xref: /linux/mm/memory_hotplug.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/highmem.h>
22 #include <linux/vmalloc.h>
23 #include <linux/ioport.h>
24 #include <linux/delay.h>
25 #include <linux/migrate.h>
26 #include <linux/page-isolation.h>
27 #include <linux/pfn.h>
28 #include <linux/suspend.h>
29 #include <linux/mm_inline.h>
30 #include <linux/firmware-map.h>
31 #include <linux/stop_machine.h>
32 #include <linux/hugetlb.h>
33 #include <linux/memblock.h>
34 #include <linux/bootmem.h>
35 
36 #include <asm/tlbflush.h>
37 
38 #include "internal.h"
39 
40 /*
41  * online_page_callback contains pointer to current page onlining function.
42  * Initially it is generic_online_page(). If it is required it could be
43  * changed by calling set_online_page_callback() for callback registration
44  * and restore_online_page_callback() for generic callback restore.
45  */
46 
47 static void generic_online_page(struct page *page);
48 
49 static online_page_callback_t online_page_callback = generic_online_page;
50 static DEFINE_MUTEX(online_page_callback_lock);
51 
52 /* The same as the cpu_hotplug lock, but for memory hotplug. */
53 static struct {
54 	struct task_struct *active_writer;
55 	struct mutex lock; /* Synchronizes accesses to refcount, */
56 	/*
57 	 * Also blocks the new readers during
58 	 * an ongoing mem hotplug operation.
59 	 */
60 	int refcount;
61 
62 #ifdef CONFIG_DEBUG_LOCK_ALLOC
63 	struct lockdep_map dep_map;
64 #endif
65 } mem_hotplug = {
66 	.active_writer = NULL,
67 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
68 	.refcount = 0,
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
70 	.dep_map = {.name = "mem_hotplug.lock" },
71 #endif
72 };
73 
74 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
75 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
76 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
77 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
78 
79 void get_online_mems(void)
80 {
81 	might_sleep();
82 	if (mem_hotplug.active_writer == current)
83 		return;
84 	memhp_lock_acquire_read();
85 	mutex_lock(&mem_hotplug.lock);
86 	mem_hotplug.refcount++;
87 	mutex_unlock(&mem_hotplug.lock);
88 
89 }
90 
91 void put_online_mems(void)
92 {
93 	if (mem_hotplug.active_writer == current)
94 		return;
95 	mutex_lock(&mem_hotplug.lock);
96 
97 	if (WARN_ON(!mem_hotplug.refcount))
98 		mem_hotplug.refcount++; /* try to fix things up */
99 
100 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
101 		wake_up_process(mem_hotplug.active_writer);
102 	mutex_unlock(&mem_hotplug.lock);
103 	memhp_lock_release();
104 
105 }
106 
107 void mem_hotplug_begin(void)
108 {
109 	mem_hotplug.active_writer = current;
110 
111 	memhp_lock_acquire();
112 	for (;;) {
113 		mutex_lock(&mem_hotplug.lock);
114 		if (likely(!mem_hotplug.refcount))
115 			break;
116 		__set_current_state(TASK_UNINTERRUPTIBLE);
117 		mutex_unlock(&mem_hotplug.lock);
118 		schedule();
119 	}
120 }
121 
122 void mem_hotplug_done(void)
123 {
124 	mem_hotplug.active_writer = NULL;
125 	mutex_unlock(&mem_hotplug.lock);
126 	memhp_lock_release();
127 }
128 
129 /* add this memory to iomem resource */
130 static struct resource *register_memory_resource(u64 start, u64 size)
131 {
132 	struct resource *res;
133 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
134 	BUG_ON(!res);
135 
136 	res->name = "System RAM";
137 	res->start = start;
138 	res->end = start + size - 1;
139 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
140 	if (request_resource(&iomem_resource, res) < 0) {
141 		pr_debug("System RAM resource %pR cannot be added\n", res);
142 		kfree(res);
143 		res = NULL;
144 	}
145 	return res;
146 }
147 
148 static void release_memory_resource(struct resource *res)
149 {
150 	if (!res)
151 		return;
152 	release_resource(res);
153 	kfree(res);
154 	return;
155 }
156 
157 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
158 void get_page_bootmem(unsigned long info,  struct page *page,
159 		      unsigned long type)
160 {
161 	page->lru.next = (struct list_head *) type;
162 	SetPagePrivate(page);
163 	set_page_private(page, info);
164 	atomic_inc(&page->_count);
165 }
166 
167 void put_page_bootmem(struct page *page)
168 {
169 	unsigned long type;
170 
171 	type = (unsigned long) page->lru.next;
172 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
173 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
174 
175 	if (atomic_dec_return(&page->_count) == 1) {
176 		ClearPagePrivate(page);
177 		set_page_private(page, 0);
178 		INIT_LIST_HEAD(&page->lru);
179 		free_reserved_page(page);
180 	}
181 }
182 
183 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
184 #ifndef CONFIG_SPARSEMEM_VMEMMAP
185 static void register_page_bootmem_info_section(unsigned long start_pfn)
186 {
187 	unsigned long *usemap, mapsize, section_nr, i;
188 	struct mem_section *ms;
189 	struct page *page, *memmap;
190 
191 	section_nr = pfn_to_section_nr(start_pfn);
192 	ms = __nr_to_section(section_nr);
193 
194 	/* Get section's memmap address */
195 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
196 
197 	/*
198 	 * Get page for the memmap's phys address
199 	 * XXX: need more consideration for sparse_vmemmap...
200 	 */
201 	page = virt_to_page(memmap);
202 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
203 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
204 
205 	/* remember memmap's page */
206 	for (i = 0; i < mapsize; i++, page++)
207 		get_page_bootmem(section_nr, page, SECTION_INFO);
208 
209 	usemap = __nr_to_section(section_nr)->pageblock_flags;
210 	page = virt_to_page(usemap);
211 
212 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
213 
214 	for (i = 0; i < mapsize; i++, page++)
215 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
216 
217 }
218 #else /* CONFIG_SPARSEMEM_VMEMMAP */
219 static void register_page_bootmem_info_section(unsigned long start_pfn)
220 {
221 	unsigned long *usemap, mapsize, section_nr, i;
222 	struct mem_section *ms;
223 	struct page *page, *memmap;
224 
225 	if (!pfn_valid(start_pfn))
226 		return;
227 
228 	section_nr = pfn_to_section_nr(start_pfn);
229 	ms = __nr_to_section(section_nr);
230 
231 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
232 
233 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
234 
235 	usemap = __nr_to_section(section_nr)->pageblock_flags;
236 	page = virt_to_page(usemap);
237 
238 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
239 
240 	for (i = 0; i < mapsize; i++, page++)
241 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
242 }
243 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
244 
245 void register_page_bootmem_info_node(struct pglist_data *pgdat)
246 {
247 	unsigned long i, pfn, end_pfn, nr_pages;
248 	int node = pgdat->node_id;
249 	struct page *page;
250 	struct zone *zone;
251 
252 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
253 	page = virt_to_page(pgdat);
254 
255 	for (i = 0; i < nr_pages; i++, page++)
256 		get_page_bootmem(node, page, NODE_INFO);
257 
258 	zone = &pgdat->node_zones[0];
259 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
260 		if (zone_is_initialized(zone)) {
261 			nr_pages = zone->wait_table_hash_nr_entries
262 				* sizeof(wait_queue_head_t);
263 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
264 			page = virt_to_page(zone->wait_table);
265 
266 			for (i = 0; i < nr_pages; i++, page++)
267 				get_page_bootmem(node, page, NODE_INFO);
268 		}
269 	}
270 
271 	pfn = pgdat->node_start_pfn;
272 	end_pfn = pgdat_end_pfn(pgdat);
273 
274 	/* register section info */
275 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
276 		/*
277 		 * Some platforms can assign the same pfn to multiple nodes - on
278 		 * node0 as well as nodeN.  To avoid registering a pfn against
279 		 * multiple nodes we check that this pfn does not already
280 		 * reside in some other nodes.
