xref: /linux/mm/memory_hotplug.c (revision 06bd48b6cd97ef3889b68c8e09014d81dbc463f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
74 
75 static int __init setup_memhp_default_state(char *str)
76 {
77 	const int online_type = memhp_online_type_from_str(str);
78 
79 	if (online_type >= 0)
80 		memhp_default_online_type = online_type;
81 
82 	return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85 
86 void mem_hotplug_begin(void)
87 {
88 	cpus_read_lock();
89 	percpu_down_write(&mem_hotplug_lock);
90 }
91 
92 void mem_hotplug_done(void)
93 {
94 	percpu_up_write(&mem_hotplug_lock);
95 	cpus_read_unlock();
96 }
97 
98 u64 max_mem_size = U64_MAX;
99 
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size)
102 {
103 	struct resource *res;
104 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
105 	char *resource_name = "System RAM";
106 
107 	/*
108 	 * Make sure value parsed from 'mem=' only restricts memory adding
109 	 * while booting, so that memory hotplug won't be impacted. Please
110 	 * refer to document of 'mem=' in kernel-parameters.txt for more
111 	 * details.
112 	 */
113 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
114 		return ERR_PTR(-E2BIG);
115 
116 	/*
117 	 * Request ownership of the new memory range.  This might be
118 	 * a child of an existing resource that was present but
119 	 * not marked as busy.
120 	 */
121 	res = __request_region(&iomem_resource, start, size,
122 			       resource_name, flags);
123 
124 	if (!res) {
125 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
126 				start, start + size);
127 		return ERR_PTR(-EEXIST);
128 	}
129 	return res;
130 }
131 
132 static void release_memory_resource(struct resource *res)
133 {
134 	if (!res)
135 		return;
136 	release_resource(res);
137 	kfree(res);
138 }
139 
140 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
141 void get_page_bootmem(unsigned long info,  struct page *page,
142 		      unsigned long type)
143 {
144 	page->freelist = (void *)type;
145 	SetPagePrivate(page);
146 	set_page_private(page, info);
147 	page_ref_inc(page);
148 }
149 
150 void put_page_bootmem(struct page *page)
151 {
152 	unsigned long type;
153 
154 	type = (unsigned long) page->freelist;
155 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
156 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
157 
158 	if (page_ref_dec_return(page) == 1) {
159 		page->freelist = NULL;
160 		ClearPagePrivate(page);
161 		set_page_private(page, 0);
162 		INIT_LIST_HEAD(&page->lru);
163 		free_reserved_page(page);
164 	}
165 }
166 
167 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
168 #ifndef CONFIG_SPARSEMEM_VMEMMAP
169 static void register_page_bootmem_info_section(unsigned long start_pfn)
170 {
171 	unsigned long mapsize, section_nr, i;
172 	struct mem_section *ms;
173 	struct page *page, *memmap;
174 	struct mem_section_usage *usage;
175 
176 	section_nr = pfn_to_section_nr(start_pfn);
177 	ms = __nr_to_section(section_nr);
178 
179 	/* Get section's memmap address */
180 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
181 
182 	/*
183 	 * Get page for the memmap's phys address
184 	 * XXX: need more consideration for sparse_vmemmap...
185 	 */
186 	page = virt_to_page(memmap);
187 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
188 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
189 
190 	/* remember memmap's page */
191 	for (i = 0; i < mapsize; i++, page++)
192 		get_page_bootmem(section_nr, page, SECTION_INFO);
193 
194 	usage = ms->usage;
195 	page = virt_to_page(usage);
196 
197 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
198 
199 	for (i = 0; i < mapsize; i++, page++)
200 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
201 
202 }
203 #else /* CONFIG_SPARSEMEM_VMEMMAP */
204 static void register_page_bootmem_info_section(unsigned long start_pfn)
205 {
206 	unsigned long mapsize, section_nr, i;
207 	struct mem_section *ms;
208 	struct page *page, *memmap;
209 	struct mem_section_usage *usage;
210 
211 	section_nr = pfn_to_section_nr(start_pfn);
212 	ms = __nr_to_section(section_nr);
213 
214 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
215 
216 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
217 
218 	usage = ms->usage;
219 	page = virt_to_page(usage);
220 
221 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
222 
223 	for (i = 0; i < mapsize; i++, page++)
224 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
225 }
226 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
227 
228 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
229 {
230 	unsigned long i, pfn, end_pfn, nr_pages;
231 	int node = pgdat->node_id;
232 	struct page *page;
233 
234 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
235 	page = virt_to_page(pgdat);
236 
237 	for (i = 0; i < nr_pages; i++, page++)
238 		get_page_bootmem(node, page, NODE_INFO);
239 
240 	pfn = pgdat->node_start_pfn;
241 	end_pfn = pgdat_end_pfn(pgdat);
242 
243 	/* register section info */
244 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
245 		/*
246 		 * Some platforms can assign the same pfn to multiple nodes - on
247 		 * node0 as well as nodeN.  To avoid registering a pfn against
248 		 * multiple nodes we check that this pfn does not already
249 		 * reside in some other nodes.
250 		 */
251 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
252 			register_page_bootmem_info_section(pfn);
253 	}
254 }
255 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
256 
257 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
258 		const char *reason)
259 {
260 	/*
261 	 * Disallow all operations smaller than a sub-section and only
262 	 * allow operations smaller than a section for
263 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
264 	 * enforces a larger memory_block_size_bytes() granularity for
265 	 * memory that will be marked online, so this check should only
266 	 * fire for direct arch_{add,remove}_memory() users outside of
267 	 * add_memory_resource().
268 	 */
269 	unsigned long min_align;
270 
271 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
272 		min_align = PAGES_PER_SUBSECTION;
273 	else
274 		min_align = PAGES_PER_SECTION;
275 	if (!IS_ALIGNED(pfn, min_align)
276 			|| !IS_ALIGNED(nr_pages, min_align)) {
277 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
278 				reason, pfn, pfn + nr_pages - 1);
279 		return -EINVAL;
280 	}
281 	return 0;
282 }
283 
284 static int check_hotplug_memory_addressable(unsigned long pfn,
285 					    unsigned long nr_pages)
286 {
287 	const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
288 
289 	if (max_addr >> MAX_PHYSMEM_BITS) {
290 		const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
291 		WARN(1,
292 		     "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
293 		     (u64)PFN_PHYS(pfn), max_addr, max_allowed);
294 		return -E2BIG;
295 	}
296 
297 	return 0;
298 }
299 
300 /*
301  * Reasonably generic function for adding memory.  It is
302  * expected that archs that support memory hotplug will
303  * call this function after deciding the zone to which to
304  * add the new pages.
