1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 #ifdef HAVE_GENERIC_MMU_GATHER 190 191 static bool tlb_next_batch(struct mmu_gather *tlb) 192 { 193 struct mmu_gather_batch *batch; 194 195 batch = tlb->active; 196 if (batch->next) { 197 tlb->active = batch->next; 198 return true; 199 } 200 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 202 return false; 203 204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 205 if (!batch) 206 return false; 207 208 tlb->batch_count++; 209 batch->next = NULL; 210 batch->nr = 0; 211 batch->max = MAX_GATHER_BATCH; 212 213 tlb->active->next = batch; 214 tlb->active = batch; 215 216 return true; 217 } 218 219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 220 unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 242 { 243 if (!tlb->end) 244 return; 245 246 tlb_flush(tlb); 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 249 tlb_table_flush(tlb); 250 #endif 251 __tlb_reset_range(tlb); 252 } 253 254 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 255 { 256 struct mmu_gather_batch *batch; 257 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 259 free_pages_and_swap_cache(batch->pages, batch->nr); 260 batch->nr = 0; 261 } 262 tlb->active = &tlb->local; 263 } 264 265 void tlb_flush_mmu(struct mmu_gather *tlb) 266 { 267 tlb_flush_mmu_tlbonly(tlb); 268 tlb_flush_mmu_free(tlb); 269 } 270 271 /* tlb_finish_mmu 272 * Called at the end of the shootdown operation to free up any resources 273 * that were required. 274 */ 275 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 276 unsigned long start, unsigned long end, bool force) 277 { 278 struct mmu_gather_batch *batch, *next; 279 280 if (force) 281 __tlb_adjust_range(tlb, start, end - start); 282 283 tlb_flush_mmu(tlb); 284 285 /* keep the page table cache within bounds */ 286 check_pgt_cache(); 287 288 for (batch = tlb->local.next; batch; batch = next) { 289 next = batch->next; 290 free_pages((unsigned long)batch, 0); 291 } 292 tlb->local.next = NULL; 293 } 294 295 /* __tlb_remove_page 296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 297 * handling the additional races in SMP caused by other CPUs caching valid 298 * mappings in their TLBs. Returns the number of free page slots left. 299 * When out of page slots we must call tlb_flush_mmu(). 300 *returns true if the caller should flush. 301 */ 302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 303 { 304 struct mmu_gather_batch *batch; 305 306 VM_BUG_ON(!tlb->end); 307 VM_WARN_ON(tlb->page_size != page_size); 308 309 batch = tlb->active; 310 /* 311 * Add the page and check if we are full. If so 312 * force a flush. 313 */ 314 batch->pages[batch->nr++] = page; 315 if (batch->nr == batch->max) { 316 if (!tlb_next_batch(tlb)) 317 return true; 318 batch = tlb->active; 319 } 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 321 322 return false; 323 } 324 325 #endif /* HAVE_GENERIC_MMU_GATHER */ 326 327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 328 329 /* 330 * See the comment near struct mmu_table_batch. 331 */ 332 333 static void tlb_remove_table_smp_sync(void *arg) 334 { 335 /* Simply deliver the interrupt */ 336 } 337 338 static void tlb_remove_table_one(void *table) 339 { 340 /* 341 * This isn't an RCU grace period and hence the page-tables cannot be 342 * assumed to be actually RCU-freed. 343 * 344 * It is however sufficient for software page-table walkers that rely on 345 * IRQ disabling. See the comment near struct mmu_table_batch. 346 */ 347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 348 __tlb_remove_table(table); 349 } 350 351 static void tlb_remove_table_rcu(struct rcu_head *head) 352 { 353 struct mmu_table_batch *batch; 354 int i; 355 356 batch = container_of(head, struct mmu_table_batch, rcu); 357 358 for (i = 0; i < batch->nr; i++) 359 __tlb_remove_table(batch->tables[i]); 360 361 free_page((unsigned long)batch); 362 } 363 364 void tlb_table_flush(struct mmu_gather *tlb) 365 { 366 struct mmu_table_batch **batch = &tlb->batch; 367 368 if (*batch) { 369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 370 *batch = NULL; 371 } 372 } 373 374 void tlb_remove_table(struct mmu_gather *tlb, void *table) 375 { 376 struct mmu_table_batch **batch = &tlb->batch; 377 378 /* 379 * When there's less then two users of this mm there cannot be a 380 * concurrent page-table walk. 381 */ 382 if (atomic_read(&tlb->mm->mm_users) < 2) { 383 __tlb_remove_table(table); 384 return; 385 } 386 387 if (*batch == NULL) { 388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 389 if (*batch == NULL) { 390 tlb_remove_table_one(table); 391 return; 392 } 393 (*batch)->nr = 0; 394 } 395 (*batch)->tables[(*batch)->nr++] = table; 396 if ((*batch)->nr == MAX_TABLE_BATCH) 397 tlb_table_flush(tlb); 398 } 399 400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 401 402 /** 403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 404 * @tlb: the mmu_gather structure to initialize 405 * @mm: the mm_struct of the target address space 406 * @start: start of the region that will be removed from the page-table 407 * @end: end of the region that will be removed from the page-table 408 * 409 * Called to initialize an (on-stack) mmu_gather structure for page-table 410 * tear-down from @mm. The @start and @end are set to 0 and -1 411 * respectively when @mm is without users and we're going to destroy 412 * the full address space (exit/execve). 413 */ 414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 415 unsigned long start, unsigned long end) 416 { 417 arch_tlb_gather_mmu(tlb, mm, start, end); 418 inc_tlb_flush_pending(tlb->mm); 419 } 420 421 void tlb_finish_mmu(struct mmu_gather *tlb, 422 unsigned long start, unsigned long end) 423 { 424 /* 425 * If there are parallel threads are doing PTE changes on same range 426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB 427 * flush by batching, a thread has stable TLB entry can fail to flush 428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB 429 * forcefully if we detect parallel PTE batching threads. 430 */ 431 bool force = mm_tlb_flush_nested(tlb->mm); 432 433 arch_tlb_finish_mmu(tlb, start, end, force); 434 dec_tlb_flush_pending(tlb->mm); 435 } 436 437 /* 438 * Note: this doesn't free the actual pages themselves. That 439 * has been handled earlier when unmapping all the memory regions. 440 */ 441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 442 unsigned long addr) 443 { 444 pgtable_t token = pmd_pgtable(*pmd); 445 pmd_clear(pmd); 446 pte_free_tlb(tlb, token, addr); 447 mm_dec_nr_ptes(tlb->mm); 448 } 449 450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 451 unsigned long addr, unsigned long end, 452 unsigned long floor, unsigned long ceiling) 453 { 454 pmd_t *pmd; 455 unsigned long next; 456 unsigned long start; 457 458 start = addr; 459 pmd = pmd_offset(pud, addr); 460 do { 461 next = pmd_addr_end(addr, end); 462 if (pmd_none_or_clear_bad(pmd)) 463 continue; 464 free_pte_range(tlb, pmd, addr); 465 } while (pmd++, addr = next, addr != end); 466 467 start &= PUD_MASK; 468 if (start < floor) 469 return; 470 if (ceiling) { 471 ceiling &= PUD_MASK; 472 if (!ceiling) 473 return; 474 } 475 if (end - 1 > ceiling - 1) 476 return; 477 478 pmd = pmd_offset(pud, start); 479 pud_clear(pud); 480 pmd_free_tlb(tlb, pmd, start); 481 mm_dec_nr_pmds(tlb->mm); 482 } 483 484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 485 unsigned long addr, unsigned long end, 486 unsigned long floor, unsigned long ceiling) 487 { 488 pud_t *pud; 489 unsigned long next; 490 unsigned long start; 491 492 start = addr; 493 pud = pud_offset(p4d, addr); 494 do { 495 next = pud_addr_end(addr, end); 496 if (pud_none_or_clear_bad(pud)) 497 continue; 498 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 499 } while (pud++, addr = next, addr != end); 500 501 start &= P4D_MASK; 502 if (start < floor) 503 return; 504 if (ceiling) { 505 ceiling &= P4D_MASK; 506 if (!ceiling) 507 return; 508 } 509 if (end - 1 > ceiling - 1) 510 return; 511 512 pud = pud_offset(p4d, start); 513 p4d_clear(p4d); 514 pud_free_tlb(tlb, pud, start); 515 mm_dec_nr_puds(tlb->mm); 516 } 517 518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 519 unsigned long addr, unsigned long end, 520 unsigned long floor, unsigned long ceiling) 521 { 522 p4d_t *p4d; 523 unsigned long next; 524 unsigned long start; 525 526 start = addr; 527 p4d = p4d_offset(pgd, addr); 528 do { 529 next = p4d_addr_end(addr, end); 530 if (p4d_none_or_clear_bad(p4d)) 531 continue; 532 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 533 } while (p4d++, addr = next, addr != end); 534 535 start &= PGDIR_MASK; 536 if (start < floor) 537 return; 538 if (ceiling) { 539 ceiling &= PGDIR_MASK; 540 if (!ceiling) 541 return; 542 } 543 if (end - 1 > ceiling - 1) 544 return; 545 546 p4d = p4d_offset(pgd, start); 547 pgd_clear(pgd); 548 p4d_free_tlb(tlb, p4d, start); 549 } 550 551 /* 552 * This function frees user-level page tables of a process. 553 */ 554 void free_pgd_range(struct mmu_gather *tlb, 555 unsigned long addr, unsigned long end, 556 unsigned long floor, unsigned long ceiling) 557 { 558 pgd_t *pgd; 559 unsigned long next; 560 561 /* 562 * The next few lines have given us lots of grief... 563 * 564 * Why are we testing PMD* at this top level? Because often 565 * there will be no work to do at all, and we'd prefer not to 566 * go all the way down to the bottom just to discover that. 567 * 568 * Why all these "- 1"s? Because 0 represents both the bottom 569 * of the address space and the top of it (using -1 for the 570 * top wouldn't help much: the masks would do the wrong thing). 571 * The rule is that addr 0 and floor 0 refer to the bottom of 572 * the address space, but end 0 and ceiling 0 refer to the top 573 * Comparisons need to use "end - 1" and "ceiling - 1" (though 574 * that end 0 case should be mythical). 575 * 576 * Wherever addr is brought up or ceiling brought down, we must 577 * be careful to reject "the opposite 0" before it confuses the 578 * subsequent tests. But what about where end is brought down 579 * by PMD_SIZE below? no, end can't go down to 0 there. 580 * 581 * Whereas we round start (addr) and ceiling down, by different 582 * masks at different levels, in order to test whether a table 583 * now has no other vmas using it, so can be freed, we don't 584 * bother to round floor or end up - the tests don't need that. 585 */ 586 587 addr &= PMD_MASK; 588 if (addr < floor) { 589 addr += PMD_SIZE; 590 if (!addr) 591 return; 592 } 593 if (ceiling) { 594 ceiling &= PMD_MASK; 595 if (!ceiling) 596 return; 597 } 598 if (end - 1 > ceiling - 1) 599 end -= PMD_SIZE; 600 if (addr > end - 1) 601 return; 602 /* 603 * We add page table cache pages with PAGE_SIZE, 604 * (see pte_free_tlb()), flush the tlb if we need 605 */ 606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 607 pgd = pgd_offset(tlb->mm, addr); 608 do { 609 next = pgd_addr_end(addr, end); 610 if (pgd_none_or_clear_bad(pgd)) 611 continue; 612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 613 } while (pgd++, addr = next, addr != end); 614 } 615 616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 617 unsigned long floor, unsigned long ceiling) 618 { 619 while (vma) { 620 struct vm_area_struct *next = vma->vm_next; 621 unsigned long addr = vma->vm_start; 622 623 /* 624 * Hide vma from rmap and truncate_pagecache before freeing 625 * pgtables 626 */ 627 unlink_anon_vmas(vma); 628 unlink_file_vma(vma); 629 630 if (is_vm_hugetlb_page(vma)) { 631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 632 floor, next ? next->vm_start : ceiling); 633 } else { 634 /* 635 * Optimization: gather nearby vmas into one call down 636 */ 637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 638 && !is_vm_hugetlb_page(next)) { 639 vma = next; 640 next = vma->vm_next; 641 unlink_anon_vmas(vma); 642 unlink_file_vma(vma); 643 } 644 free_pgd_range(tlb, addr, vma->vm_end, 645 floor, next ? next->vm_start : ceiling); 646 } 647 vma = next; 648 } 649 } 650 651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 652 { 653 spinlock_t *ptl; 654 pgtable_t new = pte_alloc_one(mm, address); 655 if (!new) 656 return -ENOMEM; 657 658 /* 659 * Ensure all pte setup (eg. pte page lock and page clearing) are 660 * visible before the pte is made visible to other CPUs by being 661 * put into page tables. 662 * 663 * The other side of the story is the pointer chasing in the page 664 * table walking code (when walking the page table without locking; 665 * ie. most of the time). Fortunately, these data accesses consist 666 * of a chain of data-dependent loads, meaning most CPUs (alpha 667 * being the notable exception) will already guarantee loads are 668 * seen in-order. See the alpha page table accessors for the 669 * smp_read_barrier_depends() barriers in page table walking code. 670 */ 671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 672 673 ptl = pmd_lock(mm, pmd); 674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 675 mm_inc_nr_ptes(mm); 676 pmd_populate(mm, pmd, new); 677 new = NULL; 678 } 679 spin_unlock(ptl); 680 if (new) 681 pte_free(mm, new); 682 return 0; 683 } 684 685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 686 { 687 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 688 if (!new) 689 return -ENOMEM; 690 691 smp_wmb(); /* See comment in __pte_alloc */ 692 693 spin_lock(&init_mm.page_table_lock); 694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 695 pmd_populate_kernel(&init_mm, pmd, new); 696 new = NULL; 697 } 698 spin_unlock(&init_mm.page_table_lock); 699 if (new) 700 pte_free_kernel(&init_mm, new); 701 return 0; 702 } 703 704 static inline void init_rss_vec(int *rss) 705 { 706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 707 } 708 709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 710 { 711 int i; 712 713 if (current->mm == mm) 714 sync_mm_rss(mm); 715 for (i = 0; i < NR_MM_COUNTERS; i++) 716 if (rss[i]) 717 add_mm_counter(mm, i, rss[i]); 718 } 719 720 /* 721 * This function is called to print an error when a bad pte 722 * is found. For example, we might have a PFN-mapped pte in 723 * a region that doesn't allow it. 724 * 725 * The calling function must still handle the error. 726 */ 727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 728 pte_t pte, struct page *page) 729 { 730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 731 p4d_t *p4d = p4d_offset(pgd, addr); 732 pud_t *pud = pud_offset(p4d, addr); 733 pmd_t *pmd = pmd_offset(pud, addr); 734 struct address_space *mapping; 735 pgoff_t index; 736 static unsigned long resume; 737 static unsigned long nr_shown; 738 static unsigned long nr_unshown; 739 740 /* 741 * Allow a burst of 60 reports, then keep quiet for that minute; 742 * or allow a steady drip of one report per second. 743 */ 744 if (nr_shown == 60) { 745 if (time_before(jiffies, resume)) { 746 nr_unshown++; 747 return; 748 } 749 if (nr_unshown) { 750 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 751 nr_unshown); 752 nr_unshown = 0; 753 } 754 nr_shown = 0; 755 } 756 if (nr_shown++ == 0) 757 resume = jiffies + 60 * HZ; 758 759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 760 index = linear_page_index(vma, addr); 761 762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 763 current->comm, 764 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 765 if (page) 766 dump_page(page, "bad pte"); 767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 770 vma->vm_file, 771 vma->vm_ops ? vma->vm_ops->fault : NULL, 772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 773 mapping ? mapping->a_ops->readpage : NULL); 774 dump_stack(); 775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 776 } 777 778 /* 779 * vm_normal_page -- This function gets the "struct page" associated with a pte. 780 * 781 * "Special" mappings do not wish to be associated with a "struct page" (either 782 * it doesn't exist, or it exists but they don't want to touch it). In this 783 * case, NULL is returned here. "Normal" mappings do have a struct page. 784 * 785 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 786 * pte bit, in which case this function is trivial. Secondly, an architecture 787 * may not have a spare pte bit, which requires a more complicated scheme, 788 * described below. 789 * 790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 791 * special mapping (even if there are underlying and valid "struct pages"). 792 * COWed pages of a VM_PFNMAP are always normal. 793 * 794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 797 * mapping will always honor the rule 798 * 799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 800 * 801 * And for normal mappings this is false. 802 * 803 * This restricts such mappings to be a linear translation from virtual address 804 * to pfn. To get around this restriction, we allow arbitrary mappings so long 805 * as the vma is not a COW mapping; in that case, we know that all ptes are 806 * special (because none can have been COWed). 