1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 55 #include <asm/pgalloc.h> 56 #include <asm/uaccess.h> 57 #include <asm/tlb.h> 58 #include <asm/tlbflush.h> 59 #include <asm/pgtable.h> 60 61 #include <linux/swapops.h> 62 #include <linux/elf.h> 63 64 #ifndef CONFIG_NEED_MULTIPLE_NODES 65 /* use the per-pgdat data instead for discontigmem - mbligh */ 66 unsigned long max_mapnr; 67 struct page *mem_map; 68 69 EXPORT_SYMBOL(max_mapnr); 70 EXPORT_SYMBOL(mem_map); 71 #endif 72 73 unsigned long num_physpages; 74 /* 75 * A number of key systems in x86 including ioremap() rely on the assumption 76 * that high_memory defines the upper bound on direct map memory, then end 77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 79 * and ZONE_HIGHMEM. 80 */ 81 void * high_memory; 82 83 EXPORT_SYMBOL(num_physpages); 84 EXPORT_SYMBOL(high_memory); 85 86 /* 87 * Randomize the address space (stacks, mmaps, brk, etc.). 88 * 89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 90 * as ancient (libc5 based) binaries can segfault. ) 91 */ 92 int randomize_va_space __read_mostly = 93 #ifdef CONFIG_COMPAT_BRK 94 1; 95 #else 96 2; 97 #endif 98 99 static int __init disable_randmaps(char *s) 100 { 101 randomize_va_space = 0; 102 return 1; 103 } 104 __setup("norandmaps", disable_randmaps); 105 106 107 /* 108 * If a p?d_bad entry is found while walking page tables, report 109 * the error, before resetting entry to p?d_none. Usually (but 110 * very seldom) called out from the p?d_none_or_clear_bad macros. 111 */ 112 113 void pgd_clear_bad(pgd_t *pgd) 114 { 115 pgd_ERROR(*pgd); 116 pgd_clear(pgd); 117 } 118 119 void pud_clear_bad(pud_t *pud) 120 { 121 pud_ERROR(*pud); 122 pud_clear(pud); 123 } 124 125 void pmd_clear_bad(pmd_t *pmd) 126 { 127 pmd_ERROR(*pmd); 128 pmd_clear(pmd); 129 } 130 131 /* 132 * Note: this doesn't free the actual pages themselves. That 133 * has been handled earlier when unmapping all the memory regions. 134 */ 135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 136 { 137 pgtable_t token = pmd_pgtable(*pmd); 138 pmd_clear(pmd); 139 pte_free_tlb(tlb, token); 140 tlb->mm->nr_ptes--; 141 } 142 143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 144 unsigned long addr, unsigned long end, 145 unsigned long floor, unsigned long ceiling) 146 { 147 pmd_t *pmd; 148 unsigned long next; 149 unsigned long start; 150 151 start = addr; 152 pmd = pmd_offset(pud, addr); 153 do { 154 next = pmd_addr_end(addr, end); 155 if (pmd_none_or_clear_bad(pmd)) 156 continue; 157 free_pte_range(tlb, pmd); 158 } while (pmd++, addr = next, addr != end); 159 160 start &= PUD_MASK; 161 if (start < floor) 162 return; 163 if (ceiling) { 164 ceiling &= PUD_MASK; 165 if (!ceiling) 166 return; 167 } 168 if (end - 1 > ceiling - 1) 169 return; 170 171 pmd = pmd_offset(pud, start); 172 pud_clear(pud); 173 pmd_free_tlb(tlb, pmd); 174 } 175 176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 177 unsigned long addr, unsigned long end, 178 unsigned long floor, unsigned long ceiling) 179 { 180 pud_t *pud; 181 unsigned long next; 182 unsigned long start; 183 184 start = addr; 185 pud = pud_offset(pgd, addr); 186 do { 187 next = pud_addr_end(addr, end); 188 if (pud_none_or_clear_bad(pud)) 189 continue; 190 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 191 } while (pud++, addr = next, addr != end); 192 193 start &= PGDIR_MASK; 194 if (start < floor) 195 return; 196 if (ceiling) { 197 ceiling &= PGDIR_MASK; 198 if (!ceiling) 199 return; 200 } 201 if (end - 1 > ceiling - 1) 202 return; 203 204 pud = pud_offset(pgd, start); 205 pgd_clear(pgd); 206 pud_free_tlb(tlb, pud); 207 } 208 209 /* 210 * This function frees user-level page tables of a process. 211 * 212 * Must be called with pagetable lock held. 213 */ 214 void free_pgd_range(struct mmu_gather **tlb, 215 unsigned long addr, unsigned long end, 216 unsigned long floor, unsigned long ceiling) 217 { 218 pgd_t *pgd; 219 unsigned long next; 220 unsigned long start; 221 222 /* 223 * The next few lines have given us lots of grief... 224 * 225 * Why are we testing PMD* at this top level? Because often 226 * there will be no work to do at all, and we'd prefer not to 227 * go all the way down to the bottom just to discover that. 228 * 229 * Why all these "- 1"s? Because 0 represents both the bottom 230 * of the address space and the top of it (using -1 for the 231 * top wouldn't help much: the masks would do the wrong thing). 232 * The rule is that addr 0 and floor 0 refer to the bottom of 233 * the address space, but end 0 and ceiling 0 refer to the top 234 * Comparisons need to use "end - 1" and "ceiling - 1" (though 235 * that end 0 case should be mythical). 236 * 237 * Wherever addr is brought up or ceiling brought down, we must 238 * be careful to reject "the opposite 0" before it confuses the 239 * subsequent tests. But what about where end is brought down 240 * by PMD_SIZE below? no, end can't go down to 0 there. 241 * 242 * Whereas we round start (addr) and ceiling down, by different 243 * masks at different levels, in order to test whether a table 244 * now has no other vmas using it, so can be freed, we don't 245 * bother to round floor or end up - the tests don't need that. 246 */ 247 248 addr &= PMD_MASK; 249 if (addr < floor) { 250 addr += PMD_SIZE; 251 if (!addr) 252 return; 253 } 254 if (ceiling) { 255 ceiling &= PMD_MASK; 256 if (!ceiling) 257 return; 258 } 259 if (end - 1 > ceiling - 1) 260 end -= PMD_SIZE; 261 if (addr > end - 1) 262 return; 263 264 start = addr; 265 pgd = pgd_offset((*tlb)->mm, addr); 266 do { 267 next = pgd_addr_end(addr, end); 268 if (pgd_none_or_clear_bad(pgd)) 269 continue; 270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 271 } while (pgd++, addr = next, addr != end); 272 } 273 274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 275 unsigned long floor, unsigned long ceiling) 276 { 277 while (vma) { 278 struct vm_area_struct *next = vma->vm_next; 279 unsigned long addr = vma->vm_start; 280 281 /* 282 * Hide vma from rmap and vmtruncate before freeing pgtables 283 */ 284 anon_vma_unlink(vma); 285 unlink_file_vma(vma); 286 287 if (is_vm_hugetlb_page(vma)) { 288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 289 floor, next? next->vm_start: ceiling); 290 } else { 291 /* 292 * Optimization: gather nearby vmas into one call down 293 */ 294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 295 && !is_vm_hugetlb_page(next)) { 296 vma = next; 297 next = vma->vm_next; 298 anon_vma_unlink(vma); 299 unlink_file_vma(vma); 300 } 301 free_pgd_range(tlb, addr, vma->vm_end, 302 floor, next? next->vm_start: ceiling); 303 } 304 vma = next; 305 } 306 } 307 308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 309 { 310 pgtable_t new = pte_alloc_one(mm, address); 311 if (!new) 312 return -ENOMEM; 313 314 spin_lock(&mm->page_table_lock); 315 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 316 mm->nr_ptes++; 317 pmd_populate(mm, pmd, new); 318 new = NULL; 319 } 320 spin_unlock(&mm->page_table_lock); 321 if (new) 322 pte_free(mm, new); 323 return 0; 324 } 325 326 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 327 { 328 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 329 if (!new) 330 return -ENOMEM; 331 332 spin_lock(&init_mm.page_table_lock); 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 334 pmd_populate_kernel(&init_mm, pmd, new); 335 new = NULL; 336 } 337 spin_unlock(&init_mm.page_table_lock); 338 if (new) 339 pte_free_kernel(&init_mm, new); 340 return 0; 341 } 342 343 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 344 { 345 if (file_rss) 346 add_mm_counter(mm, file_rss, file_rss); 347 if (anon_rss) 348 add_mm_counter(mm, anon_rss, anon_rss); 349 } 350 351 /* 352 * This function is called to print an error when a bad pte 353 * is found. For example, we might have a PFN-mapped pte in 354 * a region that doesn't allow it. 355 * 356 * The calling function must still handle the error. 357 */ 358 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 359 { 360 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 361 "vm_flags = %lx, vaddr = %lx\n", 362 (long long)pte_val(pte), 363 (vma->vm_mm == current->mm ? current->comm : "???"), 364 vma->vm_flags, vaddr); 365 dump_stack(); 366 } 367 368 static inline int is_cow_mapping(unsigned int flags) 369 { 370 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 371 } 372 373 /* 374 * vm_normal_page -- This function gets the "struct page" associated with a pte. 375 * 376 * "Special" mappings do not wish to be associated with a "struct page" (either 377 * it doesn't exist, or it exists but they don't want to touch it). In this 378 * case, NULL is returned here. "Normal" mappings do have a struct page. 379 * 380 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 381 * pte bit, in which case this function is trivial. Secondly, an architecture 382 * may not have a spare pte bit, which requires a more complicated scheme, 383 * described below. 384 * 385 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 386 * special mapping (even if there are underlying and valid "struct pages"). 387 * COWed pages of a VM_PFNMAP are always normal. 388 * 389 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 390 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 391 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 392 * mapping will always honor the rule 393 * 394 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 395 * 396 * And for normal mappings this is false. 397 * 398 * This restricts such mappings to be a linear translation from virtual address 399 * to pfn. To get around this restriction, we allow arbitrary mappings so long 400 * as the vma is not a COW mapping; in that case, we know that all ptes are 401 * special (because none can have been COWed). 402 * 403 * 404 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 405 * 406 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 407 * page" backing, however the difference is that _all_ pages with a struct 408 * page (that is, those where pfn_valid is true) are refcounted and considered 409 * normal pages by the VM. The disadvantage is that pages are refcounted 410 * (which can be slower and simply not an option for some PFNMAP users). The 411 * advantage is that we don't have to follow the strict linearity rule of 412 * PFNMAP mappings in order to support COWable mappings. 