1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/init.h> 51 52 #include <asm/pgalloc.h> 53 #include <asm/uaccess.h> 54 #include <asm/tlb.h> 55 #include <asm/tlbflush.h> 56 #include <asm/pgtable.h> 57 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 61 #ifndef CONFIG_NEED_MULTIPLE_NODES 62 /* use the per-pgdat data instead for discontigmem - mbligh */ 63 unsigned long max_mapnr; 64 struct page *mem_map; 65 66 EXPORT_SYMBOL(max_mapnr); 67 EXPORT_SYMBOL(mem_map); 68 #endif 69 70 unsigned long num_physpages; 71 /* 72 * A number of key systems in x86 including ioremap() rely on the assumption 73 * that high_memory defines the upper bound on direct map memory, then end 74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 76 * and ZONE_HIGHMEM. 77 */ 78 void * high_memory; 79 unsigned long vmalloc_earlyreserve; 80 81 EXPORT_SYMBOL(num_physpages); 82 EXPORT_SYMBOL(high_memory); 83 EXPORT_SYMBOL(vmalloc_earlyreserve); 84 85 int randomize_va_space __read_mostly = 1; 86 87 static int __init disable_randmaps(char *s) 88 { 89 randomize_va_space = 0; 90 return 1; 91 } 92 __setup("norandmaps", disable_randmaps); 93 94 95 /* 96 * If a p?d_bad entry is found while walking page tables, report 97 * the error, before resetting entry to p?d_none. Usually (but 98 * very seldom) called out from the p?d_none_or_clear_bad macros. 99 */ 100 101 void pgd_clear_bad(pgd_t *pgd) 102 { 103 pgd_ERROR(*pgd); 104 pgd_clear(pgd); 105 } 106 107 void pud_clear_bad(pud_t *pud) 108 { 109 pud_ERROR(*pud); 110 pud_clear(pud); 111 } 112 113 void pmd_clear_bad(pmd_t *pmd) 114 { 115 pmd_ERROR(*pmd); 116 pmd_clear(pmd); 117 } 118 119 /* 120 * Note: this doesn't free the actual pages themselves. That 121 * has been handled earlier when unmapping all the memory regions. 122 */ 123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 124 { 125 struct page *page = pmd_page(*pmd); 126 pmd_clear(pmd); 127 pte_lock_deinit(page); 128 pte_free_tlb(tlb, page); 129 dec_page_state(nr_page_table_pages); 130 tlb->mm->nr_ptes--; 131 } 132 133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 134 unsigned long addr, unsigned long end, 135 unsigned long floor, unsigned long ceiling) 136 { 137 pmd_t *pmd; 138 unsigned long next; 139 unsigned long start; 140 141 start = addr; 142 pmd = pmd_offset(pud, addr); 143 do { 144 next = pmd_addr_end(addr, end); 145 if (pmd_none_or_clear_bad(pmd)) 146 continue; 147 free_pte_range(tlb, pmd); 148 } while (pmd++, addr = next, addr != end); 149 150 start &= PUD_MASK; 151 if (start < floor) 152 return; 153 if (ceiling) { 154 ceiling &= PUD_MASK; 155 if (!ceiling) 156 return; 157 } 158 if (end - 1 > ceiling - 1) 159 return; 160 161 pmd = pmd_offset(pud, start); 162 pud_clear(pud); 163 pmd_free_tlb(tlb, pmd); 164 } 165 166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 167 unsigned long addr, unsigned long end, 168 unsigned long floor, unsigned long ceiling) 169 { 170 pud_t *pud; 171 unsigned long next; 172 unsigned long start; 173 174 start = addr; 175 pud = pud_offset(pgd, addr); 176 do { 177 next = pud_addr_end(addr, end); 178 if (pud_none_or_clear_bad(pud)) 179 continue; 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 181 } while (pud++, addr = next, addr != end); 182 183 start &= PGDIR_MASK; 184 if (start < floor) 185 return; 186 if (ceiling) { 187 ceiling &= PGDIR_MASK; 188 if (!ceiling) 189 return; 190 } 191 if (end - 1 > ceiling - 1) 192 return; 193 194 pud = pud_offset(pgd, start); 195 pgd_clear(pgd); 196 pud_free_tlb(tlb, pud); 197 } 198 199 /* 200 * This function frees user-level page tables of a process. 201 * 202 * Must be called with pagetable lock held. 203 */ 204 void free_pgd_range(struct mmu_gather **tlb, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pgd_t *pgd; 209 unsigned long next; 210 unsigned long start; 211 212 /* 213 * The next few lines have given us lots of grief... 214 * 215 * Why are we testing PMD* at this top level? Because often 216 * there will be no work to do at all, and we'd prefer not to 217 * go all the way down to the bottom just to discover that. 218 * 219 * Why all these "- 1"s? Because 0 represents both the bottom 220 * of the address space and the top of it (using -1 for the 221 * top wouldn't help much: the masks would do the wrong thing). 222 * The rule is that addr 0 and floor 0 refer to the bottom of 223 * the address space, but end 0 and ceiling 0 refer to the top 224 * Comparisons need to use "end - 1" and "ceiling - 1" (though 225 * that end 0 case should be mythical). 226 * 227 * Wherever addr is brought up or ceiling brought down, we must 228 * be careful to reject "the opposite 0" before it confuses the 229 * subsequent tests. But what about where end is brought down 230 * by PMD_SIZE below? no, end can't go down to 0 there. 231 * 232 * Whereas we round start (addr) and ceiling down, by different 233 * masks at different levels, in order to test whether a table 234 * now has no other vmas using it, so can be freed, we don't 235 * bother to round floor or end up - the tests don't need that. 236 */ 237 238 addr &= PMD_MASK; 239 if (addr < floor) { 240 addr += PMD_SIZE; 241 if (!addr) 242 return; 243 } 244 if (ceiling) { 245 ceiling &= PMD_MASK; 246 if (!ceiling) 247 return; 248 } 249 if (end - 1 > ceiling - 1) 250 end -= PMD_SIZE; 251 if (addr > end - 1) 252 return; 253 254 start = addr; 255 pgd = pgd_offset((*tlb)->mm, addr); 256 do { 257 next = pgd_addr_end(addr, end); 258 if (pgd_none_or_clear_bad(pgd)) 259 continue; 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 261 } while (pgd++, addr = next, addr != end); 262 263 if (!(*tlb)->fullmm) 264 flush_tlb_pgtables((*tlb)->mm, start, end); 265 } 266 267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 268 unsigned long floor, unsigned long ceiling) 269 { 270 while (vma) { 271 struct vm_area_struct *next = vma->vm_next; 272 unsigned long addr = vma->vm_start; 273 274 /* 275 * Hide vma from rmap and vmtruncate before freeing pgtables 276 */ 277 anon_vma_unlink(vma); 278 unlink_file_vma(vma); 279 280 if (is_vm_hugetlb_page(vma)) { 281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 282 floor, next? next->vm_start: ceiling); 283 } else { 284 /* 285 * Optimization: gather nearby vmas into one call down 286 */ 287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 288 && !is_vm_hugetlb_page(next)) { 289 vma = next; 290 next = vma->vm_next; 291 anon_vma_unlink(vma); 292 unlink_file_vma(vma); 293 } 294 free_pgd_range(tlb, addr, vma->vm_end, 295 floor, next? next->vm_start: ceiling); 296 } 297 vma = next; 298 } 299 } 300 301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 302 { 303 struct page *new = pte_alloc_one(mm, address); 304 if (!new) 305 return -ENOMEM; 306 307 pte_lock_init(new); 308 spin_lock(&mm->page_table_lock); 309 if (pmd_present(*pmd)) { /* Another has populated it */ 310 pte_lock_deinit(new); 311 pte_free(new); 312 } else { 313 mm->nr_ptes++; 314 inc_page_state(nr_page_table_pages); 315 pmd_populate(mm, pmd, new); 316 } 317 spin_unlock(&mm->page_table_lock); 318 return 0; 319 } 320 321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 322 { 323 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 324 if (!new) 325 return -ENOMEM; 326 327 spin_lock(&init_mm.page_table_lock); 328 if (pmd_present(*pmd)) /* Another has populated it */ 329 pte_free_kernel(new); 330 else 331 pmd_populate_kernel(&init_mm, pmd, new); 332 spin_unlock(&init_mm.page_table_lock); 333 return 0; 334 } 335 336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 337 { 338 if (file_rss) 339 add_mm_counter(mm, file_rss, file_rss); 340 if (anon_rss) 341 add_mm_counter(mm, anon_rss, anon_rss); 342 } 343 344 /* 345 * This function is called to print an error when a bad pte 346 * is found. For example, we might have a PFN-mapped pte in 347 * a region that doesn't allow it. 348 * 349 * The calling function must still handle the error. 350 */ 351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 352 { 353 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 354 "vm_flags = %lx, vaddr = %lx\n", 355 (long long)pte_val(pte), 356 (vma->vm_mm == current->mm ? current->comm : "???"), 357 vma->vm_flags, vaddr); 358 dump_stack(); 359 } 360 361 static inline int is_cow_mapping(unsigned int flags) 362 { 363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 364 } 365 366 /* 367 * This function gets the "struct page" associated with a pte. 368 * 369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping 370 * will have each page table entry just pointing to a raw page frame 371 * number, and as far as the VM layer is concerned, those do not have 372 * pages associated with them - even if the PFN might point to memory 373 * that otherwise is perfectly fine and has a "struct page". 