305  */
306 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
307 		struct mhp_restrictions *restrictions)
308 {
309 	const unsigned long end_pfn = pfn + nr_pages;
310 	unsigned long cur_nr_pages;
311 	int err;
312 	struct vmem_altmap *altmap = restrictions->altmap;
313 
314 	err = check_hotplug_memory_addressable(pfn, nr_pages);
315 	if (err)
316 		return err;
317 
318 	if (altmap) {
319 		/*
320 		 * Validate altmap is within bounds of the total request
321 		 */
322 		if (altmap->base_pfn != pfn
323 				|| vmem_altmap_offset(altmap) > nr_pages) {
324 			pr_warn_once("memory add fail, invalid altmap\n");
325 			return -EINVAL;
326 		}
327 		altmap->alloc = 0;
328 	}
329 
330 	err = check_pfn_span(pfn, nr_pages, "add");
331 	if (err)
332 		return err;
333 
334 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
335 		/* Select all remaining pages up to the next section boundary */
336 		cur_nr_pages = min(end_pfn - pfn,
337 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
338 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
339 		if (err)
340 			break;
341 		cond_resched();
342 	}
343 	vmemmap_populate_print_last();
344 	return err;
345 }
346 
347 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
348 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
349 				     unsigned long start_pfn,
350 				     unsigned long end_pfn)
351 {
352 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
353 		if (unlikely(!pfn_to_online_page(start_pfn)))
354 			continue;
355 
356 		if (unlikely(pfn_to_nid(start_pfn) != nid))
357 			continue;
358 
359 		if (zone != page_zone(pfn_to_page(start_pfn)))
360 			continue;
361 
362 		return start_pfn;
363 	}
364 
365 	return 0;
366 }
367 
368 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
369 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
370 				    unsigned long start_pfn,
371 				    unsigned long end_pfn)
372 {
373 	unsigned long pfn;
374 
375 	/* pfn is the end pfn of a memory section. */
376 	pfn = end_pfn - 1;
377 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
378 		if (unlikely(!pfn_to_online_page(pfn)))
379 			continue;
380 
381 		if (unlikely(pfn_to_nid(pfn) != nid))
382 			continue;
383 
384 		if (zone != page_zone(pfn_to_page(pfn)))
385 			continue;
386 
387 		return pfn;
388 	}
389 
390 	return 0;
391 }
392 
393 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
394 			     unsigned long end_pfn)
395 {
396 	unsigned long pfn;
397 	int nid = zone_to_nid(zone);
398 
399 	zone_span_writelock(zone);
400 	if (zone->zone_start_pfn == start_pfn) {
401 		/*
402 		 * If the section is smallest section in the zone, it need
403 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
404 		 * In this case, we find second smallest valid mem_section
405 		 * for shrinking zone.
406 		 */
407 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
408 						zone_end_pfn(zone));
409 		if (pfn) {
410 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
411 			zone->zone_start_pfn = pfn;
412 		} else {
413 			zone->zone_start_pfn = 0;
414 			zone->spanned_pages = 0;
415 		}
416 	} else if (zone_end_pfn(zone) == end_pfn) {
417 		/*
418 		 * If the section is biggest section in the zone, it need
419 		 * shrink zone->spanned_pages.
420 		 * In this case, we find second biggest valid mem_section for
421 		 * shrinking zone.
422 		 */
423 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
424 					       start_pfn);
425 		if (pfn)
426 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
427 		else {
428 			zone->zone_start_pfn = 0;
429 			zone->spanned_pages = 0;
430 		}
431 	}
432 	zone_span_writeunlock(zone);
433 }
434 
435 static void update_pgdat_span(struct pglist_data *pgdat)
436 {
437 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
438 	struct zone *zone;
439 
440 	for (zone = pgdat->node_zones;
441 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
442 		unsigned long zone_end_pfn = zone->zone_start_pfn +
443 					     zone->spanned_pages;
444 
445 		/* No need to lock the zones, they can't change. */
446 		if (!zone->spanned_pages)
447 			continue;
448 		if (!node_end_pfn) {
449 			node_start_pfn = zone->zone_start_pfn;
450 			node_end_pfn = zone_end_pfn;
451 			continue;
452 		}
453 
454 		if (zone_end_pfn > node_end_pfn)
455 			node_end_pfn = zone_end_pfn;
456 		if (zone->zone_start_pfn < node_start_pfn)
457 			node_start_pfn = zone->zone_start_pfn;
458 	}
459 
460 	pgdat->node_start_pfn = node_start_pfn;
461 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
462 }
463 
464 void __ref remove_pfn_range_from_zone(struct zone *zone,
465 				      unsigned long start_pfn,
466 				      unsigned long nr_pages)
467 {
468 	struct pglist_data *pgdat = zone->zone_pgdat;
469 	unsigned long flags;
470 
471 	/* Poison struct pages because they are now uninitialized again. */
472 	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
473 
474 #ifdef CONFIG_ZONE_DEVICE
475 	/*
476 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
477 	 * we will not try to shrink the zones - which is okay as
478 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
479 	 */
480 	if (zone_idx(zone) == ZONE_DEVICE)
481 		return;
482 #endif
483 
484 	clear_zone_contiguous(zone);
485 
486 	pgdat_resize_lock(zone->zone_pgdat, &flags);
487 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
488 	update_pgdat_span(pgdat);
489 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
490 
491 	set_zone_contiguous(zone);
492 }
493 
494 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
495 			     unsigned long map_offset,
496 			     struct vmem_altmap *altmap)
497 {
498 	struct mem_section *ms = __pfn_to_section(pfn);
499 
500 	if (WARN_ON_ONCE(!valid_section(ms)))
501 		return;
502 
503 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
504 }
505 
506 /**
507  * __remove_pages() - remove sections of pages
508  * @pfn: starting pageframe (must be aligned to start of a section)
509  * @nr_pages: number of pages to remove (must be multiple of section size)
510  * @altmap: alternative device page map or %NULL if default memmap is used
511  *
512  * Generic helper function to remove section mappings and sysfs entries
513  * for the section of the memory we are removing. Caller needs to make
514  * sure that pages are marked reserved and zones are adjust properly by
515  * calling offline_pages().