413 * 414 */ 415 #ifdef __HAVE_ARCH_PTE_SPECIAL 416 # define HAVE_PTE_SPECIAL 1 417 #else 418 # define HAVE_PTE_SPECIAL 0 419 #endif 420 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 421 pte_t pte) 422 { 423 unsigned long pfn; 424 425 if (HAVE_PTE_SPECIAL) { 426 if (likely(!pte_special(pte))) { 427 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 428 return pte_page(pte); 429 } 430 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 431 return NULL; 432 } 433 434 /* !HAVE_PTE_SPECIAL case follows: */ 435 436 pfn = pte_pfn(pte); 437 438 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 439 if (vma->vm_flags & VM_MIXEDMAP) { 440 if (!pfn_valid(pfn)) 441 return NULL; 442 goto out; 443 } else { 444 unsigned long off; 445 off = (addr - vma->vm_start) >> PAGE_SHIFT; 446 if (pfn == vma->vm_pgoff + off) 447 return NULL; 448 if (!is_cow_mapping(vma->vm_flags)) 449 return NULL; 450 } 451 } 452 453 VM_BUG_ON(!pfn_valid(pfn)); 454 455 /* 456 * NOTE! We still have PageReserved() pages in the page tables. 457 * 458 * eg. VDSO mappings can cause them to exist. 459 */ 460 out: 461 return pfn_to_page(pfn); 462 } 463 464 /* 465 * copy one vm_area from one task to the other. Assumes the page tables 466 * already present in the new task to be cleared in the whole range 467 * covered by this vma. 468 */ 469 470 static inline void 471 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 472 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 473 unsigned long addr, int *rss) 474 { 475 unsigned long vm_flags = vma->vm_flags; 476 pte_t pte = *src_pte; 477 struct page *page; 478 479 /* pte contains position in swap or file, so copy. */ 480 if (unlikely(!pte_present(pte))) { 481 if (!pte_file(pte)) { 482 swp_entry_t entry = pte_to_swp_entry(pte); 483 484 swap_duplicate(entry); 485 /* make sure dst_mm is on swapoff's mmlist. */ 486 if (unlikely(list_empty(&dst_mm->mmlist))) { 487 spin_lock(&mmlist_lock); 488 if (list_empty(&dst_mm->mmlist)) 489 list_add(&dst_mm->mmlist, 490 &src_mm->mmlist); 491 spin_unlock(&mmlist_lock); 492 } 493 if (is_write_migration_entry(entry) && 494 is_cow_mapping(vm_flags)) { 495 /* 496 * COW mappings require pages in both parent 497 * and child to be set to read. 498 */ 499 make_migration_entry_read(&entry); 500 pte = swp_entry_to_pte(entry); 501 set_pte_at(src_mm, addr, src_pte, pte); 502 } 503 } 504 goto out_set_pte; 505 } 506 507 /* 508 * If it's a COW mapping, write protect it both 509 * in the parent and the child 510 */ 511 if (is_cow_mapping(vm_flags)) { 512 ptep_set_wrprotect(src_mm, addr, src_pte); 513 pte = pte_wrprotect(pte); 514 } 515 516 /* 517 * If it's a shared mapping, mark it clean in 518 * the child 519 */ 520 if (vm_flags & VM_SHARED) 521 pte = pte_mkclean(pte); 522 pte = pte_mkold(pte); 523 524 page = vm_normal_page(vma, addr, pte); 525 if (page) { 526 get_page(page); 527 page_dup_rmap(page, vma, addr); 528 rss[!!PageAnon(page)]++; 529 } 530 531 out_set_pte: 532 set_pte_at(dst_mm, addr, dst_pte, pte); 533 } 534 535 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 536 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 537 unsigned long addr, unsigned long end) 538 { 539 pte_t *src_pte, *dst_pte; 540 spinlock_t *src_ptl, *dst_ptl; 541 int progress = 0; 542 int rss[2]; 543 544 again: 545 rss[1] = rss[0] = 0; 546 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 547 if (!dst_pte) 548 return -ENOMEM; 549 src_pte = pte_offset_map_nested(src_pmd, addr); 550 src_ptl = pte_lockptr(src_mm, src_pmd); 551 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 552 arch_enter_lazy_mmu_mode(); 553 554 do { 555 /* 556 * We are holding two locks at this point - either of them 557 * could generate latencies in another task on another CPU. 558 */ 559 if (progress >= 32) { 560 progress = 0; 561 if (need_resched() || 562 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 563 break; 564 } 565 if (pte_none(*src_pte)) { 566 progress++; 567 continue; 568 } 569 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 570 progress += 8; 571 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 572 573 arch_leave_lazy_mmu_mode(); 574 spin_unlock(src_ptl); 575 pte_unmap_nested(src_pte - 1); 576 add_mm_rss(dst_mm, rss[0], rss[1]); 577 pte_unmap_unlock(dst_pte - 1, dst_ptl); 578 cond_resched(); 579 if (addr != end) 580 goto again; 581 return 0; 582 } 583 584 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 585 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 586 unsigned long addr, unsigned long end) 587 { 588 pmd_t *src_pmd, *dst_pmd; 589 unsigned long next; 590 591 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 592 if (!dst_pmd) 593 return -ENOMEM; 594 src_pmd = pmd_offset(src_pud, addr); 595 do { 596 next = pmd_addr_end(addr, end); 597 if (pmd_none_or_clear_bad(src_pmd)) 598 continue; 599 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 600 vma, addr, next)) 601 return -ENOMEM; 602 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 603 return 0; 604 } 605 606 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 607 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 608 unsigned long addr, unsigned long end) 609 { 610 pud_t *src_pud, *dst_pud; 611 unsigned long next; 612 613 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 614 if (!dst_pud) 615 return -ENOMEM; 616 src_pud = pud_offset(src_pgd, addr); 617 do { 618 next = pud_addr_end(addr, end); 619 if (pud_none_or_clear_bad(src_pud)) 620 continue; 621 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 622 vma, addr, next)) 623 return -ENOMEM; 624 } while (dst_pud++, src_pud++, addr = next, addr != end); 625 return 0; 626 } 627 628 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 629 struct vm_area_struct *vma) 630 { 631 pgd_t *src_pgd, *dst_pgd; 632 unsigned long next; 633 unsigned long addr = vma->vm_start; 634 unsigned long end = vma->vm_end; 635 636 /* 637 * Don't copy ptes where a page fault will fill them correctly. 638 * Fork becomes much lighter when there are big shared or private 639 * readonly mappings. The tradeoff is that copy_page_range is more 640 * efficient than faulting. 641 */ 642 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 643 if (!vma->anon_vma) 644 return 0; 645 } 646 647 if (is_vm_hugetlb_page(vma)) 648 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 649 650 dst_pgd = pgd_offset(dst_mm, addr); 651 src_pgd = pgd_offset(src_mm, addr); 652 do { 653 next = pgd_addr_end(addr, end); 654 if (pgd_none_or_clear_bad(src_pgd)) 655 continue; 656 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 657 vma, addr, next)) 658 return -ENOMEM; 659 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 660 return 0; 661 } 662 663 static unsigned long zap_pte_range(struct mmu_gather *tlb, 664 struct vm_area_struct *vma, pmd_t *pmd, 665 unsigned long addr, unsigned long end, 666 long *zap_work, struct zap_details *details) 667 { 668 struct mm_struct *mm = tlb->mm; 669 pte_t *pte; 670 spinlock_t *ptl; 671 int file_rss = 0; 672 int anon_rss = 0; 673 674 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 675 arch_enter_lazy_mmu_mode(); 676 do { 677 pte_t ptent = *pte; 678 if (pte_none(ptent)) { 679 (*zap_work)--; 680 continue; 681 } 682 683 (*zap_work) -= PAGE_SIZE; 684 685 if (pte_present(ptent)) { 686 struct page *page; 687 688 page = vm_normal_page(vma, addr, ptent); 689 if (unlikely(details) && page) { 690 /* 691 * unmap_shared_mapping_pages() wants to 692 * invalidate cache without truncating: 693 * unmap shared but keep private pages. 694 */ 695 if (details->check_mapping && 696 details->check_mapping != page->mapping) 697 continue; 698 /* 699 * Each page->index must be checked when 700 * invalidating or truncating nonlinear. 701 */ 702 if (details->nonlinear_vma && 703 (page->index < details->first_index || 704 page->index > details->last_index)) 705 continue; 706 } 707 ptent = ptep_get_and_clear_full(mm, addr, pte, 708 tlb->fullmm); 709 tlb_remove_tlb_entry(tlb, pte, addr); 710 if (unlikely(!page)) 711 continue; 712 if (unlikely(details) && details->nonlinear_vma 713 && linear_page_index(details->nonlinear_vma, 714 addr) != page->index) 715 set_pte_at(mm, addr, pte, 716 pgoff_to_pte(page->index)); 717 if (PageAnon(page)) 718 anon_rss--; 719 else { 720 if (pte_dirty(ptent)) 721 set_page_dirty(page); 722 if (pte_young(ptent)) 723 SetPageReferenced(page); 724 file_rss--; 725 } 726 page_remove_rmap(page, vma); 727 tlb_remove_page(tlb, page); 728 continue; 729 } 730 /* 731 * If details->check_mapping, we leave swap entries; 732 * if details->nonlinear_vma, we leave file entries. 733 */ 734 if (unlikely(details)) 735 continue; 736 if (!pte_file(ptent)) 737 free_swap_and_cache(pte_to_swp_entry(ptent)); 738 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 739 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 740 741 add_mm_rss(mm, file_rss, anon_rss); 742 arch_leave_lazy_mmu_mode(); 743 pte_unmap_unlock(pte - 1, ptl); 744 745 return addr; 746 } 747 748 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 749 struct vm_area_struct *vma, pud_t *pud, 750 unsigned long addr, unsigned long end, 751 long *zap_work, struct zap_details *details) 752 { 753 pmd_t *pmd; 754 unsigned long next; 755 756 pmd = pmd_offset(pud, addr); 757 do { 758 next = pmd_addr_end(addr, end); 759 if (pmd_none_or_clear_bad(pmd)) { 760 (*zap_work)--; 761 continue; 762 } 763 next = zap_pte_range(tlb, vma, pmd, addr, next, 764 zap_work, details); 765 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 766 767 return addr; 768 } 769 770 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 771 struct vm_area_struct *vma, pgd_t *pgd, 772 unsigned long addr, unsigned long end, 773 long *zap_work, struct zap_details *details) 774 { 775 pud_t *pud; 776 unsigned long next; 777 778 pud = pud_offset(pgd, addr); 779 do { 780 next = pud_addr_end(addr, end); 781 if (pud_none_or_clear_bad(pud)) { 782 (*zap_work)--; 783 continue; 784 } 785 next = zap_pmd_range(tlb, vma, pud, addr, next, 786 zap_work, details); 787 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 788 789 return addr; 790 } 791 792 static unsigned long unmap_page_range(struct mmu_gather *tlb, 793 struct vm_area_struct *vma, 794 unsigned long addr, unsigned long end, 795 long *zap_work, struct zap_details *details) 796 { 797 pgd_t *pgd; 798 unsigned long next; 799 800 if (details && !details->check_mapping && !details->nonlinear_vma) 801 details = NULL; 802 803 BUG_ON(addr >= end); 804 tlb_start_vma(tlb, vma); 805 pgd = pgd_offset(vma->vm_mm, addr); 806 do { 807 next = pgd_addr_end(addr, end); 808 if (pgd_none_or_clear_bad(pgd)) { 809 (*zap_work)--; 810 continue; 811 } 812 next = zap_pud_range(tlb, vma, pgd, addr, next, 813 zap_work, details); 814 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 815 tlb_end_vma(tlb, vma); 816 817 return addr; 818 } 819 820 #ifdef CONFIG_PREEMPT 821 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 822 #else 823 /* No preempt: go for improved straight-line efficiency */ 824 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 825 #endif 826 827 /** 828 * unmap_vmas - unmap a range of memory covered by a list of vma's 829 * @tlbp: address of the caller's struct mmu_gather 830 * @vma: the starting vma 831 * @start_addr: virtual address at which to start unmapping 832 * @end_addr: virtual address at which to end unmapping 833 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 834 * @details: details of nonlinear truncation or shared cache invalidation 835 * 836 * Returns the end address of the unmapping (restart addr if interrupted). 