1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 #include <linux/fsnotify.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!userfaultfd_wp(vmf->vma)) 117 return false; 118 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 119 return false; 120 121 return pte_marker_uffd_wp(vmf->orig_pte); 122 } 123 124 /* 125 * A number of key systems in x86 including ioremap() rely on the assumption 126 * that high_memory defines the upper bound on direct map memory, then end 127 * of ZONE_NORMAL. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 struct unlink_vma_file_batch vb; 368 369 do { 370 unsigned long addr = vma->vm_start; 371 struct vm_area_struct *next; 372 373 /* 374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 375 * be 0. This will underflow and is okay. 376 */ 377 next = mas_find(mas, ceiling - 1); 378 if (unlikely(xa_is_zero(next))) 379 next = NULL; 380 381 /* 382 * Hide vma from rmap and truncate_pagecache before freeing 383 * pgtables 384 */ 385 if (mm_wr_locked) 386 vma_start_write(vma); 387 unlink_anon_vmas(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 unlink_file_vma(vma); 391 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 392 floor, next ? next->vm_start : ceiling); 393 } else { 394 unlink_file_vma_batch_init(&vb); 395 unlink_file_vma_batch_add(&vb, vma); 396 397 /* 398 * Optimization: gather nearby vmas into one call down 399 */ 400 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 401 && !is_vm_hugetlb_page(next)) { 402 vma = next; 403 next = mas_find(mas, ceiling - 1); 404 if (unlikely(xa_is_zero(next))) 405 next = NULL; 406 if (mm_wr_locked) 407 vma_start_write(vma); 408 unlink_anon_vmas(vma); 409 unlink_file_vma_batch_add(&vb, vma); 410 } 411 unlink_file_vma_batch_final(&vb); 412 free_pgd_range(tlb, addr, vma->vm_end, 413 floor, next ? next->vm_start : ceiling); 414 } 415 vma = next; 416 } while (vma); 417 } 418 419 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 420 { 421 spinlock_t *ptl = pmd_lock(mm, pmd); 422 423 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 424 mm_inc_nr_ptes(mm); 425 /* 426 * Ensure all pte setup (eg. pte page lock and page clearing) are 427 * visible before the pte is made visible to other CPUs by being 428 * put into page tables. 429 * 430 * The other side of the story is the pointer chasing in the page 431 * table walking code (when walking the page table without locking; 432 * ie. most of the time). Fortunately, these data accesses consist 433 * of a chain of data-dependent loads, meaning most CPUs (alpha 434 * being the notable exception) will already guarantee loads are 435 * seen in-order. See the alpha page table accessors for the 436 * smp_rmb() barriers in page table walking code. 437 */ 438 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 439 pmd_populate(mm, pmd, *pte); 440 *pte = NULL; 441 } 442 spin_unlock(ptl); 443 } 444 445 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 446 { 447 pgtable_t new = pte_alloc_one(mm); 448 if (!new) 449 return -ENOMEM; 450 451 pmd_install(mm, pmd, &new); 452 if (new) 453 pte_free(mm, new); 454 return 0; 455 } 456 457 int __pte_alloc_kernel(pmd_t *pmd) 458 { 459 pte_t *new = pte_alloc_one_kernel(&init_mm); 460 if (!new) 461 return -ENOMEM; 462 463 spin_lock(&init_mm.page_table_lock); 464 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 465 smp_wmb(); /* See comment in pmd_install() */ 466 pmd_populate_kernel(&init_mm, pmd, new); 467 new = NULL; 468 } 469 spin_unlock(&init_mm.page_table_lock); 470 if (new) 471 pte_free_kernel(&init_mm, new); 472 return 0; 473 } 474 475 static inline void init_rss_vec(int *rss) 476 { 477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 478 } 479 480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 481 { 482 int i; 483 484 for (i = 0; i < NR_MM_COUNTERS; i++) 485 if (rss[i]) 486 add_mm_counter(mm, i, rss[i]); 487 } 488 489 /* 490 * This function is called to print an error when a bad pte 491 * is found. For example, we might have a PFN-mapped pte in 492 * a region that doesn't allow it. 493 * 494 * The calling function must still handle the error. 495 */ 496 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 497 pte_t pte, struct page *page) 498 { 499 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 500 p4d_t *p4d = p4d_offset(pgd, addr); 501 pud_t *pud = pud_offset(p4d, addr); 502 pmd_t *pmd = pmd_offset(pud, addr); 503 struct address_space *mapping; 504 pgoff_t index; 505 static unsigned long resume; 506 static unsigned long nr_shown; 507 static unsigned long nr_unshown; 508 509 /* 510 * Allow a burst of 60 reports, then keep quiet for that minute; 511 * or allow a steady drip of one report per second. 512 */ 513 if (nr_shown == 60) { 514 if (time_before(jiffies, resume)) { 515 nr_unshown++; 516 return; 517 } 518 if (nr_unshown) { 519 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 520 nr_unshown); 521 nr_unshown = 0; 522 } 523 nr_shown = 0; 524 } 525 if (nr_shown++ == 0) 526 resume = jiffies + 60 * HZ; 527 528 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 529 index = linear_page_index(vma, addr); 530 531 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 532 current->comm, 533 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 534 if (page) 535 dump_page(page, "bad pte"); 536 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 537 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 538 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 539 vma->vm_file, 540 vma->vm_ops ? vma->vm_ops->fault : NULL, 541 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 542 mapping ? mapping->a_ops->read_folio : NULL); 543 dump_stack(); 544 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 545 } 546 547 /* 548 * vm_normal_page -- This function gets the "struct page" associated with a pte. 549 * 550 * "Special" mappings do not wish to be associated with a "struct page" (either 551 * it doesn't exist, or it exists but they don't want to touch it). In this 552 * case, NULL is returned here. "Normal" mappings do have a struct page. 553 * 554 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 555 * pte bit, in which case this function is trivial. Secondly, an architecture 556 * may not have a spare pte bit, which requires a more complicated scheme, 557 * described below. 558 * 559 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 560 * special mapping (even if there are underlying and valid "struct pages"). 561 * COWed pages of a VM_PFNMAP are always normal. 562 * 563 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 564 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 565 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 566 * mapping will always honor the rule 567 * 568 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 569 * 570 * And for normal mappings this is false. 571 * 572 * This restricts such mappings to be a linear translation from virtual address 573 * to pfn. To get around this restriction, we allow arbitrary mappings so long 574 * as the vma is not a COW mapping; in that case, we know that all ptes are 575 * special (because none can have been COWed). 576 * 577 * 578 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 579 * 580 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 581 * page" backing, however the difference is that _all_ pages with a struct 582 * page (that is, those where pfn_valid is true) are refcounted and considered 583 * normal pages by the VM. The only exception are zeropages, which are 584 * *never* refcounted. 585 * 586 * The disadvantage is that pages are refcounted (which can be slower and 587 * simply not an option for some PFNMAP users). The advantage is that we 588 * don't have to follow the strict linearity rule of PFNMAP mappings in 589 * order to support COWable mappings. 590 * 591 */ 592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 593 pte_t pte) 594 { 595 unsigned long pfn = pte_pfn(pte); 596 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 598 if (likely(!pte_special(pte))) 599 goto check_pfn; 600 if (vma->vm_ops && vma->vm_ops->find_special_page) 601 return vma->vm_ops->find_special_page(vma, addr); 602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 603 return NULL; 604 if (is_zero_pfn(pfn)) 605 return NULL; 606 if (pte_devmap(pte)) 607 /* 608 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 609 * and will have refcounts incremented on their struct pages 610 * when they are inserted into PTEs, thus they are safe to 611 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 612 * do not have refcounts. Example of legacy ZONE_DEVICE is 613 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 614 */ 615 return NULL; 616 617 print_bad_pte(vma, addr, pte, NULL); 618 return NULL; 619 } 620 621 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 622 623 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 624 if (vma->vm_flags & VM_MIXEDMAP) { 625 if (!pfn_valid(pfn)) 626 return NULL; 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 goto out; 630 } else { 631 unsigned long off; 632 off = (addr - vma->vm_start) >> PAGE_SHIFT; 633 if (pfn == vma->vm_pgoff + off) 634 return NULL; 635 if (!is_cow_mapping(vma->vm_flags)) 636 return NULL; 637 } 638 } 639 640 if (is_zero_pfn(pfn)) 641 return NULL; 642 643 check_pfn: 644 if (unlikely(pfn > highest_memmap_pfn)) { 645 print_bad_pte(vma, addr, pte, NULL); 646 return NULL; 647 } 648 649 /* 650 * NOTE! We still have PageReserved() pages in the page tables. 651 * eg. VDSO mappings can cause them to exist. 652 */ 653 out: 654 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 655 return pfn_to_page(pfn); 656 } 657 658 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 659 pte_t pte) 660 { 661 struct page *page = vm_normal_page(vma, addr, pte); 662 663 if (page) 664 return page_folio(page); 665 return NULL; 666 } 667 668 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 669 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 670 pmd_t pmd) 671 { 672 unsigned long pfn = pmd_pfn(pmd); 673 674 /* Currently it's only used for huge pfnmaps */ 675 if (unlikely(pmd_special(pmd))) 676 return NULL; 677 678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 679 if (vma->vm_flags & VM_MIXEDMAP) { 680 if (!pfn_valid(pfn)) 681 return NULL; 682 goto out; 683 } else { 684 unsigned long off; 685 off = (addr - vma->vm_start) >> PAGE_SHIFT; 686 if (pfn == vma->vm_pgoff + off) 687 return NULL; 688 if (!is_cow_mapping(vma->vm_flags)) 689 return NULL; 690 } 691 } 692 693 if (pmd_devmap(pmd)) 694 return NULL; 695 if (is_huge_zero_pmd(pmd)) 696 return NULL; 697 if (unlikely(pfn > highest_memmap_pfn)) 698 return NULL; 699 700 /* 701 * NOTE! We still have PageReserved() pages in the page tables. 702 * eg. VDSO mappings can cause them to exist. 703 */ 704 out: 705 return pfn_to_page(pfn); 706 } 707 708 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 709 unsigned long addr, pmd_t pmd) 710 { 711 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 712 713 if (page) 714 return page_folio(page); 715 return NULL; 716 } 717 #endif 718 719 static void restore_exclusive_pte(struct vm_area_struct *vma, 720 struct page *page, unsigned long address, 721 pte_t *ptep) 722 { 723 struct folio *folio = page_folio(page); 724 pte_t orig_pte; 725 pte_t pte; 726 swp_entry_t entry; 727 728 orig_pte = ptep_get(ptep); 729 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 730 if (pte_swp_soft_dirty(orig_pte)) 731 pte = pte_mksoft_dirty(pte); 732 733 entry = pte_to_swp_entry(orig_pte); 734 if (pte_swp_uffd_wp(orig_pte)) 735 pte = pte_mkuffd_wp(pte); 736 else if (is_writable_device_exclusive_entry(entry)) 737 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 738 739 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 740 PageAnonExclusive(page)), folio); 741 742 /* 743 * No need to take a page reference as one was already 744 * created when the swap entry was made. 745 */ 746 if (folio_test_anon(folio)) 747 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 748 else 749 /* 750 * Currently device exclusive access only supports anonymous 751 * memory so the entry shouldn't point to a filebacked page. 752 */ 753 WARN_ON_ONCE(1); 754 755 set_pte_at(vma->vm_mm, address, ptep, pte); 756 757 /* 758 * No need to invalidate - it was non-present before. However 759 * secondary CPUs may have mappings that need invalidating. 760 */ 761 update_mmu_cache(vma, address, ptep); 762 } 763 764 /* 765 * Tries to restore an exclusive pte if the page lock can be acquired without 766 * sleeping. 767 */ 768 static int 769 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 770 unsigned long addr) 771 { 772 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 773 struct page *page = pfn_swap_entry_to_page(entry); 774 775 if (trylock_page(page)) { 776 restore_exclusive_pte(vma, page, addr, src_pte); 777 unlock_page(page); 778 return 0; 779 } 780 781 return -EBUSY; 782 } 783 784 /* 785 * copy one vm_area from one task to the other. Assumes the page tables 786 * already present in the new task to be cleared in the whole range 787 * covered by this vma. 788 */ 789 790 static unsigned long 791 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 792 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 793 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 794 { 795 unsigned long vm_flags = dst_vma->vm_flags; 796 pte_t orig_pte = ptep_get(src_pte); 797 pte_t pte = orig_pte; 798 struct folio *folio; 799 struct page *page; 800 swp_entry_t entry = pte_to_swp_entry(orig_pte); 801 802 if (likely(!non_swap_entry(entry))) { 803 if (swap_duplicate(entry) < 0) 804 return -EIO; 805 806 /* make sure dst_mm is on swapoff's mmlist. */ 807 if (unlikely(list_empty(&dst_mm->mmlist))) { 808 spin_lock(&mmlist_lock); 809 if (list_empty(&dst_mm->mmlist)) 810 list_add(&dst_mm->mmlist, 811 &src_mm->mmlist); 812 spin_unlock(&mmlist_lock); 813 } 814 /* Mark the swap entry as shared. */ 815 if (pte_swp_exclusive(orig_pte)) { 816 pte = pte_swp_clear_exclusive(orig_pte); 817 set_pte_at(src_mm, addr, src_pte, pte); 818 } 819 rss[MM_SWAPENTS]++; 820 } else if (is_migration_entry(entry)) { 821 folio = pfn_swap_entry_folio(entry); 822 823 rss[mm_counter(folio)]++; 824 825 if (!is_readable_migration_entry(entry) && 826 is_cow_mapping(vm_flags)) { 827 /* 828 * COW mappings require pages in both parent and child 829 * to be set to read. A previously exclusive entry is 830 * now shared. 831 */ 832 entry = make_readable_migration_entry( 833 swp_offset(entry)); 834 pte = swp_entry_to_pte(entry); 835 if (pte_swp_soft_dirty(orig_pte)) 836 pte = pte_swp_mksoft_dirty(pte); 837 if (pte_swp_uffd_wp(orig_pte)) 838 pte = pte_swp_mkuffd_wp(pte); 839 set_pte_at(src_mm, addr, src_pte, pte); 840 } 841 } else if (is_device_private_entry(entry)) { 842 page = pfn_swap_entry_to_page(entry); 843 folio = page_folio(page); 844 845 /* 846 * Update rss count even for unaddressable pages, as 847 * they should treated just like normal pages in this 848 * respect. 849 * 850 * We will likely want to have some new rss counters 851 * for unaddressable pages, at some point. But for now 852 * keep things as they are. 853 */ 854 folio_get(folio); 855 rss[mm_counter(folio)]++; 856 /* Cannot fail as these pages cannot get pinned. */ 857 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 858 859 /* 860 * We do not preserve soft-dirty information, because so 861 * far, checkpoint/restore is the only feature that 862 * requires that. And checkpoint/restore does not work 863 * when a device driver is involved (you cannot easily 864 * save and restore device driver state). 865 */ 866 if (is_writable_device_private_entry(entry) && 867 is_cow_mapping(vm_flags)) { 868 entry = make_readable_device_private_entry( 869 swp_offset(entry)); 870 pte = swp_entry_to_pte(entry); 871 if (pte_swp_uffd_wp(orig_pte)) 872 pte = pte_swp_mkuffd_wp(pte); 873 set_pte_at(src_mm, addr, src_pte, pte); 874 } 875 } else if (is_device_exclusive_entry(entry)) { 876 /* 877 * Make device exclusive entries present by restoring the 878 * original entry then copying as for a present pte. Device 879 * exclusive entries currently only support private writable 880 * (ie. COW) mappings. 881 */ 882 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 883 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 884 return -EBUSY; 885 return -ENOENT; 886 } else if (is_pte_marker_entry(entry)) { 887 pte_marker marker = copy_pte_marker(entry, dst_vma); 888 889 if (marker) 890 set_pte_at(dst_mm, addr, dst_pte, 891 make_pte_marker(marker)); 892 return 0; 893 } 894 if (!userfaultfd_wp(dst_vma)) 895 pte = pte_swp_clear_uffd_wp(pte); 896 set_pte_at(dst_mm, addr, dst_pte, pte); 897 return 0; 898 } 899 900 /* 901 * Copy a present and normal page. 902 * 903 * NOTE! The usual case is that this isn't required; 904 * instead, the caller can just increase the page refcount 905 * and re-use the pte the traditional way. 906 * 907 * And if we need a pre-allocated page but don't yet have 908 * one, return a negative error to let the preallocation 909 * code know so that it can do so outside the page table 910 * lock. 911 */ 912 static inline int 913 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 914 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 915 struct folio **prealloc, struct page *page) 916 { 917 struct folio *new_folio; 918 pte_t pte; 919 920 new_folio = *prealloc; 921 if (!new_folio) 922 return -EAGAIN; 923 924 /* 925 * We have a prealloc page, all good! Take it 926 * over and copy the page & arm it. 927 */ 928 929 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 930 return -EHWPOISON; 931 932 *prealloc = NULL; 933 __folio_mark_uptodate(new_folio); 934 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 935 folio_add_lru_vma(new_folio, dst_vma); 936 rss[MM_ANONPAGES]++; 937 938 /* All done, just insert the new page copy in the child */ 939 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 940 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 941 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 942 /* Uffd-wp needs to be delivered to dest pte as well */ 943 pte = pte_mkuffd_wp(pte); 944 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 945 return 0; 946 } 947 948 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 949 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 950 pte_t pte, unsigned long addr, int nr) 951 { 952 struct mm_struct *src_mm = src_vma->vm_mm; 953 954 /* If it's a COW mapping, write protect it both processes. */ 955 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 956 wrprotect_ptes(src_mm, addr, src_pte, nr); 957 pte = pte_wrprotect(pte); 958 } 959 960 /* If it's a shared mapping, mark it clean in the child. */ 961 if (src_vma->vm_flags & VM_SHARED) 962 pte = pte_mkclean(pte); 963 pte = pte_mkold(pte); 964 965 if (!userfaultfd_wp(dst_vma)) 966 pte = pte_clear_uffd_wp(pte); 967 968 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 969 } 970 971 /* 972 * Copy one present PTE, trying to batch-process subsequent PTEs that map 973 * consecutive pages of the same folio by copying them as well. 974 * 975 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 976 * Otherwise, returns the number of copied PTEs (at least 1). 977 */ 978 static inline int 979 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 980 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 981 int max_nr, int *rss, struct folio **prealloc) 982 { 983 struct page *page; 984 struct folio *folio; 985 bool any_writable; 986 fpb_t flags = 0; 987 int err, nr; 988 989 page = vm_normal_page(src_vma, addr, pte); 990 if (unlikely(!page)) 991 goto copy_pte; 992 993 folio = page_folio(page); 994 995 /* 996 * If we likely have to copy, just don't bother with batching. Make 997 * sure that the common "small folio" case is as fast as possible 998 * by keeping the batching logic separate. 999 */ 1000 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1001 if (src_vma->vm_flags & VM_SHARED) 1002 flags |= FPB_IGNORE_DIRTY; 1003 if (!vma_soft_dirty_enabled(src_vma)) 1004 flags |= FPB_IGNORE_SOFT_DIRTY; 1005 1006 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1007 &any_writable, NULL, NULL); 1008 folio_ref_add(folio, nr); 1009 if (folio_test_anon(folio)) { 1010 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1011 nr, src_vma))) { 1012 folio_ref_sub(folio, nr); 1013 return -EAGAIN; 1014 } 1015 rss[MM_ANONPAGES] += nr; 1016 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1017 } else { 1018 folio_dup_file_rmap_ptes(folio, page, nr); 1019 rss[mm_counter_file(folio)] += nr; 1020 } 1021 if (any_writable) 1022 pte = pte_mkwrite(pte, src_vma); 1023 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1024 addr, nr); 1025 return nr; 1026 } 1027 1028 folio_get(folio); 1029 if (folio_test_anon(folio)) { 1030 /* 1031 * If this page may have been pinned by the parent process, 1032 * copy the page immediately for the child so that we'll always 1033 * guarantee the pinned page won't be randomly replaced in the 1034 * future. 1035 */ 1036 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1037 /* Page may be pinned, we have to copy. */ 1038 folio_put(folio); 1039 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1040 addr, rss, prealloc, page); 1041 return err ? err : 1; 1042 } 1043 rss[MM_ANONPAGES]++; 1044 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1045 } else { 1046 folio_dup_file_rmap_pte(folio, page); 1047 rss[mm_counter_file(folio)]++; 1048 } 1049 1050 copy_pte: 1051 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1052 return 1; 1053 } 1054 1055 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1056 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1057 { 1058 struct folio *new_folio; 1059 1060 if (need_zero) 1061 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1062 else 1063 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1064 1065 if (!new_folio) 1066 return NULL; 1067 1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1069 folio_put(new_folio); 1070 return NULL; 1071 } 1072 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1073 1074 return new_folio; 1075 } 1076 1077 static int 1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1080 unsigned long end) 1081 { 1082 struct mm_struct *dst_mm = dst_vma->vm_mm; 1083 struct mm_struct *src_mm = src_vma->vm_mm; 1084 pte_t *orig_src_pte, *orig_dst_pte; 1085 pte_t *src_pte, *dst_pte; 1086 pmd_t dummy_pmdval; 1087 pte_t ptent; 1088 spinlock_t *src_ptl, *dst_ptl; 1089 int progress, max_nr, ret = 0; 1090 int rss[NR_MM_COUNTERS]; 1091 swp_entry_t entry = (swp_entry_t){0}; 1092 struct folio *prealloc = NULL; 1093 int nr; 1094 1095 again: 1096 progress = 0; 1097 init_rss_vec(rss); 1098 1099 /* 1100 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1101 * error handling here, assume that exclusive mmap_lock on dst and src 1102 * protects anon from unexpected THP transitions; with shmem and file 1103 * protected by mmap_lock-less collapse skipping areas with anon_vma 1104 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1105 * can remove such assumptions later, but this is good enough for now. 1106 */ 1107 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1108 if (!dst_pte) { 1109 ret = -ENOMEM; 1110 goto out; 1111 } 1112 1113 /* 1114 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1115 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1116 * the PTE page is stable, and there is no need to get pmdval and do 1117 * pmd_same() check. 1118 */ 1119 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1120 &src_ptl); 1121 if (!src_pte) { 1122 pte_unmap_unlock(dst_pte, dst_ptl); 1123 /* ret == 0 */ 1124 goto out; 1125 } 1126 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1127 orig_src_pte = src_pte; 1128 orig_dst_pte = dst_pte; 1129 arch_enter_lazy_mmu_mode(); 1130 1131 do { 1132 nr = 1; 1133 1134 /* 1135 * We are holding two locks at this point - either of them 1136 * could generate latencies in another task on another CPU. 1137 */ 1138 if (progress >= 32) { 1139 progress = 0; 1140 if (need_resched() || 1141 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1142 break; 1143 } 1144 ptent = ptep_get(src_pte); 1145 if (pte_none(ptent)) { 1146 progress++; 1147 continue; 1148 } 1149 if (unlikely(!pte_present(ptent))) { 1150 ret = copy_nonpresent_pte(dst_mm, src_mm, 1151 dst_pte, src_pte, 1152 dst_vma, src_vma, 1153 addr, rss); 1154 if (ret == -EIO) { 1155 entry = pte_to_swp_entry(ptep_get(src_pte)); 1156 break; 1157 } else if (ret == -EBUSY) { 1158 break; 1159 } else if (!ret) { 1160 progress += 8; 1161 continue; 1162 } 1163 ptent = ptep_get(src_pte); 1164 VM_WARN_ON_ONCE(!pte_present(ptent)); 1165 1166 /* 1167 * Device exclusive entry restored, continue by copying 1168 * the now present pte. 1169 */ 1170 WARN_ON_ONCE(ret != -ENOENT); 1171 } 1172 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1173 max_nr = (end - addr) / PAGE_SIZE; 1174 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1175 ptent, addr, max_nr, rss, &prealloc); 1176 /* 1177 * If we need a pre-allocated page for this pte, drop the 1178 * locks, allocate, and try again. 1179 * If copy failed due to hwpoison in source page, break out. 1180 */ 1181 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1182 break; 1183 if (unlikely(prealloc)) { 1184 /* 1185 * pre-alloc page cannot be reused by next time so as 1186 * to strictly follow mempolicy (e.g., alloc_page_vma() 1187 * will allocate page according to address). This 1188 * could only happen if one pinned pte changed. 