 	 * reliable. However, such blocks are always online (e.g., cannot get
2178 	 * offlined) and, therefore, are still spanned by the node.
2179 	 */
2180 	return mem->nid == nid ? -EEXIST : 0;
2181 }
2182 
2183 /**
2184  * try_offline_node
2185  * @nid: the node ID
2186  *
2187  * Offline a node if all memory sections and cpus of the node are removed.
2188  *
2189  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2190  * and online/offline operations before this call.
2191  */
2192 void try_offline_node(int nid)
2193 {
2194 	int rc;
2195 
2196 	/*
2197 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2198 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2199 	 * e.g., after the memory block was onlined.
2200 	 */
2201 	if (node_spanned_pages(nid))
2202 		return;
2203 
2204 	/*
2205 	 * Especially offline memory blocks might not be spanned by the
2206 	 * node. They will get spanned by the node once they get onlined.
2207 	 * However, they link to the node in sysfs and can get onlined later.
2208 	 */
2209 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2210 	if (rc)
2211 		return;
2212 
2213 	if (check_cpu_on_node(nid))
2214 		return;
2215 
2216 	/*
2217 	 * all memory/cpu of this node are removed, we can offline this
2218 	 * node now.
2219 	 */
2220 	node_set_offline(nid);
2221 	unregister_one_node(nid);
2222 }
2223 EXPORT_SYMBOL(try_offline_node);
2224 
2225 static int memory_blocks_have_altmaps(u64 start, u64 size)
2226 {
2227 	u64 num_memblocks = size / memory_block_size_bytes();
2228 	u64 num_altmaps = 0;
2229 
2230 	if (!mhp_memmap_on_memory())
2231 		return 0;
2232 
2233 	walk_memory_blocks(start, size, &num_altmaps,
2234 			   count_memory_range_altmaps_cb);
2235 
2236 	if (num_altmaps == 0)
2237 		return 0;
2238 
2239 	if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2240 		return -EINVAL;
2241 
2242 	return 1;
2243 }
2244 
2245 static int __ref try_remove_memory(u64 start, u64 size)
2246 {
2247 	int rc, nid = NUMA_NO_NODE;
2248 
2249 	BUG_ON(check_hotplug_memory_range(start, size));
2250 
2251 	/*
2252 	 * All memory blocks must be offlined before removing memory.  Check
2253 	 * whether all memory blocks in question are offline and return error
2254 	 * if this is not the case.
2255 	 *
2256 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2257 	 * we'd only try to offline the last determined one -- which is good
2258 	 * enough for the cases we care about.
2259 	 */
2260 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2261 	if (rc)
2262 		return rc;
2263 
2264 	/* remove memmap entry */
2265 	firmware_map_remove(start, start + size, "System RAM");
2266 
2267 	mem_hotplug_begin();
2268 
2269 	rc = memory_blocks_have_altmaps(start, size);
2270 	if (rc < 0) {
2271 		mem_hotplug_done();
2272 		return rc;
2273 	} else if (!rc) {
2274 		/*
2275 		 * Memory block device removal under the device_hotplug_lock is
2276 		 * a barrier against racing online attempts.
2277 		 * No altmaps present, do the removal directly
2278 		 */
2279 		remove_memory_block_devices(start, size);
2280 		arch_remove_memory(start, size, NULL);
2281 	} else {
2282 		/* all memblocks in the range have altmaps */
2283 		remove_memory_blocks_and_altmaps(start, size);
2284 	}
2285 
2286 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2287 		memblock_phys_free(start, size);
2288 		memblock_remove(start, size);
2289 	}
2290 
2291 	release_mem_region_adjustable(start, size);
2292 
2293 	if (nid != NUMA_NO_NODE)
2294 		try_offline_node(nid);
2295 
2296 	mem_hotplug_done();
2297 	return 0;
2298 }
2299 
2300 /**
2301  * __remove_memory - Remove memory if every memory block is offline
2302  * @start: physical address of the region to remove
2303  * @size: size of the region to remove
2304  *
2305  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2306  * and online/offline operations before this call, as required by
2307  * try_offline_node().
