1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/shmem_fs.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_marker_uffd_wp(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 static const struct ctl_table mmu_sysctl_table[] = { 129 { 130 .procname = "randomize_va_space", 131 .data = &randomize_va_space, 132 .maxlen = sizeof(int), 133 .mode = 0644, 134 .proc_handler = proc_dointvec, 135 }, 136 }; 137 138 static int __init init_mm_sysctl(void) 139 { 140 register_sysctl_init("kernel", mmu_sysctl_table); 141 return 0; 142 } 143 144 subsys_initcall(init_mm_sysctl); 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /** 300 * free_pgd_range - Unmap and free page tables in the range 301 * @tlb: the mmu_gather containing pending TLB flush info 302 * @addr: virtual address start 303 * @end: virtual address end 304 * @floor: lowest address boundary 305 * @ceiling: highest address boundary 306 * 307 * This function tears down all user-level page tables in the 308 * specified virtual address range [@addr..@end). It is part of 309 * the memory unmap flow. 310 */ 311 void free_pgd_range(struct mmu_gather *tlb, 312 unsigned long addr, unsigned long end, 313 unsigned long floor, unsigned long ceiling) 314 { 315 pgd_t *pgd; 316 unsigned long next; 317 318 /* 319 * The next few lines have given us lots of grief... 320 * 321 * Why are we testing PMD* at this top level? Because often 322 * there will be no work to do at all, and we'd prefer not to 323 * go all the way down to the bottom just to discover that. 324 * 325 * Why all these "- 1"s? Because 0 represents both the bottom 326 * of the address space and the top of it (using -1 for the 327 * top wouldn't help much: the masks would do the wrong thing). 328 * The rule is that addr 0 and floor 0 refer to the bottom of 329 * the address space, but end 0 and ceiling 0 refer to the top 330 * Comparisons need to use "end - 1" and "ceiling - 1" (though 331 * that end 0 case should be mythical). 332 * 333 * Wherever addr is brought up or ceiling brought down, we must 334 * be careful to reject "the opposite 0" before it confuses the 335 * subsequent tests. But what about where end is brought down 336 * by PMD_SIZE below? no, end can't go down to 0 there. 337 * 338 * Whereas we round start (addr) and ceiling down, by different 339 * masks at different levels, in order to test whether a table 340 * now has no other vmas using it, so can be freed, we don't 341 * bother to round floor or end up - the tests don't need that. 342 */ 343 344 addr &= PMD_MASK; 345 if (addr < floor) { 346 addr += PMD_SIZE; 347 if (!addr) 348 return; 349 } 350 if (ceiling) { 351 ceiling &= PMD_MASK; 352 if (!ceiling) 353 return; 354 } 355 if (end - 1 > ceiling - 1) 356 end -= PMD_SIZE; 357 if (addr > end - 1) 358 return; 359 /* 360 * We add page table cache pages with PAGE_SIZE, 361 * (see pte_free_tlb()), flush the tlb if we need 362 */ 363 tlb_change_page_size(tlb, PAGE_SIZE); 364 pgd = pgd_offset(tlb->mm, addr); 365 do { 366 next = pgd_addr_end(addr, end); 367 if (pgd_none_or_clear_bad(pgd)) 368 continue; 369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 370 } while (pgd++, addr = next, addr != end); 371 } 372 373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 374 struct vm_area_struct *vma, unsigned long floor, 375 unsigned long ceiling, bool mm_wr_locked) 376 { 377 struct unlink_vma_file_batch vb; 378 379 tlb_free_vmas(tlb); 380 381 do { 382 unsigned long addr = vma->vm_start; 383 struct vm_area_struct *next; 384 385 /* 386 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 387 * be 0. This will underflow and is okay. 388 */ 389 next = mas_find(mas, ceiling - 1); 390 if (unlikely(xa_is_zero(next))) 391 next = NULL; 392 393 /* 394 * Hide vma from rmap and truncate_pagecache before freeing 395 * pgtables 396 */ 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 401 unlink_file_vma_batch_init(&vb); 402 unlink_file_vma_batch_add(&vb, vma); 403 404 /* 405 * Optimization: gather nearby vmas into one call down 406 */ 407 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 408 vma = next; 409 next = mas_find(mas, ceiling - 1); 410 if (unlikely(xa_is_zero(next))) 411 next = NULL; 412 if (mm_wr_locked) 413 vma_start_write(vma); 414 unlink_anon_vmas(vma); 415 unlink_file_vma_batch_add(&vb, vma); 416 } 417 unlink_file_vma_batch_final(&vb); 418 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 vma = next; 422 } while (vma); 423 } 424 425 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 426 { 427 spinlock_t *ptl = pmd_lock(mm, pmd); 428 429 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 430 mm_inc_nr_ptes(mm); 431 /* 432 * Ensure all pte setup (eg. pte page lock and page clearing) are 433 * visible before the pte is made visible to other CPUs by being 434 * put into page tables. 435 * 436 * The other side of the story is the pointer chasing in the page 437 * table walking code (when walking the page table without locking; 438 * ie. most of the time). Fortunately, these data accesses consist 439 * of a chain of data-dependent loads, meaning most CPUs (alpha 440 * being the notable exception) will already guarantee loads are 441 * seen in-order. See the alpha page table accessors for the 442 * smp_rmb() barriers in page table walking code. 443 */ 444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 445 pmd_populate(mm, pmd, *pte); 446 *pte = NULL; 447 } 448 spin_unlock(ptl); 449 } 450 451 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 452 { 453 pgtable_t new = pte_alloc_one(mm); 454 if (!new) 455 return -ENOMEM; 456 457 pmd_install(mm, pmd, &new); 458 if (new) 459 pte_free(mm, new); 460 return 0; 461 } 462 463 int __pte_alloc_kernel(pmd_t *pmd) 464 { 465 pte_t *new = pte_alloc_one_kernel(&init_mm); 466 if (!new) 467 return -ENOMEM; 468 469 spin_lock(&init_mm.page_table_lock); 470 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 471 smp_wmb(); /* See comment in pmd_install() */ 472 pmd_populate_kernel(&init_mm, pmd, new); 473 new = NULL; 474 } 475 spin_unlock(&init_mm.page_table_lock); 476 if (new) 477 pte_free_kernel(&init_mm, new); 478 return 0; 479 } 480 481 static inline void init_rss_vec(int *rss) 482 { 483 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 484 } 485 486 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 487 { 488 int i; 489 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 static bool is_bad_page_map_ratelimited(void) 496 { 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return true; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 return false; 520 } 521 522 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr) 523 { 524 unsigned long long pgdv, p4dv, pudv, pmdv; 525 p4d_t p4d, *p4dp; 526 pud_t pud, *pudp; 527 pmd_t pmd, *pmdp; 528 pgd_t *pgdp; 529 530 /* 531 * Although this looks like a fully lockless pgtable walk, it is not: 532 * see locking requirements for print_bad_page_map(). 533 */ 534 pgdp = pgd_offset(mm, addr); 535 pgdv = pgd_val(*pgdp); 536 537 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) { 538 pr_alert("pgd:%08llx\n", pgdv); 539 return; 540 } 541 542 p4dp = p4d_offset(pgdp, addr); 543 p4d = p4dp_get(p4dp); 544 p4dv = p4d_val(p4d); 545 546 if (!p4d_present(p4d) || p4d_leaf(p4d)) { 547 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv); 548 return; 549 } 550 551 pudp = pud_offset(p4dp, addr); 552 pud = pudp_get(pudp); 553 pudv = pud_val(pud); 554 555 if (!pud_present(pud) || pud_leaf(pud)) { 556 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv); 557 return; 558 } 559 560 pmdp = pmd_offset(pudp, addr); 561 pmd = pmdp_get(pmdp); 562 pmdv = pmd_val(pmd); 563 564 /* 565 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE, 566 * because the table should already be mapped by the caller and 567 * doing another map would be bad. print_bad_page_map() should 568 * already take care of printing the PTE. 569 */ 570 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv, 571 p4dv, pudv, pmdv); 572 } 573 574 /* 575 * This function is called to print an error when a bad page table entry (e.g., 576 * corrupted page table entry) is found. For example, we might have a 577 * PFN-mapped pte in a region that doesn't allow it. 578 * 579 * The calling function must still handle the error. 580 * 581 * This function must be called during a proper page table walk, as it will 582 * re-walk the page table to dump information: the caller MUST prevent page 583 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf 584 * page table lock. 585 */ 586 static void print_bad_page_map(struct vm_area_struct *vma, 587 unsigned long addr, unsigned long long entry, struct page *page, 588 enum pgtable_level level) 589 { 590 struct address_space *mapping; 591 pgoff_t index; 592 593 if (is_bad_page_map_ratelimited()) 594 return; 595 596 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 597 index = linear_page_index(vma, addr); 598 599 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm, 600 pgtable_level_to_str(level), entry); 601 __print_bad_page_map_pgtable(vma->vm_mm, addr); 602 if (page) 603 dump_page(page, "bad page map"); 604 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 605 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 606 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 607 vma->vm_file, 608 vma->vm_ops ? vma->vm_ops->fault : NULL, 609 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 610 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 611 mapping ? mapping->a_ops->read_folio : NULL); 612 dump_stack(); 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 614 } 615 #define print_bad_pte(vma, addr, pte, page) \ 616 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE) 617 618 /** 619 * __vm_normal_page() - Get the "struct page" associated with a page table entry. 620 * @vma: The VMA mapping the page table entry. 621 * @addr: The address where the page table entry is mapped. 622 * @pfn: The PFN stored in the page table entry. 623 * @special: Whether the page table entry is marked "special". 624 * @level: The page table level for error reporting purposes only. 625 * @entry: The page table entry value for error reporting purposes only. 626 * 627 * "Special" mappings do not wish to be associated with a "struct page" (either 628 * it doesn't exist, or it exists but they don't want to touch it). In this 629 * case, NULL is returned here. "Normal" mappings do have a struct page and 630 * are ordinarily refcounted. 631 * 632 * Page mappings of the shared zero folios are always considered "special", as 633 * they are not ordinarily refcounted: neither the refcount nor the mapcount 634 * of these folios is adjusted when mapping them into user page tables. 635 * Selected page table walkers (such as GUP) can still identify mappings of the 636 * shared zero folios and work with the underlying "struct page". 637 * 638 * There are 2 broad cases. Firstly, an architecture may define a "special" 639 * page table entry bit, such as pte_special(), in which case this function is 640 * trivial. Secondly, an architecture may not have a spare page table 641 * entry bit, which requires a more complicated scheme, described below. 642 * 643 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on 644 * page table entries that actually map "normal" pages: however, that page 645 * cannot be looked up through the PFN stored in the page table entry, but 646 * instead will be looked up through vm_ops->find_normal_page(). So far, this 647 * only applies to PTEs. 648 * 649 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 650 * special mapping (even if there are underlying and valid "struct pages"). 651 * COWed pages of a VM_PFNMAP are always normal. 652 * 653 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 654 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 655 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 656 * mapping will always honor the rule 657 * 658 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 659 * 660 * And for normal mappings this is false. 661 * 662 * This restricts such mappings to be a linear translation from virtual address 663 * to pfn. To get around this restriction, we allow arbitrary mappings so long 664 * as the vma is not a COW mapping; in that case, we know that all ptes are 665 * special (because none can have been COWed). 666 * 667 * 668 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 669 * 670 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 671 * page" backing, however the difference is that _all_ pages with a struct 672 * page (that is, those where pfn_valid is true, except the shared zero 673 * folios) are refcounted and considered normal pages by the VM. 674 * 675 * The disadvantage is that pages are refcounted (which can be slower and 676 * simply not an option for some PFNMAP users). The advantage is that we 677 * don't have to follow the strict linearity rule of PFNMAP mappings in 678 * order to support COWable mappings. 679 * 680 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 681 * NULL if this is a "special" mapping. 682 */ 683 static inline struct page *__vm_normal_page(struct vm_area_struct *vma, 684 unsigned long addr, unsigned long pfn, bool special, 685 unsigned long long entry, enum pgtable_level level) 686 { 687 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 688 if (unlikely(special)) { 689 #ifdef CONFIG_FIND_NORMAL_PAGE 690 if (vma->vm_ops && vma->vm_ops->find_normal_page) 691 return vma->vm_ops->find_normal_page(vma, addr); 692 #endif /* CONFIG_FIND_NORMAL_PAGE */ 693 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 694 return NULL; 695 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 696 return NULL; 697 698 print_bad_page_map(vma, addr, entry, NULL, level); 699 return NULL; 700 } 701 /* 702 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table 703 * mappings (incl. shared zero folios) are marked accordingly. 704 */ 705 } else { 706 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) { 707 if (vma->vm_flags & VM_MIXEDMAP) { 708 /* If it has a "struct page", it's "normal". */ 709 if (!pfn_valid(pfn)) 710 return NULL; 711 } else { 712 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 713 714 /* Only CoW'ed anon folios are "normal". */ 715 if (pfn == vma->vm_pgoff + off) 716 return NULL; 717 if (!is_cow_mapping(vma->vm_flags)) 718 return NULL; 719 } 720 } 721 722 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 723 return NULL; 724 } 725 726 if (unlikely(pfn > highest_memmap_pfn)) { 727 /* Corrupted page table entry. */ 728 print_bad_page_map(vma, addr, entry, NULL, level); 729 return NULL; 730 } 731 /* 732 * NOTE! We still have PageReserved() pages in the page tables. 733 * For example, VDSO mappings can cause them to exist. 734 */ 735 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)); 736 return pfn_to_page(pfn); 737 } 738 739 /** 740 * vm_normal_page() - Get the "struct page" associated with a PTE 741 * @vma: The VMA mapping the @pte. 742 * @addr: The address where the @pte is mapped. 743 * @pte: The PTE. 744 * 745 * Get the "struct page" associated with a PTE. See __vm_normal_page() 746 * for details on "normal" and "special" mappings. 747 * 748 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 749 * NULL if this is a "special" mapping. 750 */ 751 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 752 pte_t pte) 753 { 754 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte), 755 pte_val(pte), PGTABLE_LEVEL_PTE); 756 } 757 758 /** 759 * vm_normal_folio() - Get the "struct folio" associated with a PTE 760 * @vma: The VMA mapping the @pte. 761 * @addr: The address where the @pte is mapped. 762 * @pte: The PTE. 763 * 764 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 765 * for details on "normal" and "special" mappings. 766 * 767 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 768 * NULL if this is a "special" mapping. 769 */ 770 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 771 pte_t pte) 772 { 773 struct page *page = vm_normal_page(vma, addr, pte); 774 775 if (page) 776 return page_folio(page); 777 return NULL; 778 } 779 780 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 781 /** 782 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD 783 * @vma: The VMA mapping the @pmd. 784 * @addr: The address where the @pmd is mapped. 785 * @pmd: The PMD. 786 * 787 * Get the "struct page" associated with a PTE. See __vm_normal_page() 788 * for details on "normal" and "special" mappings. 789 * 790 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 791 * NULL if this is a "special" mapping. 792 */ 793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 794 pmd_t pmd) 795 { 796 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd), 797 pmd_val(pmd), PGTABLE_LEVEL_PMD); 798 } 799 800 /** 801 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD 802 * @vma: The VMA mapping the @pmd. 803 * @addr: The address where the @pmd is mapped. 804 * @pmd: The PMD. 805 * 806 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 807 * for details on "normal" and "special" mappings. 808 * 809 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 810 * NULL if this is a "special" mapping. 811 */ 812 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 813 unsigned long addr, pmd_t pmd) 814 { 815 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 816 817 if (page) 818 return page_folio(page); 819 return NULL; 820 } 821 822 /** 823 * vm_normal_page_pud() - Get the "struct page" associated with a PUD 824 * @vma: The VMA mapping the @pud. 825 * @addr: The address where the @pud is mapped. 826 * @pud: The PUD. 827 * 828 * Get the "struct page" associated with a PUD. See __vm_normal_page() 829 * for details on "normal" and "special" mappings. 830 * 831 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 832 * NULL if this is a "special" mapping. 833 */ 834 struct page *vm_normal_page_pud(struct vm_area_struct *vma, 835 unsigned long addr, pud_t pud) 836 { 837 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud), 838 pud_val(pud), PGTABLE_LEVEL_PUD); 839 } 840 #endif 841 842 /** 843 * restore_exclusive_pte - Restore a device-exclusive entry 844 * @vma: VMA covering @address 845 * @folio: the mapped folio 846 * @page: the mapped folio page 847 * @address: the virtual address 848 * @ptep: pte pointer into the locked page table mapping the folio page 849 * @orig_pte: pte value at @ptep 850 * 851 * Restore a device-exclusive non-swap entry to an ordinary present pte. 852 * 853 * The folio and the page table must be locked, and MMU notifiers must have 854 * been called to invalidate any (exclusive) device mappings. 855 * 856 * Locking the folio makes sure that anybody who just converted the pte to 857 * a device-exclusive entry can map it into the device to make forward 858 * progress without others converting it back until the folio was unlocked. 859 * 860 * If the folio lock ever becomes an issue, we can stop relying on the folio 861 * lock; it might make some scenarios with heavy thrashing less likely to 862 * make forward progress, but these scenarios might not be valid use cases. 863 * 864 * Note that the folio lock does not protect against all cases of concurrent 865 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 866 * must use MMU notifiers to sync against any concurrent changes. 867 */ 868 static void restore_exclusive_pte(struct vm_area_struct *vma, 869 struct folio *folio, struct page *page, unsigned long address, 870 pte_t *ptep, pte_t orig_pte) 871 { 872 pte_t pte; 873 874 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 875 876 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 877 if (pte_swp_soft_dirty(orig_pte)) 878 pte = pte_mksoft_dirty(pte); 879 880 if (pte_swp_uffd_wp(orig_pte)) 881 pte = pte_mkuffd_wp(pte); 882 883 if ((vma->vm_flags & VM_WRITE) && 884 can_change_pte_writable(vma, address, pte)) { 885 if (folio_test_dirty(folio)) 886 pte = pte_mkdirty(pte); 887 pte = pte_mkwrite(pte, vma); 888 } 889 set_pte_at(vma->vm_mm, address, ptep, pte); 890 891 /* 892 * No need to invalidate - it was non-present before. However 893 * secondary CPUs may have mappings that need invalidating. 894 */ 895 update_mmu_cache(vma, address, ptep); 896 } 897 898 /* 899 * Tries to restore an exclusive pte if the page lock can be acquired without 900 * sleeping. 901 */ 902 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 903 unsigned long addr, pte_t *ptep, pte_t orig_pte) 904 { 905 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 906 struct folio *folio = page_folio(page); 907 908 if (folio_trylock(folio)) { 909 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 910 folio_unlock(folio); 911 return 0; 912 } 913 914 return -EBUSY; 915 } 916 917 /* 918 * copy one vm_area from one task to the other. Assumes the page tables 919 * already present in the new task to be cleared in the whole range 920 * covered by this vma. 921 */ 922 923 static unsigned long 924 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 925 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 926 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 927 { 928 vm_flags_t vm_flags = dst_vma->vm_flags; 929 pte_t orig_pte = ptep_get(src_pte); 930 pte_t pte = orig_pte; 931 struct folio *folio; 932 struct page *page; 933 swp_entry_t entry = pte_to_swp_entry(orig_pte); 934 935 if (likely(!non_swap_entry(entry))) { 936 if (swap_duplicate(entry) < 0) 937 return -EIO; 938 939 /* make sure dst_mm is on swapoff's mmlist. */ 940 if (unlikely(list_empty(&dst_mm->mmlist))) { 941 spin_lock(&mmlist_lock); 942 if (list_empty(&dst_mm->mmlist)) 943 list_add(&dst_mm->mmlist, 944 &src_mm->mmlist); 945 spin_unlock(&mmlist_lock); 946 } 947 /* Mark the swap entry as shared. */ 948 if (pte_swp_exclusive(orig_pte)) { 949 pte = pte_swp_clear_exclusive(orig_pte); 950 set_pte_at(src_mm, addr, src_pte, pte); 951 } 952 rss[MM_SWAPENTS]++; 953 } else if (is_migration_entry(entry)) { 954 folio = pfn_swap_entry_folio(entry); 955 956 rss[mm_counter(folio)]++; 957 958 if (!is_readable_migration_entry(entry) && 959 is_cow_mapping(vm_flags)) { 960 /* 961 * COW mappings require pages in both parent and child 962 * to be set to read. A previously exclusive entry is 963 * now shared. 964 */ 965 entry = make_readable_migration_entry( 966 swp_offset(entry)); 967 pte = swp_entry_to_pte(entry); 968 if (pte_swp_soft_dirty(orig_pte)) 969 pte = pte_swp_mksoft_dirty(pte); 970 if (pte_swp_uffd_wp(orig_pte)) 971 pte = pte_swp_mkuffd_wp(pte); 972 set_pte_at(src_mm, addr, src_pte, pte); 973 } 974 } else if (is_device_private_entry(entry)) { 975 page = pfn_swap_entry_to_page(entry); 976 folio = page_folio(page); 977 978 /* 979 * Update rss count even for unaddressable pages, as 980 * they should treated just like normal pages in this 981 * respect. 982 * 983 * We will likely want to have some new rss counters 984 * for unaddressable pages, at some point. But for now 985 * keep things as they are. 986 */ 987 folio_get(folio); 988 rss[mm_counter(folio)]++; 989 /* Cannot fail as these pages cannot get pinned. */ 990 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 991 992 /* 993 * We do not preserve soft-dirty information, because so 994 * far, checkpoint/restore is the only feature that 995 * requires that. And checkpoint/restore does not work 996 * when a device driver is involved (you cannot easily 997 * save and restore device driver state). 998 */ 999 if (is_writable_device_private_entry(entry) && 1000 is_cow_mapping(vm_flags)) { 1001 entry = make_readable_device_private_entry( 1002 swp_offset(entry)); 1003 pte = swp_entry_to_pte(entry); 1004 if (pte_swp_uffd_wp(orig_pte)) 1005 pte = pte_swp_mkuffd_wp(pte); 1006 set_pte_at(src_mm, addr, src_pte, pte); 1007 } 1008 } else if (is_device_exclusive_entry(entry)) { 1009 /* 1010 * Make device exclusive entries present by restoring the 1011 * original entry then copying as for a present pte. Device 1012 * exclusive entries currently only support private writable 1013 * (ie. COW) mappings. 1014 */ 1015 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 1016 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 1017 return -EBUSY; 1018 return -ENOENT; 1019 } else if (is_pte_marker_entry(entry)) { 1020 pte_marker marker = copy_pte_marker(entry, dst_vma); 1021 1022 if (marker) 1023 set_pte_at(dst_mm, addr, dst_pte, 1024 make_pte_marker(marker)); 1025 return 0; 1026 } 1027 if (!userfaultfd_wp(dst_vma)) 1028 pte = pte_swp_clear_uffd_wp(pte); 1029 set_pte_at(dst_mm, addr, dst_pte, pte); 1030 return 0; 1031 } 1032 1033 /* 1034 * Copy a present and normal page. 1035 * 1036 * NOTE! The usual case is that this isn't required; 1037 * instead, the caller can just increase the page refcount 1038 * and re-use the pte the traditional way. 1039 * 1040 * And if we need a pre-allocated page but don't yet have 1041 * one, return a negative error to let the preallocation 1042 * code know so that it can do so outside the page table 1043 * lock. 1044 */ 1045 static inline int 1046 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1047 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 1048 struct folio **prealloc, struct page *page) 1049 { 1050 struct folio *new_folio; 1051 pte_t pte; 1052 1053 new_folio = *prealloc; 1054 if (!new_folio) 1055 return -EAGAIN; 1056 1057 /* 1058 * We have a prealloc page, all good! Take it 1059 * over and copy the page & arm it. 1060 */ 1061 1062 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 1063 return -EHWPOISON; 1064 1065 *prealloc = NULL; 1066 __folio_mark_uptodate(new_folio); 1067 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 1068 folio_add_lru_vma(new_folio, dst_vma); 1069 rss[MM_ANONPAGES]++; 1070 1071 /* All done, just insert the new page copy in the child */ 1072 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 1073 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 1074 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 1075 /* Uffd-wp needs to be delivered to dest pte as well */ 1076 pte = pte_mkuffd_wp(pte); 1077 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 1078 return 0; 1079 } 1080 1081 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 1082 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 1083 pte_t pte, unsigned long addr, int nr) 1084 { 1085 struct mm_struct *src_mm = src_vma->vm_mm; 1086 1087 /* If it's a COW mapping, write protect it both processes. */ 1088 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 1089 wrprotect_ptes(src_mm, addr, src_pte, nr); 1090 pte = pte_wrprotect(pte); 1091 } 1092 1093 /* If it's a shared mapping, mark it clean in the child. */ 1094 if (src_vma->vm_flags & VM_SHARED) 1095 pte = pte_mkclean(pte); 1096 pte = pte_mkold(pte); 1097 1098 if (!userfaultfd_wp(dst_vma)) 1099 pte = pte_clear_uffd_wp(pte); 1100 1101 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 1102 } 1103 1104 /* 1105 * Copy one present PTE, trying to batch-process subsequent PTEs that map 1106 * consecutive pages of the same folio by copying them as well. 1107 * 1108 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 1109 * Otherwise, returns the number of copied PTEs (at least 1). 