xref: /linux/mm/memory.c (revision fd56e5104a37f96e1b1ca42b4fd64fd49257fdce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 #include <linux/fsnotify.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109 
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116 	if (!userfaultfd_wp(vmf->vma))
117 		return false;
118 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 		return false;
120 
121 	return pte_marker_uffd_wp(vmf->orig_pte);
122 }
123 
124 /*
125  * A number of key systems in x86 including ioremap() rely on the assumption
126  * that high_memory defines the upper bound on direct map memory, then end
127  * of ZONE_NORMAL.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131 
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140 					1;
141 #else
142 					2;
143 #endif
144 
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 	/*
149 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 	 * some architectures, even if it's performed in hardware. By
151 	 * default, "false" means prefaulted entries will be 'young'.
152 	 */
153 	return false;
154 }
155 #endif
156 
157 static int __init disable_randmaps(char *s)
158 {
159 	randomize_va_space = 0;
160 	return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163 
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166 
167 unsigned long highest_memmap_pfn __read_mostly;
168 
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 	return 0;
176 }
177 early_initcall(init_zero_pfn);
178 
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 	trace_rss_stat(mm, member);
182 }
183 
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 			   unsigned long addr)
190 {
191 	pgtable_t token = pmd_pgtable(*pmd);
192 	pmd_clear(pmd);
193 	pte_free_tlb(tlb, token, addr);
194 	mm_dec_nr_ptes(tlb->mm);
195 }
196 
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 				unsigned long addr, unsigned long end,
199 				unsigned long floor, unsigned long ceiling)
200 {
201 	pmd_t *pmd;
202 	unsigned long next;
203 	unsigned long start;
204 
205 	start = addr;
206 	pmd = pmd_offset(pud, addr);
207 	do {
208 		next = pmd_addr_end(addr, end);
209 		if (pmd_none_or_clear_bad(pmd))
210 			continue;
211 		free_pte_range(tlb, pmd, addr);
212 	} while (pmd++, addr = next, addr != end);
213 
214 	start &= PUD_MASK;
215 	if (start < floor)
216 		return;
217 	if (ceiling) {
218 		ceiling &= PUD_MASK;
219 		if (!ceiling)
220 			return;
221 	}
222 	if (end - 1 > ceiling - 1)
223 		return;
224 
225 	pmd = pmd_offset(pud, start);
226 	pud_clear(pud);
227 	pmd_free_tlb(tlb, pmd, start);
228 	mm_dec_nr_pmds(tlb->mm);
229 }
230 
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 				unsigned long addr, unsigned long end,
233 				unsigned long floor, unsigned long ceiling)
234 {
235 	pud_t *pud;
236 	unsigned long next;
237 	unsigned long start;
238 
239 	start = addr;
240 	pud = pud_offset(p4d, addr);
241 	do {
242 		next = pud_addr_end(addr, end);
243 		if (pud_none_or_clear_bad(pud))
244 			continue;
245 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 	} while (pud++, addr = next, addr != end);
247 
248 	start &= P4D_MASK;
249 	if (start < floor)
250 		return;
251 	if (ceiling) {
252 		ceiling &= P4D_MASK;
253 		if (!ceiling)
254 			return;
255 	}
256 	if (end - 1 > ceiling - 1)
257 		return;
258 
259 	pud = pud_offset(p4d, start);
260 	p4d_clear(p4d);
261 	pud_free_tlb(tlb, pud, start);
262 	mm_dec_nr_puds(tlb->mm);
263 }
264 
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 				unsigned long addr, unsigned long end,
267 				unsigned long floor, unsigned long ceiling)
268 {
269 	p4d_t *p4d;
270 	unsigned long next;
271 	unsigned long start;
272 
273 	start = addr;
274 	p4d = p4d_offset(pgd, addr);
275 	do {
276 		next = p4d_addr_end(addr, end);
277 		if (p4d_none_or_clear_bad(p4d))
278 			continue;
279 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 	} while (p4d++, addr = next, addr != end);
281 
282 	start &= PGDIR_MASK;
283 	if (start < floor)
284 		return;
285 	if (ceiling) {
286 		ceiling &= PGDIR_MASK;
287 		if (!ceiling)
288 			return;
289 	}
290 	if (end - 1 > ceiling - 1)
291 		return;
292 
293 	p4d = p4d_offset(pgd, start);
294 	pgd_clear(pgd);
295 	p4d_free_tlb(tlb, p4d, start);
296 }
297 
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302 			unsigned long addr, unsigned long end,
303 			unsigned long floor, unsigned long ceiling)
304 {
305 	pgd_t *pgd;
306 	unsigned long next;
307 
308 	/*
309 	 * The next few lines have given us lots of grief...
310 	 *
311 	 * Why are we testing PMD* at this top level?  Because often
312 	 * there will be no work to do at all, and we'd prefer not to
313 	 * go all the way down to the bottom just to discover that.
314 	 *
315 	 * Why all these "- 1"s?  Because 0 represents both the bottom
316 	 * of the address space and the top of it (using -1 for the
317 	 * top wouldn't help much: the masks would do the wrong thing).
318 	 * The rule is that addr 0 and floor 0 refer to the bottom of
319 	 * the address space, but end 0 and ceiling 0 refer to the top
320 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 	 * that end 0 case should be mythical).
322 	 *
323 	 * Wherever addr is brought up or ceiling brought down, we must
324 	 * be careful to reject "the opposite 0" before it confuses the
325 	 * subsequent tests.  But what about where end is brought down
326 	 * by PMD_SIZE below? no, end can't go down to 0 there.
327 	 *
328 	 * Whereas we round start (addr) and ceiling down, by different
329 	 * masks at different levels, in order to test whether a table
330 	 * now has no other vmas using it, so can be freed, we don't
331 	 * bother to round floor or end up - the tests don't need that.
332 	 */
333 
334 	addr &= PMD_MASK;
335 	if (addr < floor) {
336 		addr += PMD_SIZE;
337 		if (!addr)
338 			return;
339 	}
340 	if (ceiling) {
341 		ceiling &= PMD_MASK;
342 		if (!ceiling)
343 			return;
344 	}
345 	if (end - 1 > ceiling - 1)
346 		end -= PMD_SIZE;
347 	if (addr > end - 1)
348 		return;
349 	/*
350 	 * We add page table cache pages with PAGE_SIZE,
351 	 * (see pte_free_tlb()), flush the tlb if we need
352 	 */
353 	tlb_change_page_size(tlb, PAGE_SIZE);
354 	pgd = pgd_offset(tlb->mm, addr);
355 	do {
356 		next = pgd_addr_end(addr, end);
357 		if (pgd_none_or_clear_bad(pgd))
358 			continue;
359 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 	} while (pgd++, addr = next, addr != end);
361 }
362 
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 		   struct vm_area_struct *vma, unsigned long floor,
365 		   unsigned long ceiling, bool mm_wr_locked)
366 {
367 	struct unlink_vma_file_batch vb;
368 
369 	do {
370 		unsigned long addr = vma->vm_start;
371 		struct vm_area_struct *next;
372 
373 		/*
374 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 		 * be 0.  This will underflow and is okay.
376 		 */
377 		next = mas_find(mas, ceiling - 1);
378 		if (unlikely(xa_is_zero(next)))
379 			next = NULL;
380 
381 		/*
382 		 * Hide vma from rmap and truncate_pagecache before freeing
383 		 * pgtables
384 		 */
385 		if (mm_wr_locked)
386 			vma_start_write(vma);
387 		unlink_anon_vmas(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			unlink_file_vma(vma);
391 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
392 				floor, next ? next->vm_start : ceiling);
393 		} else {
394 			unlink_file_vma_batch_init(&vb);
395 			unlink_file_vma_batch_add(&vb, vma);
396 
397 			/*
398 			 * Optimization: gather nearby vmas into one call down
399 			 */
400 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
401 			       && !is_vm_hugetlb_page(next)) {
402 				vma = next;
403 				next = mas_find(mas, ceiling - 1);
404 				if (unlikely(xa_is_zero(next)))
405 					next = NULL;
406 				if (mm_wr_locked)
407 					vma_start_write(vma);
408 				unlink_anon_vmas(vma);
409 				unlink_file_vma_batch_add(&vb, vma);
410 			}
411 			unlink_file_vma_batch_final(&vb);
412 			free_pgd_range(tlb, addr, vma->vm_end,
413 				floor, next ? next->vm_start : ceiling);
414 		}
415 		vma = next;
416 	} while (vma);
417 }
418 
419 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
420 {
421 	spinlock_t *ptl = pmd_lock(mm, pmd);
422 
423 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
424 		mm_inc_nr_ptes(mm);
425 		/*
426 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
427 		 * visible before the pte is made visible to other CPUs by being
428 		 * put into page tables.
429 		 *
430 		 * The other side of the story is the pointer chasing in the page
431 		 * table walking code (when walking the page table without locking;
432 		 * ie. most of the time). Fortunately, these data accesses consist
433 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
434 		 * being the notable exception) will already guarantee loads are
435 		 * seen in-order. See the alpha page table accessors for the
436 		 * smp_rmb() barriers in page table walking code.
437 		 */
438 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
439 		pmd_populate(mm, pmd, *pte);
440 		*pte = NULL;
441 	}
442 	spin_unlock(ptl);
443 }
444 
445 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
446 {
447 	pgtable_t new = pte_alloc_one(mm);
448 	if (!new)
449 		return -ENOMEM;
450 
451 	pmd_install(mm, pmd, &new);
452 	if (new)
453 		pte_free(mm, new);
454 	return 0;
455 }
456 
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 	pte_t *new = pte_alloc_one_kernel(&init_mm);
460 	if (!new)
461 		return -ENOMEM;
462 
463 	spin_lock(&init_mm.page_table_lock);
464 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
465 		smp_wmb(); /* See comment in pmd_install() */
466 		pmd_populate_kernel(&init_mm, pmd, new);
467 		new = NULL;
468 	}
469 	spin_unlock(&init_mm.page_table_lock);
470 	if (new)
471 		pte_free_kernel(&init_mm, new);
472 	return 0;
473 }
474 
475 static inline void init_rss_vec(int *rss)
476 {
477 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478 }
479 
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481 {
482 	int i;
483 
484 	for (i = 0; i < NR_MM_COUNTERS; i++)
485 		if (rss[i])
486 			add_mm_counter(mm, i, rss[i]);
487 }
488 
489 /*
490  * This function is called to print an error when a bad pte
491  * is found. For example, we might have a PFN-mapped pte in
492  * a region that doesn't allow it.
493  *
494  * The calling function must still handle the error.
495  */
496 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
497 			  pte_t pte, struct page *page)
498 {
499 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
500 	p4d_t *p4d = p4d_offset(pgd, addr);
501 	pud_t *pud = pud_offset(p4d, addr);
502 	pmd_t *pmd = pmd_offset(pud, addr);
503 	struct address_space *mapping;
504 	pgoff_t index;
505 	static unsigned long resume;
506 	static unsigned long nr_shown;
507 	static unsigned long nr_unshown;
508 
509 	/*
510 	 * Allow a burst of 60 reports, then keep quiet for that minute;
511 	 * or allow a steady drip of one report per second.
512 	 */
513 	if (nr_shown == 60) {
514 		if (time_before(jiffies, resume)) {
515 			nr_unshown++;
516 			return;
517 		}
518 		if (nr_unshown) {
519 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
520 				 nr_unshown);
521 			nr_unshown = 0;
522 		}
523 		nr_shown = 0;
524 	}
525 	if (nr_shown++ == 0)
526 		resume = jiffies + 60 * HZ;
527 
528 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
529 	index = linear_page_index(vma, addr);
530 
531 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
532 		 current->comm,
533 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
534 	if (page)
535 		dump_page(page, "bad pte");
536 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
537 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
538 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
539 		 vma->vm_file,
540 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
541 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
542 		 mapping ? mapping->a_ops->read_folio : NULL);
543 	dump_stack();
544 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
545 }
546 
547 /*
548  * vm_normal_page -- This function gets the "struct page" associated with a pte.
549  *
550  * "Special" mappings do not wish to be associated with a "struct page" (either
551  * it doesn't exist, or it exists but they don't want to touch it). In this
552  * case, NULL is returned here. "Normal" mappings do have a struct page.
553  *
554  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
555  * pte bit, in which case this function is trivial. Secondly, an architecture
556  * may not have a spare pte bit, which requires a more complicated scheme,
557  * described below.
558  *
559  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
560  * special mapping (even if there are underlying and valid "struct pages").
561  * COWed pages of a VM_PFNMAP are always normal.
562  *
563  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
564  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
565  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
566  * mapping will always honor the rule
567  *
568  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
569  *
570  * And for normal mappings this is false.
571  *
572  * This restricts such mappings to be a linear translation from virtual address
573  * to pfn. To get around this restriction, we allow arbitrary mappings so long
574  * as the vma is not a COW mapping; in that case, we know that all ptes are
575  * special (because none can have been COWed).
576  *
577  *
578  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
579  *
580  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
581  * page" backing, however the difference is that _all_ pages with a struct
582  * page (that is, those where pfn_valid is true) are refcounted and considered
583  * normal pages by the VM. The only exception are zeropages, which are
584  * *never* refcounted.
585  *
586  * The disadvantage is that pages are refcounted (which can be slower and
587  * simply not an option for some PFNMAP users). The advantage is that we
588  * don't have to follow the strict linearity rule of PFNMAP mappings in
589  * order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 			    pte_t pte)
594 {
595 	unsigned long pfn = pte_pfn(pte);
596 
597 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 		if (likely(!pte_special(pte)))
599 			goto check_pfn;
600 		if (vma->vm_ops && vma->vm_ops->find_special_page)
601 			return vma->vm_ops->find_special_page(vma, addr);
602 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 			return NULL;
604 		if (is_zero_pfn(pfn))
605 			return NULL;
606 		if (pte_devmap(pte))
607 		/*
608 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
609 		 * and will have refcounts incremented on their struct pages
610 		 * when they are inserted into PTEs, thus they are safe to
611 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
612 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
613 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
614 		 */
615 			return NULL;
616 
617 		print_bad_pte(vma, addr, pte, NULL);
618 		return NULL;
619 	}
620 
621 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
622 
623 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
624 		if (vma->vm_flags & VM_MIXEDMAP) {
625 			if (!pfn_valid(pfn))
626 				return NULL;
627 			if (is_zero_pfn(pfn))
628 				return NULL;
629 			goto out;
630 		} else {
631 			unsigned long off;
632 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
633 			if (pfn == vma->vm_pgoff + off)
634 				return NULL;
635 			if (!is_cow_mapping(vma->vm_flags))
636 				return NULL;
637 		}
638 	}
639 
640 	if (is_zero_pfn(pfn))
641 		return NULL;
642 
643 check_pfn:
644 	if (unlikely(pfn > highest_memmap_pfn)) {
645 		print_bad_pte(vma, addr, pte, NULL);
646 		return NULL;
647 	}
648 
649 	/*
650 	 * NOTE! We still have PageReserved() pages in the page tables.
651 	 * eg. VDSO mappings can cause them to exist.
652 	 */
653 out:
654 	VM_WARN_ON_ONCE(is_zero_pfn(pfn));
655 	return pfn_to_page(pfn);
656 }
657 
658 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
659 			    pte_t pte)
660 {
661 	struct page *page = vm_normal_page(vma, addr, pte);
662 
663 	if (page)
664 		return page_folio(page);
665 	return NULL;
666 }
667 
668 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
669 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
670 				pmd_t pmd)
671 {
672 	unsigned long pfn = pmd_pfn(pmd);
673 
674 	/* Currently it's only used for huge pfnmaps */
675 	if (unlikely(pmd_special(pmd)))
676 		return NULL;
677 
678 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
679 		if (vma->vm_flags & VM_MIXEDMAP) {
680 			if (!pfn_valid(pfn))
681 				return NULL;
682 			goto out;
683 		} else {
684 			unsigned long off;
685 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
686 			if (pfn == vma->vm_pgoff + off)
687 				return NULL;
688 			if (!is_cow_mapping(vma->vm_flags))
689 				return NULL;
690 		}
691 	}
692 
693 	if (pmd_devmap(pmd))
694 		return NULL;
695 	if (is_huge_zero_pmd(pmd))
696 		return NULL;
697 	if (unlikely(pfn > highest_memmap_pfn))
698 		return NULL;
699 
700 	/*
701 	 * NOTE! We still have PageReserved() pages in the page tables.
702 	 * eg. VDSO mappings can cause them to exist.
703 	 */
704 out:
705 	return pfn_to_page(pfn);
706 }
707 
708 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
709 				  unsigned long addr, pmd_t pmd)
710 {
711 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
712 
713 	if (page)
714 		return page_folio(page);
715 	return NULL;
716 }
717 #endif
718 
719 static void restore_exclusive_pte(struct vm_area_struct *vma,
720 				  struct page *page, unsigned long address,
721 				  pte_t *ptep)
722 {
723 	struct folio *folio = page_folio(page);
724 	pte_t orig_pte;
725 	pte_t pte;
726 	swp_entry_t entry;
727 
728 	orig_pte = ptep_get(ptep);
729 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
730 	if (pte_swp_soft_dirty(orig_pte))
731 		pte = pte_mksoft_dirty(pte);
732 
733 	entry = pte_to_swp_entry(orig_pte);
734 	if (pte_swp_uffd_wp(orig_pte))
735 		pte = pte_mkuffd_wp(pte);
736 	else if (is_writable_device_exclusive_entry(entry))
737 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
738 
739 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
740 					   PageAnonExclusive(page)), folio);
741 
742 	/*
743 	 * No need to take a page reference as one was already
744 	 * created when the swap entry was made.
745 	 */
746 	if (folio_test_anon(folio))
747 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
748 	else
749 		/*
750 		 * Currently device exclusive access only supports anonymous
751 		 * memory so the entry shouldn't point to a filebacked page.
752 		 */
753 		WARN_ON_ONCE(1);
754 
755 	set_pte_at(vma->vm_mm, address, ptep, pte);
756 
757 	/*
758 	 * No need to invalidate - it was non-present before. However
759 	 * secondary CPUs may have mappings that need invalidating.
760 	 */
761 	update_mmu_cache(vma, address, ptep);
762 }
763 
764 /*
765  * Tries to restore an exclusive pte if the page lock can be acquired without
766  * sleeping.
767  */
768 static int
769 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
770 			unsigned long addr)
771 {
772 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
773 	struct page *page = pfn_swap_entry_to_page(entry);
774 
775 	if (trylock_page(page)) {
776 		restore_exclusive_pte(vma, page, addr, src_pte);
777 		unlock_page(page);
778 		return 0;
779 	}
780 
781 	return -EBUSY;
782 }
783 
784 /*
785  * copy one vm_area from one task to the other. Assumes the page tables
786  * already present in the new task to be cleared in the whole range
787  * covered by this vma.
788  */
789 
790 static unsigned long
791 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
792 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
793 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
794 {
795 	unsigned long vm_flags = dst_vma->vm_flags;
796 	pte_t orig_pte = ptep_get(src_pte);
797 	pte_t pte = orig_pte;
798 	struct folio *folio;
799 	struct page *page;
800 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
801 
802 	if (likely(!non_swap_entry(entry))) {
803 		if (swap_duplicate(entry) < 0)
804 			return -EIO;
805 
806 		/* make sure dst_mm is on swapoff's mmlist. */
807 		if (unlikely(list_empty(&dst_mm->mmlist))) {
808 			spin_lock(&mmlist_lock);
809 			if (list_empty(&dst_mm->mmlist))
810 				list_add(&dst_mm->mmlist,
811 						&src_mm->mmlist);
812 			spin_unlock(&mmlist_lock);
813 		}
814 		/* Mark the swap entry as shared. */
815 		if (pte_swp_exclusive(orig_pte)) {
816 			pte = pte_swp_clear_exclusive(orig_pte);
817 			set_pte_at(src_mm, addr, src_pte, pte);
818 		}
819 		rss[MM_SWAPENTS]++;
820 	} else if (is_migration_entry(entry)) {
821 		folio = pfn_swap_entry_folio(entry);
822 
823 		rss[mm_counter(folio)]++;
824 
825 		if (!is_readable_migration_entry(entry) &&
826 				is_cow_mapping(vm_flags)) {
827 			/*
828 			 * COW mappings require pages in both parent and child
829 			 * to be set to read. A previously exclusive entry is
830 			 * now shared.
831 			 */
832 			entry = make_readable_migration_entry(
833 							swp_offset(entry));
834 			pte = swp_entry_to_pte(entry);
835 			if (pte_swp_soft_dirty(orig_pte))
836 				pte = pte_swp_mksoft_dirty(pte);
837 			if (pte_swp_uffd_wp(orig_pte))
838 				pte = pte_swp_mkuffd_wp(pte);
839 			set_pte_at(src_mm, addr, src_pte, pte);
840 		}
841 	} else if (is_device_private_entry(entry)) {
842 		page = pfn_swap_entry_to_page(entry);
843 		folio = page_folio(page);
844 
845 		/*
846 		 * Update rss count even for unaddressable pages, as
847 		 * they should treated just like normal pages in this
848 		 * respect.
849 		 *
850 		 * We will likely want to have some new rss counters
851 		 * for unaddressable pages, at some point. But for now
852 		 * keep things as they are.
853 		 */
854 		folio_get(folio);
855 		rss[mm_counter(folio)]++;
856 		/* Cannot fail as these pages cannot get pinned. */
857 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
858 
859 		/*
860 		 * We do not preserve soft-dirty information, because so
861 		 * far, checkpoint/restore is the only feature that
862 		 * requires that. And checkpoint/restore does not work
863 		 * when a device driver is involved (you cannot easily
864 		 * save and restore device driver state).
865 		 */
866 		if (is_writable_device_private_entry(entry) &&
867 		    is_cow_mapping(vm_flags)) {
868 			entry = make_readable_device_private_entry(
869 							swp_offset(entry));
870 			pte = swp_entry_to_pte(entry);
871 			if (pte_swp_uffd_wp(orig_pte))
872 				pte = pte_swp_mkuffd_wp(pte);
873 			set_pte_at(src_mm, addr, src_pte, pte);
874 		}
875 	} else if (is_device_exclusive_entry(entry)) {
876 		/*
877 		 * Make device exclusive entries present by restoring the
878 		 * original entry then copying as for a present pte. Device
879 		 * exclusive entries currently only support private writable
880 		 * (ie. COW) mappings.
881 		 */
882 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
883 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
884 			return -EBUSY;
885 		return -ENOENT;
886 	} else if (is_pte_marker_entry(entry)) {
887 		pte_marker marker = copy_pte_marker(entry, dst_vma);
888 
889 		if (marker)
890 			set_pte_at(dst_mm, addr, dst_pte,
891 				   make_pte_marker(marker));
892 		return 0;
893 	}
894 	if (!userfaultfd_wp(dst_vma))
895 		pte = pte_swp_clear_uffd_wp(pte);
896 	set_pte_at(dst_mm, addr, dst_pte, pte);
897 	return 0;
898 }
899 
900 /*
901  * Copy a present and normal page.
902  *
903  * NOTE! The usual case is that this isn't required;
904  * instead, the caller can just increase the page refcount
905  * and re-use the pte the traditional way.
906  *
907  * And if we need a pre-allocated page but don't yet have
908  * one, return a negative error to let the preallocation
909  * code know so that it can do so outside the page table
910  * lock.
911  */
912 static inline int
913 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
914 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
915 		  struct folio **prealloc, struct page *page)
916 {
917 	struct folio *new_folio;
918 	pte_t pte;
919 
920 	new_folio = *prealloc;
921 	if (!new_folio)
922 		return -EAGAIN;
923 
924 	/*
925 	 * We have a prealloc page, all good!  Take it
926 	 * over and copy the page & arm it.
927 	 */
928 
929 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
930 		return -EHWPOISON;
931 
932 	*prealloc = NULL;
933 	__folio_mark_uptodate(new_folio);
934 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
935 	folio_add_lru_vma(new_folio, dst_vma);
936 	rss[MM_ANONPAGES]++;
937 
938 	/* All done, just insert the new page copy in the child */
939 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
940 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
941 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
942 		/* Uffd-wp needs to be delivered to dest pte as well */
943 		pte = pte_mkuffd_wp(pte);
944 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
945 	return 0;
946 }
947 
948 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
949 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
950 		pte_t pte, unsigned long addr, int nr)
951 {
952 	struct mm_struct *src_mm = src_vma->vm_mm;
953 
954 	/* If it's a COW mapping, write protect it both processes. */
955 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
956 		wrprotect_ptes(src_mm, addr, src_pte, nr);
957 		pte = pte_wrprotect(pte);
958 	}
959 
960 	/* If it's a shared mapping, mark it clean in the child. */
961 	if (src_vma->vm_flags & VM_SHARED)
962 		pte = pte_mkclean(pte);
963 	pte = pte_mkold(pte);
964 
965 	if (!userfaultfd_wp(dst_vma))
966 		pte = pte_clear_uffd_wp(pte);
967 
968 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
969 }
970 
971 /*
972  * Copy one present PTE, trying to batch-process subsequent PTEs that map
973  * consecutive pages of the same folio by copying them as well.
974  *
975  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
976  * Otherwise, returns the number of copied PTEs (at least 1).
977  */
978 static inline int
979 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
981 		 int max_nr, int *rss, struct folio **prealloc)
982 {
983 	struct page *page;
984 	struct folio *folio;
985 	bool any_writable;
986 	fpb_t flags = 0;
987 	int err, nr;
988 
989 	page = vm_normal_page(src_vma, addr, pte);
990 	if (unlikely(!page))
991 		goto copy_pte;
992 
993 	folio = page_folio(page);
994 
995 	/*
996 	 * If we likely have to copy, just don't bother with batching. Make
997 	 * sure that the common "small folio" case is as fast as possible
998 	 * by keeping the batching logic separate.
999 	 */
1000 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1001 		if (src_vma->vm_flags & VM_SHARED)
1002 			flags |= FPB_IGNORE_DIRTY;
1003 		if (!vma_soft_dirty_enabled(src_vma))
1004 			flags |= FPB_IGNORE_SOFT_DIRTY;
1005 
1006 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1007 				     &any_writable, NULL, NULL);
1008 		folio_ref_add(folio, nr);
1009 		if (folio_test_anon(folio)) {
1010 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1011 								  nr, src_vma))) {
1012 				folio_ref_sub(folio, nr);
1013 				return -EAGAIN;
1014 			}
1015 			rss[MM_ANONPAGES] += nr;
1016 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1017 		} else {
1018 			folio_dup_file_rmap_ptes(folio, page, nr);
1019 			rss[mm_counter_file(folio)] += nr;
1020 		}
1021 		if (any_writable)
1022 			pte = pte_mkwrite(pte, src_vma);
1023 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1024 				    addr, nr);
1025 		return nr;
1026 	}
1027 
1028 	folio_get(folio);
1029 	if (folio_test_anon(folio)) {
1030 		/*
1031 		 * If this page may have been pinned by the parent process,
1032 		 * copy the page immediately for the child so that we'll always
1033 		 * guarantee the pinned page won't be randomly replaced in the
1034 		 * future.
