1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_marker_uffd_wp(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 #ifndef arch_wants_old_prefaulted_pte 129 static inline bool arch_wants_old_prefaulted_pte(void) 130 { 131 /* 132 * Transitioning a PTE from 'old' to 'young' can be expensive on 133 * some architectures, even if it's performed in hardware. By 134 * default, "false" means prefaulted entries will be 'young'. 135 */ 136 return false; 137 } 138 #endif 139 140 static int __init disable_randmaps(char *s) 141 { 142 randomize_va_space = 0; 143 return 1; 144 } 145 __setup("norandmaps", disable_randmaps); 146 147 unsigned long zero_pfn __read_mostly; 148 EXPORT_SYMBOL(zero_pfn); 149 150 unsigned long highest_memmap_pfn __read_mostly; 151 152 /* 153 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 154 */ 155 static int __init init_zero_pfn(void) 156 { 157 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 158 return 0; 159 } 160 early_initcall(init_zero_pfn); 161 162 void mm_trace_rss_stat(struct mm_struct *mm, int member) 163 { 164 trace_rss_stat(mm, member); 165 } 166 167 /* 168 * Note: this doesn't free the actual pages themselves. That 169 * has been handled earlier when unmapping all the memory regions. 170 */ 171 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 172 unsigned long addr) 173 { 174 pgtable_t token = pmd_pgtable(*pmd); 175 pmd_clear(pmd); 176 pte_free_tlb(tlb, token, addr); 177 mm_dec_nr_ptes(tlb->mm); 178 } 179 180 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 181 unsigned long addr, unsigned long end, 182 unsigned long floor, unsigned long ceiling) 183 { 184 pmd_t *pmd; 185 unsigned long next; 186 unsigned long start; 187 188 start = addr; 189 pmd = pmd_offset(pud, addr); 190 do { 191 next = pmd_addr_end(addr, end); 192 if (pmd_none_or_clear_bad(pmd)) 193 continue; 194 free_pte_range(tlb, pmd, addr); 195 } while (pmd++, addr = next, addr != end); 196 197 start &= PUD_MASK; 198 if (start < floor) 199 return; 200 if (ceiling) { 201 ceiling &= PUD_MASK; 202 if (!ceiling) 203 return; 204 } 205 if (end - 1 > ceiling - 1) 206 return; 207 208 pmd = pmd_offset(pud, start); 209 pud_clear(pud); 210 pmd_free_tlb(tlb, pmd, start); 211 mm_dec_nr_pmds(tlb->mm); 212 } 213 214 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 215 unsigned long addr, unsigned long end, 216 unsigned long floor, unsigned long ceiling) 217 { 218 pud_t *pud; 219 unsigned long next; 220 unsigned long start; 221 222 start = addr; 223 pud = pud_offset(p4d, addr); 224 do { 225 next = pud_addr_end(addr, end); 226 if (pud_none_or_clear_bad(pud)) 227 continue; 228 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 229 } while (pud++, addr = next, addr != end); 230 231 start &= P4D_MASK; 232 if (start < floor) 233 return; 234 if (ceiling) { 235 ceiling &= P4D_MASK; 236 if (!ceiling) 237 return; 238 } 239 if (end - 1 > ceiling - 1) 240 return; 241 242 pud = pud_offset(p4d, start); 243 p4d_clear(p4d); 244 pud_free_tlb(tlb, pud, start); 245 mm_dec_nr_puds(tlb->mm); 246 } 247 248 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 249 unsigned long addr, unsigned long end, 250 unsigned long floor, unsigned long ceiling) 251 { 252 p4d_t *p4d; 253 unsigned long next; 254 unsigned long start; 255 256 start = addr; 257 p4d = p4d_offset(pgd, addr); 258 do { 259 next = p4d_addr_end(addr, end); 260 if (p4d_none_or_clear_bad(p4d)) 261 continue; 262 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 263 } while (p4d++, addr = next, addr != end); 264 265 start &= PGDIR_MASK; 266 if (start < floor) 267 return; 268 if (ceiling) { 269 ceiling &= PGDIR_MASK; 270 if (!ceiling) 271 return; 272 } 273 if (end - 1 > ceiling - 1) 274 return; 275 276 p4d = p4d_offset(pgd, start); 277 pgd_clear(pgd); 278 p4d_free_tlb(tlb, p4d, start); 279 } 280 281 /** 282 * free_pgd_range - Unmap and free page tables in the range 283 * @tlb: the mmu_gather containing pending TLB flush info 284 * @addr: virtual address start 285 * @end: virtual address end 286 * @floor: lowest address boundary 287 * @ceiling: highest address boundary 288 * 289 * This function tears down all user-level page tables in the 290 * specified virtual address range [@addr..@end). It is part of 291 * the memory unmap flow. 292 */ 293 void free_pgd_range(struct mmu_gather *tlb, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 pgd_t *pgd; 298 unsigned long next; 299 300 /* 301 * The next few lines have given us lots of grief... 302 * 303 * Why are we testing PMD* at this top level? Because often 304 * there will be no work to do at all, and we'd prefer not to 305 * go all the way down to the bottom just to discover that. 306 * 307 * Why all these "- 1"s? Because 0 represents both the bottom 308 * of the address space and the top of it (using -1 for the 309 * top wouldn't help much: the masks would do the wrong thing). 310 * The rule is that addr 0 and floor 0 refer to the bottom of 311 * the address space, but end 0 and ceiling 0 refer to the top 312 * Comparisons need to use "end - 1" and "ceiling - 1" (though 313 * that end 0 case should be mythical). 314 * 315 * Wherever addr is brought up or ceiling brought down, we must 316 * be careful to reject "the opposite 0" before it confuses the 317 * subsequent tests. But what about where end is brought down 318 * by PMD_SIZE below? no, end can't go down to 0 there. 319 * 320 * Whereas we round start (addr) and ceiling down, by different 321 * masks at different levels, in order to test whether a table 322 * now has no other vmas using it, so can be freed, we don't 323 * bother to round floor or end up - the tests don't need that. 324 */ 325 326 addr &= PMD_MASK; 327 if (addr < floor) { 328 addr += PMD_SIZE; 329 if (!addr) 330 return; 331 } 332 if (ceiling) { 333 ceiling &= PMD_MASK; 334 if (!ceiling) 335 return; 336 } 337 if (end - 1 > ceiling - 1) 338 end -= PMD_SIZE; 339 if (addr > end - 1) 340 return; 341 /* 342 * We add page table cache pages with PAGE_SIZE, 343 * (see pte_free_tlb()), flush the tlb if we need 344 */ 345 tlb_change_page_size(tlb, PAGE_SIZE); 346 pgd = pgd_offset(tlb->mm, addr); 347 do { 348 next = pgd_addr_end(addr, end); 349 if (pgd_none_or_clear_bad(pgd)) 350 continue; 351 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 352 } while (pgd++, addr = next, addr != end); 353 } 354 355 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 356 struct vm_area_struct *vma, unsigned long floor, 357 unsigned long ceiling, bool mm_wr_locked) 358 { 359 struct unlink_vma_file_batch vb; 360 361 tlb_free_vmas(tlb); 362 363 do { 364 unsigned long addr = vma->vm_start; 365 struct vm_area_struct *next; 366 367 /* 368 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 369 * be 0. This will underflow and is okay. 370 */ 371 next = mas_find(mas, ceiling - 1); 372 if (unlikely(xa_is_zero(next))) 373 next = NULL; 374 375 /* 376 * Hide vma from rmap and truncate_pagecache before freeing 377 * pgtables 378 */ 379 if (mm_wr_locked) 380 vma_start_write(vma); 381 unlink_anon_vmas(vma); 382 383 if (is_vm_hugetlb_page(vma)) { 384 unlink_file_vma(vma); 385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 386 floor, next ? next->vm_start : ceiling); 387 } else { 388 unlink_file_vma_batch_init(&vb); 389 unlink_file_vma_batch_add(&vb, vma); 390 391 /* 392 * Optimization: gather nearby vmas into one call down 393 */ 394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 395 && !is_vm_hugetlb_page(next)) { 396 vma = next; 397 next = mas_find(mas, ceiling - 1); 398 if (unlikely(xa_is_zero(next))) 399 next = NULL; 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma_batch_add(&vb, vma); 404 } 405 unlink_file_vma_batch_final(&vb); 406 free_pgd_range(tlb, addr, vma->vm_end, 407 floor, next ? next->vm_start : ceiling); 408 } 409 vma = next; 410 } while (vma); 411 } 412 413 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 414 { 415 spinlock_t *ptl = pmd_lock(mm, pmd); 416 417 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 418 mm_inc_nr_ptes(mm); 419 /* 420 * Ensure all pte setup (eg. pte page lock and page clearing) are 421 * visible before the pte is made visible to other CPUs by being 422 * put into page tables. 423 * 424 * The other side of the story is the pointer chasing in the page 425 * table walking code (when walking the page table without locking; 426 * ie. most of the time). Fortunately, these data accesses consist 427 * of a chain of data-dependent loads, meaning most CPUs (alpha 428 * being the notable exception) will already guarantee loads are 429 * seen in-order. See the alpha page table accessors for the 430 * smp_rmb() barriers in page table walking code. 431 */ 432 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 433 pmd_populate(mm, pmd, *pte); 434 *pte = NULL; 435 } 436 spin_unlock(ptl); 437 } 438 439 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 440 { 441 pgtable_t new = pte_alloc_one(mm); 442 if (!new) 443 return -ENOMEM; 444 445 pmd_install(mm, pmd, &new); 446 if (new) 447 pte_free(mm, new); 448 return 0; 449 } 450 451 int __pte_alloc_kernel(pmd_t *pmd) 452 { 453 pte_t *new = pte_alloc_one_kernel(&init_mm); 454 if (!new) 455 return -ENOMEM; 456 457 spin_lock(&init_mm.page_table_lock); 458 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 459 smp_wmb(); /* See comment in pmd_install() */ 460 pmd_populate_kernel(&init_mm, pmd, new); 461 new = NULL; 462 } 463 spin_unlock(&init_mm.page_table_lock); 464 if (new) 465 pte_free_kernel(&init_mm, new); 466 return 0; 467 } 468 469 static inline void init_rss_vec(int *rss) 470 { 471 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 472 } 473 474 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 475 { 476 int i; 477 478 for (i = 0; i < NR_MM_COUNTERS; i++) 479 if (rss[i]) 480 add_mm_counter(mm, i, rss[i]); 481 } 482 483 /* 484 * This function is called to print an error when a bad pte 485 * is found. For example, we might have a PFN-mapped pte in 486 * a region that doesn't allow it. 487 * 488 * The calling function must still handle the error. 489 */ 490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 491 pte_t pte, struct page *page) 492 { 493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 494 p4d_t *p4d = p4d_offset(pgd, addr); 495 pud_t *pud = pud_offset(p4d, addr); 496 pmd_t *pmd = pmd_offset(pud, addr); 497 struct address_space *mapping; 498 pgoff_t index; 499 static unsigned long resume; 500 static unsigned long nr_shown; 501 static unsigned long nr_unshown; 502 503 /* 504 * Allow a burst of 60 reports, then keep quiet for that minute; 505 * or allow a steady drip of one report per second. 506 */ 507 if (nr_shown == 60) { 508 if (time_before(jiffies, resume)) { 509 nr_unshown++; 510 return; 511 } 512 if (nr_unshown) { 513 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 514 nr_unshown); 515 nr_unshown = 0; 516 } 517 nr_shown = 0; 518 } 519 if (nr_shown++ == 0) 520 resume = jiffies + 60 * HZ; 521 522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 523 index = linear_page_index(vma, addr); 524 525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 526 current->comm, 527 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 528 if (page) 529 dump_page(page, "bad pte"); 530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 532 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 533 vma->vm_file, 534 vma->vm_ops ? vma->vm_ops->fault : NULL, 535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 536 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 537 mapping ? mapping->a_ops->read_folio : NULL); 538 dump_stack(); 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 540 } 541 542 /* 543 * vm_normal_page -- This function gets the "struct page" associated with a pte. 544 * 545 * "Special" mappings do not wish to be associated with a "struct page" (either 546 * it doesn't exist, or it exists but they don't want to touch it). In this 547 * case, NULL is returned here. "Normal" mappings do have a struct page. 548 * 549 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 550 * pte bit, in which case this function is trivial. Secondly, an architecture 551 * may not have a spare pte bit, which requires a more complicated scheme, 552 * described below. 553 * 554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 555 * special mapping (even if there are underlying and valid "struct pages"). 556 * COWed pages of a VM_PFNMAP are always normal. 557 * 558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 561 * mapping will always honor the rule 562 * 563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 564 * 565 * And for normal mappings this is false. 566 * 567 * This restricts such mappings to be a linear translation from virtual address 568 * to pfn. To get around this restriction, we allow arbitrary mappings so long 569 * as the vma is not a COW mapping; in that case, we know that all ptes are 570 * special (because none can have been COWed). 571 * 572 * 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 574 * 575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 576 * page" backing, however the difference is that _all_ pages with a struct 577 * page (that is, those where pfn_valid is true) are refcounted and considered 578 * normal pages by the VM. The only exception are zeropages, which are 579 * *never* refcounted. 580 * 581 * The disadvantage is that pages are refcounted (which can be slower and 582 * simply not an option for some PFNMAP users). The advantage is that we 583 * don't have to follow the strict linearity rule of PFNMAP mappings in 584 * order to support COWable mappings. 585 * 586 */ 587 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 588 pte_t pte) 589 { 590 unsigned long pfn = pte_pfn(pte); 591 592 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 593 if (likely(!pte_special(pte))) 594 goto check_pfn; 595 if (vma->vm_ops && vma->vm_ops->find_special_page) 596 return vma->vm_ops->find_special_page(vma, addr); 597 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 598 return NULL; 599 if (is_zero_pfn(pfn)) 600 return NULL; 601 if (pte_devmap(pte)) 602 /* 603 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 604 * and will have refcounts incremented on their struct pages 605 * when they are inserted into PTEs, thus they are safe to 606 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 607 * do not have refcounts. Example of legacy ZONE_DEVICE is 608 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 609 */ 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 if (is_zero_pfn(pfn)) 623 return NULL; 624 goto out; 625 } else { 626 unsigned long off; 627 off = (addr - vma->vm_start) >> PAGE_SHIFT; 628 if (pfn == vma->vm_pgoff + off) 629 return NULL; 630 if (!is_cow_mapping(vma->vm_flags)) 631 return NULL; 632 } 633 } 634 635 if (is_zero_pfn(pfn)) 636 return NULL; 637 638 check_pfn: 639 if (unlikely(pfn > highest_memmap_pfn)) { 640 print_bad_pte(vma, addr, pte, NULL); 641 return NULL; 642 } 643 644 /* 645 * NOTE! We still have PageReserved() pages in the page tables. 646 * eg. VDSO mappings can cause them to exist. 647 */ 648 out: 649 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 650 return pfn_to_page(pfn); 651 } 652 653 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 654 pte_t pte) 655 { 656 struct page *page = vm_normal_page(vma, addr, pte); 657 658 if (page) 659 return page_folio(page); 660 return NULL; 661 } 662 663 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 664 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 665 pmd_t pmd) 666 { 667 unsigned long pfn = pmd_pfn(pmd); 668 669 /* Currently it's only used for huge pfnmaps */ 670 if (unlikely(pmd_special(pmd))) 671 return NULL; 672 673 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 674 if (vma->vm_flags & VM_MIXEDMAP) { 675 if (!pfn_valid(pfn)) 676 return NULL; 677 goto out; 678 } else { 679 unsigned long off; 680 off = (addr - vma->vm_start) >> PAGE_SHIFT; 681 if (pfn == vma->vm_pgoff + off) 682 return NULL; 683 if (!is_cow_mapping(vma->vm_flags)) 684 return NULL; 685 } 686 } 687 688 if (pmd_devmap(pmd)) 689 return NULL; 690 if (is_huge_zero_pmd(pmd)) 691 return NULL; 692 if (unlikely(pfn > highest_memmap_pfn)) 693 return NULL; 694 695 /* 696 * NOTE! We still have PageReserved() pages in the page tables. 697 * eg. VDSO mappings can cause them to exist. 698 */ 699 out: 700 return pfn_to_page(pfn); 701 } 702 703 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 704 unsigned long addr, pmd_t pmd) 705 { 706 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 707 708 if (page) 709 return page_folio(page); 710 return NULL; 711 } 712 #endif 713 714 /** 715 * restore_exclusive_pte - Restore a device-exclusive entry 716 * @vma: VMA covering @address 717 * @folio: the mapped folio 718 * @page: the mapped folio page 719 * @address: the virtual address 720 * @ptep: pte pointer into the locked page table mapping the folio page 721 * @orig_pte: pte value at @ptep 722 * 723 * Restore a device-exclusive non-swap entry to an ordinary present pte. 724 * 725 * The folio and the page table must be locked, and MMU notifiers must have 726 * been called to invalidate any (exclusive) device mappings. 727 * 728 * Locking the folio makes sure that anybody who just converted the pte to 729 * a device-exclusive entry can map it into the device to make forward 730 * progress without others converting it back until the folio was unlocked. 731 * 732 * If the folio lock ever becomes an issue, we can stop relying on the folio 733 * lock; it might make some scenarios with heavy thrashing less likely to 734 * make forward progress, but these scenarios might not be valid use cases. 735 * 736 * Note that the folio lock does not protect against all cases of concurrent 737 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 738 * must use MMU notifiers to sync against any concurrent changes. 739 */ 740 static void restore_exclusive_pte(struct vm_area_struct *vma, 741 struct folio *folio, struct page *page, unsigned long address, 742 pte_t *ptep, pte_t orig_pte) 743 { 744 pte_t pte; 745 746 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 747 748 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 749 if (pte_swp_soft_dirty(orig_pte)) 750 pte = pte_mksoft_dirty(pte); 751 752 if (pte_swp_uffd_wp(orig_pte)) 753 pte = pte_mkuffd_wp(pte); 754 755 if ((vma->vm_flags & VM_WRITE) && 756 can_change_pte_writable(vma, address, pte)) { 757 if (folio_test_dirty(folio)) 758 pte = pte_mkdirty(pte); 759 pte = pte_mkwrite(pte, vma); 760 } 761 set_pte_at(vma->vm_mm, address, ptep, pte); 762 763 /* 764 * No need to invalidate - it was non-present before. However 765 * secondary CPUs may have mappings that need invalidating. 766 */ 767 update_mmu_cache(vma, address, ptep); 768 } 769 770 /* 771 * Tries to restore an exclusive pte if the page lock can be acquired without 772 * sleeping. 773 */ 774 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 775 unsigned long addr, pte_t *ptep, pte_t orig_pte) 776 { 777 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 778 struct folio *folio = page_folio(page); 779 780 if (folio_trylock(folio)) { 781 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 782 folio_unlock(folio); 783 return 0; 784 } 785 786 return -EBUSY; 787 } 788 789 /* 790 * copy one vm_area from one task to the other. Assumes the page tables 791 * already present in the new task to be cleared in the whole range 792 * covered by this vma. 793 */ 794 795 static unsigned long 796 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 797 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 798 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 799 { 800 unsigned long vm_flags = dst_vma->vm_flags; 801 pte_t orig_pte = ptep_get(src_pte); 802 pte_t pte = orig_pte; 803 struct folio *folio; 804 struct page *page; 805 swp_entry_t entry = pte_to_swp_entry(orig_pte); 806 807 if (likely(!non_swap_entry(entry))) { 808 if (swap_duplicate(entry) < 0) 809 return -EIO; 810 811 /* make sure dst_mm is on swapoff's mmlist. */ 812 if (unlikely(list_empty(&dst_mm->mmlist))) { 813 spin_lock(&mmlist_lock); 814 if (list_empty(&dst_mm->mmlist)) 815 list_add(&dst_mm->mmlist, 816 &src_mm->mmlist); 817 spin_unlock(&mmlist_lock); 818 } 819 /* Mark the swap entry as shared. */ 820 if (pte_swp_exclusive(orig_pte)) { 821 pte = pte_swp_clear_exclusive(orig_pte); 822 set_pte_at(src_mm, addr, src_pte, pte); 823 } 824 rss[MM_SWAPENTS]++; 825 } else if (is_migration_entry(entry)) { 826 folio = pfn_swap_entry_folio(entry); 827 828 rss[mm_counter(folio)]++; 829 830 if (!is_readable_migration_entry(entry) && 831 is_cow_mapping(vm_flags)) { 832 /* 833 * COW mappings require pages in both parent and child 834 * to be set to read. A previously exclusive entry is 835 * now shared. 836 */ 837 entry = make_readable_migration_entry( 838 swp_offset(entry)); 839 pte = swp_entry_to_pte(entry); 840 if (pte_swp_soft_dirty(orig_pte)) 841 pte = pte_swp_mksoft_dirty(pte); 842 if (pte_swp_uffd_wp(orig_pte)) 843 pte = pte_swp_mkuffd_wp(pte); 844 set_pte_at(src_mm, addr, src_pte, pte); 845 } 846 } else if (is_device_private_entry(entry)) { 847 page = pfn_swap_entry_to_page(entry); 848 folio = page_folio(page); 849 850 /* 851 * Update rss count even for unaddressable pages, as 852 * they should treated just like normal pages in this 853 * respect. 854 * 855 * We will likely want to have some new rss counters 856 * for unaddressable pages, at some point. But for now 857 * keep things as they are. 858 */ 859 folio_get(folio); 860 rss[mm_counter(folio)]++; 861 /* Cannot fail as these pages cannot get pinned. */ 862 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 863 864 /* 865 * We do not preserve soft-dirty information, because so 866 * far, checkpoint/restore is the only feature that 867 * requires that. And checkpoint/restore does not work 868 * when a device driver is involved (you cannot easily 869 * save and restore device driver state). 870 */ 871 if (is_writable_device_private_entry(entry) && 872 is_cow_mapping(vm_flags)) { 873 entry = make_readable_device_private_entry( 874 swp_offset(entry)); 875 pte = swp_entry_to_pte(entry); 876 if (pte_swp_uffd_wp(orig_pte)) 877 pte = pte_swp_mkuffd_wp(pte); 878 set_pte_at(src_mm, addr, src_pte, pte); 879 } 880 } else if (is_device_exclusive_entry(entry)) { 881 /* 882 * Make device exclusive entries present by restoring the 883 * original entry then copying as for a present pte. Device 884 * exclusive entries currently only support private writable 885 * (ie. COW) mappings. 886 */ 887 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 888 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 889 return -EBUSY; 890 return -ENOENT; 891 } else if (is_pte_marker_entry(entry)) { 892 pte_marker marker = copy_pte_marker(entry, dst_vma); 893 894 if (marker) 895 set_pte_at(dst_mm, addr, dst_pte, 896 make_pte_marker(marker)); 897 return 0; 898 } 899 if (!userfaultfd_wp(dst_vma)) 900 pte = pte_swp_clear_uffd_wp(pte); 901 set_pte_at(dst_mm, addr, dst_pte, pte); 902 return 0; 903 } 904 905 /* 906 * Copy a present and normal page. 907 * 908 * NOTE! The usual case is that this isn't required; 909 * instead, the caller can just increase the page refcount 910 * and re-use the pte the traditional way. 911 * 912 * And if we need a pre-allocated page but don't yet have 913 * one, return a negative error to let the preallocation 914 * code know so that it can do so outside the page table 915 * lock. 916 */ 917 static inline int 918 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 919 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 920 struct folio **prealloc, struct page *page) 921 { 922 struct folio *new_folio; 923 pte_t pte; 924 925 new_folio = *prealloc; 926 if (!new_folio) 927 return -EAGAIN; 928 929 /* 930 * We have a prealloc page, all good! Take it 931 * over and copy the page & arm it. 932 */ 933 934 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 935 return -EHWPOISON; 936 937 *prealloc = NULL; 938 __folio_mark_uptodate(new_folio); 939 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 940 folio_add_lru_vma(new_folio, dst_vma); 941 rss[MM_ANONPAGES]++; 942 943 /* All done, just insert the new page copy in the child */ 944 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 945 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 946 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 947 /* Uffd-wp needs to be delivered to dest pte as well */ 948 pte = pte_mkuffd_wp(pte); 949 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 950 return 0; 951 } 952 953 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 954 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 955 pte_t pte, unsigned long addr, int nr) 956 { 957 struct mm_struct *src_mm = src_vma->vm_mm; 958 959 /* If it's a COW mapping, write protect it both processes. */ 960 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 961 wrprotect_ptes(src_mm, addr, src_pte, nr); 962 pte = pte_wrprotect(pte); 963 } 964 965 /* If it's a shared mapping, mark it clean in the child. */ 966 if (src_vma->vm_flags & VM_SHARED) 967 pte = pte_mkclean(pte); 968 pte = pte_mkold(pte); 969 970 if (!userfaultfd_wp(dst_vma)) 971 pte = pte_clear_uffd_wp(pte); 972 973 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 974 } 975 976 /* 977 * Copy one present PTE, trying to batch-process subsequent PTEs that map 978 * consecutive pages of the same folio by copying them as well. 979 * 980 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 981 * Otherwise, returns the number of copied PTEs (at least 1). 982 */ 983 static inline int 984 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 985 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 986 int max_nr, int *rss, struct folio **prealloc) 987 { 988 struct page *page; 989 struct folio *folio; 990 bool any_writable; 991 fpb_t flags = 0; 992 int err, nr; 993 994 page = vm_normal_page(src_vma, addr, pte); 995 if (unlikely(!page)) 996 goto copy_pte; 997 998 folio = page_folio(page); 999 1000 /* 1001 * If we likely have to copy, just don't bother with batching. Make 1002 * sure that the common "small folio" case is as fast as possible 1003 * by keeping the batching logic separate. 1004 */ 1005 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1006 if (src_vma->vm_flags & VM_SHARED) 1007 flags |= FPB_IGNORE_DIRTY; 1008 if (!vma_soft_dirty_enabled(src_vma)) 1009 flags |= FPB_IGNORE_SOFT_DIRTY; 1010 1011 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1012 &any_writable, NULL, NULL); 1013 folio_ref_add(folio, nr); 1014 if (folio_test_anon(folio)) { 1015 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1016 nr, dst_vma, src_vma))) { 1017 folio_ref_sub(folio, nr); 1018 return -EAGAIN; 1019 } 1020 rss[MM_ANONPAGES] += nr; 1021 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1022 } else { 1023 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1024 rss[mm_counter_file(folio)] += nr; 1025 } 1026 if (any_writable) 1027 pte = pte_mkwrite(pte, src_vma); 1028 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1029 addr, nr); 1030 return nr; 1031 } 1032 1033 folio_get(folio); 1034 if (folio_test_anon(folio)) { 1035 /* 1036 * If this page may have been pinned by the parent process, 1037 * copy the page immediately for the child so that we'll always 1038 * guarantee the pinned page won't be randomly replaced in the 1039 * future. 