516  */
517 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
518 		    struct vmem_altmap *altmap)
519 {
520 	const unsigned long end_pfn = pfn + nr_pages;
521 	unsigned long cur_nr_pages;
522 	unsigned long map_offset = 0;
523 
524 	map_offset = vmem_altmap_offset(altmap);
525 
526 	if (check_pfn_span(pfn, nr_pages, "remove"))
527 		return;
528 
529 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
530 		cond_resched();
531 		/* Select all remaining pages up to the next section boundary */
532 		cur_nr_pages = min(end_pfn - pfn,
533 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
534 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
535 		map_offset = 0;
536 	}
537 }
538 
539 int set_online_page_callback(online_page_callback_t callback)
540 {
541 	int rc = -EINVAL;
542 
543 	get_online_mems();
544 	mutex_lock(&online_page_callback_lock);
545 
546 	if (online_page_callback == generic_online_page) {
547 		online_page_callback = callback;
548 		rc = 0;
549 	}
550 
551 	mutex_unlock(&online_page_callback_lock);
552 	put_online_mems();
553 
554 	return rc;
555 }
556 EXPORT_SYMBOL_GPL(set_online_page_callback);
557 
558 int restore_online_page_callback(online_page_callback_t callback)
559 {
560 	int rc = -EINVAL;
561 
562 	get_online_mems();
563 	mutex_lock(&online_page_callback_lock);
564 
565 	if (online_page_callback == callback) {
566 		online_page_callback = generic_online_page;
567 		rc = 0;
568 	}
569 
570 	mutex_unlock(&online_page_callback_lock);
571 	put_online_mems();
572 
573 	return rc;
574 }
575 EXPORT_SYMBOL_GPL(restore_online_page_callback);
576 
577 void generic_online_page(struct page *page, unsigned int order)
578 {
579 	/*
580 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
581 	 * so we should map it first. This is better than introducing a special
582 	 * case in page freeing fast path.
583 	 */
584 	if (debug_pagealloc_enabled_static())
585 		kernel_map_pages(page, 1 << order, 1);
586 	__free_pages_core(page, order);
587 	totalram_pages_add(1UL << order);
588 #ifdef CONFIG_HIGHMEM
589 	if (PageHighMem(page))
590 		totalhigh_pages_add(1UL << order);
591 #endif
592 }
593 EXPORT_SYMBOL_GPL(generic_online_page);
594 
595 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
596 			void *arg)
597 {
598 	const unsigned long end_pfn = start_pfn + nr_pages;
599 	unsigned long pfn;
600 	int order;
601 
602 	/*
603 	 * Online the pages. The callback might decide to keep some pages
604 	 * PG_reserved (to add them to the buddy later), but we still account
605 	 * them as being online/belonging to this zone ("present").
606 	 */
607 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
608 		order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
609 		/* __free_pages_core() wants pfns to be aligned to the order */
610 		if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
611 			order = 0;
612 		(*online_page_callback)(pfn_to_page(pfn), order);
613 	}
614 
615 	/* mark all involved sections as online */
616 	online_mem_sections(start_pfn, end_pfn);
617 
618 	*(unsigned long *)arg += nr_pages;
619 	return 0;
620 }
621 
622 /* check which state of node_states will be changed when online memory */
623 static void node_states_check_changes_online(unsigned long nr_pages,
624 	struct zone *zone, struct memory_notify *arg)
625 {
626 	int nid = zone_to_nid(zone);
627 
628 	arg->status_change_nid = NUMA_NO_NODE;
629 	arg->status_change_nid_normal = NUMA_NO_NODE;
630 	arg->status_change_nid_high = NUMA_NO_NODE;
631 
632 	if (!node_state(nid, N_MEMORY))
633 		arg->status_change_nid = nid;
634 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
635 		arg->status_change_nid_normal = nid;
636 #ifdef CONFIG_HIGHMEM
637 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
638 		arg->status_change_nid_high = nid;
639 #endif
640 }
641 
642 static void node_states_set_node(int node, struct memory_notify *arg)
643 {
644 	if (arg->status_change_nid_normal >= 0)
645 		node_set_state(node, N_NORMAL_MEMORY);
646 
647 	if (arg->status_change_nid_high >= 0)
648 		node_set_state(node, N_HIGH_MEMORY);
649 
650 	if (arg->status_change_nid >= 0)
651 		node_set_state(node, N_MEMORY);
652 }
653 
654 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
655 		unsigned long nr_pages)
656 {
657 	unsigned long old_end_pfn = zone_end_pfn(zone);
658 
659 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
660 		zone->zone_start_pfn = start_pfn;
661 
662 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
663 }
664 
665 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
666                                      unsigned long nr_pages)
667 {
668 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
669 
670 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
671 		pgdat->node_start_pfn = start_pfn;
672 
673 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
674 
675 }
676 /*
677  * Associate the pfn range with the given zone, initializing the memmaps
678  * and resizing the pgdat/zone data to span the added pages. After this
679  * call, all affected pages are PG_reserved.
680  */
681 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
682 		unsigned long nr_pages, struct vmem_altmap *altmap)
683 {
684 	struct pglist_data *pgdat = zone->zone_pgdat;
685 	int nid = pgdat->node_id;
686 	unsigned long flags;
687 
688 	clear_zone_contiguous(zone);
689 
690 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
691 	pgdat_resize_lock(pgdat, &flags);
692 	zone_span_writelock(zone);
693 	if (zone_is_empty(zone))
694 		init_currently_empty_zone(zone, start_pfn, nr_pages);
695 	resize_zone_range(zone, start_pfn, nr_pages);
696 	zone_span_writeunlock(zone);
697 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
698 	pgdat_resize_unlock(pgdat, &flags);
699 
700 	/*
701 	 * TODO now we have a visible range of pages which are not associated
702 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
703 	 * expects the zone spans the pfn range. All the pages in the range
704 	 * are reserved so nobody should be touching them so we should be safe
705 	 */
706 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
707 			MEMMAP_HOTPLUG, altmap);
708 
709 	set_zone_contiguous(zone);
710 }
711 
712 /*
713  * Returns a default kernel memory zone for the given pfn range.
714  * If no kernel zone covers this pfn range it will automatically go
715  * to the ZONE_NORMAL.
716  */
717 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
718 		unsigned long nr_pages)
719 {
720 	struct pglist_data *pgdat = NODE_DATA(nid);
721 	int zid;
722 
723 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
724 		struct zone *zone = &pgdat->node_zones[zid];
725 
726 		if (zone_intersects(zone, start_pfn, nr_pages))
727 			return zone;
728 	}
729 
730 	return &pgdat->node_zones[ZONE_NORMAL];
731 }
732 
733 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
734 		unsigned long nr_pages)
735 {
736 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
737 			nr_pages);
738 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
739 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
740 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
741 
742 	/*
743 	 * We inherit the existing zone in a simple case where zones do not
744 	 * overlap in the given range
745 	 */
746 	if (in_kernel ^ in_movable)
747 		return (in_kernel) ? kernel_zone : movable_zone;
748 
749 	/*
750 	 * If the range doesn't belong to any zone or two zones overlap in the
751 	 * given range then we use movable zone only if movable_node is
752 	 * enabled because we always online to a kernel zone by default.
