xref: /linux/mm/memory.c (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93 
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98 
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102 
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112 
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121 					1;
122 #else
123 					2;
124 #endif
125 
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129 	/*
130 	 * Those arches which don't have hw access flag feature need to
131 	 * implement their own helper. By default, "true" means pagefault
132 	 * will be hit on old pte.
133 	 */
134 	return true;
135 }
136 #endif
137 
138 static int __init disable_randmaps(char *s)
139 {
140 	randomize_va_space = 0;
141 	return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144 
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147 
148 unsigned long highest_memmap_pfn __read_mostly;
149 
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
153 static int __init init_zero_pfn(void)
154 {
155 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 	return 0;
157 }
158 core_initcall(init_zero_pfn);
159 
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162 	trace_rss_stat(mm, member, count);
163 }
164 
165 #if defined(SPLIT_RSS_COUNTING)
166 
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169 	int i;
170 
171 	for (i = 0; i < NR_MM_COUNTERS; i++) {
172 		if (current->rss_stat.count[i]) {
173 			add_mm_counter(mm, i, current->rss_stat.count[i]);
174 			current->rss_stat.count[i] = 0;
175 		}
176 	}
177 	current->rss_stat.events = 0;
178 }
179 
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182 	struct task_struct *task = current;
183 
184 	if (likely(task->mm == mm))
185 		task->rss_stat.count[member] += val;
186 	else
187 		add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191 
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH	(64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196 	if (unlikely(task != current))
197 		return;
198 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199 		sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202 
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205 
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209 
210 #endif /* SPLIT_RSS_COUNTING */
211 
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 			   unsigned long addr)
218 {
219 	pgtable_t token = pmd_pgtable(*pmd);
220 	pmd_clear(pmd);
221 	pte_free_tlb(tlb, token, addr);
222 	mm_dec_nr_ptes(tlb->mm);
223 }
224 
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 				unsigned long addr, unsigned long end,
227 				unsigned long floor, unsigned long ceiling)
228 {
229 	pmd_t *pmd;
230 	unsigned long next;
231 	unsigned long start;
232 
233 	start = addr;
234 	pmd = pmd_offset(pud, addr);
235 	do {
236 		next = pmd_addr_end(addr, end);
237 		if (pmd_none_or_clear_bad(pmd))
238 			continue;
239 		free_pte_range(tlb, pmd, addr);
240 	} while (pmd++, addr = next, addr != end);
241 
242 	start &= PUD_MASK;
243 	if (start < floor)
244 		return;
245 	if (ceiling) {
246 		ceiling &= PUD_MASK;
247 		if (!ceiling)
248 			return;
249 	}
250 	if (end - 1 > ceiling - 1)
251 		return;
252 
253 	pmd = pmd_offset(pud, start);
254 	pud_clear(pud);
255 	pmd_free_tlb(tlb, pmd, start);
256 	mm_dec_nr_pmds(tlb->mm);
257 }
258 
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260 				unsigned long addr, unsigned long end,
261 				unsigned long floor, unsigned long ceiling)
262 {
263 	pud_t *pud;
264 	unsigned long next;
265 	unsigned long start;
266 
267 	start = addr;
268 	pud = pud_offset(p4d, addr);
269 	do {
270 		next = pud_addr_end(addr, end);
271 		if (pud_none_or_clear_bad(pud))
272 			continue;
273 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274 	} while (pud++, addr = next, addr != end);
275 
276 	start &= P4D_MASK;
277 	if (start < floor)
278 		return;
279 	if (ceiling) {
280 		ceiling &= P4D_MASK;
281 		if (!ceiling)
282 			return;
283 	}
284 	if (end - 1 > ceiling - 1)
285 		return;
286 
287 	pud = pud_offset(p4d, start);
288 	p4d_clear(p4d);
289 	pud_free_tlb(tlb, pud, start);
290 	mm_dec_nr_puds(tlb->mm);
291 }
292 
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 				unsigned long addr, unsigned long end,
295 				unsigned long floor, unsigned long ceiling)
296 {
297 	p4d_t *p4d;
298 	unsigned long next;
299 	unsigned long start;
300 
301 	start = addr;
302 	p4d = p4d_offset(pgd, addr);
303 	do {
304 		next = p4d_addr_end(addr, end);
305 		if (p4d_none_or_clear_bad(p4d))
306 			continue;
307 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 	} while (p4d++, addr = next, addr != end);
309 
310 	start &= PGDIR_MASK;
311 	if (start < floor)
312 		return;
313 	if (ceiling) {
314 		ceiling &= PGDIR_MASK;
315 		if (!ceiling)
316 			return;
317 	}
318 	if (end - 1 > ceiling - 1)
319 		return;
320 
321 	p4d = p4d_offset(pgd, start);
322 	pgd_clear(pgd);
323 	p4d_free_tlb(tlb, p4d, start);
324 }
325 
326 /*
327  * This function frees user-level page tables of a process.
328  */
329 void free_pgd_range(struct mmu_gather *tlb,
330 			unsigned long addr, unsigned long end,
331 			unsigned long floor, unsigned long ceiling)
332 {
333 	pgd_t *pgd;
334 	unsigned long next;
335 
336 	/*
337 	 * The next few lines have given us lots of grief...
338 	 *
339 	 * Why are we testing PMD* at this top level?  Because often
340 	 * there will be no work to do at all, and we'd prefer not to
341 	 * go all the way down to the bottom just to discover that.
342 	 *
343 	 * Why all these "- 1"s?  Because 0 represents both the bottom
344 	 * of the address space and the top of it (using -1 for the
345 	 * top wouldn't help much: the masks would do the wrong thing).
346 	 * The rule is that addr 0 and floor 0 refer to the bottom of
347 	 * the address space, but end 0 and ceiling 0 refer to the top
348 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 	 * that end 0 case should be mythical).
350 	 *
351 	 * Wherever addr is brought up or ceiling brought down, we must
352 	 * be careful to reject "the opposite 0" before it confuses the
353 	 * subsequent tests.  But what about where end is brought down
354 	 * by PMD_SIZE below? no, end can't go down to 0 there.
355 	 *
356 	 * Whereas we round start (addr) and ceiling down, by different
357 	 * masks at different levels, in order to test whether a table
358 	 * now has no other vmas using it, so can be freed, we don't
359 	 * bother to round floor or end up - the tests don't need that.
360 	 */
361 
362 	addr &= PMD_MASK;
363 	if (addr < floor) {
364 		addr += PMD_SIZE;
365 		if (!addr)
366 			return;
367 	}
368 	if (ceiling) {
369 		ceiling &= PMD_MASK;
370 		if (!ceiling)
371 			return;
372 	}
373 	if (end - 1 > ceiling - 1)
374 		end -= PMD_SIZE;
375 	if (addr > end - 1)
376 		return;
377 	/*
378 	 * We add page table cache pages with PAGE_SIZE,
379 	 * (see pte_free_tlb()), flush the tlb if we need
380 	 */
381 	tlb_change_page_size(tlb, PAGE_SIZE);
382 	pgd = pgd_offset(tlb->mm, addr);
383 	do {
384 		next = pgd_addr_end(addr, end);
385 		if (pgd_none_or_clear_bad(pgd))
386 			continue;
387 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388 	} while (pgd++, addr = next, addr != end);
389 }
390 
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392 		unsigned long floor, unsigned long ceiling)
393 {
394 	while (vma) {
395 		struct vm_area_struct *next = vma->vm_next;
396 		unsigned long addr = vma->vm_start;
397 
398 		/*
399 		 * Hide vma from rmap and truncate_pagecache before freeing
400 		 * pgtables
401 		 */
402 		unlink_anon_vmas(vma);
403 		unlink_file_vma(vma);
404 
405 		if (is_vm_hugetlb_page(vma)) {
406 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407 				floor, next ? next->vm_start : ceiling);
408 		} else {
409 			/*
410 			 * Optimization: gather nearby vmas into one call down
411 			 */
412 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413 			       && !is_vm_hugetlb_page(next)) {
414 				vma = next;
415 				next = vma->vm_next;
416 				unlink_anon_vmas(vma);
417 				unlink_file_vma(vma);
418 			}
419 			free_pgd_range(tlb, addr, vma->vm_end,
420 				floor, next ? next->vm_start : ceiling);
421 		}
422 		vma = next;
423 	}
424 }
425 
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428 	spinlock_t *ptl;
429 	pgtable_t new = pte_alloc_one(mm);
430 	if (!new)
431 		return -ENOMEM;
432 
433 	/*
434 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 	 * visible before the pte is made visible to other CPUs by being
436 	 * put into page tables.
437 	 *
438 	 * The other side of the story is the pointer chasing in the page
439 	 * table walking code (when walking the page table without locking;
440 	 * ie. most of the time). Fortunately, these data accesses consist
441 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 	 * being the notable exception) will already guarantee loads are
443 	 * seen in-order. See the alpha page table accessors for the
444 	 * smp_rmb() barriers in page table walking code.
445 	 */
446 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447 
448 	ptl = pmd_lock(mm, pmd);
449 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
450 		mm_inc_nr_ptes(mm);
451 		pmd_populate(mm, pmd, new);
452 		new = NULL;
453 	}
454 	spin_unlock(ptl);
455 	if (new)
456 		pte_free(mm, new);
457 	return 0;
458 }
459 
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462 	pte_t *new = pte_alloc_one_kernel(&init_mm);
463 	if (!new)
464 		return -ENOMEM;
465 
466 	smp_wmb(); /* See comment in __pte_alloc */
467 
468 	spin_lock(&init_mm.page_table_lock);
469 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
470 		pmd_populate_kernel(&init_mm, pmd, new);
471 		new = NULL;
472 	}
473 	spin_unlock(&init_mm.page_table_lock);
474 	if (new)
475 		pte_free_kernel(&init_mm, new);
476 	return 0;
477 }
478 
479 static inline void init_rss_vec(int *rss)
480 {
481 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483 
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486 	int i;
487 
488 	if (current->mm == mm)
489 		sync_mm_rss(mm);
490 	for (i = 0; i < NR_MM_COUNTERS; i++)
491 		if (rss[i])
492 			add_mm_counter(mm, i, rss[i]);
493 }
494 
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 			  pte_t pte, struct page *page)
504 {
505 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506 	p4d_t *p4d = p4d_offset(pgd, addr);
507 	pud_t *pud = pud_offset(p4d, addr);
508 	pmd_t *pmd = pmd_offset(pud, addr);
509 	struct address_space *mapping;
510 	pgoff_t index;
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			return;
523 		}
524 		if (nr_unshown) {
525 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 				 nr_unshown);
527 			nr_unshown = 0;
528 		}
529 		nr_shown = 0;
530 	}
531 	if (nr_shown++ == 0)
532 		resume = jiffies + 60 * HZ;
533 
534 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 	index = linear_page_index(vma, addr);
536 
537 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538 		 current->comm,
539 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
540 	if (page)
541 		dump_page(page, "bad pte");
542 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545 		 vma->vm_file,
546 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 		 mapping ? mapping->a_ops->readpage : NULL);
549 	dump_stack();
550 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552 
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 			    pte_t pte)
597 {
598 	unsigned long pfn = pte_pfn(pte);
599 
600 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601 		if (likely(!pte_special(pte)))
602 			goto check_pfn;
603 		if (vma->vm_ops && vma->vm_ops->find_special_page)
604 			return vma->vm_ops->find_special_page(vma, addr);
605 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 			return NULL;
607 		if (is_zero_pfn(pfn))
608 			return NULL;
609 		if (pte_devmap(pte))
610 			return NULL;
611 
612 		print_bad_pte(vma, addr, pte, NULL);
613 		return NULL;
614 	}
615 
616 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617 
618 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 		if (vma->vm_flags & VM_MIXEDMAP) {
620 			if (!pfn_valid(pfn))
621 				return NULL;
622 			goto out;
623 		} else {
624 			unsigned long off;
625 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 			if (pfn == vma->vm_pgoff + off)
627 				return NULL;
628 			if (!is_cow_mapping(vma->vm_flags))
629 				return NULL;
630 		}
631 	}
632 
633 	if (is_zero_pfn(pfn))
634 		return NULL;
635 
636 check_pfn:
637 	if (unlikely(pfn > highest_memmap_pfn)) {
638 		print_bad_pte(vma, addr, pte, NULL);
639 		return NULL;
640 	}
641 
642 	/*
643 	 * NOTE! We still have PageReserved() pages in the page tables.
644 	 * eg. VDSO mappings can cause them to exist.
645 	 */
646 out:
647 	return pfn_to_page(pfn);
648 }
649 
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 				pmd_t pmd)
653 {
654 	unsigned long pfn = pmd_pfn(pmd);
655 
656 	/*
657 	 * There is no pmd_special() but there may be special pmds, e.g.
658 	 * in a direct-access (dax) mapping, so let's just replicate the
659 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660 	 */
661 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 		if (vma->vm_flags & VM_MIXEDMAP) {
663 			if (!pfn_valid(pfn))
664 				return NULL;
665 			goto out;
666 		} else {
667 			unsigned long off;
668 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 			if (pfn == vma->vm_pgoff + off)
670 				return NULL;
671 			if (!is_cow_mapping(vma->vm_flags))
672 				return NULL;
673 		}
674 	}
675 
676 	if (pmd_devmap(pmd))
677 		return NULL;
678 	if (is_huge_zero_pmd(pmd))
679 		return NULL;
680 	if (unlikely(pfn > highest_memmap_pfn))
681 		return NULL;
682 
683 	/*
684 	 * NOTE! We still have PageReserved() pages in the page tables.
685 	 * eg. VDSO mappings can cause them to exist.
686 	 */
687 out:
688 	return pfn_to_page(pfn);
689 }
690 #endif
691 
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697 
698 static unsigned long
699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701 		unsigned long addr, int *rss)
702 {
703 	unsigned long vm_flags = vma->vm_flags;
704 	pte_t pte = *src_pte;
705 	struct page *page;
706 	swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 	if (likely(!non_swap_entry(entry))) {
709 		if (swap_duplicate(entry) < 0)
710 			return entry.val;
711 
712 		/* make sure dst_mm is on swapoff's mmlist. */
713 		if (unlikely(list_empty(&dst_mm->mmlist))) {
714 			spin_lock(&mmlist_lock);
715 			if (list_empty(&dst_mm->mmlist))
716 				list_add(&dst_mm->mmlist,
717 						&src_mm->mmlist);
718 			spin_unlock(&mmlist_lock);
719 		}
720 		rss[MM_SWAPENTS]++;
721 	} else if (is_migration_entry(entry)) {
722 		page = migration_entry_to_page(entry);
723 
724 		rss[mm_counter(page)]++;
725 
726 		if (is_write_migration_entry(entry) &&
727 				is_cow_mapping(vm_flags)) {
728 			/*
729 			 * COW mappings require pages in both
730 			 * parent and child to be set to read.
731 			 */
732 			make_migration_entry_read(&entry);
733 			pte = swp_entry_to_pte(entry);
734 			if (pte_swp_soft_dirty(*src_pte))
735 				pte = pte_swp_mksoft_dirty(pte);
736 			if (pte_swp_uffd_wp(*src_pte))
737 				pte = pte_swp_mkuffd_wp(pte);
738 			set_pte_at(src_mm, addr, src_pte, pte);
739 		}
740 	} else if (is_device_private_entry(entry)) {
741 		page = device_private_entry_to_page(entry);
742 
743 		/*
744 		 * Update rss count even for unaddressable pages, as
745 		 * they should treated just like normal pages in this
746 		 * respect.
747 		 *
748 		 * We will likely want to have some new rss counters
749 		 * for unaddressable pages, at some point. But for now
750 		 * keep things as they are.
751 		 */
752 		get_page(page);
753 		rss[mm_counter(page)]++;
754 		page_dup_rmap(page, false);
755 
756 		/*
757 		 * We do not preserve soft-dirty information, because so
758 		 * far, checkpoint/restore is the only feature that
759 		 * requires that. And checkpoint/restore does not work
760 		 * when a device driver is involved (you cannot easily
761 		 * save and restore device driver state).
762 		 */
763 		if (is_write_device_private_entry(entry) &&
764 		    is_cow_mapping(vm_flags)) {
765 			make_device_private_entry_read(&entry);
766 			pte = swp_entry_to_pte(entry);
767 			if (pte_swp_uffd_wp(*src_pte))
768 				pte = pte_swp_mkuffd_wp(pte);
769 			set_pte_at(src_mm, addr, src_pte, pte);
770 		}
771 	}
772 	set_pte_at(dst_mm, addr, dst_pte, pte);
773 	return 0;
774 }
775 
776 static inline void
777 copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
778 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
779 		unsigned long addr, int *rss)
780 {
781 	unsigned long vm_flags = vma->vm_flags;
782 	pte_t pte = *src_pte;
783 	struct page *page;
784 
785 	/*
786 	 * If it's a COW mapping, write protect it both
787 	 * in the parent and the child
788 	 */
789 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
790 		ptep_set_wrprotect(src_mm, addr, src_pte);
791 		pte = pte_wrprotect(pte);
792 	}
793 
794 	/*
795 	 * If it's a shared mapping, mark it clean in
796 	 * the child
797 	 */
798 	if (vm_flags & VM_SHARED)
799 		pte = pte_mkclean(pte);
800 	pte = pte_mkold(pte);
801 
802 	/*
803 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
804 	 * does not have the VM_UFFD_WP, which means that the uffd
805 	 * fork event is not enabled.
