xref: /linux/mm/memory.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 #ifdef HAVE_GENERIC_MMU_GATHER
190 
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 	struct mmu_gather_batch *batch;
194 
195 	batch = tlb->active;
196 	if (batch->next) {
197 		tlb->active = batch->next;
198 		return true;
199 	}
200 
201 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 		return false;
203 
204 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 	if (!batch)
206 		return false;
207 
208 	tlb->batch_count++;
209 	batch->next = NULL;
210 	batch->nr   = 0;
211 	batch->max  = MAX_GATHER_BATCH;
212 
213 	tlb->active->next = batch;
214 	tlb->active = batch;
215 
216 	return true;
217 }
218 
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 				unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 		unsigned long start, unsigned long end, bool force)
277 {
278 	struct mmu_gather_batch *batch, *next;
279 
280 	if (force)
281 		__tlb_adjust_range(tlb, start, end - start);
282 
283 	tlb_flush_mmu(tlb);
284 
285 	/* keep the page table cache within bounds */
286 	check_pgt_cache();
287 
288 	for (batch = tlb->local.next; batch; batch = next) {
289 		next = batch->next;
290 		free_pages((unsigned long)batch, 0);
291 	}
292 	tlb->local.next = NULL;
293 }
294 
295 /* __tlb_remove_page
296  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *	handling the additional races in SMP caused by other CPUs caching valid
298  *	mappings in their TLBs. Returns the number of free page slots left.
299  *	When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 	struct mmu_gather_batch *batch;
305 
306 	VM_BUG_ON(!tlb->end);
307 	VM_WARN_ON(tlb->page_size != page_size);
308 
309 	batch = tlb->active;
310 	/*
311 	 * Add the page and check if we are full. If so
312 	 * force a flush.
313 	 */
314 	batch->pages[batch->nr++] = page;
315 	if (batch->nr == batch->max) {
316 		if (!tlb_next_batch(tlb))
317 			return true;
318 		batch = tlb->active;
319 	}
320 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321 
322 	return false;
323 }
324 
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326 
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332 
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335 	/* Simply deliver the interrupt */
336 }
337 
338 static void tlb_remove_table_one(void *table)
339 {
340 	/*
341 	 * This isn't an RCU grace period and hence the page-tables cannot be
342 	 * assumed to be actually RCU-freed.
343 	 *
344 	 * It is however sufficient for software page-table walkers that rely on
345 	 * IRQ disabling. See the comment near struct mmu_table_batch.
346 	 */
347 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 	__tlb_remove_table(table);
349 }
350 
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353 	struct mmu_table_batch *batch;
354 	int i;
355 
356 	batch = container_of(head, struct mmu_table_batch, rcu);
357 
358 	for (i = 0; i < batch->nr; i++)
359 		__tlb_remove_table(batch->tables[i]);
360 
361 	free_page((unsigned long)batch);
362 }
363 
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366 	struct mmu_table_batch **batch = &tlb->batch;
367 
368 	if (*batch) {
369 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 		*batch = NULL;
371 	}
372 }
373 
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376 	struct mmu_table_batch **batch = &tlb->batch;
377 
378 	/*
379 	 * When there's less then two users of this mm there cannot be a
380 	 * concurrent page-table walk.
381 	 */
382 	if (atomic_read(&tlb->mm->mm_users) < 2) {
383 		__tlb_remove_table(table);
384 		return;
385 	}
386 
387 	if (*batch == NULL) {
388 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 		if (*batch == NULL) {
390 			tlb_remove_table_one(table);
391 			return;
392 		}
393 		(*batch)->nr = 0;
394 	}
395 	(*batch)->tables[(*batch)->nr++] = table;
396 	if ((*batch)->nr == MAX_TABLE_BATCH)
397 		tlb_table_flush(tlb);
398 }
399 
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401 
402 /**
403  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404  * @tlb: the mmu_gather structure to initialize
405  * @mm: the mm_struct of the target address space
406  * @start: start of the region that will be removed from the page-table
407  * @end: end of the region that will be removed from the page-table
408  *
409  * Called to initialize an (on-stack) mmu_gather structure for page-table
410  * tear-down from @mm. The @start and @end are set to 0 and -1
411  * respectively when @mm is without users and we're going to destroy
412  * the full address space (exit/execve).
413  */
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 			unsigned long start, unsigned long end)
416 {
417 	arch_tlb_gather_mmu(tlb, mm, start, end);
418 	inc_tlb_flush_pending(tlb->mm);
419 }
420 
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422 		unsigned long start, unsigned long end)
423 {
424 	/*
425 	 * If there are parallel threads are doing PTE changes on same range
426 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 	 * flush by batching, a thread has stable TLB entry can fail to flush
428 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 	 * forcefully if we detect parallel PTE batching threads.
430 	 */
431 	bool force = mm_tlb_flush_nested(tlb->mm);
432 
433 	arch_tlb_finish_mmu(tlb, start, end, force);
434 	dec_tlb_flush_pending(tlb->mm);
435 }
436 
437 /*
438  * Note: this doesn't free the actual pages themselves. That
439  * has been handled earlier when unmapping all the memory regions.
440  */
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 			   unsigned long addr)
443 {
444 	pgtable_t token = pmd_pgtable(*pmd);
445 	pmd_clear(pmd);
446 	pte_free_tlb(tlb, token, addr);
447 	mm_dec_nr_ptes(tlb->mm);
448 }
449 
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 				unsigned long addr, unsigned long end,
452 				unsigned long floor, unsigned long ceiling)
453 {
454 	pmd_t *pmd;
455 	unsigned long next;
456 	unsigned long start;
457 
458 	start = addr;
459 	pmd = pmd_offset(pud, addr);
460 	do {
461 		next = pmd_addr_end(addr, end);
462 		if (pmd_none_or_clear_bad(pmd))
463 			continue;
464 		free_pte_range(tlb, pmd, addr);
465 	} while (pmd++, addr = next, addr != end);
466 
467 	start &= PUD_MASK;
468 	if (start < floor)
469 		return;
470 	if (ceiling) {
471 		ceiling &= PUD_MASK;
472 		if (!ceiling)
473 			return;
474 	}
475 	if (end - 1 > ceiling - 1)
476 		return;
477 
478 	pmd = pmd_offset(pud, start);
479 	pud_clear(pud);
480 	pmd_free_tlb(tlb, pmd, start);
481 	mm_dec_nr_pmds(tlb->mm);
482 }
483 
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485 				unsigned long addr, unsigned long end,
486 				unsigned long floor, unsigned long ceiling)
487 {
488 	pud_t *pud;
489 	unsigned long next;
490 	unsigned long start;
491 
492 	start = addr;
493 	pud = pud_offset(p4d, addr);
494 	do {
495 		next = pud_addr_end(addr, end);
496 		if (pud_none_or_clear_bad(pud))
497 			continue;
498 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499 	} while (pud++, addr = next, addr != end);
500 
501 	start &= P4D_MASK;
502 	if (start < floor)
503 		return;
504 	if (ceiling) {
505 		ceiling &= P4D_MASK;
506 		if (!ceiling)
507 			return;
508 	}
509 	if (end - 1 > ceiling - 1)
510 		return;
511 
512 	pud = pud_offset(p4d, start);
513 	p4d_clear(p4d);
514 	pud_free_tlb(tlb, pud, start);
515 	mm_dec_nr_puds(tlb->mm);
516 }
517 
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 				unsigned long addr, unsigned long end,
520 				unsigned long floor, unsigned long ceiling)
521 {
522 	p4d_t *p4d;
523 	unsigned long next;
524 	unsigned long start;
525 
526 	start = addr;
527 	p4d = p4d_offset(pgd, addr);
528 	do {
529 		next = p4d_addr_end(addr, end);
530 		if (p4d_none_or_clear_bad(p4d))
531 			continue;
532 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 	} while (p4d++, addr = next, addr != end);
534 
535 	start &= PGDIR_MASK;
536 	if (start < floor)
537 		return;
538 	if (ceiling) {
539 		ceiling &= PGDIR_MASK;
540 		if (!ceiling)
541 			return;
542 	}
543 	if (end - 1 > ceiling - 1)
544 		return;
545 
546 	p4d = p4d_offset(pgd, start);
547 	pgd_clear(pgd);
548 	p4d_free_tlb(tlb, p4d, start);
549 }
550 
551 /*
552  * This function frees user-level page tables of a process.
553  */
554 void free_pgd_range(struct mmu_gather *tlb,
555 			unsigned long addr, unsigned long end,
556 			unsigned long floor, unsigned long ceiling)
557 {
558 	pgd_t *pgd;
559 	unsigned long next;
560 
561 	/*
562 	 * The next few lines have given us lots of grief...
563 	 *
564 	 * Why are we testing PMD* at this top level?  Because often
565 	 * there will be no work to do at all, and we'd prefer not to
566 	 * go all the way down to the bottom just to discover that.
567 	 *
568 	 * Why all these "- 1"s?  Because 0 represents both the bottom
569 	 * of the address space and the top of it (using -1 for the
570 	 * top wouldn't help much: the masks would do the wrong thing).
571 	 * The rule is that addr 0 and floor 0 refer to the bottom of
572 	 * the address space, but end 0 and ceiling 0 refer to the top
573 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 	 * that end 0 case should be mythical).
575 	 *
576 	 * Wherever addr is brought up or ceiling brought down, we must
577 	 * be careful to reject "the opposite 0" before it confuses the
578 	 * subsequent tests.  But what about where end is brought down
579 	 * by PMD_SIZE below? no, end can't go down to 0 there.
580 	 *
581 	 * Whereas we round start (addr) and ceiling down, by different
582 	 * masks at different levels, in order to test whether a table
583 	 * now has no other vmas using it, so can be freed, we don't
584 	 * bother to round floor or end up - the tests don't need that.
585 	 */
586 
587 	addr &= PMD_MASK;
588 	if (addr < floor) {
589 		addr += PMD_SIZE;
590 		if (!addr)
591 			return;
592 	}
593 	if (ceiling) {
594 		ceiling &= PMD_MASK;
595 		if (!ceiling)
596 			return;
597 	}
598 	if (end - 1 > ceiling - 1)
599 		end -= PMD_SIZE;
600 	if (addr > end - 1)
601 		return;
602 	/*
603 	 * We add page table cache pages with PAGE_SIZE,
604 	 * (see pte_free_tlb()), flush the tlb if we need
605 	 */
606 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607 	pgd = pgd_offset(tlb->mm, addr);
608 	do {
609 		next = pgd_addr_end(addr, end);
610 		if (pgd_none_or_clear_bad(pgd))
611 			continue;
612 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613 	} while (pgd++, addr = next, addr != end);
614 }
615 
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617 		unsigned long floor, unsigned long ceiling)
618 {
619 	while (vma) {
620 		struct vm_area_struct *next = vma->vm_next;
621 		unsigned long addr = vma->vm_start;
622 
623 		/*
624 		 * Hide vma from rmap and truncate_pagecache before freeing
625 		 * pgtables
626 		 */
627 		unlink_anon_vmas(vma);
628 		unlink_file_vma(vma);
629 
630 		if (is_vm_hugetlb_page(vma)) {
631 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632 				floor, next ? next->vm_start : ceiling);
633 		} else {
634 			/*
635 			 * Optimization: gather nearby vmas into one call down
636 			 */
637 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638 			       && !is_vm_hugetlb_page(next)) {
639 				vma = next;
640 				next = vma->vm_next;
641 				unlink_anon_vmas(vma);
642 				unlink_file_vma(vma);
643 			}
644 			free_pgd_range(tlb, addr, vma->vm_end,
645 				floor, next ? next->vm_start : ceiling);
646 		}
647 		vma = next;
648 	}
649 }
650 
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652 {
653 	spinlock_t *ptl;
654 	pgtable_t new = pte_alloc_one(mm, address);
655 	if (!new)
656 		return -ENOMEM;
657 
658 	/*
659 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 	 * visible before the pte is made visible to other CPUs by being
661 	 * put into page tables.
662 	 *
663 	 * The other side of the story is the pointer chasing in the page
664 	 * table walking code (when walking the page table without locking;
665 	 * ie. most of the time). Fortunately, these data accesses consist
666 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 	 * being the notable exception) will already guarantee loads are
668 	 * seen in-order. See the alpha page table accessors for the
669 	 * smp_read_barrier_depends() barriers in page table walking code.
670 	 */
671 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672 
673 	ptl = pmd_lock(mm, pmd);
674 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
675 		mm_inc_nr_ptes(mm);
676 		pmd_populate(mm, pmd, new);
677 		new = NULL;
678 	}
679 	spin_unlock(ptl);
680 	if (new)
681 		pte_free(mm, new);
682 	return 0;
683 }
684 
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686 {
687 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 	if (!new)
689 		return -ENOMEM;
690 
691 	smp_wmb(); /* See comment in __pte_alloc */
692 
693 	spin_lock(&init_mm.page_table_lock);
694 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
695 		pmd_populate_kernel(&init_mm, pmd, new);
696 		new = NULL;
697 	}
698 	spin_unlock(&init_mm.page_table_lock);
699 	if (new)
700 		pte_free_kernel(&init_mm, new);
701 	return 0;
702 }
703 
704 static inline void init_rss_vec(int *rss)
705 {
706 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707 }
708 
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710 {
711 	int i;
712 
713 	if (current->mm == mm)
714 		sync_mm_rss(mm);
715 	for (i = 0; i < NR_MM_COUNTERS; i++)
716 		if (rss[i])
717 			add_mm_counter(mm, i, rss[i]);
718 }
719 
720 /*
721  * This function is called to print an error when a bad pte
722  * is found. For example, we might have a PFN-mapped pte in
723  * a region that doesn't allow it.
724  *
725  * The calling function must still handle the error.
726  */
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 			  pte_t pte, struct page *page)
729 {
730 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731 	p4d_t *p4d = p4d_offset(pgd, addr);
732 	pud_t *pud = pud_offset(p4d, addr);
733 	pmd_t *pmd = pmd_offset(pud, addr);
734 	struct address_space *mapping;
735 	pgoff_t index;
736 	static unsigned long resume;
737 	static unsigned long nr_shown;
738 	static unsigned long nr_unshown;
739 
740 	/*
741 	 * Allow a burst of 60 reports, then keep quiet for that minute;
742 	 * or allow a steady drip of one report per second.
743 	 */
744 	if (nr_shown == 60) {
745 		if (time_before(jiffies, resume)) {
746 			nr_unshown++;
747 			return;
748 		}
749 		if (nr_unshown) {
750 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 				 nr_unshown);
752 			nr_unshown = 0;
753 		}
754 		nr_shown = 0;
755 	}
756 	if (nr_shown++ == 0)
757 		resume = jiffies + 60 * HZ;
758 
759 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 	index = linear_page_index(vma, addr);
761 
762 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
763 		 current->comm,
764 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
765 	if (page)
766 		dump_page(page, "bad pte");
767 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 		 vma->vm_file,
771 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 		 mapping ? mapping->a_ops->readpage : NULL);
774 	dump_stack();
775 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776 }
777 
778 /*
779  * vm_normal_page -- This function gets the "struct page" associated with a pte.
780  *
781  * "Special" mappings do not wish to be associated with a "struct page" (either
782  * it doesn't exist, or it exists but they don't want to touch it). In this
783  * case, NULL is returned here. "Normal" mappings do have a struct page.
784  *
785  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786  * pte bit, in which case this function is trivial. Secondly, an architecture
787  * may not have a spare pte bit, which requires a more complicated scheme,
788  * described below.
789  *
790  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791  * special mapping (even if there are underlying and valid "struct pages").
792  * COWed pages of a VM_PFNMAP are always normal.
793  *
794  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797  * mapping will always honor the rule
798  *
799  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800  *
801  * And for normal mappings this is false.
802  *
803  * This restricts such mappings to be a linear translation from virtual address
804  * to pfn. To get around this restriction, we allow arbitrary mappings so long
805  * as the vma is not a COW mapping; in that case, we know that all ptes are
806  * special (because none can have been COWed).
807  *
808  *
809  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810  *
811  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812  * page" backing, however the difference is that _all_ pages with a struct
813  * page (that is, those where pfn_valid is true) are refcounted and considered
814  * normal pages by the VM. The disadvantage is that pages are refcounted
815  * (which can be slower and simply not an option for some PFNMAP users). The
816  * advantage is that we don't have to follow the strict linearity rule of
817  * PFNMAP mappings in order to support COWable mappings.
818  *
819  */
820 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 			     pte_t pte, bool with_public_device)
822 {
823 	unsigned long pfn = pte_pfn(pte);
824 
825 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
826 		if (likely(!pte_special(pte)))
827 			goto check_pfn;
828 		if (vma->vm_ops && vma->vm_ops->find_special_page)
829 			return vma->vm_ops->find_special_page(vma, addr);
830 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 			return NULL;
832 		if (is_zero_pfn(pfn))
833 			return NULL;
834 
835 		/*
836 		 * Device public pages are special pages (they are ZONE_DEVICE
837 		 * pages but different from persistent memory). They behave
838 		 * allmost like normal pages. The difference is that they are
839 		 * not on the lru and thus should never be involve with any-
840 		 * thing that involve lru manipulation (mlock, numa balancing,
841 		 * ...).
842 		 *
843 		 * This is why we still want to return NULL for such page from
844 		 * vm_normal_page() so that we do not have to special case all
845 		 * call site of vm_normal_page().
