1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static void generic_online_page(struct page *page, unsigned int order); 53 54 static online_page_callback_t online_page_callback = generic_online_page; 55 static DEFINE_MUTEX(online_page_callback_lock); 56 57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 58 59 void get_online_mems(void) 60 { 61 percpu_down_read(&mem_hotplug_lock); 62 } 63 64 void put_online_mems(void) 65 { 66 percpu_up_read(&mem_hotplug_lock); 67 } 68 69 bool movable_node_enabled = false; 70 71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 72 bool memhp_auto_online; 73 #else 74 bool memhp_auto_online = true; 75 #endif 76 EXPORT_SYMBOL_GPL(memhp_auto_online); 77 78 static int __init setup_memhp_default_state(char *str) 79 { 80 if (!strcmp(str, "online")) 81 memhp_auto_online = true; 82 else if (!strcmp(str, "offline")) 83 memhp_auto_online = false; 84 85 return 1; 86 } 87 __setup("memhp_default_state=", setup_memhp_default_state); 88 89 void mem_hotplug_begin(void) 90 { 91 cpus_read_lock(); 92 percpu_down_write(&mem_hotplug_lock); 93 } 94 95 void mem_hotplug_done(void) 96 { 97 percpu_up_write(&mem_hotplug_lock); 98 cpus_read_unlock(); 99 } 100 101 u64 max_mem_size = U64_MAX; 102 103 /* add this memory to iomem resource */ 104 static struct resource *register_memory_resource(u64 start, u64 size) 105 { 106 struct resource *res; 107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 108 char *resource_name = "System RAM"; 109 110 if (start + size > max_mem_size) 111 return ERR_PTR(-E2BIG); 112 113 /* 114 * Request ownership of the new memory range. This might be 115 * a child of an existing resource that was present but 116 * not marked as busy. 117 */ 118 res = __request_region(&iomem_resource, start, size, 119 resource_name, flags); 120 121 if (!res) { 122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 123 start, start + size); 124 return ERR_PTR(-EEXIST); 125 } 126 return res; 127 } 128 129 static void release_memory_resource(struct resource *res) 130 { 131 if (!res) 132 return; 133 release_resource(res); 134 kfree(res); 135 } 136 137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 138 void get_page_bootmem(unsigned long info, struct page *page, 139 unsigned long type) 140 { 141 page->freelist = (void *)type; 142 SetPagePrivate(page); 143 set_page_private(page, info); 144 page_ref_inc(page); 145 } 146 147 void put_page_bootmem(struct page *page) 148 { 149 unsigned long type; 150 151 type = (unsigned long) page->freelist; 152 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 153 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 154 155 if (page_ref_dec_return(page) == 1) { 156 page->freelist = NULL; 157 ClearPagePrivate(page); 158 set_page_private(page, 0); 159 INIT_LIST_HEAD(&page->lru); 160 free_reserved_page(page); 161 } 162 } 163 164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 165 #ifndef CONFIG_SPARSEMEM_VMEMMAP 166 static void register_page_bootmem_info_section(unsigned long start_pfn) 167 { 168 unsigned long mapsize, section_nr, i; 169 struct mem_section *ms; 170 struct page *page, *memmap; 171 struct mem_section_usage *usage; 172 173 section_nr = pfn_to_section_nr(start_pfn); 174 ms = __nr_to_section(section_nr); 175 176 /* Get section's memmap address */ 177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 178 179 /* 180 * Get page for the memmap's phys address 181 * XXX: need more consideration for sparse_vmemmap... 182 */ 183 page = virt_to_page(memmap); 184 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 186 187 /* remember memmap's page */ 188 for (i = 0; i < mapsize; i++, page++) 189 get_page_bootmem(section_nr, page, SECTION_INFO); 190 191 usage = ms->usage; 192 page = virt_to_page(usage); 193 194 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 195 196 for (i = 0; i < mapsize; i++, page++) 197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 198 199 } 200 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 201 static void register_page_bootmem_info_section(unsigned long start_pfn) 202 { 203 unsigned long mapsize, section_nr, i; 204 struct mem_section *ms; 205 struct page *page, *memmap; 206 struct mem_section_usage *usage; 207 208 section_nr = pfn_to_section_nr(start_pfn); 209 ms = __nr_to_section(section_nr); 210 211 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 212 213 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 214 215 usage = ms->usage; 216 page = virt_to_page(usage); 217 218 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 219 220 for (i = 0; i < mapsize; i++, page++) 221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 222 } 223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 224 225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 226 { 227 unsigned long i, pfn, end_pfn, nr_pages; 228 int node = pgdat->node_id; 229 struct page *page; 230 231 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 232 page = virt_to_page(pgdat); 233 234 for (i = 0; i < nr_pages; i++, page++) 235 get_page_bootmem(node, page, NODE_INFO); 236 237 pfn = pgdat->node_start_pfn; 238 end_pfn = pgdat_end_pfn(pgdat); 239 240 /* register section info */ 241 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 242 /* 243 * Some platforms can assign the same pfn to multiple nodes - on 244 * node0 as well as nodeN. To avoid registering a pfn against 245 * multiple nodes we check that this pfn does not already 246 * reside in some other nodes. 247 */ 248 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 249 register_page_bootmem_info_section(pfn); 250 } 251 } 252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 253 254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 255 const char *reason) 256 { 257 /* 258 * Disallow all operations smaller than a sub-section and only 259 * allow operations smaller than a section for 260 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 261 * enforces a larger memory_block_size_bytes() granularity for 262 * memory that will be marked online, so this check should only 263 * fire for direct arch_{add,remove}_memory() users outside of 264 * add_memory_resource(). 