1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 #include <linux/module.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 46 /* 47 * memory_hotplug.memmap_on_memory parameter 48 */ 49 static bool memmap_on_memory __ro_after_init; 50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 51 module_param(memmap_on_memory, bool, 0444); 52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug"); 53 #endif 54 55 enum { 56 ONLINE_POLICY_CONTIG_ZONES = 0, 57 ONLINE_POLICY_AUTO_MOVABLE, 58 }; 59 60 static const char * const online_policy_to_str[] = { 61 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 62 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 63 }; 64 65 static int set_online_policy(const char *val, const struct kernel_param *kp) 66 { 67 int ret = sysfs_match_string(online_policy_to_str, val); 68 69 if (ret < 0) 70 return ret; 71 *((int *)kp->arg) = ret; 72 return 0; 73 } 74 75 static int get_online_policy(char *buffer, const struct kernel_param *kp) 76 { 77 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 78 } 79 80 /* 81 * memory_hotplug.online_policy: configure online behavior when onlining without 82 * specifying a zone (MMOP_ONLINE) 83 * 84 * "contig-zones": keep zone contiguous 85 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 86 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 87 */ 88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 89 static const struct kernel_param_ops online_policy_ops = { 90 .set = set_online_policy, 91 .get = get_online_policy, 92 }; 93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 94 MODULE_PARM_DESC(online_policy, 95 "Set the online policy (\"contig-zones\", \"auto-movable\") " 96 "Default: \"contig-zones\""); 97 98 /* 99 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 100 * 101 * The ratio represent an upper limit and the kernel might decide to not 102 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 103 * doesn't allow for more MOVABLE memory. 104 */ 105 static unsigned int auto_movable_ratio __read_mostly = 301; 106 module_param(auto_movable_ratio, uint, 0644); 107 MODULE_PARM_DESC(auto_movable_ratio, 108 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 109 "in percent for \"auto-movable\" online policy. Default: 301"); 110 111 /* 112 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 113 */ 114 #ifdef CONFIG_NUMA 115 static bool auto_movable_numa_aware __read_mostly = true; 116 module_param(auto_movable_numa_aware, bool, 0644); 117 MODULE_PARM_DESC(auto_movable_numa_aware, 118 "Consider numa node stats in addition to global stats in " 119 "\"auto-movable\" online policy. Default: true"); 120 #endif /* CONFIG_NUMA */ 121 122 /* 123 * online_page_callback contains pointer to current page onlining function. 124 * Initially it is generic_online_page(). If it is required it could be 125 * changed by calling set_online_page_callback() for callback registration 126 * and restore_online_page_callback() for generic callback restore. 127 */ 128 129 static online_page_callback_t online_page_callback = generic_online_page; 130 static DEFINE_MUTEX(online_page_callback_lock); 131 132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 133 134 void get_online_mems(void) 135 { 136 percpu_down_read(&mem_hotplug_lock); 137 } 138 139 void put_online_mems(void) 140 { 141 percpu_up_read(&mem_hotplug_lock); 142 } 143 144 bool movable_node_enabled = false; 145 146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 147 int mhp_default_online_type = MMOP_OFFLINE; 148 #else 149 int mhp_default_online_type = MMOP_ONLINE; 150 #endif 151 152 static int __init setup_memhp_default_state(char *str) 153 { 154 const int online_type = mhp_online_type_from_str(str); 155 156 if (online_type >= 0) 157 mhp_default_online_type = online_type; 158 159 return 1; 160 } 161 __setup("memhp_default_state=", setup_memhp_default_state); 162 163 void mem_hotplug_begin(void) 164 { 165 cpus_read_lock(); 166 percpu_down_write(&mem_hotplug_lock); 167 } 168 169 void mem_hotplug_done(void) 170 { 171 percpu_up_write(&mem_hotplug_lock); 172 cpus_read_unlock(); 173 } 174 175 u64 max_mem_size = U64_MAX; 176 177 /* add this memory to iomem resource */ 178 static struct resource *register_memory_resource(u64 start, u64 size, 179 const char *resource_name) 180 { 181 struct resource *res; 182 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 183 184 if (strcmp(resource_name, "System RAM")) 185 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 186 187 if (!mhp_range_allowed(start, size, true)) 188 return ERR_PTR(-E2BIG); 189 190 /* 191 * Make sure value parsed from 'mem=' only restricts memory adding 192 * while booting, so that memory hotplug won't be impacted. Please 193 * refer to document of 'mem=' in kernel-parameters.txt for more 194 * details. 195 */ 196 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 197 return ERR_PTR(-E2BIG); 198 199 /* 200 * Request ownership of the new memory range. This might be 201 * a child of an existing resource that was present but 202 * not marked as busy. 203 */ 204 res = __request_region(&iomem_resource, start, size, 205 resource_name, flags); 206 207 if (!res) { 208 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 209 start, start + size); 210 return ERR_PTR(-EEXIST); 211 } 212 return res; 213 } 214 215 static void release_memory_resource(struct resource *res) 216 { 217 if (!res) 218 return; 219 release_resource(res); 220 kfree(res); 221 } 222 223 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 224 const char *reason) 225 { 226 /* 227 * Disallow all operations smaller than a sub-section and only 228 * allow operations smaller than a section for 229 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 230 * enforces a larger memory_block_size_bytes() granularity for 231 * memory that will be marked online, so this check should only 232 * fire for direct arch_{add,remove}_memory() users outside of 233 * add_memory_resource(). 234 */ 235 unsigned long min_align; 236 237 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 238 min_align = PAGES_PER_SUBSECTION; 239 else 240 min_align = PAGES_PER_SECTION; 241 if (!IS_ALIGNED(pfn, min_align) 242 || !IS_ALIGNED(nr_pages, min_align)) { 243 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 244 reason, pfn, pfn + nr_pages - 1); 245 return -EINVAL; 246 } 247 return 0; 248 } 249 250 /* 251 * Return page for the valid pfn only if the page is online. All pfn 252 * walkers which rely on the fully initialized page->flags and others 253 * should use this rather than pfn_valid && pfn_to_page 254 */ 255 struct page *pfn_to_online_page(unsigned long pfn) 256 { 257 unsigned long nr = pfn_to_section_nr(pfn); 258 struct dev_pagemap *pgmap; 259 struct mem_section *ms; 260 261 if (nr >= NR_MEM_SECTIONS) 262 return NULL; 263 264 ms = __nr_to_section(nr); 265 if (!online_section(ms)) 266 return NULL; 267 268 /* 269 * Save some code text when online_section() + 270 * pfn_section_valid() are sufficient. 271 */ 272 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 273 return NULL; 274 275 if (!pfn_section_valid(ms, pfn)) 276 return NULL; 277 278 if (!online_device_section(ms)) 279 return pfn_to_page(pfn); 280 281 /* 282 * Slowpath: when ZONE_DEVICE collides with 283 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 284 * the section may be 'offline' but 'valid'. Only 285 * get_dev_pagemap() can determine sub-section online status. 