1189 */ 1190 folio_put(prealloc); 1191 prealloc = NULL; 1192 } 1193 nr = ret; 1194 progress += 8 * nr; 1195 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1196 addr != end); 1197 1198 arch_leave_lazy_mmu_mode(); 1199 pte_unmap_unlock(orig_src_pte, src_ptl); 1200 add_mm_rss_vec(dst_mm, rss); 1201 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1202 cond_resched(); 1203 1204 if (ret == -EIO) { 1205 VM_WARN_ON_ONCE(!entry.val); 1206 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1207 ret = -ENOMEM; 1208 goto out; 1209 } 1210 entry.val = 0; 1211 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1212 goto out; 1213 } else if (ret == -EAGAIN) { 1214 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1215 if (!prealloc) 1216 return -ENOMEM; 1217 } else if (ret < 0) { 1218 VM_WARN_ON_ONCE(1); 1219 } 1220 1221 /* We've captured and resolved the error. Reset, try again. */ 1222 ret = 0; 1223 1224 if (addr != end) 1225 goto again; 1226 out: 1227 if (unlikely(prealloc)) 1228 folio_put(prealloc); 1229 return ret; 1230 } 1231 1232 static inline int 1233 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1234 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1235 unsigned long end) 1236 { 1237 struct mm_struct *dst_mm = dst_vma->vm_mm; 1238 struct mm_struct *src_mm = src_vma->vm_mm; 1239 pmd_t *src_pmd, *dst_pmd; 1240 unsigned long next; 1241 1242 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1243 if (!dst_pmd) 1244 return -ENOMEM; 1245 src_pmd = pmd_offset(src_pud, addr); 1246 do { 1247 next = pmd_addr_end(addr, end); 1248 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1249 || pmd_devmap(*src_pmd)) { 1250 int err; 1251 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1252 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1253 addr, dst_vma, src_vma); 1254 if (err == -ENOMEM) 1255 return -ENOMEM; 1256 if (!err) 1257 continue; 1258 /* fall through */ 1259 } 1260 if (pmd_none_or_clear_bad(src_pmd)) 1261 continue; 1262 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1263 addr, next)) 1264 return -ENOMEM; 1265 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1266 return 0; 1267 } 1268 1269 static inline int 1270 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1271 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1272 unsigned long end) 1273 { 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 pud_t *src_pud, *dst_pud; 1277 unsigned long next; 1278 1279 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1280 if (!dst_pud) 1281 return -ENOMEM; 1282 src_pud = pud_offset(src_p4d, addr); 1283 do { 1284 next = pud_addr_end(addr, end); 1285 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1286 int err; 1287 1288 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1289 err = copy_huge_pud(dst_mm, src_mm, 1290 dst_pud, src_pud, addr, src_vma); 1291 if (err == -ENOMEM) 1292 return -ENOMEM; 1293 if (!err) 1294 continue; 1295 /* fall through */ 1296 } 1297 if (pud_none_or_clear_bad(src_pud)) 1298 continue; 1299 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1300 addr, next)) 1301 return -ENOMEM; 1302 } while (dst_pud++, src_pud++, addr = next, addr != end); 1303 return 0; 1304 } 1305 1306 static inline int 1307 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1308 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1309 unsigned long end) 1310 { 1311 struct mm_struct *dst_mm = dst_vma->vm_mm; 1312 p4d_t *src_p4d, *dst_p4d; 1313 unsigned long next; 1314 1315 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1316 if (!dst_p4d) 1317 return -ENOMEM; 1318 src_p4d = p4d_offset(src_pgd, addr); 1319 do { 1320 next = p4d_addr_end(addr, end); 1321 if (p4d_none_or_clear_bad(src_p4d)) 1322 continue; 1323 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1324 addr, next)) 1325 return -ENOMEM; 1326 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1327 return 0; 1328 } 1329 1330 /* 1331 * Return true if the vma needs to copy the pgtable during this fork(). Return 1332 * false when we can speed up fork() by allowing lazy page faults later until 1333 * when the child accesses the memory range. 1334 */ 1335 static bool 1336 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1337 { 1338 /* 1339 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1340 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1341 * contains uffd-wp protection information, that's something we can't 1342 * retrieve from page cache, and skip copying will lose those info. 1343 */ 1344 if (userfaultfd_wp(dst_vma)) 1345 return true; 1346 1347 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1348 return true; 1349 1350 if (src_vma->anon_vma) 1351 return true; 1352 1353 /* 1354 * Don't copy ptes where a page fault will fill them correctly. Fork 1355 * becomes much lighter when there are big shared or private readonly 1356 * mappings. The tradeoff is that copy_page_range is more efficient 1357 * than faulting. 1358 */ 1359 return false; 1360 } 1361 1362 int 1363 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1364 { 1365 pgd_t *src_pgd, *dst_pgd; 1366 unsigned long next; 1367 unsigned long addr = src_vma->vm_start; 1368 unsigned long end = src_vma->vm_end; 1369 struct mm_struct *dst_mm = dst_vma->vm_mm; 1370 struct mm_struct *src_mm = src_vma->vm_mm; 1371 struct mmu_notifier_range range; 1372 bool is_cow; 1373 int ret; 1374 1375 if (!vma_needs_copy(dst_vma, src_vma)) 1376 return 0; 1377 1378 if (is_vm_hugetlb_page(src_vma)) 1379 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1380 1381 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1382 /* 1383 * We do not free on error cases below as remove_vma 1384 * gets called on error from higher level routine 1385 */ 1386 ret = track_pfn_copy(src_vma); 1387 if (ret) 1388 return ret; 1389 } 1390 1391 /* 1392 * We need to invalidate the secondary MMU mappings only when 1393 * there could be a permission downgrade on the ptes of the 1394 * parent mm. And a permission downgrade will only happen if 1395 * is_cow_mapping() returns true. 1396 */ 1397 is_cow = is_cow_mapping(src_vma->vm_flags); 1398 1399 if (is_cow) { 1400 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1401 0, src_mm, addr, end); 1402 mmu_notifier_invalidate_range_start(&range); 1403 /* 1404 * Disabling preemption is not needed for the write side, as 1405 * the read side doesn't spin, but goes to the mmap_lock. 1406 * 1407 * Use the raw variant of the seqcount_t write API to avoid 1408 * lockdep complaining about preemptibility. 1409 */ 1410 vma_assert_write_locked(src_vma); 1411 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1412 } 1413 1414 ret = 0; 1415 dst_pgd = pgd_offset(dst_mm, addr); 1416 src_pgd = pgd_offset(src_mm, addr); 1417 do { 1418 next = pgd_addr_end(addr, end); 1419 if (pgd_none_or_clear_bad(src_pgd)) 1420 continue; 1421 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1422 addr, next))) { 1423 untrack_pfn_clear(dst_vma); 1424 ret = -ENOMEM; 1425 break; 1426 } 1427 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1428 1429 if (is_cow) { 1430 raw_write_seqcount_end(&src_mm->write_protect_seq); 1431 mmu_notifier_invalidate_range_end(&range); 1432 } 1433 return ret; 1434 } 1435 1436 /* Whether we should zap all COWed (private) pages too */ 1437 static inline bool should_zap_cows(struct zap_details *details) 1438 { 1439 /* By default, zap all pages */ 1440 if (!details) 1441 return true; 1442 1443 /* Or, we zap COWed pages only if the caller wants to */ 1444 return details->even_cows; 1445 } 1446 1447 /* Decides whether we should zap this folio with the folio pointer specified */ 1448 static inline bool should_zap_folio(struct zap_details *details, 1449 struct folio *folio) 1450 { 1451 /* If we can make a decision without *folio.. */ 1452 if (should_zap_cows(details)) 1453 return true; 1454 1455 /* Otherwise we should only zap non-anon folios */ 1456 return !folio_test_anon(folio); 1457 } 1458 1459 static inline bool zap_drop_markers(struct zap_details *details) 1460 { 1461 if (!details) 1462 return false; 1463 1464 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1465 } 1466 1467 /* 1468 * This function makes sure that we'll replace the none pte with an uffd-wp 1469 * swap special pte marker when necessary. Must be with the pgtable lock held. 1470 */ 1471 static inline void 1472 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1473 unsigned long addr, pte_t *pte, int nr, 1474 struct zap_details *details, pte_t pteval) 1475 { 1476 /* Zap on anonymous always means dropping everything */ 1477 if (vma_is_anonymous(vma)) 1478 return; 1479 1480 if (zap_drop_markers(details)) 1481 return; 1482 1483 for (;;) { 1484 /* the PFN in the PTE is irrelevant. */ 1485 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1486 if (--nr == 0) 1487 break; 1488 pte++; 1489 addr += PAGE_SIZE; 1490 } 1491 } 1492 1493 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1494 struct vm_area_struct *vma, struct folio *folio, 1495 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1496 unsigned long addr, struct zap_details *details, int *rss, 1497 bool *force_flush, bool *force_break) 1498 { 1499 struct mm_struct *mm = tlb->mm; 1500 bool delay_rmap = false; 1501 1502 if (!folio_test_anon(folio)) { 1503 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1504 if (pte_dirty(ptent)) { 1505 folio_mark_dirty(folio); 1506 if (tlb_delay_rmap(tlb)) { 1507 delay_rmap = true; 1508 *force_flush = true; 1509 } 1510 } 1511 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1512 folio_mark_accessed(folio); 1513 rss[mm_counter(folio)] -= nr; 1514 } else { 1515 /* We don't need up-to-date accessed/dirty bits. */ 1516 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1517 rss[MM_ANONPAGES] -= nr; 1518 } 1519 /* Checking a single PTE in a batch is sufficient. */ 1520 arch_check_zapped_pte(vma, ptent); 1521 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1522 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1523 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1524 ptent); 1525 1526 if (!delay_rmap) { 1527 folio_remove_rmap_ptes(folio, page, nr, vma); 1528 1529 if (unlikely(folio_mapcount(folio) < 0)) 1530 print_bad_pte(vma, addr, ptent, page); 1531 } 1532 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1533 *force_flush = true; 1534 *force_break = true; 1535 } 1536 } 1537 1538 /* 1539 * Zap or skip at least one present PTE, trying to batch-process subsequent 1540 * PTEs that map consecutive pages of the same folio. 1541 * 1542 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1543 */ 1544 static inline int zap_present_ptes(struct mmu_gather *tlb, 1545 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1546 unsigned int max_nr, unsigned long addr, 1547 struct zap_details *details, int *rss, bool *force_flush, 1548 bool *force_break) 1549 { 1550 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1551 struct mm_struct *mm = tlb->mm; 1552 struct folio *folio; 1553 struct page *page; 1554 int nr; 1555 1556 page = vm_normal_page(vma, addr, ptent); 1557 if (!page) { 1558 /* We don't need up-to-date accessed/dirty bits. */ 1559 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1560 arch_check_zapped_pte(vma, ptent); 1561 tlb_remove_tlb_entry(tlb, pte, addr); 1562 if (userfaultfd_pte_wp(vma, ptent)) 1563 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1564 details, ptent); 1565 ksm_might_unmap_zero_page(mm, ptent); 1566 return 1; 1567 } 1568 1569 folio = page_folio(page); 1570 if (unlikely(!should_zap_folio(details, folio))) 1571 return 1; 1572 1573 /* 1574 * Make sure that the common "small folio" case is as fast as possible 1575 * by keeping the batching logic separate. 1576 */ 1577 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1578 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1579 NULL, NULL, NULL); 1580 1581 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1582 addr, details, rss, force_flush, 1583 force_break); 1584 return nr; 1585 } 1586 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1587 details, rss, force_flush, force_break); 1588 return 1; 1589 } 1590 1591 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1592 struct vm_area_struct *vma, pmd_t *pmd, 1593 unsigned long addr, unsigned long end, 1594 struct zap_details *details) 1595 { 1596 bool force_flush = false, force_break = false; 1597 struct mm_struct *mm = tlb->mm; 1598 int rss[NR_MM_COUNTERS]; 1599 spinlock_t *ptl; 1600 pte_t *start_pte; 1601 pte_t *pte; 1602 swp_entry_t entry; 1603 int nr; 1604 1605 tlb_change_page_size(tlb, PAGE_SIZE); 1606 init_rss_vec(rss); 1607 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1608 if (!pte) 1609 return addr; 1610 1611 flush_tlb_batched_pending(mm); 1612 arch_enter_lazy_mmu_mode(); 1613 do { 1614 pte_t ptent = ptep_get(pte); 1615 struct folio *folio; 1616 struct page *page; 1617 int max_nr; 1618 1619 nr = 1; 1620 if (pte_none(ptent)) 1621 continue; 1622 1623 if (need_resched()) 1624 break; 1625 1626 if (pte_present(ptent)) { 1627 max_nr = (end - addr) / PAGE_SIZE; 1628 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1629 addr, details, rss, &force_flush, 1630 &force_break); 1631 if (unlikely(force_break)) { 1632 addr += nr * PAGE_SIZE; 1633 break; 1634 } 1635 continue; 1636 } 1637 1638 entry = pte_to_swp_entry(ptent); 1639 if (is_device_private_entry(entry) || 1640 is_device_exclusive_entry(entry)) { 1641 page = pfn_swap_entry_to_page(entry); 1642 folio = page_folio(page); 1643 if (unlikely(!should_zap_folio(details, folio))) 1644 continue; 1645 /* 1646 * Both device private/exclusive mappings should only 1647 * work with anonymous page so far, so we don't need to 1648 * consider uffd-wp bit when zap. For more information, 1649 * see zap_install_uffd_wp_if_needed(). 1650 */ 1651 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1652 rss[mm_counter(folio)]--; 1653 if (is_device_private_entry(entry)) 1654 folio_remove_rmap_pte(folio, page, vma); 1655 folio_put(folio); 1656 } else if (!non_swap_entry(entry)) { 1657 max_nr = (end - addr) / PAGE_SIZE; 1658 nr = swap_pte_batch(pte, max_nr, ptent); 1659 /* Genuine swap entries, hence a private anon pages */ 1660 if (!should_zap_cows(details)) 1661 continue; 1662 rss[MM_SWAPENTS] -= nr; 1663 free_swap_and_cache_nr(entry, nr); 1664 } else if (is_migration_entry(entry)) { 1665 folio = pfn_swap_entry_folio(entry); 1666 if (!should_zap_folio(details, folio)) 1667 continue; 1668 rss[mm_counter(folio)]--; 1669 } else if (pte_marker_entry_uffd_wp(entry)) { 1670 /* 1671 * For anon: always drop the marker; for file: only 1672 * drop the marker if explicitly requested. 1673 */ 1674 if (!vma_is_anonymous(vma) && 1675 !zap_drop_markers(details)) 1676 continue; 1677 } else if (is_guard_swp_entry(entry)) { 1678 /* 1679 * Ordinary zapping should not remove guard PTE 1680 * markers. Only do so if we should remove PTE markers 1681 * in general. 1682 */ 1683 if (!zap_drop_markers(details)) 1684 continue; 1685 } else if (is_hwpoison_entry(entry) || 1686 is_poisoned_swp_entry(entry)) { 1687 if (!should_zap_cows(details)) 1688 continue; 1689 } else { 1690 /* We should have covered all the swap entry types */ 1691 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1692 WARN_ON_ONCE(1); 1693 } 1694 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1695 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1696 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1697 1698 add_mm_rss_vec(mm, rss); 1699 arch_leave_lazy_mmu_mode(); 1700 1701 /* Do the actual TLB flush before dropping ptl */ 1702 if (force_flush) { 1703 tlb_flush_mmu_tlbonly(tlb); 1704 tlb_flush_rmaps(tlb, vma); 1705 } 1706 pte_unmap_unlock(start_pte, ptl); 1707 1708 /* 1709 * If we forced a TLB flush (either due to running out of 1710 * batch buffers or because we needed to flush dirty TLB 1711 * entries before releasing the ptl), free the batched 1712 * memory too. Come back again if we didn't do everything. 1713 */ 1714 if (force_flush) 1715 tlb_flush_mmu(tlb); 1716 1717 return addr; 1718 } 1719 1720 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1721 struct vm_area_struct *vma, pud_t *pud, 1722 unsigned long addr, unsigned long end, 1723 struct zap_details *details) 1724 { 1725 pmd_t *pmd; 1726 unsigned long next; 1727 1728 pmd = pmd_offset(pud, addr); 1729 do { 1730 next = pmd_addr_end(addr, end); 1731 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1732 if (next - addr != HPAGE_PMD_SIZE) 1733 __split_huge_pmd(vma, pmd, addr, false, NULL); 1734 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1735 addr = next; 1736 continue; 1737 } 1738 /* fall through */ 1739 } else if (details && details->single_folio && 1740 folio_test_pmd_mappable(details->single_folio) && 1741 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1742 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1743 /* 1744 * Take and drop THP pmd lock so that we cannot return 1745 * prematurely, while zap_huge_pmd() has cleared *pmd, 1746 * but not yet decremented compound_mapcount(). 1747 */ 1748 spin_unlock(ptl); 1749 } 1750 if (pmd_none(*pmd)) { 1751 addr = next; 1752 continue; 1753 } 1754 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1755 if (addr != next) 1756 pmd--; 1757 } while (pmd++, cond_resched(), addr != end); 1758 1759 return addr; 1760 } 1761 1762 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1763 struct vm_area_struct *vma, p4d_t *p4d, 1764 unsigned long addr, unsigned long end, 1765 struct zap_details *details) 1766 { 1767 pud_t *pud; 1768 unsigned long next; 1769 1770 pud = pud_offset(p4d, addr); 1771 do { 1772 next = pud_addr_end(addr, end); 1773 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1774 if (next - addr != HPAGE_PUD_SIZE) { 1775 mmap_assert_locked(tlb->mm); 1776 split_huge_pud(vma, pud, addr); 1777 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1778 goto next; 1779 /* fall through */ 1780 } 1781 if (pud_none_or_clear_bad(pud)) 1782 continue; 1783 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1784 next: 1785 cond_resched(); 1786 } while (pud++, addr = next, addr != end); 1787 1788 return addr; 1789 } 1790 1791 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1792 struct vm_area_struct *vma, pgd_t *pgd, 1793 unsigned long addr, unsigned long end, 1794 struct zap_details *details) 1795 { 1796 p4d_t *p4d; 1797 unsigned long next; 1798 1799 p4d = p4d_offset(pgd, addr); 1800 do { 1801 next = p4d_addr_end(addr, end); 1802 if (p4d_none_or_clear_bad(p4d)) 1803 continue; 1804 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1805 } while (p4d++, addr = next, addr != end); 1806 1807 return addr; 1808 } 1809 1810 void unmap_page_range(struct mmu_gather *tlb, 1811 struct vm_area_struct *vma, 1812 unsigned long addr, unsigned long end, 1813 struct zap_details *details) 1814 { 1815 pgd_t *pgd; 1816 unsigned long next; 1817 1818 BUG_ON(addr >= end); 1819 tlb_start_vma(tlb, vma); 1820 pgd = pgd_offset(vma->vm_mm, addr); 1821 do { 1822 next = pgd_addr_end(addr, end); 1823 if (pgd_none_or_clear_bad(pgd)) 1824 continue; 1825 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1826 } while (pgd++, addr = next, addr != end); 1827 tlb_end_vma(tlb, vma); 1828 } 1829 1830 1831 static void unmap_single_vma(struct mmu_gather *tlb, 1832 struct vm_area_struct *vma, unsigned long start_addr, 1833 unsigned long end_addr, 1834 struct zap_details *details, bool mm_wr_locked) 1835 { 1836 unsigned long start = max(vma->vm_start, start_addr); 1837 unsigned long end; 1838 1839 if (start >= vma->vm_end) 1840 return; 1841 end = min(vma->vm_end, end_addr); 1842 if (end <= vma->vm_start) 1843 return; 1844 1845 if (vma->vm_file) 1846 uprobe_munmap(vma, start, end); 1847 1848 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1849 untrack_pfn(vma, 0, 0, mm_wr_locked); 1850 1851 if (start != end) { 1852 if (unlikely(is_vm_hugetlb_page(vma))) { 1853 /* 1854 * It is undesirable to test vma->vm_file as it 1855 * should be non-null for valid hugetlb area. 1856 * However, vm_file will be NULL in the error 1857 * cleanup path of mmap_region. When 1858 * hugetlbfs ->mmap method fails, 1859 * mmap_region() nullifies vma->vm_file 1860 * before calling this function to clean up. 1861 * Since no pte has actually been setup, it is 1862 * safe to do nothing in this case. 1863 */ 1864 if (vma->vm_file) { 1865 zap_flags_t zap_flags = details ? 1866 details->zap_flags : 0; 1867 __unmap_hugepage_range(tlb, vma, start, end, 1868 NULL, zap_flags); 1869 } 1870 } else 1871 unmap_page_range(tlb, vma, start, end, details); 1872 } 1873 } 1874 1875 /** 1876 * unmap_vmas - unmap a range of memory covered by a list of vma's 1877 * @tlb: address of the caller's struct mmu_gather 1878 * @mas: the maple state 1879 * @vma: the starting vma 1880 * @start_addr: virtual address at which to start unmapping 1881 * @end_addr: virtual address at which to end unmapping 1882 * @tree_end: The maximum index to check 1883 * @mm_wr_locked: lock flag 1884 * 1885 * Unmap all pages in the vma list. 1886 * 1887 * Only addresses between `start' and `end' will be unmapped. 1888 * 1889 * The VMA list must be sorted in ascending virtual address order. 1890 * 1891 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1892 * range after unmap_vmas() returns. So the only responsibility here is to 1893 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1894 * drops the lock and schedules. 1895 */ 1896 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1897 struct vm_area_struct *vma, unsigned long start_addr, 1898 unsigned long end_addr, unsigned long tree_end, 1899 bool mm_wr_locked) 1900 { 1901 struct mmu_notifier_range range; 1902 struct zap_details details = { 1903 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1904 /* Careful - we need to zap private pages too! */ 1905 .even_cows = true, 1906 }; 1907 1908 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1909 start_addr, end_addr); 1910 mmu_notifier_invalidate_range_start(&range); 1911 do { 1912 unsigned long start = start_addr; 1913 unsigned long end = end_addr; 1914 hugetlb_zap_begin(vma, &start, &end); 1915 unmap_single_vma(tlb, vma, start, end, &details, 1916 mm_wr_locked); 1917 hugetlb_zap_end(vma, &details); 1918 vma = mas_find(mas, tree_end - 1); 1919 } while (vma && likely(!xa_is_zero(vma))); 1920 mmu_notifier_invalidate_range_end(&range); 1921 } 1922 1923 /** 1924 * zap_page_range_single - remove user pages in a given range 1925 * @vma: vm_area_struct holding the applicable pages 1926 * @address: starting address of pages to zap 1927 * @size: number of bytes to zap 1928 * @details: details of shared cache invalidation 1929 * 1930 * The range must fit into one VMA. 1931 */ 1932 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1933 unsigned long size, struct zap_details *details) 1934 { 1935 const unsigned long end = address + size; 1936 struct mmu_notifier_range range; 1937 struct mmu_gather tlb; 1938 1939 lru_add_drain(); 1940 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1941 address, end); 1942 hugetlb_zap_begin(vma, &range.start, &range.end); 1943 tlb_gather_mmu(&tlb, vma->vm_mm); 1944 update_hiwater_rss(vma->vm_mm); 1945 mmu_notifier_invalidate_range_start(&range); 1946 /* 1947 * unmap 'address-end' not 'range.start-range.end' as range 1948 * could have been expanded for hugetlb pmd sharing. 1949 */ 1950 unmap_single_vma(&tlb, vma, address, end, details, false); 1951 mmu_notifier_invalidate_range_end(&range); 1952 tlb_finish_mmu(&tlb); 1953 hugetlb_zap_end(vma, details); 1954 } 1955 1956 /** 1957 * zap_vma_ptes - remove ptes mapping the vma 1958 * @vma: vm_area_struct holding ptes to be zapped 1959 * @address: starting address of pages to zap 1960 * @size: number of bytes to zap 1961 * 1962 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1963 * 1964 * The entire address range must be fully contained within the vma. 1965 * 1966 */ 1967 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1968 unsigned long size) 1969 { 1970 if (!range_in_vma(vma, address, address + size) || 1971 !(vma->vm_flags & VM_PFNMAP)) 1972 return; 1973 1974 zap_page_range_single(vma, address, size, NULL); 1975 } 1976 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1977 1978 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1979 { 1980 pgd_t *pgd; 1981 p4d_t *p4d; 1982 pud_t *pud; 1983 pmd_t *pmd; 1984 1985 pgd = pgd_offset(mm, addr); 1986 p4d = p4d_alloc(mm, pgd, addr); 1987 if (!p4d) 1988 return NULL; 1989 pud = pud_alloc(mm, p4d, addr); 1990 if (!pud) 1991 return NULL; 1992 pmd = pmd_alloc(mm, pud, addr); 1993 if (!pmd) 1994 return NULL; 1995 1996 VM_BUG_ON(pmd_trans_huge(*pmd)); 1997 return pmd; 1998 } 1999 2000 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2001 spinlock_t **ptl) 2002 { 2003 pmd_t *pmd = walk_to_pmd(mm, addr); 2004 2005 if (!pmd) 2006 return NULL; 2007 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2008 } 2009 2010 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2011 { 2012 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2013 /* 2014 * Whoever wants to forbid the zeropage after some zeropages 2015 * might already have been mapped has to scan the page tables and 2016 * bail out on any zeropages. Zeropages in COW mappings can 2017 * be unshared using FAULT_FLAG_UNSHARE faults. 2018 */ 2019 if (mm_forbids_zeropage(vma->vm_mm)) 2020 return false; 2021 /* zeropages in COW mappings are common and unproblematic. */ 2022 if (is_cow_mapping(vma->vm_flags)) 2023 return true; 2024 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2025 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2026 return true; 2027 /* 2028 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2029 * find the shared zeropage and longterm-pin it, which would 2030 * be problematic as soon as the zeropage gets replaced by a different 2031 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2032 * now differ to what GUP looked up. FSDAX is incompatible to 2033 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2034 * check_vma_flags). 