837 * 838 * Unmap all pages in the vma list. 839 * 840 * We aim to not hold locks for too long (for scheduling latency reasons). 841 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 842 * return the ending mmu_gather to the caller. 843 * 844 * Only addresses between `start' and `end' will be unmapped. 845 * 846 * The VMA list must be sorted in ascending virtual address order. 847 * 848 * unmap_vmas() assumes that the caller will flush the whole unmapped address 849 * range after unmap_vmas() returns. So the only responsibility here is to 850 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 851 * drops the lock and schedules. 852 */ 853 unsigned long unmap_vmas(struct mmu_gather **tlbp, 854 struct vm_area_struct *vma, unsigned long start_addr, 855 unsigned long end_addr, unsigned long *nr_accounted, 856 struct zap_details *details) 857 { 858 long zap_work = ZAP_BLOCK_SIZE; 859 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 860 int tlb_start_valid = 0; 861 unsigned long start = start_addr; 862 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 863 int fullmm = (*tlbp)->fullmm; 864 865 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 866 unsigned long end; 867 868 start = max(vma->vm_start, start_addr); 869 if (start >= vma->vm_end) 870 continue; 871 end = min(vma->vm_end, end_addr); 872 if (end <= vma->vm_start) 873 continue; 874 875 if (vma->vm_flags & VM_ACCOUNT) 876 *nr_accounted += (end - start) >> PAGE_SHIFT; 877 878 while (start != end) { 879 if (!tlb_start_valid) { 880 tlb_start = start; 881 tlb_start_valid = 1; 882 } 883 884 if (unlikely(is_vm_hugetlb_page(vma))) { 885 unmap_hugepage_range(vma, start, end); 886 zap_work -= (end - start) / 887 (HPAGE_SIZE / PAGE_SIZE); 888 start = end; 889 } else 890 start = unmap_page_range(*tlbp, vma, 891 start, end, &zap_work, details); 892 893 if (zap_work > 0) { 894 BUG_ON(start != end); 895 break; 896 } 897 898 tlb_finish_mmu(*tlbp, tlb_start, start); 899 900 if (need_resched() || 901 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 902 if (i_mmap_lock) { 903 *tlbp = NULL; 904 goto out; 905 } 906 cond_resched(); 907 } 908 909 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 910 tlb_start_valid = 0; 911 zap_work = ZAP_BLOCK_SIZE; 912 } 913 } 914 out: 915 return start; /* which is now the end (or restart) address */ 916 } 917 918 /** 919 * zap_page_range - remove user pages in a given range 920 * @vma: vm_area_struct holding the applicable pages 921 * @address: starting address of pages to zap 922 * @size: number of bytes to zap 923 * @details: details of nonlinear truncation or shared cache invalidation 924 */ 925 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 926 unsigned long size, struct zap_details *details) 927 { 928 struct mm_struct *mm = vma->vm_mm; 929 struct mmu_gather *tlb; 930 unsigned long end = address + size; 931 unsigned long nr_accounted = 0; 932 933 lru_add_drain(); 934 tlb = tlb_gather_mmu(mm, 0); 935 update_hiwater_rss(mm); 936 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 937 if (tlb) 938 tlb_finish_mmu(tlb, address, end); 939 return end; 940 } 941 942 /* 943 * Do a quick page-table lookup for a single page. 944 */ 945 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 946 unsigned int flags) 947 { 948 pgd_t *pgd; 949 pud_t *pud; 950 pmd_t *pmd; 951 pte_t *ptep, pte; 952 spinlock_t *ptl; 953 struct page *page; 954 struct mm_struct *mm = vma->vm_mm; 955 956 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 957 if (!IS_ERR(page)) { 958 BUG_ON(flags & FOLL_GET); 959 goto out; 960 } 961 962 page = NULL; 963 pgd = pgd_offset(mm, address); 964 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 965 goto no_page_table; 966 967 pud = pud_offset(pgd, address); 968 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 969 goto no_page_table; 970 971 pmd = pmd_offset(pud, address); 972 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 973 goto no_page_table; 974 975 if (pmd_huge(*pmd)) { 976 BUG_ON(flags & FOLL_GET); 977 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 978 goto out; 979 } 980 981 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 982 if (!ptep) 983 goto out; 984 985 pte = *ptep; 986 if (!pte_present(pte)) 987 goto unlock; 988 if ((flags & FOLL_WRITE) && !pte_write(pte)) 989 goto unlock; 990 page = vm_normal_page(vma, address, pte); 991 if (unlikely(!page)) 992 goto unlock; 993 994 if (flags & FOLL_GET) 995 get_page(page); 996 if (flags & FOLL_TOUCH) { 997 if ((flags & FOLL_WRITE) && 998 !pte_dirty(pte) && !PageDirty(page)) 999 set_page_dirty(page); 1000 mark_page_accessed(page); 1001 } 1002 unlock: 1003 pte_unmap_unlock(ptep, ptl); 1004 out: 1005 return page; 1006 1007 no_page_table: 1008 /* 1009 * When core dumping an enormous anonymous area that nobody 1010 * has touched so far, we don't want to allocate page tables. 1011 */ 1012 if (flags & FOLL_ANON) { 1013 page = ZERO_PAGE(0); 1014 if (flags & FOLL_GET) 1015 get_page(page); 1016 BUG_ON(flags & FOLL_WRITE); 1017 } 1018 return page; 1019 } 1020 1021 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1022 unsigned long start, int len, int write, int force, 1023 struct page **pages, struct vm_area_struct **vmas) 1024 { 1025 int i; 1026 unsigned int vm_flags; 1027 1028 if (len <= 0) 1029 return 0; 1030 /* 1031 * Require read or write permissions. 1032 * If 'force' is set, we only require the "MAY" flags. 1033 */ 1034 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1035 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1036 i = 0; 1037 1038 do { 1039 struct vm_area_struct *vma; 1040 unsigned int foll_flags; 1041 1042 vma = find_extend_vma(mm, start); 1043 if (!vma && in_gate_area(tsk, start)) { 1044 unsigned long pg = start & PAGE_MASK; 1045 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1046 pgd_t *pgd; 1047 pud_t *pud; 1048 pmd_t *pmd; 1049 pte_t *pte; 1050 if (write) /* user gate pages are read-only */ 1051 return i ? : -EFAULT; 1052 if (pg > TASK_SIZE) 1053 pgd = pgd_offset_k(pg); 1054 else 1055 pgd = pgd_offset_gate(mm, pg); 1056 BUG_ON(pgd_none(*pgd)); 1057 pud = pud_offset(pgd, pg); 1058 BUG_ON(pud_none(*pud)); 1059 pmd = pmd_offset(pud, pg); 1060 if (pmd_none(*pmd)) 1061 return i ? : -EFAULT; 1062 pte = pte_offset_map(pmd, pg); 1063 if (pte_none(*pte)) { 1064 pte_unmap(pte); 1065 return i ? : -EFAULT; 1066 } 1067 if (pages) { 1068 struct page *page = vm_normal_page(gate_vma, start, *pte); 1069 pages[i] = page; 1070 if (page) 1071 get_page(page); 1072 } 1073 pte_unmap(pte); 1074 if (vmas) 1075 vmas[i] = gate_vma; 1076 i++; 1077 start += PAGE_SIZE; 1078 len--; 1079 continue; 1080 } 1081 1082 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1083 || !(vm_flags & vma->vm_flags)) 1084 return i ? : -EFAULT; 1085 1086 if (is_vm_hugetlb_page(vma)) { 1087 i = follow_hugetlb_page(mm, vma, pages, vmas, 1088 &start, &len, i, write); 1089 continue; 1090 } 1091 1092 foll_flags = FOLL_TOUCH; 1093 if (pages) 1094 foll_flags |= FOLL_GET; 1095 if (!write && !(vma->vm_flags & VM_LOCKED) && 1096 (!vma->vm_ops || !vma->vm_ops->fault)) 1097 foll_flags |= FOLL_ANON; 1098 1099 do { 1100 struct page *page; 1101 1102 /* 1103 * If tsk is ooming, cut off its access to large memory 1104 * allocations. It has a pending SIGKILL, but it can't 1105 * be processed until returning to user space. 1106 */ 1107 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1108 return -ENOMEM; 1109 1110 if (write) 1111 foll_flags |= FOLL_WRITE; 1112 1113 cond_resched(); 1114 while (!(page = follow_page(vma, start, foll_flags))) { 1115 int ret; 1116 ret = handle_mm_fault(mm, vma, start, 1117 foll_flags & FOLL_WRITE); 1118 if (ret & VM_FAULT_ERROR) { 1119 if (ret & VM_FAULT_OOM) 1120 return i ? i : -ENOMEM; 1121 else if (ret & VM_FAULT_SIGBUS) 1122 return i ? i : -EFAULT; 1123 BUG(); 1124 } 1125 if (ret & VM_FAULT_MAJOR) 1126 tsk->maj_flt++; 1127 else 1128 tsk->min_flt++; 1129 1130 /* 1131 * The VM_FAULT_WRITE bit tells us that 1132 * do_wp_page has broken COW when necessary, 1133 * even if maybe_mkwrite decided not to set 1134 * pte_write. We can thus safely do subsequent 1135 * page lookups as if they were reads. 1136 */ 1137 if (ret & VM_FAULT_WRITE) 1138 foll_flags &= ~FOLL_WRITE; 1139 1140 cond_resched(); 1141 } 1142 if (pages) { 1143 pages[i] = page; 1144 1145 flush_anon_page(vma, page, start); 1146 flush_dcache_page(page); 1147 } 1148 if (vmas) 1149 vmas[i] = vma; 1150 i++; 1151 start += PAGE_SIZE; 1152 len--; 1153 } while (len && start < vma->vm_end); 1154 } while (len); 1155 return i; 1156 } 1157 EXPORT_SYMBOL(get_user_pages); 1158 1159 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1160 spinlock_t **ptl) 1161 { 1162 pgd_t * pgd = pgd_offset(mm, addr); 1163 pud_t * pud = pud_alloc(mm, pgd, addr); 1164 if (pud) { 1165 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1166 if (pmd) 1167 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1168 } 1169 return NULL; 1170 } 1171 1172 /* 1173 * This is the old fallback for page remapping. 