265 */ 266 unsigned long min_align; 267 268 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 269 min_align = PAGES_PER_SUBSECTION; 270 else 271 min_align = PAGES_PER_SECTION; 272 if (!IS_ALIGNED(pfn, min_align) 273 || !IS_ALIGNED(nr_pages, min_align)) { 274 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 275 reason, pfn, pfn + nr_pages - 1); 276 return -EINVAL; 277 } 278 return 0; 279 } 280 281 /* 282 * Reasonably generic function for adding memory. It is 283 * expected that archs that support memory hotplug will 284 * call this function after deciding the zone to which to 285 * add the new pages. 286 */ 287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 288 struct mhp_restrictions *restrictions) 289 { 290 int err; 291 unsigned long nr, start_sec, end_sec; 292 struct vmem_altmap *altmap = restrictions->altmap; 293 294 if (altmap) { 295 /* 296 * Validate altmap is within bounds of the total request 297 */ 298 if (altmap->base_pfn != pfn 299 || vmem_altmap_offset(altmap) > nr_pages) { 300 pr_warn_once("memory add fail, invalid altmap\n"); 301 return -EINVAL; 302 } 303 altmap->alloc = 0; 304 } 305 306 err = check_pfn_span(pfn, nr_pages, "add"); 307 if (err) 308 return err; 309 310 start_sec = pfn_to_section_nr(pfn); 311 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 312 for (nr = start_sec; nr <= end_sec; nr++) { 313 unsigned long pfns; 314 315 pfns = min(nr_pages, PAGES_PER_SECTION 316 - (pfn & ~PAGE_SECTION_MASK)); 317 err = sparse_add_section(nid, pfn, pfns, altmap); 318 if (err) 319 break; 320 pfn += pfns; 321 nr_pages -= pfns; 322 cond_resched(); 323 } 324 vmemmap_populate_print_last(); 325 return err; 326 } 327 328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 330 unsigned long start_pfn, 331 unsigned long end_pfn) 332 { 333 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 334 if (unlikely(!pfn_valid(start_pfn))) 335 continue; 336 337 if (unlikely(pfn_to_nid(start_pfn) != nid)) 338 continue; 339 340 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 341 continue; 342 343 return start_pfn; 344 } 345 346 return 0; 347 } 348 349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 351 unsigned long start_pfn, 352 unsigned long end_pfn) 353 { 354 unsigned long pfn; 355 356 /* pfn is the end pfn of a memory section. */ 357 pfn = end_pfn - 1; 358 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 359 if (unlikely(!pfn_valid(pfn))) 360 continue; 361 362 if (unlikely(pfn_to_nid(pfn) != nid)) 363 continue; 364 365 if (zone && zone != page_zone(pfn_to_page(pfn))) 366 continue; 367 368 return pfn; 369 } 370 371 return 0; 372 } 373 374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 375 unsigned long end_pfn) 376 { 377 unsigned long zone_start_pfn = zone->zone_start_pfn; 378 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 379 unsigned long zone_end_pfn = z; 380 unsigned long pfn; 381 int nid = zone_to_nid(zone); 382 383 zone_span_writelock(zone); 384 if (zone_start_pfn == start_pfn) { 385 /* 386 * If the section is smallest section in the zone, it need 387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 388 * In this case, we find second smallest valid mem_section 389 * for shrinking zone. 390 */ 391 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 392 zone_end_pfn); 393 if (pfn) { 394 zone->zone_start_pfn = pfn; 395 zone->spanned_pages = zone_end_pfn - pfn; 396 } 397 } else if (zone_end_pfn == end_pfn) { 398 /* 399 * If the section is biggest section in the zone, it need 400 * shrink zone->spanned_pages. 401 * In this case, we find second biggest valid mem_section for 402 * shrinking zone. 403 */ 404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 405 start_pfn); 406 if (pfn) 407 zone->spanned_pages = pfn - zone_start_pfn + 1; 408 } 409 410 /* 411 * The section is not biggest or smallest mem_section in the zone, it 412 * only creates a hole in the zone. So in this case, we need not 413 * change the zone. But perhaps, the zone has only hole data. Thus 414 * it check the zone has only hole or not. 415 */ 416 pfn = zone_start_pfn; 417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) { 418 if (unlikely(!pfn_valid(pfn))) 419 continue; 420 421 if (page_zone(pfn_to_page(pfn)) != zone) 422 continue; 423 424 /* Skip range to be removed */ 425 if (pfn >= start_pfn && pfn < end_pfn) 426 continue; 427 428 /* If we find valid section, we have nothing to do */ 429 zone_span_writeunlock(zone); 430 return; 431 } 432 433 /* The zone has no valid section */ 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 zone_span_writeunlock(zone); 437 } 438 439 static void shrink_pgdat_span(struct pglist_data *pgdat, 440 unsigned long start_pfn, unsigned long end_pfn) 441 { 442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 444 unsigned long pgdat_end_pfn = p; 445 unsigned long pfn; 446 int nid = pgdat->node_id; 447 448 if (pgdat_start_pfn == start_pfn) { 449 /* 450 * If the section is smallest section in the pgdat, it need 451 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 452 * In this case, we find second smallest valid mem_section 453 * for shrinking zone. 454 */ 455 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 456 pgdat_end_pfn); 457 if (pfn) { 458 pgdat->node_start_pfn = pfn; 459 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 460 } 461 } else if (pgdat_end_pfn == end_pfn) { 462 /* 463 * If the section is biggest section in the pgdat, it need 464 * shrink pgdat->node_spanned_pages. 465 * In this case, we find second biggest valid mem_section for 466 * shrinking zone. 467 */ 468 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 469 start_pfn); 470 if (pfn) 471 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 472 } 473 474 /* 475 * If the section is not biggest or smallest mem_section in the pgdat, 476 * it only creates a hole in the pgdat. So in this case, we need not 477 * change the pgdat. 