1035 		 */
1036 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1037 			/* Page may be pinned, we have to copy. */
1038 			folio_put(folio);
1039 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1040 						addr, rss, prealloc, page);
1041 			return err ? err : 1;
1042 		}
1043 		rss[MM_ANONPAGES]++;
1044 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1045 	} else {
1046 		folio_dup_file_rmap_pte(folio, page);
1047 		rss[mm_counter_file(folio)]++;
1048 	}
1049 
1050 copy_pte:
1051 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1052 	return 1;
1053 }
1054 
1055 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1056 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1057 {
1058 	struct folio *new_folio;
1059 
1060 	if (need_zero)
1061 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1062 	else
1063 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1064 
1065 	if (!new_folio)
1066 		return NULL;
1067 
1068 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1069 		folio_put(new_folio);
1070 		return NULL;
1071 	}
1072 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1073 
1074 	return new_folio;
1075 }
1076 
1077 static int
1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1080 	       unsigned long end)
1081 {
1082 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 	struct mm_struct *src_mm = src_vma->vm_mm;
1084 	pte_t *orig_src_pte, *orig_dst_pte;
1085 	pte_t *src_pte, *dst_pte;
1086 	pmd_t dummy_pmdval;
1087 	pte_t ptent;
1088 	spinlock_t *src_ptl, *dst_ptl;
1089 	int progress, max_nr, ret = 0;
1090 	int rss[NR_MM_COUNTERS];
1091 	swp_entry_t entry = (swp_entry_t){0};
1092 	struct folio *prealloc = NULL;
1093 	int nr;
1094 
1095 again:
1096 	progress = 0;
1097 	init_rss_vec(rss);
1098 
1099 	/*
1100 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1101 	 * error handling here, assume that exclusive mmap_lock on dst and src
1102 	 * protects anon from unexpected THP transitions; with shmem and file
1103 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1104 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1105 	 * can remove such assumptions later, but this is good enough for now.
1106 	 */
1107 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1108 	if (!dst_pte) {
1109 		ret = -ENOMEM;
1110 		goto out;
1111 	}
1112 
1113 	/*
1114 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1115 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1116 	 * the PTE page is stable, and there is no need to get pmdval and do
1117 	 * pmd_same() check.
1118 	 */
1119 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1120 					   &src_ptl);
1121 	if (!src_pte) {
1122 		pte_unmap_unlock(dst_pte, dst_ptl);
1123 		/* ret == 0 */
1124 		goto out;
1125 	}
1126 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1127 	orig_src_pte = src_pte;
1128 	orig_dst_pte = dst_pte;
1129 	arch_enter_lazy_mmu_mode();
1130 
1131 	do {
1132 		nr = 1;
1133 
1134 		/*
1135 		 * We are holding two locks at this point - either of them
1136 		 * could generate latencies in another task on another CPU.
1137 		 */
1138 		if (progress >= 32) {
1139 			progress = 0;
1140 			if (need_resched() ||
1141 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1142 				break;
1143 		}
1144 		ptent = ptep_get(src_pte);
1145 		if (pte_none(ptent)) {
1146 			progress++;
1147 			continue;
1148 		}
1149 		if (unlikely(!pte_present(ptent))) {
1150 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1151 						  dst_pte, src_pte,
1152 						  dst_vma, src_vma,
1153 						  addr, rss);
1154 			if (ret == -EIO) {
1155 				entry = pte_to_swp_entry(ptep_get(src_pte));
1156 				break;
1157 			} else if (ret == -EBUSY) {
1158 				break;
1159 			} else if (!ret) {
1160 				progress += 8;
1161 				continue;
1162 			}
1163 			ptent = ptep_get(src_pte);
1164 			VM_WARN_ON_ONCE(!pte_present(ptent));
1165 
1166 			/*
1167 			 * Device exclusive entry restored, continue by copying
1168 			 * the now present pte.
1169 			 */
1170 			WARN_ON_ONCE(ret != -ENOENT);
1171 		}
1172 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1173 		max_nr = (end - addr) / PAGE_SIZE;
1174 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1175 					ptent, addr, max_nr, rss, &prealloc);
1176 		/*
1177 		 * If we need a pre-allocated page for this pte, drop the
1178 		 * locks, allocate, and try again.
1179 		 * If copy failed due to hwpoison in source page, break out.
1180 		 */
1181 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1182 			break;
1183 		if (unlikely(prealloc)) {
1184 			/*
1185 			 * pre-alloc page cannot be reused by next time so as
1186 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1187 			 * will allocate page according to address).  This
1188 			 * could only happen if one pinned pte changed.
1189 			 */
1190 			folio_put(prealloc);
1191 			prealloc = NULL;
1192 		}
1193 		nr = ret;
1194 		progress += 8 * nr;
1195 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1196 		 addr != end);
1197 
1198 	arch_leave_lazy_mmu_mode();
1199 	pte_unmap_unlock(orig_src_pte, src_ptl);
1200 	add_mm_rss_vec(dst_mm, rss);
1201 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1202 	cond_resched();
1203 
1204 	if (ret == -EIO) {
1205 		VM_WARN_ON_ONCE(!entry.val);
1206 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1207 			ret = -ENOMEM;
1208 			goto out;
1209 		}
1210 		entry.val = 0;
1211 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1212 		goto out;
1213 	} else if (ret ==  -EAGAIN) {
1214 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1215 		if (!prealloc)
1216 			return -ENOMEM;
1217 	} else if (ret < 0) {
1218 		VM_WARN_ON_ONCE(1);
1219 	}
1220 
1221 	/* We've captured and resolved the error. Reset, try again. */
1222 	ret = 0;
1223 
1224 	if (addr != end)
1225 		goto again;
1226 out:
1227 	if (unlikely(prealloc))
1228 		folio_put(prealloc);
1229 	return ret;
1230 }
1231 
1232 static inline int
1233 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1234 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1235 	       unsigned long end)
1236 {
1237 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1238 	struct mm_struct *src_mm = src_vma->vm_mm;
1239 	pmd_t *src_pmd, *dst_pmd;
1240 	unsigned long next;
1241 
1242 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1243 	if (!dst_pmd)
1244 		return -ENOMEM;
1245 	src_pmd = pmd_offset(src_pud, addr);
1246 	do {
1247 		next = pmd_addr_end(addr, end);
1248 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1249 			|| pmd_devmap(*src_pmd)) {
1250 			int err;
1251 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1252 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1253 					    addr, dst_vma, src_vma);
1254 			if (err == -ENOMEM)
1255 				return -ENOMEM;
1256 			if (!err)
1257 				continue;
1258 			/* fall through */
1259 		}
1260 		if (pmd_none_or_clear_bad(src_pmd))
1261 			continue;
1262 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1263 				   addr, next))
1264 			return -ENOMEM;
1265 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1266 	return 0;
1267 }
1268 
1269 static inline int
1270 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1271 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1272 	       unsigned long end)
1273 {
1274 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 	struct mm_struct *src_mm = src_vma->vm_mm;
1276 	pud_t *src_pud, *dst_pud;
1277 	unsigned long next;
1278 
1279 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1280 	if (!dst_pud)
1281 		return -ENOMEM;
1282 	src_pud = pud_offset(src_p4d, addr);
1283 	do {
1284 		next = pud_addr_end(addr, end);
1285 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1286 			int err;
1287 
1288 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1289 			err = copy_huge_pud(dst_mm, src_mm,
1290 					    dst_pud, src_pud, addr, src_vma);
1291 			if (err == -ENOMEM)
1292 				return -ENOMEM;
1293 			if (!err)
1294 				continue;
1295 			/* fall through */
1296 		}
1297 		if (pud_none_or_clear_bad(src_pud))
1298 			continue;
1299 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1300 				   addr, next))
1301 			return -ENOMEM;
1302 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1303 	return 0;
1304 }
1305 
1306 static inline int
1307 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1308 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1309 	       unsigned long end)
1310 {
1311 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1312 	p4d_t *src_p4d, *dst_p4d;
1313 	unsigned long next;
1314 
1315 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1316 	if (!dst_p4d)
1317 		return -ENOMEM;
1318 	src_p4d = p4d_offset(src_pgd, addr);
1319 	do {
1320 		next = p4d_addr_end(addr, end);
1321 		if (p4d_none_or_clear_bad(src_p4d))
1322 			continue;
1323 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1324 				   addr, next))
1325 			return -ENOMEM;
1326 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1327 	return 0;
1328 }
1329 
1330 /*
1331  * Return true if the vma needs to copy the pgtable during this fork().  Return
1332  * false when we can speed up fork() by allowing lazy page faults later until
1333  * when the child accesses the memory range.
1334  */
1335 static bool
1336 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1337 {
1338 	/*
1339 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1340 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1341 	 * contains uffd-wp protection information, that's something we can't
1342 	 * retrieve from page cache, and skip copying will lose those info.
1343 	 */
1344 	if (userfaultfd_wp(dst_vma))
1345 		return true;
1346 
1347 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1348 		return true;
1349 
1350 	if (src_vma->anon_vma)
1351 		return true;
1352 
1353 	/*
1354 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1355 	 * becomes much lighter when there are big shared or private readonly
1356 	 * mappings. The tradeoff is that copy_page_range is more efficient
1357 	 * than faulting.
1358 	 */
1359 	return false;
1360 }
1361 
1362 int
1363 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1364 {
1365 	pgd_t *src_pgd, *dst_pgd;
1366 	unsigned long next;
1367 	unsigned long addr = src_vma->vm_start;
1368 	unsigned long end = src_vma->vm_end;
1369 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1370 	struct mm_struct *src_mm = src_vma->vm_mm;
1371 	struct mmu_notifier_range range;
1372 	bool is_cow;
1373 	int ret;
1374 
1375 	if (!vma_needs_copy(dst_vma, src_vma))
1376 		return 0;
1377 
1378 	if (is_vm_hugetlb_page(src_vma))
1379 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1380 
1381 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1382 		/*
1383 		 * We do not free on error cases below as remove_vma
1384 		 * gets called on error from higher level routine
1385 		 */
1386 		ret = track_pfn_copy(src_vma);
1387 		if (ret)
1388 			return ret;
1389 	}
1390 
1391 	/*
1392 	 * We need to invalidate the secondary MMU mappings only when
1393 	 * there could be a permission downgrade on the ptes of the
1394 	 * parent mm. And a permission downgrade will only happen if
1395 	 * is_cow_mapping() returns true.
1396 	 */
1397 	is_cow = is_cow_mapping(src_vma->vm_flags);
1398 
1399 	if (is_cow) {
1400 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1401 					0, src_mm, addr, end);
1402 		mmu_notifier_invalidate_range_start(&range);
1403 		/*
1404 		 * Disabling preemption is not needed for the write side, as
1405 		 * the read side doesn't spin, but goes to the mmap_lock.
1406 		 *
1407 		 * Use the raw variant of the seqcount_t write API to avoid
1408 		 * lockdep complaining about preemptibility.
1409 		 */
1410 		vma_assert_write_locked(src_vma);
1411 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1412 	}
1413 
1414 	ret = 0;
1415 	dst_pgd = pgd_offset(dst_mm, addr);
1416 	src_pgd = pgd_offset(src_mm, addr);
1417 	do {
1418 		next = pgd_addr_end(addr, end);
1419 		if (pgd_none_or_clear_bad(src_pgd))
1420 			continue;
1421 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1422 					    addr, next))) {
1423 			untrack_pfn_clear(dst_vma);
1424 			ret = -ENOMEM;
1425 			break;
1426 		}
1427 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1428 
1429 	if (is_cow) {
1430 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1431 		mmu_notifier_invalidate_range_end(&range);
1432 	}
1433 	return ret;
1434 }
1435 
1436 /* Whether we should zap all COWed (private) pages too */
1437 static inline bool should_zap_cows(struct zap_details *details)
1438 {
1439 	/* By default, zap all pages */
1440 	if (!details)
1441 		return true;
1442 
1443 	/* Or, we zap COWed pages only if the caller wants to */
1444 	return details->even_cows;
1445 }
1446 
1447 /* Decides whether we should zap this folio with the folio pointer specified */
1448 static inline bool should_zap_folio(struct zap_details *details,
1449 				    struct folio *folio)
1450 {
1451 	/* If we can make a decision without *folio.. */
1452 	if (should_zap_cows(details))
1453 		return true;
1454 
1455 	/* Otherwise we should only zap non-anon folios */
1456 	return !folio_test_anon(folio);
1457 }
1458 
1459 static inline bool zap_drop_markers(struct zap_details *details)
1460 {
1461 	if (!details)
1462 		return false;
1463 
1464 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1465 }
1466 
1467 /*
1468  * This function makes sure that we'll replace the none pte with an uffd-wp
1469  * swap special pte marker when necessary. Must be with the pgtable lock held.
1470  */
1471 static inline void
1472 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1473 			      unsigned long addr, pte_t *pte, int nr,
1474 			      struct zap_details *details, pte_t pteval)
1475 {
1476 	/* Zap on anonymous always means dropping everything */
1477 	if (vma_is_anonymous(vma))
1478 		return;
1479 
1480 	if (zap_drop_markers(details))
1481 		return;
1482 
1483 	for (;;) {
1484 		/* the PFN in the PTE is irrelevant. */
1485 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1486 		if (--nr == 0)
1487 			break;
1488 		pte++;
1489 		addr += PAGE_SIZE;
1490 	}
1491 }
1492 
1493 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1494 		struct vm_area_struct *vma, struct folio *folio,
1495 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1496 		unsigned long addr, struct zap_details *details, int *rss,
1497 		bool *force_flush, bool *force_break)
1498 {
1499 	struct mm_struct *mm = tlb->mm;
1500 	bool delay_rmap = false;
1501 
1502 	if (!folio_test_anon(folio)) {
1503 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1504 		if (pte_dirty(ptent)) {
1505 			folio_mark_dirty(folio);
1506 			if (tlb_delay_rmap(tlb)) {
1507 				delay_rmap = true;
1508 				*force_flush = true;
1509 			}
1510 		}
1511 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1512 			folio_mark_accessed(folio);
1513 		rss[mm_counter(folio)] -= nr;
1514 	} else {
1515 		/* We don't need up-to-date accessed/dirty bits. */
1516 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1517 		rss[MM_ANONPAGES] -= nr;
1518 	}
1519 	/* Checking a single PTE in a batch is sufficient. */
1520 	arch_check_zapped_pte(vma, ptent);
1521 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1522 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1523 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1524 					      ptent);
1525 
1526 	if (!delay_rmap) {
1527 		folio_remove_rmap_ptes(folio, page, nr, vma);
1528 
1529 		if (unlikely(folio_mapcount(folio) < 0))
1530 			print_bad_pte(vma, addr, ptent, page);
1531 	}
1532 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1533 		*force_flush = true;
1534 		*force_break = true;
1535 	}
1536 }
1537 
1538 /*
1539  * Zap or skip at least one present PTE, trying to batch-process subsequent
1540  * PTEs that map consecutive pages of the same folio.
1541  *
1542  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1543  */
1544 static inline int zap_present_ptes(struct mmu_gather *tlb,
1545 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1546 		unsigned int max_nr, unsigned long addr,
1547 		struct zap_details *details, int *rss, bool *force_flush,
1548 		bool *force_break)
1549 {
1550 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1551 	struct mm_struct *mm = tlb->mm;
1552 	struct folio *folio;
1553 	struct page *page;
1554 	int nr;
1555 
1556 	page = vm_normal_page(vma, addr, ptent);
1557 	if (!page) {
1558 		/* We don't need up-to-date accessed/dirty bits. */
1559 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1560 		arch_check_zapped_pte(vma, ptent);
1561 		tlb_remove_tlb_entry(tlb, pte, addr);
1562 		if (userfaultfd_pte_wp(vma, ptent))
1563 			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1564 						      details, ptent);
1565 		ksm_might_unmap_zero_page(mm, ptent);
1566 		return 1;
1567 	}
1568 
1569 	folio = page_folio(page);
1570 	if (unlikely(!should_zap_folio(details, folio)))
1571 		return 1;
1572 
1573 	/*
1574 	 * Make sure that the common "small folio" case is as fast as possible
1575 	 * by keeping the batching logic separate.
1576 	 */
1577 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1578 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1579 				     NULL, NULL, NULL);
1580 
1581 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1582 				       addr, details, rss, force_flush,
1583 				       force_break);
1584 		return nr;
1585 	}
1586 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1587 			       details, rss, force_flush, force_break);
1588 	return 1;
1589 }
1590 
1591 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1592 				struct vm_area_struct *vma, pmd_t *pmd,
1593 				unsigned long addr, unsigned long end,
1594 				struct zap_details *details)
1595 {
1596 	bool force_flush = false, force_break = false;
1597 	struct mm_struct *mm = tlb->mm;
1598 	int rss[NR_MM_COUNTERS];
1599 	spinlock_t *ptl;
1600 	pte_t *start_pte;
1601 	pte_t *pte;
1602 	swp_entry_t entry;
1603 	int nr;
1604 
1605 	tlb_change_page_size(tlb, PAGE_SIZE);
1606 	init_rss_vec(rss);
1607 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1608 	if (!pte)
1609 		return addr;
1610 
1611 	flush_tlb_batched_pending(mm);
1612 	arch_enter_lazy_mmu_mode();
1613 	do {
1614 		pte_t ptent = ptep_get(pte);
1615 		struct folio *folio;
1616 		struct page *page;
1617 		int max_nr;
1618 
1619 		nr = 1;
1620 		if (pte_none(ptent))
1621 			continue;
1622 
1623 		if (need_resched())
1624 			break;
1625 
1626 		if (pte_present(ptent)) {
1627 			max_nr = (end - addr) / PAGE_SIZE;
1628 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1629 					      addr, details, rss, &force_flush,
1630 					      &force_break);
1631 			if (unlikely(force_break)) {
1632 				addr += nr * PAGE_SIZE;
1633 				break;
1634 			}
1635 			continue;
1636 		}
1637 
1638 		entry = pte_to_swp_entry(ptent);
1639 		if (is_device_private_entry(entry) ||
1640 		    is_device_exclusive_entry(entry)) {
1641 			page = pfn_swap_entry_to_page(entry);
1642 			folio = page_folio(page);
1643 			if (unlikely(!should_zap_folio(details, folio)))
1644 				continue;
1645 			/*
1646 			 * Both device private/exclusive mappings should only
1647 			 * work with anonymous page so far, so we don't need to
1648 			 * consider uffd-wp bit when zap. For more information,
1649 			 * see zap_install_uffd_wp_if_needed().
1650 			 */
1651 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1652 			rss[mm_counter(folio)]--;
1653 			if (is_device_private_entry(entry))
1654 				folio_remove_rmap_pte(folio, page, vma);
1655 			folio_put(folio);
1656 		} else if (!non_swap_entry(entry)) {
1657 			max_nr = (end - addr) / PAGE_SIZE;
1658 			nr = swap_pte_batch(pte, max_nr, ptent);
1659 			/* Genuine swap entries, hence a private anon pages */
1660 			if (!should_zap_cows(details))
1661 				continue;
1662 			rss[MM_SWAPENTS] -= nr;
1663 			free_swap_and_cache_nr(entry, nr);
1664 		} else if (is_migration_entry(entry)) {
1665 			folio = pfn_swap_entry_folio(entry);
1666 			if (!should_zap_folio(details, folio))
1667 				continue;
1668 			rss[mm_counter(folio)]--;
1669 		} else if (pte_marker_entry_uffd_wp(entry)) {
1670 			/*
1671 			 * For anon: always drop the marker; for file: only
1672 			 * drop the marker if explicitly requested.
1673 			 */
1674 			if (!vma_is_anonymous(vma) &&
1675 			    !zap_drop_markers(details))
1676 				continue;
1677 		} else if (is_guard_swp_entry(entry)) {
1678 			/*
1679 			 * Ordinary zapping should not remove guard PTE
1680 			 * markers. Only do so if we should remove PTE markers
1681 			 * in general.
1682 			 */
1683 			if (!zap_drop_markers(details))
1684 				continue;
1685 		} else if (is_hwpoison_entry(entry) ||
1686 			   is_poisoned_swp_entry(entry)) {
1687 			if (!should_zap_cows(details))
1688 				continue;
1689 		} else {
1690 			/* We should have covered all the swap entry types */
1691 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1692 			WARN_ON_ONCE(1);
1693 		}
1694 		clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1695 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1696 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1697 
1698 	add_mm_rss_vec(mm, rss);
1699 	arch_leave_lazy_mmu_mode();
1700 
1701 	/* Do the actual TLB flush before dropping ptl */
1702 	if (force_flush) {
1703 		tlb_flush_mmu_tlbonly(tlb);
1704 		tlb_flush_rmaps(tlb, vma);
1705 	}
1706 	pte_unmap_unlock(start_pte, ptl);
1707 
1708 	/*
1709 	 * If we forced a TLB flush (either due to running out of
1710 	 * batch buffers or because we needed to flush dirty TLB
1711 	 * entries before releasing the ptl), free the batched
1712 	 * memory too. Come back again if we didn't do everything.
1713 	 */
1714 	if (force_flush)
1715 		tlb_flush_mmu(tlb);
1716 
1717 	return addr;
1718 }
1719 
1720 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1721 				struct vm_area_struct *vma, pud_t *pud,
1722 				unsigned long addr, unsigned long end,
1723 				struct zap_details *details)
1724 {
1725 	pmd_t *pmd;
1726 	unsigned long next;
1727 
1728 	pmd = pmd_offset(pud, addr);
1729 	do {
1730 		next = pmd_addr_end(addr, end);
1731 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1732 			if (next - addr != HPAGE_PMD_SIZE)
1733 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1734 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1735 				addr = next;
1736 				continue;
1737 			}
1738 			/* fall through */
1739 		} else if (details && details->single_folio &&
1740 			   folio_test_pmd_mappable(details->single_folio) &&
1741 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1742 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1743 			/*
1744 			 * Take and drop THP pmd lock so that we cannot return
1745 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1746 			 * but not yet decremented compound_mapcount().
1747 			 */
1748 			spin_unlock(ptl);
1749 		}
1750 		if (pmd_none(*pmd)) {
1751 			addr = next;
1752 			continue;
1753 		}
1754 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1755 		if (addr != next)
1756 			pmd--;
1757 	} while (pmd++, cond_resched(), addr != end);
1758 
1759 	return addr;
1760 }
1761 
1762 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1763 				struct vm_area_struct *vma, p4d_t *p4d,
1764 				unsigned long addr, unsigned long end,
1765 				struct zap_details *details)
1766 {
1767 	pud_t *pud;
1768 	unsigned long next;
1769 
1770 	pud = pud_offset(p4d, addr);
1771 	do {
1772 		next = pud_addr_end(addr, end);
1773 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1774 			if (next - addr != HPAGE_PUD_SIZE) {
1775 				mmap_assert_locked(tlb->mm);
1776 				split_huge_pud(vma, pud, addr);
1777 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1778 				goto next;
1779 			/* fall through */
1780 		}
1781 		if (pud_none_or_clear_bad(pud))
1782 			continue;
1783 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1784 next:
1785 		cond_resched();
1786 	} while (pud++, addr = next, addr != end);
1787 
1788 	return addr;
1789 }
1790 
1791 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1792 				struct vm_area_struct *vma, pgd_t *pgd,
1793 				unsigned long addr, unsigned long end,
1794 				struct zap_details *details)
1795 {
1796 	p4d_t *p4d;
1797 	unsigned long next;
1798 
1799 	p4d = p4d_offset(pgd, addr);
1800 	do {
1801 		next = p4d_addr_end(addr, end);
1802 		if (p4d_none_or_clear_bad(p4d))
1803 			continue;
1804 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1805 	} while (p4d++, addr = next, addr != end);
1806 
1807 	return addr;
1808 }
1809 
1810 void unmap_page_range(struct mmu_gather *tlb,
1811 			     struct vm_area_struct *vma,
1812 			     unsigned long addr, unsigned long end,
1813 			     struct zap_details *details)
1814 {
1815 	pgd_t *pgd;
1816 	unsigned long next;
1817 
1818 	BUG_ON(addr >= end);
1819 	tlb_start_vma(tlb, vma);
1820 	pgd = pgd_offset(vma->vm_mm, addr);
1821 	do {
1822 		next = pgd_addr_end(addr, end);
1823 		if (pgd_none_or_clear_bad(pgd))
1824 			continue;
1825 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1826 	} while (pgd++, addr = next, addr != end);
1827 	tlb_end_vma(tlb, vma);
1828 }
1829 
1830 
1831 static void unmap_single_vma(struct mmu_gather *tlb,
1832 		struct vm_area_struct *vma, unsigned long start_addr,
1833 		unsigned long end_addr,
1834 		struct zap_details *details, bool mm_wr_locked)
1835 {
1836 	unsigned long start = max(vma->vm_start, start_addr);
1837 	unsigned long end;
1838 
1839 	if (start >= vma->vm_end)
1840 		return;
1841 	end = min(vma->vm_end, end_addr);
1842 	if (end <= vma->vm_start)
1843 		return;
1844 
1845 	if (vma->vm_file)
1846 		uprobe_munmap(vma, start, end);
1847 
1848 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1849 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1850 
1851 	if (start != end) {
1852 		if (unlikely(is_vm_hugetlb_page(vma))) {
1853 			/*
1854 			 * It is undesirable to test vma->vm_file as it
1855 			 * should be non-null for valid hugetlb area.
1856 			 * However, vm_file will be NULL in the error
1857 			 * cleanup path of mmap_region. When
1858 			 * hugetlbfs ->mmap method fails,
1859 			 * mmap_region() nullifies vma->vm_file
1860 			 * before calling this function to clean up.
1861 			 * Since no pte has actually been setup, it is
1862 			 * safe to do nothing in this case.
1863 			 */
1864 			if (vma->vm_file) {
1865 				zap_flags_t zap_flags = details ?