1040 */ 1041 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1042 /* Page may be pinned, we have to copy. */ 1043 folio_put(folio); 1044 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1045 addr, rss, prealloc, page); 1046 return err ? err : 1; 1047 } 1048 rss[MM_ANONPAGES]++; 1049 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1050 } else { 1051 folio_dup_file_rmap_pte(folio, page, dst_vma); 1052 rss[mm_counter_file(folio)]++; 1053 } 1054 1055 copy_pte: 1056 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1057 return 1; 1058 } 1059 1060 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1061 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1062 { 1063 struct folio *new_folio; 1064 1065 if (need_zero) 1066 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1067 else 1068 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1069 1070 if (!new_folio) 1071 return NULL; 1072 1073 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1074 folio_put(new_folio); 1075 return NULL; 1076 } 1077 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1078 1079 return new_folio; 1080 } 1081 1082 static int 1083 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1084 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1085 unsigned long end) 1086 { 1087 struct mm_struct *dst_mm = dst_vma->vm_mm; 1088 struct mm_struct *src_mm = src_vma->vm_mm; 1089 pte_t *orig_src_pte, *orig_dst_pte; 1090 pte_t *src_pte, *dst_pte; 1091 pmd_t dummy_pmdval; 1092 pte_t ptent; 1093 spinlock_t *src_ptl, *dst_ptl; 1094 int progress, max_nr, ret = 0; 1095 int rss[NR_MM_COUNTERS]; 1096 swp_entry_t entry = (swp_entry_t){0}; 1097 struct folio *prealloc = NULL; 1098 int nr; 1099 1100 again: 1101 progress = 0; 1102 init_rss_vec(rss); 1103 1104 /* 1105 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1106 * error handling here, assume that exclusive mmap_lock on dst and src 1107 * protects anon from unexpected THP transitions; with shmem and file 1108 * protected by mmap_lock-less collapse skipping areas with anon_vma 1109 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1110 * can remove such assumptions later, but this is good enough for now. 1111 */ 1112 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1113 if (!dst_pte) { 1114 ret = -ENOMEM; 1115 goto out; 1116 } 1117 1118 /* 1119 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1120 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1121 * the PTE page is stable, and there is no need to get pmdval and do 1122 * pmd_same() check. 1123 */ 1124 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1125 &src_ptl); 1126 if (!src_pte) { 1127 pte_unmap_unlock(dst_pte, dst_ptl); 1128 /* ret == 0 */ 1129 goto out; 1130 } 1131 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1132 orig_src_pte = src_pte; 1133 orig_dst_pte = dst_pte; 1134 arch_enter_lazy_mmu_mode(); 1135 1136 do { 1137 nr = 1; 1138 1139 /* 1140 * We are holding two locks at this point - either of them 1141 * could generate latencies in another task on another CPU. 1142 */ 1143 if (progress >= 32) { 1144 progress = 0; 1145 if (need_resched() || 1146 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1147 break; 1148 } 1149 ptent = ptep_get(src_pte); 1150 if (pte_none(ptent)) { 1151 progress++; 1152 continue; 1153 } 1154 if (unlikely(!pte_present(ptent))) { 1155 ret = copy_nonpresent_pte(dst_mm, src_mm, 1156 dst_pte, src_pte, 1157 dst_vma, src_vma, 1158 addr, rss); 1159 if (ret == -EIO) { 1160 entry = pte_to_swp_entry(ptep_get(src_pte)); 1161 break; 1162 } else if (ret == -EBUSY) { 1163 break; 1164 } else if (!ret) { 1165 progress += 8; 1166 continue; 1167 } 1168 ptent = ptep_get(src_pte); 1169 VM_WARN_ON_ONCE(!pte_present(ptent)); 1170 1171 /* 1172 * Device exclusive entry restored, continue by copying 1173 * the now present pte. 1174 */ 1175 WARN_ON_ONCE(ret != -ENOENT); 1176 } 1177 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1178 max_nr = (end - addr) / PAGE_SIZE; 1179 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1180 ptent, addr, max_nr, rss, &prealloc); 1181 /* 1182 * If we need a pre-allocated page for this pte, drop the 1183 * locks, allocate, and try again. 1184 * If copy failed due to hwpoison in source page, break out. 1185 */ 1186 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1187 break; 1188 if (unlikely(prealloc)) { 1189 /* 1190 * pre-alloc page cannot be reused by next time so as 1191 * to strictly follow mempolicy (e.g., alloc_page_vma() 1192 * will allocate page according to address). This 1193 * could only happen if one pinned pte changed. 1194 */ 1195 folio_put(prealloc); 1196 prealloc = NULL; 1197 } 1198 nr = ret; 1199 progress += 8 * nr; 1200 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1201 addr != end); 1202 1203 arch_leave_lazy_mmu_mode(); 1204 pte_unmap_unlock(orig_src_pte, src_ptl); 1205 add_mm_rss_vec(dst_mm, rss); 1206 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1207 cond_resched(); 1208 1209 if (ret == -EIO) { 1210 VM_WARN_ON_ONCE(!entry.val); 1211 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1212 ret = -ENOMEM; 1213 goto out; 1214 } 1215 entry.val = 0; 1216 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1217 goto out; 1218 } else if (ret == -EAGAIN) { 1219 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1220 if (!prealloc) 1221 return -ENOMEM; 1222 } else if (ret < 0) { 1223 VM_WARN_ON_ONCE(1); 1224 } 1225 1226 /* We've captured and resolved the error. Reset, try again. */ 1227 ret = 0; 1228 1229 if (addr != end) 1230 goto again; 1231 out: 1232 if (unlikely(prealloc)) 1233 folio_put(prealloc); 1234 return ret; 1235 } 1236 1237 static inline int 1238 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1239 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1240 unsigned long end) 1241 { 1242 struct mm_struct *dst_mm = dst_vma->vm_mm; 1243 struct mm_struct *src_mm = src_vma->vm_mm; 1244 pmd_t *src_pmd, *dst_pmd; 1245 unsigned long next; 1246 1247 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1248 if (!dst_pmd) 1249 return -ENOMEM; 1250 src_pmd = pmd_offset(src_pud, addr); 1251 do { 1252 next = pmd_addr_end(addr, end); 1253 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1254 || pmd_devmap(*src_pmd)) { 1255 int err; 1256 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1257 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1258 addr, dst_vma, src_vma); 1259 if (err == -ENOMEM) 1260 return -ENOMEM; 1261 if (!err) 1262 continue; 1263 /* fall through */ 1264 } 1265 if (pmd_none_or_clear_bad(src_pmd)) 1266 continue; 1267 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1268 addr, next)) 1269 return -ENOMEM; 1270 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1271 return 0; 1272 } 1273 1274 static inline int 1275 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1276 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1277 unsigned long end) 1278 { 1279 struct mm_struct *dst_mm = dst_vma->vm_mm; 1280 struct mm_struct *src_mm = src_vma->vm_mm; 1281 pud_t *src_pud, *dst_pud; 1282 unsigned long next; 1283 1284 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1285 if (!dst_pud) 1286 return -ENOMEM; 1287 src_pud = pud_offset(src_p4d, addr); 1288 do { 1289 next = pud_addr_end(addr, end); 1290 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1291 int err; 1292 1293 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1294 err = copy_huge_pud(dst_mm, src_mm, 1295 dst_pud, src_pud, addr, src_vma); 1296 if (err == -ENOMEM) 1297 return -ENOMEM; 1298 if (!err) 1299 continue; 1300 /* fall through */ 1301 } 1302 if (pud_none_or_clear_bad(src_pud)) 1303 continue; 1304 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1305 addr, next)) 1306 return -ENOMEM; 1307 } while (dst_pud++, src_pud++, addr = next, addr != end); 1308 return 0; 1309 } 1310 1311 static inline int 1312 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1313 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1314 unsigned long end) 1315 { 1316 struct mm_struct *dst_mm = dst_vma->vm_mm; 1317 p4d_t *src_p4d, *dst_p4d; 1318 unsigned long next; 1319 1320 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1321 if (!dst_p4d) 1322 return -ENOMEM; 1323 src_p4d = p4d_offset(src_pgd, addr); 1324 do { 1325 next = p4d_addr_end(addr, end); 1326 if (p4d_none_or_clear_bad(src_p4d)) 1327 continue; 1328 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1329 addr, next)) 1330 return -ENOMEM; 1331 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1332 return 0; 1333 } 1334 1335 /* 1336 * Return true if the vma needs to copy the pgtable during this fork(). Return 1337 * false when we can speed up fork() by allowing lazy page faults later until 1338 * when the child accesses the memory range. 1339 */ 1340 static bool 1341 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1342 { 1343 /* 1344 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1345 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1346 * contains uffd-wp protection information, that's something we can't 1347 * retrieve from page cache, and skip copying will lose those info. 1348 */ 1349 if (userfaultfd_wp(dst_vma)) 1350 return true; 1351 1352 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1353 return true; 1354 1355 if (src_vma->anon_vma) 1356 return true; 1357 1358 /* 1359 * Don't copy ptes where a page fault will fill them correctly. Fork 1360 * becomes much lighter when there are big shared or private readonly 1361 * mappings. The tradeoff is that copy_page_range is more efficient 1362 * than faulting. 1363 */ 1364 return false; 1365 } 1366 1367 int 1368 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1369 { 1370 pgd_t *src_pgd, *dst_pgd; 1371 unsigned long addr = src_vma->vm_start; 1372 unsigned long end = src_vma->vm_end; 1373 struct mm_struct *dst_mm = dst_vma->vm_mm; 1374 struct mm_struct *src_mm = src_vma->vm_mm; 1375 struct mmu_notifier_range range; 1376 unsigned long next; 1377 bool is_cow; 1378 int ret; 1379 1380 if (!vma_needs_copy(dst_vma, src_vma)) 1381 return 0; 1382 1383 if (is_vm_hugetlb_page(src_vma)) 1384 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1385 1386 /* 1387 * We need to invalidate the secondary MMU mappings only when 1388 * there could be a permission downgrade on the ptes of the 1389 * parent mm. And a permission downgrade will only happen if 1390 * is_cow_mapping() returns true. 1391 */ 1392 is_cow = is_cow_mapping(src_vma->vm_flags); 1393 1394 if (is_cow) { 1395 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1396 0, src_mm, addr, end); 1397 mmu_notifier_invalidate_range_start(&range); 1398 /* 1399 * Disabling preemption is not needed for the write side, as 1400 * the read side doesn't spin, but goes to the mmap_lock. 1401 * 1402 * Use the raw variant of the seqcount_t write API to avoid 1403 * lockdep complaining about preemptibility. 1404 */ 1405 vma_assert_write_locked(src_vma); 1406 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1407 } 1408 1409 ret = 0; 1410 dst_pgd = pgd_offset(dst_mm, addr); 1411 src_pgd = pgd_offset(src_mm, addr); 1412 do { 1413 next = pgd_addr_end(addr, end); 1414 if (pgd_none_or_clear_bad(src_pgd)) 1415 continue; 1416 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1417 addr, next))) { 1418 ret = -ENOMEM; 1419 break; 1420 } 1421 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1422 1423 if (is_cow) { 1424 raw_write_seqcount_end(&src_mm->write_protect_seq); 1425 mmu_notifier_invalidate_range_end(&range); 1426 } 1427 return ret; 1428 } 1429 1430 /* Whether we should zap all COWed (private) pages too */ 1431 static inline bool should_zap_cows(struct zap_details *details) 1432 { 1433 /* By default, zap all pages */ 1434 if (!details || details->reclaim_pt) 1435 return true; 1436 1437 /* Or, we zap COWed pages only if the caller wants to */ 1438 return details->even_cows; 1439 } 1440 1441 /* Decides whether we should zap this folio with the folio pointer specified */ 1442 static inline bool should_zap_folio(struct zap_details *details, 1443 struct folio *folio) 1444 { 1445 /* If we can make a decision without *folio.. */ 1446 if (should_zap_cows(details)) 1447 return true; 1448 1449 /* Otherwise we should only zap non-anon folios */ 1450 return !folio_test_anon(folio); 1451 } 1452 1453 static inline bool zap_drop_markers(struct zap_details *details) 1454 { 1455 if (!details) 1456 return false; 1457 1458 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1459 } 1460 1461 /* 1462 * This function makes sure that we'll replace the none pte with an uffd-wp 1463 * swap special pte marker when necessary. Must be with the pgtable lock held. 1464 * 1465 * Returns true if uffd-wp ptes was installed, false otherwise. 1466 */ 1467 static inline bool 1468 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1469 unsigned long addr, pte_t *pte, int nr, 1470 struct zap_details *details, pte_t pteval) 1471 { 1472 bool was_installed = false; 1473 1474 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1475 /* Zap on anonymous always means dropping everything */ 1476 if (vma_is_anonymous(vma)) 1477 return false; 1478 1479 if (zap_drop_markers(details)) 1480 return false; 1481 1482 for (;;) { 1483 /* the PFN in the PTE is irrelevant. */ 1484 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1485 was_installed = true; 1486 if (--nr == 0) 1487 break; 1488 pte++; 1489 addr += PAGE_SIZE; 1490 } 1491 #endif 1492 return was_installed; 1493 } 1494 1495 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1496 struct vm_area_struct *vma, struct folio *folio, 1497 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1498 unsigned long addr, struct zap_details *details, int *rss, 1499 bool *force_flush, bool *force_break, bool *any_skipped) 1500 { 1501 struct mm_struct *mm = tlb->mm; 1502 bool delay_rmap = false; 1503 1504 if (!folio_test_anon(folio)) { 1505 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1506 if (pte_dirty(ptent)) { 1507 folio_mark_dirty(folio); 1508 if (tlb_delay_rmap(tlb)) { 1509 delay_rmap = true; 1510 *force_flush = true; 1511 } 1512 } 1513 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1514 folio_mark_accessed(folio); 1515 rss[mm_counter(folio)] -= nr; 1516 } else { 1517 /* We don't need up-to-date accessed/dirty bits. */ 1518 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1519 rss[MM_ANONPAGES] -= nr; 1520 } 1521 /* Checking a single PTE in a batch is sufficient. */ 1522 arch_check_zapped_pte(vma, ptent); 1523 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1524 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1525 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1526 nr, details, ptent); 1527 1528 if (!delay_rmap) { 1529 folio_remove_rmap_ptes(folio, page, nr, vma); 1530 1531 if (unlikely(folio_mapcount(folio) < 0)) 1532 print_bad_pte(vma, addr, ptent, page); 1533 } 1534 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1535 *force_flush = true; 1536 *force_break = true; 1537 } 1538 } 1539 1540 /* 1541 * Zap or skip at least one present PTE, trying to batch-process subsequent 1542 * PTEs that map consecutive pages of the same folio. 1543 * 1544 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1545 */ 1546 static inline int zap_present_ptes(struct mmu_gather *tlb, 1547 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1548 unsigned int max_nr, unsigned long addr, 1549 struct zap_details *details, int *rss, bool *force_flush, 1550 bool *force_break, bool *any_skipped) 1551 { 1552 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1553 struct mm_struct *mm = tlb->mm; 1554 struct folio *folio; 1555 struct page *page; 1556 int nr; 1557 1558 page = vm_normal_page(vma, addr, ptent); 1559 if (!page) { 1560 /* We don't need up-to-date accessed/dirty bits. */ 1561 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1562 arch_check_zapped_pte(vma, ptent); 1563 tlb_remove_tlb_entry(tlb, pte, addr); 1564 if (userfaultfd_pte_wp(vma, ptent)) 1565 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1566 pte, 1, details, ptent); 1567 ksm_might_unmap_zero_page(mm, ptent); 1568 return 1; 1569 } 1570 1571 folio = page_folio(page); 1572 if (unlikely(!should_zap_folio(details, folio))) { 1573 *any_skipped = true; 1574 return 1; 1575 } 1576 1577 /* 1578 * Make sure that the common "small folio" case is as fast as possible 1579 * by keeping the batching logic separate. 1580 */ 1581 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1582 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1583 NULL, NULL, NULL); 1584 1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1586 addr, details, rss, force_flush, 1587 force_break, any_skipped); 1588 return nr; 1589 } 1590 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1591 details, rss, force_flush, force_break, any_skipped); 1592 return 1; 1593 } 1594 1595 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1596 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1597 unsigned int max_nr, unsigned long addr, 1598 struct zap_details *details, int *rss, bool *any_skipped) 1599 { 1600 swp_entry_t entry; 1601 int nr = 1; 1602 1603 *any_skipped = true; 1604 entry = pte_to_swp_entry(ptent); 1605 if (is_device_private_entry(entry) || 1606 is_device_exclusive_entry(entry)) { 1607 struct page *page = pfn_swap_entry_to_page(entry); 1608 struct folio *folio = page_folio(page); 1609 1610 if (unlikely(!should_zap_folio(details, folio))) 1611 return 1; 1612 /* 1613 * Both device private/exclusive mappings should only 1614 * work with anonymous page so far, so we don't need to 1615 * consider uffd-wp bit when zap. For more information, 1616 * see zap_install_uffd_wp_if_needed(). 1617 */ 1618 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1619 rss[mm_counter(folio)]--; 1620 folio_remove_rmap_pte(folio, page, vma); 1621 folio_put(folio); 1622 } else if (!non_swap_entry(entry)) { 1623 /* Genuine swap entries, hence a private anon pages */ 1624 if (!should_zap_cows(details)) 1625 return 1; 1626 1627 nr = swap_pte_batch(pte, max_nr, ptent); 1628 rss[MM_SWAPENTS] -= nr; 1629 free_swap_and_cache_nr(entry, nr); 1630 } else if (is_migration_entry(entry)) { 1631 struct folio *folio = pfn_swap_entry_folio(entry); 1632 1633 if (!should_zap_folio(details, folio)) 1634 return 1; 1635 rss[mm_counter(folio)]--; 1636 } else if (pte_marker_entry_uffd_wp(entry)) { 1637 /* 1638 * For anon: always drop the marker; for file: only 1639 * drop the marker if explicitly requested. 1640 */ 1641 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1642 return 1; 1643 } else if (is_guard_swp_entry(entry)) { 1644 /* 1645 * Ordinary zapping should not remove guard PTE 1646 * markers. Only do so if we should remove PTE markers 1647 * in general. 1648 */ 1649 if (!zap_drop_markers(details)) 1650 return 1; 1651 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1652 if (!should_zap_cows(details)) 1653 return 1; 1654 } else { 1655 /* We should have covered all the swap entry types */ 1656 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1657 WARN_ON_ONCE(1); 1658 } 1659 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1660 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1661 1662 return nr; 1663 } 1664 1665 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1666 struct vm_area_struct *vma, pte_t *pte, 1667 unsigned long addr, unsigned long end, 1668 struct zap_details *details, int *rss, 1669 bool *force_flush, bool *force_break, 1670 bool *any_skipped) 1671 { 1672 pte_t ptent = ptep_get(pte); 1673 int max_nr = (end - addr) / PAGE_SIZE; 1674 int nr = 0; 1675 1676 /* Skip all consecutive none ptes */ 1677 if (pte_none(ptent)) { 1678 for (nr = 1; nr < max_nr; nr++) { 1679 ptent = ptep_get(pte + nr); 1680 if (!pte_none(ptent)) 1681 break; 1682 } 1683 max_nr -= nr; 1684 if (!max_nr) 1685 return nr; 1686 pte += nr; 1687 addr += nr * PAGE_SIZE; 1688 } 1689 1690 if (pte_present(ptent)) 1691 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1692 details, rss, force_flush, force_break, 1693 any_skipped); 1694 else 1695 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1696 details, rss, any_skipped); 1697 1698 return nr; 1699 } 1700 1701 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1702 struct vm_area_struct *vma, pmd_t *pmd, 1703 unsigned long addr, unsigned long end, 1704 struct zap_details *details) 1705 { 1706 bool force_flush = false, force_break = false; 1707 struct mm_struct *mm = tlb->mm; 1708 int rss[NR_MM_COUNTERS]; 1709 spinlock_t *ptl; 1710 pte_t *start_pte; 1711 pte_t *pte; 1712 pmd_t pmdval; 1713 unsigned long start = addr; 1714 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1715 bool direct_reclaim = true; 1716 int nr; 1717 1718 retry: 1719 tlb_change_page_size(tlb, PAGE_SIZE); 1720 init_rss_vec(rss); 1721 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1722 if (!pte) 1723 return addr; 1724 1725 flush_tlb_batched_pending(mm); 1726 arch_enter_lazy_mmu_mode(); 1727 do { 1728 bool any_skipped = false; 1729 1730 if (need_resched()) { 1731 direct_reclaim = false; 1732 break; 1733 } 1734 1735 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1736 &force_flush, &force_break, &any_skipped); 1737 if (any_skipped) 1738 can_reclaim_pt = false; 1739 if (unlikely(force_break)) { 1740 addr += nr * PAGE_SIZE; 1741 direct_reclaim = false; 1742 break; 1743 } 1744 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1745 1746 /* 1747 * Fast path: try to hold the pmd lock and unmap the PTE page. 1748 * 1749 * If the pte lock was released midway (retry case), or if the attempt 1750 * to hold the pmd lock failed, then we need to recheck all pte entries 1751 * to ensure they are still none, thereby preventing the pte entries 1752 * from being repopulated by another thread. 1753 */ 1754 if (can_reclaim_pt && direct_reclaim && addr == end) 1755 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1756 1757 add_mm_rss_vec(mm, rss); 1758 arch_leave_lazy_mmu_mode(); 1759 1760 /* Do the actual TLB flush before dropping ptl */ 1761 if (force_flush) { 1762 tlb_flush_mmu_tlbonly(tlb); 1763 tlb_flush_rmaps(tlb, vma); 1764 } 1765 pte_unmap_unlock(start_pte, ptl); 1766 1767 /* 1768 * If we forced a TLB flush (either due to running out of 1769 * batch buffers or because we needed to flush dirty TLB 1770 * entries before releasing the ptl), free the batched 1771 * memory too. Come back again if we didn't do everything. 1772 */ 1773 if (force_flush) 1774 tlb_flush_mmu(tlb); 1775 1776 if (addr != end) { 1777 cond_resched(); 1778 force_flush = false; 1779 force_break = false; 1780 goto retry; 1781 } 1782 1783 if (can_reclaim_pt) { 1784 if (direct_reclaim) 1785 free_pte(mm, start, tlb, pmdval); 1786 else 1787 try_to_free_pte(mm, pmd, start, tlb); 1788 } 1789 1790 return addr; 1791 } 1792 1793 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1794 struct vm_area_struct *vma, pud_t *pud, 1795 unsigned long addr, unsigned long end, 1796 struct zap_details *details) 1797 { 1798 pmd_t *pmd; 1799 unsigned long next; 1800 1801 pmd = pmd_offset(pud, addr); 1802 do { 1803 next = pmd_addr_end(addr, end); 1804 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1805 if (next - addr != HPAGE_PMD_SIZE) 1806 __split_huge_pmd(vma, pmd, addr, false); 1807 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1808 addr = next; 1809 continue; 1810 } 1811 /* fall through */ 1812 } else if (details && details->single_folio && 1813 folio_test_pmd_mappable(details->single_folio) && 1814 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1815 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1816 /* 1817 * Take and drop THP pmd lock so that we cannot return 1818 * prematurely, while zap_huge_pmd() has cleared *pmd, 1819 * but not yet decremented compound_mapcount(). 1820 */ 1821 spin_unlock(ptl); 1822 } 1823 if (pmd_none(*pmd)) { 1824 addr = next; 1825 continue; 1826 } 1827 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1828 if (addr != next) 1829 pmd--; 1830 } while (pmd++, cond_resched(), addr != end); 1831 1832 return addr; 1833 } 1834 1835 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1836 struct vm_area_struct *vma, p4d_t *p4d, 1837 unsigned long addr, unsigned long end, 1838 struct zap_details *details) 1839 { 1840 pud_t *pud; 1841 unsigned long next; 1842 1843 pud = pud_offset(p4d, addr); 1844 do { 1845 next = pud_addr_end(addr, end); 1846 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1847 if (next - addr != HPAGE_PUD_SIZE) { 1848 mmap_assert_locked(tlb->mm); 1849 split_huge_pud(vma, pud, addr); 1850 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1851 goto next; 1852 /* fall through */ 1853 } 1854 if (pud_none_or_clear_bad(pud)) 1855 continue; 1856 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1857 next: 1858 cond_resched(); 1859 } while (pud++, addr = next, addr != end); 1860 1861 return addr; 1862 } 1863 1864 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1865 struct vm_area_struct *vma, pgd_t *pgd, 1866 unsigned long addr, unsigned long end, 1867 struct zap_details *details) 1868 { 1869 p4d_t *p4d; 1870 unsigned long next; 1871 1872 p4d = p4d_offset(pgd, addr); 1873 do { 1874 next = p4d_addr_end(addr, end); 1875 if (p4d_none_or_clear_bad(p4d)) 1876 continue; 1877 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1878 } while (p4d++, addr = next, addr != end); 1879 1880 return addr; 1881 } 1882 1883 void unmap_page_range(struct mmu_gather *tlb, 1884 struct vm_area_struct *vma, 1885 unsigned long addr, unsigned long end, 1886 struct zap_details *details) 1887 { 1888 pgd_t *pgd; 1889 unsigned long next; 1890 1891 BUG_ON(addr >= end); 1892 tlb_start_vma(tlb, vma); 1893 pgd = pgd_offset(vma->vm_mm, addr); 1894 do { 1895 next = pgd_addr_end(addr, end); 1896 if (pgd_none_or_clear_bad(pgd)) 1897 continue; 1898 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1899 } while (pgd++, addr = next, addr != end); 1900 tlb_end_vma(tlb, vma); 1901 } 1902 1903 1904 static void unmap_single_vma(struct mmu_gather *tlb, 1905 struct vm_area_struct *vma, unsigned long start_addr, 1906 unsigned long end_addr, 1907 struct zap_details *details, bool mm_wr_locked) 1908 { 1909 unsigned long start = max(vma->vm_start, start_addr); 1910 unsigned long end; 1911 1912 if (start >= vma->vm_end) 1913 return; 1914 end = min(vma->vm_end, end_addr); 1915 if (end <= vma->vm_start) 1916 return; 1917 1918 if (vma->vm_file) 1919 uprobe_munmap(vma, start, end); 1920 1921 if (start != end) { 1922 if (unlikely(is_vm_hugetlb_page(vma))) { 1923 /* 1924 * It is undesirable to test vma->vm_file as it 1925 * should be non-null for valid hugetlb area. 1926 * However, vm_file will be NULL in the error 1927 * cleanup path of mmap_region. When 1928 * hugetlbfs ->mmap method fails, 1929 * mmap_region() nullifies vma->vm_file 1930 * before calling this function to clean up. 1931 * Since no pte has actually been setup, it is 1932 * safe to do nothing in this case. 1933 */ 1934 if (vma->vm_file) { 1935 zap_flags_t zap_flags = details ? 