478 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 479 * has only hole or not. 480 */ 481 pfn = pgdat_start_pfn; 482 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) { 483 if (unlikely(!pfn_valid(pfn))) 484 continue; 485 486 if (pfn_to_nid(pfn) != nid) 487 continue; 488 489 /* Skip range to be removed */ 490 if (pfn >= start_pfn && pfn < end_pfn) 491 continue; 492 493 /* If we find valid section, we have nothing to do */ 494 return; 495 } 496 497 /* The pgdat has no valid section */ 498 pgdat->node_start_pfn = 0; 499 pgdat->node_spanned_pages = 0; 500 } 501 502 static void __remove_zone(struct zone *zone, unsigned long start_pfn, 503 unsigned long nr_pages) 504 { 505 struct pglist_data *pgdat = zone->zone_pgdat; 506 unsigned long flags; 507 508 pgdat_resize_lock(zone->zone_pgdat, &flags); 509 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 510 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 511 pgdat_resize_unlock(zone->zone_pgdat, &flags); 512 } 513 514 static void __remove_section(struct zone *zone, unsigned long pfn, 515 unsigned long nr_pages, unsigned long map_offset, 516 struct vmem_altmap *altmap) 517 { 518 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn)); 519 520 if (WARN_ON_ONCE(!valid_section(ms))) 521 return; 522 523 __remove_zone(zone, pfn, nr_pages); 524 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 525 } 526 527 /** 528 * __remove_pages() - remove sections of pages from a zone 529 * @zone: zone from which pages need to be removed 530 * @pfn: starting pageframe (must be aligned to start of a section) 531 * @nr_pages: number of pages to remove (must be multiple of section size) 532 * @altmap: alternative device page map or %NULL if default memmap is used 533 * 534 * Generic helper function to remove section mappings and sysfs entries 535 * for the section of the memory we are removing. Caller needs to make 536 * sure that pages are marked reserved and zones are adjust properly by 537 * calling offline_pages(). 538 */ 539 void __remove_pages(struct zone *zone, unsigned long pfn, 540 unsigned long nr_pages, struct vmem_altmap *altmap) 541 { 542 unsigned long map_offset = 0; 543 unsigned long nr, start_sec, end_sec; 544 545 map_offset = vmem_altmap_offset(altmap); 546 547 clear_zone_contiguous(zone); 548 549 if (check_pfn_span(pfn, nr_pages, "remove")) 550 return; 551 552 start_sec = pfn_to_section_nr(pfn); 553 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 554 for (nr = start_sec; nr <= end_sec; nr++) { 555 unsigned long pfns; 556 557 cond_resched(); 558 pfns = min(nr_pages, PAGES_PER_SECTION 559 - (pfn & ~PAGE_SECTION_MASK)); 560 __remove_section(zone, pfn, pfns, map_offset, altmap); 561 pfn += pfns; 562 nr_pages -= pfns; 563 map_offset = 0; 564 } 565 566 set_zone_contiguous(zone); 567 } 568 569 int set_online_page_callback(online_page_callback_t callback) 570 { 571 int rc = -EINVAL; 572 573 get_online_mems(); 574 mutex_lock(&online_page_callback_lock); 575 576 if (online_page_callback == generic_online_page) { 577 online_page_callback = callback; 578 rc = 0; 579 } 580 581 mutex_unlock(&online_page_callback_lock); 582 put_online_mems(); 583 584 return rc; 585 } 586 EXPORT_SYMBOL_GPL(set_online_page_callback); 587 588 int restore_online_page_callback(online_page_callback_t callback) 589 { 590 int rc = -EINVAL; 591 592 get_online_mems(); 593 mutex_lock(&online_page_callback_lock); 594 595 if (online_page_callback == callback) { 596 online_page_callback = generic_online_page; 597 rc = 0; 598 } 599 600 mutex_unlock(&online_page_callback_lock); 601 put_online_mems(); 602 603 return rc; 604 } 605 EXPORT_SYMBOL_GPL(restore_online_page_callback); 606 607 void __online_page_set_limits(struct page *page) 608 { 609 } 610 EXPORT_SYMBOL_GPL(__online_page_set_limits); 611 612 void __online_page_increment_counters(struct page *page) 613 { 614 adjust_managed_page_count(page, 1); 615 } 616 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 617 618 void __online_page_free(struct page *page) 619 { 620 __free_reserved_page(page); 621 } 622 EXPORT_SYMBOL_GPL(__online_page_free); 623 624 static void generic_online_page(struct page *page, unsigned int order) 625 { 626 kernel_map_pages(page, 1 << order, 1); 627 __free_pages_core(page, order); 628 totalram_pages_add(1UL << order); 629 #ifdef CONFIG_HIGHMEM 630 if (PageHighMem(page)) 631 totalhigh_pages_add(1UL << order); 632 #endif 633 } 634 635 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 636 void *arg) 637 { 638 const unsigned long end_pfn = start_pfn + nr_pages; 639 unsigned long pfn; 640 int order; 641 642 /* 643 * Online the pages. The callback might decide to keep some pages 644 * PG_reserved (to add them to the buddy later), but we still account 645 * them as being online/belonging to this zone ("present"). 646 */ 647 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) { 648 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn))); 649 /* __free_pages_core() wants pfns to be aligned to the order */ 650 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order))) 651 order = 0; 652 (*online_page_callback)(pfn_to_page(pfn), order); 653 } 654 655 /* mark all involved sections as online */ 656 online_mem_sections(start_pfn, end_pfn); 657 658 *(unsigned long *)arg += nr_pages; 659 return 0; 660 } 661 662 /* check which state of node_states will be changed when online memory */ 663 static void node_states_check_changes_online(unsigned long nr_pages, 664 struct zone *zone, struct memory_notify *arg) 665 { 666 int nid = zone_to_nid(zone); 667 668 arg->status_change_nid = NUMA_NO_NODE; 669 arg->status_change_nid_normal = NUMA_NO_NODE; 670 arg->status_change_nid_high = NUMA_NO_NODE; 671 672 if (!node_state(nid, N_MEMORY)) 673 arg->status_change_nid = nid; 674 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 675 arg->status_change_nid_normal = nid; 676 #ifdef CONFIG_HIGHMEM 677 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 678 arg->status_change_nid_high = nid; 679 #endif 680 } 681 682 static void node_states_set_node(int node, struct memory_notify *arg) 683 { 684 if (arg->status_change_nid_normal >= 0) 685 node_set_state(node, N_NORMAL_MEMORY); 686 687 if (arg->status_change_nid_high >= 0) 688 node_set_state(node, N_HIGH_MEMORY); 689 690 if (arg->status_change_nid >= 0) 691 node_set_state(node, N_MEMORY); 692 } 693 694 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 695 unsigned long nr_pages) 696 { 697 unsigned long old_end_pfn = zone_end_pfn(zone); 698 699 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 700 zone->zone_start_pfn = start_pfn; 701 702 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 703 } 704 705 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 706 unsigned long nr_pages) 707 { 708 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 709 710 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 711 pgdat->node_start_pfn = start_pfn; 712 713 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 714 715 } 716 /* 717 * Associate the pfn range with the given zone, initializing the memmaps 718 * and resizing the pgdat/zone data to span the added pages. After this 719 * call, all affected pages are PG_reserved. 