281 		 */
282 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
283 			register_page_bootmem_info_section(pfn);
284 	}
285 }
286 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
287 
288 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
289 				     unsigned long end_pfn)
290 {
291 	unsigned long old_zone_end_pfn;
292 
293 	zone_span_writelock(zone);
294 
295 	old_zone_end_pfn = zone_end_pfn(zone);
296 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
297 		zone->zone_start_pfn = start_pfn;
298 
299 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
300 				zone->zone_start_pfn;
301 
302 	zone_span_writeunlock(zone);
303 }
304 
305 static void resize_zone(struct zone *zone, unsigned long start_pfn,
306 		unsigned long end_pfn)
307 {
308 	zone_span_writelock(zone);
309 
310 	if (end_pfn - start_pfn) {
311 		zone->zone_start_pfn = start_pfn;
312 		zone->spanned_pages = end_pfn - start_pfn;
313 	} else {
314 		/*
315 		 * make it consist as free_area_init_core(),
316 		 * if spanned_pages = 0, then keep start_pfn = 0
317 		 */
318 		zone->zone_start_pfn = 0;
319 		zone->spanned_pages = 0;
320 	}
321 
322 	zone_span_writeunlock(zone);
323 }
324 
325 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
326 		unsigned long end_pfn)
327 {
328 	enum zone_type zid = zone_idx(zone);
329 	int nid = zone->zone_pgdat->node_id;
330 	unsigned long pfn;
331 
332 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
333 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
334 }
335 
336 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
337  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
338 static int __ref ensure_zone_is_initialized(struct zone *zone,
339 			unsigned long start_pfn, unsigned long num_pages)
340 {
341 	if (!zone_is_initialized(zone))
342 		return init_currently_empty_zone(zone, start_pfn, num_pages,
343 						 MEMMAP_HOTPLUG);
344 	return 0;
345 }
346 
347 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
348 		unsigned long start_pfn, unsigned long end_pfn)
349 {
350 	int ret;
351 	unsigned long flags;
352 	unsigned long z1_start_pfn;
353 
354 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
355 	if (ret)
356 		return ret;
357 
358 	pgdat_resize_lock(z1->zone_pgdat, &flags);
359 
360 	/* can't move pfns which are higher than @z2 */
361 	if (end_pfn > zone_end_pfn(z2))
362 		goto out_fail;
363 	/* the move out part must be at the left most of @z2 */
364 	if (start_pfn > z2->zone_start_pfn)
365 		goto out_fail;
366 	/* must included/overlap */
367 	if (end_pfn <= z2->zone_start_pfn)
368 		goto out_fail;
369 
370 	/* use start_pfn for z1's start_pfn if z1 is empty */
371 	if (!zone_is_empty(z1))
372 		z1_start_pfn = z1->zone_start_pfn;
373 	else
374 		z1_start_pfn = start_pfn;
375 
376 	resize_zone(z1, z1_start_pfn, end_pfn);
377 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
378 
379 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
380 
381 	fix_zone_id(z1, start_pfn, end_pfn);
382 
383 	return 0;
384 out_fail:
385 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
386 	return -1;
387 }
388 
389 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
390 		unsigned long start_pfn, unsigned long end_pfn)
391 {
392 	int ret;
393 	unsigned long flags;
394 	unsigned long z2_end_pfn;
395 
396 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
397 	if (ret)
398 		return ret;
399 
400 	pgdat_resize_lock(z1->zone_pgdat, &flags);
401 
402 	/* can't move pfns which are lower than @z1 */
403 	if (z1->zone_start_pfn > start_pfn)
404 		goto out_fail;
405 	/* the move out part mast at the right most of @z1 */
406 	if (zone_end_pfn(z1) >  end_pfn)
407 		goto out_fail;
408 	/* must included/overlap */
409 	if (start_pfn >= zone_end_pfn(z1))
410 		goto out_fail;
411 
412 	/* use end_pfn for z2's end_pfn if z2 is empty */
413 	if (!zone_is_empty(z2))
414 		z2_end_pfn = zone_end_pfn(z2);
415 	else
416 		z2_end_pfn = end_pfn;
417 
418 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
419 	resize_zone(z2, start_pfn, z2_end_pfn);
420 
421 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
422 
423 	fix_zone_id(z2, start_pfn, end_pfn);
424 
425 	return 0;
426 out_fail:
427 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
428 	return -1;
429 }
430 
431 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
432 				      unsigned long end_pfn)
433 {
434 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
435 
436 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
437 		pgdat->node_start_pfn = start_pfn;
438 
439 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
440 					pgdat->node_start_pfn;
441 }
442 
443 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
444 {
445 	struct pglist_data *pgdat = zone->zone_pgdat;
446 	int nr_pages = PAGES_PER_SECTION;
447 	int nid = pgdat->node_id;
448 	int zone_type;
449 	unsigned long flags;
450 	int ret;
451 
452 	zone_type = zone - pgdat->node_zones;
453 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
454 	if (ret)
455 		return ret;
456 
457 	pgdat_resize_lock(zone->zone_pgdat, &flags);
458 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
459 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
460 			phys_start_pfn + nr_pages);
461 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
462 	memmap_init_zone(nr_pages, nid, zone_type,
463 			 phys_start_pfn, MEMMAP_HOTPLUG);
464 	return 0;
465 }
466 
467 static int __meminit __add_section(int nid, struct zone *zone,
468 					unsigned long phys_start_pfn)
469 {
470 	int ret;
471 
472 	if (pfn_valid(phys_start_pfn))
473 		return -EEXIST;
474 
475 	ret = sparse_add_one_section(zone, phys_start_pfn);
476 
477 	if (ret < 0)
478 		return ret;
479 
480 	ret = __add_zone(zone, phys_start_pfn);
481 
482 	if (ret < 0)
483 		return ret;
484 
485 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
486 }
487 
488 /*
489  * Reasonably generic function for adding memory.  It is
490  * expected that archs that support memory hotplug will
491  * call this function after deciding the zone to which to
492  * add the new pages.
493  */
494 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
495 			unsigned long nr_pages)
496 {
497 	unsigned long i;
498 	int err = 0;
499 	int start_sec, end_sec;
500 	/* during initialize mem_map, align hot-added range to section */
501 	start_sec = pfn_to_section_nr(phys_start_pfn);
502 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
503 
504 	for (i = start_sec; i <= end_sec; i++) {
505 		err = __add_section(nid, zone, section_nr_to_pfn(i));
506 
507 		/*
508 		 * EEXIST is finally dealt with by ioresource collision
509 		 * check. see add_memory() => register_memory_resource()
510 		 * Warning will be printed if there is collision.