1936 details->zap_flags : 0; 1937 __unmap_hugepage_range(tlb, vma, start, end, 1938 NULL, zap_flags); 1939 } 1940 } else 1941 unmap_page_range(tlb, vma, start, end, details); 1942 } 1943 } 1944 1945 /** 1946 * unmap_vmas - unmap a range of memory covered by a list of vma's 1947 * @tlb: address of the caller's struct mmu_gather 1948 * @mas: the maple state 1949 * @vma: the starting vma 1950 * @start_addr: virtual address at which to start unmapping 1951 * @end_addr: virtual address at which to end unmapping 1952 * @tree_end: The maximum index to check 1953 * @mm_wr_locked: lock flag 1954 * 1955 * Unmap all pages in the vma list. 1956 * 1957 * Only addresses between `start' and `end' will be unmapped. 1958 * 1959 * The VMA list must be sorted in ascending virtual address order. 1960 * 1961 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1962 * range after unmap_vmas() returns. So the only responsibility here is to 1963 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1964 * drops the lock and schedules. 1965 */ 1966 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1967 struct vm_area_struct *vma, unsigned long start_addr, 1968 unsigned long end_addr, unsigned long tree_end, 1969 bool mm_wr_locked) 1970 { 1971 struct mmu_notifier_range range; 1972 struct zap_details details = { 1973 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1974 /* Careful - we need to zap private pages too! */ 1975 .even_cows = true, 1976 }; 1977 1978 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1979 start_addr, end_addr); 1980 mmu_notifier_invalidate_range_start(&range); 1981 do { 1982 unsigned long start = start_addr; 1983 unsigned long end = end_addr; 1984 hugetlb_zap_begin(vma, &start, &end); 1985 unmap_single_vma(tlb, vma, start, end, &details, 1986 mm_wr_locked); 1987 hugetlb_zap_end(vma, &details); 1988 vma = mas_find(mas, tree_end - 1); 1989 } while (vma && likely(!xa_is_zero(vma))); 1990 mmu_notifier_invalidate_range_end(&range); 1991 } 1992 1993 /** 1994 * zap_page_range_single_batched - remove user pages in a given range 1995 * @tlb: pointer to the caller's struct mmu_gather 1996 * @vma: vm_area_struct holding the applicable pages 1997 * @address: starting address of pages to remove 1998 * @size: number of bytes to remove 1999 * @details: details of shared cache invalidation 2000 * 2001 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2002 * hugetlb, @tlb is flushed and re-initialized by this function. 2003 */ 2004 void zap_page_range_single_batched(struct mmu_gather *tlb, 2005 struct vm_area_struct *vma, unsigned long address, 2006 unsigned long size, struct zap_details *details) 2007 { 2008 const unsigned long end = address + size; 2009 struct mmu_notifier_range range; 2010 2011 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2012 2013 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2014 address, end); 2015 hugetlb_zap_begin(vma, &range.start, &range.end); 2016 update_hiwater_rss(vma->vm_mm); 2017 mmu_notifier_invalidate_range_start(&range); 2018 /* 2019 * unmap 'address-end' not 'range.start-range.end' as range 2020 * could have been expanded for hugetlb pmd sharing. 2021 */ 2022 unmap_single_vma(tlb, vma, address, end, details, false); 2023 mmu_notifier_invalidate_range_end(&range); 2024 if (is_vm_hugetlb_page(vma)) { 2025 /* 2026 * flush tlb and free resources before hugetlb_zap_end(), to 2027 * avoid concurrent page faults' allocation failure. 2028 */ 2029 tlb_finish_mmu(tlb); 2030 hugetlb_zap_end(vma, details); 2031 tlb_gather_mmu(tlb, vma->vm_mm); 2032 } 2033 } 2034 2035 /** 2036 * zap_page_range_single - remove user pages in a given range 2037 * @vma: vm_area_struct holding the applicable pages 2038 * @address: starting address of pages to zap 2039 * @size: number of bytes to zap 2040 * @details: details of shared cache invalidation 2041 * 2042 * The range must fit into one VMA. 2043 */ 2044 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2045 unsigned long size, struct zap_details *details) 2046 { 2047 struct mmu_gather tlb; 2048 2049 tlb_gather_mmu(&tlb, vma->vm_mm); 2050 zap_page_range_single_batched(&tlb, vma, address, size, details); 2051 tlb_finish_mmu(&tlb); 2052 } 2053 2054 /** 2055 * zap_vma_ptes - remove ptes mapping the vma 2056 * @vma: vm_area_struct holding ptes to be zapped 2057 * @address: starting address of pages to zap 2058 * @size: number of bytes to zap 2059 * 2060 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2061 * 2062 * The entire address range must be fully contained within the vma. 2063 * 2064 */ 2065 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2066 unsigned long size) 2067 { 2068 if (!range_in_vma(vma, address, address + size) || 2069 !(vma->vm_flags & VM_PFNMAP)) 2070 return; 2071 2072 zap_page_range_single(vma, address, size, NULL); 2073 } 2074 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2075 2076 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2077 { 2078 pgd_t *pgd; 2079 p4d_t *p4d; 2080 pud_t *pud; 2081 pmd_t *pmd; 2082 2083 pgd = pgd_offset(mm, addr); 2084 p4d = p4d_alloc(mm, pgd, addr); 2085 if (!p4d) 2086 return NULL; 2087 pud = pud_alloc(mm, p4d, addr); 2088 if (!pud) 2089 return NULL; 2090 pmd = pmd_alloc(mm, pud, addr); 2091 if (!pmd) 2092 return NULL; 2093 2094 VM_BUG_ON(pmd_trans_huge(*pmd)); 2095 return pmd; 2096 } 2097 2098 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2099 spinlock_t **ptl) 2100 { 2101 pmd_t *pmd = walk_to_pmd(mm, addr); 2102 2103 if (!pmd) 2104 return NULL; 2105 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2106 } 2107 2108 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2109 { 2110 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2111 /* 2112 * Whoever wants to forbid the zeropage after some zeropages 2113 * might already have been mapped has to scan the page tables and 2114 * bail out on any zeropages. Zeropages in COW mappings can 2115 * be unshared using FAULT_FLAG_UNSHARE faults. 2116 */ 2117 if (mm_forbids_zeropage(vma->vm_mm)) 2118 return false; 2119 /* zeropages in COW mappings are common and unproblematic. */ 2120 if (is_cow_mapping(vma->vm_flags)) 2121 return true; 2122 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2123 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2124 return true; 2125 /* 2126 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2127 * find the shared zeropage and longterm-pin it, which would 2128 * be problematic as soon as the zeropage gets replaced by a different 2129 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2130 * now differ to what GUP looked up. FSDAX is incompatible to 2131 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2132 * check_vma_flags). 2133 */ 2134 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2135 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2136 } 2137 2138 static int validate_page_before_insert(struct vm_area_struct *vma, 2139 struct page *page) 2140 { 2141 struct folio *folio = page_folio(page); 2142 2143 if (!folio_ref_count(folio)) 2144 return -EINVAL; 2145 if (unlikely(is_zero_folio(folio))) { 2146 if (!vm_mixed_zeropage_allowed(vma)) 2147 return -EINVAL; 2148 return 0; 2149 } 2150 if (folio_test_anon(folio) || folio_test_slab(folio) || 2151 page_has_type(page)) 2152 return -EINVAL; 2153 flush_dcache_folio(folio); 2154 return 0; 2155 } 2156 2157 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2158 unsigned long addr, struct page *page, 2159 pgprot_t prot, bool mkwrite) 2160 { 2161 struct folio *folio = page_folio(page); 2162 pte_t pteval = ptep_get(pte); 2163 2164 if (!pte_none(pteval)) { 2165 if (!mkwrite) 2166 return -EBUSY; 2167 2168 /* see insert_pfn(). */ 2169 if (pte_pfn(pteval) != page_to_pfn(page)) { 2170 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2171 return -EFAULT; 2172 } 2173 pteval = maybe_mkwrite(pteval, vma); 2174 pteval = pte_mkyoung(pteval); 2175 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2176 update_mmu_cache(vma, addr, pte); 2177 return 0; 2178 } 2179 2180 /* Ok, finally just insert the thing.. */ 2181 pteval = mk_pte(page, prot); 2182 if (unlikely(is_zero_folio(folio))) { 2183 pteval = pte_mkspecial(pteval); 2184 } else { 2185 folio_get(folio); 2186 pteval = mk_pte(page, prot); 2187 if (mkwrite) { 2188 pteval = pte_mkyoung(pteval); 2189 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2190 } 2191 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2192 folio_add_file_rmap_pte(folio, page, vma); 2193 } 2194 set_pte_at(vma->vm_mm, addr, pte, pteval); 2195 return 0; 2196 } 2197 2198 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2199 struct page *page, pgprot_t prot, bool mkwrite) 2200 { 2201 int retval; 2202 pte_t *pte; 2203 spinlock_t *ptl; 2204 2205 retval = validate_page_before_insert(vma, page); 2206 if (retval) 2207 goto out; 2208 retval = -ENOMEM; 2209 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2210 if (!pte) 2211 goto out; 2212 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2213 mkwrite); 2214 pte_unmap_unlock(pte, ptl); 2215 out: 2216 return retval; 2217 } 2218 2219 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2220 unsigned long addr, struct page *page, pgprot_t prot) 2221 { 2222 int err; 2223 2224 err = validate_page_before_insert(vma, page); 2225 if (err) 2226 return err; 2227 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2228 } 2229 2230 /* insert_pages() amortizes the cost of spinlock operations 2231 * when inserting pages in a loop. 2232 */ 2233 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2234 struct page **pages, unsigned long *num, pgprot_t prot) 2235 { 2236 pmd_t *pmd = NULL; 2237 pte_t *start_pte, *pte; 2238 spinlock_t *pte_lock; 2239 struct mm_struct *const mm = vma->vm_mm; 2240 unsigned long curr_page_idx = 0; 2241 unsigned long remaining_pages_total = *num; 2242 unsigned long pages_to_write_in_pmd; 2243 int ret; 2244 more: 2245 ret = -EFAULT; 2246 pmd = walk_to_pmd(mm, addr); 2247 if (!pmd) 2248 goto out; 2249 2250 pages_to_write_in_pmd = min_t(unsigned long, 2251 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2252 2253 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2254 ret = -ENOMEM; 2255 if (pte_alloc(mm, pmd)) 2256 goto out; 2257 2258 while (pages_to_write_in_pmd) { 2259 int pte_idx = 0; 2260 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2261 2262 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2263 if (!start_pte) { 2264 ret = -EFAULT; 2265 goto out; 2266 } 2267 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2268 int err = insert_page_in_batch_locked(vma, pte, 2269 addr, pages[curr_page_idx], prot); 2270 if (unlikely(err)) { 2271 pte_unmap_unlock(start_pte, pte_lock); 2272 ret = err; 2273 remaining_pages_total -= pte_idx; 2274 goto out; 2275 } 2276 addr += PAGE_SIZE; 2277 ++curr_page_idx; 2278 } 2279 pte_unmap_unlock(start_pte, pte_lock); 2280 pages_to_write_in_pmd -= batch_size; 2281 remaining_pages_total -= batch_size; 2282 } 2283 if (remaining_pages_total) 2284 goto more; 2285 ret = 0; 2286 out: 2287 *num = remaining_pages_total; 2288 return ret; 2289 } 2290 2291 /** 2292 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2293 * @vma: user vma to map to 2294 * @addr: target start user address of these pages 2295 * @pages: source kernel pages 2296 * @num: in: number of pages to map. out: number of pages that were *not* 2297 * mapped. (0 means all pages were successfully mapped). 2298 * 2299 * Preferred over vm_insert_page() when inserting multiple pages. 2300 * 2301 * In case of error, we may have mapped a subset of the provided 2302 * pages. It is the caller's responsibility to account for this case. 2303 * 2304 * The same restrictions apply as in vm_insert_page(). 2305 */ 2306 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2307 struct page **pages, unsigned long *num) 2308 { 2309 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2310 2311 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2312 return -EFAULT; 2313 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2314 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2315 BUG_ON(vma->vm_flags & VM_PFNMAP); 2316 vm_flags_set(vma, VM_MIXEDMAP); 2317 } 2318 /* Defer page refcount checking till we're about to map that page. */ 2319 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2320 } 2321 EXPORT_SYMBOL(vm_insert_pages); 2322 2323 /** 2324 * vm_insert_page - insert single page into user vma 2325 * @vma: user vma to map to 2326 * @addr: target user address of this page 2327 * @page: source kernel page 2328 * 2329 * This allows drivers to insert individual pages they've allocated 2330 * into a user vma. The zeropage is supported in some VMAs, 2331 * see vm_mixed_zeropage_allowed(). 2332 * 2333 * The page has to be a nice clean _individual_ kernel allocation. 2334 * If you allocate a compound page, you need to have marked it as 2335 * such (__GFP_COMP), or manually just split the page up yourself 2336 * (see split_page()). 2337 * 2338 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2339 * took an arbitrary page protection parameter. This doesn't allow 2340 * that. Your vma protection will have to be set up correctly, which 2341 * means that if you want a shared writable mapping, you'd better 2342 * ask for a shared writable mapping! 2343 * 2344 * The page does not need to be reserved. 2345 * 2346 * Usually this function is called from f_op->mmap() handler 2347 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2348 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2349 * function from other places, for example from page-fault handler. 2350 * 2351 * Return: %0 on success, negative error code otherwise. 2352 */ 2353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2354 struct page *page) 2355 { 2356 if (addr < vma->vm_start || addr >= vma->vm_end) 2357 return -EFAULT; 2358 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2359 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2360 BUG_ON(vma->vm_flags & VM_PFNMAP); 2361 vm_flags_set(vma, VM_MIXEDMAP); 2362 } 2363 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2364 } 2365 EXPORT_SYMBOL(vm_insert_page); 2366 2367 /* 2368 * __vm_map_pages - maps range of kernel pages into user vma 2369 * @vma: user vma to map to 2370 * @pages: pointer to array of source kernel pages 2371 * @num: number of pages in page array 2372 * @offset: user's requested vm_pgoff 2373 * 2374 * This allows drivers to map range of kernel pages into a user vma. 2375 * The zeropage is supported in some VMAs, see 2376 * vm_mixed_zeropage_allowed(). 2377 * 2378 * Return: 0 on success and error code otherwise. 2379 */ 2380 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2381 unsigned long num, unsigned long offset) 2382 { 2383 unsigned long count = vma_pages(vma); 2384 unsigned long uaddr = vma->vm_start; 2385 int ret, i; 2386 2387 /* Fail if the user requested offset is beyond the end of the object */ 2388 if (offset >= num) 2389 return -ENXIO; 2390 2391 /* Fail if the user requested size exceeds available object size */ 2392 if (count > num - offset) 2393 return -ENXIO; 2394 2395 for (i = 0; i < count; i++) { 2396 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2397 if (ret < 0) 2398 return ret; 2399 uaddr += PAGE_SIZE; 2400 } 2401 2402 return 0; 2403 } 2404 2405 /** 2406 * vm_map_pages - maps range of kernel pages starts with non zero offset 2407 * @vma: user vma to map to 2408 * @pages: pointer to array of source kernel pages 2409 * @num: number of pages in page array 2410 * 2411 * Maps an object consisting of @num pages, catering for the user's 2412 * requested vm_pgoff 2413 * 2414 * If we fail to insert any page into the vma, the function will return 2415 * immediately leaving any previously inserted pages present. Callers 2416 * from the mmap handler may immediately return the error as their caller 2417 * will destroy the vma, removing any successfully inserted pages. Other 2418 * callers should make their own arrangements for calling unmap_region(). 2419 * 2420 * Context: Process context. Called by mmap handlers. 2421 * Return: 0 on success and error code otherwise. 2422 */ 2423 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2424 unsigned long num) 2425 { 2426 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2427 } 2428 EXPORT_SYMBOL(vm_map_pages); 2429 2430 /** 2431 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2432 * @vma: user vma to map to 2433 * @pages: pointer to array of source kernel pages 2434 * @num: number of pages in page array 2435 * 2436 * Similar to vm_map_pages(), except that it explicitly sets the offset 2437 * to 0. This function is intended for the drivers that did not consider 2438 * vm_pgoff. 2439 * 2440 * Context: Process context. Called by mmap handlers. 2441 * Return: 0 on success and error code otherwise. 2442 */ 2443 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2444 unsigned long num) 2445 { 2446 return __vm_map_pages(vma, pages, num, 0); 2447 } 2448 EXPORT_SYMBOL(vm_map_pages_zero); 2449 2450 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2451 pfn_t pfn, pgprot_t prot, bool mkwrite) 2452 { 2453 struct mm_struct *mm = vma->vm_mm; 2454 pte_t *pte, entry; 2455 spinlock_t *ptl; 2456 2457 pte = get_locked_pte(mm, addr, &ptl); 2458 if (!pte) 2459 return VM_FAULT_OOM; 2460 entry = ptep_get(pte); 2461 if (!pte_none(entry)) { 2462 if (mkwrite) { 2463 /* 2464 * For read faults on private mappings the PFN passed 2465 * in may not match the PFN we have mapped if the 2466 * mapped PFN is a writeable COW page. In the mkwrite 2467 * case we are creating a writable PTE for a shared 2468 * mapping and we expect the PFNs to match. If they 2469 * don't match, we are likely racing with block 2470 * allocation and mapping invalidation so just skip the 2471 * update. 2472 */ 2473 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2474 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2475 goto out_unlock; 2476 } 2477 entry = pte_mkyoung(entry); 2478 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2479 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2480 update_mmu_cache(vma, addr, pte); 2481 } 2482 goto out_unlock; 2483 } 2484 2485 /* Ok, finally just insert the thing.. */ 2486 if (pfn_t_devmap(pfn)) 2487 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2488 else 2489 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2490 2491 if (mkwrite) { 2492 entry = pte_mkyoung(entry); 2493 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2494 } 2495 2496 set_pte_at(mm, addr, pte, entry); 2497 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2498 2499 out_unlock: 2500 pte_unmap_unlock(pte, ptl); 2501 return VM_FAULT_NOPAGE; 2502 } 2503 2504 /** 2505 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2506 * @vma: user vma to map to 2507 * @addr: target user address of this page 2508 * @pfn: source kernel pfn 2509 * @pgprot: pgprot flags for the inserted page 2510 * 2511 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2512 * to override pgprot on a per-page basis. 2513 * 2514 * This only makes sense for IO mappings, and it makes no sense for 2515 * COW mappings. In general, using multiple vmas is preferable; 2516 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2517 * impractical. 2518 * 2519 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2520 * caching- and encryption bits different than those of @vma->vm_page_prot, 2521 * because the caching- or encryption mode may not be known at mmap() time. 2522 * 2523 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2524 * to set caching and encryption bits for those vmas (except for COW pages). 2525 * This is ensured by core vm only modifying these page table entries using 2526 * functions that don't touch caching- or encryption bits, using pte_modify() 2527 * if needed. (See for example mprotect()). 2528 * 2529 * Also when new page-table entries are created, this is only done using the 2530 * fault() callback, and never using the value of vma->vm_page_prot, 2531 * except for page-table entries that point to anonymous pages as the result 2532 * of COW. 2533 * 2534 * Context: Process context. May allocate using %GFP_KERNEL. 2535 * Return: vm_fault_t value. 2536 */ 2537 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2538 unsigned long pfn, pgprot_t pgprot) 2539 { 2540 /* 2541 * Technically, architectures with pte_special can avoid all these 2542 * restrictions (same for remap_pfn_range). However we would like 2543 * consistency in testing and feature parity among all, so we should 2544 * try to keep these invariants in place for everybody. 2545 */ 2546 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2547 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2548 (VM_PFNMAP|VM_MIXEDMAP)); 2549 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2550 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2551 2552 if (addr < vma->vm_start || addr >= vma->vm_end) 2553 return VM_FAULT_SIGBUS; 2554 2555 if (!pfn_modify_allowed(pfn, pgprot)) 2556 return VM_FAULT_SIGBUS; 2557 2558 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2559 2560 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2561 false); 2562 } 2563 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2564 2565 /** 2566 * vmf_insert_pfn - insert single pfn into user vma 2567 * @vma: user vma to map to 2568 * @addr: target user address of this page 2569 * @pfn: source kernel pfn 2570 * 2571 * Similar to vm_insert_page, this allows drivers to insert individual pages 2572 * they've allocated into a user vma. Same comments apply. 2573 * 2574 * This function should only be called from a vm_ops->fault handler, and 2575 * in that case the handler should return the result of this function. 2576 * 2577 * vma cannot be a COW mapping. 2578 * 2579 * As this is called only for pages that do not currently exist, we 2580 * do not need to flush old virtual caches or the TLB. 2581 * 2582 * Context: Process context. May allocate using %GFP_KERNEL. 2583 * Return: vm_fault_t value. 2584 */ 2585 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2586 unsigned long pfn) 2587 { 2588 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2589 } 2590 EXPORT_SYMBOL(vmf_insert_pfn); 2591 2592 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2593 { 2594 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2595 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2596 return false; 2597 /* these checks mirror the abort conditions in vm_normal_page */ 2598 if (vma->vm_flags & VM_MIXEDMAP) 2599 return true; 2600 if (pfn_t_devmap(pfn)) 2601 return true; 2602 if (pfn_t_special(pfn)) 2603 return true; 2604 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2605 return true; 2606 return false; 2607 } 2608 2609 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2610 unsigned long addr, pfn_t pfn, bool mkwrite) 2611 { 2612 pgprot_t pgprot = vma->vm_page_prot; 2613 int err; 2614 2615 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2616 return VM_FAULT_SIGBUS; 2617 2618 if (addr < vma->vm_start || addr >= vma->vm_end) 2619 return VM_FAULT_SIGBUS; 2620 2621 pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot); 2622 2623 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2624 return VM_FAULT_SIGBUS; 2625 2626 /* 2627 * If we don't have pte special, then we have to use the pfn_valid() 2628 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2629 * refcount the page if pfn_valid is true (hence insert_page rather 2630 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2631 * without pte special, it would there be refcounted as a normal page. 2632 */ 2633 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2634 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2635 struct page *page; 2636 2637 /* 2638 * At this point we are committed to insert_page() 2639 * regardless of whether the caller specified flags that 2640 * result in pfn_t_has_page() == false. 2641 */ 2642 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2643 err = insert_page(vma, addr, page, pgprot, mkwrite); 2644 } else { 2645 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2646 } 2647 2648 if (err == -ENOMEM) 2649 return VM_FAULT_OOM; 2650 if (err < 0 && err != -EBUSY) 2651 return VM_FAULT_SIGBUS; 2652 2653 return VM_FAULT_NOPAGE; 2654 } 2655 2656 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2657 bool write) 2658 { 2659 pgprot_t pgprot = vmf->vma->vm_page_prot; 2660 unsigned long addr = vmf->address; 2661 int err; 2662 2663 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2664 return VM_FAULT_SIGBUS; 2665 2666 err = insert_page(vmf->vma, addr, page, pgprot, write); 2667 if (err == -ENOMEM) 2668 return VM_FAULT_OOM; 2669 if (err < 0 && err != -EBUSY) 2670 return VM_FAULT_SIGBUS; 2671 2672 return VM_FAULT_NOPAGE; 2673 } 2674 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2675 2676 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2677 pfn_t pfn) 2678 { 2679 return __vm_insert_mixed(vma, addr, pfn, false); 2680 } 2681 EXPORT_SYMBOL(vmf_insert_mixed); 2682 2683 /* 2684 * If the insertion of PTE failed because someone else already added a 2685 * different entry in the mean time, we treat that as success as we assume 2686 * the same entry was actually inserted. 2687 */ 2688 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2689 unsigned long addr, pfn_t pfn) 2690 { 2691 return __vm_insert_mixed(vma, addr, pfn, true); 2692 } 2693 2694 /* 2695 * maps a range of physical memory into the requested pages. the old 2696 * mappings are removed. any references to nonexistent pages results 2697 * in null mappings (currently treated as "copy-on-access") 2698 */ 2699 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2700 unsigned long addr, unsigned long end, 2701 unsigned long pfn, pgprot_t prot) 2702 { 2703 pte_t *pte, *mapped_pte; 2704 spinlock_t *ptl; 2705 int err = 0; 2706 2707 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2708 if (!pte) 2709 return -ENOMEM; 2710 arch_enter_lazy_mmu_mode(); 2711 do { 2712 BUG_ON(!pte_none(ptep_get(pte))); 2713 if (!pfn_modify_allowed(pfn, prot)) { 2714 err = -EACCES; 2715 break; 2716 } 2717 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2718 pfn++; 2719 } while (pte++, addr += PAGE_SIZE, addr != end); 2720 arch_leave_lazy_mmu_mode(); 2721 pte_unmap_unlock(mapped_pte, ptl); 2722 return err; 2723 } 2724 2725 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2726 unsigned long addr, unsigned long end, 2727 unsigned long pfn, pgprot_t prot) 2728 { 2729 pmd_t *pmd; 2730 unsigned long next; 2731 int err; 2732 2733 pfn -= addr >> PAGE_SHIFT; 2734 pmd = pmd_alloc(mm, pud, addr); 2735 if (!pmd) 2736 return -ENOMEM; 2737 VM_BUG_ON(pmd_trans_huge(*pmd)); 2738 do { 2739 next = pmd_addr_end(addr, end); 2740 err = remap_pte_range(mm, pmd, addr, next, 2741 pfn + (addr >> PAGE_SHIFT), prot); 2742 if (err) 2743 return err; 2744 } while (pmd++, addr = next, addr != end); 2745 return 0; 2746 } 2747 2748 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2749 unsigned long addr, unsigned long end, 2750 unsigned long pfn, pgprot_t prot) 2751 { 2752 pud_t *pud; 2753 unsigned long next; 2754 int err; 2755 2756 pfn -= addr >> PAGE_SHIFT; 2757 pud = pud_alloc(mm, p4d, addr); 2758 if (!pud) 2759 return -ENOMEM; 2760 do { 2761 next = pud_addr_end(addr, end); 2762 err = remap_pmd_range(mm, pud, addr, next, 2763 pfn + (addr >> PAGE_SHIFT), prot); 2764 if (err) 2765 return err; 2766 } while (pud++, addr = next, addr != end); 2767 return 0; 2768 } 2769 2770 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2771 unsigned long addr, unsigned long end, 2772 unsigned long pfn, pgprot_t prot) 2773 { 2774 p4d_t *p4d; 2775 unsigned long next; 2776 int err; 2777 2778 pfn -= addr >> PAGE_SHIFT; 2779 p4d = p4d_alloc(mm, pgd, addr); 2780 if (!p4d) 2781 return -ENOMEM; 2782 do { 2783 next = p4d_addr_end(addr, end); 2784 err = remap_pud_range(mm, p4d, addr, next, 2785 pfn + (addr >> PAGE_SHIFT), prot); 2786 if (err) 2787 return err; 2788 } while (p4d++, addr = next, addr != end); 2789 return 0; 2790 } 2791 2792 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2793 unsigned long pfn, unsigned long size, pgprot_t prot) 2794 { 2795 pgd_t *pgd; 2796 unsigned long next; 2797 unsigned long end = addr + PAGE_ALIGN(size); 2798 struct mm_struct *mm = vma->vm_mm; 2799 int err; 2800 2801 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2802 return -EINVAL; 2803 2804 /* 2805 * Physically remapped pages are special. Tell the 2806 * rest of the world about it: 2807 * VM_IO tells people not to look at these pages 2808 * (accesses can have side effects). 