xref: /linux/mm/memory.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60 
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63 
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
67 struct page *mem_map;
68 
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
71 #endif
72 
73 unsigned long num_physpages;
74 /*
75  * A number of key systems in x86 including ioremap() rely on the assumption
76  * that high_memory defines the upper bound on direct map memory, then end
77  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79  * and ZONE_HIGHMEM.
80  */
81 void * high_memory;
82 
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85 
86 /*
87  * Randomize the address space (stacks, mmaps, brk, etc.).
88  *
89  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90  *   as ancient (libc5 based) binaries can segfault. )
91  */
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
94 					1;
95 #else
96 					2;
97 #endif
98 
99 static int __init disable_randmaps(char *s)
100 {
101 	randomize_va_space = 0;
102 	return 1;
103 }
104 __setup("norandmaps", disable_randmaps);
105 
106 
107 /*
108  * If a p?d_bad entry is found while walking page tables, report
109  * the error, before resetting entry to p?d_none.  Usually (but
110  * very seldom) called out from the p?d_none_or_clear_bad macros.
111  */
112 
113 void pgd_clear_bad(pgd_t *pgd)
114 {
115 	pgd_ERROR(*pgd);
116 	pgd_clear(pgd);
117 }
118 
119 void pud_clear_bad(pud_t *pud)
120 {
121 	pud_ERROR(*pud);
122 	pud_clear(pud);
123 }
124 
125 void pmd_clear_bad(pmd_t *pmd)
126 {
127 	pmd_ERROR(*pmd);
128 	pmd_clear(pmd);
129 }
130 
131 /*
132  * Note: this doesn't free the actual pages themselves. That
133  * has been handled earlier when unmapping all the memory regions.
134  */
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 {
137 	pgtable_t token = pmd_pgtable(*pmd);
138 	pmd_clear(pmd);
139 	pte_free_tlb(tlb, token);
140 	tlb->mm->nr_ptes--;
141 }
142 
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144 				unsigned long addr, unsigned long end,
145 				unsigned long floor, unsigned long ceiling)
146 {
147 	pmd_t *pmd;
148 	unsigned long next;
149 	unsigned long start;
150 
151 	start = addr;
152 	pmd = pmd_offset(pud, addr);
153 	do {
154 		next = pmd_addr_end(addr, end);
155 		if (pmd_none_or_clear_bad(pmd))
156 			continue;
157 		free_pte_range(tlb, pmd);
158 	} while (pmd++, addr = next, addr != end);
159 
160 	start &= PUD_MASK;
161 	if (start < floor)
162 		return;
163 	if (ceiling) {
164 		ceiling &= PUD_MASK;
165 		if (!ceiling)
166 			return;
167 	}
168 	if (end - 1 > ceiling - 1)
169 		return;
170 
171 	pmd = pmd_offset(pud, start);
172 	pud_clear(pud);
173 	pmd_free_tlb(tlb, pmd);
174 }
175 
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177 				unsigned long addr, unsigned long end,
178 				unsigned long floor, unsigned long ceiling)
179 {
180 	pud_t *pud;
181 	unsigned long next;
182 	unsigned long start;
183 
184 	start = addr;
185 	pud = pud_offset(pgd, addr);
186 	do {
187 		next = pud_addr_end(addr, end);
188 		if (pud_none_or_clear_bad(pud))
189 			continue;
190 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191 	} while (pud++, addr = next, addr != end);
192 
193 	start &= PGDIR_MASK;
194 	if (start < floor)
195 		return;
196 	if (ceiling) {
197 		ceiling &= PGDIR_MASK;
198 		if (!ceiling)
199 			return;
200 	}
201 	if (end - 1 > ceiling - 1)
202 		return;
203 
204 	pud = pud_offset(pgd, start);
205 	pgd_clear(pgd);
206 	pud_free_tlb(tlb, pud);
207 }
208 
209 /*
210  * This function frees user-level page tables of a process.
211  *
212  * Must be called with pagetable lock held.
213  */
214 void free_pgd_range(struct mmu_gather **tlb,
215 			unsigned long addr, unsigned long end,
216 			unsigned long floor, unsigned long ceiling)
217 {
218 	pgd_t *pgd;
219 	unsigned long next;
220 	unsigned long start;
221 
222 	/*
223 	 * The next few lines have given us lots of grief...
224 	 *
225 	 * Why are we testing PMD* at this top level?  Because often
226 	 * there will be no work to do at all, and we'd prefer not to
227 	 * go all the way down to the bottom just to discover that.
228 	 *
229 	 * Why all these "- 1"s?  Because 0 represents both the bottom
230 	 * of the address space and the top of it (using -1 for the
231 	 * top wouldn't help much: the masks would do the wrong thing).
232 	 * The rule is that addr 0 and floor 0 refer to the bottom of
233 	 * the address space, but end 0 and ceiling 0 refer to the top
234 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 	 * that end 0 case should be mythical).
236 	 *
237 	 * Wherever addr is brought up or ceiling brought down, we must
238 	 * be careful to reject "the opposite 0" before it confuses the
239 	 * subsequent tests.  But what about where end is brought down
240 	 * by PMD_SIZE below? no, end can't go down to 0 there.
241 	 *
242 	 * Whereas we round start (addr) and ceiling down, by different
243 	 * masks at different levels, in order to test whether a table
244 	 * now has no other vmas using it, so can be freed, we don't
245 	 * bother to round floor or end up - the tests don't need that.
246 	 */
247 
248 	addr &= PMD_MASK;
249 	if (addr < floor) {
250 		addr += PMD_SIZE;
251 		if (!addr)
252 			return;
253 	}
254 	if (ceiling) {
255 		ceiling &= PMD_MASK;
256 		if (!ceiling)
257 			return;
258 	}
259 	if (end - 1 > ceiling - 1)
260 		end -= PMD_SIZE;
261 	if (addr > end - 1)
262 		return;
263 
264 	start = addr;
265 	pgd = pgd_offset((*tlb)->mm, addr);
266 	do {
267 		next = pgd_addr_end(addr, end);
268 		if (pgd_none_or_clear_bad(pgd))
269 			continue;
270 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271 	} while (pgd++, addr = next, addr != end);
272 }
273 
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275 		unsigned long floor, unsigned long ceiling)
276 {
277 	while (vma) {
278 		struct vm_area_struct *next = vma->vm_next;
279 		unsigned long addr = vma->vm_start;
280 
281 		/*
282 		 * Hide vma from rmap and vmtruncate before freeing pgtables
283 		 */
284 		anon_vma_unlink(vma);
285 		unlink_file_vma(vma);
286 
287 		if (is_vm_hugetlb_page(vma)) {
288 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289 				floor, next? next->vm_start: ceiling);
290 		} else {
291 			/*
292 			 * Optimization: gather nearby vmas into one call down
293 			 */
294 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295 			       && !is_vm_hugetlb_page(next)) {
296 				vma = next;
297 				next = vma->vm_next;
298 				anon_vma_unlink(vma);
299 				unlink_file_vma(vma);
300 			}
301 			free_pgd_range(tlb, addr, vma->vm_end,
302 				floor, next? next->vm_start: ceiling);
303 		}
304 		vma = next;
305 	}
306 }
307 
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309 {
310 	pgtable_t new = pte_alloc_one(mm, address);
311 	if (!new)
312 		return -ENOMEM;
313 
314 	spin_lock(&mm->page_table_lock);
315 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
316 		mm->nr_ptes++;
317 		pmd_populate(mm, pmd, new);
318 		new = NULL;
319 	}
320 	spin_unlock(&mm->page_table_lock);
321 	if (new)
322 		pte_free(mm, new);
323 	return 0;
324 }
325 
326 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
327 {
328 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
329 	if (!new)
330 		return -ENOMEM;
331 
332 	spin_lock(&init_mm.page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		pmd_populate_kernel(&init_mm, pmd, new);
335 		new = NULL;
336 	}
337 	spin_unlock(&init_mm.page_table_lock);
338 	if (new)
339 		pte_free_kernel(&init_mm, new);
340 	return 0;
341 }
342 
343 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
344 {
345 	if (file_rss)
346 		add_mm_counter(mm, file_rss, file_rss);
347 	if (anon_rss)
348 		add_mm_counter(mm, anon_rss, anon_rss);
349 }
350 
351 /*
352  * This function is called to print an error when a bad pte
353  * is found. For example, we might have a PFN-mapped pte in
354  * a region that doesn't allow it.
355  *
356  * The calling function must still handle the error.
357  */
358 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
359 {
360 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
361 			"vm_flags = %lx, vaddr = %lx\n",
362 		(long long)pte_val(pte),
363 		(vma->vm_mm == current->mm ? current->comm : "???"),
364 		vma->vm_flags, vaddr);
365 	dump_stack();
366 }
367 
368 static inline int is_cow_mapping(unsigned int flags)
369 {
370 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
371 }
372 
373 /*
374  * vm_normal_page -- This function gets the "struct page" associated with a pte.
375  *
376  * "Special" mappings do not wish to be associated with a "struct page" (either
377  * it doesn't exist, or it exists but they don't want to touch it). In this
378  * case, NULL is returned here. "Normal" mappings do have a struct page.
379  *
380  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
381  * pte bit, in which case this function is trivial. Secondly, an architecture
382  * may not have a spare pte bit, which requires a more complicated scheme,
383  * described below.
384  *
385  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
386  * special mapping (even if there are underlying and valid "struct pages").
387  * COWed pages of a VM_PFNMAP are always normal.
388  *
389  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
390  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
391  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
392  * mapping will always honor the rule
393  *
394  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
395  *
396  * And for normal mappings this is false.
397  *
398  * This restricts such mappings to be a linear translation from virtual address
399  * to pfn. To get around this restriction, we allow arbitrary mappings so long
400  * as the vma is not a COW mapping; in that case, we know that all ptes are
401  * special (because none can have been COWed).
402  *
403  *
404  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
405  *
406  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
407  * page" backing, however the difference is that _all_ pages with a struct
408  * page (that is, those where pfn_valid is true) are refcounted and considered
409  * normal pages by the VM. The disadvantage is that pages are refcounted
410  * (which can be slower and simply not an option for some PFNMAP users). The
411  * advantage is that we don't have to follow the strict linearity rule of
412  * PFNMAP mappings in order to support COWable mappings.
413  *
414  */
415 #ifdef __HAVE_ARCH_PTE_SPECIAL
416 # define HAVE_PTE_SPECIAL 1
417 #else
418 # define HAVE_PTE_SPECIAL 0
419 #endif
420 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
421 				pte_t pte)
422 {
423 	unsigned long pfn;
424 
425 	if (HAVE_PTE_SPECIAL) {
426 		if (likely(!pte_special(pte))) {
427 			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
428 			return pte_page(pte);
429 		}
430 		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
431 		return NULL;
432 	}
433 
434 	/* !HAVE_PTE_SPECIAL case follows: */
435 
436 	pfn = pte_pfn(pte);
437 
438 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
439 		if (vma->vm_flags & VM_MIXEDMAP) {
440 			if (!pfn_valid(pfn))
441 				return NULL;
442 			goto out;
443 		} else {
444 			unsigned long off;
445 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
446 			if (pfn == vma->vm_pgoff + off)
447 				return NULL;
448 			if (!is_cow_mapping(vma->vm_flags))
449 				return NULL;
450 		}
451 	}
452 
453 	VM_BUG_ON(!pfn_valid(pfn));
454 
455 	/*
456 	 * NOTE! We still have PageReserved() pages in the page tables.