846 		 */
847 		if (likely(pfn <= highest_memmap_pfn)) {
848 			struct page *page = pfn_to_page(pfn);
849 
850 			if (is_device_public_page(page)) {
851 				if (with_public_device)
852 					return page;
853 				return NULL;
854 			}
855 		}
856 		print_bad_pte(vma, addr, pte, NULL);
857 		return NULL;
858 	}
859 
860 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
861 
862 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
863 		if (vma->vm_flags & VM_MIXEDMAP) {
864 			if (!pfn_valid(pfn))
865 				return NULL;
866 			goto out;
867 		} else {
868 			unsigned long off;
869 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
870 			if (pfn == vma->vm_pgoff + off)
871 				return NULL;
872 			if (!is_cow_mapping(vma->vm_flags))
873 				return NULL;
874 		}
875 	}
876 
877 	if (is_zero_pfn(pfn))
878 		return NULL;
879 
880 check_pfn:
881 	if (unlikely(pfn > highest_memmap_pfn)) {
882 		print_bad_pte(vma, addr, pte, NULL);
883 		return NULL;
884 	}
885 
886 	/*
887 	 * NOTE! We still have PageReserved() pages in the page tables.
888 	 * eg. VDSO mappings can cause them to exist.
889 	 */
890 out:
891 	return pfn_to_page(pfn);
892 }
893 
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
896 				pmd_t pmd)
897 {
898 	unsigned long pfn = pmd_pfn(pmd);
899 
900 	/*
901 	 * There is no pmd_special() but there may be special pmds, e.g.
902 	 * in a direct-access (dax) mapping, so let's just replicate the
903 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
904 	 */
905 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
906 		if (vma->vm_flags & VM_MIXEDMAP) {
907 			if (!pfn_valid(pfn))
908 				return NULL;
909 			goto out;
910 		} else {
911 			unsigned long off;
912 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
913 			if (pfn == vma->vm_pgoff + off)
914 				return NULL;
915 			if (!is_cow_mapping(vma->vm_flags))
916 				return NULL;
917 		}
918 	}
919 
920 	if (is_zero_pfn(pfn))
921 		return NULL;
922 	if (unlikely(pfn > highest_memmap_pfn))
923 		return NULL;
924 
925 	/*
926 	 * NOTE! We still have PageReserved() pages in the page tables.
927 	 * eg. VDSO mappings can cause them to exist.
928 	 */
929 out:
930 	return pfn_to_page(pfn);
931 }
932 #endif
933 
934 /*
935  * copy one vm_area from one task to the other. Assumes the page tables
936  * already present in the new task to be cleared in the whole range
937  * covered by this vma.
938  */
939 
940 static inline unsigned long
941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
942 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
943 		unsigned long addr, int *rss)
944 {
945 	unsigned long vm_flags = vma->vm_flags;
946 	pte_t pte = *src_pte;
947 	struct page *page;
948 
949 	/* pte contains position in swap or file, so copy. */
950 	if (unlikely(!pte_present(pte))) {
951 		swp_entry_t entry = pte_to_swp_entry(pte);
952 
953 		if (likely(!non_swap_entry(entry))) {
954 			if (swap_duplicate(entry) < 0)
955 				return entry.val;
956 
957 			/* make sure dst_mm is on swapoff's mmlist. */
958 			if (unlikely(list_empty(&dst_mm->mmlist))) {
959 				spin_lock(&mmlist_lock);
960 				if (list_empty(&dst_mm->mmlist))
961 					list_add(&dst_mm->mmlist,
962 							&src_mm->mmlist);
963 				spin_unlock(&mmlist_lock);
964 			}
965 			rss[MM_SWAPENTS]++;
966 		} else if (is_migration_entry(entry)) {
967 			page = migration_entry_to_page(entry);
968 
969 			rss[mm_counter(page)]++;
970 
971 			if (is_write_migration_entry(entry) &&
972 					is_cow_mapping(vm_flags)) {
973 				/*
974 				 * COW mappings require pages in both
975 				 * parent and child to be set to read.
976 				 */
977 				make_migration_entry_read(&entry);
978 				pte = swp_entry_to_pte(entry);
979 				if (pte_swp_soft_dirty(*src_pte))
980 					pte = pte_swp_mksoft_dirty(pte);
981 				set_pte_at(src_mm, addr, src_pte, pte);
982 			}
983 		} else if (is_device_private_entry(entry)) {
984 			page = device_private_entry_to_page(entry);
985 
986 			/*
987 			 * Update rss count even for unaddressable pages, as
988 			 * they should treated just like normal pages in this
989 			 * respect.
990 			 *
991 			 * We will likely want to have some new rss counters
992 			 * for unaddressable pages, at some point. But for now
993 			 * keep things as they are.
994 			 */
995 			get_page(page);
996 			rss[mm_counter(page)]++;
997 			page_dup_rmap(page, false);
998 
999 			/*
1000 			 * We do not preserve soft-dirty information, because so
1001 			 * far, checkpoint/restore is the only feature that
1002 			 * requires that. And checkpoint/restore does not work
1003 			 * when a device driver is involved (you cannot easily
1004 			 * save and restore device driver state).
1005 			 */
1006 			if (is_write_device_private_entry(entry) &&
1007 			    is_cow_mapping(vm_flags)) {
1008 				make_device_private_entry_read(&entry);
1009 				pte = swp_entry_to_pte(entry);
1010 				set_pte_at(src_mm, addr, src_pte, pte);
1011 			}
1012 		}
1013 		goto out_set_pte;
1014 	}
1015 
1016 	/*
1017 	 * If it's a COW mapping, write protect it both
1018 	 * in the parent and the child
1019 	 */
1020 	if (is_cow_mapping(vm_flags)) {
1021 		ptep_set_wrprotect(src_mm, addr, src_pte);
1022 		pte = pte_wrprotect(pte);
1023 	}
1024 
1025 	/*
1026 	 * If it's a shared mapping, mark it clean in
1027 	 * the child
1028 	 */
1029 	if (vm_flags & VM_SHARED)
1030 		pte = pte_mkclean(pte);
1031 	pte = pte_mkold(pte);
1032 
1033 	page = vm_normal_page(vma, addr, pte);
1034 	if (page) {
1035 		get_page(page);
1036 		page_dup_rmap(page, false);
1037 		rss[mm_counter(page)]++;
1038 	} else if (pte_devmap(pte)) {
1039 		page = pte_page(pte);
1040 
1041 		/*
1042 		 * Cache coherent device memory behave like regular page and
1043 		 * not like persistent memory page. For more informations see
1044 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1045 		 */
1046 		if (is_device_public_page(page)) {
1047 			get_page(page);
1048 			page_dup_rmap(page, false);
1049 			rss[mm_counter(page)]++;
1050 		}
1051 	}
1052 
1053 out_set_pte:
1054 	set_pte_at(dst_mm, addr, dst_pte, pte);
1055 	return 0;
1056 }
1057 
1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1060 		   unsigned long addr, unsigned long end)
1061 {
1062 	pte_t *orig_src_pte, *orig_dst_pte;
1063 	pte_t *src_pte, *dst_pte;
1064 	spinlock_t *src_ptl, *dst_ptl;
1065 	int progress = 0;
1066 	int rss[NR_MM_COUNTERS];
1067 	swp_entry_t entry = (swp_entry_t){0};
1068 
1069 again:
1070 	init_rss_vec(rss);
1071 
1072 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1073 	if (!dst_pte)
1074 		return -ENOMEM;
1075 	src_pte = pte_offset_map(src_pmd, addr);
1076 	src_ptl = pte_lockptr(src_mm, src_pmd);
1077 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1078 	orig_src_pte = src_pte;
1079 	orig_dst_pte = dst_pte;
1080 	arch_enter_lazy_mmu_mode();
1081 
1082 	do {
1083 		/*
1084 		 * We are holding two locks at this point - either of them
1085 		 * could generate latencies in another task on another CPU.
1086 		 */
1087 		if (progress >= 32) {
1088 			progress = 0;
1089 			if (need_resched() ||
1090 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1091 				break;
1092 		}
1093 		if (pte_none(*src_pte)) {
1094 			progress++;
1095 			continue;
1096 		}
1097 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1098 							vma, addr, rss);
1099 		if (entry.val)
1100 			break;
1101 		progress += 8;
1102 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1103 
1104 	arch_leave_lazy_mmu_mode();
1105 	spin_unlock(src_ptl);
1106 	pte_unmap(orig_src_pte);
1107 	add_mm_rss_vec(dst_mm, rss);
1108 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 	cond_resched();
1110 
1111 	if (entry.val) {
1112 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1113 			return -ENOMEM;
1114 		progress = 0;
1115 	}
1116 	if (addr != end)
1117 		goto again;
1118 	return 0;
1119 }
1120 
1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1123 		unsigned long addr, unsigned long end)
1124 {
1125 	pmd_t *src_pmd, *dst_pmd;
1126 	unsigned long next;
1127 
1128 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1129 	if (!dst_pmd)
1130 		return -ENOMEM;
1131 	src_pmd = pmd_offset(src_pud, addr);
1132 	do {
1133 		next = pmd_addr_end(addr, end);
1134 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1135 			|| pmd_devmap(*src_pmd)) {
1136 			int err;
1137 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1138 			err = copy_huge_pmd(dst_mm, src_mm,
1139 					    dst_pmd, src_pmd, addr, vma);
1140 			if (err == -ENOMEM)
1141 				return -ENOMEM;
1142 			if (!err)
1143 				continue;
1144 			/* fall through */
1145 		}
1146 		if (pmd_none_or_clear_bad(src_pmd))
1147 			continue;
1148 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1149 						vma, addr, next))
1150 			return -ENOMEM;
1151 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1152 	return 0;
1153 }
1154 
1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1156 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1157 		unsigned long addr, unsigned long end)
1158 {
1159 	pud_t *src_pud, *dst_pud;
1160 	unsigned long next;
1161 
1162 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1163 	if (!dst_pud)
1164 		return -ENOMEM;
1165 	src_pud = pud_offset(src_p4d, addr);
1166 	do {
1167 		next = pud_addr_end(addr, end);
1168 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1169 			int err;
1170 
1171 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1172 			err = copy_huge_pud(dst_mm, src_mm,
1173 					    dst_pud, src_pud, addr, vma);
1174 			if (err == -ENOMEM)
1175 				return -ENOMEM;
1176 			if (!err)
1177 				continue;
1178 			/* fall through */
1179 		}
1180 		if (pud_none_or_clear_bad(src_pud))
1181 			continue;
1182 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1183 						vma, addr, next))
1184 			return -ENOMEM;
1185 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1186 	return 0;
1187 }
1188 
1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1190 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1191 		unsigned long addr, unsigned long end)
1192 {
1193 	p4d_t *src_p4d, *dst_p4d;
1194 	unsigned long next;
1195 
1196 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197 	if (!dst_p4d)
1198 		return -ENOMEM;
1199 	src_p4d = p4d_offset(src_pgd, addr);
1200 	do {
1201 		next = p4d_addr_end(addr, end);
1202 		if (p4d_none_or_clear_bad(src_p4d))
1203 			continue;
1204 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1205 						vma, addr, next))
1206 			return -ENOMEM;
1207 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208 	return 0;
1209 }
1210 
1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1212 		struct vm_area_struct *vma)
1213 {
1214 	pgd_t *src_pgd, *dst_pgd;
1215 	unsigned long next;
1216 	unsigned long addr = vma->vm_start;
1217 	unsigned long end = vma->vm_end;
1218 	unsigned long mmun_start;	/* For mmu_notifiers */
1219 	unsigned long mmun_end;		/* For mmu_notifiers */
1220 	bool is_cow;
1221 	int ret;
1222 
1223 	/*
1224 	 * Don't copy ptes where a page fault will fill them correctly.
1225 	 * Fork becomes much lighter when there are big shared or private
1226 	 * readonly mappings. The tradeoff is that copy_page_range is more
1227 	 * efficient than faulting.
1228 	 */
1229 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1230 			!vma->anon_vma)
1231 		return 0;
1232 
1233 	if (is_vm_hugetlb_page(vma))
1234 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1235 
1236 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1237 		/*
1238 		 * We do not free on error cases below as remove_vma
1239 		 * gets called on error from higher level routine
1240 		 */
1241 		ret = track_pfn_copy(vma);
1242 		if (ret)
1243 			return ret;
1244 	}
1245 
1246 	/*
1247 	 * We need to invalidate the secondary MMU mappings only when
1248 	 * there could be a permission downgrade on the ptes of the
1249 	 * parent mm. And a permission downgrade will only happen if
1250 	 * is_cow_mapping() returns true.
1251 	 */
1252 	is_cow = is_cow_mapping(vma->vm_flags);
1253 	mmun_start = addr;
1254 	mmun_end   = end;
1255 	if (is_cow)
1256 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1257 						    mmun_end);
1258 
1259 	ret = 0;
1260 	dst_pgd = pgd_offset(dst_mm, addr);
1261 	src_pgd = pgd_offset(src_mm, addr);
1262 	do {
1263 		next = pgd_addr_end(addr, end);
1264 		if (pgd_none_or_clear_bad(src_pgd))
1265 			continue;
1266 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1267 					    vma, addr, next))) {
1268 			ret = -ENOMEM;
1269 			break;
1270 		}
1271 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1272 
1273 	if (is_cow)
1274 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1275 	return ret;
1276 }
1277 
1278 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1279 				struct vm_area_struct *vma, pmd_t *pmd,
1280 				unsigned long addr, unsigned long end,
1281 				struct zap_details *details)
1282 {
1283 	struct mm_struct *mm = tlb->mm;
1284 	int force_flush = 0;
1285 	int rss[NR_MM_COUNTERS];
1286 	spinlock_t *ptl;
1287 	pte_t *start_pte;
1288 	pte_t *pte;
1289 	swp_entry_t entry;
1290 
1291 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1292 again:
1293 	init_rss_vec(rss);
1294 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295 	pte = start_pte;
1296 	flush_tlb_batched_pending(mm);
1297 	arch_enter_lazy_mmu_mode();
1298 	do {
1299 		pte_t ptent = *pte;
1300 		if (pte_none(ptent))
1301 			continue;
1302 
1303 		if (pte_present(ptent)) {
1304 			struct page *page;
1305 
1306 			page = _vm_normal_page(vma, addr, ptent, true);
1307 			if (unlikely(details) && page) {
1308 				/*
1309 				 * unmap_shared_mapping_pages() wants to
1310 				 * invalidate cache without truncating:
1311 				 * unmap shared but keep private pages.
1312 				 */
1313 				if (details->check_mapping &&
1314 				    details->check_mapping != page_rmapping(page))
1315 					continue;
1316 			}
1317 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1318 							tlb->fullmm);
1319 			tlb_remove_tlb_entry(tlb, pte, addr);
1320 			if (unlikely(!page))
1321 				continue;
1322 
1323 			if (!PageAnon(page)) {
1324 				if (pte_dirty(ptent)) {
1325 					force_flush = 1;
1326 					set_page_dirty(page);
1327 				}
1328 				if (pte_young(ptent) &&
1329 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1330 					mark_page_accessed(page);
1331 			}
1332 			rss[mm_counter(page)]--;
1333 			page_remove_rmap(page, false);
1334 			if (unlikely(page_mapcount(page) < 0))
1335 				print_bad_pte(vma, addr, ptent, page);
1336 			if (unlikely(__tlb_remove_page(tlb, page))) {
1337 				force_flush = 1;
1338 				addr += PAGE_SIZE;
1339 				break;
1340 			}
1341 			continue;
1342 		}
1343 
1344 		entry = pte_to_swp_entry(ptent);
1345 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1346 			struct page *page = device_private_entry_to_page(entry);
1347 
1348 			if (unlikely(details && details->check_mapping)) {
1349 				/*
1350 				 * unmap_shared_mapping_pages() wants to
1351 				 * invalidate cache without truncating:
1352 				 * unmap shared but keep private pages.
1353 				 */
1354 				if (details->check_mapping !=
1355 				    page_rmapping(page))
1356 					continue;
1357 			}
1358 
1359 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1360 			rss[mm_counter(page)]--;
1361 			page_remove_rmap(page, false);
1362 			put_page(page);
1363 			continue;
1364 		}
1365 
1366 		/* If details->check_mapping, we leave swap entries. */
1367 		if (unlikely(details))
1368 			continue;
1369 
1370 		entry = pte_to_swp_entry(ptent);
1371 		if (!non_swap_entry(entry))
1372 			rss[MM_SWAPENTS]--;
1373 		else if (is_migration_entry(entry)) {
1374 			struct page *page;
1375 
1376 			page = migration_entry_to_page(entry);
1377 			rss[mm_counter(page)]--;
1378 		}
1379 		if (unlikely(!free_swap_and_cache(entry)))
1380 			print_bad_pte(vma, addr, ptent, NULL);
1381 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1382 	} while (pte++, addr += PAGE_SIZE, addr != end);
1383 
1384 	add_mm_rss_vec(mm, rss);
1385 	arch_leave_lazy_mmu_mode();
1386 
1387 	/* Do the actual TLB flush before dropping ptl */
1388 	if (force_flush)
1389 		tlb_flush_mmu_tlbonly(tlb);
1390 	pte_unmap_unlock(start_pte, ptl);
1391 
1392 	/*
1393 	 * If we forced a TLB flush (either due to running out of
1394 	 * batch buffers or because we needed to flush dirty TLB
1395 	 * entries before releasing the ptl), free the batched
1396 	 * memory too. Restart if we didn't do everything.