2809 * VM_PFNMAP tells the core MM that the base pages are just 2810 * raw PFN mappings, and do not have a "struct page" associated 2811 * with them. 2812 * VM_DONTEXPAND 2813 * Disable vma merging and expanding with mremap(). 2814 * VM_DONTDUMP 2815 * Omit vma from core dump, even when VM_IO turned off. 2816 * 2817 * There's a horrible special case to handle copy-on-write 2818 * behaviour that some programs depend on. We mark the "original" 2819 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2820 * See vm_normal_page() for details. 2821 */ 2822 if (is_cow_mapping(vma->vm_flags)) { 2823 if (addr != vma->vm_start || end != vma->vm_end) 2824 return -EINVAL; 2825 vma->vm_pgoff = pfn; 2826 } 2827 2828 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2829 2830 BUG_ON(addr >= end); 2831 pfn -= addr >> PAGE_SHIFT; 2832 pgd = pgd_offset(mm, addr); 2833 flush_cache_range(vma, addr, end); 2834 do { 2835 next = pgd_addr_end(addr, end); 2836 err = remap_p4d_range(mm, pgd, addr, next, 2837 pfn + (addr >> PAGE_SHIFT), prot); 2838 if (err) 2839 return err; 2840 } while (pgd++, addr = next, addr != end); 2841 2842 return 0; 2843 } 2844 2845 /* 2846 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2847 * must have pre-validated the caching bits of the pgprot_t. 2848 */ 2849 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2850 unsigned long pfn, unsigned long size, pgprot_t prot) 2851 { 2852 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2853 2854 if (!error) 2855 return 0; 2856 2857 /* 2858 * A partial pfn range mapping is dangerous: it does not 2859 * maintain page reference counts, and callers may free 2860 * pages due to the error. So zap it early. 2861 */ 2862 zap_page_range_single(vma, addr, size, NULL); 2863 return error; 2864 } 2865 2866 #ifdef __HAVE_PFNMAP_TRACKING 2867 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2868 unsigned long size, pgprot_t *prot) 2869 { 2870 struct pfnmap_track_ctx *ctx; 2871 2872 if (pfnmap_track(pfn, size, prot)) 2873 return ERR_PTR(-EINVAL); 2874 2875 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2876 if (unlikely(!ctx)) { 2877 pfnmap_untrack(pfn, size); 2878 return ERR_PTR(-ENOMEM); 2879 } 2880 2881 ctx->pfn = pfn; 2882 ctx->size = size; 2883 kref_init(&ctx->kref); 2884 return ctx; 2885 } 2886 2887 void pfnmap_track_ctx_release(struct kref *ref) 2888 { 2889 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 2890 2891 pfnmap_untrack(ctx->pfn, ctx->size); 2892 kfree(ctx); 2893 } 2894 #endif /* __HAVE_PFNMAP_TRACKING */ 2895 2896 /** 2897 * remap_pfn_range - remap kernel memory to userspace 2898 * @vma: user vma to map to 2899 * @addr: target page aligned user address to start at 2900 * @pfn: page frame number of kernel physical memory address 2901 * @size: size of mapping area 2902 * @prot: page protection flags for this mapping 2903 * 2904 * Note: this is only safe if the mm semaphore is held when called. 2905 * 2906 * Return: %0 on success, negative error code otherwise. 2907 */ 2908 #ifdef __HAVE_PFNMAP_TRACKING 2909 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2910 unsigned long pfn, unsigned long size, pgprot_t prot) 2911 { 2912 struct pfnmap_track_ctx *ctx = NULL; 2913 int err; 2914 2915 size = PAGE_ALIGN(size); 2916 2917 /* 2918 * If we cover the full VMA, we'll perform actual tracking, and 2919 * remember to untrack when the last reference to our tracking 2920 * context from a VMA goes away. We'll keep tracking the whole pfn 2921 * range even during VMA splits and partial unmapping. 2922 * 2923 * If we only cover parts of the VMA, we'll only setup the cachemode 2924 * in the pgprot for the pfn range. 2925 */ 2926 if (addr == vma->vm_start && addr + size == vma->vm_end) { 2927 if (vma->pfnmap_track_ctx) 2928 return -EINVAL; 2929 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 2930 if (IS_ERR(ctx)) 2931 return PTR_ERR(ctx); 2932 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 2933 return -EINVAL; 2934 } 2935 2936 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2937 if (ctx) { 2938 if (err) 2939 kref_put(&ctx->kref, pfnmap_track_ctx_release); 2940 else 2941 vma->pfnmap_track_ctx = ctx; 2942 } 2943 return err; 2944 } 2945 2946 #else 2947 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2948 unsigned long pfn, unsigned long size, pgprot_t prot) 2949 { 2950 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2951 } 2952 #endif 2953 EXPORT_SYMBOL(remap_pfn_range); 2954 2955 /** 2956 * vm_iomap_memory - remap memory to userspace 2957 * @vma: user vma to map to 2958 * @start: start of the physical memory to be mapped 2959 * @len: size of area 2960 * 2961 * This is a simplified io_remap_pfn_range() for common driver use. The 2962 * driver just needs to give us the physical memory range to be mapped, 2963 * we'll figure out the rest from the vma information. 2964 * 2965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2966 * whatever write-combining details or similar. 2967 * 2968 * Return: %0 on success, negative error code otherwise. 2969 */ 2970 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2971 { 2972 unsigned long vm_len, pfn, pages; 2973 2974 /* Check that the physical memory area passed in looks valid */ 2975 if (start + len < start) 2976 return -EINVAL; 2977 /* 2978 * You *really* shouldn't map things that aren't page-aligned, 2979 * but we've historically allowed it because IO memory might 2980 * just have smaller alignment. 2981 */ 2982 len += start & ~PAGE_MASK; 2983 pfn = start >> PAGE_SHIFT; 2984 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2985 if (pfn + pages < pfn) 2986 return -EINVAL; 2987 2988 /* We start the mapping 'vm_pgoff' pages into the area */ 2989 if (vma->vm_pgoff > pages) 2990 return -EINVAL; 2991 pfn += vma->vm_pgoff; 2992 pages -= vma->vm_pgoff; 2993 2994 /* Can we fit all of the mapping? */ 2995 vm_len = vma->vm_end - vma->vm_start; 2996 if (vm_len >> PAGE_SHIFT > pages) 2997 return -EINVAL; 2998 2999 /* Ok, let it rip */ 3000 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3001 } 3002 EXPORT_SYMBOL(vm_iomap_memory); 3003 3004 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3005 unsigned long addr, unsigned long end, 3006 pte_fn_t fn, void *data, bool create, 3007 pgtbl_mod_mask *mask) 3008 { 3009 pte_t *pte, *mapped_pte; 3010 int err = 0; 3011 spinlock_t *ptl; 3012 3013 if (create) { 3014 mapped_pte = pte = (mm == &init_mm) ? 3015 pte_alloc_kernel_track(pmd, addr, mask) : 3016 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3017 if (!pte) 3018 return -ENOMEM; 3019 } else { 3020 mapped_pte = pte = (mm == &init_mm) ? 3021 pte_offset_kernel(pmd, addr) : 3022 pte_offset_map_lock(mm, pmd, addr, &ptl); 3023 if (!pte) 3024 return -EINVAL; 3025 } 3026 3027 arch_enter_lazy_mmu_mode(); 3028 3029 if (fn) { 3030 do { 3031 if (create || !pte_none(ptep_get(pte))) { 3032 err = fn(pte, addr, data); 3033 if (err) 3034 break; 3035 } 3036 } while (pte++, addr += PAGE_SIZE, addr != end); 3037 } 3038 *mask |= PGTBL_PTE_MODIFIED; 3039 3040 arch_leave_lazy_mmu_mode(); 3041 3042 if (mm != &init_mm) 3043 pte_unmap_unlock(mapped_pte, ptl); 3044 return err; 3045 } 3046 3047 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3048 unsigned long addr, unsigned long end, 3049 pte_fn_t fn, void *data, bool create, 3050 pgtbl_mod_mask *mask) 3051 { 3052 pmd_t *pmd; 3053 unsigned long next; 3054 int err = 0; 3055 3056 BUG_ON(pud_leaf(*pud)); 3057 3058 if (create) { 3059 pmd = pmd_alloc_track(mm, pud, addr, mask); 3060 if (!pmd) 3061 return -ENOMEM; 3062 } else { 3063 pmd = pmd_offset(pud, addr); 3064 } 3065 do { 3066 next = pmd_addr_end(addr, end); 3067 if (pmd_none(*pmd) && !create) 3068 continue; 3069 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3070 return -EINVAL; 3071 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3072 if (!create) 3073 continue; 3074 pmd_clear_bad(pmd); 3075 } 3076 err = apply_to_pte_range(mm, pmd, addr, next, 3077 fn, data, create, mask); 3078 if (err) 3079 break; 3080 } while (pmd++, addr = next, addr != end); 3081 3082 return err; 3083 } 3084 3085 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3086 unsigned long addr, unsigned long end, 3087 pte_fn_t fn, void *data, bool create, 3088 pgtbl_mod_mask *mask) 3089 { 3090 pud_t *pud; 3091 unsigned long next; 3092 int err = 0; 3093 3094 if (create) { 3095 pud = pud_alloc_track(mm, p4d, addr, mask); 3096 if (!pud) 3097 return -ENOMEM; 3098 } else { 3099 pud = pud_offset(p4d, addr); 3100 } 3101 do { 3102 next = pud_addr_end(addr, end); 3103 if (pud_none(*pud) && !create) 3104 continue; 3105 if (WARN_ON_ONCE(pud_leaf(*pud))) 3106 return -EINVAL; 3107 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3108 if (!create) 3109 continue; 3110 pud_clear_bad(pud); 3111 } 3112 err = apply_to_pmd_range(mm, pud, addr, next, 3113 fn, data, create, mask); 3114 if (err) 3115 break; 3116 } while (pud++, addr = next, addr != end); 3117 3118 return err; 3119 } 3120 3121 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3122 unsigned long addr, unsigned long end, 3123 pte_fn_t fn, void *data, bool create, 3124 pgtbl_mod_mask *mask) 3125 { 3126 p4d_t *p4d; 3127 unsigned long next; 3128 int err = 0; 3129 3130 if (create) { 3131 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3132 if (!p4d) 3133 return -ENOMEM; 3134 } else { 3135 p4d = p4d_offset(pgd, addr); 3136 } 3137 do { 3138 next = p4d_addr_end(addr, end); 3139 if (p4d_none(*p4d) && !create) 3140 continue; 3141 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3142 return -EINVAL; 3143 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3144 if (!create) 3145 continue; 3146 p4d_clear_bad(p4d); 3147 } 3148 err = apply_to_pud_range(mm, p4d, addr, next, 3149 fn, data, create, mask); 3150 if (err) 3151 break; 3152 } while (p4d++, addr = next, addr != end); 3153 3154 return err; 3155 } 3156 3157 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3158 unsigned long size, pte_fn_t fn, 3159 void *data, bool create) 3160 { 3161 pgd_t *pgd; 3162 unsigned long start = addr, next; 3163 unsigned long end = addr + size; 3164 pgtbl_mod_mask mask = 0; 3165 int err = 0; 3166 3167 if (WARN_ON(addr >= end)) 3168 return -EINVAL; 3169 3170 pgd = pgd_offset(mm, addr); 3171 do { 3172 next = pgd_addr_end(addr, end); 3173 if (pgd_none(*pgd) && !create) 3174 continue; 3175 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3176 err = -EINVAL; 3177 break; 3178 } 3179 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3180 if (!create) 3181 continue; 3182 pgd_clear_bad(pgd); 3183 } 3184 err = apply_to_p4d_range(mm, pgd, addr, next, 3185 fn, data, create, &mask); 3186 if (err) 3187 break; 3188 } while (pgd++, addr = next, addr != end); 3189 3190 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3191 arch_sync_kernel_mappings(start, start + size); 3192 3193 return err; 3194 } 3195 3196 /* 3197 * Scan a region of virtual memory, filling in page tables as necessary 3198 * and calling a provided function on each leaf page table. 3199 */ 3200 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3201 unsigned long size, pte_fn_t fn, void *data) 3202 { 3203 return __apply_to_page_range(mm, addr, size, fn, data, true); 3204 } 3205 EXPORT_SYMBOL_GPL(apply_to_page_range); 3206 3207 /* 3208 * Scan a region of virtual memory, calling a provided function on 3209 * each leaf page table where it exists. 3210 * 3211 * Unlike apply_to_page_range, this does _not_ fill in page tables 3212 * where they are absent. 3213 */ 3214 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3215 unsigned long size, pte_fn_t fn, void *data) 3216 { 3217 return __apply_to_page_range(mm, addr, size, fn, data, false); 3218 } 3219 3220 /* 3221 * handle_pte_fault chooses page fault handler according to an entry which was 3222 * read non-atomically. Before making any commitment, on those architectures 3223 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3224 * parts, do_swap_page must check under lock before unmapping the pte and 3225 * proceeding (but do_wp_page is only called after already making such a check; 3226 * and do_anonymous_page can safely check later on). 3227 */ 3228 static inline int pte_unmap_same(struct vm_fault *vmf) 3229 { 3230 int same = 1; 3231 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3232 if (sizeof(pte_t) > sizeof(unsigned long)) { 3233 spin_lock(vmf->ptl); 3234 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3235 spin_unlock(vmf->ptl); 3236 } 3237 #endif 3238 pte_unmap(vmf->pte); 3239 vmf->pte = NULL; 3240 return same; 3241 } 3242 3243 /* 3244 * Return: 3245 * 0: copied succeeded 3246 * -EHWPOISON: copy failed due to hwpoison in source page 3247 * -EAGAIN: copied failed (some other reason) 3248 */ 3249 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3250 struct vm_fault *vmf) 3251 { 3252 int ret; 3253 void *kaddr; 3254 void __user *uaddr; 3255 struct vm_area_struct *vma = vmf->vma; 3256 struct mm_struct *mm = vma->vm_mm; 3257 unsigned long addr = vmf->address; 3258 3259 if (likely(src)) { 3260 if (copy_mc_user_highpage(dst, src, addr, vma)) 3261 return -EHWPOISON; 3262 return 0; 3263 } 3264 3265 /* 3266 * If the source page was a PFN mapping, we don't have 3267 * a "struct page" for it. We do a best-effort copy by 3268 * just copying from the original user address. If that 3269 * fails, we just zero-fill it. Live with it. 3270 */ 3271 kaddr = kmap_local_page(dst); 3272 pagefault_disable(); 3273 uaddr = (void __user *)(addr & PAGE_MASK); 3274 3275 /* 3276 * On architectures with software "accessed" bits, we would 3277 * take a double page fault, so mark it accessed here. 3278 */ 3279 vmf->pte = NULL; 3280 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3281 pte_t entry; 3282 3283 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3284 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3285 /* 3286 * Other thread has already handled the fault 3287 * and update local tlb only 3288 */ 3289 if (vmf->pte) 3290 update_mmu_tlb(vma, addr, vmf->pte); 3291 ret = -EAGAIN; 3292 goto pte_unlock; 3293 } 3294 3295 entry = pte_mkyoung(vmf->orig_pte); 3296 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3297 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3298 } 3299 3300 /* 3301 * This really shouldn't fail, because the page is there 3302 * in the page tables. But it might just be unreadable, 3303 * in which case we just give up and fill the result with 3304 * zeroes. 3305 */ 3306 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3307 if (vmf->pte) 3308 goto warn; 3309 3310 /* Re-validate under PTL if the page is still mapped */ 3311 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3312 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3313 /* The PTE changed under us, update local tlb */ 3314 if (vmf->pte) 3315 update_mmu_tlb(vma, addr, vmf->pte); 3316 ret = -EAGAIN; 3317 goto pte_unlock; 3318 } 3319 3320 /* 3321 * The same page can be mapped back since last copy attempt. 3322 * Try to copy again under PTL. 3323 */ 3324 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3325 /* 3326 * Give a warn in case there can be some obscure 3327 * use-case 3328 */ 3329 warn: 3330 WARN_ON_ONCE(1); 3331 clear_page(kaddr); 3332 } 3333 } 3334 3335 ret = 0; 3336 3337 pte_unlock: 3338 if (vmf->pte) 3339 pte_unmap_unlock(vmf->pte, vmf->ptl); 3340 pagefault_enable(); 3341 kunmap_local(kaddr); 3342 flush_dcache_page(dst); 3343 3344 return ret; 3345 } 3346 3347 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3348 { 3349 struct file *vm_file = vma->vm_file; 3350 3351 if (vm_file) 3352 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3353 3354 /* 3355 * Special mappings (e.g. VDSO) do not have any file so fake 3356 * a default GFP_KERNEL for them. 3357 */ 3358 return GFP_KERNEL; 3359 } 3360 3361 /* 3362 * Notify the address space that the page is about to become writable so that 3363 * it can prohibit this or wait for the page to get into an appropriate state. 3364 * 3365 * We do this without the lock held, so that it can sleep if it needs to. 3366 */ 3367 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3368 { 3369 vm_fault_t ret; 3370 unsigned int old_flags = vmf->flags; 3371 3372 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3373 3374 if (vmf->vma->vm_file && 3375 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3376 return VM_FAULT_SIGBUS; 3377 3378 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3379 /* Restore original flags so that caller is not surprised */ 3380 vmf->flags = old_flags; 3381 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3382 return ret; 3383 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3384 folio_lock(folio); 3385 if (!folio->mapping) { 3386 folio_unlock(folio); 3387 return 0; /* retry */ 3388 } 3389 ret |= VM_FAULT_LOCKED; 3390 } else 3391 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3392 return ret; 3393 } 3394 3395 /* 3396 * Handle dirtying of a page in shared file mapping on a write fault. 3397 * 3398 * The function expects the page to be locked and unlocks it. 3399 */ 3400 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3401 { 3402 struct vm_area_struct *vma = vmf->vma; 3403 struct address_space *mapping; 3404 struct folio *folio = page_folio(vmf->page); 3405 bool dirtied; 3406 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3407 3408 dirtied = folio_mark_dirty(folio); 3409 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3410 /* 3411 * Take a local copy of the address_space - folio.mapping may be zeroed 3412 * by truncate after folio_unlock(). The address_space itself remains 3413 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3414 * release semantics to prevent the compiler from undoing this copying. 3415 */ 3416 mapping = folio_raw_mapping(folio); 3417 folio_unlock(folio); 3418 3419 if (!page_mkwrite) 3420 file_update_time(vma->vm_file); 3421 3422 /* 3423 * Throttle page dirtying rate down to writeback speed. 3424 * 3425 * mapping may be NULL here because some device drivers do not 3426 * set page.mapping but still dirty their pages 3427 * 3428 * Drop the mmap_lock before waiting on IO, if we can. The file 3429 * is pinning the mapping, as per above. 3430 */ 3431 if ((dirtied || page_mkwrite) && mapping) { 3432 struct file *fpin; 3433 3434 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3435 balance_dirty_pages_ratelimited(mapping); 3436 if (fpin) { 3437 fput(fpin); 3438 return VM_FAULT_COMPLETED; 3439 } 3440 } 3441 3442 return 0; 3443 } 3444 3445 /* 3446 * Handle write page faults for pages that can be reused in the current vma 3447 * 3448 * This can happen either due to the mapping being with the VM_SHARED flag, 3449 * or due to us being the last reference standing to the page. In either 3450 * case, all we need to do here is to mark the page as writable and update 3451 * any related book-keeping. 3452 */ 3453 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3454 __releases(vmf->ptl) 3455 { 3456 struct vm_area_struct *vma = vmf->vma; 3457 pte_t entry; 3458 3459 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3460 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3461 3462 if (folio) { 3463 VM_BUG_ON(folio_test_anon(folio) && 3464 !PageAnonExclusive(vmf->page)); 3465 /* 3466 * Clear the folio's cpupid information as the existing 3467 * information potentially belongs to a now completely 3468 * unrelated process. 3469 */ 3470 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3471 } 3472 3473 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3474 entry = pte_mkyoung(vmf->orig_pte); 3475 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3476 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3477 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3478 pte_unmap_unlock(vmf->pte, vmf->ptl); 3479 count_vm_event(PGREUSE); 3480 } 3481 3482 /* 3483 * We could add a bitflag somewhere, but for now, we know that all 3484 * vm_ops that have a ->map_pages have been audited and don't need 3485 * the mmap_lock to be held. 3486 */ 3487 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3488 { 3489 struct vm_area_struct *vma = vmf->vma; 3490 3491 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3492 return 0; 3493 vma_end_read(vma); 3494 return VM_FAULT_RETRY; 3495 } 3496 3497 /** 3498 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3499 * @vmf: The vm_fault descriptor passed from the fault handler. 3500 * 3501 * When preparing to insert an anonymous page into a VMA from a 3502 * fault handler, call this function rather than anon_vma_prepare(). 3503 * If this vma does not already have an associated anon_vma and we are 3504 * only protected by the per-VMA lock, the caller must retry with the 3505 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3506 * determine if this VMA can share its anon_vma, and that's not safe to 3507 * do with only the per-VMA lock held for this VMA. 3508 * 3509 * Return: 0 if fault handling can proceed. Any other value should be 3510 * returned to the caller. 3511 */ 3512 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3513 { 3514 struct vm_area_struct *vma = vmf->vma; 3515 vm_fault_t ret = 0; 3516 3517 if (likely(vma->anon_vma)) 3518 return 0; 3519 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3520 if (!mmap_read_trylock(vma->vm_mm)) 3521 return VM_FAULT_RETRY; 3522 } 3523 if (__anon_vma_prepare(vma)) 3524 ret = VM_FAULT_OOM; 3525 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3526 mmap_read_unlock(vma->vm_mm); 3527 return ret; 3528 } 3529 3530 /* 3531 * Handle the case of a page which we actually need to copy to a new page, 3532 * either due to COW or unsharing. 3533 * 3534 * Called with mmap_lock locked and the old page referenced, but 3535 * without the ptl held. 3536 * 3537 * High level logic flow: 3538 * 3539 * - Allocate a page, copy the content of the old page to the new one. 3540 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3541 * - Take the PTL. If the pte changed, bail out and release the allocated page 3542 * - If the pte is still the way we remember it, update the page table and all 3543 * relevant references. This includes dropping the reference the page-table 3544 * held to the old page, as well as updating the rmap. 3545 * - In any case, unlock the PTL and drop the reference we took to the old page. 3546 */ 3547 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3548 { 3549 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3550 struct vm_area_struct *vma = vmf->vma; 3551 struct mm_struct *mm = vma->vm_mm; 3552 struct folio *old_folio = NULL; 3553 struct folio *new_folio = NULL; 3554 pte_t entry; 3555 int page_copied = 0; 3556 struct mmu_notifier_range range; 3557 vm_fault_t ret; 3558 bool pfn_is_zero; 3559 3560 delayacct_wpcopy_start(); 3561 3562 if (vmf->page) 3563 old_folio = page_folio(vmf->page); 3564 ret = vmf_anon_prepare(vmf); 3565 if (unlikely(ret)) 3566 goto out; 3567 3568 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3569 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3570 if (!new_folio) 3571 goto oom; 3572 3573 if (!pfn_is_zero) { 3574 int err; 3575 3576 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3577 if (err) { 3578 /* 3579 * COW failed, if the fault was solved by other, 3580 * it's fine. If not, userspace would re-fault on 3581 * the same address and we will handle the fault 3582 * from the second attempt. 3583 * The -EHWPOISON case will not be retried. 3584 */ 3585 folio_put(new_folio); 3586 if (old_folio) 3587 folio_put(old_folio); 3588 3589 delayacct_wpcopy_end(); 3590 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3591 } 3592 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3593 } 3594 3595 __folio_mark_uptodate(new_folio); 3596 3597 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3598 vmf->address & PAGE_MASK, 3599 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3600 mmu_notifier_invalidate_range_start(&range); 3601 3602 /* 3603 * Re-check the pte - we dropped the lock 3604 */ 3605 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3606 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3607 if (old_folio) { 3608 if (!folio_test_anon(old_folio)) { 3609 dec_mm_counter(mm, mm_counter_file(old_folio)); 3610 inc_mm_counter(mm, MM_ANONPAGES); 3611 } 3612 } else { 3613 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3614 inc_mm_counter(mm, MM_ANONPAGES); 3615 } 3616 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3617 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3618 entry = pte_sw_mkyoung(entry); 3619 if (unlikely(unshare)) { 3620 if (pte_soft_dirty(vmf->orig_pte)) 3621 entry = pte_mksoft_dirty(entry); 3622 if (pte_uffd_wp(vmf->orig_pte)) 3623 entry = pte_mkuffd_wp(entry); 3624 } else { 3625 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3626 } 3627 3628 /* 3629 * Clear the pte entry and flush it first, before updating the 3630 * pte with the new entry, to keep TLBs on different CPUs in 3631 * sync. This code used to set the new PTE then flush TLBs, but 3632 * that left a window where the new PTE could be loaded into 3633 * some TLBs while the old PTE remains in others. 3634 */ 3635 ptep_clear_flush(vma, vmf->address, vmf->pte); 3636 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3637 folio_add_lru_vma(new_folio, vma); 3638 BUG_ON(unshare && pte_write(entry)); 3639 set_pte_at(mm, vmf->address, vmf->pte, entry); 3640 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3641 if (old_folio) { 3642 /* 3643 * Only after switching the pte to the new page may 3644 * we remove the mapcount here. Otherwise another 3645 * process may come and find the rmap count decremented 3646 * before the pte is switched to the new page, and 3647 * "reuse" the old page writing into it while our pte 3648 * here still points into it and can be read by other 3649 * threads. 3650 * 3651 * The critical issue is to order this 3652 * folio_remove_rmap_pte() with the ptp_clear_flush 3653 * above. Those stores are ordered by (if nothing else,) 3654 * the barrier present in the atomic_add_negative 3655 * in folio_remove_rmap_pte(); 3656 * 3657 * Then the TLB flush in ptep_clear_flush ensures that 3658 * no process can access the old page before the 3659 * decremented mapcount is visible. And the old page 3660 * cannot be reused until after the decremented 3661 * mapcount is visible. So transitively, TLBs to 3662 * old page will be flushed before it can be reused. 