2035 */ 2036 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2037 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2038 } 2039 2040 static int validate_page_before_insert(struct vm_area_struct *vma, 2041 struct page *page) 2042 { 2043 struct folio *folio = page_folio(page); 2044 2045 if (!folio_ref_count(folio)) 2046 return -EINVAL; 2047 if (unlikely(is_zero_folio(folio))) { 2048 if (!vm_mixed_zeropage_allowed(vma)) 2049 return -EINVAL; 2050 return 0; 2051 } 2052 if (folio_test_anon(folio) || folio_test_slab(folio) || 2053 page_has_type(page)) 2054 return -EINVAL; 2055 flush_dcache_folio(folio); 2056 return 0; 2057 } 2058 2059 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2060 unsigned long addr, struct page *page, pgprot_t prot) 2061 { 2062 struct folio *folio = page_folio(page); 2063 pte_t pteval; 2064 2065 if (!pte_none(ptep_get(pte))) 2066 return -EBUSY; 2067 /* Ok, finally just insert the thing.. */ 2068 pteval = mk_pte(page, prot); 2069 if (unlikely(is_zero_folio(folio))) { 2070 pteval = pte_mkspecial(pteval); 2071 } else { 2072 folio_get(folio); 2073 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2074 folio_add_file_rmap_pte(folio, page, vma); 2075 } 2076 set_pte_at(vma->vm_mm, addr, pte, pteval); 2077 return 0; 2078 } 2079 2080 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2081 struct page *page, pgprot_t prot) 2082 { 2083 int retval; 2084 pte_t *pte; 2085 spinlock_t *ptl; 2086 2087 retval = validate_page_before_insert(vma, page); 2088 if (retval) 2089 goto out; 2090 retval = -ENOMEM; 2091 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2092 if (!pte) 2093 goto out; 2094 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2095 pte_unmap_unlock(pte, ptl); 2096 out: 2097 return retval; 2098 } 2099 2100 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2101 unsigned long addr, struct page *page, pgprot_t prot) 2102 { 2103 int err; 2104 2105 err = validate_page_before_insert(vma, page); 2106 if (err) 2107 return err; 2108 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2109 } 2110 2111 /* insert_pages() amortizes the cost of spinlock operations 2112 * when inserting pages in a loop. 2113 */ 2114 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2115 struct page **pages, unsigned long *num, pgprot_t prot) 2116 { 2117 pmd_t *pmd = NULL; 2118 pte_t *start_pte, *pte; 2119 spinlock_t *pte_lock; 2120 struct mm_struct *const mm = vma->vm_mm; 2121 unsigned long curr_page_idx = 0; 2122 unsigned long remaining_pages_total = *num; 2123 unsigned long pages_to_write_in_pmd; 2124 int ret; 2125 more: 2126 ret = -EFAULT; 2127 pmd = walk_to_pmd(mm, addr); 2128 if (!pmd) 2129 goto out; 2130 2131 pages_to_write_in_pmd = min_t(unsigned long, 2132 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2133 2134 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2135 ret = -ENOMEM; 2136 if (pte_alloc(mm, pmd)) 2137 goto out; 2138 2139 while (pages_to_write_in_pmd) { 2140 int pte_idx = 0; 2141 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2142 2143 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2144 if (!start_pte) { 2145 ret = -EFAULT; 2146 goto out; 2147 } 2148 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2149 int err = insert_page_in_batch_locked(vma, pte, 2150 addr, pages[curr_page_idx], prot); 2151 if (unlikely(err)) { 2152 pte_unmap_unlock(start_pte, pte_lock); 2153 ret = err; 2154 remaining_pages_total -= pte_idx; 2155 goto out; 2156 } 2157 addr += PAGE_SIZE; 2158 ++curr_page_idx; 2159 } 2160 pte_unmap_unlock(start_pte, pte_lock); 2161 pages_to_write_in_pmd -= batch_size; 2162 remaining_pages_total -= batch_size; 2163 } 2164 if (remaining_pages_total) 2165 goto more; 2166 ret = 0; 2167 out: 2168 *num = remaining_pages_total; 2169 return ret; 2170 } 2171 2172 /** 2173 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2174 * @vma: user vma to map to 2175 * @addr: target start user address of these pages 2176 * @pages: source kernel pages 2177 * @num: in: number of pages to map. out: number of pages that were *not* 2178 * mapped. (0 means all pages were successfully mapped). 2179 * 2180 * Preferred over vm_insert_page() when inserting multiple pages. 2181 * 2182 * In case of error, we may have mapped a subset of the provided 2183 * pages. It is the caller's responsibility to account for this case. 2184 * 2185 * The same restrictions apply as in vm_insert_page(). 2186 */ 2187 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2188 struct page **pages, unsigned long *num) 2189 { 2190 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2191 2192 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2193 return -EFAULT; 2194 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2195 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2196 BUG_ON(vma->vm_flags & VM_PFNMAP); 2197 vm_flags_set(vma, VM_MIXEDMAP); 2198 } 2199 /* Defer page refcount checking till we're about to map that page. */ 2200 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2201 } 2202 EXPORT_SYMBOL(vm_insert_pages); 2203 2204 /** 2205 * vm_insert_page - insert single page into user vma 2206 * @vma: user vma to map to 2207 * @addr: target user address of this page 2208 * @page: source kernel page 2209 * 2210 * This allows drivers to insert individual pages they've allocated 2211 * into a user vma. The zeropage is supported in some VMAs, 2212 * see vm_mixed_zeropage_allowed(). 2213 * 2214 * The page has to be a nice clean _individual_ kernel allocation. 2215 * If you allocate a compound page, you need to have marked it as 2216 * such (__GFP_COMP), or manually just split the page up yourself 2217 * (see split_page()). 2218 * 2219 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2220 * took an arbitrary page protection parameter. This doesn't allow 2221 * that. Your vma protection will have to be set up correctly, which 2222 * means that if you want a shared writable mapping, you'd better 2223 * ask for a shared writable mapping! 2224 * 2225 * The page does not need to be reserved. 2226 * 2227 * Usually this function is called from f_op->mmap() handler 2228 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2229 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2230 * function from other places, for example from page-fault handler. 2231 * 2232 * Return: %0 on success, negative error code otherwise. 2233 */ 2234 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2235 struct page *page) 2236 { 2237 if (addr < vma->vm_start || addr >= vma->vm_end) 2238 return -EFAULT; 2239 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2240 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2241 BUG_ON(vma->vm_flags & VM_PFNMAP); 2242 vm_flags_set(vma, VM_MIXEDMAP); 2243 } 2244 return insert_page(vma, addr, page, vma->vm_page_prot); 2245 } 2246 EXPORT_SYMBOL(vm_insert_page); 2247 2248 /* 2249 * __vm_map_pages - maps range of kernel pages into user vma 2250 * @vma: user vma to map to 2251 * @pages: pointer to array of source kernel pages 2252 * @num: number of pages in page array 2253 * @offset: user's requested vm_pgoff 2254 * 2255 * This allows drivers to map range of kernel pages into a user vma. 2256 * The zeropage is supported in some VMAs, see 2257 * vm_mixed_zeropage_allowed(). 2258 * 2259 * Return: 0 on success and error code otherwise. 2260 */ 2261 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2262 unsigned long num, unsigned long offset) 2263 { 2264 unsigned long count = vma_pages(vma); 2265 unsigned long uaddr = vma->vm_start; 2266 int ret, i; 2267 2268 /* Fail if the user requested offset is beyond the end of the object */ 2269 if (offset >= num) 2270 return -ENXIO; 2271 2272 /* Fail if the user requested size exceeds available object size */ 2273 if (count > num - offset) 2274 return -ENXIO; 2275 2276 for (i = 0; i < count; i++) { 2277 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2278 if (ret < 0) 2279 return ret; 2280 uaddr += PAGE_SIZE; 2281 } 2282 2283 return 0; 2284 } 2285 2286 /** 2287 * vm_map_pages - maps range of kernel pages starts with non zero offset 2288 * @vma: user vma to map to 2289 * @pages: pointer to array of source kernel pages 2290 * @num: number of pages in page array 2291 * 2292 * Maps an object consisting of @num pages, catering for the user's 2293 * requested vm_pgoff 2294 * 2295 * If we fail to insert any page into the vma, the function will return 2296 * immediately leaving any previously inserted pages present. Callers 2297 * from the mmap handler may immediately return the error as their caller 2298 * will destroy the vma, removing any successfully inserted pages. Other 2299 * callers should make their own arrangements for calling unmap_region(). 2300 * 2301 * Context: Process context. Called by mmap handlers. 2302 * Return: 0 on success and error code otherwise. 2303 */ 2304 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2305 unsigned long num) 2306 { 2307 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2308 } 2309 EXPORT_SYMBOL(vm_map_pages); 2310 2311 /** 2312 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2313 * @vma: user vma to map to 2314 * @pages: pointer to array of source kernel pages 2315 * @num: number of pages in page array 2316 * 2317 * Similar to vm_map_pages(), except that it explicitly sets the offset 2318 * to 0. This function is intended for the drivers that did not consider 2319 * vm_pgoff. 2320 * 2321 * Context: Process context. Called by mmap handlers. 2322 * Return: 0 on success and error code otherwise. 2323 */ 2324 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2325 unsigned long num) 2326 { 2327 return __vm_map_pages(vma, pages, num, 0); 2328 } 2329 EXPORT_SYMBOL(vm_map_pages_zero); 2330 2331 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2332 pfn_t pfn, pgprot_t prot, bool mkwrite) 2333 { 2334 struct mm_struct *mm = vma->vm_mm; 2335 pte_t *pte, entry; 2336 spinlock_t *ptl; 2337 2338 pte = get_locked_pte(mm, addr, &ptl); 2339 if (!pte) 2340 return VM_FAULT_OOM; 2341 entry = ptep_get(pte); 2342 if (!pte_none(entry)) { 2343 if (mkwrite) { 2344 /* 2345 * For read faults on private mappings the PFN passed 2346 * in may not match the PFN we have mapped if the 2347 * mapped PFN is a writeable COW page. In the mkwrite 2348 * case we are creating a writable PTE for a shared 2349 * mapping and we expect the PFNs to match. If they 2350 * don't match, we are likely racing with block 2351 * allocation and mapping invalidation so just skip the 2352 * update. 2353 */ 2354 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2355 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2356 goto out_unlock; 2357 } 2358 entry = pte_mkyoung(entry); 2359 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2360 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2361 update_mmu_cache(vma, addr, pte); 2362 } 2363 goto out_unlock; 2364 } 2365 2366 /* Ok, finally just insert the thing.. */ 2367 if (pfn_t_devmap(pfn)) 2368 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2369 else 2370 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2371 2372 if (mkwrite) { 2373 entry = pte_mkyoung(entry); 2374 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2375 } 2376 2377 set_pte_at(mm, addr, pte, entry); 2378 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2379 2380 out_unlock: 2381 pte_unmap_unlock(pte, ptl); 2382 return VM_FAULT_NOPAGE; 2383 } 2384 2385 /** 2386 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2387 * @vma: user vma to map to 2388 * @addr: target user address of this page 2389 * @pfn: source kernel pfn 2390 * @pgprot: pgprot flags for the inserted page 2391 * 2392 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2393 * to override pgprot on a per-page basis. 2394 * 2395 * This only makes sense for IO mappings, and it makes no sense for 2396 * COW mappings. In general, using multiple vmas is preferable; 2397 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2398 * impractical. 2399 * 2400 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2401 * caching- and encryption bits different than those of @vma->vm_page_prot, 2402 * because the caching- or encryption mode may not be known at mmap() time. 2403 * 2404 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2405 * to set caching and encryption bits for those vmas (except for COW pages). 2406 * This is ensured by core vm only modifying these page table entries using 2407 * functions that don't touch caching- or encryption bits, using pte_modify() 2408 * if needed. (See for example mprotect()). 2409 * 2410 * Also when new page-table entries are created, this is only done using the 2411 * fault() callback, and never using the value of vma->vm_page_prot, 2412 * except for page-table entries that point to anonymous pages as the result 2413 * of COW. 2414 * 2415 * Context: Process context. May allocate using %GFP_KERNEL. 2416 * Return: vm_fault_t value. 2417 */ 2418 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2419 unsigned long pfn, pgprot_t pgprot) 2420 { 2421 /* 2422 * Technically, architectures with pte_special can avoid all these 2423 * restrictions (same for remap_pfn_range). However we would like 2424 * consistency in testing and feature parity among all, so we should 2425 * try to keep these invariants in place for everybody. 2426 */ 2427 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2428 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2429 (VM_PFNMAP|VM_MIXEDMAP)); 2430 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2431 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2432 2433 if (addr < vma->vm_start || addr >= vma->vm_end) 2434 return VM_FAULT_SIGBUS; 2435 2436 if (!pfn_modify_allowed(pfn, pgprot)) 2437 return VM_FAULT_SIGBUS; 2438 2439 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2440 2441 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2442 false); 2443 } 2444 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2445 2446 /** 2447 * vmf_insert_pfn - insert single pfn into user vma 2448 * @vma: user vma to map to 2449 * @addr: target user address of this page 2450 * @pfn: source kernel pfn 2451 * 2452 * Similar to vm_insert_page, this allows drivers to insert individual pages 2453 * they've allocated into a user vma. Same comments apply. 2454 * 2455 * This function should only be called from a vm_ops->fault handler, and 2456 * in that case the handler should return the result of this function. 2457 * 2458 * vma cannot be a COW mapping. 2459 * 2460 * As this is called only for pages that do not currently exist, we 2461 * do not need to flush old virtual caches or the TLB. 2462 * 2463 * Context: Process context. May allocate using %GFP_KERNEL. 2464 * Return: vm_fault_t value. 2465 */ 2466 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2467 unsigned long pfn) 2468 { 2469 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2470 } 2471 EXPORT_SYMBOL(vmf_insert_pfn); 2472 2473 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2474 { 2475 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2476 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2477 return false; 2478 /* these checks mirror the abort conditions in vm_normal_page */ 2479 if (vma->vm_flags & VM_MIXEDMAP) 2480 return true; 2481 if (pfn_t_devmap(pfn)) 2482 return true; 2483 if (pfn_t_special(pfn)) 2484 return true; 2485 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2486 return true; 2487 return false; 2488 } 2489 2490 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2491 unsigned long addr, pfn_t pfn, bool mkwrite) 2492 { 2493 pgprot_t pgprot = vma->vm_page_prot; 2494 int err; 2495 2496 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2497 return VM_FAULT_SIGBUS; 2498 2499 if (addr < vma->vm_start || addr >= vma->vm_end) 2500 return VM_FAULT_SIGBUS; 2501 2502 track_pfn_insert(vma, &pgprot, pfn); 2503 2504 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2505 return VM_FAULT_SIGBUS; 2506 2507 /* 2508 * If we don't have pte special, then we have to use the pfn_valid() 2509 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2510 * refcount the page if pfn_valid is true (hence insert_page rather 2511 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2512 * without pte special, it would there be refcounted as a normal page. 2513 */ 2514 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2515 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2516 struct page *page; 2517 2518 /* 2519 * At this point we are committed to insert_page() 2520 * regardless of whether the caller specified flags that 2521 * result in pfn_t_has_page() == false. 2522 */ 2523 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2524 err = insert_page(vma, addr, page, pgprot); 2525 } else { 2526 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2527 } 2528 2529 if (err == -ENOMEM) 2530 return VM_FAULT_OOM; 2531 if (err < 0 && err != -EBUSY) 2532 return VM_FAULT_SIGBUS; 2533 2534 return VM_FAULT_NOPAGE; 2535 } 2536 2537 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2538 pfn_t pfn) 2539 { 2540 return __vm_insert_mixed(vma, addr, pfn, false); 2541 } 2542 EXPORT_SYMBOL(vmf_insert_mixed); 2543 2544 /* 2545 * If the insertion of PTE failed because someone else already added a 2546 * different entry in the mean time, we treat that as success as we assume 2547 * the same entry was actually inserted. 2548 */ 2549 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2550 unsigned long addr, pfn_t pfn) 2551 { 2552 return __vm_insert_mixed(vma, addr, pfn, true); 2553 } 2554 2555 /* 2556 * maps a range of physical memory into the requested pages. the old 2557 * mappings are removed. any references to nonexistent pages results 2558 * in null mappings (currently treated as "copy-on-access") 2559 */ 2560 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2561 unsigned long addr, unsigned long end, 2562 unsigned long pfn, pgprot_t prot) 2563 { 2564 pte_t *pte, *mapped_pte; 2565 spinlock_t *ptl; 2566 int err = 0; 2567 2568 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2569 if (!pte) 2570 return -ENOMEM; 2571 arch_enter_lazy_mmu_mode(); 2572 do { 2573 BUG_ON(!pte_none(ptep_get(pte))); 2574 if (!pfn_modify_allowed(pfn, prot)) { 2575 err = -EACCES; 2576 break; 2577 } 2578 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2579 pfn++; 2580 } while (pte++, addr += PAGE_SIZE, addr != end); 2581 arch_leave_lazy_mmu_mode(); 2582 pte_unmap_unlock(mapped_pte, ptl); 2583 return err; 2584 } 2585 2586 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2587 unsigned long addr, unsigned long end, 2588 unsigned long pfn, pgprot_t prot) 2589 { 2590 pmd_t *pmd; 2591 unsigned long next; 2592 int err; 2593 2594 pfn -= addr >> PAGE_SHIFT; 2595 pmd = pmd_alloc(mm, pud, addr); 2596 if (!pmd) 2597 return -ENOMEM; 2598 VM_BUG_ON(pmd_trans_huge(*pmd)); 2599 do { 2600 next = pmd_addr_end(addr, end); 2601 err = remap_pte_range(mm, pmd, addr, next, 2602 pfn + (addr >> PAGE_SHIFT), prot); 2603 if (err) 2604 return err; 2605 } while (pmd++, addr = next, addr != end); 2606 return 0; 2607 } 2608 2609 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2610 unsigned long addr, unsigned long end, 2611 unsigned long pfn, pgprot_t prot) 2612 { 2613 pud_t *pud; 2614 unsigned long next; 2615 int err; 2616 2617 pfn -= addr >> PAGE_SHIFT; 2618 pud = pud_alloc(mm, p4d, addr); 2619 if (!pud) 2620 return -ENOMEM; 2621 do { 2622 next = pud_addr_end(addr, end); 2623 err = remap_pmd_range(mm, pud, addr, next, 2624 pfn + (addr >> PAGE_SHIFT), prot); 2625 if (err) 2626 return err; 2627 } while (pud++, addr = next, addr != end); 2628 return 0; 2629 } 2630 2631 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2632 unsigned long addr, unsigned long end, 2633 unsigned long pfn, pgprot_t prot) 2634 { 2635 p4d_t *p4d; 2636 unsigned long next; 2637 int err; 2638 2639 pfn -= addr >> PAGE_SHIFT; 2640 p4d = p4d_alloc(mm, pgd, addr); 2641 if (!p4d) 2642 return -ENOMEM; 2643 do { 2644 next = p4d_addr_end(addr, end); 2645 err = remap_pud_range(mm, p4d, addr, next, 2646 pfn + (addr >> PAGE_SHIFT), prot); 2647 if (err) 2648 return err; 2649 } while (p4d++, addr = next, addr != end); 2650 return 0; 2651 } 2652 2653 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2654 unsigned long pfn, unsigned long size, pgprot_t prot) 2655 { 2656 pgd_t *pgd; 2657 unsigned long next; 2658 unsigned long end = addr + PAGE_ALIGN(size); 2659 struct mm_struct *mm = vma->vm_mm; 2660 int err; 2661 2662 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2663 return -EINVAL; 2664 2665 /* 2666 * Physically remapped pages are special. Tell the 2667 * rest of the world about it: 2668 * VM_IO tells people not to look at these pages 2669 * (accesses can have side effects). 2670 * VM_PFNMAP tells the core MM that the base pages are just 2671 * raw PFN mappings, and do not have a "struct page" associated 2672 * with them. 2673 * VM_DONTEXPAND 2674 * Disable vma merging and expanding with mremap(). 2675 * VM_DONTDUMP 2676 * Omit vma from core dump, even when VM_IO turned off. 2677 * 2678 * There's a horrible special case to handle copy-on-write 2679 * behaviour that some programs depend on. We mark the "original" 2680 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2681 * See vm_normal_page() for details. 2682 */ 2683 if (is_cow_mapping(vma->vm_flags)) { 2684 if (addr != vma->vm_start || end != vma->vm_end) 2685 return -EINVAL; 2686 vma->vm_pgoff = pfn; 2687 } 2688 2689 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2690 2691 BUG_ON(addr >= end); 2692 pfn -= addr >> PAGE_SHIFT; 2693 pgd = pgd_offset(mm, addr); 2694 flush_cache_range(vma, addr, end); 2695 do { 2696 next = pgd_addr_end(addr, end); 2697 err = remap_p4d_range(mm, pgd, addr, next, 2698 pfn + (addr >> PAGE_SHIFT), prot); 2699 if (err) 2700 return err; 2701 } while (pgd++, addr = next, addr != end); 2702 2703 return 0; 2704 } 2705 2706 /* 2707 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2708 * must have pre-validated the caching bits of the pgprot_t. 2709 */ 2710 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2711 unsigned long pfn, unsigned long size, pgprot_t prot) 2712 { 2713 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2714 2715 if (!error) 2716 return 0; 2717 2718 /* 2719 * A partial pfn range mapping is dangerous: it does not 2720 * maintain page reference counts, and callers may free 2721 * pages due to the error. So zap it early. 2722 */ 2723 zap_page_range_single(vma, addr, size, NULL); 2724 return error; 2725 } 2726 2727 /** 2728 * remap_pfn_range - remap kernel memory to userspace 2729 * @vma: user vma to map to 2730 * @addr: target page aligned user address to start at 2731 * @pfn: page frame number of kernel physical memory address 2732 * @size: size of mapping area 2733 * @prot: page protection flags for this mapping 2734 * 2735 * Note: this is only safe if the mm semaphore is held when called. 2736 * 2737 * Return: %0 on success, negative error code otherwise. 2738 */ 2739 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2740 unsigned long pfn, unsigned long size, pgprot_t prot) 2741 { 2742 int err; 2743 2744 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2745 if (err) 2746 return -EINVAL; 2747 2748 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2749 if (err) 2750 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2751 return err; 2752 } 2753 EXPORT_SYMBOL(remap_pfn_range); 2754 2755 /** 2756 * vm_iomap_memory - remap memory to userspace 2757 * @vma: user vma to map to 2758 * @start: start of the physical memory to be mapped 2759 * @len: size of area 2760 * 2761 * This is a simplified io_remap_pfn_range() for common driver use. The 2762 * driver just needs to give us the physical memory range to be mapped, 2763 * we'll figure out the rest from the vma information. 2764 * 2765 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2766 * whatever write-combining details or similar. 2767 * 2768 * Return: %0 on success, negative error code otherwise. 2769 */ 2770 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2771 { 2772 unsigned long vm_len, pfn, pages; 2773 2774 /* Check that the physical memory area passed in looks valid */ 2775 if (start + len < start) 2776 return -EINVAL; 2777 /* 2778 * You *really* shouldn't map things that aren't page-aligned, 2779 * but we've historically allowed it because IO memory might 2780 * just have smaller alignment. 2781 */ 2782 len += start & ~PAGE_MASK; 2783 pfn = start >> PAGE_SHIFT; 2784 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2785 if (pfn + pages < pfn) 2786 return -EINVAL; 2787 2788 /* We start the mapping 'vm_pgoff' pages into the area */ 2789 if (vma->vm_pgoff > pages) 2790 return -EINVAL; 2791 pfn += vma->vm_pgoff; 2792 pages -= vma->vm_pgoff; 2793 2794 /* Can we fit all of the mapping? */ 2795 vm_len = vma->vm_end - vma->vm_start; 2796 if (vm_len >> PAGE_SHIFT > pages) 2797 return -EINVAL; 2798 2799 /* Ok, let it rip */ 2800 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2801 } 2802 EXPORT_SYMBOL(vm_iomap_memory); 2803 2804 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2805 unsigned long addr, unsigned long end, 2806 pte_fn_t fn, void *data, bool create, 2807 pgtbl_mod_mask *mask) 2808 { 2809 pte_t *pte, *mapped_pte; 2810 int err = 0; 2811 spinlock_t *ptl; 2812 2813 if (create) { 2814 mapped_pte = pte = (mm == &init_mm) ? 2815 pte_alloc_kernel_track(pmd, addr, mask) : 2816 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2817 if (!pte) 2818 return -ENOMEM; 2819 } else { 2820 mapped_pte = pte = (mm == &init_mm) ? 