511 		 */
512 		if (err && (err != -EEXIST))
513 			break;
514 		err = 0;
515 	}
516 	vmemmap_populate_print_last();
517 
518 	return err;
519 }
520 EXPORT_SYMBOL_GPL(__add_pages);
521 
522 #ifdef CONFIG_MEMORY_HOTREMOVE
523 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
524 static int find_smallest_section_pfn(int nid, struct zone *zone,
525 				     unsigned long start_pfn,
526 				     unsigned long end_pfn)
527 {
528 	struct mem_section *ms;
529 
530 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
531 		ms = __pfn_to_section(start_pfn);
532 
533 		if (unlikely(!valid_section(ms)))
534 			continue;
535 
536 		if (unlikely(pfn_to_nid(start_pfn) != nid))
537 			continue;
538 
539 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
540 			continue;
541 
542 		return start_pfn;
543 	}
544 
545 	return 0;
546 }
547 
548 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
549 static int find_biggest_section_pfn(int nid, struct zone *zone,
550 				    unsigned long start_pfn,
551 				    unsigned long end_pfn)
552 {
553 	struct mem_section *ms;
554 	unsigned long pfn;
555 
556 	/* pfn is the end pfn of a memory section. */
557 	pfn = end_pfn - 1;
558 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
559 		ms = __pfn_to_section(pfn);
560 
561 		if (unlikely(!valid_section(ms)))
562 			continue;
563 
564 		if (unlikely(pfn_to_nid(pfn) != nid))
565 			continue;
566 
567 		if (zone && zone != page_zone(pfn_to_page(pfn)))
568 			continue;
569 
570 		return pfn;
571 	}
572 
573 	return 0;
574 }
575 
576 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
577 			     unsigned long end_pfn)
578 {
579 	unsigned long zone_start_pfn = zone->zone_start_pfn;
580 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
581 	unsigned long zone_end_pfn = z;
582 	unsigned long pfn;
583 	struct mem_section *ms;
584 	int nid = zone_to_nid(zone);
585 
586 	zone_span_writelock(zone);
587 	if (zone_start_pfn == start_pfn) {
588 		/*
589 		 * If the section is smallest section in the zone, it need
590 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
591 		 * In this case, we find second smallest valid mem_section
592 		 * for shrinking zone.
593 		 */
594 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
595 						zone_end_pfn);
596 		if (pfn) {
597 			zone->zone_start_pfn = pfn;
598 			zone->spanned_pages = zone_end_pfn - pfn;
599 		}
600 	} else if (zone_end_pfn == end_pfn) {
601 		/*
602 		 * If the section is biggest section in the zone, it need
603 		 * shrink zone->spanned_pages.
604 		 * In this case, we find second biggest valid mem_section for
605 		 * shrinking zone.
606 		 */
607 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
608 					       start_pfn);
609 		if (pfn)
610 			zone->spanned_pages = pfn - zone_start_pfn + 1;
611 	}
612 
613 	/*
614 	 * The section is not biggest or smallest mem_section in the zone, it
615 	 * only creates a hole in the zone. So in this case, we need not
616 	 * change the zone. But perhaps, the zone has only hole data. Thus
617 	 * it check the zone has only hole or not.
618 	 */
619 	pfn = zone_start_pfn;
620 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
621 		ms = __pfn_to_section(pfn);
622 
623 		if (unlikely(!valid_section(ms)))
624 			continue;
625 
626 		if (page_zone(pfn_to_page(pfn)) != zone)
627 			continue;
628 
629 		 /* If the section is current section, it continues the loop */
630 		if (start_pfn == pfn)
631 			continue;
632 
633 		/* If we find valid section, we have nothing to do */
634 		zone_span_writeunlock(zone);
635 		return;
636 	}
637 
638 	/* The zone has no valid section */
639 	zone->zone_start_pfn = 0;
640 	zone->spanned_pages = 0;
641 	zone_span_writeunlock(zone);
642 }
643 
644 static void shrink_pgdat_span(struct pglist_data *pgdat,
645 			      unsigned long start_pfn, unsigned long end_pfn)
646 {
647 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
648 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
649 	unsigned long pgdat_end_pfn = p;
650 	unsigned long pfn;
651 	struct mem_section *ms;
652 	int nid = pgdat->node_id;
653 
654 	if (pgdat_start_pfn == start_pfn) {
655 		/*
656 		 * If the section is smallest section in the pgdat, it need
657 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
658 		 * In this case, we find second smallest valid mem_section
659 		 * for shrinking zone.
660 		 */
661 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
662 						pgdat_end_pfn);
663 		if (pfn) {
664 			pgdat->node_start_pfn = pfn;
665 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
666 		}
667 	} else if (pgdat_end_pfn == end_pfn) {
668 		/*
669 		 * If the section is biggest section in the pgdat, it need
670 		 * shrink pgdat->node_spanned_pages.
671 		 * In this case, we find second biggest valid mem_section for
672 		 * shrinking zone.
673 		 */
674 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
675 					       start_pfn);
676 		if (pfn)
677 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
678 	}
679 
680 	/*
681 	 * If the section is not biggest or smallest mem_section in the pgdat,
682 	 * it only creates a hole in the pgdat. So in this case, we need not
683 	 * change the pgdat.
684 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
685 	 * has only hole or not.
686 	 */
687 	pfn = pgdat_start_pfn;
688 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
689 		ms = __pfn_to_section(pfn);
690 
691 		if (unlikely(!valid_section(ms)))
692 			continue;
693 
694 		if (pfn_to_nid(pfn) != nid)
695 			continue;
696 
697 		 /* If the section is current section, it continues the loop */
698 		if (start_pfn == pfn)
699 			continue;
700 
701 		/* If we find valid section, we have nothing to do */
702 		return;
703 	}
704 
705 	/* The pgdat has no valid section */
706 	pgdat->node_start_pfn = 0;
707 	pgdat->node_spanned_pages = 0;
708 }
709 
710 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
711 {
712 	struct pglist_data *pgdat = zone->zone_pgdat;
713 	int nr_pages = PAGES_PER_SECTION;
714 	int zone_type;
715 	unsigned long flags;
716 
717 	zone_type = zone - pgdat->node_zones;
718 
719 	pgdat_resize_lock(zone->zone_pgdat, &flags);
720 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
721 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
722 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
723 }
724 
725 static int __remove_section(struct zone *zone, struct mem_section *ms)
726 {
727 	unsigned long start_pfn;
728 	int scn_nr;
729 	int ret = -EINVAL;
730 
731 	if (!valid_section(ms))
732 		return ret;
733 
734 	ret = unregister_memory_section(ms);
735 	if (ret)
736 		return ret;
737 
738 	scn_nr = __section_nr(ms);
739 	start_pfn = section_nr_to_pfn(scn_nr);
740 	__remove_zone(zone, start_pfn);
741 
742 	sparse_remove_one_section(zone, ms);
743 	return 0;
744 }
745 
746 /**
747  * __remove_pages() - remove sections of pages from a zone
748  * @zone: zone from which pages need to be removed
749  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
750  * @nr_pages: number of pages to remove (must be multiple of section size)
751  *
752  * Generic helper function to remove section mappings and sysfs entries
753  * for the section of the memory we are removing. Caller needs to make
754  * sure that pages are marked reserved and zones are adjust properly by
755  * calling offline_pages().