1397 	 */
1398 	if (force_flush) {
1399 		force_flush = 0;
1400 		tlb_flush_mmu_free(tlb);
1401 		if (addr != end)
1402 			goto again;
1403 	}
1404 
1405 	return addr;
1406 }
1407 
1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1409 				struct vm_area_struct *vma, pud_t *pud,
1410 				unsigned long addr, unsigned long end,
1411 				struct zap_details *details)
1412 {
1413 	pmd_t *pmd;
1414 	unsigned long next;
1415 
1416 	pmd = pmd_offset(pud, addr);
1417 	do {
1418 		next = pmd_addr_end(addr, end);
1419 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1420 			if (next - addr != HPAGE_PMD_SIZE)
1421 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1422 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1423 				goto next;
1424 			/* fall through */
1425 		}
1426 		/*
1427 		 * Here there can be other concurrent MADV_DONTNEED or
1428 		 * trans huge page faults running, and if the pmd is
1429 		 * none or trans huge it can change under us. This is
1430 		 * because MADV_DONTNEED holds the mmap_sem in read
1431 		 * mode.
1432 		 */
1433 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1434 			goto next;
1435 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1436 next:
1437 		cond_resched();
1438 	} while (pmd++, addr = next, addr != end);
1439 
1440 	return addr;
1441 }
1442 
1443 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1444 				struct vm_area_struct *vma, p4d_t *p4d,
1445 				unsigned long addr, unsigned long end,
1446 				struct zap_details *details)
1447 {
1448 	pud_t *pud;
1449 	unsigned long next;
1450 
1451 	pud = pud_offset(p4d, addr);
1452 	do {
1453 		next = pud_addr_end(addr, end);
1454 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1455 			if (next - addr != HPAGE_PUD_SIZE) {
1456 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1457 				split_huge_pud(vma, pud, addr);
1458 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1459 				goto next;
1460 			/* fall through */
1461 		}
1462 		if (pud_none_or_clear_bad(pud))
1463 			continue;
1464 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1465 next:
1466 		cond_resched();
1467 	} while (pud++, addr = next, addr != end);
1468 
1469 	return addr;
1470 }
1471 
1472 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1473 				struct vm_area_struct *vma, pgd_t *pgd,
1474 				unsigned long addr, unsigned long end,
1475 				struct zap_details *details)
1476 {
1477 	p4d_t *p4d;
1478 	unsigned long next;
1479 
1480 	p4d = p4d_offset(pgd, addr);
1481 	do {
1482 		next = p4d_addr_end(addr, end);
1483 		if (p4d_none_or_clear_bad(p4d))
1484 			continue;
1485 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1486 	} while (p4d++, addr = next, addr != end);
1487 
1488 	return addr;
1489 }
1490 
1491 void unmap_page_range(struct mmu_gather *tlb,
1492 			     struct vm_area_struct *vma,
1493 			     unsigned long addr, unsigned long end,
1494 			     struct zap_details *details)
1495 {
1496 	pgd_t *pgd;
1497 	unsigned long next;
1498 
1499 	BUG_ON(addr >= end);
1500 	tlb_start_vma(tlb, vma);
1501 	pgd = pgd_offset(vma->vm_mm, addr);
1502 	do {
1503 		next = pgd_addr_end(addr, end);
1504 		if (pgd_none_or_clear_bad(pgd))
1505 			continue;
1506 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1507 	} while (pgd++, addr = next, addr != end);
1508 	tlb_end_vma(tlb, vma);
1509 }
1510 
1511 
1512 static void unmap_single_vma(struct mmu_gather *tlb,
1513 		struct vm_area_struct *vma, unsigned long start_addr,
1514 		unsigned long end_addr,
1515 		struct zap_details *details)
1516 {
1517 	unsigned long start = max(vma->vm_start, start_addr);
1518 	unsigned long end;
1519 
1520 	if (start >= vma->vm_end)
1521 		return;
1522 	end = min(vma->vm_end, end_addr);
1523 	if (end <= vma->vm_start)
1524 		return;
1525 
1526 	if (vma->vm_file)
1527 		uprobe_munmap(vma, start, end);
1528 
1529 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1530 		untrack_pfn(vma, 0, 0);
1531 
1532 	if (start != end) {
1533 		if (unlikely(is_vm_hugetlb_page(vma))) {
1534 			/*
1535 			 * It is undesirable to test vma->vm_file as it
1536 			 * should be non-null for valid hugetlb area.
1537 			 * However, vm_file will be NULL in the error
1538 			 * cleanup path of mmap_region. When
1539 			 * hugetlbfs ->mmap method fails,
1540 			 * mmap_region() nullifies vma->vm_file
1541 			 * before calling this function to clean up.
1542 			 * Since no pte has actually been setup, it is
1543 			 * safe to do nothing in this case.
1544 			 */
1545 			if (vma->vm_file) {
1546 				i_mmap_lock_write(vma->vm_file->f_mapping);
1547 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1548 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1549 			}
1550 		} else
1551 			unmap_page_range(tlb, vma, start, end, details);
1552 	}
1553 }
1554 
1555 /**
1556  * unmap_vmas - unmap a range of memory covered by a list of vma's
1557  * @tlb: address of the caller's struct mmu_gather
1558  * @vma: the starting vma
1559  * @start_addr: virtual address at which to start unmapping
1560  * @end_addr: virtual address at which to end unmapping
1561  *
1562  * Unmap all pages in the vma list.
1563  *
1564  * Only addresses between `start' and `end' will be unmapped.
1565  *
1566  * The VMA list must be sorted in ascending virtual address order.
1567  *
1568  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1569  * range after unmap_vmas() returns.  So the only responsibility here is to
1570  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1571  * drops the lock and schedules.
1572  */
1573 void unmap_vmas(struct mmu_gather *tlb,
1574 		struct vm_area_struct *vma, unsigned long start_addr,
1575 		unsigned long end_addr)
1576 {
1577 	struct mm_struct *mm = vma->vm_mm;
1578 
1579 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1580 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1581 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1582 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1583 }
1584 
1585 /**
1586  * zap_page_range - remove user pages in a given range
1587  * @vma: vm_area_struct holding the applicable pages
1588  * @start: starting address of pages to zap
1589  * @size: number of bytes to zap
1590  *
1591  * Caller must protect the VMA list
1592  */
1593 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1594 		unsigned long size)
1595 {
1596 	struct mm_struct *mm = vma->vm_mm;
1597 	struct mmu_gather tlb;
1598 	unsigned long end = start + size;
1599 
1600 	lru_add_drain();
1601 	tlb_gather_mmu(&tlb, mm, start, end);
1602 	update_hiwater_rss(mm);
1603 	mmu_notifier_invalidate_range_start(mm, start, end);
1604 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1605 		unmap_single_vma(&tlb, vma, start, end, NULL);
1606 
1607 		/*
1608 		 * zap_page_range does not specify whether mmap_sem should be
1609 		 * held for read or write. That allows parallel zap_page_range
1610 		 * operations to unmap a PTE and defer a flush meaning that
1611 		 * this call observes pte_none and fails to flush the TLB.
1612 		 * Rather than adding a complex API, ensure that no stale
1613 		 * TLB entries exist when this call returns.
1614 		 */
1615 		flush_tlb_range(vma, start, end);
1616 	}
1617 
1618 	mmu_notifier_invalidate_range_end(mm, start, end);
1619 	tlb_finish_mmu(&tlb, start, end);
1620 }
1621 
1622 /**
1623  * zap_page_range_single - remove user pages in a given range
1624  * @vma: vm_area_struct holding the applicable pages
1625  * @address: starting address of pages to zap
1626  * @size: number of bytes to zap
1627  * @details: details of shared cache invalidation
1628  *
1629  * The range must fit into one VMA.
1630  */
1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1632 		unsigned long size, struct zap_details *details)
1633 {
1634 	struct mm_struct *mm = vma->vm_mm;
1635 	struct mmu_gather tlb;
1636 	unsigned long end = address + size;
1637 
1638 	lru_add_drain();
1639 	tlb_gather_mmu(&tlb, mm, address, end);
1640 	update_hiwater_rss(mm);
1641 	mmu_notifier_invalidate_range_start(mm, address, end);
1642 	unmap_single_vma(&tlb, vma, address, end, details);
1643 	mmu_notifier_invalidate_range_end(mm, address, end);
1644 	tlb_finish_mmu(&tlb, address, end);
1645 }
1646 
1647 /**
1648  * zap_vma_ptes - remove ptes mapping the vma
1649  * @vma: vm_area_struct holding ptes to be zapped
1650  * @address: starting address of pages to zap
1651  * @size: number of bytes to zap
1652  *
1653  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1654  *
1655  * The entire address range must be fully contained within the vma.
1656  *
1657  */
1658 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1659 		unsigned long size)
1660 {
1661 	if (address < vma->vm_start || address + size > vma->vm_end ||
1662 	    		!(vma->vm_flags & VM_PFNMAP))
1663 		return;
1664 
1665 	zap_page_range_single(vma, address, size, NULL);
1666 }
1667 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1668 
1669 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1670 			spinlock_t **ptl)
1671 {
1672 	pgd_t *pgd;
1673 	p4d_t *p4d;
1674 	pud_t *pud;
1675 	pmd_t *pmd;
1676 
1677 	pgd = pgd_offset(mm, addr);
1678 	p4d = p4d_alloc(mm, pgd, addr);
1679 	if (!p4d)
1680 		return NULL;
1681 	pud = pud_alloc(mm, p4d, addr);
1682 	if (!pud)
1683 		return NULL;
1684 	pmd = pmd_alloc(mm, pud, addr);
1685 	if (!pmd)
1686 		return NULL;
1687 
1688 	VM_BUG_ON(pmd_trans_huge(*pmd));
1689 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1690 }
1691 
1692 /*
1693  * This is the old fallback for page remapping.
1694  *
1695  * For historical reasons, it only allows reserved pages. Only
1696  * old drivers should use this, and they needed to mark their
1697  * pages reserved for the old functions anyway.
1698  */
1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1700 			struct page *page, pgprot_t prot)
1701 {
1702 	struct mm_struct *mm = vma->vm_mm;
1703 	int retval;
1704 	pte_t *pte;
1705 	spinlock_t *ptl;
1706 
1707 	retval = -EINVAL;
1708 	if (PageAnon(page))
1709 		goto out;
1710 	retval = -ENOMEM;
1711 	flush_dcache_page(page);
1712 	pte = get_locked_pte(mm, addr, &ptl);
1713 	if (!pte)
1714 		goto out;
1715 	retval = -EBUSY;
1716 	if (!pte_none(*pte))
1717 		goto out_unlock;
1718 
1719 	/* Ok, finally just insert the thing.. */
1720 	get_page(page);
1721 	inc_mm_counter_fast(mm, mm_counter_file(page));
1722 	page_add_file_rmap(page, false);
1723 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1724 
1725 	retval = 0;
1726 	pte_unmap_unlock(pte, ptl);
1727 	return retval;
1728 out_unlock:
1729 	pte_unmap_unlock(pte, ptl);
1730 out:
1731 	return retval;
1732 }
1733 
1734 /**
1735  * vm_insert_page - insert single page into user vma
1736  * @vma: user vma to map to
1737  * @addr: target user address of this page
1738  * @page: source kernel page
1739  *
1740  * This allows drivers to insert individual pages they've allocated
1741  * into a user vma.
1742  *
1743  * The page has to be a nice clean _individual_ kernel allocation.
1744  * If you allocate a compound page, you need to have marked it as
1745  * such (__GFP_COMP), or manually just split the page up yourself
1746  * (see split_page()).
1747  *
1748  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1749  * took an arbitrary page protection parameter. This doesn't allow
1750  * that. Your vma protection will have to be set up correctly, which
1751  * means that if you want a shared writable mapping, you'd better
1752  * ask for a shared writable mapping!
1753  *
1754  * The page does not need to be reserved.
1755  *
1756  * Usually this function is called from f_op->mmap() handler
1757  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1758  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1759  * function from other places, for example from page-fault handler.
1760  */
1761 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1762 			struct page *page)
1763 {
1764 	if (addr < vma->vm_start || addr >= vma->vm_end)
1765 		return -EFAULT;
1766 	if (!page_count(page))
1767 		return -EINVAL;
1768 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1769 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1770 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1771 		vma->vm_flags |= VM_MIXEDMAP;
1772 	}
1773 	return insert_page(vma, addr, page, vma->vm_page_prot);
1774 }
1775 EXPORT_SYMBOL(vm_insert_page);
1776 
1777 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1778 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1779 {
1780 	struct mm_struct *mm = vma->vm_mm;
1781 	int retval;
1782 	pte_t *pte, entry;
1783 	spinlock_t *ptl;
1784 
1785 	retval = -ENOMEM;
1786 	pte = get_locked_pte(mm, addr, &ptl);
1787 	if (!pte)
1788 		goto out;
1789 	retval = -EBUSY;
1790 	if (!pte_none(*pte)) {
1791 		if (mkwrite) {
1792 			/*
1793 			 * For read faults on private mappings the PFN passed
1794 			 * in may not match the PFN we have mapped if the
1795 			 * mapped PFN is a writeable COW page.  In the mkwrite
1796 			 * case we are creating a writable PTE for a shared
1797 			 * mapping and we expect the PFNs to match.
1798 			 */
1799 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1800 				goto out_unlock;
1801 			entry = *pte;
1802 			goto out_mkwrite;
1803 		} else
1804 			goto out_unlock;
1805 	}
1806 
1807 	/* Ok, finally just insert the thing.. */
1808 	if (pfn_t_devmap(pfn))
1809 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1810 	else
1811 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1812 
1813 out_mkwrite:
1814 	if (mkwrite) {
1815 		entry = pte_mkyoung(entry);
1816 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1817 	}
1818 
1819 	set_pte_at(mm, addr, pte, entry);
1820 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1821 
1822 	retval = 0;
1823 out_unlock:
1824 	pte_unmap_unlock(pte, ptl);
1825 out:
1826 	return retval;
1827 }
1828 
1829 /**
1830  * vm_insert_pfn - insert single pfn into user vma
1831  * @vma: user vma to map to
1832  * @addr: target user address of this page
1833  * @pfn: source kernel pfn
1834  *
1835  * Similar to vm_insert_page, this allows drivers to insert individual pages
1836  * they've allocated into a user vma. Same comments apply.
1837  *
1838  * This function should only be called from a vm_ops->fault handler, and
1839  * in that case the handler should return NULL.
1840  *
1841  * vma cannot be a COW mapping.
1842  *
1843  * As this is called only for pages that do not currently exist, we
1844  * do not need to flush old virtual caches or the TLB.
1845  */
1846 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1847 			unsigned long pfn)
1848 {
1849 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_insert_pfn);
1852 
1853 /**
1854  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1855  * @vma: user vma to map to
1856  * @addr: target user address of this page
1857  * @pfn: source kernel pfn
1858  * @pgprot: pgprot flags for the inserted page
1859  *
1860  * This is exactly like vm_insert_pfn, except that it allows drivers to
1861  * to override pgprot on a per-page basis.
1862  *
1863  * This only makes sense for IO mappings, and it makes no sense for
1864  * cow mappings.  In general, using multiple vmas is preferable;
1865  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1866  * impractical.
1867  */
1868 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1869 			unsigned long pfn, pgprot_t pgprot)
1870 {
1871 	int ret;
1872 	/*
1873 	 * Technically, architectures with pte_special can avoid all these
1874 	 * restrictions (same for remap_pfn_range).  However we would like
1875 	 * consistency in testing and feature parity among all, so we should
1876 	 * try to keep these invariants in place for everybody.
1877 	 */
1878 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1879 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1880 						(VM_PFNMAP|VM_MIXEDMAP));
1881 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1882 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1883 
1884 	if (addr < vma->vm_start || addr >= vma->vm_end)
1885 		return -EFAULT;
1886 
1887 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1888 
1889 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1890 			false);
1891 
1892 	return ret;
1893 }
1894 EXPORT_SYMBOL(vm_insert_pfn_prot);
1895 
1896 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1897 {
1898 	/* these checks mirror the abort conditions in vm_normal_page */
1899 	if (vma->vm_flags & VM_MIXEDMAP)
1900 		return true;
1901 	if (pfn_t_devmap(pfn))
1902 		return true;
1903 	if (pfn_t_special(pfn))
1904 		return true;
1905 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1906 		return true;
1907 	return false;
1908 }
1909 
1910 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1911 			pfn_t pfn, bool mkwrite)
1912 {
1913 	pgprot_t pgprot = vma->vm_page_prot;
1914 
1915 	BUG_ON(!vm_mixed_ok(vma, pfn));
1916 
1917 	if (addr < vma->vm_start || addr >= vma->vm_end)
1918 		return -EFAULT;
1919 
1920 	track_pfn_insert(vma, &pgprot, pfn);
1921 
1922 	/*
1923 	 * If we don't have pte special, then we have to use the pfn_valid()
1924 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1925 	 * refcount the page if pfn_valid is true (hence insert_page rather
1926 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1927 	 * without pte special, it would there be refcounted as a normal page.
1928 	 */
1929 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1930 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1931 		struct page *page;
1932 
1933 		/*
1934 		 * At this point we are committed to insert_page()
1935 		 * regardless of whether the caller specified flags that
1936 		 * result in pfn_t_has_page() == false.