1110 */ 1111 static inline int 1112 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1113 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1114 int max_nr, int *rss, struct folio **prealloc) 1115 { 1116 fpb_t flags = FPB_MERGE_WRITE; 1117 struct page *page; 1118 struct folio *folio; 1119 int err, nr; 1120 1121 page = vm_normal_page(src_vma, addr, pte); 1122 if (unlikely(!page)) 1123 goto copy_pte; 1124 1125 folio = page_folio(page); 1126 1127 /* 1128 * If we likely have to copy, just don't bother with batching. Make 1129 * sure that the common "small folio" case is as fast as possible 1130 * by keeping the batching logic separate. 1131 */ 1132 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1133 if (!(src_vma->vm_flags & VM_SHARED)) 1134 flags |= FPB_RESPECT_DIRTY; 1135 if (vma_soft_dirty_enabled(src_vma)) 1136 flags |= FPB_RESPECT_SOFT_DIRTY; 1137 1138 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1139 folio_ref_add(folio, nr); 1140 if (folio_test_anon(folio)) { 1141 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1142 nr, dst_vma, src_vma))) { 1143 folio_ref_sub(folio, nr); 1144 return -EAGAIN; 1145 } 1146 rss[MM_ANONPAGES] += nr; 1147 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1148 } else { 1149 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1150 rss[mm_counter_file(folio)] += nr; 1151 } 1152 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1153 addr, nr); 1154 return nr; 1155 } 1156 1157 folio_get(folio); 1158 if (folio_test_anon(folio)) { 1159 /* 1160 * If this page may have been pinned by the parent process, 1161 * copy the page immediately for the child so that we'll always 1162 * guarantee the pinned page won't be randomly replaced in the 1163 * future. 1164 */ 1165 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1166 /* Page may be pinned, we have to copy. */ 1167 folio_put(folio); 1168 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1169 addr, rss, prealloc, page); 1170 return err ? err : 1; 1171 } 1172 rss[MM_ANONPAGES]++; 1173 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1174 } else { 1175 folio_dup_file_rmap_pte(folio, page, dst_vma); 1176 rss[mm_counter_file(folio)]++; 1177 } 1178 1179 copy_pte: 1180 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1181 return 1; 1182 } 1183 1184 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1185 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1186 { 1187 struct folio *new_folio; 1188 1189 if (need_zero) 1190 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1191 else 1192 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1193 1194 if (!new_folio) 1195 return NULL; 1196 1197 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1198 folio_put(new_folio); 1199 return NULL; 1200 } 1201 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1202 1203 return new_folio; 1204 } 1205 1206 static int 1207 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1208 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1209 unsigned long end) 1210 { 1211 struct mm_struct *dst_mm = dst_vma->vm_mm; 1212 struct mm_struct *src_mm = src_vma->vm_mm; 1213 pte_t *orig_src_pte, *orig_dst_pte; 1214 pte_t *src_pte, *dst_pte; 1215 pmd_t dummy_pmdval; 1216 pte_t ptent; 1217 spinlock_t *src_ptl, *dst_ptl; 1218 int progress, max_nr, ret = 0; 1219 int rss[NR_MM_COUNTERS]; 1220 swp_entry_t entry = (swp_entry_t){0}; 1221 struct folio *prealloc = NULL; 1222 int nr; 1223 1224 again: 1225 progress = 0; 1226 init_rss_vec(rss); 1227 1228 /* 1229 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1230 * error handling here, assume that exclusive mmap_lock on dst and src 1231 * protects anon from unexpected THP transitions; with shmem and file 1232 * protected by mmap_lock-less collapse skipping areas with anon_vma 1233 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1234 * can remove such assumptions later, but this is good enough for now. 1235 */ 1236 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1237 if (!dst_pte) { 1238 ret = -ENOMEM; 1239 goto out; 1240 } 1241 1242 /* 1243 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1244 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1245 * the PTE page is stable, and there is no need to get pmdval and do 1246 * pmd_same() check. 1247 */ 1248 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1249 &src_ptl); 1250 if (!src_pte) { 1251 pte_unmap_unlock(dst_pte, dst_ptl); 1252 /* ret == 0 */ 1253 goto out; 1254 } 1255 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1256 orig_src_pte = src_pte; 1257 orig_dst_pte = dst_pte; 1258 arch_enter_lazy_mmu_mode(); 1259 1260 do { 1261 nr = 1; 1262 1263 /* 1264 * We are holding two locks at this point - either of them 1265 * could generate latencies in another task on another CPU. 1266 */ 1267 if (progress >= 32) { 1268 progress = 0; 1269 if (need_resched() || 1270 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1271 break; 1272 } 1273 ptent = ptep_get(src_pte); 1274 if (pte_none(ptent)) { 1275 progress++; 1276 continue; 1277 } 1278 if (unlikely(!pte_present(ptent))) { 1279 ret = copy_nonpresent_pte(dst_mm, src_mm, 1280 dst_pte, src_pte, 1281 dst_vma, src_vma, 1282 addr, rss); 1283 if (ret == -EIO) { 1284 entry = pte_to_swp_entry(ptep_get(src_pte)); 1285 break; 1286 } else if (ret == -EBUSY) { 1287 break; 1288 } else if (!ret) { 1289 progress += 8; 1290 continue; 1291 } 1292 ptent = ptep_get(src_pte); 1293 VM_WARN_ON_ONCE(!pte_present(ptent)); 1294 1295 /* 1296 * Device exclusive entry restored, continue by copying 1297 * the now present pte. 1298 */ 1299 WARN_ON_ONCE(ret != -ENOENT); 1300 } 1301 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1302 max_nr = (end - addr) / PAGE_SIZE; 1303 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1304 ptent, addr, max_nr, rss, &prealloc); 1305 /* 1306 * If we need a pre-allocated page for this pte, drop the 1307 * locks, allocate, and try again. 1308 * If copy failed due to hwpoison in source page, break out. 1309 */ 1310 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1311 break; 1312 if (unlikely(prealloc)) { 1313 /* 1314 * pre-alloc page cannot be reused by next time so as 1315 * to strictly follow mempolicy (e.g., alloc_page_vma() 1316 * will allocate page according to address). This 1317 * could only happen if one pinned pte changed. 1318 */ 1319 folio_put(prealloc); 1320 prealloc = NULL; 1321 } 1322 nr = ret; 1323 progress += 8 * nr; 1324 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1325 addr != end); 1326 1327 arch_leave_lazy_mmu_mode(); 1328 pte_unmap_unlock(orig_src_pte, src_ptl); 1329 add_mm_rss_vec(dst_mm, rss); 1330 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1331 cond_resched(); 1332 1333 if (ret == -EIO) { 1334 VM_WARN_ON_ONCE(!entry.val); 1335 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1336 ret = -ENOMEM; 1337 goto out; 1338 } 1339 entry.val = 0; 1340 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1341 goto out; 1342 } else if (ret == -EAGAIN) { 1343 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1344 if (!prealloc) 1345 return -ENOMEM; 1346 } else if (ret < 0) { 1347 VM_WARN_ON_ONCE(1); 1348 } 1349 1350 /* We've captured and resolved the error. Reset, try again. */ 1351 ret = 0; 1352 1353 if (addr != end) 1354 goto again; 1355 out: 1356 if (unlikely(prealloc)) 1357 folio_put(prealloc); 1358 return ret; 1359 } 1360 1361 static inline int 1362 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1363 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1364 unsigned long end) 1365 { 1366 struct mm_struct *dst_mm = dst_vma->vm_mm; 1367 struct mm_struct *src_mm = src_vma->vm_mm; 1368 pmd_t *src_pmd, *dst_pmd; 1369 unsigned long next; 1370 1371 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1372 if (!dst_pmd) 1373 return -ENOMEM; 1374 src_pmd = pmd_offset(src_pud, addr); 1375 do { 1376 next = pmd_addr_end(addr, end); 1377 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)) { 1378 int err; 1379 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1380 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1381 addr, dst_vma, src_vma); 1382 if (err == -ENOMEM) 1383 return -ENOMEM; 1384 if (!err) 1385 continue; 1386 /* fall through */ 1387 } 1388 if (pmd_none_or_clear_bad(src_pmd)) 1389 continue; 1390 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1391 addr, next)) 1392 return -ENOMEM; 1393 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1394 return 0; 1395 } 1396 1397 static inline int 1398 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1399 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1400 unsigned long end) 1401 { 1402 struct mm_struct *dst_mm = dst_vma->vm_mm; 1403 struct mm_struct *src_mm = src_vma->vm_mm; 1404 pud_t *src_pud, *dst_pud; 1405 unsigned long next; 1406 1407 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1408 if (!dst_pud) 1409 return -ENOMEM; 1410 src_pud = pud_offset(src_p4d, addr); 1411 do { 1412 next = pud_addr_end(addr, end); 1413 if (pud_trans_huge(*src_pud)) { 1414 int err; 1415 1416 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1417 err = copy_huge_pud(dst_mm, src_mm, 1418 dst_pud, src_pud, addr, src_vma); 1419 if (err == -ENOMEM) 1420 return -ENOMEM; 1421 if (!err) 1422 continue; 1423 /* fall through */ 1424 } 1425 if (pud_none_or_clear_bad(src_pud)) 1426 continue; 1427 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1428 addr, next)) 1429 return -ENOMEM; 1430 } while (dst_pud++, src_pud++, addr = next, addr != end); 1431 return 0; 1432 } 1433 1434 static inline int 1435 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1436 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1437 unsigned long end) 1438 { 1439 struct mm_struct *dst_mm = dst_vma->vm_mm; 1440 p4d_t *src_p4d, *dst_p4d; 1441 unsigned long next; 1442 1443 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1444 if (!dst_p4d) 1445 return -ENOMEM; 1446 src_p4d = p4d_offset(src_pgd, addr); 1447 do { 1448 next = p4d_addr_end(addr, end); 1449 if (p4d_none_or_clear_bad(src_p4d)) 1450 continue; 1451 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1452 addr, next)) 1453 return -ENOMEM; 1454 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1455 return 0; 1456 } 1457 1458 /* 1459 * Return true if the vma needs to copy the pgtable during this fork(). Return 1460 * false when we can speed up fork() by allowing lazy page faults later until 1461 * when the child accesses the memory range. 1462 */ 1463 static bool 1464 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1465 { 1466 /* 1467 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1468 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1469 * contains uffd-wp protection information, that's something we can't 1470 * retrieve from page cache, and skip copying will lose those info. 1471 */ 1472 if (userfaultfd_wp(dst_vma)) 1473 return true; 1474 1475 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1476 return true; 1477 1478 if (src_vma->anon_vma) 1479 return true; 1480 1481 /* 1482 * Don't copy ptes where a page fault will fill them correctly. Fork 1483 * becomes much lighter when there are big shared or private readonly 1484 * mappings. The tradeoff is that copy_page_range is more efficient 1485 * than faulting. 1486 */ 1487 return false; 1488 } 1489 1490 int 1491 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1492 { 1493 pgd_t *src_pgd, *dst_pgd; 1494 unsigned long addr = src_vma->vm_start; 1495 unsigned long end = src_vma->vm_end; 1496 struct mm_struct *dst_mm = dst_vma->vm_mm; 1497 struct mm_struct *src_mm = src_vma->vm_mm; 1498 struct mmu_notifier_range range; 1499 unsigned long next; 1500 bool is_cow; 1501 int ret; 1502 1503 if (!vma_needs_copy(dst_vma, src_vma)) 1504 return 0; 1505 1506 if (is_vm_hugetlb_page(src_vma)) 1507 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1508 1509 /* 1510 * We need to invalidate the secondary MMU mappings only when 1511 * there could be a permission downgrade on the ptes of the 1512 * parent mm. And a permission downgrade will only happen if 1513 * is_cow_mapping() returns true. 1514 */ 1515 is_cow = is_cow_mapping(src_vma->vm_flags); 1516 1517 if (is_cow) { 1518 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1519 0, src_mm, addr, end); 1520 mmu_notifier_invalidate_range_start(&range); 1521 /* 1522 * Disabling preemption is not needed for the write side, as 1523 * the read side doesn't spin, but goes to the mmap_lock. 1524 * 1525 * Use the raw variant of the seqcount_t write API to avoid 1526 * lockdep complaining about preemptibility. 1527 */ 1528 vma_assert_write_locked(src_vma); 1529 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1530 } 1531 1532 ret = 0; 1533 dst_pgd = pgd_offset(dst_mm, addr); 1534 src_pgd = pgd_offset(src_mm, addr); 1535 do { 1536 next = pgd_addr_end(addr, end); 1537 if (pgd_none_or_clear_bad(src_pgd)) 1538 continue; 1539 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1540 addr, next))) { 1541 ret = -ENOMEM; 1542 break; 1543 } 1544 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1545 1546 if (is_cow) { 1547 raw_write_seqcount_end(&src_mm->write_protect_seq); 1548 mmu_notifier_invalidate_range_end(&range); 1549 } 1550 return ret; 1551 } 1552 1553 /* Whether we should zap all COWed (private) pages too */ 1554 static inline bool should_zap_cows(struct zap_details *details) 1555 { 1556 /* By default, zap all pages */ 1557 if (!details || details->reclaim_pt) 1558 return true; 1559 1560 /* Or, we zap COWed pages only if the caller wants to */ 1561 return details->even_cows; 1562 } 1563 1564 /* Decides whether we should zap this folio with the folio pointer specified */ 1565 static inline bool should_zap_folio(struct zap_details *details, 1566 struct folio *folio) 1567 { 1568 /* If we can make a decision without *folio.. */ 1569 if (should_zap_cows(details)) 1570 return true; 1571 1572 /* Otherwise we should only zap non-anon folios */ 1573 return !folio_test_anon(folio); 1574 } 1575 1576 static inline bool zap_drop_markers(struct zap_details *details) 1577 { 1578 if (!details) 1579 return false; 1580 1581 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1582 } 1583 1584 /* 1585 * This function makes sure that we'll replace the none pte with an uffd-wp 1586 * swap special pte marker when necessary. Must be with the pgtable lock held. 1587 * 1588 * Returns true if uffd-wp ptes was installed, false otherwise. 1589 */ 1590 static inline bool 1591 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1592 unsigned long addr, pte_t *pte, int nr, 1593 struct zap_details *details, pte_t pteval) 1594 { 1595 bool was_installed = false; 1596 1597 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1598 /* Zap on anonymous always means dropping everything */ 1599 if (vma_is_anonymous(vma)) 1600 return false; 1601 1602 if (zap_drop_markers(details)) 1603 return false; 1604 1605 for (;;) { 1606 /* the PFN in the PTE is irrelevant. */ 1607 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1608 was_installed = true; 1609 if (--nr == 0) 1610 break; 1611 pte++; 1612 addr += PAGE_SIZE; 1613 } 1614 #endif 1615 return was_installed; 1616 } 1617 1618 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1619 struct vm_area_struct *vma, struct folio *folio, 1620 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1621 unsigned long addr, struct zap_details *details, int *rss, 1622 bool *force_flush, bool *force_break, bool *any_skipped) 1623 { 1624 struct mm_struct *mm = tlb->mm; 1625 bool delay_rmap = false; 1626 1627 if (!folio_test_anon(folio)) { 1628 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1629 if (pte_dirty(ptent)) { 1630 folio_mark_dirty(folio); 1631 if (tlb_delay_rmap(tlb)) { 1632 delay_rmap = true; 1633 *force_flush = true; 1634 } 1635 } 1636 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1637 folio_mark_accessed(folio); 1638 rss[mm_counter(folio)] -= nr; 1639 } else { 1640 /* We don't need up-to-date accessed/dirty bits. */ 1641 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1642 rss[MM_ANONPAGES] -= nr; 1643 } 1644 /* Checking a single PTE in a batch is sufficient. */ 1645 arch_check_zapped_pte(vma, ptent); 1646 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1647 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1648 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1649 nr, details, ptent); 1650 1651 if (!delay_rmap) { 1652 folio_remove_rmap_ptes(folio, page, nr, vma); 1653 1654 if (unlikely(folio_mapcount(folio) < 0)) 1655 print_bad_pte(vma, addr, ptent, page); 1656 } 1657 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1658 *force_flush = true; 1659 *force_break = true; 1660 } 1661 } 1662 1663 /* 1664 * Zap or skip at least one present PTE, trying to batch-process subsequent 1665 * PTEs that map consecutive pages of the same folio. 1666 * 1667 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1668 */ 1669 static inline int zap_present_ptes(struct mmu_gather *tlb, 1670 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1671 unsigned int max_nr, unsigned long addr, 1672 struct zap_details *details, int *rss, bool *force_flush, 1673 bool *force_break, bool *any_skipped) 1674 { 1675 struct mm_struct *mm = tlb->mm; 1676 struct folio *folio; 1677 struct page *page; 1678 int nr; 1679 1680 page = vm_normal_page(vma, addr, ptent); 1681 if (!page) { 1682 /* We don't need up-to-date accessed/dirty bits. */ 1683 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1684 arch_check_zapped_pte(vma, ptent); 1685 tlb_remove_tlb_entry(tlb, pte, addr); 1686 if (userfaultfd_pte_wp(vma, ptent)) 1687 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1688 pte, 1, details, ptent); 1689 ksm_might_unmap_zero_page(mm, ptent); 1690 return 1; 1691 } 1692 1693 folio = page_folio(page); 1694 if (unlikely(!should_zap_folio(details, folio))) { 1695 *any_skipped = true; 1696 return 1; 1697 } 1698 1699 /* 1700 * Make sure that the common "small folio" case is as fast as possible 1701 * by keeping the batching logic separate. 1702 */ 1703 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1704 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1705 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1706 addr, details, rss, force_flush, 1707 force_break, any_skipped); 1708 return nr; 1709 } 1710 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1711 details, rss, force_flush, force_break, any_skipped); 1712 return 1; 1713 } 1714 1715 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1716 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1717 unsigned int max_nr, unsigned long addr, 1718 struct zap_details *details, int *rss, bool *any_skipped) 1719 { 1720 swp_entry_t entry; 1721 int nr = 1; 1722 1723 *any_skipped = true; 1724 entry = pte_to_swp_entry(ptent); 1725 if (is_device_private_entry(entry) || 1726 is_device_exclusive_entry(entry)) { 1727 struct page *page = pfn_swap_entry_to_page(entry); 1728 struct folio *folio = page_folio(page); 1729 1730 if (unlikely(!should_zap_folio(details, folio))) 1731 return 1; 1732 /* 1733 * Both device private/exclusive mappings should only 1734 * work with anonymous page so far, so we don't need to 1735 * consider uffd-wp bit when zap. For more information, 1736 * see zap_install_uffd_wp_if_needed(). 1737 */ 1738 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1739 rss[mm_counter(folio)]--; 1740 folio_remove_rmap_pte(folio, page, vma); 1741 folio_put(folio); 1742 } else if (!non_swap_entry(entry)) { 1743 /* Genuine swap entries, hence a private anon pages */ 1744 if (!should_zap_cows(details)) 1745 return 1; 1746 1747 nr = swap_pte_batch(pte, max_nr, ptent); 1748 rss[MM_SWAPENTS] -= nr; 1749 free_swap_and_cache_nr(entry, nr); 1750 } else if (is_migration_entry(entry)) { 1751 struct folio *folio = pfn_swap_entry_folio(entry); 1752 1753 if (!should_zap_folio(details, folio)) 1754 return 1; 1755 rss[mm_counter(folio)]--; 1756 } else if (pte_marker_entry_uffd_wp(entry)) { 1757 /* 1758 * For anon: always drop the marker; for file: only 1759 * drop the marker if explicitly requested. 1760 */ 1761 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1762 return 1; 1763 } else if (is_guard_swp_entry(entry)) { 1764 /* 1765 * Ordinary zapping should not remove guard PTE 1766 * markers. Only do so if we should remove PTE markers 1767 * in general. 1768 */ 1769 if (!zap_drop_markers(details)) 1770 return 1; 1771 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1772 if (!should_zap_cows(details)) 1773 return 1; 1774 } else { 1775 /* We should have covered all the swap entry types */ 1776 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1777 WARN_ON_ONCE(1); 1778 } 1779 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1780 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1781 1782 return nr; 1783 } 1784 1785 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1786 struct vm_area_struct *vma, pte_t *pte, 1787 unsigned long addr, unsigned long end, 1788 struct zap_details *details, int *rss, 1789 bool *force_flush, bool *force_break, 1790 bool *any_skipped) 1791 { 1792 pte_t ptent = ptep_get(pte); 1793 int max_nr = (end - addr) / PAGE_SIZE; 1794 int nr = 0; 1795 1796 /* Skip all consecutive none ptes */ 1797 if (pte_none(ptent)) { 1798 for (nr = 1; nr < max_nr; nr++) { 1799 ptent = ptep_get(pte + nr); 1800 if (!pte_none(ptent)) 1801 break; 1802 } 1803 max_nr -= nr; 1804 if (!max_nr) 1805 return nr; 1806 pte += nr; 1807 addr += nr * PAGE_SIZE; 1808 } 1809 1810 if (pte_present(ptent)) 1811 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1812 details, rss, force_flush, force_break, 1813 any_skipped); 1814 else 1815 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1816 details, rss, any_skipped); 1817 1818 return nr; 1819 } 1820 1821 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1822 struct vm_area_struct *vma, pmd_t *pmd, 1823 unsigned long addr, unsigned long end, 1824 struct zap_details *details) 1825 { 1826 bool force_flush = false, force_break = false; 1827 struct mm_struct *mm = tlb->mm; 1828 int rss[NR_MM_COUNTERS]; 1829 spinlock_t *ptl; 1830 pte_t *start_pte; 1831 pte_t *pte; 1832 pmd_t pmdval; 1833 unsigned long start = addr; 1834 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1835 bool direct_reclaim = true; 1836 int nr; 1837 1838 retry: 1839 tlb_change_page_size(tlb, PAGE_SIZE); 1840 init_rss_vec(rss); 1841 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1842 if (!pte) 1843 return addr; 1844 1845 flush_tlb_batched_pending(mm); 1846 arch_enter_lazy_mmu_mode(); 1847 do { 1848 bool any_skipped = false; 1849 1850 if (need_resched()) { 1851 direct_reclaim = false; 1852 break; 1853 } 1854 1855 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1856 &force_flush, &force_break, &any_skipped); 1857 if (any_skipped) 1858 can_reclaim_pt = false; 1859 if (unlikely(force_break)) { 1860 addr += nr * PAGE_SIZE; 1861 direct_reclaim = false; 1862 break; 1863 } 1864 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1865 1866 /* 1867 * Fast path: try to hold the pmd lock and unmap the PTE page. 1868 * 1869 * If the pte lock was released midway (retry case), or if the attempt 1870 * to hold the pmd lock failed, then we need to recheck all pte entries 1871 * to ensure they are still none, thereby preventing the pte entries 1872 * from being repopulated by another thread. 1873 */ 1874 if (can_reclaim_pt && direct_reclaim && addr == end) 1875 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1876 1877 add_mm_rss_vec(mm, rss); 1878 arch_leave_lazy_mmu_mode(); 1879 1880 /* Do the actual TLB flush before dropping ptl */ 1881 if (force_flush) { 1882 tlb_flush_mmu_tlbonly(tlb); 1883 tlb_flush_rmaps(tlb, vma); 1884 } 1885 pte_unmap_unlock(start_pte, ptl); 1886 1887 /* 1888 * If we forced a TLB flush (either due to running out of 1889 * batch buffers or because we needed to flush dirty TLB 1890 * entries before releasing the ptl), free the batched 1891 * memory too. Come back again if we didn't do everything. 1892 */ 1893 if (force_flush) 1894 tlb_flush_mmu(tlb); 1895 1896 if (addr != end) { 1897 cond_resched(); 1898 force_flush = false; 1899 force_break = false; 1900 goto retry; 1901 } 1902 1903 if (can_reclaim_pt) { 1904 if (direct_reclaim) 1905 free_pte(mm, start, tlb, pmdval); 1906 else 1907 try_to_free_pte(mm, pmd, start, tlb); 1908 } 1909 1910 return addr; 1911 } 1912 1913 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1914 struct vm_area_struct *vma, pud_t *pud, 1915 unsigned long addr, unsigned long end, 1916 struct zap_details *details) 1917 { 1918 pmd_t *pmd; 1919 unsigned long next; 1920 1921 pmd = pmd_offset(pud, addr); 1922 do { 1923 next = pmd_addr_end(addr, end); 1924 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) { 1925 if (next - addr != HPAGE_PMD_SIZE) 1926 __split_huge_pmd(vma, pmd, addr, false); 1927 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1928 addr = next; 1929 continue; 1930 } 1931 /* fall through */ 1932 } else if (details && details->single_folio && 1933 folio_test_pmd_mappable(details->single_folio) && 1934 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1935 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1936 /* 1937 * Take and drop THP pmd lock so that we cannot return 1938 * prematurely, while zap_huge_pmd() has cleared *pmd, 1939 * but not yet decremented compound_mapcount(). 1940 */ 1941 spin_unlock(ptl); 1942 } 1943 if (pmd_none(*pmd)) { 1944 addr = next; 1945 continue; 1946 } 1947 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1948 if (addr != next) 1949 pmd--; 1950 } while (pmd++, cond_resched(), addr != end); 1951 1952 return addr; 1953 } 1954 1955 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1956 struct vm_area_struct *vma, p4d_t *p4d, 1957 unsigned long addr, unsigned long end, 1958 struct zap_details *details) 1959 { 1960 pud_t *pud; 1961 unsigned long next; 1962 1963 pud = pud_offset(p4d, addr); 1964 do { 1965 next = pud_addr_end(addr, end); 1966 if (pud_trans_huge(*pud)) { 1967 if (next - addr != HPAGE_PUD_SIZE) { 1968 mmap_assert_locked(tlb->mm); 1969 split_huge_pud(vma, pud, addr); 1970 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1971 goto next; 1972 /* fall through */ 1973 } 1974 if (pud_none_or_clear_bad(pud)) 1975 continue; 1976 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1977 next: 1978 cond_resched(); 1979 } while (pud++, addr = next, addr != end); 1980 1981 return addr; 1982 } 1983 1984 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1985 struct vm_area_struct *vma, pgd_t *pgd, 1986 unsigned long addr, unsigned long end, 1987 struct zap_details *details) 1988 { 1989 p4d_t *p4d; 1990 unsigned long next; 1991 1992 p4d = p4d_offset(pgd, addr); 1993 do { 1994 next = p4d_addr_end(addr, end); 1995 if (p4d_none_or_clear_bad(p4d)) 1996 continue; 1997 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1998 } while (p4d++, addr = next, addr != end); 1999 2000 return addr; 2001 } 2002 2003 void unmap_page_range(struct mmu_gather *tlb, 2004 struct vm_area_struct *vma, 2005 unsigned long addr, unsigned long end, 2006 struct zap_details *details) 2007 { 2008 pgd_t *pgd; 2009 unsigned long next; 2010 2011 BUG_ON(addr >= end); 2012 tlb_start_vma(tlb, vma); 2013 pgd = pgd_offset(vma->vm_mm, addr); 2014 do { 2015 next = pgd_addr_end(addr, end); 2016 if (pgd_none_or_clear_bad(pgd)) 2017 continue; 2018 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 2019 } while (pgd++, addr = next, addr != end); 2020 tlb_end_vma(tlb, vma); 2021 } 2022 2023 2024 static void unmap_single_vma(struct mmu_gather *tlb, 2025 struct vm_area_struct *vma, unsigned long start_addr, 2026 unsigned long end_addr, 2027 struct zap_details *details, bool mm_wr_locked) 2028 { 2029 unsigned long start = max(vma->vm_start, start_addr); 2030 unsigned long end; 2031 2032 if (start >= vma->vm_end) 2033 return; 2034 end = min(vma->vm_end, end_addr); 2035 if (end <= vma->vm_start) 2036 return; 2037 2038 if (vma->vm_file) 2039 uprobe_munmap(vma, start, end); 2040 2041 if (start != end) { 2042 if (unlikely(is_vm_hugetlb_page(vma))) { 2043 /* 2044 * It is undesirable to test vma->vm_file as it 2045 * should be non-null for valid hugetlb area. 2046 * However, vm_file will be NULL in the error 2047 * cleanup path of mmap_region. When 2048 * hugetlbfs ->mmap method fails, 2049 * mmap_region() nullifies vma->vm_file 2050 * before calling this function to clean up. 2051 * Since no pte has actually been setup, it is 2052 * safe to do nothing in this case. 2053 */ 2054 if (vma->vm_file) { 2055 zap_flags_t zap_flags = details ? 