374 * 375 * The way we recognize those mappings is through the rules set up 376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, 377 * and the vm_pgoff will point to the first PFN mapped: thus every 378 * page that is a raw mapping will always honor the rule 379 * 380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 381 * 382 * and if that isn't true, the page has been COW'ed (in which case it 383 * _does_ have a "struct page" associated with it even if it is in a 384 * VM_PFNMAP range). 385 */ 386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 387 { 388 unsigned long pfn = pte_pfn(pte); 389 390 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 392 if (pfn == vma->vm_pgoff + off) 393 return NULL; 394 if (!is_cow_mapping(vma->vm_flags)) 395 return NULL; 396 } 397 398 /* 399 * Add some anal sanity checks for now. Eventually, 400 * we should just do "return pfn_to_page(pfn)", but 401 * in the meantime we check that we get a valid pfn, 402 * and that the resulting page looks ok. 403 */ 404 if (unlikely(!pfn_valid(pfn))) { 405 print_bad_pte(vma, pte, addr); 406 return NULL; 407 } 408 409 /* 410 * NOTE! We still have PageReserved() pages in the page 411 * tables. 412 * 413 * The PAGE_ZERO() pages and various VDSO mappings can 414 * cause them to exist. 415 */ 416 return pfn_to_page(pfn); 417 } 418 419 /* 420 * copy one vm_area from one task to the other. Assumes the page tables 421 * already present in the new task to be cleared in the whole range 422 * covered by this vma. 423 */ 424 425 static inline void 426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 428 unsigned long addr, int *rss) 429 { 430 unsigned long vm_flags = vma->vm_flags; 431 pte_t pte = *src_pte; 432 struct page *page; 433 434 /* pte contains position in swap or file, so copy. */ 435 if (unlikely(!pte_present(pte))) { 436 if (!pte_file(pte)) { 437 swap_duplicate(pte_to_swp_entry(pte)); 438 /* make sure dst_mm is on swapoff's mmlist. */ 439 if (unlikely(list_empty(&dst_mm->mmlist))) { 440 spin_lock(&mmlist_lock); 441 if (list_empty(&dst_mm->mmlist)) 442 list_add(&dst_mm->mmlist, 443 &src_mm->mmlist); 444 spin_unlock(&mmlist_lock); 445 } 446 } 447 goto out_set_pte; 448 } 449 450 /* 451 * If it's a COW mapping, write protect it both 452 * in the parent and the child 453 */ 454 if (is_cow_mapping(vm_flags)) { 455 ptep_set_wrprotect(src_mm, addr, src_pte); 456 pte = *src_pte; 457 } 458 459 /* 460 * If it's a shared mapping, mark it clean in 461 * the child 462 */ 463 if (vm_flags & VM_SHARED) 464 pte = pte_mkclean(pte); 465 pte = pte_mkold(pte); 466 467 page = vm_normal_page(vma, addr, pte); 468 if (page) { 469 get_page(page); 470 page_dup_rmap(page); 471 rss[!!PageAnon(page)]++; 472 } 473 474 out_set_pte: 475 set_pte_at(dst_mm, addr, dst_pte, pte); 476 } 477 478 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 479 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 480 unsigned long addr, unsigned long end) 481 { 482 pte_t *src_pte, *dst_pte; 483 spinlock_t *src_ptl, *dst_ptl; 484 int progress = 0; 485 int rss[2]; 486 487 again: 488 rss[1] = rss[0] = 0; 489 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 490 if (!dst_pte) 491 return -ENOMEM; 492 src_pte = pte_offset_map_nested(src_pmd, addr); 493 src_ptl = pte_lockptr(src_mm, src_pmd); 494 spin_lock(src_ptl); 495 496 do { 497 /* 498 * We are holding two locks at this point - either of them 499 * could generate latencies in another task on another CPU. 500 */ 501 if (progress >= 32) { 502 progress = 0; 503 if (need_resched() || 504 need_lockbreak(src_ptl) || 505 need_lockbreak(dst_ptl)) 506 break; 507 } 508 if (pte_none(*src_pte)) { 509 progress++; 510 continue; 511 } 512 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 513 progress += 8; 514 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 515 516 spin_unlock(src_ptl); 517 pte_unmap_nested(src_pte - 1); 518 add_mm_rss(dst_mm, rss[0], rss[1]); 519 pte_unmap_unlock(dst_pte - 1, dst_ptl); 520 cond_resched(); 521 if (addr != end) 522 goto again; 523 return 0; 524 } 525 526 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 527 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 528 unsigned long addr, unsigned long end) 529 { 530 pmd_t *src_pmd, *dst_pmd; 531 unsigned long next; 532 533 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 534 if (!dst_pmd) 535 return -ENOMEM; 536 src_pmd = pmd_offset(src_pud, addr); 537 do { 538 next = pmd_addr_end(addr, end); 539 if (pmd_none_or_clear_bad(src_pmd)) 540 continue; 541 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 542 vma, addr, next)) 543 return -ENOMEM; 544 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 545 return 0; 546 } 547 548 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 549 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 550 unsigned long addr, unsigned long end) 551 { 552 pud_t *src_pud, *dst_pud; 553 unsigned long next; 554 555 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 556 if (!dst_pud) 557 return -ENOMEM; 558 src_pud = pud_offset(src_pgd, addr); 559 do { 560 next = pud_addr_end(addr, end); 561 if (pud_none_or_clear_bad(src_pud)) 562 continue; 563 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 564 vma, addr, next)) 565 return -ENOMEM; 566 } while (dst_pud++, src_pud++, addr = next, addr != end); 567 return 0; 568 } 569 570 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 571 struct vm_area_struct *vma) 572 { 573 pgd_t *src_pgd, *dst_pgd; 574 unsigned long next; 575 unsigned long addr = vma->vm_start; 576 unsigned long end = vma->vm_end; 577 578 /* 579 * Don't copy ptes where a page fault will fill them correctly. 580 * Fork becomes much lighter when there are big shared or private 581 * readonly mappings. The tradeoff is that copy_page_range is more 582 * efficient than faulting. 583 */ 584 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 585 if (!vma->anon_vma) 586 return 0; 587 } 588 589 if (is_vm_hugetlb_page(vma)) 590 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 591 592 dst_pgd = pgd_offset(dst_mm, addr); 593 src_pgd = pgd_offset(src_mm, addr); 594 do { 595 next = pgd_addr_end(addr, end); 596 if (pgd_none_or_clear_bad(src_pgd)) 597 continue; 598 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 599 vma, addr, next)) 600 return -ENOMEM; 601 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 602 return 0; 603 } 604 605 static unsigned long zap_pte_range(struct mmu_gather *tlb, 606 struct vm_area_struct *vma, pmd_t *pmd, 607 unsigned long addr, unsigned long end, 608 long *zap_work, struct zap_details *details) 609 { 610 struct mm_struct *mm = tlb->mm; 611 pte_t *pte; 612 spinlock_t *ptl; 613 int file_rss = 0; 614 int anon_rss = 0; 615 616 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 617 do { 618 pte_t ptent = *pte; 619 if (pte_none(ptent)) { 620 (*zap_work)--; 621 continue; 622 } 623 624 (*zap_work) -= PAGE_SIZE; 625 626 if (pte_present(ptent)) { 627 struct page *page; 628 629 page = vm_normal_page(vma, addr, ptent); 630 if (unlikely(details) && page) { 631 /* 632 * unmap_shared_mapping_pages() wants to 633 * invalidate cache without truncating: 634 * unmap shared but keep private pages. 635 */ 636 if (details->check_mapping && 637 details->check_mapping != page->mapping) 638 continue; 639 /* 640 * Each page->index must be checked when 641 * invalidating or truncating nonlinear. 642 */ 643 if (details->nonlinear_vma && 644 (page->index < details->first_index || 645 page->index > details->last_index)) 646 continue; 647 } 648 ptent = ptep_get_and_clear_full(mm, addr, pte, 649 tlb->fullmm); 650 tlb_remove_tlb_entry(tlb, pte, addr); 651 if (unlikely(!page)) 652 continue; 653 if (unlikely(details) && details->nonlinear_vma 654 && linear_page_index(details->nonlinear_vma, 655 addr) != page->index) 656 set_pte_at(mm, addr, pte, 657 pgoff_to_pte(page->index)); 658 if (PageAnon(page)) 659 anon_rss--; 660 else { 661 if (pte_dirty(ptent)) 662 set_page_dirty(page); 663 if (pte_young(ptent)) 664 mark_page_accessed(page); 665 file_rss--; 666 } 667 page_remove_rmap(page); 668 tlb_remove_page(tlb, page); 669 continue; 670 } 671 /* 672 * If details->check_mapping, we leave swap entries; 673 * if details->nonlinear_vma, we leave file entries. 