457 	 *
458 	 * eg. VDSO mappings can cause them to exist.
459 	 */
460 out:
461 	return pfn_to_page(pfn);
462 }
463 
464 /*
465  * copy one vm_area from one task to the other. Assumes the page tables
466  * already present in the new task to be cleared in the whole range
467  * covered by this vma.
468  */
469 
470 static inline void
471 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
473 		unsigned long addr, int *rss)
474 {
475 	unsigned long vm_flags = vma->vm_flags;
476 	pte_t pte = *src_pte;
477 	struct page *page;
478 
479 	/* pte contains position in swap or file, so copy. */
480 	if (unlikely(!pte_present(pte))) {
481 		if (!pte_file(pte)) {
482 			swp_entry_t entry = pte_to_swp_entry(pte);
483 
484 			swap_duplicate(entry);
485 			/* make sure dst_mm is on swapoff's mmlist. */
486 			if (unlikely(list_empty(&dst_mm->mmlist))) {
487 				spin_lock(&mmlist_lock);
488 				if (list_empty(&dst_mm->mmlist))
489 					list_add(&dst_mm->mmlist,
490 						 &src_mm->mmlist);
491 				spin_unlock(&mmlist_lock);
492 			}
493 			if (is_write_migration_entry(entry) &&
494 					is_cow_mapping(vm_flags)) {
495 				/*
496 				 * COW mappings require pages in both parent
497 				 * and child to be set to read.
498 				 */
499 				make_migration_entry_read(&entry);
500 				pte = swp_entry_to_pte(entry);
501 				set_pte_at(src_mm, addr, src_pte, pte);
502 			}
503 		}
504 		goto out_set_pte;
505 	}
506 
507 	/*
508 	 * If it's a COW mapping, write protect it both
509 	 * in the parent and the child
510 	 */
511 	if (is_cow_mapping(vm_flags)) {
512 		ptep_set_wrprotect(src_mm, addr, src_pte);
513 		pte = pte_wrprotect(pte);
514 	}
515 
516 	/*
517 	 * If it's a shared mapping, mark it clean in
518 	 * the child
519 	 */
520 	if (vm_flags & VM_SHARED)
521 		pte = pte_mkclean(pte);
522 	pte = pte_mkold(pte);
523 
524 	page = vm_normal_page(vma, addr, pte);
525 	if (page) {
526 		get_page(page);
527 		page_dup_rmap(page, vma, addr);
528 		rss[!!PageAnon(page)]++;
529 	}
530 
531 out_set_pte:
532 	set_pte_at(dst_mm, addr, dst_pte, pte);
533 }
534 
535 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
536 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
537 		unsigned long addr, unsigned long end)
538 {
539 	pte_t *src_pte, *dst_pte;
540 	spinlock_t *src_ptl, *dst_ptl;
541 	int progress = 0;
542 	int rss[2];
543 
544 again:
545 	rss[1] = rss[0] = 0;
546 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
547 	if (!dst_pte)
548 		return -ENOMEM;
549 	src_pte = pte_offset_map_nested(src_pmd, addr);
550 	src_ptl = pte_lockptr(src_mm, src_pmd);
551 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
552 	arch_enter_lazy_mmu_mode();
553 
554 	do {
555 		/*
556 		 * We are holding two locks at this point - either of them
557 		 * could generate latencies in another task on another CPU.
558 		 */
559 		if (progress >= 32) {
560 			progress = 0;
561 			if (need_resched() ||
562 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
563 				break;
564 		}
565 		if (pte_none(*src_pte)) {
566 			progress++;
567 			continue;
568 		}
569 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
570 		progress += 8;
571 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
572 
573 	arch_leave_lazy_mmu_mode();
574 	spin_unlock(src_ptl);
575 	pte_unmap_nested(src_pte - 1);
576 	add_mm_rss(dst_mm, rss[0], rss[1]);
577 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
578 	cond_resched();
579 	if (addr != end)
580 		goto again;
581 	return 0;
582 }
583 
584 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
586 		unsigned long addr, unsigned long end)
587 {
588 	pmd_t *src_pmd, *dst_pmd;
589 	unsigned long next;
590 
591 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
592 	if (!dst_pmd)
593 		return -ENOMEM;
594 	src_pmd = pmd_offset(src_pud, addr);
595 	do {
596 		next = pmd_addr_end(addr, end);
597 		if (pmd_none_or_clear_bad(src_pmd))
598 			continue;
599 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
600 						vma, addr, next))
601 			return -ENOMEM;
602 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
603 	return 0;
604 }
605 
606 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
608 		unsigned long addr, unsigned long end)
609 {
610 	pud_t *src_pud, *dst_pud;
611 	unsigned long next;
612 
613 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
614 	if (!dst_pud)
615 		return -ENOMEM;
616 	src_pud = pud_offset(src_pgd, addr);
617 	do {
618 		next = pud_addr_end(addr, end);
619 		if (pud_none_or_clear_bad(src_pud))
620 			continue;
621 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
622 						vma, addr, next))
623 			return -ENOMEM;
624 	} while (dst_pud++, src_pud++, addr = next, addr != end);
625 	return 0;
626 }
627 
628 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
629 		struct vm_area_struct *vma)
630 {
631 	pgd_t *src_pgd, *dst_pgd;
632 	unsigned long next;
633 	unsigned long addr = vma->vm_start;
634 	unsigned long end = vma->vm_end;
635 
636 	/*
637 	 * Don't copy ptes where a page fault will fill them correctly.
638 	 * Fork becomes much lighter when there are big shared or private
639 	 * readonly mappings. The tradeoff is that copy_page_range is more
640 	 * efficient than faulting.
641 	 */
642 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
643 		if (!vma->anon_vma)
644 			return 0;
645 	}
646 
647 	if (is_vm_hugetlb_page(vma))
648 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
649 
650 	dst_pgd = pgd_offset(dst_mm, addr);
651 	src_pgd = pgd_offset(src_mm, addr);
652 	do {
653 		next = pgd_addr_end(addr, end);
654 		if (pgd_none_or_clear_bad(src_pgd))
655 			continue;
656 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
657 						vma, addr, next))
658 			return -ENOMEM;
659 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
660 	return 0;
661 }
662 
663 static unsigned long zap_pte_range(struct mmu_gather *tlb,
664 				struct vm_area_struct *vma, pmd_t *pmd,
665 				unsigned long addr, unsigned long end,
666 				long *zap_work, struct zap_details *details)
667 {
668 	struct mm_struct *mm = tlb->mm;
669 	pte_t *pte;
670 	spinlock_t *ptl;
671 	int file_rss = 0;
672 	int anon_rss = 0;
673 
674 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675 	arch_enter_lazy_mmu_mode();
676 	do {
677 		pte_t ptent = *pte;
678 		if (pte_none(ptent)) {
679 			(*zap_work)--;
680 			continue;
681 		}
682 
683 		(*zap_work) -= PAGE_SIZE;
684 
685 		if (pte_present(ptent)) {
686 			struct page *page;
687 
688 			page = vm_normal_page(vma, addr, ptent);
689 			if (unlikely(details) && page) {
690 				/*
691 				 * unmap_shared_mapping_pages() wants to
692 				 * invalidate cache without truncating:
693 				 * unmap shared but keep private pages.
694 				 */
695 				if (details->check_mapping &&
696 				    details->check_mapping != page->mapping)
697 					continue;
698 				/*
699 				 * Each page->index must be checked when
700 				 * invalidating or truncating nonlinear.
701 				 */
702 				if (details->nonlinear_vma &&
703 				    (page->index < details->first_index ||
704 				     page->index > details->last_index))
705 					continue;
706 			}
707 			ptent = ptep_get_and_clear_full(mm, addr, pte,
708 							tlb->fullmm);
709 			tlb_remove_tlb_entry(tlb, pte, addr);
710 			if (unlikely(!page))
711 				continue;
712 			if (unlikely(details) && details->nonlinear_vma
713 			    && linear_page_index(details->nonlinear_vma,
714 						addr) != page->index)
715 				set_pte_at(mm, addr, pte,
716 					   pgoff_to_pte(page->index));
717 			if (PageAnon(page))
718 				anon_rss--;
719 			else {
720 				if (pte_dirty(ptent))
721 					set_page_dirty(page);
722 				if (pte_young(ptent))
723 					SetPageReferenced(page);
724 				file_rss--;
725 			}
726 			page_remove_rmap(page, vma);
727 			tlb_remove_page(tlb, page);
728 			continue;
729 		}
730 		/*
731 		 * If details->check_mapping, we leave swap entries;
732 		 * if details->nonlinear_vma, we leave file entries.
733 		 */
734 		if (unlikely(details))
735 			continue;
736 		if (!pte_file(ptent))
737 			free_swap_and_cache(pte_to_swp_entry(ptent));
738 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
739 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
740 
741 	add_mm_rss(mm, file_rss, anon_rss);
742 	arch_leave_lazy_mmu_mode();
743 	pte_unmap_unlock(pte - 1, ptl);
744 
745 	return addr;
746 }
747 
748 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
749 				struct vm_area_struct *vma, pud_t *pud,
750 				unsigned long addr, unsigned long end,
751 				long *zap_work, struct zap_details *details)
752 {
753 	pmd_t *pmd;
754 	unsigned long next;
755 
756 	pmd = pmd_offset(pud, addr);
757 	do {
758 		next = pmd_addr_end(addr, end);
759 		if (pmd_none_or_clear_bad(pmd)) {
760 			(*zap_work)--;
761 			continue;
762 		}
763 		next = zap_pte_range(tlb, vma, pmd, addr, next,
764 						zap_work, details);
765 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
766 
767 	return addr;
768 }
769 
770 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
771 				struct vm_area_struct *vma, pgd_t *pgd,
772 				unsigned long addr, unsigned long end,
773 				long *zap_work, struct zap_details *details)
774 {
775 	pud_t *pud;
776 	unsigned long next;
777 
778 	pud = pud_offset(pgd, addr);
779 	do {
780 		next = pud_addr_end(addr, end);
781 		if (pud_none_or_clear_bad(pud)) {
782 			(*zap_work)--;
783 			continue;
784 		}
785 		next = zap_pmd_range(tlb, vma, pud, addr, next,
786 						zap_work, details);
787 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
788 
789 	return addr;
790 }
791 
792 static unsigned long unmap_page_range(struct mmu_gather *tlb,
793 				struct vm_area_struct *vma,
794 				unsigned long addr, unsigned long end,
795 				long *zap_work, struct zap_details *details)
796 {
797 	pgd_t *pgd;
798 	unsigned long next;
799 
800 	if (details && !details->check_mapping && !details->nonlinear_vma)
801 		details = NULL;
802 
803 	BUG_ON(addr >= end);
804 	tlb_start_vma(tlb, vma);
805 	pgd = pgd_offset(vma->vm_mm, addr);
806 	do {
807 		next = pgd_addr_end(addr, end);
808 		if (pgd_none_or_clear_bad(pgd)) {
809 			(*zap_work)--;
810 			continue;
811 		}
812 		next = zap_pud_range(tlb, vma, pgd, addr, next,
813 						zap_work, details);
814 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
815 	tlb_end_vma(tlb, vma);
816 
817 	return addr;
818 }
819 
820 #ifdef CONFIG_PREEMPT
821 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
822 #else
823 /* No preempt: go for improved straight-line efficiency */
824 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
825 #endif
826 
827 /**
828  * unmap_vmas - unmap a range of memory covered by a list of vma's
829  * @tlbp: address of the caller's struct mmu_gather
830  * @vma: the starting vma
831  * @start_addr: virtual address at which to start unmapping
832  * @end_addr: virtual address at which to end unmapping
833  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
834  * @details: details of nonlinear truncation or shared cache invalidation
835  *
836  * Returns the end address of the unmapping (restart addr if interrupted).