2056 details->zap_flags : 0; 2057 __unmap_hugepage_range(tlb, vma, start, end, 2058 NULL, zap_flags); 2059 } 2060 } else 2061 unmap_page_range(tlb, vma, start, end, details); 2062 } 2063 } 2064 2065 /** 2066 * unmap_vmas - unmap a range of memory covered by a list of vma's 2067 * @tlb: address of the caller's struct mmu_gather 2068 * @mas: the maple state 2069 * @vma: the starting vma 2070 * @start_addr: virtual address at which to start unmapping 2071 * @end_addr: virtual address at which to end unmapping 2072 * @tree_end: The maximum index to check 2073 * @mm_wr_locked: lock flag 2074 * 2075 * Unmap all pages in the vma list. 2076 * 2077 * Only addresses between `start' and `end' will be unmapped. 2078 * 2079 * The VMA list must be sorted in ascending virtual address order. 2080 * 2081 * unmap_vmas() assumes that the caller will flush the whole unmapped address 2082 * range after unmap_vmas() returns. So the only responsibility here is to 2083 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 2084 * drops the lock and schedules. 2085 */ 2086 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2087 struct vm_area_struct *vma, unsigned long start_addr, 2088 unsigned long end_addr, unsigned long tree_end, 2089 bool mm_wr_locked) 2090 { 2091 struct mmu_notifier_range range; 2092 struct zap_details details = { 2093 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 2094 /* Careful - we need to zap private pages too! */ 2095 .even_cows = true, 2096 }; 2097 2098 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 2099 start_addr, end_addr); 2100 mmu_notifier_invalidate_range_start(&range); 2101 do { 2102 unsigned long start = start_addr; 2103 unsigned long end = end_addr; 2104 hugetlb_zap_begin(vma, &start, &end); 2105 unmap_single_vma(tlb, vma, start, end, &details, 2106 mm_wr_locked); 2107 hugetlb_zap_end(vma, &details); 2108 vma = mas_find(mas, tree_end - 1); 2109 } while (vma && likely(!xa_is_zero(vma))); 2110 mmu_notifier_invalidate_range_end(&range); 2111 } 2112 2113 /** 2114 * zap_page_range_single_batched - remove user pages in a given range 2115 * @tlb: pointer to the caller's struct mmu_gather 2116 * @vma: vm_area_struct holding the applicable pages 2117 * @address: starting address of pages to remove 2118 * @size: number of bytes to remove 2119 * @details: details of shared cache invalidation 2120 * 2121 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2122 * hugetlb, @tlb is flushed and re-initialized by this function. 2123 */ 2124 void zap_page_range_single_batched(struct mmu_gather *tlb, 2125 struct vm_area_struct *vma, unsigned long address, 2126 unsigned long size, struct zap_details *details) 2127 { 2128 const unsigned long end = address + size; 2129 struct mmu_notifier_range range; 2130 2131 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2132 2133 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2134 address, end); 2135 hugetlb_zap_begin(vma, &range.start, &range.end); 2136 update_hiwater_rss(vma->vm_mm); 2137 mmu_notifier_invalidate_range_start(&range); 2138 /* 2139 * unmap 'address-end' not 'range.start-range.end' as range 2140 * could have been expanded for hugetlb pmd sharing. 2141 */ 2142 unmap_single_vma(tlb, vma, address, end, details, false); 2143 mmu_notifier_invalidate_range_end(&range); 2144 if (is_vm_hugetlb_page(vma)) { 2145 /* 2146 * flush tlb and free resources before hugetlb_zap_end(), to 2147 * avoid concurrent page faults' allocation failure. 2148 */ 2149 tlb_finish_mmu(tlb); 2150 hugetlb_zap_end(vma, details); 2151 tlb_gather_mmu(tlb, vma->vm_mm); 2152 } 2153 } 2154 2155 /** 2156 * zap_page_range_single - remove user pages in a given range 2157 * @vma: vm_area_struct holding the applicable pages 2158 * @address: starting address of pages to zap 2159 * @size: number of bytes to zap 2160 * @details: details of shared cache invalidation 2161 * 2162 * The range must fit into one VMA. 2163 */ 2164 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2165 unsigned long size, struct zap_details *details) 2166 { 2167 struct mmu_gather tlb; 2168 2169 tlb_gather_mmu(&tlb, vma->vm_mm); 2170 zap_page_range_single_batched(&tlb, vma, address, size, details); 2171 tlb_finish_mmu(&tlb); 2172 } 2173 2174 /** 2175 * zap_vma_ptes - remove ptes mapping the vma 2176 * @vma: vm_area_struct holding ptes to be zapped 2177 * @address: starting address of pages to zap 2178 * @size: number of bytes to zap 2179 * 2180 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2181 * 2182 * The entire address range must be fully contained within the vma. 2183 * 2184 */ 2185 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2186 unsigned long size) 2187 { 2188 if (!range_in_vma(vma, address, address + size) || 2189 !(vma->vm_flags & VM_PFNMAP)) 2190 return; 2191 2192 zap_page_range_single(vma, address, size, NULL); 2193 } 2194 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2195 2196 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2197 { 2198 pgd_t *pgd; 2199 p4d_t *p4d; 2200 pud_t *pud; 2201 pmd_t *pmd; 2202 2203 pgd = pgd_offset(mm, addr); 2204 p4d = p4d_alloc(mm, pgd, addr); 2205 if (!p4d) 2206 return NULL; 2207 pud = pud_alloc(mm, p4d, addr); 2208 if (!pud) 2209 return NULL; 2210 pmd = pmd_alloc(mm, pud, addr); 2211 if (!pmd) 2212 return NULL; 2213 2214 VM_BUG_ON(pmd_trans_huge(*pmd)); 2215 return pmd; 2216 } 2217 2218 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2219 spinlock_t **ptl) 2220 { 2221 pmd_t *pmd = walk_to_pmd(mm, addr); 2222 2223 if (!pmd) 2224 return NULL; 2225 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2226 } 2227 2228 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2229 { 2230 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2231 /* 2232 * Whoever wants to forbid the zeropage after some zeropages 2233 * might already have been mapped has to scan the page tables and 2234 * bail out on any zeropages. Zeropages in COW mappings can 2235 * be unshared using FAULT_FLAG_UNSHARE faults. 2236 */ 2237 if (mm_forbids_zeropage(vma->vm_mm)) 2238 return false; 2239 /* zeropages in COW mappings are common and unproblematic. */ 2240 if (is_cow_mapping(vma->vm_flags)) 2241 return true; 2242 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2243 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2244 return true; 2245 /* 2246 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2247 * find the shared zeropage and longterm-pin it, which would 2248 * be problematic as soon as the zeropage gets replaced by a different 2249 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2250 * now differ to what GUP looked up. FSDAX is incompatible to 2251 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2252 * check_vma_flags). 2253 */ 2254 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2255 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2256 } 2257 2258 static int validate_page_before_insert(struct vm_area_struct *vma, 2259 struct page *page) 2260 { 2261 struct folio *folio = page_folio(page); 2262 2263 if (!folio_ref_count(folio)) 2264 return -EINVAL; 2265 if (unlikely(is_zero_folio(folio))) { 2266 if (!vm_mixed_zeropage_allowed(vma)) 2267 return -EINVAL; 2268 return 0; 2269 } 2270 if (folio_test_anon(folio) || page_has_type(page)) 2271 return -EINVAL; 2272 flush_dcache_folio(folio); 2273 return 0; 2274 } 2275 2276 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2277 unsigned long addr, struct page *page, 2278 pgprot_t prot, bool mkwrite) 2279 { 2280 struct folio *folio = page_folio(page); 2281 pte_t pteval = ptep_get(pte); 2282 2283 if (!pte_none(pteval)) { 2284 if (!mkwrite) 2285 return -EBUSY; 2286 2287 /* see insert_pfn(). */ 2288 if (pte_pfn(pteval) != page_to_pfn(page)) { 2289 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2290 return -EFAULT; 2291 } 2292 pteval = maybe_mkwrite(pteval, vma); 2293 pteval = pte_mkyoung(pteval); 2294 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2295 update_mmu_cache(vma, addr, pte); 2296 return 0; 2297 } 2298 2299 /* Ok, finally just insert the thing.. */ 2300 pteval = mk_pte(page, prot); 2301 if (unlikely(is_zero_folio(folio))) { 2302 pteval = pte_mkspecial(pteval); 2303 } else { 2304 folio_get(folio); 2305 pteval = mk_pte(page, prot); 2306 if (mkwrite) { 2307 pteval = pte_mkyoung(pteval); 2308 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2309 } 2310 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2311 folio_add_file_rmap_pte(folio, page, vma); 2312 } 2313 set_pte_at(vma->vm_mm, addr, pte, pteval); 2314 return 0; 2315 } 2316 2317 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2318 struct page *page, pgprot_t prot, bool mkwrite) 2319 { 2320 int retval; 2321 pte_t *pte; 2322 spinlock_t *ptl; 2323 2324 retval = validate_page_before_insert(vma, page); 2325 if (retval) 2326 goto out; 2327 retval = -ENOMEM; 2328 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2329 if (!pte) 2330 goto out; 2331 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2332 mkwrite); 2333 pte_unmap_unlock(pte, ptl); 2334 out: 2335 return retval; 2336 } 2337 2338 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2339 unsigned long addr, struct page *page, pgprot_t prot) 2340 { 2341 int err; 2342 2343 err = validate_page_before_insert(vma, page); 2344 if (err) 2345 return err; 2346 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2347 } 2348 2349 /* insert_pages() amortizes the cost of spinlock operations 2350 * when inserting pages in a loop. 2351 */ 2352 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2353 struct page **pages, unsigned long *num, pgprot_t prot) 2354 { 2355 pmd_t *pmd = NULL; 2356 pte_t *start_pte, *pte; 2357 spinlock_t *pte_lock; 2358 struct mm_struct *const mm = vma->vm_mm; 2359 unsigned long curr_page_idx = 0; 2360 unsigned long remaining_pages_total = *num; 2361 unsigned long pages_to_write_in_pmd; 2362 int ret; 2363 more: 2364 ret = -EFAULT; 2365 pmd = walk_to_pmd(mm, addr); 2366 if (!pmd) 2367 goto out; 2368 2369 pages_to_write_in_pmd = min_t(unsigned long, 2370 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2371 2372 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2373 ret = -ENOMEM; 2374 if (pte_alloc(mm, pmd)) 2375 goto out; 2376 2377 while (pages_to_write_in_pmd) { 2378 int pte_idx = 0; 2379 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2380 2381 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2382 if (!start_pte) { 2383 ret = -EFAULT; 2384 goto out; 2385 } 2386 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2387 int err = insert_page_in_batch_locked(vma, pte, 2388 addr, pages[curr_page_idx], prot); 2389 if (unlikely(err)) { 2390 pte_unmap_unlock(start_pte, pte_lock); 2391 ret = err; 2392 remaining_pages_total -= pte_idx; 2393 goto out; 2394 } 2395 addr += PAGE_SIZE; 2396 ++curr_page_idx; 2397 } 2398 pte_unmap_unlock(start_pte, pte_lock); 2399 pages_to_write_in_pmd -= batch_size; 2400 remaining_pages_total -= batch_size; 2401 } 2402 if (remaining_pages_total) 2403 goto more; 2404 ret = 0; 2405 out: 2406 *num = remaining_pages_total; 2407 return ret; 2408 } 2409 2410 /** 2411 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2412 * @vma: user vma to map to 2413 * @addr: target start user address of these pages 2414 * @pages: source kernel pages 2415 * @num: in: number of pages to map. out: number of pages that were *not* 2416 * mapped. (0 means all pages were successfully mapped). 2417 * 2418 * Preferred over vm_insert_page() when inserting multiple pages. 2419 * 2420 * In case of error, we may have mapped a subset of the provided 2421 * pages. It is the caller's responsibility to account for this case. 2422 * 2423 * The same restrictions apply as in vm_insert_page(). 2424 */ 2425 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2426 struct page **pages, unsigned long *num) 2427 { 2428 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2429 2430 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2431 return -EFAULT; 2432 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2433 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2434 BUG_ON(vma->vm_flags & VM_PFNMAP); 2435 vm_flags_set(vma, VM_MIXEDMAP); 2436 } 2437 /* Defer page refcount checking till we're about to map that page. */ 2438 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2439 } 2440 EXPORT_SYMBOL(vm_insert_pages); 2441 2442 /** 2443 * vm_insert_page - insert single page into user vma 2444 * @vma: user vma to map to 2445 * @addr: target user address of this page 2446 * @page: source kernel page 2447 * 2448 * This allows drivers to insert individual pages they've allocated 2449 * into a user vma. The zeropage is supported in some VMAs, 2450 * see vm_mixed_zeropage_allowed(). 2451 * 2452 * The page has to be a nice clean _individual_ kernel allocation. 2453 * If you allocate a compound page, you need to have marked it as 2454 * such (__GFP_COMP), or manually just split the page up yourself 2455 * (see split_page()). 2456 * 2457 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2458 * took an arbitrary page protection parameter. This doesn't allow 2459 * that. Your vma protection will have to be set up correctly, which 2460 * means that if you want a shared writable mapping, you'd better 2461 * ask for a shared writable mapping! 2462 * 2463 * The page does not need to be reserved. 2464 * 2465 * Usually this function is called from f_op->mmap() handler 2466 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2467 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2468 * function from other places, for example from page-fault handler. 2469 * 2470 * Return: %0 on success, negative error code otherwise. 2471 */ 2472 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2473 struct page *page) 2474 { 2475 if (addr < vma->vm_start || addr >= vma->vm_end) 2476 return -EFAULT; 2477 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2478 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2479 BUG_ON(vma->vm_flags & VM_PFNMAP); 2480 vm_flags_set(vma, VM_MIXEDMAP); 2481 } 2482 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2483 } 2484 EXPORT_SYMBOL(vm_insert_page); 2485 2486 /* 2487 * __vm_map_pages - maps range of kernel pages into user vma 2488 * @vma: user vma to map to 2489 * @pages: pointer to array of source kernel pages 2490 * @num: number of pages in page array 2491 * @offset: user's requested vm_pgoff 2492 * 2493 * This allows drivers to map range of kernel pages into a user vma. 2494 * The zeropage is supported in some VMAs, see 2495 * vm_mixed_zeropage_allowed(). 2496 * 2497 * Return: 0 on success and error code otherwise. 2498 */ 2499 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2500 unsigned long num, unsigned long offset) 2501 { 2502 unsigned long count = vma_pages(vma); 2503 unsigned long uaddr = vma->vm_start; 2504 int ret, i; 2505 2506 /* Fail if the user requested offset is beyond the end of the object */ 2507 if (offset >= num) 2508 return -ENXIO; 2509 2510 /* Fail if the user requested size exceeds available object size */ 2511 if (count > num - offset) 2512 return -ENXIO; 2513 2514 for (i = 0; i < count; i++) { 2515 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2516 if (ret < 0) 2517 return ret; 2518 uaddr += PAGE_SIZE; 2519 } 2520 2521 return 0; 2522 } 2523 2524 /** 2525 * vm_map_pages - maps range of kernel pages starts with non zero offset 2526 * @vma: user vma to map to 2527 * @pages: pointer to array of source kernel pages 2528 * @num: number of pages in page array 2529 * 2530 * Maps an object consisting of @num pages, catering for the user's 2531 * requested vm_pgoff 2532 * 2533 * If we fail to insert any page into the vma, the function will return 2534 * immediately leaving any previously inserted pages present. Callers 2535 * from the mmap handler may immediately return the error as their caller 2536 * will destroy the vma, removing any successfully inserted pages. Other 2537 * callers should make their own arrangements for calling unmap_region(). 2538 * 2539 * Context: Process context. Called by mmap handlers. 2540 * Return: 0 on success and error code otherwise. 2541 */ 2542 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2543 unsigned long num) 2544 { 2545 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2546 } 2547 EXPORT_SYMBOL(vm_map_pages); 2548 2549 /** 2550 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2551 * @vma: user vma to map to 2552 * @pages: pointer to array of source kernel pages 2553 * @num: number of pages in page array 2554 * 2555 * Similar to vm_map_pages(), except that it explicitly sets the offset 2556 * to 0. This function is intended for the drivers that did not consider 2557 * vm_pgoff. 2558 * 2559 * Context: Process context. Called by mmap handlers. 2560 * Return: 0 on success and error code otherwise. 2561 */ 2562 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2563 unsigned long num) 2564 { 2565 return __vm_map_pages(vma, pages, num, 0); 2566 } 2567 EXPORT_SYMBOL(vm_map_pages_zero); 2568 2569 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2570 unsigned long pfn, pgprot_t prot, bool mkwrite) 2571 { 2572 struct mm_struct *mm = vma->vm_mm; 2573 pte_t *pte, entry; 2574 spinlock_t *ptl; 2575 2576 pte = get_locked_pte(mm, addr, &ptl); 2577 if (!pte) 2578 return VM_FAULT_OOM; 2579 entry = ptep_get(pte); 2580 if (!pte_none(entry)) { 2581 if (mkwrite) { 2582 /* 2583 * For read faults on private mappings the PFN passed 2584 * in may not match the PFN we have mapped if the 2585 * mapped PFN is a writeable COW page. In the mkwrite 2586 * case we are creating a writable PTE for a shared 2587 * mapping and we expect the PFNs to match. If they 2588 * don't match, we are likely racing with block 2589 * allocation and mapping invalidation so just skip the 2590 * update. 2591 */ 2592 if (pte_pfn(entry) != pfn) { 2593 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2594 goto out_unlock; 2595 } 2596 entry = pte_mkyoung(entry); 2597 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2598 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2599 update_mmu_cache(vma, addr, pte); 2600 } 2601 goto out_unlock; 2602 } 2603 2604 /* Ok, finally just insert the thing.. */ 2605 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2606 2607 if (mkwrite) { 2608 entry = pte_mkyoung(entry); 2609 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2610 } 2611 2612 set_pte_at(mm, addr, pte, entry); 2613 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2614 2615 out_unlock: 2616 pte_unmap_unlock(pte, ptl); 2617 return VM_FAULT_NOPAGE; 2618 } 2619 2620 /** 2621 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2622 * @vma: user vma to map to 2623 * @addr: target user address of this page 2624 * @pfn: source kernel pfn 2625 * @pgprot: pgprot flags for the inserted page 2626 * 2627 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2628 * to override pgprot on a per-page basis. 2629 * 2630 * This only makes sense for IO mappings, and it makes no sense for 2631 * COW mappings. In general, using multiple vmas is preferable; 2632 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2633 * impractical. 2634 * 2635 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2636 * caching- and encryption bits different than those of @vma->vm_page_prot, 2637 * because the caching- or encryption mode may not be known at mmap() time. 2638 * 2639 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2640 * to set caching and encryption bits for those vmas (except for COW pages). 2641 * This is ensured by core vm only modifying these page table entries using 2642 * functions that don't touch caching- or encryption bits, using pte_modify() 2643 * if needed. (See for example mprotect()). 2644 * 2645 * Also when new page-table entries are created, this is only done using the 2646 * fault() callback, and never using the value of vma->vm_page_prot, 2647 * except for page-table entries that point to anonymous pages as the result 2648 * of COW. 2649 * 2650 * Context: Process context. May allocate using %GFP_KERNEL. 2651 * Return: vm_fault_t value. 2652 */ 2653 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2654 unsigned long pfn, pgprot_t pgprot) 2655 { 2656 /* 2657 * Technically, architectures with pte_special can avoid all these 2658 * restrictions (same for remap_pfn_range). However we would like 2659 * consistency in testing and feature parity among all, so we should 2660 * try to keep these invariants in place for everybody. 2661 */ 2662 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2663 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2664 (VM_PFNMAP|VM_MIXEDMAP)); 2665 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2666 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2667 2668 if (addr < vma->vm_start || addr >= vma->vm_end) 2669 return VM_FAULT_SIGBUS; 2670 2671 if (!pfn_modify_allowed(pfn, pgprot)) 2672 return VM_FAULT_SIGBUS; 2673 2674 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2675 2676 return insert_pfn(vma, addr, pfn, pgprot, false); 2677 } 2678 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2679 2680 /** 2681 * vmf_insert_pfn - insert single pfn into user vma 2682 * @vma: user vma to map to 2683 * @addr: target user address of this page 2684 * @pfn: source kernel pfn 2685 * 2686 * Similar to vm_insert_page, this allows drivers to insert individual pages 2687 * they've allocated into a user vma. Same comments apply. 2688 * 2689 * This function should only be called from a vm_ops->fault handler, and 2690 * in that case the handler should return the result of this function. 2691 * 2692 * vma cannot be a COW mapping. 2693 * 2694 * As this is called only for pages that do not currently exist, we 2695 * do not need to flush old virtual caches or the TLB. 2696 * 2697 * Context: Process context. May allocate using %GFP_KERNEL. 2698 * Return: vm_fault_t value. 2699 */ 2700 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2701 unsigned long pfn) 2702 { 2703 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2704 } 2705 EXPORT_SYMBOL(vmf_insert_pfn); 2706 2707 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2708 bool mkwrite) 2709 { 2710 if (unlikely(is_zero_pfn(pfn)) && 2711 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2712 return false; 2713 /* these checks mirror the abort conditions in vm_normal_page */ 2714 if (vma->vm_flags & VM_MIXEDMAP) 2715 return true; 2716 if (is_zero_pfn(pfn)) 2717 return true; 2718 return false; 2719 } 2720 2721 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2722 unsigned long addr, unsigned long pfn, bool mkwrite) 2723 { 2724 pgprot_t pgprot = vma->vm_page_prot; 2725 int err; 2726 2727 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2728 return VM_FAULT_SIGBUS; 2729 2730 if (addr < vma->vm_start || addr >= vma->vm_end) 2731 return VM_FAULT_SIGBUS; 2732 2733 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2734 2735 if (!pfn_modify_allowed(pfn, pgprot)) 2736 return VM_FAULT_SIGBUS; 2737 2738 /* 2739 * If we don't have pte special, then we have to use the pfn_valid() 2740 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2741 * refcount the page if pfn_valid is true (hence insert_page rather 2742 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2743 * without pte special, it would there be refcounted as a normal page. 2744 */ 2745 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2746 struct page *page; 2747 2748 /* 2749 * At this point we are committed to insert_page() 2750 * regardless of whether the caller specified flags that 2751 * result in pfn_t_has_page() == false. 2752 */ 2753 page = pfn_to_page(pfn); 2754 err = insert_page(vma, addr, page, pgprot, mkwrite); 2755 } else { 2756 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2757 } 2758 2759 if (err == -ENOMEM) 2760 return VM_FAULT_OOM; 2761 if (err < 0 && err != -EBUSY) 2762 return VM_FAULT_SIGBUS; 2763 2764 return VM_FAULT_NOPAGE; 2765 } 2766 2767 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2768 bool write) 2769 { 2770 pgprot_t pgprot = vmf->vma->vm_page_prot; 2771 unsigned long addr = vmf->address; 2772 int err; 2773 2774 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2775 return VM_FAULT_SIGBUS; 2776 2777 err = insert_page(vmf->vma, addr, page, pgprot, write); 2778 if (err == -ENOMEM) 2779 return VM_FAULT_OOM; 2780 if (err < 0 && err != -EBUSY) 2781 return VM_FAULT_SIGBUS; 2782 2783 return VM_FAULT_NOPAGE; 2784 } 2785 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2786 2787 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2788 unsigned long pfn) 2789 { 2790 return __vm_insert_mixed(vma, addr, pfn, false); 2791 } 2792 EXPORT_SYMBOL(vmf_insert_mixed); 2793 2794 /* 2795 * If the insertion of PTE failed because someone else already added a 2796 * different entry in the mean time, we treat that as success as we assume 2797 * the same entry was actually inserted. 2798 */ 2799 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2800 unsigned long addr, unsigned long pfn) 2801 { 2802 return __vm_insert_mixed(vma, addr, pfn, true); 2803 } 2804 2805 /* 2806 * maps a range of physical memory into the requested pages. the old 2807 * mappings are removed. any references to nonexistent pages results 2808 * in null mappings (currently treated as "copy-on-access") 2809 */ 2810 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2811 unsigned long addr, unsigned long end, 2812 unsigned long pfn, pgprot_t prot) 2813 { 2814 pte_t *pte, *mapped_pte; 2815 spinlock_t *ptl; 2816 int err = 0; 2817 2818 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2819 if (!pte) 2820 return -ENOMEM; 2821 arch_enter_lazy_mmu_mode(); 2822 do { 2823 BUG_ON(!pte_none(ptep_get(pte))); 2824 if (!pfn_modify_allowed(pfn, prot)) { 2825 err = -EACCES; 2826 break; 2827 } 2828 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2829 pfn++; 2830 } while (pte++, addr += PAGE_SIZE, addr != end); 2831 arch_leave_lazy_mmu_mode(); 2832 pte_unmap_unlock(mapped_pte, ptl); 2833 return err; 2834 } 2835 2836 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2837 unsigned long addr, unsigned long end, 2838 unsigned long pfn, pgprot_t prot) 2839 { 2840 pmd_t *pmd; 2841 unsigned long next; 2842 int err; 2843 2844 pfn -= addr >> PAGE_SHIFT; 2845 pmd = pmd_alloc(mm, pud, addr); 2846 if (!pmd) 2847 return -ENOMEM; 2848 VM_BUG_ON(pmd_trans_huge(*pmd)); 2849 do { 2850 next = pmd_addr_end(addr, end); 2851 err = remap_pte_range(mm, pmd, addr, next, 2852 pfn + (addr >> PAGE_SHIFT), prot); 2853 if (err) 2854 return err; 2855 } while (pmd++, addr = next, addr != end); 2856 return 0; 2857 } 2858 2859 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2860 unsigned long addr, unsigned long end, 2861 unsigned long pfn, pgprot_t prot) 2862 { 2863 pud_t *pud; 2864 unsigned long next; 2865 int err; 2866 2867 pfn -= addr >> PAGE_SHIFT; 2868 pud = pud_alloc(mm, p4d, addr); 2869 if (!pud) 2870 return -ENOMEM; 2871 do { 2872 next = pud_addr_end(addr, end); 2873 err = remap_pmd_range(mm, pud, addr, next, 2874 pfn + (addr >> PAGE_SHIFT), prot); 2875 if (err) 2876 return err; 2877 } while (pud++, addr = next, addr != end); 2878 return 0; 2879 } 2880 2881 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2882 unsigned long addr, unsigned long end, 2883 unsigned long pfn, pgprot_t prot) 2884 { 2885 p4d_t *p4d; 2886 unsigned long next; 2887 int err; 2888 2889 pfn -= addr >> PAGE_SHIFT; 2890 p4d = p4d_alloc(mm, pgd, addr); 2891 if (!p4d) 2892 return -ENOMEM; 2893 do { 2894 next = p4d_addr_end(addr, end); 2895 err = remap_pud_range(mm, p4d, addr, next, 2896 pfn + (addr >> PAGE_SHIFT), prot); 2897 if (err) 2898 return err; 2899 } while (p4d++, addr = next, addr != end); 2900 return 0; 2901 } 2902 2903 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2904 unsigned long pfn, unsigned long size, pgprot_t prot) 2905 { 2906 pgd_t *pgd; 2907 unsigned long next; 2908 unsigned long end = addr + PAGE_ALIGN(size); 2909 struct mm_struct *mm = vma->vm_mm; 2910 int err; 2911 2912 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2913 return -EINVAL; 2914 2915 /* 2916 * Physically remapped pages are special. Tell the 2917 * rest of the world about it: 2918 * VM_IO tells people not to look at these pages 2919 * (accesses can have side effects). 