807 * 808 * 809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 810 * 811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 812 * page" backing, however the difference is that _all_ pages with a struct 813 * page (that is, those where pfn_valid is true) are refcounted and considered 814 * normal pages by the VM. The disadvantage is that pages are refcounted 815 * (which can be slower and simply not an option for some PFNMAP users). The 816 * advantage is that we don't have to follow the strict linearity rule of 817 * PFNMAP mappings in order to support COWable mappings. 818 * 819 */ 820 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 821 pte_t pte, bool with_public_device) 822 { 823 unsigned long pfn = pte_pfn(pte); 824 825 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 826 if (likely(!pte_special(pte))) 827 goto check_pfn; 828 if (vma->vm_ops && vma->vm_ops->find_special_page) 829 return vma->vm_ops->find_special_page(vma, addr); 830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 831 return NULL; 832 if (is_zero_pfn(pfn)) 833 return NULL; 834 835 /* 836 * Device public pages are special pages (they are ZONE_DEVICE 837 * pages but different from persistent memory). They behave 838 * allmost like normal pages. The difference is that they are 839 * not on the lru and thus should never be involve with any- 840 * thing that involve lru manipulation (mlock, numa balancing, 841 * ...). 842 * 843 * This is why we still want to return NULL for such page from 844 * vm_normal_page() so that we do not have to special case all 845 * call site of vm_normal_page(). 846 */ 847 if (likely(pfn <= highest_memmap_pfn)) { 848 struct page *page = pfn_to_page(pfn); 849 850 if (is_device_public_page(page)) { 851 if (with_public_device) 852 return page; 853 return NULL; 854 } 855 } 856 print_bad_pte(vma, addr, pte, NULL); 857 return NULL; 858 } 859 860 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 861 862 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 863 if (vma->vm_flags & VM_MIXEDMAP) { 864 if (!pfn_valid(pfn)) 865 return NULL; 866 goto out; 867 } else { 868 unsigned long off; 869 off = (addr - vma->vm_start) >> PAGE_SHIFT; 870 if (pfn == vma->vm_pgoff + off) 871 return NULL; 872 if (!is_cow_mapping(vma->vm_flags)) 873 return NULL; 874 } 875 } 876 877 if (is_zero_pfn(pfn)) 878 return NULL; 879 880 check_pfn: 881 if (unlikely(pfn > highest_memmap_pfn)) { 882 print_bad_pte(vma, addr, pte, NULL); 883 return NULL; 884 } 885 886 /* 887 * NOTE! We still have PageReserved() pages in the page tables. 888 * eg. VDSO mappings can cause them to exist. 889 */ 890 out: 891 return pfn_to_page(pfn); 892 } 893 894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 896 pmd_t pmd) 897 { 898 unsigned long pfn = pmd_pfn(pmd); 899 900 /* 901 * There is no pmd_special() but there may be special pmds, e.g. 902 * in a direct-access (dax) mapping, so let's just replicate the 903 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 904 */ 905 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 906 if (vma->vm_flags & VM_MIXEDMAP) { 907 if (!pfn_valid(pfn)) 908 return NULL; 909 goto out; 910 } else { 911 unsigned long off; 912 off = (addr - vma->vm_start) >> PAGE_SHIFT; 913 if (pfn == vma->vm_pgoff + off) 914 return NULL; 915 if (!is_cow_mapping(vma->vm_flags)) 916 return NULL; 917 } 918 } 919 920 if (is_zero_pfn(pfn)) 921 return NULL; 922 if (unlikely(pfn > highest_memmap_pfn)) 923 return NULL; 924 925 /* 926 * NOTE! We still have PageReserved() pages in the page tables. 927 * eg. VDSO mappings can cause them to exist. 928 */ 929 out: 930 return pfn_to_page(pfn); 931 } 932 #endif 933 934 /* 935 * copy one vm_area from one task to the other. Assumes the page tables 936 * already present in the new task to be cleared in the whole range 937 * covered by this vma. 938 */ 939 940 static inline unsigned long 941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 942 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 943 unsigned long addr, int *rss) 944 { 945 unsigned long vm_flags = vma->vm_flags; 946 pte_t pte = *src_pte; 947 struct page *page; 948 949 /* pte contains position in swap or file, so copy. */ 950 if (unlikely(!pte_present(pte))) { 951 swp_entry_t entry = pte_to_swp_entry(pte); 952 953 if (likely(!non_swap_entry(entry))) { 954 if (swap_duplicate(entry) < 0) 955 return entry.val; 956 957 /* make sure dst_mm is on swapoff's mmlist. */ 958 if (unlikely(list_empty(&dst_mm->mmlist))) { 959 spin_lock(&mmlist_lock); 960 if (list_empty(&dst_mm->mmlist)) 961 list_add(&dst_mm->mmlist, 962 &src_mm->mmlist); 963 spin_unlock(&mmlist_lock); 964 } 965 rss[MM_SWAPENTS]++; 966 } else if (is_migration_entry(entry)) { 967 page = migration_entry_to_page(entry); 968 969 rss[mm_counter(page)]++; 970 971 if (is_write_migration_entry(entry) && 972 is_cow_mapping(vm_flags)) { 973 /* 974 * COW mappings require pages in both 975 * parent and child to be set to read. 976 */ 977 make_migration_entry_read(&entry); 978 pte = swp_entry_to_pte(entry); 979 if (pte_swp_soft_dirty(*src_pte)) 980 pte = pte_swp_mksoft_dirty(pte); 981 set_pte_at(src_mm, addr, src_pte, pte); 982 } 983 } else if (is_device_private_entry(entry)) { 984 page = device_private_entry_to_page(entry); 985 986 /* 987 * Update rss count even for unaddressable pages, as 988 * they should treated just like normal pages in this 989 * respect. 990 * 991 * We will likely want to have some new rss counters 992 * for unaddressable pages, at some point. But for now 993 * keep things as they are. 994 */ 995 get_page(page); 996 rss[mm_counter(page)]++; 997 page_dup_rmap(page, false); 998 999 /* 1000 * We do not preserve soft-dirty information, because so 1001 * far, checkpoint/restore is the only feature that 1002 * requires that. And checkpoint/restore does not work 1003 * when a device driver is involved (you cannot easily 1004 * save and restore device driver state). 1005 */ 1006 if (is_write_device_private_entry(entry) && 1007 is_cow_mapping(vm_flags)) { 1008 make_device_private_entry_read(&entry); 1009 pte = swp_entry_to_pte(entry); 1010 set_pte_at(src_mm, addr, src_pte, pte); 1011 } 1012 } 1013 goto out_set_pte; 1014 } 1015 1016 /* 1017 * If it's a COW mapping, write protect it both 1018 * in the parent and the child 1019 */ 1020 if (is_cow_mapping(vm_flags)) { 1021 ptep_set_wrprotect(src_mm, addr, src_pte); 1022 pte = pte_wrprotect(pte); 1023 } 1024 1025 /* 1026 * If it's a shared mapping, mark it clean in 1027 * the child 1028 */ 1029 if (vm_flags & VM_SHARED) 1030 pte = pte_mkclean(pte); 1031 pte = pte_mkold(pte); 1032 1033 page = vm_normal_page(vma, addr, pte); 1034 if (page) { 1035 get_page(page); 1036 page_dup_rmap(page, false); 1037 rss[mm_counter(page)]++; 1038 } else if (pte_devmap(pte)) { 1039 page = pte_page(pte); 1040 1041 /* 1042 * Cache coherent device memory behave like regular page and 1043 * not like persistent memory page. For more informations see 1044 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 1045 */ 1046 if (is_device_public_page(page)) { 1047 get_page(page); 1048 page_dup_rmap(page, false); 1049 rss[mm_counter(page)]++; 1050 } 1051 } 1052 1053 out_set_pte: 1054 set_pte_at(dst_mm, addr, dst_pte, pte); 1055 return 0; 1056 } 1057 1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1059 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 1060 unsigned long addr, unsigned long end) 1061 { 1062 pte_t *orig_src_pte, *orig_dst_pte; 1063 pte_t *src_pte, *dst_pte; 1064 spinlock_t *src_ptl, *dst_ptl; 1065 int progress = 0; 1066 int rss[NR_MM_COUNTERS]; 1067 swp_entry_t entry = (swp_entry_t){0}; 1068 1069 again: 1070 init_rss_vec(rss); 1071 1072 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1073 if (!dst_pte) 1074 return -ENOMEM; 1075 src_pte = pte_offset_map(src_pmd, addr); 1076 src_ptl = pte_lockptr(src_mm, src_pmd); 1077 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1078 orig_src_pte = src_pte; 1079 orig_dst_pte = dst_pte; 1080 arch_enter_lazy_mmu_mode(); 1081 1082 do { 1083 /* 1084 * We are holding two locks at this point - either of them 1085 * could generate latencies in another task on another CPU. 1086 */ 1087 if (progress >= 32) { 1088 progress = 0; 1089 if (need_resched() || 1090 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1091 break; 1092 } 1093 if (pte_none(*src_pte)) { 1094 progress++; 1095 continue; 1096 } 1097 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1098 vma, addr, rss); 1099 if (entry.val) 1100 break; 1101 progress += 8; 1102 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1103 1104 arch_leave_lazy_mmu_mode(); 1105 spin_unlock(src_ptl); 1106 pte_unmap(orig_src_pte); 1107 add_mm_rss_vec(dst_mm, rss); 1108 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1109 cond_resched(); 1110 1111 if (entry.val) { 1112 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1113 return -ENOMEM; 1114 progress = 0; 1115 } 1116 if (addr != end) 1117 goto again; 1118 return 0; 1119 } 1120 1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1122 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1123 unsigned long addr, unsigned long end) 1124 { 1125 pmd_t *src_pmd, *dst_pmd; 1126 unsigned long next; 1127 1128 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1129 if (!dst_pmd) 1130 return -ENOMEM; 1131 src_pmd = pmd_offset(src_pud, addr); 1132 do { 1133 next = pmd_addr_end(addr, end); 1134 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1135 || pmd_devmap(*src_pmd)) { 1136 int err; 1137 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1138 err = copy_huge_pmd(dst_mm, src_mm, 1139 dst_pmd, src_pmd, addr, vma); 1140 if (err == -ENOMEM) 1141 return -ENOMEM; 1142 if (!err) 1143 continue; 1144 /* fall through */ 1145 } 1146 if (pmd_none_or_clear_bad(src_pmd)) 1147 continue; 1148 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1149 vma, addr, next)) 1150 return -ENOMEM; 1151 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1152 return 0; 1153 } 1154 1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1156 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1157 unsigned long addr, unsigned long end) 1158 { 1159 pud_t *src_pud, *dst_pud; 1160 unsigned long next; 1161 1162 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1163 if (!dst_pud) 1164 return -ENOMEM; 1165 src_pud = pud_offset(src_p4d, addr); 1166 do { 1167 next = pud_addr_end(addr, end); 1168 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1169 int err; 1170 1171 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1172 err = copy_huge_pud(dst_mm, src_mm, 1173 dst_pud, src_pud, addr, vma); 1174 if (err == -ENOMEM) 1175 return -ENOMEM; 1176 if (!err) 1177 continue; 1178 /* fall through */ 1179 } 1180 if (pud_none_or_clear_bad(src_pud)) 1181 continue; 1182 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1183 vma, addr, next)) 1184 return -ENOMEM; 1185 } while (dst_pud++, src_pud++, addr = next, addr != end); 1186 return 0; 1187 } 1188 1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1190 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1191 unsigned long addr, unsigned long end) 1192 { 1193 p4d_t *src_p4d, *dst_p4d; 1194 unsigned long next; 1195 1196 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1197 if (!dst_p4d) 1198 return -ENOMEM; 1199 src_p4d = p4d_offset(src_pgd, addr); 1200 do { 1201 next = p4d_addr_end(addr, end); 1202 if (p4d_none_or_clear_bad(src_p4d)) 1203 continue; 1204 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1205 vma, addr, next)) 1206 return -ENOMEM; 1207 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1212 struct vm_area_struct *vma) 1213 { 1214 pgd_t *src_pgd, *dst_pgd; 1215 unsigned long next; 1216 unsigned long addr = vma->vm_start; 1217 unsigned long end = vma->vm_end; 1218 unsigned long mmun_start; /* For mmu_notifiers */ 1219 unsigned long mmun_end; /* For mmu_notifiers */ 1220 bool is_cow; 1221 int ret; 1222 1223 /* 1224 * Don't copy ptes where a page fault will fill them correctly. 1225 * Fork becomes much lighter when there are big shared or private 1226 * readonly mappings. The tradeoff is that copy_page_range is more 1227 * efficient than faulting. 1228 */ 1229 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1230 !vma->anon_vma) 1231 return 0; 1232 1233 if (is_vm_hugetlb_page(vma)) 1234 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1235 1236 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1237 /* 1238 * We do not free on error cases below as remove_vma 1239 * gets called on error from higher level routine 1240 */ 1241 ret = track_pfn_copy(vma); 1242 if (ret) 1243 return ret; 1244 } 1245 1246 /* 1247 * We need to invalidate the secondary MMU mappings only when 1248 * there could be a permission downgrade on the ptes of the 1249 * parent mm. And a permission downgrade will only happen if 1250 * is_cow_mapping() returns true. 1251 */ 1252 is_cow = is_cow_mapping(vma->vm_flags); 1253 mmun_start = addr; 1254 mmun_end = end; 1255 if (is_cow) 1256 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1257 mmun_end); 1258 1259 ret = 0; 1260 dst_pgd = pgd_offset(dst_mm, addr); 1261 src_pgd = pgd_offset(src_mm, addr); 1262 do { 1263 next = pgd_addr_end(addr, end); 1264 if (pgd_none_or_clear_bad(src_pgd)) 1265 continue; 1266 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1267 vma, addr, next))) { 1268 ret = -ENOMEM; 1269 break; 1270 } 1271 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1272 1273 if (is_cow) 1274 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1275 return ret; 1276 } 1277 1278 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1279 struct vm_area_struct *vma, pmd_t *pmd, 1280 unsigned long addr, unsigned long end, 1281 struct zap_details *details) 1282 { 1283 struct mm_struct *mm = tlb->mm; 1284 int force_flush = 0; 1285 int rss[NR_MM_COUNTERS]; 1286 spinlock_t *ptl; 1287 pte_t *start_pte; 1288 pte_t *pte; 1289 swp_entry_t entry; 1290 1291 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1292 again: 1293 init_rss_vec(rss); 1294 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1295 pte = start_pte; 1296 flush_tlb_batched_pending(mm); 1297 arch_enter_lazy_mmu_mode(); 1298 do { 1299 pte_t ptent = *pte; 1300 if (pte_none(ptent)) 1301 continue; 1302 1303 if (pte_present(ptent)) { 1304 struct page *page; 1305 1306 page = _vm_normal_page(vma, addr, ptent, true); 1307 if (unlikely(details) && page) { 1308 /* 1309 * unmap_shared_mapping_pages() wants to 1310 * invalidate cache without truncating: 1311 * unmap shared but keep private pages. 1312 */ 1313 if (details->check_mapping && 1314 details->check_mapping != page_rmapping(page)) 1315 continue; 1316 } 1317 ptent = ptep_get_and_clear_full(mm, addr, pte, 1318 tlb->fullmm); 1319 tlb_remove_tlb_entry(tlb, pte, addr); 1320 if (unlikely(!page)) 1321 continue; 1322 1323 if (!PageAnon(page)) { 1324 if (pte_dirty(ptent)) { 1325 force_flush = 1; 1326 set_page_dirty(page); 1327 } 1328 if (pte_young(ptent) && 1329 likely(!(vma->vm_flags & VM_SEQ_READ))) 1330 mark_page_accessed(page); 1331 } 1332 rss[mm_counter(page)]--; 1333 page_remove_rmap(page, false); 1334 if (unlikely(page_mapcount(page) < 0)) 1335 print_bad_pte(vma, addr, ptent, page); 1336 if (unlikely(__tlb_remove_page(tlb, page))) { 1337 force_flush = 1; 1338 addr += PAGE_SIZE; 1339 break; 1340 } 1341 continue; 1342 } 1343 1344 entry = pte_to_swp_entry(ptent); 1345 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1346 struct page *page = device_private_entry_to_page(entry); 1347 1348 if (unlikely(details && details->check_mapping)) { 1349 /* 1350 * unmap_shared_mapping_pages() wants to 1351 * invalidate cache without truncating: 1352 * unmap shared but keep private pages. 1353 */ 1354 if (details->check_mapping != 1355 page_rmapping(page)) 1356 continue; 1357 } 1358 1359 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1360 rss[mm_counter(page)]--; 1361 page_remove_rmap(page, false); 1362 put_page(page); 1363 continue; 1364 } 1365 1366 /* If details->check_mapping, we leave swap entries. */ 1367 if (unlikely(details)) 1368 continue; 1369 1370 entry = pte_to_swp_entry(ptent); 1371 if (!non_swap_entry(entry)) 1372 rss[MM_SWAPENTS]--; 1373 else if (is_migration_entry(entry)) { 1374 struct page *page; 1375 1376 page = migration_entry_to_page(entry); 1377 rss[mm_counter(page)]--; 1378 } 1379 if (unlikely(!free_swap_and_cache(entry))) 1380 print_bad_pte(vma, addr, ptent, NULL); 1381 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1382 } while (pte++, addr += PAGE_SIZE, addr != end); 1383 1384 add_mm_rss_vec(mm, rss); 1385 arch_leave_lazy_mmu_mode(); 1386 1387 /* Do the actual TLB flush before dropping ptl */ 1388 if (force_flush) 1389 tlb_flush_mmu_tlbonly(tlb); 1390 pte_unmap_unlock(start_pte, ptl); 1391 1392 /* 1393 * If we forced a TLB flush (either due to running out of 1394 * batch buffers or because we needed to flush dirty TLB 1395 * entries before releasing the ptl), free the batched 1396 * memory too. Restart if we didn't do everything. 