720 */ 721 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 722 unsigned long nr_pages, struct vmem_altmap *altmap) 723 { 724 struct pglist_data *pgdat = zone->zone_pgdat; 725 int nid = pgdat->node_id; 726 unsigned long flags; 727 728 clear_zone_contiguous(zone); 729 730 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 731 pgdat_resize_lock(pgdat, &flags); 732 zone_span_writelock(zone); 733 if (zone_is_empty(zone)) 734 init_currently_empty_zone(zone, start_pfn, nr_pages); 735 resize_zone_range(zone, start_pfn, nr_pages); 736 zone_span_writeunlock(zone); 737 resize_pgdat_range(pgdat, start_pfn, nr_pages); 738 pgdat_resize_unlock(pgdat, &flags); 739 740 /* 741 * TODO now we have a visible range of pages which are not associated 742 * with their zone properly. Not nice but set_pfnblock_flags_mask 743 * expects the zone spans the pfn range. All the pages in the range 744 * are reserved so nobody should be touching them so we should be safe 745 */ 746 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 747 MEMMAP_HOTPLUG, altmap); 748 749 set_zone_contiguous(zone); 750 } 751 752 /* 753 * Returns a default kernel memory zone for the given pfn range. 754 * If no kernel zone covers this pfn range it will automatically go 755 * to the ZONE_NORMAL. 756 */ 757 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 758 unsigned long nr_pages) 759 { 760 struct pglist_data *pgdat = NODE_DATA(nid); 761 int zid; 762 763 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 764 struct zone *zone = &pgdat->node_zones[zid]; 765 766 if (zone_intersects(zone, start_pfn, nr_pages)) 767 return zone; 768 } 769 770 return &pgdat->node_zones[ZONE_NORMAL]; 771 } 772 773 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 774 unsigned long nr_pages) 775 { 776 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 777 nr_pages); 778 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 779 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 780 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 781 782 /* 783 * We inherit the existing zone in a simple case where zones do not 784 * overlap in the given range 785 */ 786 if (in_kernel ^ in_movable) 787 return (in_kernel) ? kernel_zone : movable_zone; 788 789 /* 790 * If the range doesn't belong to any zone or two zones overlap in the 791 * given range then we use movable zone only if movable_node is 792 * enabled because we always online to a kernel zone by default. 793 */ 794 return movable_node_enabled ? movable_zone : kernel_zone; 795 } 796 797 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 798 unsigned long nr_pages) 799 { 800 if (online_type == MMOP_ONLINE_KERNEL) 801 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 802 803 if (online_type == MMOP_ONLINE_MOVABLE) 804 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 805 806 return default_zone_for_pfn(nid, start_pfn, nr_pages); 807 } 808 809 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 810 { 811 unsigned long flags; 812 unsigned long onlined_pages = 0; 813 struct zone *zone; 814 int need_zonelists_rebuild = 0; 815 int nid; 816 int ret; 817 struct memory_notify arg; 818 struct memory_block *mem; 819 820 mem_hotplug_begin(); 821 822 /* 823 * We can't use pfn_to_nid() because nid might be stored in struct page 824 * which is not yet initialized. Instead, we find nid from memory block. 825 */ 826 mem = find_memory_block(__pfn_to_section(pfn)); 827 nid = mem->nid; 828 put_device(&mem->dev); 829 830 /* associate pfn range with the zone */ 831 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages); 832 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL); 833 834 arg.start_pfn = pfn; 835 arg.nr_pages = nr_pages; 836 node_states_check_changes_online(nr_pages, zone, &arg); 837 838 ret = memory_notify(MEM_GOING_ONLINE, &arg); 839 ret = notifier_to_errno(ret); 840 if (ret) 841 goto failed_addition; 842 843 /* 844 * If this zone is not populated, then it is not in zonelist. 845 * This means the page allocator ignores this zone. 846 * So, zonelist must be updated after online. 847 */ 848 if (!populated_zone(zone)) { 849 need_zonelists_rebuild = 1; 850 setup_zone_pageset(zone); 851 } 852 853 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 854 online_pages_range); 855 if (ret) { 856 /* not a single memory resource was applicable */ 857 if (need_zonelists_rebuild) 858 zone_pcp_reset(zone); 859 goto failed_addition; 860 } 861 862 zone->present_pages += onlined_pages; 863 864 pgdat_resize_lock(zone->zone_pgdat, &flags); 865 zone->zone_pgdat->node_present_pages += onlined_pages; 866 pgdat_resize_unlock(zone->zone_pgdat, &flags); 867 868 shuffle_zone(zone); 869 870 node_states_set_node(nid, &arg); 871 if (need_zonelists_rebuild) 872 build_all_zonelists(NULL); 873 else 874 zone_pcp_update(zone); 875 876 init_per_zone_wmark_min(); 877 878 kswapd_run(nid); 879 kcompactd_run(nid); 880 881 vm_total_pages = nr_free_pagecache_pages(); 882 883 writeback_set_ratelimit(); 884 885 memory_notify(MEM_ONLINE, &arg); 886 mem_hotplug_done(); 887 return 0; 888 889 failed_addition: 890 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 891 (unsigned long long) pfn << PAGE_SHIFT, 892 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 893 memory_notify(MEM_CANCEL_ONLINE, &arg); 894 mem_hotplug_done(); 895 return ret; 896 } 897 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 898 899 static void reset_node_present_pages(pg_data_t *pgdat) 900 { 901 struct zone *z; 902 903 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 904 z->present_pages = 0; 905 906 pgdat->node_present_pages = 0; 907 } 908 909 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 910 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 911 { 912 struct pglist_data *pgdat; 913 unsigned long start_pfn = PFN_DOWN(start); 914 915 pgdat = NODE_DATA(nid); 916 if (!pgdat) { 917 pgdat = arch_alloc_nodedata(nid); 918 if (!pgdat) 919 return NULL; 920 921 pgdat->per_cpu_nodestats = 922 alloc_percpu(struct per_cpu_nodestat); 923 arch_refresh_nodedata(nid, pgdat); 924 } else { 925 int cpu; 926 /* 927 * Reset the nr_zones, order and classzone_idx before reuse. 928 * Note that kswapd will init kswapd_classzone_idx properly 929 * when it starts in the near future. 