2821 pte_offset_kernel(pmd, addr) : 2822 pte_offset_map_lock(mm, pmd, addr, &ptl); 2823 if (!pte) 2824 return -EINVAL; 2825 } 2826 2827 arch_enter_lazy_mmu_mode(); 2828 2829 if (fn) { 2830 do { 2831 if (create || !pte_none(ptep_get(pte))) { 2832 err = fn(pte++, addr, data); 2833 if (err) 2834 break; 2835 } 2836 } while (addr += PAGE_SIZE, addr != end); 2837 } 2838 *mask |= PGTBL_PTE_MODIFIED; 2839 2840 arch_leave_lazy_mmu_mode(); 2841 2842 if (mm != &init_mm) 2843 pte_unmap_unlock(mapped_pte, ptl); 2844 return err; 2845 } 2846 2847 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2848 unsigned long addr, unsigned long end, 2849 pte_fn_t fn, void *data, bool create, 2850 pgtbl_mod_mask *mask) 2851 { 2852 pmd_t *pmd; 2853 unsigned long next; 2854 int err = 0; 2855 2856 BUG_ON(pud_leaf(*pud)); 2857 2858 if (create) { 2859 pmd = pmd_alloc_track(mm, pud, addr, mask); 2860 if (!pmd) 2861 return -ENOMEM; 2862 } else { 2863 pmd = pmd_offset(pud, addr); 2864 } 2865 do { 2866 next = pmd_addr_end(addr, end); 2867 if (pmd_none(*pmd) && !create) 2868 continue; 2869 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2870 return -EINVAL; 2871 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2872 if (!create) 2873 continue; 2874 pmd_clear_bad(pmd); 2875 } 2876 err = apply_to_pte_range(mm, pmd, addr, next, 2877 fn, data, create, mask); 2878 if (err) 2879 break; 2880 } while (pmd++, addr = next, addr != end); 2881 2882 return err; 2883 } 2884 2885 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2886 unsigned long addr, unsigned long end, 2887 pte_fn_t fn, void *data, bool create, 2888 pgtbl_mod_mask *mask) 2889 { 2890 pud_t *pud; 2891 unsigned long next; 2892 int err = 0; 2893 2894 if (create) { 2895 pud = pud_alloc_track(mm, p4d, addr, mask); 2896 if (!pud) 2897 return -ENOMEM; 2898 } else { 2899 pud = pud_offset(p4d, addr); 2900 } 2901 do { 2902 next = pud_addr_end(addr, end); 2903 if (pud_none(*pud) && !create) 2904 continue; 2905 if (WARN_ON_ONCE(pud_leaf(*pud))) 2906 return -EINVAL; 2907 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2908 if (!create) 2909 continue; 2910 pud_clear_bad(pud); 2911 } 2912 err = apply_to_pmd_range(mm, pud, addr, next, 2913 fn, data, create, mask); 2914 if (err) 2915 break; 2916 } while (pud++, addr = next, addr != end); 2917 2918 return err; 2919 } 2920 2921 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2922 unsigned long addr, unsigned long end, 2923 pte_fn_t fn, void *data, bool create, 2924 pgtbl_mod_mask *mask) 2925 { 2926 p4d_t *p4d; 2927 unsigned long next; 2928 int err = 0; 2929 2930 if (create) { 2931 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2932 if (!p4d) 2933 return -ENOMEM; 2934 } else { 2935 p4d = p4d_offset(pgd, addr); 2936 } 2937 do { 2938 next = p4d_addr_end(addr, end); 2939 if (p4d_none(*p4d) && !create) 2940 continue; 2941 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2942 return -EINVAL; 2943 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2944 if (!create) 2945 continue; 2946 p4d_clear_bad(p4d); 2947 } 2948 err = apply_to_pud_range(mm, p4d, addr, next, 2949 fn, data, create, mask); 2950 if (err) 2951 break; 2952 } while (p4d++, addr = next, addr != end); 2953 2954 return err; 2955 } 2956 2957 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2958 unsigned long size, pte_fn_t fn, 2959 void *data, bool create) 2960 { 2961 pgd_t *pgd; 2962 unsigned long start = addr, next; 2963 unsigned long end = addr + size; 2964 pgtbl_mod_mask mask = 0; 2965 int err = 0; 2966 2967 if (WARN_ON(addr >= end)) 2968 return -EINVAL; 2969 2970 pgd = pgd_offset(mm, addr); 2971 do { 2972 next = pgd_addr_end(addr, end); 2973 if (pgd_none(*pgd) && !create) 2974 continue; 2975 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2976 return -EINVAL; 2977 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2978 if (!create) 2979 continue; 2980 pgd_clear_bad(pgd); 2981 } 2982 err = apply_to_p4d_range(mm, pgd, addr, next, 2983 fn, data, create, &mask); 2984 if (err) 2985 break; 2986 } while (pgd++, addr = next, addr != end); 2987 2988 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2989 arch_sync_kernel_mappings(start, start + size); 2990 2991 return err; 2992 } 2993 2994 /* 2995 * Scan a region of virtual memory, filling in page tables as necessary 2996 * and calling a provided function on each leaf page table. 2997 */ 2998 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2999 unsigned long size, pte_fn_t fn, void *data) 3000 { 3001 return __apply_to_page_range(mm, addr, size, fn, data, true); 3002 } 3003 EXPORT_SYMBOL_GPL(apply_to_page_range); 3004 3005 /* 3006 * Scan a region of virtual memory, calling a provided function on 3007 * each leaf page table where it exists. 3008 * 3009 * Unlike apply_to_page_range, this does _not_ fill in page tables 3010 * where they are absent. 3011 */ 3012 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3013 unsigned long size, pte_fn_t fn, void *data) 3014 { 3015 return __apply_to_page_range(mm, addr, size, fn, data, false); 3016 } 3017 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 3018 3019 /* 3020 * handle_pte_fault chooses page fault handler according to an entry which was 3021 * read non-atomically. Before making any commitment, on those architectures 3022 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3023 * parts, do_swap_page must check under lock before unmapping the pte and 3024 * proceeding (but do_wp_page is only called after already making such a check; 3025 * and do_anonymous_page can safely check later on). 3026 */ 3027 static inline int pte_unmap_same(struct vm_fault *vmf) 3028 { 3029 int same = 1; 3030 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3031 if (sizeof(pte_t) > sizeof(unsigned long)) { 3032 spin_lock(vmf->ptl); 3033 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3034 spin_unlock(vmf->ptl); 3035 } 3036 #endif 3037 pte_unmap(vmf->pte); 3038 vmf->pte = NULL; 3039 return same; 3040 } 3041 3042 /* 3043 * Return: 3044 * 0: copied succeeded 3045 * -EHWPOISON: copy failed due to hwpoison in source page 3046 * -EAGAIN: copied failed (some other reason) 3047 */ 3048 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3049 struct vm_fault *vmf) 3050 { 3051 int ret; 3052 void *kaddr; 3053 void __user *uaddr; 3054 struct vm_area_struct *vma = vmf->vma; 3055 struct mm_struct *mm = vma->vm_mm; 3056 unsigned long addr = vmf->address; 3057 3058 if (likely(src)) { 3059 if (copy_mc_user_highpage(dst, src, addr, vma)) 3060 return -EHWPOISON; 3061 return 0; 3062 } 3063 3064 /* 3065 * If the source page was a PFN mapping, we don't have 3066 * a "struct page" for it. We do a best-effort copy by 3067 * just copying from the original user address. If that 3068 * fails, we just zero-fill it. Live with it. 3069 */ 3070 kaddr = kmap_local_page(dst); 3071 pagefault_disable(); 3072 uaddr = (void __user *)(addr & PAGE_MASK); 3073 3074 /* 3075 * On architectures with software "accessed" bits, we would 3076 * take a double page fault, so mark it accessed here. 3077 */ 3078 vmf->pte = NULL; 3079 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3080 pte_t entry; 3081 3082 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3083 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3084 /* 3085 * Other thread has already handled the fault 3086 * and update local tlb only 3087 */ 3088 if (vmf->pte) 3089 update_mmu_tlb(vma, addr, vmf->pte); 3090 ret = -EAGAIN; 3091 goto pte_unlock; 3092 } 3093 3094 entry = pte_mkyoung(vmf->orig_pte); 3095 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3096 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3097 } 3098 3099 /* 3100 * This really shouldn't fail, because the page is there 3101 * in the page tables. But it might just be unreadable, 3102 * in which case we just give up and fill the result with 3103 * zeroes. 3104 */ 3105 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3106 if (vmf->pte) 3107 goto warn; 3108 3109 /* Re-validate under PTL if the page is still mapped */ 3110 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3111 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3112 /* The PTE changed under us, update local tlb */ 3113 if (vmf->pte) 3114 update_mmu_tlb(vma, addr, vmf->pte); 3115 ret = -EAGAIN; 3116 goto pte_unlock; 3117 } 3118 3119 /* 3120 * The same page can be mapped back since last copy attempt. 3121 * Try to copy again under PTL. 3122 */ 3123 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3124 /* 3125 * Give a warn in case there can be some obscure 3126 * use-case 3127 */ 3128 warn: 3129 WARN_ON_ONCE(1); 3130 clear_page(kaddr); 3131 } 3132 } 3133 3134 ret = 0; 3135 3136 pte_unlock: 3137 if (vmf->pte) 3138 pte_unmap_unlock(vmf->pte, vmf->ptl); 3139 pagefault_enable(); 3140 kunmap_local(kaddr); 3141 flush_dcache_page(dst); 3142 3143 return ret; 3144 } 3145 3146 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3147 { 3148 struct file *vm_file = vma->vm_file; 3149 3150 if (vm_file) 3151 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3152 3153 /* 3154 * Special mappings (e.g. VDSO) do not have any file so fake 3155 * a default GFP_KERNEL for them. 3156 */ 3157 return GFP_KERNEL; 3158 } 3159 3160 /* 3161 * Notify the address space that the page is about to become writable so that 3162 * it can prohibit this or wait for the page to get into an appropriate state. 3163 * 3164 * We do this without the lock held, so that it can sleep if it needs to. 3165 */ 3166 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3167 { 3168 vm_fault_t ret; 3169 unsigned int old_flags = vmf->flags; 3170 3171 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3172 3173 if (vmf->vma->vm_file && 3174 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3175 return VM_FAULT_SIGBUS; 3176 3177 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3178 /* Restore original flags so that caller is not surprised */ 3179 vmf->flags = old_flags; 3180 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3181 return ret; 3182 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3183 folio_lock(folio); 3184 if (!folio->mapping) { 3185 folio_unlock(folio); 3186 return 0; /* retry */ 3187 } 3188 ret |= VM_FAULT_LOCKED; 3189 } else 3190 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3191 return ret; 3192 } 3193 3194 /* 3195 * Handle dirtying of a page in shared file mapping on a write fault. 3196 * 3197 * The function expects the page to be locked and unlocks it. 3198 */ 3199 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3200 { 3201 struct vm_area_struct *vma = vmf->vma; 3202 struct address_space *mapping; 3203 struct folio *folio = page_folio(vmf->page); 3204 bool dirtied; 3205 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3206 3207 dirtied = folio_mark_dirty(folio); 3208 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3209 /* 3210 * Take a local copy of the address_space - folio.mapping may be zeroed 3211 * by truncate after folio_unlock(). The address_space itself remains 3212 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3213 * release semantics to prevent the compiler from undoing this copying. 3214 */ 3215 mapping = folio_raw_mapping(folio); 3216 folio_unlock(folio); 3217 3218 if (!page_mkwrite) 3219 file_update_time(vma->vm_file); 3220 3221 /* 3222 * Throttle page dirtying rate down to writeback speed. 3223 * 3224 * mapping may be NULL here because some device drivers do not 3225 * set page.mapping but still dirty their pages 3226 * 3227 * Drop the mmap_lock before waiting on IO, if we can. The file 3228 * is pinning the mapping, as per above. 3229 */ 3230 if ((dirtied || page_mkwrite) && mapping) { 3231 struct file *fpin; 3232 3233 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3234 balance_dirty_pages_ratelimited(mapping); 3235 if (fpin) { 3236 fput(fpin); 3237 return VM_FAULT_COMPLETED; 3238 } 3239 } 3240 3241 return 0; 3242 } 3243 3244 /* 3245 * Handle write page faults for pages that can be reused in the current vma 3246 * 3247 * This can happen either due to the mapping being with the VM_SHARED flag, 3248 * or due to us being the last reference standing to the page. In either 3249 * case, all we need to do here is to mark the page as writable and update 3250 * any related book-keeping. 3251 */ 3252 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3253 __releases(vmf->ptl) 3254 { 3255 struct vm_area_struct *vma = vmf->vma; 3256 pte_t entry; 3257 3258 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3259 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3260 3261 if (folio) { 3262 VM_BUG_ON(folio_test_anon(folio) && 3263 !PageAnonExclusive(vmf->page)); 3264 /* 3265 * Clear the folio's cpupid information as the existing 3266 * information potentially belongs to a now completely 3267 * unrelated process. 3268 */ 3269 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3270 } 3271 3272 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3273 entry = pte_mkyoung(vmf->orig_pte); 3274 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3275 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3276 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3277 pte_unmap_unlock(vmf->pte, vmf->ptl); 3278 count_vm_event(PGREUSE); 3279 } 3280 3281 /* 3282 * We could add a bitflag somewhere, but for now, we know that all 3283 * vm_ops that have a ->map_pages have been audited and don't need 3284 * the mmap_lock to be held. 3285 */ 3286 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3287 { 3288 struct vm_area_struct *vma = vmf->vma; 3289 3290 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3291 return 0; 3292 vma_end_read(vma); 3293 return VM_FAULT_RETRY; 3294 } 3295 3296 /** 3297 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3298 * @vmf: The vm_fault descriptor passed from the fault handler. 3299 * 3300 * When preparing to insert an anonymous page into a VMA from a 3301 * fault handler, call this function rather than anon_vma_prepare(). 3302 * If this vma does not already have an associated anon_vma and we are 3303 * only protected by the per-VMA lock, the caller must retry with the 3304 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3305 * determine if this VMA can share its anon_vma, and that's not safe to 3306 * do with only the per-VMA lock held for this VMA. 3307 * 3308 * Return: 0 if fault handling can proceed. Any other value should be 3309 * returned to the caller. 3310 */ 3311 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3312 { 3313 struct vm_area_struct *vma = vmf->vma; 3314 vm_fault_t ret = 0; 3315 3316 if (likely(vma->anon_vma)) 3317 return 0; 3318 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3319 if (!mmap_read_trylock(vma->vm_mm)) 3320 return VM_FAULT_RETRY; 3321 } 3322 if (__anon_vma_prepare(vma)) 3323 ret = VM_FAULT_OOM; 3324 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3325 mmap_read_unlock(vma->vm_mm); 3326 return ret; 3327 } 3328 3329 /* 3330 * Handle the case of a page which we actually need to copy to a new page, 3331 * either due to COW or unsharing. 3332 * 3333 * Called with mmap_lock locked and the old page referenced, but 3334 * without the ptl held. 3335 * 3336 * High level logic flow: 3337 * 3338 * - Allocate a page, copy the content of the old page to the new one. 3339 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3340 * - Take the PTL. If the pte changed, bail out and release the allocated page 3341 * - If the pte is still the way we remember it, update the page table and all 3342 * relevant references. This includes dropping the reference the page-table 3343 * held to the old page, as well as updating the rmap. 3344 * - In any case, unlock the PTL and drop the reference we took to the old page. 3345 */ 3346 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3347 { 3348 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3349 struct vm_area_struct *vma = vmf->vma; 3350 struct mm_struct *mm = vma->vm_mm; 3351 struct folio *old_folio = NULL; 3352 struct folio *new_folio = NULL; 3353 pte_t entry; 3354 int page_copied = 0; 3355 struct mmu_notifier_range range; 3356 vm_fault_t ret; 3357 bool pfn_is_zero; 3358 3359 delayacct_wpcopy_start(); 3360 3361 if (vmf->page) 3362 old_folio = page_folio(vmf->page); 3363 ret = vmf_anon_prepare(vmf); 3364 if (unlikely(ret)) 3365 goto out; 3366 3367 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3368 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3369 if (!new_folio) 3370 goto oom; 3371 3372 if (!pfn_is_zero) { 3373 int err; 3374 3375 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3376 if (err) { 3377 /* 3378 * COW failed, if the fault was solved by other, 3379 * it's fine. If not, userspace would re-fault on 3380 * the same address and we will handle the fault 3381 * from the second attempt. 3382 * The -EHWPOISON case will not be retried. 3383 */ 3384 folio_put(new_folio); 3385 if (old_folio) 3386 folio_put(old_folio); 3387 3388 delayacct_wpcopy_end(); 3389 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3390 } 3391 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3392 } 3393 3394 __folio_mark_uptodate(new_folio); 3395 3396 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3397 vmf->address & PAGE_MASK, 3398 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3399 mmu_notifier_invalidate_range_start(&range); 3400 3401 /* 3402 * Re-check the pte - we dropped the lock 3403 */ 3404 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3405 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3406 if (old_folio) { 3407 if (!folio_test_anon(old_folio)) { 3408 dec_mm_counter(mm, mm_counter_file(old_folio)); 3409 inc_mm_counter(mm, MM_ANONPAGES); 3410 } 3411 } else { 3412 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3413 inc_mm_counter(mm, MM_ANONPAGES); 3414 } 3415 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3416 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3417 entry = pte_sw_mkyoung(entry); 3418 if (unlikely(unshare)) { 3419 if (pte_soft_dirty(vmf->orig_pte)) 3420 entry = pte_mksoft_dirty(entry); 3421 if (pte_uffd_wp(vmf->orig_pte)) 3422 entry = pte_mkuffd_wp(entry); 3423 } else { 3424 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3425 } 3426 3427 /* 3428 * Clear the pte entry and flush it first, before updating the 3429 * pte with the new entry, to keep TLBs on different CPUs in 3430 * sync. This code used to set the new PTE then flush TLBs, but 3431 * that left a window where the new PTE could be loaded into 3432 * some TLBs while the old PTE remains in others. 3433 */ 3434 ptep_clear_flush(vma, vmf->address, vmf->pte); 3435 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3436 folio_add_lru_vma(new_folio, vma); 3437 BUG_ON(unshare && pte_write(entry)); 3438 set_pte_at(mm, vmf->address, vmf->pte, entry); 3439 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3440 if (old_folio) { 3441 /* 3442 * Only after switching the pte to the new page may 3443 * we remove the mapcount here. Otherwise another 3444 * process may come and find the rmap count decremented 3445 * before the pte is switched to the new page, and 3446 * "reuse" the old page writing into it while our pte 3447 * here still points into it and can be read by other 3448 * threads. 3449 * 3450 * The critical issue is to order this 3451 * folio_remove_rmap_pte() with the ptp_clear_flush 3452 * above. Those stores are ordered by (if nothing else,) 3453 * the barrier present in the atomic_add_negative 3454 * in folio_remove_rmap_pte(); 3455 * 3456 * Then the TLB flush in ptep_clear_flush ensures that 3457 * no process can access the old page before the 3458 * decremented mapcount is visible. And the old page 3459 * cannot be reused until after the decremented 3460 * mapcount is visible. So transitively, TLBs to 3461 * old page will be flushed before it can be reused. 3462 */ 3463 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3464 } 3465 3466 /* Free the old page.. */ 3467 new_folio = old_folio; 3468 page_copied = 1; 3469 pte_unmap_unlock(vmf->pte, vmf->ptl); 3470 } else if (vmf->pte) { 3471 update_mmu_tlb(vma, vmf->address, vmf->pte); 3472 pte_unmap_unlock(vmf->pte, vmf->ptl); 3473 } 3474 3475 mmu_notifier_invalidate_range_end(&range); 3476 3477 if (new_folio) 3478 folio_put(new_folio); 3479 if (old_folio) { 3480 if (page_copied) 3481 free_swap_cache(old_folio); 3482 folio_put(old_folio); 3483 } 3484 3485 delayacct_wpcopy_end(); 3486 return 0; 3487 oom: 3488 ret = VM_FAULT_OOM; 3489 out: 3490 if (old_folio) 3491 folio_put(old_folio); 3492 3493 delayacct_wpcopy_end(); 3494 return ret; 3495 } 3496 3497 /** 3498 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3499 * writeable once the page is prepared 3500 * 3501 * @vmf: structure describing the fault 3502 * @folio: the folio of vmf->page 3503 * 3504 * This function handles all that is needed to finish a write page fault in a 3505 * shared mapping due to PTE being read-only once the mapped page is prepared. 3506 * It handles locking of PTE and modifying it. 3507 * 3508 * The function expects the page to be locked or other protection against 3509 * concurrent faults / writeback (such as DAX radix tree locks). 3510 * 3511 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3512 * we acquired PTE lock. 3513 */ 3514 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3515 { 3516 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3517 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3518 &vmf->ptl); 3519 if (!vmf->pte) 3520 return VM_FAULT_NOPAGE; 3521 /* 3522 * We might have raced with another page fault while we released the 3523 * pte_offset_map_lock. 3524 */ 3525 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3526 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3527 pte_unmap_unlock(vmf->pte, vmf->ptl); 3528 return VM_FAULT_NOPAGE; 3529 } 3530 wp_page_reuse(vmf, folio); 3531 return 0; 3532 } 3533 3534 /* 3535 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3536 * mapping 3537 */ 3538 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3539 { 3540 struct vm_area_struct *vma = vmf->vma; 3541 3542 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3543 vm_fault_t ret; 3544 3545 pte_unmap_unlock(vmf->pte, vmf->ptl); 3546 ret = vmf_can_call_fault(vmf); 3547 if (ret) 3548 return ret; 3549 3550 vmf->flags |= FAULT_FLAG_MKWRITE; 3551 ret = vma->vm_ops->pfn_mkwrite(vmf); 3552 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3553 return ret; 3554 return finish_mkwrite_fault(vmf, NULL); 3555 } 3556 wp_page_reuse(vmf, NULL); 3557 return 0; 3558 } 3559 3560 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3561 __releases(vmf->ptl) 3562 { 3563 struct vm_area_struct *vma = vmf->vma; 3564 vm_fault_t ret = 0; 3565 3566 folio_get(folio); 3567 3568 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3569 vm_fault_t tmp; 3570 3571 pte_unmap_unlock(vmf->pte, vmf->ptl); 3572 tmp = vmf_can_call_fault(vmf); 3573 if (tmp) { 3574 folio_put(folio); 3575 return tmp; 3576 } 3577 3578 tmp = do_page_mkwrite(vmf, folio); 3579 if (unlikely(!tmp || (tmp & 3580 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3581 folio_put(folio); 3582 return tmp; 3583 } 3584 tmp = finish_mkwrite_fault(vmf, folio); 3585 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3586 folio_unlock(folio); 3587 folio_put(folio); 3588 return tmp; 3589 } 3590 } else { 3591 wp_page_reuse(vmf, folio); 3592 folio_lock(folio); 3593 } 3594 ret |= fault_dirty_shared_page(vmf); 3595 folio_put(folio); 3596 3597 return ret; 3598 } 3599 3600 static bool wp_can_reuse_anon_folio(struct folio *folio, 3601 struct vm_area_struct *vma) 3602 { 3603 /* 3604 * We could currently only reuse a subpage of a large folio if no 3605 * other subpages of the large folios are still mapped. However, 3606 * let's just consistently not reuse subpages even if we could 3607 * reuse in that scenario, and give back a large folio a bit 3608 * sooner. 3609 */ 3610 if (folio_test_large(folio)) 3611 return false; 3612 3613 /* 3614 * We have to verify under folio lock: these early checks are 3615 * just an optimization to avoid locking the folio and freeing 3616 * the swapcache if there is little hope that we can reuse. 3617 * 3618 * KSM doesn't necessarily raise the folio refcount. 3619 */ 3620 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3621 return false; 3622 if (!folio_test_lru(folio)) 3623 /* 3624 * We cannot easily detect+handle references from 3625 * remote LRU caches or references to LRU folios. 3626 */ 3627 lru_add_drain(); 3628 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3629 return false; 3630 if (!folio_trylock(folio)) 3631 return false; 3632 if (folio_test_swapcache(folio)) 3633 folio_free_swap(folio); 3634 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3635 folio_unlock(folio); 3636 return false; 3637 } 3638 /* 3639 * Ok, we've got the only folio reference from our mapping 3640 * and the folio is locked, it's dark out, and we're wearing 3641 * sunglasses. Hit it. 3642 */ 3643 folio_move_anon_rmap(folio, vma); 3644 folio_unlock(folio); 3645 return true; 3646 } 3647 3648 /* 3649 * This routine handles present pages, when 3650 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3651 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3652 * (FAULT_FLAG_UNSHARE) 3653 * 3654 * It is done by copying the page to a new address and decrementing the 3655 * shared-page counter for the old page. 3656 * 3657 * Note that this routine assumes that the protection checks have been 3658 * done by the caller (the low-level page fault routine in most cases). 3659 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3660 * done any necessary COW. 3661 * 3662 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3663 * though the page will change only once the write actually happens. This 3664 * avoids a few races, and potentially makes it more efficient. 