xref: /linux/mm/memory.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65 
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69 
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80 
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84 
85 int randomize_va_space __read_mostly = 1;
86 
87 static int __init disable_randmaps(char *s)
88 {
89 	randomize_va_space = 0;
90 	return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93 
94 
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100 
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103 	pgd_ERROR(*pgd);
104 	pgd_clear(pgd);
105 }
106 
107 void pud_clear_bad(pud_t *pud)
108 {
109 	pud_ERROR(*pud);
110 	pud_clear(pud);
111 }
112 
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115 	pmd_ERROR(*pmd);
116 	pmd_clear(pmd);
117 }
118 
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125 	struct page *page = pmd_page(*pmd);
126 	pmd_clear(pmd);
127 	pte_lock_deinit(page);
128 	pte_free_tlb(tlb, page);
129 	dec_page_state(nr_page_table_pages);
130 	tlb->mm->nr_ptes--;
131 }
132 
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 				unsigned long addr, unsigned long end,
135 				unsigned long floor, unsigned long ceiling)
136 {
137 	pmd_t *pmd;
138 	unsigned long next;
139 	unsigned long start;
140 
141 	start = addr;
142 	pmd = pmd_offset(pud, addr);
143 	do {
144 		next = pmd_addr_end(addr, end);
145 		if (pmd_none_or_clear_bad(pmd))
146 			continue;
147 		free_pte_range(tlb, pmd);
148 	} while (pmd++, addr = next, addr != end);
149 
150 	start &= PUD_MASK;
151 	if (start < floor)
152 		return;
153 	if (ceiling) {
154 		ceiling &= PUD_MASK;
155 		if (!ceiling)
156 			return;
157 	}
158 	if (end - 1 > ceiling - 1)
159 		return;
160 
161 	pmd = pmd_offset(pud, start);
162 	pud_clear(pud);
163 	pmd_free_tlb(tlb, pmd);
164 }
165 
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 				unsigned long addr, unsigned long end,
168 				unsigned long floor, unsigned long ceiling)
169 {
170 	pud_t *pud;
171 	unsigned long next;
172 	unsigned long start;
173 
174 	start = addr;
175 	pud = pud_offset(pgd, addr);
176 	do {
177 		next = pud_addr_end(addr, end);
178 		if (pud_none_or_clear_bad(pud))
179 			continue;
180 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 	} while (pud++, addr = next, addr != end);
182 
183 	start &= PGDIR_MASK;
184 	if (start < floor)
185 		return;
186 	if (ceiling) {
187 		ceiling &= PGDIR_MASK;
188 		if (!ceiling)
189 			return;
190 	}
191 	if (end - 1 > ceiling - 1)
192 		return;
193 
194 	pud = pud_offset(pgd, start);
195 	pgd_clear(pgd);
196 	pud_free_tlb(tlb, pud);
197 }
198 
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205 			unsigned long addr, unsigned long end,
206 			unsigned long floor, unsigned long ceiling)
207 {
208 	pgd_t *pgd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	/*
213 	 * The next few lines have given us lots of grief...
214 	 *
215 	 * Why are we testing PMD* at this top level?  Because often
216 	 * there will be no work to do at all, and we'd prefer not to
217 	 * go all the way down to the bottom just to discover that.
218 	 *
219 	 * Why all these "- 1"s?  Because 0 represents both the bottom
220 	 * of the address space and the top of it (using -1 for the
221 	 * top wouldn't help much: the masks would do the wrong thing).
222 	 * The rule is that addr 0 and floor 0 refer to the bottom of
223 	 * the address space, but end 0 and ceiling 0 refer to the top
224 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 	 * that end 0 case should be mythical).
226 	 *
227 	 * Wherever addr is brought up or ceiling brought down, we must
228 	 * be careful to reject "the opposite 0" before it confuses the
229 	 * subsequent tests.  But what about where end is brought down
230 	 * by PMD_SIZE below? no, end can't go down to 0 there.
231 	 *
232 	 * Whereas we round start (addr) and ceiling down, by different
233 	 * masks at different levels, in order to test whether a table
234 	 * now has no other vmas using it, so can be freed, we don't
235 	 * bother to round floor or end up - the tests don't need that.
236 	 */
237 
238 	addr &= PMD_MASK;
239 	if (addr < floor) {
240 		addr += PMD_SIZE;
241 		if (!addr)
242 			return;
243 	}
244 	if (ceiling) {
245 		ceiling &= PMD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		end -= PMD_SIZE;
251 	if (addr > end - 1)
252 		return;
253 
254 	start = addr;
255 	pgd = pgd_offset((*tlb)->mm, addr);
256 	do {
257 		next = pgd_addr_end(addr, end);
258 		if (pgd_none_or_clear_bad(pgd))
259 			continue;
260 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 	} while (pgd++, addr = next, addr != end);
262 
263 	if (!(*tlb)->fullmm)
264 		flush_tlb_pgtables((*tlb)->mm, start, end);
265 }
266 
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 		unsigned long floor, unsigned long ceiling)
269 {
270 	while (vma) {
271 		struct vm_area_struct *next = vma->vm_next;
272 		unsigned long addr = vma->vm_start;
273 
274 		/*
275 		 * Hide vma from rmap and vmtruncate before freeing pgtables
276 		 */
277 		anon_vma_unlink(vma);
278 		unlink_file_vma(vma);
279 
280 		if (is_vm_hugetlb_page(vma)) {
281 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 				floor, next? next->vm_start: ceiling);
283 		} else {
284 			/*
285 			 * Optimization: gather nearby vmas into one call down
286 			 */
287 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 			       && !is_vm_hugetlb_page(next)) {
289 				vma = next;
290 				next = vma->vm_next;
291 				anon_vma_unlink(vma);
292 				unlink_file_vma(vma);
293 			}
294 			free_pgd_range(tlb, addr, vma->vm_end,
295 				floor, next? next->vm_start: ceiling);
296 		}
297 		vma = next;
298 	}
299 }
300 
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
302 {
303 	struct page *new = pte_alloc_one(mm, address);
304 	if (!new)
305 		return -ENOMEM;
306 
307 	pte_lock_init(new);
308 	spin_lock(&mm->page_table_lock);
309 	if (pmd_present(*pmd)) {	/* Another has populated it */
310 		pte_lock_deinit(new);
311 		pte_free(new);
312 	} else {
313 		mm->nr_ptes++;
314 		inc_page_state(nr_page_table_pages);
315 		pmd_populate(mm, pmd, new);
316 	}
317 	spin_unlock(&mm->page_table_lock);
318 	return 0;
319 }
320 
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
322 {
323 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 	if (!new)
325 		return -ENOMEM;
326 
327 	spin_lock(&init_mm.page_table_lock);
328 	if (pmd_present(*pmd))		/* Another has populated it */
329 		pte_free_kernel(new);
330 	else
331 		pmd_populate_kernel(&init_mm, pmd, new);
332 	spin_unlock(&init_mm.page_table_lock);
333 	return 0;
334 }
335 
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337 {
338 	if (file_rss)
339 		add_mm_counter(mm, file_rss, file_rss);
340 	if (anon_rss)
341 		add_mm_counter(mm, anon_rss, anon_rss);
342 }
343 
344 /*
345  * This function is called to print an error when a bad pte
346  * is found. For example, we might have a PFN-mapped pte in
347  * a region that doesn't allow it.
348  *
349  * The calling function must still handle the error.
350  */
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352 {
353 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 			"vm_flags = %lx, vaddr = %lx\n",
355 		(long long)pte_val(pte),
356 		(vma->vm_mm == current->mm ? current->comm : "???"),
357 		vma->vm_flags, vaddr);
358 	dump_stack();
359 }
360 
361 static inline int is_cow_mapping(unsigned int flags)
362 {
363 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364 }
365 
366 /*
367  * This function gets the "struct page" associated with a pte.
368  *
369  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370  * will have each page table entry just pointing to a raw page frame
371  * number, and as far as the VM layer is concerned, those do not have
372  * pages associated with them - even if the PFN might point to memory
373  * that otherwise is perfectly fine and has a "struct page".
374  *
375  * The way we recognize those mappings is through the rules set up
376  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377  * and the vm_pgoff will point to the first PFN mapped: thus every
378  * page that is a raw mapping will always honor the rule
379  *
380  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
381  *
382  * and if that isn't true, the page has been COW'ed (in which case it
383  * _does_ have a "struct page" associated with it even if it is in a
384  * VM_PFNMAP range).
385  */
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
387 {
388 	unsigned long pfn = pte_pfn(pte);
389 
390 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 		if (pfn == vma->vm_pgoff + off)
393 			return NULL;
394 		if (!is_cow_mapping(vma->vm_flags))
395 			return NULL;
396 	}
397 
398 	/*
399 	 * Add some anal sanity checks for now. Eventually,
400 	 * we should just do "return pfn_to_page(pfn)", but
401 	 * in the meantime we check that we get a valid pfn,
402 	 * and that the resulting page looks ok.
403 	 */
404 	if (unlikely(!pfn_valid(pfn))) {
405 		print_bad_pte(vma, pte, addr);
406 		return NULL;
407 	}
408 
409 	/*
410 	 * NOTE! We still have PageReserved() pages in the page
411 	 * tables.
412 	 *
413 	 * The PAGE_ZERO() pages and various VDSO mappings can
414 	 * cause them to exist.
415 	 */
416 	return pfn_to_page(pfn);
417 }
418 
419 /*
420  * copy one vm_area from one task to the other. Assumes the page tables
421  * already present in the new task to be cleared in the whole range
422  * covered by this vma.