806 	 */
807 	if (!(vm_flags & VM_UFFD_WP))
808 		pte = pte_clear_uffd_wp(pte);
809 
810 	page = vm_normal_page(vma, addr, pte);
811 	if (page) {
812 		get_page(page);
813 		page_dup_rmap(page, false);
814 		rss[mm_counter(page)]++;
815 	}
816 
817 	set_pte_at(dst_mm, addr, dst_pte, pte);
818 }
819 
820 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
821 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
822 		   unsigned long addr, unsigned long end)
823 {
824 	pte_t *orig_src_pte, *orig_dst_pte;
825 	pte_t *src_pte, *dst_pte;
826 	spinlock_t *src_ptl, *dst_ptl;
827 	int progress = 0;
828 	int rss[NR_MM_COUNTERS];
829 	swp_entry_t entry = (swp_entry_t){0};
830 
831 again:
832 	init_rss_vec(rss);
833 
834 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
835 	if (!dst_pte)
836 		return -ENOMEM;
837 	src_pte = pte_offset_map(src_pmd, addr);
838 	src_ptl = pte_lockptr(src_mm, src_pmd);
839 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
840 	orig_src_pte = src_pte;
841 	orig_dst_pte = dst_pte;
842 	arch_enter_lazy_mmu_mode();
843 
844 	do {
845 		/*
846 		 * We are holding two locks at this point - either of them
847 		 * could generate latencies in another task on another CPU.
848 		 */
849 		if (progress >= 32) {
850 			progress = 0;
851 			if (need_resched() ||
852 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
853 				break;
854 		}
855 		if (pte_none(*src_pte)) {
856 			progress++;
857 			continue;
858 		}
859 		if (unlikely(!pte_present(*src_pte))) {
860 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
861 							dst_pte, src_pte,
862 							vma, addr, rss);
863 			if (entry.val)
864 				break;
865 			progress += 8;
866 			continue;
867 		}
868 		copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
869 				 vma, addr, rss);
870 		progress += 8;
871 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
872 
873 	arch_leave_lazy_mmu_mode();
874 	spin_unlock(src_ptl);
875 	pte_unmap(orig_src_pte);
876 	add_mm_rss_vec(dst_mm, rss);
877 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
878 	cond_resched();
879 
880 	if (entry.val) {
881 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
882 			return -ENOMEM;
883 		progress = 0;
884 	}
885 	if (addr != end)
886 		goto again;
887 	return 0;
888 }
889 
890 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
891 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
892 		unsigned long addr, unsigned long end)
893 {
894 	pmd_t *src_pmd, *dst_pmd;
895 	unsigned long next;
896 
897 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
898 	if (!dst_pmd)
899 		return -ENOMEM;
900 	src_pmd = pmd_offset(src_pud, addr);
901 	do {
902 		next = pmd_addr_end(addr, end);
903 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
904 			|| pmd_devmap(*src_pmd)) {
905 			int err;
906 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
907 			err = copy_huge_pmd(dst_mm, src_mm,
908 					    dst_pmd, src_pmd, addr, vma);
909 			if (err == -ENOMEM)
910 				return -ENOMEM;
911 			if (!err)
912 				continue;
913 			/* fall through */
914 		}
915 		if (pmd_none_or_clear_bad(src_pmd))
916 			continue;
917 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
918 						vma, addr, next))
919 			return -ENOMEM;
920 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
921 	return 0;
922 }
923 
924 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
926 		unsigned long addr, unsigned long end)
927 {
928 	pud_t *src_pud, *dst_pud;
929 	unsigned long next;
930 
931 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
932 	if (!dst_pud)
933 		return -ENOMEM;
934 	src_pud = pud_offset(src_p4d, addr);
935 	do {
936 		next = pud_addr_end(addr, end);
937 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
938 			int err;
939 
940 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
941 			err = copy_huge_pud(dst_mm, src_mm,
942 					    dst_pud, src_pud, addr, vma);
943 			if (err == -ENOMEM)
944 				return -ENOMEM;
945 			if (!err)
946 				continue;
947 			/* fall through */
948 		}
949 		if (pud_none_or_clear_bad(src_pud))
950 			continue;
951 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
952 						vma, addr, next))
953 			return -ENOMEM;
954 	} while (dst_pud++, src_pud++, addr = next, addr != end);
955 	return 0;
956 }
957 
958 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
959 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
960 		unsigned long addr, unsigned long end)
961 {
962 	p4d_t *src_p4d, *dst_p4d;
963 	unsigned long next;
964 
965 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
966 	if (!dst_p4d)
967 		return -ENOMEM;
968 	src_p4d = p4d_offset(src_pgd, addr);
969 	do {
970 		next = p4d_addr_end(addr, end);
971 		if (p4d_none_or_clear_bad(src_p4d))
972 			continue;
973 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
974 						vma, addr, next))
975 			return -ENOMEM;
976 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
977 	return 0;
978 }
979 
980 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 		struct vm_area_struct *vma)
982 {
983 	pgd_t *src_pgd, *dst_pgd;
984 	unsigned long next;
985 	unsigned long addr = vma->vm_start;
986 	unsigned long end = vma->vm_end;
987 	struct mmu_notifier_range range;
988 	bool is_cow;
989 	int ret;
990 
991 	/*
992 	 * Don't copy ptes where a page fault will fill them correctly.
993 	 * Fork becomes much lighter when there are big shared or private
994 	 * readonly mappings. The tradeoff is that copy_page_range is more
995 	 * efficient than faulting.
996 	 */
997 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
998 			!vma->anon_vma)
999 		return 0;
1000 
1001 	if (is_vm_hugetlb_page(vma))
1002 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1003 
1004 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1005 		/*
1006 		 * We do not free on error cases below as remove_vma
1007 		 * gets called on error from higher level routine
1008 		 */
1009 		ret = track_pfn_copy(vma);
1010 		if (ret)
1011 			return ret;
1012 	}
1013 
1014 	/*
1015 	 * We need to invalidate the secondary MMU mappings only when
1016 	 * there could be a permission downgrade on the ptes of the
1017 	 * parent mm. And a permission downgrade will only happen if
1018 	 * is_cow_mapping() returns true.
1019 	 */
1020 	is_cow = is_cow_mapping(vma->vm_flags);
1021 
1022 	if (is_cow) {
1023 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1024 					0, vma, src_mm, addr, end);
1025 		mmu_notifier_invalidate_range_start(&range);
1026 	}
1027 
1028 	ret = 0;
1029 	dst_pgd = pgd_offset(dst_mm, addr);
1030 	src_pgd = pgd_offset(src_mm, addr);
1031 	do {
1032 		next = pgd_addr_end(addr, end);
1033 		if (pgd_none_or_clear_bad(src_pgd))
1034 			continue;
1035 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1036 					    vma, addr, next))) {
1037 			ret = -ENOMEM;
1038 			break;
1039 		}
1040 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1041 
1042 	if (is_cow)
1043 		mmu_notifier_invalidate_range_end(&range);
1044 	return ret;
1045 }
1046 
1047 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1048 				struct vm_area_struct *vma, pmd_t *pmd,
1049 				unsigned long addr, unsigned long end,
1050 				struct zap_details *details)
1051 {
1052 	struct mm_struct *mm = tlb->mm;
1053 	int force_flush = 0;
1054 	int rss[NR_MM_COUNTERS];
1055 	spinlock_t *ptl;
1056 	pte_t *start_pte;
1057 	pte_t *pte;
1058 	swp_entry_t entry;
1059 
1060 	tlb_change_page_size(tlb, PAGE_SIZE);
1061 again:
1062 	init_rss_vec(rss);
1063 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1064 	pte = start_pte;
1065 	flush_tlb_batched_pending(mm);
1066 	arch_enter_lazy_mmu_mode();
1067 	do {
1068 		pte_t ptent = *pte;
1069 		if (pte_none(ptent))
1070 			continue;
1071 
1072 		if (need_resched())
1073 			break;
1074 
1075 		if (pte_present(ptent)) {
1076 			struct page *page;
1077 
1078 			page = vm_normal_page(vma, addr, ptent);
1079 			if (unlikely(details) && page) {
1080 				/*
1081 				 * unmap_shared_mapping_pages() wants to
1082 				 * invalidate cache without truncating:
1083 				 * unmap shared but keep private pages.
1084 				 */
1085 				if (details->check_mapping &&
1086 				    details->check_mapping != page_rmapping(page))
1087 					continue;
1088 			}
1089 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1090 							tlb->fullmm);
1091 			tlb_remove_tlb_entry(tlb, pte, addr);
1092 			if (unlikely(!page))
1093 				continue;
1094 
1095 			if (!PageAnon(page)) {
1096 				if (pte_dirty(ptent)) {
1097 					force_flush = 1;
1098 					set_page_dirty(page);
1099 				}
1100 				if (pte_young(ptent) &&
1101 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1102 					mark_page_accessed(page);
1103 			}
1104 			rss[mm_counter(page)]--;
1105 			page_remove_rmap(page, false);
1106 			if (unlikely(page_mapcount(page) < 0))
1107 				print_bad_pte(vma, addr, ptent, page);
1108 			if (unlikely(__tlb_remove_page(tlb, page))) {
1109 				force_flush = 1;
1110 				addr += PAGE_SIZE;
1111 				break;
1112 			}
1113 			continue;
1114 		}
1115 
1116 		entry = pte_to_swp_entry(ptent);
1117 		if (is_device_private_entry(entry)) {
1118 			struct page *page = device_private_entry_to_page(entry);
1119 
1120 			if (unlikely(details && details->check_mapping)) {
1121 				/*
1122 				 * unmap_shared_mapping_pages() wants to
1123 				 * invalidate cache without truncating:
1124 				 * unmap shared but keep private pages.
1125 				 */
1126 				if (details->check_mapping !=
1127 				    page_rmapping(page))
1128 					continue;
1129 			}
1130 
1131 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1132 			rss[mm_counter(page)]--;
1133 			page_remove_rmap(page, false);
1134 			put_page(page);
1135 			continue;
1136 		}
1137 
1138 		/* If details->check_mapping, we leave swap entries. */
1139 		if (unlikely(details))
1140 			continue;
1141 
1142 		if (!non_swap_entry(entry))
1143 			rss[MM_SWAPENTS]--;
1144 		else if (is_migration_entry(entry)) {
1145 			struct page *page;
1146 
1147 			page = migration_entry_to_page(entry);
1148 			rss[mm_counter(page)]--;
1149 		}
1150 		if (unlikely(!free_swap_and_cache(entry)))
1151 			print_bad_pte(vma, addr, ptent, NULL);
1152 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1153 	} while (pte++, addr += PAGE_SIZE, addr != end);
1154 
1155 	add_mm_rss_vec(mm, rss);
1156 	arch_leave_lazy_mmu_mode();
1157 
1158 	/* Do the actual TLB flush before dropping ptl */
1159 	if (force_flush)
1160 		tlb_flush_mmu_tlbonly(tlb);
1161 	pte_unmap_unlock(start_pte, ptl);
1162 
1163 	/*
1164 	 * If we forced a TLB flush (either due to running out of
1165 	 * batch buffers or because we needed to flush dirty TLB
1166 	 * entries before releasing the ptl), free the batched
1167 	 * memory too. Restart if we didn't do everything.
1168 	 */
1169 	if (force_flush) {
1170 		force_flush = 0;
1171 		tlb_flush_mmu(tlb);
1172 	}
1173 
1174 	if (addr != end) {
1175 		cond_resched();
1176 		goto again;
1177 	}
1178 
1179 	return addr;
1180 }
1181 
1182 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1183 				struct vm_area_struct *vma, pud_t *pud,
1184 				unsigned long addr, unsigned long end,
1185 				struct zap_details *details)
1186 {
1187 	pmd_t *pmd;
1188 	unsigned long next;
1189 
1190 	pmd = pmd_offset(pud, addr);
1191 	do {
1192 		next = pmd_addr_end(addr, end);
1193 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1194 			if (next - addr != HPAGE_PMD_SIZE)
1195 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1196 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1197 				goto next;
1198 			/* fall through */
1199 		}
1200 		/*
1201 		 * Here there can be other concurrent MADV_DONTNEED or
1202 		 * trans huge page faults running, and if the pmd is
1203 		 * none or trans huge it can change under us. This is
1204 		 * because MADV_DONTNEED holds the mmap_lock in read
1205 		 * mode.
1206 		 */
1207 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1208 			goto next;
1209 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1210 next:
1211 		cond_resched();
1212 	} while (pmd++, addr = next, addr != end);
1213 
1214 	return addr;
1215 }
1216 
1217 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1218 				struct vm_area_struct *vma, p4d_t *p4d,
1219 				unsigned long addr, unsigned long end,
1220 				struct zap_details *details)
1221 {
1222 	pud_t *pud;
1223 	unsigned long next;
1224 
1225 	pud = pud_offset(p4d, addr);
1226 	do {
1227 		next = pud_addr_end(addr, end);
1228 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1229 			if (next - addr != HPAGE_PUD_SIZE) {
1230 				mmap_assert_locked(tlb->mm);
1231 				split_huge_pud(vma, pud, addr);
1232 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1233 				goto next;
1234 			/* fall through */
1235 		}
1236 		if (pud_none_or_clear_bad(pud))
1237 			continue;
1238 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1239 next:
1240 		cond_resched();
1241 	} while (pud++, addr = next, addr != end);
1242 
1243 	return addr;
1244 }
1245 
1246 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1247 				struct vm_area_struct *vma, pgd_t *pgd,
1248 				unsigned long addr, unsigned long end,
1249 				struct zap_details *details)
1250 {
1251 	p4d_t *p4d;
1252 	unsigned long next;
1253 
1254 	p4d = p4d_offset(pgd, addr);
1255 	do {
1256 		next = p4d_addr_end(addr, end);
1257 		if (p4d_none_or_clear_bad(p4d))
1258 			continue;
1259 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1260 	} while (p4d++, addr = next, addr != end);
1261 
1262 	return addr;
1263 }
1264 
1265 void unmap_page_range(struct mmu_gather *tlb,
1266 			     struct vm_area_struct *vma,
1267 			     unsigned long addr, unsigned long end,
1268 			     struct zap_details *details)
1269 {
1270 	pgd_t *pgd;
1271 	unsigned long next;
1272 
1273 	BUG_ON(addr >= end);
1274 	tlb_start_vma(tlb, vma);
1275 	pgd = pgd_offset(vma->vm_mm, addr);
1276 	do {
1277 		next = pgd_addr_end(addr, end);
1278 		if (pgd_none_or_clear_bad(pgd))
1279 			continue;
1280 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1281 	} while (pgd++, addr = next, addr != end);
1282 	tlb_end_vma(tlb, vma);
1283 }
1284 
1285 
1286 static void unmap_single_vma(struct mmu_gather *tlb,
1287 		struct vm_area_struct *vma, unsigned long start_addr,
1288 		unsigned long end_addr,
1289 		struct zap_details *details)
1290 {
1291 	unsigned long start = max(vma->vm_start, start_addr);
1292 	unsigned long end;
1293 
1294 	if (start >= vma->vm_end)
1295 		return;
1296 	end = min(vma->vm_end, end_addr);
1297 	if (end <= vma->vm_start)
1298 		return;
1299 
1300 	if (vma->vm_file)
1301 		uprobe_munmap(vma, start, end);
1302 
1303 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1304 		untrack_pfn(vma, 0, 0);
1305 
1306 	if (start != end) {
1307 		if (unlikely(is_vm_hugetlb_page(vma))) {
1308 			/*
1309 			 * It is undesirable to test vma->vm_file as it
1310 			 * should be non-null for valid hugetlb area.
1311 			 * However, vm_file will be NULL in the error
1312 			 * cleanup path of mmap_region. When
1313 			 * hugetlbfs ->mmap method fails,
1314 			 * mmap_region() nullifies vma->vm_file
1315 			 * before calling this function to clean up.
1316 			 * Since no pte has actually been setup, it is
1317 			 * safe to do nothing in this case.
1318 			 */
1319 			if (vma->vm_file) {
1320 				i_mmap_lock_write(vma->vm_file->f_mapping);
1321 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1322 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1323 			}
1324 		} else
1325 			unmap_page_range(tlb, vma, start, end, details);
1326 	}
1327 }
1328 
1329 /**
1330  * unmap_vmas - unmap a range of memory covered by a list of vma's
1331  * @tlb: address of the caller's struct mmu_gather
1332  * @vma: the starting vma
1333  * @start_addr: virtual address at which to start unmapping
1334  * @end_addr: virtual address at which to end unmapping
1335  *
1336  * Unmap all pages in the vma list.
1337  *
1338  * Only addresses between `start' and `end' will be unmapped.
1339  *
1340  * The VMA list must be sorted in ascending virtual address order.
1341  *
1342  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1343  * range after unmap_vmas() returns.  So the only responsibility here is to
1344  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1345  * drops the lock and schedules.
1346  */
1347 void unmap_vmas(struct mmu_gather *tlb,
1348 		struct vm_area_struct *vma, unsigned long start_addr,
1349 		unsigned long end_addr)
1350 {
1351 	struct mmu_notifier_range range;
1352 
1353 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1354 				start_addr, end_addr);
1355 	mmu_notifier_invalidate_range_start(&range);
1356 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1357 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1358 	mmu_notifier_invalidate_range_end(&range);
1359 }
1360 
1361 /**
1362  * zap_page_range - remove user pages in a given range
1363  * @vma: vm_area_struct holding the applicable pages
1364  * @start: starting address of pages to zap
1365  * @size: number of bytes to zap
1366  *
1367  * Caller must protect the VMA list
1368  */
1369 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1370 		unsigned long size)
1371 {
1372 	struct mmu_notifier_range range;
1373 	struct mmu_gather tlb;
1374 
1375 	lru_add_drain();
1376 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1377 				start, start + size);
1378 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1379 	update_hiwater_rss(vma->vm_mm);
1380 	mmu_notifier_invalidate_range_start(&range);
1381 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1382 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1383 	mmu_notifier_invalidate_range_end(&range);
1384 	tlb_finish_mmu(&tlb, start, range.end);
1385 }
1386 
1387 /**
1388  * zap_page_range_single - remove user pages in a given range
1389  * @vma: vm_area_struct holding the applicable pages
1390  * @address: starting address of pages to zap
1391  * @size: number of bytes to zap
1392  * @details: details of shared cache invalidation
1393  *
1394  * The range must fit into one VMA.