756  */
757 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
758 		 unsigned long nr_pages)
759 {
760 	unsigned long i;
761 	int sections_to_remove;
762 	resource_size_t start, size;
763 	int ret = 0;
764 
765 	/*
766 	 * We can only remove entire sections
767 	 */
768 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
769 	BUG_ON(nr_pages % PAGES_PER_SECTION);
770 
771 	start = phys_start_pfn << PAGE_SHIFT;
772 	size = nr_pages * PAGE_SIZE;
773 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
774 	if (ret) {
775 		resource_size_t endres = start + size - 1;
776 
777 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
778 				&start, &endres, ret);
779 	}
780 
781 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
782 	for (i = 0; i < sections_to_remove; i++) {
783 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
784 		ret = __remove_section(zone, __pfn_to_section(pfn));
785 		if (ret)
786 			break;
787 	}
788 	return ret;
789 }
790 EXPORT_SYMBOL_GPL(__remove_pages);
791 #endif /* CONFIG_MEMORY_HOTREMOVE */
792 
793 int set_online_page_callback(online_page_callback_t callback)
794 {
795 	int rc = -EINVAL;
796 
797 	get_online_mems();
798 	mutex_lock(&online_page_callback_lock);
799 
800 	if (online_page_callback == generic_online_page) {
801 		online_page_callback = callback;
802 		rc = 0;
803 	}
804 
805 	mutex_unlock(&online_page_callback_lock);
806 	put_online_mems();
807 
808 	return rc;
809 }
810 EXPORT_SYMBOL_GPL(set_online_page_callback);
811 
812 int restore_online_page_callback(online_page_callback_t callback)
813 {
814 	int rc = -EINVAL;
815 
816 	get_online_mems();
817 	mutex_lock(&online_page_callback_lock);
818 
819 	if (online_page_callback == callback) {
820 		online_page_callback = generic_online_page;
821 		rc = 0;
822 	}
823 
824 	mutex_unlock(&online_page_callback_lock);
825 	put_online_mems();
826 
827 	return rc;
828 }
829 EXPORT_SYMBOL_GPL(restore_online_page_callback);
830 
831 void __online_page_set_limits(struct page *page)
832 {
833 }
834 EXPORT_SYMBOL_GPL(__online_page_set_limits);
835 
836 void __online_page_increment_counters(struct page *page)
837 {
838 	adjust_managed_page_count(page, 1);
839 }
840 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
841 
842 void __online_page_free(struct page *page)
843 {
844 	__free_reserved_page(page);
845 }
846 EXPORT_SYMBOL_GPL(__online_page_free);
847 
848 static void generic_online_page(struct page *page)
849 {
850 	__online_page_set_limits(page);
851 	__online_page_increment_counters(page);
852 	__online_page_free(page);
853 }
854 
855 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
856 			void *arg)
857 {
858 	unsigned long i;
859 	unsigned long onlined_pages = *(unsigned long *)arg;
860 	struct page *page;
861 	if (PageReserved(pfn_to_page(start_pfn)))
862 		for (i = 0; i < nr_pages; i++) {
863 			page = pfn_to_page(start_pfn + i);
864 			(*online_page_callback)(page);
865 			onlined_pages++;
866 		}
867 	*(unsigned long *)arg = onlined_pages;
868 	return 0;
869 }
870 
871 #ifdef CONFIG_MOVABLE_NODE
872 /*
873  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
874  * normal memory.
875  */
876 static bool can_online_high_movable(struct zone *zone)
877 {
878 	return true;
879 }
880 #else /* CONFIG_MOVABLE_NODE */
881 /* ensure every online node has NORMAL memory */
882 static bool can_online_high_movable(struct zone *zone)
883 {
884 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
885 }
886 #endif /* CONFIG_MOVABLE_NODE */
887 
888 /* check which state of node_states will be changed when online memory */
889 static void node_states_check_changes_online(unsigned long nr_pages,
890 	struct zone *zone, struct memory_notify *arg)
891 {
892 	int nid = zone_to_nid(zone);
893 	enum zone_type zone_last = ZONE_NORMAL;
894 
895 	/*
896 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
897 	 * contains nodes which have zones of 0...ZONE_NORMAL,
898 	 * set zone_last to ZONE_NORMAL.
899 	 *
900 	 * If we don't have HIGHMEM nor movable node,
901 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
902 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
903 	 */
904 	if (N_MEMORY == N_NORMAL_MEMORY)
905 		zone_last = ZONE_MOVABLE;
906 
907 	/*
908 	 * if the memory to be online is in a zone of 0...zone_last, and
909 	 * the zones of 0...zone_last don't have memory before online, we will
910 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
911 	 * the memory is online.
912 	 */
913 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
914 		arg->status_change_nid_normal = nid;
915 	else
916 		arg->status_change_nid_normal = -1;
917 
918 #ifdef CONFIG_HIGHMEM
919 	/*
920 	 * If we have movable node, node_states[N_HIGH_MEMORY]
921 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
922 	 * set zone_last to ZONE_HIGHMEM.
923 	 *
924 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
925 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
926 	 * set zone_last to ZONE_MOVABLE.
927 	 */
928 	zone_last = ZONE_HIGHMEM;
929 	if (N_MEMORY == N_HIGH_MEMORY)
930 		zone_last = ZONE_MOVABLE;
931 
932 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
933 		arg->status_change_nid_high = nid;
934 	else
935 		arg->status_change_nid_high = -1;
936 #else
937 	arg->status_change_nid_high = arg->status_change_nid_normal;
938 #endif
939 
940 	/*
941 	 * if the node don't have memory befor online, we will need to
942 	 * set the node to node_states[N_MEMORY] after the memory
943 	 * is online.
944 	 */
945 	if (!node_state(nid, N_MEMORY))
946 		arg->status_change_nid = nid;
947 	else
948 		arg->status_change_nid = -1;
949 }
950 
951 static void node_states_set_node(int node, struct memory_notify *arg)
952 {
953 	if (arg->status_change_nid_normal >= 0)
954 		node_set_state(node, N_NORMAL_MEMORY);
955 
956 	if (arg->status_change_nid_high >= 0)
957 		node_set_state(node, N_HIGH_MEMORY);
958 
959 	node_set_state(node, N_MEMORY);
960 }
961 
962 
963 /* Must be protected by mem_hotplug_begin() */
964 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
965 {
966 	unsigned long flags;
967 	unsigned long onlined_pages = 0;
968 	struct zone *zone;
969 	int need_zonelists_rebuild = 0;
970 	int nid;
971 	int ret;
972 	struct memory_notify arg;
973 
974 	/*
975 	 * This doesn't need a lock to do pfn_to_page().
976 	 * The section can't be removed here because of the
977 	 * memory_block->state_mutex.
978 	 */
979 	zone = page_zone(pfn_to_page(pfn));
980 
981 	if ((zone_idx(zone) > ZONE_NORMAL ||
982 	    online_type == MMOP_ONLINE_MOVABLE) &&
983 	    !can_online_high_movable(zone))
984 		return -EINVAL;
985 
986 	if (online_type == MMOP_ONLINE_KERNEL &&
987 	    zone_idx(zone) == ZONE_MOVABLE) {
988 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
989 			return -EINVAL;
990 	}
991 	if (online_type == MMOP_ONLINE_MOVABLE &&
992 	    zone_idx(zone) == ZONE_MOVABLE - 1) {
993 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
994 			return -EINVAL;
995 	}
996 
997 	/* Previous code may changed the zone of the pfn range */
998 	zone = page_zone(pfn_to_page(pfn));
999 
1000 	arg.start_pfn = pfn;
1001 	arg.nr_pages = nr_pages;
1002 	node_states_check_changes_online(nr_pages, zone, &arg);
1003 
1004 	nid = pfn_to_nid(pfn);
1005 
1006 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1007 	ret = notifier_to_errno(ret);
1008 	if (ret) {
1009 		memory_notify(MEM_CANCEL_ONLINE, &arg);
1010 		return ret;
1011 	}
1012 	/*
1013 	 * If this zone is not populated, then it is not in zonelist.
1014 	 * This means the page allocator ignores this zone.
1015 	 * So, zonelist must be updated after online.