3665 * 3666 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3667 * but allow concurrent faults), with pte both mapped and locked. 3668 * We return with mmap_lock still held, but pte unmapped and unlocked. 3669 */ 3670 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3671 __releases(vmf->ptl) 3672 { 3673 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3674 struct vm_area_struct *vma = vmf->vma; 3675 struct folio *folio = NULL; 3676 pte_t pte; 3677 3678 if (likely(!unshare)) { 3679 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3680 if (!userfaultfd_wp_async(vma)) { 3681 pte_unmap_unlock(vmf->pte, vmf->ptl); 3682 return handle_userfault(vmf, VM_UFFD_WP); 3683 } 3684 3685 /* 3686 * Nothing needed (cache flush, TLB invalidations, 3687 * etc.) because we're only removing the uffd-wp bit, 3688 * which is completely invisible to the user. 3689 */ 3690 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3691 3692 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3693 /* 3694 * Update this to be prepared for following up CoW 3695 * handling 3696 */ 3697 vmf->orig_pte = pte; 3698 } 3699 3700 /* 3701 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3702 * is flushed in this case before copying. 3703 */ 3704 if (unlikely(userfaultfd_wp(vmf->vma) && 3705 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3706 flush_tlb_page(vmf->vma, vmf->address); 3707 } 3708 3709 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3710 3711 if (vmf->page) 3712 folio = page_folio(vmf->page); 3713 3714 /* 3715 * Shared mapping: we are guaranteed to have VM_WRITE and 3716 * FAULT_FLAG_WRITE set at this point. 3717 */ 3718 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3719 /* 3720 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3721 * VM_PFNMAP VMA. 3722 * 3723 * We should not cow pages in a shared writeable mapping. 3724 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3725 */ 3726 if (!vmf->page) 3727 return wp_pfn_shared(vmf); 3728 return wp_page_shared(vmf, folio); 3729 } 3730 3731 /* 3732 * Private mapping: create an exclusive anonymous page copy if reuse 3733 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3734 * 3735 * If we encounter a page that is marked exclusive, we must reuse 3736 * the page without further checks. 3737 */ 3738 if (folio && folio_test_anon(folio) && 3739 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3740 if (!PageAnonExclusive(vmf->page)) 3741 SetPageAnonExclusive(vmf->page); 3742 if (unlikely(unshare)) { 3743 pte_unmap_unlock(vmf->pte, vmf->ptl); 3744 return 0; 3745 } 3746 wp_page_reuse(vmf, folio); 3747 return 0; 3748 } 3749 /* 3750 * Ok, we need to copy. Oh, well.. 3751 */ 3752 if (folio) 3753 folio_get(folio); 3754 3755 pte_unmap_unlock(vmf->pte, vmf->ptl); 3756 #ifdef CONFIG_KSM 3757 if (folio && folio_test_ksm(folio)) 3758 count_vm_event(COW_KSM); 3759 #endif 3760 return wp_page_copy(vmf); 3761 } 3762 3763 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3764 unsigned long start_addr, unsigned long end_addr, 3765 struct zap_details *details) 3766 { 3767 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3768 } 3769 3770 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3771 pgoff_t first_index, 3772 pgoff_t last_index, 3773 struct zap_details *details) 3774 { 3775 struct vm_area_struct *vma; 3776 pgoff_t vba, vea, zba, zea; 3777 3778 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3779 vba = vma->vm_pgoff; 3780 vea = vba + vma_pages(vma) - 1; 3781 zba = max(first_index, vba); 3782 zea = min(last_index, vea); 3783 3784 unmap_mapping_range_vma(vma, 3785 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3786 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3787 details); 3788 } 3789 } 3790 3791 /** 3792 * unmap_mapping_folio() - Unmap single folio from processes. 3793 * @folio: The locked folio to be unmapped. 3794 * 3795 * Unmap this folio from any userspace process which still has it mmaped. 3796 * Typically, for efficiency, the range of nearby pages has already been 3797 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3798 * truncation or invalidation holds the lock on a folio, it may find that 3799 * the page has been remapped again: and then uses unmap_mapping_folio() 3800 * to unmap it finally. 3801 */ 3802 void unmap_mapping_folio(struct folio *folio) 3803 { 3804 struct address_space *mapping = folio->mapping; 3805 struct zap_details details = { }; 3806 pgoff_t first_index; 3807 pgoff_t last_index; 3808 3809 VM_BUG_ON(!folio_test_locked(folio)); 3810 3811 first_index = folio->index; 3812 last_index = folio_next_index(folio) - 1; 3813 3814 details.even_cows = false; 3815 details.single_folio = folio; 3816 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3817 3818 i_mmap_lock_read(mapping); 3819 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3820 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3821 last_index, &details); 3822 i_mmap_unlock_read(mapping); 3823 } 3824 3825 /** 3826 * unmap_mapping_pages() - Unmap pages from processes. 3827 * @mapping: The address space containing pages to be unmapped. 3828 * @start: Index of first page to be unmapped. 3829 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3830 * @even_cows: Whether to unmap even private COWed pages. 3831 * 3832 * Unmap the pages in this address space from any userspace process which 3833 * has them mmaped. Generally, you want to remove COWed pages as well when 3834 * a file is being truncated, but not when invalidating pages from the page 3835 * cache. 3836 */ 3837 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3838 pgoff_t nr, bool even_cows) 3839 { 3840 struct zap_details details = { }; 3841 pgoff_t first_index = start; 3842 pgoff_t last_index = start + nr - 1; 3843 3844 details.even_cows = even_cows; 3845 if (last_index < first_index) 3846 last_index = ULONG_MAX; 3847 3848 i_mmap_lock_read(mapping); 3849 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3850 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3851 last_index, &details); 3852 i_mmap_unlock_read(mapping); 3853 } 3854 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3855 3856 /** 3857 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3858 * address_space corresponding to the specified byte range in the underlying 3859 * file. 3860 * 3861 * @mapping: the address space containing mmaps to be unmapped. 3862 * @holebegin: byte in first page to unmap, relative to the start of 3863 * the underlying file. This will be rounded down to a PAGE_SIZE 3864 * boundary. Note that this is different from truncate_pagecache(), which 3865 * must keep the partial page. In contrast, we must get rid of 3866 * partial pages. 3867 * @holelen: size of prospective hole in bytes. This will be rounded 3868 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3869 * end of the file. 3870 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3871 * but 0 when invalidating pagecache, don't throw away private data. 3872 */ 3873 void unmap_mapping_range(struct address_space *mapping, 3874 loff_t const holebegin, loff_t const holelen, int even_cows) 3875 { 3876 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3877 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3878 3879 /* Check for overflow. */ 3880 if (sizeof(holelen) > sizeof(hlen)) { 3881 long long holeend = 3882 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3883 if (holeend & ~(long long)ULONG_MAX) 3884 hlen = ULONG_MAX - hba + 1; 3885 } 3886 3887 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3888 } 3889 EXPORT_SYMBOL(unmap_mapping_range); 3890 3891 /* 3892 * Restore a potential device exclusive pte to a working pte entry 3893 */ 3894 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3895 { 3896 struct folio *folio = page_folio(vmf->page); 3897 struct vm_area_struct *vma = vmf->vma; 3898 struct mmu_notifier_range range; 3899 vm_fault_t ret; 3900 3901 /* 3902 * We need a reference to lock the folio because we don't hold 3903 * the PTL so a racing thread can remove the device-exclusive 3904 * entry and unmap it. If the folio is free the entry must 3905 * have been removed already. If it happens to have already 3906 * been re-allocated after being freed all we do is lock and 3907 * unlock it. 3908 */ 3909 if (!folio_try_get(folio)) 3910 return 0; 3911 3912 ret = folio_lock_or_retry(folio, vmf); 3913 if (ret) { 3914 folio_put(folio); 3915 return ret; 3916 } 3917 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3918 vma->vm_mm, vmf->address & PAGE_MASK, 3919 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3920 mmu_notifier_invalidate_range_start(&range); 3921 3922 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3923 &vmf->ptl); 3924 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3925 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3926 3927 if (vmf->pte) 3928 pte_unmap_unlock(vmf->pte, vmf->ptl); 3929 folio_unlock(folio); 3930 folio_put(folio); 3931 3932 mmu_notifier_invalidate_range_end(&range); 3933 return 0; 3934 } 3935 3936 static inline bool should_try_to_free_swap(struct folio *folio, 3937 struct vm_area_struct *vma, 3938 unsigned int fault_flags) 3939 { 3940 if (!folio_test_swapcache(folio)) 3941 return false; 3942 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3943 folio_test_mlocked(folio)) 3944 return true; 3945 /* 3946 * If we want to map a page that's in the swapcache writable, we 3947 * have to detect via the refcount if we're really the exclusive 3948 * user. Try freeing the swapcache to get rid of the swapcache 3949 * reference only in case it's likely that we'll be the exlusive user. 3950 */ 3951 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3952 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 3953 } 3954 3955 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3956 { 3957 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3958 vmf->address, &vmf->ptl); 3959 if (!vmf->pte) 3960 return 0; 3961 /* 3962 * Be careful so that we will only recover a special uffd-wp pte into a 3963 * none pte. Otherwise it means the pte could have changed, so retry. 3964 * 3965 * This should also cover the case where e.g. the pte changed 3966 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3967 * So is_pte_marker() check is not enough to safely drop the pte. 3968 */ 3969 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3970 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3971 pte_unmap_unlock(vmf->pte, vmf->ptl); 3972 return 0; 3973 } 3974 3975 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3976 { 3977 if (vma_is_anonymous(vmf->vma)) 3978 return do_anonymous_page(vmf); 3979 else 3980 return do_fault(vmf); 3981 } 3982 3983 /* 3984 * This is actually a page-missing access, but with uffd-wp special pte 3985 * installed. It means this pte was wr-protected before being unmapped. 3986 */ 3987 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3988 { 3989 /* 3990 * Just in case there're leftover special ptes even after the region 3991 * got unregistered - we can simply clear them. 3992 */ 3993 if (unlikely(!userfaultfd_wp(vmf->vma))) 3994 return pte_marker_clear(vmf); 3995 3996 return do_pte_missing(vmf); 3997 } 3998 3999 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4000 { 4001 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4002 unsigned long marker = pte_marker_get(entry); 4003 4004 /* 4005 * PTE markers should never be empty. If anything weird happened, 4006 * the best thing to do is to kill the process along with its mm. 4007 */ 4008 if (WARN_ON_ONCE(!marker)) 4009 return VM_FAULT_SIGBUS; 4010 4011 /* Higher priority than uffd-wp when data corrupted */ 4012 if (marker & PTE_MARKER_POISONED) 4013 return VM_FAULT_HWPOISON; 4014 4015 /* Hitting a guard page is always a fatal condition. */ 4016 if (marker & PTE_MARKER_GUARD) 4017 return VM_FAULT_SIGSEGV; 4018 4019 if (pte_marker_entry_uffd_wp(entry)) 4020 return pte_marker_handle_uffd_wp(vmf); 4021 4022 /* This is an unknown pte marker */ 4023 return VM_FAULT_SIGBUS; 4024 } 4025 4026 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4027 { 4028 struct vm_area_struct *vma = vmf->vma; 4029 struct folio *folio; 4030 swp_entry_t entry; 4031 4032 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4033 if (!folio) 4034 return NULL; 4035 4036 entry = pte_to_swp_entry(vmf->orig_pte); 4037 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4038 GFP_KERNEL, entry)) { 4039 folio_put(folio); 4040 return NULL; 4041 } 4042 4043 return folio; 4044 } 4045 4046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4047 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4048 { 4049 struct swap_info_struct *si = swp_swap_info(entry); 4050 pgoff_t offset = swp_offset(entry); 4051 int i; 4052 4053 /* 4054 * While allocating a large folio and doing swap_read_folio, which is 4055 * the case the being faulted pte doesn't have swapcache. We need to 4056 * ensure all PTEs have no cache as well, otherwise, we might go to 4057 * swap devices while the content is in swapcache. 4058 */ 4059 for (i = 0; i < max_nr; i++) { 4060 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4061 return i; 4062 } 4063 4064 return i; 4065 } 4066 4067 /* 4068 * Check if the PTEs within a range are contiguous swap entries 4069 * and have consistent swapcache, zeromap. 4070 */ 4071 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4072 { 4073 unsigned long addr; 4074 swp_entry_t entry; 4075 int idx; 4076 pte_t pte; 4077 4078 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4079 idx = (vmf->address - addr) / PAGE_SIZE; 4080 pte = ptep_get(ptep); 4081 4082 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4083 return false; 4084 entry = pte_to_swp_entry(pte); 4085 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4086 return false; 4087 4088 /* 4089 * swap_read_folio() can't handle the case a large folio is hybridly 4090 * from different backends. And they are likely corner cases. Similar 4091 * things might be added once zswap support large folios. 4092 */ 4093 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4094 return false; 4095 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4096 return false; 4097 4098 return true; 4099 } 4100 4101 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4102 unsigned long addr, 4103 unsigned long orders) 4104 { 4105 int order, nr; 4106 4107 order = highest_order(orders); 4108 4109 /* 4110 * To swap in a THP with nr pages, we require that its first swap_offset 4111 * is aligned with that number, as it was when the THP was swapped out. 4112 * This helps filter out most invalid entries. 4113 */ 4114 while (orders) { 4115 nr = 1 << order; 4116 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4117 break; 4118 order = next_order(&orders, order); 4119 } 4120 4121 return orders; 4122 } 4123 4124 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4125 { 4126 struct vm_area_struct *vma = vmf->vma; 4127 unsigned long orders; 4128 struct folio *folio; 4129 unsigned long addr; 4130 swp_entry_t entry; 4131 spinlock_t *ptl; 4132 pte_t *pte; 4133 gfp_t gfp; 4134 int order; 4135 4136 /* 4137 * If uffd is active for the vma we need per-page fault fidelity to 4138 * maintain the uffd semantics. 4139 */ 4140 if (unlikely(userfaultfd_armed(vma))) 4141 goto fallback; 4142 4143 /* 4144 * A large swapped out folio could be partially or fully in zswap. We 4145 * lack handling for such cases, so fallback to swapping in order-0 4146 * folio. 4147 */ 4148 if (!zswap_never_enabled()) 4149 goto fallback; 4150 4151 entry = pte_to_swp_entry(vmf->orig_pte); 4152 /* 4153 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4154 * and suitable for swapping THP. 4155 */ 4156 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4157 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4158 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4159 orders = thp_swap_suitable_orders(swp_offset(entry), 4160 vmf->address, orders); 4161 4162 if (!orders) 4163 goto fallback; 4164 4165 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4166 vmf->address & PMD_MASK, &ptl); 4167 if (unlikely(!pte)) 4168 goto fallback; 4169 4170 /* 4171 * For do_swap_page, find the highest order where the aligned range is 4172 * completely swap entries with contiguous swap offsets. 4173 */ 4174 order = highest_order(orders); 4175 while (orders) { 4176 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4177 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4178 break; 4179 order = next_order(&orders, order); 4180 } 4181 4182 pte_unmap_unlock(pte, ptl); 4183 4184 /* Try allocating the highest of the remaining orders. */ 4185 gfp = vma_thp_gfp_mask(vma); 4186 while (orders) { 4187 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4188 folio = vma_alloc_folio(gfp, order, vma, addr); 4189 if (folio) { 4190 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4191 gfp, entry)) 4192 return folio; 4193 folio_put(folio); 4194 } 4195 order = next_order(&orders, order); 4196 } 4197 4198 fallback: 4199 return __alloc_swap_folio(vmf); 4200 } 4201 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4202 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4203 { 4204 return __alloc_swap_folio(vmf); 4205 } 4206 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4207 4208 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4209 4210 /* 4211 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4212 * but allow concurrent faults), and pte mapped but not yet locked. 4213 * We return with pte unmapped and unlocked. 4214 * 4215 * We return with the mmap_lock locked or unlocked in the same cases 4216 * as does filemap_fault(). 4217 */ 4218 vm_fault_t do_swap_page(struct vm_fault *vmf) 4219 { 4220 struct vm_area_struct *vma = vmf->vma; 4221 struct folio *swapcache, *folio = NULL; 4222 DECLARE_WAITQUEUE(wait, current); 4223 struct page *page; 4224 struct swap_info_struct *si = NULL; 4225 rmap_t rmap_flags = RMAP_NONE; 4226 bool need_clear_cache = false; 4227 bool exclusive = false; 4228 swp_entry_t entry; 4229 pte_t pte; 4230 vm_fault_t ret = 0; 4231 void *shadow = NULL; 4232 int nr_pages; 4233 unsigned long page_idx; 4234 unsigned long address; 4235 pte_t *ptep; 4236 4237 if (!pte_unmap_same(vmf)) 4238 goto out; 4239 4240 entry = pte_to_swp_entry(vmf->orig_pte); 4241 if (unlikely(non_swap_entry(entry))) { 4242 if (is_migration_entry(entry)) { 4243 migration_entry_wait(vma->vm_mm, vmf->pmd, 4244 vmf->address); 4245 } else if (is_device_exclusive_entry(entry)) { 4246 vmf->page = pfn_swap_entry_to_page(entry); 4247 ret = remove_device_exclusive_entry(vmf); 4248 } else if (is_device_private_entry(entry)) { 4249 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4250 /* 4251 * migrate_to_ram is not yet ready to operate 4252 * under VMA lock. 4253 */ 4254 vma_end_read(vma); 4255 ret = VM_FAULT_RETRY; 4256 goto out; 4257 } 4258 4259 vmf->page = pfn_swap_entry_to_page(entry); 4260 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4261 vmf->address, &vmf->ptl); 4262 if (unlikely(!vmf->pte || 4263 !pte_same(ptep_get(vmf->pte), 4264 vmf->orig_pte))) 4265 goto unlock; 4266 4267 /* 4268 * Get a page reference while we know the page can't be 4269 * freed. 4270 */ 4271 get_page(vmf->page); 4272 pte_unmap_unlock(vmf->pte, vmf->ptl); 4273 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4274 put_page(vmf->page); 4275 } else if (is_hwpoison_entry(entry)) { 4276 ret = VM_FAULT_HWPOISON; 4277 } else if (is_pte_marker_entry(entry)) { 4278 ret = handle_pte_marker(vmf); 4279 } else { 4280 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4281 ret = VM_FAULT_SIGBUS; 4282 } 4283 goto out; 4284 } 4285 4286 /* Prevent swapoff from happening to us. */ 4287 si = get_swap_device(entry); 4288 if (unlikely(!si)) 4289 goto out; 4290 4291 folio = swap_cache_get_folio(entry, vma, vmf->address); 4292 if (folio) 4293 page = folio_file_page(folio, swp_offset(entry)); 4294 swapcache = folio; 4295 4296 if (!folio) { 4297 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4298 __swap_count(entry) == 1) { 4299 /* skip swapcache */ 4300 folio = alloc_swap_folio(vmf); 4301 if (folio) { 4302 __folio_set_locked(folio); 4303 __folio_set_swapbacked(folio); 4304 4305 nr_pages = folio_nr_pages(folio); 4306 if (folio_test_large(folio)) 4307 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4308 /* 4309 * Prevent parallel swapin from proceeding with 4310 * the cache flag. Otherwise, another thread 4311 * may finish swapin first, free the entry, and 4312 * swapout reusing the same entry. It's 4313 * undetectable as pte_same() returns true due 4314 * to entry reuse. 4315 */ 4316 if (swapcache_prepare(entry, nr_pages)) { 4317 /* 4318 * Relax a bit to prevent rapid 4319 * repeated page faults. 4320 */ 4321 add_wait_queue(&swapcache_wq, &wait); 4322 schedule_timeout_uninterruptible(1); 4323 remove_wait_queue(&swapcache_wq, &wait); 4324 goto out_page; 4325 } 4326 need_clear_cache = true; 4327 4328 mem_cgroup_swapin_uncharge_swap(entry, nr_pages); 4329 4330 shadow = get_shadow_from_swap_cache(entry); 4331 if (shadow) 4332 workingset_refault(folio, shadow); 4333 4334 folio_add_lru(folio); 4335 4336 /* To provide entry to swap_read_folio() */ 4337 folio->swap = entry; 4338 swap_read_folio(folio, NULL); 4339 folio->private = NULL; 4340 } 4341 } else { 4342 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4343 vmf); 4344 swapcache = folio; 4345 } 4346 4347 if (!folio) { 4348 /* 4349 * Back out if somebody else faulted in this pte 4350 * while we released the pte lock. 4351 */ 4352 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4353 vmf->address, &vmf->ptl); 4354 if (likely(vmf->pte && 4355 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4356 ret = VM_FAULT_OOM; 4357 goto unlock; 4358 } 4359 4360 /* Had to read the page from swap area: Major fault */ 4361 ret = VM_FAULT_MAJOR; 4362 count_vm_event(PGMAJFAULT); 4363 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4364 page = folio_file_page(folio, swp_offset(entry)); 4365 } else if (PageHWPoison(page)) { 4366 /* 4367 * hwpoisoned dirty swapcache pages are kept for killing 4368 * owner processes (which may be unknown at hwpoison time) 4369 */ 4370 ret = VM_FAULT_HWPOISON; 4371 goto out_release; 4372 } 4373 4374 ret |= folio_lock_or_retry(folio, vmf); 4375 if (ret & VM_FAULT_RETRY) 4376 goto out_release; 4377 4378 if (swapcache) { 4379 /* 4380 * Make sure folio_free_swap() or swapoff did not release the 4381 * swapcache from under us. The page pin, and pte_same test 4382 * below, are not enough to exclude that. Even if it is still 4383 * swapcache, we need to check that the page's swap has not 4384 * changed. 4385 */ 4386 if (unlikely(!folio_test_swapcache(folio) || 4387 page_swap_entry(page).val != entry.val)) 4388 goto out_page; 4389 4390 /* 4391 * KSM sometimes has to copy on read faults, for example, if 4392 * page->index of !PageKSM() pages would be nonlinear inside the 4393 * anon VMA -- PageKSM() is lost on actual swapout. 4394 */ 4395 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4396 if (unlikely(!folio)) { 4397 ret = VM_FAULT_OOM; 4398 folio = swapcache; 4399 goto out_page; 4400 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4401 ret = VM_FAULT_HWPOISON; 4402 folio = swapcache; 4403 goto out_page; 4404 } 4405 if (folio != swapcache) 4406 page = folio_page(folio, 0); 4407 4408 /* 4409 * If we want to map a page that's in the swapcache writable, we 4410 * have to detect via the refcount if we're really the exclusive 4411 * owner. Try removing the extra reference from the local LRU 4412 * caches if required. 4413 */ 4414 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4415 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4416 lru_add_drain(); 4417 } 4418 4419 folio_throttle_swaprate(folio, GFP_KERNEL); 4420 4421 /* 4422 * Back out if somebody else already faulted in this pte. 4423 */ 4424 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4425 &vmf->ptl); 4426 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4427 goto out_nomap; 4428 4429 if (unlikely(!folio_test_uptodate(folio))) { 4430 ret = VM_FAULT_SIGBUS; 4431 goto out_nomap; 4432 } 4433 4434 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4435 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4436 unsigned long nr = folio_nr_pages(folio); 4437 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4438 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4439 pte_t *folio_ptep = vmf->pte - idx; 4440 pte_t folio_pte = ptep_get(folio_ptep); 4441 4442 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4443 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4444 goto out_nomap; 4445 4446 page_idx = idx; 4447 address = folio_start; 4448 ptep = folio_ptep; 4449 goto check_folio; 4450 } 4451 4452 nr_pages = 1; 4453 page_idx = 0; 4454 address = vmf->address; 4455 ptep = vmf->pte; 4456 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4457 int nr = folio_nr_pages(folio); 4458 unsigned long idx = folio_page_idx(folio, page); 4459 unsigned long folio_start = address - idx * PAGE_SIZE; 4460 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4461 pte_t *folio_ptep; 4462 pte_t folio_pte; 4463 4464 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4465 goto check_folio; 4466 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4467 goto check_folio; 4468 4469 folio_ptep = vmf->pte - idx; 4470 folio_pte = ptep_get(folio_ptep); 4471 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4472 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4473 goto check_folio; 4474 4475 page_idx = idx; 4476 address = folio_start; 4477 ptep = folio_ptep; 4478 nr_pages = nr; 4479 entry = folio->swap; 4480 page = &folio->page; 4481 } 4482 4483 check_folio: 4484 /* 4485 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4486 * must never point at an anonymous page in the swapcache that is 4487 * PG_anon_exclusive. Sanity check that this holds and especially, that 4488 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4489 * check after taking the PT lock and making sure that nobody 4490 * concurrently faulted in this page and set PG_anon_exclusive. 