674 */ 675 if (unlikely(details)) 676 continue; 677 if (!pte_file(ptent)) 678 free_swap_and_cache(pte_to_swp_entry(ptent)); 679 pte_clear_full(mm, addr, pte, tlb->fullmm); 680 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 681 682 add_mm_rss(mm, file_rss, anon_rss); 683 pte_unmap_unlock(pte - 1, ptl); 684 685 return addr; 686 } 687 688 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 689 struct vm_area_struct *vma, pud_t *pud, 690 unsigned long addr, unsigned long end, 691 long *zap_work, struct zap_details *details) 692 { 693 pmd_t *pmd; 694 unsigned long next; 695 696 pmd = pmd_offset(pud, addr); 697 do { 698 next = pmd_addr_end(addr, end); 699 if (pmd_none_or_clear_bad(pmd)) { 700 (*zap_work)--; 701 continue; 702 } 703 next = zap_pte_range(tlb, vma, pmd, addr, next, 704 zap_work, details); 705 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 706 707 return addr; 708 } 709 710 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 711 struct vm_area_struct *vma, pgd_t *pgd, 712 unsigned long addr, unsigned long end, 713 long *zap_work, struct zap_details *details) 714 { 715 pud_t *pud; 716 unsigned long next; 717 718 pud = pud_offset(pgd, addr); 719 do { 720 next = pud_addr_end(addr, end); 721 if (pud_none_or_clear_bad(pud)) { 722 (*zap_work)--; 723 continue; 724 } 725 next = zap_pmd_range(tlb, vma, pud, addr, next, 726 zap_work, details); 727 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 728 729 return addr; 730 } 731 732 static unsigned long unmap_page_range(struct mmu_gather *tlb, 733 struct vm_area_struct *vma, 734 unsigned long addr, unsigned long end, 735 long *zap_work, struct zap_details *details) 736 { 737 pgd_t *pgd; 738 unsigned long next; 739 740 if (details && !details->check_mapping && !details->nonlinear_vma) 741 details = NULL; 742 743 BUG_ON(addr >= end); 744 tlb_start_vma(tlb, vma); 745 pgd = pgd_offset(vma->vm_mm, addr); 746 do { 747 next = pgd_addr_end(addr, end); 748 if (pgd_none_or_clear_bad(pgd)) { 749 (*zap_work)--; 750 continue; 751 } 752 next = zap_pud_range(tlb, vma, pgd, addr, next, 753 zap_work, details); 754 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 755 tlb_end_vma(tlb, vma); 756 757 return addr; 758 } 759 760 #ifdef CONFIG_PREEMPT 761 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 762 #else 763 /* No preempt: go for improved straight-line efficiency */ 764 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 765 #endif 766 767 /** 768 * unmap_vmas - unmap a range of memory covered by a list of vma's 769 * @tlbp: address of the caller's struct mmu_gather 770 * @vma: the starting vma 771 * @start_addr: virtual address at which to start unmapping 772 * @end_addr: virtual address at which to end unmapping 773 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 774 * @details: details of nonlinear truncation or shared cache invalidation 775 * 776 * Returns the end address of the unmapping (restart addr if interrupted). 777 * 778 * Unmap all pages in the vma list. 779 * 780 * We aim to not hold locks for too long (for scheduling latency reasons). 781 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 782 * return the ending mmu_gather to the caller. 783 * 784 * Only addresses between `start' and `end' will be unmapped. 785 * 786 * The VMA list must be sorted in ascending virtual address order. 787 * 788 * unmap_vmas() assumes that the caller will flush the whole unmapped address 789 * range after unmap_vmas() returns. So the only responsibility here is to 790 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 791 * drops the lock and schedules. 792 */ 793 unsigned long unmap_vmas(struct mmu_gather **tlbp, 794 struct vm_area_struct *vma, unsigned long start_addr, 795 unsigned long end_addr, unsigned long *nr_accounted, 796 struct zap_details *details) 797 { 798 long zap_work = ZAP_BLOCK_SIZE; 799 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 800 int tlb_start_valid = 0; 801 unsigned long start = start_addr; 802 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 803 int fullmm = (*tlbp)->fullmm; 804 805 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 806 unsigned long end; 807 808 start = max(vma->vm_start, start_addr); 809 if (start >= vma->vm_end) 810 continue; 811 end = min(vma->vm_end, end_addr); 812 if (end <= vma->vm_start) 813 continue; 814 815 if (vma->vm_flags & VM_ACCOUNT) 816 *nr_accounted += (end - start) >> PAGE_SHIFT; 817 818 while (start != end) { 819 if (!tlb_start_valid) { 820 tlb_start = start; 821 tlb_start_valid = 1; 822 } 823 824 if (unlikely(is_vm_hugetlb_page(vma))) { 825 unmap_hugepage_range(vma, start, end); 826 zap_work -= (end - start) / 827 (HPAGE_SIZE / PAGE_SIZE); 828 start = end; 829 } else 830 start = unmap_page_range(*tlbp, vma, 831 start, end, &zap_work, details); 832 833 if (zap_work > 0) { 834 BUG_ON(start != end); 835 break; 836 } 837 838 tlb_finish_mmu(*tlbp, tlb_start, start); 839 840 if (need_resched() || 841 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 842 if (i_mmap_lock) { 843 *tlbp = NULL; 844 goto out; 845 } 846 cond_resched(); 847 } 848 849 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 850 tlb_start_valid = 0; 851 zap_work = ZAP_BLOCK_SIZE; 852 } 853 } 854 out: 855 return start; /* which is now the end (or restart) address */ 856 } 857 858 /** 859 * zap_page_range - remove user pages in a given range 860 * @vma: vm_area_struct holding the applicable pages 861 * @address: starting address of pages to zap 862 * @size: number of bytes to zap 863 * @details: details of nonlinear truncation or shared cache invalidation 864 */ 865 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 866 unsigned long size, struct zap_details *details) 867 { 868 struct mm_struct *mm = vma->vm_mm; 869 struct mmu_gather *tlb; 870 unsigned long end = address + size; 871 unsigned long nr_accounted = 0; 872 873 lru_add_drain(); 874 tlb = tlb_gather_mmu(mm, 0); 875 update_hiwater_rss(mm); 876 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 877 if (tlb) 878 tlb_finish_mmu(tlb, address, end); 879 return end; 880 } 881 882 /* 883 * Do a quick page-table lookup for a single page. 884 */ 885 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 886 unsigned int flags) 887 { 888 pgd_t *pgd; 889 pud_t *pud; 890 pmd_t *pmd; 891 pte_t *ptep, pte; 892 spinlock_t *ptl; 893 struct page *page; 894 struct mm_struct *mm = vma->vm_mm; 895 896 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 897 if (!IS_ERR(page)) { 898 BUG_ON(flags & FOLL_GET); 899 goto out; 900 } 901 902 page = NULL; 903 pgd = pgd_offset(mm, address); 904 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 905 goto no_page_table; 906 907 pud = pud_offset(pgd, address); 908 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 909 goto no_page_table; 910 911 pmd = pmd_offset(pud, address); 912 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 913 goto no_page_table; 914 915 if (pmd_huge(*pmd)) { 916 BUG_ON(flags & FOLL_GET); 917 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 918 goto out; 919 } 920 921 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 922 if (!ptep) 923 goto out; 924 925 pte = *ptep; 926 if (!pte_present(pte)) 927 goto unlock; 928 if ((flags & FOLL_WRITE) && !pte_write(pte)) 929 goto unlock; 930 page = vm_normal_page(vma, address, pte); 931 if (unlikely(!page)) 932 goto unlock; 933 934 if (flags & FOLL_GET) 935 get_page(page); 936 if (flags & FOLL_TOUCH) { 937 if ((flags & FOLL_WRITE) && 938 !pte_dirty(pte) && !PageDirty(page)) 939 set_page_dirty(page); 940 mark_page_accessed(page); 941 } 942 unlock: 943 pte_unmap_unlock(ptep, ptl); 944 out: 945 return page; 946 947 no_page_table: 948 /* 949 * When core dumping an enormous anonymous area that nobody 950 * has touched so far, we don't want to allocate page tables. 951 */ 952 if (flags & FOLL_ANON) { 953 page = ZERO_PAGE(address); 954 if (flags & FOLL_GET) 955 get_page(page); 956 BUG_ON(flags & FOLL_WRITE); 957 } 958 return page; 959 } 960 961 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 962 unsigned long start, int len, int write, int force, 963 struct page **pages, struct vm_area_struct **vmas) 964 { 965 int i; 966 unsigned int vm_flags; 967 968 /* 969 * Require read or write permissions. 970 * If 'force' is set, we only require the "MAY" flags. 971 */ 972 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 973 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 974 i = 0; 975 976 do { 977 struct vm_area_struct *vma; 978 unsigned int foll_flags; 979 980 vma = find_extend_vma(mm, start); 981 if (!vma && in_gate_area(tsk, start)) { 982 unsigned long pg = start & PAGE_MASK; 983 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 984 pgd_t *pgd; 985 pud_t *pud; 986 pmd_t *pmd; 987 pte_t *pte; 988 if (write) /* user gate pages are read-only */ 989 return i ? : -EFAULT; 990 if (pg > TASK_SIZE) 991 pgd = pgd_offset_k(pg); 992 else 993 pgd = pgd_offset_gate(mm, pg); 994 BUG_ON(pgd_none(*pgd)); 995 pud = pud_offset(pgd, pg); 996 BUG_ON(pud_none(*pud)); 997 pmd = pmd_offset(pud, pg); 998 if (pmd_none(*pmd)) 999 return i ? : -EFAULT; 1000 pte = pte_offset_map(pmd, pg); 1001 if (pte_none(*pte)) { 1002 pte_unmap(pte); 1003 return i ? : -EFAULT; 1004 } 1005 if (pages) { 1006 struct page *page = vm_normal_page(gate_vma, start, *pte); 1007 pages[i] = page; 1008 if (page) 1009 get_page(page); 1010 } 1011 pte_unmap(pte); 1012 if (vmas) 1013 vmas[i] = gate_vma; 1014 i++; 1015 start += PAGE_SIZE; 1016 len--; 1017 continue; 1018 } 1019 1020 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1021 || !