1937 		 */
1938 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1939 		return insert_page(vma, addr, page, pgprot);
1940 	}
1941 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1942 }
1943 
1944 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1945 			pfn_t pfn)
1946 {
1947 	return __vm_insert_mixed(vma, addr, pfn, false);
1948 
1949 }
1950 EXPORT_SYMBOL(vm_insert_mixed);
1951 
1952 /*
1953  *  If the insertion of PTE failed because someone else already added a
1954  *  different entry in the mean time, we treat that as success as we assume
1955  *  the same entry was actually inserted.
1956  */
1957 
1958 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1959 		unsigned long addr, pfn_t pfn)
1960 {
1961 	int err;
1962 
1963 	err =  __vm_insert_mixed(vma, addr, pfn, true);
1964 	if (err == -ENOMEM)
1965 		return VM_FAULT_OOM;
1966 	if (err < 0 && err != -EBUSY)
1967 		return VM_FAULT_SIGBUS;
1968 	return VM_FAULT_NOPAGE;
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1971 
1972 /*
1973  * maps a range of physical memory into the requested pages. the old
1974  * mappings are removed. any references to nonexistent pages results
1975  * in null mappings (currently treated as "copy-on-access")
1976  */
1977 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1978 			unsigned long addr, unsigned long end,
1979 			unsigned long pfn, pgprot_t prot)
1980 {
1981 	pte_t *pte;
1982 	spinlock_t *ptl;
1983 
1984 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1985 	if (!pte)
1986 		return -ENOMEM;
1987 	arch_enter_lazy_mmu_mode();
1988 	do {
1989 		BUG_ON(!pte_none(*pte));
1990 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1991 		pfn++;
1992 	} while (pte++, addr += PAGE_SIZE, addr != end);
1993 	arch_leave_lazy_mmu_mode();
1994 	pte_unmap_unlock(pte - 1, ptl);
1995 	return 0;
1996 }
1997 
1998 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1999 			unsigned long addr, unsigned long end,
2000 			unsigned long pfn, pgprot_t prot)
2001 {
2002 	pmd_t *pmd;
2003 	unsigned long next;
2004 
2005 	pfn -= addr >> PAGE_SHIFT;
2006 	pmd = pmd_alloc(mm, pud, addr);
2007 	if (!pmd)
2008 		return -ENOMEM;
2009 	VM_BUG_ON(pmd_trans_huge(*pmd));
2010 	do {
2011 		next = pmd_addr_end(addr, end);
2012 		if (remap_pte_range(mm, pmd, addr, next,
2013 				pfn + (addr >> PAGE_SHIFT), prot))
2014 			return -ENOMEM;
2015 	} while (pmd++, addr = next, addr != end);
2016 	return 0;
2017 }
2018 
2019 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2020 			unsigned long addr, unsigned long end,
2021 			unsigned long pfn, pgprot_t prot)
2022 {
2023 	pud_t *pud;
2024 	unsigned long next;
2025 
2026 	pfn -= addr >> PAGE_SHIFT;
2027 	pud = pud_alloc(mm, p4d, addr);
2028 	if (!pud)
2029 		return -ENOMEM;
2030 	do {
2031 		next = pud_addr_end(addr, end);
2032 		if (remap_pmd_range(mm, pud, addr, next,
2033 				pfn + (addr >> PAGE_SHIFT), prot))
2034 			return -ENOMEM;
2035 	} while (pud++, addr = next, addr != end);
2036 	return 0;
2037 }
2038 
2039 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2040 			unsigned long addr, unsigned long end,
2041 			unsigned long pfn, pgprot_t prot)
2042 {
2043 	p4d_t *p4d;
2044 	unsigned long next;
2045 
2046 	pfn -= addr >> PAGE_SHIFT;
2047 	p4d = p4d_alloc(mm, pgd, addr);
2048 	if (!p4d)
2049 		return -ENOMEM;
2050 	do {
2051 		next = p4d_addr_end(addr, end);
2052 		if (remap_pud_range(mm, p4d, addr, next,
2053 				pfn + (addr >> PAGE_SHIFT), prot))
2054 			return -ENOMEM;
2055 	} while (p4d++, addr = next, addr != end);
2056 	return 0;
2057 }
2058 
2059 /**
2060  * remap_pfn_range - remap kernel memory to userspace
2061  * @vma: user vma to map to
2062  * @addr: target user address to start at
2063  * @pfn: physical address of kernel memory
2064  * @size: size of map area
2065  * @prot: page protection flags for this mapping
2066  *
2067  *  Note: this is only safe if the mm semaphore is held when called.
2068  */
2069 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2070 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2071 {
2072 	pgd_t *pgd;
2073 	unsigned long next;
2074 	unsigned long end = addr + PAGE_ALIGN(size);
2075 	struct mm_struct *mm = vma->vm_mm;
2076 	unsigned long remap_pfn = pfn;
2077 	int err;
2078 
2079 	/*
2080 	 * Physically remapped pages are special. Tell the
2081 	 * rest of the world about it:
2082 	 *   VM_IO tells people not to look at these pages
2083 	 *	(accesses can have side effects).
2084 	 *   VM_PFNMAP tells the core MM that the base pages are just
2085 	 *	raw PFN mappings, and do not have a "struct page" associated
2086 	 *	with them.
2087 	 *   VM_DONTEXPAND
2088 	 *      Disable vma merging and expanding with mremap().
2089 	 *   VM_DONTDUMP
2090 	 *      Omit vma from core dump, even when VM_IO turned off.
2091 	 *
2092 	 * There's a horrible special case to handle copy-on-write
2093 	 * behaviour that some programs depend on. We mark the "original"
2094 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2095 	 * See vm_normal_page() for details.
2096 	 */
2097 	if (is_cow_mapping(vma->vm_flags)) {
2098 		if (addr != vma->vm_start || end != vma->vm_end)
2099 			return -EINVAL;
2100 		vma->vm_pgoff = pfn;
2101 	}
2102 
2103 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2104 	if (err)
2105 		return -EINVAL;
2106 
2107 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2108 
2109 	BUG_ON(addr >= end);
2110 	pfn -= addr >> PAGE_SHIFT;
2111 	pgd = pgd_offset(mm, addr);
2112 	flush_cache_range(vma, addr, end);
2113 	do {
2114 		next = pgd_addr_end(addr, end);
2115 		err = remap_p4d_range(mm, pgd, addr, next,
2116 				pfn + (addr >> PAGE_SHIFT), prot);
2117 		if (err)
2118 			break;
2119 	} while (pgd++, addr = next, addr != end);
2120 
2121 	if (err)
2122 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2123 
2124 	return err;
2125 }
2126 EXPORT_SYMBOL(remap_pfn_range);
2127 
2128 /**
2129  * vm_iomap_memory - remap memory to userspace
2130  * @vma: user vma to map to
2131  * @start: start of area
2132  * @len: size of area
2133  *
2134  * This is a simplified io_remap_pfn_range() for common driver use. The
2135  * driver just needs to give us the physical memory range to be mapped,
2136  * we'll figure out the rest from the vma information.
2137  *
2138  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2139  * whatever write-combining details or similar.
2140  */
2141 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2142 {
2143 	unsigned long vm_len, pfn, pages;
2144 
2145 	/* Check that the physical memory area passed in looks valid */
2146 	if (start + len < start)
2147 		return -EINVAL;
2148 	/*
2149 	 * You *really* shouldn't map things that aren't page-aligned,
2150 	 * but we've historically allowed it because IO memory might
2151 	 * just have smaller alignment.
2152 	 */
2153 	len += start & ~PAGE_MASK;
2154 	pfn = start >> PAGE_SHIFT;
2155 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2156 	if (pfn + pages < pfn)
2157 		return -EINVAL;
2158 
2159 	/* We start the mapping 'vm_pgoff' pages into the area */
2160 	if (vma->vm_pgoff > pages)
2161 		return -EINVAL;
2162 	pfn += vma->vm_pgoff;
2163 	pages -= vma->vm_pgoff;
2164 
2165 	/* Can we fit all of the mapping? */
2166 	vm_len = vma->vm_end - vma->vm_start;
2167 	if (vm_len >> PAGE_SHIFT > pages)
2168 		return -EINVAL;
2169 
2170 	/* Ok, let it rip */
2171 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2172 }
2173 EXPORT_SYMBOL(vm_iomap_memory);
2174 
2175 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2176 				     unsigned long addr, unsigned long end,
2177 				     pte_fn_t fn, void *data)
2178 {
2179 	pte_t *pte;
2180 	int err;
2181 	pgtable_t token;
2182 	spinlock_t *uninitialized_var(ptl);
2183 
2184 	pte = (mm == &init_mm) ?
2185 		pte_alloc_kernel(pmd, addr) :
2186 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2187 	if (!pte)
2188 		return -ENOMEM;
2189 
2190 	BUG_ON(pmd_huge(*pmd));
2191 
2192 	arch_enter_lazy_mmu_mode();
2193 
2194 	token = pmd_pgtable(*pmd);
2195 
2196 	do {
2197 		err = fn(pte++, token, addr, data);
2198 		if (err)
2199 			break;
2200 	} while (addr += PAGE_SIZE, addr != end);
2201 
2202 	arch_leave_lazy_mmu_mode();
2203 
2204 	if (mm != &init_mm)
2205 		pte_unmap_unlock(pte-1, ptl);
2206 	return err;
2207 }
2208 
2209 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2210 				     unsigned long addr, unsigned long end,
2211 				     pte_fn_t fn, void *data)
2212 {
2213 	pmd_t *pmd;
2214 	unsigned long next;
2215 	int err;
2216 
2217 	BUG_ON(pud_huge(*pud));
2218 
2219 	pmd = pmd_alloc(mm, pud, addr);
2220 	if (!pmd)
2221 		return -ENOMEM;
2222 	do {
2223 		next = pmd_addr_end(addr, end);
2224 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2225 		if (err)
2226 			break;
2227 	} while (pmd++, addr = next, addr != end);
2228 	return err;
2229 }
2230 
2231 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2232 				     unsigned long addr, unsigned long end,
2233 				     pte_fn_t fn, void *data)
2234 {
2235 	pud_t *pud;
2236 	unsigned long next;
2237 	int err;
2238 
2239 	pud = pud_alloc(mm, p4d, addr);
2240 	if (!pud)
2241 		return -ENOMEM;
2242 	do {
2243 		next = pud_addr_end(addr, end);
2244 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2245 		if (err)
2246 			break;
2247 	} while (pud++, addr = next, addr != end);
2248 	return err;
2249 }
2250 
2251 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2252 				     unsigned long addr, unsigned long end,
2253 				     pte_fn_t fn, void *data)
2254 {
2255 	p4d_t *p4d;
2256 	unsigned long next;
2257 	int err;
2258 
2259 	p4d = p4d_alloc(mm, pgd, addr);
2260 	if (!p4d)
2261 		return -ENOMEM;
2262 	do {
2263 		next = p4d_addr_end(addr, end);
2264 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2265 		if (err)
2266 			break;
2267 	} while (p4d++, addr = next, addr != end);
2268 	return err;
2269 }
2270 
2271 /*
2272  * Scan a region of virtual memory, filling in page tables as necessary
2273  * and calling a provided function on each leaf page table.
2274  */
2275 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2276 			unsigned long size, pte_fn_t fn, void *data)
2277 {
2278 	pgd_t *pgd;
2279 	unsigned long next;
2280 	unsigned long end = addr + size;
2281 	int err;
2282 
2283 	if (WARN_ON(addr >= end))
2284 		return -EINVAL;
2285 
2286 	pgd = pgd_offset(mm, addr);
2287 	do {
2288 		next = pgd_addr_end(addr, end);
2289 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2290 		if (err)
2291 			break;
2292 	} while (pgd++, addr = next, addr != end);
2293 
2294 	return err;
2295 }
2296 EXPORT_SYMBOL_GPL(apply_to_page_range);
2297 
2298 /*
2299  * handle_pte_fault chooses page fault handler according to an entry which was
2300  * read non-atomically.  Before making any commitment, on those architectures
2301  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2302  * parts, do_swap_page must check under lock before unmapping the pte and
2303  * proceeding (but do_wp_page is only called after already making such a check;
2304  * and do_anonymous_page can safely check later on).
2305  */
2306 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2307 				pte_t *page_table, pte_t orig_pte)
2308 {
2309 	int same = 1;
2310 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2311 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2312 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2313 		spin_lock(ptl);
2314 		same = pte_same(*page_table, orig_pte);
2315 		spin_unlock(ptl);
2316 	}
2317 #endif
2318 	pte_unmap(page_table);
2319 	return same;
2320 }
2321 
2322 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2323 {
2324 	debug_dma_assert_idle(src);
2325 
2326 	/*
2327 	 * If the source page was a PFN mapping, we don't have
2328 	 * a "struct page" for it. We do a best-effort copy by
2329 	 * just copying from the original user address. If that
2330 	 * fails, we just zero-fill it. Live with it.
2331 	 */
2332 	if (unlikely(!src)) {
2333 		void *kaddr = kmap_atomic(dst);
2334 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2335 
2336 		/*
2337 		 * This really shouldn't fail, because the page is there
2338 		 * in the page tables. But it might just be unreadable,
2339 		 * in which case we just give up and fill the result with
2340 		 * zeroes.
2341 		 */
2342 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2343 			clear_page(kaddr);
2344 		kunmap_atomic(kaddr);
2345 		flush_dcache_page(dst);
2346 	} else
2347 		copy_user_highpage(dst, src, va, vma);
2348 }
2349 
2350 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2351 {
2352 	struct file *vm_file = vma->vm_file;
2353 
2354 	if (vm_file)
2355 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2356 
2357 	/*
2358 	 * Special mappings (e.g. VDSO) do not have any file so fake
2359 	 * a default GFP_KERNEL for them.
2360 	 */
2361 	return GFP_KERNEL;
2362 }
2363 
2364 /*
2365  * Notify the address space that the page is about to become writable so that
2366  * it can prohibit this or wait for the page to get into an appropriate state.
2367  *
2368  * We do this without the lock held, so that it can sleep if it needs to.
2369  */
2370 static int do_page_mkwrite(struct vm_fault *vmf)
2371 {
2372 	int ret;
2373 	struct page *page = vmf->page;
2374 	unsigned int old_flags = vmf->flags;
2375 
2376 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2377 
2378 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2379 	/* Restore original flags so that caller is not surprised */
2380 	vmf->flags = old_flags;
2381 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2382 		return ret;
2383 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2384 		lock_page(page);
2385 		if (!page->mapping) {
2386 			unlock_page(page);
2387 			return 0; /* retry */
2388 		}
2389 		ret |= VM_FAULT_LOCKED;
2390 	} else
2391 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2392 	return ret;
2393 }
2394 
2395 /*
2396  * Handle dirtying of a page in shared file mapping on a write fault.
2397  *
2398  * The function expects the page to be locked and unlocks it.
2399  */
2400 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2401 				    struct page *page)
2402 {
2403 	struct address_space *mapping;
2404 	bool dirtied;
2405 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2406 
2407 	dirtied = set_page_dirty(page);
2408 	VM_BUG_ON_PAGE(PageAnon(page), page);
2409 	/*
2410 	 * Take a local copy of the address_space - page.mapping may be zeroed
2411 	 * by truncate after unlock_page().   The address_space itself remains
2412 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2413 	 * release semantics to prevent the compiler from undoing this copying.
2414 	 */
2415 	mapping = page_rmapping(page);
2416 	unlock_page(page);
2417 
2418 	if ((dirtied || page_mkwrite) && mapping) {
2419 		/*
2420 		 * Some device drivers do not set page.mapping
2421 		 * but still dirty their pages
2422 		 */
2423 		balance_dirty_pages_ratelimited(mapping);
2424 	}
2425 
2426 	if (!page_mkwrite)
2427 		file_update_time(vma->vm_file);
2428 }
2429 
2430 /*
2431  * Handle write page faults for pages that can be reused in the current vma
2432  *
2433  * This can happen either due to the mapping being with the VM_SHARED flag,
2434  * or due to us being the last reference standing to the page. In either
2435  * case, all we need to do here is to mark the page as writable and update
2436  * any related book-keeping.
2437  */
2438 static inline void wp_page_reuse(struct vm_fault *vmf)
2439 	__releases(vmf->ptl)
2440 {
2441 	struct vm_area_struct *vma = vmf->vma;
2442 	struct page *page = vmf->page;
2443 	pte_t entry;
2444 	/*
2445 	 * Clear the pages cpupid information as the existing
2446 	 * information potentially belongs to a now completely
2447 	 * unrelated process.
2448 	 */
2449 	if (page)
2450 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2451 
2452 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2453 	entry = pte_mkyoung(vmf->orig_pte);
2454 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2455 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2456 		update_mmu_cache(vma, vmf->address, vmf->pte);
2457 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2458 }
2459 
2460 /*
2461  * Handle the case of a page which we actually need to copy to a new page.
2462  *
2463  * Called with mmap_sem locked and the old page referenced, but
2464  * without the ptl held.
2465  *
2466  * High level logic flow:
2467  *
2468  * - Allocate a page, copy the content of the old page to the new one.
2469  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2470  * - Take the PTL. If the pte changed, bail out and release the allocated page
2471  * - If the pte is still the way we remember it, update the page table and all
2472  *   relevant references. This includes dropping the reference the page-table
2473  *   held to the old page, as well as updating the rmap.
2474  * - In any case, unlock the PTL and drop the reference we took to the old page.