423  */
424 
425 static inline void
426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
427 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
428 		unsigned long addr, int *rss)
429 {
430 	unsigned long vm_flags = vma->vm_flags;
431 	pte_t pte = *src_pte;
432 	struct page *page;
433 
434 	/* pte contains position in swap or file, so copy. */
435 	if (unlikely(!pte_present(pte))) {
436 		if (!pte_file(pte)) {
437 			swap_duplicate(pte_to_swp_entry(pte));
438 			/* make sure dst_mm is on swapoff's mmlist. */
439 			if (unlikely(list_empty(&dst_mm->mmlist))) {
440 				spin_lock(&mmlist_lock);
441 				if (list_empty(&dst_mm->mmlist))
442 					list_add(&dst_mm->mmlist,
443 						 &src_mm->mmlist);
444 				spin_unlock(&mmlist_lock);
445 			}
446 		}
447 		goto out_set_pte;
448 	}
449 
450 	/*
451 	 * If it's a COW mapping, write protect it both
452 	 * in the parent and the child
453 	 */
454 	if (is_cow_mapping(vm_flags)) {
455 		ptep_set_wrprotect(src_mm, addr, src_pte);
456 		pte = *src_pte;
457 	}
458 
459 	/*
460 	 * If it's a shared mapping, mark it clean in
461 	 * the child
462 	 */
463 	if (vm_flags & VM_SHARED)
464 		pte = pte_mkclean(pte);
465 	pte = pte_mkold(pte);
466 
467 	page = vm_normal_page(vma, addr, pte);
468 	if (page) {
469 		get_page(page);
470 		page_dup_rmap(page);
471 		rss[!!PageAnon(page)]++;
472 	}
473 
474 out_set_pte:
475 	set_pte_at(dst_mm, addr, dst_pte, pte);
476 }
477 
478 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
479 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
480 		unsigned long addr, unsigned long end)
481 {
482 	pte_t *src_pte, *dst_pte;
483 	spinlock_t *src_ptl, *dst_ptl;
484 	int progress = 0;
485 	int rss[2];
486 
487 again:
488 	rss[1] = rss[0] = 0;
489 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
490 	if (!dst_pte)
491 		return -ENOMEM;
492 	src_pte = pte_offset_map_nested(src_pmd, addr);
493 	src_ptl = pte_lockptr(src_mm, src_pmd);
494 	spin_lock(src_ptl);
495 
496 	do {
497 		/*
498 		 * We are holding two locks at this point - either of them
499 		 * could generate latencies in another task on another CPU.
500 		 */
501 		if (progress >= 32) {
502 			progress = 0;
503 			if (need_resched() ||
504 			    need_lockbreak(src_ptl) ||
505 			    need_lockbreak(dst_ptl))
506 				break;
507 		}
508 		if (pte_none(*src_pte)) {
509 			progress++;
510 			continue;
511 		}
512 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
513 		progress += 8;
514 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
515 
516 	spin_unlock(src_ptl);
517 	pte_unmap_nested(src_pte - 1);
518 	add_mm_rss(dst_mm, rss[0], rss[1]);
519 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
520 	cond_resched();
521 	if (addr != end)
522 		goto again;
523 	return 0;
524 }
525 
526 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
527 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
528 		unsigned long addr, unsigned long end)
529 {
530 	pmd_t *src_pmd, *dst_pmd;
531 	unsigned long next;
532 
533 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
534 	if (!dst_pmd)
535 		return -ENOMEM;
536 	src_pmd = pmd_offset(src_pud, addr);
537 	do {
538 		next = pmd_addr_end(addr, end);
539 		if (pmd_none_or_clear_bad(src_pmd))
540 			continue;
541 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
542 						vma, addr, next))
543 			return -ENOMEM;
544 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
545 	return 0;
546 }
547 
548 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
549 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
550 		unsigned long addr, unsigned long end)
551 {
552 	pud_t *src_pud, *dst_pud;
553 	unsigned long next;
554 
555 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
556 	if (!dst_pud)
557 		return -ENOMEM;
558 	src_pud = pud_offset(src_pgd, addr);
559 	do {
560 		next = pud_addr_end(addr, end);
561 		if (pud_none_or_clear_bad(src_pud))
562 			continue;
563 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
564 						vma, addr, next))
565 			return -ENOMEM;
566 	} while (dst_pud++, src_pud++, addr = next, addr != end);
567 	return 0;
568 }
569 
570 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
571 		struct vm_area_struct *vma)
572 {
573 	pgd_t *src_pgd, *dst_pgd;
574 	unsigned long next;
575 	unsigned long addr = vma->vm_start;
576 	unsigned long end = vma->vm_end;
577 
578 	/*
579 	 * Don't copy ptes where a page fault will fill them correctly.
580 	 * Fork becomes much lighter when there are big shared or private
581 	 * readonly mappings. The tradeoff is that copy_page_range is more
582 	 * efficient than faulting.
583 	 */
584 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
585 		if (!vma->anon_vma)
586 			return 0;
587 	}
588 
589 	if (is_vm_hugetlb_page(vma))
590 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
591 
592 	dst_pgd = pgd_offset(dst_mm, addr);
593 	src_pgd = pgd_offset(src_mm, addr);
594 	do {
595 		next = pgd_addr_end(addr, end);
596 		if (pgd_none_or_clear_bad(src_pgd))
597 			continue;
598 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
599 						vma, addr, next))
600 			return -ENOMEM;
601 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
602 	return 0;
603 }
604 
605 static unsigned long zap_pte_range(struct mmu_gather *tlb,
606 				struct vm_area_struct *vma, pmd_t *pmd,
607 				unsigned long addr, unsigned long end,
608 				long *zap_work, struct zap_details *details)
609 {
610 	struct mm_struct *mm = tlb->mm;
611 	pte_t *pte;
612 	spinlock_t *ptl;
613 	int file_rss = 0;
614 	int anon_rss = 0;
615 
616 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
617 	do {
618 		pte_t ptent = *pte;
619 		if (pte_none(ptent)) {
620 			(*zap_work)--;
621 			continue;
622 		}
623 
624 		(*zap_work) -= PAGE_SIZE;
625 
626 		if (pte_present(ptent)) {
627 			struct page *page;
628 
629 			page = vm_normal_page(vma, addr, ptent);
630 			if (unlikely(details) && page) {
631 				/*
632 				 * unmap_shared_mapping_pages() wants to
633 				 * invalidate cache without truncating:
634 				 * unmap shared but keep private pages.
635 				 */
636 				if (details->check_mapping &&
637 				    details->check_mapping != page->mapping)
638 					continue;
639 				/*
640 				 * Each page->index must be checked when
641 				 * invalidating or truncating nonlinear.
642 				 */
643 				if (details->nonlinear_vma &&
644 				    (page->index < details->first_index ||
645 				     page->index > details->last_index))
646 					continue;
647 			}
648 			ptent = ptep_get_and_clear_full(mm, addr, pte,
649 							tlb->fullmm);
650 			tlb_remove_tlb_entry(tlb, pte, addr);
651 			if (unlikely(!page))
652 				continue;
653 			if (unlikely(details) && details->nonlinear_vma
654 			    && linear_page_index(details->nonlinear_vma,
655 						addr) != page->index)
656 				set_pte_at(mm, addr, pte,
657 					   pgoff_to_pte(page->index));
658 			if (PageAnon(page))
659 				anon_rss--;
660 			else {
661 				if (pte_dirty(ptent))
662 					set_page_dirty(page);
663 				if (pte_young(ptent))
664 					mark_page_accessed(page);
665 				file_rss--;
666 			}
667 			page_remove_rmap(page);
668 			tlb_remove_page(tlb, page);
669 			continue;
670 		}
671 		/*
672 		 * If details->check_mapping, we leave swap entries;
673 		 * if details->nonlinear_vma, we leave file entries.
674 		 */
675 		if (unlikely(details))
676 			continue;
677 		if (!pte_file(ptent))
678 			free_swap_and_cache(pte_to_swp_entry(ptent));
679 		pte_clear_full(mm, addr, pte, tlb->fullmm);
680 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
681 
682 	add_mm_rss(mm, file_rss, anon_rss);
683 	pte_unmap_unlock(pte - 1, ptl);
684 
685 	return addr;
686 }
687 
688 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
689 				struct vm_area_struct *vma, pud_t *pud,
690 				unsigned long addr, unsigned long end,
691 				long *zap_work, struct zap_details *details)
692 {
693 	pmd_t *pmd;
694 	unsigned long next;
695 
696 	pmd = pmd_offset(pud, addr);
697 	do {
698 		next = pmd_addr_end(addr, end);
699 		if (pmd_none_or_clear_bad(pmd)) {
700 			(*zap_work)--;
701 			continue;
702 		}
703 		next = zap_pte_range(tlb, vma, pmd, addr, next,
704 						zap_work, details);
705 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
706 
707 	return addr;
708 }
709 
710 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
711 				struct vm_area_struct *vma, pgd_t *pgd,
712 				unsigned long addr, unsigned long end,
713 				long *zap_work, struct zap_details *details)
714 {
715 	pud_t *pud;
716 	unsigned long next;
717 
718 	pud = pud_offset(pgd, addr);
719 	do {
720 		next = pud_addr_end(addr, end);
721 		if (pud_none_or_clear_bad(pud)) {
722 			(*zap_work)--;
723 			continue;
724 		}
725 		next = zap_pmd_range(tlb, vma, pud, addr, next,
726 						zap_work, details);
727 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
728 
729 	return addr;
730 }
731 
732 static unsigned long unmap_page_range(struct mmu_gather *tlb,
733 				struct vm_area_struct *vma,
734 				unsigned long addr, unsigned long end,
735 				long *zap_work, struct zap_details *details)
736 {
737 	pgd_t *pgd;
738 	unsigned long next;
739 
740 	if (details && !details->check_mapping && !details->nonlinear_vma)
741 		details = NULL;
742 
743 	BUG_ON(addr >= end);
744 	tlb_start_vma(tlb, vma);
745 	pgd = pgd_offset(vma->vm_mm, addr);
746 	do {
747 		next = pgd_addr_end(addr, end);
748 		if (pgd_none_or_clear_bad(pgd)) {
749 			(*zap_work)--;
750 			continue;
751 		}
752 		next = zap_pud_range(tlb, vma, pgd, addr, next,
753 						zap_work, details);
754 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
755 	tlb_end_vma(tlb, vma);
756 
757 	return addr;
758 }
759 
760 #ifdef CONFIG_PREEMPT
761 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
762 #else
763 /* No preempt: go for improved straight-line efficiency */
764 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
765 #endif
766 
767 /**
768  * unmap_vmas - unmap a range of memory covered by a list of vma's
769  * @tlbp: address of the caller's struct mmu_gather
770  * @vma: the starting vma
771  * @start_addr: virtual address at which to start unmapping
772  * @end_addr: virtual address at which to end unmapping
773  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
774  * @details: details of nonlinear truncation or shared cache invalidation
775  *
776  * Returns the end address of the unmapping (restart addr if interrupted).