(vm_flags & vma->vm_flags)) 1022 return i ? : -EFAULT; 1023 1024 if (is_vm_hugetlb_page(vma)) { 1025 i = follow_hugetlb_page(mm, vma, pages, vmas, 1026 &start, &len, i); 1027 continue; 1028 } 1029 1030 foll_flags = FOLL_TOUCH; 1031 if (pages) 1032 foll_flags |= FOLL_GET; 1033 if (!write && !(vma->vm_flags & VM_LOCKED) && 1034 (!vma->vm_ops || !vma->vm_ops->nopage)) 1035 foll_flags |= FOLL_ANON; 1036 1037 do { 1038 struct page *page; 1039 1040 if (write) 1041 foll_flags |= FOLL_WRITE; 1042 1043 cond_resched(); 1044 while (!(page = follow_page(vma, start, foll_flags))) { 1045 int ret; 1046 ret = __handle_mm_fault(mm, vma, start, 1047 foll_flags & FOLL_WRITE); 1048 /* 1049 * The VM_FAULT_WRITE bit tells us that do_wp_page has 1050 * broken COW when necessary, even if maybe_mkwrite 1051 * decided not to set pte_write. We can thus safely do 1052 * subsequent page lookups as if they were reads. 1053 */ 1054 if (ret & VM_FAULT_WRITE) 1055 foll_flags &= ~FOLL_WRITE; 1056 1057 switch (ret & ~VM_FAULT_WRITE) { 1058 case VM_FAULT_MINOR: 1059 tsk->min_flt++; 1060 break; 1061 case VM_FAULT_MAJOR: 1062 tsk->maj_flt++; 1063 break; 1064 case VM_FAULT_SIGBUS: 1065 return i ? i : -EFAULT; 1066 case VM_FAULT_OOM: 1067 return i ? i : -ENOMEM; 1068 default: 1069 BUG(); 1070 } 1071 } 1072 if (pages) { 1073 pages[i] = page; 1074 1075 flush_anon_page(page, start); 1076 flush_dcache_page(page); 1077 } 1078 if (vmas) 1079 vmas[i] = vma; 1080 i++; 1081 start += PAGE_SIZE; 1082 len--; 1083 } while (len && start < vma->vm_end); 1084 } while (len); 1085 return i; 1086 } 1087 EXPORT_SYMBOL(get_user_pages); 1088 1089 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1090 unsigned long addr, unsigned long end, pgprot_t prot) 1091 { 1092 pte_t *pte; 1093 spinlock_t *ptl; 1094 1095 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1096 if (!pte) 1097 return -ENOMEM; 1098 do { 1099 struct page *page = ZERO_PAGE(addr); 1100 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); 1101 page_cache_get(page); 1102 page_add_file_rmap(page); 1103 inc_mm_counter(mm, file_rss); 1104 BUG_ON(!pte_none(*pte)); 1105 set_pte_at(mm, addr, pte, zero_pte); 1106 } while (pte++, addr += PAGE_SIZE, addr != end); 1107 pte_unmap_unlock(pte - 1, ptl); 1108 return 0; 1109 } 1110 1111 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1112 unsigned long addr, unsigned long end, pgprot_t prot) 1113 { 1114 pmd_t *pmd; 1115 unsigned long next; 1116 1117 pmd = pmd_alloc(mm, pud, addr); 1118 if (!pmd) 1119 return -ENOMEM; 1120 do { 1121 next = pmd_addr_end(addr, end); 1122 if (zeromap_pte_range(mm, pmd, addr, next, prot)) 1123 return -ENOMEM; 1124 } while (pmd++, addr = next, addr != end); 1125 return 0; 1126 } 1127 1128 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1129 unsigned long addr, unsigned long end, pgprot_t prot) 1130 { 1131 pud_t *pud; 1132 unsigned long next; 1133 1134 pud = pud_alloc(mm, pgd, addr); 1135 if (!pud) 1136 return -ENOMEM; 1137 do { 1138 next = pud_addr_end(addr, end); 1139 if (zeromap_pmd_range(mm, pud, addr, next, prot)) 1140 return -ENOMEM; 1141 } while (pud++, addr = next, addr != end); 1142 return 0; 1143 } 1144 1145 int zeromap_page_range(struct vm_area_struct *vma, 1146 unsigned long addr, unsigned long size, pgprot_t prot) 1147 { 1148 pgd_t *pgd; 1149 unsigned long next; 1150 unsigned long end = addr + size; 1151 struct mm_struct *mm = vma->vm_mm; 1152 int err; 1153 1154 BUG_ON(addr >= end); 1155 pgd = pgd_offset(mm, addr); 1156 flush_cache_range(vma, addr, end); 1157 do { 1158 next = pgd_addr_end(addr, end); 1159 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1160 if (err) 1161 break; 1162 } while (pgd++, addr = next, addr != end); 1163 return err; 1164 } 1165 1166 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) 1167 { 1168 pgd_t * pgd = pgd_offset(mm, addr); 1169 pud_t * pud = pud_alloc(mm, pgd, addr); 1170 if (pud) { 1171 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1172 if (pmd) 1173 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1174 } 1175 return NULL; 1176 } 1177 1178 /* 1179 * This is the old fallback for page remapping. 1180 * 1181 * For historical reasons, it only allows reserved pages. Only 1182 * old drivers should use this, and they needed to mark their 1183 * pages reserved for the old functions anyway. 1184 */ 1185 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) 1186 { 1187 int retval; 1188 pte_t *pte; 1189 spinlock_t *ptl; 1190 1191 retval = -EINVAL; 1192 if (PageAnon(page)) 1193 goto out; 1194 retval = -ENOMEM; 1195 flush_dcache_page(page); 1196 pte = get_locked_pte(mm, addr, &ptl); 1197 if (!pte) 1198 goto out; 1199 retval = -EBUSY; 1200 if (!pte_none(*pte)) 1201 goto out_unlock; 1202 1203 /* Ok, finally just insert the thing.. */ 1204 get_page(page); 1205 inc_mm_counter(mm, file_rss); 1206 page_add_file_rmap(page); 1207 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1208 1209 retval = 0; 1210 out_unlock: 1211 pte_unmap_unlock(pte, ptl); 1212 out: 1213 return retval; 1214 } 1215 1216 /* 1217 * This allows drivers to insert individual pages they've allocated 1218 * into a user vma. 1219 * 1220 * The page has to be a nice clean _individual_ kernel allocation. 1221 * If you allocate a compound page, you need to have marked it as 1222 * such (__GFP_COMP), or manually just split the page up yourself 1223 * (see split_page()). 1224 * 1225 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1226 * took an arbitrary page protection parameter. This doesn't allow 1227 * that. Your vma protection will have to be set up correctly, which 1228 * means that if you want a shared writable mapping, you'd better 1229 * ask for a shared writable mapping! 1230 * 1231 * The page does not need to be reserved. 1232 */ 1233 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) 1234 { 1235 if (addr < vma->vm_start || addr >= vma->vm_end) 1236 return -EFAULT; 1237 if (!page_count(page)) 1238 return -EINVAL; 1239 vma->vm_flags |= VM_INSERTPAGE; 1240 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); 1241 } 1242 EXPORT_SYMBOL(vm_insert_page); 1243 1244 /* 1245 * maps a range of physical memory into the requested pages. the old 1246 * mappings are removed. any references to nonexistent pages results 1247 * in null mappings (currently treated as "copy-on-access") 1248 */ 1249 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1250 unsigned long addr, unsigned long end, 1251 unsigned long pfn, pgprot_t prot) 1252 { 1253 pte_t *pte; 1254 spinlock_t *ptl; 1255 1256 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1257 if (!pte) 1258 return -ENOMEM; 1259 do { 1260 BUG_ON(!pte_none(*pte)); 1261 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1262 pfn++; 1263 } while (pte++, addr += PAGE_SIZE, addr != end); 1264 pte_unmap_unlock(pte - 1, ptl); 1265 return 0; 1266 } 1267 1268 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1269 unsigned long addr, unsigned long end, 1270 unsigned long pfn, pgprot_t prot) 1271 { 1272 pmd_t *pmd; 1273 unsigned long next; 1274 1275 pfn -= addr >> PAGE_SHIFT; 1276 pmd = pmd_alloc(mm, pud, addr); 1277 if (!pmd) 1278 return -ENOMEM; 1279 do { 1280 next = pmd_addr_end(addr, end); 1281 if (remap_pte_range(mm, pmd, addr, next, 1282 pfn + (addr >> PAGE_SHIFT), prot)) 1283 return -ENOMEM; 1284 } while (pmd++, addr = next, addr != end); 1285 return 0; 1286 } 1287 1288 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1289 unsigned long addr, unsigned long end, 1290 unsigned long pfn, pgprot_t prot) 1291 { 1292 pud_t *pud; 1293 unsigned long next; 1294 1295 pfn -= addr >> PAGE_SHIFT; 1296 pud = pud_alloc(mm, pgd, addr); 1297 if (!pud) 1298 return -ENOMEM; 1299 do { 1300 next = pud_addr_end(addr, end); 1301 if (remap_pmd_range(mm, pud, addr, next, 1302 pfn + (addr >> PAGE_SHIFT), prot)) 1303 return -ENOMEM; 1304 } while (pud++, addr = next, addr != end); 1305 return 0; 1306 } 1307 1308 /* Note: this is only safe if the mm semaphore is held when called. */ 1309 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1310 unsigned long pfn, unsigned long size, pgprot_t prot) 1311 { 1312 pgd_t *pgd; 1313 unsigned long next; 1314 unsigned long end = addr + PAGE_ALIGN(size); 1315 struct mm_struct *mm = vma->vm_mm; 1316 int err; 1317 1318 /* 1319 * Physically remapped pages are special. Tell the 1320 * rest of the world about it: 1321 * VM_IO tells people not to look at these pages 1322 * (accesses can have side effects). 