837  *
838  * Unmap all pages in the vma list.
839  *
840  * We aim to not hold locks for too long (for scheduling latency reasons).
841  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
842  * return the ending mmu_gather to the caller.
843  *
844  * Only addresses between `start' and `end' will be unmapped.
845  *
846  * The VMA list must be sorted in ascending virtual address order.
847  *
848  * unmap_vmas() assumes that the caller will flush the whole unmapped address
849  * range after unmap_vmas() returns.  So the only responsibility here is to
850  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
851  * drops the lock and schedules.
852  */
853 unsigned long unmap_vmas(struct mmu_gather **tlbp,
854 		struct vm_area_struct *vma, unsigned long start_addr,
855 		unsigned long end_addr, unsigned long *nr_accounted,
856 		struct zap_details *details)
857 {
858 	long zap_work = ZAP_BLOCK_SIZE;
859 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
860 	int tlb_start_valid = 0;
861 	unsigned long start = start_addr;
862 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
863 	int fullmm = (*tlbp)->fullmm;
864 
865 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
866 		unsigned long end;
867 
868 		start = max(vma->vm_start, start_addr);
869 		if (start >= vma->vm_end)
870 			continue;
871 		end = min(vma->vm_end, end_addr);
872 		if (end <= vma->vm_start)
873 			continue;
874 
875 		if (vma->vm_flags & VM_ACCOUNT)
876 			*nr_accounted += (end - start) >> PAGE_SHIFT;
877 
878 		while (start != end) {
879 			if (!tlb_start_valid) {
880 				tlb_start = start;
881 				tlb_start_valid = 1;
882 			}
883 
884 			if (unlikely(is_vm_hugetlb_page(vma))) {
885 				unmap_hugepage_range(vma, start, end);
886 				zap_work -= (end - start) /
887 						(HPAGE_SIZE / PAGE_SIZE);
888 				start = end;
889 			} else
890 				start = unmap_page_range(*tlbp, vma,
891 						start, end, &zap_work, details);
892 
893 			if (zap_work > 0) {
894 				BUG_ON(start != end);
895 				break;
896 			}
897 
898 			tlb_finish_mmu(*tlbp, tlb_start, start);
899 
900 			if (need_resched() ||
901 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
902 				if (i_mmap_lock) {
903 					*tlbp = NULL;
904 					goto out;
905 				}
906 				cond_resched();
907 			}
908 
909 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
910 			tlb_start_valid = 0;
911 			zap_work = ZAP_BLOCK_SIZE;
912 		}
913 	}
914 out:
915 	return start;	/* which is now the end (or restart) address */
916 }
917 
918 /**
919  * zap_page_range - remove user pages in a given range
920  * @vma: vm_area_struct holding the applicable pages
921  * @address: starting address of pages to zap
922  * @size: number of bytes to zap
923  * @details: details of nonlinear truncation or shared cache invalidation
924  */
925 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
926 		unsigned long size, struct zap_details *details)
927 {
928 	struct mm_struct *mm = vma->vm_mm;
929 	struct mmu_gather *tlb;
930 	unsigned long end = address + size;
931 	unsigned long nr_accounted = 0;
932 
933 	lru_add_drain();
934 	tlb = tlb_gather_mmu(mm, 0);
935 	update_hiwater_rss(mm);
936 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
937 	if (tlb)
938 		tlb_finish_mmu(tlb, address, end);
939 	return end;
940 }
941 
942 /*
943  * Do a quick page-table lookup for a single page.
944  */
945 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
946 			unsigned int flags)
947 {
948 	pgd_t *pgd;
949 	pud_t *pud;
950 	pmd_t *pmd;
951 	pte_t *ptep, pte;
952 	spinlock_t *ptl;
953 	struct page *page;
954 	struct mm_struct *mm = vma->vm_mm;
955 
956 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
957 	if (!IS_ERR(page)) {
958 		BUG_ON(flags & FOLL_GET);
959 		goto out;
960 	}
961 
962 	page = NULL;
963 	pgd = pgd_offset(mm, address);
964 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
965 		goto no_page_table;
966 
967 	pud = pud_offset(pgd, address);
968 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
969 		goto no_page_table;
970 
971 	pmd = pmd_offset(pud, address);
972 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
973 		goto no_page_table;
974 
975 	if (pmd_huge(*pmd)) {
976 		BUG_ON(flags & FOLL_GET);
977 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
978 		goto out;
979 	}
980 
981 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
982 	if (!ptep)
983 		goto out;
984 
985 	pte = *ptep;
986 	if (!pte_present(pte))
987 		goto unlock;
988 	if ((flags & FOLL_WRITE) && !pte_write(pte))
989 		goto unlock;
990 	page = vm_normal_page(vma, address, pte);
991 	if (unlikely(!page))
992 		goto unlock;
993 
994 	if (flags & FOLL_GET)
995 		get_page(page);
996 	if (flags & FOLL_TOUCH) {
997 		if ((flags & FOLL_WRITE) &&
998 		    !pte_dirty(pte) && !PageDirty(page))
999 			set_page_dirty(page);
1000 		mark_page_accessed(page);
1001 	}
1002 unlock:
1003 	pte_unmap_unlock(ptep, ptl);
1004 out:
1005 	return page;
1006 
1007 no_page_table:
1008 	/*
1009 	 * When core dumping an enormous anonymous area that nobody
1010 	 * has touched so far, we don't want to allocate page tables.
1011 	 */
1012 	if (flags & FOLL_ANON) {
1013 		page = ZERO_PAGE(0);
1014 		if (flags & FOLL_GET)
1015 			get_page(page);
1016 		BUG_ON(flags & FOLL_WRITE);
1017 	}
1018 	return page;
1019 }
1020 
1021 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1022 		unsigned long start, int len, int write, int force,
1023 		struct page **pages, struct vm_area_struct **vmas)
1024 {
1025 	int i;
1026 	unsigned int vm_flags;
1027 
1028 	if (len <= 0)
1029 		return 0;
1030 	/*
1031 	 * Require read or write permissions.
1032 	 * If 'force' is set, we only require the "MAY" flags.
1033 	 */
1034 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1035 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1036 	i = 0;
1037 
1038 	do {
1039 		struct vm_area_struct *vma;
1040 		unsigned int foll_flags;
1041 
1042 		vma = find_extend_vma(mm, start);
1043 		if (!vma && in_gate_area(tsk, start)) {
1044 			unsigned long pg = start & PAGE_MASK;
1045 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1046 			pgd_t *pgd;
1047 			pud_t *pud;
1048 			pmd_t *pmd;
1049 			pte_t *pte;
1050 			if (write) /* user gate pages are read-only */
1051 				return i ? : -EFAULT;
1052 			if (pg > TASK_SIZE)
1053 				pgd = pgd_offset_k(pg);
1054 			else
1055 				pgd = pgd_offset_gate(mm, pg);
1056 			BUG_ON(pgd_none(*pgd));
1057 			pud = pud_offset(pgd, pg);
1058 			BUG_ON(pud_none(*pud));
1059 			pmd = pmd_offset(pud, pg);
1060 			if (pmd_none(*pmd))
1061 				return i ? : -EFAULT;
1062 			pte = pte_offset_map(pmd, pg);
1063 			if (pte_none(*pte)) {
1064 				pte_unmap(pte);
1065 				return i ? : -EFAULT;
1066 			}
1067 			if (pages) {
1068 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1069 				pages[i] = page;
1070 				if (page)
1071 					get_page(page);
1072 			}
1073 			pte_unmap(pte);
1074 			if (vmas)
1075 				vmas[i] = gate_vma;
1076 			i++;
1077 			start += PAGE_SIZE;
1078 			len--;
1079 			continue;
1080 		}
1081 
1082 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1083 				|| !(vm_flags & vma->vm_flags))
1084 			return i ? : -EFAULT;
1085 
1086 		if (is_vm_hugetlb_page(vma)) {
1087 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1088 						&start, &len, i, write);
1089 			continue;
1090 		}
1091 
1092 		foll_flags = FOLL_TOUCH;
1093 		if (pages)
1094 			foll_flags |= FOLL_GET;
1095 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1096 		    (!vma->vm_ops || !vma->vm_ops->fault))
1097 			foll_flags |= FOLL_ANON;
1098 
1099 		do {
1100 			struct page *page;
1101 
1102 			/*
1103 			 * If tsk is ooming, cut off its access to large memory
1104 			 * allocations. It has a pending SIGKILL, but it can't
1105 			 * be processed until returning to user space.
1106 			 */
1107 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1108 				return -ENOMEM;
1109 
1110 			if (write)
1111 				foll_flags |= FOLL_WRITE;
1112 
1113 			cond_resched();
1114 			while (!(page = follow_page(vma, start, foll_flags))) {
1115 				int ret;
1116 				ret = handle_mm_fault(mm, vma, start,
1117 						foll_flags & FOLL_WRITE);
1118 				if (ret & VM_FAULT_ERROR) {
1119 					if (ret & VM_FAULT_OOM)
1120 						return i ? i : -ENOMEM;
1121 					else if (ret & VM_FAULT_SIGBUS)
1122 						return i ? i : -EFAULT;
1123 					BUG();
1124 				}
1125 				if (ret & VM_FAULT_MAJOR)
1126 					tsk->maj_flt++;
1127 				else
1128 					tsk->min_flt++;
1129 
1130 				/*
1131 				 * The VM_FAULT_WRITE bit tells us that
1132 				 * do_wp_page has broken COW when necessary,
1133 				 * even if maybe_mkwrite decided not to set
1134 				 * pte_write. We can thus safely do subsequent
1135 				 * page lookups as if they were reads.