930 */ 931 pgdat->nr_zones = 0; 932 pgdat->kswapd_order = 0; 933 pgdat->kswapd_classzone_idx = 0; 934 for_each_online_cpu(cpu) { 935 struct per_cpu_nodestat *p; 936 937 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 938 memset(p, 0, sizeof(*p)); 939 } 940 } 941 942 /* we can use NODE_DATA(nid) from here */ 943 944 pgdat->node_id = nid; 945 pgdat->node_start_pfn = start_pfn; 946 947 /* init node's zones as empty zones, we don't have any present pages.*/ 948 free_area_init_core_hotplug(nid); 949 950 /* 951 * The node we allocated has no zone fallback lists. For avoiding 952 * to access not-initialized zonelist, build here. 953 */ 954 build_all_zonelists(pgdat); 955 956 /* 957 * When memory is hot-added, all the memory is in offline state. So 958 * clear all zones' present_pages because they will be updated in 959 * online_pages() and offline_pages(). 960 */ 961 reset_node_managed_pages(pgdat); 962 reset_node_present_pages(pgdat); 963 964 return pgdat; 965 } 966 967 static void rollback_node_hotadd(int nid) 968 { 969 pg_data_t *pgdat = NODE_DATA(nid); 970 971 arch_refresh_nodedata(nid, NULL); 972 free_percpu(pgdat->per_cpu_nodestats); 973 arch_free_nodedata(pgdat); 974 } 975 976 977 /** 978 * try_online_node - online a node if offlined 979 * @nid: the node ID 980 * @start: start addr of the node 981 * @set_node_online: Whether we want to online the node 982 * called by cpu_up() to online a node without onlined memory. 983 * 984 * Returns: 985 * 1 -> a new node has been allocated 986 * 0 -> the node is already online 987 * -ENOMEM -> the node could not be allocated 988 */ 989 static int __try_online_node(int nid, u64 start, bool set_node_online) 990 { 991 pg_data_t *pgdat; 992 int ret = 1; 993 994 if (node_online(nid)) 995 return 0; 996 997 pgdat = hotadd_new_pgdat(nid, start); 998 if (!pgdat) { 999 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1000 ret = -ENOMEM; 1001 goto out; 1002 } 1003 1004 if (set_node_online) { 1005 node_set_online(nid); 1006 ret = register_one_node(nid); 1007 BUG_ON(ret); 1008 } 1009 out: 1010 return ret; 1011 } 1012 1013 /* 1014 * Users of this function always want to online/register the node 1015 */ 1016 int try_online_node(int nid) 1017 { 1018 int ret; 1019 1020 mem_hotplug_begin(); 1021 ret = __try_online_node(nid, 0, true); 1022 mem_hotplug_done(); 1023 return ret; 1024 } 1025 1026 static int check_hotplug_memory_range(u64 start, u64 size) 1027 { 1028 /* memory range must be block size aligned */ 1029 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1030 !IS_ALIGNED(size, memory_block_size_bytes())) { 1031 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1032 memory_block_size_bytes(), start, size); 1033 return -EINVAL; 1034 } 1035 1036 return 0; 1037 } 1038 1039 static int online_memory_block(struct memory_block *mem, void *arg) 1040 { 1041 return device_online(&mem->dev); 1042 } 1043 1044 /* 1045 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1046 * and online/offline operations (triggered e.g. by sysfs). 1047 * 1048 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1049 */ 1050 int __ref add_memory_resource(int nid, struct resource *res) 1051 { 1052 struct mhp_restrictions restrictions = {}; 1053 u64 start, size; 1054 bool new_node = false; 1055 int ret; 1056 1057 start = res->start; 1058 size = resource_size(res); 1059 1060 ret = check_hotplug_memory_range(start, size); 1061 if (ret) 1062 return ret; 1063 1064 mem_hotplug_begin(); 1065 1066 /* 1067 * Add new range to memblock so that when hotadd_new_pgdat() is called 1068 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1069 * this new range and calculate total pages correctly. The range will 1070 * be removed at hot-remove time. 1071 */ 1072 memblock_add_node(start, size, nid); 1073 1074 ret = __try_online_node(nid, start, false); 1075 if (ret < 0) 1076 goto error; 1077 new_node = ret; 1078 1079 /* call arch's memory hotadd */ 1080 ret = arch_add_memory(nid, start, size, &restrictions); 1081 if (ret < 0) 1082 goto error; 1083 1084 /* create memory block devices after memory was added */ 1085 ret = create_memory_block_devices(start, size); 1086 if (ret) { 1087 arch_remove_memory(nid, start, size, NULL); 1088 goto error; 1089 } 1090 1091 if (new_node) { 1092 /* If sysfs file of new node can't be created, cpu on the node 1093 * can't be hot-added. There is no rollback way now. 1094 * So, check by BUG_ON() to catch it reluctantly.. 1095 * We online node here. We can't roll back from here. 1096 */ 1097 node_set_online(nid); 1098 ret = __register_one_node(nid); 1099 BUG_ON(ret); 1100 } 1101 1102 /* link memory sections under this node.*/ 1103 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1104 BUG_ON(ret); 1105 1106 /* create new memmap entry */ 1107 firmware_map_add_hotplug(start, start + size, "System RAM"); 1108 1109 /* device_online() will take the lock when calling online_pages() */ 1110 mem_hotplug_done(); 1111 1112 /* online pages if requested */ 1113 if (memhp_auto_online) 1114 walk_memory_blocks(start, size, NULL, online_memory_block); 1115 1116 return ret; 1117 error: 1118 /* rollback pgdat allocation and others */ 1119 if (new_node) 1120 rollback_node_hotadd(nid); 1121 memblock_remove(start, size); 1122 mem_hotplug_done(); 1123 return ret; 1124 } 1125 1126 /* requires device_hotplug_lock, see add_memory_resource() */ 1127 int __ref __add_memory(int nid, u64 start, u64 size) 1128 { 1129 struct resource *res; 1130 int ret; 1131 1132 res = register_memory_resource(start, size); 1133 if (IS_ERR(res)) 1134 return PTR_ERR(res); 1135 1136 ret = add_memory_resource(nid, res); 1137 if (ret < 0) 1138 release_memory_resource(res); 1139 return ret; 1140 } 1141 1142 int add_memory(int nid, u64 start, u64 size) 1143 { 1144 int rc; 1145 1146 lock_device_hotplug(); 1147 rc = __add_memory(nid, start, size); 1148 unlock_device_hotplug(); 1149 1150 return rc; 1151 } 1152 EXPORT_SYMBOL_GPL(add_memory); 1153 1154 #ifdef CONFIG_MEMORY_HOTREMOVE 1155 /* 1156 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1157 * set and the size of the free page is given by page_order(). Using this, 1158 * the function determines if the pageblock contains only free pages. 