777  *
778  * Unmap all pages in the vma list.
779  *
780  * We aim to not hold locks for too long (for scheduling latency reasons).
781  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
782  * return the ending mmu_gather to the caller.
783  *
784  * Only addresses between `start' and `end' will be unmapped.
785  *
786  * The VMA list must be sorted in ascending virtual address order.
787  *
788  * unmap_vmas() assumes that the caller will flush the whole unmapped address
789  * range after unmap_vmas() returns.  So the only responsibility here is to
790  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
791  * drops the lock and schedules.
792  */
793 unsigned long unmap_vmas(struct mmu_gather **tlbp,
794 		struct vm_area_struct *vma, unsigned long start_addr,
795 		unsigned long end_addr, unsigned long *nr_accounted,
796 		struct zap_details *details)
797 {
798 	long zap_work = ZAP_BLOCK_SIZE;
799 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
800 	int tlb_start_valid = 0;
801 	unsigned long start = start_addr;
802 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
803 	int fullmm = (*tlbp)->fullmm;
804 
805 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
806 		unsigned long end;
807 
808 		start = max(vma->vm_start, start_addr);
809 		if (start >= vma->vm_end)
810 			continue;
811 		end = min(vma->vm_end, end_addr);
812 		if (end <= vma->vm_start)
813 			continue;
814 
815 		if (vma->vm_flags & VM_ACCOUNT)
816 			*nr_accounted += (end - start) >> PAGE_SHIFT;
817 
818 		while (start != end) {
819 			if (!tlb_start_valid) {
820 				tlb_start = start;
821 				tlb_start_valid = 1;
822 			}
823 
824 			if (unlikely(is_vm_hugetlb_page(vma))) {
825 				unmap_hugepage_range(vma, start, end);
826 				zap_work -= (end - start) /
827 						(HPAGE_SIZE / PAGE_SIZE);
828 				start = end;
829 			} else
830 				start = unmap_page_range(*tlbp, vma,
831 						start, end, &zap_work, details);
832 
833 			if (zap_work > 0) {
834 				BUG_ON(start != end);
835 				break;
836 			}
837 
838 			tlb_finish_mmu(*tlbp, tlb_start, start);
839 
840 			if (need_resched() ||
841 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
842 				if (i_mmap_lock) {
843 					*tlbp = NULL;
844 					goto out;
845 				}
846 				cond_resched();
847 			}
848 
849 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
850 			tlb_start_valid = 0;
851 			zap_work = ZAP_BLOCK_SIZE;
852 		}
853 	}
854 out:
855 	return start;	/* which is now the end (or restart) address */
856 }
857 
858 /**
859  * zap_page_range - remove user pages in a given range
860  * @vma: vm_area_struct holding the applicable pages
861  * @address: starting address of pages to zap
862  * @size: number of bytes to zap
863  * @details: details of nonlinear truncation or shared cache invalidation
864  */
865 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
866 		unsigned long size, struct zap_details *details)
867 {
868 	struct mm_struct *mm = vma->vm_mm;
869 	struct mmu_gather *tlb;
870 	unsigned long end = address + size;
871 	unsigned long nr_accounted = 0;
872 
873 	lru_add_drain();
874 	tlb = tlb_gather_mmu(mm, 0);
875 	update_hiwater_rss(mm);
876 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
877 	if (tlb)
878 		tlb_finish_mmu(tlb, address, end);
879 	return end;
880 }
881 
882 /*
883  * Do a quick page-table lookup for a single page.
884  */
885 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
886 			unsigned int flags)
887 {
888 	pgd_t *pgd;
889 	pud_t *pud;
890 	pmd_t *pmd;
891 	pte_t *ptep, pte;
892 	spinlock_t *ptl;
893 	struct page *page;
894 	struct mm_struct *mm = vma->vm_mm;
895 
896 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
897 	if (!IS_ERR(page)) {
898 		BUG_ON(flags & FOLL_GET);
899 		goto out;
900 	}
901 
902 	page = NULL;
903 	pgd = pgd_offset(mm, address);
904 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
905 		goto no_page_table;
906 
907 	pud = pud_offset(pgd, address);
908 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
909 		goto no_page_table;
910 
911 	pmd = pmd_offset(pud, address);
912 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
913 		goto no_page_table;
914 
915 	if (pmd_huge(*pmd)) {
916 		BUG_ON(flags & FOLL_GET);
917 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
918 		goto out;
919 	}
920 
921 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
922 	if (!ptep)
923 		goto out;
924 
925 	pte = *ptep;
926 	if (!pte_present(pte))
927 		goto unlock;
928 	if ((flags & FOLL_WRITE) && !pte_write(pte))
929 		goto unlock;
930 	page = vm_normal_page(vma, address, pte);
931 	if (unlikely(!page))
932 		goto unlock;
933 
934 	if (flags & FOLL_GET)
935 		get_page(page);
936 	if (flags & FOLL_TOUCH) {
937 		if ((flags & FOLL_WRITE) &&
938 		    !pte_dirty(pte) && !PageDirty(page))
939 			set_page_dirty(page);
940 		mark_page_accessed(page);
941 	}
942 unlock:
943 	pte_unmap_unlock(ptep, ptl);
944 out:
945 	return page;
946 
947 no_page_table:
948 	/*
949 	 * When core dumping an enormous anonymous area that nobody
950 	 * has touched so far, we don't want to allocate page tables.
951 	 */
952 	if (flags & FOLL_ANON) {
953 		page = ZERO_PAGE(address);
954 		if (flags & FOLL_GET)
955 			get_page(page);
956 		BUG_ON(flags & FOLL_WRITE);
957 	}
958 	return page;
959 }
960 
961 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
962 		unsigned long start, int len, int write, int force,
963 		struct page **pages, struct vm_area_struct **vmas)
964 {
965 	int i;
966 	unsigned int vm_flags;
967 
968 	/*
969 	 * Require read or write permissions.
970 	 * If 'force' is set, we only require the "MAY" flags.
971 	 */
972 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
973 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
974 	i = 0;
975 
976 	do {
977 		struct vm_area_struct *vma;
978 		unsigned int foll_flags;
979 
980 		vma = find_extend_vma(mm, start);
981 		if (!vma && in_gate_area(tsk, start)) {
982 			unsigned long pg = start & PAGE_MASK;
983 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
984 			pgd_t *pgd;
985 			pud_t *pud;
986 			pmd_t *pmd;
987 			pte_t *pte;
988 			if (write) /* user gate pages are read-only */
989 				return i ? : -EFAULT;
990 			if (pg > TASK_SIZE)
991 				pgd = pgd_offset_k(pg);
992 			else
993 				pgd = pgd_offset_gate(mm, pg);
994 			BUG_ON(pgd_none(*pgd));
995 			pud = pud_offset(pgd, pg);
996 			BUG_ON(pud_none(*pud));
997 			pmd = pmd_offset(pud, pg);
998 			if (pmd_none(*pmd))
999 				return i ? : -EFAULT;
1000 			pte = pte_offset_map(pmd, pg);
1001 			if (pte_none(*pte)) {
1002 				pte_unmap(pte);
1003 				return i ? : -EFAULT;
1004 			}
1005 			if (pages) {
1006 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1007 				pages[i] = page;
1008 				if (page)
1009 					get_page(page);
1010 			}
1011 			pte_unmap(pte);
1012 			if (vmas)
1013 				vmas[i] = gate_vma;
1014 			i++;
1015 			start += PAGE_SIZE;
1016 			len--;
1017 			continue;
1018 		}
1019 
1020 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1021 				|| !(vm_flags & vma->vm_flags))
1022 			return i ? : -EFAULT;
1023 
1024 		if (is_vm_hugetlb_page(vma)) {
1025 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1026 						&start, &len, i);
1027 			continue;
1028 		}
1029 
1030 		foll_flags = FOLL_TOUCH;
1031 		if (pages)
1032 			foll_flags |= FOLL_GET;
1033 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1034 		    (!vma->vm_ops || !vma->vm_ops->nopage))
1035 			foll_flags |= FOLL_ANON;
1036 
1037 		do {
1038 			struct page *page;
1039 
1040 			if (write)
1041 				foll_flags |= FOLL_WRITE;
1042 
1043 			cond_resched();
1044 			while (!(page = follow_page(vma, start, foll_flags))) {
1045 				int ret;
1046 				ret = __handle_mm_fault(mm, vma, start,
1047 						foll_flags & FOLL_WRITE);
1048 				/*
1049 				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1050 				 * broken COW when necessary, even if maybe_mkwrite
1051 				 * decided not to set pte_write. We can thus safely do
1052 				 * subsequent page lookups as if they were reads.