1323 * VM_RESERVED is specified all over the place, because 1324 * in 2.4 it kept swapout's vma scan off this vma; but 1325 * in 2.6 the LRU scan won't even find its pages, so this 1326 * flag means no more than count its pages in reserved_vm, 1327 * and omit it from core dump, even when VM_IO turned off. 1328 * VM_PFNMAP tells the core MM that the base pages are just 1329 * raw PFN mappings, and do not have a "struct page" associated 1330 * with them. 1331 * 1332 * There's a horrible special case to handle copy-on-write 1333 * behaviour that some programs depend on. We mark the "original" 1334 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1335 */ 1336 if (is_cow_mapping(vma->vm_flags)) { 1337 if (addr != vma->vm_start || end != vma->vm_end) 1338 return -EINVAL; 1339 vma->vm_pgoff = pfn; 1340 } 1341 1342 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1343 1344 BUG_ON(addr >= end); 1345 pfn -= addr >> PAGE_SHIFT; 1346 pgd = pgd_offset(mm, addr); 1347 flush_cache_range(vma, addr, end); 1348 do { 1349 next = pgd_addr_end(addr, end); 1350 err = remap_pud_range(mm, pgd, addr, next, 1351 pfn + (addr >> PAGE_SHIFT), prot); 1352 if (err) 1353 break; 1354 } while (pgd++, addr = next, addr != end); 1355 return err; 1356 } 1357 EXPORT_SYMBOL(remap_pfn_range); 1358 1359 /* 1360 * handle_pte_fault chooses page fault handler according to an entry 1361 * which was read non-atomically. Before making any commitment, on 1362 * those architectures or configurations (e.g. i386 with PAE) which 1363 * might give a mix of unmatched parts, do_swap_page and do_file_page 1364 * must check under lock before unmapping the pte and proceeding 1365 * (but do_wp_page is only called after already making such a check; 1366 * and do_anonymous_page and do_no_page can safely check later on). 1367 */ 1368 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1369 pte_t *page_table, pte_t orig_pte) 1370 { 1371 int same = 1; 1372 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1373 if (sizeof(pte_t) > sizeof(unsigned long)) { 1374 spinlock_t *ptl = pte_lockptr(mm, pmd); 1375 spin_lock(ptl); 1376 same = pte_same(*page_table, orig_pte); 1377 spin_unlock(ptl); 1378 } 1379 #endif 1380 pte_unmap(page_table); 1381 return same; 1382 } 1383 1384 /* 1385 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1386 * servicing faults for write access. In the normal case, do always want 1387 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1388 * that do not have writing enabled, when used by access_process_vm. 1389 */ 1390 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1391 { 1392 if (likely(vma->vm_flags & VM_WRITE)) 1393 pte = pte_mkwrite(pte); 1394 return pte; 1395 } 1396 1397 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va) 1398 { 1399 /* 1400 * If the source page was a PFN mapping, we don't have 1401 * a "struct page" for it. We do a best-effort copy by 1402 * just copying from the original user address. If that 1403 * fails, we just zero-fill it. Live with it. 1404 */ 1405 if (unlikely(!src)) { 1406 void *kaddr = kmap_atomic(dst, KM_USER0); 1407 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1408 1409 /* 1410 * This really shouldn't fail, because the page is there 1411 * in the page tables. But it might just be unreadable, 1412 * in which case we just give up and fill the result with 1413 * zeroes. 1414 */ 1415 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1416 memset(kaddr, 0, PAGE_SIZE); 1417 kunmap_atomic(kaddr, KM_USER0); 1418 return; 1419 1420 } 1421 copy_user_highpage(dst, src, va); 1422 } 1423 1424 /* 1425 * This routine handles present pages, when users try to write 1426 * to a shared page. It is done by copying the page to a new address 1427 * and decrementing the shared-page counter for the old page. 1428 * 1429 * Note that this routine assumes that the protection checks have been 1430 * done by the caller (the low-level page fault routine in most cases). 1431 * Thus we can safely just mark it writable once we've done any necessary 1432 * COW. 1433 * 1434 * We also mark the page dirty at this point even though the page will 1435 * change only once the write actually happens. This avoids a few races, 1436 * and potentially makes it more efficient. 1437 * 1438 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1439 * but allow concurrent faults), with pte both mapped and locked. 1440 * We return with mmap_sem still held, but pte unmapped and unlocked. 1441 */ 1442 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1443 unsigned long address, pte_t *page_table, pmd_t *pmd, 1444 spinlock_t *ptl, pte_t orig_pte) 1445 { 1446 struct page *old_page, *new_page; 1447 pte_t entry; 1448 int ret = VM_FAULT_MINOR; 1449 1450 old_page = vm_normal_page(vma, address, orig_pte); 1451 if (!old_page) 1452 goto gotten; 1453 1454 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { 1455 int reuse = can_share_swap_page(old_page); 1456 unlock_page(old_page); 1457 if (reuse) { 1458 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1459 entry = pte_mkyoung(orig_pte); 1460 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1461 ptep_set_access_flags(vma, address, page_table, entry, 1); 1462 update_mmu_cache(vma, address, entry); 1463 lazy_mmu_prot_update(entry); 1464 ret |= VM_FAULT_WRITE; 1465 goto unlock; 1466 } 1467 } 1468 1469 /* 1470 * Ok, we need to copy. Oh, well.. 1471 */ 1472 page_cache_get(old_page); 1473 gotten: 1474 pte_unmap_unlock(page_table, ptl); 1475 1476 if (unlikely(anon_vma_prepare(vma))) 1477 goto oom; 1478 if (old_page == ZERO_PAGE(address)) { 1479 new_page = alloc_zeroed_user_highpage(vma, address); 1480 if (!new_page) 1481 goto oom; 1482 } else { 1483 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1484 if (!new_page) 1485 goto oom; 1486 cow_user_page(new_page, old_page, address); 1487 } 1488 1489 /* 1490 * Re-check the pte - we dropped the lock 1491 */ 1492 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1493 if (likely(pte_same(*page_table, orig_pte))) { 1494 if (old_page) { 1495 page_remove_rmap(old_page); 1496 if (!PageAnon(old_page)) { 1497 dec_mm_counter(mm, file_rss); 1498 inc_mm_counter(mm, anon_rss); 1499 } 1500 } else 1501 inc_mm_counter(mm, anon_rss); 1502 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1503 entry = mk_pte(new_page, vma->vm_page_prot); 1504 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1505 ptep_establish(vma, address, page_table, entry); 1506 update_mmu_cache(vma, address, entry); 1507 lazy_mmu_prot_update(entry); 1508 lru_cache_add_active(new_page); 1509 page_add_new_anon_rmap(new_page, vma, address); 1510 1511 /* Free the old page.. */ 1512 new_page = old_page; 1513 ret |= VM_FAULT_WRITE; 1514 } 1515 if (new_page) 1516 page_cache_release(new_page); 1517 if (old_page) 1518 page_cache_release(old_page); 1519 unlock: 1520 pte_unmap_unlock(page_table, ptl); 1521 return ret; 1522 oom: 1523 if (old_page) 1524 page_cache_release(old_page); 1525 return VM_FAULT_OOM; 1526 } 1527 1528 /* 1529 * Helper functions for unmap_mapping_range(). 1530 * 1531 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1532 * 1533 * We have to restart searching the prio_tree whenever we drop the lock, 1534 * since the iterator is only valid while the lock is held, and anyway 1535 * a later vma might be split and reinserted earlier while lock dropped. 1536 * 1537 * The list of nonlinear vmas could be handled more efficiently, using 1538 * a placeholder, but handle it in the same way until a need is shown. 1539 * It is important to search the prio_tree before nonlinear list: a vma 1540 * may become nonlinear and be shifted from prio_tree to nonlinear list 1541 * while the lock is dropped; but never shifted from list to prio_tree. 1542 * 1543 * In order to make forward progress despite restarting the search, 1544 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1545 * quickly skip it next time around. Since the prio_tree search only 1546 * shows us those vmas affected by unmapping the range in question, we 1547 * can't efficiently keep all vmas in step with mapping->truncate_count: 1548 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1549 * mapping->truncate_count and vma->vm_truncate_count are protected by 1550 * i_mmap_lock. 1551 * 1552 * In order to make forward progress despite repeatedly restarting some 1553 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1554 * and restart from that address when we reach that vma again. It might 1555 * have been split or merged, shrunk or extended, but never shifted: so 1556 * restart_addr remains valid so long as it remains in the vma's range. 1557 * unmap_mapping_range forces truncate_count to leap over page-aligned 1558 * values so we can save vma's restart_addr in its truncate_count field. 