286 */ 287 pgmap = get_dev_pagemap(pfn, NULL); 288 put_dev_pagemap(pgmap); 289 290 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 291 if (pgmap) 292 return NULL; 293 294 return pfn_to_page(pfn); 295 } 296 EXPORT_SYMBOL_GPL(pfn_to_online_page); 297 298 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 299 struct mhp_params *params) 300 { 301 const unsigned long end_pfn = pfn + nr_pages; 302 unsigned long cur_nr_pages; 303 int err; 304 struct vmem_altmap *altmap = params->altmap; 305 306 if (WARN_ON_ONCE(!params->pgprot.pgprot)) 307 return -EINVAL; 308 309 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 310 311 if (altmap) { 312 /* 313 * Validate altmap is within bounds of the total request 314 */ 315 if (altmap->base_pfn != pfn 316 || vmem_altmap_offset(altmap) > nr_pages) { 317 pr_warn_once("memory add fail, invalid altmap\n"); 318 return -EINVAL; 319 } 320 altmap->alloc = 0; 321 } 322 323 err = check_pfn_span(pfn, nr_pages, "add"); 324 if (err) 325 return err; 326 327 for (; pfn < end_pfn; pfn += cur_nr_pages) { 328 /* Select all remaining pages up to the next section boundary */ 329 cur_nr_pages = min(end_pfn - pfn, 330 SECTION_ALIGN_UP(pfn + 1) - pfn); 331 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); 332 if (err) 333 break; 334 cond_resched(); 335 } 336 vmemmap_populate_print_last(); 337 return err; 338 } 339 340 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 341 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 342 unsigned long start_pfn, 343 unsigned long end_pfn) 344 { 345 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 346 if (unlikely(!pfn_to_online_page(start_pfn))) 347 continue; 348 349 if (unlikely(pfn_to_nid(start_pfn) != nid)) 350 continue; 351 352 if (zone != page_zone(pfn_to_page(start_pfn))) 353 continue; 354 355 return start_pfn; 356 } 357 358 return 0; 359 } 360 361 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 362 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 363 unsigned long start_pfn, 364 unsigned long end_pfn) 365 { 366 unsigned long pfn; 367 368 /* pfn is the end pfn of a memory section. */ 369 pfn = end_pfn - 1; 370 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 371 if (unlikely(!pfn_to_online_page(pfn))) 372 continue; 373 374 if (unlikely(pfn_to_nid(pfn) != nid)) 375 continue; 376 377 if (zone != page_zone(pfn_to_page(pfn))) 378 continue; 379 380 return pfn; 381 } 382 383 return 0; 384 } 385 386 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 387 unsigned long end_pfn) 388 { 389 unsigned long pfn; 390 int nid = zone_to_nid(zone); 391 392 if (zone->zone_start_pfn == start_pfn) { 393 /* 394 * If the section is smallest section in the zone, it need 395 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 396 * In this case, we find second smallest valid mem_section 397 * for shrinking zone. 398 */ 399 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 400 zone_end_pfn(zone)); 401 if (pfn) { 402 zone->spanned_pages = zone_end_pfn(zone) - pfn; 403 zone->zone_start_pfn = pfn; 404 } else { 405 zone->zone_start_pfn = 0; 406 zone->spanned_pages = 0; 407 } 408 } else if (zone_end_pfn(zone) == end_pfn) { 409 /* 410 * If the section is biggest section in the zone, it need 411 * shrink zone->spanned_pages. 412 * In this case, we find second biggest valid mem_section for 413 * shrinking zone. 414 */ 415 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 416 start_pfn); 417 if (pfn) 418 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 419 else { 420 zone->zone_start_pfn = 0; 421 zone->spanned_pages = 0; 422 } 423 } 424 } 425 426 static void update_pgdat_span(struct pglist_data *pgdat) 427 { 428 unsigned long node_start_pfn = 0, node_end_pfn = 0; 429 struct zone *zone; 430 431 for (zone = pgdat->node_zones; 432 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 433 unsigned long end_pfn = zone_end_pfn(zone); 434 435 /* No need to lock the zones, they can't change. */ 436 if (!zone->spanned_pages) 437 continue; 438 if (!node_end_pfn) { 439 node_start_pfn = zone->zone_start_pfn; 440 node_end_pfn = end_pfn; 441 continue; 442 } 443 444 if (end_pfn > node_end_pfn) 445 node_end_pfn = end_pfn; 446 if (zone->zone_start_pfn < node_start_pfn) 447 node_start_pfn = zone->zone_start_pfn; 448 } 449 450 pgdat->node_start_pfn = node_start_pfn; 451 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 452 } 453 454 void __ref remove_pfn_range_from_zone(struct zone *zone, 455 unsigned long start_pfn, 456 unsigned long nr_pages) 457 { 458 const unsigned long end_pfn = start_pfn + nr_pages; 459 struct pglist_data *pgdat = zone->zone_pgdat; 460 unsigned long pfn, cur_nr_pages; 461 462 /* Poison struct pages because they are now uninitialized again. */ 463 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 464 cond_resched(); 465 466 /* Select all remaining pages up to the next section boundary */ 467 cur_nr_pages = 468 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 469 page_init_poison(pfn_to_page(pfn), 470 sizeof(struct page) * cur_nr_pages); 471 } 472 473 /* 474 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 475 * we will not try to shrink the zones - which is okay as 476 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 477 */ 478 if (zone_is_zone_device(zone)) 479 return; 480 481 clear_zone_contiguous(zone); 482 483 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 484 update_pgdat_span(pgdat); 485 486 set_zone_contiguous(zone); 487 } 488 489 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 490 unsigned long map_offset, 491 struct vmem_altmap *altmap) 492 { 493 struct mem_section *ms = __pfn_to_section(pfn); 494 495 if (WARN_ON_ONCE(!valid_section(ms))) 496 return; 497 498 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 499 } 500 501 /** 502 * __remove_pages() - remove sections of pages 503 * @pfn: starting pageframe (must be aligned to start of a section) 504 * @nr_pages: number of pages to remove (must be multiple of section size) 505 * @altmap: alternative device page map or %NULL if default memmap is used 506 * 507 * Generic helper function to remove section mappings and sysfs entries 508 * for the section of the memory we are removing. Caller needs to make 509 * sure that pages are marked reserved and zones are adjust properly by 510 * calling offline_pages(). 511 */ 512 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 513 struct vmem_altmap *altmap) 514 { 515 const unsigned long end_pfn = pfn + nr_pages; 516 unsigned long cur_nr_pages; 517 unsigned long map_offset = 0; 518 519 map_offset = vmem_altmap_offset(altmap); 520 521 if (check_pfn_span(pfn, nr_pages, "remove")) 522 return; 523 524 for (; pfn < end_pfn; pfn += cur_nr_pages) { 525 cond_resched(); 526 /* Select all remaining pages up to the next section boundary */ 527 cur_nr_pages = min(end_pfn - pfn, 528 SECTION_ALIGN_UP(pfn + 1) - pfn); 529 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 530 map_offset = 0; 531 } 532 } 533 534 int set_online_page_callback(online_page_callback_t callback) 535 { 536 int rc = -EINVAL; 537 538 get_online_mems(); 539 mutex_lock(&online_page_callback_lock); 540 541 if (online_page_callback == generic_online_page) { 542 online_page_callback = callback; 543 rc = 0; 544 } 545 546 mutex_unlock(&online_page_callback_lock); 547 put_online_mems(); 548 549 return rc; 550 } 551 EXPORT_SYMBOL_GPL(set_online_page_callback); 552 553 int restore_online_page_callback(online_page_callback_t callback) 554 { 555 int rc = -EINVAL; 556 557 get_online_mems(); 558 mutex_lock(&online_page_callback_lock); 559 560 if (online_page_callback == callback) { 561 online_page_callback = generic_online_page; 562 rc = 0; 563 } 564 565 mutex_unlock(&online_page_callback_lock); 566 put_online_mems(); 567 568 return rc; 569 } 570 EXPORT_SYMBOL_GPL(restore_online_page_callback); 571 572 void generic_online_page(struct page *page, unsigned int order) 573 { 574 /* 575 * Freeing the page with debug_pagealloc enabled will try to unmap it, 576 * so we should map it first. This is better than introducing a special 577 * case in page freeing fast path. 578 */ 579 debug_pagealloc_map_pages(page, 1 << order); 580 __free_pages_core(page, order); 581 totalram_pages_add(1UL << order); 582 } 583 EXPORT_SYMBOL_GPL(generic_online_page); 584 585 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 586 { 587 const unsigned long end_pfn = start_pfn + nr_pages; 588 unsigned long pfn; 589 590 /* 591 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might 592 * decide to not expose all pages to the buddy (e.g., expose them 593 * later). We account all pages as being online and belonging to this 594 * zone ("present"). 595 * When using memmap_on_memory, the range might not be aligned to 596 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 597 * this and the first chunk to online will be pageblock_nr_pages. 