753 	 */
754 	return movable_node_enabled ? movable_zone : kernel_zone;
755 }
756 
757 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
758 		unsigned long nr_pages)
759 {
760 	if (online_type == MMOP_ONLINE_KERNEL)
761 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
762 
763 	if (online_type == MMOP_ONLINE_MOVABLE)
764 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
765 
766 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
767 }
768 
769 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
770 		       int online_type, int nid)
771 {
772 	unsigned long flags;
773 	unsigned long onlined_pages = 0;
774 	struct zone *zone;
775 	int need_zonelists_rebuild = 0;
776 	int ret;
777 	struct memory_notify arg;
778 
779 	mem_hotplug_begin();
780 
781 	/* associate pfn range with the zone */
782 	zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
783 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
784 
785 	arg.start_pfn = pfn;
786 	arg.nr_pages = nr_pages;
787 	node_states_check_changes_online(nr_pages, zone, &arg);
788 
789 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
790 	ret = notifier_to_errno(ret);
791 	if (ret)
792 		goto failed_addition;
793 
794 	/*
795 	 * If this zone is not populated, then it is not in zonelist.
796 	 * This means the page allocator ignores this zone.
797 	 * So, zonelist must be updated after online.
798 	 */
799 	if (!populated_zone(zone)) {
800 		need_zonelists_rebuild = 1;
801 		setup_zone_pageset(zone);
802 	}
803 
804 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
805 		online_pages_range);
806 	if (ret) {
807 		/* not a single memory resource was applicable */
808 		if (need_zonelists_rebuild)
809 			zone_pcp_reset(zone);
810 		goto failed_addition;
811 	}
812 
813 	zone->present_pages += onlined_pages;
814 
815 	pgdat_resize_lock(zone->zone_pgdat, &flags);
816 	zone->zone_pgdat->node_present_pages += onlined_pages;
817 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
818 
819 	shuffle_zone(zone);
820 
821 	node_states_set_node(nid, &arg);
822 	if (need_zonelists_rebuild)
823 		build_all_zonelists(NULL);
824 	else
825 		zone_pcp_update(zone);
826 
827 	init_per_zone_wmark_min();
828 
829 	kswapd_run(nid);
830 	kcompactd_run(nid);
831 
832 	vm_total_pages = nr_free_pagecache_pages();
833 
834 	writeback_set_ratelimit();
835 
836 	memory_notify(MEM_ONLINE, &arg);
837 	mem_hotplug_done();
838 	return 0;
839 
840 failed_addition:
841 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
842 		 (unsigned long long) pfn << PAGE_SHIFT,
843 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
844 	memory_notify(MEM_CANCEL_ONLINE, &arg);
845 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
846 	mem_hotplug_done();
847 	return ret;
848 }
849 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
850 
851 static void reset_node_present_pages(pg_data_t *pgdat)
852 {
853 	struct zone *z;
854 
855 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
856 		z->present_pages = 0;
857 
858 	pgdat->node_present_pages = 0;
859 }
860 
861 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
862 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
863 {
864 	struct pglist_data *pgdat;
865 	unsigned long start_pfn = PFN_DOWN(start);
866 
867 	pgdat = NODE_DATA(nid);
868 	if (!pgdat) {
869 		pgdat = arch_alloc_nodedata(nid);
870 		if (!pgdat)
871 			return NULL;
872 
873 		pgdat->per_cpu_nodestats =
874 			alloc_percpu(struct per_cpu_nodestat);
875 		arch_refresh_nodedata(nid, pgdat);
876 	} else {
877 		int cpu;
878 		/*
879 		 * Reset the nr_zones, order and classzone_idx before reuse.
880 		 * Note that kswapd will init kswapd_classzone_idx properly
881 		 * when it starts in the near future.
882 		 */
883 		pgdat->nr_zones = 0;
884 		pgdat->kswapd_order = 0;
885 		pgdat->kswapd_classzone_idx = 0;
886 		for_each_online_cpu(cpu) {
887 			struct per_cpu_nodestat *p;
888 
889 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
890 			memset(p, 0, sizeof(*p));
891 		}
892 	}
893 
894 	/* we can use NODE_DATA(nid) from here */
895 
896 	pgdat->node_id = nid;
897 	pgdat->node_start_pfn = start_pfn;
898 
899 	/* init node's zones as empty zones, we don't have any present pages.*/
900 	free_area_init_core_hotplug(nid);
901 
902 	/*
903 	 * The node we allocated has no zone fallback lists. For avoiding
904 	 * to access not-initialized zonelist, build here.
905 	 */
906 	build_all_zonelists(pgdat);
907 
908 	/*
909 	 * When memory is hot-added, all the memory is in offline state. So
910 	 * clear all zones' present_pages because they will be updated in
911 	 * online_pages() and offline_pages().
912 	 */
913 	reset_node_managed_pages(pgdat);
914 	reset_node_present_pages(pgdat);
915 
916 	return pgdat;
917 }
918 
919 static void rollback_node_hotadd(int nid)
920 {
921 	pg_data_t *pgdat = NODE_DATA(nid);
922 
923 	arch_refresh_nodedata(nid, NULL);
924 	free_percpu(pgdat->per_cpu_nodestats);
925 	arch_free_nodedata(pgdat);
926 }
927 
928 
929 /**
930  * try_online_node - online a node if offlined
931  * @nid: the node ID
932  * @start: start addr of the node
933  * @set_node_online: Whether we want to online the node
934  * called by cpu_up() to online a node without onlined memory.