3663 */ 3664 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3665 } 3666 3667 /* Free the old page.. */ 3668 new_folio = old_folio; 3669 page_copied = 1; 3670 pte_unmap_unlock(vmf->pte, vmf->ptl); 3671 } else if (vmf->pte) { 3672 update_mmu_tlb(vma, vmf->address, vmf->pte); 3673 pte_unmap_unlock(vmf->pte, vmf->ptl); 3674 } 3675 3676 mmu_notifier_invalidate_range_end(&range); 3677 3678 if (new_folio) 3679 folio_put(new_folio); 3680 if (old_folio) { 3681 if (page_copied) 3682 free_swap_cache(old_folio); 3683 folio_put(old_folio); 3684 } 3685 3686 delayacct_wpcopy_end(); 3687 return 0; 3688 oom: 3689 ret = VM_FAULT_OOM; 3690 out: 3691 if (old_folio) 3692 folio_put(old_folio); 3693 3694 delayacct_wpcopy_end(); 3695 return ret; 3696 } 3697 3698 /** 3699 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3700 * writeable once the page is prepared 3701 * 3702 * @vmf: structure describing the fault 3703 * @folio: the folio of vmf->page 3704 * 3705 * This function handles all that is needed to finish a write page fault in a 3706 * shared mapping due to PTE being read-only once the mapped page is prepared. 3707 * It handles locking of PTE and modifying it. 3708 * 3709 * The function expects the page to be locked or other protection against 3710 * concurrent faults / writeback (such as DAX radix tree locks). 3711 * 3712 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3713 * we acquired PTE lock. 3714 */ 3715 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3716 { 3717 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3718 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3719 &vmf->ptl); 3720 if (!vmf->pte) 3721 return VM_FAULT_NOPAGE; 3722 /* 3723 * We might have raced with another page fault while we released the 3724 * pte_offset_map_lock. 3725 */ 3726 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3727 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3728 pte_unmap_unlock(vmf->pte, vmf->ptl); 3729 return VM_FAULT_NOPAGE; 3730 } 3731 wp_page_reuse(vmf, folio); 3732 return 0; 3733 } 3734 3735 /* 3736 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3737 * mapping 3738 */ 3739 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3740 { 3741 struct vm_area_struct *vma = vmf->vma; 3742 3743 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3744 vm_fault_t ret; 3745 3746 pte_unmap_unlock(vmf->pte, vmf->ptl); 3747 ret = vmf_can_call_fault(vmf); 3748 if (ret) 3749 return ret; 3750 3751 vmf->flags |= FAULT_FLAG_MKWRITE; 3752 ret = vma->vm_ops->pfn_mkwrite(vmf); 3753 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3754 return ret; 3755 return finish_mkwrite_fault(vmf, NULL); 3756 } 3757 wp_page_reuse(vmf, NULL); 3758 return 0; 3759 } 3760 3761 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3762 __releases(vmf->ptl) 3763 { 3764 struct vm_area_struct *vma = vmf->vma; 3765 vm_fault_t ret = 0; 3766 3767 folio_get(folio); 3768 3769 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3770 vm_fault_t tmp; 3771 3772 pte_unmap_unlock(vmf->pte, vmf->ptl); 3773 tmp = vmf_can_call_fault(vmf); 3774 if (tmp) { 3775 folio_put(folio); 3776 return tmp; 3777 } 3778 3779 tmp = do_page_mkwrite(vmf, folio); 3780 if (unlikely(!tmp || (tmp & 3781 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3782 folio_put(folio); 3783 return tmp; 3784 } 3785 tmp = finish_mkwrite_fault(vmf, folio); 3786 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3787 folio_unlock(folio); 3788 folio_put(folio); 3789 return tmp; 3790 } 3791 } else { 3792 wp_page_reuse(vmf, folio); 3793 folio_lock(folio); 3794 } 3795 ret |= fault_dirty_shared_page(vmf); 3796 folio_put(folio); 3797 3798 return ret; 3799 } 3800 3801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3802 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3803 struct vm_area_struct *vma) 3804 { 3805 bool exclusive = false; 3806 3807 /* Let's just free up a large folio if only a single page is mapped. */ 3808 if (folio_large_mapcount(folio) <= 1) 3809 return false; 3810 3811 /* 3812 * The assumption for anonymous folios is that each page can only get 3813 * mapped once into each MM. The only exception are KSM folios, which 3814 * are always small. 3815 * 3816 * Each taken mapcount must be paired with exactly one taken reference, 3817 * whereby the refcount must be incremented before the mapcount when 3818 * mapping a page, and the refcount must be decremented after the 3819 * mapcount when unmapping a page. 3820 * 3821 * If all folio references are from mappings, and all mappings are in 3822 * the page tables of this MM, then this folio is exclusive to this MM. 3823 */ 3824 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3825 return false; 3826 3827 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3828 3829 if (unlikely(folio_test_swapcache(folio))) { 3830 /* 3831 * Note: freeing up the swapcache will fail if some PTEs are 3832 * still swap entries. 3833 */ 3834 if (!folio_trylock(folio)) 3835 return false; 3836 folio_free_swap(folio); 3837 folio_unlock(folio); 3838 } 3839 3840 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3841 return false; 3842 3843 /* Stabilize the mapcount vs. refcount and recheck. */ 3844 folio_lock_large_mapcount(folio); 3845 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3846 3847 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3848 goto unlock; 3849 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3850 goto unlock; 3851 3852 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3853 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3854 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3855 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3856 3857 /* 3858 * Do we need the folio lock? Likely not. If there would have been 3859 * references from page migration/swapout, we would have detected 3860 * an additional folio reference and never ended up here. 3861 */ 3862 exclusive = true; 3863 unlock: 3864 folio_unlock_large_mapcount(folio); 3865 return exclusive; 3866 } 3867 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3868 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3869 struct vm_area_struct *vma) 3870 { 3871 BUILD_BUG(); 3872 } 3873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3874 3875 static bool wp_can_reuse_anon_folio(struct folio *folio, 3876 struct vm_area_struct *vma) 3877 { 3878 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3879 return __wp_can_reuse_large_anon_folio(folio, vma); 3880 3881 /* 3882 * We have to verify under folio lock: these early checks are 3883 * just an optimization to avoid locking the folio and freeing 3884 * the swapcache if there is little hope that we can reuse. 3885 * 3886 * KSM doesn't necessarily raise the folio refcount. 3887 */ 3888 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3889 return false; 3890 if (!folio_test_lru(folio)) 3891 /* 3892 * We cannot easily detect+handle references from 3893 * remote LRU caches or references to LRU folios. 3894 */ 3895 lru_add_drain(); 3896 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3897 return false; 3898 if (!folio_trylock(folio)) 3899 return false; 3900 if (folio_test_swapcache(folio)) 3901 folio_free_swap(folio); 3902 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3903 folio_unlock(folio); 3904 return false; 3905 } 3906 /* 3907 * Ok, we've got the only folio reference from our mapping 3908 * and the folio is locked, it's dark out, and we're wearing 3909 * sunglasses. Hit it. 3910 */ 3911 folio_move_anon_rmap(folio, vma); 3912 folio_unlock(folio); 3913 return true; 3914 } 3915 3916 /* 3917 * This routine handles present pages, when 3918 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3919 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3920 * (FAULT_FLAG_UNSHARE) 3921 * 3922 * It is done by copying the page to a new address and decrementing the 3923 * shared-page counter for the old page. 3924 * 3925 * Note that this routine assumes that the protection checks have been 3926 * done by the caller (the low-level page fault routine in most cases). 3927 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3928 * done any necessary COW. 3929 * 3930 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3931 * though the page will change only once the write actually happens. This 3932 * avoids a few races, and potentially makes it more efficient. 3933 * 3934 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3935 * but allow concurrent faults), with pte both mapped and locked. 3936 * We return with mmap_lock still held, but pte unmapped and unlocked. 3937 */ 3938 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3939 __releases(vmf->ptl) 3940 { 3941 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3942 struct vm_area_struct *vma = vmf->vma; 3943 struct folio *folio = NULL; 3944 pte_t pte; 3945 3946 if (likely(!unshare)) { 3947 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3948 if (!userfaultfd_wp_async(vma)) { 3949 pte_unmap_unlock(vmf->pte, vmf->ptl); 3950 return handle_userfault(vmf, VM_UFFD_WP); 3951 } 3952 3953 /* 3954 * Nothing needed (cache flush, TLB invalidations, 3955 * etc.) because we're only removing the uffd-wp bit, 3956 * which is completely invisible to the user. 3957 */ 3958 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3959 3960 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3961 /* 3962 * Update this to be prepared for following up CoW 3963 * handling 3964 */ 3965 vmf->orig_pte = pte; 3966 } 3967 3968 /* 3969 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3970 * is flushed in this case before copying. 3971 */ 3972 if (unlikely(userfaultfd_wp(vmf->vma) && 3973 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3974 flush_tlb_page(vmf->vma, vmf->address); 3975 } 3976 3977 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3978 3979 if (vmf->page) 3980 folio = page_folio(vmf->page); 3981 3982 /* 3983 * Shared mapping: we are guaranteed to have VM_WRITE and 3984 * FAULT_FLAG_WRITE set at this point. 3985 */ 3986 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3987 /* 3988 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3989 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 3990 * 3991 * We should not cow pages in a shared writeable mapping. 3992 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3993 */ 3994 if (!vmf->page || is_fsdax_page(vmf->page)) { 3995 vmf->page = NULL; 3996 return wp_pfn_shared(vmf); 3997 } 3998 return wp_page_shared(vmf, folio); 3999 } 4000 4001 /* 4002 * Private mapping: create an exclusive anonymous page copy if reuse 4003 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4004 * 4005 * If we encounter a page that is marked exclusive, we must reuse 4006 * the page without further checks. 4007 */ 4008 if (folio && folio_test_anon(folio) && 4009 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4010 if (!PageAnonExclusive(vmf->page)) 4011 SetPageAnonExclusive(vmf->page); 4012 if (unlikely(unshare)) { 4013 pte_unmap_unlock(vmf->pte, vmf->ptl); 4014 return 0; 4015 } 4016 wp_page_reuse(vmf, folio); 4017 return 0; 4018 } 4019 /* 4020 * Ok, we need to copy. Oh, well.. 4021 */ 4022 if (folio) 4023 folio_get(folio); 4024 4025 pte_unmap_unlock(vmf->pte, vmf->ptl); 4026 #ifdef CONFIG_KSM 4027 if (folio && folio_test_ksm(folio)) 4028 count_vm_event(COW_KSM); 4029 #endif 4030 return wp_page_copy(vmf); 4031 } 4032 4033 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4034 unsigned long start_addr, unsigned long end_addr, 4035 struct zap_details *details) 4036 { 4037 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4038 } 4039 4040 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4041 pgoff_t first_index, 4042 pgoff_t last_index, 4043 struct zap_details *details) 4044 { 4045 struct vm_area_struct *vma; 4046 pgoff_t vba, vea, zba, zea; 4047 4048 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4049 vba = vma->vm_pgoff; 4050 vea = vba + vma_pages(vma) - 1; 4051 zba = max(first_index, vba); 4052 zea = min(last_index, vea); 4053 4054 unmap_mapping_range_vma(vma, 4055 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4056 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4057 details); 4058 } 4059 } 4060 4061 /** 4062 * unmap_mapping_folio() - Unmap single folio from processes. 4063 * @folio: The locked folio to be unmapped. 4064 * 4065 * Unmap this folio from any userspace process which still has it mmaped. 4066 * Typically, for efficiency, the range of nearby pages has already been 4067 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4068 * truncation or invalidation holds the lock on a folio, it may find that 4069 * the page has been remapped again: and then uses unmap_mapping_folio() 4070 * to unmap it finally. 4071 */ 4072 void unmap_mapping_folio(struct folio *folio) 4073 { 4074 struct address_space *mapping = folio->mapping; 4075 struct zap_details details = { }; 4076 pgoff_t first_index; 4077 pgoff_t last_index; 4078 4079 VM_BUG_ON(!folio_test_locked(folio)); 4080 4081 first_index = folio->index; 4082 last_index = folio_next_index(folio) - 1; 4083 4084 details.even_cows = false; 4085 details.single_folio = folio; 4086 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4087 4088 i_mmap_lock_read(mapping); 4089 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4090 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4091 last_index, &details); 4092 i_mmap_unlock_read(mapping); 4093 } 4094 4095 /** 4096 * unmap_mapping_pages() - Unmap pages from processes. 4097 * @mapping: The address space containing pages to be unmapped. 4098 * @start: Index of first page to be unmapped. 4099 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4100 * @even_cows: Whether to unmap even private COWed pages. 4101 * 4102 * Unmap the pages in this address space from any userspace process which 4103 * has them mmaped. Generally, you want to remove COWed pages as well when 4104 * a file is being truncated, but not when invalidating pages from the page 4105 * cache. 4106 */ 4107 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4108 pgoff_t nr, bool even_cows) 4109 { 4110 struct zap_details details = { }; 4111 pgoff_t first_index = start; 4112 pgoff_t last_index = start + nr - 1; 4113 4114 details.even_cows = even_cows; 4115 if (last_index < first_index) 4116 last_index = ULONG_MAX; 4117 4118 i_mmap_lock_read(mapping); 4119 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4120 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4121 last_index, &details); 4122 i_mmap_unlock_read(mapping); 4123 } 4124 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4125 4126 /** 4127 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4128 * address_space corresponding to the specified byte range in the underlying 4129 * file. 4130 * 4131 * @mapping: the address space containing mmaps to be unmapped. 4132 * @holebegin: byte in first page to unmap, relative to the start of 4133 * the underlying file. This will be rounded down to a PAGE_SIZE 4134 * boundary. Note that this is different from truncate_pagecache(), which 4135 * must keep the partial page. In contrast, we must get rid of 4136 * partial pages. 4137 * @holelen: size of prospective hole in bytes. This will be rounded 4138 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4139 * end of the file. 4140 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4141 * but 0 when invalidating pagecache, don't throw away private data. 4142 */ 4143 void unmap_mapping_range(struct address_space *mapping, 4144 loff_t const holebegin, loff_t const holelen, int even_cows) 4145 { 4146 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4147 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4148 4149 /* Check for overflow. */ 4150 if (sizeof(holelen) > sizeof(hlen)) { 4151 long long holeend = 4152 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4153 if (holeend & ~(long long)ULONG_MAX) 4154 hlen = ULONG_MAX - hba + 1; 4155 } 4156 4157 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4158 } 4159 EXPORT_SYMBOL(unmap_mapping_range); 4160 4161 /* 4162 * Restore a potential device exclusive pte to a working pte entry 4163 */ 4164 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4165 { 4166 struct folio *folio = page_folio(vmf->page); 4167 struct vm_area_struct *vma = vmf->vma; 4168 struct mmu_notifier_range range; 4169 vm_fault_t ret; 4170 4171 /* 4172 * We need a reference to lock the folio because we don't hold 4173 * the PTL so a racing thread can remove the device-exclusive 4174 * entry and unmap it. If the folio is free the entry must 4175 * have been removed already. If it happens to have already 4176 * been re-allocated after being freed all we do is lock and 4177 * unlock it. 4178 */ 4179 if (!folio_try_get(folio)) 4180 return 0; 4181 4182 ret = folio_lock_or_retry(folio, vmf); 4183 if (ret) { 4184 folio_put(folio); 4185 return ret; 4186 } 4187 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4188 vma->vm_mm, vmf->address & PAGE_MASK, 4189 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4190 mmu_notifier_invalidate_range_start(&range); 4191 4192 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4193 &vmf->ptl); 4194 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4195 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4196 vmf->pte, vmf->orig_pte); 4197 4198 if (vmf->pte) 4199 pte_unmap_unlock(vmf->pte, vmf->ptl); 4200 folio_unlock(folio); 4201 folio_put(folio); 4202 4203 mmu_notifier_invalidate_range_end(&range); 4204 return 0; 4205 } 4206 4207 static inline bool should_try_to_free_swap(struct folio *folio, 4208 struct vm_area_struct *vma, 4209 unsigned int fault_flags) 4210 { 4211 if (!folio_test_swapcache(folio)) 4212 return false; 4213 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4214 folio_test_mlocked(folio)) 4215 return true; 4216 /* 4217 * If we want to map a page that's in the swapcache writable, we 4218 * have to detect via the refcount if we're really the exclusive 4219 * user. Try freeing the swapcache to get rid of the swapcache 4220 * reference only in case it's likely that we'll be the exlusive user. 4221 */ 4222 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4223 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4224 } 4225 4226 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4227 { 4228 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4229 vmf->address, &vmf->ptl); 4230 if (!vmf->pte) 4231 return 0; 4232 /* 4233 * Be careful so that we will only recover a special uffd-wp pte into a 4234 * none pte. Otherwise it means the pte could have changed, so retry. 4235 * 4236 * This should also cover the case where e.g. the pte changed 4237 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4238 * So is_pte_marker() check is not enough to safely drop the pte. 4239 */ 4240 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4241 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4242 pte_unmap_unlock(vmf->pte, vmf->ptl); 4243 return 0; 4244 } 4245 4246 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4247 { 4248 if (vma_is_anonymous(vmf->vma)) 4249 return do_anonymous_page(vmf); 4250 else 4251 return do_fault(vmf); 4252 } 4253 4254 /* 4255 * This is actually a page-missing access, but with uffd-wp special pte 4256 * installed. It means this pte was wr-protected before being unmapped. 4257 */ 4258 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4259 { 4260 /* 4261 * Just in case there're leftover special ptes even after the region 4262 * got unregistered - we can simply clear them. 4263 */ 4264 if (unlikely(!userfaultfd_wp(vmf->vma))) 4265 return pte_marker_clear(vmf); 4266 4267 return do_pte_missing(vmf); 4268 } 4269 4270 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4271 { 4272 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4273 unsigned long marker = pte_marker_get(entry); 4274 4275 /* 4276 * PTE markers should never be empty. If anything weird happened, 4277 * the best thing to do is to kill the process along with its mm. 4278 */ 4279 if (WARN_ON_ONCE(!marker)) 4280 return VM_FAULT_SIGBUS; 4281 4282 /* Higher priority than uffd-wp when data corrupted */ 4283 if (marker & PTE_MARKER_POISONED) 4284 return VM_FAULT_HWPOISON; 4285 4286 /* Hitting a guard page is always a fatal condition. */ 4287 if (marker & PTE_MARKER_GUARD) 4288 return VM_FAULT_SIGSEGV; 4289 4290 if (pte_marker_entry_uffd_wp(entry)) 4291 return pte_marker_handle_uffd_wp(vmf); 4292 4293 /* This is an unknown pte marker */ 4294 return VM_FAULT_SIGBUS; 4295 } 4296 4297 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4298 { 4299 struct vm_area_struct *vma = vmf->vma; 4300 struct folio *folio; 4301 swp_entry_t entry; 4302 4303 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4304 if (!folio) 4305 return NULL; 4306 4307 entry = pte_to_swp_entry(vmf->orig_pte); 4308 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4309 GFP_KERNEL, entry)) { 4310 folio_put(folio); 4311 return NULL; 4312 } 4313 4314 return folio; 4315 } 4316 4317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4318 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4319 { 4320 struct swap_info_struct *si = swp_swap_info(entry); 4321 pgoff_t offset = swp_offset(entry); 4322 int i; 4323 4324 /* 4325 * While allocating a large folio and doing swap_read_folio, which is 4326 * the case the being faulted pte doesn't have swapcache. We need to 4327 * ensure all PTEs have no cache as well, otherwise, we might go to 4328 * swap devices while the content is in swapcache. 4329 */ 4330 for (i = 0; i < max_nr; i++) { 4331 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4332 return i; 4333 } 4334 4335 return i; 4336 } 4337 4338 /* 4339 * Check if the PTEs within a range are contiguous swap entries 4340 * and have consistent swapcache, zeromap. 4341 */ 4342 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4343 { 4344 unsigned long addr; 4345 swp_entry_t entry; 4346 int idx; 4347 pte_t pte; 4348 4349 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4350 idx = (vmf->address - addr) / PAGE_SIZE; 4351 pte = ptep_get(ptep); 4352 4353 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4354 return false; 4355 entry = pte_to_swp_entry(pte); 4356 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4357 return false; 4358 4359 /* 4360 * swap_read_folio() can't handle the case a large folio is hybridly 4361 * from different backends. And they are likely corner cases. Similar 4362 * things might be added once zswap support large folios. 4363 */ 4364 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4365 return false; 4366 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4367 return false; 4368 4369 return true; 4370 } 4371 4372 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4373 unsigned long addr, 4374 unsigned long orders) 4375 { 4376 int order, nr; 4377 4378 order = highest_order(orders); 4379 4380 /* 4381 * To swap in a THP with nr pages, we require that its first swap_offset 4382 * is aligned with that number, as it was when the THP was swapped out. 4383 * This helps filter out most invalid entries. 4384 */ 4385 while (orders) { 4386 nr = 1 << order; 4387 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4388 break; 4389 order = next_order(&orders, order); 4390 } 4391 4392 return orders; 4393 } 4394 4395 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4396 { 4397 struct vm_area_struct *vma = vmf->vma; 4398 unsigned long orders; 4399 struct folio *folio; 4400 unsigned long addr; 4401 swp_entry_t entry; 4402 spinlock_t *ptl; 4403 pte_t *pte; 4404 gfp_t gfp; 4405 int order; 4406 4407 /* 4408 * If uffd is active for the vma we need per-page fault fidelity to 4409 * maintain the uffd semantics. 4410 */ 4411 if (unlikely(userfaultfd_armed(vma))) 4412 goto fallback; 4413 4414 /* 4415 * A large swapped out folio could be partially or fully in zswap. We 4416 * lack handling for such cases, so fallback to swapping in order-0 4417 * folio. 4418 */ 4419 if (!zswap_never_enabled()) 4420 goto fallback; 4421 4422 entry = pte_to_swp_entry(vmf->orig_pte); 4423 /* 4424 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4425 * and suitable for swapping THP. 4426 */ 4427 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4428 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4429 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4430 orders = thp_swap_suitable_orders(swp_offset(entry), 4431 vmf->address, orders); 4432 4433 if (!orders) 4434 goto fallback; 4435 4436 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4437 vmf->address & PMD_MASK, &ptl); 4438 if (unlikely(!pte)) 4439 goto fallback; 4440 4441 /* 4442 * For do_swap_page, find the highest order where the aligned range is 4443 * completely swap entries with contiguous swap offsets. 4444 */ 4445 order = highest_order(orders); 4446 while (orders) { 4447 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4448 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4449 break; 4450 order = next_order(&orders, order); 4451 } 4452 4453 pte_unmap_unlock(pte, ptl); 4454 4455 /* Try allocating the highest of the remaining orders. */ 4456 gfp = vma_thp_gfp_mask(vma); 4457 while (orders) { 4458 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4459 folio = vma_alloc_folio(gfp, order, vma, addr); 4460 if (folio) { 4461 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4462 gfp, entry)) 4463 return folio; 4464 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4465 folio_put(folio); 4466 } 4467 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4468 order = next_order(&orders, order); 4469 } 4470 4471 fallback: 4472 return __alloc_swap_folio(vmf); 4473 } 4474 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4475 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4476 { 4477 return __alloc_swap_folio(vmf); 4478 } 4479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4480 4481 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4482 4483 /* 4484 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4485 * but allow concurrent faults), and pte mapped but not yet locked. 4486 * We return with pte unmapped and unlocked. 4487 * 4488 * We return with the mmap_lock locked or unlocked in the same cases 4489 * as does filemap_fault(). 4490 */ 4491 vm_fault_t do_swap_page(struct vm_fault *vmf) 4492 { 4493 struct vm_area_struct *vma = vmf->vma; 4494 struct folio *swapcache, *folio = NULL; 4495 DECLARE_WAITQUEUE(wait, current); 4496 struct page *page; 4497 struct swap_info_struct *si = NULL; 4498 rmap_t rmap_flags = RMAP_NONE; 4499 bool need_clear_cache = false; 4500 bool exclusive = false; 4501 swp_entry_t entry; 4502 pte_t pte; 4503 vm_fault_t ret = 0; 4504 void *shadow = NULL; 4505 int nr_pages; 4506 unsigned long page_idx; 4507 unsigned long address; 4508 pte_t *ptep; 4509 4510 if (!pte_unmap_same(vmf)) 4511 goto out; 4512 4513 entry = pte_to_swp_entry(vmf->orig_pte); 4514 if (unlikely(non_swap_entry(entry))) { 4515 if (is_migration_entry(entry)) { 4516 migration_entry_wait(vma->vm_mm, vmf->pmd, 4517 vmf->address); 4518 } else if (is_device_exclusive_entry(entry)) { 4519 vmf->page = pfn_swap_entry_to_page(entry); 4520 ret = remove_device_exclusive_entry(vmf); 4521 } else if (is_device_private_entry(entry)) { 4522 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4523 /* 4524 * migrate_to_ram is not yet ready to operate 4525 * under VMA lock. 4526 */ 4527 vma_end_read(vma); 4528 ret = VM_FAULT_RETRY; 4529 goto out; 4530 } 4531 4532 vmf->page = pfn_swap_entry_to_page(entry); 4533 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4534 vmf->address, &vmf->ptl); 4535 if (unlikely(!vmf->pte || 4536 !pte_same(ptep_get(vmf->pte), 4537 vmf->orig_pte))) 4538 goto unlock; 4539 4540 /* 4541 * Get a page reference while we know the page can't be 4542 * freed. 