1866 				    details->zap_flags : 0;
1867 				__unmap_hugepage_range(tlb, vma, start, end,
1868 							     NULL, zap_flags);
1869 			}
1870 		} else
1871 			unmap_page_range(tlb, vma, start, end, details);
1872 	}
1873 }
1874 
1875 /**
1876  * unmap_vmas - unmap a range of memory covered by a list of vma's
1877  * @tlb: address of the caller's struct mmu_gather
1878  * @mas: the maple state
1879  * @vma: the starting vma
1880  * @start_addr: virtual address at which to start unmapping
1881  * @end_addr: virtual address at which to end unmapping
1882  * @tree_end: The maximum index to check
1883  * @mm_wr_locked: lock flag
1884  *
1885  * Unmap all pages in the vma list.
1886  *
1887  * Only addresses between `start' and `end' will be unmapped.
1888  *
1889  * The VMA list must be sorted in ascending virtual address order.
1890  *
1891  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1892  * range after unmap_vmas() returns.  So the only responsibility here is to
1893  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1894  * drops the lock and schedules.
1895  */
1896 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1897 		struct vm_area_struct *vma, unsigned long start_addr,
1898 		unsigned long end_addr, unsigned long tree_end,
1899 		bool mm_wr_locked)
1900 {
1901 	struct mmu_notifier_range range;
1902 	struct zap_details details = {
1903 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1904 		/* Careful - we need to zap private pages too! */
1905 		.even_cows = true,
1906 	};
1907 
1908 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1909 				start_addr, end_addr);
1910 	mmu_notifier_invalidate_range_start(&range);
1911 	do {
1912 		unsigned long start = start_addr;
1913 		unsigned long end = end_addr;
1914 		hugetlb_zap_begin(vma, &start, &end);
1915 		unmap_single_vma(tlb, vma, start, end, &details,
1916 				 mm_wr_locked);
1917 		hugetlb_zap_end(vma, &details);
1918 		vma = mas_find(mas, tree_end - 1);
1919 	} while (vma && likely(!xa_is_zero(vma)));
1920 	mmu_notifier_invalidate_range_end(&range);
1921 }
1922 
1923 /**
1924  * zap_page_range_single - remove user pages in a given range
1925  * @vma: vm_area_struct holding the applicable pages
1926  * @address: starting address of pages to zap
1927  * @size: number of bytes to zap
1928  * @details: details of shared cache invalidation
1929  *
1930  * The range must fit into one VMA.
1931  */
1932 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1933 		unsigned long size, struct zap_details *details)
1934 {
1935 	const unsigned long end = address + size;
1936 	struct mmu_notifier_range range;
1937 	struct mmu_gather tlb;
1938 
1939 	lru_add_drain();
1940 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1941 				address, end);
1942 	hugetlb_zap_begin(vma, &range.start, &range.end);
1943 	tlb_gather_mmu(&tlb, vma->vm_mm);
1944 	update_hiwater_rss(vma->vm_mm);
1945 	mmu_notifier_invalidate_range_start(&range);
1946 	/*
1947 	 * unmap 'address-end' not 'range.start-range.end' as range
1948 	 * could have been expanded for hugetlb pmd sharing.
1949 	 */
1950 	unmap_single_vma(&tlb, vma, address, end, details, false);
1951 	mmu_notifier_invalidate_range_end(&range);
1952 	tlb_finish_mmu(&tlb);
1953 	hugetlb_zap_end(vma, details);
1954 }
1955 
1956 /**
1957  * zap_vma_ptes - remove ptes mapping the vma
1958  * @vma: vm_area_struct holding ptes to be zapped
1959  * @address: starting address of pages to zap
1960  * @size: number of bytes to zap
1961  *
1962  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1963  *
1964  * The entire address range must be fully contained within the vma.
1965  *
1966  */
1967 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1968 		unsigned long size)
1969 {
1970 	if (!range_in_vma(vma, address, address + size) ||
1971 	    		!(vma->vm_flags & VM_PFNMAP))
1972 		return;
1973 
1974 	zap_page_range_single(vma, address, size, NULL);
1975 }
1976 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1977 
1978 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1979 {
1980 	pgd_t *pgd;
1981 	p4d_t *p4d;
1982 	pud_t *pud;
1983 	pmd_t *pmd;
1984 
1985 	pgd = pgd_offset(mm, addr);
1986 	p4d = p4d_alloc(mm, pgd, addr);
1987 	if (!p4d)
1988 		return NULL;
1989 	pud = pud_alloc(mm, p4d, addr);
1990 	if (!pud)
1991 		return NULL;
1992 	pmd = pmd_alloc(mm, pud, addr);
1993 	if (!pmd)
1994 		return NULL;
1995 
1996 	VM_BUG_ON(pmd_trans_huge(*pmd));
1997 	return pmd;
1998 }
1999 
2000 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2001 			spinlock_t **ptl)
2002 {
2003 	pmd_t *pmd = walk_to_pmd(mm, addr);
2004 
2005 	if (!pmd)
2006 		return NULL;
2007 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
2008 }
2009 
2010 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2011 {
2012 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2013 	/*
2014 	 * Whoever wants to forbid the zeropage after some zeropages
2015 	 * might already have been mapped has to scan the page tables and
2016 	 * bail out on any zeropages. Zeropages in COW mappings can
2017 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2018 	 */
2019 	if (mm_forbids_zeropage(vma->vm_mm))
2020 		return false;
2021 	/* zeropages in COW mappings are common and unproblematic. */
2022 	if (is_cow_mapping(vma->vm_flags))
2023 		return true;
2024 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2025 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2026 		return true;
2027 	/*
2028 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2029 	 * find the shared zeropage and longterm-pin it, which would
2030 	 * be problematic as soon as the zeropage gets replaced by a different
2031 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2032 	 * now differ to what GUP looked up. FSDAX is incompatible to
2033 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2034 	 * check_vma_flags).
2035 	 */
2036 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2037 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2038 }
2039 
2040 static int validate_page_before_insert(struct vm_area_struct *vma,
2041 				       struct page *page)
2042 {
2043 	struct folio *folio = page_folio(page);
2044 
2045 	if (!folio_ref_count(folio))
2046 		return -EINVAL;
2047 	if (unlikely(is_zero_folio(folio))) {
2048 		if (!vm_mixed_zeropage_allowed(vma))
2049 			return -EINVAL;
2050 		return 0;
2051 	}
2052 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
2053 	    page_has_type(page))
2054 		return -EINVAL;
2055 	flush_dcache_folio(folio);
2056 	return 0;
2057 }
2058 
2059 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2060 			unsigned long addr, struct page *page, pgprot_t prot)
2061 {
2062 	struct folio *folio = page_folio(page);
2063 	pte_t pteval;
2064 
2065 	if (!pte_none(ptep_get(pte)))
2066 		return -EBUSY;
2067 	/* Ok, finally just insert the thing.. */
2068 	pteval = mk_pte(page, prot);
2069 	if (unlikely(is_zero_folio(folio))) {
2070 		pteval = pte_mkspecial(pteval);
2071 	} else {
2072 		folio_get(folio);
2073 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2074 		folio_add_file_rmap_pte(folio, page, vma);
2075 	}
2076 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2077 	return 0;
2078 }
2079 
2080 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2081 			struct page *page, pgprot_t prot)
2082 {
2083 	int retval;
2084 	pte_t *pte;
2085 	spinlock_t *ptl;
2086 
2087 	retval = validate_page_before_insert(vma, page);
2088 	if (retval)
2089 		goto out;
2090 	retval = -ENOMEM;
2091 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2092 	if (!pte)
2093 		goto out;
2094 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2095 	pte_unmap_unlock(pte, ptl);
2096 out:
2097 	return retval;
2098 }
2099 
2100 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2101 			unsigned long addr, struct page *page, pgprot_t prot)
2102 {
2103 	int err;
2104 
2105 	err = validate_page_before_insert(vma, page);
2106 	if (err)
2107 		return err;
2108 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2109 }
2110 
2111 /* insert_pages() amortizes the cost of spinlock operations
2112  * when inserting pages in a loop.
2113  */
2114 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2115 			struct page **pages, unsigned long *num, pgprot_t prot)
2116 {
2117 	pmd_t *pmd = NULL;
2118 	pte_t *start_pte, *pte;
2119 	spinlock_t *pte_lock;
2120 	struct mm_struct *const mm = vma->vm_mm;
2121 	unsigned long curr_page_idx = 0;
2122 	unsigned long remaining_pages_total = *num;
2123 	unsigned long pages_to_write_in_pmd;
2124 	int ret;
2125 more:
2126 	ret = -EFAULT;
2127 	pmd = walk_to_pmd(mm, addr);
2128 	if (!pmd)
2129 		goto out;
2130 
2131 	pages_to_write_in_pmd = min_t(unsigned long,
2132 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2133 
2134 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2135 	ret = -ENOMEM;
2136 	if (pte_alloc(mm, pmd))
2137 		goto out;
2138 
2139 	while (pages_to_write_in_pmd) {
2140 		int pte_idx = 0;
2141 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2142 
2143 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2144 		if (!start_pte) {
2145 			ret = -EFAULT;
2146 			goto out;
2147 		}
2148 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2149 			int err = insert_page_in_batch_locked(vma, pte,
2150 				addr, pages[curr_page_idx], prot);
2151 			if (unlikely(err)) {
2152 				pte_unmap_unlock(start_pte, pte_lock);
2153 				ret = err;
2154 				remaining_pages_total -= pte_idx;
2155 				goto out;
2156 			}
2157 			addr += PAGE_SIZE;
2158 			++curr_page_idx;
2159 		}
2160 		pte_unmap_unlock(start_pte, pte_lock);
2161 		pages_to_write_in_pmd -= batch_size;
2162 		remaining_pages_total -= batch_size;
2163 	}
2164 	if (remaining_pages_total)
2165 		goto more;
2166 	ret = 0;
2167 out:
2168 	*num = remaining_pages_total;
2169 	return ret;
2170 }
2171 
2172 /**
2173  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2174  * @vma: user vma to map to
2175  * @addr: target start user address of these pages
2176  * @pages: source kernel pages
2177  * @num: in: number of pages to map. out: number of pages that were *not*
2178  * mapped. (0 means all pages were successfully mapped).
2179  *
2180  * Preferred over vm_insert_page() when inserting multiple pages.
2181  *
2182  * In case of error, we may have mapped a subset of the provided
2183  * pages. It is the caller's responsibility to account for this case.
2184  *
2185  * The same restrictions apply as in vm_insert_page().
2186  */
2187 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2188 			struct page **pages, unsigned long *num)
2189 {
2190 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2191 
2192 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2193 		return -EFAULT;
2194 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2195 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2196 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2197 		vm_flags_set(vma, VM_MIXEDMAP);
2198 	}
2199 	/* Defer page refcount checking till we're about to map that page. */
2200 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2201 }
2202 EXPORT_SYMBOL(vm_insert_pages);
2203 
2204 /**
2205  * vm_insert_page - insert single page into user vma
2206  * @vma: user vma to map to
2207  * @addr: target user address of this page
2208  * @page: source kernel page
2209  *
2210  * This allows drivers to insert individual pages they've allocated
2211  * into a user vma. The zeropage is supported in some VMAs,
2212  * see vm_mixed_zeropage_allowed().
2213  *
2214  * The page has to be a nice clean _individual_ kernel allocation.
2215  * If you allocate a compound page, you need to have marked it as
2216  * such (__GFP_COMP), or manually just split the page up yourself
2217  * (see split_page()).
2218  *
2219  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2220  * took an arbitrary page protection parameter. This doesn't allow
2221  * that. Your vma protection will have to be set up correctly, which
2222  * means that if you want a shared writable mapping, you'd better
2223  * ask for a shared writable mapping!
2224  *
2225  * The page does not need to be reserved.
2226  *
2227  * Usually this function is called from f_op->mmap() handler
2228  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2229  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2230  * function from other places, for example from page-fault handler.
2231  *
2232  * Return: %0 on success, negative error code otherwise.
2233  */
2234 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2235 			struct page *page)
2236 {
2237 	if (addr < vma->vm_start || addr >= vma->vm_end)
2238 		return -EFAULT;
2239 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2240 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2241 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2242 		vm_flags_set(vma, VM_MIXEDMAP);
2243 	}
2244 	return insert_page(vma, addr, page, vma->vm_page_prot);
2245 }
2246 EXPORT_SYMBOL(vm_insert_page);
2247 
2248 /*
2249  * __vm_map_pages - maps range of kernel pages into user vma
2250  * @vma: user vma to map to
2251  * @pages: pointer to array of source kernel pages
2252  * @num: number of pages in page array
2253  * @offset: user's requested vm_pgoff
2254  *
2255  * This allows drivers to map range of kernel pages into a user vma.
2256  * The zeropage is supported in some VMAs, see
2257  * vm_mixed_zeropage_allowed().
2258  *
2259  * Return: 0 on success and error code otherwise.
2260  */
2261 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2262 				unsigned long num, unsigned long offset)
2263 {
2264 	unsigned long count = vma_pages(vma);
2265 	unsigned long uaddr = vma->vm_start;
2266 	int ret, i;
2267 
2268 	/* Fail if the user requested offset is beyond the end of the object */
2269 	if (offset >= num)
2270 		return -ENXIO;
2271 
2272 	/* Fail if the user requested size exceeds available object size */
2273 	if (count > num - offset)
2274 		return -ENXIO;
2275 
2276 	for (i = 0; i < count; i++) {
2277 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2278 		if (ret < 0)
2279 			return ret;
2280 		uaddr += PAGE_SIZE;
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 /**
2287  * vm_map_pages - maps range of kernel pages starts with non zero offset
2288  * @vma: user vma to map to
2289  * @pages: pointer to array of source kernel pages
2290  * @num: number of pages in page array
2291  *
2292  * Maps an object consisting of @num pages, catering for the user's
2293  * requested vm_pgoff
2294  *
2295  * If we fail to insert any page into the vma, the function will return
2296  * immediately leaving any previously inserted pages present.  Callers
2297  * from the mmap handler may immediately return the error as their caller
2298  * will destroy the vma, removing any successfully inserted pages. Other
2299  * callers should make their own arrangements for calling unmap_region().
2300  *
2301  * Context: Process context. Called by mmap handlers.
2302  * Return: 0 on success and error code otherwise.
2303  */
2304 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2305 				unsigned long num)
2306 {
2307 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2308 }
2309 EXPORT_SYMBOL(vm_map_pages);
2310 
2311 /**
2312  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2313  * @vma: user vma to map to
2314  * @pages: pointer to array of source kernel pages
2315  * @num: number of pages in page array
2316  *
2317  * Similar to vm_map_pages(), except that it explicitly sets the offset
2318  * to 0. This function is intended for the drivers that did not consider
2319  * vm_pgoff.
2320  *
2321  * Context: Process context. Called by mmap handlers.
2322  * Return: 0 on success and error code otherwise.
2323  */
2324 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2325 				unsigned long num)
2326 {
2327 	return __vm_map_pages(vma, pages, num, 0);
2328 }
2329 EXPORT_SYMBOL(vm_map_pages_zero);
2330 
2331 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2332 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2333 {
2334 	struct mm_struct *mm = vma->vm_mm;
2335 	pte_t *pte, entry;
2336 	spinlock_t *ptl;
2337 
2338 	pte = get_locked_pte(mm, addr, &ptl);
2339 	if (!pte)
2340 		return VM_FAULT_OOM;
2341 	entry = ptep_get(pte);
2342 	if (!pte_none(entry)) {
2343 		if (mkwrite) {
2344 			/*
2345 			 * For read faults on private mappings the PFN passed
2346 			 * in may not match the PFN we have mapped if the
2347 			 * mapped PFN is a writeable COW page.  In the mkwrite
2348 			 * case we are creating a writable PTE for a shared
2349 			 * mapping and we expect the PFNs to match. If they
2350 			 * don't match, we are likely racing with block
2351 			 * allocation and mapping invalidation so just skip the
2352 			 * update.
2353 			 */
2354 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2355 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2356 				goto out_unlock;
2357 			}
2358 			entry = pte_mkyoung(entry);
2359 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2361 				update_mmu_cache(vma, addr, pte);
2362 		}
2363 		goto out_unlock;
2364 	}
2365 
2366 	/* Ok, finally just insert the thing.. */
2367 	if (pfn_t_devmap(pfn))
2368 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2369 	else
2370 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2371 
2372 	if (mkwrite) {
2373 		entry = pte_mkyoung(entry);
2374 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2375 	}
2376 
2377 	set_pte_at(mm, addr, pte, entry);
2378 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2379 
2380 out_unlock:
2381 	pte_unmap_unlock(pte, ptl);
2382 	return VM_FAULT_NOPAGE;
2383 }
2384 
2385 /**
2386  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2387  * @vma: user vma to map to
2388  * @addr: target user address of this page
2389  * @pfn: source kernel pfn
2390  * @pgprot: pgprot flags for the inserted page
2391  *
2392  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2393  * to override pgprot on a per-page basis.
2394  *
2395  * This only makes sense for IO mappings, and it makes no sense for
2396  * COW mappings.  In general, using multiple vmas is preferable;
2397  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2398  * impractical.
2399  *
2400  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2401  * caching- and encryption bits different than those of @vma->vm_page_prot,
2402  * because the caching- or encryption mode may not be known at mmap() time.
2403  *
2404  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2405  * to set caching and encryption bits for those vmas (except for COW pages).
2406  * This is ensured by core vm only modifying these page table entries using
2407  * functions that don't touch caching- or encryption bits, using pte_modify()
2408  * if needed. (See for example mprotect()).
2409  *
2410  * Also when new page-table entries are created, this is only done using the
2411  * fault() callback, and never using the value of vma->vm_page_prot,
2412  * except for page-table entries that point to anonymous pages as the result
2413  * of COW.
2414  *
2415  * Context: Process context.  May allocate using %GFP_KERNEL.
2416  * Return: vm_fault_t value.
2417  */
2418 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2419 			unsigned long pfn, pgprot_t pgprot)
2420 {
2421 	/*
2422 	 * Technically, architectures with pte_special can avoid all these
2423 	 * restrictions (same for remap_pfn_range).  However we would like
2424 	 * consistency in testing and feature parity among all, so we should
2425 	 * try to keep these invariants in place for everybody.
2426 	 */
2427 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2428 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2429 						(VM_PFNMAP|VM_MIXEDMAP));
2430 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2431 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2432 
2433 	if (addr < vma->vm_start || addr >= vma->vm_end)
2434 		return VM_FAULT_SIGBUS;
2435 
2436 	if (!pfn_modify_allowed(pfn, pgprot))
2437 		return VM_FAULT_SIGBUS;
2438 
2439 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2440 
2441 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2442 			false);
2443 }
2444 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2445 
2446 /**
2447  * vmf_insert_pfn - insert single pfn into user vma
2448  * @vma: user vma to map to
2449  * @addr: target user address of this page
2450  * @pfn: source kernel pfn
2451  *
2452  * Similar to vm_insert_page, this allows drivers to insert individual pages
2453  * they've allocated into a user vma. Same comments apply.
2454  *
2455  * This function should only be called from a vm_ops->fault handler, and
2456  * in that case the handler should return the result of this function.
2457  *
2458  * vma cannot be a COW mapping.
2459  *
2460  * As this is called only for pages that do not currently exist, we
2461  * do not need to flush old virtual caches or the TLB.
2462  *
2463  * Context: Process context.  May allocate using %GFP_KERNEL.
2464  * Return: vm_fault_t value.
2465  */
2466 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2467 			unsigned long pfn)
2468 {
2469 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2470 }
2471 EXPORT_SYMBOL(vmf_insert_pfn);
2472 
2473 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2474 {
2475 	if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2476 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2477 		return false;
2478 	/* these checks mirror the abort conditions in vm_normal_page */
2479 	if (vma->vm_flags & VM_MIXEDMAP)
2480 		return true;
2481 	if (pfn_t_devmap(pfn))
2482 		return true;
2483 	if (pfn_t_special(pfn))
2484 		return true;
2485 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2486 		return true;
2487 	return false;
2488 }
2489 
2490 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2491 		unsigned long addr, pfn_t pfn, bool mkwrite)
2492 {
2493 	pgprot_t pgprot = vma->vm_page_prot;
2494 	int err;
2495 
2496 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2497 		return VM_FAULT_SIGBUS;
2498 
2499 	if (addr < vma->vm_start || addr >= vma->vm_end)
2500 		return VM_FAULT_SIGBUS;
2501 
2502 	track_pfn_insert(vma, &pgprot, pfn);
2503 
2504 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2505 		return VM_FAULT_SIGBUS;
2506 
2507 	/*
2508 	 * If we don't have pte special, then we have to use the pfn_valid()
2509 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2510 	 * refcount the page if pfn_valid is true (hence insert_page rather
2511 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2512 	 * without pte special, it would there be refcounted as a normal page.
2513 	 */
2514 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2515 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2516 		struct page *page;
2517 
2518 		/*
2519 		 * At this point we are committed to insert_page()
2520 		 * regardless of whether the caller specified flags that
2521 		 * result in pfn_t_has_page() == false.
2522 		 */
2523 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2524 		err = insert_page(vma, addr, page, pgprot);
2525 	} else {
2526 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2527 	}
2528 
2529 	if (err == -ENOMEM)
2530 		return VM_FAULT_OOM;
2531 	if (err < 0 && err != -EBUSY)
2532 		return VM_FAULT_SIGBUS;
2533 
2534 	return VM_FAULT_NOPAGE;
2535 }
2536 
2537 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2538 		pfn_t pfn)
2539 {
2540 	return __vm_insert_mixed(vma, addr, pfn, false);
2541 }
2542 EXPORT_SYMBOL(vmf_insert_mixed);
2543 
2544 /*
2545  *  If the insertion of PTE failed because someone else already added a
2546  *  different entry in the mean time, we treat that as success as we assume
2547  *  the same entry was actually inserted.
2548  */
2549 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2550 		unsigned long addr, pfn_t pfn)
2551 {
2552 	return __vm_insert_mixed(vma, addr, pfn, true);
2553 }
2554 
2555 /*
2556  * maps a range of physical memory into the requested pages. the old
2557  * mappings are removed. any references to nonexistent pages results
2558  * in null mappings (currently treated as "copy-on-access")
2559  */
2560 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2561 			unsigned long addr, unsigned long end,
2562 			unsigned long pfn, pgprot_t prot)
2563 {
2564 	pte_t *pte, *mapped_pte;
2565 	spinlock_t *ptl;
2566 	int err = 0;
2567 
2568 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2569 	if (!pte)
2570 		return -ENOMEM;
2571 	arch_enter_lazy_mmu_mode();
2572 	do {
2573 		BUG_ON(!pte_none(ptep_get(pte)));
2574 		if (!pfn_modify_allowed(pfn, prot)) {
2575 			err = -EACCES;
2576 			break;
2577 		}
2578 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2579 		pfn++;
2580 	} while (pte++, addr += PAGE_SIZE, addr != end);
2581 	arch_leave_lazy_mmu_mode();
2582 	pte_unmap_unlock(mapped_pte, ptl);
2583 	return err;
2584 }
2585 
2586 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2587 			unsigned long addr, unsigned long end,
2588 			unsigned long pfn, pgprot_t prot)
2589 {
2590 	pmd_t *pmd;
2591 	unsigned long next;
2592 	int err;
2593 
2594 	pfn -= addr >> PAGE_SHIFT;
2595 	pmd = pmd_alloc(mm, pud, addr);
2596 	if (!pmd)
2597 		return -ENOMEM;
2598 	VM_BUG_ON(pmd_trans_huge(*pmd));
2599 	do {
2600 		next = pmd_addr_end(addr, end);
2601 		err = remap_pte_range(mm, pmd, addr, next,
2602 				pfn + (addr >> PAGE_SHIFT), prot);
2603 		if (err)
2604 			return err;
2605 	} while (pmd++, addr = next, addr != end);
2606 	return 0;
2607 }
2608 
2609 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2610 			unsigned long addr, unsigned long end,
2611 			unsigned long pfn, pgprot_t prot)
2612 {
2613 	pud_t *pud;
2614 	unsigned long next;
2615 	int err;
2616 
2617 	pfn -= addr >> PAGE_SHIFT;
2618 	pud = pud_alloc(mm, p4d, addr);
2619 	if (!pud)
2620 		return -ENOMEM;
2621 	do {
2622 		next = pud_addr_end(addr, end);
2623 		err = remap_pmd_range(mm, pud, addr, next,
2624 				pfn + (addr >> PAGE_SHIFT), prot);
2625 		if (err)
2626 			return err;
2627 	} while (pud++, addr = next, addr != end);
2628 	return 0;
2629 }
2630 
2631 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2632 			unsigned long addr, unsigned long end,
2633 			unsigned long pfn, pgprot_t prot)
2634 {
2635 	p4d_t *p4d;
2636 	unsigned long next;
2637 	int err;
2638 
2639 	pfn -= addr >> PAGE_SHIFT;
2640 	p4d = p4d_alloc(mm, pgd, addr);
2641 	if (!p4d)
2642 		return -ENOMEM;
2643 	do {
2644 		next = p4d_addr_end(addr, end);
2645 		err = remap_pud_range(mm, p4d, addr, next,
2646 				pfn + (addr >> PAGE_SHIFT), prot);
2647 		if (err)
2648 			return err;
2649 	} while (p4d++, addr = next, addr != end);
2650 	return 0;
2651 }
2652 
2653 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2654 		unsigned long pfn, unsigned long size, pgprot_t prot)
2655 {
2656 	pgd_t *pgd;
2657 	unsigned long next;
2658 	unsigned long end = addr + PAGE_ALIGN(size);
2659 	struct mm_struct *mm = vma->vm_mm;
2660 	int err;
2661 
2662 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2663 		return -EINVAL;
2664 
2665 	/*
2666 	 * Physically remapped pages are special. Tell the
2667 	 * rest of the world about it:
2668 	 *   VM_IO tells people not to look at these pages
2669 	 *	(accesses can have side effects).
2670 	 *   VM_PFNMAP tells the core MM that the base pages are just
2671 	 *	raw PFN mappings, and do not have a "struct page" associated
2672 	 *	with them.
2673 	 *   VM_DONTEXPAND
2674 	 *      Disable vma merging and expanding with mremap().
2675 	 *   VM_DONTDUMP
2676 	 *      Omit vma from core dump, even when VM_IO turned off.
2677 	 *
2678 	 * There's a horrible special case to handle copy-on-write
2679 	 * behaviour that some programs depend on. We mark the "original"
2680 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2681 	 * See vm_normal_page() for details.