935  *
936  * Returns:
937  * 1 -> a new node has been allocated
938  * 0 -> the node is already online
939  * -ENOMEM -> the node could not be allocated
940  */
941 static int __try_online_node(int nid, u64 start, bool set_node_online)
942 {
943 	pg_data_t *pgdat;
944 	int ret = 1;
945 
946 	if (node_online(nid))
947 		return 0;
948 
949 	pgdat = hotadd_new_pgdat(nid, start);
950 	if (!pgdat) {
951 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
952 		ret = -ENOMEM;
953 		goto out;
954 	}
955 
956 	if (set_node_online) {
957 		node_set_online(nid);
958 		ret = register_one_node(nid);
959 		BUG_ON(ret);
960 	}
961 out:
962 	return ret;
963 }
964 
965 /*
966  * Users of this function always want to online/register the node
967  */
968 int try_online_node(int nid)
969 {
970 	int ret;
971 
972 	mem_hotplug_begin();
973 	ret =  __try_online_node(nid, 0, true);
974 	mem_hotplug_done();
975 	return ret;
976 }
977 
978 static int check_hotplug_memory_range(u64 start, u64 size)
979 {
980 	/* memory range must be block size aligned */
981 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
982 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
983 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
984 		       memory_block_size_bytes(), start, size);
985 		return -EINVAL;
986 	}
987 
988 	return 0;
989 }
990 
991 static int online_memory_block(struct memory_block *mem, void *arg)
992 {
993 	mem->online_type = memhp_default_online_type;
994 	return device_online(&mem->dev);
995 }
996 
997 /*
998  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
999  * and online/offline operations (triggered e.g. by sysfs).
1000  *
1001  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1002  */
1003 int __ref add_memory_resource(int nid, struct resource *res)
1004 {
1005 	struct mhp_restrictions restrictions = {};
1006 	u64 start, size;
1007 	bool new_node = false;
1008 	int ret;
1009 
1010 	start = res->start;
1011 	size = resource_size(res);
1012 
1013 	ret = check_hotplug_memory_range(start, size);
1014 	if (ret)
1015 		return ret;
1016 
1017 	mem_hotplug_begin();
1018 
1019 	/*
1020 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1021 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1022 	 * this new range and calculate total pages correctly.  The range will
1023 	 * be removed at hot-remove time.
1024 	 */
1025 	memblock_add_node(start, size, nid);
1026 
1027 	ret = __try_online_node(nid, start, false);
1028 	if (ret < 0)
1029 		goto error;
1030 	new_node = ret;
1031 
1032 	/* call arch's memory hotadd */
1033 	ret = arch_add_memory(nid, start, size, &restrictions);
1034 	if (ret < 0)
1035 		goto error;
1036 
1037 	/* create memory block devices after memory was added */
1038 	ret = create_memory_block_devices(start, size);
1039 	if (ret) {
1040 		arch_remove_memory(nid, start, size, NULL);
1041 		goto error;
1042 	}
1043 
1044 	if (new_node) {
1045 		/* If sysfs file of new node can't be created, cpu on the node
1046 		 * can't be hot-added. There is no rollback way now.
1047 		 * So, check by BUG_ON() to catch it reluctantly..
1048 		 * We online node here. We can't roll back from here.
1049 		 */
1050 		node_set_online(nid);
1051 		ret = __register_one_node(nid);
1052 		BUG_ON(ret);
1053 	}
1054 
1055 	/* link memory sections under this node.*/
1056 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1057 	BUG_ON(ret);
1058 
1059 	/* create new memmap entry */
1060 	firmware_map_add_hotplug(start, start + size, "System RAM");
1061 
1062 	/* device_online() will take the lock when calling online_pages() */
1063 	mem_hotplug_done();
1064 
1065 	/* online pages if requested */
1066 	if (memhp_default_online_type != MMOP_OFFLINE)
1067 		walk_memory_blocks(start, size, NULL, online_memory_block);
1068 
1069 	return ret;
1070 error:
1071 	/* rollback pgdat allocation and others */
1072 	if (new_node)
1073 		rollback_node_hotadd(nid);
1074 	memblock_remove(start, size);
1075 	mem_hotplug_done();
1076 	return ret;
1077 }
1078 
1079 /* requires device_hotplug_lock, see add_memory_resource() */
1080 int __ref __add_memory(int nid, u64 start, u64 size)
1081 {
1082 	struct resource *res;
1083 	int ret;
1084 
1085 	res = register_memory_resource(start, size);
1086 	if (IS_ERR(res))
1087 		return PTR_ERR(res);
1088 
1089 	ret = add_memory_resource(nid, res);
1090 	if (ret < 0)
1091 		release_memory_resource(res);
1092 	return ret;
1093 }
1094 
1095 int add_memory(int nid, u64 start, u64 size)
1096 {
1097 	int rc;
1098 
1099 	lock_device_hotplug();
1100 	rc = __add_memory(nid, start, size);
1101 	unlock_device_hotplug();
1102 
1103 	return rc;
1104 }
1105 EXPORT_SYMBOL_GPL(add_memory);
1106 
1107 #ifdef CONFIG_MEMORY_HOTREMOVE
1108 /*
1109  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1110  * set and the size of the free page is given by page_order(). Using this,
1111  * the function determines if the pageblock contains only free pages.
1112  * Due to buddy contraints, a free page at least the size of a pageblock will
1113  * be located at the start of the pageblock
1114  */
1115 static inline int pageblock_free(struct page *page)
1116 {
1117 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1118 }
1119 
1120 /* Return the pfn of the start of the next active pageblock after a given pfn */
1121 static unsigned long next_active_pageblock(unsigned long pfn)
1122 {
1123 	struct page *page = pfn_to_page(pfn);
1124 
1125 	/* Ensure the starting page is pageblock-aligned */
1126 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1127 
1128 	/* If the entire pageblock is free, move to the end of free page */
1129 	if (pageblock_free(page)) {
1130 		int order;
1131 		/* be careful. we don't have locks, page_order can be changed.*/
1132 		order = page_order(page);
1133 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1134 			return pfn + (1 << order);
1135 	}
1136 
1137 	return pfn + pageblock_nr_pages;
1138 }
1139 
1140 static bool is_pageblock_removable_nolock(unsigned long pfn)
1141 {
1142 	struct page *page = pfn_to_page(pfn);
1143 	struct zone *zone;
1144 
1145 	/*
1146 	 * We have to be careful here because we are iterating over memory
1147 	 * sections which are not zone aware so we might end up outside of
1148 	 * the zone but still within the section.
1149 	 * We have to take care about the node as well. If the node is offline
1150 	 * its NODE_DATA will be NULL - see page_zone.
1151 	 */
1152 	if (!node_online(page_to_nid(page)))
1153 		return false;
1154 
1155 	zone = page_zone(page);
1156 	pfn = page_to_pfn(page);
1157 	if (!zone_spans_pfn(zone, pfn))
1158 		return false;
1159 
1160 	return !has_unmovable_pages(zone, page, MIGRATE_MOVABLE,
1161 				    MEMORY_OFFLINE);
1162 }
1163 
1164 /* Checks if this range of memory is likely to be hot-removable. */
1165 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1166 {
1167 	unsigned long end_pfn, pfn;
1168 
1169 	end_pfn = min(start_pfn + nr_pages,
1170 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1171 
1172 	/* Check the starting page of each pageblock within the range */
1173 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1174 		if (!is_pageblock_removable_nolock(pfn))
1175 			return false;
1176 		cond_resched();
1177 	}
1178 
1179 	/* All pageblocks in the memory block are likely to be hot-removable */
1180 	return true;
1181 }
1182 
1183 /*
1184  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1185  * memory holes). When true, return the zone.