1136 				 */
1137 				if (ret & VM_FAULT_WRITE)
1138 					foll_flags &= ~FOLL_WRITE;
1139 
1140 				cond_resched();
1141 			}
1142 			if (pages) {
1143 				pages[i] = page;
1144 
1145 				flush_anon_page(vma, page, start);
1146 				flush_dcache_page(page);
1147 			}
1148 			if (vmas)
1149 				vmas[i] = vma;
1150 			i++;
1151 			start += PAGE_SIZE;
1152 			len--;
1153 		} while (len && start < vma->vm_end);
1154 	} while (len);
1155 	return i;
1156 }
1157 EXPORT_SYMBOL(get_user_pages);
1158 
1159 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1160 			spinlock_t **ptl)
1161 {
1162 	pgd_t * pgd = pgd_offset(mm, addr);
1163 	pud_t * pud = pud_alloc(mm, pgd, addr);
1164 	if (pud) {
1165 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1166 		if (pmd)
1167 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1168 	}
1169 	return NULL;
1170 }
1171 
1172 /*
1173  * This is the old fallback for page remapping.
1174  *
1175  * For historical reasons, it only allows reserved pages. Only
1176  * old drivers should use this, and they needed to mark their
1177  * pages reserved for the old functions anyway.
1178  */
1179 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1180 			struct page *page, pgprot_t prot)
1181 {
1182 	struct mm_struct *mm = vma->vm_mm;
1183 	int retval;
1184 	pte_t *pte;
1185 	spinlock_t *ptl;
1186 
1187 	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1188 	if (retval)
1189 		goto out;
1190 
1191 	retval = -EINVAL;
1192 	if (PageAnon(page))
1193 		goto out_uncharge;
1194 	retval = -ENOMEM;
1195 	flush_dcache_page(page);
1196 	pte = get_locked_pte(mm, addr, &ptl);
1197 	if (!pte)
1198 		goto out_uncharge;
1199 	retval = -EBUSY;
1200 	if (!pte_none(*pte))
1201 		goto out_unlock;
1202 
1203 	/* Ok, finally just insert the thing.. */
1204 	get_page(page);
1205 	inc_mm_counter(mm, file_rss);
1206 	page_add_file_rmap(page);
1207 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1208 
1209 	retval = 0;
1210 	pte_unmap_unlock(pte, ptl);
1211 	return retval;
1212 out_unlock:
1213 	pte_unmap_unlock(pte, ptl);
1214 out_uncharge:
1215 	mem_cgroup_uncharge_page(page);
1216 out:
1217 	return retval;
1218 }
1219 
1220 /**
1221  * vm_insert_page - insert single page into user vma
1222  * @vma: user vma to map to
1223  * @addr: target user address of this page
1224  * @page: source kernel page
1225  *
1226  * This allows drivers to insert individual pages they've allocated
1227  * into a user vma.
1228  *
1229  * The page has to be a nice clean _individual_ kernel allocation.
1230  * If you allocate a compound page, you need to have marked it as
1231  * such (__GFP_COMP), or manually just split the page up yourself
1232  * (see split_page()).
1233  *
1234  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1235  * took an arbitrary page protection parameter. This doesn't allow
1236  * that. Your vma protection will have to be set up correctly, which
1237  * means that if you want a shared writable mapping, you'd better
1238  * ask for a shared writable mapping!
1239  *
1240  * The page does not need to be reserved.
1241  */
1242 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1243 			struct page *page)
1244 {
1245 	if (addr < vma->vm_start || addr >= vma->vm_end)
1246 		return -EFAULT;
1247 	if (!page_count(page))
1248 		return -EINVAL;
1249 	vma->vm_flags |= VM_INSERTPAGE;
1250 	return insert_page(vma, addr, page, vma->vm_page_prot);
1251 }
1252 EXPORT_SYMBOL(vm_insert_page);
1253 
1254 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1255 			unsigned long pfn, pgprot_t prot)
1256 {
1257 	struct mm_struct *mm = vma->vm_mm;
1258 	int retval;
1259 	pte_t *pte, entry;
1260 	spinlock_t *ptl;
1261 
1262 	retval = -ENOMEM;
1263 	pte = get_locked_pte(mm, addr, &ptl);
1264 	if (!pte)
1265 		goto out;
1266 	retval = -EBUSY;
1267 	if (!pte_none(*pte))
1268 		goto out_unlock;
1269 
1270 	/* Ok, finally just insert the thing.. */
1271 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1272 	set_pte_at(mm, addr, pte, entry);
1273 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1274 
1275 	retval = 0;
1276 out_unlock:
1277 	pte_unmap_unlock(pte, ptl);
1278 out:
1279 	return retval;
1280 }
1281 
1282 /**
1283  * vm_insert_pfn - insert single pfn into user vma
1284  * @vma: user vma to map to
1285  * @addr: target user address of this page
1286  * @pfn: source kernel pfn
1287  *
1288  * Similar to vm_inert_page, this allows drivers to insert individual pages
1289  * they've allocated into a user vma. Same comments apply.
1290  *
1291  * This function should only be called from a vm_ops->fault handler, and
1292  * in that case the handler should return NULL.
1293  */
1294 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1295 			unsigned long pfn)
1296 {
1297 	/*
1298 	 * Technically, architectures with pte_special can avoid all these
1299 	 * restrictions (same for remap_pfn_range).  However we would like
1300 	 * consistency in testing and feature parity among all, so we should
1301 	 * try to keep these invariants in place for everybody.
1302 	 */
1303 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1304 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1305 						(VM_PFNMAP|VM_MIXEDMAP));
1306 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1307 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1308 
1309 	if (addr < vma->vm_start || addr >= vma->vm_end)
1310 		return -EFAULT;
1311 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1312 }
1313 EXPORT_SYMBOL(vm_insert_pfn);
1314 
1315 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1316 			unsigned long pfn)
1317 {
1318 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1319 
1320 	if (addr < vma->vm_start || addr >= vma->vm_end)
1321 		return -EFAULT;
1322 
1323 	/*
1324 	 * If we don't have pte special, then we have to use the pfn_valid()
1325 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1326 	 * refcount the page if pfn_valid is true (hence insert_page rather
1327 	 * than insert_pfn).
1328 	 */
1329 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1330 		struct page *page;
1331 
1332 		page = pfn_to_page(pfn);
1333 		return insert_page(vma, addr, page, vma->vm_page_prot);
1334 	}
1335 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1336 }
1337 EXPORT_SYMBOL(vm_insert_mixed);
1338 
1339 /*
1340  * maps a range of physical memory into the requested pages. the old
1341  * mappings are removed. any references to nonexistent pages results
1342  * in null mappings (currently treated as "copy-on-access")
1343  */
1344 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1345 			unsigned long addr, unsigned long end,
1346 			unsigned long pfn, pgprot_t prot)
1347 {
1348 	pte_t *pte;
1349 	spinlock_t *ptl;
1350 
1351 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1352 	if (!pte)
1353 		return -ENOMEM;
1354 	arch_enter_lazy_mmu_mode();
1355 	do {
1356 		BUG_ON(!pte_none(*pte));
1357 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1358 		pfn++;
1359 	} while (pte++, addr += PAGE_SIZE, addr != end);
1360 	arch_leave_lazy_mmu_mode();
1361 	pte_unmap_unlock(pte - 1, ptl);
1362 	return 0;
1363 }
1364 
1365 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1366 			unsigned long addr, unsigned long end,
1367 			unsigned long pfn, pgprot_t prot)
1368 {
1369 	pmd_t *pmd;
1370 	unsigned long next;
1371 
1372 	pfn -= addr >> PAGE_SHIFT;
1373 	pmd = pmd_alloc(mm, pud, addr);
1374 	if (!pmd)
1375 		return -ENOMEM;
1376 	do {
1377 		next = pmd_addr_end(addr, end);
1378 		if (remap_pte_range(mm, pmd, addr, next,
1379 				pfn + (addr >> PAGE_SHIFT), prot))
1380 			return -ENOMEM;
1381 	} while (pmd++, addr = next, addr != end);
1382 	return 0;
1383 }
1384 
1385 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1386 			unsigned long addr, unsigned long end,
1387 			unsigned long pfn, pgprot_t prot)
1388 {
1389 	pud_t *pud;
1390 	unsigned long next;
1391 
1392 	pfn -= addr >> PAGE_SHIFT;
1393 	pud = pud_alloc(mm, pgd, addr);
1394 	if (!pud)
1395 		return -ENOMEM;
1396 	do {
1397 		next = pud_addr_end(addr, end);
1398 		if (remap_pmd_range(mm, pud, addr, next,
1399 				pfn + (addr >> PAGE_SHIFT), prot))
1400 			return -ENOMEM;
1401 	} while (pud++, addr = next, addr != end);
1402 	return 0;
1403 }
1404 
1405 /**
1406  * remap_pfn_range - remap kernel memory to userspace
1407  * @vma: user vma to map to
1408  * @addr: target user address to start at
1409  * @pfn: physical address of kernel memory
1410  * @size: size of map area
1411  * @prot: page protection flags for this mapping
1412  *
1413  *  Note: this is only safe if the mm semaphore is held when called.
1414  */
1415 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1416 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1417 {
1418 	pgd_t *pgd;
1419 	unsigned long next;
1420 	unsigned long end = addr + PAGE_ALIGN(size);
1421 	struct mm_struct *mm = vma->vm_mm;
1422 	int err;
1423 
1424 	/*
1425 	 * Physically remapped pages are special. Tell the
1426 	 * rest of the world about it:
1427 	 *   VM_IO tells people not to look at these pages
1428 	 *	(accesses can have side effects).
1429 	 *   VM_RESERVED is specified all over the place, because
1430 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1431 	 *	in 2.6 the LRU scan won't even find its pages, so this
1432 	 *	flag means no more than count its pages in reserved_vm,
1433 	 * 	and omit it from core dump, even when VM_IO turned off.
1434 	 *   VM_PFNMAP tells the core MM that the base pages are just
1435 	 *	raw PFN mappings, and do not have a "struct page" associated
1436 	 *	with them.
1437 	 *
1438 	 * There's a horrible special case to handle copy-on-write
1439 	 * behaviour that some programs depend on. We mark the "original"
1440 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1441 	 */
1442 	if (is_cow_mapping(vma->vm_flags)) {
1443 		if (addr != vma->vm_start || end != vma->vm_end)
1444 			return -EINVAL;
1445 		vma->vm_pgoff = pfn;
1446 	}
1447 
1448 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1449 
1450 	BUG_ON(addr >= end);
1451 	pfn -= addr >> PAGE_SHIFT;
1452 	pgd = pgd_offset(mm, addr);
1453 	flush_cache_range(vma, addr, end);
1454 	do {
1455 		next = pgd_addr_end(addr, end);
1456 		err = remap_pud_range(mm, pgd, addr, next,
1457 				pfn + (addr >> PAGE_SHIFT), prot);
1458 		if (err)
1459 			break;
1460 	} while (pgd++, addr = next, addr != end);
1461 	return err;
1462 }
1463 EXPORT_SYMBOL(remap_pfn_range);
1464 
1465 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1466 				     unsigned long addr, unsigned long end,
1467 				     pte_fn_t fn, void *data)
1468 {
1469 	pte_t *pte;
1470 	int err;
1471 	pgtable_t token;
1472 	spinlock_t *uninitialized_var(ptl);
1473 
1474 	pte = (mm == &init_mm) ?