1159 * Due to buddy contraints, a free page at least the size of a pageblock will 1160 * be located at the start of the pageblock 1161 */ 1162 static inline int pageblock_free(struct page *page) 1163 { 1164 return PageBuddy(page) && page_order(page) >= pageblock_order; 1165 } 1166 1167 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1168 static unsigned long next_active_pageblock(unsigned long pfn) 1169 { 1170 struct page *page = pfn_to_page(pfn); 1171 1172 /* Ensure the starting page is pageblock-aligned */ 1173 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1174 1175 /* If the entire pageblock is free, move to the end of free page */ 1176 if (pageblock_free(page)) { 1177 int order; 1178 /* be careful. we don't have locks, page_order can be changed.*/ 1179 order = page_order(page); 1180 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1181 return pfn + (1 << order); 1182 } 1183 1184 return pfn + pageblock_nr_pages; 1185 } 1186 1187 static bool is_pageblock_removable_nolock(unsigned long pfn) 1188 { 1189 struct page *page = pfn_to_page(pfn); 1190 struct zone *zone; 1191 1192 /* 1193 * We have to be careful here because we are iterating over memory 1194 * sections which are not zone aware so we might end up outside of 1195 * the zone but still within the section. 1196 * We have to take care about the node as well. If the node is offline 1197 * its NODE_DATA will be NULL - see page_zone. 1198 */ 1199 if (!node_online(page_to_nid(page))) 1200 return false; 1201 1202 zone = page_zone(page); 1203 pfn = page_to_pfn(page); 1204 if (!zone_spans_pfn(zone, pfn)) 1205 return false; 1206 1207 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1208 } 1209 1210 /* Checks if this range of memory is likely to be hot-removable. */ 1211 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1212 { 1213 unsigned long end_pfn, pfn; 1214 1215 end_pfn = min(start_pfn + nr_pages, 1216 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1217 1218 /* Check the starting page of each pageblock within the range */ 1219 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1220 if (!is_pageblock_removable_nolock(pfn)) 1221 return false; 1222 cond_resched(); 1223 } 1224 1225 /* All pageblocks in the memory block are likely to be hot-removable */ 1226 return true; 1227 } 1228 1229 /* 1230 * Confirm all pages in a range [start, end) belong to the same zone. 1231 * When true, return its valid [start, end). 1232 */ 1233 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1234 unsigned long *valid_start, unsigned long *valid_end) 1235 { 1236 unsigned long pfn, sec_end_pfn; 1237 unsigned long start, end; 1238 struct zone *zone = NULL; 1239 struct page *page; 1240 int i; 1241 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1242 pfn < end_pfn; 1243 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1244 /* Make sure the memory section is present first */ 1245 if (!present_section_nr(pfn_to_section_nr(pfn))) 1246 continue; 1247 for (; pfn < sec_end_pfn && pfn < end_pfn; 1248 pfn += MAX_ORDER_NR_PAGES) { 1249 i = 0; 1250 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1251 while ((i < MAX_ORDER_NR_PAGES) && 1252 !pfn_valid_within(pfn + i)) 1253 i++; 1254 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1255 continue; 1256 /* Check if we got outside of the zone */ 1257 if (zone && !zone_spans_pfn(zone, pfn + i)) 1258 return 0; 1259 page = pfn_to_page(pfn + i); 1260 if (zone && page_zone(page) != zone) 1261 return 0; 1262 if (!zone) 1263 start = pfn + i; 1264 zone = page_zone(page); 1265 end = pfn + MAX_ORDER_NR_PAGES; 1266 } 1267 } 1268 1269 if (zone) { 1270 *valid_start = start; 1271 *valid_end = min(end, end_pfn); 1272 return 1; 1273 } else { 1274 return 0; 1275 } 1276 } 1277 1278 /* 1279 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1280 * non-lru movable pages and hugepages). We scan pfn because it's much 1281 * easier than scanning over linked list. This function returns the pfn 1282 * of the first found movable page if it's found, otherwise 0. 1283 */ 1284 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1285 { 1286 unsigned long pfn; 1287 1288 for (pfn = start; pfn < end; pfn++) { 1289 struct page *page, *head; 1290 unsigned long skip; 1291 1292 if (!pfn_valid(pfn)) 1293 continue; 1294 page = pfn_to_page(pfn); 1295 if (PageLRU(page)) 1296 return pfn; 1297 if (__PageMovable(page)) 1298 return pfn; 1299 1300 if (!PageHuge(page)) 1301 continue; 1302 head = compound_head(page); 1303 if (page_huge_active(head)) 1304 return pfn; 1305 skip = compound_nr(head) - (page - head); 1306 pfn += skip - 1; 1307 } 1308 return 0; 1309 } 1310 1311 static struct page *new_node_page(struct page *page, unsigned long private) 1312 { 1313 int nid = page_to_nid(page); 1314 nodemask_t nmask = node_states[N_MEMORY]; 1315 1316 /* 1317 * try to allocate from a different node but reuse this node if there 1318 * are no other online nodes to be used (e.g. we are offlining a part 1319 * of the only existing node) 1320 */ 1321 node_clear(nid, nmask); 1322 if (nodes_empty(nmask)) 1323 node_set(nid, nmask); 1324 1325 return new_page_nodemask(page, nid, &nmask); 1326 } 1327 1328 static int 1329 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1330 { 1331 unsigned long pfn; 1332 struct page *page; 1333 int ret = 0; 1334 LIST_HEAD(source); 1335 1336 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1337 if (!pfn_valid(pfn)) 1338 continue; 1339 page = pfn_to_page(pfn); 1340 1341 if (PageHuge(page)) { 1342 struct page *head = compound_head(page); 1343 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1344 isolate_huge_page(head, &source); 1345 continue; 1346 } else if (PageTransHuge(page)) 1347 pfn = page_to_pfn(compound_head(page)) 1348 + hpage_nr_pages(page) - 1; 1349 1350 /* 1351 * HWPoison pages have elevated reference counts so the migration would 1352 * fail on them. It also doesn't make any sense to migrate them in the 1353 * first place. Still try to unmap such a page in case it is still mapped 1354 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1355 * the unmap as the catch all safety net). 1356 */ 1357 if (PageHWPoison(page)) { 1358 if (WARN_ON(PageLRU(page))) 1359 isolate_lru_page(page); 1360 if (page_mapped(page)) 1361 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1362 continue; 1363 } 1364 1365 if (!get_page_unless_zero(page)) 1366 continue; 1367 /* 1368 * We can skip free pages. And we can deal with pages on 1369 * LRU and non-lru movable pages. 1370 */ 1371 if (PageLRU(page)) 1372 ret = isolate_lru_page(page); 1373 else 1374 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1375 if (!ret) { /* Success */ 1376 list_add_tail(&page->lru, &source); 1377 if (!