1395  */
1396 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1397 		unsigned long size, struct zap_details *details)
1398 {
1399 	struct mmu_notifier_range range;
1400 	struct mmu_gather tlb;
1401 
1402 	lru_add_drain();
1403 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1404 				address, address + size);
1405 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1406 	update_hiwater_rss(vma->vm_mm);
1407 	mmu_notifier_invalidate_range_start(&range);
1408 	unmap_single_vma(&tlb, vma, address, range.end, details);
1409 	mmu_notifier_invalidate_range_end(&range);
1410 	tlb_finish_mmu(&tlb, address, range.end);
1411 }
1412 
1413 /**
1414  * zap_vma_ptes - remove ptes mapping the vma
1415  * @vma: vm_area_struct holding ptes to be zapped
1416  * @address: starting address of pages to zap
1417  * @size: number of bytes to zap
1418  *
1419  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1420  *
1421  * The entire address range must be fully contained within the vma.
1422  *
1423  */
1424 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1425 		unsigned long size)
1426 {
1427 	if (address < vma->vm_start || address + size > vma->vm_end ||
1428 	    		!(vma->vm_flags & VM_PFNMAP))
1429 		return;
1430 
1431 	zap_page_range_single(vma, address, size, NULL);
1432 }
1433 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1434 
1435 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1436 {
1437 	pgd_t *pgd;
1438 	p4d_t *p4d;
1439 	pud_t *pud;
1440 	pmd_t *pmd;
1441 
1442 	pgd = pgd_offset(mm, addr);
1443 	p4d = p4d_alloc(mm, pgd, addr);
1444 	if (!p4d)
1445 		return NULL;
1446 	pud = pud_alloc(mm, p4d, addr);
1447 	if (!pud)
1448 		return NULL;
1449 	pmd = pmd_alloc(mm, pud, addr);
1450 	if (!pmd)
1451 		return NULL;
1452 
1453 	VM_BUG_ON(pmd_trans_huge(*pmd));
1454 	return pmd;
1455 }
1456 
1457 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1458 			spinlock_t **ptl)
1459 {
1460 	pmd_t *pmd = walk_to_pmd(mm, addr);
1461 
1462 	if (!pmd)
1463 		return NULL;
1464 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1465 }
1466 
1467 static int validate_page_before_insert(struct page *page)
1468 {
1469 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1470 		return -EINVAL;
1471 	flush_dcache_page(page);
1472 	return 0;
1473 }
1474 
1475 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1476 			unsigned long addr, struct page *page, pgprot_t prot)
1477 {
1478 	if (!pte_none(*pte))
1479 		return -EBUSY;
1480 	/* Ok, finally just insert the thing.. */
1481 	get_page(page);
1482 	inc_mm_counter_fast(mm, mm_counter_file(page));
1483 	page_add_file_rmap(page, false);
1484 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1485 	return 0;
1486 }
1487 
1488 /*
1489  * This is the old fallback for page remapping.
1490  *
1491  * For historical reasons, it only allows reserved pages. Only
1492  * old drivers should use this, and they needed to mark their
1493  * pages reserved for the old functions anyway.
1494  */
1495 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1496 			struct page *page, pgprot_t prot)
1497 {
1498 	struct mm_struct *mm = vma->vm_mm;
1499 	int retval;
1500 	pte_t *pte;
1501 	spinlock_t *ptl;
1502 
1503 	retval = validate_page_before_insert(page);
1504 	if (retval)
1505 		goto out;
1506 	retval = -ENOMEM;
1507 	pte = get_locked_pte(mm, addr, &ptl);
1508 	if (!pte)
1509 		goto out;
1510 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1511 	pte_unmap_unlock(pte, ptl);
1512 out:
1513 	return retval;
1514 }
1515 
1516 #ifdef pte_index
1517 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1518 			unsigned long addr, struct page *page, pgprot_t prot)
1519 {
1520 	int err;
1521 
1522 	if (!page_count(page))
1523 		return -EINVAL;
1524 	err = validate_page_before_insert(page);
1525 	if (err)
1526 		return err;
1527 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1528 }
1529 
1530 /* insert_pages() amortizes the cost of spinlock operations
1531  * when inserting pages in a loop. Arch *must* define pte_index.
1532  */
1533 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1534 			struct page **pages, unsigned long *num, pgprot_t prot)
1535 {
1536 	pmd_t *pmd = NULL;
1537 	pte_t *start_pte, *pte;
1538 	spinlock_t *pte_lock;
1539 	struct mm_struct *const mm = vma->vm_mm;
1540 	unsigned long curr_page_idx = 0;
1541 	unsigned long remaining_pages_total = *num;
1542 	unsigned long pages_to_write_in_pmd;
1543 	int ret;
1544 more:
1545 	ret = -EFAULT;
1546 	pmd = walk_to_pmd(mm, addr);
1547 	if (!pmd)
1548 		goto out;
1549 
1550 	pages_to_write_in_pmd = min_t(unsigned long,
1551 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1552 
1553 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1554 	ret = -ENOMEM;
1555 	if (pte_alloc(mm, pmd))
1556 		goto out;
1557 
1558 	while (pages_to_write_in_pmd) {
1559 		int pte_idx = 0;
1560 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1561 
1562 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1563 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1564 			int err = insert_page_in_batch_locked(mm, pte,
1565 				addr, pages[curr_page_idx], prot);
1566 			if (unlikely(err)) {
1567 				pte_unmap_unlock(start_pte, pte_lock);
1568 				ret = err;
1569 				remaining_pages_total -= pte_idx;
1570 				goto out;
1571 			}
1572 			addr += PAGE_SIZE;
1573 			++curr_page_idx;
1574 		}
1575 		pte_unmap_unlock(start_pte, pte_lock);
1576 		pages_to_write_in_pmd -= batch_size;
1577 		remaining_pages_total -= batch_size;
1578 	}
1579 	if (remaining_pages_total)
1580 		goto more;
1581 	ret = 0;
1582 out:
1583 	*num = remaining_pages_total;
1584 	return ret;
1585 }
1586 #endif  /* ifdef pte_index */
1587 
1588 /**
1589  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1590  * @vma: user vma to map to
1591  * @addr: target start user address of these pages
1592  * @pages: source kernel pages
1593  * @num: in: number of pages to map. out: number of pages that were *not*
1594  * mapped. (0 means all pages were successfully mapped).
1595  *
1596  * Preferred over vm_insert_page() when inserting multiple pages.
1597  *
1598  * In case of error, we may have mapped a subset of the provided
1599  * pages. It is the caller's responsibility to account for this case.
1600  *
1601  * The same restrictions apply as in vm_insert_page().
1602  */
1603 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1604 			struct page **pages, unsigned long *num)
1605 {
1606 #ifdef pte_index
1607 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1608 
1609 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1610 		return -EFAULT;
1611 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1612 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1613 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1614 		vma->vm_flags |= VM_MIXEDMAP;
1615 	}
1616 	/* Defer page refcount checking till we're about to map that page. */
1617 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1618 #else
1619 	unsigned long idx = 0, pgcount = *num;
1620 	int err = -EINVAL;
1621 
1622 	for (; idx < pgcount; ++idx) {
1623 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1624 		if (err)
1625 			break;
1626 	}
1627 	*num = pgcount - idx;
1628 	return err;
1629 #endif  /* ifdef pte_index */
1630 }
1631 EXPORT_SYMBOL(vm_insert_pages);
1632 
1633 /**
1634  * vm_insert_page - insert single page into user vma
1635  * @vma: user vma to map to
1636  * @addr: target user address of this page
1637  * @page: source kernel page
1638  *
1639  * This allows drivers to insert individual pages they've allocated
1640  * into a user vma.
1641  *
1642  * The page has to be a nice clean _individual_ kernel allocation.
1643  * If you allocate a compound page, you need to have marked it as
1644  * such (__GFP_COMP), or manually just split the page up yourself
1645  * (see split_page()).
1646  *
1647  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1648  * took an arbitrary page protection parameter. This doesn't allow
1649  * that. Your vma protection will have to be set up correctly, which
1650  * means that if you want a shared writable mapping, you'd better
1651  * ask for a shared writable mapping!
1652  *
1653  * The page does not need to be reserved.
1654  *
1655  * Usually this function is called from f_op->mmap() handler
1656  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1657  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1658  * function from other places, for example from page-fault handler.
1659  *
1660  * Return: %0 on success, negative error code otherwise.
1661  */
1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 			struct page *page)
1664 {
1665 	if (addr < vma->vm_start || addr >= vma->vm_end)
1666 		return -EFAULT;
1667 	if (!page_count(page))
1668 		return -EINVAL;
1669 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1670 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1671 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1672 		vma->vm_flags |= VM_MIXEDMAP;
1673 	}
1674 	return insert_page(vma, addr, page, vma->vm_page_prot);
1675 }
1676 EXPORT_SYMBOL(vm_insert_page);
1677 
1678 /*
1679  * __vm_map_pages - maps range of kernel pages into user vma
1680  * @vma: user vma to map to
1681  * @pages: pointer to array of source kernel pages
1682  * @num: number of pages in page array
1683  * @offset: user's requested vm_pgoff
1684  *
1685  * This allows drivers to map range of kernel pages into a user vma.
1686  *
1687  * Return: 0 on success and error code otherwise.
1688  */
1689 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1690 				unsigned long num, unsigned long offset)
1691 {
1692 	unsigned long count = vma_pages(vma);
1693 	unsigned long uaddr = vma->vm_start;
1694 	int ret, i;
1695 
1696 	/* Fail if the user requested offset is beyond the end of the object */
1697 	if (offset >= num)
1698 		return -ENXIO;
1699 
1700 	/* Fail if the user requested size exceeds available object size */
1701 	if (count > num - offset)
1702 		return -ENXIO;
1703 
1704 	for (i = 0; i < count; i++) {
1705 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1706 		if (ret < 0)
1707 			return ret;
1708 		uaddr += PAGE_SIZE;
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 /**
1715  * vm_map_pages - maps range of kernel pages starts with non zero offset
1716  * @vma: user vma to map to
1717  * @pages: pointer to array of source kernel pages
1718  * @num: number of pages in page array
1719  *
1720  * Maps an object consisting of @num pages, catering for the user's
1721  * requested vm_pgoff
1722  *
1723  * If we fail to insert any page into the vma, the function will return
1724  * immediately leaving any previously inserted pages present.  Callers
1725  * from the mmap handler may immediately return the error as their caller
1726  * will destroy the vma, removing any successfully inserted pages. Other
1727  * callers should make their own arrangements for calling unmap_region().
1728  *
1729  * Context: Process context. Called by mmap handlers.
1730  * Return: 0 on success and error code otherwise.
1731  */
1732 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1733 				unsigned long num)
1734 {
1735 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1736 }
1737 EXPORT_SYMBOL(vm_map_pages);
1738 
1739 /**
1740  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1741  * @vma: user vma to map to
1742  * @pages: pointer to array of source kernel pages
1743  * @num: number of pages in page array
1744  *
1745  * Similar to vm_map_pages(), except that it explicitly sets the offset
1746  * to 0. This function is intended for the drivers that did not consider
1747  * vm_pgoff.
1748  *
1749  * Context: Process context. Called by mmap handlers.
1750  * Return: 0 on success and error code otherwise.
1751  */
1752 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1753 				unsigned long num)
1754 {
1755 	return __vm_map_pages(vma, pages, num, 0);
1756 }
1757 EXPORT_SYMBOL(vm_map_pages_zero);
1758 
1759 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1760 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1761 {
1762 	struct mm_struct *mm = vma->vm_mm;
1763 	pte_t *pte, entry;
1764 	spinlock_t *ptl;
1765 
1766 	pte = get_locked_pte(mm, addr, &ptl);
1767 	if (!pte)
1768 		return VM_FAULT_OOM;
1769 	if (!pte_none(*pte)) {
1770 		if (mkwrite) {
1771 			/*
1772 			 * For read faults on private mappings the PFN passed
1773 			 * in may not match the PFN we have mapped if the
1774 			 * mapped PFN is a writeable COW page.  In the mkwrite
1775 			 * case we are creating a writable PTE for a shared
1776 			 * mapping and we expect the PFNs to match. If they
1777 			 * don't match, we are likely racing with block
1778 			 * allocation and mapping invalidation so just skip the
1779 			 * update.
1780 			 */
1781 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1782 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1783 				goto out_unlock;
1784 			}
1785 			entry = pte_mkyoung(*pte);
1786 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1787 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1788 				update_mmu_cache(vma, addr, pte);
1789 		}
1790 		goto out_unlock;
1791 	}
1792 
1793 	/* Ok, finally just insert the thing.. */
1794 	if (pfn_t_devmap(pfn))
1795 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1796 	else
1797 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1798 
1799 	if (mkwrite) {
1800 		entry = pte_mkyoung(entry);
1801 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1802 	}
1803 
1804 	set_pte_at(mm, addr, pte, entry);
1805 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1806 
1807 out_unlock:
1808 	pte_unmap_unlock(pte, ptl);
1809 	return VM_FAULT_NOPAGE;
1810 }
1811 
1812 /**
1813  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1814  * @vma: user vma to map to
1815  * @addr: target user address of this page
1816  * @pfn: source kernel pfn
1817  * @pgprot: pgprot flags for the inserted page
1818  *
1819  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1820  * to override pgprot on a per-page basis.
1821  *
1822  * This only makes sense for IO mappings, and it makes no sense for
1823  * COW mappings.  In general, using multiple vmas is preferable;
1824  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1825  * impractical.
1826  *
1827  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1828  * a value of @pgprot different from that of @vma->vm_page_prot.
1829  *
1830  * Context: Process context.  May allocate using %GFP_KERNEL.
1831  * Return: vm_fault_t value.
1832  */
1833 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1834 			unsigned long pfn, pgprot_t pgprot)
1835 {
1836 	/*
1837 	 * Technically, architectures with pte_special can avoid all these
1838 	 * restrictions (same for remap_pfn_range).  However we would like
1839 	 * consistency in testing and feature parity among all, so we should
1840 	 * try to keep these invariants in place for everybody.
1841 	 */
1842 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1843 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1844 						(VM_PFNMAP|VM_MIXEDMAP));
1845 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1846 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1847 
1848 	if (addr < vma->vm_start || addr >= vma->vm_end)
1849 		return VM_FAULT_SIGBUS;
1850 
1851 	if (!pfn_modify_allowed(pfn, pgprot))
1852 		return VM_FAULT_SIGBUS;
1853 
1854 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1855 
1856 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1857 			false);
1858 }
1859 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1860 
1861 /**
1862  * vmf_insert_pfn - insert single pfn into user vma
1863  * @vma: user vma to map to
1864  * @addr: target user address of this page
1865  * @pfn: source kernel pfn
1866  *
1867  * Similar to vm_insert_page, this allows drivers to insert individual pages
1868  * they've allocated into a user vma. Same comments apply.
1869  *
1870  * This function should only be called from a vm_ops->fault handler, and
1871  * in that case the handler should return the result of this function.
1872  *
1873  * vma cannot be a COW mapping.
1874  *
1875  * As this is called only for pages that do not currently exist, we
1876  * do not need to flush old virtual caches or the TLB.
1877  *
1878  * Context: Process context.  May allocate using %GFP_KERNEL.
1879  * Return: vm_fault_t value.
1880  */
1881 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1882 			unsigned long pfn)
1883 {
1884 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1885 }
1886 EXPORT_SYMBOL(vmf_insert_pfn);
1887 
1888 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1889 {
1890 	/* these checks mirror the abort conditions in vm_normal_page */
1891 	if (vma->vm_flags & VM_MIXEDMAP)
1892 		return true;
1893 	if (pfn_t_devmap(pfn))
1894 		return true;
1895 	if (pfn_t_special(pfn))
1896 		return true;
1897 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1898 		return true;
1899 	return false;
1900 }
1901 
1902 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1903 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1904 		bool mkwrite)
1905 {
1906 	int err;
1907 
1908 	BUG_ON(!vm_mixed_ok(vma, pfn));
1909 
1910 	if (addr < vma->vm_start || addr >= vma->vm_end)
1911 		return VM_FAULT_SIGBUS;
1912 
1913 	track_pfn_insert(vma, &pgprot, pfn);
1914 
1915 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1916 		return VM_FAULT_SIGBUS;
1917 
1918 	/*
1919 	 * If we don't have pte special, then we have to use the pfn_valid()
1920 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1921 	 * refcount the page if pfn_valid is true (hence insert_page rather
1922 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1923 	 * without pte special, it would there be refcounted as a normal page.
1924 	 */
1925 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1926 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1927 		struct page *page;
1928 
1929 		/*
1930 		 * At this point we are committed to insert_page()
1931 		 * regardless of whether the caller specified flags that
1932 		 * result in pfn_t_has_page() == false.
1933 		 */
1934 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1935 		err = insert_page(vma, addr, page, pgprot);
1936 	} else {
1937 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1938 	}
1939 
1940 	if (err == -ENOMEM)
1941 		return VM_FAULT_OOM;
1942 	if (err < 0 && err != -EBUSY)
1943 		return VM_FAULT_SIGBUS;
1944 
1945 	return VM_FAULT_NOPAGE;
1946 }
1947 
1948 /**
1949  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1950  * @vma: user vma to map to
1951  * @addr: target user address of this page
1952  * @pfn: source kernel pfn
1953  * @pgprot: pgprot flags for the inserted page
1954  *
1955  * This is exactly like vmf_insert_mixed(), except that it allows drivers
1956  * to override pgprot on a per-page basis.