4543 */ 4544 if (trylock_page(vmf->page)) { 4545 struct dev_pagemap *pgmap; 4546 4547 get_page(vmf->page); 4548 pte_unmap_unlock(vmf->pte, vmf->ptl); 4549 pgmap = page_pgmap(vmf->page); 4550 ret = pgmap->ops->migrate_to_ram(vmf); 4551 unlock_page(vmf->page); 4552 put_page(vmf->page); 4553 } else { 4554 pte_unmap_unlock(vmf->pte, vmf->ptl); 4555 } 4556 } else if (is_hwpoison_entry(entry)) { 4557 ret = VM_FAULT_HWPOISON; 4558 } else if (is_pte_marker_entry(entry)) { 4559 ret = handle_pte_marker(vmf); 4560 } else { 4561 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4562 ret = VM_FAULT_SIGBUS; 4563 } 4564 goto out; 4565 } 4566 4567 /* Prevent swapoff from happening to us. */ 4568 si = get_swap_device(entry); 4569 if (unlikely(!si)) 4570 goto out; 4571 4572 folio = swap_cache_get_folio(entry, vma, vmf->address); 4573 if (folio) 4574 page = folio_file_page(folio, swp_offset(entry)); 4575 swapcache = folio; 4576 4577 if (!folio) { 4578 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4579 __swap_count(entry) == 1) { 4580 /* skip swapcache */ 4581 folio = alloc_swap_folio(vmf); 4582 if (folio) { 4583 __folio_set_locked(folio); 4584 __folio_set_swapbacked(folio); 4585 4586 nr_pages = folio_nr_pages(folio); 4587 if (folio_test_large(folio)) 4588 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4589 /* 4590 * Prevent parallel swapin from proceeding with 4591 * the cache flag. Otherwise, another thread 4592 * may finish swapin first, free the entry, and 4593 * swapout reusing the same entry. It's 4594 * undetectable as pte_same() returns true due 4595 * to entry reuse. 4596 */ 4597 if (swapcache_prepare(entry, nr_pages)) { 4598 /* 4599 * Relax a bit to prevent rapid 4600 * repeated page faults. 4601 */ 4602 add_wait_queue(&swapcache_wq, &wait); 4603 schedule_timeout_uninterruptible(1); 4604 remove_wait_queue(&swapcache_wq, &wait); 4605 goto out_page; 4606 } 4607 need_clear_cache = true; 4608 4609 memcg1_swapin(entry, nr_pages); 4610 4611 shadow = get_shadow_from_swap_cache(entry); 4612 if (shadow) 4613 workingset_refault(folio, shadow); 4614 4615 folio_add_lru(folio); 4616 4617 /* To provide entry to swap_read_folio() */ 4618 folio->swap = entry; 4619 swap_read_folio(folio, NULL); 4620 folio->private = NULL; 4621 } 4622 } else { 4623 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4624 vmf); 4625 swapcache = folio; 4626 } 4627 4628 if (!folio) { 4629 /* 4630 * Back out if somebody else faulted in this pte 4631 * while we released the pte lock. 4632 */ 4633 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4634 vmf->address, &vmf->ptl); 4635 if (likely(vmf->pte && 4636 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4637 ret = VM_FAULT_OOM; 4638 goto unlock; 4639 } 4640 4641 /* Had to read the page from swap area: Major fault */ 4642 ret = VM_FAULT_MAJOR; 4643 count_vm_event(PGMAJFAULT); 4644 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4645 page = folio_file_page(folio, swp_offset(entry)); 4646 } else if (PageHWPoison(page)) { 4647 /* 4648 * hwpoisoned dirty swapcache pages are kept for killing 4649 * owner processes (which may be unknown at hwpoison time) 4650 */ 4651 ret = VM_FAULT_HWPOISON; 4652 goto out_release; 4653 } 4654 4655 ret |= folio_lock_or_retry(folio, vmf); 4656 if (ret & VM_FAULT_RETRY) 4657 goto out_release; 4658 4659 if (swapcache) { 4660 /* 4661 * Make sure folio_free_swap() or swapoff did not release the 4662 * swapcache from under us. The page pin, and pte_same test 4663 * below, are not enough to exclude that. Even if it is still 4664 * swapcache, we need to check that the page's swap has not 4665 * changed. 4666 */ 4667 if (unlikely(!folio_test_swapcache(folio) || 4668 page_swap_entry(page).val != entry.val)) 4669 goto out_page; 4670 4671 /* 4672 * KSM sometimes has to copy on read faults, for example, if 4673 * folio->index of non-ksm folios would be nonlinear inside the 4674 * anon VMA -- the ksm flag is lost on actual swapout. 4675 */ 4676 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4677 if (unlikely(!folio)) { 4678 ret = VM_FAULT_OOM; 4679 folio = swapcache; 4680 goto out_page; 4681 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4682 ret = VM_FAULT_HWPOISON; 4683 folio = swapcache; 4684 goto out_page; 4685 } 4686 if (folio != swapcache) 4687 page = folio_page(folio, 0); 4688 4689 /* 4690 * If we want to map a page that's in the swapcache writable, we 4691 * have to detect via the refcount if we're really the exclusive 4692 * owner. Try removing the extra reference from the local LRU 4693 * caches if required. 4694 */ 4695 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4696 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4697 lru_add_drain(); 4698 } 4699 4700 folio_throttle_swaprate(folio, GFP_KERNEL); 4701 4702 /* 4703 * Back out if somebody else already faulted in this pte. 4704 */ 4705 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4706 &vmf->ptl); 4707 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4708 goto out_nomap; 4709 4710 if (unlikely(!folio_test_uptodate(folio))) { 4711 ret = VM_FAULT_SIGBUS; 4712 goto out_nomap; 4713 } 4714 4715 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4716 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4717 unsigned long nr = folio_nr_pages(folio); 4718 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4719 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4720 pte_t *folio_ptep = vmf->pte - idx; 4721 pte_t folio_pte = ptep_get(folio_ptep); 4722 4723 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4724 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4725 goto out_nomap; 4726 4727 page_idx = idx; 4728 address = folio_start; 4729 ptep = folio_ptep; 4730 goto check_folio; 4731 } 4732 4733 nr_pages = 1; 4734 page_idx = 0; 4735 address = vmf->address; 4736 ptep = vmf->pte; 4737 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4738 int nr = folio_nr_pages(folio); 4739 unsigned long idx = folio_page_idx(folio, page); 4740 unsigned long folio_start = address - idx * PAGE_SIZE; 4741 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4742 pte_t *folio_ptep; 4743 pte_t folio_pte; 4744 4745 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4746 goto check_folio; 4747 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4748 goto check_folio; 4749 4750 folio_ptep = vmf->pte - idx; 4751 folio_pte = ptep_get(folio_ptep); 4752 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4753 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4754 goto check_folio; 4755 4756 page_idx = idx; 4757 address = folio_start; 4758 ptep = folio_ptep; 4759 nr_pages = nr; 4760 entry = folio->swap; 4761 page = &folio->page; 4762 } 4763 4764 check_folio: 4765 /* 4766 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4767 * must never point at an anonymous page in the swapcache that is 4768 * PG_anon_exclusive. Sanity check that this holds and especially, that 4769 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4770 * check after taking the PT lock and making sure that nobody 4771 * concurrently faulted in this page and set PG_anon_exclusive. 4772 */ 4773 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4774 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4775 4776 /* 4777 * Check under PT lock (to protect against concurrent fork() sharing 4778 * the swap entry concurrently) for certainly exclusive pages. 4779 */ 4780 if (!folio_test_ksm(folio)) { 4781 exclusive = pte_swp_exclusive(vmf->orig_pte); 4782 if (folio != swapcache) { 4783 /* 4784 * We have a fresh page that is not exposed to the 4785 * swapcache -> certainly exclusive. 4786 */ 4787 exclusive = true; 4788 } else if (exclusive && folio_test_writeback(folio) && 4789 data_race(si->flags & SWP_STABLE_WRITES)) { 4790 /* 4791 * This is tricky: not all swap backends support 4792 * concurrent page modifications while under writeback. 4793 * 4794 * So if we stumble over such a page in the swapcache 4795 * we must not set the page exclusive, otherwise we can 4796 * map it writable without further checks and modify it 4797 * while still under writeback. 4798 * 4799 * For these problematic swap backends, simply drop the 4800 * exclusive marker: this is perfectly fine as we start 4801 * writeback only if we fully unmapped the page and 4802 * there are no unexpected references on the page after 4803 * unmapping succeeded. After fully unmapped, no 4804 * further GUP references (FOLL_GET and FOLL_PIN) can 4805 * appear, so dropping the exclusive marker and mapping 4806 * it only R/O is fine. 4807 */ 4808 exclusive = false; 4809 } 4810 } 4811 4812 /* 4813 * Some architectures may have to restore extra metadata to the page 4814 * when reading from swap. This metadata may be indexed by swap entry 4815 * so this must be called before swap_free(). 4816 */ 4817 arch_swap_restore(folio_swap(entry, folio), folio); 4818 4819 /* 4820 * Remove the swap entry and conditionally try to free up the swapcache. 4821 * We're already holding a reference on the page but haven't mapped it 4822 * yet. 4823 */ 4824 swap_free_nr(entry, nr_pages); 4825 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4826 folio_free_swap(folio); 4827 4828 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4829 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4830 pte = mk_pte(page, vma->vm_page_prot); 4831 if (pte_swp_soft_dirty(vmf->orig_pte)) 4832 pte = pte_mksoft_dirty(pte); 4833 if (pte_swp_uffd_wp(vmf->orig_pte)) 4834 pte = pte_mkuffd_wp(pte); 4835 4836 /* 4837 * Same logic as in do_wp_page(); however, optimize for pages that are 4838 * certainly not shared either because we just allocated them without 4839 * exposing them to the swapcache or because the swap entry indicates 4840 * exclusivity. 4841 */ 4842 if (!folio_test_ksm(folio) && 4843 (exclusive || folio_ref_count(folio) == 1)) { 4844 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4845 !pte_needs_soft_dirty_wp(vma, pte)) { 4846 pte = pte_mkwrite(pte, vma); 4847 if (vmf->flags & FAULT_FLAG_WRITE) { 4848 pte = pte_mkdirty(pte); 4849 vmf->flags &= ~FAULT_FLAG_WRITE; 4850 } 4851 } 4852 rmap_flags |= RMAP_EXCLUSIVE; 4853 } 4854 folio_ref_add(folio, nr_pages - 1); 4855 flush_icache_pages(vma, page, nr_pages); 4856 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4857 4858 /* ksm created a completely new copy */ 4859 if (unlikely(folio != swapcache && swapcache)) { 4860 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4861 folio_add_lru_vma(folio, vma); 4862 } else if (!folio_test_anon(folio)) { 4863 /* 4864 * We currently only expect small !anon folios which are either 4865 * fully exclusive or fully shared, or new allocated large 4866 * folios which are fully exclusive. If we ever get large 4867 * folios within swapcache here, we have to be careful. 4868 */ 4869 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4870 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4871 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4872 } else { 4873 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4874 rmap_flags); 4875 } 4876 4877 VM_BUG_ON(!folio_test_anon(folio) || 4878 (pte_write(pte) && !PageAnonExclusive(page))); 4879 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4880 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4881 pte, pte, nr_pages); 4882 4883 folio_unlock(folio); 4884 if (folio != swapcache && swapcache) { 4885 /* 4886 * Hold the lock to avoid the swap entry to be reused 4887 * until we take the PT lock for the pte_same() check 4888 * (to avoid false positives from pte_same). For 4889 * further safety release the lock after the swap_free 4890 * so that the swap count won't change under a 4891 * parallel locked swapcache. 4892 */ 4893 folio_unlock(swapcache); 4894 folio_put(swapcache); 4895 } 4896 4897 if (vmf->flags & FAULT_FLAG_WRITE) { 4898 ret |= do_wp_page(vmf); 4899 if (ret & VM_FAULT_ERROR) 4900 ret &= VM_FAULT_ERROR; 4901 goto out; 4902 } 4903 4904 /* No need to invalidate - it was non-present before */ 4905 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4906 unlock: 4907 if (vmf->pte) 4908 pte_unmap_unlock(vmf->pte, vmf->ptl); 4909 out: 4910 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4911 if (need_clear_cache) { 4912 swapcache_clear(si, entry, nr_pages); 4913 if (waitqueue_active(&swapcache_wq)) 4914 wake_up(&swapcache_wq); 4915 } 4916 if (si) 4917 put_swap_device(si); 4918 return ret; 4919 out_nomap: 4920 if (vmf->pte) 4921 pte_unmap_unlock(vmf->pte, vmf->ptl); 4922 out_page: 4923 folio_unlock(folio); 4924 out_release: 4925 folio_put(folio); 4926 if (folio != swapcache && swapcache) { 4927 folio_unlock(swapcache); 4928 folio_put(swapcache); 4929 } 4930 if (need_clear_cache) { 4931 swapcache_clear(si, entry, nr_pages); 4932 if (waitqueue_active(&swapcache_wq)) 4933 wake_up(&swapcache_wq); 4934 } 4935 if (si) 4936 put_swap_device(si); 4937 return ret; 4938 } 4939 4940 static bool pte_range_none(pte_t *pte, int nr_pages) 4941 { 4942 int i; 4943 4944 for (i = 0; i < nr_pages; i++) { 4945 if (!pte_none(ptep_get_lockless(pte + i))) 4946 return false; 4947 } 4948 4949 return true; 4950 } 4951 4952 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4953 { 4954 struct vm_area_struct *vma = vmf->vma; 4955 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4956 unsigned long orders; 4957 struct folio *folio; 4958 unsigned long addr; 4959 pte_t *pte; 4960 gfp_t gfp; 4961 int order; 4962 4963 /* 4964 * If uffd is active for the vma we need per-page fault fidelity to 4965 * maintain the uffd semantics. 4966 */ 4967 if (unlikely(userfaultfd_armed(vma))) 4968 goto fallback; 4969 4970 /* 4971 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4972 * for this vma. Then filter out the orders that can't be allocated over 4973 * the faulting address and still be fully contained in the vma. 4974 */ 4975 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4976 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4977 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4978 4979 if (!orders) 4980 goto fallback; 4981 4982 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4983 if (!pte) 4984 return ERR_PTR(-EAGAIN); 4985 4986 /* 4987 * Find the highest order where the aligned range is completely 4988 * pte_none(). Note that all remaining orders will be completely 4989 * pte_none(). 4990 */ 4991 order = highest_order(orders); 4992 while (orders) { 4993 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4994 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4995 break; 4996 order = next_order(&orders, order); 4997 } 4998 4999 pte_unmap(pte); 5000 5001 if (!orders) 5002 goto fallback; 5003 5004 /* Try allocating the highest of the remaining orders. */ 5005 gfp = vma_thp_gfp_mask(vma); 5006 while (orders) { 5007 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5008 folio = vma_alloc_folio(gfp, order, vma, addr); 5009 if (folio) { 5010 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5011 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5012 folio_put(folio); 5013 goto next; 5014 } 5015 folio_throttle_swaprate(folio, gfp); 5016 /* 5017 * When a folio is not zeroed during allocation 5018 * (__GFP_ZERO not used) or user folios require special 5019 * handling, folio_zero_user() is used to make sure 5020 * that the page corresponding to the faulting address 5021 * will be hot in the cache after zeroing. 5022 */ 5023 if (user_alloc_needs_zeroing()) 5024 folio_zero_user(folio, vmf->address); 5025 return folio; 5026 } 5027 next: 5028 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5029 order = next_order(&orders, order); 5030 } 5031 5032 fallback: 5033 #endif 5034 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5035 } 5036 5037 /* 5038 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5039 * but allow concurrent faults), and pte mapped but not yet locked. 5040 * We return with mmap_lock still held, but pte unmapped and unlocked. 5041 */ 5042 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5043 { 5044 struct vm_area_struct *vma = vmf->vma; 5045 unsigned long addr = vmf->address; 5046 struct folio *folio; 5047 vm_fault_t ret = 0; 5048 int nr_pages = 1; 5049 pte_t entry; 5050 5051 /* File mapping without ->vm_ops ? */ 5052 if (vma->vm_flags & VM_SHARED) 5053 return VM_FAULT_SIGBUS; 5054 5055 /* 5056 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5057 * be distinguished from a transient failure of pte_offset_map(). 5058 */ 5059 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5060 return VM_FAULT_OOM; 5061 5062 /* Use the zero-page for reads */ 5063 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5064 !mm_forbids_zeropage(vma->vm_mm)) { 5065 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5066 vma->vm_page_prot)); 5067 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5068 vmf->address, &vmf->ptl); 5069 if (!vmf->pte) 5070 goto unlock; 5071 if (vmf_pte_changed(vmf)) { 5072 update_mmu_tlb(vma, vmf->address, vmf->pte); 5073 goto unlock; 5074 } 5075 ret = check_stable_address_space(vma->vm_mm); 5076 if (ret) 5077 goto unlock; 5078 /* Deliver the page fault to userland, check inside PT lock */ 5079 if (userfaultfd_missing(vma)) { 5080 pte_unmap_unlock(vmf->pte, vmf->ptl); 5081 return handle_userfault(vmf, VM_UFFD_MISSING); 5082 } 5083 goto setpte; 5084 } 5085 5086 /* Allocate our own private page. */ 5087 ret = vmf_anon_prepare(vmf); 5088 if (ret) 5089 return ret; 5090 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5091 folio = alloc_anon_folio(vmf); 5092 if (IS_ERR(folio)) 5093 return 0; 5094 if (!folio) 5095 goto oom; 5096 5097 nr_pages = folio_nr_pages(folio); 5098 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5099 5100 /* 5101 * The memory barrier inside __folio_mark_uptodate makes sure that 5102 * preceding stores to the page contents become visible before 5103 * the set_pte_at() write. 5104 */ 5105 __folio_mark_uptodate(folio); 5106 5107 entry = folio_mk_pte(folio, vma->vm_page_prot); 5108 entry = pte_sw_mkyoung(entry); 5109 if (vma->vm_flags & VM_WRITE) 5110 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5111 5112 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5113 if (!vmf->pte) 5114 goto release; 5115 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5116 update_mmu_tlb(vma, addr, vmf->pte); 5117 goto release; 5118 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5119 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5120 goto release; 5121 } 5122 5123 ret = check_stable_address_space(vma->vm_mm); 5124 if (ret) 5125 goto release; 5126 5127 /* Deliver the page fault to userland, check inside PT lock */ 5128 if (userfaultfd_missing(vma)) { 5129 pte_unmap_unlock(vmf->pte, vmf->ptl); 5130 folio_put(folio); 5131 return handle_userfault(vmf, VM_UFFD_MISSING); 5132 } 5133 5134 folio_ref_add(folio, nr_pages - 1); 5135 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5136 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5137 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5138 folio_add_lru_vma(folio, vma); 5139 setpte: 5140 if (vmf_orig_pte_uffd_wp(vmf)) 5141 entry = pte_mkuffd_wp(entry); 5142 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5143 5144 /* No need to invalidate - it was non-present before */ 5145 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5146 unlock: 5147 if (vmf->pte) 5148 pte_unmap_unlock(vmf->pte, vmf->ptl); 5149 return ret; 5150 release: 5151 folio_put(folio); 5152 goto unlock; 5153 oom: 5154 return VM_FAULT_OOM; 5155 } 5156 5157 /* 5158 * The mmap_lock must have been held on entry, and may have been 5159 * released depending on flags and vma->vm_ops->fault() return value. 5160 * See filemap_fault() and __lock_page_retry(). 5161 */ 5162 static vm_fault_t __do_fault(struct vm_fault *vmf) 5163 { 5164 struct vm_area_struct *vma = vmf->vma; 5165 struct folio *folio; 5166 vm_fault_t ret; 5167 5168 /* 5169 * Preallocate pte before we take page_lock because this might lead to 5170 * deadlocks for memcg reclaim which waits for pages under writeback: 5171 * lock_page(A) 5172 * SetPageWriteback(A) 5173 * unlock_page(A) 5174 * lock_page(B) 5175 * lock_page(B) 5176 * pte_alloc_one 5177 * shrink_folio_list 5178 * wait_on_page_writeback(A) 5179 * SetPageWriteback(B) 5180 * unlock_page(B) 5181 * # flush A, B to clear the writeback 5182 */ 5183 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5184 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5185 if (!vmf->prealloc_pte) 5186 return VM_FAULT_OOM; 5187 } 5188 5189 ret = vma->vm_ops->fault(vmf); 5190 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5191 VM_FAULT_DONE_COW))) 5192 return ret; 5193 5194 folio = page_folio(vmf->page); 5195 if (unlikely(PageHWPoison(vmf->page))) { 5196 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5197 if (ret & VM_FAULT_LOCKED) { 5198 if (page_mapped(vmf->page)) 5199 unmap_mapping_folio(folio); 5200 /* Retry if a clean folio was removed from the cache. */ 5201 if (mapping_evict_folio(folio->mapping, folio)) 5202 poisonret = VM_FAULT_NOPAGE; 5203 folio_unlock(folio); 5204 } 5205 folio_put(folio); 5206 vmf->page = NULL; 5207 return poisonret; 5208 } 5209 5210 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5211 folio_lock(folio); 5212 else 5213 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5214 5215 return ret; 5216 } 5217 5218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5219 static void deposit_prealloc_pte(struct vm_fault *vmf) 5220 { 5221 struct vm_area_struct *vma = vmf->vma; 5222 5223 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5224 /* 5225 * We are going to consume the prealloc table, 5226 * count that as nr_ptes. 5227 */ 5228 mm_inc_nr_ptes(vma->vm_mm); 5229 vmf->prealloc_pte = NULL; 5230 } 5231 5232 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5233 { 5234 struct vm_area_struct *vma = vmf->vma; 5235 bool write = vmf->flags & FAULT_FLAG_WRITE; 5236 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5237 pmd_t entry; 5238 vm_fault_t ret = VM_FAULT_FALLBACK; 5239 5240 /* 5241 * It is too late to allocate a small folio, we already have a large 5242 * folio in the pagecache: especially s390 KVM cannot tolerate any 5243 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5244 * PMD mappings if THPs are disabled. 5245 */ 5246 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5247 return ret; 5248 5249 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5250 return ret; 5251 5252 if (folio_order(folio) != HPAGE_PMD_ORDER) 5253 return ret; 5254 page = &folio->page; 5255 5256 /* 5257 * Just backoff if any subpage of a THP is corrupted otherwise 5258 * the corrupted page may mapped by PMD silently to escape the 5259 * check. This kind of THP just can be PTE mapped. Access to 5260 * the corrupted subpage should trigger SIGBUS as expected. 5261 */ 5262 if (unlikely(folio_test_has_hwpoisoned(folio))) 5263 return ret; 5264 5265 /* 5266 * Archs like ppc64 need additional space to store information 5267 * related to pte entry. Use the preallocated table for that. 5268 */ 5269 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5270 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5271 if (!vmf->prealloc_pte) 5272 return VM_FAULT_OOM; 5273 } 5274 5275 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5276 if (unlikely(!pmd_none(*vmf->pmd))) 5277 goto out; 5278 5279 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5280 5281 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5282 if (write) 5283 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5284 5285 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5286 folio_add_file_rmap_pmd(folio, page, vma); 5287 5288 /* 5289 * deposit and withdraw with pmd lock held 5290 */ 5291 if (arch_needs_pgtable_deposit()) 5292 deposit_prealloc_pte(vmf); 5293 5294 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5295 5296 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5297 5298 /* fault is handled */ 5299 ret = 0; 5300 count_vm_event(THP_FILE_MAPPED); 5301 out: 5302 spin_unlock(vmf->ptl); 5303 return ret; 5304 } 5305 #else 5306 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5307 { 5308 return VM_FAULT_FALLBACK; 5309 } 5310 #endif 5311 5312 /** 5313 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5314 * @vmf: Fault decription. 5315 * @folio: The folio that contains @page. 5316 * @page: The first page to create a PTE for. 5317 * @nr: The number of PTEs to create. 5318 * @addr: The first address to create a PTE for. 5319 */ 5320 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5321 struct page *page, unsigned int nr, unsigned long addr) 5322 { 5323 struct vm_area_struct *vma = vmf->vma; 5324 bool write = vmf->flags & FAULT_FLAG_WRITE; 5325 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5326 pte_t entry; 5327 5328 flush_icache_pages(vma, page, nr); 5329 entry = mk_pte(page, vma->vm_page_prot); 5330 5331 if (prefault && arch_wants_old_prefaulted_pte()) 5332 entry = pte_mkold(entry); 5333 else 5334 entry = pte_sw_mkyoung(entry); 5335 5336 if (write) 5337 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5338 else if (pte_write(entry) && folio_test_dirty(folio)) 5339 entry = pte_mkdirty(entry); 5340 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5341 entry = pte_mkuffd_wp(entry); 5342 /* copy-on-write page */ 5343 if (write && !(vma->vm_flags & VM_SHARED)) { 5344 VM_BUG_ON_FOLIO(nr != 1, folio); 5345 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5346 folio_add_lru_vma(folio, vma); 5347 } else { 5348 folio_add_file_rmap_ptes(folio, page, nr, vma); 5349 } 5350 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5351 5352 /* no need to invalidate: a not-present page won't be cached */ 5353 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5354 } 5355 5356 static bool vmf_pte_changed(struct vm_fault *vmf) 5357 { 5358 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5359 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5360 5361 return !pte_none(ptep_get(vmf->pte)); 5362 } 5363 5364 /** 5365 * finish_fault - finish page fault once we have prepared the page to fault 5366 * 5367 * @vmf: structure describing the fault 5368 * 5369 * This function handles all that is needed to finish a page fault once the 5370 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5371 * given page, adds reverse page mapping, handles memcg charges and LRU 5372 * addition. 5373 * 5374 * The function expects the page to be locked and on success it consumes a 5375 * reference of a page being mapped (for the PTE which maps it). 5376 * 5377 * Return: %0 on success, %VM_FAULT_ code in case of error. 5378 */ 5379 vm_fault_t finish_fault(struct vm_fault *vmf) 5380 { 5381 struct vm_area_struct *vma = vmf->vma; 5382 struct page *page; 5383 struct folio *folio; 5384 vm_fault_t ret; 5385 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5386 !