2920 * VM_PFNMAP tells the core MM that the base pages are just 2921 * raw PFN mappings, and do not have a "struct page" associated 2922 * with them. 2923 * VM_DONTEXPAND 2924 * Disable vma merging and expanding with mremap(). 2925 * VM_DONTDUMP 2926 * Omit vma from core dump, even when VM_IO turned off. 2927 * 2928 * There's a horrible special case to handle copy-on-write 2929 * behaviour that some programs depend on. We mark the "original" 2930 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2931 * See vm_normal_page() for details. 2932 */ 2933 if (is_cow_mapping(vma->vm_flags)) { 2934 if (addr != vma->vm_start || end != vma->vm_end) 2935 return -EINVAL; 2936 vma->vm_pgoff = pfn; 2937 } 2938 2939 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2940 2941 BUG_ON(addr >= end); 2942 pfn -= addr >> PAGE_SHIFT; 2943 pgd = pgd_offset(mm, addr); 2944 flush_cache_range(vma, addr, end); 2945 do { 2946 next = pgd_addr_end(addr, end); 2947 err = remap_p4d_range(mm, pgd, addr, next, 2948 pfn + (addr >> PAGE_SHIFT), prot); 2949 if (err) 2950 return err; 2951 } while (pgd++, addr = next, addr != end); 2952 2953 return 0; 2954 } 2955 2956 /* 2957 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2958 * must have pre-validated the caching bits of the pgprot_t. 2959 */ 2960 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2961 unsigned long pfn, unsigned long size, pgprot_t prot) 2962 { 2963 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2964 2965 if (!error) 2966 return 0; 2967 2968 /* 2969 * A partial pfn range mapping is dangerous: it does not 2970 * maintain page reference counts, and callers may free 2971 * pages due to the error. So zap it early. 2972 */ 2973 zap_page_range_single(vma, addr, size, NULL); 2974 return error; 2975 } 2976 2977 #ifdef __HAVE_PFNMAP_TRACKING 2978 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2979 unsigned long size, pgprot_t *prot) 2980 { 2981 struct pfnmap_track_ctx *ctx; 2982 2983 if (pfnmap_track(pfn, size, prot)) 2984 return ERR_PTR(-EINVAL); 2985 2986 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2987 if (unlikely(!ctx)) { 2988 pfnmap_untrack(pfn, size); 2989 return ERR_PTR(-ENOMEM); 2990 } 2991 2992 ctx->pfn = pfn; 2993 ctx->size = size; 2994 kref_init(&ctx->kref); 2995 return ctx; 2996 } 2997 2998 void pfnmap_track_ctx_release(struct kref *ref) 2999 { 3000 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 3001 3002 pfnmap_untrack(ctx->pfn, ctx->size); 3003 kfree(ctx); 3004 } 3005 #endif /* __HAVE_PFNMAP_TRACKING */ 3006 3007 /** 3008 * remap_pfn_range - remap kernel memory to userspace 3009 * @vma: user vma to map to 3010 * @addr: target page aligned user address to start at 3011 * @pfn: page frame number of kernel physical memory address 3012 * @size: size of mapping area 3013 * @prot: page protection flags for this mapping 3014 * 3015 * Note: this is only safe if the mm semaphore is held when called. 3016 * 3017 * Return: %0 on success, negative error code otherwise. 3018 */ 3019 #ifdef __HAVE_PFNMAP_TRACKING 3020 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3021 unsigned long pfn, unsigned long size, pgprot_t prot) 3022 { 3023 struct pfnmap_track_ctx *ctx = NULL; 3024 int err; 3025 3026 size = PAGE_ALIGN(size); 3027 3028 /* 3029 * If we cover the full VMA, we'll perform actual tracking, and 3030 * remember to untrack when the last reference to our tracking 3031 * context from a VMA goes away. We'll keep tracking the whole pfn 3032 * range even during VMA splits and partial unmapping. 3033 * 3034 * If we only cover parts of the VMA, we'll only setup the cachemode 3035 * in the pgprot for the pfn range. 3036 */ 3037 if (addr == vma->vm_start && addr + size == vma->vm_end) { 3038 if (vma->pfnmap_track_ctx) 3039 return -EINVAL; 3040 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 3041 if (IS_ERR(ctx)) 3042 return PTR_ERR(ctx); 3043 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 3044 return -EINVAL; 3045 } 3046 3047 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3048 if (ctx) { 3049 if (err) 3050 kref_put(&ctx->kref, pfnmap_track_ctx_release); 3051 else 3052 vma->pfnmap_track_ctx = ctx; 3053 } 3054 return err; 3055 } 3056 3057 #else 3058 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3059 unsigned long pfn, unsigned long size, pgprot_t prot) 3060 { 3061 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3062 } 3063 #endif 3064 EXPORT_SYMBOL(remap_pfn_range); 3065 3066 /** 3067 * vm_iomap_memory - remap memory to userspace 3068 * @vma: user vma to map to 3069 * @start: start of the physical memory to be mapped 3070 * @len: size of area 3071 * 3072 * This is a simplified io_remap_pfn_range() for common driver use. The 3073 * driver just needs to give us the physical memory range to be mapped, 3074 * we'll figure out the rest from the vma information. 3075 * 3076 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 3077 * whatever write-combining details or similar. 3078 * 3079 * Return: %0 on success, negative error code otherwise. 3080 */ 3081 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 3082 { 3083 unsigned long vm_len, pfn, pages; 3084 3085 /* Check that the physical memory area passed in looks valid */ 3086 if (start + len < start) 3087 return -EINVAL; 3088 /* 3089 * You *really* shouldn't map things that aren't page-aligned, 3090 * but we've historically allowed it because IO memory might 3091 * just have smaller alignment. 3092 */ 3093 len += start & ~PAGE_MASK; 3094 pfn = start >> PAGE_SHIFT; 3095 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3096 if (pfn + pages < pfn) 3097 return -EINVAL; 3098 3099 /* We start the mapping 'vm_pgoff' pages into the area */ 3100 if (vma->vm_pgoff > pages) 3101 return -EINVAL; 3102 pfn += vma->vm_pgoff; 3103 pages -= vma->vm_pgoff; 3104 3105 /* Can we fit all of the mapping? */ 3106 vm_len = vma->vm_end - vma->vm_start; 3107 if (vm_len >> PAGE_SHIFT > pages) 3108 return -EINVAL; 3109 3110 /* Ok, let it rip */ 3111 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3112 } 3113 EXPORT_SYMBOL(vm_iomap_memory); 3114 3115 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3116 unsigned long addr, unsigned long end, 3117 pte_fn_t fn, void *data, bool create, 3118 pgtbl_mod_mask *mask) 3119 { 3120 pte_t *pte, *mapped_pte; 3121 int err = 0; 3122 spinlock_t *ptl; 3123 3124 if (create) { 3125 mapped_pte = pte = (mm == &init_mm) ? 3126 pte_alloc_kernel_track(pmd, addr, mask) : 3127 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3128 if (!pte) 3129 return -ENOMEM; 3130 } else { 3131 mapped_pte = pte = (mm == &init_mm) ? 3132 pte_offset_kernel(pmd, addr) : 3133 pte_offset_map_lock(mm, pmd, addr, &ptl); 3134 if (!pte) 3135 return -EINVAL; 3136 } 3137 3138 arch_enter_lazy_mmu_mode(); 3139 3140 if (fn) { 3141 do { 3142 if (create || !pte_none(ptep_get(pte))) { 3143 err = fn(pte, addr, data); 3144 if (err) 3145 break; 3146 } 3147 } while (pte++, addr += PAGE_SIZE, addr != end); 3148 } 3149 *mask |= PGTBL_PTE_MODIFIED; 3150 3151 arch_leave_lazy_mmu_mode(); 3152 3153 if (mm != &init_mm) 3154 pte_unmap_unlock(mapped_pte, ptl); 3155 return err; 3156 } 3157 3158 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3159 unsigned long addr, unsigned long end, 3160 pte_fn_t fn, void *data, bool create, 3161 pgtbl_mod_mask *mask) 3162 { 3163 pmd_t *pmd; 3164 unsigned long next; 3165 int err = 0; 3166 3167 BUG_ON(pud_leaf(*pud)); 3168 3169 if (create) { 3170 pmd = pmd_alloc_track(mm, pud, addr, mask); 3171 if (!pmd) 3172 return -ENOMEM; 3173 } else { 3174 pmd = pmd_offset(pud, addr); 3175 } 3176 do { 3177 next = pmd_addr_end(addr, end); 3178 if (pmd_none(*pmd) && !create) 3179 continue; 3180 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3181 return -EINVAL; 3182 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3183 if (!create) 3184 continue; 3185 pmd_clear_bad(pmd); 3186 } 3187 err = apply_to_pte_range(mm, pmd, addr, next, 3188 fn, data, create, mask); 3189 if (err) 3190 break; 3191 } while (pmd++, addr = next, addr != end); 3192 3193 return err; 3194 } 3195 3196 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3197 unsigned long addr, unsigned long end, 3198 pte_fn_t fn, void *data, bool create, 3199 pgtbl_mod_mask *mask) 3200 { 3201 pud_t *pud; 3202 unsigned long next; 3203 int err = 0; 3204 3205 if (create) { 3206 pud = pud_alloc_track(mm, p4d, addr, mask); 3207 if (!pud) 3208 return -ENOMEM; 3209 } else { 3210 pud = pud_offset(p4d, addr); 3211 } 3212 do { 3213 next = pud_addr_end(addr, end); 3214 if (pud_none(*pud) && !create) 3215 continue; 3216 if (WARN_ON_ONCE(pud_leaf(*pud))) 3217 return -EINVAL; 3218 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3219 if (!create) 3220 continue; 3221 pud_clear_bad(pud); 3222 } 3223 err = apply_to_pmd_range(mm, pud, addr, next, 3224 fn, data, create, mask); 3225 if (err) 3226 break; 3227 } while (pud++, addr = next, addr != end); 3228 3229 return err; 3230 } 3231 3232 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3233 unsigned long addr, unsigned long end, 3234 pte_fn_t fn, void *data, bool create, 3235 pgtbl_mod_mask *mask) 3236 { 3237 p4d_t *p4d; 3238 unsigned long next; 3239 int err = 0; 3240 3241 if (create) { 3242 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3243 if (!p4d) 3244 return -ENOMEM; 3245 } else { 3246 p4d = p4d_offset(pgd, addr); 3247 } 3248 do { 3249 next = p4d_addr_end(addr, end); 3250 if (p4d_none(*p4d) && !create) 3251 continue; 3252 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3253 return -EINVAL; 3254 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3255 if (!create) 3256 continue; 3257 p4d_clear_bad(p4d); 3258 } 3259 err = apply_to_pud_range(mm, p4d, addr, next, 3260 fn, data, create, mask); 3261 if (err) 3262 break; 3263 } while (p4d++, addr = next, addr != end); 3264 3265 return err; 3266 } 3267 3268 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3269 unsigned long size, pte_fn_t fn, 3270 void *data, bool create) 3271 { 3272 pgd_t *pgd; 3273 unsigned long start = addr, next; 3274 unsigned long end = addr + size; 3275 pgtbl_mod_mask mask = 0; 3276 int err = 0; 3277 3278 if (WARN_ON(addr >= end)) 3279 return -EINVAL; 3280 3281 pgd = pgd_offset(mm, addr); 3282 do { 3283 next = pgd_addr_end(addr, end); 3284 if (pgd_none(*pgd) && !create) 3285 continue; 3286 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3287 err = -EINVAL; 3288 break; 3289 } 3290 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3291 if (!create) 3292 continue; 3293 pgd_clear_bad(pgd); 3294 } 3295 err = apply_to_p4d_range(mm, pgd, addr, next, 3296 fn, data, create, &mask); 3297 if (err) 3298 break; 3299 } while (pgd++, addr = next, addr != end); 3300 3301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3302 arch_sync_kernel_mappings(start, start + size); 3303 3304 return err; 3305 } 3306 3307 /* 3308 * Scan a region of virtual memory, filling in page tables as necessary 3309 * and calling a provided function on each leaf page table. 3310 */ 3311 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3312 unsigned long size, pte_fn_t fn, void *data) 3313 { 3314 return __apply_to_page_range(mm, addr, size, fn, data, true); 3315 } 3316 EXPORT_SYMBOL_GPL(apply_to_page_range); 3317 3318 /* 3319 * Scan a region of virtual memory, calling a provided function on 3320 * each leaf page table where it exists. 3321 * 3322 * Unlike apply_to_page_range, this does _not_ fill in page tables 3323 * where they are absent. 3324 */ 3325 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3326 unsigned long size, pte_fn_t fn, void *data) 3327 { 3328 return __apply_to_page_range(mm, addr, size, fn, data, false); 3329 } 3330 3331 /* 3332 * handle_pte_fault chooses page fault handler according to an entry which was 3333 * read non-atomically. Before making any commitment, on those architectures 3334 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3335 * parts, do_swap_page must check under lock before unmapping the pte and 3336 * proceeding (but do_wp_page is only called after already making such a check; 3337 * and do_anonymous_page can safely check later on). 3338 */ 3339 static inline int pte_unmap_same(struct vm_fault *vmf) 3340 { 3341 int same = 1; 3342 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3343 if (sizeof(pte_t) > sizeof(unsigned long)) { 3344 spin_lock(vmf->ptl); 3345 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3346 spin_unlock(vmf->ptl); 3347 } 3348 #endif 3349 pte_unmap(vmf->pte); 3350 vmf->pte = NULL; 3351 return same; 3352 } 3353 3354 /* 3355 * Return: 3356 * 0: copied succeeded 3357 * -EHWPOISON: copy failed due to hwpoison in source page 3358 * -EAGAIN: copied failed (some other reason) 3359 */ 3360 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3361 struct vm_fault *vmf) 3362 { 3363 int ret; 3364 void *kaddr; 3365 void __user *uaddr; 3366 struct vm_area_struct *vma = vmf->vma; 3367 struct mm_struct *mm = vma->vm_mm; 3368 unsigned long addr = vmf->address; 3369 3370 if (likely(src)) { 3371 if (copy_mc_user_highpage(dst, src, addr, vma)) 3372 return -EHWPOISON; 3373 return 0; 3374 } 3375 3376 /* 3377 * If the source page was a PFN mapping, we don't have 3378 * a "struct page" for it. We do a best-effort copy by 3379 * just copying from the original user address. If that 3380 * fails, we just zero-fill it. Live with it. 3381 */ 3382 kaddr = kmap_local_page(dst); 3383 pagefault_disable(); 3384 uaddr = (void __user *)(addr & PAGE_MASK); 3385 3386 /* 3387 * On architectures with software "accessed" bits, we would 3388 * take a double page fault, so mark it accessed here. 3389 */ 3390 vmf->pte = NULL; 3391 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3392 pte_t entry; 3393 3394 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3395 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3396 /* 3397 * Other thread has already handled the fault 3398 * and update local tlb only 3399 */ 3400 if (vmf->pte) 3401 update_mmu_tlb(vma, addr, vmf->pte); 3402 ret = -EAGAIN; 3403 goto pte_unlock; 3404 } 3405 3406 entry = pte_mkyoung(vmf->orig_pte); 3407 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3408 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3409 } 3410 3411 /* 3412 * This really shouldn't fail, because the page is there 3413 * in the page tables. But it might just be unreadable, 3414 * in which case we just give up and fill the result with 3415 * zeroes. 3416 */ 3417 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3418 if (vmf->pte) 3419 goto warn; 3420 3421 /* Re-validate under PTL if the page is still mapped */ 3422 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3423 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3424 /* The PTE changed under us, update local tlb */ 3425 if (vmf->pte) 3426 update_mmu_tlb(vma, addr, vmf->pte); 3427 ret = -EAGAIN; 3428 goto pte_unlock; 3429 } 3430 3431 /* 3432 * The same page can be mapped back since last copy attempt. 3433 * Try to copy again under PTL. 3434 */ 3435 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3436 /* 3437 * Give a warn in case there can be some obscure 3438 * use-case 3439 */ 3440 warn: 3441 WARN_ON_ONCE(1); 3442 clear_page(kaddr); 3443 } 3444 } 3445 3446 ret = 0; 3447 3448 pte_unlock: 3449 if (vmf->pte) 3450 pte_unmap_unlock(vmf->pte, vmf->ptl); 3451 pagefault_enable(); 3452 kunmap_local(kaddr); 3453 flush_dcache_page(dst); 3454 3455 return ret; 3456 } 3457 3458 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3459 { 3460 struct file *vm_file = vma->vm_file; 3461 3462 if (vm_file) 3463 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3464 3465 /* 3466 * Special mappings (e.g. VDSO) do not have any file so fake 3467 * a default GFP_KERNEL for them. 3468 */ 3469 return GFP_KERNEL; 3470 } 3471 3472 /* 3473 * Notify the address space that the page is about to become writable so that 3474 * it can prohibit this or wait for the page to get into an appropriate state. 3475 * 3476 * We do this without the lock held, so that it can sleep if it needs to. 3477 */ 3478 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3479 { 3480 vm_fault_t ret; 3481 unsigned int old_flags = vmf->flags; 3482 3483 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3484 3485 if (vmf->vma->vm_file && 3486 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3487 return VM_FAULT_SIGBUS; 3488 3489 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3490 /* Restore original flags so that caller is not surprised */ 3491 vmf->flags = old_flags; 3492 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3493 return ret; 3494 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3495 folio_lock(folio); 3496 if (!folio->mapping) { 3497 folio_unlock(folio); 3498 return 0; /* retry */ 3499 } 3500 ret |= VM_FAULT_LOCKED; 3501 } else 3502 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3503 return ret; 3504 } 3505 3506 /* 3507 * Handle dirtying of a page in shared file mapping on a write fault. 3508 * 3509 * The function expects the page to be locked and unlocks it. 3510 */ 3511 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3512 { 3513 struct vm_area_struct *vma = vmf->vma; 3514 struct address_space *mapping; 3515 struct folio *folio = page_folio(vmf->page); 3516 bool dirtied; 3517 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3518 3519 dirtied = folio_mark_dirty(folio); 3520 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3521 /* 3522 * Take a local copy of the address_space - folio.mapping may be zeroed 3523 * by truncate after folio_unlock(). The address_space itself remains 3524 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3525 * release semantics to prevent the compiler from undoing this copying. 3526 */ 3527 mapping = folio_raw_mapping(folio); 3528 folio_unlock(folio); 3529 3530 if (!page_mkwrite) 3531 file_update_time(vma->vm_file); 3532 3533 /* 3534 * Throttle page dirtying rate down to writeback speed. 3535 * 3536 * mapping may be NULL here because some device drivers do not 3537 * set page.mapping but still dirty their pages 3538 * 3539 * Drop the mmap_lock before waiting on IO, if we can. The file 3540 * is pinning the mapping, as per above. 3541 */ 3542 if ((dirtied || page_mkwrite) && mapping) { 3543 struct file *fpin; 3544 3545 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3546 balance_dirty_pages_ratelimited(mapping); 3547 if (fpin) { 3548 fput(fpin); 3549 return VM_FAULT_COMPLETED; 3550 } 3551 } 3552 3553 return 0; 3554 } 3555 3556 /* 3557 * Handle write page faults for pages that can be reused in the current vma 3558 * 3559 * This can happen either due to the mapping being with the VM_SHARED flag, 3560 * or due to us being the last reference standing to the page. In either 3561 * case, all we need to do here is to mark the page as writable and update 3562 * any related book-keeping. 3563 */ 3564 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3565 __releases(vmf->ptl) 3566 { 3567 struct vm_area_struct *vma = vmf->vma; 3568 pte_t entry; 3569 3570 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3571 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3572 3573 if (folio) { 3574 VM_BUG_ON(folio_test_anon(folio) && 3575 !PageAnonExclusive(vmf->page)); 3576 /* 3577 * Clear the folio's cpupid information as the existing 3578 * information potentially belongs to a now completely 3579 * unrelated process. 3580 */ 3581 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3582 } 3583 3584 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3585 entry = pte_mkyoung(vmf->orig_pte); 3586 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3587 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3588 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3589 pte_unmap_unlock(vmf->pte, vmf->ptl); 3590 count_vm_event(PGREUSE); 3591 } 3592 3593 /* 3594 * We could add a bitflag somewhere, but for now, we know that all 3595 * vm_ops that have a ->map_pages have been audited and don't need 3596 * the mmap_lock to be held. 3597 */ 3598 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3599 { 3600 struct vm_area_struct *vma = vmf->vma; 3601 3602 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3603 return 0; 3604 vma_end_read(vma); 3605 return VM_FAULT_RETRY; 3606 } 3607 3608 /** 3609 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3610 * @vmf: The vm_fault descriptor passed from the fault handler. 3611 * 3612 * When preparing to insert an anonymous page into a VMA from a 3613 * fault handler, call this function rather than anon_vma_prepare(). 3614 * If this vma does not already have an associated anon_vma and we are 3615 * only protected by the per-VMA lock, the caller must retry with the 3616 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3617 * determine if this VMA can share its anon_vma, and that's not safe to 3618 * do with only the per-VMA lock held for this VMA. 3619 * 3620 * Return: 0 if fault handling can proceed. Any other value should be 3621 * returned to the caller. 3622 */ 3623 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3624 { 3625 struct vm_area_struct *vma = vmf->vma; 3626 vm_fault_t ret = 0; 3627 3628 if (likely(vma->anon_vma)) 3629 return 0; 3630 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3631 if (!mmap_read_trylock(vma->vm_mm)) 3632 return VM_FAULT_RETRY; 3633 } 3634 if (__anon_vma_prepare(vma)) 3635 ret = VM_FAULT_OOM; 3636 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3637 mmap_read_unlock(vma->vm_mm); 3638 return ret; 3639 } 3640 3641 /* 3642 * Handle the case of a page which we actually need to copy to a new page, 3643 * either due to COW or unsharing. 3644 * 3645 * Called with mmap_lock locked and the old page referenced, but 3646 * without the ptl held. 3647 * 3648 * High level logic flow: 3649 * 3650 * - Allocate a page, copy the content of the old page to the new one. 3651 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3652 * - Take the PTL. If the pte changed, bail out and release the allocated page 3653 * - If the pte is still the way we remember it, update the page table and all 3654 * relevant references. This includes dropping the reference the page-table 3655 * held to the old page, as well as updating the rmap. 3656 * - In any case, unlock the PTL and drop the reference we took to the old page. 3657 */ 3658 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3659 { 3660 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3661 struct vm_area_struct *vma = vmf->vma; 3662 struct mm_struct *mm = vma->vm_mm; 3663 struct folio *old_folio = NULL; 3664 struct folio *new_folio = NULL; 3665 pte_t entry; 3666 int page_copied = 0; 3667 struct mmu_notifier_range range; 3668 vm_fault_t ret; 3669 bool pfn_is_zero; 3670 3671 delayacct_wpcopy_start(); 3672 3673 if (vmf->page) 3674 old_folio = page_folio(vmf->page); 3675 ret = vmf_anon_prepare(vmf); 3676 if (unlikely(ret)) 3677 goto out; 3678 3679 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3680 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3681 if (!new_folio) 3682 goto oom; 3683 3684 if (!pfn_is_zero) { 3685 int err; 3686 3687 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3688 if (err) { 3689 /* 3690 * COW failed, if the fault was solved by other, 3691 * it's fine. If not, userspace would re-fault on 3692 * the same address and we will handle the fault 3693 * from the second attempt. 3694 * The -EHWPOISON case will not be retried. 3695 */ 3696 folio_put(new_folio); 3697 if (old_folio) 3698 folio_put(old_folio); 3699 3700 delayacct_wpcopy_end(); 3701 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3702 } 3703 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3704 } 3705 3706 __folio_mark_uptodate(new_folio); 3707 3708 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3709 vmf->address & PAGE_MASK, 3710 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3711 mmu_notifier_invalidate_range_start(&range); 3712 3713 /* 3714 * Re-check the pte - we dropped the lock 3715 */ 3716 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3717 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3718 if (old_folio) { 3719 if (!folio_test_anon(old_folio)) { 3720 dec_mm_counter(mm, mm_counter_file(old_folio)); 3721 inc_mm_counter(mm, MM_ANONPAGES); 3722 } 3723 } else { 3724 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3725 inc_mm_counter(mm, MM_ANONPAGES); 3726 } 3727 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3728 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3729 entry = pte_sw_mkyoung(entry); 3730 if (unlikely(unshare)) { 3731 if (pte_soft_dirty(vmf->orig_pte)) 3732 entry = pte_mksoft_dirty(entry); 3733 if (pte_uffd_wp(vmf->orig_pte)) 3734 entry = pte_mkuffd_wp(entry); 3735 } else { 3736 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3737 } 3738 3739 /* 3740 * Clear the pte entry and flush it first, before updating the 3741 * pte with the new entry, to keep TLBs on different CPUs in 3742 * sync. This code used to set the new PTE then flush TLBs, but 3743 * that left a window where the new PTE could be loaded into 3744 * some TLBs while the old PTE remains in others. 3745 */ 3746 ptep_clear_flush(vma, vmf->address, vmf->pte); 3747 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3748 folio_add_lru_vma(new_folio, vma); 3749 BUG_ON(unshare && pte_write(entry)); 3750 set_pte_at(mm, vmf->address, vmf->pte, entry); 3751 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3752 if (old_folio) { 3753 /* 3754 * Only after switching the pte to the new page may 3755 * we remove the mapcount here. Otherwise another 3756 * process may come and find the rmap count decremented 3757 * before the pte is switched to the new page, and 3758 * "reuse" the old page writing into it while our pte 3759 * here still points into it and can be read by other 3760 * threads. 