1957  *
1958  * Typically this function should be used by drivers to set caching- and
1959  * encryption bits different than those of @vma->vm_page_prot, because
1960  * the caching- or encryption mode may not be known at mmap() time.
1961  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1962  * to set caching and encryption bits for those vmas (except for COW pages).
1963  * This is ensured by core vm only modifying these page table entries using
1964  * functions that don't touch caching- or encryption bits, using pte_modify()
1965  * if needed. (See for example mprotect()).
1966  * Also when new page-table entries are created, this is only done using the
1967  * fault() callback, and never using the value of vma->vm_page_prot,
1968  * except for page-table entries that point to anonymous pages as the result
1969  * of COW.
1970  *
1971  * Context: Process context.  May allocate using %GFP_KERNEL.
1972  * Return: vm_fault_t value.
1973  */
1974 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1975 				 pfn_t pfn, pgprot_t pgprot)
1976 {
1977 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1978 }
1979 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1980 
1981 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1982 		pfn_t pfn)
1983 {
1984 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1985 }
1986 EXPORT_SYMBOL(vmf_insert_mixed);
1987 
1988 /*
1989  *  If the insertion of PTE failed because someone else already added a
1990  *  different entry in the mean time, we treat that as success as we assume
1991  *  the same entry was actually inserted.
1992  */
1993 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1994 		unsigned long addr, pfn_t pfn)
1995 {
1996 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1997 }
1998 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1999 
2000 /*
2001  * maps a range of physical memory into the requested pages. the old
2002  * mappings are removed. any references to nonexistent pages results
2003  * in null mappings (currently treated as "copy-on-access")
2004  */
2005 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2006 			unsigned long addr, unsigned long end,
2007 			unsigned long pfn, pgprot_t prot)
2008 {
2009 	pte_t *pte;
2010 	spinlock_t *ptl;
2011 	int err = 0;
2012 
2013 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2014 	if (!pte)
2015 		return -ENOMEM;
2016 	arch_enter_lazy_mmu_mode();
2017 	do {
2018 		BUG_ON(!pte_none(*pte));
2019 		if (!pfn_modify_allowed(pfn, prot)) {
2020 			err = -EACCES;
2021 			break;
2022 		}
2023 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2024 		pfn++;
2025 	} while (pte++, addr += PAGE_SIZE, addr != end);
2026 	arch_leave_lazy_mmu_mode();
2027 	pte_unmap_unlock(pte - 1, ptl);
2028 	return err;
2029 }
2030 
2031 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2032 			unsigned long addr, unsigned long end,
2033 			unsigned long pfn, pgprot_t prot)
2034 {
2035 	pmd_t *pmd;
2036 	unsigned long next;
2037 	int err;
2038 
2039 	pfn -= addr >> PAGE_SHIFT;
2040 	pmd = pmd_alloc(mm, pud, addr);
2041 	if (!pmd)
2042 		return -ENOMEM;
2043 	VM_BUG_ON(pmd_trans_huge(*pmd));
2044 	do {
2045 		next = pmd_addr_end(addr, end);
2046 		err = remap_pte_range(mm, pmd, addr, next,
2047 				pfn + (addr >> PAGE_SHIFT), prot);
2048 		if (err)
2049 			return err;
2050 	} while (pmd++, addr = next, addr != end);
2051 	return 0;
2052 }
2053 
2054 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2055 			unsigned long addr, unsigned long end,
2056 			unsigned long pfn, pgprot_t prot)
2057 {
2058 	pud_t *pud;
2059 	unsigned long next;
2060 	int err;
2061 
2062 	pfn -= addr >> PAGE_SHIFT;
2063 	pud = pud_alloc(mm, p4d, addr);
2064 	if (!pud)
2065 		return -ENOMEM;
2066 	do {
2067 		next = pud_addr_end(addr, end);
2068 		err = remap_pmd_range(mm, pud, addr, next,
2069 				pfn + (addr >> PAGE_SHIFT), prot);
2070 		if (err)
2071 			return err;
2072 	} while (pud++, addr = next, addr != end);
2073 	return 0;
2074 }
2075 
2076 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2077 			unsigned long addr, unsigned long end,
2078 			unsigned long pfn, pgprot_t prot)
2079 {
2080 	p4d_t *p4d;
2081 	unsigned long next;
2082 	int err;
2083 
2084 	pfn -= addr >> PAGE_SHIFT;
2085 	p4d = p4d_alloc(mm, pgd, addr);
2086 	if (!p4d)
2087 		return -ENOMEM;
2088 	do {
2089 		next = p4d_addr_end(addr, end);
2090 		err = remap_pud_range(mm, p4d, addr, next,
2091 				pfn + (addr >> PAGE_SHIFT), prot);
2092 		if (err)
2093 			return err;
2094 	} while (p4d++, addr = next, addr != end);
2095 	return 0;
2096 }
2097 
2098 /**
2099  * remap_pfn_range - remap kernel memory to userspace
2100  * @vma: user vma to map to
2101  * @addr: target page aligned user address to start at
2102  * @pfn: page frame number of kernel physical memory address
2103  * @size: size of mapping area
2104  * @prot: page protection flags for this mapping
2105  *
2106  * Note: this is only safe if the mm semaphore is held when called.
2107  *
2108  * Return: %0 on success, negative error code otherwise.
2109  */
2110 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2111 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2112 {
2113 	pgd_t *pgd;
2114 	unsigned long next;
2115 	unsigned long end = addr + PAGE_ALIGN(size);
2116 	struct mm_struct *mm = vma->vm_mm;
2117 	unsigned long remap_pfn = pfn;
2118 	int err;
2119 
2120 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2121 		return -EINVAL;
2122 
2123 	/*
2124 	 * Physically remapped pages are special. Tell the
2125 	 * rest of the world about it:
2126 	 *   VM_IO tells people not to look at these pages
2127 	 *	(accesses can have side effects).
2128 	 *   VM_PFNMAP tells the core MM that the base pages are just
2129 	 *	raw PFN mappings, and do not have a "struct page" associated
2130 	 *	with them.
2131 	 *   VM_DONTEXPAND
2132 	 *      Disable vma merging and expanding with mremap().
2133 	 *   VM_DONTDUMP
2134 	 *      Omit vma from core dump, even when VM_IO turned off.
2135 	 *
2136 	 * There's a horrible special case to handle copy-on-write
2137 	 * behaviour that some programs depend on. We mark the "original"
2138 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2139 	 * See vm_normal_page() for details.
2140 	 */
2141 	if (is_cow_mapping(vma->vm_flags)) {
2142 		if (addr != vma->vm_start || end != vma->vm_end)
2143 			return -EINVAL;
2144 		vma->vm_pgoff = pfn;
2145 	}
2146 
2147 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2148 	if (err)
2149 		return -EINVAL;
2150 
2151 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2152 
2153 	BUG_ON(addr >= end);
2154 	pfn -= addr >> PAGE_SHIFT;
2155 	pgd = pgd_offset(mm, addr);
2156 	flush_cache_range(vma, addr, end);
2157 	do {
2158 		next = pgd_addr_end(addr, end);
2159 		err = remap_p4d_range(mm, pgd, addr, next,
2160 				pfn + (addr >> PAGE_SHIFT), prot);
2161 		if (err)
2162 			break;
2163 	} while (pgd++, addr = next, addr != end);
2164 
2165 	if (err)
2166 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2167 
2168 	return err;
2169 }
2170 EXPORT_SYMBOL(remap_pfn_range);
2171 
2172 /**
2173  * vm_iomap_memory - remap memory to userspace
2174  * @vma: user vma to map to
2175  * @start: start of the physical memory to be mapped
2176  * @len: size of area
2177  *
2178  * This is a simplified io_remap_pfn_range() for common driver use. The
2179  * driver just needs to give us the physical memory range to be mapped,
2180  * we'll figure out the rest from the vma information.
2181  *
2182  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2183  * whatever write-combining details or similar.
2184  *
2185  * Return: %0 on success, negative error code otherwise.
2186  */
2187 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2188 {
2189 	unsigned long vm_len, pfn, pages;
2190 
2191 	/* Check that the physical memory area passed in looks valid */
2192 	if (start + len < start)
2193 		return -EINVAL;
2194 	/*
2195 	 * You *really* shouldn't map things that aren't page-aligned,
2196 	 * but we've historically allowed it because IO memory might
2197 	 * just have smaller alignment.
2198 	 */
2199 	len += start & ~PAGE_MASK;
2200 	pfn = start >> PAGE_SHIFT;
2201 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2202 	if (pfn + pages < pfn)
2203 		return -EINVAL;
2204 
2205 	/* We start the mapping 'vm_pgoff' pages into the area */
2206 	if (vma->vm_pgoff > pages)
2207 		return -EINVAL;
2208 	pfn += vma->vm_pgoff;
2209 	pages -= vma->vm_pgoff;
2210 
2211 	/* Can we fit all of the mapping? */
2212 	vm_len = vma->vm_end - vma->vm_start;
2213 	if (vm_len >> PAGE_SHIFT > pages)
2214 		return -EINVAL;
2215 
2216 	/* Ok, let it rip */
2217 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2218 }
2219 EXPORT_SYMBOL(vm_iomap_memory);
2220 
2221 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2222 				     unsigned long addr, unsigned long end,
2223 				     pte_fn_t fn, void *data, bool create,
2224 				     pgtbl_mod_mask *mask)
2225 {
2226 	pte_t *pte;
2227 	int err = 0;
2228 	spinlock_t *ptl;
2229 
2230 	if (create) {
2231 		pte = (mm == &init_mm) ?
2232 			pte_alloc_kernel_track(pmd, addr, mask) :
2233 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2234 		if (!pte)
2235 			return -ENOMEM;
2236 	} else {
2237 		pte = (mm == &init_mm) ?
2238 			pte_offset_kernel(pmd, addr) :
2239 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2240 	}
2241 
2242 	BUG_ON(pmd_huge(*pmd));
2243 
2244 	arch_enter_lazy_mmu_mode();
2245 
2246 	do {
2247 		if (create || !pte_none(*pte)) {
2248 			err = fn(pte++, addr, data);
2249 			if (err)
2250 				break;
2251 		}
2252 	} while (addr += PAGE_SIZE, addr != end);
2253 	*mask |= PGTBL_PTE_MODIFIED;
2254 
2255 	arch_leave_lazy_mmu_mode();
2256 
2257 	if (mm != &init_mm)
2258 		pte_unmap_unlock(pte-1, ptl);
2259 	return err;
2260 }
2261 
2262 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2263 				     unsigned long addr, unsigned long end,
2264 				     pte_fn_t fn, void *data, bool create,
2265 				     pgtbl_mod_mask *mask)
2266 {
2267 	pmd_t *pmd;
2268 	unsigned long next;
2269 	int err = 0;
2270 
2271 	BUG_ON(pud_huge(*pud));
2272 
2273 	if (create) {
2274 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2275 		if (!pmd)
2276 			return -ENOMEM;
2277 	} else {
2278 		pmd = pmd_offset(pud, addr);
2279 	}
2280 	do {
2281 		next = pmd_addr_end(addr, end);
2282 		if (create || !pmd_none_or_clear_bad(pmd)) {
2283 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2284 						 create, mask);
2285 			if (err)
2286 				break;
2287 		}
2288 	} while (pmd++, addr = next, addr != end);
2289 	return err;
2290 }
2291 
2292 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2293 				     unsigned long addr, unsigned long end,
2294 				     pte_fn_t fn, void *data, bool create,
2295 				     pgtbl_mod_mask *mask)
2296 {
2297 	pud_t *pud;
2298 	unsigned long next;
2299 	int err = 0;
2300 
2301 	if (create) {
2302 		pud = pud_alloc_track(mm, p4d, addr, mask);
2303 		if (!pud)
2304 			return -ENOMEM;
2305 	} else {
2306 		pud = pud_offset(p4d, addr);
2307 	}
2308 	do {
2309 		next = pud_addr_end(addr, end);
2310 		if (create || !pud_none_or_clear_bad(pud)) {
2311 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2312 						 create, mask);
2313 			if (err)
2314 				break;
2315 		}
2316 	} while (pud++, addr = next, addr != end);
2317 	return err;
2318 }
2319 
2320 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2321 				     unsigned long addr, unsigned long end,
2322 				     pte_fn_t fn, void *data, bool create,
2323 				     pgtbl_mod_mask *mask)
2324 {
2325 	p4d_t *p4d;
2326 	unsigned long next;
2327 	int err = 0;
2328 
2329 	if (create) {
2330 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2331 		if (!p4d)
2332 			return -ENOMEM;
2333 	} else {
2334 		p4d = p4d_offset(pgd, addr);
2335 	}
2336 	do {
2337 		next = p4d_addr_end(addr, end);
2338 		if (create || !p4d_none_or_clear_bad(p4d)) {
2339 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2340 						 create, mask);
2341 			if (err)
2342 				break;
2343 		}
2344 	} while (p4d++, addr = next, addr != end);
2345 	return err;
2346 }
2347 
2348 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2349 				 unsigned long size, pte_fn_t fn,
2350 				 void *data, bool create)
2351 {
2352 	pgd_t *pgd;
2353 	unsigned long start = addr, next;
2354 	unsigned long end = addr + size;
2355 	pgtbl_mod_mask mask = 0;
2356 	int err = 0;
2357 
2358 	if (WARN_ON(addr >= end))
2359 		return -EINVAL;
2360 
2361 	pgd = pgd_offset(mm, addr);
2362 	do {
2363 		next = pgd_addr_end(addr, end);
2364 		if (!create && pgd_none_or_clear_bad(pgd))
2365 			continue;
2366 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2367 		if (err)
2368 			break;
2369 	} while (pgd++, addr = next, addr != end);
2370 
2371 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2372 		arch_sync_kernel_mappings(start, start + size);
2373 
2374 	return err;
2375 }
2376 
2377 /*
2378  * Scan a region of virtual memory, filling in page tables as necessary
2379  * and calling a provided function on each leaf page table.
2380  */
2381 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2382 			unsigned long size, pte_fn_t fn, void *data)
2383 {
2384 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2385 }
2386 EXPORT_SYMBOL_GPL(apply_to_page_range);
2387 
2388 /*
2389  * Scan a region of virtual memory, calling a provided function on
2390  * each leaf page table where it exists.
2391  *
2392  * Unlike apply_to_page_range, this does _not_ fill in page tables
2393  * where they are absent.
2394  */
2395 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2396 				 unsigned long size, pte_fn_t fn, void *data)
2397 {
2398 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2399 }
2400 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2401 
2402 /*
2403  * handle_pte_fault chooses page fault handler according to an entry which was
2404  * read non-atomically.  Before making any commitment, on those architectures
2405  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2406  * parts, do_swap_page must check under lock before unmapping the pte and
2407  * proceeding (but do_wp_page is only called after already making such a check;
2408  * and do_anonymous_page can safely check later on).
2409  */
2410 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2411 				pte_t *page_table, pte_t orig_pte)
2412 {
2413 	int same = 1;
2414 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2415 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2416 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2417 		spin_lock(ptl);
2418 		same = pte_same(*page_table, orig_pte);
2419 		spin_unlock(ptl);
2420 	}
2421 #endif
2422 	pte_unmap(page_table);
2423 	return same;
2424 }
2425 
2426 static inline bool cow_user_page(struct page *dst, struct page *src,
2427 				 struct vm_fault *vmf)
2428 {
2429 	bool ret;
2430 	void *kaddr;
2431 	void __user *uaddr;
2432 	bool locked = false;
2433 	struct vm_area_struct *vma = vmf->vma;
2434 	struct mm_struct *mm = vma->vm_mm;
2435 	unsigned long addr = vmf->address;
2436 
2437 	if (likely(src)) {
2438 		copy_user_highpage(dst, src, addr, vma);
2439 		return true;
2440 	}
2441 
2442 	/*
2443 	 * If the source page was a PFN mapping, we don't have
2444 	 * a "struct page" for it. We do a best-effort copy by
2445 	 * just copying from the original user address. If that
2446 	 * fails, we just zero-fill it. Live with it.
2447 	 */
2448 	kaddr = kmap_atomic(dst);
2449 	uaddr = (void __user *)(addr & PAGE_MASK);
2450 
2451 	/*
2452 	 * On architectures with software "accessed" bits, we would
2453 	 * take a double page fault, so mark it accessed here.
2454 	 */
2455 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2456 		pte_t entry;
2457 
2458 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2459 		locked = true;
2460 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2461 			/*
2462 			 * Other thread has already handled the fault
2463 			 * and update local tlb only
2464 			 */
2465 			update_mmu_tlb(vma, addr, vmf->pte);
2466 			ret = false;
2467 			goto pte_unlock;
2468 		}
2469 
2470 		entry = pte_mkyoung(vmf->orig_pte);
2471 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2472 			update_mmu_cache(vma, addr, vmf->pte);
2473 	}
2474 
2475 	/*
2476 	 * This really shouldn't fail, because the page is there
2477 	 * in the page tables. But it might just be unreadable,
2478 	 * in which case we just give up and fill the result with
2479 	 * zeroes.
2480 	 */
2481 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2482 		if (locked)
2483 			goto warn;
2484 
2485 		/* Re-validate under PTL if the page is still mapped */
2486 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2487 		locked = true;
2488 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2489 			/* The PTE changed under us, update local tlb */
2490 			update_mmu_tlb(vma, addr, vmf->pte);
2491 			ret = false;
2492 			goto pte_unlock;
2493 		}
2494 
2495 		/*
2496 		 * The same page can be mapped back since last copy attempt.
2497 		 * Try to copy again under PTL.