4491 */ 4492 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4493 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4494 4495 /* 4496 * Check under PT lock (to protect against concurrent fork() sharing 4497 * the swap entry concurrently) for certainly exclusive pages. 4498 */ 4499 if (!folio_test_ksm(folio)) { 4500 exclusive = pte_swp_exclusive(vmf->orig_pte); 4501 if (folio != swapcache) { 4502 /* 4503 * We have a fresh page that is not exposed to the 4504 * swapcache -> certainly exclusive. 4505 */ 4506 exclusive = true; 4507 } else if (exclusive && folio_test_writeback(folio) && 4508 data_race(si->flags & SWP_STABLE_WRITES)) { 4509 /* 4510 * This is tricky: not all swap backends support 4511 * concurrent page modifications while under writeback. 4512 * 4513 * So if we stumble over such a page in the swapcache 4514 * we must not set the page exclusive, otherwise we can 4515 * map it writable without further checks and modify it 4516 * while still under writeback. 4517 * 4518 * For these problematic swap backends, simply drop the 4519 * exclusive marker: this is perfectly fine as we start 4520 * writeback only if we fully unmapped the page and 4521 * there are no unexpected references on the page after 4522 * unmapping succeeded. After fully unmapped, no 4523 * further GUP references (FOLL_GET and FOLL_PIN) can 4524 * appear, so dropping the exclusive marker and mapping 4525 * it only R/O is fine. 4526 */ 4527 exclusive = false; 4528 } 4529 } 4530 4531 /* 4532 * Some architectures may have to restore extra metadata to the page 4533 * when reading from swap. This metadata may be indexed by swap entry 4534 * so this must be called before swap_free(). 4535 */ 4536 arch_swap_restore(folio_swap(entry, folio), folio); 4537 4538 /* 4539 * Remove the swap entry and conditionally try to free up the swapcache. 4540 * We're already holding a reference on the page but haven't mapped it 4541 * yet. 4542 */ 4543 swap_free_nr(entry, nr_pages); 4544 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4545 folio_free_swap(folio); 4546 4547 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4548 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4549 pte = mk_pte(page, vma->vm_page_prot); 4550 if (pte_swp_soft_dirty(vmf->orig_pte)) 4551 pte = pte_mksoft_dirty(pte); 4552 if (pte_swp_uffd_wp(vmf->orig_pte)) 4553 pte = pte_mkuffd_wp(pte); 4554 4555 /* 4556 * Same logic as in do_wp_page(); however, optimize for pages that are 4557 * certainly not shared either because we just allocated them without 4558 * exposing them to the swapcache or because the swap entry indicates 4559 * exclusivity. 4560 */ 4561 if (!folio_test_ksm(folio) && 4562 (exclusive || folio_ref_count(folio) == 1)) { 4563 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4564 !pte_needs_soft_dirty_wp(vma, pte)) { 4565 pte = pte_mkwrite(pte, vma); 4566 if (vmf->flags & FAULT_FLAG_WRITE) { 4567 pte = pte_mkdirty(pte); 4568 vmf->flags &= ~FAULT_FLAG_WRITE; 4569 } 4570 } 4571 rmap_flags |= RMAP_EXCLUSIVE; 4572 } 4573 folio_ref_add(folio, nr_pages - 1); 4574 flush_icache_pages(vma, page, nr_pages); 4575 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4576 4577 /* ksm created a completely new copy */ 4578 if (unlikely(folio != swapcache && swapcache)) { 4579 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4580 folio_add_lru_vma(folio, vma); 4581 } else if (!folio_test_anon(folio)) { 4582 /* 4583 * We currently only expect small !anon folios which are either 4584 * fully exclusive or fully shared, or new allocated large 4585 * folios which are fully exclusive. If we ever get large 4586 * folios within swapcache here, we have to be careful. 4587 */ 4588 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4589 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4590 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4591 } else { 4592 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4593 rmap_flags); 4594 } 4595 4596 VM_BUG_ON(!folio_test_anon(folio) || 4597 (pte_write(pte) && !PageAnonExclusive(page))); 4598 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4599 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4600 pte, pte, nr_pages); 4601 4602 folio_unlock(folio); 4603 if (folio != swapcache && swapcache) { 4604 /* 4605 * Hold the lock to avoid the swap entry to be reused 4606 * until we take the PT lock for the pte_same() check 4607 * (to avoid false positives from pte_same). For 4608 * further safety release the lock after the swap_free 4609 * so that the swap count won't change under a 4610 * parallel locked swapcache. 4611 */ 4612 folio_unlock(swapcache); 4613 folio_put(swapcache); 4614 } 4615 4616 if (vmf->flags & FAULT_FLAG_WRITE) { 4617 ret |= do_wp_page(vmf); 4618 if (ret & VM_FAULT_ERROR) 4619 ret &= VM_FAULT_ERROR; 4620 goto out; 4621 } 4622 4623 /* No need to invalidate - it was non-present before */ 4624 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4625 unlock: 4626 if (vmf->pte) 4627 pte_unmap_unlock(vmf->pte, vmf->ptl); 4628 out: 4629 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4630 if (need_clear_cache) { 4631 swapcache_clear(si, entry, nr_pages); 4632 if (waitqueue_active(&swapcache_wq)) 4633 wake_up(&swapcache_wq); 4634 } 4635 if (si) 4636 put_swap_device(si); 4637 return ret; 4638 out_nomap: 4639 if (vmf->pte) 4640 pte_unmap_unlock(vmf->pte, vmf->ptl); 4641 out_page: 4642 folio_unlock(folio); 4643 out_release: 4644 folio_put(folio); 4645 if (folio != swapcache && swapcache) { 4646 folio_unlock(swapcache); 4647 folio_put(swapcache); 4648 } 4649 if (need_clear_cache) { 4650 swapcache_clear(si, entry, nr_pages); 4651 if (waitqueue_active(&swapcache_wq)) 4652 wake_up(&swapcache_wq); 4653 } 4654 if (si) 4655 put_swap_device(si); 4656 return ret; 4657 } 4658 4659 static bool pte_range_none(pte_t *pte, int nr_pages) 4660 { 4661 int i; 4662 4663 for (i = 0; i < nr_pages; i++) { 4664 if (!pte_none(ptep_get_lockless(pte + i))) 4665 return false; 4666 } 4667 4668 return true; 4669 } 4670 4671 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4672 { 4673 struct vm_area_struct *vma = vmf->vma; 4674 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4675 unsigned long orders; 4676 struct folio *folio; 4677 unsigned long addr; 4678 pte_t *pte; 4679 gfp_t gfp; 4680 int order; 4681 4682 /* 4683 * If uffd is active for the vma we need per-page fault fidelity to 4684 * maintain the uffd semantics. 4685 */ 4686 if (unlikely(userfaultfd_armed(vma))) 4687 goto fallback; 4688 4689 /* 4690 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4691 * for this vma. Then filter out the orders that can't be allocated over 4692 * the faulting address and still be fully contained in the vma. 4693 */ 4694 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4695 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4696 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4697 4698 if (!orders) 4699 goto fallback; 4700 4701 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4702 if (!pte) 4703 return ERR_PTR(-EAGAIN); 4704 4705 /* 4706 * Find the highest order where the aligned range is completely 4707 * pte_none(). Note that all remaining orders will be completely 4708 * pte_none(). 4709 */ 4710 order = highest_order(orders); 4711 while (orders) { 4712 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4713 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4714 break; 4715 order = next_order(&orders, order); 4716 } 4717 4718 pte_unmap(pte); 4719 4720 if (!orders) 4721 goto fallback; 4722 4723 /* Try allocating the highest of the remaining orders. */ 4724 gfp = vma_thp_gfp_mask(vma); 4725 while (orders) { 4726 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4727 folio = vma_alloc_folio(gfp, order, vma, addr); 4728 if (folio) { 4729 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4730 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4731 folio_put(folio); 4732 goto next; 4733 } 4734 folio_throttle_swaprate(folio, gfp); 4735 /* 4736 * When a folio is not zeroed during allocation 4737 * (__GFP_ZERO not used) or user folios require special 4738 * handling, folio_zero_user() is used to make sure 4739 * that the page corresponding to the faulting address 4740 * will be hot in the cache after zeroing. 4741 */ 4742 if (user_alloc_needs_zeroing()) 4743 folio_zero_user(folio, vmf->address); 4744 return folio; 4745 } 4746 next: 4747 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4748 order = next_order(&orders, order); 4749 } 4750 4751 fallback: 4752 #endif 4753 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4754 } 4755 4756 /* 4757 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4758 * but allow concurrent faults), and pte mapped but not yet locked. 4759 * We return with mmap_lock still held, but pte unmapped and unlocked. 4760 */ 4761 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4762 { 4763 struct vm_area_struct *vma = vmf->vma; 4764 unsigned long addr = vmf->address; 4765 struct folio *folio; 4766 vm_fault_t ret = 0; 4767 int nr_pages = 1; 4768 pte_t entry; 4769 4770 /* File mapping without ->vm_ops ? */ 4771 if (vma->vm_flags & VM_SHARED) 4772 return VM_FAULT_SIGBUS; 4773 4774 /* 4775 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4776 * be distinguished from a transient failure of pte_offset_map(). 4777 */ 4778 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4779 return VM_FAULT_OOM; 4780 4781 /* Use the zero-page for reads */ 4782 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4783 !mm_forbids_zeropage(vma->vm_mm)) { 4784 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4785 vma->vm_page_prot)); 4786 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4787 vmf->address, &vmf->ptl); 4788 if (!vmf->pte) 4789 goto unlock; 4790 if (vmf_pte_changed(vmf)) { 4791 update_mmu_tlb(vma, vmf->address, vmf->pte); 4792 goto unlock; 4793 } 4794 ret = check_stable_address_space(vma->vm_mm); 4795 if (ret) 4796 goto unlock; 4797 /* Deliver the page fault to userland, check inside PT lock */ 4798 if (userfaultfd_missing(vma)) { 4799 pte_unmap_unlock(vmf->pte, vmf->ptl); 4800 return handle_userfault(vmf, VM_UFFD_MISSING); 4801 } 4802 goto setpte; 4803 } 4804 4805 /* Allocate our own private page. */ 4806 ret = vmf_anon_prepare(vmf); 4807 if (ret) 4808 return ret; 4809 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4810 folio = alloc_anon_folio(vmf); 4811 if (IS_ERR(folio)) 4812 return 0; 4813 if (!folio) 4814 goto oom; 4815 4816 nr_pages = folio_nr_pages(folio); 4817 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4818 4819 /* 4820 * The memory barrier inside __folio_mark_uptodate makes sure that 4821 * preceding stores to the page contents become visible before 4822 * the set_pte_at() write. 4823 */ 4824 __folio_mark_uptodate(folio); 4825 4826 entry = mk_pte(&folio->page, vma->vm_page_prot); 4827 entry = pte_sw_mkyoung(entry); 4828 if (vma->vm_flags & VM_WRITE) 4829 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4830 4831 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4832 if (!vmf->pte) 4833 goto release; 4834 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4835 update_mmu_tlb(vma, addr, vmf->pte); 4836 goto release; 4837 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4838 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4839 goto release; 4840 } 4841 4842 ret = check_stable_address_space(vma->vm_mm); 4843 if (ret) 4844 goto release; 4845 4846 /* Deliver the page fault to userland, check inside PT lock */ 4847 if (userfaultfd_missing(vma)) { 4848 pte_unmap_unlock(vmf->pte, vmf->ptl); 4849 folio_put(folio); 4850 return handle_userfault(vmf, VM_UFFD_MISSING); 4851 } 4852 4853 folio_ref_add(folio, nr_pages - 1); 4854 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4855 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4856 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4857 folio_add_lru_vma(folio, vma); 4858 setpte: 4859 if (vmf_orig_pte_uffd_wp(vmf)) 4860 entry = pte_mkuffd_wp(entry); 4861 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4862 4863 /* No need to invalidate - it was non-present before */ 4864 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4865 unlock: 4866 if (vmf->pte) 4867 pte_unmap_unlock(vmf->pte, vmf->ptl); 4868 return ret; 4869 release: 4870 folio_put(folio); 4871 goto unlock; 4872 oom: 4873 return VM_FAULT_OOM; 4874 } 4875 4876 /* 4877 * The mmap_lock must have been held on entry, and may have been 4878 * released depending on flags and vma->vm_ops->fault() return value. 4879 * See filemap_fault() and __lock_page_retry(). 4880 */ 4881 static vm_fault_t __do_fault(struct vm_fault *vmf) 4882 { 4883 struct vm_area_struct *vma = vmf->vma; 4884 struct folio *folio; 4885 vm_fault_t ret; 4886 4887 /* 4888 * Preallocate pte before we take page_lock because this might lead to 4889 * deadlocks for memcg reclaim which waits for pages under writeback: 4890 * lock_page(A) 4891 * SetPageWriteback(A) 4892 * unlock_page(A) 4893 * lock_page(B) 4894 * lock_page(B) 4895 * pte_alloc_one 4896 * shrink_folio_list 4897 * wait_on_page_writeback(A) 4898 * SetPageWriteback(B) 4899 * unlock_page(B) 4900 * # flush A, B to clear the writeback 4901 */ 4902 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4903 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4904 if (!vmf->prealloc_pte) 4905 return VM_FAULT_OOM; 4906 } 4907 4908 ret = vma->vm_ops->fault(vmf); 4909 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4910 VM_FAULT_DONE_COW))) 4911 return ret; 4912 4913 folio = page_folio(vmf->page); 4914 if (unlikely(PageHWPoison(vmf->page))) { 4915 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4916 if (ret & VM_FAULT_LOCKED) { 4917 if (page_mapped(vmf->page)) 4918 unmap_mapping_folio(folio); 4919 /* Retry if a clean folio was removed from the cache. */ 4920 if (mapping_evict_folio(folio->mapping, folio)) 4921 poisonret = VM_FAULT_NOPAGE; 4922 folio_unlock(folio); 4923 } 4924 folio_put(folio); 4925 vmf->page = NULL; 4926 return poisonret; 4927 } 4928 4929 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4930 folio_lock(folio); 4931 else 4932 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4933 4934 return ret; 4935 } 4936 4937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4938 static void deposit_prealloc_pte(struct vm_fault *vmf) 4939 { 4940 struct vm_area_struct *vma = vmf->vma; 4941 4942 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4943 /* 4944 * We are going to consume the prealloc table, 4945 * count that as nr_ptes. 4946 */ 4947 mm_inc_nr_ptes(vma->vm_mm); 4948 vmf->prealloc_pte = NULL; 4949 } 4950 4951 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4952 { 4953 struct folio *folio = page_folio(page); 4954 struct vm_area_struct *vma = vmf->vma; 4955 bool write = vmf->flags & FAULT_FLAG_WRITE; 4956 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4957 pmd_t entry; 4958 vm_fault_t ret = VM_FAULT_FALLBACK; 4959 4960 /* 4961 * It is too late to allocate a small folio, we already have a large 4962 * folio in the pagecache: especially s390 KVM cannot tolerate any 4963 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 4964 * PMD mappings if THPs are disabled. 4965 */ 4966 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 4967 return ret; 4968 4969 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4970 return ret; 4971 4972 if (folio_order(folio) != HPAGE_PMD_ORDER) 4973 return ret; 4974 page = &folio->page; 4975 4976 /* 4977 * Just backoff if any subpage of a THP is corrupted otherwise 4978 * the corrupted page may mapped by PMD silently to escape the 4979 * check. This kind of THP just can be PTE mapped. Access to 4980 * the corrupted subpage should trigger SIGBUS as expected. 4981 */ 4982 if (unlikely(folio_test_has_hwpoisoned(folio))) 4983 return ret; 4984 4985 /* 4986 * Archs like ppc64 need additional space to store information 4987 * related to pte entry. Use the preallocated table for that. 4988 */ 4989 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4990 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4991 if (!vmf->prealloc_pte) 4992 return VM_FAULT_OOM; 4993 } 4994 4995 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4996 if (unlikely(!pmd_none(*vmf->pmd))) 4997 goto out; 4998 4999 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5000 5001 entry = mk_huge_pmd(page, vma->vm_page_prot); 5002 if (write) 5003 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5004 5005 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5006 folio_add_file_rmap_pmd(folio, page, vma); 5007 5008 /* 5009 * deposit and withdraw with pmd lock held 5010 */ 5011 if (arch_needs_pgtable_deposit()) 5012 deposit_prealloc_pte(vmf); 5013 5014 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5015 5016 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5017 5018 /* fault is handled */ 5019 ret = 0; 5020 count_vm_event(THP_FILE_MAPPED); 5021 out: 5022 spin_unlock(vmf->ptl); 5023 return ret; 5024 } 5025 #else 5026 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5027 { 5028 return VM_FAULT_FALLBACK; 5029 } 5030 #endif 5031 5032 /** 5033 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5034 * @vmf: Fault decription. 5035 * @folio: The folio that contains @page. 5036 * @page: The first page to create a PTE for. 5037 * @nr: The number of PTEs to create. 5038 * @addr: The first address to create a PTE for. 5039 */ 5040 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5041 struct page *page, unsigned int nr, unsigned long addr) 5042 { 5043 struct vm_area_struct *vma = vmf->vma; 5044 bool write = vmf->flags & FAULT_FLAG_WRITE; 5045 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5046 pte_t entry; 5047 5048 flush_icache_pages(vma, page, nr); 5049 entry = mk_pte(page, vma->vm_page_prot); 5050 5051 if (prefault && arch_wants_old_prefaulted_pte()) 5052 entry = pte_mkold(entry); 5053 else 5054 entry = pte_sw_mkyoung(entry); 5055 5056 if (write) 5057 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5058 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5059 entry = pte_mkuffd_wp(entry); 5060 /* copy-on-write page */ 5061 if (write && !(vma->vm_flags & VM_SHARED)) { 5062 VM_BUG_ON_FOLIO(nr != 1, folio); 5063 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5064 folio_add_lru_vma(folio, vma); 5065 } else { 5066 folio_add_file_rmap_ptes(folio, page, nr, vma); 5067 } 5068 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5069 5070 /* no need to invalidate: a not-present page won't be cached */ 5071 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5072 } 5073 5074 static bool vmf_pte_changed(struct vm_fault *vmf) 5075 { 5076 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5077 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5078 5079 return !pte_none(ptep_get(vmf->pte)); 5080 } 5081 5082 /** 5083 * finish_fault - finish page fault once we have prepared the page to fault 5084 * 5085 * @vmf: structure describing the fault 5086 * 5087 * This function handles all that is needed to finish a page fault once the 5088 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5089 * given page, adds reverse page mapping, handles memcg charges and LRU 5090 * addition. 5091 * 5092 * The function expects the page to be locked and on success it consumes a 5093 * reference of a page being mapped (for the PTE which maps it). 5094 * 5095 * Return: %0 on success, %VM_FAULT_ code in case of error. 5096 */ 5097 vm_fault_t finish_fault(struct vm_fault *vmf) 5098 { 5099 struct vm_area_struct *vma = vmf->vma; 5100 struct page *page; 5101 struct folio *folio; 5102 vm_fault_t ret; 5103 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5104 !(vma->vm_flags & VM_SHARED); 5105 int type, nr_pages; 5106 unsigned long addr = vmf->address; 5107 5108 /* Did we COW the page? */ 5109 if (is_cow) 5110 page = vmf->cow_page; 5111 else 5112 page = vmf->page; 5113 5114 /* 5115 * check even for read faults because we might have lost our CoWed 5116 * page 5117 */ 5118 if (!(vma->vm_flags & VM_SHARED)) { 5119 ret = check_stable_address_space(vma->vm_mm); 5120 if (ret) 5121 return ret; 5122 } 5123 5124 if (pmd_none(*vmf->pmd)) { 5125 if (PageTransCompound(page)) { 5126 ret = do_set_pmd(vmf, page); 5127 if (ret != VM_FAULT_FALLBACK) 5128 return ret; 5129 } 5130 5131 if (vmf->prealloc_pte) 5132 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5133 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5134 return VM_FAULT_OOM; 5135 } 5136 5137 folio = page_folio(page); 5138 nr_pages = folio_nr_pages(folio); 5139 5140 /* 5141 * Using per-page fault to maintain the uffd semantics, and same 5142 * approach also applies to non-anonymous-shmem faults to avoid 5143 * inflating the RSS of the process. 5144 */ 5145 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) { 5146 nr_pages = 1; 5147 } else if (nr_pages > 1) { 5148 pgoff_t idx = folio_page_idx(folio, page); 5149 /* The page offset of vmf->address within the VMA. */ 5150 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5151 /* The index of the entry in the pagetable for fault page. */ 5152 pgoff_t pte_off = pte_index(vmf->address); 5153 5154 /* 5155 * Fallback to per-page fault in case the folio size in page 5156 * cache beyond the VMA limits and PMD pagetable limits. 5157 */ 5158 if (unlikely(vma_off < idx || 5159 vma_off + (nr_pages - idx) > vma_pages(vma) || 5160 pte_off < idx || 5161 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5162 nr_pages = 1; 5163 } else { 5164 /* Now we can set mappings for the whole large folio. */ 5165 addr = vmf->address - idx * PAGE_SIZE; 5166 page = &folio->page; 5167 } 5168 } 5169 5170 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5171 addr, &vmf->ptl); 5172 if (!vmf->pte) 5173 return VM_FAULT_NOPAGE; 5174 5175 /* Re-check under ptl */ 5176 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5177 update_mmu_tlb(vma, addr, vmf->pte); 5178 ret = VM_FAULT_NOPAGE; 5179 goto unlock; 5180 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5181 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5182 ret = VM_FAULT_NOPAGE; 5183 goto unlock; 5184 } 5185 5186 folio_ref_add(folio, nr_pages - 1); 5187 set_pte_range(vmf, folio, page, nr_pages, addr); 5188 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5189 add_mm_counter(vma->vm_mm, type, nr_pages); 5190 ret = 0; 5191 5192 unlock: 5193 pte_unmap_unlock(vmf->pte, vmf->ptl); 5194 return ret; 5195 } 5196 5197 static unsigned long fault_around_pages __read_mostly = 5198 65536 >> PAGE_SHIFT; 5199 5200 #ifdef CONFIG_DEBUG_FS 5201 static int fault_around_bytes_get(void *data, u64 *val) 5202 { 5203 *val = fault_around_pages << PAGE_SHIFT; 5204 return 0; 5205 } 5206 5207 /* 5208 * fault_around_bytes must be rounded down to the nearest page order as it's 5209 * what do_fault_around() expects to see. 5210 */ 5211 static int fault_around_bytes_set(void *data, u64 val) 5212 { 5213 if (val / PAGE_SIZE > PTRS_PER_PTE) 5214 return -EINVAL; 5215 5216 /* 5217 * The minimum value is 1 page, however this results in no fault-around 5218 * at all. See should_fault_around(). 5219 */ 5220 val = max(val, PAGE_SIZE); 5221 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5222 5223 return 0; 5224 } 5225 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5226 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5227 5228 static int __init fault_around_debugfs(void) 5229 { 5230 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5231 &fault_around_bytes_fops); 5232 return 0; 5233 } 5234 late_initcall(fault_around_debugfs); 5235 #endif 5236 5237 /* 5238 * do_fault_around() tries to map few pages around the fault address. The hope 5239 * is that the pages will be needed soon and this will lower the number of 5240 * faults to handle. 5241 * 5242 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5243 * not ready to be mapped: not up-to-date, locked, etc. 5244 * 5245 * This function doesn't cross VMA or page table boundaries, in order to call 5246 * map_pages() and acquire a PTE lock only once. 5247 * 5248 * fault_around_pages defines how many pages we'll try to map. 5249 * do_fault_around() expects it to be set to a power of two less than or equal 5250 * to PTRS_PER_PTE. 5251 * 5252 * The virtual address of the area that we map is naturally aligned to 5253 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5254 * (and therefore to page order). This way it's easier to guarantee 5255 * that we don't cross page table boundaries. 