1174 * 1175 * For historical reasons, it only allows reserved pages. Only 1176 * old drivers should use this, and they needed to mark their 1177 * pages reserved for the old functions anyway. 1178 */ 1179 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1180 struct page *page, pgprot_t prot) 1181 { 1182 struct mm_struct *mm = vma->vm_mm; 1183 int retval; 1184 pte_t *pte; 1185 spinlock_t *ptl; 1186 1187 retval = mem_cgroup_charge(page, mm, GFP_KERNEL); 1188 if (retval) 1189 goto out; 1190 1191 retval = -EINVAL; 1192 if (PageAnon(page)) 1193 goto out_uncharge; 1194 retval = -ENOMEM; 1195 flush_dcache_page(page); 1196 pte = get_locked_pte(mm, addr, &ptl); 1197 if (!pte) 1198 goto out_uncharge; 1199 retval = -EBUSY; 1200 if (!pte_none(*pte)) 1201 goto out_unlock; 1202 1203 /* Ok, finally just insert the thing.. */ 1204 get_page(page); 1205 inc_mm_counter(mm, file_rss); 1206 page_add_file_rmap(page); 1207 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1208 1209 retval = 0; 1210 pte_unmap_unlock(pte, ptl); 1211 return retval; 1212 out_unlock: 1213 pte_unmap_unlock(pte, ptl); 1214 out_uncharge: 1215 mem_cgroup_uncharge_page(page); 1216 out: 1217 return retval; 1218 } 1219 1220 /** 1221 * vm_insert_page - insert single page into user vma 1222 * @vma: user vma to map to 1223 * @addr: target user address of this page 1224 * @page: source kernel page 1225 * 1226 * This allows drivers to insert individual pages they've allocated 1227 * into a user vma. 1228 * 1229 * The page has to be a nice clean _individual_ kernel allocation. 1230 * If you allocate a compound page, you need to have marked it as 1231 * such (__GFP_COMP), or manually just split the page up yourself 1232 * (see split_page()). 1233 * 1234 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1235 * took an arbitrary page protection parameter. This doesn't allow 1236 * that. Your vma protection will have to be set up correctly, which 1237 * means that if you want a shared writable mapping, you'd better 1238 * ask for a shared writable mapping! 1239 * 1240 * The page does not need to be reserved. 1241 */ 1242 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1243 struct page *page) 1244 { 1245 if (addr < vma->vm_start || addr >= vma->vm_end) 1246 return -EFAULT; 1247 if (!page_count(page)) 1248 return -EINVAL; 1249 vma->vm_flags |= VM_INSERTPAGE; 1250 return insert_page(vma, addr, page, vma->vm_page_prot); 1251 } 1252 EXPORT_SYMBOL(vm_insert_page); 1253 1254 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1255 unsigned long pfn, pgprot_t prot) 1256 { 1257 struct mm_struct *mm = vma->vm_mm; 1258 int retval; 1259 pte_t *pte, entry; 1260 spinlock_t *ptl; 1261 1262 retval = -ENOMEM; 1263 pte = get_locked_pte(mm, addr, &ptl); 1264 if (!pte) 1265 goto out; 1266 retval = -EBUSY; 1267 if (!pte_none(*pte)) 1268 goto out_unlock; 1269 1270 /* Ok, finally just insert the thing.. */ 1271 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1272 set_pte_at(mm, addr, pte, entry); 1273 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1274 1275 retval = 0; 1276 out_unlock: 1277 pte_unmap_unlock(pte, ptl); 1278 out: 1279 return retval; 1280 } 1281 1282 /** 1283 * vm_insert_pfn - insert single pfn into user vma 1284 * @vma: user vma to map to 1285 * @addr: target user address of this page 1286 * @pfn: source kernel pfn 1287 * 1288 * Similar to vm_inert_page, this allows drivers to insert individual pages 1289 * they've allocated into a user vma. Same comments apply. 1290 * 1291 * This function should only be called from a vm_ops->fault handler, and 1292 * in that case the handler should return NULL. 1293 */ 1294 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1295 unsigned long pfn) 1296 { 1297 /* 1298 * Technically, architectures with pte_special can avoid all these 1299 * restrictions (same for remap_pfn_range). However we would like 1300 * consistency in testing and feature parity among all, so we should 1301 * try to keep these invariants in place for everybody. 1302 */ 1303 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1304 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1305 (VM_PFNMAP|VM_MIXEDMAP)); 1306 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1307 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1308 1309 if (addr < vma->vm_start || addr >= vma->vm_end) 1310 return -EFAULT; 1311 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1312 } 1313 EXPORT_SYMBOL(vm_insert_pfn); 1314 1315 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1316 unsigned long pfn) 1317 { 1318 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1319 1320 if (addr < vma->vm_start || addr >= vma->vm_end) 1321 return -EFAULT; 1322 1323 /* 1324 * If we don't have pte special, then we have to use the pfn_valid() 1325 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1326 * refcount the page if pfn_valid is true (hence insert_page rather 1327 * than insert_pfn). 1328 */ 1329 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1330 struct page *page; 1331 1332 page = pfn_to_page(pfn); 1333 return insert_page(vma, addr, page, vma->vm_page_prot); 1334 } 1335 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1336 } 1337 EXPORT_SYMBOL(vm_insert_mixed); 1338 1339 /* 1340 * maps a range of physical memory into the requested pages. the old 1341 * mappings are removed. any references to nonexistent pages results 1342 * in null mappings (currently treated as "copy-on-access") 1343 */ 1344 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1345 unsigned long addr, unsigned long end, 1346 unsigned long pfn, pgprot_t prot) 1347 { 1348 pte_t *pte; 1349 spinlock_t *ptl; 1350 1351 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1352 if (!pte) 1353 return -ENOMEM; 1354 arch_enter_lazy_mmu_mode(); 1355 do { 1356 BUG_ON(!pte_none(*pte)); 1357 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1358 pfn++; 1359 } while (pte++, addr += PAGE_SIZE, addr != end); 1360 arch_leave_lazy_mmu_mode(); 1361 pte_unmap_unlock(pte - 1, ptl); 1362 return 0; 1363 } 1364 1365 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1366 unsigned long addr, unsigned long end, 1367 unsigned long pfn, pgprot_t prot) 1368 { 1369 pmd_t *pmd; 1370 unsigned long next; 1371 1372 pfn -= addr >> PAGE_SHIFT; 1373 pmd = pmd_alloc(mm, pud, addr); 1374 if (!pmd) 1375 return -ENOMEM; 1376 do { 1377 next = pmd_addr_end(addr, end); 1378 if (remap_pte_range(mm, pmd, addr, next, 1379 pfn + (addr >> PAGE_SHIFT), prot)) 1380 return -ENOMEM; 1381 } while (pmd++, addr = next, addr != end); 1382 return 0; 1383 } 1384 1385 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1386 unsigned long addr, unsigned long end, 1387 unsigned long pfn, pgprot_t prot) 1388 { 1389 pud_t *pud; 1390 unsigned long next; 1391 1392 pfn -= addr >> PAGE_SHIFT; 1393 pud = pud_alloc(mm, pgd, addr); 1394 if (!pud) 1395 return -ENOMEM; 1396 do { 1397 next = pud_addr_end(addr, end); 1398 if (remap_pmd_range(mm, pud, addr, next, 1399 pfn + (addr >> PAGE_SHIFT), prot)) 1400 return -ENOMEM; 1401 } while (pud++, addr = next, addr != end); 1402 return 0; 1403 } 1404 1405 /** 1406 * remap_pfn_range - remap kernel memory to userspace 1407 * @vma: user vma to map to 1408 * @addr: target user address to start at 1409 * @pfn: physical address of kernel memory 1410 * @size: size of map area 1411 * @prot: page protection flags for this mapping 1412 * 1413 * Note: this is only safe if the mm semaphore is held when called. 1414 */ 1415 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1416 unsigned long pfn, unsigned long size, pgprot_t prot) 1417 { 1418 pgd_t *pgd; 1419 unsigned long next; 1420 unsigned long end = addr + PAGE_ALIGN(size); 1421 struct mm_struct *mm = vma->vm_mm; 1422 int err; 1423 1424 /* 1425 * Physically remapped pages are special. Tell the 1426 * rest of the world about it: 1427 * VM_IO tells people not to look at these pages 1428 * (accesses can have side effects). 1429 * VM_RESERVED is specified all over the place, because 1430 * in 2.4 it kept swapout's vma scan off this vma; but 1431 * in 2.6 the LRU scan won't even find its pages, so this 1432 * flag means no more than count its pages in reserved_vm, 1433 * and omit it from core dump, even when VM_IO turned off. 1434 * VM_PFNMAP tells the core MM that the base pages are just 1435 * raw PFN mappings, and do not have a "struct page" associated 1436 * with them. 1437 * 1438 * There's a horrible special case to handle copy-on-write 1439 * behaviour that some programs depend on. We mark the "original" 1440 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1441 */ 1442 if (is_cow_mapping(vma->vm_flags)) { 1443 if (addr != vma->vm_start || end != vma->vm_end) 1444 return -EINVAL; 1445 vma->vm_pgoff = pfn; 1446 } 1447 1448 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1449 1450 BUG_ON(addr >= end); 1451 pfn -= addr >> PAGE_SHIFT; 1452 pgd = pgd_offset(mm, addr); 1453 flush_cache_range(vma, addr, end); 1454 do { 1455 next = pgd_addr_end(addr, end); 1456 err = remap_pud_range(mm, pgd, addr, next, 1457 pfn + (addr >> PAGE_SHIFT), prot); 1458 if (err) 1459 break; 1460 } while (pgd++, addr = next, addr != end); 1461 return err; 1462 } 1463 EXPORT_SYMBOL(remap_pfn_range); 1464 1465 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1466 unsigned long addr, unsigned long end, 1467 pte_fn_t fn, void *data) 1468 { 1469 pte_t *pte; 1470 int err; 1471 pgtable_t token; 1472 spinlock_t *uninitialized_var(ptl); 1473 1474 pte = (mm == &init_mm) ? 