2498 		 */
2499 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2500 			/*
2501 			 * Give a warn in case there can be some obscure
2502 			 * use-case
2503 			 */
2504 warn:
2505 			WARN_ON_ONCE(1);
2506 			clear_page(kaddr);
2507 		}
2508 	}
2509 
2510 	ret = true;
2511 
2512 pte_unlock:
2513 	if (locked)
2514 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2515 	kunmap_atomic(kaddr);
2516 	flush_dcache_page(dst);
2517 
2518 	return ret;
2519 }
2520 
2521 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2522 {
2523 	struct file *vm_file = vma->vm_file;
2524 
2525 	if (vm_file)
2526 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2527 
2528 	/*
2529 	 * Special mappings (e.g. VDSO) do not have any file so fake
2530 	 * a default GFP_KERNEL for them.
2531 	 */
2532 	return GFP_KERNEL;
2533 }
2534 
2535 /*
2536  * Notify the address space that the page is about to become writable so that
2537  * it can prohibit this or wait for the page to get into an appropriate state.
2538  *
2539  * We do this without the lock held, so that it can sleep if it needs to.
2540  */
2541 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2542 {
2543 	vm_fault_t ret;
2544 	struct page *page = vmf->page;
2545 	unsigned int old_flags = vmf->flags;
2546 
2547 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2548 
2549 	if (vmf->vma->vm_file &&
2550 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2551 		return VM_FAULT_SIGBUS;
2552 
2553 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2554 	/* Restore original flags so that caller is not surprised */
2555 	vmf->flags = old_flags;
2556 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2557 		return ret;
2558 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2559 		lock_page(page);
2560 		if (!page->mapping) {
2561 			unlock_page(page);
2562 			return 0; /* retry */
2563 		}
2564 		ret |= VM_FAULT_LOCKED;
2565 	} else
2566 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2567 	return ret;
2568 }
2569 
2570 /*
2571  * Handle dirtying of a page in shared file mapping on a write fault.
2572  *
2573  * The function expects the page to be locked and unlocks it.
2574  */
2575 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2576 {
2577 	struct vm_area_struct *vma = vmf->vma;
2578 	struct address_space *mapping;
2579 	struct page *page = vmf->page;
2580 	bool dirtied;
2581 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2582 
2583 	dirtied = set_page_dirty(page);
2584 	VM_BUG_ON_PAGE(PageAnon(page), page);
2585 	/*
2586 	 * Take a local copy of the address_space - page.mapping may be zeroed
2587 	 * by truncate after unlock_page().   The address_space itself remains
2588 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2589 	 * release semantics to prevent the compiler from undoing this copying.
2590 	 */
2591 	mapping = page_rmapping(page);
2592 	unlock_page(page);
2593 
2594 	if (!page_mkwrite)
2595 		file_update_time(vma->vm_file);
2596 
2597 	/*
2598 	 * Throttle page dirtying rate down to writeback speed.
2599 	 *
2600 	 * mapping may be NULL here because some device drivers do not
2601 	 * set page.mapping but still dirty their pages
2602 	 *
2603 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2604 	 * is pinning the mapping, as per above.
2605 	 */
2606 	if ((dirtied || page_mkwrite) && mapping) {
2607 		struct file *fpin;
2608 
2609 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2610 		balance_dirty_pages_ratelimited(mapping);
2611 		if (fpin) {
2612 			fput(fpin);
2613 			return VM_FAULT_RETRY;
2614 		}
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 /*
2621  * Handle write page faults for pages that can be reused in the current vma
2622  *
2623  * This can happen either due to the mapping being with the VM_SHARED flag,
2624  * or due to us being the last reference standing to the page. In either
2625  * case, all we need to do here is to mark the page as writable and update
2626  * any related book-keeping.
2627  */
2628 static inline void wp_page_reuse(struct vm_fault *vmf)
2629 	__releases(vmf->ptl)
2630 {
2631 	struct vm_area_struct *vma = vmf->vma;
2632 	struct page *page = vmf->page;
2633 	pte_t entry;
2634 	/*
2635 	 * Clear the pages cpupid information as the existing
2636 	 * information potentially belongs to a now completely
2637 	 * unrelated process.
2638 	 */
2639 	if (page)
2640 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2641 
2642 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2643 	entry = pte_mkyoung(vmf->orig_pte);
2644 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2645 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2646 		update_mmu_cache(vma, vmf->address, vmf->pte);
2647 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2648 	count_vm_event(PGREUSE);
2649 }
2650 
2651 /*
2652  * Handle the case of a page which we actually need to copy to a new page.
2653  *
2654  * Called with mmap_lock locked and the old page referenced, but
2655  * without the ptl held.
2656  *
2657  * High level logic flow:
2658  *
2659  * - Allocate a page, copy the content of the old page to the new one.
2660  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2661  * - Take the PTL. If the pte changed, bail out and release the allocated page
2662  * - If the pte is still the way we remember it, update the page table and all
2663  *   relevant references. This includes dropping the reference the page-table
2664  *   held to the old page, as well as updating the rmap.
2665  * - In any case, unlock the PTL and drop the reference we took to the old page.
2666  */
2667 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2668 {
2669 	struct vm_area_struct *vma = vmf->vma;
2670 	struct mm_struct *mm = vma->vm_mm;
2671 	struct page *old_page = vmf->page;
2672 	struct page *new_page = NULL;
2673 	pte_t entry;
2674 	int page_copied = 0;
2675 	struct mmu_notifier_range range;
2676 
2677 	if (unlikely(anon_vma_prepare(vma)))
2678 		goto oom;
2679 
2680 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2681 		new_page = alloc_zeroed_user_highpage_movable(vma,
2682 							      vmf->address);
2683 		if (!new_page)
2684 			goto oom;
2685 	} else {
2686 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2687 				vmf->address);
2688 		if (!new_page)
2689 			goto oom;
2690 
2691 		if (!cow_user_page(new_page, old_page, vmf)) {
2692 			/*
2693 			 * COW failed, if the fault was solved by other,
2694 			 * it's fine. If not, userspace would re-fault on
2695 			 * the same address and we will handle the fault
2696 			 * from the second attempt.
2697 			 */
2698 			put_page(new_page);
2699 			if (old_page)
2700 				put_page(old_page);
2701 			return 0;
2702 		}
2703 	}
2704 
2705 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2706 		goto oom_free_new;
2707 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2708 
2709 	__SetPageUptodate(new_page);
2710 
2711 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2712 				vmf->address & PAGE_MASK,
2713 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2714 	mmu_notifier_invalidate_range_start(&range);
2715 
2716 	/*
2717 	 * Re-check the pte - we dropped the lock
2718 	 */
2719 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2720 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2721 		if (old_page) {
2722 			if (!PageAnon(old_page)) {
2723 				dec_mm_counter_fast(mm,
2724 						mm_counter_file(old_page));
2725 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2726 			}
2727 		} else {
2728 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2729 		}
2730 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2731 		entry = mk_pte(new_page, vma->vm_page_prot);
2732 		entry = pte_sw_mkyoung(entry);
2733 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2734 		/*
2735 		 * Clear the pte entry and flush it first, before updating the
2736 		 * pte with the new entry. This will avoid a race condition
2737 		 * seen in the presence of one thread doing SMC and another
2738 		 * thread doing COW.
2739 		 */
2740 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2741 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2742 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2743 		/*
2744 		 * We call the notify macro here because, when using secondary
2745 		 * mmu page tables (such as kvm shadow page tables), we want the
2746 		 * new page to be mapped directly into the secondary page table.
2747 		 */
2748 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2749 		update_mmu_cache(vma, vmf->address, vmf->pte);
2750 		if (old_page) {
2751 			/*
2752 			 * Only after switching the pte to the new page may
2753 			 * we remove the mapcount here. Otherwise another
2754 			 * process may come and find the rmap count decremented
2755 			 * before the pte is switched to the new page, and
2756 			 * "reuse" the old page writing into it while our pte
2757 			 * here still points into it and can be read by other
2758 			 * threads.
2759 			 *
2760 			 * The critical issue is to order this
2761 			 * page_remove_rmap with the ptp_clear_flush above.
2762 			 * Those stores are ordered by (if nothing else,)
2763 			 * the barrier present in the atomic_add_negative
2764 			 * in page_remove_rmap.
2765 			 *
2766 			 * Then the TLB flush in ptep_clear_flush ensures that
2767 			 * no process can access the old page before the
2768 			 * decremented mapcount is visible. And the old page
2769 			 * cannot be reused until after the decremented
2770 			 * mapcount is visible. So transitively, TLBs to
2771 			 * old page will be flushed before it can be reused.
2772 			 */
2773 			page_remove_rmap(old_page, false);
2774 		}
2775 
2776 		/* Free the old page.. */
2777 		new_page = old_page;
2778 		page_copied = 1;
2779 	} else {
2780 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2781 	}
2782 
2783 	if (new_page)
2784 		put_page(new_page);
2785 
2786 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2787 	/*
2788 	 * No need to double call mmu_notifier->invalidate_range() callback as
2789 	 * the above ptep_clear_flush_notify() did already call it.
2790 	 */
2791 	mmu_notifier_invalidate_range_only_end(&range);
2792 	if (old_page) {
2793 		/*
2794 		 * Don't let another task, with possibly unlocked vma,
2795 		 * keep the mlocked page.
2796 		 */
2797 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2798 			lock_page(old_page);	/* LRU manipulation */
2799 			if (PageMlocked(old_page))
2800 				munlock_vma_page(old_page);
2801 			unlock_page(old_page);
2802 		}
2803 		put_page(old_page);
2804 	}
2805 	return page_copied ? VM_FAULT_WRITE : 0;
2806 oom_free_new:
2807 	put_page(new_page);
2808 oom:
2809 	if (old_page)
2810 		put_page(old_page);
2811 	return VM_FAULT_OOM;
2812 }
2813 
2814 /**
2815  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2816  *			  writeable once the page is prepared
2817  *
2818  * @vmf: structure describing the fault
2819  *
2820  * This function handles all that is needed to finish a write page fault in a
2821  * shared mapping due to PTE being read-only once the mapped page is prepared.
2822  * It handles locking of PTE and modifying it.
2823  *
2824  * The function expects the page to be locked or other protection against
2825  * concurrent faults / writeback (such as DAX radix tree locks).
2826  *
2827  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2828  * we acquired PTE lock.
2829  */
2830 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2831 {
2832 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2833 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2834 				       &vmf->ptl);
2835 	/*
2836 	 * We might have raced with another page fault while we released the
2837 	 * pte_offset_map_lock.
2838 	 */
2839 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2840 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2841 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2842 		return VM_FAULT_NOPAGE;
2843 	}
2844 	wp_page_reuse(vmf);
2845 	return 0;
2846 }
2847 
2848 /*
2849  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2850  * mapping
2851  */
2852 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2853 {
2854 	struct vm_area_struct *vma = vmf->vma;
2855 
2856 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2857 		vm_fault_t ret;
2858 
2859 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2860 		vmf->flags |= FAULT_FLAG_MKWRITE;
2861 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2862 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2863 			return ret;
2864 		return finish_mkwrite_fault(vmf);
2865 	}
2866 	wp_page_reuse(vmf);
2867 	return VM_FAULT_WRITE;
2868 }
2869 
2870 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2871 	__releases(vmf->ptl)
2872 {
2873 	struct vm_area_struct *vma = vmf->vma;
2874 	vm_fault_t ret = VM_FAULT_WRITE;
2875 
2876 	get_page(vmf->page);
2877 
2878 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2879 		vm_fault_t tmp;
2880 
2881 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2882 		tmp = do_page_mkwrite(vmf);
2883 		if (unlikely(!tmp || (tmp &
2884 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2885 			put_page(vmf->page);
2886 			return tmp;
2887 		}
2888 		tmp = finish_mkwrite_fault(vmf);
2889 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2890 			unlock_page(vmf->page);
2891 			put_page(vmf->page);
2892 			return tmp;
2893 		}
2894 	} else {
2895 		wp_page_reuse(vmf);
2896 		lock_page(vmf->page);
2897 	}
2898 	ret |= fault_dirty_shared_page(vmf);
2899 	put_page(vmf->page);
2900 
2901 	return ret;
2902 }
2903 
2904 /*
2905  * This routine handles present pages, when users try to write
2906  * to a shared page. It is done by copying the page to a new address
2907  * and decrementing the shared-page counter for the old page.
2908  *
2909  * Note that this routine assumes that the protection checks have been
2910  * done by the caller (the low-level page fault routine in most cases).
2911  * Thus we can safely just mark it writable once we've done any necessary
2912  * COW.
2913  *
2914  * We also mark the page dirty at this point even though the page will
2915  * change only once the write actually happens. This avoids a few races,
2916  * and potentially makes it more efficient.
2917  *
2918  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2919  * but allow concurrent faults), with pte both mapped and locked.
2920  * We return with mmap_lock still held, but pte unmapped and unlocked.
2921  */
2922 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2923 	__releases(vmf->ptl)
2924 {
2925 	struct vm_area_struct *vma = vmf->vma;
2926 
2927 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2928 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2929 		return handle_userfault(vmf, VM_UFFD_WP);
2930 	}
2931 
2932 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2933 	if (!vmf->page) {
2934 		/*
2935 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2936 		 * VM_PFNMAP VMA.
2937 		 *
2938 		 * We should not cow pages in a shared writeable mapping.
2939 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2940 		 */
2941 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2942 				     (VM_WRITE|VM_SHARED))
2943 			return wp_pfn_shared(vmf);
2944 
2945 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2946 		return wp_page_copy(vmf);
2947 	}
2948 
2949 	/*
2950 	 * Take out anonymous pages first, anonymous shared vmas are
2951 	 * not dirty accountable.
2952 	 */
2953 	if (PageAnon(vmf->page)) {
2954 		struct page *page = vmf->page;
2955 
2956 		/* PageKsm() doesn't necessarily raise the page refcount */
2957 		if (PageKsm(page) || page_count(page) != 1)
2958 			goto copy;
2959 		if (!trylock_page(page))
2960 			goto copy;
2961 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
2962 			unlock_page(page);
2963 			goto copy;
2964 		}
2965 		/*
2966 		 * Ok, we've got the only map reference, and the only
2967 		 * page count reference, and the page is locked,
2968 		 * it's dark out, and we're wearing sunglasses. Hit it.
2969 		 */
2970 		unlock_page(page);
2971 		wp_page_reuse(vmf);
2972 		return VM_FAULT_WRITE;
2973 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2974 					(VM_WRITE|VM_SHARED))) {
2975 		return wp_page_shared(vmf);
2976 	}
2977 copy:
2978 	/*
2979 	 * Ok, we need to copy. Oh, well..
2980 	 */
2981 	get_page(vmf->page);
2982 
2983 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2984 	return wp_page_copy(vmf);
2985 }
2986 
2987 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2988 		unsigned long start_addr, unsigned long end_addr,
2989 		struct zap_details *details)
2990 {
2991 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2992 }
2993 
2994 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2995 					    struct zap_details *details)
2996 {
2997 	struct vm_area_struct *vma;
2998 	pgoff_t vba, vea, zba, zea;
2999 
3000 	vma_interval_tree_foreach(vma, root,
3001 			details->first_index, details->last_index) {
3002 
3003 		vba = vma->vm_pgoff;
3004 		vea = vba + vma_pages(vma) - 1;
3005 		zba = details->first_index;
3006 		if (zba < vba)
3007 			zba = vba;
3008 		zea = details->last_index;
3009 		if (zea > vea)
3010 			zea = vea;
3011 
3012 		unmap_mapping_range_vma(vma,
3013 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3014 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3015 				details);
3016 	}
3017 }
3018 
3019 /**
3020  * unmap_mapping_pages() - Unmap pages from processes.
3021  * @mapping: The address space containing pages to be unmapped.
3022  * @start: Index of first page to be unmapped.
3023  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3024  * @even_cows: Whether to unmap even private COWed pages.
3025  *
3026  * Unmap the pages in this address space from any userspace process which
3027  * has them mmaped.  Generally, you want to remove COWed pages as well when
3028  * a file is being truncated, but not when invalidating pages from the page
3029  * cache.
3030  */
3031 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3032 		pgoff_t nr, bool even_cows)
3033 {
3034 	struct zap_details details = { };
3035 
3036 	details.check_mapping = even_cows ? NULL : mapping;
3037 	details.first_index = start;
3038 	details.last_index = start + nr - 1;
3039 	if (details.last_index < details.first_index)
3040 		details.last_index = ULONG_MAX;
3041 
3042 	i_mmap_lock_write(mapping);
3043 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3044 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3045 	i_mmap_unlock_write(mapping);
3046 }
3047 
3048 /**
3049  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3050  * address_space corresponding to the specified byte range in the underlying
3051  * file.
3052  *
3053  * @mapping: the address space containing mmaps to be unmapped.
3054  * @holebegin: byte in first page to unmap, relative to the start of
3055  * the underlying file.  This will be rounded down to a PAGE_SIZE
3056  * boundary.  Note that this is different from truncate_pagecache(), which
3057  * must keep the partial page.  In contrast, we must get rid of
3058  * partial pages.
3059  * @holelen: size of prospective hole in bytes.  This will be rounded
3060  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3061  * end of the file.
3062  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3063  * but 0 when invalidating pagecache, don't throw away private data.
3064  */
3065 void unmap_mapping_range(struct address_space *mapping,
3066 		loff_t const holebegin, loff_t const holelen, int even_cows)
3067 {
3068 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3069 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3070 
3071 	/* Check for overflow. */
3072 	if (sizeof(holelen) > sizeof(hlen)) {
3073 		long long holeend =
3074 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3075 		if (holeend & ~(long long)ULONG_MAX)
3076 			hlen = ULONG_MAX - hba + 1;
3077 	}
3078 
3079 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3080 }
3081 EXPORT_SYMBOL(unmap_mapping_range);
3082 
3083 /*
3084  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3085  * but allow concurrent faults), and pte mapped but not yet locked.