3761 * 3762 * The critical issue is to order this 3763 * folio_remove_rmap_pte() with the ptp_clear_flush 3764 * above. Those stores are ordered by (if nothing else,) 3765 * the barrier present in the atomic_add_negative 3766 * in folio_remove_rmap_pte(); 3767 * 3768 * Then the TLB flush in ptep_clear_flush ensures that 3769 * no process can access the old page before the 3770 * decremented mapcount is visible. And the old page 3771 * cannot be reused until after the decremented 3772 * mapcount is visible. So transitively, TLBs to 3773 * old page will be flushed before it can be reused. 3774 */ 3775 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3776 } 3777 3778 /* Free the old page.. */ 3779 new_folio = old_folio; 3780 page_copied = 1; 3781 pte_unmap_unlock(vmf->pte, vmf->ptl); 3782 } else if (vmf->pte) { 3783 update_mmu_tlb(vma, vmf->address, vmf->pte); 3784 pte_unmap_unlock(vmf->pte, vmf->ptl); 3785 } 3786 3787 mmu_notifier_invalidate_range_end(&range); 3788 3789 if (new_folio) 3790 folio_put(new_folio); 3791 if (old_folio) { 3792 if (page_copied) 3793 free_swap_cache(old_folio); 3794 folio_put(old_folio); 3795 } 3796 3797 delayacct_wpcopy_end(); 3798 return 0; 3799 oom: 3800 ret = VM_FAULT_OOM; 3801 out: 3802 if (old_folio) 3803 folio_put(old_folio); 3804 3805 delayacct_wpcopy_end(); 3806 return ret; 3807 } 3808 3809 /** 3810 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3811 * writeable once the page is prepared 3812 * 3813 * @vmf: structure describing the fault 3814 * @folio: the folio of vmf->page 3815 * 3816 * This function handles all that is needed to finish a write page fault in a 3817 * shared mapping due to PTE being read-only once the mapped page is prepared. 3818 * It handles locking of PTE and modifying it. 3819 * 3820 * The function expects the page to be locked or other protection against 3821 * concurrent faults / writeback (such as DAX radix tree locks). 3822 * 3823 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3824 * we acquired PTE lock. 3825 */ 3826 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3827 { 3828 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3829 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3830 &vmf->ptl); 3831 if (!vmf->pte) 3832 return VM_FAULT_NOPAGE; 3833 /* 3834 * We might have raced with another page fault while we released the 3835 * pte_offset_map_lock. 3836 */ 3837 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3838 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3839 pte_unmap_unlock(vmf->pte, vmf->ptl); 3840 return VM_FAULT_NOPAGE; 3841 } 3842 wp_page_reuse(vmf, folio); 3843 return 0; 3844 } 3845 3846 /* 3847 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3848 * mapping 3849 */ 3850 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3851 { 3852 struct vm_area_struct *vma = vmf->vma; 3853 3854 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3855 vm_fault_t ret; 3856 3857 pte_unmap_unlock(vmf->pte, vmf->ptl); 3858 ret = vmf_can_call_fault(vmf); 3859 if (ret) 3860 return ret; 3861 3862 vmf->flags |= FAULT_FLAG_MKWRITE; 3863 ret = vma->vm_ops->pfn_mkwrite(vmf); 3864 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3865 return ret; 3866 return finish_mkwrite_fault(vmf, NULL); 3867 } 3868 wp_page_reuse(vmf, NULL); 3869 return 0; 3870 } 3871 3872 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3873 __releases(vmf->ptl) 3874 { 3875 struct vm_area_struct *vma = vmf->vma; 3876 vm_fault_t ret = 0; 3877 3878 folio_get(folio); 3879 3880 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3881 vm_fault_t tmp; 3882 3883 pte_unmap_unlock(vmf->pte, vmf->ptl); 3884 tmp = vmf_can_call_fault(vmf); 3885 if (tmp) { 3886 folio_put(folio); 3887 return tmp; 3888 } 3889 3890 tmp = do_page_mkwrite(vmf, folio); 3891 if (unlikely(!tmp || (tmp & 3892 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3893 folio_put(folio); 3894 return tmp; 3895 } 3896 tmp = finish_mkwrite_fault(vmf, folio); 3897 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3898 folio_unlock(folio); 3899 folio_put(folio); 3900 return tmp; 3901 } 3902 } else { 3903 wp_page_reuse(vmf, folio); 3904 folio_lock(folio); 3905 } 3906 ret |= fault_dirty_shared_page(vmf); 3907 folio_put(folio); 3908 3909 return ret; 3910 } 3911 3912 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3913 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3914 struct vm_area_struct *vma) 3915 { 3916 bool exclusive = false; 3917 3918 /* Let's just free up a large folio if only a single page is mapped. */ 3919 if (folio_large_mapcount(folio) <= 1) 3920 return false; 3921 3922 /* 3923 * The assumption for anonymous folios is that each page can only get 3924 * mapped once into each MM. The only exception are KSM folios, which 3925 * are always small. 3926 * 3927 * Each taken mapcount must be paired with exactly one taken reference, 3928 * whereby the refcount must be incremented before the mapcount when 3929 * mapping a page, and the refcount must be decremented after the 3930 * mapcount when unmapping a page. 3931 * 3932 * If all folio references are from mappings, and all mappings are in 3933 * the page tables of this MM, then this folio is exclusive to this MM. 3934 */ 3935 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3936 return false; 3937 3938 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3939 3940 if (unlikely(folio_test_swapcache(folio))) { 3941 /* 3942 * Note: freeing up the swapcache will fail if some PTEs are 3943 * still swap entries. 3944 */ 3945 if (!folio_trylock(folio)) 3946 return false; 3947 folio_free_swap(folio); 3948 folio_unlock(folio); 3949 } 3950 3951 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3952 return false; 3953 3954 /* Stabilize the mapcount vs. refcount and recheck. */ 3955 folio_lock_large_mapcount(folio); 3956 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3957 3958 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3959 goto unlock; 3960 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3961 goto unlock; 3962 3963 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3964 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3965 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3966 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3967 3968 /* 3969 * Do we need the folio lock? Likely not. If there would have been 3970 * references from page migration/swapout, we would have detected 3971 * an additional folio reference and never ended up here. 3972 */ 3973 exclusive = true; 3974 unlock: 3975 folio_unlock_large_mapcount(folio); 3976 return exclusive; 3977 } 3978 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3979 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3980 struct vm_area_struct *vma) 3981 { 3982 BUILD_BUG(); 3983 } 3984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3985 3986 static bool wp_can_reuse_anon_folio(struct folio *folio, 3987 struct vm_area_struct *vma) 3988 { 3989 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3990 return __wp_can_reuse_large_anon_folio(folio, vma); 3991 3992 /* 3993 * We have to verify under folio lock: these early checks are 3994 * just an optimization to avoid locking the folio and freeing 3995 * the swapcache if there is little hope that we can reuse. 3996 * 3997 * KSM doesn't necessarily raise the folio refcount. 3998 */ 3999 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 4000 return false; 4001 if (!folio_test_lru(folio)) 4002 /* 4003 * We cannot easily detect+handle references from 4004 * remote LRU caches or references to LRU folios. 4005 */ 4006 lru_add_drain(); 4007 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 4008 return false; 4009 if (!folio_trylock(folio)) 4010 return false; 4011 if (folio_test_swapcache(folio)) 4012 folio_free_swap(folio); 4013 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 4014 folio_unlock(folio); 4015 return false; 4016 } 4017 /* 4018 * Ok, we've got the only folio reference from our mapping 4019 * and the folio is locked, it's dark out, and we're wearing 4020 * sunglasses. Hit it. 4021 */ 4022 folio_move_anon_rmap(folio, vma); 4023 folio_unlock(folio); 4024 return true; 4025 } 4026 4027 /* 4028 * This routine handles present pages, when 4029 * * users try to write to a shared page (FAULT_FLAG_WRITE) 4030 * * GUP wants to take a R/O pin on a possibly shared anonymous page 4031 * (FAULT_FLAG_UNSHARE) 4032 * 4033 * It is done by copying the page to a new address and decrementing the 4034 * shared-page counter for the old page. 4035 * 4036 * Note that this routine assumes that the protection checks have been 4037 * done by the caller (the low-level page fault routine in most cases). 4038 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 4039 * done any necessary COW. 4040 * 4041 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 4042 * though the page will change only once the write actually happens. This 4043 * avoids a few races, and potentially makes it more efficient. 4044 * 4045 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4046 * but allow concurrent faults), with pte both mapped and locked. 4047 * We return with mmap_lock still held, but pte unmapped and unlocked. 4048 */ 4049 static vm_fault_t do_wp_page(struct vm_fault *vmf) 4050 __releases(vmf->ptl) 4051 { 4052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4053 struct vm_area_struct *vma = vmf->vma; 4054 struct folio *folio = NULL; 4055 pte_t pte; 4056 4057 if (likely(!unshare)) { 4058 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 4059 if (!userfaultfd_wp_async(vma)) { 4060 pte_unmap_unlock(vmf->pte, vmf->ptl); 4061 return handle_userfault(vmf, VM_UFFD_WP); 4062 } 4063 4064 /* 4065 * Nothing needed (cache flush, TLB invalidations, 4066 * etc.) because we're only removing the uffd-wp bit, 4067 * which is completely invisible to the user. 4068 */ 4069 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 4070 4071 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4072 /* 4073 * Update this to be prepared for following up CoW 4074 * handling 4075 */ 4076 vmf->orig_pte = pte; 4077 } 4078 4079 /* 4080 * Userfaultfd write-protect can defer flushes. Ensure the TLB 4081 * is flushed in this case before copying. 4082 */ 4083 if (unlikely(userfaultfd_wp(vmf->vma) && 4084 mm_tlb_flush_pending(vmf->vma->vm_mm))) 4085 flush_tlb_page(vmf->vma, vmf->address); 4086 } 4087 4088 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 4089 4090 if (vmf->page) 4091 folio = page_folio(vmf->page); 4092 4093 /* 4094 * Shared mapping: we are guaranteed to have VM_WRITE and 4095 * FAULT_FLAG_WRITE set at this point. 4096 */ 4097 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4098 /* 4099 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4100 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4101 * 4102 * We should not cow pages in a shared writeable mapping. 4103 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4104 */ 4105 if (!vmf->page || is_fsdax_page(vmf->page)) { 4106 vmf->page = NULL; 4107 return wp_pfn_shared(vmf); 4108 } 4109 return wp_page_shared(vmf, folio); 4110 } 4111 4112 /* 4113 * Private mapping: create an exclusive anonymous page copy if reuse 4114 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4115 * 4116 * If we encounter a page that is marked exclusive, we must reuse 4117 * the page without further checks. 4118 */ 4119 if (folio && folio_test_anon(folio) && 4120 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4121 if (!PageAnonExclusive(vmf->page)) 4122 SetPageAnonExclusive(vmf->page); 4123 if (unlikely(unshare)) { 4124 pte_unmap_unlock(vmf->pte, vmf->ptl); 4125 return 0; 4126 } 4127 wp_page_reuse(vmf, folio); 4128 return 0; 4129 } 4130 /* 4131 * Ok, we need to copy. Oh, well.. 4132 */ 4133 if (folio) 4134 folio_get(folio); 4135 4136 pte_unmap_unlock(vmf->pte, vmf->ptl); 4137 #ifdef CONFIG_KSM 4138 if (folio && folio_test_ksm(folio)) 4139 count_vm_event(COW_KSM); 4140 #endif 4141 return wp_page_copy(vmf); 4142 } 4143 4144 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4145 unsigned long start_addr, unsigned long end_addr, 4146 struct zap_details *details) 4147 { 4148 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4149 } 4150 4151 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4152 pgoff_t first_index, 4153 pgoff_t last_index, 4154 struct zap_details *details) 4155 { 4156 struct vm_area_struct *vma; 4157 pgoff_t vba, vea, zba, zea; 4158 4159 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4160 vba = vma->vm_pgoff; 4161 vea = vba + vma_pages(vma) - 1; 4162 zba = max(first_index, vba); 4163 zea = min(last_index, vea); 4164 4165 unmap_mapping_range_vma(vma, 4166 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4167 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4168 details); 4169 } 4170 } 4171 4172 /** 4173 * unmap_mapping_folio() - Unmap single folio from processes. 4174 * @folio: The locked folio to be unmapped. 4175 * 4176 * Unmap this folio from any userspace process which still has it mmaped. 4177 * Typically, for efficiency, the range of nearby pages has already been 4178 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4179 * truncation or invalidation holds the lock on a folio, it may find that 4180 * the page has been remapped again: and then uses unmap_mapping_folio() 4181 * to unmap it finally. 4182 */ 4183 void unmap_mapping_folio(struct folio *folio) 4184 { 4185 struct address_space *mapping = folio->mapping; 4186 struct zap_details details = { }; 4187 pgoff_t first_index; 4188 pgoff_t last_index; 4189 4190 VM_BUG_ON(!folio_test_locked(folio)); 4191 4192 first_index = folio->index; 4193 last_index = folio_next_index(folio) - 1; 4194 4195 details.even_cows = false; 4196 details.single_folio = folio; 4197 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4198 4199 i_mmap_lock_read(mapping); 4200 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4201 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4202 last_index, &details); 4203 i_mmap_unlock_read(mapping); 4204 } 4205 4206 /** 4207 * unmap_mapping_pages() - Unmap pages from processes. 4208 * @mapping: The address space containing pages to be unmapped. 4209 * @start: Index of first page to be unmapped. 4210 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4211 * @even_cows: Whether to unmap even private COWed pages. 4212 * 4213 * Unmap the pages in this address space from any userspace process which 4214 * has them mmaped. Generally, you want to remove COWed pages as well when 4215 * a file is being truncated, but not when invalidating pages from the page 4216 * cache. 4217 */ 4218 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4219 pgoff_t nr, bool even_cows) 4220 { 4221 struct zap_details details = { }; 4222 pgoff_t first_index = start; 4223 pgoff_t last_index = start + nr - 1; 4224 4225 details.even_cows = even_cows; 4226 if (last_index < first_index) 4227 last_index = ULONG_MAX; 4228 4229 i_mmap_lock_read(mapping); 4230 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4231 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4232 last_index, &details); 4233 i_mmap_unlock_read(mapping); 4234 } 4235 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4236 4237 /** 4238 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4239 * address_space corresponding to the specified byte range in the underlying 4240 * file. 4241 * 4242 * @mapping: the address space containing mmaps to be unmapped. 4243 * @holebegin: byte in first page to unmap, relative to the start of 4244 * the underlying file. This will be rounded down to a PAGE_SIZE 4245 * boundary. Note that this is different from truncate_pagecache(), which 4246 * must keep the partial page. In contrast, we must get rid of 4247 * partial pages. 4248 * @holelen: size of prospective hole in bytes. This will be rounded 4249 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4250 * end of the file. 4251 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4252 * but 0 when invalidating pagecache, don't throw away private data. 4253 */ 4254 void unmap_mapping_range(struct address_space *mapping, 4255 loff_t const holebegin, loff_t const holelen, int even_cows) 4256 { 4257 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4258 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4259 4260 /* Check for overflow. */ 4261 if (sizeof(holelen) > sizeof(hlen)) { 4262 long long holeend = 4263 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4264 if (holeend & ~(long long)ULONG_MAX) 4265 hlen = ULONG_MAX - hba + 1; 4266 } 4267 4268 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4269 } 4270 EXPORT_SYMBOL(unmap_mapping_range); 4271 4272 /* 4273 * Restore a potential device exclusive pte to a working pte entry 4274 */ 4275 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4276 { 4277 struct folio *folio = page_folio(vmf->page); 4278 struct vm_area_struct *vma = vmf->vma; 4279 struct mmu_notifier_range range; 4280 vm_fault_t ret; 4281 4282 /* 4283 * We need a reference to lock the folio because we don't hold 4284 * the PTL so a racing thread can remove the device-exclusive 4285 * entry and unmap it. If the folio is free the entry must 4286 * have been removed already. If it happens to have already 4287 * been re-allocated after being freed all we do is lock and 4288 * unlock it. 4289 */ 4290 if (!folio_try_get(folio)) 4291 return 0; 4292 4293 ret = folio_lock_or_retry(folio, vmf); 4294 if (ret) { 4295 folio_put(folio); 4296 return ret; 4297 } 4298 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4299 vma->vm_mm, vmf->address & PAGE_MASK, 4300 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4301 mmu_notifier_invalidate_range_start(&range); 4302 4303 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4304 &vmf->ptl); 4305 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4306 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4307 vmf->pte, vmf->orig_pte); 4308 4309 if (vmf->pte) 4310 pte_unmap_unlock(vmf->pte, vmf->ptl); 4311 folio_unlock(folio); 4312 folio_put(folio); 4313 4314 mmu_notifier_invalidate_range_end(&range); 4315 return 0; 4316 } 4317 4318 static inline bool should_try_to_free_swap(struct folio *folio, 4319 struct vm_area_struct *vma, 4320 unsigned int fault_flags) 4321 { 4322 if (!folio_test_swapcache(folio)) 4323 return false; 4324 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4325 folio_test_mlocked(folio)) 4326 return true; 4327 /* 4328 * If we want to map a page that's in the swapcache writable, we 4329 * have to detect via the refcount if we're really the exclusive 4330 * user. Try freeing the swapcache to get rid of the swapcache 4331 * reference only in case it's likely that we'll be the exlusive user. 4332 */ 4333 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4334 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4335 } 4336 4337 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4338 { 4339 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4340 vmf->address, &vmf->ptl); 4341 if (!vmf->pte) 4342 return 0; 4343 /* 4344 * Be careful so that we will only recover a special uffd-wp pte into a 4345 * none pte. Otherwise it means the pte could have changed, so retry. 4346 * 4347 * This should also cover the case where e.g. the pte changed 4348 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4349 * So is_pte_marker() check is not enough to safely drop the pte. 4350 */ 4351 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4352 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4353 pte_unmap_unlock(vmf->pte, vmf->ptl); 4354 return 0; 4355 } 4356 4357 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4358 { 4359 if (vma_is_anonymous(vmf->vma)) 4360 return do_anonymous_page(vmf); 4361 else 4362 return do_fault(vmf); 4363 } 4364 4365 /* 4366 * This is actually a page-missing access, but with uffd-wp special pte 4367 * installed. It means this pte was wr-protected before being unmapped. 4368 */ 4369 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4370 { 4371 /* 4372 * Just in case there're leftover special ptes even after the region 4373 * got unregistered - we can simply clear them. 4374 */ 4375 if (unlikely(!userfaultfd_wp(vmf->vma))) 4376 return pte_marker_clear(vmf); 4377 4378 return do_pte_missing(vmf); 4379 } 4380 4381 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4382 { 4383 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4384 unsigned long marker = pte_marker_get(entry); 4385 4386 /* 4387 * PTE markers should never be empty. If anything weird happened, 4388 * the best thing to do is to kill the process along with its mm. 4389 */ 4390 if (WARN_ON_ONCE(!marker)) 4391 return VM_FAULT_SIGBUS; 4392 4393 /* Higher priority than uffd-wp when data corrupted */ 4394 if (marker & PTE_MARKER_POISONED) 4395 return VM_FAULT_HWPOISON; 4396 4397 /* Hitting a guard page is always a fatal condition. */ 4398 if (marker & PTE_MARKER_GUARD) 4399 return VM_FAULT_SIGSEGV; 4400 4401 if (pte_marker_entry_uffd_wp(entry)) 4402 return pte_marker_handle_uffd_wp(vmf); 4403 4404 /* This is an unknown pte marker */ 4405 return VM_FAULT_SIGBUS; 4406 } 4407 4408 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4409 { 4410 struct vm_area_struct *vma = vmf->vma; 4411 struct folio *folio; 4412 swp_entry_t entry; 4413 4414 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4415 if (!folio) 4416 return NULL; 4417 4418 entry = pte_to_swp_entry(vmf->orig_pte); 4419 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4420 GFP_KERNEL, entry)) { 4421 folio_put(folio); 4422 return NULL; 4423 } 4424 4425 return folio; 4426 } 4427 4428 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4429 /* 4430 * Check if the PTEs within a range are contiguous swap entries 4431 * and have consistent swapcache, zeromap. 4432 */ 4433 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4434 { 4435 unsigned long addr; 4436 swp_entry_t entry; 4437 int idx; 4438 pte_t pte; 4439 4440 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4441 idx = (vmf->address - addr) / PAGE_SIZE; 4442 pte = ptep_get(ptep); 4443 4444 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4445 return false; 4446 entry = pte_to_swp_entry(pte); 4447 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4448 return false; 4449 4450 /* 4451 * swap_read_folio() can't handle the case a large folio is hybridly 4452 * from different backends. And they are likely corner cases. Similar 4453 * things might be added once zswap support large folios. 4454 */ 4455 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4456 return false; 4457 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4458 return false; 4459 4460 return true; 4461 } 4462 4463 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4464 unsigned long addr, 4465 unsigned long orders) 4466 { 4467 int order, nr; 4468 4469 order = highest_order(orders); 4470 4471 /* 4472 * To swap in a THP with nr pages, we require that its first swap_offset 4473 * is aligned with that number, as it was when the THP was swapped out. 4474 * This helps filter out most invalid entries. 4475 */ 4476 while (orders) { 4477 nr = 1 << order; 4478 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4479 break; 4480 order = next_order(&orders, order); 4481 } 4482 4483 return orders; 4484 } 4485 4486 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4487 { 4488 struct vm_area_struct *vma = vmf->vma; 4489 unsigned long orders; 4490 struct folio *folio; 4491 unsigned long addr; 4492 swp_entry_t entry; 4493 spinlock_t *ptl; 4494 pte_t *pte; 4495 gfp_t gfp; 4496 int order; 4497 4498 /* 4499 * If uffd is active for the vma we need per-page fault fidelity to 4500 * maintain the uffd semantics. 4501 */ 4502 if (unlikely(userfaultfd_armed(vma))) 4503 goto fallback; 4504 4505 /* 4506 * A large swapped out folio could be partially or fully in zswap. We 4507 * lack handling for such cases, so fallback to swapping in order-0 4508 * folio. 4509 */ 4510 if (!zswap_never_enabled()) 4511 goto fallback; 4512 4513 entry = pte_to_swp_entry(vmf->orig_pte); 4514 /* 4515 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4516 * and suitable for swapping THP. 4517 */ 4518 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 4519 BIT(PMD_ORDER) - 1); 4520 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4521 orders = thp_swap_suitable_orders(swp_offset(entry), 4522 vmf->address, orders); 4523 4524 if (!orders) 4525 goto fallback; 4526 4527 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4528 vmf->address & PMD_MASK, &ptl); 4529 if (unlikely(!pte)) 4530 goto fallback; 4531 4532 /* 4533 * For do_swap_page, find the highest order where the aligned range is 4534 * completely swap entries with contiguous swap offsets. 4535 */ 4536 order = highest_order(orders); 4537 while (orders) { 4538 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4539 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4540 break; 4541 order = next_order(&orders, order); 4542 } 4543 4544 pte_unmap_unlock(pte, ptl); 4545 4546 /* Try allocating the highest of the remaining orders. */ 4547 gfp = vma_thp_gfp_mask(vma); 4548 while (orders) { 4549 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4550 folio = vma_alloc_folio(gfp, order, vma, addr); 4551 if (folio) { 4552 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4553 gfp, entry)) 4554 return folio; 4555 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4556 folio_put(folio); 4557 } 4558 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4559 order = next_order(&orders, order); 4560 } 4561 4562 fallback: 4563 return __alloc_swap_folio(vmf); 4564 } 4565 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4566 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4567 { 4568 return __alloc_swap_folio(vmf); 4569 } 4570 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4571 4572 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4573 4574 /* 4575 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4576 * but allow concurrent faults), and pte mapped but not yet locked. 4577 * We return with pte unmapped and unlocked. 4578 * 4579 * We return with the mmap_lock locked or unlocked in the same cases 4580 * as does filemap_fault(). 4581 */ 4582 vm_fault_t do_swap_page(struct vm_fault *vmf) 4583 { 4584 struct vm_area_struct *vma = vmf->vma; 4585 struct folio *swapcache, *folio = NULL; 4586 DECLARE_WAITQUEUE(wait, current); 4587 struct page *page; 4588 struct swap_info_struct *si = NULL; 4589 rmap_t rmap_flags = RMAP_NONE; 4590 bool need_clear_cache = false; 4591 bool exclusive = false; 4592 swp_entry_t entry; 4593 pte_t pte; 4594 vm_fault_t ret = 0; 4595 void *shadow = NULL; 4596 int nr_pages; 4597 unsigned long page_idx; 4598 unsigned long address; 4599 pte_t *ptep; 4600 4601 if (!pte_unmap_same(vmf)) 4602 goto out; 4603 4604 entry = pte_to_swp_entry(vmf->orig_pte); 4605 if (unlikely(non_swap_entry(entry))) { 4606 if (is_migration_entry(entry)) { 4607 migration_entry_wait(vma->vm_mm, vmf->pmd, 4608 vmf->address); 4609 } else if (is_device_exclusive_entry(entry)) { 4610 vmf->page = pfn_swap_entry_to_page(entry); 4611 ret = remove_device_exclusive_entry(vmf); 4612 } else if (is_device_private_entry(entry)) { 4613 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4614 /* 4615 * migrate_to_ram is not yet ready to operate 4616 * under VMA lock. 4617 */ 4618 vma_end_read(vma); 4619 ret = VM_FAULT_RETRY; 4620 goto out; 4621 } 4622 4623 vmf->page = pfn_swap_entry_to_page(entry); 4624 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4625 vmf->address, &vmf->ptl); 4626 if (unlikely(!vmf->pte || 4627 !pte_same(ptep_get(vmf->pte), 4628 vmf->orig_pte))) 4629 goto unlock; 4630 4631 /* 4632 * Get a page reference while we know the page can't be 4633 * freed. 