2475  */
2476 static int wp_page_copy(struct vm_fault *vmf)
2477 {
2478 	struct vm_area_struct *vma = vmf->vma;
2479 	struct mm_struct *mm = vma->vm_mm;
2480 	struct page *old_page = vmf->page;
2481 	struct page *new_page = NULL;
2482 	pte_t entry;
2483 	int page_copied = 0;
2484 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2485 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2486 	struct mem_cgroup *memcg;
2487 
2488 	if (unlikely(anon_vma_prepare(vma)))
2489 		goto oom;
2490 
2491 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2492 		new_page = alloc_zeroed_user_highpage_movable(vma,
2493 							      vmf->address);
2494 		if (!new_page)
2495 			goto oom;
2496 	} else {
2497 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2498 				vmf->address);
2499 		if (!new_page)
2500 			goto oom;
2501 		cow_user_page(new_page, old_page, vmf->address, vma);
2502 	}
2503 
2504 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2505 		goto oom_free_new;
2506 
2507 	__SetPageUptodate(new_page);
2508 
2509 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2510 
2511 	/*
2512 	 * Re-check the pte - we dropped the lock
2513 	 */
2514 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2515 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2516 		if (old_page) {
2517 			if (!PageAnon(old_page)) {
2518 				dec_mm_counter_fast(mm,
2519 						mm_counter_file(old_page));
2520 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2521 			}
2522 		} else {
2523 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2524 		}
2525 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2526 		entry = mk_pte(new_page, vma->vm_page_prot);
2527 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2528 		/*
2529 		 * Clear the pte entry and flush it first, before updating the
2530 		 * pte with the new entry. This will avoid a race condition
2531 		 * seen in the presence of one thread doing SMC and another
2532 		 * thread doing COW.
2533 		 */
2534 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2535 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2536 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2537 		lru_cache_add_active_or_unevictable(new_page, vma);
2538 		/*
2539 		 * We call the notify macro here because, when using secondary
2540 		 * mmu page tables (such as kvm shadow page tables), we want the
2541 		 * new page to be mapped directly into the secondary page table.
2542 		 */
2543 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2544 		update_mmu_cache(vma, vmf->address, vmf->pte);
2545 		if (old_page) {
2546 			/*
2547 			 * Only after switching the pte to the new page may
2548 			 * we remove the mapcount here. Otherwise another
2549 			 * process may come and find the rmap count decremented
2550 			 * before the pte is switched to the new page, and
2551 			 * "reuse" the old page writing into it while our pte
2552 			 * here still points into it and can be read by other
2553 			 * threads.
2554 			 *
2555 			 * The critical issue is to order this
2556 			 * page_remove_rmap with the ptp_clear_flush above.
2557 			 * Those stores are ordered by (if nothing else,)
2558 			 * the barrier present in the atomic_add_negative
2559 			 * in page_remove_rmap.
2560 			 *
2561 			 * Then the TLB flush in ptep_clear_flush ensures that
2562 			 * no process can access the old page before the
2563 			 * decremented mapcount is visible. And the old page
2564 			 * cannot be reused until after the decremented
2565 			 * mapcount is visible. So transitively, TLBs to
2566 			 * old page will be flushed before it can be reused.
2567 			 */
2568 			page_remove_rmap(old_page, false);
2569 		}
2570 
2571 		/* Free the old page.. */
2572 		new_page = old_page;
2573 		page_copied = 1;
2574 	} else {
2575 		mem_cgroup_cancel_charge(new_page, memcg, false);
2576 	}
2577 
2578 	if (new_page)
2579 		put_page(new_page);
2580 
2581 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2582 	/*
2583 	 * No need to double call mmu_notifier->invalidate_range() callback as
2584 	 * the above ptep_clear_flush_notify() did already call it.
2585 	 */
2586 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2587 	if (old_page) {
2588 		/*
2589 		 * Don't let another task, with possibly unlocked vma,
2590 		 * keep the mlocked page.
2591 		 */
2592 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2593 			lock_page(old_page);	/* LRU manipulation */
2594 			if (PageMlocked(old_page))
2595 				munlock_vma_page(old_page);
2596 			unlock_page(old_page);
2597 		}
2598 		put_page(old_page);
2599 	}
2600 	return page_copied ? VM_FAULT_WRITE : 0;
2601 oom_free_new:
2602 	put_page(new_page);
2603 oom:
2604 	if (old_page)
2605 		put_page(old_page);
2606 	return VM_FAULT_OOM;
2607 }
2608 
2609 /**
2610  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2611  *			  writeable once the page is prepared
2612  *
2613  * @vmf: structure describing the fault
2614  *
2615  * This function handles all that is needed to finish a write page fault in a
2616  * shared mapping due to PTE being read-only once the mapped page is prepared.
2617  * It handles locking of PTE and modifying it. The function returns
2618  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2619  * lock.
2620  *
2621  * The function expects the page to be locked or other protection against
2622  * concurrent faults / writeback (such as DAX radix tree locks).
2623  */
2624 int finish_mkwrite_fault(struct vm_fault *vmf)
2625 {
2626 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2627 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2628 				       &vmf->ptl);
2629 	/*
2630 	 * We might have raced with another page fault while we released the
2631 	 * pte_offset_map_lock.
2632 	 */
2633 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2634 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2635 		return VM_FAULT_NOPAGE;
2636 	}
2637 	wp_page_reuse(vmf);
2638 	return 0;
2639 }
2640 
2641 /*
2642  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2643  * mapping
2644  */
2645 static int wp_pfn_shared(struct vm_fault *vmf)
2646 {
2647 	struct vm_area_struct *vma = vmf->vma;
2648 
2649 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2650 		int ret;
2651 
2652 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2653 		vmf->flags |= FAULT_FLAG_MKWRITE;
2654 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2655 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2656 			return ret;
2657 		return finish_mkwrite_fault(vmf);
2658 	}
2659 	wp_page_reuse(vmf);
2660 	return VM_FAULT_WRITE;
2661 }
2662 
2663 static int wp_page_shared(struct vm_fault *vmf)
2664 	__releases(vmf->ptl)
2665 {
2666 	struct vm_area_struct *vma = vmf->vma;
2667 
2668 	get_page(vmf->page);
2669 
2670 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2671 		int tmp;
2672 
2673 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2674 		tmp = do_page_mkwrite(vmf);
2675 		if (unlikely(!tmp || (tmp &
2676 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2677 			put_page(vmf->page);
2678 			return tmp;
2679 		}
2680 		tmp = finish_mkwrite_fault(vmf);
2681 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2682 			unlock_page(vmf->page);
2683 			put_page(vmf->page);
2684 			return tmp;
2685 		}
2686 	} else {
2687 		wp_page_reuse(vmf);
2688 		lock_page(vmf->page);
2689 	}
2690 	fault_dirty_shared_page(vma, vmf->page);
2691 	put_page(vmf->page);
2692 
2693 	return VM_FAULT_WRITE;
2694 }
2695 
2696 /*
2697  * This routine handles present pages, when users try to write
2698  * to a shared page. It is done by copying the page to a new address
2699  * and decrementing the shared-page counter for the old page.
2700  *
2701  * Note that this routine assumes that the protection checks have been
2702  * done by the caller (the low-level page fault routine in most cases).
2703  * Thus we can safely just mark it writable once we've done any necessary
2704  * COW.
2705  *
2706  * We also mark the page dirty at this point even though the page will
2707  * change only once the write actually happens. This avoids a few races,
2708  * and potentially makes it more efficient.
2709  *
2710  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2711  * but allow concurrent faults), with pte both mapped and locked.
2712  * We return with mmap_sem still held, but pte unmapped and unlocked.
2713  */
2714 static int do_wp_page(struct vm_fault *vmf)
2715 	__releases(vmf->ptl)
2716 {
2717 	struct vm_area_struct *vma = vmf->vma;
2718 
2719 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2720 	if (!vmf->page) {
2721 		/*
2722 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2723 		 * VM_PFNMAP VMA.
2724 		 *
2725 		 * We should not cow pages in a shared writeable mapping.
2726 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2727 		 */
2728 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2729 				     (VM_WRITE|VM_SHARED))
2730 			return wp_pfn_shared(vmf);
2731 
2732 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2733 		return wp_page_copy(vmf);
2734 	}
2735 
2736 	/*
2737 	 * Take out anonymous pages first, anonymous shared vmas are
2738 	 * not dirty accountable.
2739 	 */
2740 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2741 		int total_map_swapcount;
2742 		if (!trylock_page(vmf->page)) {
2743 			get_page(vmf->page);
2744 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2745 			lock_page(vmf->page);
2746 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2747 					vmf->address, &vmf->ptl);
2748 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2749 				unlock_page(vmf->page);
2750 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2751 				put_page(vmf->page);
2752 				return 0;
2753 			}
2754 			put_page(vmf->page);
2755 		}
2756 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2757 			if (total_map_swapcount == 1) {
2758 				/*
2759 				 * The page is all ours. Move it to
2760 				 * our anon_vma so the rmap code will
2761 				 * not search our parent or siblings.
2762 				 * Protected against the rmap code by
2763 				 * the page lock.
2764 				 */
2765 				page_move_anon_rmap(vmf->page, vma);
2766 			}
2767 			unlock_page(vmf->page);
2768 			wp_page_reuse(vmf);
2769 			return VM_FAULT_WRITE;
2770 		}
2771 		unlock_page(vmf->page);
2772 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2773 					(VM_WRITE|VM_SHARED))) {
2774 		return wp_page_shared(vmf);
2775 	}
2776 
2777 	/*
2778 	 * Ok, we need to copy. Oh, well..
2779 	 */
2780 	get_page(vmf->page);
2781 
2782 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2783 	return wp_page_copy(vmf);
2784 }
2785 
2786 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2787 		unsigned long start_addr, unsigned long end_addr,
2788 		struct zap_details *details)
2789 {
2790 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2791 }
2792 
2793 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2794 					    struct zap_details *details)
2795 {
2796 	struct vm_area_struct *vma;
2797 	pgoff_t vba, vea, zba, zea;
2798 
2799 	vma_interval_tree_foreach(vma, root,
2800 			details->first_index, details->last_index) {
2801 
2802 		vba = vma->vm_pgoff;
2803 		vea = vba + vma_pages(vma) - 1;
2804 		zba = details->first_index;
2805 		if (zba < vba)
2806 			zba = vba;
2807 		zea = details->last_index;
2808 		if (zea > vea)
2809 			zea = vea;
2810 
2811 		unmap_mapping_range_vma(vma,
2812 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2813 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2814 				details);
2815 	}
2816 }
2817 
2818 /**
2819  * unmap_mapping_pages() - Unmap pages from processes.
2820  * @mapping: The address space containing pages to be unmapped.
2821  * @start: Index of first page to be unmapped.
2822  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2823  * @even_cows: Whether to unmap even private COWed pages.
2824  *
2825  * Unmap the pages in this address space from any userspace process which
2826  * has them mmaped.  Generally, you want to remove COWed pages as well when
2827  * a file is being truncated, but not when invalidating pages from the page
2828  * cache.
2829  */
2830 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2831 		pgoff_t nr, bool even_cows)
2832 {
2833 	struct zap_details details = { };
2834 
2835 	details.check_mapping = even_cows ? NULL : mapping;
2836 	details.first_index = start;
2837 	details.last_index = start + nr - 1;
2838 	if (details.last_index < details.first_index)
2839 		details.last_index = ULONG_MAX;
2840 
2841 	i_mmap_lock_write(mapping);
2842 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2843 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2844 	i_mmap_unlock_write(mapping);
2845 }
2846 
2847 /**
2848  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2849  * address_space corresponding to the specified byte range in the underlying
2850  * file.
2851  *
2852  * @mapping: the address space containing mmaps to be unmapped.
2853  * @holebegin: byte in first page to unmap, relative to the start of
2854  * the underlying file.  This will be rounded down to a PAGE_SIZE
2855  * boundary.  Note that this is different from truncate_pagecache(), which
2856  * must keep the partial page.  In contrast, we must get rid of
2857  * partial pages.
2858  * @holelen: size of prospective hole in bytes.  This will be rounded
2859  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2860  * end of the file.
2861  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2862  * but 0 when invalidating pagecache, don't throw away private data.
2863  */
2864 void unmap_mapping_range(struct address_space *mapping,
2865 		loff_t const holebegin, loff_t const holelen, int even_cows)
2866 {
2867 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2868 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2869 
2870 	/* Check for overflow. */
2871 	if (sizeof(holelen) > sizeof(hlen)) {
2872 		long long holeend =
2873 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2874 		if (holeend & ~(long long)ULONG_MAX)
2875 			hlen = ULONG_MAX - hba + 1;
2876 	}
2877 
2878 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2879 }
2880 EXPORT_SYMBOL(unmap_mapping_range);
2881 
2882 /*
2883  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2884  * but allow concurrent faults), and pte mapped but not yet locked.
2885  * We return with pte unmapped and unlocked.
2886  *
2887  * We return with the mmap_sem locked or unlocked in the same cases
2888  * as does filemap_fault().
2889  */
2890 int do_swap_page(struct vm_fault *vmf)
2891 {
2892 	struct vm_area_struct *vma = vmf->vma;
2893 	struct page *page = NULL, *swapcache;
2894 	struct mem_cgroup *memcg;
2895 	swp_entry_t entry;
2896 	pte_t pte;
2897 	int locked;
2898 	int exclusive = 0;
2899 	int ret = 0;
2900 
2901 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2902 		goto out;
2903 
2904 	entry = pte_to_swp_entry(vmf->orig_pte);
2905 	if (unlikely(non_swap_entry(entry))) {
2906 		if (is_migration_entry(entry)) {
2907 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2908 					     vmf->address);
2909 		} else if (is_device_private_entry(entry)) {
2910 			/*
2911 			 * For un-addressable device memory we call the pgmap
2912 			 * fault handler callback. The callback must migrate
2913 			 * the page back to some CPU accessible page.
2914 			 */
2915 			ret = device_private_entry_fault(vma, vmf->address, entry,
2916 						 vmf->flags, vmf->pmd);
2917 		} else if (is_hwpoison_entry(entry)) {
2918 			ret = VM_FAULT_HWPOISON;
2919 		} else {
2920 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2921 			ret = VM_FAULT_SIGBUS;
2922 		}
2923 		goto out;
2924 	}
2925 
2926 
2927 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2928 	page = lookup_swap_cache(entry, vma, vmf->address);
2929 	swapcache = page;
2930 
2931 	if (!page) {
2932 		struct swap_info_struct *si = swp_swap_info(entry);
2933 
2934 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2935 				__swap_count(si, entry) == 1) {
2936 			/* skip swapcache */
2937 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2938 							vmf->address);
2939 			if (page) {
2940 				__SetPageLocked(page);
2941 				__SetPageSwapBacked(page);
2942 				set_page_private(page, entry.val);
2943 				lru_cache_add_anon(page);
2944 				swap_readpage(page, true);
2945 			}
2946 		} else {
2947 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2948 						vmf);
2949 			swapcache = page;
2950 		}
2951 
2952 		if (!page) {
2953 			/*
2954 			 * Back out if somebody else faulted in this pte
2955 			 * while we released the pte lock.
2956 			 */
2957 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2958 					vmf->address, &vmf->ptl);
2959 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2960 				ret = VM_FAULT_OOM;
2961 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2962 			goto unlock;
2963 		}
2964 
2965 		/* Had to read the page from swap area: Major fault */
2966 		ret = VM_FAULT_MAJOR;
2967 		count_vm_event(PGMAJFAULT);
2968 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2969 	} else if (PageHWPoison(page)) {
2970 		/*
2971 		 * hwpoisoned dirty swapcache pages are kept for killing
2972 		 * owner processes (which may be unknown at hwpoison time)
2973 		 */
2974 		ret = VM_FAULT_HWPOISON;
2975 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2976 		goto out_release;
2977 	}
2978 
2979 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2980 
2981 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982 	if (!locked) {
2983 		ret |= VM_FAULT_RETRY;
2984 		goto out_release;
2985 	}
2986 
2987 	/*
2988 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2989 	 * release the swapcache from under us.  The page pin, and pte_same
2990 	 * test below, are not enough to exclude that.  Even if it is still
2991 	 * swapcache, we need to check that the page's swap has not changed.
2992 	 */
2993 	if (unlikely((!PageSwapCache(page) ||
2994 			page_private(page) != entry.val)) && swapcache)
2995 		goto out_page;
2996 
2997 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2998 	if (unlikely(!page)) {
2999 		ret = VM_FAULT_OOM;
3000 		page = swapcache;
3001 		goto out_page;
3002 	}
3003 
3004 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3005 				&memcg, false)) {
3006 		ret = VM_FAULT_OOM;
3007 		goto out_page;
3008 	}
3009 
3010 	/*
3011 	 * Back out if somebody else already faulted in this pte.
3012 	 */
3013 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3014 			&vmf->ptl);
3015 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3016 		goto out_nomap;
3017 
3018 	if (unlikely(!PageUptodate(page))) {
3019 		ret = VM_FAULT_SIGBUS;
3020 		goto out_nomap;
3021 	}
3022 
3023 	/*
3024 	 * The page isn't present yet, go ahead with the fault.
3025 	 *
3026 	 * Be careful about the sequence of operations here.
3027 	 * To get its accounting right, reuse_swap_page() must be called
3028 	 * while the page is counted on swap but not yet in mapcount i.e.
3029 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3030 	 * must be called after the swap_free(), or it will never succeed.