2682 	 */
2683 	if (is_cow_mapping(vma->vm_flags)) {
2684 		if (addr != vma->vm_start || end != vma->vm_end)
2685 			return -EINVAL;
2686 		vma->vm_pgoff = pfn;
2687 	}
2688 
2689 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2690 
2691 	BUG_ON(addr >= end);
2692 	pfn -= addr >> PAGE_SHIFT;
2693 	pgd = pgd_offset(mm, addr);
2694 	flush_cache_range(vma, addr, end);
2695 	do {
2696 		next = pgd_addr_end(addr, end);
2697 		err = remap_p4d_range(mm, pgd, addr, next,
2698 				pfn + (addr >> PAGE_SHIFT), prot);
2699 		if (err)
2700 			return err;
2701 	} while (pgd++, addr = next, addr != end);
2702 
2703 	return 0;
2704 }
2705 
2706 /*
2707  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2708  * must have pre-validated the caching bits of the pgprot_t.
2709  */
2710 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2711 		unsigned long pfn, unsigned long size, pgprot_t prot)
2712 {
2713 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2714 
2715 	if (!error)
2716 		return 0;
2717 
2718 	/*
2719 	 * A partial pfn range mapping is dangerous: it does not
2720 	 * maintain page reference counts, and callers may free
2721 	 * pages due to the error. So zap it early.
2722 	 */
2723 	zap_page_range_single(vma, addr, size, NULL);
2724 	return error;
2725 }
2726 
2727 /**
2728  * remap_pfn_range - remap kernel memory to userspace
2729  * @vma: user vma to map to
2730  * @addr: target page aligned user address to start at
2731  * @pfn: page frame number of kernel physical memory address
2732  * @size: size of mapping area
2733  * @prot: page protection flags for this mapping
2734  *
2735  * Note: this is only safe if the mm semaphore is held when called.
2736  *
2737  * Return: %0 on success, negative error code otherwise.
2738  */
2739 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2740 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2741 {
2742 	int err;
2743 
2744 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2745 	if (err)
2746 		return -EINVAL;
2747 
2748 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2749 	if (err)
2750 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2751 	return err;
2752 }
2753 EXPORT_SYMBOL(remap_pfn_range);
2754 
2755 /**
2756  * vm_iomap_memory - remap memory to userspace
2757  * @vma: user vma to map to
2758  * @start: start of the physical memory to be mapped
2759  * @len: size of area
2760  *
2761  * This is a simplified io_remap_pfn_range() for common driver use. The
2762  * driver just needs to give us the physical memory range to be mapped,
2763  * we'll figure out the rest from the vma information.
2764  *
2765  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2766  * whatever write-combining details or similar.
2767  *
2768  * Return: %0 on success, negative error code otherwise.
2769  */
2770 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2771 {
2772 	unsigned long vm_len, pfn, pages;
2773 
2774 	/* Check that the physical memory area passed in looks valid */
2775 	if (start + len < start)
2776 		return -EINVAL;
2777 	/*
2778 	 * You *really* shouldn't map things that aren't page-aligned,
2779 	 * but we've historically allowed it because IO memory might
2780 	 * just have smaller alignment.
2781 	 */
2782 	len += start & ~PAGE_MASK;
2783 	pfn = start >> PAGE_SHIFT;
2784 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2785 	if (pfn + pages < pfn)
2786 		return -EINVAL;
2787 
2788 	/* We start the mapping 'vm_pgoff' pages into the area */
2789 	if (vma->vm_pgoff > pages)
2790 		return -EINVAL;
2791 	pfn += vma->vm_pgoff;
2792 	pages -= vma->vm_pgoff;
2793 
2794 	/* Can we fit all of the mapping? */
2795 	vm_len = vma->vm_end - vma->vm_start;
2796 	if (vm_len >> PAGE_SHIFT > pages)
2797 		return -EINVAL;
2798 
2799 	/* Ok, let it rip */
2800 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2801 }
2802 EXPORT_SYMBOL(vm_iomap_memory);
2803 
2804 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2805 				     unsigned long addr, unsigned long end,
2806 				     pte_fn_t fn, void *data, bool create,
2807 				     pgtbl_mod_mask *mask)
2808 {
2809 	pte_t *pte, *mapped_pte;
2810 	int err = 0;
2811 	spinlock_t *ptl;
2812 
2813 	if (create) {
2814 		mapped_pte = pte = (mm == &init_mm) ?
2815 			pte_alloc_kernel_track(pmd, addr, mask) :
2816 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2817 		if (!pte)
2818 			return -ENOMEM;
2819 	} else {
2820 		mapped_pte = pte = (mm == &init_mm) ?
2821 			pte_offset_kernel(pmd, addr) :
2822 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2823 		if (!pte)
2824 			return -EINVAL;
2825 	}
2826 
2827 	arch_enter_lazy_mmu_mode();
2828 
2829 	if (fn) {
2830 		do {
2831 			if (create || !pte_none(ptep_get(pte))) {
2832 				err = fn(pte++, addr, data);
2833 				if (err)
2834 					break;
2835 			}
2836 		} while (addr += PAGE_SIZE, addr != end);
2837 	}
2838 	*mask |= PGTBL_PTE_MODIFIED;
2839 
2840 	arch_leave_lazy_mmu_mode();
2841 
2842 	if (mm != &init_mm)
2843 		pte_unmap_unlock(mapped_pte, ptl);
2844 	return err;
2845 }
2846 
2847 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2848 				     unsigned long addr, unsigned long end,
2849 				     pte_fn_t fn, void *data, bool create,
2850 				     pgtbl_mod_mask *mask)
2851 {
2852 	pmd_t *pmd;
2853 	unsigned long next;
2854 	int err = 0;
2855 
2856 	BUG_ON(pud_leaf(*pud));
2857 
2858 	if (create) {
2859 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2860 		if (!pmd)
2861 			return -ENOMEM;
2862 	} else {
2863 		pmd = pmd_offset(pud, addr);
2864 	}
2865 	do {
2866 		next = pmd_addr_end(addr, end);
2867 		if (pmd_none(*pmd) && !create)
2868 			continue;
2869 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2870 			return -EINVAL;
2871 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2872 			if (!create)
2873 				continue;
2874 			pmd_clear_bad(pmd);
2875 		}
2876 		err = apply_to_pte_range(mm, pmd, addr, next,
2877 					 fn, data, create, mask);
2878 		if (err)
2879 			break;
2880 	} while (pmd++, addr = next, addr != end);
2881 
2882 	return err;
2883 }
2884 
2885 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2886 				     unsigned long addr, unsigned long end,
2887 				     pte_fn_t fn, void *data, bool create,
2888 				     pgtbl_mod_mask *mask)
2889 {
2890 	pud_t *pud;
2891 	unsigned long next;
2892 	int err = 0;
2893 
2894 	if (create) {
2895 		pud = pud_alloc_track(mm, p4d, addr, mask);
2896 		if (!pud)
2897 			return -ENOMEM;
2898 	} else {
2899 		pud = pud_offset(p4d, addr);
2900 	}
2901 	do {
2902 		next = pud_addr_end(addr, end);
2903 		if (pud_none(*pud) && !create)
2904 			continue;
2905 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2906 			return -EINVAL;
2907 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2908 			if (!create)
2909 				continue;
2910 			pud_clear_bad(pud);
2911 		}
2912 		err = apply_to_pmd_range(mm, pud, addr, next,
2913 					 fn, data, create, mask);
2914 		if (err)
2915 			break;
2916 	} while (pud++, addr = next, addr != end);
2917 
2918 	return err;
2919 }
2920 
2921 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2922 				     unsigned long addr, unsigned long end,
2923 				     pte_fn_t fn, void *data, bool create,
2924 				     pgtbl_mod_mask *mask)
2925 {
2926 	p4d_t *p4d;
2927 	unsigned long next;
2928 	int err = 0;
2929 
2930 	if (create) {
2931 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2932 		if (!p4d)
2933 			return -ENOMEM;
2934 	} else {
2935 		p4d = p4d_offset(pgd, addr);
2936 	}
2937 	do {
2938 		next = p4d_addr_end(addr, end);
2939 		if (p4d_none(*p4d) && !create)
2940 			continue;
2941 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2942 			return -EINVAL;
2943 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2944 			if (!create)
2945 				continue;
2946 			p4d_clear_bad(p4d);
2947 		}
2948 		err = apply_to_pud_range(mm, p4d, addr, next,
2949 					 fn, data, create, mask);
2950 		if (err)
2951 			break;
2952 	} while (p4d++, addr = next, addr != end);
2953 
2954 	return err;
2955 }
2956 
2957 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2958 				 unsigned long size, pte_fn_t fn,
2959 				 void *data, bool create)
2960 {
2961 	pgd_t *pgd;
2962 	unsigned long start = addr, next;
2963 	unsigned long end = addr + size;
2964 	pgtbl_mod_mask mask = 0;
2965 	int err = 0;
2966 
2967 	if (WARN_ON(addr >= end))
2968 		return -EINVAL;
2969 
2970 	pgd = pgd_offset(mm, addr);
2971 	do {
2972 		next = pgd_addr_end(addr, end);
2973 		if (pgd_none(*pgd) && !create)
2974 			continue;
2975 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2976 			return -EINVAL;
2977 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2978 			if (!create)
2979 				continue;
2980 			pgd_clear_bad(pgd);
2981 		}
2982 		err = apply_to_p4d_range(mm, pgd, addr, next,
2983 					 fn, data, create, &mask);
2984 		if (err)
2985 			break;
2986 	} while (pgd++, addr = next, addr != end);
2987 
2988 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2989 		arch_sync_kernel_mappings(start, start + size);
2990 
2991 	return err;
2992 }
2993 
2994 /*
2995  * Scan a region of virtual memory, filling in page tables as necessary
2996  * and calling a provided function on each leaf page table.
2997  */
2998 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2999 			unsigned long size, pte_fn_t fn, void *data)
3000 {
3001 	return __apply_to_page_range(mm, addr, size, fn, data, true);
3002 }
3003 EXPORT_SYMBOL_GPL(apply_to_page_range);
3004 
3005 /*
3006  * Scan a region of virtual memory, calling a provided function on
3007  * each leaf page table where it exists.
3008  *
3009  * Unlike apply_to_page_range, this does _not_ fill in page tables
3010  * where they are absent.
3011  */
3012 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3013 				 unsigned long size, pte_fn_t fn, void *data)
3014 {
3015 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3016 }
3017 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3018 
3019 /*
3020  * handle_pte_fault chooses page fault handler according to an entry which was
3021  * read non-atomically.  Before making any commitment, on those architectures
3022  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3023  * parts, do_swap_page must check under lock before unmapping the pte and
3024  * proceeding (but do_wp_page is only called after already making such a check;
3025  * and do_anonymous_page can safely check later on).
3026  */
3027 static inline int pte_unmap_same(struct vm_fault *vmf)
3028 {
3029 	int same = 1;
3030 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3031 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3032 		spin_lock(vmf->ptl);
3033 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3034 		spin_unlock(vmf->ptl);
3035 	}
3036 #endif
3037 	pte_unmap(vmf->pte);
3038 	vmf->pte = NULL;
3039 	return same;
3040 }
3041 
3042 /*
3043  * Return:
3044  *	0:		copied succeeded
3045  *	-EHWPOISON:	copy failed due to hwpoison in source page
3046  *	-EAGAIN:	copied failed (some other reason)
3047  */
3048 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3049 				      struct vm_fault *vmf)
3050 {
3051 	int ret;
3052 	void *kaddr;
3053 	void __user *uaddr;
3054 	struct vm_area_struct *vma = vmf->vma;
3055 	struct mm_struct *mm = vma->vm_mm;
3056 	unsigned long addr = vmf->address;
3057 
3058 	if (likely(src)) {
3059 		if (copy_mc_user_highpage(dst, src, addr, vma))
3060 			return -EHWPOISON;
3061 		return 0;
3062 	}
3063 
3064 	/*
3065 	 * If the source page was a PFN mapping, we don't have
3066 	 * a "struct page" for it. We do a best-effort copy by
3067 	 * just copying from the original user address. If that
3068 	 * fails, we just zero-fill it. Live with it.
3069 	 */
3070 	kaddr = kmap_local_page(dst);
3071 	pagefault_disable();
3072 	uaddr = (void __user *)(addr & PAGE_MASK);
3073 
3074 	/*
3075 	 * On architectures with software "accessed" bits, we would
3076 	 * take a double page fault, so mark it accessed here.
3077 	 */
3078 	vmf->pte = NULL;
3079 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3080 		pte_t entry;
3081 
3082 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3083 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3084 			/*
3085 			 * Other thread has already handled the fault
3086 			 * and update local tlb only
3087 			 */
3088 			if (vmf->pte)
3089 				update_mmu_tlb(vma, addr, vmf->pte);
3090 			ret = -EAGAIN;
3091 			goto pte_unlock;
3092 		}
3093 
3094 		entry = pte_mkyoung(vmf->orig_pte);
3095 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3096 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3097 	}
3098 
3099 	/*
3100 	 * This really shouldn't fail, because the page is there
3101 	 * in the page tables. But it might just be unreadable,
3102 	 * in which case we just give up and fill the result with
3103 	 * zeroes.
3104 	 */
3105 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3106 		if (vmf->pte)
3107 			goto warn;
3108 
3109 		/* Re-validate under PTL if the page is still mapped */
3110 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3111 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3112 			/* The PTE changed under us, update local tlb */
3113 			if (vmf->pte)
3114 				update_mmu_tlb(vma, addr, vmf->pte);
3115 			ret = -EAGAIN;
3116 			goto pte_unlock;
3117 		}
3118 
3119 		/*
3120 		 * The same page can be mapped back since last copy attempt.
3121 		 * Try to copy again under PTL.
3122 		 */
3123 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3124 			/*
3125 			 * Give a warn in case there can be some obscure
3126 			 * use-case
3127 			 */
3128 warn:
3129 			WARN_ON_ONCE(1);
3130 			clear_page(kaddr);
3131 		}
3132 	}
3133 
3134 	ret = 0;
3135 
3136 pte_unlock:
3137 	if (vmf->pte)
3138 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3139 	pagefault_enable();
3140 	kunmap_local(kaddr);
3141 	flush_dcache_page(dst);
3142 
3143 	return ret;
3144 }
3145 
3146 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3147 {
3148 	struct file *vm_file = vma->vm_file;
3149 
3150 	if (vm_file)
3151 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3152 
3153 	/*
3154 	 * Special mappings (e.g. VDSO) do not have any file so fake
3155 	 * a default GFP_KERNEL for them.
3156 	 */
3157 	return GFP_KERNEL;
3158 }
3159 
3160 /*
3161  * Notify the address space that the page is about to become writable so that
3162  * it can prohibit this or wait for the page to get into an appropriate state.
3163  *
3164  * We do this without the lock held, so that it can sleep if it needs to.
3165  */
3166 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3167 {
3168 	vm_fault_t ret;
3169 	unsigned int old_flags = vmf->flags;
3170 
3171 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3172 
3173 	if (vmf->vma->vm_file &&
3174 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3175 		return VM_FAULT_SIGBUS;
3176 
3177 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3178 	/* Restore original flags so that caller is not surprised */
3179 	vmf->flags = old_flags;
3180 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3181 		return ret;
3182 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3183 		folio_lock(folio);
3184 		if (!folio->mapping) {
3185 			folio_unlock(folio);
3186 			return 0; /* retry */
3187 		}
3188 		ret |= VM_FAULT_LOCKED;
3189 	} else
3190 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3191 	return ret;
3192 }
3193 
3194 /*
3195  * Handle dirtying of a page in shared file mapping on a write fault.
3196  *
3197  * The function expects the page to be locked and unlocks it.
3198  */
3199 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3200 {
3201 	struct vm_area_struct *vma = vmf->vma;
3202 	struct address_space *mapping;
3203 	struct folio *folio = page_folio(vmf->page);
3204 	bool dirtied;
3205 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3206 
3207 	dirtied = folio_mark_dirty(folio);
3208 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3209 	/*
3210 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3211 	 * by truncate after folio_unlock().   The address_space itself remains
3212 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3213 	 * release semantics to prevent the compiler from undoing this copying.
3214 	 */
3215 	mapping = folio_raw_mapping(folio);
3216 	folio_unlock(folio);
3217 
3218 	if (!page_mkwrite)
3219 		file_update_time(vma->vm_file);
3220 
3221 	/*
3222 	 * Throttle page dirtying rate down to writeback speed.
3223 	 *
3224 	 * mapping may be NULL here because some device drivers do not
3225 	 * set page.mapping but still dirty their pages
3226 	 *
3227 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3228 	 * is pinning the mapping, as per above.
3229 	 */
3230 	if ((dirtied || page_mkwrite) && mapping) {
3231 		struct file *fpin;
3232 
3233 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3234 		balance_dirty_pages_ratelimited(mapping);
3235 		if (fpin) {
3236 			fput(fpin);
3237 			return VM_FAULT_COMPLETED;
3238 		}
3239 	}
3240 
3241 	return 0;
3242 }
3243 
3244 /*
3245  * Handle write page faults for pages that can be reused in the current vma
3246  *
3247  * This can happen either due to the mapping being with the VM_SHARED flag,
3248  * or due to us being the last reference standing to the page. In either
3249  * case, all we need to do here is to mark the page as writable and update
3250  * any related book-keeping.
3251  */
3252 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3253 	__releases(vmf->ptl)
3254 {
3255 	struct vm_area_struct *vma = vmf->vma;
3256 	pte_t entry;
3257 
3258 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3259 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3260 
3261 	if (folio) {
3262 		VM_BUG_ON(folio_test_anon(folio) &&
3263 			  !PageAnonExclusive(vmf->page));
3264 		/*
3265 		 * Clear the folio's cpupid information as the existing
3266 		 * information potentially belongs to a now completely
3267 		 * unrelated process.
3268 		 */
3269 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3270 	}
3271 
3272 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3273 	entry = pte_mkyoung(vmf->orig_pte);
3274 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3275 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3276 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3277 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3278 	count_vm_event(PGREUSE);
3279 }
3280 
3281 /*
3282  * We could add a bitflag somewhere, but for now, we know that all
3283  * vm_ops that have a ->map_pages have been audited and don't need
3284  * the mmap_lock to be held.
3285  */
3286 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3287 {
3288 	struct vm_area_struct *vma = vmf->vma;
3289 
3290 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3291 		return 0;
3292 	vma_end_read(vma);
3293 	return VM_FAULT_RETRY;
3294 }
3295 
3296 /**
3297  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3298  * @vmf: The vm_fault descriptor passed from the fault handler.
3299  *
3300  * When preparing to insert an anonymous page into a VMA from a
3301  * fault handler, call this function rather than anon_vma_prepare().
3302  * If this vma does not already have an associated anon_vma and we are
3303  * only protected by the per-VMA lock, the caller must retry with the
3304  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3305  * determine if this VMA can share its anon_vma, and that's not safe to
3306  * do with only the per-VMA lock held for this VMA.
3307  *
3308  * Return: 0 if fault handling can proceed.  Any other value should be
3309  * returned to the caller.
3310  */
3311 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3312 {
3313 	struct vm_area_struct *vma = vmf->vma;
3314 	vm_fault_t ret = 0;
3315 
3316 	if (likely(vma->anon_vma))
3317 		return 0;
3318 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3319 		if (!mmap_read_trylock(vma->vm_mm))
3320 			return VM_FAULT_RETRY;
3321 	}
3322 	if (__anon_vma_prepare(vma))
3323 		ret = VM_FAULT_OOM;
3324 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3325 		mmap_read_unlock(vma->vm_mm);
3326 	return ret;
3327 }
3328 
3329 /*
3330  * Handle the case of a page which we actually need to copy to a new page,
3331  * either due to COW or unsharing.
3332  *
3333  * Called with mmap_lock locked and the old page referenced, but
3334  * without the ptl held.
3335  *
3336  * High level logic flow:
3337  *
3338  * - Allocate a page, copy the content of the old page to the new one.
3339  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3340  * - Take the PTL. If the pte changed, bail out and release the allocated page
3341  * - If the pte is still the way we remember it, update the page table and all
3342  *   relevant references. This includes dropping the reference the page-table
3343  *   held to the old page, as well as updating the rmap.
3344  * - In any case, unlock the PTL and drop the reference we took to the old page.
3345  */
3346 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3347 {
3348 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3349 	struct vm_area_struct *vma = vmf->vma;
3350 	struct mm_struct *mm = vma->vm_mm;
3351 	struct folio *old_folio = NULL;
3352 	struct folio *new_folio = NULL;
3353 	pte_t entry;
3354 	int page_copied = 0;
3355 	struct mmu_notifier_range range;
3356 	vm_fault_t ret;
3357 	bool pfn_is_zero;
3358 
3359 	delayacct_wpcopy_start();
3360 
3361 	if (vmf->page)
3362 		old_folio = page_folio(vmf->page);
3363 	ret = vmf_anon_prepare(vmf);
3364 	if (unlikely(ret))
3365 		goto out;
3366 
3367 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3368 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3369 	if (!new_folio)
3370 		goto oom;
3371 
3372 	if (!pfn_is_zero) {
3373 		int err;
3374 
3375 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3376 		if (err) {
3377 			/*
3378 			 * COW failed, if the fault was solved by other,
3379 			 * it's fine. If not, userspace would re-fault on
3380 			 * the same address and we will handle the fault
3381 			 * from the second attempt.
3382 			 * The -EHWPOISON case will not be retried.
3383 			 */
3384 			folio_put(new_folio);
3385 			if (old_folio)
3386 				folio_put(old_folio);
3387 
3388 			delayacct_wpcopy_end();
3389 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3390 		}
3391 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3392 	}
3393 
3394 	__folio_mark_uptodate(new_folio);
3395 
3396 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3397 				vmf->address & PAGE_MASK,
3398 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3399 	mmu_notifier_invalidate_range_start(&range);
3400 
3401 	/*
3402 	 * Re-check the pte - we dropped the lock
3403 	 */
3404 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3405 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3406 		if (old_folio) {
3407 			if (!folio_test_anon(old_folio)) {
3408 				dec_mm_counter(mm, mm_counter_file(old_folio));
3409 				inc_mm_counter(mm, MM_ANONPAGES);
3410 			}
3411 		} else {
3412 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3413 			inc_mm_counter(mm, MM_ANONPAGES);
3414 		}
3415 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3416 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3417 		entry = pte_sw_mkyoung(entry);
3418 		if (unlikely(unshare)) {
3419 			if (pte_soft_dirty(vmf->orig_pte))
3420 				entry = pte_mksoft_dirty(entry);
3421 			if (pte_uffd_wp(vmf->orig_pte))
3422 				entry = pte_mkuffd_wp(entry);
3423 		} else {
3424 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3425 		}
3426 
3427 		/*
3428 		 * Clear the pte entry and flush it first, before updating the
3429 		 * pte with the new entry, to keep TLBs on different CPUs in
3430 		 * sync. This code used to set the new PTE then flush TLBs, but
3431 		 * that left a window where the new PTE could be loaded into
3432 		 * some TLBs while the old PTE remains in others.
3433 		 */
3434 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3435 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3436 		folio_add_lru_vma(new_folio, vma);
3437 		BUG_ON(unshare && pte_write(entry));
3438 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3439 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3440 		if (old_folio) {
3441 			/*
3442 			 * Only after switching the pte to the new page may
3443 			 * we remove the mapcount here. Otherwise another
3444 			 * process may come and find the rmap count decremented
3445 			 * before the pte is switched to the new page, and
3446 			 * "reuse" the old page writing into it while our pte
3447 			 * here still points into it and can be read by other
3448 			 * threads.
3449 			 *
3450 			 * The critical issue is to order this
3451 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3452 			 * above. Those stores are ordered by (if nothing else,)
3453 			 * the barrier present in the atomic_add_negative
3454 			 * in folio_remove_rmap_pte();
3455 			 *
3456 			 * Then the TLB flush in ptep_clear_flush ensures that
3457 			 * no process can access the old page before the
3458 			 * decremented mapcount is visible. And the old page
3459 			 * cannot be reused until after the decremented
3460 			 * mapcount is visible. So transitively, TLBs to
3461 			 * old page will be flushed before it can be reused.
3462 			 */
3463 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3464 		}
3465 
3466 		/* Free the old page.. */
3467 		new_folio = old_folio;
3468 		page_copied = 1;
3469 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3470 	} else if (vmf->pte) {
3471 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3472 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3473 	}
3474 
3475 	mmu_notifier_invalidate_range_end(&range);
3476 
3477 	if (new_folio)
3478 		folio_put(new_folio);
3479 	if (old_folio) {
3480 		if (page_copied)
3481 			free_swap_cache(old_folio);
3482 		folio_put(old_folio);
3483 	}
3484 
3485 	delayacct_wpcopy_end();
3486 	return 0;
3487 oom:
3488 	ret = VM_FAULT_OOM;
3489 out:
3490 	if (old_folio)
3491 		folio_put(old_folio);
3492 
3493 	delayacct_wpcopy_end();
3494 	return ret;
3495 }
3496 
3497 /**
3498  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3499  *			  writeable once the page is prepared
3500  *
3501  * @vmf: structure describing the fault
3502  * @folio: the folio of vmf->page
3503  *
3504  * This function handles all that is needed to finish a write page fault in a
3505  * shared mapping due to PTE being read-only once the mapped page is prepared.
3506  * It handles locking of PTE and modifying it.
3507  *
3508  * The function expects the page to be locked or other protection against
3509  * concurrent faults / writeback (such as DAX radix tree locks).
3510  *
3511  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3512  * we acquired PTE lock.
3513  */
3514 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3515 {
3516 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3517 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3518 				       &vmf->ptl);
3519 	if (!vmf->pte)
3520 		return VM_FAULT_NOPAGE;
3521 	/*
3522 	 * We might have raced with another page fault while we released the
3523 	 * pte_offset_map_lock.