1397 */ 1398 if (force_flush) { 1399 force_flush = 0; 1400 tlb_flush_mmu_free(tlb); 1401 if (addr != end) 1402 goto again; 1403 } 1404 1405 return addr; 1406 } 1407 1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1409 struct vm_area_struct *vma, pud_t *pud, 1410 unsigned long addr, unsigned long end, 1411 struct zap_details *details) 1412 { 1413 pmd_t *pmd; 1414 unsigned long next; 1415 1416 pmd = pmd_offset(pud, addr); 1417 do { 1418 next = pmd_addr_end(addr, end); 1419 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1420 if (next - addr != HPAGE_PMD_SIZE) 1421 __split_huge_pmd(vma, pmd, addr, false, NULL); 1422 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1423 goto next; 1424 /* fall through */ 1425 } 1426 /* 1427 * Here there can be other concurrent MADV_DONTNEED or 1428 * trans huge page faults running, and if the pmd is 1429 * none or trans huge it can change under us. This is 1430 * because MADV_DONTNEED holds the mmap_sem in read 1431 * mode. 1432 */ 1433 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1434 goto next; 1435 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1436 next: 1437 cond_resched(); 1438 } while (pmd++, addr = next, addr != end); 1439 1440 return addr; 1441 } 1442 1443 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1444 struct vm_area_struct *vma, p4d_t *p4d, 1445 unsigned long addr, unsigned long end, 1446 struct zap_details *details) 1447 { 1448 pud_t *pud; 1449 unsigned long next; 1450 1451 pud = pud_offset(p4d, addr); 1452 do { 1453 next = pud_addr_end(addr, end); 1454 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1455 if (next - addr != HPAGE_PUD_SIZE) { 1456 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1457 split_huge_pud(vma, pud, addr); 1458 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1459 goto next; 1460 /* fall through */ 1461 } 1462 if (pud_none_or_clear_bad(pud)) 1463 continue; 1464 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1465 next: 1466 cond_resched(); 1467 } while (pud++, addr = next, addr != end); 1468 1469 return addr; 1470 } 1471 1472 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1473 struct vm_area_struct *vma, pgd_t *pgd, 1474 unsigned long addr, unsigned long end, 1475 struct zap_details *details) 1476 { 1477 p4d_t *p4d; 1478 unsigned long next; 1479 1480 p4d = p4d_offset(pgd, addr); 1481 do { 1482 next = p4d_addr_end(addr, end); 1483 if (p4d_none_or_clear_bad(p4d)) 1484 continue; 1485 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1486 } while (p4d++, addr = next, addr != end); 1487 1488 return addr; 1489 } 1490 1491 void unmap_page_range(struct mmu_gather *tlb, 1492 struct vm_area_struct *vma, 1493 unsigned long addr, unsigned long end, 1494 struct zap_details *details) 1495 { 1496 pgd_t *pgd; 1497 unsigned long next; 1498 1499 BUG_ON(addr >= end); 1500 tlb_start_vma(tlb, vma); 1501 pgd = pgd_offset(vma->vm_mm, addr); 1502 do { 1503 next = pgd_addr_end(addr, end); 1504 if (pgd_none_or_clear_bad(pgd)) 1505 continue; 1506 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1507 } while (pgd++, addr = next, addr != end); 1508 tlb_end_vma(tlb, vma); 1509 } 1510 1511 1512 static void unmap_single_vma(struct mmu_gather *tlb, 1513 struct vm_area_struct *vma, unsigned long start_addr, 1514 unsigned long end_addr, 1515 struct zap_details *details) 1516 { 1517 unsigned long start = max(vma->vm_start, start_addr); 1518 unsigned long end; 1519 1520 if (start >= vma->vm_end) 1521 return; 1522 end = min(vma->vm_end, end_addr); 1523 if (end <= vma->vm_start) 1524 return; 1525 1526 if (vma->vm_file) 1527 uprobe_munmap(vma, start, end); 1528 1529 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1530 untrack_pfn(vma, 0, 0); 1531 1532 if (start != end) { 1533 if (unlikely(is_vm_hugetlb_page(vma))) { 1534 /* 1535 * It is undesirable to test vma->vm_file as it 1536 * should be non-null for valid hugetlb area. 1537 * However, vm_file will be NULL in the error 1538 * cleanup path of mmap_region. When 1539 * hugetlbfs ->mmap method fails, 1540 * mmap_region() nullifies vma->vm_file 1541 * before calling this function to clean up. 1542 * Since no pte has actually been setup, it is 1543 * safe to do nothing in this case. 1544 */ 1545 if (vma->vm_file) { 1546 i_mmap_lock_write(vma->vm_file->f_mapping); 1547 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1548 i_mmap_unlock_write(vma->vm_file->f_mapping); 1549 } 1550 } else 1551 unmap_page_range(tlb, vma, start, end, details); 1552 } 1553 } 1554 1555 /** 1556 * unmap_vmas - unmap a range of memory covered by a list of vma's 1557 * @tlb: address of the caller's struct mmu_gather 1558 * @vma: the starting vma 1559 * @start_addr: virtual address at which to start unmapping 1560 * @end_addr: virtual address at which to end unmapping 1561 * 1562 * Unmap all pages in the vma list. 1563 * 1564 * Only addresses between `start' and `end' will be unmapped. 1565 * 1566 * The VMA list must be sorted in ascending virtual address order. 1567 * 1568 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1569 * range after unmap_vmas() returns. So the only responsibility here is to 1570 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1571 * drops the lock and schedules. 1572 */ 1573 void unmap_vmas(struct mmu_gather *tlb, 1574 struct vm_area_struct *vma, unsigned long start_addr, 1575 unsigned long end_addr) 1576 { 1577 struct mm_struct *mm = vma->vm_mm; 1578 1579 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1580 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1581 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1582 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1583 } 1584 1585 /** 1586 * zap_page_range - remove user pages in a given range 1587 * @vma: vm_area_struct holding the applicable pages 1588 * @start: starting address of pages to zap 1589 * @size: number of bytes to zap 1590 * 1591 * Caller must protect the VMA list 1592 */ 1593 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1594 unsigned long size) 1595 { 1596 struct mm_struct *mm = vma->vm_mm; 1597 struct mmu_gather tlb; 1598 unsigned long end = start + size; 1599 1600 lru_add_drain(); 1601 tlb_gather_mmu(&tlb, mm, start, end); 1602 update_hiwater_rss(mm); 1603 mmu_notifier_invalidate_range_start(mm, start, end); 1604 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 1605 unmap_single_vma(&tlb, vma, start, end, NULL); 1606 1607 /* 1608 * zap_page_range does not specify whether mmap_sem should be 1609 * held for read or write. That allows parallel zap_page_range 1610 * operations to unmap a PTE and defer a flush meaning that 1611 * this call observes pte_none and fails to flush the TLB. 1612 * Rather than adding a complex API, ensure that no stale 1613 * TLB entries exist when this call returns. 1614 */ 1615 flush_tlb_range(vma, start, end); 1616 } 1617 1618 mmu_notifier_invalidate_range_end(mm, start, end); 1619 tlb_finish_mmu(&tlb, start, end); 1620 } 1621 1622 /** 1623 * zap_page_range_single - remove user pages in a given range 1624 * @vma: vm_area_struct holding the applicable pages 1625 * @address: starting address of pages to zap 1626 * @size: number of bytes to zap 1627 * @details: details of shared cache invalidation 1628 * 1629 * The range must fit into one VMA. 1630 */ 1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1632 unsigned long size, struct zap_details *details) 1633 { 1634 struct mm_struct *mm = vma->vm_mm; 1635 struct mmu_gather tlb; 1636 unsigned long end = address + size; 1637 1638 lru_add_drain(); 1639 tlb_gather_mmu(&tlb, mm, address, end); 1640 update_hiwater_rss(mm); 1641 mmu_notifier_invalidate_range_start(mm, address, end); 1642 unmap_single_vma(&tlb, vma, address, end, details); 1643 mmu_notifier_invalidate_range_end(mm, address, end); 1644 tlb_finish_mmu(&tlb, address, end); 1645 } 1646 1647 /** 1648 * zap_vma_ptes - remove ptes mapping the vma 1649 * @vma: vm_area_struct holding ptes to be zapped 1650 * @address: starting address of pages to zap 1651 * @size: number of bytes to zap 1652 * 1653 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1654 * 1655 * The entire address range must be fully contained within the vma. 1656 * 1657 */ 1658 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1659 unsigned long size) 1660 { 1661 if (address < vma->vm_start || address + size > vma->vm_end || 1662 !(vma->vm_flags & VM_PFNMAP)) 1663 return; 1664 1665 zap_page_range_single(vma, address, size, NULL); 1666 } 1667 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1668 1669 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1670 spinlock_t **ptl) 1671 { 1672 pgd_t *pgd; 1673 p4d_t *p4d; 1674 pud_t *pud; 1675 pmd_t *pmd; 1676 1677 pgd = pgd_offset(mm, addr); 1678 p4d = p4d_alloc(mm, pgd, addr); 1679 if (!p4d) 1680 return NULL; 1681 pud = pud_alloc(mm, p4d, addr); 1682 if (!pud) 1683 return NULL; 1684 pmd = pmd_alloc(mm, pud, addr); 1685 if (!pmd) 1686 return NULL; 1687 1688 VM_BUG_ON(pmd_trans_huge(*pmd)); 1689 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1690 } 1691 1692 /* 1693 * This is the old fallback for page remapping. 1694 * 1695 * For historical reasons, it only allows reserved pages. Only 1696 * old drivers should use this, and they needed to mark their 1697 * pages reserved for the old functions anyway. 1698 */ 1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1700 struct page *page, pgprot_t prot) 1701 { 1702 struct mm_struct *mm = vma->vm_mm; 1703 int retval; 1704 pte_t *pte; 1705 spinlock_t *ptl; 1706 1707 retval = -EINVAL; 1708 if (PageAnon(page)) 1709 goto out; 1710 retval = -ENOMEM; 1711 flush_dcache_page(page); 1712 pte = get_locked_pte(mm, addr, &ptl); 1713 if (!pte) 1714 goto out; 1715 retval = -EBUSY; 1716 if (!pte_none(*pte)) 1717 goto out_unlock; 1718 1719 /* Ok, finally just insert the thing.. */ 1720 get_page(page); 1721 inc_mm_counter_fast(mm, mm_counter_file(page)); 1722 page_add_file_rmap(page, false); 1723 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1724 1725 retval = 0; 1726 pte_unmap_unlock(pte, ptl); 1727 return retval; 1728 out_unlock: 1729 pte_unmap_unlock(pte, ptl); 1730 out: 1731 return retval; 1732 } 1733 1734 /** 1735 * vm_insert_page - insert single page into user vma 1736 * @vma: user vma to map to 1737 * @addr: target user address of this page 1738 * @page: source kernel page 1739 * 1740 * This allows drivers to insert individual pages they've allocated 1741 * into a user vma. 1742 * 1743 * The page has to be a nice clean _individual_ kernel allocation. 1744 * If you allocate a compound page, you need to have marked it as 1745 * such (__GFP_COMP), or manually just split the page up yourself 1746 * (see split_page()). 1747 * 1748 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1749 * took an arbitrary page protection parameter. This doesn't allow 1750 * that. Your vma protection will have to be set up correctly, which 1751 * means that if you want a shared writable mapping, you'd better 1752 * ask for a shared writable mapping! 1753 * 1754 * The page does not need to be reserved. 1755 * 1756 * Usually this function is called from f_op->mmap() handler 1757 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1758 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1759 * function from other places, for example from page-fault handler. 1760 */ 1761 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1762 struct page *page) 1763 { 1764 if (addr < vma->vm_start || addr >= vma->vm_end) 1765 return -EFAULT; 1766 if (!page_count(page)) 1767 return -EINVAL; 1768 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1769 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1770 BUG_ON(vma->vm_flags & VM_PFNMAP); 1771 vma->vm_flags |= VM_MIXEDMAP; 1772 } 1773 return insert_page(vma, addr, page, vma->vm_page_prot); 1774 } 1775 EXPORT_SYMBOL(vm_insert_page); 1776 1777 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1778 pfn_t pfn, pgprot_t prot, bool mkwrite) 1779 { 1780 struct mm_struct *mm = vma->vm_mm; 1781 int retval; 1782 pte_t *pte, entry; 1783 spinlock_t *ptl; 1784 1785 retval = -ENOMEM; 1786 pte = get_locked_pte(mm, addr, &ptl); 1787 if (!pte) 1788 goto out; 1789 retval = -EBUSY; 1790 if (!pte_none(*pte)) { 1791 if (mkwrite) { 1792 /* 1793 * For read faults on private mappings the PFN passed 1794 * in may not match the PFN we have mapped if the 1795 * mapped PFN is a writeable COW page. In the mkwrite 1796 * case we are creating a writable PTE for a shared 1797 * mapping and we expect the PFNs to match. 1798 */ 1799 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1800 goto out_unlock; 1801 entry = *pte; 1802 goto out_mkwrite; 1803 } else 1804 goto out_unlock; 1805 } 1806 1807 /* Ok, finally just insert the thing.. */ 1808 if (pfn_t_devmap(pfn)) 1809 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1810 else 1811 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1812 1813 out_mkwrite: 1814 if (mkwrite) { 1815 entry = pte_mkyoung(entry); 1816 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1817 } 1818 1819 set_pte_at(mm, addr, pte, entry); 1820 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1821 1822 retval = 0; 1823 out_unlock: 1824 pte_unmap_unlock(pte, ptl); 1825 out: 1826 return retval; 1827 } 1828 1829 /** 1830 * vm_insert_pfn - insert single pfn into user vma 1831 * @vma: user vma to map to 1832 * @addr: target user address of this page 1833 * @pfn: source kernel pfn 1834 * 1835 * Similar to vm_insert_page, this allows drivers to insert individual pages 1836 * they've allocated into a user vma. Same comments apply. 1837 * 1838 * This function should only be called from a vm_ops->fault handler, and 1839 * in that case the handler should return NULL. 1840 * 1841 * vma cannot be a COW mapping. 1842 * 1843 * As this is called only for pages that do not currently exist, we 1844 * do not need to flush old virtual caches or the TLB. 1845 */ 1846 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1847 unsigned long pfn) 1848 { 1849 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1850 } 1851 EXPORT_SYMBOL(vm_insert_pfn); 1852 1853 /** 1854 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1855 * @vma: user vma to map to 1856 * @addr: target user address of this page 1857 * @pfn: source kernel pfn 1858 * @pgprot: pgprot flags for the inserted page 1859 * 1860 * This is exactly like vm_insert_pfn, except that it allows drivers to 1861 * to override pgprot on a per-page basis. 1862 * 1863 * This only makes sense for IO mappings, and it makes no sense for 1864 * cow mappings. In general, using multiple vmas is preferable; 1865 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1866 * impractical. 1867 */ 1868 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1869 unsigned long pfn, pgprot_t pgprot) 1870 { 1871 int ret; 1872 /* 1873 * Technically, architectures with pte_special can avoid all these 1874 * restrictions (same for remap_pfn_range). However we would like 1875 * consistency in testing and feature parity among all, so we should 1876 * try to keep these invariants in place for everybody. 1877 */ 1878 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1879 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1880 (VM_PFNMAP|VM_MIXEDMAP)); 1881 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1882 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1883 1884 if (addr < vma->vm_start || addr >= vma->vm_end) 1885 return -EFAULT; 1886 1887 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1888 1889 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1890 false); 1891 1892 return ret; 1893 } 1894 EXPORT_SYMBOL(vm_insert_pfn_prot); 1895 1896 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1897 { 1898 /* these checks mirror the abort conditions in vm_normal_page */ 1899 if (vma->vm_flags & VM_MIXEDMAP) 1900 return true; 1901 if (pfn_t_devmap(pfn)) 1902 return true; 1903 if (pfn_t_special(pfn)) 1904 return true; 1905 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1906 return true; 1907 return false; 1908 } 1909 1910 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1911 pfn_t pfn, bool mkwrite) 1912 { 1913 pgprot_t pgprot = vma->vm_page_prot; 1914 1915 BUG_ON(!vm_mixed_ok(vma, pfn)); 1916 1917 if (addr < vma->vm_start || addr >= vma->vm_end) 1918 return -EFAULT; 1919 1920 track_pfn_insert(vma, &pgprot, pfn); 1921 1922 /* 1923 * If we don't have pte special, then we have to use the pfn_valid() 1924 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1925 * refcount the page if pfn_valid is true (hence insert_page rather 1926 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1927 * without pte special, it would there be refcounted as a normal page. 1928 */ 1929 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1930 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1931 struct page *page; 1932 1933 /* 1934 * At this point we are committed to insert_page() 1935 * regardless of whether the caller specified flags that 1936 * result in pfn_t_has_page() == false. 