598 */ 599 for (pfn = start_pfn; pfn < end_pfn;) { 600 int order = min(MAX_ORDER - 1UL, __ffs(pfn)); 601 602 (*online_page_callback)(pfn_to_page(pfn), order); 603 pfn += (1UL << order); 604 } 605 606 /* mark all involved sections as online */ 607 online_mem_sections(start_pfn, end_pfn); 608 } 609 610 /* check which state of node_states will be changed when online memory */ 611 static void node_states_check_changes_online(unsigned long nr_pages, 612 struct zone *zone, struct memory_notify *arg) 613 { 614 int nid = zone_to_nid(zone); 615 616 arg->status_change_nid = NUMA_NO_NODE; 617 arg->status_change_nid_normal = NUMA_NO_NODE; 618 619 if (!node_state(nid, N_MEMORY)) 620 arg->status_change_nid = nid; 621 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 622 arg->status_change_nid_normal = nid; 623 } 624 625 static void node_states_set_node(int node, struct memory_notify *arg) 626 { 627 if (arg->status_change_nid_normal >= 0) 628 node_set_state(node, N_NORMAL_MEMORY); 629 630 if (arg->status_change_nid >= 0) 631 node_set_state(node, N_MEMORY); 632 } 633 634 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 635 unsigned long nr_pages) 636 { 637 unsigned long old_end_pfn = zone_end_pfn(zone); 638 639 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 640 zone->zone_start_pfn = start_pfn; 641 642 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 643 } 644 645 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 646 unsigned long nr_pages) 647 { 648 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 649 650 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 651 pgdat->node_start_pfn = start_pfn; 652 653 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 654 655 } 656 657 static void section_taint_zone_device(unsigned long pfn) 658 { 659 struct mem_section *ms = __pfn_to_section(pfn); 660 661 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 662 } 663 664 /* 665 * Associate the pfn range with the given zone, initializing the memmaps 666 * and resizing the pgdat/zone data to span the added pages. After this 667 * call, all affected pages are PG_reserved. 668 * 669 * All aligned pageblocks are initialized to the specified migratetype 670 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 671 * zone stats (e.g., nr_isolate_pageblock) are touched. 672 */ 673 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 674 unsigned long nr_pages, 675 struct vmem_altmap *altmap, int migratetype) 676 { 677 struct pglist_data *pgdat = zone->zone_pgdat; 678 int nid = pgdat->node_id; 679 680 clear_zone_contiguous(zone); 681 682 if (zone_is_empty(zone)) 683 init_currently_empty_zone(zone, start_pfn, nr_pages); 684 resize_zone_range(zone, start_pfn, nr_pages); 685 resize_pgdat_range(pgdat, start_pfn, nr_pages); 686 687 /* 688 * Subsection population requires care in pfn_to_online_page(). 689 * Set the taint to enable the slow path detection of 690 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 691 * section. 692 */ 693 if (zone_is_zone_device(zone)) { 694 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 695 section_taint_zone_device(start_pfn); 696 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 697 section_taint_zone_device(start_pfn + nr_pages); 698 } 699 700 /* 701 * TODO now we have a visible range of pages which are not associated 702 * with their zone properly. Not nice but set_pfnblock_flags_mask 703 * expects the zone spans the pfn range. All the pages in the range 704 * are reserved so nobody should be touching them so we should be safe 705 */ 706 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 707 MEMINIT_HOTPLUG, altmap, migratetype); 708 709 set_zone_contiguous(zone); 710 } 711 712 struct auto_movable_stats { 713 unsigned long kernel_early_pages; 714 unsigned long movable_pages; 715 }; 716 717 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 718 struct zone *zone) 719 { 720 if (zone_idx(zone) == ZONE_MOVABLE) { 721 stats->movable_pages += zone->present_pages; 722 } else { 723 stats->kernel_early_pages += zone->present_early_pages; 724 #ifdef CONFIG_CMA 725 /* 726 * CMA pages (never on hotplugged memory) behave like 727 * ZONE_MOVABLE. 728 */ 729 stats->movable_pages += zone->cma_pages; 730 stats->kernel_early_pages -= zone->cma_pages; 731 #endif /* CONFIG_CMA */ 732 } 733 } 734 struct auto_movable_group_stats { 735 unsigned long movable_pages; 736 unsigned long req_kernel_early_pages; 737 }; 738 739 static int auto_movable_stats_account_group(struct memory_group *group, 740 void *arg) 741 { 742 const int ratio = READ_ONCE(auto_movable_ratio); 743 struct auto_movable_group_stats *stats = arg; 744 long pages; 745 746 /* 747 * We don't support modifying the config while the auto-movable online 748 * policy is already enabled. Just avoid the division by zero below. 749 */ 750 if (!ratio) 751 return 0; 752 753 /* 754 * Calculate how many early kernel pages this group requires to 755 * satisfy the configured zone ratio. 756 */ 757 pages = group->present_movable_pages * 100 / ratio; 758 pages -= group->present_kernel_pages; 759 760 if (pages > 0) 761 stats->req_kernel_early_pages += pages; 762 stats->movable_pages += group->present_movable_pages; 763 return 0; 764 } 765 766 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 767 unsigned long nr_pages) 768 { 769 unsigned long kernel_early_pages, movable_pages; 770 struct auto_movable_group_stats group_stats = {}; 771 struct auto_movable_stats stats = {}; 772 pg_data_t *pgdat = NODE_DATA(nid); 773 struct zone *zone; 774 int i; 775 776 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 777 if (nid == NUMA_NO_NODE) { 778 /* TODO: cache values */ 779 for_each_populated_zone(zone) 780 auto_movable_stats_account_zone(&stats, zone); 781 } else { 782 for (i = 0; i < MAX_NR_ZONES; i++) { 783 zone = pgdat->node_zones + i; 784 if (populated_zone(zone)) 785 auto_movable_stats_account_zone(&stats, zone); 786 } 787 } 788 789 kernel_early_pages = stats.kernel_early_pages; 790 movable_pages = stats.movable_pages; 791 792 /* 793 * Kernel memory inside dynamic memory group allows for more MOVABLE 794 * memory within the same group. Remove the effect of all but the 795 * current group from the stats. 796 */ 797 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 798 group, &group_stats); 799 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 800 return false; 801 kernel_early_pages -= group_stats.req_kernel_early_pages; 802 movable_pages -= group_stats.movable_pages; 803 804 if (group && group->is_dynamic) 805 kernel_early_pages += group->present_kernel_pages; 806 807 /* 808 * Test if we could online the given number of pages to ZONE_MOVABLE 809 * and still stay in the configured ratio. 810 */ 811 movable_pages += nr_pages; 812 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 813 } 814 815 /* 816 * Returns a default kernel memory zone for the given pfn range. 817 * If no kernel zone covers this pfn range it will automatically go 818 * to the ZONE_NORMAL. 819 */ 820 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 821 unsigned long nr_pages) 822 { 823 struct pglist_data *pgdat = NODE_DATA(nid); 824 int zid; 825 826 for (zid = 0; zid < ZONE_NORMAL; zid++) { 827 struct zone *zone = &pgdat->node_zones[zid]; 828 829 if (zone_intersects(zone, start_pfn, nr_pages)) 830 return zone; 831 } 832 833 return &pgdat->node_zones[ZONE_NORMAL]; 834 } 835 836 /* 837 * Determine to which zone to online memory dynamically based on user 838 * configuration and system stats. We care about the following ratio: 839 * 840 * MOVABLE : KERNEL 841 * 842 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 843 * one of the kernel zones. CMA pages inside one of the kernel zones really 844 * behaves like ZONE_MOVABLE, so we treat them accordingly. 845 * 846 * We don't allow for hotplugged memory in a KERNEL zone to increase the 847 * amount of MOVABLE memory we can have, so we end up with: 848 * 849 * MOVABLE : KERNEL_EARLY 850 * 851 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 852 * boot. We base our calculation on KERNEL_EARLY internally, because: 853 * 854 * a) Hotplugged memory in one of the kernel zones can sometimes still get 855 * hotunplugged, especially when hot(un)plugging individual memory blocks. 856 * There is no coordination across memory devices, therefore "automatic" 857 * hotunplugging, as implemented in hypervisors, could result in zone 858 * imbalances. 859 * b) Early/boot memory in one of the kernel zones can usually not get 860 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 861 * with unmovable allocations). While there are corner cases where it might 862 * still work, it is barely relevant in practice. 863 * 864 * Exceptions are dynamic memory groups, which allow for more MOVABLE 865 * memory within the same memory group -- because in that case, there is 866 * coordination within the single memory device managed by a single driver. 867 * 868 * We rely on "present pages" instead of "managed pages", as the latter is 869 * highly unreliable and dynamic in virtualized environments, and does not 870 * consider boot time allocations. For example, memory ballooning adjusts the 871 * managed pages when inflating/deflating the balloon, and balloon compaction 872 * can even migrate inflated pages between zones. 873 * 874 * Using "present pages" is better but some things to keep in mind are: 875 * 876 * a) Some memblock allocations, such as for the crashkernel area, are 877 * effectively unused by the kernel, yet they account to "present pages". 878 * Fortunately, these allocations are comparatively small in relevant setups 879 * (e.g., fraction of system memory). 