1475 pte_alloc_kernel(pmd, addr) : 1476 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1477 if (!pte) 1478 return -ENOMEM; 1479 1480 BUG_ON(pmd_huge(*pmd)); 1481 1482 token = pmd_pgtable(*pmd); 1483 1484 do { 1485 err = fn(pte, token, addr, data); 1486 if (err) 1487 break; 1488 } while (pte++, addr += PAGE_SIZE, addr != end); 1489 1490 if (mm != &init_mm) 1491 pte_unmap_unlock(pte-1, ptl); 1492 return err; 1493 } 1494 1495 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1496 unsigned long addr, unsigned long end, 1497 pte_fn_t fn, void *data) 1498 { 1499 pmd_t *pmd; 1500 unsigned long next; 1501 int err; 1502 1503 pmd = pmd_alloc(mm, pud, addr); 1504 if (!pmd) 1505 return -ENOMEM; 1506 do { 1507 next = pmd_addr_end(addr, end); 1508 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1509 if (err) 1510 break; 1511 } while (pmd++, addr = next, addr != end); 1512 return err; 1513 } 1514 1515 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1516 unsigned long addr, unsigned long end, 1517 pte_fn_t fn, void *data) 1518 { 1519 pud_t *pud; 1520 unsigned long next; 1521 int err; 1522 1523 pud = pud_alloc(mm, pgd, addr); 1524 if (!pud) 1525 return -ENOMEM; 1526 do { 1527 next = pud_addr_end(addr, end); 1528 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1529 if (err) 1530 break; 1531 } while (pud++, addr = next, addr != end); 1532 return err; 1533 } 1534 1535 /* 1536 * Scan a region of virtual memory, filling in page tables as necessary 1537 * and calling a provided function on each leaf page table. 1538 */ 1539 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1540 unsigned long size, pte_fn_t fn, void *data) 1541 { 1542 pgd_t *pgd; 1543 unsigned long next; 1544 unsigned long end = addr + size; 1545 int err; 1546 1547 BUG_ON(addr >= end); 1548 pgd = pgd_offset(mm, addr); 1549 do { 1550 next = pgd_addr_end(addr, end); 1551 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1552 if (err) 1553 break; 1554 } while (pgd++, addr = next, addr != end); 1555 return err; 1556 } 1557 EXPORT_SYMBOL_GPL(apply_to_page_range); 1558 1559 /* 1560 * handle_pte_fault chooses page fault handler according to an entry 1561 * which was read non-atomically. Before making any commitment, on 1562 * those architectures or configurations (e.g. i386 with PAE) which 1563 * might give a mix of unmatched parts, do_swap_page and do_file_page 1564 * must check under lock before unmapping the pte and proceeding 1565 * (but do_wp_page is only called after already making such a check; 1566 * and do_anonymous_page and do_no_page can safely check later on). 1567 */ 1568 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1569 pte_t *page_table, pte_t orig_pte) 1570 { 1571 int same = 1; 1572 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1573 if (sizeof(pte_t) > sizeof(unsigned long)) { 1574 spinlock_t *ptl = pte_lockptr(mm, pmd); 1575 spin_lock(ptl); 1576 same = pte_same(*page_table, orig_pte); 1577 spin_unlock(ptl); 1578 } 1579 #endif 1580 pte_unmap(page_table); 1581 return same; 1582 } 1583 1584 /* 1585 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1586 * servicing faults for write access. In the normal case, do always want 1587 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1588 * that do not have writing enabled, when used by access_process_vm. 1589 */ 1590 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1591 { 1592 if (likely(vma->vm_flags & VM_WRITE)) 1593 pte = pte_mkwrite(pte); 1594 return pte; 1595 } 1596 1597 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1598 { 1599 /* 1600 * If the source page was a PFN mapping, we don't have 1601 * a "struct page" for it. We do a best-effort copy by 1602 * just copying from the original user address. If that 1603 * fails, we just zero-fill it. Live with it. 1604 */ 1605 if (unlikely(!src)) { 1606 void *kaddr = kmap_atomic(dst, KM_USER0); 1607 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1608 1609 /* 1610 * This really shouldn't fail, because the page is there 1611 * in the page tables. But it might just be unreadable, 1612 * in which case we just give up and fill the result with 1613 * zeroes. 1614 */ 1615 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1616 memset(kaddr, 0, PAGE_SIZE); 1617 kunmap_atomic(kaddr, KM_USER0); 1618 flush_dcache_page(dst); 1619 } else 1620 copy_user_highpage(dst, src, va, vma); 1621 } 1622 1623 /* 1624 * This routine handles present pages, when users try to write 1625 * to a shared page. It is done by copying the page to a new address 1626 * and decrementing the shared-page counter for the old page. 1627 * 1628 * Note that this routine assumes that the protection checks have been 1629 * done by the caller (the low-level page fault routine in most cases). 1630 * Thus we can safely just mark it writable once we've done any necessary 1631 * COW. 1632 * 1633 * We also mark the page dirty at this point even though the page will 1634 * change only once the write actually happens. This avoids a few races, 1635 * and potentially makes it more efficient. 1636 * 1637 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1638 * but allow concurrent faults), with pte both mapped and locked. 1639 * We return with mmap_sem still held, but pte unmapped and unlocked. 1640 */ 1641 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1642 unsigned long address, pte_t *page_table, pmd_t *pmd, 1643 spinlock_t *ptl, pte_t orig_pte) 1644 { 1645 struct page *old_page, *new_page; 1646 pte_t entry; 1647 int reuse = 0, ret = 0; 1648 int page_mkwrite = 0; 1649 struct page *dirty_page = NULL; 1650 1651 old_page = vm_normal_page(vma, address, orig_pte); 1652 if (!old_page) 1653 goto gotten; 1654 1655 /* 1656 * Take out anonymous pages first, anonymous shared vmas are 1657 * not dirty accountable. 1658 */ 1659 if (PageAnon(old_page)) { 1660 if (!TestSetPageLocked(old_page)) { 1661 reuse = can_share_swap_page(old_page); 1662 unlock_page(old_page); 1663 } 1664 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1665 (VM_WRITE|VM_SHARED))) { 1666 /* 1667 * Only catch write-faults on shared writable pages, 1668 * read-only shared pages can get COWed by 1669 * get_user_pages(.write=1, .force=1). 1670 */ 1671 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1672 /* 1673 * Notify the address space that the page is about to 1674 * become writable so that it can prohibit this or wait 1675 * for the page to get into an appropriate state. 1676 * 1677 * We do this without the lock held, so that it can 1678 * sleep if it needs to. 1679 */ 1680 page_cache_get(old_page); 1681 pte_unmap_unlock(page_table, ptl); 1682 1683 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1684 goto unwritable_page; 1685 1686 /* 1687 * Since we dropped the lock we need to revalidate 1688 * the PTE as someone else may have changed it. If 1689 * they did, we just return, as we can count on the 1690 * MMU to tell us if they didn't also make it writable. 1691 */ 1692 page_table = pte_offset_map_lock(mm, pmd, address, 1693 &ptl); 1694 page_cache_release(old_page); 1695 if (!pte_same(*page_table, orig_pte)) 1696 goto unlock; 1697 1698 page_mkwrite = 1; 1699 } 1700 dirty_page = old_page; 1701 get_page(dirty_page); 1702 reuse = 1; 1703 } 1704 1705 if (reuse) { 1706 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1707 entry = pte_mkyoung(orig_pte); 1708 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1709 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1710 update_mmu_cache(vma, address, entry); 1711 ret |= VM_FAULT_WRITE; 1712 goto unlock; 1713 } 1714 1715 /* 1716 * Ok, we need to copy. Oh, well.. 1717 */ 1718 page_cache_get(old_page); 1719 gotten: 1720 pte_unmap_unlock(page_table, ptl); 1721 1722 if (unlikely(anon_vma_prepare(vma))) 1723 goto oom; 1724 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1725 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1726 if (!new_page) 1727 goto oom; 1728 cow_user_page(new_page, old_page, address, vma); 1729 __SetPageUptodate(new_page); 1730 1731 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 1732 goto oom_free_new; 1733 1734 /* 1735 * Re-check the pte - we dropped the lock 1736 */ 1737 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1738 if (likely(pte_same(*page_table, orig_pte))) { 1739 if (old_page) { 1740 page_remove_rmap(old_page, vma); 1741 if (!PageAnon(old_page)) { 1742 dec_mm_counter(mm, file_rss); 1743 inc_mm_counter(mm, anon_rss); 1744 } 1745 } else 1746 inc_mm_counter(mm, anon_rss); 1747 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1748 entry = mk_pte(new_page, vma->vm_page_prot); 1749 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1750 /* 1751 * Clear the pte entry and flush it first, before updating the 1752 * pte with the new entry. This will avoid a race condition 1753 * seen in the presence of one thread doing SMC and another 1754 * thread doing COW. 1755 */ 1756 ptep_clear_flush(vma, address, page_table); 1757 set_pte_at(mm, address, page_table, entry); 1758 update_mmu_cache(vma, address, entry); 1759 lru_cache_add_active(new_page); 1760 page_add_new_anon_rmap(new_page, vma, address); 1761 1762 /* Free the old page.. */ 1763 new_page = old_page; 1764 ret |= VM_FAULT_WRITE; 1765 } else 1766 mem_cgroup_uncharge_page(new_page); 1767 1768 if (new_page) 1769 page_cache_release(new_page); 1770 if (old_page) 1771 page_cache_release(old_page); 1772 unlock: 1773 pte_unmap_unlock(page_table, ptl); 1774 if (dirty_page) { 1775 if (vma->vm_file) 1776 file_update_time(vma->vm_file); 1777 1778 /* 1779 * Yes, Virginia, this is actually required to prevent a race 1780 * with clear_page_dirty_for_io() from clearing the page dirty 1781 * bit after it clear all dirty ptes, but before a racing 1782 * do_wp_page installs a dirty pte. 1783 * 1784 * do_no_page is protected similarly. 1785 */ 1786 wait_on_page_locked(dirty_page); 1787 set_page_dirty_balance(dirty_page, page_mkwrite); 1788 put_page(dirty_page); 1789 } 1790 return ret; 1791 oom_free_new: 1792 page_cache_release(new_page); 1793 oom: 1794 if (old_page) 1795 page_cache_release(old_page); 1796 return VM_FAULT_OOM; 1797 1798 unwritable_page: 1799 page_cache_release(old_page); 1800 return VM_FAULT_SIGBUS; 1801 } 1802 1803 /* 1804 * Helper functions for unmap_mapping_range(). 1805 * 1806 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1807 * 1808 * We have to restart searching the prio_tree whenever we drop the lock, 1809 * since the iterator is only valid while the lock is held, and anyway 1810 * a later vma might be split and reinserted earlier while lock dropped. 1811 * 1812 * The list of nonlinear vmas could be handled more efficiently, using 1813 * a placeholder, but handle it in the same way until a need is shown. 