1016 	 */
1017 	mutex_lock(&zonelists_mutex);
1018 	if (!populated_zone(zone)) {
1019 		need_zonelists_rebuild = 1;
1020 		build_all_zonelists(NULL, zone);
1021 	}
1022 
1023 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1024 		online_pages_range);
1025 	if (ret) {
1026 		if (need_zonelists_rebuild)
1027 			zone_pcp_reset(zone);
1028 		mutex_unlock(&zonelists_mutex);
1029 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
1030 		       (unsigned long long) pfn << PAGE_SHIFT,
1031 		       (((unsigned long long) pfn + nr_pages)
1032 			    << PAGE_SHIFT) - 1);
1033 		memory_notify(MEM_CANCEL_ONLINE, &arg);
1034 		return ret;
1035 	}
1036 
1037 	zone->present_pages += onlined_pages;
1038 
1039 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1040 	zone->zone_pgdat->node_present_pages += onlined_pages;
1041 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1042 
1043 	if (onlined_pages) {
1044 		node_states_set_node(zone_to_nid(zone), &arg);
1045 		if (need_zonelists_rebuild)
1046 			build_all_zonelists(NULL, NULL);
1047 		else
1048 			zone_pcp_update(zone);
1049 	}
1050 
1051 	mutex_unlock(&zonelists_mutex);
1052 
1053 	init_per_zone_wmark_min();
1054 
1055 	if (onlined_pages)
1056 		kswapd_run(zone_to_nid(zone));
1057 
1058 	vm_total_pages = nr_free_pagecache_pages();
1059 
1060 	writeback_set_ratelimit();
1061 
1062 	if (onlined_pages)
1063 		memory_notify(MEM_ONLINE, &arg);
1064 	return 0;
1065 }
1066 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1067 
1068 static void reset_node_present_pages(pg_data_t *pgdat)
1069 {
1070 	struct zone *z;
1071 
1072 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1073 		z->present_pages = 0;
1074 
1075 	pgdat->node_present_pages = 0;
1076 }
1077 
1078 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1079 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1080 {
1081 	struct pglist_data *pgdat;
1082 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1083 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1084 	unsigned long start_pfn = PFN_DOWN(start);
1085 
1086 	pgdat = NODE_DATA(nid);
1087 	if (!pgdat) {
1088 		pgdat = arch_alloc_nodedata(nid);
1089 		if (!pgdat)
1090 			return NULL;
1091 
1092 		arch_refresh_nodedata(nid, pgdat);
1093 	} else {
1094 		/* Reset the nr_zones and classzone_idx to 0 before reuse */
1095 		pgdat->nr_zones = 0;
1096 		pgdat->classzone_idx = 0;
1097 	}
1098 
1099 	/* we can use NODE_DATA(nid) from here */
1100 
1101 	/* init node's zones as empty zones, we don't have any present pages.*/
1102 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1103 
1104 	/*
1105 	 * The node we allocated has no zone fallback lists. For avoiding
1106 	 * to access not-initialized zonelist, build here.
1107 	 */
1108 	mutex_lock(&zonelists_mutex);
1109 	build_all_zonelists(pgdat, NULL);
1110 	mutex_unlock(&zonelists_mutex);
1111 
1112 	/*
1113 	 * zone->managed_pages is set to an approximate value in
1114 	 * free_area_init_core(), which will cause
1115 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1116 	 * So reset it to 0 before any memory is onlined.
1117 	 */
1118 	reset_node_managed_pages(pgdat);
1119 
1120 	/*
1121 	 * When memory is hot-added, all the memory is in offline state. So
1122 	 * clear all zones' present_pages because they will be updated in
1123 	 * online_pages() and offline_pages().
1124 	 */
1125 	reset_node_present_pages(pgdat);
1126 
1127 	return pgdat;
1128 }
1129 
1130 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1131 {
1132 	arch_refresh_nodedata(nid, NULL);
1133 	arch_free_nodedata(pgdat);
1134 	return;
1135 }
1136 
1137 
1138 /**
1139  * try_online_node - online a node if offlined
1140  *
1141  * called by cpu_up() to online a node without onlined memory.
1142  */
1143 int try_online_node(int nid)
1144 {
1145 	pg_data_t	*pgdat;
1146 	int	ret;
1147 
1148 	if (node_online(nid))
1149 		return 0;
1150 
1151 	mem_hotplug_begin();
1152 	pgdat = hotadd_new_pgdat(nid, 0);
1153 	if (!pgdat) {
1154 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1155 		ret = -ENOMEM;
1156 		goto out;
1157 	}
1158 	node_set_online(nid);
1159 	ret = register_one_node(nid);
1160 	BUG_ON(ret);
1161 
1162 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1163 		mutex_lock(&zonelists_mutex);
1164 		build_all_zonelists(NULL, NULL);
1165 		mutex_unlock(&zonelists_mutex);
1166 	}
1167 
1168 out:
1169 	mem_hotplug_done();
1170 	return ret;
1171 }
1172 
1173 static int check_hotplug_memory_range(u64 start, u64 size)
1174 {
1175 	u64 start_pfn = PFN_DOWN(start);
1176 	u64 nr_pages = size >> PAGE_SHIFT;
1177 
1178 	/* Memory range must be aligned with section */
1179 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1180 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1181 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1182 				(unsigned long long)start,
1183 				(unsigned long long)size);
1184 		return -EINVAL;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 /*
1191  * If movable zone has already been setup, newly added memory should be check.
1192  * If its address is higher than movable zone, it should be added as movable.
1193  * Without this check, movable zone may overlap with other zone.
1194  */
1195 static int should_add_memory_movable(int nid, u64 start, u64 size)
1196 {
1197 	unsigned long start_pfn = start >> PAGE_SHIFT;
1198 	pg_data_t *pgdat = NODE_DATA(nid);
1199 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1200 
1201 	if (zone_is_empty(movable_zone))
1202 		return 0;
1203 
1204 	if (movable_zone->zone_start_pfn <= start_pfn)
1205 		return 1;
1206 
1207 	return 0;
1208 }
1209 
1210 int zone_for_memory(int nid, u64 start, u64 size, int zone_default)
1211 {
1212 	if (should_add_memory_movable(nid, start, size))
1213 		return ZONE_MOVABLE;
1214 
1215 	return zone_default;
1216 }
1217 
1218 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1219 int __ref add_memory(int nid, u64 start, u64 size)
1220 {
1221 	pg_data_t *pgdat = NULL;
1222 	bool new_pgdat;
1223 	bool new_node;
1224 	struct resource *res;
1225 	int ret;
1226 
1227 	ret = check_hotplug_memory_range(start, size);
1228 	if (ret)
1229 		return ret;
1230 
1231 	res = register_memory_resource(start, size);
1232 	ret = -EEXIST;
1233 	if (!res)
1234 		return ret;
1235 
1236 	{	/* Stupid hack to suppress address-never-null warning */
1237 		void *p = NODE_DATA(nid);
1238 		new_pgdat = !p;
1239 	}
1240 
1241 	mem_hotplug_begin();
1242 
1243 	new_node = !node_online(nid);
1244 	if (new_node) {
1245 		pgdat = hotadd_new_pgdat(nid, start);
1246 		ret = -ENOMEM;
1247 		if (!pgdat)
1248 			goto error;
1249 	}
1250 
1251 	/* call arch's memory hotadd */
1252 	ret = arch_add_memory(nid, start, size);
1253 
1254 	if (ret < 0)
1255 		goto error;
1256 
1257 	/* we online node here. we can't roll back from here. */
1258 	node_set_online(nid);
1259 
1260 	if (new_node) {
1261 		ret = register_one_node(nid);
1262 		/*
1263 		 * If sysfs file of new node can't create, cpu on the node
1264 		 * can't be hot-added. There is no rollback way now.
1265 		 * So, check by BUG_ON() to catch it reluctantly..