1053 				 */
1054 				if (ret & VM_FAULT_WRITE)
1055 					foll_flags &= ~FOLL_WRITE;
1056 
1057 				switch (ret & ~VM_FAULT_WRITE) {
1058 				case VM_FAULT_MINOR:
1059 					tsk->min_flt++;
1060 					break;
1061 				case VM_FAULT_MAJOR:
1062 					tsk->maj_flt++;
1063 					break;
1064 				case VM_FAULT_SIGBUS:
1065 					return i ? i : -EFAULT;
1066 				case VM_FAULT_OOM:
1067 					return i ? i : -ENOMEM;
1068 				default:
1069 					BUG();
1070 				}
1071 			}
1072 			if (pages) {
1073 				pages[i] = page;
1074 
1075 				flush_anon_page(page, start);
1076 				flush_dcache_page(page);
1077 			}
1078 			if (vmas)
1079 				vmas[i] = vma;
1080 			i++;
1081 			start += PAGE_SIZE;
1082 			len--;
1083 		} while (len && start < vma->vm_end);
1084 	} while (len);
1085 	return i;
1086 }
1087 EXPORT_SYMBOL(get_user_pages);
1088 
1089 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1090 			unsigned long addr, unsigned long end, pgprot_t prot)
1091 {
1092 	pte_t *pte;
1093 	spinlock_t *ptl;
1094 
1095 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1096 	if (!pte)
1097 		return -ENOMEM;
1098 	do {
1099 		struct page *page = ZERO_PAGE(addr);
1100 		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1101 		page_cache_get(page);
1102 		page_add_file_rmap(page);
1103 		inc_mm_counter(mm, file_rss);
1104 		BUG_ON(!pte_none(*pte));
1105 		set_pte_at(mm, addr, pte, zero_pte);
1106 	} while (pte++, addr += PAGE_SIZE, addr != end);
1107 	pte_unmap_unlock(pte - 1, ptl);
1108 	return 0;
1109 }
1110 
1111 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1112 			unsigned long addr, unsigned long end, pgprot_t prot)
1113 {
1114 	pmd_t *pmd;
1115 	unsigned long next;
1116 
1117 	pmd = pmd_alloc(mm, pud, addr);
1118 	if (!pmd)
1119 		return -ENOMEM;
1120 	do {
1121 		next = pmd_addr_end(addr, end);
1122 		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1123 			return -ENOMEM;
1124 	} while (pmd++, addr = next, addr != end);
1125 	return 0;
1126 }
1127 
1128 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1129 			unsigned long addr, unsigned long end, pgprot_t prot)
1130 {
1131 	pud_t *pud;
1132 	unsigned long next;
1133 
1134 	pud = pud_alloc(mm, pgd, addr);
1135 	if (!pud)
1136 		return -ENOMEM;
1137 	do {
1138 		next = pud_addr_end(addr, end);
1139 		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1140 			return -ENOMEM;
1141 	} while (pud++, addr = next, addr != end);
1142 	return 0;
1143 }
1144 
1145 int zeromap_page_range(struct vm_area_struct *vma,
1146 			unsigned long addr, unsigned long size, pgprot_t prot)
1147 {
1148 	pgd_t *pgd;
1149 	unsigned long next;
1150 	unsigned long end = addr + size;
1151 	struct mm_struct *mm = vma->vm_mm;
1152 	int err;
1153 
1154 	BUG_ON(addr >= end);
1155 	pgd = pgd_offset(mm, addr);
1156 	flush_cache_range(vma, addr, end);
1157 	do {
1158 		next = pgd_addr_end(addr, end);
1159 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1160 		if (err)
1161 			break;
1162 	} while (pgd++, addr = next, addr != end);
1163 	return err;
1164 }
1165 
1166 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1167 {
1168 	pgd_t * pgd = pgd_offset(mm, addr);
1169 	pud_t * pud = pud_alloc(mm, pgd, addr);
1170 	if (pud) {
1171 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1172 		if (pmd)
1173 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1174 	}
1175 	return NULL;
1176 }
1177 
1178 /*
1179  * This is the old fallback for page remapping.
1180  *
1181  * For historical reasons, it only allows reserved pages. Only
1182  * old drivers should use this, and they needed to mark their
1183  * pages reserved for the old functions anyway.
1184  */
1185 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1186 {
1187 	int retval;
1188 	pte_t *pte;
1189 	spinlock_t *ptl;
1190 
1191 	retval = -EINVAL;
1192 	if (PageAnon(page))
1193 		goto out;
1194 	retval = -ENOMEM;
1195 	flush_dcache_page(page);
1196 	pte = get_locked_pte(mm, addr, &ptl);
1197 	if (!pte)
1198 		goto out;
1199 	retval = -EBUSY;
1200 	if (!pte_none(*pte))
1201 		goto out_unlock;
1202 
1203 	/* Ok, finally just insert the thing.. */
1204 	get_page(page);
1205 	inc_mm_counter(mm, file_rss);
1206 	page_add_file_rmap(page);
1207 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1208 
1209 	retval = 0;
1210 out_unlock:
1211 	pte_unmap_unlock(pte, ptl);
1212 out:
1213 	return retval;
1214 }
1215 
1216 /*
1217  * This allows drivers to insert individual pages they've allocated
1218  * into a user vma.
1219  *
1220  * The page has to be a nice clean _individual_ kernel allocation.
1221  * If you allocate a compound page, you need to have marked it as
1222  * such (__GFP_COMP), or manually just split the page up yourself
1223  * (see split_page()).
1224  *
1225  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1226  * took an arbitrary page protection parameter. This doesn't allow
1227  * that. Your vma protection will have to be set up correctly, which
1228  * means that if you want a shared writable mapping, you'd better
1229  * ask for a shared writable mapping!
1230  *
1231  * The page does not need to be reserved.
1232  */
1233 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1234 {
1235 	if (addr < vma->vm_start || addr >= vma->vm_end)
1236 		return -EFAULT;
1237 	if (!page_count(page))
1238 		return -EINVAL;
1239 	vma->vm_flags |= VM_INSERTPAGE;
1240 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1241 }
1242 EXPORT_SYMBOL(vm_insert_page);
1243 
1244 /*
1245  * maps a range of physical memory into the requested pages. the old
1246  * mappings are removed. any references to nonexistent pages results
1247  * in null mappings (currently treated as "copy-on-access")
1248  */
1249 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1250 			unsigned long addr, unsigned long end,
1251 			unsigned long pfn, pgprot_t prot)
1252 {
1253 	pte_t *pte;
1254 	spinlock_t *ptl;
1255 
1256 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1257 	if (!pte)
1258 		return -ENOMEM;
1259 	do {
1260 		BUG_ON(!pte_none(*pte));
1261 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1262 		pfn++;
1263 	} while (pte++, addr += PAGE_SIZE, addr != end);
1264 	pte_unmap_unlock(pte - 1, ptl);
1265 	return 0;
1266 }
1267 
1268 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1269 			unsigned long addr, unsigned long end,
1270 			unsigned long pfn, pgprot_t prot)
1271 {
1272 	pmd_t *pmd;
1273 	unsigned long next;
1274 
1275 	pfn -= addr >> PAGE_SHIFT;
1276 	pmd = pmd_alloc(mm, pud, addr);
1277 	if (!pmd)
1278 		return -ENOMEM;
1279 	do {
1280 		next = pmd_addr_end(addr, end);
1281 		if (remap_pte_range(mm, pmd, addr, next,
1282 				pfn + (addr >> PAGE_SHIFT), prot))
1283 			return -ENOMEM;
1284 	} while (pmd++, addr = next, addr != end);
1285 	return 0;
1286 }
1287 
1288 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1289 			unsigned long addr, unsigned long end,
1290 			unsigned long pfn, pgprot_t prot)
1291 {
1292 	pud_t *pud;
1293 	unsigned long next;
1294 
1295 	pfn -= addr >> PAGE_SHIFT;
1296 	pud = pud_alloc(mm, pgd, addr);
1297 	if (!pud)
1298 		return -ENOMEM;
1299 	do {
1300 		next = pud_addr_end(addr, end);
1301 		if (remap_pmd_range(mm, pud, addr, next,
1302 				pfn + (addr >> PAGE_SHIFT), prot))
1303 			return -ENOMEM;
1304 	} while (pud++, addr = next, addr != end);
1305 	return 0;
1306 }
1307 
1308 /*  Note: this is only safe if the mm semaphore is held when called. */
1309 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1310 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1311 {
1312 	pgd_t *pgd;
1313 	unsigned long next;
1314 	unsigned long end = addr + PAGE_ALIGN(size);
1315 	struct mm_struct *mm = vma->vm_mm;
1316 	int err;
1317 
1318 	/*
1319 	 * Physically remapped pages are special. Tell the
1320 	 * rest of the world about it:
1321 	 *   VM_IO tells people not to look at these pages
1322 	 *	(accesses can have side effects).
1323 	 *   VM_RESERVED is specified all over the place, because
1324 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1325 	 *	in 2.6 the LRU scan won't even find its pages, so this
1326 	 *	flag means no more than count its pages in reserved_vm,
1327 	 * 	and omit it from core dump, even when VM_IO turned off.
1328 	 *   VM_PFNMAP tells the core MM that the base pages are just
1329 	 *	raw PFN mappings, and do not have a "struct page" associated
1330 	 *	with them.