880 * b) Some hotplugged memory blocks in virtualized environments, esecially 881 * hotplugged by virtio-mem, look like they are completely present, however, 882 * only parts of the memory block are actually currently usable. 883 * "present pages" is an upper limit that can get reached at runtime. As 884 * we base our calculations on KERNEL_EARLY, this is not an issue. 885 */ 886 static struct zone *auto_movable_zone_for_pfn(int nid, 887 struct memory_group *group, 888 unsigned long pfn, 889 unsigned long nr_pages) 890 { 891 unsigned long online_pages = 0, max_pages, end_pfn; 892 struct page *page; 893 894 if (!auto_movable_ratio) 895 goto kernel_zone; 896 897 if (group && !group->is_dynamic) { 898 max_pages = group->s.max_pages; 899 online_pages = group->present_movable_pages; 900 901 /* If anything is !MOVABLE online the rest !MOVABLE. */ 902 if (group->present_kernel_pages) 903 goto kernel_zone; 904 } else if (!group || group->d.unit_pages == nr_pages) { 905 max_pages = nr_pages; 906 } else { 907 max_pages = group->d.unit_pages; 908 /* 909 * Take a look at all online sections in the current unit. 910 * We can safely assume that all pages within a section belong 911 * to the same zone, because dynamic memory groups only deal 912 * with hotplugged memory. 913 */ 914 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 915 end_pfn = pfn + group->d.unit_pages; 916 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 917 page = pfn_to_online_page(pfn); 918 if (!page) 919 continue; 920 /* If anything is !MOVABLE online the rest !MOVABLE. */ 921 if (page_zonenum(page) != ZONE_MOVABLE) 922 goto kernel_zone; 923 online_pages += PAGES_PER_SECTION; 924 } 925 } 926 927 /* 928 * Online MOVABLE if we could *currently* online all remaining parts 929 * MOVABLE. We expect to (add+) online them immediately next, so if 930 * nobody interferes, all will be MOVABLE if possible. 931 */ 932 nr_pages = max_pages - online_pages; 933 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 934 goto kernel_zone; 935 936 #ifdef CONFIG_NUMA 937 if (auto_movable_numa_aware && 938 !auto_movable_can_online_movable(nid, group, nr_pages)) 939 goto kernel_zone; 940 #endif /* CONFIG_NUMA */ 941 942 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 943 kernel_zone: 944 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 945 } 946 947 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 948 unsigned long nr_pages) 949 { 950 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 951 nr_pages); 952 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 953 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 954 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 955 956 /* 957 * We inherit the existing zone in a simple case where zones do not 958 * overlap in the given range 959 */ 960 if (in_kernel ^ in_movable) 961 return (in_kernel) ? kernel_zone : movable_zone; 962 963 /* 964 * If the range doesn't belong to any zone or two zones overlap in the 965 * given range then we use movable zone only if movable_node is 966 * enabled because we always online to a kernel zone by default. 967 */ 968 return movable_node_enabled ? movable_zone : kernel_zone; 969 } 970 971 struct zone *zone_for_pfn_range(int online_type, int nid, 972 struct memory_group *group, unsigned long start_pfn, 973 unsigned long nr_pages) 974 { 975 if (online_type == MMOP_ONLINE_KERNEL) 976 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 977 978 if (online_type == MMOP_ONLINE_MOVABLE) 979 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 980 981 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 982 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 983 984 return default_zone_for_pfn(nid, start_pfn, nr_pages); 985 } 986 987 /* 988 * This function should only be called by memory_block_{online,offline}, 989 * and {online,offline}_pages. 990 */ 991 void adjust_present_page_count(struct page *page, struct memory_group *group, 992 long nr_pages) 993 { 994 struct zone *zone = page_zone(page); 995 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 996 997 /* 998 * We only support onlining/offlining/adding/removing of complete 999 * memory blocks; therefore, either all is either early or hotplugged. 1000 */ 1001 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1002 zone->present_early_pages += nr_pages; 1003 zone->present_pages += nr_pages; 1004 zone->zone_pgdat->node_present_pages += nr_pages; 1005 1006 if (group && movable) 1007 group->present_movable_pages += nr_pages; 1008 else if (group && !movable) 1009 group->present_kernel_pages += nr_pages; 1010 } 1011 1012 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1013 struct zone *zone) 1014 { 1015 unsigned long end_pfn = pfn + nr_pages; 1016 int ret; 1017 1018 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1019 if (ret) 1020 return ret; 1021 1022 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1023 1024 /* 1025 * It might be that the vmemmap_pages fully span sections. If that is 1026 * the case, mark those sections online here as otherwise they will be 1027 * left offline. 1028 */ 1029 if (nr_pages >= PAGES_PER_SECTION) 1030 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1031 1032 return ret; 1033 } 1034 1035 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1036 { 1037 unsigned long end_pfn = pfn + nr_pages; 1038 1039 /* 1040 * It might be that the vmemmap_pages fully span sections. If that is 1041 * the case, mark those sections offline here as otherwise they will be 1042 * left online. 1043 */ 1044 if (nr_pages >= PAGES_PER_SECTION) 1045 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1046 1047 /* 1048 * The pages associated with this vmemmap have been offlined, so 1049 * we can reset its state here. 1050 */ 1051 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1052 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1053 } 1054 1055 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1056 struct zone *zone, struct memory_group *group) 1057 { 1058 unsigned long flags; 1059 int need_zonelists_rebuild = 0; 1060 const int nid = zone_to_nid(zone); 1061 int ret; 1062 struct memory_notify arg; 1063 1064 /* 1065 * {on,off}lining is constrained to full memory sections (or more 1066 * precisely to memory blocks from the user space POV). 1067 * memmap_on_memory is an exception because it reserves initial part 1068 * of the physical memory space for vmemmaps. That space is pageblock 1069 * aligned. 1070 */ 1071 if (WARN_ON_ONCE(!nr_pages || 1072 !IS_ALIGNED(pfn, pageblock_nr_pages) || 1073 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1074 return -EINVAL; 1075 1076 mem_hotplug_begin(); 1077 1078 /* associate pfn range with the zone */ 1079 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1080 1081 arg.start_pfn = pfn; 1082 arg.nr_pages = nr_pages; 1083 node_states_check_changes_online(nr_pages, zone, &arg); 1084 1085 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1086 ret = notifier_to_errno(ret); 1087 if (ret) 1088 goto failed_addition; 1089 1090 /* 1091 * Fixup the number of isolated pageblocks before marking the sections 1092 * onlining, such that undo_isolate_page_range() works correctly. 1093 */ 1094 spin_lock_irqsave(&zone->lock, flags); 1095 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1096 spin_unlock_irqrestore(&zone->lock, flags); 1097 1098 /* 1099 * If this zone is not populated, then it is not in zonelist. 1100 * This means the page allocator ignores this zone. 1101 * So, zonelist must be updated after online. 1102 */ 1103 if (!populated_zone(zone)) { 1104 need_zonelists_rebuild = 1; 1105 setup_zone_pageset(zone); 1106 } 1107 1108 online_pages_range(pfn, nr_pages); 1109 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1110 1111 node_states_set_node(nid, &arg); 1112 if (need_zonelists_rebuild) 1113 build_all_zonelists(NULL); 1114 1115 /* Basic onlining is complete, allow allocation of onlined pages. */ 1116 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1117 1118 /* 1119 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1120 * the tail of the freelist when undoing isolation). Shuffle the whole 1121 * zone to make sure the just onlined pages are properly distributed 1122 * across the whole freelist - to create an initial shuffle. 