3524 	 */
3525 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3526 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3527 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3528 		return VM_FAULT_NOPAGE;
3529 	}
3530 	wp_page_reuse(vmf, folio);
3531 	return 0;
3532 }
3533 
3534 /*
3535  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3536  * mapping
3537  */
3538 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3539 {
3540 	struct vm_area_struct *vma = vmf->vma;
3541 
3542 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3543 		vm_fault_t ret;
3544 
3545 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3546 		ret = vmf_can_call_fault(vmf);
3547 		if (ret)
3548 			return ret;
3549 
3550 		vmf->flags |= FAULT_FLAG_MKWRITE;
3551 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3552 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3553 			return ret;
3554 		return finish_mkwrite_fault(vmf, NULL);
3555 	}
3556 	wp_page_reuse(vmf, NULL);
3557 	return 0;
3558 }
3559 
3560 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3561 	__releases(vmf->ptl)
3562 {
3563 	struct vm_area_struct *vma = vmf->vma;
3564 	vm_fault_t ret = 0;
3565 
3566 	folio_get(folio);
3567 
3568 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3569 		vm_fault_t tmp;
3570 
3571 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3572 		tmp = vmf_can_call_fault(vmf);
3573 		if (tmp) {
3574 			folio_put(folio);
3575 			return tmp;
3576 		}
3577 
3578 		tmp = do_page_mkwrite(vmf, folio);
3579 		if (unlikely(!tmp || (tmp &
3580 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3581 			folio_put(folio);
3582 			return tmp;
3583 		}
3584 		tmp = finish_mkwrite_fault(vmf, folio);
3585 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3586 			folio_unlock(folio);
3587 			folio_put(folio);
3588 			return tmp;
3589 		}
3590 	} else {
3591 		wp_page_reuse(vmf, folio);
3592 		folio_lock(folio);
3593 	}
3594 	ret |= fault_dirty_shared_page(vmf);
3595 	folio_put(folio);
3596 
3597 	return ret;
3598 }
3599 
3600 static bool wp_can_reuse_anon_folio(struct folio *folio,
3601 				    struct vm_area_struct *vma)
3602 {
3603 	/*
3604 	 * We could currently only reuse a subpage of a large folio if no
3605 	 * other subpages of the large folios are still mapped. However,
3606 	 * let's just consistently not reuse subpages even if we could
3607 	 * reuse in that scenario, and give back a large folio a bit
3608 	 * sooner.
3609 	 */
3610 	if (folio_test_large(folio))
3611 		return false;
3612 
3613 	/*
3614 	 * We have to verify under folio lock: these early checks are
3615 	 * just an optimization to avoid locking the folio and freeing
3616 	 * the swapcache if there is little hope that we can reuse.
3617 	 *
3618 	 * KSM doesn't necessarily raise the folio refcount.
3619 	 */
3620 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3621 		return false;
3622 	if (!folio_test_lru(folio))
3623 		/*
3624 		 * We cannot easily detect+handle references from
3625 		 * remote LRU caches or references to LRU folios.
3626 		 */
3627 		lru_add_drain();
3628 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3629 		return false;
3630 	if (!folio_trylock(folio))
3631 		return false;
3632 	if (folio_test_swapcache(folio))
3633 		folio_free_swap(folio);
3634 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3635 		folio_unlock(folio);
3636 		return false;
3637 	}
3638 	/*
3639 	 * Ok, we've got the only folio reference from our mapping
3640 	 * and the folio is locked, it's dark out, and we're wearing
3641 	 * sunglasses. Hit it.
3642 	 */
3643 	folio_move_anon_rmap(folio, vma);
3644 	folio_unlock(folio);
3645 	return true;
3646 }
3647 
3648 /*
3649  * This routine handles present pages, when
3650  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3651  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3652  *   (FAULT_FLAG_UNSHARE)
3653  *
3654  * It is done by copying the page to a new address and decrementing the
3655  * shared-page counter for the old page.
3656  *
3657  * Note that this routine assumes that the protection checks have been
3658  * done by the caller (the low-level page fault routine in most cases).
3659  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3660  * done any necessary COW.
3661  *
3662  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3663  * though the page will change only once the write actually happens. This
3664  * avoids a few races, and potentially makes it more efficient.
3665  *
3666  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3667  * but allow concurrent faults), with pte both mapped and locked.
3668  * We return with mmap_lock still held, but pte unmapped and unlocked.
3669  */
3670 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3671 	__releases(vmf->ptl)
3672 {
3673 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3674 	struct vm_area_struct *vma = vmf->vma;
3675 	struct folio *folio = NULL;
3676 	pte_t pte;
3677 
3678 	if (likely(!unshare)) {
3679 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3680 			if (!userfaultfd_wp_async(vma)) {
3681 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3682 				return handle_userfault(vmf, VM_UFFD_WP);
3683 			}
3684 
3685 			/*
3686 			 * Nothing needed (cache flush, TLB invalidations,
3687 			 * etc.) because we're only removing the uffd-wp bit,
3688 			 * which is completely invisible to the user.
3689 			 */
3690 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3691 
3692 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3693 			/*
3694 			 * Update this to be prepared for following up CoW
3695 			 * handling
3696 			 */
3697 			vmf->orig_pte = pte;
3698 		}
3699 
3700 		/*
3701 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3702 		 * is flushed in this case before copying.
3703 		 */
3704 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3705 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3706 			flush_tlb_page(vmf->vma, vmf->address);
3707 	}
3708 
3709 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3710 
3711 	if (vmf->page)
3712 		folio = page_folio(vmf->page);
3713 
3714 	/*
3715 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3716 	 * FAULT_FLAG_WRITE set at this point.
3717 	 */
3718 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3719 		/*
3720 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3721 		 * VM_PFNMAP VMA.
3722 		 *
3723 		 * We should not cow pages in a shared writeable mapping.
3724 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3725 		 */
3726 		if (!vmf->page)
3727 			return wp_pfn_shared(vmf);
3728 		return wp_page_shared(vmf, folio);
3729 	}
3730 
3731 	/*
3732 	 * Private mapping: create an exclusive anonymous page copy if reuse
3733 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3734 	 *
3735 	 * If we encounter a page that is marked exclusive, we must reuse
3736 	 * the page without further checks.
3737 	 */
3738 	if (folio && folio_test_anon(folio) &&
3739 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3740 		if (!PageAnonExclusive(vmf->page))
3741 			SetPageAnonExclusive(vmf->page);
3742 		if (unlikely(unshare)) {
3743 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3744 			return 0;
3745 		}
3746 		wp_page_reuse(vmf, folio);
3747 		return 0;
3748 	}
3749 	/*
3750 	 * Ok, we need to copy. Oh, well..
3751 	 */
3752 	if (folio)
3753 		folio_get(folio);
3754 
3755 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3756 #ifdef CONFIG_KSM
3757 	if (folio && folio_test_ksm(folio))
3758 		count_vm_event(COW_KSM);
3759 #endif
3760 	return wp_page_copy(vmf);
3761 }
3762 
3763 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3764 		unsigned long start_addr, unsigned long end_addr,
3765 		struct zap_details *details)
3766 {
3767 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3768 }
3769 
3770 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3771 					    pgoff_t first_index,
3772 					    pgoff_t last_index,
3773 					    struct zap_details *details)
3774 {
3775 	struct vm_area_struct *vma;
3776 	pgoff_t vba, vea, zba, zea;
3777 
3778 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3779 		vba = vma->vm_pgoff;
3780 		vea = vba + vma_pages(vma) - 1;
3781 		zba = max(first_index, vba);
3782 		zea = min(last_index, vea);
3783 
3784 		unmap_mapping_range_vma(vma,
3785 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3786 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3787 				details);
3788 	}
3789 }
3790 
3791 /**
3792  * unmap_mapping_folio() - Unmap single folio from processes.
3793  * @folio: The locked folio to be unmapped.
3794  *
3795  * Unmap this folio from any userspace process which still has it mmaped.
3796  * Typically, for efficiency, the range of nearby pages has already been
3797  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3798  * truncation or invalidation holds the lock on a folio, it may find that
3799  * the page has been remapped again: and then uses unmap_mapping_folio()
3800  * to unmap it finally.
3801  */
3802 void unmap_mapping_folio(struct folio *folio)
3803 {
3804 	struct address_space *mapping = folio->mapping;
3805 	struct zap_details details = { };
3806 	pgoff_t	first_index;
3807 	pgoff_t	last_index;
3808 
3809 	VM_BUG_ON(!folio_test_locked(folio));
3810 
3811 	first_index = folio->index;
3812 	last_index = folio_next_index(folio) - 1;
3813 
3814 	details.even_cows = false;
3815 	details.single_folio = folio;
3816 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3817 
3818 	i_mmap_lock_read(mapping);
3819 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3820 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3821 					 last_index, &details);
3822 	i_mmap_unlock_read(mapping);
3823 }
3824 
3825 /**
3826  * unmap_mapping_pages() - Unmap pages from processes.
3827  * @mapping: The address space containing pages to be unmapped.
3828  * @start: Index of first page to be unmapped.
3829  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3830  * @even_cows: Whether to unmap even private COWed pages.
3831  *
3832  * Unmap the pages in this address space from any userspace process which
3833  * has them mmaped.  Generally, you want to remove COWed pages as well when
3834  * a file is being truncated, but not when invalidating pages from the page
3835  * cache.
3836  */
3837 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3838 		pgoff_t nr, bool even_cows)
3839 {
3840 	struct zap_details details = { };
3841 	pgoff_t	first_index = start;
3842 	pgoff_t	last_index = start + nr - 1;
3843 
3844 	details.even_cows = even_cows;
3845 	if (last_index < first_index)
3846 		last_index = ULONG_MAX;
3847 
3848 	i_mmap_lock_read(mapping);
3849 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3850 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3851 					 last_index, &details);
3852 	i_mmap_unlock_read(mapping);
3853 }
3854 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3855 
3856 /**
3857  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3858  * address_space corresponding to the specified byte range in the underlying
3859  * file.
3860  *
3861  * @mapping: the address space containing mmaps to be unmapped.
3862  * @holebegin: byte in first page to unmap, relative to the start of
3863  * the underlying file.  This will be rounded down to a PAGE_SIZE
3864  * boundary.  Note that this is different from truncate_pagecache(), which
3865  * must keep the partial page.  In contrast, we must get rid of
3866  * partial pages.
3867  * @holelen: size of prospective hole in bytes.  This will be rounded
3868  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3869  * end of the file.
3870  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3871  * but 0 when invalidating pagecache, don't throw away private data.
3872  */
3873 void unmap_mapping_range(struct address_space *mapping,
3874 		loff_t const holebegin, loff_t const holelen, int even_cows)
3875 {
3876 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3877 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3878 
3879 	/* Check for overflow. */
3880 	if (sizeof(holelen) > sizeof(hlen)) {
3881 		long long holeend =
3882 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3883 		if (holeend & ~(long long)ULONG_MAX)
3884 			hlen = ULONG_MAX - hba + 1;
3885 	}
3886 
3887 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3888 }
3889 EXPORT_SYMBOL(unmap_mapping_range);
3890 
3891 /*
3892  * Restore a potential device exclusive pte to a working pte entry
3893  */
3894 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3895 {
3896 	struct folio *folio = page_folio(vmf->page);
3897 	struct vm_area_struct *vma = vmf->vma;
3898 	struct mmu_notifier_range range;
3899 	vm_fault_t ret;
3900 
3901 	/*
3902 	 * We need a reference to lock the folio because we don't hold
3903 	 * the PTL so a racing thread can remove the device-exclusive
3904 	 * entry and unmap it. If the folio is free the entry must
3905 	 * have been removed already. If it happens to have already
3906 	 * been re-allocated after being freed all we do is lock and
3907 	 * unlock it.
3908 	 */
3909 	if (!folio_try_get(folio))
3910 		return 0;
3911 
3912 	ret = folio_lock_or_retry(folio, vmf);
3913 	if (ret) {
3914 		folio_put(folio);
3915 		return ret;
3916 	}
3917 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3918 				vma->vm_mm, vmf->address & PAGE_MASK,
3919 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3920 	mmu_notifier_invalidate_range_start(&range);
3921 
3922 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3923 				&vmf->ptl);
3924 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3925 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3926 
3927 	if (vmf->pte)
3928 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3929 	folio_unlock(folio);
3930 	folio_put(folio);
3931 
3932 	mmu_notifier_invalidate_range_end(&range);
3933 	return 0;
3934 }
3935 
3936 static inline bool should_try_to_free_swap(struct folio *folio,
3937 					   struct vm_area_struct *vma,
3938 					   unsigned int fault_flags)
3939 {
3940 	if (!folio_test_swapcache(folio))
3941 		return false;
3942 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3943 	    folio_test_mlocked(folio))
3944 		return true;
3945 	/*
3946 	 * If we want to map a page that's in the swapcache writable, we
3947 	 * have to detect via the refcount if we're really the exclusive
3948 	 * user. Try freeing the swapcache to get rid of the swapcache
3949 	 * reference only in case it's likely that we'll be the exlusive user.
3950 	 */
3951 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3952 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3953 }
3954 
3955 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3956 {
3957 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3958 				       vmf->address, &vmf->ptl);
3959 	if (!vmf->pte)
3960 		return 0;
3961 	/*
3962 	 * Be careful so that we will only recover a special uffd-wp pte into a
3963 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3964 	 *
3965 	 * This should also cover the case where e.g. the pte changed
3966 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3967 	 * So is_pte_marker() check is not enough to safely drop the pte.
3968 	 */
3969 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3970 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3971 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3972 	return 0;
3973 }
3974 
3975 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3976 {
3977 	if (vma_is_anonymous(vmf->vma))
3978 		return do_anonymous_page(vmf);
3979 	else
3980 		return do_fault(vmf);
3981 }
3982 
3983 /*
3984  * This is actually a page-missing access, but with uffd-wp special pte
3985  * installed.  It means this pte was wr-protected before being unmapped.
3986  */
3987 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3988 {
3989 	/*
3990 	 * Just in case there're leftover special ptes even after the region
3991 	 * got unregistered - we can simply clear them.
3992 	 */
3993 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3994 		return pte_marker_clear(vmf);
3995 
3996 	return do_pte_missing(vmf);
3997 }
3998 
3999 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4000 {
4001 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4002 	unsigned long marker = pte_marker_get(entry);
4003 
4004 	/*
4005 	 * PTE markers should never be empty.  If anything weird happened,
4006 	 * the best thing to do is to kill the process along with its mm.
4007 	 */
4008 	if (WARN_ON_ONCE(!marker))
4009 		return VM_FAULT_SIGBUS;
4010 
4011 	/* Higher priority than uffd-wp when data corrupted */
4012 	if (marker & PTE_MARKER_POISONED)
4013 		return VM_FAULT_HWPOISON;
4014 
4015 	/* Hitting a guard page is always a fatal condition. */
4016 	if (marker & PTE_MARKER_GUARD)
4017 		return VM_FAULT_SIGSEGV;
4018 
4019 	if (pte_marker_entry_uffd_wp(entry))
4020 		return pte_marker_handle_uffd_wp(vmf);
4021 
4022 	/* This is an unknown pte marker */
4023 	return VM_FAULT_SIGBUS;
4024 }
4025 
4026 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4027 {
4028 	struct vm_area_struct *vma = vmf->vma;
4029 	struct folio *folio;
4030 	swp_entry_t entry;
4031 
4032 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4033 	if (!folio)
4034 		return NULL;
4035 
4036 	entry = pte_to_swp_entry(vmf->orig_pte);
4037 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4038 					   GFP_KERNEL, entry)) {
4039 		folio_put(folio);
4040 		return NULL;
4041 	}
4042 
4043 	return folio;
4044 }
4045 
4046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4047 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4048 {
4049 	struct swap_info_struct *si = swp_swap_info(entry);
4050 	pgoff_t offset = swp_offset(entry);
4051 	int i;
4052 
4053 	/*
4054 	 * While allocating a large folio and doing swap_read_folio, which is
4055 	 * the case the being faulted pte doesn't have swapcache. We need to
4056 	 * ensure all PTEs have no cache as well, otherwise, we might go to
4057 	 * swap devices while the content is in swapcache.
4058 	 */
4059 	for (i = 0; i < max_nr; i++) {
4060 		if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4061 			return i;
4062 	}
4063 
4064 	return i;
4065 }
4066 
4067 /*
4068  * Check if the PTEs within a range are contiguous swap entries
4069  * and have consistent swapcache, zeromap.
4070  */
4071 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4072 {
4073 	unsigned long addr;
4074 	swp_entry_t entry;
4075 	int idx;
4076 	pte_t pte;
4077 
4078 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4079 	idx = (vmf->address - addr) / PAGE_SIZE;
4080 	pte = ptep_get(ptep);
4081 
4082 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4083 		return false;
4084 	entry = pte_to_swp_entry(pte);
4085 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4086 		return false;
4087 
4088 	/*
4089 	 * swap_read_folio() can't handle the case a large folio is hybridly
4090 	 * from different backends. And they are likely corner cases. Similar
4091 	 * things might be added once zswap support large folios.
4092 	 */
4093 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4094 		return false;
4095 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4096 		return false;
4097 
4098 	return true;
4099 }
4100 
4101 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4102 						     unsigned long addr,
4103 						     unsigned long orders)
4104 {
4105 	int order, nr;
4106 
4107 	order = highest_order(orders);
4108 
4109 	/*
4110 	 * To swap in a THP with nr pages, we require that its first swap_offset
4111 	 * is aligned with that number, as it was when the THP was swapped out.
4112 	 * This helps filter out most invalid entries.
4113 	 */
4114 	while (orders) {
4115 		nr = 1 << order;
4116 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4117 			break;
4118 		order = next_order(&orders, order);
4119 	}
4120 
4121 	return orders;
4122 }
4123 
4124 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4125 {
4126 	struct vm_area_struct *vma = vmf->vma;
4127 	unsigned long orders;
4128 	struct folio *folio;
4129 	unsigned long addr;
4130 	swp_entry_t entry;
4131 	spinlock_t *ptl;
4132 	pte_t *pte;
4133 	gfp_t gfp;
4134 	int order;
4135 
4136 	/*
4137 	 * If uffd is active for the vma we need per-page fault fidelity to
4138 	 * maintain the uffd semantics.
4139 	 */
4140 	if (unlikely(userfaultfd_armed(vma)))
4141 		goto fallback;
4142 
4143 	/*
4144 	 * A large swapped out folio could be partially or fully in zswap. We
4145 	 * lack handling for such cases, so fallback to swapping in order-0
4146 	 * folio.
4147 	 */
4148 	if (!zswap_never_enabled())
4149 		goto fallback;
4150 
4151 	entry = pte_to_swp_entry(vmf->orig_pte);
4152 	/*
4153 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4154 	 * and suitable for swapping THP.
4155 	 */
4156 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4157 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4158 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4159 	orders = thp_swap_suitable_orders(swp_offset(entry),
4160 					  vmf->address, orders);
4161 
4162 	if (!orders)
4163 		goto fallback;
4164 
4165 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4166 				  vmf->address & PMD_MASK, &ptl);
4167 	if (unlikely(!pte))
4168 		goto fallback;
4169 
4170 	/*
4171 	 * For do_swap_page, find the highest order where the aligned range is
4172 	 * completely swap entries with contiguous swap offsets.
4173 	 */
4174 	order = highest_order(orders);
4175 	while (orders) {
4176 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4177 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4178 			break;
4179 		order = next_order(&orders, order);
4180 	}
4181 
4182 	pte_unmap_unlock(pte, ptl);
4183 
4184 	/* Try allocating the highest of the remaining orders. */
4185 	gfp = vma_thp_gfp_mask(vma);
4186 	while (orders) {
4187 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4188 		folio = vma_alloc_folio(gfp, order, vma, addr);
4189 		if (folio) {
4190 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4191 							    gfp, entry))
4192 				return folio;
4193 			folio_put(folio);
4194 		}
4195 		order = next_order(&orders, order);
4196 	}
4197 
4198 fallback:
4199 	return __alloc_swap_folio(vmf);
4200 }
4201 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4202 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4203 {
4204 	return __alloc_swap_folio(vmf);
4205 }
4206 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4207 
4208 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4209 
4210 /*
4211  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4212  * but allow concurrent faults), and pte mapped but not yet locked.
4213  * We return with pte unmapped and unlocked.
4214  *
4215  * We return with the mmap_lock locked or unlocked in the same cases
4216  * as does filemap_fault().
4217  */
4218 vm_fault_t do_swap_page(struct vm_fault *vmf)
4219 {
4220 	struct vm_area_struct *vma = vmf->vma;
4221 	struct folio *swapcache, *folio = NULL;
4222 	DECLARE_WAITQUEUE(wait, current);
4223 	struct page *page;
4224 	struct swap_info_struct *si = NULL;
4225 	rmap_t rmap_flags = RMAP_NONE;
4226 	bool need_clear_cache = false;
4227 	bool exclusive = false;
4228 	swp_entry_t entry;
4229 	pte_t pte;
4230 	vm_fault_t ret = 0;
4231 	void *shadow = NULL;
4232 	int nr_pages;
4233 	unsigned long page_idx;
4234 	unsigned long address;
4235 	pte_t *ptep;
4236 
4237 	if (!pte_unmap_same(vmf))
4238 		goto out;
4239 
4240 	entry = pte_to_swp_entry(vmf->orig_pte);
4241 	if (unlikely(non_swap_entry(entry))) {
4242 		if (is_migration_entry(entry)) {
4243 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4244 					     vmf->address);
4245 		} else if (is_device_exclusive_entry(entry)) {
4246 			vmf->page = pfn_swap_entry_to_page(entry);
4247 			ret = remove_device_exclusive_entry(vmf);
4248 		} else if (is_device_private_entry(entry)) {
4249 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4250 				/*
4251 				 * migrate_to_ram is not yet ready to operate
4252 				 * under VMA lock.
4253 				 */
4254 				vma_end_read(vma);
4255 				ret = VM_FAULT_RETRY;
4256 				goto out;
4257 			}
4258 
4259 			vmf->page = pfn_swap_entry_to_page(entry);
4260 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4261 					vmf->address, &vmf->ptl);
4262 			if (unlikely(!vmf->pte ||
4263 				     !pte_same(ptep_get(vmf->pte),
4264 							vmf->orig_pte)))
4265 				goto unlock;
4266 
4267 			/*
4268 			 * Get a page reference while we know the page can't be
4269 			 * freed.
4270 			 */
4271 			get_page(vmf->page);
4272 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4273 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4274 			put_page(vmf->page);
4275 		} else if (is_hwpoison_entry(entry)) {
4276 			ret = VM_FAULT_HWPOISON;
4277 		} else if (is_pte_marker_entry(entry)) {
4278 			ret = handle_pte_marker(vmf);
4279 		} else {
4280 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4281 			ret = VM_FAULT_SIGBUS;
4282 		}
4283 		goto out;
4284 	}
4285 
4286 	/* Prevent swapoff from happening to us. */
4287 	si = get_swap_device(entry);
4288 	if (unlikely(!si))
4289 		goto out;
4290 
4291 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4292 	if (folio)
4293 		page = folio_file_page(folio, swp_offset(entry));
4294 	swapcache = folio;
4295 
4296 	if (!folio) {
4297 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4298 		    __swap_count(entry) == 1) {
4299 			/* skip swapcache */
4300 			folio = alloc_swap_folio(vmf);
4301 			if (folio) {
4302 				__folio_set_locked(folio);
4303 				__folio_set_swapbacked(folio);
4304 
4305 				nr_pages = folio_nr_pages(folio);
4306 				if (folio_test_large(folio))
4307 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4308 				/*
4309 				 * Prevent parallel swapin from proceeding with
4310 				 * the cache flag. Otherwise, another thread
4311 				 * may finish swapin first, free the entry, and
4312 				 * swapout reusing the same entry. It's
4313 				 * undetectable as pte_same() returns true due
4314 				 * to entry reuse.
4315 				 */
4316 				if (swapcache_prepare(entry, nr_pages)) {
4317 					/*
4318 					 * Relax a bit to prevent rapid
4319 					 * repeated page faults.
4320 					 */
4321 					add_wait_queue(&swapcache_wq, &wait);
4322 					schedule_timeout_uninterruptible(1);
4323 					remove_wait_queue(&swapcache_wq, &wait);
4324 					goto out_page;
4325 				}
4326 				need_clear_cache = true;
4327 
4328 				mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4329 
4330 				shadow = get_shadow_from_swap_cache(entry);
4331 				if (shadow)
4332 					workingset_refault(folio, shadow);
4333 
4334 				folio_add_lru(folio);
4335 
4336 				/* To provide entry to swap_read_folio() */
4337 				folio->swap = entry;
4338 				swap_read_folio(folio, NULL);
4339 				folio->private = NULL;
4340 			}
4341 		} else {
4342 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4343 						vmf);
4344 			swapcache = folio;
4345 		}
4346 
4347 		if (!folio) {
4348 			/*
4349 			 * Back out if somebody else faulted in this pte
4350 			 * while we released the pte lock.
4351 			 */
4352 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4353 					vmf->address, &vmf->ptl);
4354 			if (likely(vmf->pte &&
4355 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4356 				ret = VM_FAULT_OOM;
4357 			goto unlock;
4358 		}
4359 
4360 		/* Had to read the page from swap area: Major fault */
4361 		ret = VM_FAULT_MAJOR;
4362 		count_vm_event(PGMAJFAULT);
4363 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4364 		page = folio_file_page(folio, swp_offset(entry));
4365 	} else if (PageHWPoison(page)) {
4366 		/*
4367 		 * hwpoisoned dirty swapcache pages are kept for killing
4368 		 * owner processes (which may be unknown at hwpoison time)
4369 		 */
4370 		ret = VM_FAULT_HWPOISON;
4371 		goto out_release;
4372 	}
4373 
4374 	ret |= folio_lock_or_retry(folio, vmf);
4375 	if (ret & VM_FAULT_RETRY)
4376 		goto out_release;
4377 
4378 	if (swapcache) {
4379 		/*
4380 		 * Make sure folio_free_swap() or swapoff did not release the
4381 		 * swapcache from under us.  The page pin, and pte_same test
4382 		 * below, are not enough to exclude that.  Even if it is still
4383 		 * swapcache, we need to check that the page's swap has not
4384 		 * changed.
4385 		 */
4386 		if (unlikely(!folio_test_swapcache(folio) ||
4387 			     page_swap_entry(page).val != entry.val))
4388 			goto out_page;
4389 
4390 		/*
4391 		 * KSM sometimes has to copy on read faults, for example, if
4392 		 * page->index of !PageKSM() pages would be nonlinear inside the
4393 		 * anon VMA -- PageKSM() is lost on actual swapout.
4394 		 */
4395 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4396 		if (unlikely(!folio)) {
4397 			ret = VM_FAULT_OOM;
4398 			folio = swapcache;
4399 			goto out_page;
4400 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4401 			ret = VM_FAULT_HWPOISON;
4402 			folio = swapcache;
4403 			goto out_page;
4404 		}
4405 		if (folio != swapcache)
4406 			page = folio_page(folio, 0);
4407 
4408 		/*
4409 		 * If we want to map a page that's in the swapcache writable, we
4410 		 * have to detect via the refcount if we're really the exclusive
4411 		 * owner. Try removing the extra reference from the local LRU
4412 		 * caches if required.
4413 		 */
4414 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4415 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4416 			lru_add_drain();
4417 	}
4418 
4419 	folio_throttle_swaprate(folio, GFP_KERNEL);
4420 
4421 	/*
4422 	 * Back out if somebody else already faulted in this pte.