1331 	 *
1332 	 * There's a horrible special case to handle copy-on-write
1333 	 * behaviour that some programs depend on. We mark the "original"
1334 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1335 	 */
1336 	if (is_cow_mapping(vma->vm_flags)) {
1337 		if (addr != vma->vm_start || end != vma->vm_end)
1338 			return -EINVAL;
1339 		vma->vm_pgoff = pfn;
1340 	}
1341 
1342 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1343 
1344 	BUG_ON(addr >= end);
1345 	pfn -= addr >> PAGE_SHIFT;
1346 	pgd = pgd_offset(mm, addr);
1347 	flush_cache_range(vma, addr, end);
1348 	do {
1349 		next = pgd_addr_end(addr, end);
1350 		err = remap_pud_range(mm, pgd, addr, next,
1351 				pfn + (addr >> PAGE_SHIFT), prot);
1352 		if (err)
1353 			break;
1354 	} while (pgd++, addr = next, addr != end);
1355 	return err;
1356 }
1357 EXPORT_SYMBOL(remap_pfn_range);
1358 
1359 /*
1360  * handle_pte_fault chooses page fault handler according to an entry
1361  * which was read non-atomically.  Before making any commitment, on
1362  * those architectures or configurations (e.g. i386 with PAE) which
1363  * might give a mix of unmatched parts, do_swap_page and do_file_page
1364  * must check under lock before unmapping the pte and proceeding
1365  * (but do_wp_page is only called after already making such a check;
1366  * and do_anonymous_page and do_no_page can safely check later on).
1367  */
1368 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1369 				pte_t *page_table, pte_t orig_pte)
1370 {
1371 	int same = 1;
1372 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1373 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1374 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1375 		spin_lock(ptl);
1376 		same = pte_same(*page_table, orig_pte);
1377 		spin_unlock(ptl);
1378 	}
1379 #endif
1380 	pte_unmap(page_table);
1381 	return same;
1382 }
1383 
1384 /*
1385  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1386  * servicing faults for write access.  In the normal case, do always want
1387  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1388  * that do not have writing enabled, when used by access_process_vm.
1389  */
1390 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1391 {
1392 	if (likely(vma->vm_flags & VM_WRITE))
1393 		pte = pte_mkwrite(pte);
1394 	return pte;
1395 }
1396 
1397 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1398 {
1399 	/*
1400 	 * If the source page was a PFN mapping, we don't have
1401 	 * a "struct page" for it. We do a best-effort copy by
1402 	 * just copying from the original user address. If that
1403 	 * fails, we just zero-fill it. Live with it.
1404 	 */
1405 	if (unlikely(!src)) {
1406 		void *kaddr = kmap_atomic(dst, KM_USER0);
1407 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1408 
1409 		/*
1410 		 * This really shouldn't fail, because the page is there
1411 		 * in the page tables. But it might just be unreadable,
1412 		 * in which case we just give up and fill the result with
1413 		 * zeroes.
1414 		 */
1415 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1416 			memset(kaddr, 0, PAGE_SIZE);
1417 		kunmap_atomic(kaddr, KM_USER0);
1418 		return;
1419 
1420 	}
1421 	copy_user_highpage(dst, src, va);
1422 }
1423 
1424 /*
1425  * This routine handles present pages, when users try to write
1426  * to a shared page. It is done by copying the page to a new address
1427  * and decrementing the shared-page counter for the old page.
1428  *
1429  * Note that this routine assumes that the protection checks have been
1430  * done by the caller (the low-level page fault routine in most cases).
1431  * Thus we can safely just mark it writable once we've done any necessary
1432  * COW.
1433  *
1434  * We also mark the page dirty at this point even though the page will
1435  * change only once the write actually happens. This avoids a few races,
1436  * and potentially makes it more efficient.
1437  *
1438  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1439  * but allow concurrent faults), with pte both mapped and locked.
1440  * We return with mmap_sem still held, but pte unmapped and unlocked.
1441  */
1442 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1443 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1444 		spinlock_t *ptl, pte_t orig_pte)
1445 {
1446 	struct page *old_page, *new_page;
1447 	pte_t entry;
1448 	int ret = VM_FAULT_MINOR;
1449 
1450 	old_page = vm_normal_page(vma, address, orig_pte);
1451 	if (!old_page)
1452 		goto gotten;
1453 
1454 	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1455 		int reuse = can_share_swap_page(old_page);
1456 		unlock_page(old_page);
1457 		if (reuse) {
1458 			flush_cache_page(vma, address, pte_pfn(orig_pte));
1459 			entry = pte_mkyoung(orig_pte);
1460 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1461 			ptep_set_access_flags(vma, address, page_table, entry, 1);
1462 			update_mmu_cache(vma, address, entry);
1463 			lazy_mmu_prot_update(entry);
1464 			ret |= VM_FAULT_WRITE;
1465 			goto unlock;
1466 		}
1467 	}
1468 
1469 	/*
1470 	 * Ok, we need to copy. Oh, well..
1471 	 */
1472 	page_cache_get(old_page);
1473 gotten:
1474 	pte_unmap_unlock(page_table, ptl);
1475 
1476 	if (unlikely(anon_vma_prepare(vma)))
1477 		goto oom;
1478 	if (old_page == ZERO_PAGE(address)) {
1479 		new_page = alloc_zeroed_user_highpage(vma, address);
1480 		if (!new_page)
1481 			goto oom;
1482 	} else {
1483 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1484 		if (!new_page)
1485 			goto oom;
1486 		cow_user_page(new_page, old_page, address);
1487 	}
1488 
1489 	/*
1490 	 * Re-check the pte - we dropped the lock
1491 	 */
1492 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1493 	if (likely(pte_same(*page_table, orig_pte))) {
1494 		if (old_page) {
1495 			page_remove_rmap(old_page);
1496 			if (!PageAnon(old_page)) {
1497 				dec_mm_counter(mm, file_rss);
1498 				inc_mm_counter(mm, anon_rss);
1499 			}
1500 		} else
1501 			inc_mm_counter(mm, anon_rss);
1502 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1503 		entry = mk_pte(new_page, vma->vm_page_prot);
1504 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1505 		ptep_establish(vma, address, page_table, entry);
1506 		update_mmu_cache(vma, address, entry);
1507 		lazy_mmu_prot_update(entry);
1508 		lru_cache_add_active(new_page);
1509 		page_add_new_anon_rmap(new_page, vma, address);
1510 
1511 		/* Free the old page.. */
1512 		new_page = old_page;
1513 		ret |= VM_FAULT_WRITE;
1514 	}
1515 	if (new_page)
1516 		page_cache_release(new_page);
1517 	if (old_page)
1518 		page_cache_release(old_page);
1519 unlock:
1520 	pte_unmap_unlock(page_table, ptl);
1521 	return ret;
1522 oom:
1523 	if (old_page)
1524 		page_cache_release(old_page);
1525 	return VM_FAULT_OOM;
1526 }
1527 
1528 /*
1529  * Helper functions for unmap_mapping_range().
1530  *
1531  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1532  *
1533  * We have to restart searching the prio_tree whenever we drop the lock,
1534  * since the iterator is only valid while the lock is held, and anyway
1535  * a later vma might be split and reinserted earlier while lock dropped.
1536  *
1537  * The list of nonlinear vmas could be handled more efficiently, using
1538  * a placeholder, but handle it in the same way until a need is shown.
1539  * It is important to search the prio_tree before nonlinear list: a vma
1540  * may become nonlinear and be shifted from prio_tree to nonlinear list
1541  * while the lock is dropped; but never shifted from list to prio_tree.
1542  *
1543  * In order to make forward progress despite restarting the search,
1544  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1545  * quickly skip it next time around.  Since the prio_tree search only
1546  * shows us those vmas affected by unmapping the range in question, we
1547  * can't efficiently keep all vmas in step with mapping->truncate_count:
1548  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1549  * mapping->truncate_count and vma->vm_truncate_count are protected by
1550  * i_mmap_lock.
1551  *
1552  * In order to make forward progress despite repeatedly restarting some
1553  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1554  * and restart from that address when we reach that vma again.  It might
1555  * have been split or merged, shrunk or extended, but never shifted: so
1556  * restart_addr remains valid so long as it remains in the vma's range.
1557  * unmap_mapping_range forces truncate_count to leap over page-aligned
1558  * values so we can save vma's restart_addr in its truncate_count field.