1123 */ 1124 shuffle_zone(zone); 1125 1126 /* reinitialise watermarks and update pcp limits */ 1127 init_per_zone_wmark_min(); 1128 1129 kswapd_run(nid); 1130 kcompactd_run(nid); 1131 1132 writeback_set_ratelimit(); 1133 1134 memory_notify(MEM_ONLINE, &arg); 1135 mem_hotplug_done(); 1136 return 0; 1137 1138 failed_addition: 1139 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1140 (unsigned long long) pfn << PAGE_SHIFT, 1141 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1142 memory_notify(MEM_CANCEL_ONLINE, &arg); 1143 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1144 mem_hotplug_done(); 1145 return ret; 1146 } 1147 1148 static void reset_node_present_pages(pg_data_t *pgdat) 1149 { 1150 struct zone *z; 1151 1152 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1153 z->present_pages = 0; 1154 1155 pgdat->node_present_pages = 0; 1156 } 1157 1158 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1159 static pg_data_t __ref *hotadd_init_pgdat(int nid) 1160 { 1161 struct pglist_data *pgdat; 1162 1163 /* 1164 * NODE_DATA is preallocated (free_area_init) but its internal 1165 * state is not allocated completely. Add missing pieces. 1166 * Completely offline nodes stay around and they just need 1167 * reintialization. 1168 */ 1169 pgdat = NODE_DATA(nid); 1170 1171 /* init node's zones as empty zones, we don't have any present pages.*/ 1172 free_area_init_core_hotplug(pgdat); 1173 1174 /* 1175 * The node we allocated has no zone fallback lists. For avoiding 1176 * to access not-initialized zonelist, build here. 1177 */ 1178 build_all_zonelists(pgdat); 1179 1180 /* 1181 * When memory is hot-added, all the memory is in offline state. So 1182 * clear all zones' present_pages because they will be updated in 1183 * online_pages() and offline_pages(). 1184 * TODO: should be in free_area_init_core_hotplug? 1185 */ 1186 reset_node_managed_pages(pgdat); 1187 reset_node_present_pages(pgdat); 1188 1189 return pgdat; 1190 } 1191 1192 /* 1193 * __try_online_node - online a node if offlined 1194 * @nid: the node ID 1195 * @set_node_online: Whether we want to online the node 1196 * called by cpu_up() to online a node without onlined memory. 1197 * 1198 * Returns: 1199 * 1 -> a new node has been allocated 1200 * 0 -> the node is already online 1201 * -ENOMEM -> the node could not be allocated 1202 */ 1203 static int __try_online_node(int nid, bool set_node_online) 1204 { 1205 pg_data_t *pgdat; 1206 int ret = 1; 1207 1208 if (node_online(nid)) 1209 return 0; 1210 1211 pgdat = hotadd_init_pgdat(nid); 1212 if (!pgdat) { 1213 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1214 ret = -ENOMEM; 1215 goto out; 1216 } 1217 1218 if (set_node_online) { 1219 node_set_online(nid); 1220 ret = register_one_node(nid); 1221 BUG_ON(ret); 1222 } 1223 out: 1224 return ret; 1225 } 1226 1227 /* 1228 * Users of this function always want to online/register the node 1229 */ 1230 int try_online_node(int nid) 1231 { 1232 int ret; 1233 1234 mem_hotplug_begin(); 1235 ret = __try_online_node(nid, true); 1236 mem_hotplug_done(); 1237 return ret; 1238 } 1239 1240 static int check_hotplug_memory_range(u64 start, u64 size) 1241 { 1242 /* memory range must be block size aligned */ 1243 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1244 !IS_ALIGNED(size, memory_block_size_bytes())) { 1245 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1246 memory_block_size_bytes(), start, size); 1247 return -EINVAL; 1248 } 1249 1250 return 0; 1251 } 1252 1253 static int online_memory_block(struct memory_block *mem, void *arg) 1254 { 1255 mem->online_type = mhp_default_online_type; 1256 return device_online(&mem->dev); 1257 } 1258 1259 bool mhp_supports_memmap_on_memory(unsigned long size) 1260 { 1261 unsigned long nr_vmemmap_pages = size / PAGE_SIZE; 1262 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page); 1263 unsigned long remaining_size = size - vmemmap_size; 1264 1265 /* 1266 * Besides having arch support and the feature enabled at runtime, we 1267 * need a few more assumptions to hold true: 1268 * 1269 * a) We span a single memory block: memory onlining/offlinin;g happens 1270 * in memory block granularity. We don't want the vmemmap of online 1271 * memory blocks to reside on offline memory blocks. In the future, 1272 * we might want to support variable-sized memory blocks to make the 1273 * feature more versatile. 1274 * 1275 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1276 * to populate memory from the altmap for unrelated parts (i.e., 1277 * other memory blocks) 1278 * 1279 * c) The vmemmap pages (and thereby the pages that will be exposed to 1280 * the buddy) have to cover full pageblocks: memory onlining/offlining 1281 * code requires applicable ranges to be page-aligned, for example, to 1282 * set the migratetypes properly. 1283 * 1284 * TODO: Although we have a check here to make sure that vmemmap pages 1285 * fully populate a PMD, it is not the right place to check for 1286 * this. A much better solution involves improving vmemmap code 1287 * to fallback to base pages when trying to populate vmemmap using 1288 * altmap as an alternative source of memory, and we do not exactly 1289 * populate a single PMD. 1290 */ 1291 return memmap_on_memory && 1292 !hugetlb_free_vmemmap_enabled() && 1293 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) && 1294 size == memory_block_size_bytes() && 1295 IS_ALIGNED(vmemmap_size, PMD_SIZE) && 1296 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT)); 1297 } 1298 1299 /* 1300 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1301 * and online/offline operations (triggered e.g. by sysfs). 1302 * 1303 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1304 */ 1305 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1306 { 1307 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1308 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1309 struct vmem_altmap mhp_altmap = {}; 1310 struct memory_group *group = NULL; 1311 u64 start, size; 1312 bool new_node = false; 1313 int ret; 1314 1315 start = res->start; 1316 size = resource_size(res); 1317 1318 ret = check_hotplug_memory_range(start, size); 1319 if (ret) 1320 return ret; 1321 1322 if (mhp_flags & MHP_NID_IS_MGID) { 1323 group = memory_group_find_by_id(nid); 1324 if (!group) 1325 return -EINVAL; 1326 nid = group->nid; 1327 } 1328 1329 if (!node_possible(nid)) { 1330 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1331 return -EINVAL; 1332 } 1333 1334 mem_hotplug_begin(); 1335 1336 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1337 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1338 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1339 ret = memblock_add_node(start, size, nid, memblock_flags); 1340 if (ret) 1341 goto error_mem_hotplug_end; 1342 } 1343 1344 ret = __try_online_node(nid, false); 1345 if (ret < 0) 1346 goto error; 1347 new_node = ret; 1348 1349 /* 1350 * Self hosted memmap array 1351 */ 1352 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { 1353 if (!mhp_supports_memmap_on_memory(size)) { 1354 ret = -EINVAL; 1355 goto error; 1356 } 1357 mhp_altmap.free = PHYS_PFN(size); 1358 mhp_altmap.base_pfn = PHYS_PFN(start); 1359 params.altmap = &mhp_altmap; 1360 } 1361 1362 /* call arch's memory hotadd */ 1363 ret = arch_add_memory(nid, start, size, ¶ms); 1364 if (ret < 0) 1365 goto error; 1366 1367 /* create memory block devices after memory was added */ 1368 ret = create_memory_block_devices(start, size, mhp_altmap.alloc, 1369 group); 1370 if (ret) { 1371 arch_remove_memory(start, size, NULL); 1372 goto error; 1373 } 1374 1375 if (new_node) { 1376 /* If sysfs file of new node can't be created, cpu on the node 1377 * can't be hot-added. There is no rollback way now. 1378 * So, check by BUG_ON() to catch it reluctantly.. 1379 * We online node here. We can't roll back from here. 1380 */ 1381 node_set_online(nid); 1382 ret = __register_one_node(nid); 1383 BUG_ON(ret); 1384 } 1385 1386 register_memory_blocks_under_node(nid, PFN_DOWN(start), 1387 PFN_UP(start + size - 1), 1388 MEMINIT_HOTPLUG); 1389 1390 /* create new memmap entry */ 1391 if (!strcmp(res->name, "System RAM")) 1392 firmware_map_add_hotplug(start, start + size, "System RAM"); 1393 1394 /* device_online() will take the lock when calling online_pages() */ 1395 mem_hotplug_done(); 1396 1397 /* 1398 * In case we're allowed to merge the resource, flag it and trigger 1399 * merging now that adding succeeded. 