1266 		 */
1267 		BUG_ON(ret);
1268 	}
1269 
1270 	/* create new memmap entry */
1271 	firmware_map_add_hotplug(start, start + size, "System RAM");
1272 
1273 	goto out;
1274 
1275 error:
1276 	/* rollback pgdat allocation and others */
1277 	if (new_pgdat)
1278 		rollback_node_hotadd(nid, pgdat);
1279 	release_memory_resource(res);
1280 
1281 out:
1282 	mem_hotplug_done();
1283 	return ret;
1284 }
1285 EXPORT_SYMBOL_GPL(add_memory);
1286 
1287 #ifdef CONFIG_MEMORY_HOTREMOVE
1288 /*
1289  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1290  * set and the size of the free page is given by page_order(). Using this,
1291  * the function determines if the pageblock contains only free pages.
1292  * Due to buddy contraints, a free page at least the size of a pageblock will
1293  * be located at the start of the pageblock
1294  */
1295 static inline int pageblock_free(struct page *page)
1296 {
1297 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1298 }
1299 
1300 /* Return the start of the next active pageblock after a given page */
1301 static struct page *next_active_pageblock(struct page *page)
1302 {
1303 	/* Ensure the starting page is pageblock-aligned */
1304 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1305 
1306 	/* If the entire pageblock is free, move to the end of free page */
1307 	if (pageblock_free(page)) {
1308 		int order;
1309 		/* be careful. we don't have locks, page_order can be changed.*/
1310 		order = page_order(page);
1311 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1312 			return page + (1 << order);
1313 	}
1314 
1315 	return page + pageblock_nr_pages;
1316 }
1317 
1318 /* Checks if this range of memory is likely to be hot-removable. */
1319 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1320 {
1321 	struct page *page = pfn_to_page(start_pfn);
1322 	struct page *end_page = page + nr_pages;
1323 
1324 	/* Check the starting page of each pageblock within the range */
1325 	for (; page < end_page; page = next_active_pageblock(page)) {
1326 		if (!is_pageblock_removable_nolock(page))
1327 			return 0;
1328 		cond_resched();
1329 	}
1330 
1331 	/* All pageblocks in the memory block are likely to be hot-removable */
1332 	return 1;
1333 }
1334 
1335 /*
1336  * Confirm all pages in a range [start, end) is belongs to the same zone.
1337  */
1338 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1339 {
1340 	unsigned long pfn;
1341 	struct zone *zone = NULL;
1342 	struct page *page;
1343 	int i;
1344 	for (pfn = start_pfn;
1345 	     pfn < end_pfn;
1346 	     pfn += MAX_ORDER_NR_PAGES) {
1347 		i = 0;
1348 		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1349 		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1350 			i++;
1351 		if (i == MAX_ORDER_NR_PAGES)
1352 			continue;
1353 		page = pfn_to_page(pfn + i);
1354 		if (zone && page_zone(page) != zone)
1355 			return 0;
1356 		zone = page_zone(page);
1357 	}
1358 	return 1;
1359 }
1360 
1361 /*
1362  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1363  * and hugepages). We scan pfn because it's much easier than scanning over
1364  * linked list. This function returns the pfn of the first found movable
1365  * page if it's found, otherwise 0.
1366  */
1367 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1368 {
1369 	unsigned long pfn;
1370 	struct page *page;
1371 	for (pfn = start; pfn < end; pfn++) {
1372 		if (pfn_valid(pfn)) {
1373 			page = pfn_to_page(pfn);
1374 			if (PageLRU(page))
1375 				return pfn;
1376 			if (PageHuge(page)) {
1377 				if (page_huge_active(page))
1378 					return pfn;
1379 				else
1380 					pfn = round_up(pfn + 1,
1381 						1 << compound_order(page)) - 1;
1382 			}
1383 		}
1384 	}
1385 	return 0;
1386 }
1387 
1388 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1389 static int
1390 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1391 {
1392 	unsigned long pfn;
1393 	struct page *page;
1394 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1395 	int not_managed = 0;
1396 	int ret = 0;
1397 	LIST_HEAD(source);
1398 
1399 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1400 		if (!pfn_valid(pfn))
1401 			continue;
1402 		page = pfn_to_page(pfn);
1403 
1404 		if (PageHuge(page)) {
1405 			struct page *head = compound_head(page);
1406 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1407 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1408 				ret = -EBUSY;
1409 				break;
1410 			}
1411 			if (isolate_huge_page(page, &source))
1412 				move_pages -= 1 << compound_order(head);
1413 			continue;
1414 		}
1415 
1416 		if (!get_page_unless_zero(page))
1417 			continue;
1418 		/*
1419 		 * We can skip free pages. And we can only deal with pages on
1420 		 * LRU.
1421 		 */
1422 		ret = isolate_lru_page(page);
1423 		if (!ret) { /* Success */
1424 			put_page(page);
1425 			list_add_tail(&page->lru, &source);
1426 			move_pages--;
1427 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1428 					    page_is_file_cache(page));
1429 
1430 		} else {
1431 #ifdef CONFIG_DEBUG_VM
1432 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1433 			       pfn);
1434 			dump_page(page, "failed to remove from LRU");
1435 #endif
1436 			put_page(page);
1437 			/* Because we don't have big zone->lock. we should
1438 			   check this again here. */
1439 			if (page_count(page)) {
1440 				not_managed++;
1441 				ret = -EBUSY;
1442 				break;
1443 			}
1444 		}
1445 	}
1446 	if (!list_empty(&source)) {
1447 		if (not_managed) {
1448 			putback_movable_pages(&source);
1449 			goto out;
1450 		}
1451 
1452 		/*
1453 		 * alloc_migrate_target should be improooooved!!
1454 		 * migrate_pages returns # of failed pages.
1455 		 */
1456 		ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1457 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1458 		if (ret)
1459 			putback_movable_pages(&source);
1460 	}
1461 out:
1462 	return ret;
1463 }
1464 
1465 /*
1466  * remove from free_area[] and mark all as Reserved.
1467  */
1468 static int
1469 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1470 			void *data)
1471 {
1472 	__offline_isolated_pages(start, start + nr_pages);
1473 	return 0;
1474 }
1475 
1476 static void
1477 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1478 {
1479 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1480 				offline_isolated_pages_cb);
1481 }
1482 
1483 /*
1484  * Check all pages in range, recoreded as memory resource, are isolated.
1485  */
1486 static int
1487 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1488 			void *data)
1489 {
1490 	int ret;
1491 	long offlined = *(long *)data;
1492 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1493 	offlined = nr_pages;
1494 	if (!ret)
1495 		*(long *)data += offlined;
1496 	return ret;
1497 }
1498 
1499 static long
1500 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1501 {
1502 	long offlined = 0;
1503 	int ret;
1504 
1505 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1506 			check_pages_isolated_cb);
1507 	if (ret < 0)
1508 		offlined = (long)ret;
1509 	return offlined;
1510 }
1511 
1512 #ifdef CONFIG_MOVABLE_NODE
1513 /*
1514  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1515  * normal memory.
1516  */
1517 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1518 {
1519 	return true;
1520 }
1521 #else /* CONFIG_MOVABLE_NODE */
1522 /* ensure the node has NORMAL memory if it is still online */
1523 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1524 {
1525 	struct pglist_data *pgdat = zone->zone_pgdat;
1526 	unsigned long present_pages = 0;
1527 	enum zone_type zt;
1528 
1529 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1530 		present_pages += pgdat->node_zones[zt].present_pages;
1531 
1532 	if (present_pages > nr_pages)
1533 		return true;
1534 
1535 	present_pages = 0;
1536 	for (; zt <= ZONE_MOVABLE; zt++)
1537 		present_pages += pgdat->node_zones[zt].present_pages;
1538 
1539 	/*
1540 	 * we can't offline the last normal memory until all
1541 	 * higher memory is offlined.