3086  * We return with pte unmapped and unlocked.
3087  *
3088  * We return with the mmap_lock locked or unlocked in the same cases
3089  * as does filemap_fault().
3090  */
3091 vm_fault_t do_swap_page(struct vm_fault *vmf)
3092 {
3093 	struct vm_area_struct *vma = vmf->vma;
3094 	struct page *page = NULL, *swapcache;
3095 	swp_entry_t entry;
3096 	pte_t pte;
3097 	int locked;
3098 	int exclusive = 0;
3099 	vm_fault_t ret = 0;
3100 	void *shadow = NULL;
3101 
3102 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3103 		goto out;
3104 
3105 	entry = pte_to_swp_entry(vmf->orig_pte);
3106 	if (unlikely(non_swap_entry(entry))) {
3107 		if (is_migration_entry(entry)) {
3108 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3109 					     vmf->address);
3110 		} else if (is_device_private_entry(entry)) {
3111 			vmf->page = device_private_entry_to_page(entry);
3112 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3113 		} else if (is_hwpoison_entry(entry)) {
3114 			ret = VM_FAULT_HWPOISON;
3115 		} else {
3116 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3117 			ret = VM_FAULT_SIGBUS;
3118 		}
3119 		goto out;
3120 	}
3121 
3122 
3123 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3124 	page = lookup_swap_cache(entry, vma, vmf->address);
3125 	swapcache = page;
3126 
3127 	if (!page) {
3128 		struct swap_info_struct *si = swp_swap_info(entry);
3129 
3130 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3131 		    __swap_count(entry) == 1) {
3132 			/* skip swapcache */
3133 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3134 							vmf->address);
3135 			if (page) {
3136 				int err;
3137 
3138 				__SetPageLocked(page);
3139 				__SetPageSwapBacked(page);
3140 				set_page_private(page, entry.val);
3141 
3142 				/* Tell memcg to use swap ownership records */
3143 				SetPageSwapCache(page);
3144 				err = mem_cgroup_charge(page, vma->vm_mm,
3145 							GFP_KERNEL);
3146 				ClearPageSwapCache(page);
3147 				if (err) {
3148 					ret = VM_FAULT_OOM;
3149 					goto out_page;
3150 				}
3151 
3152 				shadow = get_shadow_from_swap_cache(entry);
3153 				if (shadow)
3154 					workingset_refault(page, shadow);
3155 
3156 				lru_cache_add(page);
3157 				swap_readpage(page, true);
3158 			}
3159 		} else {
3160 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3161 						vmf);
3162 			swapcache = page;
3163 		}
3164 
3165 		if (!page) {
3166 			/*
3167 			 * Back out if somebody else faulted in this pte
3168 			 * while we released the pte lock.
3169 			 */
3170 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3171 					vmf->address, &vmf->ptl);
3172 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3173 				ret = VM_FAULT_OOM;
3174 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3175 			goto unlock;
3176 		}
3177 
3178 		/* Had to read the page from swap area: Major fault */
3179 		ret = VM_FAULT_MAJOR;
3180 		count_vm_event(PGMAJFAULT);
3181 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3182 	} else if (PageHWPoison(page)) {
3183 		/*
3184 		 * hwpoisoned dirty swapcache pages are kept for killing
3185 		 * owner processes (which may be unknown at hwpoison time)
3186 		 */
3187 		ret = VM_FAULT_HWPOISON;
3188 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3189 		goto out_release;
3190 	}
3191 
3192 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3193 
3194 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3195 	if (!locked) {
3196 		ret |= VM_FAULT_RETRY;
3197 		goto out_release;
3198 	}
3199 
3200 	/*
3201 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3202 	 * release the swapcache from under us.  The page pin, and pte_same
3203 	 * test below, are not enough to exclude that.  Even if it is still
3204 	 * swapcache, we need to check that the page's swap has not changed.
3205 	 */
3206 	if (unlikely((!PageSwapCache(page) ||
3207 			page_private(page) != entry.val)) && swapcache)
3208 		goto out_page;
3209 
3210 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3211 	if (unlikely(!page)) {
3212 		ret = VM_FAULT_OOM;
3213 		page = swapcache;
3214 		goto out_page;
3215 	}
3216 
3217 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3218 
3219 	/*
3220 	 * Back out if somebody else already faulted in this pte.
3221 	 */
3222 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3223 			&vmf->ptl);
3224 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3225 		goto out_nomap;
3226 
3227 	if (unlikely(!PageUptodate(page))) {
3228 		ret = VM_FAULT_SIGBUS;
3229 		goto out_nomap;
3230 	}
3231 
3232 	/*
3233 	 * The page isn't present yet, go ahead with the fault.
3234 	 *
3235 	 * Be careful about the sequence of operations here.
3236 	 * To get its accounting right, reuse_swap_page() must be called
3237 	 * while the page is counted on swap but not yet in mapcount i.e.
3238 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3239 	 * must be called after the swap_free(), or it will never succeed.
3240 	 */
3241 
3242 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3243 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3244 	pte = mk_pte(page, vma->vm_page_prot);
3245 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3246 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3247 		vmf->flags &= ~FAULT_FLAG_WRITE;
3248 		ret |= VM_FAULT_WRITE;
3249 		exclusive = RMAP_EXCLUSIVE;
3250 	}
3251 	flush_icache_page(vma, page);
3252 	if (pte_swp_soft_dirty(vmf->orig_pte))
3253 		pte = pte_mksoft_dirty(pte);
3254 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3255 		pte = pte_mkuffd_wp(pte);
3256 		pte = pte_wrprotect(pte);
3257 	}
3258 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3259 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3260 	vmf->orig_pte = pte;
3261 
3262 	/* ksm created a completely new copy */
3263 	if (unlikely(page != swapcache && swapcache)) {
3264 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3265 		lru_cache_add_inactive_or_unevictable(page, vma);
3266 	} else {
3267 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3268 	}
3269 
3270 	swap_free(entry);
3271 	if (mem_cgroup_swap_full(page) ||
3272 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3273 		try_to_free_swap(page);
3274 	unlock_page(page);
3275 	if (page != swapcache && swapcache) {
3276 		/*
3277 		 * Hold the lock to avoid the swap entry to be reused
3278 		 * until we take the PT lock for the pte_same() check
3279 		 * (to avoid false positives from pte_same). For
3280 		 * further safety release the lock after the swap_free
3281 		 * so that the swap count won't change under a
3282 		 * parallel locked swapcache.
3283 		 */
3284 		unlock_page(swapcache);
3285 		put_page(swapcache);
3286 	}
3287 
3288 	if (vmf->flags & FAULT_FLAG_WRITE) {
3289 		ret |= do_wp_page(vmf);
3290 		if (ret & VM_FAULT_ERROR)
3291 			ret &= VM_FAULT_ERROR;
3292 		goto out;
3293 	}
3294 
3295 	/* No need to invalidate - it was non-present before */
3296 	update_mmu_cache(vma, vmf->address, vmf->pte);
3297 unlock:
3298 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3299 out:
3300 	return ret;
3301 out_nomap:
3302 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3303 out_page:
3304 	unlock_page(page);
3305 out_release:
3306 	put_page(page);
3307 	if (page != swapcache && swapcache) {
3308 		unlock_page(swapcache);
3309 		put_page(swapcache);
3310 	}
3311 	return ret;
3312 }
3313 
3314 /*
3315  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3316  * but allow concurrent faults), and pte mapped but not yet locked.
3317  * We return with mmap_lock still held, but pte unmapped and unlocked.
3318  */
3319 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3320 {
3321 	struct vm_area_struct *vma = vmf->vma;
3322 	struct page *page;
3323 	vm_fault_t ret = 0;
3324 	pte_t entry;
3325 
3326 	/* File mapping without ->vm_ops ? */
3327 	if (vma->vm_flags & VM_SHARED)
3328 		return VM_FAULT_SIGBUS;
3329 
3330 	/*
3331 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3332 	 * pte_offset_map() on pmds where a huge pmd might be created
3333 	 * from a different thread.
3334 	 *
3335 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3336 	 * parallel threads are excluded by other means.
3337 	 *
3338 	 * Here we only have mmap_read_lock(mm).
3339 	 */
3340 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3341 		return VM_FAULT_OOM;
3342 
3343 	/* See the comment in pte_alloc_one_map() */
3344 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3345 		return 0;
3346 
3347 	/* Use the zero-page for reads */
3348 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3349 			!mm_forbids_zeropage(vma->vm_mm)) {
3350 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3351 						vma->vm_page_prot));
3352 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3353 				vmf->address, &vmf->ptl);
3354 		if (!pte_none(*vmf->pte)) {
3355 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3356 			goto unlock;
3357 		}
3358 		ret = check_stable_address_space(vma->vm_mm);
3359 		if (ret)
3360 			goto unlock;
3361 		/* Deliver the page fault to userland, check inside PT lock */
3362 		if (userfaultfd_missing(vma)) {
3363 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 			return handle_userfault(vmf, VM_UFFD_MISSING);
3365 		}
3366 		goto setpte;
3367 	}
3368 
3369 	/* Allocate our own private page. */
3370 	if (unlikely(anon_vma_prepare(vma)))
3371 		goto oom;
3372 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3373 	if (!page)
3374 		goto oom;
3375 
3376 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3377 		goto oom_free_page;
3378 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3379 
3380 	/*
3381 	 * The memory barrier inside __SetPageUptodate makes sure that
3382 	 * preceding stores to the page contents become visible before
3383 	 * the set_pte_at() write.
3384 	 */
3385 	__SetPageUptodate(page);
3386 
3387 	entry = mk_pte(page, vma->vm_page_prot);
3388 	entry = pte_sw_mkyoung(entry);
3389 	if (vma->vm_flags & VM_WRITE)
3390 		entry = pte_mkwrite(pte_mkdirty(entry));
3391 
3392 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3393 			&vmf->ptl);
3394 	if (!pte_none(*vmf->pte)) {
3395 		update_mmu_cache(vma, vmf->address, vmf->pte);
3396 		goto release;
3397 	}
3398 
3399 	ret = check_stable_address_space(vma->vm_mm);
3400 	if (ret)
3401 		goto release;
3402 
3403 	/* Deliver the page fault to userland, check inside PT lock */
3404 	if (userfaultfd_missing(vma)) {
3405 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3406 		put_page(page);
3407 		return handle_userfault(vmf, VM_UFFD_MISSING);
3408 	}
3409 
3410 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3411 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3412 	lru_cache_add_inactive_or_unevictable(page, vma);
3413 setpte:
3414 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3415 
3416 	/* No need to invalidate - it was non-present before */
3417 	update_mmu_cache(vma, vmf->address, vmf->pte);
3418 unlock:
3419 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3420 	return ret;
3421 release:
3422 	put_page(page);
3423 	goto unlock;
3424 oom_free_page:
3425 	put_page(page);
3426 oom:
3427 	return VM_FAULT_OOM;
3428 }
3429 
3430 /*
3431  * The mmap_lock must have been held on entry, and may have been
3432  * released depending on flags and vma->vm_ops->fault() return value.
3433  * See filemap_fault() and __lock_page_retry().
3434  */
3435 static vm_fault_t __do_fault(struct vm_fault *vmf)
3436 {
3437 	struct vm_area_struct *vma = vmf->vma;
3438 	vm_fault_t ret;
3439 
3440 	/*
3441 	 * Preallocate pte before we take page_lock because this might lead to
3442 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3443 	 *				lock_page(A)
3444 	 *				SetPageWriteback(A)
3445 	 *				unlock_page(A)
3446 	 * lock_page(B)
3447 	 *				lock_page(B)
3448 	 * pte_alloc_pne
3449 	 *   shrink_page_list
3450 	 *     wait_on_page_writeback(A)
3451 	 *				SetPageWriteback(B)
3452 	 *				unlock_page(B)
3453 	 *				# flush A, B to clear the writeback
3454 	 */
3455 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3456 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3457 		if (!vmf->prealloc_pte)
3458 			return VM_FAULT_OOM;
3459 		smp_wmb(); /* See comment in __pte_alloc() */
3460 	}
3461 
3462 	ret = vma->vm_ops->fault(vmf);
3463 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3464 			    VM_FAULT_DONE_COW)))
3465 		return ret;
3466 
3467 	if (unlikely(PageHWPoison(vmf->page))) {
3468 		if (ret & VM_FAULT_LOCKED)
3469 			unlock_page(vmf->page);
3470 		put_page(vmf->page);
3471 		vmf->page = NULL;
3472 		return VM_FAULT_HWPOISON;
3473 	}
3474 
3475 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3476 		lock_page(vmf->page);
3477 	else
3478 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3479 
3480 	return ret;
3481 }
3482 
3483 /*
3484  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3485  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3486  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3487  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3488  */
3489 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3490 {
3491 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3492 }
3493 
3494 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3495 {
3496 	struct vm_area_struct *vma = vmf->vma;
3497 
3498 	if (!pmd_none(*vmf->pmd))
3499 		goto map_pte;
3500 	if (vmf->prealloc_pte) {
3501 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3502 		if (unlikely(!pmd_none(*vmf->pmd))) {
3503 			spin_unlock(vmf->ptl);
3504 			goto map_pte;
3505 		}
3506 
3507 		mm_inc_nr_ptes(vma->vm_mm);
3508 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3509 		spin_unlock(vmf->ptl);
3510 		vmf->prealloc_pte = NULL;
3511 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3512 		return VM_FAULT_OOM;
3513 	}
3514 map_pte:
3515 	/*
3516 	 * If a huge pmd materialized under us just retry later.  Use
3517 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3518 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3519 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3520 	 * running immediately after a huge pmd fault in a different thread of
3521 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3522 	 * All we have to ensure is that it is a regular pmd that we can walk
3523 	 * with pte_offset_map() and we can do that through an atomic read in
3524 	 * C, which is what pmd_trans_unstable() provides.
3525 	 */
3526 	if (pmd_devmap_trans_unstable(vmf->pmd))
3527 		return VM_FAULT_NOPAGE;
3528 
3529 	/*
3530 	 * At this point we know that our vmf->pmd points to a page of ptes
3531 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3532 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3533 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3534 	 * be valid and we will re-check to make sure the vmf->pte isn't
3535 	 * pte_none() under vmf->ptl protection when we return to
3536 	 * alloc_set_pte().
3537 	 */
3538 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3539 			&vmf->ptl);
3540 	return 0;
3541 }
3542 
3543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3544 static void deposit_prealloc_pte(struct vm_fault *vmf)
3545 {
3546 	struct vm_area_struct *vma = vmf->vma;
3547 
3548 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3549 	/*
3550 	 * We are going to consume the prealloc table,
3551 	 * count that as nr_ptes.
3552 	 */
3553 	mm_inc_nr_ptes(vma->vm_mm);
3554 	vmf->prealloc_pte = NULL;
3555 }
3556 
3557 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3558 {
3559 	struct vm_area_struct *vma = vmf->vma;
3560 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3561 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3562 	pmd_t entry;
3563 	int i;
3564 	vm_fault_t ret;
3565 
3566 	if (!transhuge_vma_suitable(vma, haddr))
3567 		return VM_FAULT_FALLBACK;
3568 
3569 	ret = VM_FAULT_FALLBACK;
3570 	page = compound_head(page);
3571 
3572 	/*
3573 	 * Archs like ppc64 need additonal space to store information
3574 	 * related to pte entry. Use the preallocated table for that.
3575 	 */
3576 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3577 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3578 		if (!vmf->prealloc_pte)
3579 			return VM_FAULT_OOM;
3580 		smp_wmb(); /* See comment in __pte_alloc() */
3581 	}
3582 
3583 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3584 	if (unlikely(!pmd_none(*vmf->pmd)))
3585 		goto out;
3586 
3587 	for (i = 0; i < HPAGE_PMD_NR; i++)
3588 		flush_icache_page(vma, page + i);
3589 
3590 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3591 	if (write)
3592 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3593 
3594 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3595 	page_add_file_rmap(page, true);
3596 	/*
3597 	 * deposit and withdraw with pmd lock held
3598 	 */
3599 	if (arch_needs_pgtable_deposit())
3600 		deposit_prealloc_pte(vmf);
3601 
3602 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3603 
3604 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3605 
3606 	/* fault is handled */
3607 	ret = 0;
3608 	count_vm_event(THP_FILE_MAPPED);
3609 out:
3610 	spin_unlock(vmf->ptl);
3611 	return ret;
3612 }
3613 #else
3614 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3615 {
3616 	BUILD_BUG();
3617 	return 0;
3618 }
3619 #endif
3620 
3621 /**
3622  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3623  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3624  *
3625  * @vmf: fault environment
3626  * @page: page to map
3627  *
3628  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3629  * return.
3630  *
3631  * Target users are page handler itself and implementations of
3632  * vm_ops->map_pages.
3633  *
3634  * Return: %0 on success, %VM_FAULT_ code in case of error.