1186  */
1187 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1188 				  unsigned long end_pfn)
1189 {
1190 	unsigned long pfn, sec_end_pfn;
1191 	struct zone *zone = NULL;
1192 	struct page *page;
1193 	int i;
1194 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1195 	     pfn < end_pfn;
1196 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1197 		/* Make sure the memory section is present first */
1198 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1199 			continue;
1200 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1201 		     pfn += MAX_ORDER_NR_PAGES) {
1202 			i = 0;
1203 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1204 			while ((i < MAX_ORDER_NR_PAGES) &&
1205 				!pfn_valid_within(pfn + i))
1206 				i++;
1207 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1208 				continue;
1209 			/* Check if we got outside of the zone */
1210 			if (zone && !zone_spans_pfn(zone, pfn + i))
1211 				return NULL;
1212 			page = pfn_to_page(pfn + i);
1213 			if (zone && page_zone(page) != zone)
1214 				return NULL;
1215 			zone = page_zone(page);
1216 		}
1217 	}
1218 
1219 	return zone;
1220 }
1221 
1222 /*
1223  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1224  * non-lru movable pages and hugepages). We scan pfn because it's much
1225  * easier than scanning over linked list. This function returns the pfn
1226  * of the first found movable page if it's found, otherwise 0.
1227  */
1228 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1229 {
1230 	unsigned long pfn;
1231 
1232 	for (pfn = start; pfn < end; pfn++) {
1233 		struct page *page, *head;
1234 		unsigned long skip;
1235 
1236 		if (!pfn_valid(pfn))
1237 			continue;
1238 		page = pfn_to_page(pfn);
1239 		if (PageLRU(page))
1240 			return pfn;
1241 		if (__PageMovable(page))
1242 			return pfn;
1243 
1244 		if (!PageHuge(page))
1245 			continue;
1246 		head = compound_head(page);
1247 		if (page_huge_active(head))
1248 			return pfn;
1249 		skip = compound_nr(head) - (page - head);
1250 		pfn += skip - 1;
1251 	}
1252 	return 0;
1253 }
1254 
1255 static struct page *new_node_page(struct page *page, unsigned long private)
1256 {
1257 	int nid = page_to_nid(page);
1258 	nodemask_t nmask = node_states[N_MEMORY];
1259 
1260 	/*
1261 	 * try to allocate from a different node but reuse this node if there
1262 	 * are no other online nodes to be used (e.g. we are offlining a part
1263 	 * of the only existing node)
1264 	 */
1265 	node_clear(nid, nmask);
1266 	if (nodes_empty(nmask))
1267 		node_set(nid, nmask);
1268 
1269 	return new_page_nodemask(page, nid, &nmask);
1270 }
1271 
1272 static int
1273 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1274 {
1275 	unsigned long pfn;
1276 	struct page *page;
1277 	int ret = 0;
1278 	LIST_HEAD(source);
1279 
1280 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1281 		if (!pfn_valid(pfn))
1282 			continue;
1283 		page = pfn_to_page(pfn);
1284 
1285 		if (PageHuge(page)) {
1286 			struct page *head = compound_head(page);
1287 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1288 			isolate_huge_page(head, &source);
1289 			continue;
1290 		} else if (PageTransHuge(page))
1291 			pfn = page_to_pfn(compound_head(page))
1292 				+ hpage_nr_pages(page) - 1;
1293 
1294 		/*
1295 		 * HWPoison pages have elevated reference counts so the migration would
1296 		 * fail on them. It also doesn't make any sense to migrate them in the
1297 		 * first place. Still try to unmap such a page in case it is still mapped
1298 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1299 		 * the unmap as the catch all safety net).
1300 		 */
1301 		if (PageHWPoison(page)) {
1302 			if (WARN_ON(PageLRU(page)))
1303 				isolate_lru_page(page);
1304 			if (page_mapped(page))
1305 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1306 			continue;
1307 		}
1308 
1309 		if (!get_page_unless_zero(page))
1310 			continue;
1311 		/*
1312 		 * We can skip free pages. And we can deal with pages on
1313 		 * LRU and non-lru movable pages.
1314 		 */
1315 		if (PageLRU(page))
1316 			ret = isolate_lru_page(page);
1317 		else
1318 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1319 		if (!ret) { /* Success */
1320 			list_add_tail(&page->lru, &source);
1321 			if (!__PageMovable(page))
1322 				inc_node_page_state(page, NR_ISOLATED_ANON +
1323 						    page_is_file_lru(page));
1324 
1325 		} else {
1326 			pr_warn("failed to isolate pfn %lx\n", pfn);
1327 			dump_page(page, "isolation failed");
1328 		}
1329 		put_page(page);
1330 	}
1331 	if (!list_empty(&source)) {
1332 		/* Allocate a new page from the nearest neighbor node */
1333 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1334 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1335 		if (ret) {
1336 			list_for_each_entry(page, &source, lru) {
1337 				pr_warn("migrating pfn %lx failed ret:%d ",
1338 				       page_to_pfn(page), ret);
1339 				dump_page(page, "migration failure");
1340 			}
1341 			putback_movable_pages(&source);
1342 		}
1343 	}
1344 
1345 	return ret;
1346 }
1347 
1348 /* Mark all sections offline and remove all free pages from the buddy. */
1349 static int
1350 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1351 			void *data)
1352 {
1353 	unsigned long *offlined_pages = (unsigned long *)data;
1354 
1355 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1356 	return 0;
1357 }
1358 
1359 /*
1360  * Check all pages in range, recoreded as memory resource, are isolated.