1542 	 */
1543 	return present_pages == 0;
1544 }
1545 #endif /* CONFIG_MOVABLE_NODE */
1546 
1547 static int __init cmdline_parse_movable_node(char *p)
1548 {
1549 #ifdef CONFIG_MOVABLE_NODE
1550 	/*
1551 	 * Memory used by the kernel cannot be hot-removed because Linux
1552 	 * cannot migrate the kernel pages. When memory hotplug is
1553 	 * enabled, we should prevent memblock from allocating memory
1554 	 * for the kernel.
1555 	 *
1556 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1557 	 * SRAT is parsed, we don't know about it.
1558 	 *
1559 	 * The kernel image is loaded into memory at very early time. We
1560 	 * cannot prevent this anyway. So on NUMA system, we set any
1561 	 * node the kernel resides in as un-hotpluggable.
1562 	 *
1563 	 * Since on modern servers, one node could have double-digit
1564 	 * gigabytes memory, we can assume the memory around the kernel
1565 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1566 	 * allocate memory near the kernel image to try the best to keep
1567 	 * the kernel away from hotpluggable memory.
1568 	 */
1569 	memblock_set_bottom_up(true);
1570 	movable_node_enabled = true;
1571 #else
1572 	pr_warn("movable_node option not supported\n");
1573 #endif
1574 	return 0;
1575 }
1576 early_param("movable_node", cmdline_parse_movable_node);
1577 
1578 /* check which state of node_states will be changed when offline memory */
1579 static void node_states_check_changes_offline(unsigned long nr_pages,
1580 		struct zone *zone, struct memory_notify *arg)
1581 {
1582 	struct pglist_data *pgdat = zone->zone_pgdat;
1583 	unsigned long present_pages = 0;
1584 	enum zone_type zt, zone_last = ZONE_NORMAL;
1585 
1586 	/*
1587 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1588 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1589 	 * set zone_last to ZONE_NORMAL.
1590 	 *
1591 	 * If we don't have HIGHMEM nor movable node,
1592 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1593 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1594 	 */
1595 	if (N_MEMORY == N_NORMAL_MEMORY)
1596 		zone_last = ZONE_MOVABLE;
1597 
1598 	/*
1599 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1600 	 * If the memory to be offline is in a zone of 0...zone_last,
1601 	 * and it is the last present memory, 0...zone_last will
1602 	 * become empty after offline , thus we can determind we will
1603 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1604 	 */
1605 	for (zt = 0; zt <= zone_last; zt++)
1606 		present_pages += pgdat->node_zones[zt].present_pages;
1607 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1608 		arg->status_change_nid_normal = zone_to_nid(zone);
1609 	else
1610 		arg->status_change_nid_normal = -1;
1611 
1612 #ifdef CONFIG_HIGHMEM
1613 	/*
1614 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1615 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1616 	 * set zone_last to ZONE_HIGHMEM.
1617 	 *
1618 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1619 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1620 	 * set zone_last to ZONE_MOVABLE.
1621 	 */
1622 	zone_last = ZONE_HIGHMEM;
1623 	if (N_MEMORY == N_HIGH_MEMORY)
1624 		zone_last = ZONE_MOVABLE;
1625 
1626 	for (; zt <= zone_last; zt++)
1627 		present_pages += pgdat->node_zones[zt].present_pages;
1628 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1629 		arg->status_change_nid_high = zone_to_nid(zone);
1630 	else
1631 		arg->status_change_nid_high = -1;
1632 #else
1633 	arg->status_change_nid_high = arg->status_change_nid_normal;
1634 #endif
1635 
1636 	/*
1637 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1638 	 */
1639 	zone_last = ZONE_MOVABLE;
1640 
1641 	/*
1642 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1643 	 * If we try to offline the last present @nr_pages from the node,
1644 	 * we can determind we will need to clear the node from
1645 	 * node_states[N_HIGH_MEMORY].
1646 	 */
1647 	for (; zt <= zone_last; zt++)
1648 		present_pages += pgdat->node_zones[zt].present_pages;
1649 	if (nr_pages >= present_pages)
1650 		arg->status_change_nid = zone_to_nid(zone);
1651 	else
1652 		arg->status_change_nid = -1;
1653 }
1654 
1655 static void node_states_clear_node(int node, struct memory_notify *arg)
1656 {
1657 	if (arg->status_change_nid_normal >= 0)
1658 		node_clear_state(node, N_NORMAL_MEMORY);
1659 
1660 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1661 	    (arg->status_change_nid_high >= 0))
1662 		node_clear_state(node, N_HIGH_MEMORY);
1663 
1664 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1665 	    (arg->status_change_nid >= 0))
1666 		node_clear_state(node, N_MEMORY);
1667 }
1668 
1669 static int __ref __offline_pages(unsigned long start_pfn,
1670 		  unsigned long end_pfn, unsigned long timeout)
1671 {
1672 	unsigned long pfn, nr_pages, expire;
1673 	long offlined_pages;
1674 	int ret, drain, retry_max, node;
1675 	unsigned long flags;
1676 	struct zone *zone;
1677 	struct memory_notify arg;
1678 
1679 	/* at least, alignment against pageblock is necessary */
1680 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1681 		return -EINVAL;
1682 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1683 		return -EINVAL;
1684 	/* This makes hotplug much easier...and readable.
1685 	   we assume this for now. .*/
1686 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1687 		return -EINVAL;
1688 
1689 	zone = page_zone(pfn_to_page(start_pfn));
1690 	node = zone_to_nid(zone);
1691 	nr_pages = end_pfn - start_pfn;
1692 
1693 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1694 		return -EINVAL;
1695 
1696 	/* set above range as isolated */
1697 	ret = start_isolate_page_range(start_pfn, end_pfn,
1698 				       MIGRATE_MOVABLE, true);
1699 	if (ret)
1700 		return ret;
1701 
1702 	arg.start_pfn = start_pfn;
1703 	arg.nr_pages = nr_pages;
1704 	node_states_check_changes_offline(nr_pages, zone, &arg);
1705 
1706 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1707 	ret = notifier_to_errno(ret);
1708 	if (ret)
1709 		goto failed_removal;
1710 
1711 	pfn = start_pfn;
1712 	expire = jiffies + timeout;
1713 	drain = 0;
1714 	retry_max = 5;
1715 repeat:
1716 	/* start memory hot removal */
1717 	ret = -EAGAIN;
1718 	if (time_after(jiffies, expire))
1719 		goto failed_removal;
1720 	ret = -EINTR;
1721 	if (signal_pending(current))
1722 		goto failed_removal;
1723 	ret = 0;
1724 	if (drain) {
1725 		lru_add_drain_all();
1726 		cond_resched();
1727 		drain_all_pages(zone);
1728 	}
1729 
1730 	pfn = scan_movable_pages(start_pfn, end_pfn);
1731 	if (pfn) { /* We have movable pages */
1732 		ret = do_migrate_range(pfn, end_pfn);
1733 		if (!ret) {
1734 			drain = 1;
1735 			goto repeat;
1736 		} else {
1737 			if (ret < 0)
1738 				if (--retry_max == 0)
1739 					goto failed_removal;
1740 			yield();
1741 			drain = 1;
1742 			goto repeat;
1743 		}
1744 	}
1745 	/* drain all zone's lru pagevec, this is asynchronous... */
1746 	lru_add_drain_all();
1747 	yield();
1748 	/* drain pcp pages, this is synchronous. */
1749 	drain_all_pages(zone);
1750 	/*
1751 	 * dissolve free hugepages in the memory block before doing offlining
1752 	 * actually in order to make hugetlbfs's object counting consistent.
1753 	 */
1754 	dissolve_free_huge_pages(start_pfn, end_pfn);
1755 	/* check again */
1756 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1757 	if (offlined_pages < 0) {
1758 		ret = -EBUSY;
1759 		goto failed_removal;
1760 	}
1761 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1762 	/* Ok, all of our target is isolated.