1559  */
1560 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1561 
1562 static void reset_vma_truncate_counts(struct address_space *mapping)
1563 {
1564 	struct vm_area_struct *vma;
1565 	struct prio_tree_iter iter;
1566 
1567 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1568 		vma->vm_truncate_count = 0;
1569 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1570 		vma->vm_truncate_count = 0;
1571 }
1572 
1573 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1574 		unsigned long start_addr, unsigned long end_addr,
1575 		struct zap_details *details)
1576 {
1577 	unsigned long restart_addr;
1578 	int need_break;
1579 
1580 again:
1581 	restart_addr = vma->vm_truncate_count;
1582 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1583 		start_addr = restart_addr;
1584 		if (start_addr >= end_addr) {
1585 			/* Top of vma has been split off since last time */
1586 			vma->vm_truncate_count = details->truncate_count;
1587 			return 0;
1588 		}
1589 	}
1590 
1591 	restart_addr = zap_page_range(vma, start_addr,
1592 					end_addr - start_addr, details);
1593 	need_break = need_resched() ||
1594 			need_lockbreak(details->i_mmap_lock);
1595 
1596 	if (restart_addr >= end_addr) {
1597 		/* We have now completed this vma: mark it so */
1598 		vma->vm_truncate_count = details->truncate_count;
1599 		if (!need_break)
1600 			return 0;
1601 	} else {
1602 		/* Note restart_addr in vma's truncate_count field */
1603 		vma->vm_truncate_count = restart_addr;
1604 		if (!need_break)
1605 			goto again;
1606 	}
1607 
1608 	spin_unlock(details->i_mmap_lock);
1609 	cond_resched();
1610 	spin_lock(details->i_mmap_lock);
1611 	return -EINTR;
1612 }
1613 
1614 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1615 					    struct zap_details *details)
1616 {
1617 	struct vm_area_struct *vma;
1618 	struct prio_tree_iter iter;
1619 	pgoff_t vba, vea, zba, zea;
1620 
1621 restart:
1622 	vma_prio_tree_foreach(vma, &iter, root,
1623 			details->first_index, details->last_index) {
1624 		/* Skip quickly over those we have already dealt with */
1625 		if (vma->vm_truncate_count == details->truncate_count)
1626 			continue;
1627 
1628 		vba = vma->vm_pgoff;
1629 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1630 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1631 		zba = details->first_index;
1632 		if (zba < vba)
1633 			zba = vba;
1634 		zea = details->last_index;
1635 		if (zea > vea)
1636 			zea = vea;
1637 
1638 		if (unmap_mapping_range_vma(vma,
1639 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1640 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1641 				details) < 0)
1642 			goto restart;
1643 	}
1644 }
1645 
1646 static inline void unmap_mapping_range_list(struct list_head *head,
1647 					    struct zap_details *details)
1648 {
1649 	struct vm_area_struct *vma;
1650 
1651 	/*
1652 	 * In nonlinear VMAs there is no correspondence between virtual address
1653 	 * offset and file offset.  So we must perform an exhaustive search
1654 	 * across *all* the pages in each nonlinear VMA, not just the pages
1655 	 * whose virtual address lies outside the file truncation point.
1656 	 */
1657 restart:
1658 	list_for_each_entry(vma, head, shared.vm_set.list) {
1659 		/* Skip quickly over those we have already dealt with */
1660 		if (vma->vm_truncate_count == details->truncate_count)
1661 			continue;
1662 		details->nonlinear_vma = vma;
1663 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1664 					vma->vm_end, details) < 0)
1665 			goto restart;
1666 	}
1667 }
1668 
1669 /**
1670  * unmap_mapping_range - unmap the portion of all mmaps
1671  * in the specified address_space corresponding to the specified
1672  * page range in the underlying file.
1673  * @mapping: the address space containing mmaps to be unmapped.
1674  * @holebegin: byte in first page to unmap, relative to the start of
1675  * the underlying file.  This will be rounded down to a PAGE_SIZE
1676  * boundary.  Note that this is different from vmtruncate(), which
1677  * must keep the partial page.  In contrast, we must get rid of
1678  * partial pages.
1679  * @holelen: size of prospective hole in bytes.  This will be rounded
1680  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1681  * end of the file.
1682  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1683  * but 0 when invalidating pagecache, don't throw away private data.
1684  */
1685 void unmap_mapping_range(struct address_space *mapping,
1686 		loff_t const holebegin, loff_t const holelen, int even_cows)
1687 {
1688 	struct zap_details details;
1689 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1690 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1691 
1692 	/* Check for overflow. */
1693 	if (sizeof(holelen) > sizeof(hlen)) {
1694 		long long holeend =
1695 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1696 		if (holeend & ~(long long)ULONG_MAX)
1697 			hlen = ULONG_MAX - hba + 1;
1698 	}
1699 
1700 	details.check_mapping = even_cows? NULL: mapping;
1701 	details.nonlinear_vma = NULL;
1702 	details.first_index = hba;
1703 	details.last_index = hba + hlen - 1;
1704 	if (details.last_index < details.first_index)
1705 		details.last_index = ULONG_MAX;
1706 	details.i_mmap_lock = &mapping->i_mmap_lock;
1707 
1708 	spin_lock(&mapping->i_mmap_lock);
1709 
1710 	/* serialize i_size write against truncate_count write */
1711 	smp_wmb();
1712 	/* Protect against page faults, and endless unmapping loops */
1713 	mapping->truncate_count++;
1714 	/*
1715 	 * For archs where spin_lock has inclusive semantics like ia64
1716 	 * this smp_mb() will prevent to read pagetable contents
1717 	 * before the truncate_count increment is visible to
1718 	 * other cpus.
1719 	 */
1720 	smp_mb();
1721 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1722 		if (mapping->truncate_count == 0)
1723 			reset_vma_truncate_counts(mapping);
1724 		mapping->truncate_count++;
1725 	}
1726 	details.truncate_count = mapping->truncate_count;
1727 
1728 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1729 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1730 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1731 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1732 	spin_unlock(&mapping->i_mmap_lock);
1733 }
1734 EXPORT_SYMBOL(unmap_mapping_range);
1735 
1736 /*
1737  * Handle all mappings that got truncated by a "truncate()"
1738  * system call.
1739  *
1740  * NOTE! We have to be ready to update the memory sharing
1741  * between the file and the memory map for a potential last
1742  * incomplete page.  Ugly, but necessary.
1743  */
1744 int vmtruncate(struct inode * inode, loff_t offset)
1745 {
1746 	struct address_space *mapping = inode->i_mapping;
1747 	unsigned long limit;
1748 
1749 	if (inode->i_size < offset)
1750 		goto do_expand;
1751 	/*
1752 	 * truncation of in-use swapfiles is disallowed - it would cause
1753 	 * subsequent swapout to scribble on the now-freed blocks.
1754 	 */
1755 	if (IS_SWAPFILE(inode))
1756 		goto out_busy;
1757 	i_size_write(inode, offset);
1758 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1759 	truncate_inode_pages(mapping, offset);
1760 	goto out_truncate;
1761 
1762 do_expand:
1763 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1764 	if (limit != RLIM_INFINITY && offset > limit)
1765 		goto out_sig;
1766 	if (offset > inode->i_sb->s_maxbytes)
1767 		goto out_big;
1768 	i_size_write(inode, offset);
1769 
1770 out_truncate:
1771 	if (inode->i_op && inode->i_op->truncate)
1772 		inode->i_op->truncate(inode);
1773 	return 0;
1774 out_sig:
1775 	send_sig(SIGXFSZ, current, 0);
1776 out_big:
1777 	return -EFBIG;
1778 out_busy:
1779 	return -ETXTBSY;
1780 }
1781 EXPORT_SYMBOL(vmtruncate);
1782 
1783 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1784 {
1785 	struct address_space *mapping = inode->i_mapping;
1786 
1787 	/*
1788 	 * If the underlying filesystem is not going to provide
1789 	 * a way to truncate a range of blocks (punch a hole) -
1790 	 * we should return failure right now.
1791 	 */
1792 	if (!inode->i_op || !inode->i_op->truncate_range)
1793 		return -ENOSYS;
1794 
1795 	mutex_lock(&inode->i_mutex);
1796 	down_write(&inode->i_alloc_sem);
1797 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1798 	truncate_inode_pages_range(mapping, offset, end);
1799 	inode->i_op->truncate_range(inode, offset, end);
1800 	up_write(&inode->i_alloc_sem);
1801 	mutex_unlock(&inode->i_mutex);
1802 
1803 	return 0;
1804 }
1805 EXPORT_SYMBOL(vmtruncate_range);
1806 
1807 /*
1808  * Primitive swap readahead code. We simply read an aligned block of
1809  * (1 << page_cluster) entries in the swap area. This method is chosen
1810  * because it doesn't cost us any seek time.  We also make sure to queue
1811  * the 'original' request together with the readahead ones...
1812  *
1813  * This has been extended to use the NUMA policies from the mm triggering
1814  * the readahead.
1815  *
1816  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1817  */
1818 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1819 {
1820 #ifdef CONFIG_NUMA
1821 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1822 #endif
1823 	int i, num;
1824 	struct page *new_page;
1825 	unsigned long offset;
1826 
1827 	/*
1828 	 * Get the number of handles we should do readahead io to.
1829 	 */
1830 	num = valid_swaphandles(entry, &offset);
1831 	for (i = 0; i < num; offset++, i++) {
1832 		/* Ok, do the async read-ahead now */
1833 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1834 							   offset), vma, addr);
1835 		if (!new_page)
1836 			break;
1837 		page_cache_release(new_page);
1838 #ifdef CONFIG_NUMA
1839 		/*
1840 		 * Find the next applicable VMA for the NUMA policy.
1841 		 */
1842 		addr += PAGE_SIZE;
1843 		if (addr == 0)
1844 			vma = NULL;
1845 		if (vma) {
1846 			if (addr >= vma->vm_end) {
1847 				vma = next_vma;
1848 				next_vma = vma ? vma->vm_next : NULL;
1849 			}
1850 			if (vma && addr < vma->vm_start)
1851 				vma = NULL;
1852 		} else {
1853 			if (next_vma && addr >= next_vma->vm_start) {
1854 				vma = next_vma;
1855 				next_vma = vma->vm_next;
1856 			}
1857 		}
1858 #endif
1859 	}
1860 	lru_add_drain();	/* Push any new pages onto the LRU now */
1861 }
1862 
1863 /*
1864  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1865  * but allow concurrent faults), and pte mapped but not yet locked.
1866  * We return with mmap_sem still held, but pte unmapped and unlocked.
1867  */
1868 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1869 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1870 		int write_access, pte_t orig_pte)
1871 {
1872 	spinlock_t *ptl;
1873 	struct page *page;
1874 	swp_entry_t entry;
1875 	pte_t pte;
1876 	int ret = VM_FAULT_MINOR;
1877 
1878 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1879 		goto out;
1880 
1881 	entry = pte_to_swp_entry(orig_pte);
1882 again:
1883 	page = lookup_swap_cache(entry);
1884 	if (!page) {
1885  		swapin_readahead(entry, address, vma);
1886  		page = read_swap_cache_async(entry, vma, address);
1887 		if (!page) {
1888 			/*
1889 			 * Back out if somebody else faulted in this pte
1890 			 * while we released the pte lock.