1937 */ 1938 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1939 return insert_page(vma, addr, page, pgprot); 1940 } 1941 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1942 } 1943 1944 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1945 pfn_t pfn) 1946 { 1947 return __vm_insert_mixed(vma, addr, pfn, false); 1948 1949 } 1950 EXPORT_SYMBOL(vm_insert_mixed); 1951 1952 /* 1953 * If the insertion of PTE failed because someone else already added a 1954 * different entry in the mean time, we treat that as success as we assume 1955 * the same entry was actually inserted. 1956 */ 1957 1958 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1959 unsigned long addr, pfn_t pfn) 1960 { 1961 int err; 1962 1963 err = __vm_insert_mixed(vma, addr, pfn, true); 1964 if (err == -ENOMEM) 1965 return VM_FAULT_OOM; 1966 if (err < 0 && err != -EBUSY) 1967 return VM_FAULT_SIGBUS; 1968 return VM_FAULT_NOPAGE; 1969 } 1970 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1971 1972 /* 1973 * maps a range of physical memory into the requested pages. the old 1974 * mappings are removed. any references to nonexistent pages results 1975 * in null mappings (currently treated as "copy-on-access") 1976 */ 1977 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1978 unsigned long addr, unsigned long end, 1979 unsigned long pfn, pgprot_t prot) 1980 { 1981 pte_t *pte; 1982 spinlock_t *ptl; 1983 1984 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1985 if (!pte) 1986 return -ENOMEM; 1987 arch_enter_lazy_mmu_mode(); 1988 do { 1989 BUG_ON(!pte_none(*pte)); 1990 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1991 pfn++; 1992 } while (pte++, addr += PAGE_SIZE, addr != end); 1993 arch_leave_lazy_mmu_mode(); 1994 pte_unmap_unlock(pte - 1, ptl); 1995 return 0; 1996 } 1997 1998 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1999 unsigned long addr, unsigned long end, 2000 unsigned long pfn, pgprot_t prot) 2001 { 2002 pmd_t *pmd; 2003 unsigned long next; 2004 2005 pfn -= addr >> PAGE_SHIFT; 2006 pmd = pmd_alloc(mm, pud, addr); 2007 if (!pmd) 2008 return -ENOMEM; 2009 VM_BUG_ON(pmd_trans_huge(*pmd)); 2010 do { 2011 next = pmd_addr_end(addr, end); 2012 if (remap_pte_range(mm, pmd, addr, next, 2013 pfn + (addr >> PAGE_SHIFT), prot)) 2014 return -ENOMEM; 2015 } while (pmd++, addr = next, addr != end); 2016 return 0; 2017 } 2018 2019 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2020 unsigned long addr, unsigned long end, 2021 unsigned long pfn, pgprot_t prot) 2022 { 2023 pud_t *pud; 2024 unsigned long next; 2025 2026 pfn -= addr >> PAGE_SHIFT; 2027 pud = pud_alloc(mm, p4d, addr); 2028 if (!pud) 2029 return -ENOMEM; 2030 do { 2031 next = pud_addr_end(addr, end); 2032 if (remap_pmd_range(mm, pud, addr, next, 2033 pfn + (addr >> PAGE_SHIFT), prot)) 2034 return -ENOMEM; 2035 } while (pud++, addr = next, addr != end); 2036 return 0; 2037 } 2038 2039 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2040 unsigned long addr, unsigned long end, 2041 unsigned long pfn, pgprot_t prot) 2042 { 2043 p4d_t *p4d; 2044 unsigned long next; 2045 2046 pfn -= addr >> PAGE_SHIFT; 2047 p4d = p4d_alloc(mm, pgd, addr); 2048 if (!p4d) 2049 return -ENOMEM; 2050 do { 2051 next = p4d_addr_end(addr, end); 2052 if (remap_pud_range(mm, p4d, addr, next, 2053 pfn + (addr >> PAGE_SHIFT), prot)) 2054 return -ENOMEM; 2055 } while (p4d++, addr = next, addr != end); 2056 return 0; 2057 } 2058 2059 /** 2060 * remap_pfn_range - remap kernel memory to userspace 2061 * @vma: user vma to map to 2062 * @addr: target user address to start at 2063 * @pfn: physical address of kernel memory 2064 * @size: size of map area 2065 * @prot: page protection flags for this mapping 2066 * 2067 * Note: this is only safe if the mm semaphore is held when called. 2068 */ 2069 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2070 unsigned long pfn, unsigned long size, pgprot_t prot) 2071 { 2072 pgd_t *pgd; 2073 unsigned long next; 2074 unsigned long end = addr + PAGE_ALIGN(size); 2075 struct mm_struct *mm = vma->vm_mm; 2076 unsigned long remap_pfn = pfn; 2077 int err; 2078 2079 /* 2080 * Physically remapped pages are special. Tell the 2081 * rest of the world about it: 2082 * VM_IO tells people not to look at these pages 2083 * (accesses can have side effects). 2084 * VM_PFNMAP tells the core MM that the base pages are just 2085 * raw PFN mappings, and do not have a "struct page" associated 2086 * with them. 2087 * VM_DONTEXPAND 2088 * Disable vma merging and expanding with mremap(). 2089 * VM_DONTDUMP 2090 * Omit vma from core dump, even when VM_IO turned off. 2091 * 2092 * There's a horrible special case to handle copy-on-write 2093 * behaviour that some programs depend on. We mark the "original" 2094 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2095 * See vm_normal_page() for details. 2096 */ 2097 if (is_cow_mapping(vma->vm_flags)) { 2098 if (addr != vma->vm_start || end != vma->vm_end) 2099 return -EINVAL; 2100 vma->vm_pgoff = pfn; 2101 } 2102 2103 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2104 if (err) 2105 return -EINVAL; 2106 2107 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2108 2109 BUG_ON(addr >= end); 2110 pfn -= addr >> PAGE_SHIFT; 2111 pgd = pgd_offset(mm, addr); 2112 flush_cache_range(vma, addr, end); 2113 do { 2114 next = pgd_addr_end(addr, end); 2115 err = remap_p4d_range(mm, pgd, addr, next, 2116 pfn + (addr >> PAGE_SHIFT), prot); 2117 if (err) 2118 break; 2119 } while (pgd++, addr = next, addr != end); 2120 2121 if (err) 2122 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2123 2124 return err; 2125 } 2126 EXPORT_SYMBOL(remap_pfn_range); 2127 2128 /** 2129 * vm_iomap_memory - remap memory to userspace 2130 * @vma: user vma to map to 2131 * @start: start of area 2132 * @len: size of area 2133 * 2134 * This is a simplified io_remap_pfn_range() for common driver use. The 2135 * driver just needs to give us the physical memory range to be mapped, 2136 * we'll figure out the rest from the vma information. 2137 * 2138 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2139 * whatever write-combining details or similar. 2140 */ 2141 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2142 { 2143 unsigned long vm_len, pfn, pages; 2144 2145 /* Check that the physical memory area passed in looks valid */ 2146 if (start + len < start) 2147 return -EINVAL; 2148 /* 2149 * You *really* shouldn't map things that aren't page-aligned, 2150 * but we've historically allowed it because IO memory might 2151 * just have smaller alignment. 2152 */ 2153 len += start & ~PAGE_MASK; 2154 pfn = start >> PAGE_SHIFT; 2155 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2156 if (pfn + pages < pfn) 2157 return -EINVAL; 2158 2159 /* We start the mapping 'vm_pgoff' pages into the area */ 2160 if (vma->vm_pgoff > pages) 2161 return -EINVAL; 2162 pfn += vma->vm_pgoff; 2163 pages -= vma->vm_pgoff; 2164 2165 /* Can we fit all of the mapping? */ 2166 vm_len = vma->vm_end - vma->vm_start; 2167 if (vm_len >> PAGE_SHIFT > pages) 2168 return -EINVAL; 2169 2170 /* Ok, let it rip */ 2171 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2172 } 2173 EXPORT_SYMBOL(vm_iomap_memory); 2174 2175 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2176 unsigned long addr, unsigned long end, 2177 pte_fn_t fn, void *data) 2178 { 2179 pte_t *pte; 2180 int err; 2181 pgtable_t token; 2182 spinlock_t *uninitialized_var(ptl); 2183 2184 pte = (mm == &init_mm) ? 2185 pte_alloc_kernel(pmd, addr) : 2186 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2187 if (!pte) 2188 return -ENOMEM; 2189 2190 BUG_ON(pmd_huge(*pmd)); 2191 2192 arch_enter_lazy_mmu_mode(); 2193 2194 token = pmd_pgtable(*pmd); 2195 2196 do { 2197 err = fn(pte++, token, addr, data); 2198 if (err) 2199 break; 2200 } while (addr += PAGE_SIZE, addr != end); 2201 2202 arch_leave_lazy_mmu_mode(); 2203 2204 if (mm != &init_mm) 2205 pte_unmap_unlock(pte-1, ptl); 2206 return err; 2207 } 2208 2209 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2210 unsigned long addr, unsigned long end, 2211 pte_fn_t fn, void *data) 2212 { 2213 pmd_t *pmd; 2214 unsigned long next; 2215 int err; 2216 2217 BUG_ON(pud_huge(*pud)); 2218 2219 pmd = pmd_alloc(mm, pud, addr); 2220 if (!pmd) 2221 return -ENOMEM; 2222 do { 2223 next = pmd_addr_end(addr, end); 2224 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2225 if (err) 2226 break; 2227 } while (pmd++, addr = next, addr != end); 2228 return err; 2229 } 2230 2231 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2232 unsigned long addr, unsigned long end, 2233 pte_fn_t fn, void *data) 2234 { 2235 pud_t *pud; 2236 unsigned long next; 2237 int err; 2238 2239 pud = pud_alloc(mm, p4d, addr); 2240 if (!pud) 2241 return -ENOMEM; 2242 do { 2243 next = pud_addr_end(addr, end); 2244 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2245 if (err) 2246 break; 2247 } while (pud++, addr = next, addr != end); 2248 return err; 2249 } 2250 2251 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2252 unsigned long addr, unsigned long end, 2253 pte_fn_t fn, void *data) 2254 { 2255 p4d_t *p4d; 2256 unsigned long next; 2257 int err; 2258 2259 p4d = p4d_alloc(mm, pgd, addr); 2260 if (!p4d) 2261 return -ENOMEM; 2262 do { 2263 next = p4d_addr_end(addr, end); 2264 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2265 if (err) 2266 break; 2267 } while (p4d++, addr = next, addr != end); 2268 return err; 2269 } 2270 2271 /* 2272 * Scan a region of virtual memory, filling in page tables as necessary 2273 * and calling a provided function on each leaf page table. 2274 */ 2275 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2276 unsigned long size, pte_fn_t fn, void *data) 2277 { 2278 pgd_t *pgd; 2279 unsigned long next; 2280 unsigned long end = addr + size; 2281 int err; 2282 2283 if (WARN_ON(addr >= end)) 2284 return -EINVAL; 2285 2286 pgd = pgd_offset(mm, addr); 2287 do { 2288 next = pgd_addr_end(addr, end); 2289 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2290 if (err) 2291 break; 2292 } while (pgd++, addr = next, addr != end); 2293 2294 return err; 2295 } 2296 EXPORT_SYMBOL_GPL(apply_to_page_range); 2297 2298 /* 2299 * handle_pte_fault chooses page fault handler according to an entry which was 2300 * read non-atomically. Before making any commitment, on those architectures 2301 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2302 * parts, do_swap_page must check under lock before unmapping the pte and 2303 * proceeding (but do_wp_page is only called after already making such a check; 2304 * and do_anonymous_page can safely check later on). 2305 */ 2306 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2307 pte_t *page_table, pte_t orig_pte) 2308 { 2309 int same = 1; 2310 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2311 if (sizeof(pte_t) > sizeof(unsigned long)) { 2312 spinlock_t *ptl = pte_lockptr(mm, pmd); 2313 spin_lock(ptl); 2314 same = pte_same(*page_table, orig_pte); 2315 spin_unlock(ptl); 2316 } 2317 #endif 2318 pte_unmap(page_table); 2319 return same; 2320 } 2321 2322 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2323 { 2324 debug_dma_assert_idle(src); 2325 2326 /* 2327 * If the source page was a PFN mapping, we don't have 2328 * a "struct page" for it. We do a best-effort copy by 2329 * just copying from the original user address. If that 2330 * fails, we just zero-fill it. Live with it. 2331 */ 2332 if (unlikely(!src)) { 2333 void *kaddr = kmap_atomic(dst); 2334 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2335 2336 /* 2337 * This really shouldn't fail, because the page is there 2338 * in the page tables. But it might just be unreadable, 2339 * in which case we just give up and fill the result with 2340 * zeroes. 2341 */ 2342 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2343 clear_page(kaddr); 2344 kunmap_atomic(kaddr); 2345 flush_dcache_page(dst); 2346 } else 2347 copy_user_highpage(dst, src, va, vma); 2348 } 2349 2350 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2351 { 2352 struct file *vm_file = vma->vm_file; 2353 2354 if (vm_file) 2355 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2356 2357 /* 2358 * Special mappings (e.g. VDSO) do not have any file so fake 2359 * a default GFP_KERNEL for them. 2360 */ 2361 return GFP_KERNEL; 2362 } 2363 2364 /* 2365 * Notify the address space that the page is about to become writable so that 2366 * it can prohibit this or wait for the page to get into an appropriate state. 2367 * 2368 * We do this without the lock held, so that it can sleep if it needs to. 2369 */ 2370 static int do_page_mkwrite(struct vm_fault *vmf) 2371 { 2372 int ret; 2373 struct page *page = vmf->page; 2374 unsigned int old_flags = vmf->flags; 2375 2376 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2377 2378 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2379 /* Restore original flags so that caller is not surprised */ 2380 vmf->flags = old_flags; 2381 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2382 return ret; 2383 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2384 lock_page(page); 2385 if (!page->mapping) { 2386 unlock_page(page); 2387 return 0; /* retry */ 2388 } 2389 ret |= VM_FAULT_LOCKED; 2390 } else 2391 VM_BUG_ON_PAGE(!PageLocked(page), page); 2392 return ret; 2393 } 2394 2395 /* 2396 * Handle dirtying of a page in shared file mapping on a write fault. 2397 * 2398 * The function expects the page to be locked and unlocks it. 2399 */ 2400 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2401 struct page *page) 2402 { 2403 struct address_space *mapping; 2404 bool dirtied; 2405 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2406 2407 dirtied = set_page_dirty(page); 2408 VM_BUG_ON_PAGE(PageAnon(page), page); 2409 /* 2410 * Take a local copy of the address_space - page.mapping may be zeroed 2411 * by truncate after unlock_page(). The address_space itself remains 2412 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2413 * release semantics to prevent the compiler from undoing this copying. 2414 */ 2415 mapping = page_rmapping(page); 2416 unlock_page(page); 2417 2418 if ((dirtied || page_mkwrite) && mapping) { 2419 /* 2420 * Some device drivers do not set page.mapping 2421 * but still dirty their pages 2422 */ 2423 balance_dirty_pages_ratelimited(mapping); 2424 } 2425 2426 if (!page_mkwrite) 2427 file_update_time(vma->vm_file); 2428 } 2429 2430 /* 2431 * Handle write page faults for pages that can be reused in the current vma 2432 * 2433 * This can happen either due to the mapping being with the VM_SHARED flag, 2434 * or due to us being the last reference standing to the page. In either 2435 * case, all we need to do here is to mark the page as writable and update 2436 * any related book-keeping. 2437 */ 2438 static inline void wp_page_reuse(struct vm_fault *vmf) 2439 __releases(vmf->ptl) 2440 { 2441 struct vm_area_struct *vma = vmf->vma; 2442 struct page *page = vmf->page; 2443 pte_t entry; 2444 /* 2445 * Clear the pages cpupid information as the existing 2446 * information potentially belongs to a now completely 2447 * unrelated process. 