1361  */
1362 static int
1363 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1364 			void *data)
1365 {
1366 	return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1367 				   MEMORY_OFFLINE);
1368 }
1369 
1370 static int __init cmdline_parse_movable_node(char *p)
1371 {
1372 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1373 	movable_node_enabled = true;
1374 #else
1375 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1376 #endif
1377 	return 0;
1378 }
1379 early_param("movable_node", cmdline_parse_movable_node);
1380 
1381 /* check which state of node_states will be changed when offline memory */
1382 static void node_states_check_changes_offline(unsigned long nr_pages,
1383 		struct zone *zone, struct memory_notify *arg)
1384 {
1385 	struct pglist_data *pgdat = zone->zone_pgdat;
1386 	unsigned long present_pages = 0;
1387 	enum zone_type zt;
1388 
1389 	arg->status_change_nid = NUMA_NO_NODE;
1390 	arg->status_change_nid_normal = NUMA_NO_NODE;
1391 	arg->status_change_nid_high = NUMA_NO_NODE;
1392 
1393 	/*
1394 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1395 	 * If the memory to be offline is within the range
1396 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1397 	 * the zones in that range will become empty after the offlining,
1398 	 * thus we can determine that we need to clear the node from
1399 	 * node_states[N_NORMAL_MEMORY].
1400 	 */
1401 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1402 		present_pages += pgdat->node_zones[zt].present_pages;
1403 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1404 		arg->status_change_nid_normal = zone_to_nid(zone);
1405 
1406 #ifdef CONFIG_HIGHMEM
1407 	/*
1408 	 * node_states[N_HIGH_MEMORY] contains nodes which
1409 	 * have normal memory or high memory.
1410 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1411 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1412 	 * we determine that the zones in that range become empty,
1413 	 * we need to clear the node for N_HIGH_MEMORY.
1414 	 */
1415 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1416 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1417 		arg->status_change_nid_high = zone_to_nid(zone);
1418 #endif
1419 
1420 	/*
1421 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1422 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1423 	 * as well.
1424 	 * Here we count the possible pages from ZONE_MOVABLE.
1425 	 * If after having accounted all the pages, we see that the nr_pages
1426 	 * to be offlined is over or equal to the accounted pages,
1427 	 * we know that the node will become empty, and so, we can clear
1428 	 * it for N_MEMORY as well.
1429 	 */
1430 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1431 
1432 	if (nr_pages >= present_pages)
1433 		arg->status_change_nid = zone_to_nid(zone);
1434 }
1435 
1436 static void node_states_clear_node(int node, struct memory_notify *arg)
1437 {
1438 	if (arg->status_change_nid_normal >= 0)
1439 		node_clear_state(node, N_NORMAL_MEMORY);
1440 
1441 	if (arg->status_change_nid_high >= 0)
1442 		node_clear_state(node, N_HIGH_MEMORY);
1443 
1444 	if (arg->status_change_nid >= 0)
1445 		node_clear_state(node, N_MEMORY);
1446 }
1447 
1448 static int count_system_ram_pages_cb(unsigned long start_pfn,
1449 				     unsigned long nr_pages, void *data)
1450 {
1451 	unsigned long *nr_system_ram_pages = data;
1452 
1453 	*nr_system_ram_pages += nr_pages;
1454 	return 0;
1455 }
1456 
1457 static int __ref __offline_pages(unsigned long start_pfn,
1458 		  unsigned long end_pfn)
1459 {
1460 	unsigned long pfn, nr_pages = 0;
1461 	unsigned long offlined_pages = 0;
1462 	int ret, node, nr_isolate_pageblock;
1463 	unsigned long flags;
1464 	struct zone *zone;
1465 	struct memory_notify arg;
1466 	char *reason;
1467 
1468 	mem_hotplug_begin();
1469 
1470 	/*
1471 	 * Don't allow to offline memory blocks that contain holes.
1472 	 * Consequently, memory blocks with holes can never get onlined
1473 	 * via the hotplug path - online_pages() - as hotplugged memory has
1474 	 * no holes. This way, we e.g., don't have to worry about marking
1475 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1476 	 * avoid using walk_system_ram_range() later.
1477 	 */
1478 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1479 			      count_system_ram_pages_cb);
1480 	if (nr_pages != end_pfn - start_pfn) {
1481 		ret = -EINVAL;
1482 		reason = "memory holes";
1483 		goto failed_removal;
1484 	}
1485 
1486 	/* This makes hotplug much easier...and readable.
1487 	   we assume this for now. .*/
1488 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1489 	if (!zone) {
1490 		ret = -EINVAL;
1491 		reason = "multizone range";
1492 		goto failed_removal;
1493 	}
1494 	node = zone_to_nid(zone);
1495 
1496 	/* set above range as isolated */
1497 	ret = start_isolate_page_range(start_pfn, end_pfn,
1498 				       MIGRATE_MOVABLE,
1499 				       MEMORY_OFFLINE | REPORT_FAILURE);
1500 	if (ret < 0) {
1501 		reason = "failure to isolate range";
1502 		goto failed_removal;
1503 	}
1504 	nr_isolate_pageblock = ret;
1505 
1506 	arg.start_pfn = start_pfn;
1507 	arg.nr_pages = nr_pages;
1508 	node_states_check_changes_offline(nr_pages, zone, &arg);
1509 
1510 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1511 	ret = notifier_to_errno(ret);
1512 	if (ret) {
1513 		reason = "notifier failure";
1514 		goto failed_removal_isolated;
1515 	}
1516 
1517 	do {
1518 		for (pfn = start_pfn; pfn;) {
1519 			if (signal_pending(current)) {
1520 				ret = -EINTR;
1521 				reason = "signal backoff";
1522 				goto failed_removal_isolated;
1523 			}
1524 
1525 			cond_resched();
1526 			lru_add_drain_all();
1527 
1528 			pfn = scan_movable_pages(pfn, end_pfn);
1529 			if (pfn) {
1530 				/*
1531 				 * TODO: fatal migration failures should bail
1532 				 * out
1533 				 */
1534 				do_migrate_range(pfn, end_pfn);
1535 			}
1536 		}
1537 
1538 		/*
1539 		 * Dissolve free hugepages in the memory block before doing
1540 		 * offlining actually in order to make hugetlbfs's object
1541 		 * counting consistent.
1542 		 */
1543 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1544 		if (ret) {
1545 			reason = "failure to dissolve huge pages";
1546 			goto failed_removal_isolated;
1547 		}
1548 		/* check again */
1549 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1550 					    NULL, check_pages_isolated_cb);
1551 	} while (ret);
1552 
1553 	/* Ok, all of our target is isolated.
1554 	   We cannot do rollback at this point. */
1555 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1556 			      &offlined_pages, offline_isolated_pages_cb);
1557 	pr_info("Offlined Pages %ld\n", offlined_pages);
1558 	/*
1559 	 * Onlining will reset pagetype flags and makes migrate type
1560 	 * MOVABLE, so just need to decrease the number of isolated
1561 	 * pageblocks zone counter here.