4423 	 */
4424 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4425 			&vmf->ptl);
4426 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4427 		goto out_nomap;
4428 
4429 	if (unlikely(!folio_test_uptodate(folio))) {
4430 		ret = VM_FAULT_SIGBUS;
4431 		goto out_nomap;
4432 	}
4433 
4434 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4435 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4436 		unsigned long nr = folio_nr_pages(folio);
4437 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4438 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4439 		pte_t *folio_ptep = vmf->pte - idx;
4440 		pte_t folio_pte = ptep_get(folio_ptep);
4441 
4442 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4443 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4444 			goto out_nomap;
4445 
4446 		page_idx = idx;
4447 		address = folio_start;
4448 		ptep = folio_ptep;
4449 		goto check_folio;
4450 	}
4451 
4452 	nr_pages = 1;
4453 	page_idx = 0;
4454 	address = vmf->address;
4455 	ptep = vmf->pte;
4456 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4457 		int nr = folio_nr_pages(folio);
4458 		unsigned long idx = folio_page_idx(folio, page);
4459 		unsigned long folio_start = address - idx * PAGE_SIZE;
4460 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4461 		pte_t *folio_ptep;
4462 		pte_t folio_pte;
4463 
4464 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4465 			goto check_folio;
4466 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4467 			goto check_folio;
4468 
4469 		folio_ptep = vmf->pte - idx;
4470 		folio_pte = ptep_get(folio_ptep);
4471 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4472 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4473 			goto check_folio;
4474 
4475 		page_idx = idx;
4476 		address = folio_start;
4477 		ptep = folio_ptep;
4478 		nr_pages = nr;
4479 		entry = folio->swap;
4480 		page = &folio->page;
4481 	}
4482 
4483 check_folio:
4484 	/*
4485 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4486 	 * must never point at an anonymous page in the swapcache that is
4487 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4488 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4489 	 * check after taking the PT lock and making sure that nobody
4490 	 * concurrently faulted in this page and set PG_anon_exclusive.
4491 	 */
4492 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4493 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4494 
4495 	/*
4496 	 * Check under PT lock (to protect against concurrent fork() sharing
4497 	 * the swap entry concurrently) for certainly exclusive pages.
4498 	 */
4499 	if (!folio_test_ksm(folio)) {
4500 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4501 		if (folio != swapcache) {
4502 			/*
4503 			 * We have a fresh page that is not exposed to the
4504 			 * swapcache -> certainly exclusive.
4505 			 */
4506 			exclusive = true;
4507 		} else if (exclusive && folio_test_writeback(folio) &&
4508 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4509 			/*
4510 			 * This is tricky: not all swap backends support
4511 			 * concurrent page modifications while under writeback.
4512 			 *
4513 			 * So if we stumble over such a page in the swapcache
4514 			 * we must not set the page exclusive, otherwise we can
4515 			 * map it writable without further checks and modify it
4516 			 * while still under writeback.
4517 			 *
4518 			 * For these problematic swap backends, simply drop the
4519 			 * exclusive marker: this is perfectly fine as we start
4520 			 * writeback only if we fully unmapped the page and
4521 			 * there are no unexpected references on the page after
4522 			 * unmapping succeeded. After fully unmapped, no
4523 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4524 			 * appear, so dropping the exclusive marker and mapping
4525 			 * it only R/O is fine.
4526 			 */
4527 			exclusive = false;
4528 		}
4529 	}
4530 
4531 	/*
4532 	 * Some architectures may have to restore extra metadata to the page
4533 	 * when reading from swap. This metadata may be indexed by swap entry
4534 	 * so this must be called before swap_free().
4535 	 */
4536 	arch_swap_restore(folio_swap(entry, folio), folio);
4537 
4538 	/*
4539 	 * Remove the swap entry and conditionally try to free up the swapcache.
4540 	 * We're already holding a reference on the page but haven't mapped it
4541 	 * yet.
4542 	 */
4543 	swap_free_nr(entry, nr_pages);
4544 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4545 		folio_free_swap(folio);
4546 
4547 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4548 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4549 	pte = mk_pte(page, vma->vm_page_prot);
4550 	if (pte_swp_soft_dirty(vmf->orig_pte))
4551 		pte = pte_mksoft_dirty(pte);
4552 	if (pte_swp_uffd_wp(vmf->orig_pte))
4553 		pte = pte_mkuffd_wp(pte);
4554 
4555 	/*
4556 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4557 	 * certainly not shared either because we just allocated them without
4558 	 * exposing them to the swapcache or because the swap entry indicates
4559 	 * exclusivity.
4560 	 */
4561 	if (!folio_test_ksm(folio) &&
4562 	    (exclusive || folio_ref_count(folio) == 1)) {
4563 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4564 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4565 			pte = pte_mkwrite(pte, vma);
4566 			if (vmf->flags & FAULT_FLAG_WRITE) {
4567 				pte = pte_mkdirty(pte);
4568 				vmf->flags &= ~FAULT_FLAG_WRITE;
4569 			}
4570 		}
4571 		rmap_flags |= RMAP_EXCLUSIVE;
4572 	}
4573 	folio_ref_add(folio, nr_pages - 1);
4574 	flush_icache_pages(vma, page, nr_pages);
4575 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4576 
4577 	/* ksm created a completely new copy */
4578 	if (unlikely(folio != swapcache && swapcache)) {
4579 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4580 		folio_add_lru_vma(folio, vma);
4581 	} else if (!folio_test_anon(folio)) {
4582 		/*
4583 		 * We currently only expect small !anon folios which are either
4584 		 * fully exclusive or fully shared, or new allocated large
4585 		 * folios which are fully exclusive. If we ever get large
4586 		 * folios within swapcache here, we have to be careful.
4587 		 */
4588 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4589 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4590 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4591 	} else {
4592 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4593 					rmap_flags);
4594 	}
4595 
4596 	VM_BUG_ON(!folio_test_anon(folio) ||
4597 			(pte_write(pte) && !PageAnonExclusive(page)));
4598 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4599 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4600 			pte, pte, nr_pages);
4601 
4602 	folio_unlock(folio);
4603 	if (folio != swapcache && swapcache) {
4604 		/*
4605 		 * Hold the lock to avoid the swap entry to be reused
4606 		 * until we take the PT lock for the pte_same() check
4607 		 * (to avoid false positives from pte_same). For
4608 		 * further safety release the lock after the swap_free
4609 		 * so that the swap count won't change under a
4610 		 * parallel locked swapcache.
4611 		 */
4612 		folio_unlock(swapcache);
4613 		folio_put(swapcache);
4614 	}
4615 
4616 	if (vmf->flags & FAULT_FLAG_WRITE) {
4617 		ret |= do_wp_page(vmf);
4618 		if (ret & VM_FAULT_ERROR)
4619 			ret &= VM_FAULT_ERROR;
4620 		goto out;
4621 	}
4622 
4623 	/* No need to invalidate - it was non-present before */
4624 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4625 unlock:
4626 	if (vmf->pte)
4627 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4628 out:
4629 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4630 	if (need_clear_cache) {
4631 		swapcache_clear(si, entry, nr_pages);
4632 		if (waitqueue_active(&swapcache_wq))
4633 			wake_up(&swapcache_wq);
4634 	}
4635 	if (si)
4636 		put_swap_device(si);
4637 	return ret;
4638 out_nomap:
4639 	if (vmf->pte)
4640 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4641 out_page:
4642 	folio_unlock(folio);
4643 out_release:
4644 	folio_put(folio);
4645 	if (folio != swapcache && swapcache) {
4646 		folio_unlock(swapcache);
4647 		folio_put(swapcache);
4648 	}
4649 	if (need_clear_cache) {
4650 		swapcache_clear(si, entry, nr_pages);
4651 		if (waitqueue_active(&swapcache_wq))
4652 			wake_up(&swapcache_wq);
4653 	}
4654 	if (si)
4655 		put_swap_device(si);
4656 	return ret;
4657 }
4658 
4659 static bool pte_range_none(pte_t *pte, int nr_pages)
4660 {
4661 	int i;
4662 
4663 	for (i = 0; i < nr_pages; i++) {
4664 		if (!pte_none(ptep_get_lockless(pte + i)))
4665 			return false;
4666 	}
4667 
4668 	return true;
4669 }
4670 
4671 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4672 {
4673 	struct vm_area_struct *vma = vmf->vma;
4674 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4675 	unsigned long orders;
4676 	struct folio *folio;
4677 	unsigned long addr;
4678 	pte_t *pte;
4679 	gfp_t gfp;
4680 	int order;
4681 
4682 	/*
4683 	 * If uffd is active for the vma we need per-page fault fidelity to
4684 	 * maintain the uffd semantics.
4685 	 */
4686 	if (unlikely(userfaultfd_armed(vma)))
4687 		goto fallback;
4688 
4689 	/*
4690 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4691 	 * for this vma. Then filter out the orders that can't be allocated over
4692 	 * the faulting address and still be fully contained in the vma.
4693 	 */
4694 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4695 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4696 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4697 
4698 	if (!orders)
4699 		goto fallback;
4700 
4701 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4702 	if (!pte)
4703 		return ERR_PTR(-EAGAIN);
4704 
4705 	/*
4706 	 * Find the highest order where the aligned range is completely
4707 	 * pte_none(). Note that all remaining orders will be completely
4708 	 * pte_none().
4709 	 */
4710 	order = highest_order(orders);
4711 	while (orders) {
4712 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4713 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4714 			break;
4715 		order = next_order(&orders, order);
4716 	}
4717 
4718 	pte_unmap(pte);
4719 
4720 	if (!orders)
4721 		goto fallback;
4722 
4723 	/* Try allocating the highest of the remaining orders. */
4724 	gfp = vma_thp_gfp_mask(vma);
4725 	while (orders) {
4726 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4727 		folio = vma_alloc_folio(gfp, order, vma, addr);
4728 		if (folio) {
4729 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4730 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4731 				folio_put(folio);
4732 				goto next;
4733 			}
4734 			folio_throttle_swaprate(folio, gfp);
4735 			/*
4736 			 * When a folio is not zeroed during allocation
4737 			 * (__GFP_ZERO not used) or user folios require special
4738 			 * handling, folio_zero_user() is used to make sure
4739 			 * that the page corresponding to the faulting address
4740 			 * will be hot in the cache after zeroing.
4741 			 */
4742 			if (user_alloc_needs_zeroing())
4743 				folio_zero_user(folio, vmf->address);
4744 			return folio;
4745 		}
4746 next:
4747 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4748 		order = next_order(&orders, order);
4749 	}
4750 
4751 fallback:
4752 #endif
4753 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4754 }
4755 
4756 /*
4757  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4758  * but allow concurrent faults), and pte mapped but not yet locked.
4759  * We return with mmap_lock still held, but pte unmapped and unlocked.
4760  */
4761 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4762 {
4763 	struct vm_area_struct *vma = vmf->vma;
4764 	unsigned long addr = vmf->address;
4765 	struct folio *folio;
4766 	vm_fault_t ret = 0;
4767 	int nr_pages = 1;
4768 	pte_t entry;
4769 
4770 	/* File mapping without ->vm_ops ? */
4771 	if (vma->vm_flags & VM_SHARED)
4772 		return VM_FAULT_SIGBUS;
4773 
4774 	/*
4775 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4776 	 * be distinguished from a transient failure of pte_offset_map().
4777 	 */
4778 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4779 		return VM_FAULT_OOM;
4780 
4781 	/* Use the zero-page for reads */
4782 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4783 			!mm_forbids_zeropage(vma->vm_mm)) {
4784 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4785 						vma->vm_page_prot));
4786 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4787 				vmf->address, &vmf->ptl);
4788 		if (!vmf->pte)
4789 			goto unlock;
4790 		if (vmf_pte_changed(vmf)) {
4791 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4792 			goto unlock;
4793 		}
4794 		ret = check_stable_address_space(vma->vm_mm);
4795 		if (ret)
4796 			goto unlock;
4797 		/* Deliver the page fault to userland, check inside PT lock */
4798 		if (userfaultfd_missing(vma)) {
4799 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4800 			return handle_userfault(vmf, VM_UFFD_MISSING);
4801 		}
4802 		goto setpte;
4803 	}
4804 
4805 	/* Allocate our own private page. */
4806 	ret = vmf_anon_prepare(vmf);
4807 	if (ret)
4808 		return ret;
4809 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4810 	folio = alloc_anon_folio(vmf);
4811 	if (IS_ERR(folio))
4812 		return 0;
4813 	if (!folio)
4814 		goto oom;
4815 
4816 	nr_pages = folio_nr_pages(folio);
4817 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4818 
4819 	/*
4820 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4821 	 * preceding stores to the page contents become visible before
4822 	 * the set_pte_at() write.
4823 	 */
4824 	__folio_mark_uptodate(folio);
4825 
4826 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4827 	entry = pte_sw_mkyoung(entry);
4828 	if (vma->vm_flags & VM_WRITE)
4829 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4830 
4831 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4832 	if (!vmf->pte)
4833 		goto release;
4834 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4835 		update_mmu_tlb(vma, addr, vmf->pte);
4836 		goto release;
4837 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4838 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4839 		goto release;
4840 	}
4841 
4842 	ret = check_stable_address_space(vma->vm_mm);
4843 	if (ret)
4844 		goto release;
4845 
4846 	/* Deliver the page fault to userland, check inside PT lock */
4847 	if (userfaultfd_missing(vma)) {
4848 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4849 		folio_put(folio);
4850 		return handle_userfault(vmf, VM_UFFD_MISSING);
4851 	}
4852 
4853 	folio_ref_add(folio, nr_pages - 1);
4854 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4855 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4856 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4857 	folio_add_lru_vma(folio, vma);
4858 setpte:
4859 	if (vmf_orig_pte_uffd_wp(vmf))
4860 		entry = pte_mkuffd_wp(entry);
4861 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4862 
4863 	/* No need to invalidate - it was non-present before */
4864 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4865 unlock:
4866 	if (vmf->pte)
4867 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4868 	return ret;
4869 release:
4870 	folio_put(folio);
4871 	goto unlock;
4872 oom:
4873 	return VM_FAULT_OOM;
4874 }
4875 
4876 /*
4877  * The mmap_lock must have been held on entry, and may have been
4878  * released depending on flags and vma->vm_ops->fault() return value.
4879  * See filemap_fault() and __lock_page_retry().
4880  */
4881 static vm_fault_t __do_fault(struct vm_fault *vmf)
4882 {
4883 	struct vm_area_struct *vma = vmf->vma;
4884 	struct folio *folio;
4885 	vm_fault_t ret;
4886 
4887 	/*
4888 	 * Preallocate pte before we take page_lock because this might lead to
4889 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4890 	 *				lock_page(A)
4891 	 *				SetPageWriteback(A)
4892 	 *				unlock_page(A)
4893 	 * lock_page(B)
4894 	 *				lock_page(B)
4895 	 * pte_alloc_one
4896 	 *   shrink_folio_list
4897 	 *     wait_on_page_writeback(A)
4898 	 *				SetPageWriteback(B)
4899 	 *				unlock_page(B)
4900 	 *				# flush A, B to clear the writeback
4901 	 */
4902 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4903 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4904 		if (!vmf->prealloc_pte)
4905 			return VM_FAULT_OOM;
4906 	}
4907 
4908 	ret = vma->vm_ops->fault(vmf);
4909 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4910 			    VM_FAULT_DONE_COW)))
4911 		return ret;
4912 
4913 	folio = page_folio(vmf->page);
4914 	if (unlikely(PageHWPoison(vmf->page))) {
4915 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4916 		if (ret & VM_FAULT_LOCKED) {
4917 			if (page_mapped(vmf->page))
4918 				unmap_mapping_folio(folio);
4919 			/* Retry if a clean folio was removed from the cache. */
4920 			if (mapping_evict_folio(folio->mapping, folio))
4921 				poisonret = VM_FAULT_NOPAGE;
4922 			folio_unlock(folio);
4923 		}
4924 		folio_put(folio);
4925 		vmf->page = NULL;
4926 		return poisonret;
4927 	}
4928 
4929 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4930 		folio_lock(folio);
4931 	else
4932 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4933 
4934 	return ret;
4935 }
4936 
4937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4938 static void deposit_prealloc_pte(struct vm_fault *vmf)
4939 {
4940 	struct vm_area_struct *vma = vmf->vma;
4941 
4942 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4943 	/*
4944 	 * We are going to consume the prealloc table,
4945 	 * count that as nr_ptes.
4946 	 */
4947 	mm_inc_nr_ptes(vma->vm_mm);
4948 	vmf->prealloc_pte = NULL;
4949 }
4950 
4951 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4952 {
4953 	struct folio *folio = page_folio(page);
4954 	struct vm_area_struct *vma = vmf->vma;
4955 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4956 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4957 	pmd_t entry;
4958 	vm_fault_t ret = VM_FAULT_FALLBACK;
4959 
4960 	/*
4961 	 * It is too late to allocate a small folio, we already have a large
4962 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
4963 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4964 	 * PMD mappings if THPs are disabled.
4965 	 */
4966 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4967 		return ret;
4968 
4969 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4970 		return ret;
4971 
4972 	if (folio_order(folio) != HPAGE_PMD_ORDER)
4973 		return ret;
4974 	page = &folio->page;
4975 
4976 	/*
4977 	 * Just backoff if any subpage of a THP is corrupted otherwise
4978 	 * the corrupted page may mapped by PMD silently to escape the
4979 	 * check.  This kind of THP just can be PTE mapped.  Access to
4980 	 * the corrupted subpage should trigger SIGBUS as expected.
4981 	 */
4982 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4983 		return ret;
4984 
4985 	/*
4986 	 * Archs like ppc64 need additional space to store information
4987 	 * related to pte entry. Use the preallocated table for that.
4988 	 */
4989 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4990 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4991 		if (!vmf->prealloc_pte)
4992 			return VM_FAULT_OOM;
4993 	}
4994 
4995 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4996 	if (unlikely(!pmd_none(*vmf->pmd)))
4997 		goto out;
4998 
4999 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
5000 
5001 	entry = mk_huge_pmd(page, vma->vm_page_prot);
5002 	if (write)
5003 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5004 
5005 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5006 	folio_add_file_rmap_pmd(folio, page, vma);
5007 
5008 	/*
5009 	 * deposit and withdraw with pmd lock held
5010 	 */
5011 	if (arch_needs_pgtable_deposit())
5012 		deposit_prealloc_pte(vmf);
5013 
5014 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5015 
5016 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5017 
5018 	/* fault is handled */
5019 	ret = 0;
5020 	count_vm_event(THP_FILE_MAPPED);
5021 out:
5022 	spin_unlock(vmf->ptl);
5023 	return ret;
5024 }
5025 #else
5026 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5027 {
5028 	return VM_FAULT_FALLBACK;
5029 }
5030 #endif
5031 
5032 /**
5033  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5034  * @vmf: Fault decription.
5035  * @folio: The folio that contains @page.
5036  * @page: The first page to create a PTE for.
5037  * @nr: The number of PTEs to create.
5038  * @addr: The first address to create a PTE for.
5039  */
5040 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5041 		struct page *page, unsigned int nr, unsigned long addr)
5042 {
5043 	struct vm_area_struct *vma = vmf->vma;
5044 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5045 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5046 	pte_t entry;
5047 
5048 	flush_icache_pages(vma, page, nr);
5049 	entry = mk_pte(page, vma->vm_page_prot);
5050 
5051 	if (prefault && arch_wants_old_prefaulted_pte())
5052 		entry = pte_mkold(entry);
5053 	else
5054 		entry = pte_sw_mkyoung(entry);
5055 
5056 	if (write)
5057 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5058 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5059 		entry = pte_mkuffd_wp(entry);
5060 	/* copy-on-write page */
5061 	if (write && !(vma->vm_flags & VM_SHARED)) {
5062 		VM_BUG_ON_FOLIO(nr != 1, folio);
5063 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5064 		folio_add_lru_vma(folio, vma);
5065 	} else {
5066 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5067 	}
5068 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5069 
5070 	/* no need to invalidate: a not-present page won't be cached */
5071 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5072 }
5073 
5074 static bool vmf_pte_changed(struct vm_fault *vmf)
5075 {
5076 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5077 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5078 
5079 	return !pte_none(ptep_get(vmf->pte));
5080 }
5081 
5082 /**
5083  * finish_fault - finish page fault once we have prepared the page to fault
5084  *
5085  * @vmf: structure describing the fault
5086  *
5087  * This function handles all that is needed to finish a page fault once the
5088  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5089  * given page, adds reverse page mapping, handles memcg charges and LRU
5090  * addition.
5091  *
5092  * The function expects the page to be locked and on success it consumes a
5093  * reference of a page being mapped (for the PTE which maps it).
5094  *
5095  * Return: %0 on success, %VM_FAULT_ code in case of error.
5096  */
5097 vm_fault_t finish_fault(struct vm_fault *vmf)
5098 {
5099 	struct vm_area_struct *vma = vmf->vma;
5100 	struct page *page;
5101 	struct folio *folio;
5102 	vm_fault_t ret;
5103 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5104 		      !(vma->vm_flags & VM_SHARED);
5105 	int type, nr_pages;
5106 	unsigned long addr = vmf->address;
5107 
5108 	/* Did we COW the page? */
5109 	if (is_cow)
5110 		page = vmf->cow_page;
5111 	else
5112 		page = vmf->page;
5113 
5114 	/*
5115 	 * check even for read faults because we might have lost our CoWed
5116 	 * page
5117 	 */
5118 	if (!(vma->vm_flags & VM_SHARED)) {
5119 		ret = check_stable_address_space(vma->vm_mm);
5120 		if (ret)
5121 			return ret;
5122 	}
5123 
5124 	if (pmd_none(*vmf->pmd)) {
5125 		if (PageTransCompound(page)) {
5126 			ret = do_set_pmd(vmf, page);
5127 			if (ret != VM_FAULT_FALLBACK)
5128 				return ret;
5129 		}
5130 
5131 		if (vmf->prealloc_pte)
5132 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5133 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5134 			return VM_FAULT_OOM;
5135 	}
5136 
5137 	folio = page_folio(page);
5138 	nr_pages = folio_nr_pages(folio);
5139 
5140 	/*
5141 	 * Using per-page fault to maintain the uffd semantics, and same
5142 	 * approach also applies to non-anonymous-shmem faults to avoid
5143 	 * inflating the RSS of the process.
5144 	 */
5145 	if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5146 		nr_pages = 1;
5147 	} else if (nr_pages > 1) {
5148 		pgoff_t idx = folio_page_idx(folio, page);
5149 		/* The page offset of vmf->address within the VMA. */
5150 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5151 		/* The index of the entry in the pagetable for fault page. */
5152 		pgoff_t pte_off = pte_index(vmf->address);
5153 
5154 		/*
5155 		 * Fallback to per-page fault in case the folio size in page
5156 		 * cache beyond the VMA limits and PMD pagetable limits.
5157 		 */
5158 		if (unlikely(vma_off < idx ||
5159 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5160 			    pte_off < idx ||
5161 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5162 			nr_pages = 1;
5163 		} else {
5164 			/* Now we can set mappings for the whole large folio. */
5165 			addr = vmf->address - idx * PAGE_SIZE;
5166 			page = &folio->page;
5167 		}
5168 	}
5169 
5170 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5171 				       addr, &vmf->ptl);
5172 	if (!vmf->pte)
5173 		return VM_FAULT_NOPAGE;
5174 
5175 	/* Re-check under ptl */
5176 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5177 		update_mmu_tlb(vma, addr, vmf->pte);
5178 		ret = VM_FAULT_NOPAGE;
5179 		goto unlock;
5180 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5181 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5182 		ret = VM_FAULT_NOPAGE;
5183 		goto unlock;
5184 	}
5185 
5186 	folio_ref_add(folio, nr_pages - 1);
5187 	set_pte_range(vmf, folio, page, nr_pages, addr);
5188 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5189 	add_mm_counter(vma->vm_mm, type, nr_pages);
5190 	ret = 0;
5191 
5192 unlock:
5193 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5194 	return ret;
5195 }
5196 
5197 static unsigned long fault_around_pages __read_mostly =
5198 	65536 >> PAGE_SHIFT;
5199 
5200 #ifdef CONFIG_DEBUG_FS
5201 static int fault_around_bytes_get(void *data, u64 *val)
5202 {
5203 	*val = fault_around_pages << PAGE_SHIFT;
5204 	return 0;
5205 }
5206 
5207 /*
5208  * fault_around_bytes must be rounded down to the nearest page order as it's
5209  * what do_fault_around() expects to see.
5210  */
5211 static int fault_around_bytes_set(void *data, u64 val)
5212 {
5213 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5214 		return -EINVAL;
5215 
5216 	/*
5217 	 * The minimum value is 1 page, however this results in no fault-around
5218 	 * at all. See should_fault_around().
5219 	 */
5220 	val = max(val, PAGE_SIZE);
5221 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5222 
5223 	return 0;
5224 }
5225 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5226 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5227 
5228 static int __init fault_around_debugfs(void)
5229 {
5230 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5231 				   &fault_around_bytes_fops);
5232 	return 0;
5233 }
5234 late_initcall(fault_around_debugfs);
5235 #endif
5236 
5237 /*
5238  * do_fault_around() tries to map few pages around the fault address. The hope
5239  * is that the pages will be needed soon and this will lower the number of
5240  * faults to handle.
5241  *
5242  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5243  * not ready to be mapped: not up-to-date, locked, etc.
5244  *
5245  * This function doesn't cross VMA or page table boundaries, in order to call
5246  * map_pages() and acquire a PTE lock only once.
5247  *
5248  * fault_around_pages defines how many pages we'll try to map.
5249  * do_fault_around() expects it to be set to a power of two less than or equal
5250  * to PTRS_PER_PTE.
5251  *
5252  * The virtual address of the area that we map is naturally aligned to
5253  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5254  * (and therefore to page order).  This way it's easier to guarantee
5255  * that we don't cross page table boundaries.
5256  */
5257 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5258 {
5259 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5260 	pgoff_t pte_off = pte_index(vmf->address);
5261 	/* The page offset of vmf->address within the VMA. */
5262 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5263 	pgoff_t from_pte, to_pte;
5264 	vm_fault_t ret;
5265 
5266 	/* The PTE offset of the start address, clamped to the VMA. */
5267 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5268 		       pte_off - min(pte_off, vma_off));
5269 
5270 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5271 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5272 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5273 
5274 	if (pmd_none(*vmf->pmd)) {
5275 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5276 		if (!vmf->prealloc_pte)
5277 			return VM_FAULT_OOM;
5278 	}
5279 
5280 	rcu_read_lock();
5281 	ret = vmf->vma->vm_ops->map_pages(vmf,
5282 			vmf->pgoff + from_pte - pte_off,
5283 			vmf->pgoff + to_pte - pte_off);
5284 	rcu_read_unlock();
5285 
5286 	return ret;
5287 }
5288 
5289 /* Return true if we should do read fault-around, false otherwise */
5290 static inline bool should_fault_around(struct vm_fault *vmf)
5291 {
5292 	/* No ->map_pages?  No way to fault around... */
5293 	if (!vmf->vma->vm_ops->map_pages)
5294 		return false;
5295 
5296 	if (uffd_disable_fault_around(vmf->vma))
5297 		return false;
5298 
5299 	/* A single page implies no faulting 'around' at all. */
5300 	return fault_around_pages > 1;
5301 }
5302 
5303 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5304 {
5305 	vm_fault_t ret = 0;
5306 	struct folio *folio;
5307 
5308 	/*
5309 	 * Let's call ->map_pages() first and use ->fault() as fallback
5310 	 * if page by the offset is not ready to be mapped (cold cache or
5311 	 * something).