1559 */ 1560 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1561 1562 static void reset_vma_truncate_counts(struct address_space *mapping) 1563 { 1564 struct vm_area_struct *vma; 1565 struct prio_tree_iter iter; 1566 1567 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1568 vma->vm_truncate_count = 0; 1569 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1570 vma->vm_truncate_count = 0; 1571 } 1572 1573 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1574 unsigned long start_addr, unsigned long end_addr, 1575 struct zap_details *details) 1576 { 1577 unsigned long restart_addr; 1578 int need_break; 1579 1580 again: 1581 restart_addr = vma->vm_truncate_count; 1582 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1583 start_addr = restart_addr; 1584 if (start_addr >= end_addr) { 1585 /* Top of vma has been split off since last time */ 1586 vma->vm_truncate_count = details->truncate_count; 1587 return 0; 1588 } 1589 } 1590 1591 restart_addr = zap_page_range(vma, start_addr, 1592 end_addr - start_addr, details); 1593 need_break = need_resched() || 1594 need_lockbreak(details->i_mmap_lock); 1595 1596 if (restart_addr >= end_addr) { 1597 /* We have now completed this vma: mark it so */ 1598 vma->vm_truncate_count = details->truncate_count; 1599 if (!need_break) 1600 return 0; 1601 } else { 1602 /* Note restart_addr in vma's truncate_count field */ 1603 vma->vm_truncate_count = restart_addr; 1604 if (!need_break) 1605 goto again; 1606 } 1607 1608 spin_unlock(details->i_mmap_lock); 1609 cond_resched(); 1610 spin_lock(details->i_mmap_lock); 1611 return -EINTR; 1612 } 1613 1614 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1615 struct zap_details *details) 1616 { 1617 struct vm_area_struct *vma; 1618 struct prio_tree_iter iter; 1619 pgoff_t vba, vea, zba, zea; 1620 1621 restart: 1622 vma_prio_tree_foreach(vma, &iter, root, 1623 details->first_index, details->last_index) { 1624 /* Skip quickly over those we have already dealt with */ 1625 if (vma->vm_truncate_count == details->truncate_count) 1626 continue; 1627 1628 vba = vma->vm_pgoff; 1629 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1630 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1631 zba = details->first_index; 1632 if (zba < vba) 1633 zba = vba; 1634 zea = details->last_index; 1635 if (zea > vea) 1636 zea = vea; 1637 1638 if (unmap_mapping_range_vma(vma, 1639 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1640 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1641 details) < 0) 1642 goto restart; 1643 } 1644 } 1645 1646 static inline void unmap_mapping_range_list(struct list_head *head, 1647 struct zap_details *details) 1648 { 1649 struct vm_area_struct *vma; 1650 1651 /* 1652 * In nonlinear VMAs there is no correspondence between virtual address 1653 * offset and file offset. So we must perform an exhaustive search 1654 * across *all* the pages in each nonlinear VMA, not just the pages 1655 * whose virtual address lies outside the file truncation point. 1656 */ 1657 restart: 1658 list_for_each_entry(vma, head, shared.vm_set.list) { 1659 /* Skip quickly over those we have already dealt with */ 1660 if (vma->vm_truncate_count == details->truncate_count) 1661 continue; 1662 details->nonlinear_vma = vma; 1663 if (unmap_mapping_range_vma(vma, vma->vm_start, 1664 vma->vm_end, details) < 0) 1665 goto restart; 1666 } 1667 } 1668 1669 /** 1670 * unmap_mapping_range - unmap the portion of all mmaps 1671 * in the specified address_space corresponding to the specified 1672 * page range in the underlying file. 1673 * @mapping: the address space containing mmaps to be unmapped. 1674 * @holebegin: byte in first page to unmap, relative to the start of 1675 * the underlying file. This will be rounded down to a PAGE_SIZE 1676 * boundary. Note that this is different from vmtruncate(), which 1677 * must keep the partial page. In contrast, we must get rid of 1678 * partial pages. 1679 * @holelen: size of prospective hole in bytes. This will be rounded 1680 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1681 * end of the file. 1682 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1683 * but 0 when invalidating pagecache, don't throw away private data. 1684 */ 1685 void unmap_mapping_range(struct address_space *mapping, 1686 loff_t const holebegin, loff_t const holelen, int even_cows) 1687 { 1688 struct zap_details details; 1689 pgoff_t hba = holebegin >> PAGE_SHIFT; 1690 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1691 1692 /* Check for overflow. */ 1693 if (sizeof(holelen) > sizeof(hlen)) { 1694 long long holeend = 1695 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1696 if (holeend & ~(long long)ULONG_MAX) 1697 hlen = ULONG_MAX - hba + 1; 1698 } 1699 1700 details.check_mapping = even_cows? NULL: mapping; 1701 details.nonlinear_vma = NULL; 1702 details.first_index = hba; 1703 details.last_index = hba + hlen - 1; 1704 if (details.last_index < details.first_index) 1705 details.last_index = ULONG_MAX; 1706 details.i_mmap_lock = &mapping->i_mmap_lock; 1707 1708 spin_lock(&mapping->i_mmap_lock); 1709 1710 /* serialize i_size write against truncate_count write */ 1711 smp_wmb(); 1712 /* Protect against page faults, and endless unmapping loops */ 1713 mapping->truncate_count++; 1714 /* 1715 * For archs where spin_lock has inclusive semantics like ia64 1716 * this smp_mb() will prevent to read pagetable contents 1717 * before the truncate_count increment is visible to 1718 * other cpus. 1719 */ 1720 smp_mb(); 1721 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1722 if (mapping->truncate_count == 0) 1723 reset_vma_truncate_counts(mapping); 1724 mapping->truncate_count++; 1725 } 1726 details.truncate_count = mapping->truncate_count; 1727 1728 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1729 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1730 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1731 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1732 spin_unlock(&mapping->i_mmap_lock); 1733 } 1734 EXPORT_SYMBOL(unmap_mapping_range); 1735 1736 /* 1737 * Handle all mappings that got truncated by a "truncate()" 1738 * system call. 1739 * 1740 * NOTE! We have to be ready to update the memory sharing 1741 * between the file and the memory map for a potential last 1742 * incomplete page. Ugly, but necessary. 1743 */ 1744 int vmtruncate(struct inode * inode, loff_t offset) 1745 { 1746 struct address_space *mapping = inode->i_mapping; 1747 unsigned long limit; 1748 1749 if (inode->i_size < offset) 1750 goto do_expand; 1751 /* 1752 * truncation of in-use swapfiles is disallowed - it would cause 1753 * subsequent swapout to scribble on the now-freed blocks. 1754 */ 1755 if (IS_SWAPFILE(inode)) 1756 goto out_busy; 1757 i_size_write(inode, offset); 1758 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1759 truncate_inode_pages(mapping, offset); 1760 goto out_truncate; 1761 1762 do_expand: 1763 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1764 if (limit != RLIM_INFINITY && offset > limit) 1765 goto out_sig; 1766 if (offset > inode->i_sb->s_maxbytes) 1767 goto out_big; 1768 i_size_write(inode, offset); 1769 1770 out_truncate: 1771 if (inode->i_op && inode->i_op->truncate) 1772 inode->i_op->truncate(inode); 1773 return 0; 1774 out_sig: 1775 send_sig(SIGXFSZ, current, 0); 1776 out_big: 1777 return -EFBIG; 1778 out_busy: 1779 return -ETXTBSY; 1780 } 1781 EXPORT_SYMBOL(vmtruncate); 1782 1783 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 1784 { 1785 struct address_space *mapping = inode->i_mapping; 1786 1787 /* 1788 * If the underlying filesystem is not going to provide 1789 * a way to truncate a range of blocks (punch a hole) - 1790 * we should return failure right now. 1791 */ 1792 if (!inode->i_op || !inode->i_op->truncate_range) 1793 return -ENOSYS; 1794 1795 mutex_lock(&inode->i_mutex); 1796 down_write(&inode->i_alloc_sem); 1797 unmap_mapping_range(mapping, offset, (end - offset), 1); 1798 truncate_inode_pages_range(mapping, offset, end); 1799 inode->i_op->truncate_range(inode, offset, end); 1800 up_write(&inode->i_alloc_sem); 1801 mutex_unlock(&inode->i_mutex); 1802 1803 return 0; 1804 } 1805 EXPORT_SYMBOL(vmtruncate_range); 1806 1807 /* 1808 * Primitive swap readahead code. We simply read an aligned block of 1809 * (1 << page_cluster) entries in the swap area. This method is chosen 1810 * because it doesn't cost us any seek time. We also make sure to queue 1811 * the 'original' request together with the readahead ones... 1812 * 1813 * This has been extended to use the NUMA policies from the mm triggering 1814 * the readahead. 1815 * 1816 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1817 */ 1818 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 1819 { 1820 #ifdef CONFIG_NUMA 1821 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 1822 #endif 1823 int i, num; 1824 struct page *new_page; 1825 unsigned long offset; 1826 1827 /* 1828 * Get the number of handles we should do readahead io to. 1829 */ 1830 num = valid_swaphandles(entry, &offset); 1831 for (i = 0; i < num; offset++, i++) { 1832 /* Ok, do the async read-ahead now */ 1833 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 1834 offset), vma, addr); 1835 if (!new_page) 1836 break; 1837 page_cache_release(new_page); 1838 #ifdef CONFIG_NUMA 1839 /* 1840 * Find the next applicable VMA for the NUMA policy. 