1475 		pte_alloc_kernel(pmd, addr) :
1476 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1477 	if (!pte)
1478 		return -ENOMEM;
1479 
1480 	BUG_ON(pmd_huge(*pmd));
1481 
1482 	token = pmd_pgtable(*pmd);
1483 
1484 	do {
1485 		err = fn(pte, token, addr, data);
1486 		if (err)
1487 			break;
1488 	} while (pte++, addr += PAGE_SIZE, addr != end);
1489 
1490 	if (mm != &init_mm)
1491 		pte_unmap_unlock(pte-1, ptl);
1492 	return err;
1493 }
1494 
1495 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1496 				     unsigned long addr, unsigned long end,
1497 				     pte_fn_t fn, void *data)
1498 {
1499 	pmd_t *pmd;
1500 	unsigned long next;
1501 	int err;
1502 
1503 	pmd = pmd_alloc(mm, pud, addr);
1504 	if (!pmd)
1505 		return -ENOMEM;
1506 	do {
1507 		next = pmd_addr_end(addr, end);
1508 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1509 		if (err)
1510 			break;
1511 	} while (pmd++, addr = next, addr != end);
1512 	return err;
1513 }
1514 
1515 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1516 				     unsigned long addr, unsigned long end,
1517 				     pte_fn_t fn, void *data)
1518 {
1519 	pud_t *pud;
1520 	unsigned long next;
1521 	int err;
1522 
1523 	pud = pud_alloc(mm, pgd, addr);
1524 	if (!pud)
1525 		return -ENOMEM;
1526 	do {
1527 		next = pud_addr_end(addr, end);
1528 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1529 		if (err)
1530 			break;
1531 	} while (pud++, addr = next, addr != end);
1532 	return err;
1533 }
1534 
1535 /*
1536  * Scan a region of virtual memory, filling in page tables as necessary
1537  * and calling a provided function on each leaf page table.
1538  */
1539 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1540 			unsigned long size, pte_fn_t fn, void *data)
1541 {
1542 	pgd_t *pgd;
1543 	unsigned long next;
1544 	unsigned long end = addr + size;
1545 	int err;
1546 
1547 	BUG_ON(addr >= end);
1548 	pgd = pgd_offset(mm, addr);
1549 	do {
1550 		next = pgd_addr_end(addr, end);
1551 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1552 		if (err)
1553 			break;
1554 	} while (pgd++, addr = next, addr != end);
1555 	return err;
1556 }
1557 EXPORT_SYMBOL_GPL(apply_to_page_range);
1558 
1559 /*
1560  * handle_pte_fault chooses page fault handler according to an entry
1561  * which was read non-atomically.  Before making any commitment, on
1562  * those architectures or configurations (e.g. i386 with PAE) which
1563  * might give a mix of unmatched parts, do_swap_page and do_file_page
1564  * must check under lock before unmapping the pte and proceeding
1565  * (but do_wp_page is only called after already making such a check;
1566  * and do_anonymous_page and do_no_page can safely check later on).
1567  */
1568 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1569 				pte_t *page_table, pte_t orig_pte)
1570 {
1571 	int same = 1;
1572 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1573 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1574 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1575 		spin_lock(ptl);
1576 		same = pte_same(*page_table, orig_pte);
1577 		spin_unlock(ptl);
1578 	}
1579 #endif
1580 	pte_unmap(page_table);
1581 	return same;
1582 }
1583 
1584 /*
1585  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1586  * servicing faults for write access.  In the normal case, do always want
1587  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1588  * that do not have writing enabled, when used by access_process_vm.
1589  */
1590 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1591 {
1592 	if (likely(vma->vm_flags & VM_WRITE))
1593 		pte = pte_mkwrite(pte);
1594 	return pte;
1595 }
1596 
1597 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1598 {
1599 	/*
1600 	 * If the source page was a PFN mapping, we don't have
1601 	 * a "struct page" for it. We do a best-effort copy by
1602 	 * just copying from the original user address. If that
1603 	 * fails, we just zero-fill it. Live with it.
1604 	 */
1605 	if (unlikely(!src)) {
1606 		void *kaddr = kmap_atomic(dst, KM_USER0);
1607 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1608 
1609 		/*
1610 		 * This really shouldn't fail, because the page is there
1611 		 * in the page tables. But it might just be unreadable,
1612 		 * in which case we just give up and fill the result with
1613 		 * zeroes.
1614 		 */
1615 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1616 			memset(kaddr, 0, PAGE_SIZE);
1617 		kunmap_atomic(kaddr, KM_USER0);
1618 		flush_dcache_page(dst);
1619 	} else
1620 		copy_user_highpage(dst, src, va, vma);
1621 }
1622 
1623 /*
1624  * This routine handles present pages, when users try to write
1625  * to a shared page. It is done by copying the page to a new address
1626  * and decrementing the shared-page counter for the old page.
1627  *
1628  * Note that this routine assumes that the protection checks have been
1629  * done by the caller (the low-level page fault routine in most cases).
1630  * Thus we can safely just mark it writable once we've done any necessary
1631  * COW.
1632  *
1633  * We also mark the page dirty at this point even though the page will
1634  * change only once the write actually happens. This avoids a few races,
1635  * and potentially makes it more efficient.
1636  *
1637  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1638  * but allow concurrent faults), with pte both mapped and locked.
1639  * We return with mmap_sem still held, but pte unmapped and unlocked.
1640  */
1641 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1642 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1643 		spinlock_t *ptl, pte_t orig_pte)
1644 {
1645 	struct page *old_page, *new_page;
1646 	pte_t entry;
1647 	int reuse = 0, ret = 0;
1648 	int page_mkwrite = 0;
1649 	struct page *dirty_page = NULL;
1650 
1651 	old_page = vm_normal_page(vma, address, orig_pte);
1652 	if (!old_page)
1653 		goto gotten;
1654 
1655 	/*
1656 	 * Take out anonymous pages first, anonymous shared vmas are
1657 	 * not dirty accountable.
1658 	 */
1659 	if (PageAnon(old_page)) {
1660 		if (!TestSetPageLocked(old_page)) {
1661 			reuse = can_share_swap_page(old_page);
1662 			unlock_page(old_page);
1663 		}
1664 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1665 					(VM_WRITE|VM_SHARED))) {
1666 		/*
1667 		 * Only catch write-faults on shared writable pages,
1668 		 * read-only shared pages can get COWed by
1669 		 * get_user_pages(.write=1, .force=1).
1670 		 */
1671 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1672 			/*
1673 			 * Notify the address space that the page is about to
1674 			 * become writable so that it can prohibit this or wait
1675 			 * for the page to get into an appropriate state.
1676 			 *
1677 			 * We do this without the lock held, so that it can
1678 			 * sleep if it needs to.
1679 			 */
1680 			page_cache_get(old_page);
1681 			pte_unmap_unlock(page_table, ptl);
1682 
1683 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1684 				goto unwritable_page;
1685 
1686 			/*
1687 			 * Since we dropped the lock we need to revalidate
1688 			 * the PTE as someone else may have changed it.  If
1689 			 * they did, we just return, as we can count on the
1690 			 * MMU to tell us if they didn't also make it writable.
1691 			 */
1692 			page_table = pte_offset_map_lock(mm, pmd, address,
1693 							 &ptl);
1694 			page_cache_release(old_page);
1695 			if (!pte_same(*page_table, orig_pte))
1696 				goto unlock;
1697 
1698 			page_mkwrite = 1;
1699 		}
1700 		dirty_page = old_page;
1701 		get_page(dirty_page);
1702 		reuse = 1;
1703 	}
1704 
1705 	if (reuse) {
1706 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1707 		entry = pte_mkyoung(orig_pte);
1708 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1709 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1710 			update_mmu_cache(vma, address, entry);
1711 		ret |= VM_FAULT_WRITE;
1712 		goto unlock;
1713 	}
1714 
1715 	/*
1716 	 * Ok, we need to copy. Oh, well..
1717 	 */
1718 	page_cache_get(old_page);
1719 gotten:
1720 	pte_unmap_unlock(page_table, ptl);
1721 
1722 	if (unlikely(anon_vma_prepare(vma)))
1723 		goto oom;
1724 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1725 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1726 	if (!new_page)
1727 		goto oom;
1728 	cow_user_page(new_page, old_page, address, vma);
1729 	__SetPageUptodate(new_page);
1730 
1731 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1732 		goto oom_free_new;
1733 
1734 	/*
1735 	 * Re-check the pte - we dropped the lock
1736 	 */
1737 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1738 	if (likely(pte_same(*page_table, orig_pte))) {
1739 		if (old_page) {
1740 			page_remove_rmap(old_page, vma);
1741 			if (!PageAnon(old_page)) {
1742 				dec_mm_counter(mm, file_rss);
1743 				inc_mm_counter(mm, anon_rss);
1744 			}
1745 		} else
1746 			inc_mm_counter(mm, anon_rss);
1747 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1748 		entry = mk_pte(new_page, vma->vm_page_prot);
1749 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1750 		/*
1751 		 * Clear the pte entry and flush it first, before updating the
1752 		 * pte with the new entry. This will avoid a race condition
1753 		 * seen in the presence of one thread doing SMC and another
1754 		 * thread doing COW.
1755 		 */
1756 		ptep_clear_flush(vma, address, page_table);
1757 		set_pte_at(mm, address, page_table, entry);
1758 		update_mmu_cache(vma, address, entry);
1759 		lru_cache_add_active(new_page);
1760 		page_add_new_anon_rmap(new_page, vma, address);
1761 
1762 		/* Free the old page.. */
1763 		new_page = old_page;
1764 		ret |= VM_FAULT_WRITE;
1765 	} else
1766 		mem_cgroup_uncharge_page(new_page);
1767 
1768 	if (new_page)
1769 		page_cache_release(new_page);
1770 	if (old_page)
1771 		page_cache_release(old_page);
1772 unlock:
1773 	pte_unmap_unlock(page_table, ptl);
1774 	if (dirty_page) {
1775 		if (vma->vm_file)
1776 			file_update_time(vma->vm_file);
1777 
1778 		/*
1779 		 * Yes, Virginia, this is actually required to prevent a race
1780 		 * with clear_page_dirty_for_io() from clearing the page dirty
1781 		 * bit after it clear all dirty ptes, but before a racing
1782 		 * do_wp_page installs a dirty pte.
1783 		 *
1784 		 * do_no_page is protected similarly.
1785 		 */
1786 		wait_on_page_locked(dirty_page);
1787 		set_page_dirty_balance(dirty_page, page_mkwrite);
1788 		put_page(dirty_page);
1789 	}
1790 	return ret;
1791 oom_free_new:
1792 	page_cache_release(new_page);
1793 oom:
1794 	if (old_page)
1795 		page_cache_release(old_page);
1796 	return VM_FAULT_OOM;
1797 
1798 unwritable_page:
1799 	page_cache_release(old_page);
1800 	return VM_FAULT_SIGBUS;
1801 }
1802 
1803 /*
1804  * Helper functions for unmap_mapping_range().
1805  *
1806  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1807  *
1808  * We have to restart searching the prio_tree whenever we drop the lock,
1809  * since the iterator is only valid while the lock is held, and anyway
1810  * a later vma might be split and reinserted earlier while lock dropped.
1811  *
1812  * The list of nonlinear vmas could be handled more efficiently, using
1813  * a placeholder, but handle it in the same way until a need is shown.