5312 	 */
5313 	if (should_fault_around(vmf)) {
5314 		ret = do_fault_around(vmf);
5315 		if (ret)
5316 			return ret;
5317 	}
5318 
5319 	ret = vmf_can_call_fault(vmf);
5320 	if (ret)
5321 		return ret;
5322 
5323 	ret = __do_fault(vmf);
5324 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5325 		return ret;
5326 
5327 	ret |= finish_fault(vmf);
5328 	folio = page_folio(vmf->page);
5329 	folio_unlock(folio);
5330 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5331 		folio_put(folio);
5332 	return ret;
5333 }
5334 
5335 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5336 {
5337 	struct vm_area_struct *vma = vmf->vma;
5338 	struct folio *folio;
5339 	vm_fault_t ret;
5340 
5341 	ret = vmf_can_call_fault(vmf);
5342 	if (!ret)
5343 		ret = vmf_anon_prepare(vmf);
5344 	if (ret)
5345 		return ret;
5346 
5347 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5348 	if (!folio)
5349 		return VM_FAULT_OOM;
5350 
5351 	vmf->cow_page = &folio->page;
5352 
5353 	ret = __do_fault(vmf);
5354 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5355 		goto uncharge_out;
5356 	if (ret & VM_FAULT_DONE_COW)
5357 		return ret;
5358 
5359 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5360 		ret = VM_FAULT_HWPOISON;
5361 		goto unlock;
5362 	}
5363 	__folio_mark_uptodate(folio);
5364 
5365 	ret |= finish_fault(vmf);
5366 unlock:
5367 	unlock_page(vmf->page);
5368 	put_page(vmf->page);
5369 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5370 		goto uncharge_out;
5371 	return ret;
5372 uncharge_out:
5373 	folio_put(folio);
5374 	return ret;
5375 }
5376 
5377 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5378 {
5379 	struct vm_area_struct *vma = vmf->vma;
5380 	vm_fault_t ret, tmp;
5381 	struct folio *folio;
5382 
5383 	ret = vmf_can_call_fault(vmf);
5384 	if (ret)
5385 		return ret;
5386 
5387 	ret = __do_fault(vmf);
5388 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5389 		return ret;
5390 
5391 	folio = page_folio(vmf->page);
5392 
5393 	/*
5394 	 * Check if the backing address space wants to know that the page is
5395 	 * about to become writable
5396 	 */
5397 	if (vma->vm_ops->page_mkwrite) {
5398 		folio_unlock(folio);
5399 		tmp = do_page_mkwrite(vmf, folio);
5400 		if (unlikely(!tmp ||
5401 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5402 			folio_put(folio);
5403 			return tmp;
5404 		}
5405 	}
5406 
5407 	ret |= finish_fault(vmf);
5408 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5409 					VM_FAULT_RETRY))) {
5410 		folio_unlock(folio);
5411 		folio_put(folio);
5412 		return ret;
5413 	}
5414 
5415 	ret |= fault_dirty_shared_page(vmf);
5416 	return ret;
5417 }
5418 
5419 /*
5420  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5421  * but allow concurrent faults).
5422  * The mmap_lock may have been released depending on flags and our
5423  * return value.  See filemap_fault() and __folio_lock_or_retry().
5424  * If mmap_lock is released, vma may become invalid (for example
5425  * by other thread calling munmap()).
5426  */
5427 static vm_fault_t do_fault(struct vm_fault *vmf)
5428 {
5429 	struct vm_area_struct *vma = vmf->vma;
5430 	struct mm_struct *vm_mm = vma->vm_mm;
5431 	vm_fault_t ret;
5432 
5433 	/*
5434 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5435 	 */
5436 	if (!vma->vm_ops->fault) {
5437 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5438 					       vmf->address, &vmf->ptl);
5439 		if (unlikely(!vmf->pte))
5440 			ret = VM_FAULT_SIGBUS;
5441 		else {
5442 			/*
5443 			 * Make sure this is not a temporary clearing of pte
5444 			 * by holding ptl and checking again. A R/M/W update
5445 			 * of pte involves: take ptl, clearing the pte so that
5446 			 * we don't have concurrent modification by hardware
5447 			 * followed by an update.
5448 			 */
5449 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5450 				ret = VM_FAULT_SIGBUS;
5451 			else
5452 				ret = VM_FAULT_NOPAGE;
5453 
5454 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5455 		}
5456 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5457 		ret = do_read_fault(vmf);
5458 	else if (!(vma->vm_flags & VM_SHARED))
5459 		ret = do_cow_fault(vmf);
5460 	else
5461 		ret = do_shared_fault(vmf);
5462 
5463 	/* preallocated pagetable is unused: free it */
5464 	if (vmf->prealloc_pte) {
5465 		pte_free(vm_mm, vmf->prealloc_pte);
5466 		vmf->prealloc_pte = NULL;
5467 	}
5468 	return ret;
5469 }
5470 
5471 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5472 		      unsigned long addr, int *flags,
5473 		      bool writable, int *last_cpupid)
5474 {
5475 	struct vm_area_struct *vma = vmf->vma;
5476 
5477 	/*
5478 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5479 	 * much anyway since they can be in shared cache state. This misses
5480 	 * the case where a mapping is writable but the process never writes
5481 	 * to it but pte_write gets cleared during protection updates and
5482 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5483 	 * background writeback, dirty balancing and application behaviour.
5484 	 */
5485 	if (!writable)
5486 		*flags |= TNF_NO_GROUP;
5487 
5488 	/*
5489 	 * Flag if the folio is shared between multiple address spaces. This
5490 	 * is later used when determining whether to group tasks together
5491 	 */
5492 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5493 		*flags |= TNF_SHARED;
5494 	/*
5495 	 * For memory tiering mode, cpupid of slow memory page is used
5496 	 * to record page access time.  So use default value.
5497 	 */
5498 	if (folio_use_access_time(folio))
5499 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5500 	else
5501 		*last_cpupid = folio_last_cpupid(folio);
5502 
5503 	/* Record the current PID acceesing VMA */
5504 	vma_set_access_pid_bit(vma);
5505 
5506 	count_vm_numa_event(NUMA_HINT_FAULTS);
5507 #ifdef CONFIG_NUMA_BALANCING
5508 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5509 #endif
5510 	if (folio_nid(folio) == numa_node_id()) {
5511 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5512 		*flags |= TNF_FAULT_LOCAL;
5513 	}
5514 
5515 	return mpol_misplaced(folio, vmf, addr);
5516 }
5517 
5518 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5519 					unsigned long fault_addr, pte_t *fault_pte,
5520 					bool writable)
5521 {
5522 	pte_t pte, old_pte;
5523 
5524 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5525 	pte = pte_modify(old_pte, vma->vm_page_prot);
5526 	pte = pte_mkyoung(pte);
5527 	if (writable)
5528 		pte = pte_mkwrite(pte, vma);
5529 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5530 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5531 }
5532 
5533 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5534 				       struct folio *folio, pte_t fault_pte,
5535 				       bool ignore_writable, bool pte_write_upgrade)
5536 {
5537 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5538 	unsigned long start, end, addr = vmf->address;
5539 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5540 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5541 	pte_t *start_ptep;
5542 
5543 	/* Stay within the VMA and within the page table. */
5544 	start = max3(addr_start, pt_start, vma->vm_start);
5545 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5546 		   vma->vm_end);
5547 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5548 
5549 	/* Restore all PTEs' mapping of the large folio */
5550 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5551 		pte_t ptent = ptep_get(start_ptep);
5552 		bool writable = false;
5553 
5554 		if (!pte_present(ptent) || !pte_protnone(ptent))
5555 			continue;
5556 
5557 		if (pfn_folio(pte_pfn(ptent)) != folio)
5558 			continue;
5559 
5560 		if (!ignore_writable) {
5561 			ptent = pte_modify(ptent, vma->vm_page_prot);
5562 			writable = pte_write(ptent);
5563 			if (!writable && pte_write_upgrade &&
5564 			    can_change_pte_writable(vma, addr, ptent))
5565 				writable = true;
5566 		}
5567 
5568 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5569 	}
5570 }
5571 
5572 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5573 {
5574 	struct vm_area_struct *vma = vmf->vma;
5575 	struct folio *folio = NULL;
5576 	int nid = NUMA_NO_NODE;
5577 	bool writable = false, ignore_writable = false;
5578 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5579 	int last_cpupid;
5580 	int target_nid;
5581 	pte_t pte, old_pte;
5582 	int flags = 0, nr_pages;
5583 
5584 	/*
5585 	 * The pte cannot be used safely until we verify, while holding the page
5586 	 * table lock, that its contents have not changed during fault handling.
5587 	 */
5588 	spin_lock(vmf->ptl);
5589 	/* Read the live PTE from the page tables: */
5590 	old_pte = ptep_get(vmf->pte);
5591 
5592 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5593 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5594 		return 0;
5595 	}
5596 
5597 	pte = pte_modify(old_pte, vma->vm_page_prot);
5598 
5599 	/*
5600 	 * Detect now whether the PTE could be writable; this information
5601 	 * is only valid while holding the PT lock.
5602 	 */
5603 	writable = pte_write(pte);
5604 	if (!writable && pte_write_upgrade &&
5605 	    can_change_pte_writable(vma, vmf->address, pte))
5606 		writable = true;
5607 
5608 	folio = vm_normal_folio(vma, vmf->address, pte);
5609 	if (!folio || folio_is_zone_device(folio))
5610 		goto out_map;
5611 
5612 	nid = folio_nid(folio);
5613 	nr_pages = folio_nr_pages(folio);
5614 
5615 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5616 					writable, &last_cpupid);
5617 	if (target_nid == NUMA_NO_NODE)
5618 		goto out_map;
5619 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5620 		flags |= TNF_MIGRATE_FAIL;
5621 		goto out_map;
5622 	}
5623 	/* The folio is isolated and isolation code holds a folio reference. */
5624 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5625 	writable = false;
5626 	ignore_writable = true;
5627 
5628 	/* Migrate to the requested node */
5629 	if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5630 		nid = target_nid;
5631 		flags |= TNF_MIGRATED;
5632 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5633 		return 0;
5634 	}
5635 
5636 	flags |= TNF_MIGRATE_FAIL;
5637 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5638 				       vmf->address, &vmf->ptl);
5639 	if (unlikely(!vmf->pte))
5640 		return 0;
5641 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5642 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5643 		return 0;
5644 	}
5645 out_map:
5646 	/*
5647 	 * Make it present again, depending on how arch implements
5648 	 * non-accessible ptes, some can allow access by kernel mode.
5649 	 */
5650 	if (folio && folio_test_large(folio))
5651 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5652 					   pte_write_upgrade);
5653 	else
5654 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5655 					    writable);
5656 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5657 
5658 	if (nid != NUMA_NO_NODE)
5659 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5660 	return 0;
5661 }
5662 
5663 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5664 {
5665 	struct vm_area_struct *vma = vmf->vma;
5666 
5667 	if (vma_is_anonymous(vma))
5668 		return do_huge_pmd_anonymous_page(vmf);
5669 	/*
5670 	 * Currently we just emit PAGE_SIZE for our fault events, so don't allow
5671 	 * a huge fault if we have a pre content watch on this file.  This would
5672 	 * be trivial to support, but there would need to be tests to ensure
5673 	 * this works properly and those don't exist currently.
5674 	 */
5675 	if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5676 		return VM_FAULT_FALLBACK;
5677 	if (vma->vm_ops->huge_fault)
5678 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5679 	return VM_FAULT_FALLBACK;
5680 }
5681 
5682 /* `inline' is required to avoid gcc 4.1.2 build error */
5683 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5684 {
5685 	struct vm_area_struct *vma = vmf->vma;
5686 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5687 	vm_fault_t ret;
5688 
5689 	if (vma_is_anonymous(vma)) {
5690 		if (likely(!unshare) &&
5691 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5692 			if (userfaultfd_wp_async(vmf->vma))
5693 				goto split;
5694 			return handle_userfault(vmf, VM_UFFD_WP);
5695 		}
5696 		return do_huge_pmd_wp_page(vmf);
5697 	}
5698 
5699 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5700 		/* See comment in create_huge_pmd. */
5701 		if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5702 			goto split;
5703 		if (vma->vm_ops->huge_fault) {
5704 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5705 			if (!(ret & VM_FAULT_FALLBACK))
5706 				return ret;
5707 		}
5708 	}
5709 
5710 split:
5711 	/* COW or write-notify handled on pte level: split pmd. */
5712 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5713 
5714 	return VM_FAULT_FALLBACK;
5715 }
5716 
5717 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5718 {
5719 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5720 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5721 	struct vm_area_struct *vma = vmf->vma;
5722 	/* No support for anonymous transparent PUD pages yet */
5723 	if (vma_is_anonymous(vma))
5724 		return VM_FAULT_FALLBACK;
5725 	/* See comment in create_huge_pmd. */
5726 	if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5727 		return VM_FAULT_FALLBACK;
5728 	if (vma->vm_ops->huge_fault)
5729 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5731 	return VM_FAULT_FALLBACK;
5732 }
5733 
5734 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5735 {
5736 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5737 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5738 	struct vm_area_struct *vma = vmf->vma;
5739 	vm_fault_t ret;
5740 
5741 	/* No support for anonymous transparent PUD pages yet */
5742 	if (vma_is_anonymous(vma))
5743 		goto split;
5744 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5745 		/* See comment in create_huge_pmd. */
5746 		if (unlikely(FMODE_FSNOTIFY_HSM(vma->vm_file->f_mode)))
5747 			goto split;
5748 		if (vma->vm_ops->huge_fault) {
5749 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5750 			if (!(ret & VM_FAULT_FALLBACK))
5751 				return ret;
5752 		}
5753 	}
5754 split:
5755 	/* COW or write-notify not handled on PUD level: split pud.*/
5756 	__split_huge_pud(vma, vmf->pud, vmf->address);
5757 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5758 	return VM_FAULT_FALLBACK;
5759 }
5760 
5761 /*
5762  * These routines also need to handle stuff like marking pages dirty
5763  * and/or accessed for architectures that don't do it in hardware (most
5764  * RISC architectures).  The early dirtying is also good on the i386.
5765  *
5766  * There is also a hook called "update_mmu_cache()" that architectures
5767  * with external mmu caches can use to update those (ie the Sparc or
5768  * PowerPC hashed page tables that act as extended TLBs).
5769  *
5770  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5771  * concurrent faults).
5772  *
5773  * The mmap_lock may have been released depending on flags and our return value.
5774  * See filemap_fault() and __folio_lock_or_retry().
5775  */
5776 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5777 {
5778 	pte_t entry;
5779 
5780 	if (unlikely(pmd_none(*vmf->pmd))) {
5781 		/*
5782 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5783 		 * want to allocate huge page, and if we expose page table
5784 		 * for an instant, it will be difficult to retract from
5785 		 * concurrent faults and from rmap lookups.
5786 		 */
5787 		vmf->pte = NULL;
5788 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5789 	} else {
5790 		pmd_t dummy_pmdval;
5791 
5792 		/*
5793 		 * A regular pmd is established and it can't morph into a huge
5794 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5795 		 * mode; but shmem or file collapse to THP could still morph
5796 		 * it into a huge pmd: just retry later if so.
5797 		 *
5798 		 * Use the maywrite version to indicate that vmf->pte may be
5799 		 * modified, but since we will use pte_same() to detect the
5800 		 * change of the !pte_none() entry, there is no need to recheck
5801 		 * the pmdval. Here we chooes to pass a dummy variable instead
5802 		 * of NULL, which helps new user think about why this place is
5803 		 * special.
5804 		 */
5805 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5806 						    vmf->address, &dummy_pmdval,
5807 						    &vmf->ptl);
5808 		if (unlikely(!vmf->pte))
5809 			return 0;
5810 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5811 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5812 
5813 		if (pte_none(vmf->orig_pte)) {
5814 			pte_unmap(vmf->pte);
5815 			vmf->pte = NULL;
5816 		}
5817 	}
5818 
5819 	if (!vmf->pte)
5820 		return do_pte_missing(vmf);
5821 
5822 	if (!pte_present(vmf->orig_pte))
5823 		return do_swap_page(vmf);
5824 
5825 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5826 		return do_numa_page(vmf);
5827 
5828 	spin_lock(vmf->ptl);
5829 	entry = vmf->orig_pte;
5830 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5831 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5832 		goto unlock;
5833 	}
5834 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5835 		if (!pte_write(entry))
5836 			return do_wp_page(vmf);
5837 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5838 			entry = pte_mkdirty(entry);
5839 	}
5840 	entry = pte_mkyoung(entry);
5841 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5842 				vmf->flags & FAULT_FLAG_WRITE)) {
5843 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5844 				vmf->pte, 1);
5845 	} else {
5846 		/* Skip spurious TLB flush for retried page fault */
5847 		if (vmf->flags & FAULT_FLAG_TRIED)
5848 			goto unlock;
5849 		/*
5850 		 * This is needed only for protection faults but the arch code
5851 		 * is not yet telling us if this is a protection fault or not.
5852 		 * This still avoids useless tlb flushes for .text page faults
5853 		 * with threads.
5854 		 */
5855 		if (vmf->flags & FAULT_FLAG_WRITE)
5856 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5857 						     vmf->pte);
5858 	}
5859 unlock:
5860 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5861 	return 0;
5862 }
5863 
5864 /*
5865  * On entry, we hold either the VMA lock or the mmap_lock
5866  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5867  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5868  * and __folio_lock_or_retry().
5869  */
5870 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5871 		unsigned long address, unsigned int flags)
5872 {
5873 	struct vm_fault vmf = {
5874 		.vma = vma,
5875 		.address = address & PAGE_MASK,
5876 		.real_address = address,
5877 		.flags = flags,
5878 		.pgoff = linear_page_index(vma, address),
5879 		.gfp_mask = __get_fault_gfp_mask(vma),
5880 	};
5881 	struct mm_struct *mm = vma->vm_mm;
5882 	unsigned long vm_flags = vma->vm_flags;
5883 	pgd_t *pgd;
5884 	p4d_t *p4d;
5885 	vm_fault_t ret;
5886 
5887 	pgd = pgd_offset(mm, address);
5888 	p4d = p4d_alloc(mm, pgd, address);
5889 	if (!p4d)
5890 		return VM_FAULT_OOM;
5891 
5892 	vmf.pud = pud_alloc(mm, p4d, address);
5893 	if (!vmf.pud)
5894 		return VM_FAULT_OOM;
5895 retry_pud:
5896 	if (pud_none(*vmf.pud) &&
5897 	    thp_vma_allowable_order(vma, vm_flags,
5898 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5899 		ret = create_huge_pud(&vmf);
5900 		if (!(ret & VM_FAULT_FALLBACK))
5901 			return ret;
5902 	} else {
5903 		pud_t orig_pud = *vmf.pud;
5904 
5905 		barrier();
5906 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5907 
5908 			/*
5909 			 * TODO once we support anonymous PUDs: NUMA case and
5910 			 * FAULT_FLAG_UNSHARE handling.
5911 			 */
5912 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5913 				ret = wp_huge_pud(&vmf, orig_pud);
5914 				if (!(ret & VM_FAULT_FALLBACK))
5915 					return ret;
5916 			} else {
5917 				huge_pud_set_accessed(&vmf, orig_pud);
5918 				return 0;
5919 			}
5920 		}
5921 	}
5922 
5923 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5924 	if (!vmf.pmd)
5925 		return VM_FAULT_OOM;
5926 
5927 	/* Huge pud page fault raced with pmd_alloc? */
5928 	if (pud_trans_unstable(vmf.pud))
5929 		goto retry_pud;
5930 
5931 	if (pmd_none(*vmf.pmd) &&
5932 	    thp_vma_allowable_order(vma, vm_flags,
5933 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5934 		ret = create_huge_pmd(&vmf);
5935 		if (!(ret & VM_FAULT_FALLBACK))
5936 			return ret;
5937 	} else {
5938 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5939 
5940 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5941 			VM_BUG_ON(thp_migration_supported() &&
5942 					  !is_pmd_migration_entry(vmf.orig_pmd));
5943 			if (is_pmd_migration_entry(vmf.orig_pmd))
5944 				pmd_migration_entry_wait(mm, vmf.pmd);
5945 			return 0;
5946 		}
5947 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5948 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5949 				return do_huge_pmd_numa_page(&vmf);
5950 
5951 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5952 			    !pmd_write(vmf.orig_pmd)) {
5953 				ret = wp_huge_pmd(&vmf);
5954 				if (!(ret & VM_FAULT_FALLBACK))
5955 					return ret;
5956 			} else {
5957 				huge_pmd_set_accessed(&vmf);
5958 				return 0;
5959 			}
5960 		}
5961 	}
5962 
5963 	return handle_pte_fault(&vmf);
5964 }
5965 
5966 /**
5967  * mm_account_fault - Do page fault accounting
5968  * @mm: mm from which memcg should be extracted. It can be NULL.
5969  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5970  *        of perf event counters, but we'll still do the per-task accounting to
5971  *        the task who triggered this page fault.
5972  * @address: the faulted address.
5973  * @flags: the fault flags.
5974  * @ret: the fault retcode.
5975  *
5976  * This will take care of most of the page fault accounting.  Meanwhile, it
5977  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5978  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5979  * still be in per-arch page fault handlers at the entry of page fault.
5980  */
5981 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5982 				    unsigned long address, unsigned int flags,
5983 				    vm_fault_t ret)
5984 {
5985 	bool major;
5986 
5987 	/* Incomplete faults will be accounted upon completion. */
5988 	if (ret & VM_FAULT_RETRY)
5989 		return;
5990 
5991 	/*
5992 	 * To preserve the behavior of older kernels, PGFAULT counters record
5993 	 * both successful and failed faults, as opposed to perf counters,
5994 	 * which ignore failed cases.
5995 	 */
5996 	count_vm_event(PGFAULT);
5997 	count_memcg_event_mm(mm, PGFAULT);
5998 
5999 	/*
6000 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
6001 	 * valid).  That includes arch_vma_access_permitted() failing before
6002 	 * reaching here. So this is not a "this many hardware page faults"
6003 	 * counter.  We should use the hw profiling for that.
6004 	 */
6005 	if (ret & VM_FAULT_ERROR)
6006 		return;
6007 
6008 	/*
6009 	 * We define the fault as a major fault when the final successful fault
6010 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6011 	 * handle it immediately previously).
6012 	 */
6013 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6014 
6015 	if (major)
6016 		current->maj_flt++;
6017 	else
6018 		current->min_flt++;
6019 
6020 	/*
6021 	 * If the fault is done for GUP, regs will be NULL.  We only do the
6022 	 * accounting for the per thread fault counters who triggered the
6023 	 * fault, and we skip the perf event updates.
6024 	 */
6025 	if (!regs)
6026 		return;
6027 
6028 	if (major)
6029 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6030 	else
6031 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6032 }
6033 
6034 #ifdef CONFIG_LRU_GEN
6035 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6036 {
6037 	/* the LRU algorithm only applies to accesses with recency */
6038 	current->in_lru_fault = vma_has_recency(vma);
6039 }
6040 
6041 static void lru_gen_exit_fault(void)
6042 {
6043 	current->in_lru_fault = false;
6044 }
6045 #else
6046 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6047 {
6048 }
6049 
6050 static void lru_gen_exit_fault(void)
6051 {
6052 }
6053 #endif /* CONFIG_LRU_GEN */
6054 
6055 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6056 				       unsigned int *flags)
6057 {
6058 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6059 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6060 			return VM_FAULT_SIGSEGV;
6061 		/*
6062 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6063 		 * just treat it like an ordinary read-fault otherwise.
6064 		 */
6065 		if (!is_cow_mapping(vma->vm_flags))
6066 			*flags &= ~FAULT_FLAG_UNSHARE;
6067 	} else if (*flags & FAULT_FLAG_WRITE) {
6068 		/* Write faults on read-only mappings are impossible ... */
6069 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6070 			return VM_FAULT_SIGSEGV;
6071 		/* ... and FOLL_FORCE only applies to COW mappings. */
6072 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6073 				 !is_cow_mapping(vma->vm_flags)))
6074 			return VM_FAULT_SIGSEGV;
6075 	}
6076 #ifdef CONFIG_PER_VMA_LOCK
6077 	/*
6078 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6079 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6080 	 */
6081 	if (WARN_ON_ONCE((*flags &
6082 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6083 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6084 		return VM_FAULT_SIGSEGV;
6085 #endif
6086 
6087 	return 0;
6088 }
6089 
6090 /*
6091  * By the time we get here, we already hold the mm semaphore
6092  *
6093  * The mmap_lock may have been released depending on flags and our
6094  * return value.  See filemap_fault() and __folio_lock_or_retry().
6095  */
6096 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6097 			   unsigned int flags, struct pt_regs *regs)
6098 {
6099 	/* If the fault handler drops the mmap_lock, vma may be freed */
6100 	struct mm_struct *mm = vma->vm_mm;
6101 	vm_fault_t ret;
6102 	bool is_droppable;
6103 
6104 	__set_current_state(TASK_RUNNING);
6105 
6106 	ret = sanitize_fault_flags(vma, &flags);
6107 	if (ret)
6108 		goto out;
6109 
6110 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6111 					    flags & FAULT_FLAG_INSTRUCTION,
6112 					    flags & FAULT_FLAG_REMOTE)) {
6113 		ret = VM_FAULT_SIGSEGV;
6114 		goto out;
6115 	}
6116 
6117 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6118 
6119 	/*
6120 	 * Enable the memcg OOM handling for faults triggered in user
6121 	 * space.  Kernel faults are handled more gracefully.