1400 */ 1401 if (mhp_flags & MHP_MERGE_RESOURCE) 1402 merge_system_ram_resource(res); 1403 1404 /* online pages if requested */ 1405 if (mhp_default_online_type != MMOP_OFFLINE) 1406 walk_memory_blocks(start, size, NULL, online_memory_block); 1407 1408 return ret; 1409 error: 1410 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1411 memblock_remove(start, size); 1412 error_mem_hotplug_end: 1413 mem_hotplug_done(); 1414 return ret; 1415 } 1416 1417 /* requires device_hotplug_lock, see add_memory_resource() */ 1418 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1419 { 1420 struct resource *res; 1421 int ret; 1422 1423 res = register_memory_resource(start, size, "System RAM"); 1424 if (IS_ERR(res)) 1425 return PTR_ERR(res); 1426 1427 ret = add_memory_resource(nid, res, mhp_flags); 1428 if (ret < 0) 1429 release_memory_resource(res); 1430 return ret; 1431 } 1432 1433 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1434 { 1435 int rc; 1436 1437 lock_device_hotplug(); 1438 rc = __add_memory(nid, start, size, mhp_flags); 1439 unlock_device_hotplug(); 1440 1441 return rc; 1442 } 1443 EXPORT_SYMBOL_GPL(add_memory); 1444 1445 /* 1446 * Add special, driver-managed memory to the system as system RAM. Such 1447 * memory is not exposed via the raw firmware-provided memmap as system 1448 * RAM, instead, it is detected and added by a driver - during cold boot, 1449 * after a reboot, and after kexec. 1450 * 1451 * Reasons why this memory should not be used for the initial memmap of a 1452 * kexec kernel or for placing kexec images: 1453 * - The booting kernel is in charge of determining how this memory will be 1454 * used (e.g., use persistent memory as system RAM) 1455 * - Coordination with a hypervisor is required before this memory 1456 * can be used (e.g., inaccessible parts). 1457 * 1458 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1459 * memory map") are created. Also, the created memory resource is flagged 1460 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1461 * this memory as well (esp., not place kexec images onto it). 1462 * 1463 * The resource_name (visible via /proc/iomem) has to have the format 1464 * "System RAM ($DRIVER)". 1465 */ 1466 int add_memory_driver_managed(int nid, u64 start, u64 size, 1467 const char *resource_name, mhp_t mhp_flags) 1468 { 1469 struct resource *res; 1470 int rc; 1471 1472 if (!resource_name || 1473 strstr(resource_name, "System RAM (") != resource_name || 1474 resource_name[strlen(resource_name) - 1] != ')') 1475 return -EINVAL; 1476 1477 lock_device_hotplug(); 1478 1479 res = register_memory_resource(start, size, resource_name); 1480 if (IS_ERR(res)) { 1481 rc = PTR_ERR(res); 1482 goto out_unlock; 1483 } 1484 1485 rc = add_memory_resource(nid, res, mhp_flags); 1486 if (rc < 0) 1487 release_memory_resource(res); 1488 1489 out_unlock: 1490 unlock_device_hotplug(); 1491 return rc; 1492 } 1493 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1494 1495 /* 1496 * Platforms should define arch_get_mappable_range() that provides 1497 * maximum possible addressable physical memory range for which the 1498 * linear mapping could be created. The platform returned address 1499 * range must adhere to these following semantics. 1500 * 1501 * - range.start <= range.end 1502 * - Range includes both end points [range.start..range.end] 1503 * 1504 * There is also a fallback definition provided here, allowing the 1505 * entire possible physical address range in case any platform does 1506 * not define arch_get_mappable_range(). 1507 */ 1508 struct range __weak arch_get_mappable_range(void) 1509 { 1510 struct range mhp_range = { 1511 .start = 0UL, 1512 .end = -1ULL, 1513 }; 1514 return mhp_range; 1515 } 1516 1517 struct range mhp_get_pluggable_range(bool need_mapping) 1518 { 1519 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1520 struct range mhp_range; 1521 1522 if (need_mapping) { 1523 mhp_range = arch_get_mappable_range(); 1524 if (mhp_range.start > max_phys) { 1525 mhp_range.start = 0; 1526 mhp_range.end = 0; 1527 } 1528 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1529 } else { 1530 mhp_range.start = 0; 1531 mhp_range.end = max_phys; 1532 } 1533 return mhp_range; 1534 } 1535 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1536 1537 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1538 { 1539 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1540 u64 end = start + size; 1541 1542 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1543 return true; 1544 1545 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1546 start, end, mhp_range.start, mhp_range.end); 1547 return false; 1548 } 1549 1550 #ifdef CONFIG_MEMORY_HOTREMOVE 1551 /* 1552 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1553 * non-lru movable pages and hugepages). Will skip over most unmovable 1554 * pages (esp., pages that can be skipped when offlining), but bail out on 1555 * definitely unmovable pages. 1556 * 1557 * Returns: 1558 * 0 in case a movable page is found and movable_pfn was updated. 1559 * -ENOENT in case no movable page was found. 1560 * -EBUSY in case a definitely unmovable page was found. 1561 */ 1562 static int scan_movable_pages(unsigned long start, unsigned long end, 1563 unsigned long *movable_pfn) 1564 { 1565 unsigned long pfn; 1566 1567 for (pfn = start; pfn < end; pfn++) { 1568 struct page *page, *head; 1569 unsigned long skip; 1570 1571 if (!pfn_valid(pfn)) 1572 continue; 1573 page = pfn_to_page(pfn); 1574 if (PageLRU(page)) 1575 goto found; 1576 if (__PageMovable(page)) 1577 goto found; 1578 1579 /* 1580 * PageOffline() pages that are not marked __PageMovable() and 1581 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1582 * definitely unmovable. If their reference count would be 0, 1583 * they could at least be skipped when offlining memory. 1584 */ 1585 if (PageOffline(page) && page_count(page)) 1586 return -EBUSY; 1587 1588 if (!PageHuge(page)) 1589 continue; 1590 head = compound_head(page); 1591 /* 1592 * This test is racy as we hold no reference or lock. The 1593 * hugetlb page could have been free'ed and head is no longer 1594 * a hugetlb page before the following check. In such unlikely 1595 * cases false positives and negatives are possible. Calling 1596 * code must deal with these scenarios. 1597 */ 1598 if (HPageMigratable(head)) 1599 goto found; 1600 skip = compound_nr(head) - (page - head); 1601 pfn += skip - 1; 1602 } 1603 return -ENOENT; 1604 found: 1605 *movable_pfn = pfn; 1606 return 0; 1607 } 1608 1609 static int 1610 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1611 { 1612 unsigned long pfn; 1613 struct page *page, *head; 1614 int ret = 0; 1615 LIST_HEAD(source); 1616 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1617 DEFAULT_RATELIMIT_BURST); 1618 1619 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1620 struct folio *folio; 1621 1622 if (!pfn_valid(pfn)) 1623 continue; 1624 page = pfn_to_page(pfn); 1625 folio = page_folio(page); 1626 head = &folio->page; 1627 1628 if (PageHuge(page)) { 1629 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1630 isolate_huge_page(head, &source); 1631 continue; 1632 } else if (PageTransHuge(page)) 1633 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1634 1635 /* 1636 * HWPoison pages have elevated reference counts so the migration would 1637 * fail on them. It also doesn't make any sense to migrate them in the 1638 * first place. Still try to unmap such a page in case it is still mapped 1639 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1640 * the unmap as the catch all safety net). 1641 */ 1642 if (PageHWPoison(page)) { 1643 if (WARN_ON(folio_test_lru(folio))) 1644 folio_isolate_lru(folio); 1645 if (folio_mapped(folio)) 1646 try_to_unmap(folio, TTU_IGNORE_MLOCK); 1647 continue; 1648 } 1649 1650 if (!get_page_unless_zero(page)) 1651 continue; 1652 /* 1653 * We can skip free pages. And we can deal with pages on 1654 * LRU and non-lru movable pages. 1655 */ 1656 if (PageLRU(page)) 1657 ret = isolate_lru_page(page); 1658 else 1659 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1660 if (!ret) { /* Success */ 1661 list_add_tail(&page->lru, &source); 1662 if (!__PageMovable(page)) 1663 inc_node_page_state(page, NR_ISOLATED_ANON + 1664 page_is_file_lru(page)); 1665 1666 } else { 1667 if (__ratelimit(&migrate_rs)) { 1668 pr_warn("failed to isolate pfn %lx\n", pfn); 1669 dump_page(page, "isolation failed"); 1670 } 1671 } 1672 put_page(page); 1673 } 1674 if (!list_empty(&source)) { 1675 nodemask_t nmask = node_states[N_MEMORY]; 1676 struct migration_target_control mtc = { 1677 .nmask = &nmask, 1678 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1679 }; 1680 1681 /* 1682 * We have checked that migration range is on a single zone so 1683 * we can use the nid of the first page to all the others. 