4634 */ 4635 if (trylock_page(vmf->page)) { 4636 struct dev_pagemap *pgmap; 4637 4638 get_page(vmf->page); 4639 pte_unmap_unlock(vmf->pte, vmf->ptl); 4640 pgmap = page_pgmap(vmf->page); 4641 ret = pgmap->ops->migrate_to_ram(vmf); 4642 unlock_page(vmf->page); 4643 put_page(vmf->page); 4644 } else { 4645 pte_unmap_unlock(vmf->pte, vmf->ptl); 4646 } 4647 } else if (is_hwpoison_entry(entry)) { 4648 ret = VM_FAULT_HWPOISON; 4649 } else if (is_pte_marker_entry(entry)) { 4650 ret = handle_pte_marker(vmf); 4651 } else { 4652 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4653 ret = VM_FAULT_SIGBUS; 4654 } 4655 goto out; 4656 } 4657 4658 /* Prevent swapoff from happening to us. */ 4659 si = get_swap_device(entry); 4660 if (unlikely(!si)) 4661 goto out; 4662 4663 folio = swap_cache_get_folio(entry); 4664 if (folio) 4665 swap_update_readahead(folio, vma, vmf->address); 4666 swapcache = folio; 4667 4668 if (!folio) { 4669 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4670 __swap_count(entry) == 1) { 4671 /* skip swapcache */ 4672 folio = alloc_swap_folio(vmf); 4673 if (folio) { 4674 __folio_set_locked(folio); 4675 __folio_set_swapbacked(folio); 4676 4677 nr_pages = folio_nr_pages(folio); 4678 if (folio_test_large(folio)) 4679 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4680 /* 4681 * Prevent parallel swapin from proceeding with 4682 * the cache flag. Otherwise, another thread 4683 * may finish swapin first, free the entry, and 4684 * swapout reusing the same entry. It's 4685 * undetectable as pte_same() returns true due 4686 * to entry reuse. 4687 */ 4688 if (swapcache_prepare(entry, nr_pages)) { 4689 /* 4690 * Relax a bit to prevent rapid 4691 * repeated page faults. 4692 */ 4693 add_wait_queue(&swapcache_wq, &wait); 4694 schedule_timeout_uninterruptible(1); 4695 remove_wait_queue(&swapcache_wq, &wait); 4696 goto out_page; 4697 } 4698 need_clear_cache = true; 4699 4700 memcg1_swapin(entry, nr_pages); 4701 4702 shadow = swap_cache_get_shadow(entry); 4703 if (shadow) 4704 workingset_refault(folio, shadow); 4705 4706 folio_add_lru(folio); 4707 4708 /* To provide entry to swap_read_folio() */ 4709 folio->swap = entry; 4710 swap_read_folio(folio, NULL); 4711 folio->private = NULL; 4712 } 4713 } else { 4714 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4715 vmf); 4716 swapcache = folio; 4717 } 4718 4719 if (!folio) { 4720 /* 4721 * Back out if somebody else faulted in this pte 4722 * while we released the pte lock. 4723 */ 4724 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4725 vmf->address, &vmf->ptl); 4726 if (likely(vmf->pte && 4727 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4728 ret = VM_FAULT_OOM; 4729 goto unlock; 4730 } 4731 4732 /* Had to read the page from swap area: Major fault */ 4733 ret = VM_FAULT_MAJOR; 4734 count_vm_event(PGMAJFAULT); 4735 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4736 } 4737 4738 ret |= folio_lock_or_retry(folio, vmf); 4739 if (ret & VM_FAULT_RETRY) 4740 goto out_release; 4741 4742 page = folio_file_page(folio, swp_offset(entry)); 4743 if (swapcache) { 4744 /* 4745 * Make sure folio_free_swap() or swapoff did not release the 4746 * swapcache from under us. The page pin, and pte_same test 4747 * below, are not enough to exclude that. Even if it is still 4748 * swapcache, we need to check that the page's swap has not 4749 * changed. 4750 */ 4751 if (unlikely(!folio_matches_swap_entry(folio, entry))) 4752 goto out_page; 4753 4754 if (unlikely(PageHWPoison(page))) { 4755 /* 4756 * hwpoisoned dirty swapcache pages are kept for killing 4757 * owner processes (which may be unknown at hwpoison time) 4758 */ 4759 ret = VM_FAULT_HWPOISON; 4760 goto out_page; 4761 } 4762 4763 /* 4764 * KSM sometimes has to copy on read faults, for example, if 4765 * folio->index of non-ksm folios would be nonlinear inside the 4766 * anon VMA -- the ksm flag is lost on actual swapout. 4767 */ 4768 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4769 if (unlikely(!folio)) { 4770 ret = VM_FAULT_OOM; 4771 folio = swapcache; 4772 goto out_page; 4773 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4774 ret = VM_FAULT_HWPOISON; 4775 folio = swapcache; 4776 goto out_page; 4777 } 4778 if (folio != swapcache) 4779 page = folio_page(folio, 0); 4780 4781 /* 4782 * If we want to map a page that's in the swapcache writable, we 4783 * have to detect via the refcount if we're really the exclusive 4784 * owner. Try removing the extra reference from the local LRU 4785 * caches if required. 4786 */ 4787 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4788 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4789 lru_add_drain(); 4790 } 4791 4792 folio_throttle_swaprate(folio, GFP_KERNEL); 4793 4794 /* 4795 * Back out if somebody else already faulted in this pte. 4796 */ 4797 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4798 &vmf->ptl); 4799 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4800 goto out_nomap; 4801 4802 if (unlikely(!folio_test_uptodate(folio))) { 4803 ret = VM_FAULT_SIGBUS; 4804 goto out_nomap; 4805 } 4806 4807 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4808 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4809 unsigned long nr = folio_nr_pages(folio); 4810 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4811 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4812 pte_t *folio_ptep = vmf->pte - idx; 4813 pte_t folio_pte = ptep_get(folio_ptep); 4814 4815 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4816 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4817 goto out_nomap; 4818 4819 page_idx = idx; 4820 address = folio_start; 4821 ptep = folio_ptep; 4822 goto check_folio; 4823 } 4824 4825 nr_pages = 1; 4826 page_idx = 0; 4827 address = vmf->address; 4828 ptep = vmf->pte; 4829 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4830 int nr = folio_nr_pages(folio); 4831 unsigned long idx = folio_page_idx(folio, page); 4832 unsigned long folio_start = address - idx * PAGE_SIZE; 4833 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4834 pte_t *folio_ptep; 4835 pte_t folio_pte; 4836 4837 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4838 goto check_folio; 4839 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4840 goto check_folio; 4841 4842 folio_ptep = vmf->pte - idx; 4843 folio_pte = ptep_get(folio_ptep); 4844 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4845 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4846 goto check_folio; 4847 4848 page_idx = idx; 4849 address = folio_start; 4850 ptep = folio_ptep; 4851 nr_pages = nr; 4852 entry = folio->swap; 4853 page = &folio->page; 4854 } 4855 4856 check_folio: 4857 /* 4858 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4859 * must never point at an anonymous page in the swapcache that is 4860 * PG_anon_exclusive. Sanity check that this holds and especially, that 4861 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4862 * check after taking the PT lock and making sure that nobody 4863 * concurrently faulted in this page and set PG_anon_exclusive. 4864 */ 4865 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4866 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4867 4868 /* 4869 * Check under PT lock (to protect against concurrent fork() sharing 4870 * the swap entry concurrently) for certainly exclusive pages. 4871 */ 4872 if (!folio_test_ksm(folio)) { 4873 exclusive = pte_swp_exclusive(vmf->orig_pte); 4874 if (folio != swapcache) { 4875 /* 4876 * We have a fresh page that is not exposed to the 4877 * swapcache -> certainly exclusive. 4878 */ 4879 exclusive = true; 4880 } else if (exclusive && folio_test_writeback(folio) && 4881 data_race(si->flags & SWP_STABLE_WRITES)) { 4882 /* 4883 * This is tricky: not all swap backends support 4884 * concurrent page modifications while under writeback. 4885 * 4886 * So if we stumble over such a page in the swapcache 4887 * we must not set the page exclusive, otherwise we can 4888 * map it writable without further checks and modify it 4889 * while still under writeback. 4890 * 4891 * For these problematic swap backends, simply drop the 4892 * exclusive marker: this is perfectly fine as we start 4893 * writeback only if we fully unmapped the page and 4894 * there are no unexpected references on the page after 4895 * unmapping succeeded. After fully unmapped, no 4896 * further GUP references (FOLL_GET and FOLL_PIN) can 4897 * appear, so dropping the exclusive marker and mapping 4898 * it only R/O is fine. 4899 */ 4900 exclusive = false; 4901 } 4902 } 4903 4904 /* 4905 * Some architectures may have to restore extra metadata to the page 4906 * when reading from swap. This metadata may be indexed by swap entry 4907 * so this must be called before swap_free(). 4908 */ 4909 arch_swap_restore(folio_swap(entry, folio), folio); 4910 4911 /* 4912 * Remove the swap entry and conditionally try to free up the swapcache. 4913 * We're already holding a reference on the page but haven't mapped it 4914 * yet. 4915 */ 4916 swap_free_nr(entry, nr_pages); 4917 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4918 folio_free_swap(folio); 4919 4920 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4921 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4922 pte = mk_pte(page, vma->vm_page_prot); 4923 if (pte_swp_soft_dirty(vmf->orig_pte)) 4924 pte = pte_mksoft_dirty(pte); 4925 if (pte_swp_uffd_wp(vmf->orig_pte)) 4926 pte = pte_mkuffd_wp(pte); 4927 4928 /* 4929 * Same logic as in do_wp_page(); however, optimize for pages that are 4930 * certainly not shared either because we just allocated them without 4931 * exposing them to the swapcache or because the swap entry indicates 4932 * exclusivity. 4933 */ 4934 if (!folio_test_ksm(folio) && 4935 (exclusive || folio_ref_count(folio) == 1)) { 4936 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4937 !pte_needs_soft_dirty_wp(vma, pte)) { 4938 pte = pte_mkwrite(pte, vma); 4939 if (vmf->flags & FAULT_FLAG_WRITE) { 4940 pte = pte_mkdirty(pte); 4941 vmf->flags &= ~FAULT_FLAG_WRITE; 4942 } 4943 } 4944 rmap_flags |= RMAP_EXCLUSIVE; 4945 } 4946 folio_ref_add(folio, nr_pages - 1); 4947 flush_icache_pages(vma, page, nr_pages); 4948 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4949 4950 /* ksm created a completely new copy */ 4951 if (unlikely(folio != swapcache && swapcache)) { 4952 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4953 folio_add_lru_vma(folio, vma); 4954 } else if (!folio_test_anon(folio)) { 4955 /* 4956 * We currently only expect small !anon folios which are either 4957 * fully exclusive or fully shared, or new allocated large 4958 * folios which are fully exclusive. If we ever get large 4959 * folios within swapcache here, we have to be careful. 4960 */ 4961 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4962 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4963 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4964 } else { 4965 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4966 rmap_flags); 4967 } 4968 4969 VM_BUG_ON(!folio_test_anon(folio) || 4970 (pte_write(pte) && !PageAnonExclusive(page))); 4971 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4972 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4973 pte, pte, nr_pages); 4974 4975 folio_unlock(folio); 4976 if (folio != swapcache && swapcache) { 4977 /* 4978 * Hold the lock to avoid the swap entry to be reused 4979 * until we take the PT lock for the pte_same() check 4980 * (to avoid false positives from pte_same). For 4981 * further safety release the lock after the swap_free 4982 * so that the swap count won't change under a 4983 * parallel locked swapcache. 4984 */ 4985 folio_unlock(swapcache); 4986 folio_put(swapcache); 4987 } 4988 4989 if (vmf->flags & FAULT_FLAG_WRITE) { 4990 ret |= do_wp_page(vmf); 4991 if (ret & VM_FAULT_ERROR) 4992 ret &= VM_FAULT_ERROR; 4993 goto out; 4994 } 4995 4996 /* No need to invalidate - it was non-present before */ 4997 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4998 unlock: 4999 if (vmf->pte) 5000 pte_unmap_unlock(vmf->pte, vmf->ptl); 5001 out: 5002 /* Clear the swap cache pin for direct swapin after PTL unlock */ 5003 if (need_clear_cache) { 5004 swapcache_clear(si, entry, nr_pages); 5005 if (waitqueue_active(&swapcache_wq)) 5006 wake_up(&swapcache_wq); 5007 } 5008 if (si) 5009 put_swap_device(si); 5010 return ret; 5011 out_nomap: 5012 if (vmf->pte) 5013 pte_unmap_unlock(vmf->pte, vmf->ptl); 5014 out_page: 5015 folio_unlock(folio); 5016 out_release: 5017 folio_put(folio); 5018 if (folio != swapcache && swapcache) { 5019 folio_unlock(swapcache); 5020 folio_put(swapcache); 5021 } 5022 if (need_clear_cache) { 5023 swapcache_clear(si, entry, nr_pages); 5024 if (waitqueue_active(&swapcache_wq)) 5025 wake_up(&swapcache_wq); 5026 } 5027 if (si) 5028 put_swap_device(si); 5029 return ret; 5030 } 5031 5032 static bool pte_range_none(pte_t *pte, int nr_pages) 5033 { 5034 int i; 5035 5036 for (i = 0; i < nr_pages; i++) { 5037 if (!pte_none(ptep_get_lockless(pte + i))) 5038 return false; 5039 } 5040 5041 return true; 5042 } 5043 5044 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 5045 { 5046 struct vm_area_struct *vma = vmf->vma; 5047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5048 unsigned long orders; 5049 struct folio *folio; 5050 unsigned long addr; 5051 pte_t *pte; 5052 gfp_t gfp; 5053 int order; 5054 5055 /* 5056 * If uffd is active for the vma we need per-page fault fidelity to 5057 * maintain the uffd semantics. 5058 */ 5059 if (unlikely(userfaultfd_armed(vma))) 5060 goto fallback; 5061 5062 /* 5063 * Get a list of all the (large) orders below PMD_ORDER that are enabled 5064 * for this vma. Then filter out the orders that can't be allocated over 5065 * the faulting address and still be fully contained in the vma. 5066 */ 5067 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 5068 BIT(PMD_ORDER) - 1); 5069 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 5070 5071 if (!orders) 5072 goto fallback; 5073 5074 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 5075 if (!pte) 5076 return ERR_PTR(-EAGAIN); 5077 5078 /* 5079 * Find the highest order where the aligned range is completely 5080 * pte_none(). Note that all remaining orders will be completely 5081 * pte_none(). 5082 */ 5083 order = highest_order(orders); 5084 while (orders) { 5085 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5086 if (pte_range_none(pte + pte_index(addr), 1 << order)) 5087 break; 5088 order = next_order(&orders, order); 5089 } 5090 5091 pte_unmap(pte); 5092 5093 if (!orders) 5094 goto fallback; 5095 5096 /* Try allocating the highest of the remaining orders. */ 5097 gfp = vma_thp_gfp_mask(vma); 5098 while (orders) { 5099 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5100 folio = vma_alloc_folio(gfp, order, vma, addr); 5101 if (folio) { 5102 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5103 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5104 folio_put(folio); 5105 goto next; 5106 } 5107 folio_throttle_swaprate(folio, gfp); 5108 /* 5109 * When a folio is not zeroed during allocation 5110 * (__GFP_ZERO not used) or user folios require special 5111 * handling, folio_zero_user() is used to make sure 5112 * that the page corresponding to the faulting address 5113 * will be hot in the cache after zeroing. 5114 */ 5115 if (user_alloc_needs_zeroing()) 5116 folio_zero_user(folio, vmf->address); 5117 return folio; 5118 } 5119 next: 5120 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5121 order = next_order(&orders, order); 5122 } 5123 5124 fallback: 5125 #endif 5126 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5127 } 5128 5129 /* 5130 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5131 * but allow concurrent faults), and pte mapped but not yet locked. 5132 * We return with mmap_lock still held, but pte unmapped and unlocked. 5133 */ 5134 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5135 { 5136 struct vm_area_struct *vma = vmf->vma; 5137 unsigned long addr = vmf->address; 5138 struct folio *folio; 5139 vm_fault_t ret = 0; 5140 int nr_pages = 1; 5141 pte_t entry; 5142 5143 /* File mapping without ->vm_ops ? */ 5144 if (vma->vm_flags & VM_SHARED) 5145 return VM_FAULT_SIGBUS; 5146 5147 /* 5148 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5149 * be distinguished from a transient failure of pte_offset_map(). 5150 */ 5151 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5152 return VM_FAULT_OOM; 5153 5154 /* Use the zero-page for reads */ 5155 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5156 !mm_forbids_zeropage(vma->vm_mm)) { 5157 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5158 vma->vm_page_prot)); 5159 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5160 vmf->address, &vmf->ptl); 5161 if (!vmf->pte) 5162 goto unlock; 5163 if (vmf_pte_changed(vmf)) { 5164 update_mmu_tlb(vma, vmf->address, vmf->pte); 5165 goto unlock; 5166 } 5167 ret = check_stable_address_space(vma->vm_mm); 5168 if (ret) 5169 goto unlock; 5170 /* Deliver the page fault to userland, check inside PT lock */ 5171 if (userfaultfd_missing(vma)) { 5172 pte_unmap_unlock(vmf->pte, vmf->ptl); 5173 return handle_userfault(vmf, VM_UFFD_MISSING); 5174 } 5175 goto setpte; 5176 } 5177 5178 /* Allocate our own private page. */ 5179 ret = vmf_anon_prepare(vmf); 5180 if (ret) 5181 return ret; 5182 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5183 folio = alloc_anon_folio(vmf); 5184 if (IS_ERR(folio)) 5185 return 0; 5186 if (!folio) 5187 goto oom; 5188 5189 nr_pages = folio_nr_pages(folio); 5190 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5191 5192 /* 5193 * The memory barrier inside __folio_mark_uptodate makes sure that 5194 * preceding stores to the page contents become visible before 5195 * the set_pte_at() write. 5196 */ 5197 __folio_mark_uptodate(folio); 5198 5199 entry = folio_mk_pte(folio, vma->vm_page_prot); 5200 entry = pte_sw_mkyoung(entry); 5201 if (vma->vm_flags & VM_WRITE) 5202 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5203 5204 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5205 if (!vmf->pte) 5206 goto release; 5207 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5208 update_mmu_tlb(vma, addr, vmf->pte); 5209 goto release; 5210 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5211 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5212 goto release; 5213 } 5214 5215 ret = check_stable_address_space(vma->vm_mm); 5216 if (ret) 5217 goto release; 5218 5219 /* Deliver the page fault to userland, check inside PT lock */ 5220 if (userfaultfd_missing(vma)) { 5221 pte_unmap_unlock(vmf->pte, vmf->ptl); 5222 folio_put(folio); 5223 return handle_userfault(vmf, VM_UFFD_MISSING); 5224 } 5225 5226 folio_ref_add(folio, nr_pages - 1); 5227 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5228 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5229 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5230 folio_add_lru_vma(folio, vma); 5231 setpte: 5232 if (vmf_orig_pte_uffd_wp(vmf)) 5233 entry = pte_mkuffd_wp(entry); 5234 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5235 5236 /* No need to invalidate - it was non-present before */ 5237 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5238 unlock: 5239 if (vmf->pte) 5240 pte_unmap_unlock(vmf->pte, vmf->ptl); 5241 return ret; 5242 release: 5243 folio_put(folio); 5244 goto unlock; 5245 oom: 5246 return VM_FAULT_OOM; 5247 } 5248 5249 /* 5250 * The mmap_lock must have been held on entry, and may have been 5251 * released depending on flags and vma->vm_ops->fault() return value. 5252 * See filemap_fault() and __lock_page_retry(). 5253 */ 5254 static vm_fault_t __do_fault(struct vm_fault *vmf) 5255 { 5256 struct vm_area_struct *vma = vmf->vma; 5257 struct folio *folio; 5258 vm_fault_t ret; 5259 5260 /* 5261 * Preallocate pte before we take page_lock because this might lead to 5262 * deadlocks for memcg reclaim which waits for pages under writeback: 5263 * lock_page(A) 5264 * SetPageWriteback(A) 5265 * unlock_page(A) 5266 * lock_page(B) 5267 * lock_page(B) 5268 * pte_alloc_one 5269 * shrink_folio_list 5270 * wait_on_page_writeback(A) 5271 * SetPageWriteback(B) 5272 * unlock_page(B) 5273 * # flush A, B to clear the writeback 5274 */ 5275 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5276 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5277 if (!vmf->prealloc_pte) 5278 return VM_FAULT_OOM; 5279 } 5280 5281 ret = vma->vm_ops->fault(vmf); 5282 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5283 VM_FAULT_DONE_COW))) 5284 return ret; 5285 5286 folio = page_folio(vmf->page); 5287 if (unlikely(PageHWPoison(vmf->page))) { 5288 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5289 if (ret & VM_FAULT_LOCKED) { 5290 if (page_mapped(vmf->page)) 5291 unmap_mapping_folio(folio); 5292 /* Retry if a clean folio was removed from the cache. */ 5293 if (mapping_evict_folio(folio->mapping, folio)) 5294 poisonret = VM_FAULT_NOPAGE; 5295 folio_unlock(folio); 5296 } 5297 folio_put(folio); 5298 vmf->page = NULL; 5299 return poisonret; 5300 } 5301 5302 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5303 folio_lock(folio); 5304 else 5305 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5306 5307 return ret; 5308 } 5309 5310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5311 static void deposit_prealloc_pte(struct vm_fault *vmf) 5312 { 5313 struct vm_area_struct *vma = vmf->vma; 5314 5315 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5316 /* 5317 * We are going to consume the prealloc table, 5318 * count that as nr_ptes. 5319 */ 5320 mm_inc_nr_ptes(vma->vm_mm); 5321 vmf->prealloc_pte = NULL; 5322 } 5323 5324 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5325 { 5326 struct vm_area_struct *vma = vmf->vma; 5327 bool write = vmf->flags & FAULT_FLAG_WRITE; 5328 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5329 pmd_t entry; 5330 vm_fault_t ret = VM_FAULT_FALLBACK; 5331 5332 /* 5333 * It is too late to allocate a small folio, we already have a large 5334 * folio in the pagecache: especially s390 KVM cannot tolerate any 5335 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5336 * PMD mappings if THPs are disabled. As we already have a THP, 5337 * behave as if we are forcing a collapse. 5338 */ 5339 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags, 5340 /* forced_collapse=*/ true)) 5341 return ret; 5342 5343 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5344 return ret; 5345 5346 if (folio_order(folio) != HPAGE_PMD_ORDER) 5347 return ret; 5348 page = &folio->page; 5349 5350 /* 5351 * Just backoff if any subpage of a THP is corrupted otherwise 5352 * the corrupted page may mapped by PMD silently to escape the 5353 * check. This kind of THP just can be PTE mapped. Access to 5354 * the corrupted subpage should trigger SIGBUS as expected. 5355 */ 5356 if (unlikely(folio_test_has_hwpoisoned(folio))) 5357 return ret; 5358 5359 /* 5360 * Archs like ppc64 need additional space to store information 5361 * related to pte entry. Use the preallocated table for that. 5362 */ 5363 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5364 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5365 if (!vmf->prealloc_pte) 5366 return VM_FAULT_OOM; 5367 } 5368 5369 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5370 if (unlikely(!pmd_none(*vmf->pmd))) 5371 goto out; 5372 5373 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5374 5375 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5376 if (write) 5377 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5378 5379 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5380 folio_add_file_rmap_pmd(folio, page, vma); 5381 5382 /* 5383 * deposit and withdraw with pmd lock held 5384 */ 5385 if (arch_needs_pgtable_deposit()) 5386 deposit_prealloc_pte(vmf); 5387 5388 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5389 5390 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5391 5392 /* fault is handled */ 5393 ret = 0; 5394 count_vm_event(THP_FILE_MAPPED); 5395 out: 5396 spin_unlock(vmf->ptl); 5397 return ret; 5398 } 5399 #else 5400 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5401 { 5402 return VM_FAULT_FALLBACK; 5403 } 5404 #endif 5405 5406 /** 5407 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5408 * @vmf: Fault decription. 5409 * @folio: The folio that contains @page. 5410 * @page: The first page to create a PTE for. 5411 * @nr: The number of PTEs to create. 5412 * @addr: The first address to create a PTE for. 5413 */ 5414 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5415 struct page *page, unsigned int nr, unsigned long addr) 5416 { 5417 struct vm_area_struct *vma = vmf->vma; 5418 bool write = vmf->flags & FAULT_FLAG_WRITE; 5419 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5420 pte_t entry; 5421 5422 flush_icache_pages(vma, page, nr); 5423 entry = mk_pte(page, vma->vm_page_prot); 5424 5425 if (prefault && arch_wants_old_prefaulted_pte()) 5426 entry = pte_mkold(entry); 5427 else 5428 entry = pte_sw_mkyoung(entry); 5429 5430 if (write) 5431 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5432 else if (pte_write(entry) && folio_test_dirty(folio)) 5433 entry = pte_mkdirty(entry); 5434 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5435 entry = pte_mkuffd_wp(entry); 5436 /* copy-on-write page */ 5437 if (write && !(vma->vm_flags & VM_SHARED)) { 5438 VM_BUG_ON_FOLIO(nr != 1, folio); 5439 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5440 folio_add_lru_vma(folio, vma); 5441 } else { 5442 folio_add_file_rmap_ptes(folio, page, nr, vma); 5443 } 5444 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5445 5446 /* no need to invalidate: a not-present page won't be cached */ 5447 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5448 } 5449 5450 static bool vmf_pte_changed(struct vm_fault *vmf) 5451 { 5452 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5453 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5454 5455 return !pte_none(ptep_get(vmf->pte)); 5456 } 5457 5458 /** 5459 * finish_fault - finish page fault once we have prepared the page to fault 5460 * 5461 * @vmf: structure describing the fault 5462 * 5463 * This function handles all that is needed to finish a page fault once the 5464 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5465 * given page, adds reverse page mapping, handles memcg charges and LRU 5466 * addition. 5467 * 5468 * The function expects the page to be locked and on success it consumes a 5469 * reference of a page being mapped (for the PTE which maps it). 5470 * 5471 * Return: %0 on success, %VM_FAULT_ code in case of error. 5472 */ 5473 vm_fault_t finish_fault(struct vm_fault *vmf) 5474 { 5475 struct vm_area_struct *vma = vmf->vma; 5476 struct page *page; 5477 struct folio *folio; 5478 vm_fault_t ret; 5479 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5480 !(vma->vm_flags & VM_SHARED); 5481 int type, nr_pages; 5482 unsigned long addr; 5483 bool needs_fallback = false; 5484 5485 fallback: 5486 addr = vmf->address; 5487 5488 /* Did we COW the page? */ 5489 if (is_cow) 5490 page = vmf->cow_page; 5491 else 5492 page = vmf->page; 5493 5494 folio = page_folio(page); 5495 /* 5496 * check even for read faults because we might have lost our CoWed 5497 * page 5498 */ 5499 if (!