2308  */
2309 void __remove_memory(u64 start, u64 size)
2310 {
2311 
2312 	/*
2313 	 * trigger BUG() if some memory is not offlined prior to calling this
2314 	 * function
2315 	 */
2316 	if (try_remove_memory(start, size))
2317 		BUG();
2318 }
2319 
2320 /*
2321  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2322  * some memory is not offline
2323  */
2324 int remove_memory(u64 start, u64 size)
2325 {
2326 	int rc;
2327 
2328 	lock_device_hotplug();
2329 	rc = try_remove_memory(start, size);
2330 	unlock_device_hotplug();
2331 
2332 	return rc;
2333 }
2334 EXPORT_SYMBOL_GPL(remove_memory);
2335 
2336 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2337 {
2338 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2339 	uint8_t **online_types = arg;
2340 	struct page *page;
2341 	int rc;
2342 
2343 	/*
2344 	 * Sense the online_type via the zone of the memory block. Offlining
2345 	 * with multiple zones within one memory block will be rejected
2346 	 * by offlining code ... so we don't care about that.
2347 	 */
2348 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2349 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2350 		online_type = MMOP_ONLINE_MOVABLE;
2351 
2352 	rc = device_offline(&mem->dev);
2353 	/*
2354 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2355 	 * so try_reonline_memory_block() can do the right thing.
2356 	 */
2357 	if (!rc)
2358 		**online_types = online_type;
2359 
2360 	(*online_types)++;
2361 	/* Ignore if already offline. */
2362 	return rc < 0 ? rc : 0;
2363 }
2364 
2365 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2366 {
2367 	uint8_t **online_types = arg;
2368 	int rc;
2369 
2370 	if (**online_types != MMOP_OFFLINE) {
2371 		mem->online_type = **online_types;
2372 		rc = device_online(&mem->dev);
2373 		if (rc < 0)
2374 			pr_warn("%s: Failed to re-online memory: %d",
2375 				__func__, rc);
2376 	}
2377 
2378 	/* Continue processing all remaining memory blocks. */
2379 	(*online_types)++;
2380 	return 0;
2381 }
2382 
2383 /*
2384  * Try to offline and remove memory. Might take a long time to finish in case
2385  * memory is still in use. Primarily useful for memory devices that logically
2386  * unplugged all memory (so it's no longer in use) and want to offline + remove
2387  * that memory.
2388  */
2389 int offline_and_remove_memory(u64 start, u64 size)
2390 {
2391 	const unsigned long mb_count = size / memory_block_size_bytes();
2392 	uint8_t *online_types, *tmp;
2393 	int rc;
2394 
2395 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2396 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2397 		return -EINVAL;
2398 
2399 	/*
2400 	 * We'll remember the old online type of each memory block, so we can
2401 	 * try to revert whatever we did when offlining one memory block fails
2402 	 * after offlining some others succeeded.
2403 	 */
2404 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2405 				     GFP_KERNEL);
2406 	if (!online_types)
2407 		return -ENOMEM;
2408 	/*
2409 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2410 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2411 	 * try_reonline_memory_block().
2412 	 */
2413 	memset(online_types, MMOP_OFFLINE, mb_count);
2414 
2415 	lock_device_hotplug();
2416 
2417 	tmp = online_types;
2418 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2419 
2420 	/*
2421 	 * In case we succeeded to offline all memory, remove it.
2422 	 * This cannot fail as it cannot get onlined in the meantime.
2423 	 */
2424 	if (!rc) {
2425 		rc = try_remove_memory(start, size);
2426 		if (rc)
2427 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2428 	}
2429 
2430 	/*
2431 	 * Rollback what we did. While memory onlining might theoretically fail
2432 	 * (nacked by a notifier), it barely ever happens.
2433 	 */
2434 	if (rc) {
2435 		tmp = online_types;
2436 		walk_memory_blocks(start, size, &tmp,
2437 				   try_reonline_memory_block);
2438 	}
2439 	unlock_device_hotplug();
2440 
2441 	kfree(online_types);
2442 	return rc;
2443 }
2444 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2445 #endif /* CONFIG_MEMORY_HOTREMOVE */
2446