1684 */ 1685 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1686 1687 /* 1688 * try to allocate from a different node but reuse this node 1689 * if there are no other online nodes to be used (e.g. we are 1690 * offlining a part of the only existing node) 1691 */ 1692 node_clear(mtc.nid, nmask); 1693 if (nodes_empty(nmask)) 1694 node_set(mtc.nid, nmask); 1695 ret = migrate_pages(&source, alloc_migration_target, NULL, 1696 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1697 if (ret) { 1698 list_for_each_entry(page, &source, lru) { 1699 if (__ratelimit(&migrate_rs)) { 1700 pr_warn("migrating pfn %lx failed ret:%d\n", 1701 page_to_pfn(page), ret); 1702 dump_page(page, "migration failure"); 1703 } 1704 } 1705 putback_movable_pages(&source); 1706 } 1707 } 1708 1709 return ret; 1710 } 1711 1712 static int __init cmdline_parse_movable_node(char *p) 1713 { 1714 movable_node_enabled = true; 1715 return 0; 1716 } 1717 early_param("movable_node", cmdline_parse_movable_node); 1718 1719 /* check which state of node_states will be changed when offline memory */ 1720 static void node_states_check_changes_offline(unsigned long nr_pages, 1721 struct zone *zone, struct memory_notify *arg) 1722 { 1723 struct pglist_data *pgdat = zone->zone_pgdat; 1724 unsigned long present_pages = 0; 1725 enum zone_type zt; 1726 1727 arg->status_change_nid = NUMA_NO_NODE; 1728 arg->status_change_nid_normal = NUMA_NO_NODE; 1729 1730 /* 1731 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1732 * If the memory to be offline is within the range 1733 * [0..ZONE_NORMAL], and it is the last present memory there, 1734 * the zones in that range will become empty after the offlining, 1735 * thus we can determine that we need to clear the node from 1736 * node_states[N_NORMAL_MEMORY]. 1737 */ 1738 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1739 present_pages += pgdat->node_zones[zt].present_pages; 1740 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1741 arg->status_change_nid_normal = zone_to_nid(zone); 1742 1743 /* 1744 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1745 * does not apply as we don't support 32bit. 1746 * Here we count the possible pages from ZONE_MOVABLE. 1747 * If after having accounted all the pages, we see that the nr_pages 1748 * to be offlined is over or equal to the accounted pages, 1749 * we know that the node will become empty, and so, we can clear 1750 * it for N_MEMORY as well. 1751 */ 1752 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1753 1754 if (nr_pages >= present_pages) 1755 arg->status_change_nid = zone_to_nid(zone); 1756 } 1757 1758 static void node_states_clear_node(int node, struct memory_notify *arg) 1759 { 1760 if (arg->status_change_nid_normal >= 0) 1761 node_clear_state(node, N_NORMAL_MEMORY); 1762 1763 if (arg->status_change_nid >= 0) 1764 node_clear_state(node, N_MEMORY); 1765 } 1766 1767 static int count_system_ram_pages_cb(unsigned long start_pfn, 1768 unsigned long nr_pages, void *data) 1769 { 1770 unsigned long *nr_system_ram_pages = data; 1771 1772 *nr_system_ram_pages += nr_pages; 1773 return 0; 1774 } 1775 1776 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1777 struct zone *zone, struct memory_group *group) 1778 { 1779 const unsigned long end_pfn = start_pfn + nr_pages; 1780 unsigned long pfn, system_ram_pages = 0; 1781 const int node = zone_to_nid(zone); 1782 unsigned long flags; 1783 struct memory_notify arg; 1784 char *reason; 1785 int ret; 1786 1787 /* 1788 * {on,off}lining is constrained to full memory sections (or more 1789 * precisely to memory blocks from the user space POV). 1790 * memmap_on_memory is an exception because it reserves initial part 1791 * of the physical memory space for vmemmaps. That space is pageblock 1792 * aligned. 1793 */ 1794 if (WARN_ON_ONCE(!nr_pages || 1795 !IS_ALIGNED(start_pfn, pageblock_nr_pages) || 1796 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1797 return -EINVAL; 1798 1799 mem_hotplug_begin(); 1800 1801 /* 1802 * Don't allow to offline memory blocks that contain holes. 1803 * Consequently, memory blocks with holes can never get onlined 1804 * via the hotplug path - online_pages() - as hotplugged memory has 1805 * no holes. This way, we e.g., don't have to worry about marking 1806 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1807 * avoid using walk_system_ram_range() later. 1808 */ 1809 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1810 count_system_ram_pages_cb); 1811 if (system_ram_pages != nr_pages) { 1812 ret = -EINVAL; 1813 reason = "memory holes"; 1814 goto failed_removal; 1815 } 1816 1817 /* 1818 * We only support offlining of memory blocks managed by a single zone, 1819 * checked by calling code. This is just a sanity check that we might 1820 * want to remove in the future. 1821 */ 1822 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1823 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1824 ret = -EINVAL; 1825 reason = "multizone range"; 1826 goto failed_removal; 1827 } 1828 1829 /* 1830 * Disable pcplists so that page isolation cannot race with freeing 1831 * in a way that pages from isolated pageblock are left on pcplists. 1832 */ 1833 zone_pcp_disable(zone); 1834 lru_cache_disable(); 1835 1836 /* set above range as isolated */ 1837 ret = start_isolate_page_range(start_pfn, end_pfn, 1838 MIGRATE_MOVABLE, 1839 MEMORY_OFFLINE | REPORT_FAILURE); 1840 if (ret) { 1841 reason = "failure to isolate range"; 1842 goto failed_removal_pcplists_disabled; 1843 } 1844 1845 arg.start_pfn = start_pfn; 1846 arg.nr_pages = nr_pages; 1847 node_states_check_changes_offline(nr_pages, zone, &arg); 1848 1849 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1850 ret = notifier_to_errno(ret); 1851 if (ret) { 1852 reason = "notifier failure"; 1853 goto failed_removal_isolated; 1854 } 1855 1856 do { 1857 pfn = start_pfn; 1858 do { 1859 if (signal_pending(current)) { 1860 ret = -EINTR; 1861 reason = "signal backoff"; 1862 goto failed_removal_isolated; 1863 } 1864 1865 cond_resched(); 1866 1867 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1868 if (!ret) { 1869 /* 1870 * TODO: fatal migration failures should bail 1871 * out 1872 */ 1873 do_migrate_range(pfn, end_pfn); 1874 } 1875 } while (!ret); 1876 1877 if (ret != -ENOENT) { 1878 reason = "unmovable page"; 1879 goto failed_removal_isolated; 1880 } 1881 1882 /* 1883 * Dissolve free hugepages in the memory block before doing 1884 * offlining actually in order to make hugetlbfs's object 1885 * counting consistent. 1886 */ 1887 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1888 if (ret) { 1889 reason = "failure to dissolve huge pages"; 1890 goto failed_removal_isolated; 1891 } 1892 1893 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1894 1895 } while (ret); 1896 1897 /* Mark all sections offline and remove free pages from the buddy. */ 1898 __offline_isolated_pages(start_pfn, end_pfn); 1899 pr_debug("Offlined Pages %ld\n", nr_pages); 1900 1901 /* 1902 * The memory sections are marked offline, and the pageblock flags 1903 * effectively stale; nobody should be touching them. Fixup the number 1904 * of isolated pageblocks, memory onlining will properly revert this. 1905 */ 1906 spin_lock_irqsave(&zone->lock, flags); 1907 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 1908 spin_unlock_irqrestore(&zone->lock, flags); 1909 1910 lru_cache_enable(); 1911 zone_pcp_enable(zone); 1912 1913 /* removal success */ 1914 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 1915 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 1916 1917 /* reinitialise watermarks and update pcp limits */ 1918 init_per_zone_wmark_min(); 1919 1920 if (!populated_zone(zone)) { 1921 zone_pcp_reset(zone); 1922 build_all_zonelists(NULL); 1923 } 1924 1925 node_states_clear_node(node, &arg); 1926 if (arg.status_change_nid >= 0) { 1927 kswapd_stop(node); 1928 kcompactd_stop(node); 1929 } 1930 1931 writeback_set_ratelimit(); 1932 1933 memory_notify(MEM_OFFLINE, &arg); 1934 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1935 mem_hotplug_done(); 1936 return 0; 1937 1938 failed_removal_isolated: 1939 /* pushback to free area */ 1940 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1941 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1942 failed_removal_pcplists_disabled: 1943 lru_cache_enable(); 1944 zone_pcp_enable(zone); 1945 failed_removal: 1946 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1947 (unsigned long long) start_pfn << PAGE_SHIFT, 1948 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1949 reason); 1950 mem_hotplug_done(); 1951 return ret; 1952 } 1953 1954 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1955 { 1956 int ret = !is_memblock_offlined(mem); 1957 int *nid = arg; 1958 1959 *nid = mem->nid; 1960 if (unlikely(ret)) { 1961 phys_addr_t beginpa, endpa; 1962 1963 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1964 endpa = beginpa + memory_block_size_bytes() - 1; 1965 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1966 &beginpa, &endpa); 1967 1968 return -EBUSY; 1969 } 1970 return 0; 1971 } 1972 1973 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg) 1974 { 1975 /* 1976 * If not set, continue with the next block. 