(vma->vm_flags & VM_SHARED)) { 5500 ret = check_stable_address_space(vma->vm_mm); 5501 if (ret) 5502 return ret; 5503 } 5504 5505 if (!needs_fallback && vma->vm_file) { 5506 struct address_space *mapping = vma->vm_file->f_mapping; 5507 pgoff_t file_end; 5508 5509 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 5510 5511 /* 5512 * Do not allow to map with PTEs beyond i_size and with PMD 5513 * across i_size to preserve SIGBUS semantics. 5514 * 5515 * Make an exception for shmem/tmpfs that for long time 5516 * intentionally mapped with PMDs across i_size. 5517 */ 5518 needs_fallback = !shmem_mapping(mapping) && 5519 file_end < folio_next_index(folio); 5520 } 5521 5522 if (pmd_none(*vmf->pmd)) { 5523 if (!needs_fallback && folio_test_pmd_mappable(folio)) { 5524 ret = do_set_pmd(vmf, folio, page); 5525 if (ret != VM_FAULT_FALLBACK) 5526 return ret; 5527 } 5528 5529 if (vmf->prealloc_pte) 5530 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5531 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5532 return VM_FAULT_OOM; 5533 } 5534 5535 nr_pages = folio_nr_pages(folio); 5536 5537 /* Using per-page fault to maintain the uffd semantics */ 5538 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) { 5539 nr_pages = 1; 5540 } else if (nr_pages > 1) { 5541 pgoff_t idx = folio_page_idx(folio, page); 5542 /* The page offset of vmf->address within the VMA. */ 5543 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5544 /* The index of the entry in the pagetable for fault page. */ 5545 pgoff_t pte_off = pte_index(vmf->address); 5546 5547 /* 5548 * Fallback to per-page fault in case the folio size in page 5549 * cache beyond the VMA limits and PMD pagetable limits. 5550 */ 5551 if (unlikely(vma_off < idx || 5552 vma_off + (nr_pages - idx) > vma_pages(vma) || 5553 pte_off < idx || 5554 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5555 nr_pages = 1; 5556 } else { 5557 /* Now we can set mappings for the whole large folio. */ 5558 addr = vmf->address - idx * PAGE_SIZE; 5559 page = &folio->page; 5560 } 5561 } 5562 5563 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5564 addr, &vmf->ptl); 5565 if (!vmf->pte) 5566 return VM_FAULT_NOPAGE; 5567 5568 /* Re-check under ptl */ 5569 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5570 update_mmu_tlb(vma, addr, vmf->pte); 5571 ret = VM_FAULT_NOPAGE; 5572 goto unlock; 5573 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5574 needs_fallback = true; 5575 pte_unmap_unlock(vmf->pte, vmf->ptl); 5576 goto fallback; 5577 } 5578 5579 folio_ref_add(folio, nr_pages - 1); 5580 set_pte_range(vmf, folio, page, nr_pages, addr); 5581 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5582 add_mm_counter(vma->vm_mm, type, nr_pages); 5583 ret = 0; 5584 5585 unlock: 5586 pte_unmap_unlock(vmf->pte, vmf->ptl); 5587 return ret; 5588 } 5589 5590 static unsigned long fault_around_pages __read_mostly = 5591 65536 >> PAGE_SHIFT; 5592 5593 #ifdef CONFIG_DEBUG_FS 5594 static int fault_around_bytes_get(void *data, u64 *val) 5595 { 5596 *val = fault_around_pages << PAGE_SHIFT; 5597 return 0; 5598 } 5599 5600 /* 5601 * fault_around_bytes must be rounded down to the nearest page order as it's 5602 * what do_fault_around() expects to see. 5603 */ 5604 static int fault_around_bytes_set(void *data, u64 val) 5605 { 5606 if (val / PAGE_SIZE > PTRS_PER_PTE) 5607 return -EINVAL; 5608 5609 /* 5610 * The minimum value is 1 page, however this results in no fault-around 5611 * at all. See should_fault_around(). 5612 */ 5613 val = max(val, PAGE_SIZE); 5614 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5615 5616 return 0; 5617 } 5618 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5619 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5620 5621 static int __init fault_around_debugfs(void) 5622 { 5623 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5624 &fault_around_bytes_fops); 5625 return 0; 5626 } 5627 late_initcall(fault_around_debugfs); 5628 #endif 5629 5630 /* 5631 * do_fault_around() tries to map few pages around the fault address. The hope 5632 * is that the pages will be needed soon and this will lower the number of 5633 * faults to handle. 5634 * 5635 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5636 * not ready to be mapped: not up-to-date, locked, etc. 5637 * 5638 * This function doesn't cross VMA or page table boundaries, in order to call 5639 * map_pages() and acquire a PTE lock only once. 5640 * 5641 * fault_around_pages defines how many pages we'll try to map. 5642 * do_fault_around() expects it to be set to a power of two less than or equal 5643 * to PTRS_PER_PTE. 5644 * 5645 * The virtual address of the area that we map is naturally aligned to 5646 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5647 * (and therefore to page order). This way it's easier to guarantee 5648 * that we don't cross page table boundaries. 5649 */ 5650 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5651 { 5652 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5653 pgoff_t pte_off = pte_index(vmf->address); 5654 /* The page offset of vmf->address within the VMA. */ 5655 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5656 pgoff_t from_pte, to_pte; 5657 vm_fault_t ret; 5658 5659 /* The PTE offset of the start address, clamped to the VMA. */ 5660 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5661 pte_off - min(pte_off, vma_off)); 5662 5663 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5664 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5665 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5666 5667 if (pmd_none(*vmf->pmd)) { 5668 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5669 if (!vmf->prealloc_pte) 5670 return VM_FAULT_OOM; 5671 } 5672 5673 rcu_read_lock(); 5674 ret = vmf->vma->vm_ops->map_pages(vmf, 5675 vmf->pgoff + from_pte - pte_off, 5676 vmf->pgoff + to_pte - pte_off); 5677 rcu_read_unlock(); 5678 5679 return ret; 5680 } 5681 5682 /* Return true if we should do read fault-around, false otherwise */ 5683 static inline bool should_fault_around(struct vm_fault *vmf) 5684 { 5685 /* No ->map_pages? No way to fault around... */ 5686 if (!vmf->vma->vm_ops->map_pages) 5687 return false; 5688 5689 if (uffd_disable_fault_around(vmf->vma)) 5690 return false; 5691 5692 /* A single page implies no faulting 'around' at all. */ 5693 return fault_around_pages > 1; 5694 } 5695 5696 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5697 { 5698 vm_fault_t ret = 0; 5699 struct folio *folio; 5700 5701 /* 5702 * Let's call ->map_pages() first and use ->fault() as fallback 5703 * if page by the offset is not ready to be mapped (cold cache or 5704 * something). 5705 */ 5706 if (should_fault_around(vmf)) { 5707 ret = do_fault_around(vmf); 5708 if (ret) 5709 return ret; 5710 } 5711 5712 ret = vmf_can_call_fault(vmf); 5713 if (ret) 5714 return ret; 5715 5716 ret = __do_fault(vmf); 5717 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5718 return ret; 5719 5720 ret |= finish_fault(vmf); 5721 folio = page_folio(vmf->page); 5722 folio_unlock(folio); 5723 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5724 folio_put(folio); 5725 return ret; 5726 } 5727 5728 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5729 { 5730 struct vm_area_struct *vma = vmf->vma; 5731 struct folio *folio; 5732 vm_fault_t ret; 5733 5734 ret = vmf_can_call_fault(vmf); 5735 if (!ret) 5736 ret = vmf_anon_prepare(vmf); 5737 if (ret) 5738 return ret; 5739 5740 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5741 if (!folio) 5742 return VM_FAULT_OOM; 5743 5744 vmf->cow_page = &folio->page; 5745 5746 ret = __do_fault(vmf); 5747 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5748 goto uncharge_out; 5749 if (ret & VM_FAULT_DONE_COW) 5750 return ret; 5751 5752 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5753 ret = VM_FAULT_HWPOISON; 5754 goto unlock; 5755 } 5756 __folio_mark_uptodate(folio); 5757 5758 ret |= finish_fault(vmf); 5759 unlock: 5760 unlock_page(vmf->page); 5761 put_page(vmf->page); 5762 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5763 goto uncharge_out; 5764 return ret; 5765 uncharge_out: 5766 folio_put(folio); 5767 return ret; 5768 } 5769 5770 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5771 { 5772 struct vm_area_struct *vma = vmf->vma; 5773 vm_fault_t ret, tmp; 5774 struct folio *folio; 5775 5776 ret = vmf_can_call_fault(vmf); 5777 if (ret) 5778 return ret; 5779 5780 ret = __do_fault(vmf); 5781 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5782 return ret; 5783 5784 folio = page_folio(vmf->page); 5785 5786 /* 5787 * Check if the backing address space wants to know that the page is 5788 * about to become writable 5789 */ 5790 if (vma->vm_ops->page_mkwrite) { 5791 folio_unlock(folio); 5792 tmp = do_page_mkwrite(vmf, folio); 5793 if (unlikely(!tmp || 5794 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5795 folio_put(folio); 5796 return tmp; 5797 } 5798 } 5799 5800 ret |= finish_fault(vmf); 5801 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5802 VM_FAULT_RETRY))) { 5803 folio_unlock(folio); 5804 folio_put(folio); 5805 return ret; 5806 } 5807 5808 ret |= fault_dirty_shared_page(vmf); 5809 return ret; 5810 } 5811 5812 /* 5813 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5814 * but allow concurrent faults). 5815 * The mmap_lock may have been released depending on flags and our 5816 * return value. See filemap_fault() and __folio_lock_or_retry(). 5817 * If mmap_lock is released, vma may become invalid (for example 5818 * by other thread calling munmap()). 5819 */ 5820 static vm_fault_t do_fault(struct vm_fault *vmf) 5821 { 5822 struct vm_area_struct *vma = vmf->vma; 5823 struct mm_struct *vm_mm = vma->vm_mm; 5824 vm_fault_t ret; 5825 5826 /* 5827 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5828 */ 5829 if (!vma->vm_ops->fault) { 5830 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5831 vmf->address, &vmf->ptl); 5832 if (unlikely(!vmf->pte)) 5833 ret = VM_FAULT_SIGBUS; 5834 else { 5835 /* 5836 * Make sure this is not a temporary clearing of pte 5837 * by holding ptl and checking again. A R/M/W update 5838 * of pte involves: take ptl, clearing the pte so that 5839 * we don't have concurrent modification by hardware 5840 * followed by an update. 5841 */ 5842 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5843 ret = VM_FAULT_SIGBUS; 5844 else 5845 ret = VM_FAULT_NOPAGE; 5846 5847 pte_unmap_unlock(vmf->pte, vmf->ptl); 5848 } 5849 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5850 ret = do_read_fault(vmf); 5851 else if (!(vma->vm_flags & VM_SHARED)) 5852 ret = do_cow_fault(vmf); 5853 else 5854 ret = do_shared_fault(vmf); 5855 5856 /* preallocated pagetable is unused: free it */ 5857 if (vmf->prealloc_pte) { 5858 pte_free(vm_mm, vmf->prealloc_pte); 5859 vmf->prealloc_pte = NULL; 5860 } 5861 return ret; 5862 } 5863 5864 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5865 unsigned long addr, int *flags, 5866 bool writable, int *last_cpupid) 5867 { 5868 struct vm_area_struct *vma = vmf->vma; 5869 5870 /* 5871 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5872 * much anyway since they can be in shared cache state. This misses 5873 * the case where a mapping is writable but the process never writes 5874 * to it but pte_write gets cleared during protection updates and 5875 * pte_dirty has unpredictable behaviour between PTE scan updates, 5876 * background writeback, dirty balancing and application behaviour. 5877 */ 5878 if (!writable) 5879 *flags |= TNF_NO_GROUP; 5880 5881 /* 5882 * Flag if the folio is shared between multiple address spaces. This 5883 * is later used when determining whether to group tasks together 5884 */ 5885 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5886 *flags |= TNF_SHARED; 5887 /* 5888 * For memory tiering mode, cpupid of slow memory page is used 5889 * to record page access time. So use default value. 5890 */ 5891 if (folio_use_access_time(folio)) 5892 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5893 else 5894 *last_cpupid = folio_last_cpupid(folio); 5895 5896 /* Record the current PID acceesing VMA */ 5897 vma_set_access_pid_bit(vma); 5898 5899 count_vm_numa_event(NUMA_HINT_FAULTS); 5900 #ifdef CONFIG_NUMA_BALANCING 5901 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5902 #endif 5903 if (folio_nid(folio) == numa_node_id()) { 5904 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5905 *flags |= TNF_FAULT_LOCAL; 5906 } 5907 5908 return mpol_misplaced(folio, vmf, addr); 5909 } 5910 5911 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5912 unsigned long fault_addr, pte_t *fault_pte, 5913 bool writable) 5914 { 5915 pte_t pte, old_pte; 5916 5917 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5918 pte = pte_modify(old_pte, vma->vm_page_prot); 5919 pte = pte_mkyoung(pte); 5920 if (writable) 5921 pte = pte_mkwrite(pte, vma); 5922 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5923 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5924 } 5925 5926 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5927 struct folio *folio, pte_t fault_pte, 5928 bool ignore_writable, bool pte_write_upgrade) 5929 { 5930 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5931 unsigned long start, end, addr = vmf->address; 5932 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5933 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5934 pte_t *start_ptep; 5935 5936 /* Stay within the VMA and within the page table. */ 5937 start = max3(addr_start, pt_start, vma->vm_start); 5938 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5939 vma->vm_end); 5940 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5941 5942 /* Restore all PTEs' mapping of the large folio */ 5943 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5944 pte_t ptent = ptep_get(start_ptep); 5945 bool writable = false; 5946 5947 if (!pte_present(ptent) || !pte_protnone(ptent)) 5948 continue; 5949 5950 if (pfn_folio(pte_pfn(ptent)) != folio) 5951 continue; 5952 5953 if (!ignore_writable) { 5954 ptent = pte_modify(ptent, vma->vm_page_prot); 5955 writable = pte_write(ptent); 5956 if (!writable && pte_write_upgrade && 5957 can_change_pte_writable(vma, addr, ptent)) 5958 writable = true; 5959 } 5960 5961 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5962 } 5963 } 5964 5965 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5966 { 5967 struct vm_area_struct *vma = vmf->vma; 5968 struct folio *folio = NULL; 5969 int nid = NUMA_NO_NODE; 5970 bool writable = false, ignore_writable = false; 5971 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5972 int last_cpupid; 5973 int target_nid; 5974 pte_t pte, old_pte; 5975 int flags = 0, nr_pages; 5976 5977 /* 5978 * The pte cannot be used safely until we verify, while holding the page 5979 * table lock, that its contents have not changed during fault handling. 5980 */ 5981 spin_lock(vmf->ptl); 5982 /* Read the live PTE from the page tables: */ 5983 old_pte = ptep_get(vmf->pte); 5984 5985 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5986 pte_unmap_unlock(vmf->pte, vmf->ptl); 5987 return 0; 5988 } 5989 5990 pte = pte_modify(old_pte, vma->vm_page_prot); 5991 5992 /* 5993 * Detect now whether the PTE could be writable; this information 5994 * is only valid while holding the PT lock. 5995 */ 5996 writable = pte_write(pte); 5997 if (!writable && pte_write_upgrade && 5998 can_change_pte_writable(vma, vmf->address, pte)) 5999 writable = true; 6000 6001 folio = vm_normal_folio(vma, vmf->address, pte); 6002 if (!folio || folio_is_zone_device(folio)) 6003 goto out_map; 6004 6005 nid = folio_nid(folio); 6006 nr_pages = folio_nr_pages(folio); 6007 6008 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 6009 writable, &last_cpupid); 6010 if (target_nid == NUMA_NO_NODE) 6011 goto out_map; 6012 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 6013 flags |= TNF_MIGRATE_FAIL; 6014 goto out_map; 6015 } 6016 /* The folio is isolated and isolation code holds a folio reference. */ 6017 pte_unmap_unlock(vmf->pte, vmf->ptl); 6018 writable = false; 6019 ignore_writable = true; 6020 6021 /* Migrate to the requested node */ 6022 if (!migrate_misplaced_folio(folio, target_nid)) { 6023 nid = target_nid; 6024 flags |= TNF_MIGRATED; 6025 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6026 return 0; 6027 } 6028 6029 flags |= TNF_MIGRATE_FAIL; 6030 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 6031 vmf->address, &vmf->ptl); 6032 if (unlikely(!vmf->pte)) 6033 return 0; 6034 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 6035 pte_unmap_unlock(vmf->pte, vmf->ptl); 6036 return 0; 6037 } 6038 out_map: 6039 /* 6040 * Make it present again, depending on how arch implements 6041 * non-accessible ptes, some can allow access by kernel mode. 6042 */ 6043 if (folio && folio_test_large(folio)) 6044 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 6045 pte_write_upgrade); 6046 else 6047 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 6048 writable); 6049 pte_unmap_unlock(vmf->pte, vmf->ptl); 6050 6051 if (nid != NUMA_NO_NODE) 6052 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6053 return 0; 6054 } 6055 6056 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 6057 { 6058 struct vm_area_struct *vma = vmf->vma; 6059 if (vma_is_anonymous(vma)) 6060 return do_huge_pmd_anonymous_page(vmf); 6061 if (vma->vm_ops->huge_fault) 6062 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6063 return VM_FAULT_FALLBACK; 6064 } 6065 6066 /* `inline' is required to avoid gcc 4.1.2 build error */ 6067 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 6068 { 6069 struct vm_area_struct *vma = vmf->vma; 6070 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6071 vm_fault_t ret; 6072 6073 if (vma_is_anonymous(vma)) { 6074 if (likely(!unshare) && 6075 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 6076 if (userfaultfd_wp_async(vmf->vma)) 6077 goto split; 6078 return handle_userfault(vmf, VM_UFFD_WP); 6079 } 6080 return do_huge_pmd_wp_page(vmf); 6081 } 6082 6083 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6084 if (vma->vm_ops->huge_fault) { 6085 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6086 if (!(ret & VM_FAULT_FALLBACK)) 6087 return ret; 6088 } 6089 } 6090 6091 split: 6092 /* COW or write-notify handled on pte level: split pmd. */ 6093 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 6094 6095 return VM_FAULT_FALLBACK; 6096 } 6097 6098 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 6099 { 6100 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6101 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6102 struct vm_area_struct *vma = vmf->vma; 6103 /* No support for anonymous transparent PUD pages yet */ 6104 if (vma_is_anonymous(vma)) 6105 return VM_FAULT_FALLBACK; 6106 if (vma->vm_ops->huge_fault) 6107 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6108 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6109 return VM_FAULT_FALLBACK; 6110 } 6111 6112 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6113 { 6114 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6115 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6116 struct vm_area_struct *vma = vmf->vma; 6117 vm_fault_t ret; 6118 6119 /* No support for anonymous transparent PUD pages yet */ 6120 if (vma_is_anonymous(vma)) 6121 goto split; 6122 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6123 if (vma->vm_ops->huge_fault) { 6124 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6125 if (!(ret & VM_FAULT_FALLBACK)) 6126 return ret; 6127 } 6128 } 6129 split: 6130 /* COW or write-notify not handled on PUD level: split pud.*/ 6131 __split_huge_pud(vma, vmf->pud, vmf->address); 6132 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6133 return VM_FAULT_FALLBACK; 6134 } 6135 6136 /* 6137 * These routines also need to handle stuff like marking pages dirty 6138 * and/or accessed for architectures that don't do it in hardware (most 6139 * RISC architectures). The early dirtying is also good on the i386. 6140 * 6141 * There is also a hook called "update_mmu_cache()" that architectures 6142 * with external mmu caches can use to update those (ie the Sparc or 6143 * PowerPC hashed page tables that act as extended TLBs). 6144 * 6145 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6146 * concurrent faults). 6147 * 6148 * The mmap_lock may have been released depending on flags and our return value. 6149 * See filemap_fault() and __folio_lock_or_retry(). 6150 */ 6151 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6152 { 6153 pte_t entry; 6154 6155 if (unlikely(pmd_none(*vmf->pmd))) { 6156 /* 6157 * Leave __pte_alloc() until later: because vm_ops->fault may 6158 * want to allocate huge page, and if we expose page table 6159 * for an instant, it will be difficult to retract from 6160 * concurrent faults and from rmap lookups. 6161 */ 6162 vmf->pte = NULL; 6163 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6164 } else { 6165 pmd_t dummy_pmdval; 6166 6167 /* 6168 * A regular pmd is established and it can't morph into a huge 6169 * pmd by anon khugepaged, since that takes mmap_lock in write 6170 * mode; but shmem or file collapse to THP could still morph 6171 * it into a huge pmd: just retry later if so. 6172 * 6173 * Use the maywrite version to indicate that vmf->pte may be 6174 * modified, but since we will use pte_same() to detect the 6175 * change of the !pte_none() entry, there is no need to recheck 6176 * the pmdval. Here we chooes to pass a dummy variable instead 6177 * of NULL, which helps new user think about why this place is 6178 * special. 6179 */ 6180 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6181 vmf->address, &dummy_pmdval, 6182 &vmf->ptl); 6183 if (unlikely(!vmf->pte)) 6184 return 0; 6185 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6186 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6187 6188 if (pte_none(vmf->orig_pte)) { 6189 pte_unmap(vmf->pte); 6190 vmf->pte = NULL; 6191 } 6192 } 6193 6194 if (!vmf->pte) 6195 return do_pte_missing(vmf); 6196 6197 if (!pte_present(vmf->orig_pte)) 6198 return do_swap_page(vmf); 6199 6200 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6201 return do_numa_page(vmf); 6202 6203 spin_lock(vmf->ptl); 6204 entry = vmf->orig_pte; 6205 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6206 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6207 goto unlock; 6208 } 6209 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6210 if (!pte_write(entry)) 6211 return do_wp_page(vmf); 6212 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6213 entry = pte_mkdirty(entry); 6214 } 6215 entry = pte_mkyoung(entry); 6216 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6217 vmf->flags & FAULT_FLAG_WRITE)) { 6218 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6219 vmf->pte, 1); 6220 } else { 6221 /* Skip spurious TLB flush for retried page fault */ 6222 if (vmf->flags & FAULT_FLAG_TRIED) 6223 goto unlock; 6224 /* 6225 * This is needed only for protection faults but the arch code 6226 * is not yet telling us if this is a protection fault or not. 6227 * This still avoids useless tlb flushes for .text page faults 6228 * with threads. 6229 */ 6230 if (vmf->flags & FAULT_FLAG_WRITE) 6231 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6232 vmf->pte); 6233 } 6234 unlock: 6235 pte_unmap_unlock(vmf->pte, vmf->ptl); 6236 return 0; 6237 } 6238 6239 /* 6240 * On entry, we hold either the VMA lock or the mmap_lock 6241 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6242 * the result, the mmap_lock is not held on exit. See filemap_fault() 6243 * and __folio_lock_or_retry(). 6244 */ 6245 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6246 unsigned long address, unsigned int flags) 6247 { 6248 struct vm_fault vmf = { 6249 .vma = vma, 6250 .address = address & PAGE_MASK, 6251 .real_address = address, 6252 .flags = flags, 6253 .pgoff = linear_page_index(vma, address), 6254 .gfp_mask = __get_fault_gfp_mask(vma), 6255 }; 6256 struct mm_struct *mm = vma->vm_mm; 6257 vm_flags_t vm_flags = vma->vm_flags; 6258 pgd_t *pgd; 6259 p4d_t *p4d; 6260 vm_fault_t ret; 6261 6262 pgd = pgd_offset(mm, address); 6263 p4d = p4d_alloc(mm, pgd, address); 6264 if (!p4d) 6265 return VM_FAULT_OOM; 6266 6267 vmf.pud = pud_alloc(mm, p4d, address); 6268 if (!vmf.pud) 6269 return VM_FAULT_OOM; 6270 retry_pud: 6271 if (pud_none(*vmf.pud) && 6272 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) { 6273 ret = create_huge_pud(&vmf); 6274 if (!(ret & VM_FAULT_FALLBACK)) 6275 return ret; 6276 } else { 6277 pud_t orig_pud = *vmf.pud; 6278 6279 barrier(); 6280 if (pud_trans_huge(orig_pud)) { 6281 6282 /* 6283 * TODO once we support anonymous PUDs: NUMA case and 6284 * FAULT_FLAG_UNSHARE handling. 6285 */ 6286 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6287 ret = wp_huge_pud(&vmf, orig_pud); 6288 if (!(ret & VM_FAULT_FALLBACK)) 6289 return ret; 6290 } else { 6291 huge_pud_set_accessed(&vmf, orig_pud); 6292 return 0; 6293 } 6294 } 6295 } 6296 6297 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6298 if (!vmf.pmd) 6299 return VM_FAULT_OOM; 6300 6301 /* Huge pud page fault raced with pmd_alloc? */ 6302 if (pud_trans_unstable(vmf.pud)) 6303 goto retry_pud; 6304 6305 if (pmd_none(*vmf.pmd) && 6306 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) { 6307 ret = create_huge_pmd(&vmf); 6308 if (!(ret & VM_FAULT_FALLBACK)) 6309 return ret; 6310 } else { 6311 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6312 6313 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6314 VM_BUG_ON(thp_migration_supported() && 6315 !is_pmd_migration_entry(vmf.orig_pmd)); 6316 if (is_pmd_migration_entry(vmf.orig_pmd)) 6317 pmd_migration_entry_wait(mm, vmf.pmd); 6318 return 0; 6319 } 6320 if (pmd_trans_huge(vmf.orig_pmd)) { 6321 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6322 return do_huge_pmd_numa_page(&vmf); 6323 6324 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6325 !pmd_write(vmf.orig_pmd)) { 6326 ret = wp_huge_pmd(&vmf); 6327 if (!(ret & VM_FAULT_FALLBACK)) 6328 return ret; 6329 } else { 6330 huge_pmd_set_accessed(&vmf); 6331 return 0; 6332 } 6333 } 6334 } 6335 6336 return handle_pte_fault(&vmf); 6337 } 6338 6339 /** 6340 * mm_account_fault - Do page fault accounting 6341 * @mm: mm from which memcg should be extracted. It can be NULL. 6342 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6343 * of perf event counters, but we'll still do the per-task accounting to 6344 * the task who triggered this page fault. 6345 * @address: the faulted address. 6346 * @flags: the fault flags. 6347 * @ret: the fault retcode. 6348 * 6349 * This will take care of most of the page fault accounting. Meanwhile, it 6350 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6351 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6352 * still be in per-arch page fault handlers at the entry of page fault. 6353 */ 6354 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6355 unsigned long address, unsigned int flags, 6356 vm_fault_t ret) 6357 { 6358 bool major; 6359 6360 /* Incomplete faults will be accounted upon completion. */ 6361 if (ret & VM_FAULT_RETRY) 6362 return; 6363 6364 /* 6365 * To preserve the behavior of older kernels, PGFAULT counters record 6366 * both successful and failed faults, as opposed to perf counters, 6367 * which ignore failed cases. 