2448 */ 2449 if (page) 2450 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2451 2452 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2453 entry = pte_mkyoung(vmf->orig_pte); 2454 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2455 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2456 update_mmu_cache(vma, vmf->address, vmf->pte); 2457 pte_unmap_unlock(vmf->pte, vmf->ptl); 2458 } 2459 2460 /* 2461 * Handle the case of a page which we actually need to copy to a new page. 2462 * 2463 * Called with mmap_sem locked and the old page referenced, but 2464 * without the ptl held. 2465 * 2466 * High level logic flow: 2467 * 2468 * - Allocate a page, copy the content of the old page to the new one. 2469 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2470 * - Take the PTL. If the pte changed, bail out and release the allocated page 2471 * - If the pte is still the way we remember it, update the page table and all 2472 * relevant references. This includes dropping the reference the page-table 2473 * held to the old page, as well as updating the rmap. 2474 * - In any case, unlock the PTL and drop the reference we took to the old page. 2475 */ 2476 static int wp_page_copy(struct vm_fault *vmf) 2477 { 2478 struct vm_area_struct *vma = vmf->vma; 2479 struct mm_struct *mm = vma->vm_mm; 2480 struct page *old_page = vmf->page; 2481 struct page *new_page = NULL; 2482 pte_t entry; 2483 int page_copied = 0; 2484 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2485 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2486 struct mem_cgroup *memcg; 2487 2488 if (unlikely(anon_vma_prepare(vma))) 2489 goto oom; 2490 2491 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2492 new_page = alloc_zeroed_user_highpage_movable(vma, 2493 vmf->address); 2494 if (!new_page) 2495 goto oom; 2496 } else { 2497 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2498 vmf->address); 2499 if (!new_page) 2500 goto oom; 2501 cow_user_page(new_page, old_page, vmf->address, vma); 2502 } 2503 2504 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2505 goto oom_free_new; 2506 2507 __SetPageUptodate(new_page); 2508 2509 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2510 2511 /* 2512 * Re-check the pte - we dropped the lock 2513 */ 2514 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2515 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2516 if (old_page) { 2517 if (!PageAnon(old_page)) { 2518 dec_mm_counter_fast(mm, 2519 mm_counter_file(old_page)); 2520 inc_mm_counter_fast(mm, MM_ANONPAGES); 2521 } 2522 } else { 2523 inc_mm_counter_fast(mm, MM_ANONPAGES); 2524 } 2525 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2526 entry = mk_pte(new_page, vma->vm_page_prot); 2527 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2528 /* 2529 * Clear the pte entry and flush it first, before updating the 2530 * pte with the new entry. This will avoid a race condition 2531 * seen in the presence of one thread doing SMC and another 2532 * thread doing COW. 2533 */ 2534 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2535 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2536 mem_cgroup_commit_charge(new_page, memcg, false, false); 2537 lru_cache_add_active_or_unevictable(new_page, vma); 2538 /* 2539 * We call the notify macro here because, when using secondary 2540 * mmu page tables (such as kvm shadow page tables), we want the 2541 * new page to be mapped directly into the secondary page table. 2542 */ 2543 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2544 update_mmu_cache(vma, vmf->address, vmf->pte); 2545 if (old_page) { 2546 /* 2547 * Only after switching the pte to the new page may 2548 * we remove the mapcount here. Otherwise another 2549 * process may come and find the rmap count decremented 2550 * before the pte is switched to the new page, and 2551 * "reuse" the old page writing into it while our pte 2552 * here still points into it and can be read by other 2553 * threads. 2554 * 2555 * The critical issue is to order this 2556 * page_remove_rmap with the ptp_clear_flush above. 2557 * Those stores are ordered by (if nothing else,) 2558 * the barrier present in the atomic_add_negative 2559 * in page_remove_rmap. 2560 * 2561 * Then the TLB flush in ptep_clear_flush ensures that 2562 * no process can access the old page before the 2563 * decremented mapcount is visible. And the old page 2564 * cannot be reused until after the decremented 2565 * mapcount is visible. So transitively, TLBs to 2566 * old page will be flushed before it can be reused. 2567 */ 2568 page_remove_rmap(old_page, false); 2569 } 2570 2571 /* Free the old page.. */ 2572 new_page = old_page; 2573 page_copied = 1; 2574 } else { 2575 mem_cgroup_cancel_charge(new_page, memcg, false); 2576 } 2577 2578 if (new_page) 2579 put_page(new_page); 2580 2581 pte_unmap_unlock(vmf->pte, vmf->ptl); 2582 /* 2583 * No need to double call mmu_notifier->invalidate_range() callback as 2584 * the above ptep_clear_flush_notify() did already call it. 2585 */ 2586 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2587 if (old_page) { 2588 /* 2589 * Don't let another task, with possibly unlocked vma, 2590 * keep the mlocked page. 2591 */ 2592 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2593 lock_page(old_page); /* LRU manipulation */ 2594 if (PageMlocked(old_page)) 2595 munlock_vma_page(old_page); 2596 unlock_page(old_page); 2597 } 2598 put_page(old_page); 2599 } 2600 return page_copied ? VM_FAULT_WRITE : 0; 2601 oom_free_new: 2602 put_page(new_page); 2603 oom: 2604 if (old_page) 2605 put_page(old_page); 2606 return VM_FAULT_OOM; 2607 } 2608 2609 /** 2610 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2611 * writeable once the page is prepared 2612 * 2613 * @vmf: structure describing the fault 2614 * 2615 * This function handles all that is needed to finish a write page fault in a 2616 * shared mapping due to PTE being read-only once the mapped page is prepared. 2617 * It handles locking of PTE and modifying it. The function returns 2618 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2619 * lock. 2620 * 2621 * The function expects the page to be locked or other protection against 2622 * concurrent faults / writeback (such as DAX radix tree locks). 2623 */ 2624 int finish_mkwrite_fault(struct vm_fault *vmf) 2625 { 2626 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2627 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2628 &vmf->ptl); 2629 /* 2630 * We might have raced with another page fault while we released the 2631 * pte_offset_map_lock. 2632 */ 2633 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2634 pte_unmap_unlock(vmf->pte, vmf->ptl); 2635 return VM_FAULT_NOPAGE; 2636 } 2637 wp_page_reuse(vmf); 2638 return 0; 2639 } 2640 2641 /* 2642 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2643 * mapping 2644 */ 2645 static int wp_pfn_shared(struct vm_fault *vmf) 2646 { 2647 struct vm_area_struct *vma = vmf->vma; 2648 2649 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2650 int ret; 2651 2652 pte_unmap_unlock(vmf->pte, vmf->ptl); 2653 vmf->flags |= FAULT_FLAG_MKWRITE; 2654 ret = vma->vm_ops->pfn_mkwrite(vmf); 2655 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2656 return ret; 2657 return finish_mkwrite_fault(vmf); 2658 } 2659 wp_page_reuse(vmf); 2660 return VM_FAULT_WRITE; 2661 } 2662 2663 static int wp_page_shared(struct vm_fault *vmf) 2664 __releases(vmf->ptl) 2665 { 2666 struct vm_area_struct *vma = vmf->vma; 2667 2668 get_page(vmf->page); 2669 2670 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2671 int tmp; 2672 2673 pte_unmap_unlock(vmf->pte, vmf->ptl); 2674 tmp = do_page_mkwrite(vmf); 2675 if (unlikely(!tmp || (tmp & 2676 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2677 put_page(vmf->page); 2678 return tmp; 2679 } 2680 tmp = finish_mkwrite_fault(vmf); 2681 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2682 unlock_page(vmf->page); 2683 put_page(vmf->page); 2684 return tmp; 2685 } 2686 } else { 2687 wp_page_reuse(vmf); 2688 lock_page(vmf->page); 2689 } 2690 fault_dirty_shared_page(vma, vmf->page); 2691 put_page(vmf->page); 2692 2693 return VM_FAULT_WRITE; 2694 } 2695 2696 /* 2697 * This routine handles present pages, when users try to write 2698 * to a shared page. It is done by copying the page to a new address 2699 * and decrementing the shared-page counter for the old page. 2700 * 2701 * Note that this routine assumes that the protection checks have been 2702 * done by the caller (the low-level page fault routine in most cases). 2703 * Thus we can safely just mark it writable once we've done any necessary 2704 * COW. 2705 * 2706 * We also mark the page dirty at this point even though the page will 2707 * change only once the write actually happens. This avoids a few races, 2708 * and potentially makes it more efficient. 2709 * 2710 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2711 * but allow concurrent faults), with pte both mapped and locked. 2712 * We return with mmap_sem still held, but pte unmapped and unlocked. 2713 */ 2714 static int do_wp_page(struct vm_fault *vmf) 2715 __releases(vmf->ptl) 2716 { 2717 struct vm_area_struct *vma = vmf->vma; 2718 2719 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2720 if (!vmf->page) { 2721 /* 2722 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2723 * VM_PFNMAP VMA. 2724 * 2725 * We should not cow pages in a shared writeable mapping. 2726 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2727 */ 2728 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2729 (VM_WRITE|VM_SHARED)) 2730 return wp_pfn_shared(vmf); 2731 2732 pte_unmap_unlock(vmf->pte, vmf->ptl); 2733 return wp_page_copy(vmf); 2734 } 2735 2736 /* 2737 * Take out anonymous pages first, anonymous shared vmas are 2738 * not dirty accountable. 2739 */ 2740 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2741 int total_map_swapcount; 2742 if (!trylock_page(vmf->page)) { 2743 get_page(vmf->page); 2744 pte_unmap_unlock(vmf->pte, vmf->ptl); 2745 lock_page(vmf->page); 2746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2747 vmf->address, &vmf->ptl); 2748 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2749 unlock_page(vmf->page); 2750 pte_unmap_unlock(vmf->pte, vmf->ptl); 2751 put_page(vmf->page); 2752 return 0; 2753 } 2754 put_page(vmf->page); 2755 } 2756 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2757 if (total_map_swapcount == 1) { 2758 /* 2759 * The page is all ours. Move it to 2760 * our anon_vma so the rmap code will 2761 * not search our parent or siblings. 2762 * Protected against the rmap code by 2763 * the page lock. 2764 */ 2765 page_move_anon_rmap(vmf->page, vma); 2766 } 2767 unlock_page(vmf->page); 2768 wp_page_reuse(vmf); 2769 return VM_FAULT_WRITE; 2770 } 2771 unlock_page(vmf->page); 2772 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2773 (VM_WRITE|VM_SHARED))) { 2774 return wp_page_shared(vmf); 2775 } 2776 2777 /* 2778 * Ok, we need to copy. Oh, well.. 2779 */ 2780 get_page(vmf->page); 2781 2782 pte_unmap_unlock(vmf->pte, vmf->ptl); 2783 return wp_page_copy(vmf); 2784 } 2785 2786 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2787 unsigned long start_addr, unsigned long end_addr, 2788 struct zap_details *details) 2789 { 2790 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2791 } 2792 2793 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2794 struct zap_details *details) 2795 { 2796 struct vm_area_struct *vma; 2797 pgoff_t vba, vea, zba, zea; 2798 2799 vma_interval_tree_foreach(vma, root, 2800 details->first_index, details->last_index) { 2801 2802 vba = vma->vm_pgoff; 2803 vea = vba + vma_pages(vma) - 1; 2804 zba = details->first_index; 2805 if (zba < vba) 2806 zba = vba; 2807 zea = details->last_index; 2808 if (zea > vea) 2809 zea = vea; 2810 2811 unmap_mapping_range_vma(vma, 2812 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2813 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2814 details); 2815 } 2816 } 2817 2818 /** 2819 * unmap_mapping_pages() - Unmap pages from processes. 2820 * @mapping: The address space containing pages to be unmapped. 2821 * @start: Index of first page to be unmapped. 2822 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2823 * @even_cows: Whether to unmap even private COWed pages. 2824 * 2825 * Unmap the pages in this address space from any userspace process which 2826 * has them mmaped. Generally, you want to remove COWed pages as well when 2827 * a file is being truncated, but not when invalidating pages from the page 2828 * cache. 2829 */ 2830 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2831 pgoff_t nr, bool even_cows) 2832 { 2833 struct zap_details details = { }; 2834 2835 details.check_mapping = even_cows ? NULL : mapping; 2836 details.first_index = start; 2837 details.last_index = start + nr - 1; 2838 if (details.last_index < details.first_index) 2839 details.last_index = ULONG_MAX; 2840 2841 i_mmap_lock_write(mapping); 2842 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2843 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2844 i_mmap_unlock_write(mapping); 2845 } 2846 2847 /** 2848 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2849 * address_space corresponding to the specified byte range in the underlying 2850 * file. 2851 * 2852 * @mapping: the address space containing mmaps to be unmapped. 2853 * @holebegin: byte in first page to unmap, relative to the start of 2854 * the underlying file. This will be rounded down to a PAGE_SIZE 2855 * boundary. Note that this is different from truncate_pagecache(), which 2856 * must keep the partial page. In contrast, we must get rid of 2857 * partial pages. 2858 * @holelen: size of prospective hole in bytes. This will be rounded 2859 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2860 * end of the file. 2861 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2862 * but 0 when invalidating pagecache, don't throw away private data. 2863 */ 2864 void unmap_mapping_range(struct address_space *mapping, 2865 loff_t const holebegin, loff_t const holelen, int even_cows) 2866 { 2867 pgoff_t hba = holebegin >> PAGE_SHIFT; 2868 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2869 2870 /* Check for overflow. */ 2871 if (sizeof(holelen) > sizeof(hlen)) { 2872 long long holeend = 2873 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2874 if (holeend & ~(long long)ULONG_MAX) 2875 hlen = ULONG_MAX - hba + 1; 2876 } 2877 2878 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2879 } 2880 EXPORT_SYMBOL(unmap_mapping_range); 2881 2882 /* 2883 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2884 * but allow concurrent faults), and pte mapped but not yet locked. 2885 * We return with pte unmapped and unlocked. 2886 * 2887 * We return with the mmap_sem locked or unlocked in the same cases 2888 * as does filemap_fault(). 2889 */ 2890 int do_swap_page(struct vm_fault *vmf) 2891 { 2892 struct vm_area_struct *vma = vmf->vma; 2893 struct page *page = NULL, *swapcache; 2894 struct mem_cgroup *memcg; 2895 swp_entry_t entry; 2896 pte_t pte; 2897 int locked; 2898 int exclusive = 0; 2899 int ret = 0; 2900 2901 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2902 goto out; 2903 2904 entry = pte_to_swp_entry(vmf->orig_pte); 2905 if (unlikely(non_swap_entry(entry))) { 2906 if (is_migration_entry(entry)) { 2907 migration_entry_wait(vma->vm_mm, vmf->pmd, 2908 vmf->address); 2909 } else if (is_device_private_entry(entry)) { 2910 /* 2911 * For un-addressable device memory we call the pgmap 2912 * fault handler callback. The callback must migrate 2913 * the page back to some CPU accessible page. 2914 */ 2915 ret = device_private_entry_fault(vma, vmf->address, entry, 2916 vmf->flags, vmf->pmd); 2917 } else if (is_hwpoison_entry(entry)) { 2918 ret = VM_FAULT_HWPOISON; 2919 } else { 2920 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2921 ret = VM_FAULT_SIGBUS; 2922 } 2923 goto out; 2924 } 2925 2926 2927 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2928 page = lookup_swap_cache(entry, vma, vmf->address); 2929 swapcache = page; 2930 2931 if (!page) { 2932 struct swap_info_struct *si = swp_swap_info(entry); 2933 2934 if (si->flags & SWP_SYNCHRONOUS_IO && 2935 __swap_count(si, entry) == 1) { 2936 /* skip swapcache */ 2937 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2938 vmf->address); 2939 if (page) { 2940 __SetPageLocked(page); 2941 __SetPageSwapBacked(page); 2942 set_page_private(page, entry.val); 2943 lru_cache_add_anon(page); 2944 swap_readpage(page, true); 2945 } 2946 } else { 2947 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2948 vmf); 2949 swapcache = page; 2950 } 2951 2952 if (!page) { 2953 /* 2954 * Back out if somebody else faulted in this pte 2955 * while we released the pte lock. 2956 */ 2957 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2958 vmf->address, &vmf->ptl); 2959 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2960 ret = VM_FAULT_OOM; 2961 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2962 goto unlock; 2963 } 2964 2965 /* Had to read the page from swap area: Major fault */ 2966 ret = VM_FAULT_MAJOR; 2967 count_vm_event(PGMAJFAULT); 2968 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2969 } else if (PageHWPoison(page)) { 2970 /* 2971 * hwpoisoned dirty swapcache pages are kept for killing 2972 * owner processes (which may be unknown at hwpoison time) 2973 */ 2974 ret = VM_FAULT_HWPOISON; 2975 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2976 goto out_release; 2977 } 2978 2979 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2980 2981 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2982 if (!locked) { 2983 ret |= VM_FAULT_RETRY; 2984 goto out_release; 2985 } 2986 2987 /* 2988 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2989 * release the swapcache from under us. The page pin, and pte_same 2990 * test below, are not enough to exclude that. Even if it is still 2991 * swapcache, we need to check that the page's swap has not changed. 2992 */ 2993 if (unlikely((!PageSwapCache(page) || 2994 page_private(page) != entry.val)) && swapcache) 2995 goto out_page; 2996 2997 page = ksm_might_need_to_copy(page, vma, vmf->address); 2998 if (unlikely(!page)) { 2999 ret = VM_FAULT_OOM; 3000 page = swapcache; 3001 goto out_page; 3002 } 3003 3004 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 3005 &memcg, false)) { 3006 ret = VM_FAULT_OOM; 3007 goto out_page; 3008 } 3009 3010 /* 3011 * Back out if somebody else already faulted in this pte. 3012 */ 3013 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3014 &vmf->ptl); 3015 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3016 goto out_nomap; 3017 3018 if (unlikely(!PageUptodate(page))) { 3019 ret = VM_FAULT_SIGBUS; 3020 goto out_nomap; 3021 } 3022 3023 /* 3024 * The page isn't present yet, go ahead with the fault. 