3031 	 */
3032 
3033 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3034 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3035 	pte = mk_pte(page, vma->vm_page_prot);
3036 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3037 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3038 		vmf->flags &= ~FAULT_FLAG_WRITE;
3039 		ret |= VM_FAULT_WRITE;
3040 		exclusive = RMAP_EXCLUSIVE;
3041 	}
3042 	flush_icache_page(vma, page);
3043 	if (pte_swp_soft_dirty(vmf->orig_pte))
3044 		pte = pte_mksoft_dirty(pte);
3045 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3046 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3047 	vmf->orig_pte = pte;
3048 
3049 	/* ksm created a completely new copy */
3050 	if (unlikely(page != swapcache && swapcache)) {
3051 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3052 		mem_cgroup_commit_charge(page, memcg, false, false);
3053 		lru_cache_add_active_or_unevictable(page, vma);
3054 	} else {
3055 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3056 		mem_cgroup_commit_charge(page, memcg, true, false);
3057 		activate_page(page);
3058 	}
3059 
3060 	swap_free(entry);
3061 	if (mem_cgroup_swap_full(page) ||
3062 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3063 		try_to_free_swap(page);
3064 	unlock_page(page);
3065 	if (page != swapcache && swapcache) {
3066 		/*
3067 		 * Hold the lock to avoid the swap entry to be reused
3068 		 * until we take the PT lock for the pte_same() check
3069 		 * (to avoid false positives from pte_same). For
3070 		 * further safety release the lock after the swap_free
3071 		 * so that the swap count won't change under a
3072 		 * parallel locked swapcache.
3073 		 */
3074 		unlock_page(swapcache);
3075 		put_page(swapcache);
3076 	}
3077 
3078 	if (vmf->flags & FAULT_FLAG_WRITE) {
3079 		ret |= do_wp_page(vmf);
3080 		if (ret & VM_FAULT_ERROR)
3081 			ret &= VM_FAULT_ERROR;
3082 		goto out;
3083 	}
3084 
3085 	/* No need to invalidate - it was non-present before */
3086 	update_mmu_cache(vma, vmf->address, vmf->pte);
3087 unlock:
3088 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3089 out:
3090 	return ret;
3091 out_nomap:
3092 	mem_cgroup_cancel_charge(page, memcg, false);
3093 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3094 out_page:
3095 	unlock_page(page);
3096 out_release:
3097 	put_page(page);
3098 	if (page != swapcache && swapcache) {
3099 		unlock_page(swapcache);
3100 		put_page(swapcache);
3101 	}
3102 	return ret;
3103 }
3104 
3105 /*
3106  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3107  * but allow concurrent faults), and pte mapped but not yet locked.
3108  * We return with mmap_sem still held, but pte unmapped and unlocked.
3109  */
3110 static int do_anonymous_page(struct vm_fault *vmf)
3111 {
3112 	struct vm_area_struct *vma = vmf->vma;
3113 	struct mem_cgroup *memcg;
3114 	struct page *page;
3115 	int ret = 0;
3116 	pte_t entry;
3117 
3118 	/* File mapping without ->vm_ops ? */
3119 	if (vma->vm_flags & VM_SHARED)
3120 		return VM_FAULT_SIGBUS;
3121 
3122 	/*
3123 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3124 	 * pte_offset_map() on pmds where a huge pmd might be created
3125 	 * from a different thread.
3126 	 *
3127 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3128 	 * parallel threads are excluded by other means.
3129 	 *
3130 	 * Here we only have down_read(mmap_sem).
3131 	 */
3132 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3133 		return VM_FAULT_OOM;
3134 
3135 	/* See the comment in pte_alloc_one_map() */
3136 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3137 		return 0;
3138 
3139 	/* Use the zero-page for reads */
3140 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3141 			!mm_forbids_zeropage(vma->vm_mm)) {
3142 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3143 						vma->vm_page_prot));
3144 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3145 				vmf->address, &vmf->ptl);
3146 		if (!pte_none(*vmf->pte))
3147 			goto unlock;
3148 		ret = check_stable_address_space(vma->vm_mm);
3149 		if (ret)
3150 			goto unlock;
3151 		/* Deliver the page fault to userland, check inside PT lock */
3152 		if (userfaultfd_missing(vma)) {
3153 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3154 			return handle_userfault(vmf, VM_UFFD_MISSING);
3155 		}
3156 		goto setpte;
3157 	}
3158 
3159 	/* Allocate our own private page. */
3160 	if (unlikely(anon_vma_prepare(vma)))
3161 		goto oom;
3162 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3163 	if (!page)
3164 		goto oom;
3165 
3166 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3167 		goto oom_free_page;
3168 
3169 	/*
3170 	 * The memory barrier inside __SetPageUptodate makes sure that
3171 	 * preceeding stores to the page contents become visible before
3172 	 * the set_pte_at() write.
3173 	 */
3174 	__SetPageUptodate(page);
3175 
3176 	entry = mk_pte(page, vma->vm_page_prot);
3177 	if (vma->vm_flags & VM_WRITE)
3178 		entry = pte_mkwrite(pte_mkdirty(entry));
3179 
3180 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3181 			&vmf->ptl);
3182 	if (!pte_none(*vmf->pte))
3183 		goto release;
3184 
3185 	ret = check_stable_address_space(vma->vm_mm);
3186 	if (ret)
3187 		goto release;
3188 
3189 	/* Deliver the page fault to userland, check inside PT lock */
3190 	if (userfaultfd_missing(vma)) {
3191 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3192 		mem_cgroup_cancel_charge(page, memcg, false);
3193 		put_page(page);
3194 		return handle_userfault(vmf, VM_UFFD_MISSING);
3195 	}
3196 
3197 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3198 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3199 	mem_cgroup_commit_charge(page, memcg, false, false);
3200 	lru_cache_add_active_or_unevictable(page, vma);
3201 setpte:
3202 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3203 
3204 	/* No need to invalidate - it was non-present before */
3205 	update_mmu_cache(vma, vmf->address, vmf->pte);
3206 unlock:
3207 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3208 	return ret;
3209 release:
3210 	mem_cgroup_cancel_charge(page, memcg, false);
3211 	put_page(page);
3212 	goto unlock;
3213 oom_free_page:
3214 	put_page(page);
3215 oom:
3216 	return VM_FAULT_OOM;
3217 }
3218 
3219 /*
3220  * The mmap_sem must have been held on entry, and may have been
3221  * released depending on flags and vma->vm_ops->fault() return value.
3222  * See filemap_fault() and __lock_page_retry().
3223  */
3224 static int __do_fault(struct vm_fault *vmf)
3225 {
3226 	struct vm_area_struct *vma = vmf->vma;
3227 	int ret;
3228 
3229 	ret = vma->vm_ops->fault(vmf);
3230 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3231 			    VM_FAULT_DONE_COW)))
3232 		return ret;
3233 
3234 	if (unlikely(PageHWPoison(vmf->page))) {
3235 		if (ret & VM_FAULT_LOCKED)
3236 			unlock_page(vmf->page);
3237 		put_page(vmf->page);
3238 		vmf->page = NULL;
3239 		return VM_FAULT_HWPOISON;
3240 	}
3241 
3242 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3243 		lock_page(vmf->page);
3244 	else
3245 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3246 
3247 	return ret;
3248 }
3249 
3250 /*
3251  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3252  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3253  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3254  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3255  */
3256 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3257 {
3258 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3259 }
3260 
3261 static int pte_alloc_one_map(struct vm_fault *vmf)
3262 {
3263 	struct vm_area_struct *vma = vmf->vma;
3264 
3265 	if (!pmd_none(*vmf->pmd))
3266 		goto map_pte;
3267 	if (vmf->prealloc_pte) {
3268 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3269 		if (unlikely(!pmd_none(*vmf->pmd))) {
3270 			spin_unlock(vmf->ptl);
3271 			goto map_pte;
3272 		}
3273 
3274 		mm_inc_nr_ptes(vma->vm_mm);
3275 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3276 		spin_unlock(vmf->ptl);
3277 		vmf->prealloc_pte = NULL;
3278 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3279 		return VM_FAULT_OOM;
3280 	}
3281 map_pte:
3282 	/*
3283 	 * If a huge pmd materialized under us just retry later.  Use
3284 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3285 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3286 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3287 	 * running immediately after a huge pmd fault in a different thread of
3288 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3289 	 * All we have to ensure is that it is a regular pmd that we can walk
3290 	 * with pte_offset_map() and we can do that through an atomic read in
3291 	 * C, which is what pmd_trans_unstable() provides.
3292 	 */
3293 	if (pmd_devmap_trans_unstable(vmf->pmd))
3294 		return VM_FAULT_NOPAGE;
3295 
3296 	/*
3297 	 * At this point we know that our vmf->pmd points to a page of ptes
3298 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3299 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3300 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3301 	 * be valid and we will re-check to make sure the vmf->pte isn't
3302 	 * pte_none() under vmf->ptl protection when we return to
3303 	 * alloc_set_pte().
3304 	 */
3305 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3306 			&vmf->ptl);
3307 	return 0;
3308 }
3309 
3310 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3311 
3312 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3313 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3314 		unsigned long haddr)
3315 {
3316 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3317 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3318 		return false;
3319 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3320 		return false;
3321 	return true;
3322 }
3323 
3324 static void deposit_prealloc_pte(struct vm_fault *vmf)
3325 {
3326 	struct vm_area_struct *vma = vmf->vma;
3327 
3328 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3329 	/*
3330 	 * We are going to consume the prealloc table,
3331 	 * count that as nr_ptes.
3332 	 */
3333 	mm_inc_nr_ptes(vma->vm_mm);
3334 	vmf->prealloc_pte = NULL;
3335 }
3336 
3337 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3338 {
3339 	struct vm_area_struct *vma = vmf->vma;
3340 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3341 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3342 	pmd_t entry;
3343 	int i, ret;
3344 
3345 	if (!transhuge_vma_suitable(vma, haddr))
3346 		return VM_FAULT_FALLBACK;
3347 
3348 	ret = VM_FAULT_FALLBACK;
3349 	page = compound_head(page);
3350 
3351 	/*
3352 	 * Archs like ppc64 need additonal space to store information
3353 	 * related to pte entry. Use the preallocated table for that.
3354 	 */
3355 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3356 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3357 		if (!vmf->prealloc_pte)
3358 			return VM_FAULT_OOM;
3359 		smp_wmb(); /* See comment in __pte_alloc() */
3360 	}
3361 
3362 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3363 	if (unlikely(!pmd_none(*vmf->pmd)))
3364 		goto out;
3365 
3366 	for (i = 0; i < HPAGE_PMD_NR; i++)
3367 		flush_icache_page(vma, page + i);
3368 
3369 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3370 	if (write)
3371 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3372 
3373 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3374 	page_add_file_rmap(page, true);
3375 	/*
3376 	 * deposit and withdraw with pmd lock held
3377 	 */
3378 	if (arch_needs_pgtable_deposit())
3379 		deposit_prealloc_pte(vmf);
3380 
3381 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3382 
3383 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3384 
3385 	/* fault is handled */
3386 	ret = 0;
3387 	count_vm_event(THP_FILE_MAPPED);
3388 out:
3389 	spin_unlock(vmf->ptl);
3390 	return ret;
3391 }
3392 #else
3393 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3394 {
3395 	BUILD_BUG();
3396 	return 0;
3397 }
3398 #endif
3399 
3400 /**
3401  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3402  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3403  *
3404  * @vmf: fault environment
3405  * @memcg: memcg to charge page (only for private mappings)
3406  * @page: page to map
3407  *
3408  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3409  * return.
3410  *
3411  * Target users are page handler itself and implementations of
3412  * vm_ops->map_pages.
3413  */
3414 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3415 		struct page *page)
3416 {
3417 	struct vm_area_struct *vma = vmf->vma;
3418 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3419 	pte_t entry;
3420 	int ret;
3421 
3422 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3423 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3424 		/* THP on COW? */
3425 		VM_BUG_ON_PAGE(memcg, page);
3426 
3427 		ret = do_set_pmd(vmf, page);
3428 		if (ret != VM_FAULT_FALLBACK)
3429 			return ret;
3430 	}
3431 
3432 	if (!vmf->pte) {
3433 		ret = pte_alloc_one_map(vmf);
3434 		if (ret)
3435 			return ret;
3436 	}
3437 
3438 	/* Re-check under ptl */
3439 	if (unlikely(!pte_none(*vmf->pte)))
3440 		return VM_FAULT_NOPAGE;
3441 
3442 	flush_icache_page(vma, page);
3443 	entry = mk_pte(page, vma->vm_page_prot);
3444 	if (write)
3445 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3446 	/* copy-on-write page */
3447 	if (write && !(vma->vm_flags & VM_SHARED)) {
3448 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3449 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3450 		mem_cgroup_commit_charge(page, memcg, false, false);
3451 		lru_cache_add_active_or_unevictable(page, vma);
3452 	} else {
3453 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3454 		page_add_file_rmap(page, false);
3455 	}
3456 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3457 
3458 	/* no need to invalidate: a not-present page won't be cached */
3459 	update_mmu_cache(vma, vmf->address, vmf->pte);
3460 
3461 	return 0;
3462 }
3463 
3464 
3465 /**
3466  * finish_fault - finish page fault once we have prepared the page to fault
3467  *
3468  * @vmf: structure describing the fault
3469  *
3470  * This function handles all that is needed to finish a page fault once the
3471  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3472  * given page, adds reverse page mapping, handles memcg charges and LRU
3473  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3474  * error.
3475  *
3476  * The function expects the page to be locked and on success it consumes a
3477  * reference of a page being mapped (for the PTE which maps it).
3478  */
3479 int finish_fault(struct vm_fault *vmf)
3480 {
3481 	struct page *page;
3482 	int ret = 0;
3483 
3484 	/* Did we COW the page? */
3485 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3486 	    !(vmf->vma->vm_flags & VM_SHARED))
3487 		page = vmf->cow_page;
3488 	else
3489 		page = vmf->page;
3490 
3491 	/*
3492 	 * check even for read faults because we might have lost our CoWed
3493 	 * page
3494 	 */
3495 	if (!(vmf->vma->vm_flags & VM_SHARED))
3496 		ret = check_stable_address_space(vmf->vma->vm_mm);
3497 	if (!ret)
3498 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3499 	if (vmf->pte)
3500 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3501 	return ret;
3502 }
3503 
3504 static unsigned long fault_around_bytes __read_mostly =
3505 	rounddown_pow_of_two(65536);
3506 
3507 #ifdef CONFIG_DEBUG_FS
3508 static int fault_around_bytes_get(void *data, u64 *val)
3509 {
3510 	*val = fault_around_bytes;
3511 	return 0;
3512 }
3513 
3514 /*
3515  * fault_around_bytes must be rounded down to the nearest page order as it's
3516  * what do_fault_around() expects to see.
3517  */
3518 static int fault_around_bytes_set(void *data, u64 val)
3519 {
3520 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3521 		return -EINVAL;
3522 	if (val > PAGE_SIZE)
3523 		fault_around_bytes = rounddown_pow_of_two(val);
3524 	else
3525 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3526 	return 0;
3527 }
3528 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3529 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3530 
3531 static int __init fault_around_debugfs(void)
3532 {
3533 	void *ret;
3534 
3535 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3536 			&fault_around_bytes_fops);
3537 	if (!ret)
3538 		pr_warn("Failed to create fault_around_bytes in debugfs");
3539 	return 0;
3540 }
3541 late_initcall(fault_around_debugfs);
3542 #endif
3543 
3544 /*
3545  * do_fault_around() tries to map few pages around the fault address. The hope
3546  * is that the pages will be needed soon and this will lower the number of
3547  * faults to handle.
3548  *
3549  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3550  * not ready to be mapped: not up-to-date, locked, etc.
3551  *
3552  * This function is called with the page table lock taken. In the split ptlock
3553  * case the page table lock only protects only those entries which belong to
3554  * the page table corresponding to the fault address.
3555  *
3556  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3557  * only once.
3558  *
3559  * fault_around_bytes defines how many bytes we'll try to map.
3560  * do_fault_around() expects it to be set to a power of two less than or equal
3561  * to PTRS_PER_PTE.
3562  *
3563  * The virtual address of the area that we map is naturally aligned to
3564  * fault_around_bytes rounded down to the machine page size
3565  * (and therefore to page order).  This way it's easier to guarantee
3566  * that we don't cross page table boundaries.
3567  */
3568 static int do_fault_around(struct vm_fault *vmf)
3569 {
3570 	unsigned long address = vmf->address, nr_pages, mask;
3571 	pgoff_t start_pgoff = vmf->pgoff;
3572 	pgoff_t end_pgoff;
3573 	int off, ret = 0;
3574 
3575 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3576 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3577 
3578 	vmf->address = max(address & mask, vmf->vma->vm_start);
3579 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3580 	start_pgoff -= off;
3581 
3582 	/*
3583 	 *  end_pgoff is either the end of the page table, the end of
3584 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3585 	 */
3586 	end_pgoff = start_pgoff -
3587 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3588 		PTRS_PER_PTE - 1;
3589 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3590 			start_pgoff + nr_pages - 1);
3591 
3592 	if (pmd_none(*vmf->pmd)) {
3593 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3594 						  vmf->address);
3595 		if (!vmf->prealloc_pte)
3596 			goto out;
3597 		smp_wmb(); /* See comment in __pte_alloc() */
3598 	}
3599 
3600 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3601 
3602 	/* Huge page is mapped? Page fault is solved */
3603 	if (pmd_trans_huge(*vmf->pmd)) {
3604 		ret = VM_FAULT_NOPAGE;
3605 		goto out;
3606 	}
3607 
3608 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3609 	if (!vmf->pte)
3610 		goto out;
3611 
3612 	/* check if the page fault is solved */
3613 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3614 	if (!pte_none(*vmf->pte))
3615 		ret = VM_FAULT_NOPAGE;
3616 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3617 out:
3618 	vmf->address = address;
3619 	vmf->pte = NULL;
3620 	return ret;
3621 }
3622 
3623 static int do_read_fault(struct vm_fault *vmf)
3624 {
3625 	struct vm_area_struct *vma = vmf->vma;
3626 	int ret = 0;
3627 
3628 	/*
3629 	 * Let's call ->map_pages() first and use ->fault() as fallback
3630 	 * if page by the offset is not ready to be mapped (cold cache or
3631 	 * something).