1814  * It is important to search the prio_tree before nonlinear list: a vma
1815  * may become nonlinear and be shifted from prio_tree to nonlinear list
1816  * while the lock is dropped; but never shifted from list to prio_tree.
1817  *
1818  * In order to make forward progress despite restarting the search,
1819  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1820  * quickly skip it next time around.  Since the prio_tree search only
1821  * shows us those vmas affected by unmapping the range in question, we
1822  * can't efficiently keep all vmas in step with mapping->truncate_count:
1823  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1824  * mapping->truncate_count and vma->vm_truncate_count are protected by
1825  * i_mmap_lock.
1826  *
1827  * In order to make forward progress despite repeatedly restarting some
1828  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1829  * and restart from that address when we reach that vma again.  It might
1830  * have been split or merged, shrunk or extended, but never shifted: so
1831  * restart_addr remains valid so long as it remains in the vma's range.
1832  * unmap_mapping_range forces truncate_count to leap over page-aligned
1833  * values so we can save vma's restart_addr in its truncate_count field.
1834  */
1835 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1836 
1837 static void reset_vma_truncate_counts(struct address_space *mapping)
1838 {
1839 	struct vm_area_struct *vma;
1840 	struct prio_tree_iter iter;
1841 
1842 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1843 		vma->vm_truncate_count = 0;
1844 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1845 		vma->vm_truncate_count = 0;
1846 }
1847 
1848 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1849 		unsigned long start_addr, unsigned long end_addr,
1850 		struct zap_details *details)
1851 {
1852 	unsigned long restart_addr;
1853 	int need_break;
1854 
1855 	/*
1856 	 * files that support invalidating or truncating portions of the
1857 	 * file from under mmaped areas must have their ->fault function
1858 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1859 	 * This provides synchronisation against concurrent unmapping here.
1860 	 */
1861 
1862 again:
1863 	restart_addr = vma->vm_truncate_count;
1864 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1865 		start_addr = restart_addr;
1866 		if (start_addr >= end_addr) {
1867 			/* Top of vma has been split off since last time */
1868 			vma->vm_truncate_count = details->truncate_count;
1869 			return 0;
1870 		}
1871 	}
1872 
1873 	restart_addr = zap_page_range(vma, start_addr,
1874 					end_addr - start_addr, details);
1875 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1876 
1877 	if (restart_addr >= end_addr) {
1878 		/* We have now completed this vma: mark it so */
1879 		vma->vm_truncate_count = details->truncate_count;
1880 		if (!need_break)
1881 			return 0;
1882 	} else {
1883 		/* Note restart_addr in vma's truncate_count field */
1884 		vma->vm_truncate_count = restart_addr;
1885 		if (!need_break)
1886 			goto again;
1887 	}
1888 
1889 	spin_unlock(details->i_mmap_lock);
1890 	cond_resched();
1891 	spin_lock(details->i_mmap_lock);
1892 	return -EINTR;
1893 }
1894 
1895 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1896 					    struct zap_details *details)
1897 {
1898 	struct vm_area_struct *vma;
1899 	struct prio_tree_iter iter;
1900 	pgoff_t vba, vea, zba, zea;
1901 
1902 restart:
1903 	vma_prio_tree_foreach(vma, &iter, root,
1904 			details->first_index, details->last_index) {
1905 		/* Skip quickly over those we have already dealt with */
1906 		if (vma->vm_truncate_count == details->truncate_count)
1907 			continue;
1908 
1909 		vba = vma->vm_pgoff;
1910 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1911 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1912 		zba = details->first_index;
1913 		if (zba < vba)
1914 			zba = vba;
1915 		zea = details->last_index;
1916 		if (zea > vea)
1917 			zea = vea;
1918 
1919 		if (unmap_mapping_range_vma(vma,
1920 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1921 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1922 				details) < 0)
1923 			goto restart;
1924 	}
1925 }
1926 
1927 static inline void unmap_mapping_range_list(struct list_head *head,
1928 					    struct zap_details *details)
1929 {
1930 	struct vm_area_struct *vma;
1931 
1932 	/*
1933 	 * In nonlinear VMAs there is no correspondence between virtual address
1934 	 * offset and file offset.  So we must perform an exhaustive search
1935 	 * across *all* the pages in each nonlinear VMA, not just the pages
1936 	 * whose virtual address lies outside the file truncation point.
1937 	 */
1938 restart:
1939 	list_for_each_entry(vma, head, shared.vm_set.list) {
1940 		/* Skip quickly over those we have already dealt with */
1941 		if (vma->vm_truncate_count == details->truncate_count)
1942 			continue;
1943 		details->nonlinear_vma = vma;
1944 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1945 					vma->vm_end, details) < 0)
1946 			goto restart;
1947 	}
1948 }
1949 
1950 /**
1951  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1952  * @mapping: the address space containing mmaps to be unmapped.
1953  * @holebegin: byte in first page to unmap, relative to the start of
1954  * the underlying file.  This will be rounded down to a PAGE_SIZE
1955  * boundary.  Note that this is different from vmtruncate(), which
1956  * must keep the partial page.  In contrast, we must get rid of
1957  * partial pages.
1958  * @holelen: size of prospective hole in bytes.  This will be rounded
1959  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1960  * end of the file.
1961  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1962  * but 0 when invalidating pagecache, don't throw away private data.
1963  */
1964 void unmap_mapping_range(struct address_space *mapping,
1965 		loff_t const holebegin, loff_t const holelen, int even_cows)
1966 {
1967 	struct zap_details details;
1968 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1969 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1970 
1971 	/* Check for overflow. */
1972 	if (sizeof(holelen) > sizeof(hlen)) {
1973 		long long holeend =
1974 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1975 		if (holeend & ~(long long)ULONG_MAX)
1976 			hlen = ULONG_MAX - hba + 1;
1977 	}
1978 
1979 	details.check_mapping = even_cows? NULL: mapping;
1980 	details.nonlinear_vma = NULL;
1981 	details.first_index = hba;
1982 	details.last_index = hba + hlen - 1;
1983 	if (details.last_index < details.first_index)
1984 		details.last_index = ULONG_MAX;
1985 	details.i_mmap_lock = &mapping->i_mmap_lock;
1986 
1987 	spin_lock(&mapping->i_mmap_lock);
1988 
1989 	/* Protect against endless unmapping loops */
1990 	mapping->truncate_count++;
1991 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1992 		if (mapping->truncate_count == 0)
1993 			reset_vma_truncate_counts(mapping);
1994 		mapping->truncate_count++;
1995 	}
1996 	details.truncate_count = mapping->truncate_count;
1997 
1998 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1999 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2000 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2001 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2002 	spin_unlock(&mapping->i_mmap_lock);
2003 }
2004 EXPORT_SYMBOL(unmap_mapping_range);
2005 
2006 /**
2007  * vmtruncate - unmap mappings "freed" by truncate() syscall
2008  * @inode: inode of the file used
2009  * @offset: file offset to start truncating
2010  *
2011  * NOTE! We have to be ready to update the memory sharing
2012  * between the file and the memory map for a potential last
2013  * incomplete page.  Ugly, but necessary.
2014  */
2015 int vmtruncate(struct inode * inode, loff_t offset)
2016 {
2017 	if (inode->i_size < offset) {
2018 		unsigned long limit;
2019 
2020 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2021 		if (limit != RLIM_INFINITY && offset > limit)
2022 			goto out_sig;
2023 		if (offset > inode->i_sb->s_maxbytes)
2024 			goto out_big;
2025 		i_size_write(inode, offset);
2026 	} else {
2027 		struct address_space *mapping = inode->i_mapping;
2028 
2029 		/*
2030 		 * truncation of in-use swapfiles is disallowed - it would
2031 		 * cause subsequent swapout to scribble on the now-freed
2032 		 * blocks.
2033 		 */
2034 		if (IS_SWAPFILE(inode))
2035 			return -ETXTBSY;
2036 		i_size_write(inode, offset);
2037 
2038 		/*
2039 		 * unmap_mapping_range is called twice, first simply for
2040 		 * efficiency so that truncate_inode_pages does fewer
2041 		 * single-page unmaps.  However after this first call, and
2042 		 * before truncate_inode_pages finishes, it is possible for
2043 		 * private pages to be COWed, which remain after
2044 		 * truncate_inode_pages finishes, hence the second
2045 		 * unmap_mapping_range call must be made for correctness.
2046 		 */
2047 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2048 		truncate_inode_pages(mapping, offset);
2049 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2050 	}
2051 
2052 	if (inode->i_op && inode->i_op->truncate)
2053 		inode->i_op->truncate(inode);
2054 	return 0;
2055 
2056 out_sig:
2057 	send_sig(SIGXFSZ, current, 0);
2058 out_big:
2059 	return -EFBIG;
2060 }
2061 EXPORT_SYMBOL(vmtruncate);
2062 
2063 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2064 {
2065 	struct address_space *mapping = inode->i_mapping;
2066 
2067 	/*
2068 	 * If the underlying filesystem is not going to provide
2069 	 * a way to truncate a range of blocks (punch a hole) -
2070 	 * we should return failure right now.
2071 	 */
2072 	if (!inode->i_op || !inode->i_op->truncate_range)
2073 		return -ENOSYS;
2074 
2075 	mutex_lock(&inode->i_mutex);
2076 	down_write(&inode->i_alloc_sem);
2077 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2078 	truncate_inode_pages_range(mapping, offset, end);
2079 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2080 	inode->i_op->truncate_range(inode, offset, end);
2081 	up_write(&inode->i_alloc_sem);
2082 	mutex_unlock(&inode->i_mutex);
2083 
2084 	return 0;
2085 }
2086 
2087 /*
2088  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2089  * but allow concurrent faults), and pte mapped but not yet locked.
2090  * We return with mmap_sem still held, but pte unmapped and unlocked.
2091  */
2092 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2093 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2094 		int write_access, pte_t orig_pte)
2095 {
2096 	spinlock_t *ptl;
2097 	struct page *page;
2098 	swp_entry_t entry;
2099 	pte_t pte;
2100 	int ret = 0;
2101 
2102 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2103 		goto out;
2104 
2105 	entry = pte_to_swp_entry(orig_pte);
2106 	if (is_migration_entry(entry)) {
2107 		migration_entry_wait(mm, pmd, address);
2108 		goto out;
2109 	}
2110 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2111 	page = lookup_swap_cache(entry);
2112 	if (!page) {
2113 		grab_swap_token(); /* Contend for token _before_ read-in */
2114 		page = swapin_readahead(entry,
2115 					GFP_HIGHUSER_MOVABLE, vma, address);
2116 		if (!page) {
2117 			/*
2118 			 * Back out if somebody else faulted in this pte
2119 			 * while we released the pte lock.
2120 			 */
2121 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2122 			if (likely(pte_same(*page_table, orig_pte)))
2123 				ret = VM_FAULT_OOM;
2124 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2125 			goto unlock;
2126 		}
2127 
2128 		/* Had to read the page from swap area: Major fault */
2129 		ret = VM_FAULT_MAJOR;
2130 		count_vm_event(PGMAJFAULT);
2131 	}
2132 
2133 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2134 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2135 		ret = VM_FAULT_OOM;
2136 		goto out;
2137 	}
2138 
2139 	mark_page_accessed(page);
2140 	lock_page(page);
2141 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2142 
2143 	/*
2144 	 * Back out if somebody else already faulted in this pte.