3635  */
3636 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3637 {
3638 	struct vm_area_struct *vma = vmf->vma;
3639 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3640 	pte_t entry;
3641 	vm_fault_t ret;
3642 
3643 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3644 		ret = do_set_pmd(vmf, page);
3645 		if (ret != VM_FAULT_FALLBACK)
3646 			return ret;
3647 	}
3648 
3649 	if (!vmf->pte) {
3650 		ret = pte_alloc_one_map(vmf);
3651 		if (ret)
3652 			return ret;
3653 	}
3654 
3655 	/* Re-check under ptl */
3656 	if (unlikely(!pte_none(*vmf->pte))) {
3657 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3658 		return VM_FAULT_NOPAGE;
3659 	}
3660 
3661 	flush_icache_page(vma, page);
3662 	entry = mk_pte(page, vma->vm_page_prot);
3663 	entry = pte_sw_mkyoung(entry);
3664 	if (write)
3665 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3666 	/* copy-on-write page */
3667 	if (write && !(vma->vm_flags & VM_SHARED)) {
3668 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3669 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3670 		lru_cache_add_inactive_or_unevictable(page, vma);
3671 	} else {
3672 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3673 		page_add_file_rmap(page, false);
3674 	}
3675 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3676 
3677 	/* no need to invalidate: a not-present page won't be cached */
3678 	update_mmu_cache(vma, vmf->address, vmf->pte);
3679 
3680 	return 0;
3681 }
3682 
3683 
3684 /**
3685  * finish_fault - finish page fault once we have prepared the page to fault
3686  *
3687  * @vmf: structure describing the fault
3688  *
3689  * This function handles all that is needed to finish a page fault once the
3690  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3691  * given page, adds reverse page mapping, handles memcg charges and LRU
3692  * addition.
3693  *
3694  * The function expects the page to be locked and on success it consumes a
3695  * reference of a page being mapped (for the PTE which maps it).
3696  *
3697  * Return: %0 on success, %VM_FAULT_ code in case of error.
3698  */
3699 vm_fault_t finish_fault(struct vm_fault *vmf)
3700 {
3701 	struct page *page;
3702 	vm_fault_t ret = 0;
3703 
3704 	/* Did we COW the page? */
3705 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3706 	    !(vmf->vma->vm_flags & VM_SHARED))
3707 		page = vmf->cow_page;
3708 	else
3709 		page = vmf->page;
3710 
3711 	/*
3712 	 * check even for read faults because we might have lost our CoWed
3713 	 * page
3714 	 */
3715 	if (!(vmf->vma->vm_flags & VM_SHARED))
3716 		ret = check_stable_address_space(vmf->vma->vm_mm);
3717 	if (!ret)
3718 		ret = alloc_set_pte(vmf, page);
3719 	if (vmf->pte)
3720 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3721 	return ret;
3722 }
3723 
3724 static unsigned long fault_around_bytes __read_mostly =
3725 	rounddown_pow_of_two(65536);
3726 
3727 #ifdef CONFIG_DEBUG_FS
3728 static int fault_around_bytes_get(void *data, u64 *val)
3729 {
3730 	*val = fault_around_bytes;
3731 	return 0;
3732 }
3733 
3734 /*
3735  * fault_around_bytes must be rounded down to the nearest page order as it's
3736  * what do_fault_around() expects to see.
3737  */
3738 static int fault_around_bytes_set(void *data, u64 val)
3739 {
3740 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3741 		return -EINVAL;
3742 	if (val > PAGE_SIZE)
3743 		fault_around_bytes = rounddown_pow_of_two(val);
3744 	else
3745 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3746 	return 0;
3747 }
3748 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3749 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3750 
3751 static int __init fault_around_debugfs(void)
3752 {
3753 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3754 				   &fault_around_bytes_fops);
3755 	return 0;
3756 }
3757 late_initcall(fault_around_debugfs);
3758 #endif
3759 
3760 /*
3761  * do_fault_around() tries to map few pages around the fault address. The hope
3762  * is that the pages will be needed soon and this will lower the number of
3763  * faults to handle.
3764  *
3765  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3766  * not ready to be mapped: not up-to-date, locked, etc.
3767  *
3768  * This function is called with the page table lock taken. In the split ptlock
3769  * case the page table lock only protects only those entries which belong to
3770  * the page table corresponding to the fault address.
3771  *
3772  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3773  * only once.
3774  *
3775  * fault_around_bytes defines how many bytes we'll try to map.
3776  * do_fault_around() expects it to be set to a power of two less than or equal
3777  * to PTRS_PER_PTE.
3778  *
3779  * The virtual address of the area that we map is naturally aligned to
3780  * fault_around_bytes rounded down to the machine page size
3781  * (and therefore to page order).  This way it's easier to guarantee
3782  * that we don't cross page table boundaries.
3783  */
3784 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3785 {
3786 	unsigned long address = vmf->address, nr_pages, mask;
3787 	pgoff_t start_pgoff = vmf->pgoff;
3788 	pgoff_t end_pgoff;
3789 	int off;
3790 	vm_fault_t ret = 0;
3791 
3792 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3793 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3794 
3795 	vmf->address = max(address & mask, vmf->vma->vm_start);
3796 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3797 	start_pgoff -= off;
3798 
3799 	/*
3800 	 *  end_pgoff is either the end of the page table, the end of
3801 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3802 	 */
3803 	end_pgoff = start_pgoff -
3804 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3805 		PTRS_PER_PTE - 1;
3806 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3807 			start_pgoff + nr_pages - 1);
3808 
3809 	if (pmd_none(*vmf->pmd)) {
3810 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3811 		if (!vmf->prealloc_pte)
3812 			goto out;
3813 		smp_wmb(); /* See comment in __pte_alloc() */
3814 	}
3815 
3816 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3817 
3818 	/* Huge page is mapped? Page fault is solved */
3819 	if (pmd_trans_huge(*vmf->pmd)) {
3820 		ret = VM_FAULT_NOPAGE;
3821 		goto out;
3822 	}
3823 
3824 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3825 	if (!vmf->pte)
3826 		goto out;
3827 
3828 	/* check if the page fault is solved */
3829 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3830 	if (!pte_none(*vmf->pte))
3831 		ret = VM_FAULT_NOPAGE;
3832 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3833 out:
3834 	vmf->address = address;
3835 	vmf->pte = NULL;
3836 	return ret;
3837 }
3838 
3839 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3840 {
3841 	struct vm_area_struct *vma = vmf->vma;
3842 	vm_fault_t ret = 0;
3843 
3844 	/*
3845 	 * Let's call ->map_pages() first and use ->fault() as fallback
3846 	 * if page by the offset is not ready to be mapped (cold cache or
3847 	 * something).
3848 	 */
3849 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3850 		ret = do_fault_around(vmf);
3851 		if (ret)
3852 			return ret;
3853 	}
3854 
3855 	ret = __do_fault(vmf);
3856 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3857 		return ret;
3858 
3859 	ret |= finish_fault(vmf);
3860 	unlock_page(vmf->page);
3861 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3862 		put_page(vmf->page);
3863 	return ret;
3864 }
3865 
3866 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3867 {
3868 	struct vm_area_struct *vma = vmf->vma;
3869 	vm_fault_t ret;
3870 
3871 	if (unlikely(anon_vma_prepare(vma)))
3872 		return VM_FAULT_OOM;
3873 
3874 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3875 	if (!vmf->cow_page)
3876 		return VM_FAULT_OOM;
3877 
3878 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3879 		put_page(vmf->cow_page);
3880 		return VM_FAULT_OOM;
3881 	}
3882 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3883 
3884 	ret = __do_fault(vmf);
3885 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3886 		goto uncharge_out;
3887 	if (ret & VM_FAULT_DONE_COW)
3888 		return ret;
3889 
3890 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3891 	__SetPageUptodate(vmf->cow_page);
3892 
3893 	ret |= finish_fault(vmf);
3894 	unlock_page(vmf->page);
3895 	put_page(vmf->page);
3896 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3897 		goto uncharge_out;
3898 	return ret;
3899 uncharge_out:
3900 	put_page(vmf->cow_page);
3901 	return ret;
3902 }
3903 
3904 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3905 {
3906 	struct vm_area_struct *vma = vmf->vma;
3907 	vm_fault_t ret, tmp;
3908 
3909 	ret = __do_fault(vmf);
3910 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3911 		return ret;
3912 
3913 	/*
3914 	 * Check if the backing address space wants to know that the page is
3915 	 * about to become writable
3916 	 */
3917 	if (vma->vm_ops->page_mkwrite) {
3918 		unlock_page(vmf->page);
3919 		tmp = do_page_mkwrite(vmf);
3920 		if (unlikely(!tmp ||
3921 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3922 			put_page(vmf->page);
3923 			return tmp;
3924 		}
3925 	}
3926 
3927 	ret |= finish_fault(vmf);
3928 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3929 					VM_FAULT_RETRY))) {
3930 		unlock_page(vmf->page);
3931 		put_page(vmf->page);
3932 		return ret;
3933 	}
3934 
3935 	ret |= fault_dirty_shared_page(vmf);
3936 	return ret;
3937 }
3938 
3939 /*
3940  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3941  * but allow concurrent faults).
3942  * The mmap_lock may have been released depending on flags and our
3943  * return value.  See filemap_fault() and __lock_page_or_retry().
3944  * If mmap_lock is released, vma may become invalid (for example
3945  * by other thread calling munmap()).
3946  */
3947 static vm_fault_t do_fault(struct vm_fault *vmf)
3948 {
3949 	struct vm_area_struct *vma = vmf->vma;
3950 	struct mm_struct *vm_mm = vma->vm_mm;
3951 	vm_fault_t ret;
3952 
3953 	/*
3954 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3955 	 */
3956 	if (!vma->vm_ops->fault) {
3957 		/*
3958 		 * If we find a migration pmd entry or a none pmd entry, which
3959 		 * should never happen, return SIGBUS
3960 		 */
3961 		if (unlikely(!pmd_present(*vmf->pmd)))
3962 			ret = VM_FAULT_SIGBUS;
3963 		else {
3964 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3965 						       vmf->pmd,
3966 						       vmf->address,
3967 						       &vmf->ptl);
3968 			/*
3969 			 * Make sure this is not a temporary clearing of pte
3970 			 * by holding ptl and checking again. A R/M/W update
3971 			 * of pte involves: take ptl, clearing the pte so that
3972 			 * we don't have concurrent modification by hardware
3973 			 * followed by an update.
3974 			 */
3975 			if (unlikely(pte_none(*vmf->pte)))
3976 				ret = VM_FAULT_SIGBUS;
3977 			else
3978 				ret = VM_FAULT_NOPAGE;
3979 
3980 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3981 		}
3982 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3983 		ret = do_read_fault(vmf);
3984 	else if (!(vma->vm_flags & VM_SHARED))
3985 		ret = do_cow_fault(vmf);
3986 	else
3987 		ret = do_shared_fault(vmf);
3988 
3989 	/* preallocated pagetable is unused: free it */
3990 	if (vmf->prealloc_pte) {
3991 		pte_free(vm_mm, vmf->prealloc_pte);
3992 		vmf->prealloc_pte = NULL;
3993 	}
3994 	return ret;
3995 }
3996 
3997 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3998 				unsigned long addr, int page_nid,
3999 				int *flags)
4000 {
4001 	get_page(page);
4002 
4003 	count_vm_numa_event(NUMA_HINT_FAULTS);
4004 	if (page_nid == numa_node_id()) {
4005 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4006 		*flags |= TNF_FAULT_LOCAL;
4007 	}
4008 
4009 	return mpol_misplaced(page, vma, addr);
4010 }
4011 
4012 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4013 {
4014 	struct vm_area_struct *vma = vmf->vma;
4015 	struct page *page = NULL;
4016 	int page_nid = NUMA_NO_NODE;
4017 	int last_cpupid;
4018 	int target_nid;
4019 	bool migrated = false;
4020 	pte_t pte, old_pte;
4021 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4022 	int flags = 0;
4023 
4024 	/*
4025 	 * The "pte" at this point cannot be used safely without
4026 	 * validation through pte_unmap_same(). It's of NUMA type but
4027 	 * the pfn may be screwed if the read is non atomic.
4028 	 */
4029 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4030 	spin_lock(vmf->ptl);
4031 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4032 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4033 		goto out;
4034 	}
4035 
4036 	/*
4037 	 * Make it present again, Depending on how arch implementes non
4038 	 * accessible ptes, some can allow access by kernel mode.
4039 	 */
4040 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4041 	pte = pte_modify(old_pte, vma->vm_page_prot);
4042 	pte = pte_mkyoung(pte);
4043 	if (was_writable)
4044 		pte = pte_mkwrite(pte);
4045 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4046 	update_mmu_cache(vma, vmf->address, vmf->pte);
4047 
4048 	page = vm_normal_page(vma, vmf->address, pte);
4049 	if (!page) {
4050 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4051 		return 0;
4052 	}
4053 
4054 	/* TODO: handle PTE-mapped THP */
4055 	if (PageCompound(page)) {
4056 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4057 		return 0;
4058 	}
4059 
4060 	/*
4061 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4062 	 * much anyway since they can be in shared cache state. This misses
4063 	 * the case where a mapping is writable but the process never writes
4064 	 * to it but pte_write gets cleared during protection updates and
4065 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4066 	 * background writeback, dirty balancing and application behaviour.
4067 	 */
4068 	if (!pte_write(pte))
4069 		flags |= TNF_NO_GROUP;
4070 
4071 	/*
4072 	 * Flag if the page is shared between multiple address spaces. This
4073 	 * is later used when determining whether to group tasks together
4074 	 */
4075 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4076 		flags |= TNF_SHARED;
4077 
4078 	last_cpupid = page_cpupid_last(page);
4079 	page_nid = page_to_nid(page);
4080 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4081 			&flags);
4082 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4083 	if (target_nid == NUMA_NO_NODE) {
4084 		put_page(page);
4085 		goto out;
4086 	}
4087 
4088 	/* Migrate to the requested node */
4089 	migrated = migrate_misplaced_page(page, vma, target_nid);
4090 	if (migrated) {
4091 		page_nid = target_nid;
4092 		flags |= TNF_MIGRATED;
4093 	} else
4094 		flags |= TNF_MIGRATE_FAIL;
4095 
4096 out:
4097 	if (page_nid != NUMA_NO_NODE)
4098 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4099 	return 0;
4100 }
4101 
4102 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4103 {
4104 	if (vma_is_anonymous(vmf->vma))
4105 		return do_huge_pmd_anonymous_page(vmf);
4106 	if (vmf->vma->vm_ops->huge_fault)
4107 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4108 	return VM_FAULT_FALLBACK;
4109 }
4110 
4111 /* `inline' is required to avoid gcc 4.1.2 build error */
4112 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4113 {
4114 	if (vma_is_anonymous(vmf->vma)) {
4115 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4116 			return handle_userfault(vmf, VM_UFFD_WP);
4117 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4118 	}
4119 	if (vmf->vma->vm_ops->huge_fault) {
4120 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4121 
4122 		if (!(ret & VM_FAULT_FALLBACK))
4123 			return ret;
4124 	}
4125 
4126 	/* COW or write-notify handled on pte level: split pmd. */
4127 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4128 
4129 	return VM_FAULT_FALLBACK;
4130 }
4131 
4132 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4133 {
4134 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4135 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4136 	/* No support for anonymous transparent PUD pages yet */
4137 	if (vma_is_anonymous(vmf->vma))
4138 		goto split;
4139 	if (vmf->vma->vm_ops->huge_fault) {
4140 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4141 
4142 		if (!(ret & VM_FAULT_FALLBACK))
4143 			return ret;
4144 	}
4145 split:
4146 	/* COW or write-notify not handled on PUD level: split pud.*/
4147 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4149 	return VM_FAULT_FALLBACK;
4150 }
4151 
4152 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4153 {
4154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4155 	/* No support for anonymous transparent PUD pages yet */
4156 	if (vma_is_anonymous(vmf->vma))
4157 		return VM_FAULT_FALLBACK;
4158 	if (vmf->vma->vm_ops->huge_fault)
4159 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4160 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4161 	return VM_FAULT_FALLBACK;
4162 }
4163 
4164 /*
4165  * These routines also need to handle stuff like marking pages dirty
4166  * and/or accessed for architectures that don't do it in hardware (most
4167  * RISC architectures).  The early dirtying is also good on the i386.
4168  *
4169  * There is also a hook called "update_mmu_cache()" that architectures
4170  * with external mmu caches can use to update those (ie the Sparc or
4171  * PowerPC hashed page tables that act as extended TLBs).
4172  *
4173  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4174  * concurrent faults).
4175  *
4176  * The mmap_lock may have been released depending on flags and our return value.
4177  * See filemap_fault() and __lock_page_or_retry().
4178  */
4179 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4180 {
4181 	pte_t entry;
4182 
4183 	if (unlikely(pmd_none(*vmf->pmd))) {
4184 		/*
4185 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4186 		 * want to allocate huge page, and if we expose page table
4187 		 * for an instant, it will be difficult to retract from
4188 		 * concurrent faults and from rmap lookups.
4189 		 */
4190 		vmf->pte = NULL;
4191 	} else {
4192 		/* See comment in pte_alloc_one_map() */
4193 		if (pmd_devmap_trans_unstable(vmf->pmd))
4194 			return 0;
4195 		/*
4196 		 * A regular pmd is established and it can't morph into a huge
4197 		 * pmd from under us anymore at this point because we hold the
4198 		 * mmap_lock read mode and khugepaged takes it in write mode.
4199 		 * So now it's safe to run pte_offset_map().
4200 		 */
4201 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4202 		vmf->orig_pte = *vmf->pte;
4203 
4204 		/*
4205 		 * some architectures can have larger ptes than wordsize,
4206 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4207 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4208 		 * accesses.  The code below just needs a consistent view
4209 		 * for the ifs and we later double check anyway with the
4210 		 * ptl lock held. So here a barrier will do.