3632 	 */
3633 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3634 		ret = do_fault_around(vmf);
3635 		if (ret)
3636 			return ret;
3637 	}
3638 
3639 	ret = __do_fault(vmf);
3640 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3641 		return ret;
3642 
3643 	ret |= finish_fault(vmf);
3644 	unlock_page(vmf->page);
3645 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3646 		put_page(vmf->page);
3647 	return ret;
3648 }
3649 
3650 static int do_cow_fault(struct vm_fault *vmf)
3651 {
3652 	struct vm_area_struct *vma = vmf->vma;
3653 	int ret;
3654 
3655 	if (unlikely(anon_vma_prepare(vma)))
3656 		return VM_FAULT_OOM;
3657 
3658 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3659 	if (!vmf->cow_page)
3660 		return VM_FAULT_OOM;
3661 
3662 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3663 				&vmf->memcg, false)) {
3664 		put_page(vmf->cow_page);
3665 		return VM_FAULT_OOM;
3666 	}
3667 
3668 	ret = __do_fault(vmf);
3669 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3670 		goto uncharge_out;
3671 	if (ret & VM_FAULT_DONE_COW)
3672 		return ret;
3673 
3674 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3675 	__SetPageUptodate(vmf->cow_page);
3676 
3677 	ret |= finish_fault(vmf);
3678 	unlock_page(vmf->page);
3679 	put_page(vmf->page);
3680 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3681 		goto uncharge_out;
3682 	return ret;
3683 uncharge_out:
3684 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3685 	put_page(vmf->cow_page);
3686 	return ret;
3687 }
3688 
3689 static int do_shared_fault(struct vm_fault *vmf)
3690 {
3691 	struct vm_area_struct *vma = vmf->vma;
3692 	int ret, tmp;
3693 
3694 	ret = __do_fault(vmf);
3695 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3696 		return ret;
3697 
3698 	/*
3699 	 * Check if the backing address space wants to know that the page is
3700 	 * about to become writable
3701 	 */
3702 	if (vma->vm_ops->page_mkwrite) {
3703 		unlock_page(vmf->page);
3704 		tmp = do_page_mkwrite(vmf);
3705 		if (unlikely(!tmp ||
3706 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3707 			put_page(vmf->page);
3708 			return tmp;
3709 		}
3710 	}
3711 
3712 	ret |= finish_fault(vmf);
3713 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3714 					VM_FAULT_RETRY))) {
3715 		unlock_page(vmf->page);
3716 		put_page(vmf->page);
3717 		return ret;
3718 	}
3719 
3720 	fault_dirty_shared_page(vma, vmf->page);
3721 	return ret;
3722 }
3723 
3724 /*
3725  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3726  * but allow concurrent faults).
3727  * The mmap_sem may have been released depending on flags and our
3728  * return value.  See filemap_fault() and __lock_page_or_retry().
3729  */
3730 static int do_fault(struct vm_fault *vmf)
3731 {
3732 	struct vm_area_struct *vma = vmf->vma;
3733 	int ret;
3734 
3735 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3736 	if (!vma->vm_ops->fault)
3737 		ret = VM_FAULT_SIGBUS;
3738 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3739 		ret = do_read_fault(vmf);
3740 	else if (!(vma->vm_flags & VM_SHARED))
3741 		ret = do_cow_fault(vmf);
3742 	else
3743 		ret = do_shared_fault(vmf);
3744 
3745 	/* preallocated pagetable is unused: free it */
3746 	if (vmf->prealloc_pte) {
3747 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3748 		vmf->prealloc_pte = NULL;
3749 	}
3750 	return ret;
3751 }
3752 
3753 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3754 				unsigned long addr, int page_nid,
3755 				int *flags)
3756 {
3757 	get_page(page);
3758 
3759 	count_vm_numa_event(NUMA_HINT_FAULTS);
3760 	if (page_nid == numa_node_id()) {
3761 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3762 		*flags |= TNF_FAULT_LOCAL;
3763 	}
3764 
3765 	return mpol_misplaced(page, vma, addr);
3766 }
3767 
3768 static int do_numa_page(struct vm_fault *vmf)
3769 {
3770 	struct vm_area_struct *vma = vmf->vma;
3771 	struct page *page = NULL;
3772 	int page_nid = -1;
3773 	int last_cpupid;
3774 	int target_nid;
3775 	bool migrated = false;
3776 	pte_t pte;
3777 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3778 	int flags = 0;
3779 
3780 	/*
3781 	 * The "pte" at this point cannot be used safely without
3782 	 * validation through pte_unmap_same(). It's of NUMA type but
3783 	 * the pfn may be screwed if the read is non atomic.
3784 	 */
3785 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3786 	spin_lock(vmf->ptl);
3787 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3788 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3789 		goto out;
3790 	}
3791 
3792 	/*
3793 	 * Make it present again, Depending on how arch implementes non
3794 	 * accessible ptes, some can allow access by kernel mode.
3795 	 */
3796 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3797 	pte = pte_modify(pte, vma->vm_page_prot);
3798 	pte = pte_mkyoung(pte);
3799 	if (was_writable)
3800 		pte = pte_mkwrite(pte);
3801 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3802 	update_mmu_cache(vma, vmf->address, vmf->pte);
3803 
3804 	page = vm_normal_page(vma, vmf->address, pte);
3805 	if (!page) {
3806 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3807 		return 0;
3808 	}
3809 
3810 	/* TODO: handle PTE-mapped THP */
3811 	if (PageCompound(page)) {
3812 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3813 		return 0;
3814 	}
3815 
3816 	/*
3817 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3818 	 * much anyway since they can be in shared cache state. This misses
3819 	 * the case where a mapping is writable but the process never writes
3820 	 * to it but pte_write gets cleared during protection updates and
3821 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3822 	 * background writeback, dirty balancing and application behaviour.
3823 	 */
3824 	if (!pte_write(pte))
3825 		flags |= TNF_NO_GROUP;
3826 
3827 	/*
3828 	 * Flag if the page is shared between multiple address spaces. This
3829 	 * is later used when determining whether to group tasks together
3830 	 */
3831 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3832 		flags |= TNF_SHARED;
3833 
3834 	last_cpupid = page_cpupid_last(page);
3835 	page_nid = page_to_nid(page);
3836 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3837 			&flags);
3838 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3839 	if (target_nid == -1) {
3840 		put_page(page);
3841 		goto out;
3842 	}
3843 
3844 	/* Migrate to the requested node */
3845 	migrated = migrate_misplaced_page(page, vma, target_nid);
3846 	if (migrated) {
3847 		page_nid = target_nid;
3848 		flags |= TNF_MIGRATED;
3849 	} else
3850 		flags |= TNF_MIGRATE_FAIL;
3851 
3852 out:
3853 	if (page_nid != -1)
3854 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3855 	return 0;
3856 }
3857 
3858 static inline int create_huge_pmd(struct vm_fault *vmf)
3859 {
3860 	if (vma_is_anonymous(vmf->vma))
3861 		return do_huge_pmd_anonymous_page(vmf);
3862 	if (vmf->vma->vm_ops->huge_fault)
3863 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3864 	return VM_FAULT_FALLBACK;
3865 }
3866 
3867 /* `inline' is required to avoid gcc 4.1.2 build error */
3868 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3869 {
3870 	if (vma_is_anonymous(vmf->vma))
3871 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3872 	if (vmf->vma->vm_ops->huge_fault)
3873 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3874 
3875 	/* COW handled on pte level: split pmd */
3876 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3877 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3878 
3879 	return VM_FAULT_FALLBACK;
3880 }
3881 
3882 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3883 {
3884 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3885 }
3886 
3887 static int create_huge_pud(struct vm_fault *vmf)
3888 {
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890 	/* No support for anonymous transparent PUD pages yet */
3891 	if (vma_is_anonymous(vmf->vma))
3892 		return VM_FAULT_FALLBACK;
3893 	if (vmf->vma->vm_ops->huge_fault)
3894 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3896 	return VM_FAULT_FALLBACK;
3897 }
3898 
3899 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3900 {
3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3902 	/* No support for anonymous transparent PUD pages yet */
3903 	if (vma_is_anonymous(vmf->vma))
3904 		return VM_FAULT_FALLBACK;
3905 	if (vmf->vma->vm_ops->huge_fault)
3906 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3908 	return VM_FAULT_FALLBACK;
3909 }
3910 
3911 /*
3912  * These routines also need to handle stuff like marking pages dirty
3913  * and/or accessed for architectures that don't do it in hardware (most
3914  * RISC architectures).  The early dirtying is also good on the i386.
3915  *
3916  * There is also a hook called "update_mmu_cache()" that architectures
3917  * with external mmu caches can use to update those (ie the Sparc or
3918  * PowerPC hashed page tables that act as extended TLBs).
3919  *
3920  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3921  * concurrent faults).
3922  *
3923  * The mmap_sem may have been released depending on flags and our return value.
3924  * See filemap_fault() and __lock_page_or_retry().
3925  */
3926 static int handle_pte_fault(struct vm_fault *vmf)
3927 {
3928 	pte_t entry;
3929 
3930 	if (unlikely(pmd_none(*vmf->pmd))) {
3931 		/*
3932 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3933 		 * want to allocate huge page, and if we expose page table
3934 		 * for an instant, it will be difficult to retract from
3935 		 * concurrent faults and from rmap lookups.
3936 		 */
3937 		vmf->pte = NULL;
3938 	} else {
3939 		/* See comment in pte_alloc_one_map() */
3940 		if (pmd_devmap_trans_unstable(vmf->pmd))
3941 			return 0;
3942 		/*
3943 		 * A regular pmd is established and it can't morph into a huge
3944 		 * pmd from under us anymore at this point because we hold the
3945 		 * mmap_sem read mode and khugepaged takes it in write mode.
3946 		 * So now it's safe to run pte_offset_map().
3947 		 */
3948 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3949 		vmf->orig_pte = *vmf->pte;
3950 
3951 		/*
3952 		 * some architectures can have larger ptes than wordsize,
3953 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3954 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3955 		 * accesses.  The code below just needs a consistent view
3956 		 * for the ifs and we later double check anyway with the
3957 		 * ptl lock held. So here a barrier will do.
3958 		 */
3959 		barrier();
3960 		if (pte_none(vmf->orig_pte)) {
3961 			pte_unmap(vmf->pte);
3962 			vmf->pte = NULL;
3963 		}
3964 	}
3965 
3966 	if (!vmf->pte) {
3967 		if (vma_is_anonymous(vmf->vma))
3968 			return do_anonymous_page(vmf);
3969 		else
3970 			return do_fault(vmf);
3971 	}
3972 
3973 	if (!pte_present(vmf->orig_pte))
3974 		return do_swap_page(vmf);
3975 
3976 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3977 		return do_numa_page(vmf);
3978 
3979 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3980 	spin_lock(vmf->ptl);
3981 	entry = vmf->orig_pte;
3982 	if (unlikely(!pte_same(*vmf->pte, entry)))
3983 		goto unlock;
3984 	if (vmf->flags & FAULT_FLAG_WRITE) {
3985 		if (!pte_write(entry))
3986 			return do_wp_page(vmf);
3987 		entry = pte_mkdirty(entry);
3988 	}
3989 	entry = pte_mkyoung(entry);
3990 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3991 				vmf->flags & FAULT_FLAG_WRITE)) {
3992 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3993 	} else {
3994 		/*
3995 		 * This is needed only for protection faults but the arch code
3996 		 * is not yet telling us if this is a protection fault or not.
3997 		 * This still avoids useless tlb flushes for .text page faults
3998 		 * with threads.
3999 		 */
4000 		if (vmf->flags & FAULT_FLAG_WRITE)
4001 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4002 	}
4003 unlock:
4004 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4005 	return 0;
4006 }
4007 
4008 /*
4009  * By the time we get here, we already hold the mm semaphore
4010  *
4011  * The mmap_sem may have been released depending on flags and our
4012  * return value.  See filemap_fault() and __lock_page_or_retry().
4013  */
4014 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4015 		unsigned int flags)
4016 {
4017 	struct vm_fault vmf = {
4018 		.vma = vma,
4019 		.address = address & PAGE_MASK,
4020 		.flags = flags,
4021 		.pgoff = linear_page_index(vma, address),
4022 		.gfp_mask = __get_fault_gfp_mask(vma),
4023 	};
4024 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4025 	struct mm_struct *mm = vma->vm_mm;
4026 	pgd_t *pgd;
4027 	p4d_t *p4d;
4028 	int ret;
4029 
4030 	pgd = pgd_offset(mm, address);
4031 	p4d = p4d_alloc(mm, pgd, address);
4032 	if (!p4d)
4033 		return VM_FAULT_OOM;
4034 
4035 	vmf.pud = pud_alloc(mm, p4d, address);
4036 	if (!vmf.pud)
4037 		return VM_FAULT_OOM;
4038 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4039 		ret = create_huge_pud(&vmf);
4040 		if (!(ret & VM_FAULT_FALLBACK))
4041 			return ret;
4042 	} else {
4043 		pud_t orig_pud = *vmf.pud;
4044 
4045 		barrier();
4046 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4047 
4048 			/* NUMA case for anonymous PUDs would go here */
4049 
4050 			if (dirty && !pud_write(orig_pud)) {
4051 				ret = wp_huge_pud(&vmf, orig_pud);
4052 				if (!(ret & VM_FAULT_FALLBACK))
4053 					return ret;
4054 			} else {
4055 				huge_pud_set_accessed(&vmf, orig_pud);
4056 				return 0;
4057 			}
4058 		}
4059 	}
4060 
4061 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4062 	if (!vmf.pmd)
4063 		return VM_FAULT_OOM;
4064 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4065 		ret = create_huge_pmd(&vmf);
4066 		if (!(ret & VM_FAULT_FALLBACK))
4067 			return ret;
4068 	} else {
4069 		pmd_t orig_pmd = *vmf.pmd;
4070 
4071 		barrier();
4072 		if (unlikely(is_swap_pmd(orig_pmd))) {
4073 			VM_BUG_ON(thp_migration_supported() &&
4074 					  !is_pmd_migration_entry(orig_pmd));
4075 			if (is_pmd_migration_entry(orig_pmd))
4076 				pmd_migration_entry_wait(mm, vmf.pmd);
4077 			return 0;
4078 		}
4079 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4080 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4081 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4082 
4083 			if (dirty && !pmd_write(orig_pmd)) {
4084 				ret = wp_huge_pmd(&vmf, orig_pmd);
4085 				if (!(ret & VM_FAULT_FALLBACK))
4086 					return ret;
4087 			} else {
4088 				huge_pmd_set_accessed(&vmf, orig_pmd);
4089 				return 0;
4090 			}
4091 		}
4092 	}
4093 
4094 	return handle_pte_fault(&vmf);
4095 }
4096 
4097 /*
4098  * By the time we get here, we already hold the mm semaphore
4099  *
4100  * The mmap_sem may have been released depending on flags and our
4101  * return value.  See filemap_fault() and __lock_page_or_retry().
4102  */
4103 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4104 		unsigned int flags)
4105 {
4106 	int ret;
4107 
4108 	__set_current_state(TASK_RUNNING);
4109 
4110 	count_vm_event(PGFAULT);
4111 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4112 
4113 	/* do counter updates before entering really critical section. */
4114 	check_sync_rss_stat(current);
4115 
4116 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4117 					    flags & FAULT_FLAG_INSTRUCTION,
4118 					    flags & FAULT_FLAG_REMOTE))
4119 		return VM_FAULT_SIGSEGV;
4120 
4121 	/*
4122 	 * Enable the memcg OOM handling for faults triggered in user
4123 	 * space.  Kernel faults are handled more gracefully.
4124 	 */
4125 	if (flags & FAULT_FLAG_USER)
4126 		mem_cgroup_oom_enable();
4127 
4128 	if (unlikely(is_vm_hugetlb_page(vma)))
4129 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4130 	else
4131 		ret = __handle_mm_fault(vma, address, flags);
4132 
4133 	if (flags & FAULT_FLAG_USER) {
4134 		mem_cgroup_oom_disable();
4135 		/*
4136 		 * The task may have entered a memcg OOM situation but
4137 		 * if the allocation error was handled gracefully (no
4138 		 * VM_FAULT_OOM), there is no need to kill anything.
4139 		 * Just clean up the OOM state peacefully.
4140 		 */
4141 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4142 			mem_cgroup_oom_synchronize(false);
4143 	}
4144 
4145 	return ret;
4146 }
4147 EXPORT_SYMBOL_GPL(handle_mm_fault);
4148 
4149 #ifndef __PAGETABLE_P4D_FOLDED
4150 /*
4151  * Allocate p4d page table.
4152  * We've already handled the fast-path in-line.