1763 	   We cannot do rollback at this point. */
1764 	offline_isolated_pages(start_pfn, end_pfn);
1765 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1766 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1767 	/* removal success */
1768 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1769 	zone->present_pages -= offlined_pages;
1770 
1771 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1772 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1773 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1774 
1775 	init_per_zone_wmark_min();
1776 
1777 	if (!populated_zone(zone)) {
1778 		zone_pcp_reset(zone);
1779 		mutex_lock(&zonelists_mutex);
1780 		build_all_zonelists(NULL, NULL);
1781 		mutex_unlock(&zonelists_mutex);
1782 	} else
1783 		zone_pcp_update(zone);
1784 
1785 	node_states_clear_node(node, &arg);
1786 	if (arg.status_change_nid >= 0)
1787 		kswapd_stop(node);
1788 
1789 	vm_total_pages = nr_free_pagecache_pages();
1790 	writeback_set_ratelimit();
1791 
1792 	memory_notify(MEM_OFFLINE, &arg);
1793 	return 0;
1794 
1795 failed_removal:
1796 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1797 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1798 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1799 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1800 	/* pushback to free area */
1801 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1802 	return ret;
1803 }
1804 
1805 /* Must be protected by mem_hotplug_begin() */
1806 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1807 {
1808 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1809 }
1810 #endif /* CONFIG_MEMORY_HOTREMOVE */
1811 
1812 /**
1813  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1814  * @start_pfn: start pfn of the memory range
1815  * @end_pfn: end pfn of the memory range
1816  * @arg: argument passed to func
1817  * @func: callback for each memory section walked
1818  *
1819  * This function walks through all present mem sections in range
1820  * [start_pfn, end_pfn) and call func on each mem section.
1821  *
1822  * Returns the return value of func.
1823  */
1824 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1825 		void *arg, int (*func)(struct memory_block *, void *))
1826 {
1827 	struct memory_block *mem = NULL;
1828 	struct mem_section *section;
1829 	unsigned long pfn, section_nr;
1830 	int ret;
1831 
1832 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1833 		section_nr = pfn_to_section_nr(pfn);
1834 		if (!present_section_nr(section_nr))
1835 			continue;
1836 
1837 		section = __nr_to_section(section_nr);
1838 		/* same memblock? */
1839 		if (mem)
1840 			if ((section_nr >= mem->start_section_nr) &&
1841 			    (section_nr <= mem->end_section_nr))
1842 				continue;
1843 
1844 		mem = find_memory_block_hinted(section, mem);
1845 		if (!mem)
1846 			continue;
1847 
1848 		ret = func(mem, arg);
1849 		if (ret) {
1850 			kobject_put(&mem->dev.kobj);
1851 			return ret;
1852 		}
1853 	}
1854 
1855 	if (mem)
1856 		kobject_put(&mem->dev.kobj);
1857 
1858 	return 0;
1859 }
1860 
1861 #ifdef CONFIG_MEMORY_HOTREMOVE
1862 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1863 {
1864 	int ret = !is_memblock_offlined(mem);
1865 
1866 	if (unlikely(ret)) {
1867 		phys_addr_t beginpa, endpa;
1868 
1869 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1870 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1871 		pr_warn("removing memory fails, because memory "
1872 			"[%pa-%pa] is onlined\n",
1873 			&beginpa, &endpa);
1874 	}
1875 
1876 	return ret;
1877 }
1878 
1879 static int check_cpu_on_node(pg_data_t *pgdat)
1880 {
1881 	int cpu;
1882 
1883 	for_each_present_cpu(cpu) {
1884 		if (cpu_to_node(cpu) == pgdat->node_id)
1885 			/*
1886 			 * the cpu on this node isn't removed, and we can't
1887 			 * offline this node.
1888 			 */
1889 			return -EBUSY;
1890 	}
1891 
1892 	return 0;
1893 }
1894 
1895 static void unmap_cpu_on_node(pg_data_t *pgdat)
1896 {
1897 #ifdef CONFIG_ACPI_NUMA
1898 	int cpu;
1899 
1900 	for_each_possible_cpu(cpu)
1901 		if (cpu_to_node(cpu) == pgdat->node_id)
1902 			numa_clear_node(cpu);
1903 #endif
1904 }
1905 
1906 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1907 {
1908 	int ret;
1909 
1910 	ret = check_cpu_on_node(pgdat);
1911 	if (ret)
1912 		return ret;
1913 
1914 	/*
1915 	 * the node will be offlined when we come here, so we can clear
1916 	 * the cpu_to_node() now.
1917 	 */
1918 
1919 	unmap_cpu_on_node(pgdat);
1920 	return 0;
1921 }
1922 
1923 /**
1924  * try_offline_node
1925  *
1926  * Offline a node if all memory sections and cpus of the node are removed.
1927  *
1928  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1929  * and online/offline operations before this call.
1930  */
1931 void try_offline_node(int nid)
1932 {
1933 	pg_data_t *pgdat = NODE_DATA(nid);
1934 	unsigned long start_pfn = pgdat->node_start_pfn;
1935 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1936 	unsigned long pfn;
1937 	int i;
1938 
1939 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1940 		unsigned long section_nr = pfn_to_section_nr(pfn);
1941 
1942 		if (!present_section_nr(section_nr))
1943 			continue;
1944 
1945 		if (pfn_to_nid(pfn) != nid)
1946 			continue;
1947 
1948 		/*
1949 		 * some memory sections of this node are not removed, and we
1950 		 * can't offline node now.
1951 		 */
1952 		return;
1953 	}
1954 
1955 	if (check_and_unmap_cpu_on_node(pgdat))
1956 		return;
1957 
1958 	/*
1959 	 * all memory/cpu of this node are removed, we can offline this
1960 	 * node now.
1961 	 */
1962 	node_set_offline(nid);
1963 	unregister_one_node(nid);
1964 
1965 	/* free waittable in each zone */
1966 	for (i = 0; i < MAX_NR_ZONES; i++) {
1967 		struct zone *zone = pgdat->node_zones + i;
1968 
1969 		/*
1970 		 * wait_table may be allocated from boot memory,
1971 		 * here only free if it's allocated by vmalloc.
1972 		 */
1973 		if (is_vmalloc_addr(zone->wait_table)) {
1974 			vfree(zone->wait_table);
1975 			zone->wait_table = NULL;
1976 		}
1977 	}
1978 }
1979 EXPORT_SYMBOL(try_offline_node);
1980 
1981 /**
1982  * remove_memory
1983  *
1984  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1985  * and online/offline operations before this call, as required by
1986  * try_offline_node().
1987  */
1988 void __ref remove_memory(int nid, u64 start, u64 size)
1989 {
1990 	int ret;
1991 
1992 	BUG_ON(check_hotplug_memory_range(start, size));
1993 
1994 	mem_hotplug_begin();
1995 
1996 	/*
1997 	 * All memory blocks must be offlined before removing memory.  Check
1998 	 * whether all memory blocks in question are offline and trigger a BUG()
1999 	 * if this is not the case.
2000 	 */
2001 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2002 				check_memblock_offlined_cb);
2003 	if (ret)
2004 		BUG();
2005 
2006 	/* remove memmap entry */
2007 	firmware_map_remove(start, start + size, "System RAM");
2008 
2009 	arch_remove_memory(start, size);
2010 
2011 	try_offline_node(nid);
2012 
2013 	mem_hotplug_done();
2014 }
2015 EXPORT_SYMBOL_GPL(remove_memory);
2016 #endif /* CONFIG_MEMORY_HOTREMOVE */
2017