1814 * It is important to search the prio_tree before nonlinear list: a vma 1815 * may become nonlinear and be shifted from prio_tree to nonlinear list 1816 * while the lock is dropped; but never shifted from list to prio_tree. 1817 * 1818 * In order to make forward progress despite restarting the search, 1819 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1820 * quickly skip it next time around. Since the prio_tree search only 1821 * shows us those vmas affected by unmapping the range in question, we 1822 * can't efficiently keep all vmas in step with mapping->truncate_count: 1823 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1824 * mapping->truncate_count and vma->vm_truncate_count are protected by 1825 * i_mmap_lock. 1826 * 1827 * In order to make forward progress despite repeatedly restarting some 1828 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1829 * and restart from that address when we reach that vma again. It might 1830 * have been split or merged, shrunk or extended, but never shifted: so 1831 * restart_addr remains valid so long as it remains in the vma's range. 1832 * unmap_mapping_range forces truncate_count to leap over page-aligned 1833 * values so we can save vma's restart_addr in its truncate_count field. 1834 */ 1835 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1836 1837 static void reset_vma_truncate_counts(struct address_space *mapping) 1838 { 1839 struct vm_area_struct *vma; 1840 struct prio_tree_iter iter; 1841 1842 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1843 vma->vm_truncate_count = 0; 1844 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1845 vma->vm_truncate_count = 0; 1846 } 1847 1848 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1849 unsigned long start_addr, unsigned long end_addr, 1850 struct zap_details *details) 1851 { 1852 unsigned long restart_addr; 1853 int need_break; 1854 1855 /* 1856 * files that support invalidating or truncating portions of the 1857 * file from under mmaped areas must have their ->fault function 1858 * return a locked page (and set VM_FAULT_LOCKED in the return). 1859 * This provides synchronisation against concurrent unmapping here. 1860 */ 1861 1862 again: 1863 restart_addr = vma->vm_truncate_count; 1864 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1865 start_addr = restart_addr; 1866 if (start_addr >= end_addr) { 1867 /* Top of vma has been split off since last time */ 1868 vma->vm_truncate_count = details->truncate_count; 1869 return 0; 1870 } 1871 } 1872 1873 restart_addr = zap_page_range(vma, start_addr, 1874 end_addr - start_addr, details); 1875 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 1876 1877 if (restart_addr >= end_addr) { 1878 /* We have now completed this vma: mark it so */ 1879 vma->vm_truncate_count = details->truncate_count; 1880 if (!need_break) 1881 return 0; 1882 } else { 1883 /* Note restart_addr in vma's truncate_count field */ 1884 vma->vm_truncate_count = restart_addr; 1885 if (!need_break) 1886 goto again; 1887 } 1888 1889 spin_unlock(details->i_mmap_lock); 1890 cond_resched(); 1891 spin_lock(details->i_mmap_lock); 1892 return -EINTR; 1893 } 1894 1895 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1896 struct zap_details *details) 1897 { 1898 struct vm_area_struct *vma; 1899 struct prio_tree_iter iter; 1900 pgoff_t vba, vea, zba, zea; 1901 1902 restart: 1903 vma_prio_tree_foreach(vma, &iter, root, 1904 details->first_index, details->last_index) { 1905 /* Skip quickly over those we have already dealt with */ 1906 if (vma->vm_truncate_count == details->truncate_count) 1907 continue; 1908 1909 vba = vma->vm_pgoff; 1910 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1911 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1912 zba = details->first_index; 1913 if (zba < vba) 1914 zba = vba; 1915 zea = details->last_index; 1916 if (zea > vea) 1917 zea = vea; 1918 1919 if (unmap_mapping_range_vma(vma, 1920 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1921 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1922 details) < 0) 1923 goto restart; 1924 } 1925 } 1926 1927 static inline void unmap_mapping_range_list(struct list_head *head, 1928 struct zap_details *details) 1929 { 1930 struct vm_area_struct *vma; 1931 1932 /* 1933 * In nonlinear VMAs there is no correspondence between virtual address 1934 * offset and file offset. So we must perform an exhaustive search 1935 * across *all* the pages in each nonlinear VMA, not just the pages 1936 * whose virtual address lies outside the file truncation point. 1937 */ 1938 restart: 1939 list_for_each_entry(vma, head, shared.vm_set.list) { 1940 /* Skip quickly over those we have already dealt with */ 1941 if (vma->vm_truncate_count == details->truncate_count) 1942 continue; 1943 details->nonlinear_vma = vma; 1944 if (unmap_mapping_range_vma(vma, vma->vm_start, 1945 vma->vm_end, details) < 0) 1946 goto restart; 1947 } 1948 } 1949 1950 /** 1951 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 1952 * @mapping: the address space containing mmaps to be unmapped. 1953 * @holebegin: byte in first page to unmap, relative to the start of 1954 * the underlying file. This will be rounded down to a PAGE_SIZE 1955 * boundary. Note that this is different from vmtruncate(), which 1956 * must keep the partial page. In contrast, we must get rid of 1957 * partial pages. 1958 * @holelen: size of prospective hole in bytes. This will be rounded 1959 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1960 * end of the file. 1961 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1962 * but 0 when invalidating pagecache, don't throw away private data. 1963 */ 1964 void unmap_mapping_range(struct address_space *mapping, 1965 loff_t const holebegin, loff_t const holelen, int even_cows) 1966 { 1967 struct zap_details details; 1968 pgoff_t hba = holebegin >> PAGE_SHIFT; 1969 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1970 1971 /* Check for overflow. */ 1972 if (sizeof(holelen) > sizeof(hlen)) { 1973 long long holeend = 1974 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1975 if (holeend & ~(long long)ULONG_MAX) 1976 hlen = ULONG_MAX - hba + 1; 1977 } 1978 1979 details.check_mapping = even_cows? NULL: mapping; 1980 details.nonlinear_vma = NULL; 1981 details.first_index = hba; 1982 details.last_index = hba + hlen - 1; 1983 if (details.last_index < details.first_index) 1984 details.last_index = ULONG_MAX; 1985 details.i_mmap_lock = &mapping->i_mmap_lock; 1986 1987 spin_lock(&mapping->i_mmap_lock); 1988 1989 /* Protect against endless unmapping loops */ 1990 mapping->truncate_count++; 1991 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1992 if (mapping->truncate_count == 0) 1993 reset_vma_truncate_counts(mapping); 1994 mapping->truncate_count++; 1995 } 1996 details.truncate_count = mapping->truncate_count; 1997 1998 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1999 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2000 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2001 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2002 spin_unlock(&mapping->i_mmap_lock); 2003 } 2004 EXPORT_SYMBOL(unmap_mapping_range); 2005 2006 /** 2007 * vmtruncate - unmap mappings "freed" by truncate() syscall 2008 * @inode: inode of the file used 2009 * @offset: file offset to start truncating 2010 * 2011 * NOTE! We have to be ready to update the memory sharing 2012 * between the file and the memory map for a potential last 2013 * incomplete page. Ugly, but necessary. 2014 */ 2015 int vmtruncate(struct inode * inode, loff_t offset) 2016 { 2017 if (inode->i_size < offset) { 2018 unsigned long limit; 2019 2020 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2021 if (limit != RLIM_INFINITY && offset > limit) 2022 goto out_sig; 2023 if (offset > inode->i_sb->s_maxbytes) 2024 goto out_big; 2025 i_size_write(inode, offset); 2026 } else { 2027 struct address_space *mapping = inode->i_mapping; 2028 2029 /* 2030 * truncation of in-use swapfiles is disallowed - it would 2031 * cause subsequent swapout to scribble on the now-freed 2032 * blocks. 2033 */ 2034 if (IS_SWAPFILE(inode)) 2035 return -ETXTBSY; 2036 i_size_write(inode, offset); 2037 2038 /* 2039 * unmap_mapping_range is called twice, first simply for 2040 * efficiency so that truncate_inode_pages does fewer 2041 * single-page unmaps. However after this first call, and 2042 * before truncate_inode_pages finishes, it is possible for 2043 * private pages to be COWed, which remain after 2044 * truncate_inode_pages finishes, hence the second 2045 * unmap_mapping_range call must be made for correctness. 2046 */ 2047 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2048 truncate_inode_pages(mapping, offset); 2049 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2050 } 2051 2052 if (inode->i_op && inode->i_op->truncate) 2053 inode->i_op->truncate(inode); 2054 return 0; 2055 2056 out_sig: 2057 send_sig(SIGXFSZ, current, 0); 2058 out_big: 2059 return -EFBIG; 2060 } 2061 EXPORT_SYMBOL(vmtruncate); 2062 2063 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2064 { 2065 struct address_space *mapping = inode->i_mapping; 2066 2067 /* 2068 * If the underlying filesystem is not going to provide 2069 * a way to truncate a range of blocks (punch a hole) - 2070 * we should return failure right now. 2071 */ 2072 if (!inode->i_op || !inode->i_op->truncate_range) 2073 return -ENOSYS; 2074 2075 mutex_lock(&inode->i_mutex); 2076 down_write(&inode->i_alloc_sem); 2077 unmap_mapping_range(mapping, offset, (end - offset), 1); 2078 truncate_inode_pages_range(mapping, offset, end); 2079 unmap_mapping_range(mapping, offset, (end - offset), 1); 2080 inode->i_op->truncate_range(inode, offset, end); 2081 up_write(&inode->i_alloc_sem); 2082 mutex_unlock(&inode->i_mutex); 2083 2084 return 0; 2085 } 2086 2087 /* 2088 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2089 * but allow concurrent faults), and pte mapped but not yet locked. 2090 * We return with mmap_sem still held, but pte unmapped and unlocked. 