(vma->vm_flags & VM_SHARED); 5387 int type, nr_pages; 5388 unsigned long addr; 5389 bool needs_fallback = false; 5390 5391 fallback: 5392 addr = vmf->address; 5393 5394 /* Did we COW the page? */ 5395 if (is_cow) 5396 page = vmf->cow_page; 5397 else 5398 page = vmf->page; 5399 5400 folio = page_folio(page); 5401 /* 5402 * check even for read faults because we might have lost our CoWed 5403 * page 5404 */ 5405 if (!(vma->vm_flags & VM_SHARED)) { 5406 ret = check_stable_address_space(vma->vm_mm); 5407 if (ret) 5408 return ret; 5409 } 5410 5411 if (pmd_none(*vmf->pmd)) { 5412 if (folio_test_pmd_mappable(folio)) { 5413 ret = do_set_pmd(vmf, folio, page); 5414 if (ret != VM_FAULT_FALLBACK) 5415 return ret; 5416 } 5417 5418 if (vmf->prealloc_pte) 5419 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5420 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5421 return VM_FAULT_OOM; 5422 } 5423 5424 nr_pages = folio_nr_pages(folio); 5425 5426 /* 5427 * Using per-page fault to maintain the uffd semantics, and same 5428 * approach also applies to non-anonymous-shmem faults to avoid 5429 * inflating the RSS of the process. 5430 */ 5431 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5432 unlikely(needs_fallback)) { 5433 nr_pages = 1; 5434 } else if (nr_pages > 1) { 5435 pgoff_t idx = folio_page_idx(folio, page); 5436 /* The page offset of vmf->address within the VMA. */ 5437 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5438 /* The index of the entry in the pagetable for fault page. */ 5439 pgoff_t pte_off = pte_index(vmf->address); 5440 5441 /* 5442 * Fallback to per-page fault in case the folio size in page 5443 * cache beyond the VMA limits and PMD pagetable limits. 5444 */ 5445 if (unlikely(vma_off < idx || 5446 vma_off + (nr_pages - idx) > vma_pages(vma) || 5447 pte_off < idx || 5448 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5449 nr_pages = 1; 5450 } else { 5451 /* Now we can set mappings for the whole large folio. */ 5452 addr = vmf->address - idx * PAGE_SIZE; 5453 page = &folio->page; 5454 } 5455 } 5456 5457 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5458 addr, &vmf->ptl); 5459 if (!vmf->pte) 5460 return VM_FAULT_NOPAGE; 5461 5462 /* Re-check under ptl */ 5463 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5464 update_mmu_tlb(vma, addr, vmf->pte); 5465 ret = VM_FAULT_NOPAGE; 5466 goto unlock; 5467 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5468 needs_fallback = true; 5469 pte_unmap_unlock(vmf->pte, vmf->ptl); 5470 goto fallback; 5471 } 5472 5473 folio_ref_add(folio, nr_pages - 1); 5474 set_pte_range(vmf, folio, page, nr_pages, addr); 5475 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5476 add_mm_counter(vma->vm_mm, type, nr_pages); 5477 ret = 0; 5478 5479 unlock: 5480 pte_unmap_unlock(vmf->pte, vmf->ptl); 5481 return ret; 5482 } 5483 5484 static unsigned long fault_around_pages __read_mostly = 5485 65536 >> PAGE_SHIFT; 5486 5487 #ifdef CONFIG_DEBUG_FS 5488 static int fault_around_bytes_get(void *data, u64 *val) 5489 { 5490 *val = fault_around_pages << PAGE_SHIFT; 5491 return 0; 5492 } 5493 5494 /* 5495 * fault_around_bytes must be rounded down to the nearest page order as it's 5496 * what do_fault_around() expects to see. 5497 */ 5498 static int fault_around_bytes_set(void *data, u64 val) 5499 { 5500 if (val / PAGE_SIZE > PTRS_PER_PTE) 5501 return -EINVAL; 5502 5503 /* 5504 * The minimum value is 1 page, however this results in no fault-around 5505 * at all. See should_fault_around(). 5506 */ 5507 val = max(val, PAGE_SIZE); 5508 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5509 5510 return 0; 5511 } 5512 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5513 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5514 5515 static int __init fault_around_debugfs(void) 5516 { 5517 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5518 &fault_around_bytes_fops); 5519 return 0; 5520 } 5521 late_initcall(fault_around_debugfs); 5522 #endif 5523 5524 /* 5525 * do_fault_around() tries to map few pages around the fault address. The hope 5526 * is that the pages will be needed soon and this will lower the number of 5527 * faults to handle. 5528 * 5529 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5530 * not ready to be mapped: not up-to-date, locked, etc. 5531 * 5532 * This function doesn't cross VMA or page table boundaries, in order to call 5533 * map_pages() and acquire a PTE lock only once. 5534 * 5535 * fault_around_pages defines how many pages we'll try to map. 5536 * do_fault_around() expects it to be set to a power of two less than or equal 5537 * to PTRS_PER_PTE. 5538 * 5539 * The virtual address of the area that we map is naturally aligned to 5540 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5541 * (and therefore to page order). This way it's easier to guarantee 5542 * that we don't cross page table boundaries. 5543 */ 5544 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5545 { 5546 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5547 pgoff_t pte_off = pte_index(vmf->address); 5548 /* The page offset of vmf->address within the VMA. */ 5549 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5550 pgoff_t from_pte, to_pte; 5551 vm_fault_t ret; 5552 5553 /* The PTE offset of the start address, clamped to the VMA. */ 5554 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5555 pte_off - min(pte_off, vma_off)); 5556 5557 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5558 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5559 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5560 5561 if (pmd_none(*vmf->pmd)) { 5562 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5563 if (!vmf->prealloc_pte) 5564 return VM_FAULT_OOM; 5565 } 5566 5567 rcu_read_lock(); 5568 ret = vmf->vma->vm_ops->map_pages(vmf, 5569 vmf->pgoff + from_pte - pte_off, 5570 vmf->pgoff + to_pte - pte_off); 5571 rcu_read_unlock(); 5572 5573 return ret; 5574 } 5575 5576 /* Return true if we should do read fault-around, false otherwise */ 5577 static inline bool should_fault_around(struct vm_fault *vmf) 5578 { 5579 /* No ->map_pages? No way to fault around... */ 5580 if (!vmf->vma->vm_ops->map_pages) 5581 return false; 5582 5583 if (uffd_disable_fault_around(vmf->vma)) 5584 return false; 5585 5586 /* A single page implies no faulting 'around' at all. */ 5587 return fault_around_pages > 1; 5588 } 5589 5590 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5591 { 5592 vm_fault_t ret = 0; 5593 struct folio *folio; 5594 5595 /* 5596 * Let's call ->map_pages() first and use ->fault() as fallback 5597 * if page by the offset is not ready to be mapped (cold cache or 5598 * something). 5599 */ 5600 if (should_fault_around(vmf)) { 5601 ret = do_fault_around(vmf); 5602 if (ret) 5603 return ret; 5604 } 5605 5606 ret = vmf_can_call_fault(vmf); 5607 if (ret) 5608 return ret; 5609 5610 ret = __do_fault(vmf); 5611 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5612 return ret; 5613 5614 ret |= finish_fault(vmf); 5615 folio = page_folio(vmf->page); 5616 folio_unlock(folio); 5617 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5618 folio_put(folio); 5619 return ret; 5620 } 5621 5622 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5623 { 5624 struct vm_area_struct *vma = vmf->vma; 5625 struct folio *folio; 5626 vm_fault_t ret; 5627 5628 ret = vmf_can_call_fault(vmf); 5629 if (!ret) 5630 ret = vmf_anon_prepare(vmf); 5631 if (ret) 5632 return ret; 5633 5634 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5635 if (!folio) 5636 return VM_FAULT_OOM; 5637 5638 vmf->cow_page = &folio->page; 5639 5640 ret = __do_fault(vmf); 5641 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5642 goto uncharge_out; 5643 if (ret & VM_FAULT_DONE_COW) 5644 return ret; 5645 5646 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5647 ret = VM_FAULT_HWPOISON; 5648 goto unlock; 5649 } 5650 __folio_mark_uptodate(folio); 5651 5652 ret |= finish_fault(vmf); 5653 unlock: 5654 unlock_page(vmf->page); 5655 put_page(vmf->page); 5656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5657 goto uncharge_out; 5658 return ret; 5659 uncharge_out: 5660 folio_put(folio); 5661 return ret; 5662 } 5663 5664 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5665 { 5666 struct vm_area_struct *vma = vmf->vma; 5667 vm_fault_t ret, tmp; 5668 struct folio *folio; 5669 5670 ret = vmf_can_call_fault(vmf); 5671 if (ret) 5672 return ret; 5673 5674 ret = __do_fault(vmf); 5675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5676 return ret; 5677 5678 folio = page_folio(vmf->page); 5679 5680 /* 5681 * Check if the backing address space wants to know that the page is 5682 * about to become writable 5683 */ 5684 if (vma->vm_ops->page_mkwrite) { 5685 folio_unlock(folio); 5686 tmp = do_page_mkwrite(vmf, folio); 5687 if (unlikely(!tmp || 5688 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5689 folio_put(folio); 5690 return tmp; 5691 } 5692 } 5693 5694 ret |= finish_fault(vmf); 5695 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5696 VM_FAULT_RETRY))) { 5697 folio_unlock(folio); 5698 folio_put(folio); 5699 return ret; 5700 } 5701 5702 ret |= fault_dirty_shared_page(vmf); 5703 return ret; 5704 } 5705 5706 /* 5707 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5708 * but allow concurrent faults). 5709 * The mmap_lock may have been released depending on flags and our 5710 * return value. See filemap_fault() and __folio_lock_or_retry(). 5711 * If mmap_lock is released, vma may become invalid (for example 5712 * by other thread calling munmap()). 5713 */ 5714 static vm_fault_t do_fault(struct vm_fault *vmf) 5715 { 5716 struct vm_area_struct *vma = vmf->vma; 5717 struct mm_struct *vm_mm = vma->vm_mm; 5718 vm_fault_t ret; 5719 5720 /* 5721 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5722 */ 5723 if (!vma->vm_ops->fault) { 5724 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5725 vmf->address, &vmf->ptl); 5726 if (unlikely(!vmf->pte)) 5727 ret = VM_FAULT_SIGBUS; 5728 else { 5729 /* 5730 * Make sure this is not a temporary clearing of pte 5731 * by holding ptl and checking again. A R/M/W update 5732 * of pte involves: take ptl, clearing the pte so that 5733 * we don't have concurrent modification by hardware 5734 * followed by an update. 5735 */ 5736 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5737 ret = VM_FAULT_SIGBUS; 5738 else 5739 ret = VM_FAULT_NOPAGE; 5740 5741 pte_unmap_unlock(vmf->pte, vmf->ptl); 5742 } 5743 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5744 ret = do_read_fault(vmf); 5745 else if (!(vma->vm_flags & VM_SHARED)) 5746 ret = do_cow_fault(vmf); 5747 else 5748 ret = do_shared_fault(vmf); 5749 5750 /* preallocated pagetable is unused: free it */ 5751 if (vmf->prealloc_pte) { 5752 pte_free(vm_mm, vmf->prealloc_pte); 5753 vmf->prealloc_pte = NULL; 5754 } 5755 return ret; 5756 } 5757 5758 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5759 unsigned long addr, int *flags, 5760 bool writable, int *last_cpupid) 5761 { 5762 struct vm_area_struct *vma = vmf->vma; 5763 5764 /* 5765 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5766 * much anyway since they can be in shared cache state. This misses 5767 * the case where a mapping is writable but the process never writes 5768 * to it but pte_write gets cleared during protection updates and 5769 * pte_dirty has unpredictable behaviour between PTE scan updates, 5770 * background writeback, dirty balancing and application behaviour. 5771 */ 5772 if (!writable) 5773 *flags |= TNF_NO_GROUP; 5774 5775 /* 5776 * Flag if the folio is shared between multiple address spaces. This 5777 * is later used when determining whether to group tasks together 5778 */ 5779 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5780 *flags |= TNF_SHARED; 5781 /* 5782 * For memory tiering mode, cpupid of slow memory page is used 5783 * to record page access time. So use default value. 5784 */ 5785 if (folio_use_access_time(folio)) 5786 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5787 else 5788 *last_cpupid = folio_last_cpupid(folio); 5789 5790 /* Record the current PID acceesing VMA */ 5791 vma_set_access_pid_bit(vma); 5792 5793 count_vm_numa_event(NUMA_HINT_FAULTS); 5794 #ifdef CONFIG_NUMA_BALANCING 5795 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5796 #endif 5797 if (folio_nid(folio) == numa_node_id()) { 5798 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5799 *flags |= TNF_FAULT_LOCAL; 5800 } 5801 5802 return mpol_misplaced(folio, vmf, addr); 5803 } 5804 5805 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5806 unsigned long fault_addr, pte_t *fault_pte, 5807 bool writable) 5808 { 5809 pte_t pte, old_pte; 5810 5811 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5812 pte = pte_modify(old_pte, vma->vm_page_prot); 5813 pte = pte_mkyoung(pte); 5814 if (writable) 5815 pte = pte_mkwrite(pte, vma); 5816 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5817 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5818 } 5819 5820 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5821 struct folio *folio, pte_t fault_pte, 5822 bool ignore_writable, bool pte_write_upgrade) 5823 { 5824 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5825 unsigned long start, end, addr = vmf->address; 5826 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5827 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5828 pte_t *start_ptep; 5829 5830 /* Stay within the VMA and within the page table. */ 5831 start = max3(addr_start, pt_start, vma->vm_start); 5832 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5833 vma->vm_end); 5834 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5835 5836 /* Restore all PTEs' mapping of the large folio */ 5837 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5838 pte_t ptent = ptep_get(start_ptep); 5839 bool writable = false; 5840 5841 if (!pte_present(ptent) || !pte_protnone(ptent)) 5842 continue; 5843 5844 if (pfn_folio(pte_pfn(ptent)) != folio) 5845 continue; 5846 5847 if (!ignore_writable) { 5848 ptent = pte_modify(ptent, vma->vm_page_prot); 5849 writable = pte_write(ptent); 5850 if (!writable && pte_write_upgrade && 5851 can_change_pte_writable(vma, addr, ptent)) 5852 writable = true; 5853 } 5854 5855 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5856 } 5857 } 5858 5859 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5860 { 5861 struct vm_area_struct *vma = vmf->vma; 5862 struct folio *folio = NULL; 5863 int nid = NUMA_NO_NODE; 5864 bool writable = false, ignore_writable = false; 5865 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5866 int last_cpupid; 5867 int target_nid; 5868 pte_t pte, old_pte; 5869 int flags = 0, nr_pages; 5870 5871 /* 5872 * The pte cannot be used safely until we verify, while holding the page 5873 * table lock, that its contents have not changed during fault handling. 5874 */ 5875 spin_lock(vmf->ptl); 5876 /* Read the live PTE from the page tables: */ 5877 old_pte = ptep_get(vmf->pte); 5878 5879 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5880 pte_unmap_unlock(vmf->pte, vmf->ptl); 5881 return 0; 5882 } 5883 5884 pte = pte_modify(old_pte, vma->vm_page_prot); 5885 5886 /* 5887 * Detect now whether the PTE could be writable; this information 5888 * is only valid while holding the PT lock. 5889 */ 5890 writable = pte_write(pte); 5891 if (!writable && pte_write_upgrade && 5892 can_change_pte_writable(vma, vmf->address, pte)) 5893 writable = true; 5894 5895 folio = vm_normal_folio(vma, vmf->address, pte); 5896 if (!folio || folio_is_zone_device(folio)) 5897 goto out_map; 5898 5899 nid = folio_nid(folio); 5900 nr_pages = folio_nr_pages(folio); 5901 5902 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5903 writable, &last_cpupid); 5904 if (target_nid == NUMA_NO_NODE) 5905 goto out_map; 5906 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5907 flags |= TNF_MIGRATE_FAIL; 5908 goto out_map; 5909 } 5910 /* The folio is isolated and isolation code holds a folio reference. */ 5911 pte_unmap_unlock(vmf->pte, vmf->ptl); 5912 writable = false; 5913 ignore_writable = true; 5914 5915 /* Migrate to the requested node */ 5916 if (!migrate_misplaced_folio(folio, target_nid)) { 5917 nid = target_nid; 5918 flags |= TNF_MIGRATED; 5919 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5920 return 0; 5921 } 5922 5923 flags |= TNF_MIGRATE_FAIL; 5924 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5925 vmf->address, &vmf->ptl); 5926 if (unlikely(!vmf->pte)) 5927 return 0; 5928 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5929 pte_unmap_unlock(vmf->pte, vmf->ptl); 5930 return 0; 5931 } 5932 out_map: 5933 /* 5934 * Make it present again, depending on how arch implements 5935 * non-accessible ptes, some can allow access by kernel mode. 5936 */ 5937 if (folio && folio_test_large(folio)) 5938 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5939 pte_write_upgrade); 5940 else 5941 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5942 writable); 5943 pte_unmap_unlock(vmf->pte, vmf->ptl); 5944 5945 if (nid != NUMA_NO_NODE) 5946 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5947 return 0; 5948 } 5949 5950 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5951 { 5952 struct vm_area_struct *vma = vmf->vma; 5953 if (vma_is_anonymous(vma)) 5954 return do_huge_pmd_anonymous_page(vmf); 5955 if (vma->vm_ops->huge_fault) 5956 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5957 return VM_FAULT_FALLBACK; 5958 } 5959 5960 /* `inline' is required to avoid gcc 4.1.2 build error */ 5961 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5962 { 5963 struct vm_area_struct *vma = vmf->vma; 5964 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5965 vm_fault_t ret; 5966 5967 if (vma_is_anonymous(vma)) { 5968 if (likely(!unshare) && 5969 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5970 if (userfaultfd_wp_async(vmf->vma)) 5971 goto split; 5972 return handle_userfault(vmf, VM_UFFD_WP); 5973 } 5974 return do_huge_pmd_wp_page(vmf); 5975 } 5976 5977 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5978 if (vma->vm_ops->huge_fault) { 5979 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5980 if (!(ret & VM_FAULT_FALLBACK)) 5981 return ret; 5982 } 5983 } 5984 5985 split: 5986 /* COW or write-notify handled on pte level: split pmd. */ 5987 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 5988 5989 return VM_FAULT_FALLBACK; 5990 } 5991 5992 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5993 { 5994 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5995 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5996 struct vm_area_struct *vma = vmf->vma; 5997 /* No support for anonymous transparent PUD pages yet */ 5998 if (vma_is_anonymous(vma)) 5999 return VM_FAULT_FALLBACK; 6000 if (vma->vm_ops->huge_fault) 6001 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6002 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6003 return VM_FAULT_FALLBACK; 6004 } 6005 6006 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6007 { 6008 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6009 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6010 struct vm_area_struct *vma = vmf->vma; 6011 vm_fault_t ret; 6012 6013 /* No support for anonymous transparent PUD pages yet */ 6014 if (vma_is_anonymous(vma)) 6015 goto split; 6016 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6017 if (vma->vm_ops->huge_fault) { 6018 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6019 if (!(ret & VM_FAULT_FALLBACK)) 6020 return ret; 6021 } 6022 } 6023 split: 6024 /* COW or write-notify not handled on PUD level: split pud.*/ 6025 __split_huge_pud(vma, vmf->pud, vmf->address); 6026 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6027 return VM_FAULT_FALLBACK; 6028 } 6029 6030 /* 6031 * These routines also need to handle stuff like marking pages dirty 6032 * and/or accessed for architectures that don't do it in hardware (most 6033 * RISC architectures). The early dirtying is also good on the i386. 6034 * 6035 * There is also a hook called "update_mmu_cache()" that architectures 6036 * with external mmu caches can use to update those (ie the Sparc or 6037 * PowerPC hashed page tables that act as extended TLBs). 6038 * 6039 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6040 * concurrent faults). 6041 * 6042 * The mmap_lock may have been released depending on flags and our return value. 6043 * See filemap_fault() and __folio_lock_or_retry(). 6044 */ 6045 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6046 { 6047 pte_t entry; 6048 6049 if (unlikely(pmd_none(*vmf->pmd))) { 6050 /* 6051 * Leave __pte_alloc() until later: because vm_ops->fault may 6052 * want to allocate huge page, and if we expose page table 6053 * for an instant, it will be difficult to retract from 6054 * concurrent faults and from rmap lookups. 6055 */ 6056 vmf->pte = NULL; 6057 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6058 } else { 6059 pmd_t dummy_pmdval; 6060 6061 /* 6062 * A regular pmd is established and it can't morph into a huge 6063 * pmd by anon khugepaged, since that takes mmap_lock in write 6064 * mode; but shmem or file collapse to THP could still morph 6065 * it into a huge pmd: just retry later if so. 6066 * 6067 * Use the maywrite version to indicate that vmf->pte may be 6068 * modified, but since we will use pte_same() to detect the 6069 * change of the !pte_none() entry, there is no need to recheck 6070 * the pmdval. Here we chooes to pass a dummy variable instead 6071 * of NULL, which helps new user think about why this place is 6072 * special. 6073 */ 6074 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6075 vmf->address, &dummy_pmdval, 6076 &vmf->ptl); 6077 if (unlikely(!vmf->pte)) 6078 return 0; 6079 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6080 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6081 6082 if (pte_none(vmf->orig_pte)) { 6083 pte_unmap(vmf->pte); 6084 vmf->pte = NULL; 6085 } 6086 } 6087 6088 if (!vmf->pte) 6089 return do_pte_missing(vmf); 6090 6091 if (!pte_present(vmf->orig_pte)) 6092 return do_swap_page(vmf); 6093 6094 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6095 return do_numa_page(vmf); 6096 6097 spin_lock(vmf->ptl); 6098 entry = vmf->orig_pte; 6099 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6100 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6101 goto unlock; 6102 } 6103 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6104 if (!pte_write(entry)) 6105 return do_wp_page(vmf); 6106 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6107 entry = pte_mkdirty(entry); 6108 } 6109 entry = pte_mkyoung(entry); 6110 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6111 vmf->flags & FAULT_FLAG_WRITE)) { 6112 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6113 vmf->pte, 1); 6114 } else { 6115 /* Skip spurious TLB flush for retried page fault */ 6116 if (vmf->flags & FAULT_FLAG_TRIED) 6117 goto unlock; 6118 /* 6119 * This is needed only for protection faults but the arch code 6120 * is not yet telling us if this is a protection fault or not. 6121 * This still avoids useless tlb flushes for .text page faults 6122 * with threads. 6123 */ 6124 if (vmf->flags & FAULT_FLAG_WRITE) 6125 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6126 vmf->pte); 6127 } 6128 unlock: 6129 pte_unmap_unlock(vmf->pte, vmf->ptl); 6130 return 0; 6131 } 6132 6133 /* 6134 * On entry, we hold either the VMA lock or the mmap_lock 6135 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6136 * the result, the mmap_lock is not held on exit. See filemap_fault() 6137 * and __folio_lock_or_retry(). 6138 */ 6139 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6140 unsigned long address, unsigned int flags) 6141 { 6142 struct vm_fault vmf = { 6143 .vma = vma, 6144 .address = address & PAGE_MASK, 6145 .real_address = address, 6146 .flags = flags, 6147 .pgoff = linear_page_index(vma, address), 6148 .gfp_mask = __get_fault_gfp_mask(vma), 6149 }; 6150 struct mm_struct *mm = vma->vm_mm; 6151 unsigned long vm_flags = vma->vm_flags; 6152 pgd_t *pgd; 6153 p4d_t *p4d; 6154 vm_fault_t ret; 6155 6156 pgd = pgd_offset(mm, address); 6157 p4d = p4d_alloc(mm, pgd, address); 6158 if (!p4d) 6159 return VM_FAULT_OOM; 6160 6161 vmf.pud = pud_alloc(mm, p4d, address); 6162 if (!vmf.pud) 6163 return VM_FAULT_OOM; 6164 retry_pud: 6165 if (pud_none(*vmf.pud) && 6166 thp_vma_allowable_order(vma, vm_flags, 6167 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 6168 ret = create_huge_pud(&vmf); 6169 if (!(ret & VM_FAULT_FALLBACK)) 6170 return ret; 6171 } else { 6172 pud_t orig_pud = *vmf.pud; 6173 6174 barrier(); 6175 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 6176 6177 /* 6178 * TODO once we support anonymous PUDs: NUMA case and 6179 * FAULT_FLAG_UNSHARE handling. 6180 */ 6181 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6182 ret = wp_huge_pud(&vmf, orig_pud); 6183 if (!(ret & VM_FAULT_FALLBACK)) 6184 return ret; 6185 } else { 6186 huge_pud_set_accessed(&vmf, orig_pud); 6187 return 0; 6188 } 6189 } 6190 } 6191 6192 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6193 if (!vmf.pmd) 6194 return VM_FAULT_OOM; 6195 6196 /* Huge pud page fault raced with pmd_alloc? */ 6197 if (pud_trans_unstable(vmf.pud)) 6198 goto retry_pud; 6199 6200 if (pmd_none(*vmf.pmd) && 6201 thp_vma_allowable_order(vma, vm_flags, 6202 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6203 ret = create_huge_pmd(&vmf); 6204 if (!(ret & VM_FAULT_FALLBACK)) 6205 return ret; 6206 } else { 6207 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6208 6209 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6210 VM_BUG_ON(thp_migration_supported() && 6211 !is_pmd_migration_entry(vmf.orig_pmd)); 6212 if (is_pmd_migration_entry(vmf.orig_pmd)) 6213 pmd_migration_entry_wait(mm, vmf.pmd); 6214 return 0; 6215 } 6216 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 6217 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6218 return do_huge_pmd_numa_page(&vmf); 6219 6220 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6221 !pmd_write(vmf.orig_pmd)) { 6222 ret = wp_huge_pmd(&vmf); 6223 if (!(ret & VM_FAULT_FALLBACK)) 6224 return ret; 6225 } else { 6226 huge_pmd_set_accessed(&vmf); 6227 return 0; 6228 } 6229 } 6230 } 6231 6232 return handle_pte_fault(&vmf); 6233 } 6234 6235 /** 6236 * mm_account_fault - Do page fault accounting 6237 * @mm: mm from which memcg should be extracted. It can be NULL. 6238 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6239 * of perf event counters, but we'll still do the per-task accounting to 6240 * the task who triggered this page fault. 6241 * @address: the faulted address. 6242 * @flags: the fault flags. 6243 * @ret: the fault retcode. 6244 * 6245 * This will take care of most of the page fault accounting. Meanwhile, it 6246 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6247 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6248 * still be in per-arch page fault handlers at the entry of page fault. 6249 */ 6250 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6251 unsigned long address, unsigned int flags, 6252 vm_fault_t ret) 6253 { 6254 bool major; 6255 6256 /* Incomplete faults will be accounted upon completion. */ 6257 if (ret & VM_FAULT_RETRY) 6258 return; 6259 6260 /* 6261 * To preserve the behavior of older kernels, PGFAULT counters record 6262 * both successful and failed faults, as opposed to perf counters, 6263 * which ignore failed cases. 