6368 */ 6369 count_vm_event(PGFAULT); 6370 count_memcg_event_mm(mm, PGFAULT); 6371 6372 /* 6373 * Do not account for unsuccessful faults (e.g. when the address wasn't 6374 * valid). That includes arch_vma_access_permitted() failing before 6375 * reaching here. So this is not a "this many hardware page faults" 6376 * counter. We should use the hw profiling for that. 6377 */ 6378 if (ret & VM_FAULT_ERROR) 6379 return; 6380 6381 /* 6382 * We define the fault as a major fault when the final successful fault 6383 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6384 * handle it immediately previously). 6385 */ 6386 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6387 6388 if (major) 6389 current->maj_flt++; 6390 else 6391 current->min_flt++; 6392 6393 /* 6394 * If the fault is done for GUP, regs will be NULL. We only do the 6395 * accounting for the per thread fault counters who triggered the 6396 * fault, and we skip the perf event updates. 6397 */ 6398 if (!regs) 6399 return; 6400 6401 if (major) 6402 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6403 else 6404 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6405 } 6406 6407 #ifdef CONFIG_LRU_GEN 6408 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6409 { 6410 /* the LRU algorithm only applies to accesses with recency */ 6411 current->in_lru_fault = vma_has_recency(vma); 6412 } 6413 6414 static void lru_gen_exit_fault(void) 6415 { 6416 current->in_lru_fault = false; 6417 } 6418 #else 6419 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6420 { 6421 } 6422 6423 static void lru_gen_exit_fault(void) 6424 { 6425 } 6426 #endif /* CONFIG_LRU_GEN */ 6427 6428 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6429 unsigned int *flags) 6430 { 6431 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6432 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6433 return VM_FAULT_SIGSEGV; 6434 /* 6435 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6436 * just treat it like an ordinary read-fault otherwise. 6437 */ 6438 if (!is_cow_mapping(vma->vm_flags)) 6439 *flags &= ~FAULT_FLAG_UNSHARE; 6440 } else if (*flags & FAULT_FLAG_WRITE) { 6441 /* Write faults on read-only mappings are impossible ... */ 6442 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6443 return VM_FAULT_SIGSEGV; 6444 /* ... and FOLL_FORCE only applies to COW mappings. */ 6445 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6446 !is_cow_mapping(vma->vm_flags))) 6447 return VM_FAULT_SIGSEGV; 6448 } 6449 #ifdef CONFIG_PER_VMA_LOCK 6450 /* 6451 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6452 * the assumption that lock is dropped on VM_FAULT_RETRY. 6453 */ 6454 if (WARN_ON_ONCE((*flags & 6455 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6456 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6457 return VM_FAULT_SIGSEGV; 6458 #endif 6459 6460 return 0; 6461 } 6462 6463 /* 6464 * By the time we get here, we already hold either the VMA lock or the 6465 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6466 * 6467 * The mmap_lock may have been released depending on flags and our 6468 * return value. See filemap_fault() and __folio_lock_or_retry(). 6469 */ 6470 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6471 unsigned int flags, struct pt_regs *regs) 6472 { 6473 /* If the fault handler drops the mmap_lock, vma may be freed */ 6474 struct mm_struct *mm = vma->vm_mm; 6475 vm_fault_t ret; 6476 bool is_droppable; 6477 6478 __set_current_state(TASK_RUNNING); 6479 6480 ret = sanitize_fault_flags(vma, &flags); 6481 if (ret) 6482 goto out; 6483 6484 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6485 flags & FAULT_FLAG_INSTRUCTION, 6486 flags & FAULT_FLAG_REMOTE)) { 6487 ret = VM_FAULT_SIGSEGV; 6488 goto out; 6489 } 6490 6491 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6492 6493 /* 6494 * Enable the memcg OOM handling for faults triggered in user 6495 * space. Kernel faults are handled more gracefully. 6496 */ 6497 if (flags & FAULT_FLAG_USER) 6498 mem_cgroup_enter_user_fault(); 6499 6500 lru_gen_enter_fault(vma); 6501 6502 if (unlikely(is_vm_hugetlb_page(vma))) 6503 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6504 else 6505 ret = __handle_mm_fault(vma, address, flags); 6506 6507 /* 6508 * Warning: It is no longer safe to dereference vma-> after this point, 6509 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6510 * vma might be destroyed from underneath us. 6511 */ 6512 6513 lru_gen_exit_fault(); 6514 6515 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6516 if (is_droppable) 6517 ret &= ~VM_FAULT_OOM; 6518 6519 if (flags & FAULT_FLAG_USER) { 6520 mem_cgroup_exit_user_fault(); 6521 /* 6522 * The task may have entered a memcg OOM situation but 6523 * if the allocation error was handled gracefully (no 6524 * VM_FAULT_OOM), there is no need to kill anything. 6525 * Just clean up the OOM state peacefully. 6526 */ 6527 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6528 mem_cgroup_oom_synchronize(false); 6529 } 6530 out: 6531 mm_account_fault(mm, regs, address, flags, ret); 6532 6533 return ret; 6534 } 6535 EXPORT_SYMBOL_GPL(handle_mm_fault); 6536 6537 #ifndef __PAGETABLE_P4D_FOLDED 6538 /* 6539 * Allocate p4d page table. 6540 * We've already handled the fast-path in-line. 6541 */ 6542 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6543 { 6544 p4d_t *new = p4d_alloc_one(mm, address); 6545 if (!new) 6546 return -ENOMEM; 6547 6548 spin_lock(&mm->page_table_lock); 6549 if (pgd_present(*pgd)) { /* Another has populated it */ 6550 p4d_free(mm, new); 6551 } else { 6552 smp_wmb(); /* See comment in pmd_install() */ 6553 pgd_populate(mm, pgd, new); 6554 } 6555 spin_unlock(&mm->page_table_lock); 6556 return 0; 6557 } 6558 #endif /* __PAGETABLE_P4D_FOLDED */ 6559 6560 #ifndef __PAGETABLE_PUD_FOLDED 6561 /* 6562 * Allocate page upper directory. 6563 * We've already handled the fast-path in-line. 6564 */ 6565 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6566 { 6567 pud_t *new = pud_alloc_one(mm, address); 6568 if (!new) 6569 return -ENOMEM; 6570 6571 spin_lock(&mm->page_table_lock); 6572 if (!p4d_present(*p4d)) { 6573 mm_inc_nr_puds(mm); 6574 smp_wmb(); /* See comment in pmd_install() */ 6575 p4d_populate(mm, p4d, new); 6576 } else /* Another has populated it */ 6577 pud_free(mm, new); 6578 spin_unlock(&mm->page_table_lock); 6579 return 0; 6580 } 6581 #endif /* __PAGETABLE_PUD_FOLDED */ 6582 6583 #ifndef __PAGETABLE_PMD_FOLDED 6584 /* 6585 * Allocate page middle directory. 6586 * We've already handled the fast-path in-line. 6587 */ 6588 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6589 { 6590 spinlock_t *ptl; 6591 pmd_t *new = pmd_alloc_one(mm, address); 6592 if (!new) 6593 return -ENOMEM; 6594 6595 ptl = pud_lock(mm, pud); 6596 if (!pud_present(*pud)) { 6597 mm_inc_nr_pmds(mm); 6598 smp_wmb(); /* See comment in pmd_install() */ 6599 pud_populate(mm, pud, new); 6600 } else { /* Another has populated it */ 6601 pmd_free(mm, new); 6602 } 6603 spin_unlock(ptl); 6604 return 0; 6605 } 6606 #endif /* __PAGETABLE_PMD_FOLDED */ 6607 6608 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6609 spinlock_t *lock, pte_t *ptep, 6610 pgprot_t pgprot, unsigned long pfn_base, 6611 unsigned long addr_mask, bool writable, 6612 bool special) 6613 { 6614 args->lock = lock; 6615 args->ptep = ptep; 6616 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6617 args->addr_mask = addr_mask; 6618 args->pgprot = pgprot; 6619 args->writable = writable; 6620 args->special = special; 6621 } 6622 6623 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6624 { 6625 #ifdef CONFIG_LOCKDEP 6626 struct file *file = vma->vm_file; 6627 struct address_space *mapping = file ? file->f_mapping : NULL; 6628 6629 if (mapping) 6630 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6631 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6632 else 6633 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6634 #endif 6635 } 6636 6637 /** 6638 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6639 * @args: Pointer to struct @follow_pfnmap_args 6640 * 6641 * The caller needs to setup args->vma and args->address to point to the 6642 * virtual address as the target of such lookup. On a successful return, 6643 * the results will be put into other output fields. 6644 * 6645 * After the caller finished using the fields, the caller must invoke 6646 * another follow_pfnmap_end() to proper releases the locks and resources 6647 * of such look up request. 6648 * 6649 * During the start() and end() calls, the results in @args will be valid 6650 * as proper locks will be held. After the end() is called, all the fields 6651 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6652 * use of such information after end() may require proper synchronizations 6653 * by the caller with page table updates, otherwise it can create a 6654 * security bug. 6655 * 6656 * If the PTE maps a refcounted page, callers are responsible to protect 6657 * against invalidation with MMU notifiers; otherwise access to the PFN at 6658 * a later point in time can trigger use-after-free. 6659 * 6660 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6661 * should be taken for read, and the mmap semaphore cannot be released 6662 * before the end() is invoked. 6663 * 6664 * This function must not be used to modify PTE content. 6665 * 6666 * Return: zero on success, negative otherwise. 6667 */ 6668 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6669 { 6670 struct vm_area_struct *vma = args->vma; 6671 unsigned long address = args->address; 6672 struct mm_struct *mm = vma->vm_mm; 6673 spinlock_t *lock; 6674 pgd_t *pgdp; 6675 p4d_t *p4dp, p4d; 6676 pud_t *pudp, pud; 6677 pmd_t *pmdp, pmd; 6678 pte_t *ptep, pte; 6679 6680 pfnmap_lockdep_assert(vma); 6681 6682 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6683 goto out; 6684 6685 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6686 goto out; 6687 retry: 6688 pgdp = pgd_offset(mm, address); 6689 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6690 goto out; 6691 6692 p4dp = p4d_offset(pgdp, address); 6693 p4d = READ_ONCE(*p4dp); 6694 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6695 goto out; 6696 6697 pudp = pud_offset(p4dp, address); 6698 pud = READ_ONCE(*pudp); 6699 if (pud_none(pud)) 6700 goto out; 6701 if (pud_leaf(pud)) { 6702 lock = pud_lock(mm, pudp); 6703 if (!unlikely(pud_leaf(pud))) { 6704 spin_unlock(lock); 6705 goto retry; 6706 } 6707 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6708 pud_pfn(pud), PUD_MASK, pud_write(pud), 6709 pud_special(pud)); 6710 return 0; 6711 } 6712 6713 pmdp = pmd_offset(pudp, address); 6714 pmd = pmdp_get_lockless(pmdp); 6715 if (pmd_leaf(pmd)) { 6716 lock = pmd_lock(mm, pmdp); 6717 if (!unlikely(pmd_leaf(pmd))) { 6718 spin_unlock(lock); 6719 goto retry; 6720 } 6721 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6722 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6723 pmd_special(pmd)); 6724 return 0; 6725 } 6726 6727 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6728 if (!ptep) 6729 goto out; 6730 pte = ptep_get(ptep); 6731 if (!pte_present(pte)) 6732 goto unlock; 6733 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6734 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6735 pte_special(pte)); 6736 return 0; 6737 unlock: 6738 pte_unmap_unlock(ptep, lock); 6739 out: 6740 return -EINVAL; 6741 } 6742 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6743 6744 /** 6745 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6746 * @args: Pointer to struct @follow_pfnmap_args 6747 * 6748 * Must be used in pair of follow_pfnmap_start(). See the start() function 6749 * above for more information. 6750 */ 6751 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6752 { 6753 if (args->lock) 6754 spin_unlock(args->lock); 6755 if (args->ptep) 6756 pte_unmap(args->ptep); 6757 } 6758 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6759 6760 #ifdef CONFIG_HAVE_IOREMAP_PROT 6761 /** 6762 * generic_access_phys - generic implementation for iomem mmap access 6763 * @vma: the vma to access 6764 * @addr: userspace address, not relative offset within @vma 6765 * @buf: buffer to read/write 6766 * @len: length of transfer 6767 * @write: set to FOLL_WRITE when writing, otherwise reading 6768 * 6769 * This is a generic implementation for &vm_operations_struct.access for an 6770 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6771 * not page based. 6772 */ 6773 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6774 void *buf, int len, int write) 6775 { 6776 resource_size_t phys_addr; 6777 pgprot_t prot = __pgprot(0); 6778 void __iomem *maddr; 6779 int offset = offset_in_page(addr); 6780 int ret = -EINVAL; 6781 bool writable; 6782 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6783 6784 retry: 6785 if (follow_pfnmap_start(&args)) 6786 return -EINVAL; 6787 prot = args.pgprot; 6788 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6789 writable = args.writable; 6790 follow_pfnmap_end(&args); 6791 6792 if ((write & FOLL_WRITE) && !writable) 6793 return -EINVAL; 6794 6795 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6796 if (!maddr) 6797 return -ENOMEM; 6798 6799 if (follow_pfnmap_start(&args)) 6800 goto out_unmap; 6801 6802 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6803 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6804 (writable != args.writable)) { 6805 follow_pfnmap_end(&args); 6806 iounmap(maddr); 6807 goto retry; 6808 } 6809 6810 if (write) 6811 memcpy_toio(maddr + offset, buf, len); 6812 else 6813 memcpy_fromio(buf, maddr + offset, len); 6814 ret = len; 6815 follow_pfnmap_end(&args); 6816 out_unmap: 6817 iounmap(maddr); 6818 6819 return ret; 6820 } 6821 EXPORT_SYMBOL_GPL(generic_access_phys); 6822 #endif 6823 6824 /* 6825 * Access another process' address space as given in mm. 6826 */ 6827 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6828 void *buf, int len, unsigned int gup_flags) 6829 { 6830 void *old_buf = buf; 6831 int write = gup_flags & FOLL_WRITE; 6832 6833 if (mmap_read_lock_killable(mm)) 6834 return 0; 6835 6836 /* Untag the address before looking up the VMA */ 6837 addr = untagged_addr_remote(mm, addr); 6838 6839 /* Avoid triggering the temporary warning in __get_user_pages */ 6840 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6841 return 0; 6842 6843 /* ignore errors, just check how much was successfully transferred */ 6844 while (len) { 6845 int bytes, offset; 6846 void *maddr; 6847 struct folio *folio; 6848 struct vm_area_struct *vma = NULL; 6849 struct page *page = get_user_page_vma_remote(mm, addr, 6850 gup_flags, &vma); 6851 6852 if (IS_ERR(page)) { 6853 /* We might need to expand the stack to access it */ 6854 vma = vma_lookup(mm, addr); 6855 if (!vma) { 6856 vma = expand_stack(mm, addr); 6857 6858 /* mmap_lock was dropped on failure */ 6859 if (!vma) 6860 return buf - old_buf; 6861 6862 /* Try again if stack expansion worked */ 6863 continue; 6864 } 6865 6866 /* 6867 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6868 * we can access using slightly different code. 6869 */ 6870 bytes = 0; 6871 #ifdef CONFIG_HAVE_IOREMAP_PROT 6872 if (vma->vm_ops && vma->vm_ops->access) 6873 bytes = vma->vm_ops->access(vma, addr, buf, 6874 len, write); 6875 #endif 6876 if (bytes <= 0) 6877 break; 6878 } else { 6879 folio = page_folio(page); 6880 bytes = len; 6881 offset = addr & (PAGE_SIZE-1); 6882 if (bytes > PAGE_SIZE-offset) 6883 bytes = PAGE_SIZE-offset; 6884 6885 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6886 if (write) { 6887 copy_to_user_page(vma, page, addr, 6888 maddr + offset, buf, bytes); 6889 folio_mark_dirty_lock(folio); 6890 } else { 6891 copy_from_user_page(vma, page, addr, 6892 buf, maddr + offset, bytes); 6893 } 6894 folio_release_kmap(folio, maddr); 6895 } 6896 len -= bytes; 6897 buf += bytes; 6898 addr += bytes; 6899 } 6900 mmap_read_unlock(mm); 6901 6902 return buf - old_buf; 6903 } 6904 6905 /** 6906 * access_remote_vm - access another process' address space 6907 * @mm: the mm_struct of the target address space 6908 * @addr: start address to access 6909 * @buf: source or destination buffer 6910 * @len: number of bytes to transfer 6911 * @gup_flags: flags modifying lookup behaviour 6912 * 6913 * The caller must hold a reference on @mm. 6914 * 6915 * Return: number of bytes copied from source to destination. 6916 */ 6917 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6918 void *buf, int len, unsigned int gup_flags) 6919 { 6920 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6921 } 6922 6923 /* 6924 * Access another process' address space. 6925 * Source/target buffer must be kernel space, 6926 * Do not walk the page table directly, use get_user_pages 6927 */ 6928 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6929 void *buf, int len, unsigned int gup_flags) 6930 { 6931 struct mm_struct *mm; 6932 int ret; 6933 6934 mm = get_task_mm(tsk); 6935 if (!mm) 6936 return 0; 6937 6938 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6939 6940 mmput(mm); 6941 6942 return ret; 6943 } 6944 EXPORT_SYMBOL_GPL(access_process_vm); 6945 6946 #ifdef CONFIG_BPF_SYSCALL 6947 /* 6948 * Copy a string from another process's address space as given in mm. 6949 * If there is any error return -EFAULT. 6950 */ 6951 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6952 void *buf, int len, unsigned int gup_flags) 6953 { 6954 void *old_buf = buf; 6955 int err = 0; 6956 6957 *(char *)buf = '\0'; 6958 6959 if (mmap_read_lock_killable(mm)) 6960 return -EFAULT; 6961 6962 addr = untagged_addr_remote(mm, addr); 6963 6964 /* Avoid triggering the temporary warning in __get_user_pages */ 6965 if (!vma_lookup(mm, addr)) { 6966 err = -EFAULT; 6967 goto out; 6968 } 6969 6970 while (len) { 6971 int bytes, offset, retval; 6972 void *maddr; 6973 struct folio *folio; 6974 struct page *page; 6975 struct vm_area_struct *vma = NULL; 6976 6977 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6978 if (IS_ERR(page)) { 6979 /* 6980 * Treat as a total failure for now until we decide how 6981 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6982 * stack expansion. 6983 */ 6984 *(char *)buf = '\0'; 6985 err = -EFAULT; 6986 goto out; 6987 } 6988 6989 folio = page_folio(page); 6990 bytes = len; 6991 offset = addr & (PAGE_SIZE - 1); 6992 if (bytes > PAGE_SIZE - offset) 6993 bytes = PAGE_SIZE - offset; 6994 6995 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6996 retval = strscpy(buf, maddr + offset, bytes); 6997 if (retval >= 0) { 6998 /* Found the end of the string */ 6999 buf += retval; 7000 folio_release_kmap(folio, maddr); 7001 break; 7002 } 7003 7004 buf += bytes - 1; 7005 /* 7006 * Because strscpy always NUL terminates we need to 7007 * copy the last byte in the page if we are going to 7008 * load more pages 7009 */ 7010 if (bytes != len) { 7011 addr += bytes - 1; 7012 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 7013 buf += 1; 7014 addr += 1; 7015 } 7016 len -= bytes; 7017 7018 folio_release_kmap(folio, maddr); 7019 } 7020 7021 out: 7022 mmap_read_unlock(mm); 7023 if (err) 7024 return err; 7025 return buf - old_buf; 7026 } 7027 7028 /** 7029 * copy_remote_vm_str - copy a string from another process's address space. 7030 * @tsk: the task of the target address space 7031 * @addr: start address to read from 7032 * @buf: destination buffer 7033 * @len: number of bytes to copy 7034 * @gup_flags: flags modifying lookup behaviour 7035 * 7036 * The caller must hold a reference on @mm. 7037 * 7038 * Return: number of bytes copied from @addr (source) to @buf (destination); 7039 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7040 * buffer. On any error, return -EFAULT. 7041 */ 7042 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7043 void *buf, int len, unsigned int gup_flags) 7044 { 7045 struct mm_struct *mm; 7046 int ret; 7047 7048 if (unlikely(len == 0)) 7049 return 0; 7050 7051 mm = get_task_mm(tsk); 7052 if (!mm) { 7053 *(char *)buf = '\0'; 7054 return -EFAULT; 7055 } 7056 7057 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7058 7059 mmput(mm); 7060 7061 return ret; 7062 } 7063 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7064 #endif /* CONFIG_BPF_SYSCALL */ 7065 7066 /* 7067 * Print the name of a VMA. 7068 */ 7069 void print_vma_addr(char *prefix, unsigned long ip) 7070 { 7071 struct mm_struct *mm = current->mm; 7072 struct vm_area_struct *vma; 7073 7074 /* 7075 * we might be running from an atomic context so we cannot sleep 7076 */ 7077 if (!mmap_read_trylock(mm)) 7078 return; 7079 7080 vma = vma_lookup(mm, ip); 7081 if (vma && vma->vm_file) { 7082 struct file *f = vma->vm_file; 7083 ip -= vma->vm_start; 7084 ip += vma->vm_pgoff << PAGE_SHIFT; 7085 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7086 vma->vm_start, 7087 vma->vm_end - vma->vm_start); 7088 } 7089 mmap_read_unlock(mm); 7090 } 7091 7092 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7093 void __might_fault(const char *file, int line) 7094 { 7095 if (pagefault_disabled()) 7096 return; 7097 __might_sleep(file, line); 7098 if (current->mm) 7099 might_lock_read(¤t->mm->mmap_lock); 7100 } 7101 EXPORT_SYMBOL(__might_fault); 7102 #endif 7103 7104 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7105 /* 7106 * Process all subpages of the specified huge page with the specified 7107 * operation. The target subpage will be processed last to keep its 7108 * cache lines hot. 7109 */ 7110 static inline int process_huge_page( 7111 unsigned long addr_hint, unsigned int nr_pages, 7112 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7113 void *arg) 7114 { 7115 int i, n, base, l, ret; 7116 unsigned long addr = addr_hint & 7117 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7118 7119 /* Process target subpage last to keep its cache lines hot */ 7120 might_sleep(); 7121 n = (addr_hint - addr) / PAGE_SIZE; 7122 if (2 * n <= nr_pages) { 7123 /* If target subpage in first half of huge page */ 7124 base = 0; 7125 l = n; 7126 /* Process subpages at the end of huge page */ 7127 for (i = nr_pages - 1; i >= 2 * n; i--) { 7128 cond_resched(); 7129 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7130 if (ret) 7131 return ret; 7132 } 7133 } else { 7134 /* If target subpage in second half of huge page */ 7135 base = nr_pages - 2 * (nr_pages - n); 7136 l = nr_pages - n; 7137 /* Process subpages at the begin of huge page */ 7138 for (i = 0; i < base; i++) { 7139 cond_resched(); 7140 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7141 if (ret) 7142 return ret; 7143 } 7144 } 7145 /* 7146 * Process remaining subpages in left-right-left-right pattern 7147 * towards the target subpage 7148 */ 7149 for (i = 0; i < l; i++) { 7150 int left_idx = base + i; 7151 int right_idx = base + 2 * l - 1 - i; 7152 7153 cond_resched(); 7154 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7155 if (ret) 7156 return ret; 7157 cond_resched(); 7158 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7159 if (ret) 7160 return ret; 7161 } 7162 return 0; 7163 } 7164 7165 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7166 unsigned int nr_pages) 7167 { 7168 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7169 int i; 7170 7171 might_sleep(); 7172 for (i = 0; i < nr_pages; i++) { 7173 cond_resched(); 7174 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7175 } 7176 } 7177 7178 static int clear_subpage(unsigned long addr, int idx, void *arg) 7179 { 7180 struct folio *folio = arg; 7181 7182 clear_user_highpage(folio_page(folio, idx), addr); 7183 return 0; 7184 } 7185 7186 /** 7187 * folio_zero_user - Zero a folio which will be mapped to userspace. 7188 * @folio: The folio to zero. 7189 * @addr_hint: The address will be accessed or the base address if uncelar. 7190 */ 7191 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7192 { 7193 unsigned int nr_pages = folio_nr_pages(folio); 7194 7195 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7196 clear_gigantic_page(folio, addr_hint, nr_pages); 7197 else 7198 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7199 } 7200 7201 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7202 unsigned long addr_hint, 7203 struct vm_area_struct *vma, 7204 unsigned int nr_pages) 7205 { 7206 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7207 struct page *dst_page; 7208 struct page *src_page; 7209 int i; 7210 7211 for (i = 0; i < nr_pages; i++) { 7212 dst_page = folio_page(dst, i); 7213 src_page = folio_page(src, i); 7214 7215 cond_resched(); 7216 if (copy_mc_user_highpage(dst_page, src_page, 7217 addr + i*PAGE_SIZE, vma)) 7218 return -EHWPOISON; 7219 } 7220 return 0; 7221 } 7222 7223 struct copy_subpage_arg { 7224 struct folio *dst; 7225 struct folio *src; 7226 struct vm_area_struct *vma; 7227 }; 7228 7229 static int copy_subpage(unsigned long addr, int idx, void *arg) 7230 { 7231 struct copy_subpage_arg *copy_arg = arg; 7232 struct page *dst = folio_page(copy_arg->dst, idx); 7233 struct page *src = folio_page(copy_arg->src, idx); 7234 7235 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7236 return -EHWPOISON; 7237 return 0; 7238 } 7239 7240 int copy_user_large_folio(struct folio *dst, struct folio *src, 7241 unsigned long addr_hint, struct vm_area_struct *vma) 7242 { 7243 unsigned int nr_pages = folio_nr_pages(dst); 7244 struct copy_subpage_arg arg = { 7245 .dst = dst, 7246 .src = src, 7247 .vma = vma, 7248 }; 7249 7250 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7251 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7252 7253 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7254 } 7255 7256 long copy_folio_from_user(struct folio *dst_folio, 7257 const void __user *usr_src, 7258 bool allow_pagefault) 7259 { 7260 void *kaddr; 7261 unsigned long i, rc = 0; 7262 unsigned int nr_pages = folio_nr_pages(dst_folio); 7263 unsigned long ret_val = nr_pages * PAGE_SIZE; 7264 struct page *subpage; 7265 7266 for (i = 0; i < nr_pages; i++) { 7267 subpage = folio_page(dst_folio, i); 7268 kaddr = kmap_local_page(subpage); 7269 if (!allow_pagefault) 7270 pagefault_disable(); 7271 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7272 if (!allow_pagefault) 7273 pagefault_enable(); 7274 kunmap_local(kaddr); 7275 7276 ret_val -= (PAGE_SIZE - rc); 7277 if (rc) 7278 break; 7279 7280 flush_dcache_page(subpage); 7281 7282 cond_resched(); 7283 } 7284 return ret_val; 7285 } 7286 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7287 7288 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7289 7290 static struct kmem_cache *page_ptl_cachep; 7291 7292 void __init ptlock_cache_init(void) 7293 { 7294 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7295 SLAB_PANIC, NULL); 7296 } 7297 7298 bool ptlock_alloc(struct ptdesc *ptdesc) 7299 { 7300 spinlock_t *ptl; 7301 7302 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7303 if (!ptl) 7304 return false; 7305 ptdesc->ptl = ptl; 7306 return true; 7307 } 7308 7309 void ptlock_free(struct ptdesc *ptdesc) 7310 { 7311 if (ptdesc->ptl) 7312 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7313 } 7314 #endif 7315 7316 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7317 { 7318 if (is_vm_hugetlb_page(vma)) 7319 hugetlb_vma_lock_read(vma); 7320 } 7321 7322 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7323 { 7324 if (is_vm_hugetlb_page(vma)) 7325 hugetlb_vma_unlock_read(vma); 7326 } 7327