__PageMovable(page)) 1378 inc_node_page_state(page, NR_ISOLATED_ANON + 1379 page_is_file_cache(page)); 1380 1381 } else { 1382 pr_warn("failed to isolate pfn %lx\n", pfn); 1383 dump_page(page, "isolation failed"); 1384 } 1385 put_page(page); 1386 } 1387 if (!list_empty(&source)) { 1388 /* Allocate a new page from the nearest neighbor node */ 1389 ret = migrate_pages(&source, new_node_page, NULL, 0, 1390 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1391 if (ret) { 1392 list_for_each_entry(page, &source, lru) { 1393 pr_warn("migrating pfn %lx failed ret:%d ", 1394 page_to_pfn(page), ret); 1395 dump_page(page, "migration failure"); 1396 } 1397 putback_movable_pages(&source); 1398 } 1399 } 1400 1401 return ret; 1402 } 1403 1404 /* 1405 * remove from free_area[] and mark all as Reserved. 1406 */ 1407 static int 1408 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1409 void *data) 1410 { 1411 unsigned long *offlined_pages = (unsigned long *)data; 1412 1413 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1414 return 0; 1415 } 1416 1417 /* 1418 * Check all pages in range, recoreded as memory resource, are isolated. 1419 */ 1420 static int 1421 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1422 void *data) 1423 { 1424 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1425 } 1426 1427 static int __init cmdline_parse_movable_node(char *p) 1428 { 1429 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1430 movable_node_enabled = true; 1431 #else 1432 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1433 #endif 1434 return 0; 1435 } 1436 early_param("movable_node", cmdline_parse_movable_node); 1437 1438 /* check which state of node_states will be changed when offline memory */ 1439 static void node_states_check_changes_offline(unsigned long nr_pages, 1440 struct zone *zone, struct memory_notify *arg) 1441 { 1442 struct pglist_data *pgdat = zone->zone_pgdat; 1443 unsigned long present_pages = 0; 1444 enum zone_type zt; 1445 1446 arg->status_change_nid = NUMA_NO_NODE; 1447 arg->status_change_nid_normal = NUMA_NO_NODE; 1448 arg->status_change_nid_high = NUMA_NO_NODE; 1449 1450 /* 1451 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1452 * If the memory to be offline is within the range 1453 * [0..ZONE_NORMAL], and it is the last present memory there, 1454 * the zones in that range will become empty after the offlining, 1455 * thus we can determine that we need to clear the node from 1456 * node_states[N_NORMAL_MEMORY]. 1457 */ 1458 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1459 present_pages += pgdat->node_zones[zt].present_pages; 1460 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1461 arg->status_change_nid_normal = zone_to_nid(zone); 1462 1463 #ifdef CONFIG_HIGHMEM 1464 /* 1465 * node_states[N_HIGH_MEMORY] contains nodes which 1466 * have normal memory or high memory. 1467 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1468 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1469 * we determine that the zones in that range become empty, 1470 * we need to clear the node for N_HIGH_MEMORY. 1471 */ 1472 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1473 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1474 arg->status_change_nid_high = zone_to_nid(zone); 1475 #endif 1476 1477 /* 1478 * We have accounted the pages from [0..ZONE_NORMAL), and 1479 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1480 * as well. 1481 * Here we count the possible pages from ZONE_MOVABLE. 1482 * If after having accounted all the pages, we see that the nr_pages 1483 * to be offlined is over or equal to the accounted pages, 1484 * we know that the node will become empty, and so, we can clear 1485 * it for N_MEMORY as well. 1486 */ 1487 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1488 1489 if (nr_pages >= present_pages) 1490 arg->status_change_nid = zone_to_nid(zone); 1491 } 1492 1493 static void node_states_clear_node(int node, struct memory_notify *arg) 1494 { 1495 if (arg->status_change_nid_normal >= 0) 1496 node_clear_state(node, N_NORMAL_MEMORY); 1497 1498 if (arg->status_change_nid_high >= 0) 1499 node_clear_state(node, N_HIGH_MEMORY); 1500 1501 if (arg->status_change_nid >= 0) 1502 node_clear_state(node, N_MEMORY); 1503 } 1504 1505 static int __ref __offline_pages(unsigned long start_pfn, 1506 unsigned long end_pfn) 1507 { 1508 unsigned long pfn, nr_pages; 1509 unsigned long offlined_pages = 0; 1510 int ret, node, nr_isolate_pageblock; 1511 unsigned long flags; 1512 unsigned long valid_start, valid_end; 1513 struct zone *zone; 1514 struct memory_notify arg; 1515 char *reason; 1516 1517 mem_hotplug_begin(); 1518 1519 /* This makes hotplug much easier...and readable. 1520 we assume this for now. .*/ 1521 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1522 &valid_end)) { 1523 ret = -EINVAL; 1524 reason = "multizone range"; 1525 goto failed_removal; 1526 } 1527 1528 zone = page_zone(pfn_to_page(valid_start)); 1529 node = zone_to_nid(zone); 1530 nr_pages = end_pfn - start_pfn; 1531 1532 /* set above range as isolated */ 1533 ret = start_isolate_page_range(start_pfn, end_pfn, 1534 MIGRATE_MOVABLE, 1535 SKIP_HWPOISON | REPORT_FAILURE); 1536 if (ret < 0) { 1537 reason = "failure to isolate range"; 1538 goto failed_removal; 1539 } 1540 nr_isolate_pageblock = ret; 1541 1542 arg.start_pfn = start_pfn; 1543 arg.nr_pages = nr_pages; 1544 node_states_check_changes_offline(nr_pages, zone, &arg); 1545 1546 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1547 ret = notifier_to_errno(ret); 1548 if (ret) { 1549 reason = "notifier failure"; 1550 goto failed_removal_isolated; 1551 } 1552 1553 do { 1554 for (pfn = start_pfn; pfn;) { 1555 if (signal_pending(current)) { 1556 ret = -EINTR; 1557 reason = "signal backoff"; 1558 goto failed_removal_isolated; 1559 } 1560 1561 cond_resched(); 1562 lru_add_drain_all(); 1563 1564 pfn = scan_movable_pages(pfn, end_pfn); 1565 if (pfn) { 1566 /* 1567 * TODO: fatal migration failures should bail 1568 * out 1569 */ 1570 do_migrate_range(pfn, end_pfn); 1571 } 1572 } 1573 1574 /* 1575 * Dissolve free hugepages in the memory block before doing 1576 * offlining actually in order to make hugetlbfs's object 1577 * counting consistent. 1578 */ 1579 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1580 if (ret) { 1581 reason = "failure to dissolve huge pages"; 1582 goto failed_removal_isolated; 1583 } 1584 /* check again */ 1585 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1586 NULL, check_pages_isolated_cb); 1587 } while (ret); 1588 1589 /* Ok, all of our target is isolated. 