2091 */ 2092 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2093 unsigned long address, pte_t *page_table, pmd_t *pmd, 2094 int write_access, pte_t orig_pte) 2095 { 2096 spinlock_t *ptl; 2097 struct page *page; 2098 swp_entry_t entry; 2099 pte_t pte; 2100 int ret = 0; 2101 2102 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2103 goto out; 2104 2105 entry = pte_to_swp_entry(orig_pte); 2106 if (is_migration_entry(entry)) { 2107 migration_entry_wait(mm, pmd, address); 2108 goto out; 2109 } 2110 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2111 page = lookup_swap_cache(entry); 2112 if (!page) { 2113 grab_swap_token(); /* Contend for token _before_ read-in */ 2114 page = swapin_readahead(entry, 2115 GFP_HIGHUSER_MOVABLE, vma, address); 2116 if (!page) { 2117 /* 2118 * Back out if somebody else faulted in this pte 2119 * while we released the pte lock. 2120 */ 2121 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2122 if (likely(pte_same(*page_table, orig_pte))) 2123 ret = VM_FAULT_OOM; 2124 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2125 goto unlock; 2126 } 2127 2128 /* Had to read the page from swap area: Major fault */ 2129 ret = VM_FAULT_MAJOR; 2130 count_vm_event(PGMAJFAULT); 2131 } 2132 2133 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2134 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2135 ret = VM_FAULT_OOM; 2136 goto out; 2137 } 2138 2139 mark_page_accessed(page); 2140 lock_page(page); 2141 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2142 2143 /* 2144 * Back out if somebody else already faulted in this pte. 2145 */ 2146 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2147 if (unlikely(!pte_same(*page_table, orig_pte))) 2148 goto out_nomap; 2149 2150 if (unlikely(!PageUptodate(page))) { 2151 ret = VM_FAULT_SIGBUS; 2152 goto out_nomap; 2153 } 2154 2155 /* The page isn't present yet, go ahead with the fault. */ 2156 2157 inc_mm_counter(mm, anon_rss); 2158 pte = mk_pte(page, vma->vm_page_prot); 2159 if (write_access && can_share_swap_page(page)) { 2160 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2161 write_access = 0; 2162 } 2163 2164 flush_icache_page(vma, page); 2165 set_pte_at(mm, address, page_table, pte); 2166 page_add_anon_rmap(page, vma, address); 2167 2168 swap_free(entry); 2169 if (vm_swap_full()) 2170 remove_exclusive_swap_page(page); 2171 unlock_page(page); 2172 2173 if (write_access) { 2174 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2175 if (ret & VM_FAULT_ERROR) 2176 ret &= VM_FAULT_ERROR; 2177 goto out; 2178 } 2179 2180 /* No need to invalidate - it was non-present before */ 2181 update_mmu_cache(vma, address, pte); 2182 unlock: 2183 pte_unmap_unlock(page_table, ptl); 2184 out: 2185 return ret; 2186 out_nomap: 2187 mem_cgroup_uncharge_page(page); 2188 pte_unmap_unlock(page_table, ptl); 2189 unlock_page(page); 2190 page_cache_release(page); 2191 return ret; 2192 } 2193 2194 /* 2195 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2196 * but allow concurrent faults), and pte mapped but not yet locked. 2197 * We return with mmap_sem still held, but pte unmapped and unlocked. 2198 */ 2199 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2200 unsigned long address, pte_t *page_table, pmd_t *pmd, 2201 int write_access) 2202 { 2203 struct page *page; 2204 spinlock_t *ptl; 2205 pte_t entry; 2206 2207 /* Allocate our own private page. */ 2208 pte_unmap(page_table); 2209 2210 if (unlikely(anon_vma_prepare(vma))) 2211 goto oom; 2212 page = alloc_zeroed_user_highpage_movable(vma, address); 2213 if (!page) 2214 goto oom; 2215 __SetPageUptodate(page); 2216 2217 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) 2218 goto oom_free_page; 2219 2220 entry = mk_pte(page, vma->vm_page_prot); 2221 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2222 2223 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2224 if (!pte_none(*page_table)) 2225 goto release; 2226 inc_mm_counter(mm, anon_rss); 2227 lru_cache_add_active(page); 2228 page_add_new_anon_rmap(page, vma, address); 2229 set_pte_at(mm, address, page_table, entry); 2230 2231 /* No need to invalidate - it was non-present before */ 2232 update_mmu_cache(vma, address, entry); 2233 unlock: 2234 pte_unmap_unlock(page_table, ptl); 2235 return 0; 2236 release: 2237 mem_cgroup_uncharge_page(page); 2238 page_cache_release(page); 2239 goto unlock; 2240 oom_free_page: 2241 page_cache_release(page); 2242 oom: 2243 return VM_FAULT_OOM; 2244 } 2245 2246 /* 2247 * __do_fault() tries to create a new page mapping. It aggressively 2248 * tries to share with existing pages, but makes a separate copy if 2249 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2250 * the next page fault. 2251 * 2252 * As this is called only for pages that do not currently exist, we 2253 * do not need to flush old virtual caches or the TLB. 2254 * 2255 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2256 * but allow concurrent faults), and pte neither mapped nor locked. 2257 * We return with mmap_sem still held, but pte unmapped and unlocked. 2258 */ 2259 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2260 unsigned long address, pmd_t *pmd, 2261 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2262 { 2263 pte_t *page_table; 2264 spinlock_t *ptl; 2265 struct page *page; 2266 pte_t entry; 2267 int anon = 0; 2268 struct page *dirty_page = NULL; 2269 struct vm_fault vmf; 2270 int ret; 2271 int page_mkwrite = 0; 2272 2273 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2274 vmf.pgoff = pgoff; 2275 vmf.flags = flags; 2276 vmf.page = NULL; 2277 2278 BUG_ON(vma->vm_flags & VM_PFNMAP); 2279 2280 ret = vma->vm_ops->fault(vma, &vmf); 2281 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2282 return ret; 2283 2284 /* 2285 * For consistency in subsequent calls, make the faulted page always 2286 * locked. 2287 */ 2288 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2289 lock_page(vmf.page); 2290 else 2291 VM_BUG_ON(!PageLocked(vmf.page)); 2292 2293 /* 2294 * Should we do an early C-O-W break? 2295 */ 2296 page = vmf.page; 2297 if (flags & FAULT_FLAG_WRITE) { 2298 if (!(vma->vm_flags & VM_SHARED)) { 2299 anon = 1; 2300 if (unlikely(anon_vma_prepare(vma))) { 2301 ret = VM_FAULT_OOM; 2302 goto out; 2303 } 2304 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2305 vma, address); 2306 if (!page) { 2307 ret = VM_FAULT_OOM; 2308 goto out; 2309 } 2310 copy_user_highpage(page, vmf.page, address, vma); 2311 __SetPageUptodate(page); 2312 } else { 2313 /* 2314 * If the page will be shareable, see if the backing 2315 * address space wants to know that the page is about 2316 * to become writable 2317 */ 2318 if (vma->vm_ops->page_mkwrite) { 2319 unlock_page(page); 2320 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2321 ret = VM_FAULT_SIGBUS; 2322 anon = 1; /* no anon but release vmf.page */ 2323 goto out_unlocked; 2324 } 2325 lock_page(page); 2326 /* 2327 * XXX: this is not quite right (racy vs 2328 * invalidate) to unlock and relock the page 2329 * like this, however a better fix requires 2330 * reworking page_mkwrite locking API, which 2331 * is better done later. 2332 */ 2333 if (!page->mapping) { 2334 ret = 0; 2335 anon = 1; /* no anon but release vmf.page */ 2336 goto out; 2337 } 2338 page_mkwrite = 1; 2339 } 2340 } 2341 2342 } 2343 2344 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2345 ret = VM_FAULT_OOM; 2346 goto out; 2347 } 2348 2349 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2350 2351 /* 2352 * This silly early PAGE_DIRTY setting removes a race 2353 * due to the bad i386 page protection. But it's valid 2354 * for other architectures too. 2355 * 2356 * Note that if write_access is true, we either now have 2357 * an exclusive copy of the page, or this is a shared mapping, 2358 * so we can make it writable and dirty to avoid having to 2359 * handle that later. 2360 */ 2361 /* Only go through if we didn't race with anybody else... */ 2362 if (likely(pte_same(*page_table, orig_pte))) { 2363 flush_icache_page(vma, page); 2364 entry = mk_pte(page, vma->vm_page_prot); 2365 if (flags & FAULT_FLAG_WRITE) 2366 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2367 set_pte_at(mm, address, page_table, entry); 2368 if (anon) { 2369 inc_mm_counter(mm, anon_rss); 2370 lru_cache_add_active(page); 2371 page_add_new_anon_rmap(page, vma, address); 2372 } else { 2373 inc_mm_counter(mm, file_rss); 2374 page_add_file_rmap(page); 2375 if (flags & FAULT_FLAG_WRITE) { 2376 dirty_page = page; 2377 get_page(dirty_page); 2378 } 2379 } 2380 2381 /* no need to invalidate: a not-present page won't be cached */ 2382 update_mmu_cache(vma, address, entry); 2383 } else { 2384 mem_cgroup_uncharge_page(page); 2385 if (anon) 2386 page_cache_release(page); 2387 else 2388 anon = 1; /* no anon but release faulted_page */ 2389 } 2390 2391 pte_unmap_unlock(page_table, ptl); 2392 2393 out: 2394 unlock_page(vmf.page); 2395 out_unlocked: 2396 if (anon) 2397 page_cache_release(vmf.page); 2398 else if (dirty_page) { 2399 if (vma->vm_file) 2400 file_update_time(vma->vm_file); 2401 2402 set_page_dirty_balance(dirty_page, page_mkwrite); 2403 put_page(dirty_page); 2404 } 2405 2406 return ret; 2407 } 2408 2409 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2410 unsigned long address, pte_t *page_table, pmd_t *pmd, 2411 int write_access, pte_t orig_pte) 2412 { 2413 pgoff_t pgoff = (((address & PAGE_MASK) 2414 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2415 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2416 2417 pte_unmap(page_table); 2418 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2419 } 2420 2421 2422 /* 2423 * do_no_pfn() tries to create a new page mapping for a page without 2424 * a struct_page backing it 2425 * 2426 * As this is called only for pages that do not currently exist, we 2427 * do not need to flush old virtual caches or the TLB. 2428 * 2429 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2430 * but allow concurrent faults), and pte mapped but not yet locked. 2431 * We return with mmap_sem still held, but pte unmapped and unlocked. 2432 * 2433 * It is expected that the ->nopfn handler always returns the same pfn 2434 * for a given virtual mapping. 