5256 */ 5257 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5258 { 5259 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5260 pgoff_t pte_off = pte_index(vmf->address); 5261 /* The page offset of vmf->address within the VMA. */ 5262 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5263 pgoff_t from_pte, to_pte; 5264 vm_fault_t ret; 5265 5266 /* The PTE offset of the start address, clamped to the VMA. */ 5267 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5268 pte_off - min(pte_off, vma_off)); 5269 5270 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5271 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5272 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5273 5274 if (pmd_none(*vmf->pmd)) { 5275 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5276 if (!vmf->prealloc_pte) 5277 return VM_FAULT_OOM; 5278 } 5279 5280 rcu_read_lock(); 5281 ret = vmf->vma->vm_ops->map_pages(vmf, 5282 vmf->pgoff + from_pte - pte_off, 5283 vmf->pgoff + to_pte - pte_off); 5284 rcu_read_unlock(); 5285 5286 return ret; 5287 } 5288 5289 /* Return true if we should do read fault-around, false otherwise */ 5290 static inline bool should_fault_around(struct vm_fault *vmf) 5291 { 5292 /* No ->map_pages? No way to fault around... */ 5293 if (!vmf->vma->vm_ops->map_pages) 5294 return false; 5295 5296 if (uffd_disable_fault_around(vmf->vma)) 5297 return false; 5298 5299 /* A single page implies no faulting 'around' at all. */ 5300 return fault_around_pages > 1; 5301 } 5302 5303 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5304 { 5305 vm_fault_t ret = 0; 5306 struct folio *folio; 5307 5308 /* 5309 * Let's call ->map_pages() first and use ->fault() as fallback 5310 * if page by the offset is not ready to be mapped (cold cache or 5311 * something). 5312 */ 5313 if (should_fault_around(vmf)) { 5314 ret = do_fault_around(vmf); 5315 if (ret) 5316 return ret; 5317 } 5318 5319 ret = vmf_can_call_fault(vmf); 5320 if (ret) 5321 return ret; 5322 5323 ret = __do_fault(vmf); 5324 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5325 return ret; 5326 5327 ret |= finish_fault(vmf); 5328 folio = page_folio(vmf->page); 5329 folio_unlock(folio); 5330 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5331 folio_put(folio); 5332 return ret; 5333 } 5334 5335 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5336 { 5337 struct vm_area_struct *vma = vmf->vma; 5338 struct folio *folio; 5339 vm_fault_t ret; 5340 5341 ret = vmf_can_call_fault(vmf); 5342 if (!ret) 5343 ret = vmf_anon_prepare(vmf); 5344 if (ret) 5345 return ret; 5346 5347 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5348 if (!folio) 5349 return VM_FAULT_OOM; 5350 5351 vmf->cow_page = &folio->page; 5352 5353 ret = __do_fault(vmf); 5354 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5355 goto uncharge_out; 5356 if (ret & VM_FAULT_DONE_COW) 5357 return ret; 5358 5359 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5360 ret = VM_FAULT_HWPOISON; 5361 goto unlock; 5362 } 5363 __folio_mark_uptodate(folio); 5364 5365 ret |= finish_fault(vmf); 5366 unlock: 5367 unlock_page(vmf->page); 5368 put_page(vmf->page); 5369 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5370 goto uncharge_out; 5371 return ret; 5372 uncharge_out: 5373 folio_put(folio); 5374 return ret; 5375 } 5376 5377 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5378 { 5379 struct vm_area_struct *vma = vmf->vma; 5380 vm_fault_t ret, tmp; 5381 struct folio *folio; 5382 5383 ret = vmf_can_call_fault(vmf); 5384 if (ret) 5385 return ret; 5386 5387 ret = __do_fault(vmf); 5388 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5389 return ret; 5390 5391 folio = page_folio(vmf->page); 5392 5393 /* 5394 * Check if the backing address space wants to know that the page is 5395 * about to become writable 5396 */ 5397 if (vma->vm_ops->page_mkwrite) { 5398 folio_unlock(folio); 5399 tmp = do_page_mkwrite(vmf, folio); 5400 if (unlikely(!tmp || 5401 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5402 folio_put(folio); 5403 return tmp; 5404 } 5405 } 5406 5407 ret |= finish_fault(vmf); 5408 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5409 VM_FAULT_RETRY))) { 5410 folio_unlock(folio); 5411 folio_put(folio); 5412 return ret; 5413 } 5414 5415 ret |= fault_dirty_shared_page(vmf); 5416 return ret; 5417 } 5418 5419 /* 5420 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5421 * but allow concurrent faults). 5422 * The mmap_lock may have been released depending on flags and our 5423 * return value. See filemap_fault() and __folio_lock_or_retry(). 5424 * If mmap_lock is released, vma may become invalid (for example 5425 * by other thread calling munmap()). 5426 */ 5427 static vm_fault_t do_fault(struct vm_fault *vmf) 5428 { 5429 struct vm_area_struct *vma = vmf->vma; 5430 struct mm_struct *vm_mm = vma->vm_mm; 5431 vm_fault_t ret; 5432 5433 /* 5434 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5435 */ 5436 if (!vma->vm_ops->fault) { 5437 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5438 vmf->address, &vmf->ptl); 5439 if (unlikely(!vmf->pte)) 5440 ret = VM_FAULT_SIGBUS; 5441 else { 5442 /* 5443 * Make sure this is not a temporary clearing of pte 5444 * by holding ptl and checking again. A R/M/W update 5445 * of pte involves: take ptl, clearing the pte so that 5446 * we don't have concurrent modification by hardware 5447 * followed by an update. 5448 */ 5449 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5450 ret = VM_FAULT_SIGBUS; 5451 else 5452 ret = VM_FAULT_NOPAGE; 5453 5454 pte_unmap_unlock(vmf->pte, vmf->ptl); 5455 } 5456 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5457 ret = do_read_fault(vmf); 5458 else if (!(vma->vm_flags & VM_SHARED)) 5459 ret = do_cow_fault(vmf); 5460 else 5461 ret = do_shared_fault(vmf); 5462 5463 /* preallocated pagetable is unused: free it */ 5464 if (vmf->prealloc_pte) { 5465 pte_free(vm_mm, vmf->prealloc_pte); 5466 vmf->prealloc_pte = NULL; 5467 } 5468 return ret; 5469 } 5470 5471 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5472 unsigned long addr, int *flags, 5473 bool writable, int *last_cpupid) 5474 { 5475 struct vm_area_struct *vma = vmf->vma; 5476 5477 /* 5478 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5479 * much anyway since they can be in shared cache state. This misses 5480 * the case where a mapping is writable but the process never writes 5481 * to it but pte_write gets cleared during protection updates and 5482 * pte_dirty has unpredictable behaviour between PTE scan updates, 5483 * background writeback, dirty balancing and application behaviour. 5484 */ 5485 if (!writable) 5486 *flags |= TNF_NO_GROUP; 5487 5488 /* 5489 * Flag if the folio is shared between multiple address spaces. This 5490 * is later used when determining whether to group tasks together 5491 */ 5492 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5493 *flags |= TNF_SHARED; 5494 /* 5495 * For memory tiering mode, cpupid of slow memory page is used 5496 * to record page access time. So use default value. 5497 */ 5498 if (folio_use_access_time(folio)) 5499 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5500 else 5501 *last_cpupid = folio_last_cpupid(folio); 5502 5503 /* Record the current PID acceesing VMA */ 5504 vma_set_access_pid_bit(vma); 5505 5506 count_vm_numa_event(NUMA_HINT_FAULTS); 5507 #ifdef CONFIG_NUMA_BALANCING 5508 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5509 #endif 5510 if (folio_nid(folio) == numa_node_id()) { 5511 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5512 *flags |= TNF_FAULT_LOCAL; 5513 } 5514 5515 return mpol_misplaced(folio, vmf, addr); 5516 } 5517 5518 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5519 unsigned long fault_addr, pte_t *fault_pte, 5520 bool writable) 5521 { 5522 pte_t pte, old_pte; 5523 5524 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5525 pte = pte_modify(old_pte, vma->vm_page_prot); 5526 pte = pte_mkyoung(pte); 5527 if (writable) 5528 pte = pte_mkwrite(pte, vma); 5529 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5530 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5531 } 5532 5533 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5534 struct folio *folio, pte_t fault_pte, 5535 bool ignore_writable, bool pte_write_upgrade) 5536 { 5537 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5538 unsigned long start, end, addr = vmf->address; 5539 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5540 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5541 pte_t *start_ptep; 5542 5543 /* Stay within the VMA and within the page table. */ 5544 start = max3(addr_start, pt_start, vma->vm_start); 5545 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5546 vma->vm_end); 5547 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5548 5549 /* Restore all PTEs' mapping of the large folio */ 5550 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5551 pte_t ptent = ptep_get(start_ptep); 5552 bool writable = false; 5553 5554 if (!pte_present(ptent) || !pte_protnone(ptent)) 5555 continue; 5556 5557 if (pfn_folio(pte_pfn(ptent)) != folio) 5558 continue; 5559 5560 if (!ignore_writable) { 5561 ptent = pte_modify(ptent, vma->vm_page_prot); 5562 writable = pte_write(ptent); 5563 if (!writable && pte_write_upgrade && 5564 can_change_pte_writable(vma, addr, ptent)) 5565 writable = true; 5566 } 5567 5568 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5569 } 5570 } 5571 5572 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5573 { 5574 struct vm_area_struct *vma = vmf->vma; 5575 struct folio *folio = NULL; 5576 int nid = NUMA_NO_NODE; 5577 bool writable = false, ignore_writable = false; 5578 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5579 int last_cpupid; 5580 int target_nid; 5581 pte_t pte, old_pte; 5582 int flags = 0, nr_pages; 5583 5584 /* 5585 * The pte cannot be used safely until we verify, while holding the page 5586 * table lock, that its contents have not changed during fault handling. 5587 */ 5588 spin_lock(vmf->ptl); 5589 /* Read the live PTE from the page tables: */ 5590 old_pte = ptep_get(vmf->pte); 5591 5592 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5593 pte_unmap_unlock(vmf->pte, vmf->ptl); 5594 return 0; 5595 } 5596 5597 pte = pte_modify(old_pte, vma->vm_page_prot); 5598 5599 /* 5600 * Detect now whether the PTE could be writable; this information 5601 * is only valid while holding the PT lock. 5602 */ 5603 writable = pte_write(pte); 5604 if (!writable && pte_write_upgrade && 5605 can_change_pte_writable(vma, vmf->address, pte)) 5606 writable = true; 5607 5608 folio = vm_normal_folio(vma, vmf->address, pte); 5609 if (!folio || folio_is_zone_device(folio)) 5610 goto out_map; 5611 5612 nid = folio_nid(folio); 5613 nr_pages = folio_nr_pages(folio); 5614 5615 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5616 writable, &last_cpupid); 5617 if (target_nid == NUMA_NO_NODE) 5618 goto out_map; 5619 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5620 flags |= TNF_MIGRATE_FAIL; 5621 goto out_map; 5622 } 5623 /* The folio is isolated and isolation code holds a folio reference. */ 5624 pte_unmap_unlock(vmf->pte, vmf->ptl); 5625 writable = false; 5626 ignore_writable = true; 5627 5628 /* Migrate to the requested node */ 5629 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 5630 nid = target_nid; 5631 flags |= TNF_MIGRATED; 5632 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5633 return 0; 5634 } 5635 5636 flags |= TNF_MIGRATE_FAIL; 5637 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5638 vmf->address, &vmf->ptl); 5639 if (unlikely(!vmf->pte)) 5640 return 0; 5641 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5642 pte_unmap_unlock(vmf->pte, vmf->ptl); 5643 return 0; 5644 } 5645 out_map: 5646 /* 5647 * Make it present again, depending on how arch implements 5648 * non-accessible ptes, some can allow access by kernel mode. 5649 */ 5650 if (folio && folio_test_large(folio)) 5651 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5652 pte_write_upgrade); 5653 else 5654 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5655 writable); 5656 pte_unmap_unlock(vmf->pte, vmf->ptl); 5657 5658 if (nid != NUMA_NO_NODE) 5659 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5660 return 0; 5661 } 5662 5663 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5664 { 5665 struct vm_area_struct *vma = vmf->vma; 5666 5667 if (vma_is_anonymous(vma)) 5668 return do_huge_pmd_anonymous_page(vmf); 5669 /* 5670 * Currently we just emit PAGE_SIZE for our fault events, so don't allow 5671 * a huge fault if we have a pre content watch on this file. This would 5672 * be trivial to support, but there would need to be tests to ensure 5673 * this works properly and those don't exist currently. 5674 */ 5675 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5676 return VM_FAULT_FALLBACK; 5677 if (vma->vm_ops->huge_fault) 5678 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5679 return VM_FAULT_FALLBACK; 5680 } 5681 5682 /* `inline' is required to avoid gcc 4.1.2 build error */ 5683 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5684 { 5685 struct vm_area_struct *vma = vmf->vma; 5686 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5687 vm_fault_t ret; 5688 5689 if (vma_is_anonymous(vma)) { 5690 if (likely(!unshare) && 5691 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5692 if (userfaultfd_wp_async(vmf->vma)) 5693 goto split; 5694 return handle_userfault(vmf, VM_UFFD_WP); 5695 } 5696 return do_huge_pmd_wp_page(vmf); 5697 } 5698 5699 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5700 /* See comment in create_huge_pmd. */ 5701 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5702 goto split; 5703 if (vma->vm_ops->huge_fault) { 5704 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5705 if (!(ret & VM_FAULT_FALLBACK)) 5706 return ret; 5707 } 5708 } 5709 5710 split: 5711 /* COW or write-notify handled on pte level: split pmd. */ 5712 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5713 5714 return VM_FAULT_FALLBACK; 5715 } 5716 5717 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5718 { 5719 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5720 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5721 struct vm_area_struct *vma = vmf->vma; 5722 /* No support for anonymous transparent PUD pages yet */ 5723 if (vma_is_anonymous(vma)) 5724 return VM_FAULT_FALLBACK; 5725 /* See comment in create_huge_pmd. */ 5726 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5727 return VM_FAULT_FALLBACK; 5728 if (vma->vm_ops->huge_fault) 5729 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5731 return VM_FAULT_FALLBACK; 5732 } 5733 5734 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5735 { 5736 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5737 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5738 struct vm_area_struct *vma = vmf->vma; 5739 vm_fault_t ret; 5740 5741 /* No support for anonymous transparent PUD pages yet */ 5742 if (vma_is_anonymous(vma)) 5743 goto split; 5744 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5745 /* See comment in create_huge_pmd. */ 5746 if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode))) 5747 goto split; 5748 if (vma->vm_ops->huge_fault) { 5749 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5750 if (!(ret & VM_FAULT_FALLBACK)) 5751 return ret; 5752 } 5753 } 5754 split: 5755 /* COW or write-notify not handled on PUD level: split pud.*/ 5756 __split_huge_pud(vma, vmf->pud, vmf->address); 5757 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5758 return VM_FAULT_FALLBACK; 5759 } 5760 5761 /* 5762 * These routines also need to handle stuff like marking pages dirty 5763 * and/or accessed for architectures that don't do it in hardware (most 5764 * RISC architectures). The early dirtying is also good on the i386. 5765 * 5766 * There is also a hook called "update_mmu_cache()" that architectures 5767 * with external mmu caches can use to update those (ie the Sparc or 5768 * PowerPC hashed page tables that act as extended TLBs). 5769 * 5770 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5771 * concurrent faults). 5772 * 5773 * The mmap_lock may have been released depending on flags and our return value. 5774 * See filemap_fault() and __folio_lock_or_retry(). 5775 */ 5776 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5777 { 5778 pte_t entry; 5779 5780 if (unlikely(pmd_none(*vmf->pmd))) { 5781 /* 5782 * Leave __pte_alloc() until later: because vm_ops->fault may 5783 * want to allocate huge page, and if we expose page table 5784 * for an instant, it will be difficult to retract from 5785 * concurrent faults and from rmap lookups. 5786 */ 5787 vmf->pte = NULL; 5788 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5789 } else { 5790 pmd_t dummy_pmdval; 5791 5792 /* 5793 * A regular pmd is established and it can't morph into a huge 5794 * pmd by anon khugepaged, since that takes mmap_lock in write 5795 * mode; but shmem or file collapse to THP could still morph 5796 * it into a huge pmd: just retry later if so. 5797 * 5798 * Use the maywrite version to indicate that vmf->pte may be 5799 * modified, but since we will use pte_same() to detect the 5800 * change of the !pte_none() entry, there is no need to recheck 5801 * the pmdval. Here we chooes to pass a dummy variable instead 5802 * of NULL, which helps new user think about why this place is 5803 * special. 5804 */ 5805 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 5806 vmf->address, &dummy_pmdval, 5807 &vmf->ptl); 5808 if (unlikely(!vmf->pte)) 5809 return 0; 5810 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5811 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5812 5813 if (pte_none(vmf->orig_pte)) { 5814 pte_unmap(vmf->pte); 5815 vmf->pte = NULL; 5816 } 5817 } 5818 5819 if (!vmf->pte) 5820 return do_pte_missing(vmf); 5821 5822 if (!pte_present(vmf->orig_pte)) 5823 return do_swap_page(vmf); 5824 5825 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5826 return do_numa_page(vmf); 5827 5828 spin_lock(vmf->ptl); 5829 entry = vmf->orig_pte; 5830 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5831 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5832 goto unlock; 5833 } 5834 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5835 if (!pte_write(entry)) 5836 return do_wp_page(vmf); 5837 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5838 entry = pte_mkdirty(entry); 5839 } 5840 entry = pte_mkyoung(entry); 5841 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5842 vmf->flags & FAULT_FLAG_WRITE)) { 5843 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5844 vmf->pte, 1); 5845 } else { 5846 /* Skip spurious TLB flush for retried page fault */ 5847 if (vmf->flags & FAULT_FLAG_TRIED) 5848 goto unlock; 5849 /* 5850 * This is needed only for protection faults but the arch code 5851 * is not yet telling us if this is a protection fault or not. 5852 * This still avoids useless tlb flushes for .text page faults 5853 * with threads. 5854 */ 5855 if (vmf->flags & FAULT_FLAG_WRITE) 5856 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5857 vmf->pte); 5858 } 5859 unlock: 5860 pte_unmap_unlock(vmf->pte, vmf->ptl); 5861 return 0; 5862 } 5863 5864 /* 5865 * On entry, we hold either the VMA lock or the mmap_lock 5866 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5867 * the result, the mmap_lock is not held on exit. See filemap_fault() 5868 * and __folio_lock_or_retry(). 5869 */ 5870 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5871 unsigned long address, unsigned int flags) 5872 { 5873 struct vm_fault vmf = { 5874 .vma = vma, 5875 .address = address & PAGE_MASK, 5876 .real_address = address, 5877 .flags = flags, 5878 .pgoff = linear_page_index(vma, address), 5879 .gfp_mask = __get_fault_gfp_mask(vma), 5880 }; 5881 struct mm_struct *mm = vma->vm_mm; 5882 unsigned long vm_flags = vma->vm_flags; 5883 pgd_t *pgd; 5884 p4d_t *p4d; 5885 vm_fault_t ret; 5886 5887 pgd = pgd_offset(mm, address); 5888 p4d = p4d_alloc(mm, pgd, address); 5889 if (!p4d) 5890 return VM_FAULT_OOM; 5891 5892 vmf.pud = pud_alloc(mm, p4d, address); 5893 if (!vmf.pud) 5894 return VM_FAULT_OOM; 5895 retry_pud: 5896 if (pud_none(*vmf.pud) && 5897 thp_vma_allowable_order(vma, vm_flags, 5898 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5899 ret = create_huge_pud(&vmf); 5900 if (!(ret & VM_FAULT_FALLBACK)) 5901 return ret; 5902 } else { 5903 pud_t orig_pud = *vmf.pud; 5904 5905 barrier(); 5906 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5907 5908 /* 5909 * TODO once we support anonymous PUDs: NUMA case and 5910 * FAULT_FLAG_UNSHARE handling. 5911 */ 5912 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5913 ret = wp_huge_pud(&vmf, orig_pud); 5914 if (!(ret & VM_FAULT_FALLBACK)) 5915 return ret; 5916 } else { 5917 huge_pud_set_accessed(&vmf, orig_pud); 5918 return 0; 5919 } 5920 } 5921 } 5922 5923 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5924 if (!vmf.pmd) 5925 return VM_FAULT_OOM; 5926 5927 /* Huge pud page fault raced with pmd_alloc? */ 5928 if (pud_trans_unstable(vmf.pud)) 5929 goto retry_pud; 5930 5931 if (pmd_none(*vmf.pmd) && 5932 thp_vma_allowable_order(vma, vm_flags, 5933 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 5934 ret = create_huge_pmd(&vmf); 5935 if (!(ret & VM_FAULT_FALLBACK)) 5936 return ret; 5937 } else { 5938 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5939 5940 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5941 VM_BUG_ON(thp_migration_supported() && 5942 !is_pmd_migration_entry(vmf.orig_pmd)); 5943 if (is_pmd_migration_entry(vmf.orig_pmd)) 5944 pmd_migration_entry_wait(mm, vmf.pmd); 5945 return 0; 5946 } 5947 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5948 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5949 return do_huge_pmd_numa_page(&vmf); 5950 5951 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5952 !pmd_write(vmf.orig_pmd)) { 5953 ret = wp_huge_pmd(&vmf); 5954 if (!(ret & VM_FAULT_FALLBACK)) 5955 return ret; 5956 } else { 5957 huge_pmd_set_accessed(&vmf); 5958 return 0; 5959 } 5960 } 5961 } 5962 5963 return handle_pte_fault(&vmf); 5964 } 5965 5966 /** 5967 * mm_account_fault - Do page fault accounting 5968 * @mm: mm from which memcg should be extracted. It can be NULL. 5969 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5970 * of perf event counters, but we'll still do the per-task accounting to 5971 * the task who triggered this page fault. 5972 * @address: the faulted address. 5973 * @flags: the fault flags. 5974 * @ret: the fault retcode. 5975 * 5976 * This will take care of most of the page fault accounting. Meanwhile, it 5977 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5978 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5979 * still be in per-arch page fault handlers at the entry of page fault. 5980 */ 5981 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5982 unsigned long address, unsigned int flags, 5983 vm_fault_t ret) 5984 { 5985 bool major; 5986 5987 /* Incomplete faults will be accounted upon completion. */ 5988 if (ret & VM_FAULT_RETRY) 5989 return; 5990 5991 /* 5992 * To preserve the behavior of older kernels, PGFAULT counters record 5993 * both successful and failed faults, as opposed to perf counters, 5994 * which ignore failed cases. 5995 */ 5996 count_vm_event(PGFAULT); 5997 count_memcg_event_mm(mm, PGFAULT); 5998 5999 /* 6000 * Do not account for unsuccessful faults (e.g. when the address wasn't 6001 * valid). That includes arch_vma_access_permitted() failing before 6002 * reaching here. So this is not a "this many hardware page faults" 6003 * counter. We should use the hw profiling for that. 6004 */ 6005 if (ret & VM_FAULT_ERROR) 6006 return; 6007 6008 /* 6009 * We define the fault as a major fault when the final successful fault 6010 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6011 * handle it immediately previously). 6012 */ 6013 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6014 6015 if (major) 6016 current->maj_flt++; 6017 else 6018 current->min_flt++; 6019 6020 /* 6021 * If the fault is done for GUP, regs will be NULL. We only do the 6022 * accounting for the per thread fault counters who triggered the 6023 * fault, and we skip the perf event updates. 6024 */ 6025 if (!regs) 6026 return; 6027 6028 if (major) 6029 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6030 else 6031 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6032 } 6033 6034 #ifdef CONFIG_LRU_GEN 6035 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6036 { 6037 /* the LRU algorithm only applies to accesses with recency */ 6038 current->in_lru_fault = vma_has_recency(vma); 6039 } 6040 6041 static void lru_gen_exit_fault(void) 6042 { 6043 current->in_lru_fault = false; 6044 } 6045 #else 6046 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6047 { 6048 } 6049 6050 static void lru_gen_exit_fault(void) 6051 { 6052 } 6053 #endif /* CONFIG_LRU_GEN */ 6054 6055 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6056 unsigned int *flags) 6057 { 6058 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6059 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6060 return VM_FAULT_SIGSEGV; 6061 /* 6062 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6063 * just treat it like an ordinary read-fault otherwise. 6064 */ 6065 if (!is_cow_mapping(vma->vm_flags)) 6066 *flags &= ~FAULT_FLAG_UNSHARE; 6067 } else if (*flags & FAULT_FLAG_WRITE) { 6068 /* Write faults on read-only mappings are impossible ... */ 6069 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6070 return VM_FAULT_SIGSEGV; 6071 /* ... and FOLL_FORCE only applies to COW mappings. */ 6072 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6073 !is_cow_mapping(vma->vm_flags))) 6074 return VM_FAULT_SIGSEGV; 6075 } 6076 #ifdef CONFIG_PER_VMA_LOCK 6077 /* 6078 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6079 * the assumption that lock is dropped on VM_FAULT_RETRY. 6080 */ 6081 if (WARN_ON_ONCE((*flags & 6082 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6083 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6084 return VM_FAULT_SIGSEGV; 6085 #endif 6086 6087 return 0; 6088 } 6089 6090 /* 6091 * By the time we get here, we already hold the mm semaphore 6092 * 6093 * The mmap_lock may have been released depending on flags and our 6094 * return value. See filemap_fault() and __folio_lock_or_retry(). 