1977 */ 1978 return mem->nr_vmemmap_pages; 1979 } 1980 1981 static int check_cpu_on_node(int nid) 1982 { 1983 int cpu; 1984 1985 for_each_present_cpu(cpu) { 1986 if (cpu_to_node(cpu) == nid) 1987 /* 1988 * the cpu on this node isn't removed, and we can't 1989 * offline this node. 1990 */ 1991 return -EBUSY; 1992 } 1993 1994 return 0; 1995 } 1996 1997 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 1998 { 1999 int nid = *(int *)arg; 2000 2001 /* 2002 * If a memory block belongs to multiple nodes, the stored nid is not 2003 * reliable. However, such blocks are always online (e.g., cannot get 2004 * offlined) and, therefore, are still spanned by the node. 2005 */ 2006 return mem->nid == nid ? -EEXIST : 0; 2007 } 2008 2009 /** 2010 * try_offline_node 2011 * @nid: the node ID 2012 * 2013 * Offline a node if all memory sections and cpus of the node are removed. 2014 * 2015 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2016 * and online/offline operations before this call. 2017 */ 2018 void try_offline_node(int nid) 2019 { 2020 int rc; 2021 2022 /* 2023 * If the node still spans pages (especially ZONE_DEVICE), don't 2024 * offline it. A node spans memory after move_pfn_range_to_zone(), 2025 * e.g., after the memory block was onlined. 2026 */ 2027 if (node_spanned_pages(nid)) 2028 return; 2029 2030 /* 2031 * Especially offline memory blocks might not be spanned by the 2032 * node. They will get spanned by the node once they get onlined. 2033 * However, they link to the node in sysfs and can get onlined later. 2034 */ 2035 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2036 if (rc) 2037 return; 2038 2039 if (check_cpu_on_node(nid)) 2040 return; 2041 2042 /* 2043 * all memory/cpu of this node are removed, we can offline this 2044 * node now. 2045 */ 2046 node_set_offline(nid); 2047 unregister_one_node(nid); 2048 } 2049 EXPORT_SYMBOL(try_offline_node); 2050 2051 static int __ref try_remove_memory(u64 start, u64 size) 2052 { 2053 struct vmem_altmap mhp_altmap = {}; 2054 struct vmem_altmap *altmap = NULL; 2055 unsigned long nr_vmemmap_pages; 2056 int rc = 0, nid = NUMA_NO_NODE; 2057 2058 BUG_ON(check_hotplug_memory_range(start, size)); 2059 2060 /* 2061 * All memory blocks must be offlined before removing memory. Check 2062 * whether all memory blocks in question are offline and return error 2063 * if this is not the case. 2064 * 2065 * While at it, determine the nid. Note that if we'd have mixed nodes, 2066 * we'd only try to offline the last determined one -- which is good 2067 * enough for the cases we care about. 2068 */ 2069 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2070 if (rc) 2071 return rc; 2072 2073 /* 2074 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in 2075 * the same granularity it was added - a single memory block. 2076 */ 2077 if (memmap_on_memory) { 2078 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL, 2079 get_nr_vmemmap_pages_cb); 2080 if (nr_vmemmap_pages) { 2081 if (size != memory_block_size_bytes()) { 2082 pr_warn("Refuse to remove %#llx - %#llx," 2083 "wrong granularity\n", 2084 start, start + size); 2085 return -EINVAL; 2086 } 2087 2088 /* 2089 * Let remove_pmd_table->free_hugepage_table do the 2090 * right thing if we used vmem_altmap when hot-adding 2091 * the range. 2092 */ 2093 mhp_altmap.alloc = nr_vmemmap_pages; 2094 altmap = &mhp_altmap; 2095 } 2096 } 2097 2098 /* remove memmap entry */ 2099 firmware_map_remove(start, start + size, "System RAM"); 2100 2101 /* 2102 * Memory block device removal under the device_hotplug_lock is 2103 * a barrier against racing online attempts. 2104 */ 2105 remove_memory_block_devices(start, size); 2106 2107 mem_hotplug_begin(); 2108 2109 arch_remove_memory(start, size, altmap); 2110 2111 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2112 memblock_phys_free(start, size); 2113 memblock_remove(start, size); 2114 } 2115 2116 release_mem_region_adjustable(start, size); 2117 2118 if (nid != NUMA_NO_NODE) 2119 try_offline_node(nid); 2120 2121 mem_hotplug_done(); 2122 return 0; 2123 } 2124 2125 /** 2126 * __remove_memory - Remove memory if every memory block is offline 2127 * @start: physical address of the region to remove 2128 * @size: size of the region to remove 2129 * 2130 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2131 * and online/offline operations before this call, as required by 2132 * try_offline_node(). 2133 */ 2134 void __remove_memory(u64 start, u64 size) 2135 { 2136 2137 /* 2138 * trigger BUG() if some memory is not offlined prior to calling this 2139 * function 2140 */ 2141 if (try_remove_memory(start, size)) 2142 BUG(); 2143 } 2144 2145 /* 2146 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2147 * some memory is not offline 2148 */ 2149 int remove_memory(u64 start, u64 size) 2150 { 2151 int rc; 2152 2153 lock_device_hotplug(); 2154 rc = try_remove_memory(start, size); 2155 unlock_device_hotplug(); 2156 2157 return rc; 2158 } 2159 EXPORT_SYMBOL_GPL(remove_memory); 2160 2161 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2162 { 2163 uint8_t online_type = MMOP_ONLINE_KERNEL; 2164 uint8_t **online_types = arg; 2165 struct page *page; 2166 int rc; 2167 2168 /* 2169 * Sense the online_type via the zone of the memory block. Offlining 2170 * with multiple zones within one memory block will be rejected 2171 * by offlining code ... so we don't care about that. 2172 */ 2173 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2174 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2175 online_type = MMOP_ONLINE_MOVABLE; 2176 2177 rc = device_offline(&mem->dev); 2178 /* 2179 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2180 * so try_reonline_memory_block() can do the right thing. 2181 */ 2182 if (!rc) 2183 **online_types = online_type; 2184 2185 (*online_types)++; 2186 /* Ignore if already offline. */ 2187 return rc < 0 ? rc : 0; 2188 } 2189 2190 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2191 { 2192 uint8_t **online_types = arg; 2193 int rc; 2194 2195 if (**online_types != MMOP_OFFLINE) { 2196 mem->online_type = **online_types; 2197 rc = device_online(&mem->dev); 2198 if (rc < 0) 2199 pr_warn("%s: Failed to re-online memory: %d", 2200 __func__, rc); 2201 } 2202 2203 /* Continue processing all remaining memory blocks. */ 2204 (*online_types)++; 2205 return 0; 2206 } 2207 2208 /* 2209 * Try to offline and remove memory. Might take a long time to finish in case 2210 * memory is still in use. Primarily useful for memory devices that logically 2211 * unplugged all memory (so it's no longer in use) and want to offline + remove 2212 * that memory. 2213 */ 2214 int offline_and_remove_memory(u64 start, u64 size) 2215 { 2216 const unsigned long mb_count = size / memory_block_size_bytes(); 2217 uint8_t *online_types, *tmp; 2218 int rc; 2219 2220 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2221 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2222 return -EINVAL; 2223 2224 /* 2225 * We'll remember the old online type of each memory block, so we can 2226 * try to revert whatever we did when offlining one memory block fails 2227 * after offlining some others succeeded. 2228 */ 2229 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2230 GFP_KERNEL); 2231 if (!online_types) 2232 return -ENOMEM; 2233 /* 2234 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2235 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2236 * try_reonline_memory_block(). 2237 */ 2238 memset(online_types, MMOP_OFFLINE, mb_count); 2239 2240 lock_device_hotplug(); 2241 2242 tmp = online_types; 2243 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2244 2245 /* 2246 * In case we succeeded to offline all memory, remove it. 2247 * This cannot fail as it cannot get onlined in the meantime. 2248 */ 2249 if (!rc) { 2250 rc = try_remove_memory(start, size); 2251 if (rc) 2252 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2253 } 2254 2255 /* 2256 * Rollback what we did. While memory onlining might theoretically fail 2257 * (nacked by a notifier), it barely ever happens. 2258 */ 2259 if (rc) { 2260 tmp = online_types; 2261 walk_memory_blocks(start, size, &tmp, 2262 try_reonline_memory_block); 2263 } 2264 unlock_device_hotplug(); 2265 2266 kfree(online_types); 2267 return rc; 2268 } 2269 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2270 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2271