3025 * 3026 * Be careful about the sequence of operations here. 3027 * To get its accounting right, reuse_swap_page() must be called 3028 * while the page is counted on swap but not yet in mapcount i.e. 3029 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3030 * must be called after the swap_free(), or it will never succeed. 3031 */ 3032 3033 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3034 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3035 pte = mk_pte(page, vma->vm_page_prot); 3036 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3037 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3038 vmf->flags &= ~FAULT_FLAG_WRITE; 3039 ret |= VM_FAULT_WRITE; 3040 exclusive = RMAP_EXCLUSIVE; 3041 } 3042 flush_icache_page(vma, page); 3043 if (pte_swp_soft_dirty(vmf->orig_pte)) 3044 pte = pte_mksoft_dirty(pte); 3045 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3046 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3047 vmf->orig_pte = pte; 3048 3049 /* ksm created a completely new copy */ 3050 if (unlikely(page != swapcache && swapcache)) { 3051 page_add_new_anon_rmap(page, vma, vmf->address, false); 3052 mem_cgroup_commit_charge(page, memcg, false, false); 3053 lru_cache_add_active_or_unevictable(page, vma); 3054 } else { 3055 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3056 mem_cgroup_commit_charge(page, memcg, true, false); 3057 activate_page(page); 3058 } 3059 3060 swap_free(entry); 3061 if (mem_cgroup_swap_full(page) || 3062 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3063 try_to_free_swap(page); 3064 unlock_page(page); 3065 if (page != swapcache && swapcache) { 3066 /* 3067 * Hold the lock to avoid the swap entry to be reused 3068 * until we take the PT lock for the pte_same() check 3069 * (to avoid false positives from pte_same). For 3070 * further safety release the lock after the swap_free 3071 * so that the swap count won't change under a 3072 * parallel locked swapcache. 3073 */ 3074 unlock_page(swapcache); 3075 put_page(swapcache); 3076 } 3077 3078 if (vmf->flags & FAULT_FLAG_WRITE) { 3079 ret |= do_wp_page(vmf); 3080 if (ret & VM_FAULT_ERROR) 3081 ret &= VM_FAULT_ERROR; 3082 goto out; 3083 } 3084 3085 /* No need to invalidate - it was non-present before */ 3086 update_mmu_cache(vma, vmf->address, vmf->pte); 3087 unlock: 3088 pte_unmap_unlock(vmf->pte, vmf->ptl); 3089 out: 3090 return ret; 3091 out_nomap: 3092 mem_cgroup_cancel_charge(page, memcg, false); 3093 pte_unmap_unlock(vmf->pte, vmf->ptl); 3094 out_page: 3095 unlock_page(page); 3096 out_release: 3097 put_page(page); 3098 if (page != swapcache && swapcache) { 3099 unlock_page(swapcache); 3100 put_page(swapcache); 3101 } 3102 return ret; 3103 } 3104 3105 /* 3106 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3107 * but allow concurrent faults), and pte mapped but not yet locked. 3108 * We return with mmap_sem still held, but pte unmapped and unlocked. 3109 */ 3110 static int do_anonymous_page(struct vm_fault *vmf) 3111 { 3112 struct vm_area_struct *vma = vmf->vma; 3113 struct mem_cgroup *memcg; 3114 struct page *page; 3115 int ret = 0; 3116 pte_t entry; 3117 3118 /* File mapping without ->vm_ops ? */ 3119 if (vma->vm_flags & VM_SHARED) 3120 return VM_FAULT_SIGBUS; 3121 3122 /* 3123 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3124 * pte_offset_map() on pmds where a huge pmd might be created 3125 * from a different thread. 3126 * 3127 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3128 * parallel threads are excluded by other means. 3129 * 3130 * Here we only have down_read(mmap_sem). 3131 */ 3132 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 3133 return VM_FAULT_OOM; 3134 3135 /* See the comment in pte_alloc_one_map() */ 3136 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3137 return 0; 3138 3139 /* Use the zero-page for reads */ 3140 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3141 !mm_forbids_zeropage(vma->vm_mm)) { 3142 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3143 vma->vm_page_prot)); 3144 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3145 vmf->address, &vmf->ptl); 3146 if (!pte_none(*vmf->pte)) 3147 goto unlock; 3148 ret = check_stable_address_space(vma->vm_mm); 3149 if (ret) 3150 goto unlock; 3151 /* Deliver the page fault to userland, check inside PT lock */ 3152 if (userfaultfd_missing(vma)) { 3153 pte_unmap_unlock(vmf->pte, vmf->ptl); 3154 return handle_userfault(vmf, VM_UFFD_MISSING); 3155 } 3156 goto setpte; 3157 } 3158 3159 /* Allocate our own private page. */ 3160 if (unlikely(anon_vma_prepare(vma))) 3161 goto oom; 3162 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3163 if (!page) 3164 goto oom; 3165 3166 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 3167 goto oom_free_page; 3168 3169 /* 3170 * The memory barrier inside __SetPageUptodate makes sure that 3171 * preceeding stores to the page contents become visible before 3172 * the set_pte_at() write. 3173 */ 3174 __SetPageUptodate(page); 3175 3176 entry = mk_pte(page, vma->vm_page_prot); 3177 if (vma->vm_flags & VM_WRITE) 3178 entry = pte_mkwrite(pte_mkdirty(entry)); 3179 3180 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3181 &vmf->ptl); 3182 if (!pte_none(*vmf->pte)) 3183 goto release; 3184 3185 ret = check_stable_address_space(vma->vm_mm); 3186 if (ret) 3187 goto release; 3188 3189 /* Deliver the page fault to userland, check inside PT lock */ 3190 if (userfaultfd_missing(vma)) { 3191 pte_unmap_unlock(vmf->pte, vmf->ptl); 3192 mem_cgroup_cancel_charge(page, memcg, false); 3193 put_page(page); 3194 return handle_userfault(vmf, VM_UFFD_MISSING); 3195 } 3196 3197 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3198 page_add_new_anon_rmap(page, vma, vmf->address, false); 3199 mem_cgroup_commit_charge(page, memcg, false, false); 3200 lru_cache_add_active_or_unevictable(page, vma); 3201 setpte: 3202 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3203 3204 /* No need to invalidate - it was non-present before */ 3205 update_mmu_cache(vma, vmf->address, vmf->pte); 3206 unlock: 3207 pte_unmap_unlock(vmf->pte, vmf->ptl); 3208 return ret; 3209 release: 3210 mem_cgroup_cancel_charge(page, memcg, false); 3211 put_page(page); 3212 goto unlock; 3213 oom_free_page: 3214 put_page(page); 3215 oom: 3216 return VM_FAULT_OOM; 3217 } 3218 3219 /* 3220 * The mmap_sem must have been held on entry, and may have been 3221 * released depending on flags and vma->vm_ops->fault() return value. 3222 * See filemap_fault() and __lock_page_retry(). 3223 */ 3224 static int __do_fault(struct vm_fault *vmf) 3225 { 3226 struct vm_area_struct *vma = vmf->vma; 3227 int ret; 3228 3229 ret = vma->vm_ops->fault(vmf); 3230 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3231 VM_FAULT_DONE_COW))) 3232 return ret; 3233 3234 if (unlikely(PageHWPoison(vmf->page))) { 3235 if (ret & VM_FAULT_LOCKED) 3236 unlock_page(vmf->page); 3237 put_page(vmf->page); 3238 vmf->page = NULL; 3239 return VM_FAULT_HWPOISON; 3240 } 3241 3242 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3243 lock_page(vmf->page); 3244 else 3245 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3246 3247 return ret; 3248 } 3249 3250 /* 3251 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3252 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3253 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3254 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3255 */ 3256 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3257 { 3258 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3259 } 3260 3261 static int pte_alloc_one_map(struct vm_fault *vmf) 3262 { 3263 struct vm_area_struct *vma = vmf->vma; 3264 3265 if (!pmd_none(*vmf->pmd)) 3266 goto map_pte; 3267 if (vmf->prealloc_pte) { 3268 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3269 if (unlikely(!pmd_none(*vmf->pmd))) { 3270 spin_unlock(vmf->ptl); 3271 goto map_pte; 3272 } 3273 3274 mm_inc_nr_ptes(vma->vm_mm); 3275 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3276 spin_unlock(vmf->ptl); 3277 vmf->prealloc_pte = NULL; 3278 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3279 return VM_FAULT_OOM; 3280 } 3281 map_pte: 3282 /* 3283 * If a huge pmd materialized under us just retry later. Use 3284 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3285 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3286 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3287 * running immediately after a huge pmd fault in a different thread of 3288 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3289 * All we have to ensure is that it is a regular pmd that we can walk 3290 * with pte_offset_map() and we can do that through an atomic read in 3291 * C, which is what pmd_trans_unstable() provides. 3292 */ 3293 if (pmd_devmap_trans_unstable(vmf->pmd)) 3294 return VM_FAULT_NOPAGE; 3295 3296 /* 3297 * At this point we know that our vmf->pmd points to a page of ptes 3298 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3299 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3300 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3301 * be valid and we will re-check to make sure the vmf->pte isn't 3302 * pte_none() under vmf->ptl protection when we return to 3303 * alloc_set_pte(). 3304 */ 3305 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3306 &vmf->ptl); 3307 return 0; 3308 } 3309 3310 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3311 3312 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3313 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3314 unsigned long haddr) 3315 { 3316 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3317 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3318 return false; 3319 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3320 return false; 3321 return true; 3322 } 3323 3324 static void deposit_prealloc_pte(struct vm_fault *vmf) 3325 { 3326 struct vm_area_struct *vma = vmf->vma; 3327 3328 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3329 /* 3330 * We are going to consume the prealloc table, 3331 * count that as nr_ptes. 3332 */ 3333 mm_inc_nr_ptes(vma->vm_mm); 3334 vmf->prealloc_pte = NULL; 3335 } 3336 3337 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3338 { 3339 struct vm_area_struct *vma = vmf->vma; 3340 bool write = vmf->flags & FAULT_FLAG_WRITE; 3341 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3342 pmd_t entry; 3343 int i, ret; 3344 3345 if (!transhuge_vma_suitable(vma, haddr)) 3346 return VM_FAULT_FALLBACK; 3347 3348 ret = VM_FAULT_FALLBACK; 3349 page = compound_head(page); 3350 3351 /* 3352 * Archs like ppc64 need additonal space to store information 3353 * related to pte entry. Use the preallocated table for that. 3354 */ 3355 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3356 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3357 if (!vmf->prealloc_pte) 3358 return VM_FAULT_OOM; 3359 smp_wmb(); /* See comment in __pte_alloc() */ 3360 } 3361 3362 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3363 if (unlikely(!pmd_none(*vmf->pmd))) 3364 goto out; 3365 3366 for (i = 0; i < HPAGE_PMD_NR; i++) 3367 flush_icache_page(vma, page + i); 3368 3369 entry = mk_huge_pmd(page, vma->vm_page_prot); 3370 if (write) 3371 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3372 3373 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3374 page_add_file_rmap(page, true); 3375 /* 3376 * deposit and withdraw with pmd lock held 3377 */ 3378 if (arch_needs_pgtable_deposit()) 3379 deposit_prealloc_pte(vmf); 3380 3381 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3382 3383 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3384 3385 /* fault is handled */ 3386 ret = 0; 3387 count_vm_event(THP_FILE_MAPPED); 3388 out: 3389 spin_unlock(vmf->ptl); 3390 return ret; 3391 } 3392 #else 3393 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3394 { 3395 BUILD_BUG(); 3396 return 0; 3397 } 3398 #endif 3399 3400 /** 3401 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3402 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3403 * 3404 * @vmf: fault environment 3405 * @memcg: memcg to charge page (only for private mappings) 3406 * @page: page to map 3407 * 3408 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3409 * return. 3410 * 3411 * Target users are page handler itself and implementations of 3412 * vm_ops->map_pages. 3413 */ 3414 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3415 struct page *page) 3416 { 3417 struct vm_area_struct *vma = vmf->vma; 3418 bool write = vmf->flags & FAULT_FLAG_WRITE; 3419 pte_t entry; 3420 int ret; 3421 3422 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3423 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3424 /* THP on COW? */ 3425 VM_BUG_ON_PAGE(memcg, page); 3426 3427 ret = do_set_pmd(vmf, page); 3428 if (ret != VM_FAULT_FALLBACK) 3429 return ret; 3430 } 3431 3432 if (!vmf->pte) { 3433 ret = pte_alloc_one_map(vmf); 3434 if (ret) 3435 return ret; 3436 } 3437 3438 /* Re-check under ptl */ 3439 if (unlikely(!pte_none(*vmf->pte))) 3440 return VM_FAULT_NOPAGE; 3441 3442 flush_icache_page(vma, page); 3443 entry = mk_pte(page, vma->vm_page_prot); 3444 if (write) 3445 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3446 /* copy-on-write page */ 3447 if (write && !(vma->vm_flags & VM_SHARED)) { 3448 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3449 page_add_new_anon_rmap(page, vma, vmf->address, false); 3450 mem_cgroup_commit_charge(page, memcg, false, false); 3451 lru_cache_add_active_or_unevictable(page, vma); 3452 } else { 3453 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3454 page_add_file_rmap(page, false); 3455 } 3456 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3457 3458 /* no need to invalidate: a not-present page won't be cached */ 3459 update_mmu_cache(vma, vmf->address, vmf->pte); 3460 3461 return 0; 3462 } 3463 3464 3465 /** 3466 * finish_fault - finish page fault once we have prepared the page to fault 3467 * 3468 * @vmf: structure describing the fault 3469 * 3470 * This function handles all that is needed to finish a page fault once the 3471 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3472 * given page, adds reverse page mapping, handles memcg charges and LRU 3473 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3474 * error. 3475 * 3476 * The function expects the page to be locked and on success it consumes a 3477 * reference of a page being mapped (for the PTE which maps it). 3478 */ 3479 int finish_fault(struct vm_fault *vmf) 3480 { 3481 struct page *page; 3482 int ret = 0; 3483 3484 /* Did we COW the page? */ 3485 if ((vmf->flags & FAULT_FLAG_WRITE) && 3486 !(vmf->vma->vm_flags & VM_SHARED)) 3487 page = vmf->cow_page; 3488 else 3489 page = vmf->page; 3490 3491 /* 3492 * check even for read faults because we might have lost our CoWed 3493 * page 3494 */ 3495 if (!(vmf->vma->vm_flags & VM_SHARED)) 3496 ret = check_stable_address_space(vmf->vma->vm_mm); 3497 if (!ret) 3498 ret = alloc_set_pte(vmf, vmf->memcg, page); 3499 if (vmf->pte) 3500 pte_unmap_unlock(vmf->pte, vmf->ptl); 3501 return ret; 3502 } 3503 3504 static unsigned long fault_around_bytes __read_mostly = 3505 rounddown_pow_of_two(65536); 3506 3507 #ifdef CONFIG_DEBUG_FS 3508 static int fault_around_bytes_get(void *data, u64 *val) 3509 { 3510 *val = fault_around_bytes; 3511 return 0; 3512 } 3513 3514 /* 3515 * fault_around_bytes must be rounded down to the nearest page order as it's 3516 * what do_fault_around() expects to see. 3517 */ 3518 static int fault_around_bytes_set(void *data, u64 val) 3519 { 3520 if (val / PAGE_SIZE > PTRS_PER_PTE) 3521 return -EINVAL; 3522 if (val > PAGE_SIZE) 3523 fault_around_bytes = rounddown_pow_of_two(val); 3524 else 3525 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3526 return 0; 3527 } 3528 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3529 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3530 3531 static int __init fault_around_debugfs(void) 3532 { 3533 void *ret; 3534 3535 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3536 &fault_around_bytes_fops); 3537 if (!ret) 3538 pr_warn("Failed to create fault_around_bytes in debugfs"); 3539 return 0; 3540 } 3541 late_initcall(fault_around_debugfs); 3542 #endif 3543 3544 /* 3545 * do_fault_around() tries to map few pages around the fault address. The hope 3546 * is that the pages will be needed soon and this will lower the number of 3547 * faults to handle. 3548 * 3549 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3550 * not ready to be mapped: not up-to-date, locked, etc. 3551 * 3552 * This function is called with the page table lock taken. In the split ptlock 3553 * case the page table lock only protects only those entries which belong to 3554 * the page table corresponding to the fault address. 