1891 			 */
1892 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1893 			if (likely(pte_same(*page_table, orig_pte)))
1894 				ret = VM_FAULT_OOM;
1895 			goto unlock;
1896 		}
1897 
1898 		/* Had to read the page from swap area: Major fault */
1899 		ret = VM_FAULT_MAJOR;
1900 		inc_page_state(pgmajfault);
1901 		grab_swap_token();
1902 	}
1903 
1904 	mark_page_accessed(page);
1905 	lock_page(page);
1906 	if (!PageSwapCache(page)) {
1907 		/* Page migration has occured */
1908 		unlock_page(page);
1909 		page_cache_release(page);
1910 		goto again;
1911 	}
1912 
1913 	/*
1914 	 * Back out if somebody else already faulted in this pte.
1915 	 */
1916 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1917 	if (unlikely(!pte_same(*page_table, orig_pte)))
1918 		goto out_nomap;
1919 
1920 	if (unlikely(!PageUptodate(page))) {
1921 		ret = VM_FAULT_SIGBUS;
1922 		goto out_nomap;
1923 	}
1924 
1925 	/* The page isn't present yet, go ahead with the fault. */
1926 
1927 	inc_mm_counter(mm, anon_rss);
1928 	pte = mk_pte(page, vma->vm_page_prot);
1929 	if (write_access && can_share_swap_page(page)) {
1930 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1931 		write_access = 0;
1932 	}
1933 
1934 	flush_icache_page(vma, page);
1935 	set_pte_at(mm, address, page_table, pte);
1936 	page_add_anon_rmap(page, vma, address);
1937 
1938 	swap_free(entry);
1939 	if (vm_swap_full())
1940 		remove_exclusive_swap_page(page);
1941 	unlock_page(page);
1942 
1943 	if (write_access) {
1944 		if (do_wp_page(mm, vma, address,
1945 				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1946 			ret = VM_FAULT_OOM;
1947 		goto out;
1948 	}
1949 
1950 	/* No need to invalidate - it was non-present before */
1951 	update_mmu_cache(vma, address, pte);
1952 	lazy_mmu_prot_update(pte);
1953 unlock:
1954 	pte_unmap_unlock(page_table, ptl);
1955 out:
1956 	return ret;
1957 out_nomap:
1958 	pte_unmap_unlock(page_table, ptl);
1959 	unlock_page(page);
1960 	page_cache_release(page);
1961 	return ret;
1962 }
1963 
1964 /*
1965  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1966  * but allow concurrent faults), and pte mapped but not yet locked.
1967  * We return with mmap_sem still held, but pte unmapped and unlocked.
1968  */
1969 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1970 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1971 		int write_access)
1972 {
1973 	struct page *page;
1974 	spinlock_t *ptl;
1975 	pte_t entry;
1976 
1977 	if (write_access) {
1978 		/* Allocate our own private page. */
1979 		pte_unmap(page_table);
1980 
1981 		if (unlikely(anon_vma_prepare(vma)))
1982 			goto oom;
1983 		page = alloc_zeroed_user_highpage(vma, address);
1984 		if (!page)
1985 			goto oom;
1986 
1987 		entry = mk_pte(page, vma->vm_page_prot);
1988 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1989 
1990 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1991 		if (!pte_none(*page_table))
1992 			goto release;
1993 		inc_mm_counter(mm, anon_rss);
1994 		lru_cache_add_active(page);
1995 		page_add_new_anon_rmap(page, vma, address);
1996 	} else {
1997 		/* Map the ZERO_PAGE - vm_page_prot is readonly */
1998 		page = ZERO_PAGE(address);
1999 		page_cache_get(page);
2000 		entry = mk_pte(page, vma->vm_page_prot);
2001 
2002 		ptl = pte_lockptr(mm, pmd);
2003 		spin_lock(ptl);
2004 		if (!pte_none(*page_table))
2005 			goto release;
2006 		inc_mm_counter(mm, file_rss);
2007 		page_add_file_rmap(page);
2008 	}
2009 
2010 	set_pte_at(mm, address, page_table, entry);
2011 
2012 	/* No need to invalidate - it was non-present before */
2013 	update_mmu_cache(vma, address, entry);
2014 	lazy_mmu_prot_update(entry);
2015 unlock:
2016 	pte_unmap_unlock(page_table, ptl);
2017 	return VM_FAULT_MINOR;
2018 release:
2019 	page_cache_release(page);
2020 	goto unlock;
2021 oom:
2022 	return VM_FAULT_OOM;
2023 }
2024 
2025 /*
2026  * do_no_page() tries to create a new page mapping. It aggressively
2027  * tries to share with existing pages, but makes a separate copy if
2028  * the "write_access" parameter is true in order to avoid the next
2029  * page fault.
2030  *
2031  * As this is called only for pages that do not currently exist, we
2032  * do not need to flush old virtual caches or the TLB.
2033  *
2034  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2035  * but allow concurrent faults), and pte mapped but not yet locked.
2036  * We return with mmap_sem still held, but pte unmapped and unlocked.
2037  */
2038 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2039 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2040 		int write_access)
2041 {
2042 	spinlock_t *ptl;
2043 	struct page *new_page;
2044 	struct address_space *mapping = NULL;
2045 	pte_t entry;
2046 	unsigned int sequence = 0;
2047 	int ret = VM_FAULT_MINOR;
2048 	int anon = 0;
2049 
2050 	pte_unmap(page_table);
2051 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2052 
2053 	if (vma->vm_file) {
2054 		mapping = vma->vm_file->f_mapping;
2055 		sequence = mapping->truncate_count;
2056 		smp_rmb(); /* serializes i_size against truncate_count */
2057 	}
2058 retry:
2059 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2060 	/*
2061 	 * No smp_rmb is needed here as long as there's a full
2062 	 * spin_lock/unlock sequence inside the ->nopage callback
2063 	 * (for the pagecache lookup) that acts as an implicit
2064 	 * smp_mb() and prevents the i_size read to happen
2065 	 * after the next truncate_count read.
2066 	 */
2067 
2068 	/* no page was available -- either SIGBUS or OOM */
2069 	if (new_page == NOPAGE_SIGBUS)
2070 		return VM_FAULT_SIGBUS;
2071 	if (new_page == NOPAGE_OOM)
2072 		return VM_FAULT_OOM;
2073 
2074 	/*
2075 	 * Should we do an early C-O-W break?
2076 	 */
2077 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
2078 		struct page *page;
2079 
2080 		if (unlikely(anon_vma_prepare(vma)))
2081 			goto oom;
2082 		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2083 		if (!page)
2084 			goto oom;
2085 		copy_user_highpage(page, new_page, address);
2086 		page_cache_release(new_page);
2087 		new_page = page;
2088 		anon = 1;
2089 	}
2090 
2091 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2092 	/*
2093 	 * For a file-backed vma, someone could have truncated or otherwise
2094 	 * invalidated this page.  If unmap_mapping_range got called,
2095 	 * retry getting the page.
2096 	 */
2097 	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2098 		pte_unmap_unlock(page_table, ptl);
2099 		page_cache_release(new_page);
2100 		cond_resched();
2101 		sequence = mapping->truncate_count;
2102 		smp_rmb();
2103 		goto retry;
2104 	}
2105 
2106 	/*
2107 	 * This silly early PAGE_DIRTY setting removes a race
2108 	 * due to the bad i386 page protection. But it's valid
2109 	 * for other architectures too.
2110 	 *
2111 	 * Note that if write_access is true, we either now have
2112 	 * an exclusive copy of the page, or this is a shared mapping,
2113 	 * so we can make it writable and dirty to avoid having to
2114 	 * handle that later.
2115 	 */
2116 	/* Only go through if we didn't race with anybody else... */
2117 	if (pte_none(*page_table)) {
2118 		flush_icache_page(vma, new_page);
2119 		entry = mk_pte(new_page, vma->vm_page_prot);
2120 		if (write_access)
2121 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2122 		set_pte_at(mm, address, page_table, entry);
2123 		if (anon) {
2124 			inc_mm_counter(mm, anon_rss);
2125 			lru_cache_add_active(new_page);
2126 			page_add_new_anon_rmap(new_page, vma, address);
2127 		} else {
2128 			inc_mm_counter(mm, file_rss);
2129 			page_add_file_rmap(new_page);
2130 		}
2131 	} else {
2132 		/* One of our sibling threads was faster, back out. */
2133 		page_cache_release(new_page);
2134 		goto unlock;
2135 	}
2136 
2137 	/* no need to invalidate: a not-present page shouldn't be cached */
2138 	update_mmu_cache(vma, address, entry);
2139 	lazy_mmu_prot_update(entry);
2140 unlock:
2141 	pte_unmap_unlock(page_table, ptl);
2142 	return ret;
2143 oom:
2144 	page_cache_release(new_page);
2145 	return VM_FAULT_OOM;
2146 }
2147 
2148 /*
2149  * Fault of a previously existing named mapping. Repopulate the pte
2150  * from the encoded file_pte if possible. This enables swappable
2151  * nonlinear vmas.
2152  *
2153  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2154  * but allow concurrent faults), and pte mapped but not yet locked.
2155  * We return with mmap_sem still held, but pte unmapped and unlocked.
2156  */
2157 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2158 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2159 		int write_access, pte_t orig_pte)
2160 {
2161 	pgoff_t pgoff;
2162 	int err;
2163 
2164 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2165 		return VM_FAULT_MINOR;
2166 
2167 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2168 		/*
2169 		 * Page table corrupted: show pte and kill process.