1562 	 */
1563 	spin_lock_irqsave(&zone->lock, flags);
1564 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1565 	spin_unlock_irqrestore(&zone->lock, flags);
1566 
1567 	/* removal success */
1568 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1569 	zone->present_pages -= offlined_pages;
1570 
1571 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1572 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1573 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1574 
1575 	init_per_zone_wmark_min();
1576 
1577 	if (!populated_zone(zone)) {
1578 		zone_pcp_reset(zone);
1579 		build_all_zonelists(NULL);
1580 	} else
1581 		zone_pcp_update(zone);
1582 
1583 	node_states_clear_node(node, &arg);
1584 	if (arg.status_change_nid >= 0) {
1585 		kswapd_stop(node);
1586 		kcompactd_stop(node);
1587 	}
1588 
1589 	vm_total_pages = nr_free_pagecache_pages();
1590 	writeback_set_ratelimit();
1591 
1592 	memory_notify(MEM_OFFLINE, &arg);
1593 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1594 	mem_hotplug_done();
1595 	return 0;
1596 
1597 failed_removal_isolated:
1598 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1599 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1600 failed_removal:
1601 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1602 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1603 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1604 		 reason);
1605 	/* pushback to free area */
1606 	mem_hotplug_done();
1607 	return ret;
1608 }
1609 
1610 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1611 {
1612 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1613 }
1614 
1615 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1616 {
1617 	int ret = !is_memblock_offlined(mem);
1618 
1619 	if (unlikely(ret)) {
1620 		phys_addr_t beginpa, endpa;
1621 
1622 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1623 		endpa = beginpa + memory_block_size_bytes() - 1;
1624 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1625 			&beginpa, &endpa);
1626 
1627 		return -EBUSY;
1628 	}
1629 	return 0;
1630 }
1631 
1632 static int check_cpu_on_node(pg_data_t *pgdat)
1633 {
1634 	int cpu;
1635 
1636 	for_each_present_cpu(cpu) {
1637 		if (cpu_to_node(cpu) == pgdat->node_id)
1638 			/*
1639 			 * the cpu on this node isn't removed, and we can't
1640 			 * offline this node.
1641 			 */
1642 			return -EBUSY;
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1649 {
1650 	int nid = *(int *)arg;
1651 
1652 	/*
1653 	 * If a memory block belongs to multiple nodes, the stored nid is not
1654 	 * reliable. However, such blocks are always online (e.g., cannot get
1655 	 * offlined) and, therefore, are still spanned by the node.
1656 	 */
1657 	return mem->nid == nid ? -EEXIST : 0;
1658 }
1659 
1660 /**
1661  * try_offline_node
1662  * @nid: the node ID
1663  *
1664  * Offline a node if all memory sections and cpus of the node are removed.
1665  *
1666  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1667  * and online/offline operations before this call.
1668  */
1669 void try_offline_node(int nid)
1670 {
1671 	pg_data_t *pgdat = NODE_DATA(nid);
1672 	int rc;
1673 
1674 	/*
1675 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1676 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1677 	 * e.g., after the memory block was onlined.
1678 	 */
1679 	if (pgdat->node_spanned_pages)
1680 		return;
1681 
1682 	/*
1683 	 * Especially offline memory blocks might not be spanned by the
1684 	 * node. They will get spanned by the node once they get onlined.
1685 	 * However, they link to the node in sysfs and can get onlined later.
1686 	 */
1687 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1688 	if (rc)
1689 		return;
1690 
1691 	if (check_cpu_on_node(pgdat))
1692 		return;
1693 
1694 	/*
1695 	 * all memory/cpu of this node are removed, we can offline this
1696 	 * node now.
1697 	 */
1698 	node_set_offline(nid);
1699 	unregister_one_node(nid);
1700 }
1701 EXPORT_SYMBOL(try_offline_node);
1702 
1703 static void __release_memory_resource(resource_size_t start,
1704 				      resource_size_t size)
1705 {
1706 	int ret;
1707 
1708 	/*
1709 	 * When removing memory in the same granularity as it was added,
1710 	 * this function never fails. It might only fail if resources
1711 	 * have to be adjusted or split. We'll ignore the error, as
1712 	 * removing of memory cannot fail.
1713 	 */
1714 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1715 	if (ret) {
1716 		resource_size_t endres = start + size - 1;
1717 
1718 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1719 			&start, &endres, ret);
1720 	}
1721 }
1722 
1723 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1724 {
1725 	int rc = 0;
1726 
1727 	BUG_ON(check_hotplug_memory_range(start, size));
1728 
1729 	/*
1730 	 * All memory blocks must be offlined before removing memory.  Check
1731 	 * whether all memory blocks in question are offline and return error
1732 	 * if this is not the case.
1733 	 */
1734 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1735 	if (rc)
1736 		goto done;
1737 
1738 	/* remove memmap entry */
1739 	firmware_map_remove(start, start + size, "System RAM");
1740 
1741 	/*
1742 	 * Memory block device removal under the device_hotplug_lock is
1743 	 * a barrier against racing online attempts.
1744 	 */
1745 	remove_memory_block_devices(start, size);
1746 
1747 	mem_hotplug_begin();
1748 
1749 	arch_remove_memory(nid, start, size, NULL);
1750 	memblock_free(start, size);
1751 	memblock_remove(start, size);
1752 	__release_memory_resource(start, size);
1753 
1754 	try_offline_node(nid);
1755 
1756 done:
1757 	mem_hotplug_done();
1758 	return rc;
1759 }
1760 
1761 /**
1762  * remove_memory
1763  * @nid: the node ID
1764  * @start: physical address of the region to remove
1765  * @size: size of the region to remove
1766  *
1767  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1768  * and online/offline operations before this call, as required by
1769  * try_offline_node().
1770  */
1771 void __remove_memory(int nid, u64 start, u64 size)
1772 {
1773 
1774 	/*
1775 	 * trigger BUG() if some memory is not offlined prior to calling this
1776 	 * function
1777 	 */
1778 	if (try_remove_memory(nid, start, size))
1779 		BUG();
1780 }
1781 
1782 /*
1783  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1784  * some memory is not offline
1785  */
1786 int remove_memory(int nid, u64 start, u64 size)
1787 {
1788 	int rc;
1789 
1790 	lock_device_hotplug();
1791 	rc  = try_remove_memory(nid, start, size);
1792 	unlock_device_hotplug();
1793 
1794 	return rc;
1795 }
1796 EXPORT_SYMBOL_GPL(remove_memory);
1797 #endif /* CONFIG_MEMORY_HOTREMOVE */
1798