6122 	 */
6123 	if (flags & FAULT_FLAG_USER)
6124 		mem_cgroup_enter_user_fault();
6125 
6126 	lru_gen_enter_fault(vma);
6127 
6128 	if (unlikely(is_vm_hugetlb_page(vma)))
6129 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6130 	else
6131 		ret = __handle_mm_fault(vma, address, flags);
6132 
6133 	/*
6134 	 * Warning: It is no longer safe to dereference vma-> after this point,
6135 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6136 	 * vma might be destroyed from underneath us.
6137 	 */
6138 
6139 	lru_gen_exit_fault();
6140 
6141 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6142 	if (is_droppable)
6143 		ret &= ~VM_FAULT_OOM;
6144 
6145 	if (flags & FAULT_FLAG_USER) {
6146 		mem_cgroup_exit_user_fault();
6147 		/*
6148 		 * The task may have entered a memcg OOM situation but
6149 		 * if the allocation error was handled gracefully (no
6150 		 * VM_FAULT_OOM), there is no need to kill anything.
6151 		 * Just clean up the OOM state peacefully.
6152 		 */
6153 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6154 			mem_cgroup_oom_synchronize(false);
6155 	}
6156 out:
6157 	mm_account_fault(mm, regs, address, flags, ret);
6158 
6159 	return ret;
6160 }
6161 EXPORT_SYMBOL_GPL(handle_mm_fault);
6162 
6163 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6164 #include <linux/extable.h>
6165 
6166 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6167 {
6168 	if (likely(mmap_read_trylock(mm)))
6169 		return true;
6170 
6171 	if (regs && !user_mode(regs)) {
6172 		unsigned long ip = exception_ip(regs);
6173 		if (!search_exception_tables(ip))
6174 			return false;
6175 	}
6176 
6177 	return !mmap_read_lock_killable(mm);
6178 }
6179 
6180 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6181 {
6182 	/*
6183 	 * We don't have this operation yet.
6184 	 *
6185 	 * It should be easy enough to do: it's basically a
6186 	 *    atomic_long_try_cmpxchg_acquire()
6187 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6188 	 * it also needs the proper lockdep magic etc.
6189 	 */
6190 	return false;
6191 }
6192 
6193 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6194 {
6195 	mmap_read_unlock(mm);
6196 	if (regs && !user_mode(regs)) {
6197 		unsigned long ip = exception_ip(regs);
6198 		if (!search_exception_tables(ip))
6199 			return false;
6200 	}
6201 	return !mmap_write_lock_killable(mm);
6202 }
6203 
6204 /*
6205  * Helper for page fault handling.
6206  *
6207  * This is kind of equivalend to "mmap_read_lock()" followed
6208  * by "find_extend_vma()", except it's a lot more careful about
6209  * the locking (and will drop the lock on failure).
6210  *
6211  * For example, if we have a kernel bug that causes a page
6212  * fault, we don't want to just use mmap_read_lock() to get
6213  * the mm lock, because that would deadlock if the bug were
6214  * to happen while we're holding the mm lock for writing.
6215  *
6216  * So this checks the exception tables on kernel faults in
6217  * order to only do this all for instructions that are actually
6218  * expected to fault.
6219  *
6220  * We can also actually take the mm lock for writing if we
6221  * need to extend the vma, which helps the VM layer a lot.
6222  */
6223 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6224 			unsigned long addr, struct pt_regs *regs)
6225 {
6226 	struct vm_area_struct *vma;
6227 
6228 	if (!get_mmap_lock_carefully(mm, regs))
6229 		return NULL;
6230 
6231 	vma = find_vma(mm, addr);
6232 	if (likely(vma && (vma->vm_start <= addr)))
6233 		return vma;
6234 
6235 	/*
6236 	 * Well, dang. We might still be successful, but only
6237 	 * if we can extend a vma to do so.
6238 	 */
6239 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6240 		mmap_read_unlock(mm);
6241 		return NULL;
6242 	}
6243 
6244 	/*
6245 	 * We can try to upgrade the mmap lock atomically,
6246 	 * in which case we can continue to use the vma
6247 	 * we already looked up.
6248 	 *
6249 	 * Otherwise we'll have to drop the mmap lock and
6250 	 * re-take it, and also look up the vma again,
6251 	 * re-checking it.
6252 	 */
6253 	if (!mmap_upgrade_trylock(mm)) {
6254 		if (!upgrade_mmap_lock_carefully(mm, regs))
6255 			return NULL;
6256 
6257 		vma = find_vma(mm, addr);
6258 		if (!vma)
6259 			goto fail;
6260 		if (vma->vm_start <= addr)
6261 			goto success;
6262 		if (!(vma->vm_flags & VM_GROWSDOWN))
6263 			goto fail;
6264 	}
6265 
6266 	if (expand_stack_locked(vma, addr))
6267 		goto fail;
6268 
6269 success:
6270 	mmap_write_downgrade(mm);
6271 	return vma;
6272 
6273 fail:
6274 	mmap_write_unlock(mm);
6275 	return NULL;
6276 }
6277 #endif
6278 
6279 #ifdef CONFIG_PER_VMA_LOCK
6280 /*
6281  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6282  * stable and not isolated. If the VMA is not found or is being modified the
6283  * function returns NULL.
6284  */
6285 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6286 					  unsigned long address)
6287 {
6288 	MA_STATE(mas, &mm->mm_mt, address, address);
6289 	struct vm_area_struct *vma;
6290 
6291 	rcu_read_lock();
6292 retry:
6293 	vma = mas_walk(&mas);
6294 	if (!vma)
6295 		goto inval;
6296 
6297 	if (!vma_start_read(vma))
6298 		goto inval;
6299 
6300 	/* Check if the VMA got isolated after we found it */
6301 	if (vma->detached) {
6302 		vma_end_read(vma);
6303 		count_vm_vma_lock_event(VMA_LOCK_MISS);
6304 		/* The area was replaced with another one */
6305 		goto retry;
6306 	}
6307 	/*
6308 	 * At this point, we have a stable reference to a VMA: The VMA is
6309 	 * locked and we know it hasn't already been isolated.
6310 	 * From here on, we can access the VMA without worrying about which
6311 	 * fields are accessible for RCU readers.
6312 	 */
6313 
6314 	/* Check since vm_start/vm_end might change before we lock the VMA */
6315 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6316 		goto inval_end_read;
6317 
6318 	rcu_read_unlock();
6319 	return vma;
6320 
6321 inval_end_read:
6322 	vma_end_read(vma);
6323 inval:
6324 	rcu_read_unlock();
6325 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
6326 	return NULL;
6327 }
6328 #endif /* CONFIG_PER_VMA_LOCK */
6329 
6330 #ifndef __PAGETABLE_P4D_FOLDED
6331 /*
6332  * Allocate p4d page table.
6333  * We've already handled the fast-path in-line.
6334  */
6335 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6336 {
6337 	p4d_t *new = p4d_alloc_one(mm, address);
6338 	if (!new)
6339 		return -ENOMEM;
6340 
6341 	spin_lock(&mm->page_table_lock);
6342 	if (pgd_present(*pgd)) {	/* Another has populated it */
6343 		p4d_free(mm, new);
6344 	} else {
6345 		smp_wmb(); /* See comment in pmd_install() */
6346 		pgd_populate(mm, pgd, new);
6347 	}
6348 	spin_unlock(&mm->page_table_lock);
6349 	return 0;
6350 }
6351 #endif /* __PAGETABLE_P4D_FOLDED */
6352 
6353 #ifndef __PAGETABLE_PUD_FOLDED
6354 /*
6355  * Allocate page upper directory.
6356  * We've already handled the fast-path in-line.
6357  */
6358 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6359 {
6360 	pud_t *new = pud_alloc_one(mm, address);
6361 	if (!new)
6362 		return -ENOMEM;
6363 
6364 	spin_lock(&mm->page_table_lock);
6365 	if (!p4d_present(*p4d)) {
6366 		mm_inc_nr_puds(mm);
6367 		smp_wmb(); /* See comment in pmd_install() */
6368 		p4d_populate(mm, p4d, new);
6369 	} else	/* Another has populated it */
6370 		pud_free(mm, new);
6371 	spin_unlock(&mm->page_table_lock);
6372 	return 0;
6373 }
6374 #endif /* __PAGETABLE_PUD_FOLDED */
6375 
6376 #ifndef __PAGETABLE_PMD_FOLDED
6377 /*
6378  * Allocate page middle directory.
6379  * We've already handled the fast-path in-line.
6380  */
6381 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6382 {
6383 	spinlock_t *ptl;
6384 	pmd_t *new = pmd_alloc_one(mm, address);
6385 	if (!new)
6386 		return -ENOMEM;
6387 
6388 	ptl = pud_lock(mm, pud);
6389 	if (!pud_present(*pud)) {
6390 		mm_inc_nr_pmds(mm);
6391 		smp_wmb(); /* See comment in pmd_install() */
6392 		pud_populate(mm, pud, new);
6393 	} else {	/* Another has populated it */
6394 		pmd_free(mm, new);
6395 	}
6396 	spin_unlock(ptl);
6397 	return 0;
6398 }
6399 #endif /* __PAGETABLE_PMD_FOLDED */
6400 
6401 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6402 				     spinlock_t *lock, pte_t *ptep,
6403 				     pgprot_t pgprot, unsigned long pfn_base,
6404 				     unsigned long addr_mask, bool writable,
6405 				     bool special)
6406 {
6407 	args->lock = lock;
6408 	args->ptep = ptep;
6409 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6410 	args->pgprot = pgprot;
6411 	args->writable = writable;
6412 	args->special = special;
6413 }
6414 
6415 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6416 {
6417 #ifdef CONFIG_LOCKDEP
6418 	struct file *file = vma->vm_file;
6419 	struct address_space *mapping = file ? file->f_mapping : NULL;
6420 
6421 	if (mapping)
6422 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6423 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6424 	else
6425 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6426 #endif
6427 }
6428 
6429 /**
6430  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6431  * @args: Pointer to struct @follow_pfnmap_args
6432  *
6433  * The caller needs to setup args->vma and args->address to point to the
6434  * virtual address as the target of such lookup.  On a successful return,
6435  * the results will be put into other output fields.
6436  *
6437  * After the caller finished using the fields, the caller must invoke
6438  * another follow_pfnmap_end() to proper releases the locks and resources
6439  * of such look up request.
6440  *
6441  * During the start() and end() calls, the results in @args will be valid
6442  * as proper locks will be held.  After the end() is called, all the fields
6443  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6444  * use of such information after end() may require proper synchronizations
6445  * by the caller with page table updates, otherwise it can create a
6446  * security bug.
6447  *
6448  * If the PTE maps a refcounted page, callers are responsible to protect
6449  * against invalidation with MMU notifiers; otherwise access to the PFN at
6450  * a later point in time can trigger use-after-free.
6451  *
6452  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6453  * should be taken for read, and the mmap semaphore cannot be released
6454  * before the end() is invoked.
6455  *
6456  * This function must not be used to modify PTE content.
6457  *
6458  * Return: zero on success, negative otherwise.
6459  */
6460 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6461 {
6462 	struct vm_area_struct *vma = args->vma;
6463 	unsigned long address = args->address;
6464 	struct mm_struct *mm = vma->vm_mm;
6465 	spinlock_t *lock;
6466 	pgd_t *pgdp;
6467 	p4d_t *p4dp, p4d;
6468 	pud_t *pudp, pud;
6469 	pmd_t *pmdp, pmd;
6470 	pte_t *ptep, pte;
6471 
6472 	pfnmap_lockdep_assert(vma);
6473 
6474 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6475 		goto out;
6476 
6477 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6478 		goto out;
6479 retry:
6480 	pgdp = pgd_offset(mm, address);
6481 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6482 		goto out;
6483 
6484 	p4dp = p4d_offset(pgdp, address);
6485 	p4d = READ_ONCE(*p4dp);
6486 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6487 		goto out;
6488 
6489 	pudp = pud_offset(p4dp, address);
6490 	pud = READ_ONCE(*pudp);
6491 	if (pud_none(pud))
6492 		goto out;
6493 	if (pud_leaf(pud)) {
6494 		lock = pud_lock(mm, pudp);
6495 		if (!unlikely(pud_leaf(pud))) {
6496 			spin_unlock(lock);
6497 			goto retry;
6498 		}
6499 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6500 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6501 				  pud_special(pud));
6502 		return 0;
6503 	}
6504 
6505 	pmdp = pmd_offset(pudp, address);
6506 	pmd = pmdp_get_lockless(pmdp);
6507 	if (pmd_leaf(pmd)) {
6508 		lock = pmd_lock(mm, pmdp);
6509 		if (!unlikely(pmd_leaf(pmd))) {
6510 			spin_unlock(lock);
6511 			goto retry;
6512 		}
6513 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6514 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6515 				  pmd_special(pmd));
6516 		return 0;
6517 	}
6518 
6519 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6520 	if (!ptep)
6521 		goto out;
6522 	pte = ptep_get(ptep);
6523 	if (!pte_present(pte))
6524 		goto unlock;
6525 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6526 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6527 			  pte_special(pte));
6528 	return 0;
6529 unlock:
6530 	pte_unmap_unlock(ptep, lock);
6531 out:
6532 	return -EINVAL;
6533 }
6534 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6535 
6536 /**
6537  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6538  * @args: Pointer to struct @follow_pfnmap_args
6539  *
6540  * Must be used in pair of follow_pfnmap_start().  See the start() function
6541  * above for more information.
6542  */
6543 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6544 {
6545 	if (args->lock)
6546 		spin_unlock(args->lock);
6547 	if (args->ptep)
6548 		pte_unmap(args->ptep);
6549 }
6550 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6551 
6552 #ifdef CONFIG_HAVE_IOREMAP_PROT
6553 /**
6554  * generic_access_phys - generic implementation for iomem mmap access
6555  * @vma: the vma to access
6556  * @addr: userspace address, not relative offset within @vma
6557  * @buf: buffer to read/write
6558  * @len: length of transfer
6559  * @write: set to FOLL_WRITE when writing, otherwise reading
6560  *
6561  * This is a generic implementation for &vm_operations_struct.access for an
6562  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6563  * not page based.
6564  */
6565 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6566 			void *buf, int len, int write)
6567 {
6568 	resource_size_t phys_addr;
6569 	unsigned long prot = 0;
6570 	void __iomem *maddr;
6571 	int offset = offset_in_page(addr);
6572 	int ret = -EINVAL;
6573 	bool writable;
6574 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6575 
6576 retry:
6577 	if (follow_pfnmap_start(&args))
6578 		return -EINVAL;
6579 	prot = pgprot_val(args.pgprot);
6580 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6581 	writable = args.writable;
6582 	follow_pfnmap_end(&args);
6583 
6584 	if ((write & FOLL_WRITE) && !writable)
6585 		return -EINVAL;
6586 
6587 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6588 	if (!maddr)
6589 		return -ENOMEM;
6590 
6591 	if (follow_pfnmap_start(&args))
6592 		goto out_unmap;
6593 
6594 	if ((prot != pgprot_val(args.pgprot)) ||
6595 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6596 	    (writable != args.writable)) {
6597 		follow_pfnmap_end(&args);
6598 		iounmap(maddr);
6599 		goto retry;
6600 	}
6601 
6602 	if (write)
6603 		memcpy_toio(maddr + offset, buf, len);
6604 	else
6605 		memcpy_fromio(buf, maddr + offset, len);
6606 	ret = len;
6607 	follow_pfnmap_end(&args);
6608 out_unmap:
6609 	iounmap(maddr);
6610 
6611 	return ret;
6612 }
6613 EXPORT_SYMBOL_GPL(generic_access_phys);
6614 #endif
6615 
6616 /*
6617  * Access another process' address space as given in mm.
6618  */
6619 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6620 			      void *buf, int len, unsigned int gup_flags)
6621 {
6622 	void *old_buf = buf;
6623 	int write = gup_flags & FOLL_WRITE;
6624 
6625 	if (mmap_read_lock_killable(mm))
6626 		return 0;
6627 
6628 	/* Untag the address before looking up the VMA */
6629 	addr = untagged_addr_remote(mm, addr);
6630 
6631 	/* Avoid triggering the temporary warning in __get_user_pages */
6632 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6633 		return 0;
6634 
6635 	/* ignore errors, just check how much was successfully transferred */
6636 	while (len) {
6637 		int bytes, offset;
6638 		void *maddr;
6639 		struct vm_area_struct *vma = NULL;
6640 		struct page *page = get_user_page_vma_remote(mm, addr,
6641 							     gup_flags, &vma);
6642 
6643 		if (IS_ERR(page)) {
6644 			/* We might need to expand the stack to access it */
6645 			vma = vma_lookup(mm, addr);
6646 			if (!vma) {
6647 				vma = expand_stack(mm, addr);
6648 
6649 				/* mmap_lock was dropped on failure */
6650 				if (!vma)
6651 					return buf - old_buf;
6652 
6653 				/* Try again if stack expansion worked */
6654 				continue;
6655 			}
6656 
6657 			/*
6658 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6659 			 * we can access using slightly different code.
6660 			 */
6661 			bytes = 0;
6662 #ifdef CONFIG_HAVE_IOREMAP_PROT
6663 			if (vma->vm_ops && vma->vm_ops->access)
6664 				bytes = vma->vm_ops->access(vma, addr, buf,
6665 							    len, write);
6666 #endif
6667 			if (bytes <= 0)
6668 				break;
6669 		} else {
6670 			bytes = len;
6671 			offset = addr & (PAGE_SIZE-1);
6672 			if (bytes > PAGE_SIZE-offset)
6673 				bytes = PAGE_SIZE-offset;
6674 
6675 			maddr = kmap_local_page(page);
6676 			if (write) {
6677 				copy_to_user_page(vma, page, addr,
6678 						  maddr + offset, buf, bytes);
6679 				set_page_dirty_lock(page);
6680 			} else {
6681 				copy_from_user_page(vma, page, addr,
6682 						    buf, maddr + offset, bytes);
6683 			}
6684 			unmap_and_put_page(page, maddr);
6685 		}
6686 		len -= bytes;
6687 		buf += bytes;
6688 		addr += bytes;
6689 	}
6690 	mmap_read_unlock(mm);
6691 
6692 	return buf - old_buf;
6693 }
6694 
6695 /**
6696  * access_remote_vm - access another process' address space
6697  * @mm:		the mm_struct of the target address space
6698  * @addr:	start address to access
6699  * @buf:	source or destination buffer
6700  * @len:	number of bytes to transfer
6701  * @gup_flags:	flags modifying lookup behaviour
6702  *
6703  * The caller must hold a reference on @mm.
6704  *
6705  * Return: number of bytes copied from source to destination.
6706  */
6707 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6708 		void *buf, int len, unsigned int gup_flags)
6709 {
6710 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6711 }
6712 
6713 /*
6714  * Access another process' address space.
6715  * Source/target buffer must be kernel space,
6716  * Do not walk the page table directly, use get_user_pages
6717  */
6718 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6719 		void *buf, int len, unsigned int gup_flags)
6720 {
6721 	struct mm_struct *mm;
6722 	int ret;
6723 
6724 	mm = get_task_mm(tsk);
6725 	if (!mm)
6726 		return 0;
6727 
6728 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6729 
6730 	mmput(mm);
6731 
6732 	return ret;
6733 }
6734 EXPORT_SYMBOL_GPL(access_process_vm);
6735 
6736 /*
6737  * Print the name of a VMA.
6738  */
6739 void print_vma_addr(char *prefix, unsigned long ip)
6740 {
6741 	struct mm_struct *mm = current->mm;
6742 	struct vm_area_struct *vma;
6743 
6744 	/*
6745 	 * we might be running from an atomic context so we cannot sleep
6746 	 */
6747 	if (!mmap_read_trylock(mm))
6748 		return;
6749 
6750 	vma = vma_lookup(mm, ip);
6751 	if (vma && vma->vm_file) {
6752 		struct file *f = vma->vm_file;
6753 		ip -= vma->vm_start;
6754 		ip += vma->vm_pgoff << PAGE_SHIFT;
6755 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6756 				vma->vm_start,
6757 				vma->vm_end - vma->vm_start);
6758 	}
6759 	mmap_read_unlock(mm);
6760 }
6761 
6762 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6763 void __might_fault(const char *file, int line)
6764 {
6765 	if (pagefault_disabled())
6766 		return;
6767 	__might_sleep(file, line);
6768 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6769 	if (current->mm)
6770 		might_lock_read(&current->mm->mmap_lock);
6771 #endif
6772 }
6773 EXPORT_SYMBOL(__might_fault);
6774 #endif
6775 
6776 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6777 /*
6778  * Process all subpages of the specified huge page with the specified
6779  * operation.  The target subpage will be processed last to keep its
6780  * cache lines hot.
6781  */
6782 static inline int process_huge_page(
6783 	unsigned long addr_hint, unsigned int nr_pages,
6784 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6785 	void *arg)
6786 {
6787 	int i, n, base, l, ret;
6788 	unsigned long addr = addr_hint &
6789 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6790 
6791 	/* Process target subpage last to keep its cache lines hot */
6792 	might_sleep();
6793 	n = (addr_hint - addr) / PAGE_SIZE;
6794 	if (2 * n <= nr_pages) {
6795 		/* If target subpage in first half of huge page */
6796 		base = 0;
6797 		l = n;
6798 		/* Process subpages at the end of huge page */
6799 		for (i = nr_pages - 1; i >= 2 * n; i--) {
6800 			cond_resched();
6801 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6802 			if (ret)
6803 				return ret;
6804 		}
6805 	} else {
6806 		/* If target subpage in second half of huge page */
6807 		base = nr_pages - 2 * (nr_pages - n);
6808 		l = nr_pages - n;
6809 		/* Process subpages at the begin of huge page */
6810 		for (i = 0; i < base; i++) {
6811 			cond_resched();
6812 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6813 			if (ret)
6814 				return ret;
6815 		}
6816 	}
6817 	/*
6818 	 * Process remaining subpages in left-right-left-right pattern
6819 	 * towards the target subpage
6820 	 */
6821 	for (i = 0; i < l; i++) {
6822 		int left_idx = base + i;
6823 		int right_idx = base + 2 * l - 1 - i;
6824 
6825 		cond_resched();
6826 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6827 		if (ret)
6828 			return ret;
6829 		cond_resched();
6830 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6831 		if (ret)
6832 			return ret;
6833 	}
6834 	return 0;
6835 }
6836 
6837 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6838 				unsigned int nr_pages)
6839 {
6840 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6841 	int i;
6842 
6843 	might_sleep();
6844 	for (i = 0; i < nr_pages; i++) {
6845 		cond_resched();
6846 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6847 	}
6848 }
6849 
6850 static int clear_subpage(unsigned long addr, int idx, void *arg)
6851 {
6852 	struct folio *folio = arg;
6853 
6854 	clear_user_highpage(folio_page(folio, idx), addr);
6855 	return 0;
6856 }
6857 
6858 /**
6859  * folio_zero_user - Zero a folio which will be mapped to userspace.
6860  * @folio: The folio to zero.
6861  * @addr_hint: The address will be accessed or the base address if uncelar.
6862  */
6863 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6864 {
6865 	unsigned int nr_pages = folio_nr_pages(folio);
6866 
6867 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6868 		clear_gigantic_page(folio, addr_hint, nr_pages);
6869 	else
6870 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6871 }
6872 
6873 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6874 				   unsigned long addr_hint,
6875 				   struct vm_area_struct *vma,
6876 				   unsigned int nr_pages)
6877 {
6878 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6879 	struct page *dst_page;
6880 	struct page *src_page;
6881 	int i;
6882 
6883 	for (i = 0; i < nr_pages; i++) {
6884 		dst_page = folio_page(dst, i);
6885 		src_page = folio_page(src, i);
6886 
6887 		cond_resched();
6888 		if (copy_mc_user_highpage(dst_page, src_page,
6889 					  addr + i*PAGE_SIZE, vma))
6890 			return -EHWPOISON;
6891 	}
6892 	return 0;
6893 }
6894 
6895 struct copy_subpage_arg {
6896 	struct folio *dst;
6897 	struct folio *src;
6898 	struct vm_area_struct *vma;
6899 };
6900 
6901 static int copy_subpage(unsigned long addr, int idx, void *arg)
6902 {
6903 	struct copy_subpage_arg *copy_arg = arg;
6904 	struct page *dst = folio_page(copy_arg->dst, idx);
6905 	struct page *src = folio_page(copy_arg->src, idx);
6906 
6907 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6908 		return -EHWPOISON;
6909 	return 0;
6910 }
6911 
6912 int copy_user_large_folio(struct folio *dst, struct folio *src,
6913 			  unsigned long addr_hint, struct vm_area_struct *vma)
6914 {
6915 	unsigned int nr_pages = folio_nr_pages(dst);
6916 	struct copy_subpage_arg arg = {
6917 		.dst = dst,
6918 		.src = src,
6919 		.vma = vma,
6920 	};
6921 
6922 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6923 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6924 
6925 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6926 }
6927 
6928 long copy_folio_from_user(struct folio *dst_folio,
6929 			   const void __user *usr_src,
6930 			   bool allow_pagefault)
6931 {
6932 	void *kaddr;
6933 	unsigned long i, rc = 0;
6934 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6935 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6936 	struct page *subpage;
6937 
6938 	for (i = 0; i < nr_pages; i++) {
6939 		subpage = folio_page(dst_folio, i);
6940 		kaddr = kmap_local_page(subpage);
6941 		if (!allow_pagefault)
6942 			pagefault_disable();
6943 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6944 		if (!allow_pagefault)
6945 			pagefault_enable();
6946 		kunmap_local(kaddr);
6947 
6948 		ret_val -= (PAGE_SIZE - rc);
6949 		if (rc)
6950 			break;
6951 
6952 		flush_dcache_page(subpage);
6953 
6954 		cond_resched();
6955 	}
6956 	return ret_val;
6957 }
6958 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6959 
6960 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6961 
6962 static struct kmem_cache *page_ptl_cachep;
6963 
6964 void __init ptlock_cache_init(void)
6965 {
6966 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6967 			SLAB_PANIC, NULL);
6968 }
6969 
6970 bool ptlock_alloc(struct ptdesc *ptdesc)
6971 {
6972 	spinlock_t *ptl;
6973 
6974 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6975 	if (!ptl)
6976 		return false;
6977 	ptdesc->ptl = ptl;
6978 	return true;
6979 }
6980 
6981 void ptlock_free(struct ptdesc *ptdesc)
6982 {
6983 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6984 }
6985 #endif
6986 
6987 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6988 {
6989 	if (is_vm_hugetlb_page(vma))
6990 		hugetlb_vma_lock_read(vma);
6991 }
6992 
6993 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6994 {
6995 	if (is_vm_hugetlb_page(vma))
6996 		hugetlb_vma_unlock_read(vma);
6997 }
6998