1841 */ 1842 addr += PAGE_SIZE; 1843 if (addr == 0) 1844 vma = NULL; 1845 if (vma) { 1846 if (addr >= vma->vm_end) { 1847 vma = next_vma; 1848 next_vma = vma ? vma->vm_next : NULL; 1849 } 1850 if (vma && addr < vma->vm_start) 1851 vma = NULL; 1852 } else { 1853 if (next_vma && addr >= next_vma->vm_start) { 1854 vma = next_vma; 1855 next_vma = vma->vm_next; 1856 } 1857 } 1858 #endif 1859 } 1860 lru_add_drain(); /* Push any new pages onto the LRU now */ 1861 } 1862 1863 /* 1864 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1865 * but allow concurrent faults), and pte mapped but not yet locked. 1866 * We return with mmap_sem still held, but pte unmapped and unlocked. 1867 */ 1868 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 1869 unsigned long address, pte_t *page_table, pmd_t *pmd, 1870 int write_access, pte_t orig_pte) 1871 { 1872 spinlock_t *ptl; 1873 struct page *page; 1874 swp_entry_t entry; 1875 pte_t pte; 1876 int ret = VM_FAULT_MINOR; 1877 1878 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 1879 goto out; 1880 1881 entry = pte_to_swp_entry(orig_pte); 1882 again: 1883 page = lookup_swap_cache(entry); 1884 if (!page) { 1885 swapin_readahead(entry, address, vma); 1886 page = read_swap_cache_async(entry, vma, address); 1887 if (!page) { 1888 /* 1889 * Back out if somebody else faulted in this pte 1890 * while we released the pte lock. 1891 */ 1892 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1893 if (likely(pte_same(*page_table, orig_pte))) 1894 ret = VM_FAULT_OOM; 1895 goto unlock; 1896 } 1897 1898 /* Had to read the page from swap area: Major fault */ 1899 ret = VM_FAULT_MAJOR; 1900 inc_page_state(pgmajfault); 1901 grab_swap_token(); 1902 } 1903 1904 mark_page_accessed(page); 1905 lock_page(page); 1906 if (!PageSwapCache(page)) { 1907 /* Page migration has occured */ 1908 unlock_page(page); 1909 page_cache_release(page); 1910 goto again; 1911 } 1912 1913 /* 1914 * Back out if somebody else already faulted in this pte. 1915 */ 1916 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1917 if (unlikely(!pte_same(*page_table, orig_pte))) 1918 goto out_nomap; 1919 1920 if (unlikely(!PageUptodate(page))) { 1921 ret = VM_FAULT_SIGBUS; 1922 goto out_nomap; 1923 } 1924 1925 /* The page isn't present yet, go ahead with the fault. */ 1926 1927 inc_mm_counter(mm, anon_rss); 1928 pte = mk_pte(page, vma->vm_page_prot); 1929 if (write_access && can_share_swap_page(page)) { 1930 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 1931 write_access = 0; 1932 } 1933 1934 flush_icache_page(vma, page); 1935 set_pte_at(mm, address, page_table, pte); 1936 page_add_anon_rmap(page, vma, address); 1937 1938 swap_free(entry); 1939 if (vm_swap_full()) 1940 remove_exclusive_swap_page(page); 1941 unlock_page(page); 1942 1943 if (write_access) { 1944 if (do_wp_page(mm, vma, address, 1945 page_table, pmd, ptl, pte) == VM_FAULT_OOM) 1946 ret = VM_FAULT_OOM; 1947 goto out; 1948 } 1949 1950 /* No need to invalidate - it was non-present before */ 1951 update_mmu_cache(vma, address, pte); 1952 lazy_mmu_prot_update(pte); 1953 unlock: 1954 pte_unmap_unlock(page_table, ptl); 1955 out: 1956 return ret; 1957 out_nomap: 1958 pte_unmap_unlock(page_table, ptl); 1959 unlock_page(page); 1960 page_cache_release(page); 1961 return ret; 1962 } 1963 1964 /* 1965 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1966 * but allow concurrent faults), and pte mapped but not yet locked. 1967 * We return with mmap_sem still held, but pte unmapped and unlocked. 1968 */ 1969 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 1970 unsigned long address, pte_t *page_table, pmd_t *pmd, 1971 int write_access) 1972 { 1973 struct page *page; 1974 spinlock_t *ptl; 1975 pte_t entry; 1976 1977 if (write_access) { 1978 /* Allocate our own private page. */ 1979 pte_unmap(page_table); 1980 1981 if (unlikely(anon_vma_prepare(vma))) 1982 goto oom; 1983 page = alloc_zeroed_user_highpage(vma, address); 1984 if (!page) 1985 goto oom; 1986 1987 entry = mk_pte(page, vma->vm_page_prot); 1988 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1989 1990 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1991 if (!pte_none(*page_table)) 1992 goto release; 1993 inc_mm_counter(mm, anon_rss); 1994 lru_cache_add_active(page); 1995 page_add_new_anon_rmap(page, vma, address); 1996 } else { 1997 /* Map the ZERO_PAGE - vm_page_prot is readonly */ 1998 page = ZERO_PAGE(address); 1999 page_cache_get(page); 2000 entry = mk_pte(page, vma->vm_page_prot); 2001 2002 ptl = pte_lockptr(mm, pmd); 2003 spin_lock(ptl); 2004 if (!pte_none(*page_table)) 2005 goto release; 2006 inc_mm_counter(mm, file_rss); 2007 page_add_file_rmap(page); 2008 } 2009 2010 set_pte_at(mm, address, page_table, entry); 2011 2012 /* No need to invalidate - it was non-present before */ 2013 update_mmu_cache(vma, address, entry); 2014 lazy_mmu_prot_update(entry); 2015 unlock: 2016 pte_unmap_unlock(page_table, ptl); 2017 return VM_FAULT_MINOR; 2018 release: 2019 page_cache_release(page); 2020 goto unlock; 2021 oom: 2022 return VM_FAULT_OOM; 2023 } 2024 2025 /* 2026 * do_no_page() tries to create a new page mapping. It aggressively 2027 * tries to share with existing pages, but makes a separate copy if 2028 * the "write_access" parameter is true in order to avoid the next 2029 * page fault. 2030 * 2031 * As this is called only for pages that do not currently exist, we 2032 * do not need to flush old virtual caches or the TLB. 2033 * 2034 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2035 * but allow concurrent faults), and pte mapped but not yet locked. 2036 * We return with mmap_sem still held, but pte unmapped and unlocked. 2037 */ 2038 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2039 unsigned long address, pte_t *page_table, pmd_t *pmd, 2040 int write_access) 2041 { 2042 spinlock_t *ptl; 2043 struct page *new_page; 2044 struct address_space *mapping = NULL; 2045 pte_t entry; 2046 unsigned int sequence = 0; 2047 int ret = VM_FAULT_MINOR; 2048 int anon = 0; 2049 2050 pte_unmap(page_table); 2051 BUG_ON(vma->vm_flags & VM_PFNMAP); 2052 2053 if (vma->vm_file) { 2054 mapping = vma->vm_file->f_mapping; 2055 sequence = mapping->truncate_count; 2056 smp_rmb(); /* serializes i_size against truncate_count */ 2057 } 2058 retry: 2059 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 2060 /* 2061 * No smp_rmb is needed here as long as there's a full 2062 * spin_lock/unlock sequence inside the ->nopage callback 2063 * (for the pagecache lookup) that acts as an implicit 2064 * smp_mb() and prevents the i_size read to happen 2065 * after the next truncate_count read. 2066 */ 2067 2068 /* no page was available -- either SIGBUS or OOM */ 2069 if (new_page == NOPAGE_SIGBUS) 2070 return VM_FAULT_SIGBUS; 2071 if (new_page == NOPAGE_OOM) 2072 return VM_FAULT_OOM; 2073 2074 /* 2075 * Should we do an early C-O-W break? 2076 */ 2077 if (write_access && !(vma->vm_flags & VM_SHARED)) { 2078 struct page *page; 2079 2080 if (unlikely(anon_vma_prepare(vma))) 2081 goto oom; 2082 page = alloc_page_vma(GFP_HIGHUSER, vma, address); 2083 if (!page) 2084 goto oom; 2085 copy_user_highpage(page, new_page, address); 2086 page_cache_release(new_page); 2087 new_page = page; 2088 anon = 1; 2089 } 2090 2091 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2092 /* 2093 * For a file-backed vma, someone could have truncated or otherwise 2094 * invalidated this page. If unmap_mapping_range got called, 2095 * retry getting the page. 2096 */ 2097 if (mapping && unlikely(sequence != mapping->truncate_count)) { 2098 pte_unmap_unlock(page_table, ptl); 2099 page_cache_release(new_page); 2100 cond_resched(); 2101 sequence = mapping->truncate_count; 2102 smp_rmb(); 2103 goto retry; 2104 } 2105 2106 /* 2107 * This silly early PAGE_DIRTY setting removes a race 2108 * due to the bad i386 page protection. But it's valid 2109 * for other architectures too. 2110 * 2111 * Note that if write_access is true, we either now have 2112 * an exclusive copy of the page, or this is a shared mapping, 2113 * so we can make it writable and dirty to avoid having to 2114 * handle that later. 