1590 We cannot do rollback at this point. */ 1591 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1592 &offlined_pages, offline_isolated_pages_cb); 1593 pr_info("Offlined Pages %ld\n", offlined_pages); 1594 /* 1595 * Onlining will reset pagetype flags and makes migrate type 1596 * MOVABLE, so just need to decrease the number of isolated 1597 * pageblocks zone counter here. 1598 */ 1599 spin_lock_irqsave(&zone->lock, flags); 1600 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1601 spin_unlock_irqrestore(&zone->lock, flags); 1602 1603 /* removal success */ 1604 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1605 zone->present_pages -= offlined_pages; 1606 1607 pgdat_resize_lock(zone->zone_pgdat, &flags); 1608 zone->zone_pgdat->node_present_pages -= offlined_pages; 1609 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1610 1611 init_per_zone_wmark_min(); 1612 1613 if (!populated_zone(zone)) { 1614 zone_pcp_reset(zone); 1615 build_all_zonelists(NULL); 1616 } else 1617 zone_pcp_update(zone); 1618 1619 node_states_clear_node(node, &arg); 1620 if (arg.status_change_nid >= 0) { 1621 kswapd_stop(node); 1622 kcompactd_stop(node); 1623 } 1624 1625 vm_total_pages = nr_free_pagecache_pages(); 1626 writeback_set_ratelimit(); 1627 1628 memory_notify(MEM_OFFLINE, &arg); 1629 mem_hotplug_done(); 1630 return 0; 1631 1632 failed_removal_isolated: 1633 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1634 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1635 failed_removal: 1636 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1637 (unsigned long long) start_pfn << PAGE_SHIFT, 1638 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1639 reason); 1640 /* pushback to free area */ 1641 mem_hotplug_done(); 1642 return ret; 1643 } 1644 1645 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1646 { 1647 return __offline_pages(start_pfn, start_pfn + nr_pages); 1648 } 1649 1650 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1651 { 1652 int ret = !is_memblock_offlined(mem); 1653 1654 if (unlikely(ret)) { 1655 phys_addr_t beginpa, endpa; 1656 1657 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1658 endpa = beginpa + memory_block_size_bytes() - 1; 1659 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1660 &beginpa, &endpa); 1661 1662 return -EBUSY; 1663 } 1664 return 0; 1665 } 1666 1667 static int check_cpu_on_node(pg_data_t *pgdat) 1668 { 1669 int cpu; 1670 1671 for_each_present_cpu(cpu) { 1672 if (cpu_to_node(cpu) == pgdat->node_id) 1673 /* 1674 * the cpu on this node isn't removed, and we can't 1675 * offline this node. 1676 */ 1677 return -EBUSY; 1678 } 1679 1680 return 0; 1681 } 1682 1683 /** 1684 * try_offline_node 1685 * @nid: the node ID 1686 * 1687 * Offline a node if all memory sections and cpus of the node are removed. 1688 * 1689 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1690 * and online/offline operations before this call. 1691 */ 1692 void try_offline_node(int nid) 1693 { 1694 pg_data_t *pgdat = NODE_DATA(nid); 1695 unsigned long start_pfn = pgdat->node_start_pfn; 1696 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1697 unsigned long pfn; 1698 1699 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1700 unsigned long section_nr = pfn_to_section_nr(pfn); 1701 1702 if (!present_section_nr(section_nr)) 1703 continue; 1704 1705 if (pfn_to_nid(pfn) != nid) 1706 continue; 1707 1708 /* 1709 * some memory sections of this node are not removed, and we 1710 * can't offline node now. 1711 */ 1712 return; 1713 } 1714 1715 if (check_cpu_on_node(pgdat)) 1716 return; 1717 1718 /* 1719 * all memory/cpu of this node are removed, we can offline this 1720 * node now. 1721 */ 1722 node_set_offline(nid); 1723 unregister_one_node(nid); 1724 } 1725 EXPORT_SYMBOL(try_offline_node); 1726 1727 static void __release_memory_resource(resource_size_t start, 1728 resource_size_t size) 1729 { 1730 int ret; 1731 1732 /* 1733 * When removing memory in the same granularity as it was added, 1734 * this function never fails. It might only fail if resources 1735 * have to be adjusted or split. We'll ignore the error, as 1736 * removing of memory cannot fail. 1737 */ 1738 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1739 if (ret) { 1740 resource_size_t endres = start + size - 1; 1741 1742 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1743 &start, &endres, ret); 1744 } 1745 } 1746 1747 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1748 { 1749 int rc = 0; 1750 1751 BUG_ON(check_hotplug_memory_range(start, size)); 1752 1753 mem_hotplug_begin(); 1754 1755 /* 1756 * All memory blocks must be offlined before removing memory. Check 1757 * whether all memory blocks in question are offline and return error 1758 * if this is not the case. 1759 */ 1760 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1761 if (rc) 1762 goto done; 1763 1764 /* remove memmap entry */ 1765 firmware_map_remove(start, start + size, "System RAM"); 1766 memblock_free(start, size); 1767 memblock_remove(start, size); 1768 1769 /* remove memory block devices before removing memory */ 1770 remove_memory_block_devices(start, size); 1771 1772 arch_remove_memory(nid, start, size, NULL); 1773 __release_memory_resource(start, size); 1774 1775 try_offline_node(nid); 1776 1777 done: 1778 mem_hotplug_done(); 1779 return rc; 1780 } 1781 1782 /** 1783 * remove_memory 1784 * @nid: the node ID 1785 * @start: physical address of the region to remove 1786 * @size: size of the region to remove 1787 * 1788 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1789 * and online/offline operations before this call, as required by 1790 * try_offline_node(). 1791 */ 1792 void __remove_memory(int nid, u64 start, u64 size) 1793 { 1794 1795 /* 1796 * trigger BUG() if some memory is not offlined prior to calling this 1797 * function 1798 */ 1799 if (try_remove_memory(nid, start, size)) 1800 BUG(); 1801 } 1802 1803 /* 1804 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1805 * some memory is not offline 1806 */ 1807 int remove_memory(int nid, u64 start, u64 size) 1808 { 1809 int rc; 1810 1811 lock_device_hotplug(); 1812 rc = try_remove_memory(nid, start, size); 1813 unlock_device_hotplug(); 1814 1815 return rc; 1816 } 1817 EXPORT_SYMBOL_GPL(remove_memory); 1818 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1819