2435 * 2436 * Mark this `noinline' to prevent it from bloating the main pagefault code. 2437 */ 2438 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, 2439 unsigned long address, pte_t *page_table, pmd_t *pmd, 2440 int write_access) 2441 { 2442 spinlock_t *ptl; 2443 pte_t entry; 2444 unsigned long pfn; 2445 2446 pte_unmap(page_table); 2447 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2448 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2449 2450 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); 2451 2452 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2453 2454 if (unlikely(pfn == NOPFN_OOM)) 2455 return VM_FAULT_OOM; 2456 else if (unlikely(pfn == NOPFN_SIGBUS)) 2457 return VM_FAULT_SIGBUS; 2458 else if (unlikely(pfn == NOPFN_REFAULT)) 2459 return 0; 2460 2461 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2462 2463 /* Only go through if we didn't race with anybody else... */ 2464 if (pte_none(*page_table)) { 2465 entry = pfn_pte(pfn, vma->vm_page_prot); 2466 if (write_access) 2467 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2468 set_pte_at(mm, address, page_table, entry); 2469 } 2470 pte_unmap_unlock(page_table, ptl); 2471 return 0; 2472 } 2473 2474 /* 2475 * Fault of a previously existing named mapping. Repopulate the pte 2476 * from the encoded file_pte if possible. This enables swappable 2477 * nonlinear vmas. 2478 * 2479 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2480 * but allow concurrent faults), and pte mapped but not yet locked. 2481 * We return with mmap_sem still held, but pte unmapped and unlocked. 2482 */ 2483 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2484 unsigned long address, pte_t *page_table, pmd_t *pmd, 2485 int write_access, pte_t orig_pte) 2486 { 2487 unsigned int flags = FAULT_FLAG_NONLINEAR | 2488 (write_access ? FAULT_FLAG_WRITE : 0); 2489 pgoff_t pgoff; 2490 2491 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2492 return 0; 2493 2494 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2495 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2496 /* 2497 * Page table corrupted: show pte and kill process. 2498 */ 2499 print_bad_pte(vma, orig_pte, address); 2500 return VM_FAULT_OOM; 2501 } 2502 2503 pgoff = pte_to_pgoff(orig_pte); 2504 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2505 } 2506 2507 /* 2508 * These routines also need to handle stuff like marking pages dirty 2509 * and/or accessed for architectures that don't do it in hardware (most 2510 * RISC architectures). The early dirtying is also good on the i386. 2511 * 2512 * There is also a hook called "update_mmu_cache()" that architectures 2513 * with external mmu caches can use to update those (ie the Sparc or 2514 * PowerPC hashed page tables that act as extended TLBs). 2515 * 2516 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2517 * but allow concurrent faults), and pte mapped but not yet locked. 2518 * We return with mmap_sem still held, but pte unmapped and unlocked. 2519 */ 2520 static inline int handle_pte_fault(struct mm_struct *mm, 2521 struct vm_area_struct *vma, unsigned long address, 2522 pte_t *pte, pmd_t *pmd, int write_access) 2523 { 2524 pte_t entry; 2525 spinlock_t *ptl; 2526 2527 entry = *pte; 2528 if (!pte_present(entry)) { 2529 if (pte_none(entry)) { 2530 if (vma->vm_ops) { 2531 if (likely(vma->vm_ops->fault)) 2532 return do_linear_fault(mm, vma, address, 2533 pte, pmd, write_access, entry); 2534 if (unlikely(vma->vm_ops->nopfn)) 2535 return do_no_pfn(mm, vma, address, pte, 2536 pmd, write_access); 2537 } 2538 return do_anonymous_page(mm, vma, address, 2539 pte, pmd, write_access); 2540 } 2541 if (pte_file(entry)) 2542 return do_nonlinear_fault(mm, vma, address, 2543 pte, pmd, write_access, entry); 2544 return do_swap_page(mm, vma, address, 2545 pte, pmd, write_access, entry); 2546 } 2547 2548 ptl = pte_lockptr(mm, pmd); 2549 spin_lock(ptl); 2550 if (unlikely(!pte_same(*pte, entry))) 2551 goto unlock; 2552 if (write_access) { 2553 if (!pte_write(entry)) 2554 return do_wp_page(mm, vma, address, 2555 pte, pmd, ptl, entry); 2556 entry = pte_mkdirty(entry); 2557 } 2558 entry = pte_mkyoung(entry); 2559 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2560 update_mmu_cache(vma, address, entry); 2561 } else { 2562 /* 2563 * This is needed only for protection faults but the arch code 2564 * is not yet telling us if this is a protection fault or not. 2565 * This still avoids useless tlb flushes for .text page faults 2566 * with threads. 2567 */ 2568 if (write_access) 2569 flush_tlb_page(vma, address); 2570 } 2571 unlock: 2572 pte_unmap_unlock(pte, ptl); 2573 return 0; 2574 } 2575 2576 /* 2577 * By the time we get here, we already hold the mm semaphore 2578 */ 2579 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2580 unsigned long address, int write_access) 2581 { 2582 pgd_t *pgd; 2583 pud_t *pud; 2584 pmd_t *pmd; 2585 pte_t *pte; 2586 2587 __set_current_state(TASK_RUNNING); 2588 2589 count_vm_event(PGFAULT); 2590 2591 if (unlikely(is_vm_hugetlb_page(vma))) 2592 return hugetlb_fault(mm, vma, address, write_access); 2593 2594 pgd = pgd_offset(mm, address); 2595 pud = pud_alloc(mm, pgd, address); 2596 if (!pud) 2597 return VM_FAULT_OOM; 2598 pmd = pmd_alloc(mm, pud, address); 2599 if (!pmd) 2600 return VM_FAULT_OOM; 2601 pte = pte_alloc_map(mm, pmd, address); 2602 if (!pte) 2603 return VM_FAULT_OOM; 2604 2605 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2606 } 2607 2608 #ifndef __PAGETABLE_PUD_FOLDED 2609 /* 2610 * Allocate page upper directory. 2611 * We've already handled the fast-path in-line. 2612 */ 2613 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2614 { 2615 pud_t *new = pud_alloc_one(mm, address); 2616 if (!new) 2617 return -ENOMEM; 2618 2619 spin_lock(&mm->page_table_lock); 2620 if (pgd_present(*pgd)) /* Another has populated it */ 2621 pud_free(mm, new); 2622 else 2623 pgd_populate(mm, pgd, new); 2624 spin_unlock(&mm->page_table_lock); 2625 return 0; 2626 } 2627 #endif /* __PAGETABLE_PUD_FOLDED */ 2628 2629 #ifndef __PAGETABLE_PMD_FOLDED 2630 /* 2631 * Allocate page middle directory. 2632 * We've already handled the fast-path in-line. 2633 */ 2634 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2635 { 2636 pmd_t *new = pmd_alloc_one(mm, address); 2637 if (!new) 2638 return -ENOMEM; 2639 2640 spin_lock(&mm->page_table_lock); 2641 #ifndef __ARCH_HAS_4LEVEL_HACK 2642 if (pud_present(*pud)) /* Another has populated it */ 2643 pmd_free(mm, new); 2644 else 2645 pud_populate(mm, pud, new); 2646 #else 2647 if (pgd_present(*pud)) /* Another has populated it */ 2648 pmd_free(mm, new); 2649 else 2650 pgd_populate(mm, pud, new); 2651 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2652 spin_unlock(&mm->page_table_lock); 2653 return 0; 2654 } 2655 #endif /* __PAGETABLE_PMD_FOLDED */ 2656 2657 int make_pages_present(unsigned long addr, unsigned long end) 2658 { 2659 int ret, len, write; 2660 struct vm_area_struct * vma; 2661 2662 vma = find_vma(current->mm, addr); 2663 if (!vma) 2664 return -1; 2665 write = (vma->vm_flags & VM_WRITE) != 0; 2666 BUG_ON(addr >= end); 2667 BUG_ON(end > vma->vm_end); 2668 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2669 ret = get_user_pages(current, current->mm, addr, 2670 len, write, 0, NULL, NULL); 2671 if (ret < 0) 2672 return ret; 2673 return ret == len ? 0 : -1; 2674 } 2675 2676 #if !defined(__HAVE_ARCH_GATE_AREA) 2677 2678 #if defined(AT_SYSINFO_EHDR) 2679 static struct vm_area_struct gate_vma; 2680 2681 static int __init gate_vma_init(void) 2682 { 2683 gate_vma.vm_mm = NULL; 2684 gate_vma.vm_start = FIXADDR_USER_START; 2685 gate_vma.vm_end = FIXADDR_USER_END; 2686 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2687 gate_vma.vm_page_prot = __P101; 2688 /* 2689 * Make sure the vDSO gets into every core dump. 2690 * Dumping its contents makes post-mortem fully interpretable later 2691 * without matching up the same kernel and hardware config to see 2692 * what PC values meant. 2693 */ 2694 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2695 return 0; 2696 } 2697 __initcall(gate_vma_init); 2698 #endif 2699 2700 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2701 { 2702 #ifdef AT_SYSINFO_EHDR 2703 return &gate_vma; 2704 #else 2705 return NULL; 2706 #endif 2707 } 2708 2709 int in_gate_area_no_task(unsigned long addr) 2710 { 2711 #ifdef AT_SYSINFO_EHDR 2712 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2713 return 1; 2714 #endif 2715 return 0; 2716 } 2717 2718 #endif /* __HAVE_ARCH_GATE_AREA */ 2719 2720 /* 2721 * Access another process' address space. 2722 * Source/target buffer must be kernel space, 2723 * Do not walk the page table directly, use get_user_pages 2724 */ 2725 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2726 { 2727 struct mm_struct *mm; 2728 struct vm_area_struct *vma; 2729 struct page *page; 2730 void *old_buf = buf; 2731 2732 mm = get_task_mm(tsk); 2733 if (!mm) 2734 return 0; 2735 2736 down_read(&mm->mmap_sem); 2737 /* ignore errors, just check how much was successfully transferred */ 2738 while (len) { 2739 int bytes, ret, offset; 2740 void *maddr; 2741 2742 ret = get_user_pages(tsk, mm, addr, 1, 2743 write, 1, &page, &vma); 2744 if (ret <= 0) 2745 break; 2746 2747 bytes = len; 2748 offset = addr & (PAGE_SIZE-1); 2749 if (bytes > PAGE_SIZE-offset) 2750 bytes = PAGE_SIZE-offset; 2751 2752 maddr = kmap(page); 2753 if (write) { 2754 copy_to_user_page(vma, page, addr, 2755 maddr + offset, buf, bytes); 2756 set_page_dirty_lock(page); 2757 } else { 2758 copy_from_user_page(vma, page, addr, 2759 buf, maddr + offset, bytes); 2760 } 2761 kunmap(page); 2762 page_cache_release(page); 2763 len -= bytes; 2764 buf += bytes; 2765 addr += bytes; 2766 } 2767 up_read(&mm->mmap_sem); 2768 mmput(mm); 2769 2770 return buf - old_buf; 2771 } 2772 2773 /* 2774 * Print the name of a VMA. 2775 */ 2776 void print_vma_addr(char *prefix, unsigned long ip) 2777 { 2778 struct mm_struct *mm = current->mm; 2779 struct vm_area_struct *vma; 2780 2781 /* 2782 * Do not print if we are in atomic 2783 * contexts (in exception stacks, etc.): 2784 */ 2785 if (preempt_count()) 2786 return; 2787 2788 down_read(&mm->mmap_sem); 2789 vma = find_vma(mm, ip); 2790 if (vma && vma->vm_file) { 2791 struct file *f = vma->vm_file; 2792 char *buf = (char *)__get_free_page(GFP_KERNEL); 2793 if (buf) { 2794 char *p, *s; 2795 2796 p = d_path(&f->f_path, buf, PAGE_SIZE); 2797 if (IS_ERR(p)) 2798 p = "?"; 2799 s = strrchr(p, '/'); 2800 if (s) 2801 p = s+1; 2802 printk("%s%s[%lx+%lx]", prefix, p, 2803 vma->vm_start, 2804 vma->vm_end - vma->vm_start); 2805 free_page((unsigned long)buf); 2806 } 2807 } 2808 up_read(¤t->mm->mmap_sem); 2809 } 2810