2145 	 */
2146 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2147 	if (unlikely(!pte_same(*page_table, orig_pte)))
2148 		goto out_nomap;
2149 
2150 	if (unlikely(!PageUptodate(page))) {
2151 		ret = VM_FAULT_SIGBUS;
2152 		goto out_nomap;
2153 	}
2154 
2155 	/* The page isn't present yet, go ahead with the fault. */
2156 
2157 	inc_mm_counter(mm, anon_rss);
2158 	pte = mk_pte(page, vma->vm_page_prot);
2159 	if (write_access && can_share_swap_page(page)) {
2160 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2161 		write_access = 0;
2162 	}
2163 
2164 	flush_icache_page(vma, page);
2165 	set_pte_at(mm, address, page_table, pte);
2166 	page_add_anon_rmap(page, vma, address);
2167 
2168 	swap_free(entry);
2169 	if (vm_swap_full())
2170 		remove_exclusive_swap_page(page);
2171 	unlock_page(page);
2172 
2173 	if (write_access) {
2174 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2175 		if (ret & VM_FAULT_ERROR)
2176 			ret &= VM_FAULT_ERROR;
2177 		goto out;
2178 	}
2179 
2180 	/* No need to invalidate - it was non-present before */
2181 	update_mmu_cache(vma, address, pte);
2182 unlock:
2183 	pte_unmap_unlock(page_table, ptl);
2184 out:
2185 	return ret;
2186 out_nomap:
2187 	mem_cgroup_uncharge_page(page);
2188 	pte_unmap_unlock(page_table, ptl);
2189 	unlock_page(page);
2190 	page_cache_release(page);
2191 	return ret;
2192 }
2193 
2194 /*
2195  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2196  * but allow concurrent faults), and pte mapped but not yet locked.
2197  * We return with mmap_sem still held, but pte unmapped and unlocked.
2198  */
2199 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2200 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2201 		int write_access)
2202 {
2203 	struct page *page;
2204 	spinlock_t *ptl;
2205 	pte_t entry;
2206 
2207 	/* Allocate our own private page. */
2208 	pte_unmap(page_table);
2209 
2210 	if (unlikely(anon_vma_prepare(vma)))
2211 		goto oom;
2212 	page = alloc_zeroed_user_highpage_movable(vma, address);
2213 	if (!page)
2214 		goto oom;
2215 	__SetPageUptodate(page);
2216 
2217 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2218 		goto oom_free_page;
2219 
2220 	entry = mk_pte(page, vma->vm_page_prot);
2221 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2222 
2223 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2224 	if (!pte_none(*page_table))
2225 		goto release;
2226 	inc_mm_counter(mm, anon_rss);
2227 	lru_cache_add_active(page);
2228 	page_add_new_anon_rmap(page, vma, address);
2229 	set_pte_at(mm, address, page_table, entry);
2230 
2231 	/* No need to invalidate - it was non-present before */
2232 	update_mmu_cache(vma, address, entry);
2233 unlock:
2234 	pte_unmap_unlock(page_table, ptl);
2235 	return 0;
2236 release:
2237 	mem_cgroup_uncharge_page(page);
2238 	page_cache_release(page);
2239 	goto unlock;
2240 oom_free_page:
2241 	page_cache_release(page);
2242 oom:
2243 	return VM_FAULT_OOM;
2244 }
2245 
2246 /*
2247  * __do_fault() tries to create a new page mapping. It aggressively
2248  * tries to share with existing pages, but makes a separate copy if
2249  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2250  * the next page fault.
2251  *
2252  * As this is called only for pages that do not currently exist, we
2253  * do not need to flush old virtual caches or the TLB.
2254  *
2255  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2256  * but allow concurrent faults), and pte neither mapped nor locked.
2257  * We return with mmap_sem still held, but pte unmapped and unlocked.
2258  */
2259 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2260 		unsigned long address, pmd_t *pmd,
2261 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2262 {
2263 	pte_t *page_table;
2264 	spinlock_t *ptl;
2265 	struct page *page;
2266 	pte_t entry;
2267 	int anon = 0;
2268 	struct page *dirty_page = NULL;
2269 	struct vm_fault vmf;
2270 	int ret;
2271 	int page_mkwrite = 0;
2272 
2273 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2274 	vmf.pgoff = pgoff;
2275 	vmf.flags = flags;
2276 	vmf.page = NULL;
2277 
2278 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2279 
2280 	ret = vma->vm_ops->fault(vma, &vmf);
2281 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2282 		return ret;
2283 
2284 	/*
2285 	 * For consistency in subsequent calls, make the faulted page always
2286 	 * locked.
2287 	 */
2288 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2289 		lock_page(vmf.page);
2290 	else
2291 		VM_BUG_ON(!PageLocked(vmf.page));
2292 
2293 	/*
2294 	 * Should we do an early C-O-W break?
2295 	 */
2296 	page = vmf.page;
2297 	if (flags & FAULT_FLAG_WRITE) {
2298 		if (!(vma->vm_flags & VM_SHARED)) {
2299 			anon = 1;
2300 			if (unlikely(anon_vma_prepare(vma))) {
2301 				ret = VM_FAULT_OOM;
2302 				goto out;
2303 			}
2304 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2305 						vma, address);
2306 			if (!page) {
2307 				ret = VM_FAULT_OOM;
2308 				goto out;
2309 			}
2310 			copy_user_highpage(page, vmf.page, address, vma);
2311 			__SetPageUptodate(page);
2312 		} else {
2313 			/*
2314 			 * If the page will be shareable, see if the backing
2315 			 * address space wants to know that the page is about
2316 			 * to become writable
2317 			 */
2318 			if (vma->vm_ops->page_mkwrite) {
2319 				unlock_page(page);
2320 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2321 					ret = VM_FAULT_SIGBUS;
2322 					anon = 1; /* no anon but release vmf.page */
2323 					goto out_unlocked;
2324 				}
2325 				lock_page(page);
2326 				/*
2327 				 * XXX: this is not quite right (racy vs
2328 				 * invalidate) to unlock and relock the page
2329 				 * like this, however a better fix requires
2330 				 * reworking page_mkwrite locking API, which
2331 				 * is better done later.
2332 				 */
2333 				if (!page->mapping) {
2334 					ret = 0;
2335 					anon = 1; /* no anon but release vmf.page */
2336 					goto out;
2337 				}
2338 				page_mkwrite = 1;
2339 			}
2340 		}
2341 
2342 	}
2343 
2344 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2345 		ret = VM_FAULT_OOM;
2346 		goto out;
2347 	}
2348 
2349 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2350 
2351 	/*
2352 	 * This silly early PAGE_DIRTY setting removes a race
2353 	 * due to the bad i386 page protection. But it's valid
2354 	 * for other architectures too.
2355 	 *
2356 	 * Note that if write_access is true, we either now have
2357 	 * an exclusive copy of the page, or this is a shared mapping,
2358 	 * so we can make it writable and dirty to avoid having to
2359 	 * handle that later.
2360 	 */
2361 	/* Only go through if we didn't race with anybody else... */
2362 	if (likely(pte_same(*page_table, orig_pte))) {
2363 		flush_icache_page(vma, page);
2364 		entry = mk_pte(page, vma->vm_page_prot);
2365 		if (flags & FAULT_FLAG_WRITE)
2366 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2367 		set_pte_at(mm, address, page_table, entry);
2368 		if (anon) {
2369                         inc_mm_counter(mm, anon_rss);
2370                         lru_cache_add_active(page);
2371                         page_add_new_anon_rmap(page, vma, address);
2372 		} else {
2373 			inc_mm_counter(mm, file_rss);
2374 			page_add_file_rmap(page);
2375 			if (flags & FAULT_FLAG_WRITE) {
2376 				dirty_page = page;
2377 				get_page(dirty_page);
2378 			}
2379 		}
2380 
2381 		/* no need to invalidate: a not-present page won't be cached */
2382 		update_mmu_cache(vma, address, entry);
2383 	} else {
2384 		mem_cgroup_uncharge_page(page);
2385 		if (anon)
2386 			page_cache_release(page);
2387 		else
2388 			anon = 1; /* no anon but release faulted_page */
2389 	}
2390 
2391 	pte_unmap_unlock(page_table, ptl);
2392 
2393 out:
2394 	unlock_page(vmf.page);
2395 out_unlocked:
2396 	if (anon)
2397 		page_cache_release(vmf.page);
2398 	else if (dirty_page) {
2399 		if (vma->vm_file)
2400 			file_update_time(vma->vm_file);
2401 
2402 		set_page_dirty_balance(dirty_page, page_mkwrite);
2403 		put_page(dirty_page);
2404 	}
2405 
2406 	return ret;
2407 }
2408 
2409 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2410 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2411 		int write_access, pte_t orig_pte)
2412 {
2413 	pgoff_t pgoff = (((address & PAGE_MASK)
2414 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2415 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2416 
2417 	pte_unmap(page_table);
2418 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2419 }
2420 
2421 
2422 /*
2423  * do_no_pfn() tries to create a new page mapping for a page without
2424  * a struct_page backing it
2425  *
2426  * As this is called only for pages that do not currently exist, we
2427  * do not need to flush old virtual caches or the TLB.
2428  *
2429  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2430  * but allow concurrent faults), and pte mapped but not yet locked.
2431  * We return with mmap_sem still held, but pte unmapped and unlocked.
2432  *
2433  * It is expected that the ->nopfn handler always returns the same pfn
2434  * for a given virtual mapping.
2435  *
2436  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2437  */
2438 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2439 		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2440 		     int write_access)
2441 {
2442 	spinlock_t *ptl;
2443 	pte_t entry;
2444 	unsigned long pfn;
2445 
2446 	pte_unmap(page_table);
2447 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2448 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2449 
2450 	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2451 
2452 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2453 
2454 	if (unlikely(pfn == NOPFN_OOM))
2455 		return VM_FAULT_OOM;
2456 	else if (unlikely(pfn == NOPFN_SIGBUS))
2457 		return VM_FAULT_SIGBUS;
2458 	else if (unlikely(pfn == NOPFN_REFAULT))
2459 		return 0;
2460 
2461 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2462 
2463 	/* Only go through if we didn't race with anybody else... */
2464 	if (pte_none(*page_table)) {
2465 		entry = pfn_pte(pfn, vma->vm_page_prot);
2466 		if (write_access)
2467 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2468 		set_pte_at(mm, address, page_table, entry);
2469 	}
2470 	pte_unmap_unlock(page_table, ptl);
2471 	return 0;
2472 }
2473 
2474 /*
2475  * Fault of a previously existing named mapping. Repopulate the pte
2476  * from the encoded file_pte if possible. This enables swappable
2477  * nonlinear vmas.
2478  *
2479  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2480  * but allow concurrent faults), and pte mapped but not yet locked.
2481  * We return with mmap_sem still held, but pte unmapped and unlocked.