2170 		 */
2171 		print_bad_pte(vma, orig_pte, address);
2172 		return VM_FAULT_OOM;
2173 	}
2174 	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2175 
2176 	pgoff = pte_to_pgoff(orig_pte);
2177 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2178 					vma->vm_page_prot, pgoff, 0);
2179 	if (err == -ENOMEM)
2180 		return VM_FAULT_OOM;
2181 	if (err)
2182 		return VM_FAULT_SIGBUS;
2183 	return VM_FAULT_MAJOR;
2184 }
2185 
2186 /*
2187  * These routines also need to handle stuff like marking pages dirty
2188  * and/or accessed for architectures that don't do it in hardware (most
2189  * RISC architectures).  The early dirtying is also good on the i386.
2190  *
2191  * There is also a hook called "update_mmu_cache()" that architectures
2192  * with external mmu caches can use to update those (ie the Sparc or
2193  * PowerPC hashed page tables that act as extended TLBs).
2194  *
2195  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2196  * but allow concurrent faults), and pte mapped but not yet locked.
2197  * We return with mmap_sem still held, but pte unmapped and unlocked.
2198  */
2199 static inline int handle_pte_fault(struct mm_struct *mm,
2200 		struct vm_area_struct *vma, unsigned long address,
2201 		pte_t *pte, pmd_t *pmd, int write_access)
2202 {
2203 	pte_t entry;
2204 	pte_t old_entry;
2205 	spinlock_t *ptl;
2206 
2207 	old_entry = entry = *pte;
2208 	if (!pte_present(entry)) {
2209 		if (pte_none(entry)) {
2210 			if (!vma->vm_ops || !vma->vm_ops->nopage)
2211 				return do_anonymous_page(mm, vma, address,
2212 					pte, pmd, write_access);
2213 			return do_no_page(mm, vma, address,
2214 					pte, pmd, write_access);
2215 		}
2216 		if (pte_file(entry))
2217 			return do_file_page(mm, vma, address,
2218 					pte, pmd, write_access, entry);
2219 		return do_swap_page(mm, vma, address,
2220 					pte, pmd, write_access, entry);
2221 	}
2222 
2223 	ptl = pte_lockptr(mm, pmd);
2224 	spin_lock(ptl);
2225 	if (unlikely(!pte_same(*pte, entry)))
2226 		goto unlock;
2227 	if (write_access) {
2228 		if (!pte_write(entry))
2229 			return do_wp_page(mm, vma, address,
2230 					pte, pmd, ptl, entry);
2231 		entry = pte_mkdirty(entry);
2232 	}
2233 	entry = pte_mkyoung(entry);
2234 	if (!pte_same(old_entry, entry)) {
2235 		ptep_set_access_flags(vma, address, pte, entry, write_access);
2236 		update_mmu_cache(vma, address, entry);
2237 		lazy_mmu_prot_update(entry);
2238 	} else {
2239 		/*
2240 		 * This is needed only for protection faults but the arch code
2241 		 * is not yet telling us if this is a protection fault or not.
2242 		 * This still avoids useless tlb flushes for .text page faults
2243 		 * with threads.
2244 		 */
2245 		if (write_access)
2246 			flush_tlb_page(vma, address);
2247 	}
2248 unlock:
2249 	pte_unmap_unlock(pte, ptl);
2250 	return VM_FAULT_MINOR;
2251 }
2252 
2253 /*
2254  * By the time we get here, we already hold the mm semaphore
2255  */
2256 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2257 		unsigned long address, int write_access)
2258 {
2259 	pgd_t *pgd;
2260 	pud_t *pud;
2261 	pmd_t *pmd;
2262 	pte_t *pte;
2263 
2264 	__set_current_state(TASK_RUNNING);
2265 
2266 	inc_page_state(pgfault);
2267 
2268 	if (unlikely(is_vm_hugetlb_page(vma)))
2269 		return hugetlb_fault(mm, vma, address, write_access);
2270 
2271 	pgd = pgd_offset(mm, address);
2272 	pud = pud_alloc(mm, pgd, address);
2273 	if (!pud)
2274 		return VM_FAULT_OOM;
2275 	pmd = pmd_alloc(mm, pud, address);
2276 	if (!pmd)
2277 		return VM_FAULT_OOM;
2278 	pte = pte_alloc_map(mm, pmd, address);
2279 	if (!pte)
2280 		return VM_FAULT_OOM;
2281 
2282 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2283 }
2284 
2285 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2286 
2287 #ifndef __PAGETABLE_PUD_FOLDED
2288 /*
2289  * Allocate page upper directory.
2290  * We've already handled the fast-path in-line.
2291  */
2292 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2293 {
2294 	pud_t *new = pud_alloc_one(mm, address);
2295 	if (!new)
2296 		return -ENOMEM;
2297 
2298 	spin_lock(&mm->page_table_lock);
2299 	if (pgd_present(*pgd))		/* Another has populated it */
2300 		pud_free(new);
2301 	else
2302 		pgd_populate(mm, pgd, new);
2303 	spin_unlock(&mm->page_table_lock);
2304 	return 0;
2305 }
2306 #else
2307 /* Workaround for gcc 2.96 */
2308 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2309 {
2310 	return 0;
2311 }
2312 #endif /* __PAGETABLE_PUD_FOLDED */
2313 
2314 #ifndef __PAGETABLE_PMD_FOLDED
2315 /*
2316  * Allocate page middle directory.
2317  * We've already handled the fast-path in-line.
2318  */
2319 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2320 {
2321 	pmd_t *new = pmd_alloc_one(mm, address);
2322 	if (!new)
2323 		return -ENOMEM;
2324 
2325 	spin_lock(&mm->page_table_lock);
2326 #ifndef __ARCH_HAS_4LEVEL_HACK
2327 	if (pud_present(*pud))		/* Another has populated it */
2328 		pmd_free(new);
2329 	else
2330 		pud_populate(mm, pud, new);
2331 #else
2332 	if (pgd_present(*pud))		/* Another has populated it */
2333 		pmd_free(new);
2334 	else
2335 		pgd_populate(mm, pud, new);
2336 #endif /* __ARCH_HAS_4LEVEL_HACK */
2337 	spin_unlock(&mm->page_table_lock);
2338 	return 0;
2339 }
2340 #else
2341 /* Workaround for gcc 2.96 */
2342 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2343 {
2344 	return 0;
2345 }
2346 #endif /* __PAGETABLE_PMD_FOLDED */
2347 
2348 int make_pages_present(unsigned long addr, unsigned long end)
2349 {
2350 	int ret, len, write;
2351 	struct vm_area_struct * vma;
2352 
2353 	vma = find_vma(current->mm, addr);
2354 	if (!vma)
2355 		return -1;
2356 	write = (vma->vm_flags & VM_WRITE) != 0;
2357 	BUG_ON(addr >= end);
2358 	BUG_ON(end > vma->vm_end);
2359 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2360 	ret = get_user_pages(current, current->mm, addr,
2361 			len, write, 0, NULL, NULL);
2362 	if (ret < 0)
2363 		return ret;
2364 	return ret == len ? 0 : -1;
2365 }
2366 
2367 /*
2368  * Map a vmalloc()-space virtual address to the physical page.
2369  */
2370 struct page * vmalloc_to_page(void * vmalloc_addr)
2371 {
2372 	unsigned long addr = (unsigned long) vmalloc_addr;
2373 	struct page *page = NULL;
2374 	pgd_t *pgd = pgd_offset_k(addr);
2375 	pud_t *pud;
2376 	pmd_t *pmd;
2377 	pte_t *ptep, pte;
2378 
2379 	if (!pgd_none(*pgd)) {
2380 		pud = pud_offset(pgd, addr);
2381 		if (!pud_none(*pud)) {
2382 			pmd = pmd_offset(pud, addr);
2383 			if (!pmd_none(*pmd)) {
2384 				ptep = pte_offset_map(pmd, addr);
2385 				pte = *ptep;
2386 				if (pte_present(pte))
2387 					page = pte_page(pte);
2388 				pte_unmap(ptep);
2389 			}
2390 		}
2391 	}
2392 	return page;
2393 }
2394 
2395 EXPORT_SYMBOL(vmalloc_to_page);
2396 
2397 /*
2398  * Map a vmalloc()-space virtual address to the physical page frame number.
2399  */
2400 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2401 {
2402 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2403 }
2404 
2405 EXPORT_SYMBOL(vmalloc_to_pfn);
2406 
2407 #if !defined(__HAVE_ARCH_GATE_AREA)
2408 
2409 #if defined(AT_SYSINFO_EHDR)
2410 static struct vm_area_struct gate_vma;
2411 
2412 static int __init gate_vma_init(void)
2413 {
2414 	gate_vma.vm_mm = NULL;
2415 	gate_vma.vm_start = FIXADDR_USER_START;
2416 	gate_vma.vm_end = FIXADDR_USER_END;
2417 	gate_vma.vm_page_prot = PAGE_READONLY;
2418 	gate_vma.vm_flags = 0;
2419 	return 0;
2420 }
2421 __initcall(gate_vma_init);
2422 #endif
2423 
2424 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2425 {
2426 #ifdef AT_SYSINFO_EHDR
2427 	return &gate_vma;
2428 #else
2429 	return NULL;
2430 #endif
2431 }
2432 
2433 int in_gate_area_no_task(unsigned long addr)
2434 {
2435 #ifdef AT_SYSINFO_EHDR
2436 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2437 		return 1;
2438 #endif
2439 	return 0;
2440 }
2441 
2442 #endif	/* __HAVE_ARCH_GATE_AREA */
2443