6095 */ 6096 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6097 unsigned int flags, struct pt_regs *regs) 6098 { 6099 /* If the fault handler drops the mmap_lock, vma may be freed */ 6100 struct mm_struct *mm = vma->vm_mm; 6101 vm_fault_t ret; 6102 bool is_droppable; 6103 6104 __set_current_state(TASK_RUNNING); 6105 6106 ret = sanitize_fault_flags(vma, &flags); 6107 if (ret) 6108 goto out; 6109 6110 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6111 flags & FAULT_FLAG_INSTRUCTION, 6112 flags & FAULT_FLAG_REMOTE)) { 6113 ret = VM_FAULT_SIGSEGV; 6114 goto out; 6115 } 6116 6117 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6118 6119 /* 6120 * Enable the memcg OOM handling for faults triggered in user 6121 * space. Kernel faults are handled more gracefully. 6122 */ 6123 if (flags & FAULT_FLAG_USER) 6124 mem_cgroup_enter_user_fault(); 6125 6126 lru_gen_enter_fault(vma); 6127 6128 if (unlikely(is_vm_hugetlb_page(vma))) 6129 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6130 else 6131 ret = __handle_mm_fault(vma, address, flags); 6132 6133 /* 6134 * Warning: It is no longer safe to dereference vma-> after this point, 6135 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6136 * vma might be destroyed from underneath us. 6137 */ 6138 6139 lru_gen_exit_fault(); 6140 6141 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6142 if (is_droppable) 6143 ret &= ~VM_FAULT_OOM; 6144 6145 if (flags & FAULT_FLAG_USER) { 6146 mem_cgroup_exit_user_fault(); 6147 /* 6148 * The task may have entered a memcg OOM situation but 6149 * if the allocation error was handled gracefully (no 6150 * VM_FAULT_OOM), there is no need to kill anything. 6151 * Just clean up the OOM state peacefully. 6152 */ 6153 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6154 mem_cgroup_oom_synchronize(false); 6155 } 6156 out: 6157 mm_account_fault(mm, regs, address, flags, ret); 6158 6159 return ret; 6160 } 6161 EXPORT_SYMBOL_GPL(handle_mm_fault); 6162 6163 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6164 #include <linux/extable.h> 6165 6166 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6167 { 6168 if (likely(mmap_read_trylock(mm))) 6169 return true; 6170 6171 if (regs && !user_mode(regs)) { 6172 unsigned long ip = exception_ip(regs); 6173 if (!search_exception_tables(ip)) 6174 return false; 6175 } 6176 6177 return !mmap_read_lock_killable(mm); 6178 } 6179 6180 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6181 { 6182 /* 6183 * We don't have this operation yet. 6184 * 6185 * It should be easy enough to do: it's basically a 6186 * atomic_long_try_cmpxchg_acquire() 6187 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6188 * it also needs the proper lockdep magic etc. 6189 */ 6190 return false; 6191 } 6192 6193 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6194 { 6195 mmap_read_unlock(mm); 6196 if (regs && !user_mode(regs)) { 6197 unsigned long ip = exception_ip(regs); 6198 if (!search_exception_tables(ip)) 6199 return false; 6200 } 6201 return !mmap_write_lock_killable(mm); 6202 } 6203 6204 /* 6205 * Helper for page fault handling. 6206 * 6207 * This is kind of equivalend to "mmap_read_lock()" followed 6208 * by "find_extend_vma()", except it's a lot more careful about 6209 * the locking (and will drop the lock on failure). 6210 * 6211 * For example, if we have a kernel bug that causes a page 6212 * fault, we don't want to just use mmap_read_lock() to get 6213 * the mm lock, because that would deadlock if the bug were 6214 * to happen while we're holding the mm lock for writing. 6215 * 6216 * So this checks the exception tables on kernel faults in 6217 * order to only do this all for instructions that are actually 6218 * expected to fault. 6219 * 6220 * We can also actually take the mm lock for writing if we 6221 * need to extend the vma, which helps the VM layer a lot. 6222 */ 6223 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6224 unsigned long addr, struct pt_regs *regs) 6225 { 6226 struct vm_area_struct *vma; 6227 6228 if (!get_mmap_lock_carefully(mm, regs)) 6229 return NULL; 6230 6231 vma = find_vma(mm, addr); 6232 if (likely(vma && (vma->vm_start <= addr))) 6233 return vma; 6234 6235 /* 6236 * Well, dang. We might still be successful, but only 6237 * if we can extend a vma to do so. 6238 */ 6239 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6240 mmap_read_unlock(mm); 6241 return NULL; 6242 } 6243 6244 /* 6245 * We can try to upgrade the mmap lock atomically, 6246 * in which case we can continue to use the vma 6247 * we already looked up. 6248 * 6249 * Otherwise we'll have to drop the mmap lock and 6250 * re-take it, and also look up the vma again, 6251 * re-checking it. 6252 */ 6253 if (!mmap_upgrade_trylock(mm)) { 6254 if (!upgrade_mmap_lock_carefully(mm, regs)) 6255 return NULL; 6256 6257 vma = find_vma(mm, addr); 6258 if (!vma) 6259 goto fail; 6260 if (vma->vm_start <= addr) 6261 goto success; 6262 if (!(vma->vm_flags & VM_GROWSDOWN)) 6263 goto fail; 6264 } 6265 6266 if (expand_stack_locked(vma, addr)) 6267 goto fail; 6268 6269 success: 6270 mmap_write_downgrade(mm); 6271 return vma; 6272 6273 fail: 6274 mmap_write_unlock(mm); 6275 return NULL; 6276 } 6277 #endif 6278 6279 #ifdef CONFIG_PER_VMA_LOCK 6280 /* 6281 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6282 * stable and not isolated. If the VMA is not found or is being modified the 6283 * function returns NULL. 6284 */ 6285 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6286 unsigned long address) 6287 { 6288 MA_STATE(mas, &mm->mm_mt, address, address); 6289 struct vm_area_struct *vma; 6290 6291 rcu_read_lock(); 6292 retry: 6293 vma = mas_walk(&mas); 6294 if (!vma) 6295 goto inval; 6296 6297 if (!vma_start_read(vma)) 6298 goto inval; 6299 6300 /* Check if the VMA got isolated after we found it */ 6301 if (vma->detached) { 6302 vma_end_read(vma); 6303 count_vm_vma_lock_event(VMA_LOCK_MISS); 6304 /* The area was replaced with another one */ 6305 goto retry; 6306 } 6307 /* 6308 * At this point, we have a stable reference to a VMA: The VMA is 6309 * locked and we know it hasn't already been isolated. 6310 * From here on, we can access the VMA without worrying about which 6311 * fields are accessible for RCU readers. 6312 */ 6313 6314 /* Check since vm_start/vm_end might change before we lock the VMA */ 6315 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6316 goto inval_end_read; 6317 6318 rcu_read_unlock(); 6319 return vma; 6320 6321 inval_end_read: 6322 vma_end_read(vma); 6323 inval: 6324 rcu_read_unlock(); 6325 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6326 return NULL; 6327 } 6328 #endif /* CONFIG_PER_VMA_LOCK */ 6329 6330 #ifndef __PAGETABLE_P4D_FOLDED 6331 /* 6332 * Allocate p4d page table. 6333 * We've already handled the fast-path in-line. 6334 */ 6335 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6336 { 6337 p4d_t *new = p4d_alloc_one(mm, address); 6338 if (!new) 6339 return -ENOMEM; 6340 6341 spin_lock(&mm->page_table_lock); 6342 if (pgd_present(*pgd)) { /* Another has populated it */ 6343 p4d_free(mm, new); 6344 } else { 6345 smp_wmb(); /* See comment in pmd_install() */ 6346 pgd_populate(mm, pgd, new); 6347 } 6348 spin_unlock(&mm->page_table_lock); 6349 return 0; 6350 } 6351 #endif /* __PAGETABLE_P4D_FOLDED */ 6352 6353 #ifndef __PAGETABLE_PUD_FOLDED 6354 /* 6355 * Allocate page upper directory. 6356 * We've already handled the fast-path in-line. 6357 */ 6358 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6359 { 6360 pud_t *new = pud_alloc_one(mm, address); 6361 if (!new) 6362 return -ENOMEM; 6363 6364 spin_lock(&mm->page_table_lock); 6365 if (!p4d_present(*p4d)) { 6366 mm_inc_nr_puds(mm); 6367 smp_wmb(); /* See comment in pmd_install() */ 6368 p4d_populate(mm, p4d, new); 6369 } else /* Another has populated it */ 6370 pud_free(mm, new); 6371 spin_unlock(&mm->page_table_lock); 6372 return 0; 6373 } 6374 #endif /* __PAGETABLE_PUD_FOLDED */ 6375 6376 #ifndef __PAGETABLE_PMD_FOLDED 6377 /* 6378 * Allocate page middle directory. 6379 * We've already handled the fast-path in-line. 6380 */ 6381 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6382 { 6383 spinlock_t *ptl; 6384 pmd_t *new = pmd_alloc_one(mm, address); 6385 if (!new) 6386 return -ENOMEM; 6387 6388 ptl = pud_lock(mm, pud); 6389 if (!pud_present(*pud)) { 6390 mm_inc_nr_pmds(mm); 6391 smp_wmb(); /* See comment in pmd_install() */ 6392 pud_populate(mm, pud, new); 6393 } else { /* Another has populated it */ 6394 pmd_free(mm, new); 6395 } 6396 spin_unlock(ptl); 6397 return 0; 6398 } 6399 #endif /* __PAGETABLE_PMD_FOLDED */ 6400 6401 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6402 spinlock_t *lock, pte_t *ptep, 6403 pgprot_t pgprot, unsigned long pfn_base, 6404 unsigned long addr_mask, bool writable, 6405 bool special) 6406 { 6407 args->lock = lock; 6408 args->ptep = ptep; 6409 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6410 args->pgprot = pgprot; 6411 args->writable = writable; 6412 args->special = special; 6413 } 6414 6415 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6416 { 6417 #ifdef CONFIG_LOCKDEP 6418 struct file *file = vma->vm_file; 6419 struct address_space *mapping = file ? file->f_mapping : NULL; 6420 6421 if (mapping) 6422 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6423 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6424 else 6425 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6426 #endif 6427 } 6428 6429 /** 6430 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6431 * @args: Pointer to struct @follow_pfnmap_args 6432 * 6433 * The caller needs to setup args->vma and args->address to point to the 6434 * virtual address as the target of such lookup. On a successful return, 6435 * the results will be put into other output fields. 6436 * 6437 * After the caller finished using the fields, the caller must invoke 6438 * another follow_pfnmap_end() to proper releases the locks and resources 6439 * of such look up request. 6440 * 6441 * During the start() and end() calls, the results in @args will be valid 6442 * as proper locks will be held. After the end() is called, all the fields 6443 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6444 * use of such information after end() may require proper synchronizations 6445 * by the caller with page table updates, otherwise it can create a 6446 * security bug. 6447 * 6448 * If the PTE maps a refcounted page, callers are responsible to protect 6449 * against invalidation with MMU notifiers; otherwise access to the PFN at 6450 * a later point in time can trigger use-after-free. 6451 * 6452 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6453 * should be taken for read, and the mmap semaphore cannot be released 6454 * before the end() is invoked. 6455 * 6456 * This function must not be used to modify PTE content. 6457 * 6458 * Return: zero on success, negative otherwise. 6459 */ 6460 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6461 { 6462 struct vm_area_struct *vma = args->vma; 6463 unsigned long address = args->address; 6464 struct mm_struct *mm = vma->vm_mm; 6465 spinlock_t *lock; 6466 pgd_t *pgdp; 6467 p4d_t *p4dp, p4d; 6468 pud_t *pudp, pud; 6469 pmd_t *pmdp, pmd; 6470 pte_t *ptep, pte; 6471 6472 pfnmap_lockdep_assert(vma); 6473 6474 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6475 goto out; 6476 6477 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6478 goto out; 6479 retry: 6480 pgdp = pgd_offset(mm, address); 6481 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6482 goto out; 6483 6484 p4dp = p4d_offset(pgdp, address); 6485 p4d = READ_ONCE(*p4dp); 6486 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6487 goto out; 6488 6489 pudp = pud_offset(p4dp, address); 6490 pud = READ_ONCE(*pudp); 6491 if (pud_none(pud)) 6492 goto out; 6493 if (pud_leaf(pud)) { 6494 lock = pud_lock(mm, pudp); 6495 if (!unlikely(pud_leaf(pud))) { 6496 spin_unlock(lock); 6497 goto retry; 6498 } 6499 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6500 pud_pfn(pud), PUD_MASK, pud_write(pud), 6501 pud_special(pud)); 6502 return 0; 6503 } 6504 6505 pmdp = pmd_offset(pudp, address); 6506 pmd = pmdp_get_lockless(pmdp); 6507 if (pmd_leaf(pmd)) { 6508 lock = pmd_lock(mm, pmdp); 6509 if (!unlikely(pmd_leaf(pmd))) { 6510 spin_unlock(lock); 6511 goto retry; 6512 } 6513 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6514 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6515 pmd_special(pmd)); 6516 return 0; 6517 } 6518 6519 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6520 if (!ptep) 6521 goto out; 6522 pte = ptep_get(ptep); 6523 if (!pte_present(pte)) 6524 goto unlock; 6525 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6526 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6527 pte_special(pte)); 6528 return 0; 6529 unlock: 6530 pte_unmap_unlock(ptep, lock); 6531 out: 6532 return -EINVAL; 6533 } 6534 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6535 6536 /** 6537 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6538 * @args: Pointer to struct @follow_pfnmap_args 6539 * 6540 * Must be used in pair of follow_pfnmap_start(). See the start() function 6541 * above for more information. 6542 */ 6543 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6544 { 6545 if (args->lock) 6546 spin_unlock(args->lock); 6547 if (args->ptep) 6548 pte_unmap(args->ptep); 6549 } 6550 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6551 6552 #ifdef CONFIG_HAVE_IOREMAP_PROT 6553 /** 6554 * generic_access_phys - generic implementation for iomem mmap access 6555 * @vma: the vma to access 6556 * @addr: userspace address, not relative offset within @vma 6557 * @buf: buffer to read/write 6558 * @len: length of transfer 6559 * @write: set to FOLL_WRITE when writing, otherwise reading 6560 * 6561 * This is a generic implementation for &vm_operations_struct.access for an 6562 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6563 * not page based. 6564 */ 6565 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6566 void *buf, int len, int write) 6567 { 6568 resource_size_t phys_addr; 6569 unsigned long prot = 0; 6570 void __iomem *maddr; 6571 int offset = offset_in_page(addr); 6572 int ret = -EINVAL; 6573 bool writable; 6574 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6575 6576 retry: 6577 if (follow_pfnmap_start(&args)) 6578 return -EINVAL; 6579 prot = pgprot_val(args.pgprot); 6580 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6581 writable = args.writable; 6582 follow_pfnmap_end(&args); 6583 6584 if ((write & FOLL_WRITE) && !writable) 6585 return -EINVAL; 6586 6587 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6588 if (!maddr) 6589 return -ENOMEM; 6590 6591 if (follow_pfnmap_start(&args)) 6592 goto out_unmap; 6593 6594 if ((prot != pgprot_val(args.pgprot)) || 6595 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6596 (writable != args.writable)) { 6597 follow_pfnmap_end(&args); 6598 iounmap(maddr); 6599 goto retry; 6600 } 6601 6602 if (write) 6603 memcpy_toio(maddr + offset, buf, len); 6604 else 6605 memcpy_fromio(buf, maddr + offset, len); 6606 ret = len; 6607 follow_pfnmap_end(&args); 6608 out_unmap: 6609 iounmap(maddr); 6610 6611 return ret; 6612 } 6613 EXPORT_SYMBOL_GPL(generic_access_phys); 6614 #endif 6615 6616 /* 6617 * Access another process' address space as given in mm. 6618 */ 6619 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6620 void *buf, int len, unsigned int gup_flags) 6621 { 6622 void *old_buf = buf; 6623 int write = gup_flags & FOLL_WRITE; 6624 6625 if (mmap_read_lock_killable(mm)) 6626 return 0; 6627 6628 /* Untag the address before looking up the VMA */ 6629 addr = untagged_addr_remote(mm, addr); 6630 6631 /* Avoid triggering the temporary warning in __get_user_pages */ 6632 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6633 return 0; 6634 6635 /* ignore errors, just check how much was successfully transferred */ 6636 while (len) { 6637 int bytes, offset; 6638 void *maddr; 6639 struct vm_area_struct *vma = NULL; 6640 struct page *page = get_user_page_vma_remote(mm, addr, 6641 gup_flags, &vma); 6642 6643 if (IS_ERR(page)) { 6644 /* We might need to expand the stack to access it */ 6645 vma = vma_lookup(mm, addr); 6646 if (!vma) { 6647 vma = expand_stack(mm, addr); 6648 6649 /* mmap_lock was dropped on failure */ 6650 if (!vma) 6651 return buf - old_buf; 6652 6653 /* Try again if stack expansion worked */ 6654 continue; 6655 } 6656 6657 /* 6658 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6659 * we can access using slightly different code. 6660 */ 6661 bytes = 0; 6662 #ifdef CONFIG_HAVE_IOREMAP_PROT 6663 if (vma->vm_ops && vma->vm_ops->access) 6664 bytes = vma->vm_ops->access(vma, addr, buf, 6665 len, write); 6666 #endif 6667 if (bytes <= 0) 6668 break; 6669 } else { 6670 bytes = len; 6671 offset = addr & (PAGE_SIZE-1); 6672 if (bytes > PAGE_SIZE-offset) 6673 bytes = PAGE_SIZE-offset; 6674 6675 maddr = kmap_local_page(page); 6676 if (write) { 6677 copy_to_user_page(vma, page, addr, 6678 maddr + offset, buf, bytes); 6679 set_page_dirty_lock(page); 6680 } else { 6681 copy_from_user_page(vma, page, addr, 6682 buf, maddr + offset, bytes); 6683 } 6684 unmap_and_put_page(page, maddr); 6685 } 6686 len -= bytes; 6687 buf += bytes; 6688 addr += bytes; 6689 } 6690 mmap_read_unlock(mm); 6691 6692 return buf - old_buf; 6693 } 6694 6695 /** 6696 * access_remote_vm - access another process' address space 6697 * @mm: the mm_struct of the target address space 6698 * @addr: start address to access 6699 * @buf: source or destination buffer 6700 * @len: number of bytes to transfer 6701 * @gup_flags: flags modifying lookup behaviour 6702 * 6703 * The caller must hold a reference on @mm. 6704 * 6705 * Return: number of bytes copied from source to destination. 6706 */ 6707 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6708 void *buf, int len, unsigned int gup_flags) 6709 { 6710 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6711 } 6712 6713 /* 6714 * Access another process' address space. 6715 * Source/target buffer must be kernel space, 6716 * Do not walk the page table directly, use get_user_pages 6717 */ 6718 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6719 void *buf, int len, unsigned int gup_flags) 6720 { 6721 struct mm_struct *mm; 6722 int ret; 6723 6724 mm = get_task_mm(tsk); 6725 if (!mm) 6726 return 0; 6727 6728 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6729 6730 mmput(mm); 6731 6732 return ret; 6733 } 6734 EXPORT_SYMBOL_GPL(access_process_vm); 6735 6736 /* 6737 * Print the name of a VMA. 6738 */ 6739 void print_vma_addr(char *prefix, unsigned long ip) 6740 { 6741 struct mm_struct *mm = current->mm; 6742 struct vm_area_struct *vma; 6743 6744 /* 6745 * we might be running from an atomic context so we cannot sleep 6746 */ 6747 if (!mmap_read_trylock(mm)) 6748 return; 6749 6750 vma = vma_lookup(mm, ip); 6751 if (vma && vma->vm_file) { 6752 struct file *f = vma->vm_file; 6753 ip -= vma->vm_start; 6754 ip += vma->vm_pgoff << PAGE_SHIFT; 6755 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6756 vma->vm_start, 6757 vma->vm_end - vma->vm_start); 6758 } 6759 mmap_read_unlock(mm); 6760 } 6761 6762 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6763 void __might_fault(const char *file, int line) 6764 { 6765 if (pagefault_disabled()) 6766 return; 6767 __might_sleep(file, line); 6768 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6769 if (current->mm) 6770 might_lock_read(¤t->mm->mmap_lock); 6771 #endif 6772 } 6773 EXPORT_SYMBOL(__might_fault); 6774 #endif 6775 6776 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6777 /* 6778 * Process all subpages of the specified huge page with the specified 6779 * operation. The target subpage will be processed last to keep its 6780 * cache lines hot. 6781 */ 6782 static inline int process_huge_page( 6783 unsigned long addr_hint, unsigned int nr_pages, 6784 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6785 void *arg) 6786 { 6787 int i, n, base, l, ret; 6788 unsigned long addr = addr_hint & 6789 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6790 6791 /* Process target subpage last to keep its cache lines hot */ 6792 might_sleep(); 6793 n = (addr_hint - addr) / PAGE_SIZE; 6794 if (2 * n <= nr_pages) { 6795 /* If target subpage in first half of huge page */ 6796 base = 0; 6797 l = n; 6798 /* Process subpages at the end of huge page */ 6799 for (i = nr_pages - 1; i >= 2 * n; i--) { 6800 cond_resched(); 6801 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6802 if (ret) 6803 return ret; 6804 } 6805 } else { 6806 /* If target subpage in second half of huge page */ 6807 base = nr_pages - 2 * (nr_pages - n); 6808 l = nr_pages - n; 6809 /* Process subpages at the begin of huge page */ 6810 for (i = 0; i < base; i++) { 6811 cond_resched(); 6812 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6813 if (ret) 6814 return ret; 6815 } 6816 } 6817 /* 6818 * Process remaining subpages in left-right-left-right pattern 6819 * towards the target subpage 6820 */ 6821 for (i = 0; i < l; i++) { 6822 int left_idx = base + i; 6823 int right_idx = base + 2 * l - 1 - i; 6824 6825 cond_resched(); 6826 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6827 if (ret) 6828 return ret; 6829 cond_resched(); 6830 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6831 if (ret) 6832 return ret; 6833 } 6834 return 0; 6835 } 6836 6837 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 6838 unsigned int nr_pages) 6839 { 6840 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 6841 int i; 6842 6843 might_sleep(); 6844 for (i = 0; i < nr_pages; i++) { 6845 cond_resched(); 6846 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 6847 } 6848 } 6849 6850 static int clear_subpage(unsigned long addr, int idx, void *arg) 6851 { 6852 struct folio *folio = arg; 6853 6854 clear_user_highpage(folio_page(folio, idx), addr); 6855 return 0; 6856 } 6857 6858 /** 6859 * folio_zero_user - Zero a folio which will be mapped to userspace. 6860 * @folio: The folio to zero. 6861 * @addr_hint: The address will be accessed or the base address if uncelar. 6862 */ 6863 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 6864 { 6865 unsigned int nr_pages = folio_nr_pages(folio); 6866 6867 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6868 clear_gigantic_page(folio, addr_hint, nr_pages); 6869 else 6870 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 6871 } 6872 6873 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6874 unsigned long addr_hint, 6875 struct vm_area_struct *vma, 6876 unsigned int nr_pages) 6877 { 6878 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 6879 struct page *dst_page; 6880 struct page *src_page; 6881 int i; 6882 6883 for (i = 0; i < nr_pages; i++) { 6884 dst_page = folio_page(dst, i); 6885 src_page = folio_page(src, i); 6886 6887 cond_resched(); 6888 if (copy_mc_user_highpage(dst_page, src_page, 6889 addr + i*PAGE_SIZE, vma)) 6890 return -EHWPOISON; 6891 } 6892 return 0; 6893 } 6894 6895 struct copy_subpage_arg { 6896 struct folio *dst; 6897 struct folio *src; 6898 struct vm_area_struct *vma; 6899 }; 6900 6901 static int copy_subpage(unsigned long addr, int idx, void *arg) 6902 { 6903 struct copy_subpage_arg *copy_arg = arg; 6904 struct page *dst = folio_page(copy_arg->dst, idx); 6905 struct page *src = folio_page(copy_arg->src, idx); 6906 6907 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 6908 return -EHWPOISON; 6909 return 0; 6910 } 6911 6912 int copy_user_large_folio(struct folio *dst, struct folio *src, 6913 unsigned long addr_hint, struct vm_area_struct *vma) 6914 { 6915 unsigned int nr_pages = folio_nr_pages(dst); 6916 struct copy_subpage_arg arg = { 6917 .dst = dst, 6918 .src = src, 6919 .vma = vma, 6920 }; 6921 6922 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6923 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 6924 6925 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 6926 } 6927 6928 long copy_folio_from_user(struct folio *dst_folio, 6929 const void __user *usr_src, 6930 bool allow_pagefault) 6931 { 6932 void *kaddr; 6933 unsigned long i, rc = 0; 6934 unsigned int nr_pages = folio_nr_pages(dst_folio); 6935 unsigned long ret_val = nr_pages * PAGE_SIZE; 6936 struct page *subpage; 6937 6938 for (i = 0; i < nr_pages; i++) { 6939 subpage = folio_page(dst_folio, i); 6940 kaddr = kmap_local_page(subpage); 6941 if (!allow_pagefault) 6942 pagefault_disable(); 6943 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6944 if (!allow_pagefault) 6945 pagefault_enable(); 6946 kunmap_local(kaddr); 6947 6948 ret_val -= (PAGE_SIZE - rc); 6949 if (rc) 6950 break; 6951 6952 flush_dcache_page(subpage); 6953 6954 cond_resched(); 6955 } 6956 return ret_val; 6957 } 6958 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6959 6960 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 6961 6962 static struct kmem_cache *page_ptl_cachep; 6963 6964 void __init ptlock_cache_init(void) 6965 { 6966 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6967 SLAB_PANIC, NULL); 6968 } 6969 6970 bool ptlock_alloc(struct ptdesc *ptdesc) 6971 { 6972 spinlock_t *ptl; 6973 6974 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6975 if (!ptl) 6976 return false; 6977 ptdesc->ptl = ptl; 6978 return true; 6979 } 6980 6981 void ptlock_free(struct ptdesc *ptdesc) 6982 { 6983 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6984 } 6985 #endif 6986 6987 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 6988 { 6989 if (is_vm_hugetlb_page(vma)) 6990 hugetlb_vma_lock_read(vma); 6991 } 6992 6993 void vma_pgtable_walk_end(struct vm_area_struct *vma) 6994 { 6995 if (is_vm_hugetlb_page(vma)) 6996 hugetlb_vma_unlock_read(vma); 6997 } 6998