6264 */ 6265 count_vm_event(PGFAULT); 6266 count_memcg_event_mm(mm, PGFAULT); 6267 6268 /* 6269 * Do not account for unsuccessful faults (e.g. when the address wasn't 6270 * valid). That includes arch_vma_access_permitted() failing before 6271 * reaching here. So this is not a "this many hardware page faults" 6272 * counter. We should use the hw profiling for that. 6273 */ 6274 if (ret & VM_FAULT_ERROR) 6275 return; 6276 6277 /* 6278 * We define the fault as a major fault when the final successful fault 6279 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6280 * handle it immediately previously). 6281 */ 6282 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6283 6284 if (major) 6285 current->maj_flt++; 6286 else 6287 current->min_flt++; 6288 6289 /* 6290 * If the fault is done for GUP, regs will be NULL. We only do the 6291 * accounting for the per thread fault counters who triggered the 6292 * fault, and we skip the perf event updates. 6293 */ 6294 if (!regs) 6295 return; 6296 6297 if (major) 6298 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6299 else 6300 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6301 } 6302 6303 #ifdef CONFIG_LRU_GEN 6304 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6305 { 6306 /* the LRU algorithm only applies to accesses with recency */ 6307 current->in_lru_fault = vma_has_recency(vma); 6308 } 6309 6310 static void lru_gen_exit_fault(void) 6311 { 6312 current->in_lru_fault = false; 6313 } 6314 #else 6315 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6316 { 6317 } 6318 6319 static void lru_gen_exit_fault(void) 6320 { 6321 } 6322 #endif /* CONFIG_LRU_GEN */ 6323 6324 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6325 unsigned int *flags) 6326 { 6327 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6328 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6329 return VM_FAULT_SIGSEGV; 6330 /* 6331 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6332 * just treat it like an ordinary read-fault otherwise. 6333 */ 6334 if (!is_cow_mapping(vma->vm_flags)) 6335 *flags &= ~FAULT_FLAG_UNSHARE; 6336 } else if (*flags & FAULT_FLAG_WRITE) { 6337 /* Write faults on read-only mappings are impossible ... */ 6338 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6339 return VM_FAULT_SIGSEGV; 6340 /* ... and FOLL_FORCE only applies to COW mappings. */ 6341 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6342 !is_cow_mapping(vma->vm_flags))) 6343 return VM_FAULT_SIGSEGV; 6344 } 6345 #ifdef CONFIG_PER_VMA_LOCK 6346 /* 6347 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6348 * the assumption that lock is dropped on VM_FAULT_RETRY. 6349 */ 6350 if (WARN_ON_ONCE((*flags & 6351 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6352 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6353 return VM_FAULT_SIGSEGV; 6354 #endif 6355 6356 return 0; 6357 } 6358 6359 /* 6360 * By the time we get here, we already hold either the VMA lock or the 6361 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6362 * 6363 * The mmap_lock may have been released depending on flags and our 6364 * return value. See filemap_fault() and __folio_lock_or_retry(). 6365 */ 6366 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6367 unsigned int flags, struct pt_regs *regs) 6368 { 6369 /* If the fault handler drops the mmap_lock, vma may be freed */ 6370 struct mm_struct *mm = vma->vm_mm; 6371 vm_fault_t ret; 6372 bool is_droppable; 6373 6374 __set_current_state(TASK_RUNNING); 6375 6376 ret = sanitize_fault_flags(vma, &flags); 6377 if (ret) 6378 goto out; 6379 6380 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6381 flags & FAULT_FLAG_INSTRUCTION, 6382 flags & FAULT_FLAG_REMOTE)) { 6383 ret = VM_FAULT_SIGSEGV; 6384 goto out; 6385 } 6386 6387 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6388 6389 /* 6390 * Enable the memcg OOM handling for faults triggered in user 6391 * space. Kernel faults are handled more gracefully. 6392 */ 6393 if (flags & FAULT_FLAG_USER) 6394 mem_cgroup_enter_user_fault(); 6395 6396 lru_gen_enter_fault(vma); 6397 6398 if (unlikely(is_vm_hugetlb_page(vma))) 6399 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6400 else 6401 ret = __handle_mm_fault(vma, address, flags); 6402 6403 /* 6404 * Warning: It is no longer safe to dereference vma-> after this point, 6405 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6406 * vma might be destroyed from underneath us. 6407 */ 6408 6409 lru_gen_exit_fault(); 6410 6411 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6412 if (is_droppable) 6413 ret &= ~VM_FAULT_OOM; 6414 6415 if (flags & FAULT_FLAG_USER) { 6416 mem_cgroup_exit_user_fault(); 6417 /* 6418 * The task may have entered a memcg OOM situation but 6419 * if the allocation error was handled gracefully (no 6420 * VM_FAULT_OOM), there is no need to kill anything. 6421 * Just clean up the OOM state peacefully. 6422 */ 6423 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6424 mem_cgroup_oom_synchronize(false); 6425 } 6426 out: 6427 mm_account_fault(mm, regs, address, flags, ret); 6428 6429 return ret; 6430 } 6431 EXPORT_SYMBOL_GPL(handle_mm_fault); 6432 6433 #ifndef __PAGETABLE_P4D_FOLDED 6434 /* 6435 * Allocate p4d page table. 6436 * We've already handled the fast-path in-line. 6437 */ 6438 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6439 { 6440 p4d_t *new = p4d_alloc_one(mm, address); 6441 if (!new) 6442 return -ENOMEM; 6443 6444 spin_lock(&mm->page_table_lock); 6445 if (pgd_present(*pgd)) { /* Another has populated it */ 6446 p4d_free(mm, new); 6447 } else { 6448 smp_wmb(); /* See comment in pmd_install() */ 6449 pgd_populate(mm, pgd, new); 6450 } 6451 spin_unlock(&mm->page_table_lock); 6452 return 0; 6453 } 6454 #endif /* __PAGETABLE_P4D_FOLDED */ 6455 6456 #ifndef __PAGETABLE_PUD_FOLDED 6457 /* 6458 * Allocate page upper directory. 6459 * We've already handled the fast-path in-line. 6460 */ 6461 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6462 { 6463 pud_t *new = pud_alloc_one(mm, address); 6464 if (!new) 6465 return -ENOMEM; 6466 6467 spin_lock(&mm->page_table_lock); 6468 if (!p4d_present(*p4d)) { 6469 mm_inc_nr_puds(mm); 6470 smp_wmb(); /* See comment in pmd_install() */ 6471 p4d_populate(mm, p4d, new); 6472 } else /* Another has populated it */ 6473 pud_free(mm, new); 6474 spin_unlock(&mm->page_table_lock); 6475 return 0; 6476 } 6477 #endif /* __PAGETABLE_PUD_FOLDED */ 6478 6479 #ifndef __PAGETABLE_PMD_FOLDED 6480 /* 6481 * Allocate page middle directory. 6482 * We've already handled the fast-path in-line. 6483 */ 6484 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6485 { 6486 spinlock_t *ptl; 6487 pmd_t *new = pmd_alloc_one(mm, address); 6488 if (!new) 6489 return -ENOMEM; 6490 6491 ptl = pud_lock(mm, pud); 6492 if (!pud_present(*pud)) { 6493 mm_inc_nr_pmds(mm); 6494 smp_wmb(); /* See comment in pmd_install() */ 6495 pud_populate(mm, pud, new); 6496 } else { /* Another has populated it */ 6497 pmd_free(mm, new); 6498 } 6499 spin_unlock(ptl); 6500 return 0; 6501 } 6502 #endif /* __PAGETABLE_PMD_FOLDED */ 6503 6504 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6505 spinlock_t *lock, pte_t *ptep, 6506 pgprot_t pgprot, unsigned long pfn_base, 6507 unsigned long addr_mask, bool writable, 6508 bool special) 6509 { 6510 args->lock = lock; 6511 args->ptep = ptep; 6512 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6513 args->addr_mask = addr_mask; 6514 args->pgprot = pgprot; 6515 args->writable = writable; 6516 args->special = special; 6517 } 6518 6519 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6520 { 6521 #ifdef CONFIG_LOCKDEP 6522 struct file *file = vma->vm_file; 6523 struct address_space *mapping = file ? file->f_mapping : NULL; 6524 6525 if (mapping) 6526 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6527 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6528 else 6529 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6530 #endif 6531 } 6532 6533 /** 6534 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6535 * @args: Pointer to struct @follow_pfnmap_args 6536 * 6537 * The caller needs to setup args->vma and args->address to point to the 6538 * virtual address as the target of such lookup. On a successful return, 6539 * the results will be put into other output fields. 6540 * 6541 * After the caller finished using the fields, the caller must invoke 6542 * another follow_pfnmap_end() to proper releases the locks and resources 6543 * of such look up request. 6544 * 6545 * During the start() and end() calls, the results in @args will be valid 6546 * as proper locks will be held. After the end() is called, all the fields 6547 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6548 * use of such information after end() may require proper synchronizations 6549 * by the caller with page table updates, otherwise it can create a 6550 * security bug. 6551 * 6552 * If the PTE maps a refcounted page, callers are responsible to protect 6553 * against invalidation with MMU notifiers; otherwise access to the PFN at 6554 * a later point in time can trigger use-after-free. 6555 * 6556 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6557 * should be taken for read, and the mmap semaphore cannot be released 6558 * before the end() is invoked. 6559 * 6560 * This function must not be used to modify PTE content. 6561 * 6562 * Return: zero on success, negative otherwise. 6563 */ 6564 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6565 { 6566 struct vm_area_struct *vma = args->vma; 6567 unsigned long address = args->address; 6568 struct mm_struct *mm = vma->vm_mm; 6569 spinlock_t *lock; 6570 pgd_t *pgdp; 6571 p4d_t *p4dp, p4d; 6572 pud_t *pudp, pud; 6573 pmd_t *pmdp, pmd; 6574 pte_t *ptep, pte; 6575 6576 pfnmap_lockdep_assert(vma); 6577 6578 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6579 goto out; 6580 6581 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6582 goto out; 6583 retry: 6584 pgdp = pgd_offset(mm, address); 6585 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6586 goto out; 6587 6588 p4dp = p4d_offset(pgdp, address); 6589 p4d = READ_ONCE(*p4dp); 6590 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6591 goto out; 6592 6593 pudp = pud_offset(p4dp, address); 6594 pud = READ_ONCE(*pudp); 6595 if (pud_none(pud)) 6596 goto out; 6597 if (pud_leaf(pud)) { 6598 lock = pud_lock(mm, pudp); 6599 if (!unlikely(pud_leaf(pud))) { 6600 spin_unlock(lock); 6601 goto retry; 6602 } 6603 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6604 pud_pfn(pud), PUD_MASK, pud_write(pud), 6605 pud_special(pud)); 6606 return 0; 6607 } 6608 6609 pmdp = pmd_offset(pudp, address); 6610 pmd = pmdp_get_lockless(pmdp); 6611 if (pmd_leaf(pmd)) { 6612 lock = pmd_lock(mm, pmdp); 6613 if (!unlikely(pmd_leaf(pmd))) { 6614 spin_unlock(lock); 6615 goto retry; 6616 } 6617 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6618 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6619 pmd_special(pmd)); 6620 return 0; 6621 } 6622 6623 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6624 if (!ptep) 6625 goto out; 6626 pte = ptep_get(ptep); 6627 if (!pte_present(pte)) 6628 goto unlock; 6629 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6630 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6631 pte_special(pte)); 6632 return 0; 6633 unlock: 6634 pte_unmap_unlock(ptep, lock); 6635 out: 6636 return -EINVAL; 6637 } 6638 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6639 6640 /** 6641 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6642 * @args: Pointer to struct @follow_pfnmap_args 6643 * 6644 * Must be used in pair of follow_pfnmap_start(). See the start() function 6645 * above for more information. 6646 */ 6647 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6648 { 6649 if (args->lock) 6650 spin_unlock(args->lock); 6651 if (args->ptep) 6652 pte_unmap(args->ptep); 6653 } 6654 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6655 6656 #ifdef CONFIG_HAVE_IOREMAP_PROT 6657 /** 6658 * generic_access_phys - generic implementation for iomem mmap access 6659 * @vma: the vma to access 6660 * @addr: userspace address, not relative offset within @vma 6661 * @buf: buffer to read/write 6662 * @len: length of transfer 6663 * @write: set to FOLL_WRITE when writing, otherwise reading 6664 * 6665 * This is a generic implementation for &vm_operations_struct.access for an 6666 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6667 * not page based. 6668 */ 6669 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6670 void *buf, int len, int write) 6671 { 6672 resource_size_t phys_addr; 6673 pgprot_t prot = __pgprot(0); 6674 void __iomem *maddr; 6675 int offset = offset_in_page(addr); 6676 int ret = -EINVAL; 6677 bool writable; 6678 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6679 6680 retry: 6681 if (follow_pfnmap_start(&args)) 6682 return -EINVAL; 6683 prot = args.pgprot; 6684 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6685 writable = args.writable; 6686 follow_pfnmap_end(&args); 6687 6688 if ((write & FOLL_WRITE) && !writable) 6689 return -EINVAL; 6690 6691 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6692 if (!maddr) 6693 return -ENOMEM; 6694 6695 if (follow_pfnmap_start(&args)) 6696 goto out_unmap; 6697 6698 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6699 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6700 (writable != args.writable)) { 6701 follow_pfnmap_end(&args); 6702 iounmap(maddr); 6703 goto retry; 6704 } 6705 6706 if (write) 6707 memcpy_toio(maddr + offset, buf, len); 6708 else 6709 memcpy_fromio(buf, maddr + offset, len); 6710 ret = len; 6711 follow_pfnmap_end(&args); 6712 out_unmap: 6713 iounmap(maddr); 6714 6715 return ret; 6716 } 6717 EXPORT_SYMBOL_GPL(generic_access_phys); 6718 #endif 6719 6720 /* 6721 * Access another process' address space as given in mm. 6722 */ 6723 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6724 void *buf, int len, unsigned int gup_flags) 6725 { 6726 void *old_buf = buf; 6727 int write = gup_flags & FOLL_WRITE; 6728 6729 if (mmap_read_lock_killable(mm)) 6730 return 0; 6731 6732 /* Untag the address before looking up the VMA */ 6733 addr = untagged_addr_remote(mm, addr); 6734 6735 /* Avoid triggering the temporary warning in __get_user_pages */ 6736 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6737 return 0; 6738 6739 /* ignore errors, just check how much was successfully transferred */ 6740 while (len) { 6741 int bytes, offset; 6742 void *maddr; 6743 struct vm_area_struct *vma = NULL; 6744 struct page *page = get_user_page_vma_remote(mm, addr, 6745 gup_flags, &vma); 6746 6747 if (IS_ERR(page)) { 6748 /* We might need to expand the stack to access it */ 6749 vma = vma_lookup(mm, addr); 6750 if (!vma) { 6751 vma = expand_stack(mm, addr); 6752 6753 /* mmap_lock was dropped on failure */ 6754 if (!vma) 6755 return buf - old_buf; 6756 6757 /* Try again if stack expansion worked */ 6758 continue; 6759 } 6760 6761 /* 6762 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6763 * we can access using slightly different code. 6764 */ 6765 bytes = 0; 6766 #ifdef CONFIG_HAVE_IOREMAP_PROT 6767 if (vma->vm_ops && vma->vm_ops->access) 6768 bytes = vma->vm_ops->access(vma, addr, buf, 6769 len, write); 6770 #endif 6771 if (bytes <= 0) 6772 break; 6773 } else { 6774 bytes = len; 6775 offset = addr & (PAGE_SIZE-1); 6776 if (bytes > PAGE_SIZE-offset) 6777 bytes = PAGE_SIZE-offset; 6778 6779 maddr = kmap_local_page(page); 6780 if (write) { 6781 copy_to_user_page(vma, page, addr, 6782 maddr + offset, buf, bytes); 6783 set_page_dirty_lock(page); 6784 } else { 6785 copy_from_user_page(vma, page, addr, 6786 buf, maddr + offset, bytes); 6787 } 6788 unmap_and_put_page(page, maddr); 6789 } 6790 len -= bytes; 6791 buf += bytes; 6792 addr += bytes; 6793 } 6794 mmap_read_unlock(mm); 6795 6796 return buf - old_buf; 6797 } 6798 6799 /** 6800 * access_remote_vm - access another process' address space 6801 * @mm: the mm_struct of the target address space 6802 * @addr: start address to access 6803 * @buf: source or destination buffer 6804 * @len: number of bytes to transfer 6805 * @gup_flags: flags modifying lookup behaviour 6806 * 6807 * The caller must hold a reference on @mm. 6808 * 6809 * Return: number of bytes copied from source to destination. 6810 */ 6811 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6812 void *buf, int len, unsigned int gup_flags) 6813 { 6814 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6815 } 6816 6817 /* 6818 * Access another process' address space. 6819 * Source/target buffer must be kernel space, 6820 * Do not walk the page table directly, use get_user_pages 6821 */ 6822 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6823 void *buf, int len, unsigned int gup_flags) 6824 { 6825 struct mm_struct *mm; 6826 int ret; 6827 6828 mm = get_task_mm(tsk); 6829 if (!mm) 6830 return 0; 6831 6832 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6833 6834 mmput(mm); 6835 6836 return ret; 6837 } 6838 EXPORT_SYMBOL_GPL(access_process_vm); 6839 6840 #ifdef CONFIG_BPF_SYSCALL 6841 /* 6842 * Copy a string from another process's address space as given in mm. 6843 * If there is any error return -EFAULT. 6844 */ 6845 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6846 void *buf, int len, unsigned int gup_flags) 6847 { 6848 void *old_buf = buf; 6849 int err = 0; 6850 6851 *(char *)buf = '\0'; 6852 6853 if (mmap_read_lock_killable(mm)) 6854 return -EFAULT; 6855 6856 addr = untagged_addr_remote(mm, addr); 6857 6858 /* Avoid triggering the temporary warning in __get_user_pages */ 6859 if (!vma_lookup(mm, addr)) { 6860 err = -EFAULT; 6861 goto out; 6862 } 6863 6864 while (len) { 6865 int bytes, offset, retval; 6866 void *maddr; 6867 struct page *page; 6868 struct vm_area_struct *vma = NULL; 6869 6870 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6871 if (IS_ERR(page)) { 6872 /* 6873 * Treat as a total failure for now until we decide how 6874 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6875 * stack expansion. 6876 */ 6877 *(char *)buf = '\0'; 6878 err = -EFAULT; 6879 goto out; 6880 } 6881 6882 bytes = len; 6883 offset = addr & (PAGE_SIZE - 1); 6884 if (bytes > PAGE_SIZE - offset) 6885 bytes = PAGE_SIZE - offset; 6886 6887 maddr = kmap_local_page(page); 6888 retval = strscpy(buf, maddr + offset, bytes); 6889 if (retval >= 0) { 6890 /* Found the end of the string */ 6891 buf += retval; 6892 unmap_and_put_page(page, maddr); 6893 break; 6894 } 6895 6896 buf += bytes - 1; 6897 /* 6898 * Because strscpy always NUL terminates we need to 6899 * copy the last byte in the page if we are going to 6900 * load more pages 6901 */ 6902 if (bytes != len) { 6903 addr += bytes - 1; 6904 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 6905 buf += 1; 6906 addr += 1; 6907 } 6908 len -= bytes; 6909 6910 unmap_and_put_page(page, maddr); 6911 } 6912 6913 out: 6914 mmap_read_unlock(mm); 6915 if (err) 6916 return err; 6917 return buf - old_buf; 6918 } 6919 6920 /** 6921 * copy_remote_vm_str - copy a string from another process's address space. 6922 * @tsk: the task of the target address space 6923 * @addr: start address to read from 6924 * @buf: destination buffer 6925 * @len: number of bytes to copy 6926 * @gup_flags: flags modifying lookup behaviour 6927 * 6928 * The caller must hold a reference on @mm. 6929 * 6930 * Return: number of bytes copied from @addr (source) to @buf (destination); 6931 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 6932 * buffer. On any error, return -EFAULT. 6933 */ 6934 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 6935 void *buf, int len, unsigned int gup_flags) 6936 { 6937 struct mm_struct *mm; 6938 int ret; 6939 6940 if (unlikely(len == 0)) 6941 return 0; 6942 6943 mm = get_task_mm(tsk); 6944 if (!mm) { 6945 *(char *)buf = '\0'; 6946 return -EFAULT; 6947 } 6948 6949 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 6950 6951 mmput(mm); 6952 6953 return ret; 6954 } 6955 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 6956 #endif /* CONFIG_BPF_SYSCALL */ 6957 6958 /* 6959 * Print the name of a VMA. 6960 */ 6961 void print_vma_addr(char *prefix, unsigned long ip) 6962 { 6963 struct mm_struct *mm = current->mm; 6964 struct vm_area_struct *vma; 6965 6966 /* 6967 * we might be running from an atomic context so we cannot sleep 6968 */ 6969 if (!mmap_read_trylock(mm)) 6970 return; 6971 6972 vma = vma_lookup(mm, ip); 6973 if (vma && vma->vm_file) { 6974 struct file *f = vma->vm_file; 6975 ip -= vma->vm_start; 6976 ip += vma->vm_pgoff << PAGE_SHIFT; 6977 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6978 vma->vm_start, 6979 vma->vm_end - vma->vm_start); 6980 } 6981 mmap_read_unlock(mm); 6982 } 6983 6984 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6985 void __might_fault(const char *file, int line) 6986 { 6987 if (pagefault_disabled()) 6988 return; 6989 __might_sleep(file, line); 6990 if (current->mm) 6991 might_lock_read(¤t->mm->mmap_lock); 6992 } 6993 EXPORT_SYMBOL(__might_fault); 6994 #endif 6995 6996 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6997 /* 6998 * Process all subpages of the specified huge page with the specified 6999 * operation. The target subpage will be processed last to keep its 7000 * cache lines hot. 7001 */ 7002 static inline int process_huge_page( 7003 unsigned long addr_hint, unsigned int nr_pages, 7004 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7005 void *arg) 7006 { 7007 int i, n, base, l, ret; 7008 unsigned long addr = addr_hint & 7009 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7010 7011 /* Process target subpage last to keep its cache lines hot */ 7012 might_sleep(); 7013 n = (addr_hint - addr) / PAGE_SIZE; 7014 if (2 * n <= nr_pages) { 7015 /* If target subpage in first half of huge page */ 7016 base = 0; 7017 l = n; 7018 /* Process subpages at the end of huge page */ 7019 for (i = nr_pages - 1; i >= 2 * n; i--) { 7020 cond_resched(); 7021 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7022 if (ret) 7023 return ret; 7024 } 7025 } else { 7026 /* If target subpage in second half of huge page */ 7027 base = nr_pages - 2 * (nr_pages - n); 7028 l = nr_pages - n; 7029 /* Process subpages at the begin of huge page */ 7030 for (i = 0; i < base; i++) { 7031 cond_resched(); 7032 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7033 if (ret) 7034 return ret; 7035 } 7036 } 7037 /* 7038 * Process remaining subpages in left-right-left-right pattern 7039 * towards the target subpage 7040 */ 7041 for (i = 0; i < l; i++) { 7042 int left_idx = base + i; 7043 int right_idx = base + 2 * l - 1 - i; 7044 7045 cond_resched(); 7046 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7047 if (ret) 7048 return ret; 7049 cond_resched(); 7050 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7051 if (ret) 7052 return ret; 7053 } 7054 return 0; 7055 } 7056 7057 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7058 unsigned int nr_pages) 7059 { 7060 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7061 int i; 7062 7063 might_sleep(); 7064 for (i = 0; i < nr_pages; i++) { 7065 cond_resched(); 7066 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7067 } 7068 } 7069 7070 static int clear_subpage(unsigned long addr, int idx, void *arg) 7071 { 7072 struct folio *folio = arg; 7073 7074 clear_user_highpage(folio_page(folio, idx), addr); 7075 return 0; 7076 } 7077 7078 /** 7079 * folio_zero_user - Zero a folio which will be mapped to userspace. 7080 * @folio: The folio to zero. 7081 * @addr_hint: The address will be accessed or the base address if uncelar. 7082 */ 7083 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7084 { 7085 unsigned int nr_pages = folio_nr_pages(folio); 7086 7087 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7088 clear_gigantic_page(folio, addr_hint, nr_pages); 7089 else 7090 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7091 } 7092 7093 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7094 unsigned long addr_hint, 7095 struct vm_area_struct *vma, 7096 unsigned int nr_pages) 7097 { 7098 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7099 struct page *dst_page; 7100 struct page *src_page; 7101 int i; 7102 7103 for (i = 0; i < nr_pages; i++) { 7104 dst_page = folio_page(dst, i); 7105 src_page = folio_page(src, i); 7106 7107 cond_resched(); 7108 if (copy_mc_user_highpage(dst_page, src_page, 7109 addr + i*PAGE_SIZE, vma)) 7110 return -EHWPOISON; 7111 } 7112 return 0; 7113 } 7114 7115 struct copy_subpage_arg { 7116 struct folio *dst; 7117 struct folio *src; 7118 struct vm_area_struct *vma; 7119 }; 7120 7121 static int copy_subpage(unsigned long addr, int idx, void *arg) 7122 { 7123 struct copy_subpage_arg *copy_arg = arg; 7124 struct page *dst = folio_page(copy_arg->dst, idx); 7125 struct page *src = folio_page(copy_arg->src, idx); 7126 7127 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7128 return -EHWPOISON; 7129 return 0; 7130 } 7131 7132 int copy_user_large_folio(struct folio *dst, struct folio *src, 7133 unsigned long addr_hint, struct vm_area_struct *vma) 7134 { 7135 unsigned int nr_pages = folio_nr_pages(dst); 7136 struct copy_subpage_arg arg = { 7137 .dst = dst, 7138 .src = src, 7139 .vma = vma, 7140 }; 7141 7142 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7143 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7144 7145 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7146 } 7147 7148 long copy_folio_from_user(struct folio *dst_folio, 7149 const void __user *usr_src, 7150 bool allow_pagefault) 7151 { 7152 void *kaddr; 7153 unsigned long i, rc = 0; 7154 unsigned int nr_pages = folio_nr_pages(dst_folio); 7155 unsigned long ret_val = nr_pages * PAGE_SIZE; 7156 struct page *subpage; 7157 7158 for (i = 0; i < nr_pages; i++) { 7159 subpage = folio_page(dst_folio, i); 7160 kaddr = kmap_local_page(subpage); 7161 if (!allow_pagefault) 7162 pagefault_disable(); 7163 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7164 if (!allow_pagefault) 7165 pagefault_enable(); 7166 kunmap_local(kaddr); 7167 7168 ret_val -= (PAGE_SIZE - rc); 7169 if (rc) 7170 break; 7171 7172 flush_dcache_page(subpage); 7173 7174 cond_resched(); 7175 } 7176 return ret_val; 7177 } 7178 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7179 7180 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7181 7182 static struct kmem_cache *page_ptl_cachep; 7183 7184 void __init ptlock_cache_init(void) 7185 { 7186 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7187 SLAB_PANIC, NULL); 7188 } 7189 7190 bool ptlock_alloc(struct ptdesc *ptdesc) 7191 { 7192 spinlock_t *ptl; 7193 7194 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7195 if (!ptl) 7196 return false; 7197 ptdesc->ptl = ptl; 7198 return true; 7199 } 7200 7201 void ptlock_free(struct ptdesc *ptdesc) 7202 { 7203 if (ptdesc->ptl) 7204 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7205 } 7206 #endif 7207 7208 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7209 { 7210 if (is_vm_hugetlb_page(vma)) 7211 hugetlb_vma_lock_read(vma); 7212 } 7213 7214 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7215 { 7216 if (is_vm_hugetlb_page(vma)) 7217 hugetlb_vma_unlock_read(vma); 7218 } 7219