2482  */
2483 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2484 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2485 		int write_access, pte_t orig_pte)
2486 {
2487 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2488 				(write_access ? FAULT_FLAG_WRITE : 0);
2489 	pgoff_t pgoff;
2490 
2491 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2492 		return 0;
2493 
2494 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2495 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2496 		/*
2497 		 * Page table corrupted: show pte and kill process.
2498 		 */
2499 		print_bad_pte(vma, orig_pte, address);
2500 		return VM_FAULT_OOM;
2501 	}
2502 
2503 	pgoff = pte_to_pgoff(orig_pte);
2504 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2505 }
2506 
2507 /*
2508  * These routines also need to handle stuff like marking pages dirty
2509  * and/or accessed for architectures that don't do it in hardware (most
2510  * RISC architectures).  The early dirtying is also good on the i386.
2511  *
2512  * There is also a hook called "update_mmu_cache()" that architectures
2513  * with external mmu caches can use to update those (ie the Sparc or
2514  * PowerPC hashed page tables that act as extended TLBs).
2515  *
2516  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2517  * but allow concurrent faults), and pte mapped but not yet locked.
2518  * We return with mmap_sem still held, but pte unmapped and unlocked.
2519  */
2520 static inline int handle_pte_fault(struct mm_struct *mm,
2521 		struct vm_area_struct *vma, unsigned long address,
2522 		pte_t *pte, pmd_t *pmd, int write_access)
2523 {
2524 	pte_t entry;
2525 	spinlock_t *ptl;
2526 
2527 	entry = *pte;
2528 	if (!pte_present(entry)) {
2529 		if (pte_none(entry)) {
2530 			if (vma->vm_ops) {
2531 				if (likely(vma->vm_ops->fault))
2532 					return do_linear_fault(mm, vma, address,
2533 						pte, pmd, write_access, entry);
2534 				if (unlikely(vma->vm_ops->nopfn))
2535 					return do_no_pfn(mm, vma, address, pte,
2536 							 pmd, write_access);
2537 			}
2538 			return do_anonymous_page(mm, vma, address,
2539 						 pte, pmd, write_access);
2540 		}
2541 		if (pte_file(entry))
2542 			return do_nonlinear_fault(mm, vma, address,
2543 					pte, pmd, write_access, entry);
2544 		return do_swap_page(mm, vma, address,
2545 					pte, pmd, write_access, entry);
2546 	}
2547 
2548 	ptl = pte_lockptr(mm, pmd);
2549 	spin_lock(ptl);
2550 	if (unlikely(!pte_same(*pte, entry)))
2551 		goto unlock;
2552 	if (write_access) {
2553 		if (!pte_write(entry))
2554 			return do_wp_page(mm, vma, address,
2555 					pte, pmd, ptl, entry);
2556 		entry = pte_mkdirty(entry);
2557 	}
2558 	entry = pte_mkyoung(entry);
2559 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2560 		update_mmu_cache(vma, address, entry);
2561 	} else {
2562 		/*
2563 		 * This is needed only for protection faults but the arch code
2564 		 * is not yet telling us if this is a protection fault or not.
2565 		 * This still avoids useless tlb flushes for .text page faults
2566 		 * with threads.
2567 		 */
2568 		if (write_access)
2569 			flush_tlb_page(vma, address);
2570 	}
2571 unlock:
2572 	pte_unmap_unlock(pte, ptl);
2573 	return 0;
2574 }
2575 
2576 /*
2577  * By the time we get here, we already hold the mm semaphore
2578  */
2579 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2580 		unsigned long address, int write_access)
2581 {
2582 	pgd_t *pgd;
2583 	pud_t *pud;
2584 	pmd_t *pmd;
2585 	pte_t *pte;
2586 
2587 	__set_current_state(TASK_RUNNING);
2588 
2589 	count_vm_event(PGFAULT);
2590 
2591 	if (unlikely(is_vm_hugetlb_page(vma)))
2592 		return hugetlb_fault(mm, vma, address, write_access);
2593 
2594 	pgd = pgd_offset(mm, address);
2595 	pud = pud_alloc(mm, pgd, address);
2596 	if (!pud)
2597 		return VM_FAULT_OOM;
2598 	pmd = pmd_alloc(mm, pud, address);
2599 	if (!pmd)
2600 		return VM_FAULT_OOM;
2601 	pte = pte_alloc_map(mm, pmd, address);
2602 	if (!pte)
2603 		return VM_FAULT_OOM;
2604 
2605 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2606 }
2607 
2608 #ifndef __PAGETABLE_PUD_FOLDED
2609 /*
2610  * Allocate page upper directory.
2611  * We've already handled the fast-path in-line.
2612  */
2613 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2614 {
2615 	pud_t *new = pud_alloc_one(mm, address);
2616 	if (!new)
2617 		return -ENOMEM;
2618 
2619 	spin_lock(&mm->page_table_lock);
2620 	if (pgd_present(*pgd))		/* Another has populated it */
2621 		pud_free(mm, new);
2622 	else
2623 		pgd_populate(mm, pgd, new);
2624 	spin_unlock(&mm->page_table_lock);
2625 	return 0;
2626 }
2627 #endif /* __PAGETABLE_PUD_FOLDED */
2628 
2629 #ifndef __PAGETABLE_PMD_FOLDED
2630 /*
2631  * Allocate page middle directory.
2632  * We've already handled the fast-path in-line.
2633  */
2634 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2635 {
2636 	pmd_t *new = pmd_alloc_one(mm, address);
2637 	if (!new)
2638 		return -ENOMEM;
2639 
2640 	spin_lock(&mm->page_table_lock);
2641 #ifndef __ARCH_HAS_4LEVEL_HACK
2642 	if (pud_present(*pud))		/* Another has populated it */
2643 		pmd_free(mm, new);
2644 	else
2645 		pud_populate(mm, pud, new);
2646 #else
2647 	if (pgd_present(*pud))		/* Another has populated it */
2648 		pmd_free(mm, new);
2649 	else
2650 		pgd_populate(mm, pud, new);
2651 #endif /* __ARCH_HAS_4LEVEL_HACK */
2652 	spin_unlock(&mm->page_table_lock);
2653 	return 0;
2654 }
2655 #endif /* __PAGETABLE_PMD_FOLDED */
2656 
2657 int make_pages_present(unsigned long addr, unsigned long end)
2658 {
2659 	int ret, len, write;
2660 	struct vm_area_struct * vma;
2661 
2662 	vma = find_vma(current->mm, addr);
2663 	if (!vma)
2664 		return -1;
2665 	write = (vma->vm_flags & VM_WRITE) != 0;
2666 	BUG_ON(addr >= end);
2667 	BUG_ON(end > vma->vm_end);
2668 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2669 	ret = get_user_pages(current, current->mm, addr,
2670 			len, write, 0, NULL, NULL);
2671 	if (ret < 0)
2672 		return ret;
2673 	return ret == len ? 0 : -1;
2674 }
2675 
2676 #if !defined(__HAVE_ARCH_GATE_AREA)
2677 
2678 #if defined(AT_SYSINFO_EHDR)
2679 static struct vm_area_struct gate_vma;
2680 
2681 static int __init gate_vma_init(void)
2682 {
2683 	gate_vma.vm_mm = NULL;
2684 	gate_vma.vm_start = FIXADDR_USER_START;
2685 	gate_vma.vm_end = FIXADDR_USER_END;
2686 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2687 	gate_vma.vm_page_prot = __P101;
2688 	/*
2689 	 * Make sure the vDSO gets into every core dump.
2690 	 * Dumping its contents makes post-mortem fully interpretable later
2691 	 * without matching up the same kernel and hardware config to see
2692 	 * what PC values meant.
2693 	 */
2694 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2695 	return 0;
2696 }
2697 __initcall(gate_vma_init);
2698 #endif
2699 
2700 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2701 {
2702 #ifdef AT_SYSINFO_EHDR
2703 	return &gate_vma;
2704 #else
2705 	return NULL;
2706 #endif
2707 }
2708 
2709 int in_gate_area_no_task(unsigned long addr)
2710 {
2711 #ifdef AT_SYSINFO_EHDR
2712 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2713 		return 1;
2714 #endif
2715 	return 0;
2716 }
2717 
2718 #endif	/* __HAVE_ARCH_GATE_AREA */
2719 
2720 /*
2721  * Access another process' address space.
2722  * Source/target buffer must be kernel space,
2723  * Do not walk the page table directly, use get_user_pages
2724  */
2725 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2726 {
2727 	struct mm_struct *mm;
2728 	struct vm_area_struct *vma;
2729 	struct page *page;
2730 	void *old_buf = buf;
2731 
2732 	mm = get_task_mm(tsk);
2733 	if (!mm)
2734 		return 0;
2735 
2736 	down_read(&mm->mmap_sem);
2737 	/* ignore errors, just check how much was successfully transferred */
2738 	while (len) {
2739 		int bytes, ret, offset;
2740 		void *maddr;
2741 
2742 		ret = get_user_pages(tsk, mm, addr, 1,
2743 				write, 1, &page, &vma);
2744 		if (ret <= 0)
2745 			break;
2746 
2747 		bytes = len;
2748 		offset = addr & (PAGE_SIZE-1);
2749 		if (bytes > PAGE_SIZE-offset)
2750 			bytes = PAGE_SIZE-offset;
2751 
2752 		maddr = kmap(page);
2753 		if (write) {
2754 			copy_to_user_page(vma, page, addr,
2755 					  maddr + offset, buf, bytes);
2756 			set_page_dirty_lock(page);
2757 		} else {
2758 			copy_from_user_page(vma, page, addr,
2759 					    buf, maddr + offset, bytes);
2760 		}
2761 		kunmap(page);
2762 		page_cache_release(page);
2763 		len -= bytes;
2764 		buf += bytes;
2765 		addr += bytes;
2766 	}
2767 	up_read(&mm->mmap_sem);
2768 	mmput(mm);
2769 
2770 	return buf - old_buf;
2771 }
2772 
2773 /*
2774  * Print the name of a VMA.
2775  */
2776 void print_vma_addr(char *prefix, unsigned long ip)
2777 {
2778 	struct mm_struct *mm = current->mm;
2779 	struct vm_area_struct *vma;
2780 
2781 	/*
2782 	 * Do not print if we are in atomic
2783 	 * contexts (in exception stacks, etc.):
2784 	 */
2785 	if (preempt_count())
2786 		return;
2787 
2788 	down_read(&mm->mmap_sem);
2789 	vma = find_vma(mm, ip);
2790 	if (vma && vma->vm_file) {
2791 		struct file *f = vma->vm_file;
2792 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2793 		if (buf) {
2794 			char *p, *s;
2795 
2796 			p = d_path(&f->f_path, buf, PAGE_SIZE);
2797 			if (IS_ERR(p))
2798 				p = "?";
2799 			s = strrchr(p, '/');
2800 			if (s)
2801 				p = s+1;
2802 			printk("%s%s[%lx+%lx]", prefix, p,
2803 					vma->vm_start,
2804 					vma->vm_end - vma->vm_start);
2805 			free_page((unsigned long)buf);
2806 		}
2807 	}
2808 	up_read(&current->mm->mmap_sem);
2809 }
2810