2115 */ 2116 /* Only go through if we didn't race with anybody else... */ 2117 if (pte_none(*page_table)) { 2118 flush_icache_page(vma, new_page); 2119 entry = mk_pte(new_page, vma->vm_page_prot); 2120 if (write_access) 2121 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2122 set_pte_at(mm, address, page_table, entry); 2123 if (anon) { 2124 inc_mm_counter(mm, anon_rss); 2125 lru_cache_add_active(new_page); 2126 page_add_new_anon_rmap(new_page, vma, address); 2127 } else { 2128 inc_mm_counter(mm, file_rss); 2129 page_add_file_rmap(new_page); 2130 } 2131 } else { 2132 /* One of our sibling threads was faster, back out. */ 2133 page_cache_release(new_page); 2134 goto unlock; 2135 } 2136 2137 /* no need to invalidate: a not-present page shouldn't be cached */ 2138 update_mmu_cache(vma, address, entry); 2139 lazy_mmu_prot_update(entry); 2140 unlock: 2141 pte_unmap_unlock(page_table, ptl); 2142 return ret; 2143 oom: 2144 page_cache_release(new_page); 2145 return VM_FAULT_OOM; 2146 } 2147 2148 /* 2149 * Fault of a previously existing named mapping. Repopulate the pte 2150 * from the encoded file_pte if possible. This enables swappable 2151 * nonlinear vmas. 2152 * 2153 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2154 * but allow concurrent faults), and pte mapped but not yet locked. 2155 * We return with mmap_sem still held, but pte unmapped and unlocked. 2156 */ 2157 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, 2158 unsigned long address, pte_t *page_table, pmd_t *pmd, 2159 int write_access, pte_t orig_pte) 2160 { 2161 pgoff_t pgoff; 2162 int err; 2163 2164 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2165 return VM_FAULT_MINOR; 2166 2167 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2168 /* 2169 * Page table corrupted: show pte and kill process. 2170 */ 2171 print_bad_pte(vma, orig_pte, address); 2172 return VM_FAULT_OOM; 2173 } 2174 /* We can then assume vm->vm_ops && vma->vm_ops->populate */ 2175 2176 pgoff = pte_to_pgoff(orig_pte); 2177 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, 2178 vma->vm_page_prot, pgoff, 0); 2179 if (err == -ENOMEM) 2180 return VM_FAULT_OOM; 2181 if (err) 2182 return VM_FAULT_SIGBUS; 2183 return VM_FAULT_MAJOR; 2184 } 2185 2186 /* 2187 * These routines also need to handle stuff like marking pages dirty 2188 * and/or accessed for architectures that don't do it in hardware (most 2189 * RISC architectures). The early dirtying is also good on the i386. 2190 * 2191 * There is also a hook called "update_mmu_cache()" that architectures 2192 * with external mmu caches can use to update those (ie the Sparc or 2193 * PowerPC hashed page tables that act as extended TLBs). 2194 * 2195 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2196 * but allow concurrent faults), and pte mapped but not yet locked. 2197 * We return with mmap_sem still held, but pte unmapped and unlocked. 2198 */ 2199 static inline int handle_pte_fault(struct mm_struct *mm, 2200 struct vm_area_struct *vma, unsigned long address, 2201 pte_t *pte, pmd_t *pmd, int write_access) 2202 { 2203 pte_t entry; 2204 pte_t old_entry; 2205 spinlock_t *ptl; 2206 2207 old_entry = entry = *pte; 2208 if (!pte_present(entry)) { 2209 if (pte_none(entry)) { 2210 if (!vma->vm_ops || !vma->vm_ops->nopage) 2211 return do_anonymous_page(mm, vma, address, 2212 pte, pmd, write_access); 2213 return do_no_page(mm, vma, address, 2214 pte, pmd, write_access); 2215 } 2216 if (pte_file(entry)) 2217 return do_file_page(mm, vma, address, 2218 pte, pmd, write_access, entry); 2219 return do_swap_page(mm, vma, address, 2220 pte, pmd, write_access, entry); 2221 } 2222 2223 ptl = pte_lockptr(mm, pmd); 2224 spin_lock(ptl); 2225 if (unlikely(!pte_same(*pte, entry))) 2226 goto unlock; 2227 if (write_access) { 2228 if (!pte_write(entry)) 2229 return do_wp_page(mm, vma, address, 2230 pte, pmd, ptl, entry); 2231 entry = pte_mkdirty(entry); 2232 } 2233 entry = pte_mkyoung(entry); 2234 if (!pte_same(old_entry, entry)) { 2235 ptep_set_access_flags(vma, address, pte, entry, write_access); 2236 update_mmu_cache(vma, address, entry); 2237 lazy_mmu_prot_update(entry); 2238 } else { 2239 /* 2240 * This is needed only for protection faults but the arch code 2241 * is not yet telling us if this is a protection fault or not. 2242 * This still avoids useless tlb flushes for .text page faults 2243 * with threads. 2244 */ 2245 if (write_access) 2246 flush_tlb_page(vma, address); 2247 } 2248 unlock: 2249 pte_unmap_unlock(pte, ptl); 2250 return VM_FAULT_MINOR; 2251 } 2252 2253 /* 2254 * By the time we get here, we already hold the mm semaphore 2255 */ 2256 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2257 unsigned long address, int write_access) 2258 { 2259 pgd_t *pgd; 2260 pud_t *pud; 2261 pmd_t *pmd; 2262 pte_t *pte; 2263 2264 __set_current_state(TASK_RUNNING); 2265 2266 inc_page_state(pgfault); 2267 2268 if (unlikely(is_vm_hugetlb_page(vma))) 2269 return hugetlb_fault(mm, vma, address, write_access); 2270 2271 pgd = pgd_offset(mm, address); 2272 pud = pud_alloc(mm, pgd, address); 2273 if (!pud) 2274 return VM_FAULT_OOM; 2275 pmd = pmd_alloc(mm, pud, address); 2276 if (!pmd) 2277 return VM_FAULT_OOM; 2278 pte = pte_alloc_map(mm, pmd, address); 2279 if (!pte) 2280 return VM_FAULT_OOM; 2281 2282 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2283 } 2284 2285 EXPORT_SYMBOL_GPL(__handle_mm_fault); 2286 2287 #ifndef __PAGETABLE_PUD_FOLDED 2288 /* 2289 * Allocate page upper directory. 2290 * We've already handled the fast-path in-line. 2291 */ 2292 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2293 { 2294 pud_t *new = pud_alloc_one(mm, address); 2295 if (!new) 2296 return -ENOMEM; 2297 2298 spin_lock(&mm->page_table_lock); 2299 if (pgd_present(*pgd)) /* Another has populated it */ 2300 pud_free(new); 2301 else 2302 pgd_populate(mm, pgd, new); 2303 spin_unlock(&mm->page_table_lock); 2304 return 0; 2305 } 2306 #else 2307 /* Workaround for gcc 2.96 */ 2308 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2309 { 2310 return 0; 2311 } 2312 #endif /* __PAGETABLE_PUD_FOLDED */ 2313 2314 #ifndef __PAGETABLE_PMD_FOLDED 2315 /* 2316 * Allocate page middle directory. 2317 * We've already handled the fast-path in-line. 2318 */ 2319 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2320 { 2321 pmd_t *new = pmd_alloc_one(mm, address); 2322 if (!new) 2323 return -ENOMEM; 2324 2325 spin_lock(&mm->page_table_lock); 2326 #ifndef __ARCH_HAS_4LEVEL_HACK 2327 if (pud_present(*pud)) /* Another has populated it */ 2328 pmd_free(new); 2329 else 2330 pud_populate(mm, pud, new); 2331 #else 2332 if (pgd_present(*pud)) /* Another has populated it */ 2333 pmd_free(new); 2334 else 2335 pgd_populate(mm, pud, new); 2336 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2337 spin_unlock(&mm->page_table_lock); 2338 return 0; 2339 } 2340 #else 2341 /* Workaround for gcc 2.96 */ 2342 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2343 { 2344 return 0; 2345 } 2346 #endif /* __PAGETABLE_PMD_FOLDED */ 2347 2348 int make_pages_present(unsigned long addr, unsigned long end) 2349 { 2350 int ret, len, write; 2351 struct vm_area_struct * vma; 2352 2353 vma = find_vma(current->mm, addr); 2354 if (!vma) 2355 return -1; 2356 write = (vma->vm_flags & VM_WRITE) != 0; 2357 BUG_ON(addr >= end); 2358 BUG_ON(end > vma->vm_end); 2359 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; 2360 ret = get_user_pages(current, current->mm, addr, 2361 len, write, 0, NULL, NULL); 2362 if (ret < 0) 2363 return ret; 2364 return ret == len ? 0 : -1; 2365 } 2366 2367 /* 2368 * Map a vmalloc()-space virtual address to the physical page. 2369 */ 2370 struct page * vmalloc_to_page(void * vmalloc_addr) 2371 { 2372 unsigned long addr = (unsigned long) vmalloc_addr; 2373 struct page *page = NULL; 2374 pgd_t *pgd = pgd_offset_k(addr); 2375 pud_t *pud; 2376 pmd_t *pmd; 2377 pte_t *ptep, pte; 2378 2379 if (!pgd_none(*pgd)) { 2380 pud = pud_offset(pgd, addr); 2381 if (!pud_none(*pud)) { 2382 pmd = pmd_offset(pud, addr); 2383 if (!pmd_none(*pmd)) { 2384 ptep = pte_offset_map(pmd, addr); 2385 pte = *ptep; 2386 if (pte_present(pte)) 2387 page = pte_page(pte); 2388 pte_unmap(ptep); 2389 } 2390 } 2391 } 2392 return page; 2393 } 2394 2395 EXPORT_SYMBOL(vmalloc_to_page); 2396 2397 /* 2398 * Map a vmalloc()-space virtual address to the physical page frame number. 2399 */ 2400 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2401 { 2402 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2403 } 2404 2405 EXPORT_SYMBOL(vmalloc_to_pfn); 2406 2407 #if !defined(__HAVE_ARCH_GATE_AREA) 2408 2409 #if defined(AT_SYSINFO_EHDR) 2410 static struct vm_area_struct gate_vma; 2411 2412 static int __init gate_vma_init(void) 2413 { 2414 gate_vma.vm_mm = NULL; 2415 gate_vma.vm_start = FIXADDR_USER_START; 2416 gate_vma.vm_end = FIXADDR_USER_END; 2417 gate_vma.vm_page_prot = PAGE_READONLY; 2418 gate_vma.vm_flags = 0; 2419 return 0; 2420 } 2421 __initcall(gate_vma_init); 2422 #endif 2423 2424 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2425 { 2426 #ifdef AT_SYSINFO_EHDR 2427 return &gate_vma; 2428 #else 2429 return NULL; 2430 #endif 2431 } 2432 2433 int in_gate_area_no_task(unsigned long addr) 2434 { 2435 #ifdef AT_SYSINFO_EHDR 2436 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2437 return 1; 2438 #endif 2439 return 0; 2440 } 2441 2442 #endif /* __HAVE_ARCH_GATE_AREA */ 2443