3555 * 3556 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3557 * only once. 3558 * 3559 * fault_around_bytes defines how many bytes we'll try to map. 3560 * do_fault_around() expects it to be set to a power of two less than or equal 3561 * to PTRS_PER_PTE. 3562 * 3563 * The virtual address of the area that we map is naturally aligned to 3564 * fault_around_bytes rounded down to the machine page size 3565 * (and therefore to page order). This way it's easier to guarantee 3566 * that we don't cross page table boundaries. 3567 */ 3568 static int do_fault_around(struct vm_fault *vmf) 3569 { 3570 unsigned long address = vmf->address, nr_pages, mask; 3571 pgoff_t start_pgoff = vmf->pgoff; 3572 pgoff_t end_pgoff; 3573 int off, ret = 0; 3574 3575 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3576 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3577 3578 vmf->address = max(address & mask, vmf->vma->vm_start); 3579 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3580 start_pgoff -= off; 3581 3582 /* 3583 * end_pgoff is either the end of the page table, the end of 3584 * the vma or nr_pages from start_pgoff, depending what is nearest. 3585 */ 3586 end_pgoff = start_pgoff - 3587 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3588 PTRS_PER_PTE - 1; 3589 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3590 start_pgoff + nr_pages - 1); 3591 3592 if (pmd_none(*vmf->pmd)) { 3593 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3594 vmf->address); 3595 if (!vmf->prealloc_pte) 3596 goto out; 3597 smp_wmb(); /* See comment in __pte_alloc() */ 3598 } 3599 3600 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3601 3602 /* Huge page is mapped? Page fault is solved */ 3603 if (pmd_trans_huge(*vmf->pmd)) { 3604 ret = VM_FAULT_NOPAGE; 3605 goto out; 3606 } 3607 3608 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3609 if (!vmf->pte) 3610 goto out; 3611 3612 /* check if the page fault is solved */ 3613 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3614 if (!pte_none(*vmf->pte)) 3615 ret = VM_FAULT_NOPAGE; 3616 pte_unmap_unlock(vmf->pte, vmf->ptl); 3617 out: 3618 vmf->address = address; 3619 vmf->pte = NULL; 3620 return ret; 3621 } 3622 3623 static int do_read_fault(struct vm_fault *vmf) 3624 { 3625 struct vm_area_struct *vma = vmf->vma; 3626 int ret = 0; 3627 3628 /* 3629 * Let's call ->map_pages() first and use ->fault() as fallback 3630 * if page by the offset is not ready to be mapped (cold cache or 3631 * something). 3632 */ 3633 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3634 ret = do_fault_around(vmf); 3635 if (ret) 3636 return ret; 3637 } 3638 3639 ret = __do_fault(vmf); 3640 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3641 return ret; 3642 3643 ret |= finish_fault(vmf); 3644 unlock_page(vmf->page); 3645 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3646 put_page(vmf->page); 3647 return ret; 3648 } 3649 3650 static int do_cow_fault(struct vm_fault *vmf) 3651 { 3652 struct vm_area_struct *vma = vmf->vma; 3653 int ret; 3654 3655 if (unlikely(anon_vma_prepare(vma))) 3656 return VM_FAULT_OOM; 3657 3658 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3659 if (!vmf->cow_page) 3660 return VM_FAULT_OOM; 3661 3662 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3663 &vmf->memcg, false)) { 3664 put_page(vmf->cow_page); 3665 return VM_FAULT_OOM; 3666 } 3667 3668 ret = __do_fault(vmf); 3669 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3670 goto uncharge_out; 3671 if (ret & VM_FAULT_DONE_COW) 3672 return ret; 3673 3674 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3675 __SetPageUptodate(vmf->cow_page); 3676 3677 ret |= finish_fault(vmf); 3678 unlock_page(vmf->page); 3679 put_page(vmf->page); 3680 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3681 goto uncharge_out; 3682 return ret; 3683 uncharge_out: 3684 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3685 put_page(vmf->cow_page); 3686 return ret; 3687 } 3688 3689 static int do_shared_fault(struct vm_fault *vmf) 3690 { 3691 struct vm_area_struct *vma = vmf->vma; 3692 int ret, tmp; 3693 3694 ret = __do_fault(vmf); 3695 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3696 return ret; 3697 3698 /* 3699 * Check if the backing address space wants to know that the page is 3700 * about to become writable 3701 */ 3702 if (vma->vm_ops->page_mkwrite) { 3703 unlock_page(vmf->page); 3704 tmp = do_page_mkwrite(vmf); 3705 if (unlikely(!tmp || 3706 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3707 put_page(vmf->page); 3708 return tmp; 3709 } 3710 } 3711 3712 ret |= finish_fault(vmf); 3713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3714 VM_FAULT_RETRY))) { 3715 unlock_page(vmf->page); 3716 put_page(vmf->page); 3717 return ret; 3718 } 3719 3720 fault_dirty_shared_page(vma, vmf->page); 3721 return ret; 3722 } 3723 3724 /* 3725 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3726 * but allow concurrent faults). 3727 * The mmap_sem may have been released depending on flags and our 3728 * return value. See filemap_fault() and __lock_page_or_retry(). 3729 */ 3730 static int do_fault(struct vm_fault *vmf) 3731 { 3732 struct vm_area_struct *vma = vmf->vma; 3733 int ret; 3734 3735 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3736 if (!vma->vm_ops->fault) 3737 ret = VM_FAULT_SIGBUS; 3738 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3739 ret = do_read_fault(vmf); 3740 else if (!(vma->vm_flags & VM_SHARED)) 3741 ret = do_cow_fault(vmf); 3742 else 3743 ret = do_shared_fault(vmf); 3744 3745 /* preallocated pagetable is unused: free it */ 3746 if (vmf->prealloc_pte) { 3747 pte_free(vma->vm_mm, vmf->prealloc_pte); 3748 vmf->prealloc_pte = NULL; 3749 } 3750 return ret; 3751 } 3752 3753 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3754 unsigned long addr, int page_nid, 3755 int *flags) 3756 { 3757 get_page(page); 3758 3759 count_vm_numa_event(NUMA_HINT_FAULTS); 3760 if (page_nid == numa_node_id()) { 3761 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3762 *flags |= TNF_FAULT_LOCAL; 3763 } 3764 3765 return mpol_misplaced(page, vma, addr); 3766 } 3767 3768 static int do_numa_page(struct vm_fault *vmf) 3769 { 3770 struct vm_area_struct *vma = vmf->vma; 3771 struct page *page = NULL; 3772 int page_nid = -1; 3773 int last_cpupid; 3774 int target_nid; 3775 bool migrated = false; 3776 pte_t pte; 3777 bool was_writable = pte_savedwrite(vmf->orig_pte); 3778 int flags = 0; 3779 3780 /* 3781 * The "pte" at this point cannot be used safely without 3782 * validation through pte_unmap_same(). It's of NUMA type but 3783 * the pfn may be screwed if the read is non atomic. 3784 */ 3785 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3786 spin_lock(vmf->ptl); 3787 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3788 pte_unmap_unlock(vmf->pte, vmf->ptl); 3789 goto out; 3790 } 3791 3792 /* 3793 * Make it present again, Depending on how arch implementes non 3794 * accessible ptes, some can allow access by kernel mode. 3795 */ 3796 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3797 pte = pte_modify(pte, vma->vm_page_prot); 3798 pte = pte_mkyoung(pte); 3799 if (was_writable) 3800 pte = pte_mkwrite(pte); 3801 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3802 update_mmu_cache(vma, vmf->address, vmf->pte); 3803 3804 page = vm_normal_page(vma, vmf->address, pte); 3805 if (!page) { 3806 pte_unmap_unlock(vmf->pte, vmf->ptl); 3807 return 0; 3808 } 3809 3810 /* TODO: handle PTE-mapped THP */ 3811 if (PageCompound(page)) { 3812 pte_unmap_unlock(vmf->pte, vmf->ptl); 3813 return 0; 3814 } 3815 3816 /* 3817 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3818 * much anyway since they can be in shared cache state. This misses 3819 * the case where a mapping is writable but the process never writes 3820 * to it but pte_write gets cleared during protection updates and 3821 * pte_dirty has unpredictable behaviour between PTE scan updates, 3822 * background writeback, dirty balancing and application behaviour. 3823 */ 3824 if (!pte_write(pte)) 3825 flags |= TNF_NO_GROUP; 3826 3827 /* 3828 * Flag if the page is shared between multiple address spaces. This 3829 * is later used when determining whether to group tasks together 3830 */ 3831 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3832 flags |= TNF_SHARED; 3833 3834 last_cpupid = page_cpupid_last(page); 3835 page_nid = page_to_nid(page); 3836 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3837 &flags); 3838 pte_unmap_unlock(vmf->pte, vmf->ptl); 3839 if (target_nid == -1) { 3840 put_page(page); 3841 goto out; 3842 } 3843 3844 /* Migrate to the requested node */ 3845 migrated = migrate_misplaced_page(page, vma, target_nid); 3846 if (migrated) { 3847 page_nid = target_nid; 3848 flags |= TNF_MIGRATED; 3849 } else 3850 flags |= TNF_MIGRATE_FAIL; 3851 3852 out: 3853 if (page_nid != -1) 3854 task_numa_fault(last_cpupid, page_nid, 1, flags); 3855 return 0; 3856 } 3857 3858 static inline int create_huge_pmd(struct vm_fault *vmf) 3859 { 3860 if (vma_is_anonymous(vmf->vma)) 3861 return do_huge_pmd_anonymous_page(vmf); 3862 if (vmf->vma->vm_ops->huge_fault) 3863 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3864 return VM_FAULT_FALLBACK; 3865 } 3866 3867 /* `inline' is required to avoid gcc 4.1.2 build error */ 3868 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3869 { 3870 if (vma_is_anonymous(vmf->vma)) 3871 return do_huge_pmd_wp_page(vmf, orig_pmd); 3872 if (vmf->vma->vm_ops->huge_fault) 3873 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3874 3875 /* COW handled on pte level: split pmd */ 3876 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3877 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3878 3879 return VM_FAULT_FALLBACK; 3880 } 3881 3882 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3883 { 3884 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3885 } 3886 3887 static int create_huge_pud(struct vm_fault *vmf) 3888 { 3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3890 /* No support for anonymous transparent PUD pages yet */ 3891 if (vma_is_anonymous(vmf->vma)) 3892 return VM_FAULT_FALLBACK; 3893 if (vmf->vma->vm_ops->huge_fault) 3894 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3896 return VM_FAULT_FALLBACK; 3897 } 3898 3899 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3900 { 3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3902 /* No support for anonymous transparent PUD pages yet */ 3903 if (vma_is_anonymous(vmf->vma)) 3904 return VM_FAULT_FALLBACK; 3905 if (vmf->vma->vm_ops->huge_fault) 3906 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3908 return VM_FAULT_FALLBACK; 3909 } 3910 3911 /* 3912 * These routines also need to handle stuff like marking pages dirty 3913 * and/or accessed for architectures that don't do it in hardware (most 3914 * RISC architectures). The early dirtying is also good on the i386. 3915 * 3916 * There is also a hook called "update_mmu_cache()" that architectures 3917 * with external mmu caches can use to update those (ie the Sparc or 3918 * PowerPC hashed page tables that act as extended TLBs). 3919 * 3920 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3921 * concurrent faults). 3922 * 3923 * The mmap_sem may have been released depending on flags and our return value. 3924 * See filemap_fault() and __lock_page_or_retry(). 3925 */ 3926 static int handle_pte_fault(struct vm_fault *vmf) 3927 { 3928 pte_t entry; 3929 3930 if (unlikely(pmd_none(*vmf->pmd))) { 3931 /* 3932 * Leave __pte_alloc() until later: because vm_ops->fault may 3933 * want to allocate huge page, and if we expose page table 3934 * for an instant, it will be difficult to retract from 3935 * concurrent faults and from rmap lookups. 3936 */ 3937 vmf->pte = NULL; 3938 } else { 3939 /* See comment in pte_alloc_one_map() */ 3940 if (pmd_devmap_trans_unstable(vmf->pmd)) 3941 return 0; 3942 /* 3943 * A regular pmd is established and it can't morph into a huge 3944 * pmd from under us anymore at this point because we hold the 3945 * mmap_sem read mode and khugepaged takes it in write mode. 3946 * So now it's safe to run pte_offset_map(). 3947 */ 3948 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3949 vmf->orig_pte = *vmf->pte; 3950 3951 /* 3952 * some architectures can have larger ptes than wordsize, 3953 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3954 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3955 * accesses. The code below just needs a consistent view 3956 * for the ifs and we later double check anyway with the 3957 * ptl lock held. So here a barrier will do. 3958 */ 3959 barrier(); 3960 if (pte_none(vmf->orig_pte)) { 3961 pte_unmap(vmf->pte); 3962 vmf->pte = NULL; 3963 } 3964 } 3965 3966 if (!vmf->pte) { 3967 if (vma_is_anonymous(vmf->vma)) 3968 return do_anonymous_page(vmf); 3969 else 3970 return do_fault(vmf); 3971 } 3972 3973 if (!pte_present(vmf->orig_pte)) 3974 return do_swap_page(vmf); 3975 3976 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3977 return do_numa_page(vmf); 3978 3979 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3980 spin_lock(vmf->ptl); 3981 entry = vmf->orig_pte; 3982 if (unlikely(!pte_same(*vmf->pte, entry))) 3983 goto unlock; 3984 if (vmf->flags & FAULT_FLAG_WRITE) { 3985 if (!pte_write(entry)) 3986 return do_wp_page(vmf); 3987 entry = pte_mkdirty(entry); 3988 } 3989 entry = pte_mkyoung(entry); 3990 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3991 vmf->flags & FAULT_FLAG_WRITE)) { 3992 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3993 } else { 3994 /* 3995 * This is needed only for protection faults but the arch code 3996 * is not yet telling us if this is a protection fault or not. 3997 * This still avoids useless tlb flushes for .text page faults 3998 * with threads. 3999 */ 4000 if (vmf->flags & FAULT_FLAG_WRITE) 4001 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4002 } 4003 unlock: 4004 pte_unmap_unlock(vmf->pte, vmf->ptl); 4005 return 0; 4006 } 4007 4008 /* 4009 * By the time we get here, we already hold the mm semaphore 4010 * 4011 * The mmap_sem may have been released depending on flags and our 4012 * return value. See filemap_fault() and __lock_page_or_retry(). 4013 */ 4014 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4015 unsigned int flags) 4016 { 4017 struct vm_fault vmf = { 4018 .vma = vma, 4019 .address = address & PAGE_MASK, 4020 .flags = flags, 4021 .pgoff = linear_page_index(vma, address), 4022 .gfp_mask = __get_fault_gfp_mask(vma), 4023 }; 4024 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4025 struct mm_struct *mm = vma->vm_mm; 4026 pgd_t *pgd; 4027 p4d_t *p4d; 4028 int ret; 4029 4030 pgd = pgd_offset(mm, address); 4031 p4d = p4d_alloc(mm, pgd, address); 4032 if (!p4d) 4033 return VM_FAULT_OOM; 4034 4035 vmf.pud = pud_alloc(mm, p4d, address); 4036 if (!vmf.pud) 4037 return VM_FAULT_OOM; 4038 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 4039 ret = create_huge_pud(&vmf); 4040 if (!(ret & VM_FAULT_FALLBACK)) 4041 return ret; 4042 } else { 4043 pud_t orig_pud = *vmf.pud; 4044 4045 barrier(); 4046 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4047 4048 /* NUMA case for anonymous PUDs would go here */ 4049 4050 if (dirty && !pud_write(orig_pud)) { 4051 ret = wp_huge_pud(&vmf, orig_pud); 4052 if (!(ret & VM_FAULT_FALLBACK)) 4053 return ret; 4054 } else { 4055 huge_pud_set_accessed(&vmf, orig_pud); 4056 return 0; 4057 } 4058 } 4059 } 4060 4061 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4062 if (!vmf.pmd) 4063 return VM_FAULT_OOM; 4064 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 4065 ret = create_huge_pmd(&vmf); 4066 if (!(ret & VM_FAULT_FALLBACK)) 4067 return ret; 4068 } else { 4069 pmd_t orig_pmd = *vmf.pmd; 4070 4071 barrier(); 4072 if (unlikely(is_swap_pmd(orig_pmd))) { 4073 VM_BUG_ON(thp_migration_supported() && 4074 !is_pmd_migration_entry(orig_pmd)); 4075 if (is_pmd_migration_entry(orig_pmd)) 4076 pmd_migration_entry_wait(mm, vmf.pmd); 4077 return 0; 4078 } 4079 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4080 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4081 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4082 4083 if (dirty && !pmd_write(orig_pmd)) { 4084 ret = wp_huge_pmd(&vmf, orig_pmd); 4085 if (!(ret & VM_FAULT_FALLBACK)) 4086 return ret; 4087 } else { 4088 huge_pmd_set_accessed(&vmf, orig_pmd); 4089 return 0; 4090 } 4091 } 4092 } 4093 4094 return handle_pte_fault(&vmf); 4095 } 4096 4097 /* 4098 * By the time we get here, we already hold the mm semaphore 4099 * 4100 * The mmap_sem may have been released depending on flags and our 4101 * return value. See filemap_fault() and __lock_page_or_retry(). 