4153  */
4154 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4155 {
4156 	p4d_t *new = p4d_alloc_one(mm, address);
4157 	if (!new)
4158 		return -ENOMEM;
4159 
4160 	smp_wmb(); /* See comment in __pte_alloc */
4161 
4162 	spin_lock(&mm->page_table_lock);
4163 	if (pgd_present(*pgd))		/* Another has populated it */
4164 		p4d_free(mm, new);
4165 	else
4166 		pgd_populate(mm, pgd, new);
4167 	spin_unlock(&mm->page_table_lock);
4168 	return 0;
4169 }
4170 #endif /* __PAGETABLE_P4D_FOLDED */
4171 
4172 #ifndef __PAGETABLE_PUD_FOLDED
4173 /*
4174  * Allocate page upper directory.
4175  * We've already handled the fast-path in-line.
4176  */
4177 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4178 {
4179 	pud_t *new = pud_alloc_one(mm, address);
4180 	if (!new)
4181 		return -ENOMEM;
4182 
4183 	smp_wmb(); /* See comment in __pte_alloc */
4184 
4185 	spin_lock(&mm->page_table_lock);
4186 #ifndef __ARCH_HAS_5LEVEL_HACK
4187 	if (!p4d_present(*p4d)) {
4188 		mm_inc_nr_puds(mm);
4189 		p4d_populate(mm, p4d, new);
4190 	} else	/* Another has populated it */
4191 		pud_free(mm, new);
4192 #else
4193 	if (!pgd_present(*p4d)) {
4194 		mm_inc_nr_puds(mm);
4195 		pgd_populate(mm, p4d, new);
4196 	} else	/* Another has populated it */
4197 		pud_free(mm, new);
4198 #endif /* __ARCH_HAS_5LEVEL_HACK */
4199 	spin_unlock(&mm->page_table_lock);
4200 	return 0;
4201 }
4202 #endif /* __PAGETABLE_PUD_FOLDED */
4203 
4204 #ifndef __PAGETABLE_PMD_FOLDED
4205 /*
4206  * Allocate page middle directory.
4207  * We've already handled the fast-path in-line.
4208  */
4209 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4210 {
4211 	spinlock_t *ptl;
4212 	pmd_t *new = pmd_alloc_one(mm, address);
4213 	if (!new)
4214 		return -ENOMEM;
4215 
4216 	smp_wmb(); /* See comment in __pte_alloc */
4217 
4218 	ptl = pud_lock(mm, pud);
4219 #ifndef __ARCH_HAS_4LEVEL_HACK
4220 	if (!pud_present(*pud)) {
4221 		mm_inc_nr_pmds(mm);
4222 		pud_populate(mm, pud, new);
4223 	} else	/* Another has populated it */
4224 		pmd_free(mm, new);
4225 #else
4226 	if (!pgd_present(*pud)) {
4227 		mm_inc_nr_pmds(mm);
4228 		pgd_populate(mm, pud, new);
4229 	} else /* Another has populated it */
4230 		pmd_free(mm, new);
4231 #endif /* __ARCH_HAS_4LEVEL_HACK */
4232 	spin_unlock(ptl);
4233 	return 0;
4234 }
4235 #endif /* __PAGETABLE_PMD_FOLDED */
4236 
4237 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4238 			    unsigned long *start, unsigned long *end,
4239 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4240 {
4241 	pgd_t *pgd;
4242 	p4d_t *p4d;
4243 	pud_t *pud;
4244 	pmd_t *pmd;
4245 	pte_t *ptep;
4246 
4247 	pgd = pgd_offset(mm, address);
4248 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4249 		goto out;
4250 
4251 	p4d = p4d_offset(pgd, address);
4252 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4253 		goto out;
4254 
4255 	pud = pud_offset(p4d, address);
4256 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4257 		goto out;
4258 
4259 	pmd = pmd_offset(pud, address);
4260 	VM_BUG_ON(pmd_trans_huge(*pmd));
4261 
4262 	if (pmd_huge(*pmd)) {
4263 		if (!pmdpp)
4264 			goto out;
4265 
4266 		if (start && end) {
4267 			*start = address & PMD_MASK;
4268 			*end = *start + PMD_SIZE;
4269 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4270 		}
4271 		*ptlp = pmd_lock(mm, pmd);
4272 		if (pmd_huge(*pmd)) {
4273 			*pmdpp = pmd;
4274 			return 0;
4275 		}
4276 		spin_unlock(*ptlp);
4277 		if (start && end)
4278 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4279 	}
4280 
4281 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4282 		goto out;
4283 
4284 	if (start && end) {
4285 		*start = address & PAGE_MASK;
4286 		*end = *start + PAGE_SIZE;
4287 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4288 	}
4289 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4290 	if (!pte_present(*ptep))
4291 		goto unlock;
4292 	*ptepp = ptep;
4293 	return 0;
4294 unlock:
4295 	pte_unmap_unlock(ptep, *ptlp);
4296 	if (start && end)
4297 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4298 out:
4299 	return -EINVAL;
4300 }
4301 
4302 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4303 			     pte_t **ptepp, spinlock_t **ptlp)
4304 {
4305 	int res;
4306 
4307 	/* (void) is needed to make gcc happy */
4308 	(void) __cond_lock(*ptlp,
4309 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4310 						    ptepp, NULL, ptlp)));
4311 	return res;
4312 }
4313 
4314 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4315 			     unsigned long *start, unsigned long *end,
4316 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4317 {
4318 	int res;
4319 
4320 	/* (void) is needed to make gcc happy */
4321 	(void) __cond_lock(*ptlp,
4322 			   !(res = __follow_pte_pmd(mm, address, start, end,
4323 						    ptepp, pmdpp, ptlp)));
4324 	return res;
4325 }
4326 EXPORT_SYMBOL(follow_pte_pmd);
4327 
4328 /**
4329  * follow_pfn - look up PFN at a user virtual address
4330  * @vma: memory mapping
4331  * @address: user virtual address
4332  * @pfn: location to store found PFN
4333  *
4334  * Only IO mappings and raw PFN mappings are allowed.
4335  *
4336  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4337  */
4338 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4339 	unsigned long *pfn)
4340 {
4341 	int ret = -EINVAL;
4342 	spinlock_t *ptl;
4343 	pte_t *ptep;
4344 
4345 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4346 		return ret;
4347 
4348 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4349 	if (ret)
4350 		return ret;
4351 	*pfn = pte_pfn(*ptep);
4352 	pte_unmap_unlock(ptep, ptl);
4353 	return 0;
4354 }
4355 EXPORT_SYMBOL(follow_pfn);
4356 
4357 #ifdef CONFIG_HAVE_IOREMAP_PROT
4358 int follow_phys(struct vm_area_struct *vma,
4359 		unsigned long address, unsigned int flags,
4360 		unsigned long *prot, resource_size_t *phys)
4361 {
4362 	int ret = -EINVAL;
4363 	pte_t *ptep, pte;
4364 	spinlock_t *ptl;
4365 
4366 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4367 		goto out;
4368 
4369 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4370 		goto out;
4371 	pte = *ptep;
4372 
4373 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4374 		goto unlock;
4375 
4376 	*prot = pgprot_val(pte_pgprot(pte));
4377 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4378 
4379 	ret = 0;
4380 unlock:
4381 	pte_unmap_unlock(ptep, ptl);
4382 out:
4383 	return ret;
4384 }
4385 
4386 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4387 			void *buf, int len, int write)
4388 {
4389 	resource_size_t phys_addr;
4390 	unsigned long prot = 0;
4391 	void __iomem *maddr;
4392 	int offset = addr & (PAGE_SIZE-1);
4393 
4394 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4395 		return -EINVAL;
4396 
4397 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4398 	if (write)
4399 		memcpy_toio(maddr + offset, buf, len);
4400 	else
4401 		memcpy_fromio(buf, maddr + offset, len);
4402 	iounmap(maddr);
4403 
4404 	return len;
4405 }
4406 EXPORT_SYMBOL_GPL(generic_access_phys);
4407 #endif
4408 
4409 /*
4410  * Access another process' address space as given in mm.  If non-NULL, use the
4411  * given task for page fault accounting.
4412  */
4413 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4414 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4415 {
4416 	struct vm_area_struct *vma;
4417 	void *old_buf = buf;
4418 	int write = gup_flags & FOLL_WRITE;
4419 
4420 	down_read(&mm->mmap_sem);
4421 	/* ignore errors, just check how much was successfully transferred */
4422 	while (len) {
4423 		int bytes, ret, offset;
4424 		void *maddr;
4425 		struct page *page = NULL;
4426 
4427 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4428 				gup_flags, &page, &vma, NULL);
4429 		if (ret <= 0) {
4430 #ifndef CONFIG_HAVE_IOREMAP_PROT
4431 			break;
4432 #else
4433 			/*
4434 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4435 			 * we can access using slightly different code.
4436 			 */
4437 			vma = find_vma(mm, addr);
4438 			if (!vma || vma->vm_start > addr)
4439 				break;
4440 			if (vma->vm_ops && vma->vm_ops->access)
4441 				ret = vma->vm_ops->access(vma, addr, buf,
4442 							  len, write);
4443 			if (ret <= 0)
4444 				break;
4445 			bytes = ret;
4446 #endif
4447 		} else {
4448 			bytes = len;
4449 			offset = addr & (PAGE_SIZE-1);
4450 			if (bytes > PAGE_SIZE-offset)
4451 				bytes = PAGE_SIZE-offset;
4452 
4453 			maddr = kmap(page);
4454 			if (write) {
4455 				copy_to_user_page(vma, page, addr,
4456 						  maddr + offset, buf, bytes);
4457 				set_page_dirty_lock(page);
4458 			} else {
4459 				copy_from_user_page(vma, page, addr,
4460 						    buf, maddr + offset, bytes);
4461 			}
4462 			kunmap(page);
4463 			put_page(page);
4464 		}
4465 		len -= bytes;
4466 		buf += bytes;
4467 		addr += bytes;
4468 	}
4469 	up_read(&mm->mmap_sem);
4470 
4471 	return buf - old_buf;
4472 }
4473 
4474 /**
4475  * access_remote_vm - access another process' address space
4476  * @mm:		the mm_struct of the target address space
4477  * @addr:	start address to access
4478  * @buf:	source or destination buffer
4479  * @len:	number of bytes to transfer
4480  * @gup_flags:	flags modifying lookup behaviour
4481  *
4482  * The caller must hold a reference on @mm.
4483  */
4484 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4485 		void *buf, int len, unsigned int gup_flags)
4486 {
4487 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4488 }
4489 
4490 /*
4491  * Access another process' address space.
4492  * Source/target buffer must be kernel space,
4493  * Do not walk the page table directly, use get_user_pages
4494  */
4495 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4496 		void *buf, int len, unsigned int gup_flags)
4497 {
4498 	struct mm_struct *mm;
4499 	int ret;
4500 
4501 	mm = get_task_mm(tsk);
4502 	if (!mm)
4503 		return 0;
4504 
4505 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4506 
4507 	mmput(mm);
4508 
4509 	return ret;
4510 }
4511 EXPORT_SYMBOL_GPL(access_process_vm);
4512 
4513 /*
4514  * Print the name of a VMA.
4515  */
4516 void print_vma_addr(char *prefix, unsigned long ip)
4517 {
4518 	struct mm_struct *mm = current->mm;
4519 	struct vm_area_struct *vma;
4520 
4521 	/*
4522 	 * we might be running from an atomic context so we cannot sleep
4523 	 */
4524 	if (!down_read_trylock(&mm->mmap_sem))
4525 		return;
4526 
4527 	vma = find_vma(mm, ip);
4528 	if (vma && vma->vm_file) {
4529 		struct file *f = vma->vm_file;
4530 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4531 		if (buf) {
4532 			char *p;
4533 
4534 			p = file_path(f, buf, PAGE_SIZE);
4535 			if (IS_ERR(p))
4536 				p = "?";
4537 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4538 					vma->vm_start,
4539 					vma->vm_end - vma->vm_start);
4540 			free_page((unsigned long)buf);
4541 		}
4542 	}
4543 	up_read(&mm->mmap_sem);
4544 }
4545 
4546 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4547 void __might_fault(const char *file, int line)
4548 {
4549 	/*
4550 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4551 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4552 	 * get paged out, therefore we'll never actually fault, and the
4553 	 * below annotations will generate false positives.
4554 	 */
4555 	if (uaccess_kernel())
4556 		return;
4557 	if (pagefault_disabled())
4558 		return;
4559 	__might_sleep(file, line, 0);
4560 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4561 	if (current->mm)
4562 		might_lock_read(&current->mm->mmap_sem);
4563 #endif
4564 }
4565 EXPORT_SYMBOL(__might_fault);
4566 #endif
4567 
4568 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4569 static void clear_gigantic_page(struct page *page,
4570 				unsigned long addr,
4571 				unsigned int pages_per_huge_page)
4572 {
4573 	int i;
4574 	struct page *p = page;
4575 
4576 	might_sleep();
4577 	for (i = 0; i < pages_per_huge_page;
4578 	     i++, p = mem_map_next(p, page, i)) {
4579 		cond_resched();
4580 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4581 	}
4582 }
4583 void clear_huge_page(struct page *page,
4584 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4585 {
4586 	int i, n, base, l;
4587 	unsigned long addr = addr_hint &
4588 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4589 
4590 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4591 		clear_gigantic_page(page, addr, pages_per_huge_page);
4592 		return;
4593 	}
4594 
4595 	/* Clear sub-page to access last to keep its cache lines hot */
4596 	might_sleep();
4597 	n = (addr_hint - addr) / PAGE_SIZE;
4598 	if (2 * n <= pages_per_huge_page) {
4599 		/* If sub-page to access in first half of huge page */
4600 		base = 0;
4601 		l = n;
4602 		/* Clear sub-pages at the end of huge page */
4603 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4604 			cond_resched();
4605 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4606 		}
4607 	} else {
4608 		/* If sub-page to access in second half of huge page */
4609 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4610 		l = pages_per_huge_page - n;
4611 		/* Clear sub-pages at the begin of huge page */
4612 		for (i = 0; i < base; i++) {
4613 			cond_resched();
4614 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4615 		}
4616 	}
4617 	/*
4618 	 * Clear remaining sub-pages in left-right-left-right pattern
4619 	 * towards the sub-page to access
4620 	 */
4621 	for (i = 0; i < l; i++) {
4622 		int left_idx = base + i;
4623 		int right_idx = base + 2 * l - 1 - i;
4624 
4625 		cond_resched();
4626 		clear_user_highpage(page + left_idx,
4627 				    addr + left_idx * PAGE_SIZE);
4628 		cond_resched();
4629 		clear_user_highpage(page + right_idx,
4630 				    addr + right_idx * PAGE_SIZE);
4631 	}
4632 }
4633 
4634 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4635 				    unsigned long addr,
4636 				    struct vm_area_struct *vma,
4637 				    unsigned int pages_per_huge_page)
4638 {
4639 	int i;
4640 	struct page *dst_base = dst;
4641 	struct page *src_base = src;
4642 
4643 	for (i = 0; i < pages_per_huge_page; ) {
4644 		cond_resched();
4645 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4646 
4647 		i++;
4648 		dst = mem_map_next(dst, dst_base, i);
4649 		src = mem_map_next(src, src_base, i);
4650 	}
4651 }
4652 
4653 void copy_user_huge_page(struct page *dst, struct page *src,
4654 			 unsigned long addr, struct vm_area_struct *vma,
4655 			 unsigned int pages_per_huge_page)
4656 {
4657 	int i;
4658 
4659 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4660 		copy_user_gigantic_page(dst, src, addr, vma,
4661 					pages_per_huge_page);
4662 		return;
4663 	}
4664 
4665 	might_sleep();
4666 	for (i = 0; i < pages_per_huge_page; i++) {
4667 		cond_resched();
4668 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4669 	}
4670 }
4671 
4672 long copy_huge_page_from_user(struct page *dst_page,
4673 				const void __user *usr_src,
4674 				unsigned int pages_per_huge_page,
4675 				bool allow_pagefault)
4676 {
4677 	void *src = (void *)usr_src;
4678 	void *page_kaddr;
4679 	unsigned long i, rc = 0;
4680 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4681 
4682 	for (i = 0; i < pages_per_huge_page; i++) {
4683 		if (allow_pagefault)
4684 			page_kaddr = kmap(dst_page + i);
4685 		else
4686 			page_kaddr = kmap_atomic(dst_page + i);
4687 		rc = copy_from_user(page_kaddr,
4688 				(const void __user *)(src + i * PAGE_SIZE),
4689 				PAGE_SIZE);
4690 		if (allow_pagefault)
4691 			kunmap(dst_page + i);
4692 		else
4693 			kunmap_atomic(page_kaddr);
4694 
4695 		ret_val -= (PAGE_SIZE - rc);
4696 		if (rc)
4697 			break;
4698 
4699 		cond_resched();
4700 	}
4701 	return ret_val;
4702 }
4703 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4704 
4705 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4706 
4707 static struct kmem_cache *page_ptl_cachep;
4708 
4709 void __init ptlock_cache_init(void)
4710 {
4711 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4712 			SLAB_PANIC, NULL);
4713 }
4714 
4715 bool ptlock_alloc(struct page *page)
4716 {
4717 	spinlock_t *ptl;
4718 
4719 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4720 	if (!ptl)
4721 		return false;
4722 	page->ptl = ptl;
4723 	return true;
4724 }
4725 
4726 void ptlock_free(struct page *page)
4727 {
4728 	kmem_cache_free(page_ptl_cachep, page->ptl);
4729 }
4730 #endif
4731