4102 */ 4103 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4104 unsigned int flags) 4105 { 4106 int ret; 4107 4108 __set_current_state(TASK_RUNNING); 4109 4110 count_vm_event(PGFAULT); 4111 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4112 4113 /* do counter updates before entering really critical section. */ 4114 check_sync_rss_stat(current); 4115 4116 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4117 flags & FAULT_FLAG_INSTRUCTION, 4118 flags & FAULT_FLAG_REMOTE)) 4119 return VM_FAULT_SIGSEGV; 4120 4121 /* 4122 * Enable the memcg OOM handling for faults triggered in user 4123 * space. Kernel faults are handled more gracefully. 4124 */ 4125 if (flags & FAULT_FLAG_USER) 4126 mem_cgroup_oom_enable(); 4127 4128 if (unlikely(is_vm_hugetlb_page(vma))) 4129 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4130 else 4131 ret = __handle_mm_fault(vma, address, flags); 4132 4133 if (flags & FAULT_FLAG_USER) { 4134 mem_cgroup_oom_disable(); 4135 /* 4136 * The task may have entered a memcg OOM situation but 4137 * if the allocation error was handled gracefully (no 4138 * VM_FAULT_OOM), there is no need to kill anything. 4139 * Just clean up the OOM state peacefully. 4140 */ 4141 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4142 mem_cgroup_oom_synchronize(false); 4143 } 4144 4145 return ret; 4146 } 4147 EXPORT_SYMBOL_GPL(handle_mm_fault); 4148 4149 #ifndef __PAGETABLE_P4D_FOLDED 4150 /* 4151 * Allocate p4d page table. 4152 * We've already handled the fast-path in-line. 4153 */ 4154 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4155 { 4156 p4d_t *new = p4d_alloc_one(mm, address); 4157 if (!new) 4158 return -ENOMEM; 4159 4160 smp_wmb(); /* See comment in __pte_alloc */ 4161 4162 spin_lock(&mm->page_table_lock); 4163 if (pgd_present(*pgd)) /* Another has populated it */ 4164 p4d_free(mm, new); 4165 else 4166 pgd_populate(mm, pgd, new); 4167 spin_unlock(&mm->page_table_lock); 4168 return 0; 4169 } 4170 #endif /* __PAGETABLE_P4D_FOLDED */ 4171 4172 #ifndef __PAGETABLE_PUD_FOLDED 4173 /* 4174 * Allocate page upper directory. 4175 * We've already handled the fast-path in-line. 4176 */ 4177 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4178 { 4179 pud_t *new = pud_alloc_one(mm, address); 4180 if (!new) 4181 return -ENOMEM; 4182 4183 smp_wmb(); /* See comment in __pte_alloc */ 4184 4185 spin_lock(&mm->page_table_lock); 4186 #ifndef __ARCH_HAS_5LEVEL_HACK 4187 if (!p4d_present(*p4d)) { 4188 mm_inc_nr_puds(mm); 4189 p4d_populate(mm, p4d, new); 4190 } else /* Another has populated it */ 4191 pud_free(mm, new); 4192 #else 4193 if (!pgd_present(*p4d)) { 4194 mm_inc_nr_puds(mm); 4195 pgd_populate(mm, p4d, new); 4196 } else /* Another has populated it */ 4197 pud_free(mm, new); 4198 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4199 spin_unlock(&mm->page_table_lock); 4200 return 0; 4201 } 4202 #endif /* __PAGETABLE_PUD_FOLDED */ 4203 4204 #ifndef __PAGETABLE_PMD_FOLDED 4205 /* 4206 * Allocate page middle directory. 4207 * We've already handled the fast-path in-line. 4208 */ 4209 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4210 { 4211 spinlock_t *ptl; 4212 pmd_t *new = pmd_alloc_one(mm, address); 4213 if (!new) 4214 return -ENOMEM; 4215 4216 smp_wmb(); /* See comment in __pte_alloc */ 4217 4218 ptl = pud_lock(mm, pud); 4219 #ifndef __ARCH_HAS_4LEVEL_HACK 4220 if (!pud_present(*pud)) { 4221 mm_inc_nr_pmds(mm); 4222 pud_populate(mm, pud, new); 4223 } else /* Another has populated it */ 4224 pmd_free(mm, new); 4225 #else 4226 if (!pgd_present(*pud)) { 4227 mm_inc_nr_pmds(mm); 4228 pgd_populate(mm, pud, new); 4229 } else /* Another has populated it */ 4230 pmd_free(mm, new); 4231 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4232 spin_unlock(ptl); 4233 return 0; 4234 } 4235 #endif /* __PAGETABLE_PMD_FOLDED */ 4236 4237 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4238 unsigned long *start, unsigned long *end, 4239 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4240 { 4241 pgd_t *pgd; 4242 p4d_t *p4d; 4243 pud_t *pud; 4244 pmd_t *pmd; 4245 pte_t *ptep; 4246 4247 pgd = pgd_offset(mm, address); 4248 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4249 goto out; 4250 4251 p4d = p4d_offset(pgd, address); 4252 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4253 goto out; 4254 4255 pud = pud_offset(p4d, address); 4256 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4257 goto out; 4258 4259 pmd = pmd_offset(pud, address); 4260 VM_BUG_ON(pmd_trans_huge(*pmd)); 4261 4262 if (pmd_huge(*pmd)) { 4263 if (!pmdpp) 4264 goto out; 4265 4266 if (start && end) { 4267 *start = address & PMD_MASK; 4268 *end = *start + PMD_SIZE; 4269 mmu_notifier_invalidate_range_start(mm, *start, *end); 4270 } 4271 *ptlp = pmd_lock(mm, pmd); 4272 if (pmd_huge(*pmd)) { 4273 *pmdpp = pmd; 4274 return 0; 4275 } 4276 spin_unlock(*ptlp); 4277 if (start && end) 4278 mmu_notifier_invalidate_range_end(mm, *start, *end); 4279 } 4280 4281 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4282 goto out; 4283 4284 if (start && end) { 4285 *start = address & PAGE_MASK; 4286 *end = *start + PAGE_SIZE; 4287 mmu_notifier_invalidate_range_start(mm, *start, *end); 4288 } 4289 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4290 if (!pte_present(*ptep)) 4291 goto unlock; 4292 *ptepp = ptep; 4293 return 0; 4294 unlock: 4295 pte_unmap_unlock(ptep, *ptlp); 4296 if (start && end) 4297 mmu_notifier_invalidate_range_end(mm, *start, *end); 4298 out: 4299 return -EINVAL; 4300 } 4301 4302 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4303 pte_t **ptepp, spinlock_t **ptlp) 4304 { 4305 int res; 4306 4307 /* (void) is needed to make gcc happy */ 4308 (void) __cond_lock(*ptlp, 4309 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4310 ptepp, NULL, ptlp))); 4311 return res; 4312 } 4313 4314 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4315 unsigned long *start, unsigned long *end, 4316 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4317 { 4318 int res; 4319 4320 /* (void) is needed to make gcc happy */ 4321 (void) __cond_lock(*ptlp, 4322 !(res = __follow_pte_pmd(mm, address, start, end, 4323 ptepp, pmdpp, ptlp))); 4324 return res; 4325 } 4326 EXPORT_SYMBOL(follow_pte_pmd); 4327 4328 /** 4329 * follow_pfn - look up PFN at a user virtual address 4330 * @vma: memory mapping 4331 * @address: user virtual address 4332 * @pfn: location to store found PFN 4333 * 4334 * Only IO mappings and raw PFN mappings are allowed. 4335 * 4336 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4337 */ 4338 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4339 unsigned long *pfn) 4340 { 4341 int ret = -EINVAL; 4342 spinlock_t *ptl; 4343 pte_t *ptep; 4344 4345 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4346 return ret; 4347 4348 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4349 if (ret) 4350 return ret; 4351 *pfn = pte_pfn(*ptep); 4352 pte_unmap_unlock(ptep, ptl); 4353 return 0; 4354 } 4355 EXPORT_SYMBOL(follow_pfn); 4356 4357 #ifdef CONFIG_HAVE_IOREMAP_PROT 4358 int follow_phys(struct vm_area_struct *vma, 4359 unsigned long address, unsigned int flags, 4360 unsigned long *prot, resource_size_t *phys) 4361 { 4362 int ret = -EINVAL; 4363 pte_t *ptep, pte; 4364 spinlock_t *ptl; 4365 4366 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4367 goto out; 4368 4369 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4370 goto out; 4371 pte = *ptep; 4372 4373 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4374 goto unlock; 4375 4376 *prot = pgprot_val(pte_pgprot(pte)); 4377 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4378 4379 ret = 0; 4380 unlock: 4381 pte_unmap_unlock(ptep, ptl); 4382 out: 4383 return ret; 4384 } 4385 4386 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4387 void *buf, int len, int write) 4388 { 4389 resource_size_t phys_addr; 4390 unsigned long prot = 0; 4391 void __iomem *maddr; 4392 int offset = addr & (PAGE_SIZE-1); 4393 4394 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4395 return -EINVAL; 4396 4397 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4398 if (write) 4399 memcpy_toio(maddr + offset, buf, len); 4400 else 4401 memcpy_fromio(buf, maddr + offset, len); 4402 iounmap(maddr); 4403 4404 return len; 4405 } 4406 EXPORT_SYMBOL_GPL(generic_access_phys); 4407 #endif 4408 4409 /* 4410 * Access another process' address space as given in mm. If non-NULL, use the 4411 * given task for page fault accounting. 4412 */ 4413 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4414 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4415 { 4416 struct vm_area_struct *vma; 4417 void *old_buf = buf; 4418 int write = gup_flags & FOLL_WRITE; 4419 4420 down_read(&mm->mmap_sem); 4421 /* ignore errors, just check how much was successfully transferred */ 4422 while (len) { 4423 int bytes, ret, offset; 4424 void *maddr; 4425 struct page *page = NULL; 4426 4427 ret = get_user_pages_remote(tsk, mm, addr, 1, 4428 gup_flags, &page, &vma, NULL); 4429 if (ret <= 0) { 4430 #ifndef CONFIG_HAVE_IOREMAP_PROT 4431 break; 4432 #else 4433 /* 4434 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4435 * we can access using slightly different code. 4436 */ 4437 vma = find_vma(mm, addr); 4438 if (!vma || vma->vm_start > addr) 4439 break; 4440 if (vma->vm_ops && vma->vm_ops->access) 4441 ret = vma->vm_ops->access(vma, addr, buf, 4442 len, write); 4443 if (ret <= 0) 4444 break; 4445 bytes = ret; 4446 #endif 4447 } else { 4448 bytes = len; 4449 offset = addr & (PAGE_SIZE-1); 4450 if (bytes > PAGE_SIZE-offset) 4451 bytes = PAGE_SIZE-offset; 4452 4453 maddr = kmap(page); 4454 if (write) { 4455 copy_to_user_page(vma, page, addr, 4456 maddr + offset, buf, bytes); 4457 set_page_dirty_lock(page); 4458 } else { 4459 copy_from_user_page(vma, page, addr, 4460 buf, maddr + offset, bytes); 4461 } 4462 kunmap(page); 4463 put_page(page); 4464 } 4465 len -= bytes; 4466 buf += bytes; 4467 addr += bytes; 4468 } 4469 up_read(&mm->mmap_sem); 4470 4471 return buf - old_buf; 4472 } 4473 4474 /** 4475 * access_remote_vm - access another process' address space 4476 * @mm: the mm_struct of the target address space 4477 * @addr: start address to access 4478 * @buf: source or destination buffer 4479 * @len: number of bytes to transfer 4480 * @gup_flags: flags modifying lookup behaviour 4481 * 4482 * The caller must hold a reference on @mm. 4483 */ 4484 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4485 void *buf, int len, unsigned int gup_flags) 4486 { 4487 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4488 } 4489 4490 /* 4491 * Access another process' address space. 4492 * Source/target buffer must be kernel space, 4493 * Do not walk the page table directly, use get_user_pages 4494 */ 4495 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4496 void *buf, int len, unsigned int gup_flags) 4497 { 4498 struct mm_struct *mm; 4499 int ret; 4500 4501 mm = get_task_mm(tsk); 4502 if (!mm) 4503 return 0; 4504 4505 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4506 4507 mmput(mm); 4508 4509 return ret; 4510 } 4511 EXPORT_SYMBOL_GPL(access_process_vm); 4512 4513 /* 4514 * Print the name of a VMA. 4515 */ 4516 void print_vma_addr(char *prefix, unsigned long ip) 4517 { 4518 struct mm_struct *mm = current->mm; 4519 struct vm_area_struct *vma; 4520 4521 /* 4522 * we might be running from an atomic context so we cannot sleep 4523 */ 4524 if (!down_read_trylock(&mm->mmap_sem)) 4525 return; 4526 4527 vma = find_vma(mm, ip); 4528 if (vma && vma->vm_file) { 4529 struct file *f = vma->vm_file; 4530 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4531 if (buf) { 4532 char *p; 4533 4534 p = file_path(f, buf, PAGE_SIZE); 4535 if (IS_ERR(p)) 4536 p = "?"; 4537 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4538 vma->vm_start, 4539 vma->vm_end - vma->vm_start); 4540 free_page((unsigned long)buf); 4541 } 4542 } 4543 up_read(&mm->mmap_sem); 4544 } 4545 4546 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4547 void __might_fault(const char *file, int line) 4548 { 4549 /* 4550 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4551 * holding the mmap_sem, this is safe because kernel memory doesn't 4552 * get paged out, therefore we'll never actually fault, and the 4553 * below annotations will generate false positives. 4554 */ 4555 if (uaccess_kernel()) 4556 return; 4557 if (pagefault_disabled()) 4558 return; 4559 __might_sleep(file, line, 0); 4560 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4561 if (current->mm) 4562 might_lock_read(¤t->mm->mmap_sem); 4563 #endif 4564 } 4565 EXPORT_SYMBOL(__might_fault); 4566 #endif 4567 4568 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4569 static void clear_gigantic_page(struct page *page, 4570 unsigned long addr, 4571 unsigned int pages_per_huge_page) 4572 { 4573 int i; 4574 struct page *p = page; 4575 4576 might_sleep(); 4577 for (i = 0; i < pages_per_huge_page; 4578 i++, p = mem_map_next(p, page, i)) { 4579 cond_resched(); 4580 clear_user_highpage(p, addr + i * PAGE_SIZE); 4581 } 4582 } 4583 void clear_huge_page(struct page *page, 4584 unsigned long addr_hint, unsigned int pages_per_huge_page) 4585 { 4586 int i, n, base, l; 4587 unsigned long addr = addr_hint & 4588 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4589 4590 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4591 clear_gigantic_page(page, addr, pages_per_huge_page); 4592 return; 4593 } 4594 4595 /* Clear sub-page to access last to keep its cache lines hot */ 4596 might_sleep(); 4597 n = (addr_hint - addr) / PAGE_SIZE; 4598 if (2 * n <= pages_per_huge_page) { 4599 /* If sub-page to access in first half of huge page */ 4600 base = 0; 4601 l = n; 4602 /* Clear sub-pages at the end of huge page */ 4603 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4604 cond_resched(); 4605 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4606 } 4607 } else { 4608 /* If sub-page to access in second half of huge page */ 4609 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4610 l = pages_per_huge_page - n; 4611 /* Clear sub-pages at the begin of huge page */ 4612 for (i = 0; i < base; i++) { 4613 cond_resched(); 4614 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4615 } 4616 } 4617 /* 4618 * Clear remaining sub-pages in left-right-left-right pattern 4619 * towards the sub-page to access 4620 */ 4621 for (i = 0; i < l; i++) { 4622 int left_idx = base + i; 4623 int right_idx = base + 2 * l - 1 - i; 4624 4625 cond_resched(); 4626 clear_user_highpage(page + left_idx, 4627 addr + left_idx * PAGE_SIZE); 4628 cond_resched(); 4629 clear_user_highpage(page + right_idx, 4630 addr + right_idx * PAGE_SIZE); 4631 } 4632 } 4633 4634 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4635 unsigned long addr, 4636 struct vm_area_struct *vma, 4637 unsigned int pages_per_huge_page) 4638 { 4639 int i; 4640 struct page *dst_base = dst; 4641 struct page *src_base = src; 4642 4643 for (i = 0; i < pages_per_huge_page; ) { 4644 cond_resched(); 4645 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4646 4647 i++; 4648 dst = mem_map_next(dst, dst_base, i); 4649 src = mem_map_next(src, src_base, i); 4650 } 4651 } 4652 4653 void copy_user_huge_page(struct page *dst, struct page *src, 4654 unsigned long addr, struct vm_area_struct *vma, 4655 unsigned int pages_per_huge_page) 4656 { 4657 int i; 4658 4659 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4660 copy_user_gigantic_page(dst, src, addr, vma, 4661 pages_per_huge_page); 4662 return; 4663 } 4664 4665 might_sleep(); 4666 for (i = 0; i < pages_per_huge_page; i++) { 4667 cond_resched(); 4668 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4669 } 4670 } 4671 4672 long copy_huge_page_from_user(struct page *dst_page, 4673 const void __user *usr_src, 4674 unsigned int pages_per_huge_page, 4675 bool allow_pagefault) 4676 { 4677 void *src = (void *)usr_src; 4678 void *page_kaddr; 4679 unsigned long i, rc = 0; 4680 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4681 4682 for (i = 0; i < pages_per_huge_page; i++) { 4683 if (allow_pagefault) 4684 page_kaddr = kmap(dst_page + i); 4685 else 4686 page_kaddr = kmap_atomic(dst_page + i); 4687 rc = copy_from_user(page_kaddr, 4688 (const void __user *)(src + i * PAGE_SIZE), 4689 PAGE_SIZE); 4690 if (allow_pagefault) 4691 kunmap(dst_page + i); 4692 else 4693 kunmap_atomic(page_kaddr); 4694 4695 ret_val -= (PAGE_SIZE - rc); 4696 if (rc) 4697 break; 4698 4699 cond_resched(); 4700 } 4701 return ret_val; 4702 } 4703 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4704 4705 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4706 4707 static struct kmem_cache *page_ptl_cachep; 4708 4709 void __init ptlock_cache_init(void) 4710 { 4711 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4712 SLAB_PANIC, NULL); 4713 } 4714 4715 bool ptlock_alloc(struct page *page) 4716 { 4717 spinlock_t *ptl; 4718 4719 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4720 if (!ptl) 4721 return false; 4722 page->ptl = ptl; 4723 return true; 4724 } 4725 4726 void ptlock_free(struct page *page) 4727 { 4728 kmem_cache_free(page_ptl_cachep, page->ptl); 4729 } 4730 #endif 4731