4211 		 */
4212 		barrier();
4213 		if (pte_none(vmf->orig_pte)) {
4214 			pte_unmap(vmf->pte);
4215 			vmf->pte = NULL;
4216 		}
4217 	}
4218 
4219 	if (!vmf->pte) {
4220 		if (vma_is_anonymous(vmf->vma))
4221 			return do_anonymous_page(vmf);
4222 		else
4223 			return do_fault(vmf);
4224 	}
4225 
4226 	if (!pte_present(vmf->orig_pte))
4227 		return do_swap_page(vmf);
4228 
4229 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4230 		return do_numa_page(vmf);
4231 
4232 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4233 	spin_lock(vmf->ptl);
4234 	entry = vmf->orig_pte;
4235 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4236 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4237 		goto unlock;
4238 	}
4239 	if (vmf->flags & FAULT_FLAG_WRITE) {
4240 		if (!pte_write(entry))
4241 			return do_wp_page(vmf);
4242 		entry = pte_mkdirty(entry);
4243 	}
4244 	entry = pte_mkyoung(entry);
4245 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4246 				vmf->flags & FAULT_FLAG_WRITE)) {
4247 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4248 	} else {
4249 		/* Skip spurious TLB flush for retried page fault */
4250 		if (vmf->flags & FAULT_FLAG_TRIED)
4251 			goto unlock;
4252 		/*
4253 		 * This is needed only for protection faults but the arch code
4254 		 * is not yet telling us if this is a protection fault or not.
4255 		 * This still avoids useless tlb flushes for .text page faults
4256 		 * with threads.
4257 		 */
4258 		if (vmf->flags & FAULT_FLAG_WRITE)
4259 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4260 	}
4261 unlock:
4262 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4263 	return 0;
4264 }
4265 
4266 /*
4267  * By the time we get here, we already hold the mm semaphore
4268  *
4269  * The mmap_lock may have been released depending on flags and our
4270  * return value.  See filemap_fault() and __lock_page_or_retry().
4271  */
4272 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4273 		unsigned long address, unsigned int flags)
4274 {
4275 	struct vm_fault vmf = {
4276 		.vma = vma,
4277 		.address = address & PAGE_MASK,
4278 		.flags = flags,
4279 		.pgoff = linear_page_index(vma, address),
4280 		.gfp_mask = __get_fault_gfp_mask(vma),
4281 	};
4282 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4283 	struct mm_struct *mm = vma->vm_mm;
4284 	pgd_t *pgd;
4285 	p4d_t *p4d;
4286 	vm_fault_t ret;
4287 
4288 	pgd = pgd_offset(mm, address);
4289 	p4d = p4d_alloc(mm, pgd, address);
4290 	if (!p4d)
4291 		return VM_FAULT_OOM;
4292 
4293 	vmf.pud = pud_alloc(mm, p4d, address);
4294 	if (!vmf.pud)
4295 		return VM_FAULT_OOM;
4296 retry_pud:
4297 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4298 		ret = create_huge_pud(&vmf);
4299 		if (!(ret & VM_FAULT_FALLBACK))
4300 			return ret;
4301 	} else {
4302 		pud_t orig_pud = *vmf.pud;
4303 
4304 		barrier();
4305 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4306 
4307 			/* NUMA case for anonymous PUDs would go here */
4308 
4309 			if (dirty && !pud_write(orig_pud)) {
4310 				ret = wp_huge_pud(&vmf, orig_pud);
4311 				if (!(ret & VM_FAULT_FALLBACK))
4312 					return ret;
4313 			} else {
4314 				huge_pud_set_accessed(&vmf, orig_pud);
4315 				return 0;
4316 			}
4317 		}
4318 	}
4319 
4320 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4321 	if (!vmf.pmd)
4322 		return VM_FAULT_OOM;
4323 
4324 	/* Huge pud page fault raced with pmd_alloc? */
4325 	if (pud_trans_unstable(vmf.pud))
4326 		goto retry_pud;
4327 
4328 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4329 		ret = create_huge_pmd(&vmf);
4330 		if (!(ret & VM_FAULT_FALLBACK))
4331 			return ret;
4332 	} else {
4333 		pmd_t orig_pmd = *vmf.pmd;
4334 
4335 		barrier();
4336 		if (unlikely(is_swap_pmd(orig_pmd))) {
4337 			VM_BUG_ON(thp_migration_supported() &&
4338 					  !is_pmd_migration_entry(orig_pmd));
4339 			if (is_pmd_migration_entry(orig_pmd))
4340 				pmd_migration_entry_wait(mm, vmf.pmd);
4341 			return 0;
4342 		}
4343 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4344 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4345 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4346 
4347 			if (dirty && !pmd_write(orig_pmd)) {
4348 				ret = wp_huge_pmd(&vmf, orig_pmd);
4349 				if (!(ret & VM_FAULT_FALLBACK))
4350 					return ret;
4351 			} else {
4352 				huge_pmd_set_accessed(&vmf, orig_pmd);
4353 				return 0;
4354 			}
4355 		}
4356 	}
4357 
4358 	return handle_pte_fault(&vmf);
4359 }
4360 
4361 /**
4362  * mm_account_fault - Do page fault accountings
4363  *
4364  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4365  *        of perf event counters, but we'll still do the per-task accounting to
4366  *        the task who triggered this page fault.
4367  * @address: the faulted address.
4368  * @flags: the fault flags.
4369  * @ret: the fault retcode.
4370  *
4371  * This will take care of most of the page fault accountings.  Meanwhile, it
4372  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4373  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4374  * still be in per-arch page fault handlers at the entry of page fault.
4375  */
4376 static inline void mm_account_fault(struct pt_regs *regs,
4377 				    unsigned long address, unsigned int flags,
4378 				    vm_fault_t ret)
4379 {
4380 	bool major;
4381 
4382 	/*
4383 	 * We don't do accounting for some specific faults:
4384 	 *
4385 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4386 	 *   includes arch_vma_access_permitted() failing before reaching here.
4387 	 *   So this is not a "this many hardware page faults" counter.  We
4388 	 *   should use the hw profiling for that.
4389 	 *
4390 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4391 	 *   once they're completed.
4392 	 */
4393 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4394 		return;
4395 
4396 	/*
4397 	 * We define the fault as a major fault when the final successful fault
4398 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4399 	 * handle it immediately previously).
4400 	 */
4401 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4402 
4403 	if (major)
4404 		current->maj_flt++;
4405 	else
4406 		current->min_flt++;
4407 
4408 	/*
4409 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4410 	 * accounting for the per thread fault counters who triggered the
4411 	 * fault, and we skip the perf event updates.
4412 	 */
4413 	if (!regs)
4414 		return;
4415 
4416 	if (major)
4417 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4418 	else
4419 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4420 }
4421 
4422 /*
4423  * By the time we get here, we already hold the mm semaphore
4424  *
4425  * The mmap_lock may have been released depending on flags and our
4426  * return value.  See filemap_fault() and __lock_page_or_retry().
4427  */
4428 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4429 			   unsigned int flags, struct pt_regs *regs)
4430 {
4431 	vm_fault_t ret;
4432 
4433 	__set_current_state(TASK_RUNNING);
4434 
4435 	count_vm_event(PGFAULT);
4436 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4437 
4438 	/* do counter updates before entering really critical section. */
4439 	check_sync_rss_stat(current);
4440 
4441 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4442 					    flags & FAULT_FLAG_INSTRUCTION,
4443 					    flags & FAULT_FLAG_REMOTE))
4444 		return VM_FAULT_SIGSEGV;
4445 
4446 	/*
4447 	 * Enable the memcg OOM handling for faults triggered in user
4448 	 * space.  Kernel faults are handled more gracefully.
4449 	 */
4450 	if (flags & FAULT_FLAG_USER)
4451 		mem_cgroup_enter_user_fault();
4452 
4453 	if (unlikely(is_vm_hugetlb_page(vma)))
4454 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4455 	else
4456 		ret = __handle_mm_fault(vma, address, flags);
4457 
4458 	if (flags & FAULT_FLAG_USER) {
4459 		mem_cgroup_exit_user_fault();
4460 		/*
4461 		 * The task may have entered a memcg OOM situation but
4462 		 * if the allocation error was handled gracefully (no
4463 		 * VM_FAULT_OOM), there is no need to kill anything.
4464 		 * Just clean up the OOM state peacefully.
4465 		 */
4466 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4467 			mem_cgroup_oom_synchronize(false);
4468 	}
4469 
4470 	mm_account_fault(regs, address, flags, ret);
4471 
4472 	return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(handle_mm_fault);
4475 
4476 #ifndef __PAGETABLE_P4D_FOLDED
4477 /*
4478  * Allocate p4d page table.
4479  * We've already handled the fast-path in-line.
4480  */
4481 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4482 {
4483 	p4d_t *new = p4d_alloc_one(mm, address);
4484 	if (!new)
4485 		return -ENOMEM;
4486 
4487 	smp_wmb(); /* See comment in __pte_alloc */
4488 
4489 	spin_lock(&mm->page_table_lock);
4490 	if (pgd_present(*pgd))		/* Another has populated it */
4491 		p4d_free(mm, new);
4492 	else
4493 		pgd_populate(mm, pgd, new);
4494 	spin_unlock(&mm->page_table_lock);
4495 	return 0;
4496 }
4497 #endif /* __PAGETABLE_P4D_FOLDED */
4498 
4499 #ifndef __PAGETABLE_PUD_FOLDED
4500 /*
4501  * Allocate page upper directory.
4502  * We've already handled the fast-path in-line.
4503  */
4504 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4505 {
4506 	pud_t *new = pud_alloc_one(mm, address);
4507 	if (!new)
4508 		return -ENOMEM;
4509 
4510 	smp_wmb(); /* See comment in __pte_alloc */
4511 
4512 	spin_lock(&mm->page_table_lock);
4513 	if (!p4d_present(*p4d)) {
4514 		mm_inc_nr_puds(mm);
4515 		p4d_populate(mm, p4d, new);
4516 	} else	/* Another has populated it */
4517 		pud_free(mm, new);
4518 	spin_unlock(&mm->page_table_lock);
4519 	return 0;
4520 }
4521 #endif /* __PAGETABLE_PUD_FOLDED */
4522 
4523 #ifndef __PAGETABLE_PMD_FOLDED
4524 /*
4525  * Allocate page middle directory.
4526  * We've already handled the fast-path in-line.
4527  */
4528 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4529 {
4530 	spinlock_t *ptl;
4531 	pmd_t *new = pmd_alloc_one(mm, address);
4532 	if (!new)
4533 		return -ENOMEM;
4534 
4535 	smp_wmb(); /* See comment in __pte_alloc */
4536 
4537 	ptl = pud_lock(mm, pud);
4538 	if (!pud_present(*pud)) {
4539 		mm_inc_nr_pmds(mm);
4540 		pud_populate(mm, pud, new);
4541 	} else	/* Another has populated it */
4542 		pmd_free(mm, new);
4543 	spin_unlock(ptl);
4544 	return 0;
4545 }
4546 #endif /* __PAGETABLE_PMD_FOLDED */
4547 
4548 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4549 			    struct mmu_notifier_range *range,
4550 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4551 {
4552 	pgd_t *pgd;
4553 	p4d_t *p4d;
4554 	pud_t *pud;
4555 	pmd_t *pmd;
4556 	pte_t *ptep;
4557 
4558 	pgd = pgd_offset(mm, address);
4559 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4560 		goto out;
4561 
4562 	p4d = p4d_offset(pgd, address);
4563 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4564 		goto out;
4565 
4566 	pud = pud_offset(p4d, address);
4567 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4568 		goto out;
4569 
4570 	pmd = pmd_offset(pud, address);
4571 	VM_BUG_ON(pmd_trans_huge(*pmd));
4572 
4573 	if (pmd_huge(*pmd)) {
4574 		if (!pmdpp)
4575 			goto out;
4576 
4577 		if (range) {
4578 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4579 						NULL, mm, address & PMD_MASK,
4580 						(address & PMD_MASK) + PMD_SIZE);
4581 			mmu_notifier_invalidate_range_start(range);
4582 		}
4583 		*ptlp = pmd_lock(mm, pmd);
4584 		if (pmd_huge(*pmd)) {
4585 			*pmdpp = pmd;
4586 			return 0;
4587 		}
4588 		spin_unlock(*ptlp);
4589 		if (range)
4590 			mmu_notifier_invalidate_range_end(range);
4591 	}
4592 
4593 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4594 		goto out;
4595 
4596 	if (range) {
4597 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4598 					address & PAGE_MASK,
4599 					(address & PAGE_MASK) + PAGE_SIZE);
4600 		mmu_notifier_invalidate_range_start(range);
4601 	}
4602 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4603 	if (!pte_present(*ptep))
4604 		goto unlock;
4605 	*ptepp = ptep;
4606 	return 0;
4607 unlock:
4608 	pte_unmap_unlock(ptep, *ptlp);
4609 	if (range)
4610 		mmu_notifier_invalidate_range_end(range);
4611 out:
4612 	return -EINVAL;
4613 }
4614 
4615 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4616 			     pte_t **ptepp, spinlock_t **ptlp)
4617 {
4618 	int res;
4619 
4620 	/* (void) is needed to make gcc happy */
4621 	(void) __cond_lock(*ptlp,
4622 			   !(res = __follow_pte_pmd(mm, address, NULL,
4623 						    ptepp, NULL, ptlp)));
4624 	return res;
4625 }
4626 
4627 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4628 		   struct mmu_notifier_range *range,
4629 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4630 {
4631 	int res;
4632 
4633 	/* (void) is needed to make gcc happy */
4634 	(void) __cond_lock(*ptlp,
4635 			   !(res = __follow_pte_pmd(mm, address, range,
4636 						    ptepp, pmdpp, ptlp)));
4637 	return res;
4638 }
4639 EXPORT_SYMBOL(follow_pte_pmd);
4640 
4641 /**
4642  * follow_pfn - look up PFN at a user virtual address
4643  * @vma: memory mapping
4644  * @address: user virtual address
4645  * @pfn: location to store found PFN
4646  *
4647  * Only IO mappings and raw PFN mappings are allowed.
4648  *
4649  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4650  */
4651 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4652 	unsigned long *pfn)
4653 {
4654 	int ret = -EINVAL;
4655 	spinlock_t *ptl;
4656 	pte_t *ptep;
4657 
4658 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4659 		return ret;
4660 
4661 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4662 	if (ret)
4663 		return ret;
4664 	*pfn = pte_pfn(*ptep);
4665 	pte_unmap_unlock(ptep, ptl);
4666 	return 0;
4667 }
4668 EXPORT_SYMBOL(follow_pfn);
4669 
4670 #ifdef CONFIG_HAVE_IOREMAP_PROT
4671 int follow_phys(struct vm_area_struct *vma,
4672 		unsigned long address, unsigned int flags,
4673 		unsigned long *prot, resource_size_t *phys)
4674 {
4675 	int ret = -EINVAL;
4676 	pte_t *ptep, pte;
4677 	spinlock_t *ptl;
4678 
4679 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4680 		goto out;
4681 
4682 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4683 		goto out;
4684 	pte = *ptep;
4685 
4686 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4687 		goto unlock;
4688 
4689 	*prot = pgprot_val(pte_pgprot(pte));
4690 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4691 
4692 	ret = 0;
4693 unlock:
4694 	pte_unmap_unlock(ptep, ptl);
4695 out:
4696 	return ret;
4697 }
4698 
4699 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4700 			void *buf, int len, int write)
4701 {
4702 	resource_size_t phys_addr;
4703 	unsigned long prot = 0;
4704 	void __iomem *maddr;
4705 	int offset = addr & (PAGE_SIZE-1);
4706 
4707 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4708 		return -EINVAL;
4709 
4710 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4711 	if (!maddr)
4712 		return -ENOMEM;
4713 
4714 	if (write)
4715 		memcpy_toio(maddr + offset, buf, len);
4716 	else
4717 		memcpy_fromio(buf, maddr + offset, len);
4718 	iounmap(maddr);
4719 
4720 	return len;
4721 }
4722 EXPORT_SYMBOL_GPL(generic_access_phys);
4723 #endif
4724 
4725 /*
4726  * Access another process' address space as given in mm.  If non-NULL, use the
4727  * given task for page fault accounting.
4728  */
4729 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4730 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4731 {
4732 	struct vm_area_struct *vma;
4733 	void *old_buf = buf;
4734 	int write = gup_flags & FOLL_WRITE;
4735 
4736 	if (mmap_read_lock_killable(mm))
4737 		return 0;
4738 
4739 	/* ignore errors, just check how much was successfully transferred */
4740 	while (len) {
4741 		int bytes, ret, offset;
4742 		void *maddr;
4743 		struct page *page = NULL;
4744 
4745 		ret = get_user_pages_remote(mm, addr, 1,
4746 				gup_flags, &page, &vma, NULL);
4747 		if (ret <= 0) {
4748 #ifndef CONFIG_HAVE_IOREMAP_PROT
4749 			break;
4750 #else
4751 			/*
4752 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4753 			 * we can access using slightly different code.
4754 			 */
4755 			vma = find_vma(mm, addr);
4756 			if (!vma || vma->vm_start > addr)
4757 				break;
4758 			if (vma->vm_ops && vma->vm_ops->access)
4759 				ret = vma->vm_ops->access(vma, addr, buf,
4760 							  len, write);
4761 			if (ret <= 0)
4762 				break;
4763 			bytes = ret;
4764 #endif
4765 		} else {
4766 			bytes = len;
4767 			offset = addr & (PAGE_SIZE-1);
4768 			if (bytes > PAGE_SIZE-offset)
4769 				bytes = PAGE_SIZE-offset;
4770 
4771 			maddr = kmap(page);
4772 			if (write) {
4773 				copy_to_user_page(vma, page, addr,
4774 						  maddr + offset, buf, bytes);
4775 				set_page_dirty_lock(page);
4776 			} else {
4777 				copy_from_user_page(vma, page, addr,
4778 						    buf, maddr + offset, bytes);
4779 			}
4780 			kunmap(page);
4781 			put_page(page);
4782 		}
4783 		len -= bytes;
4784 		buf += bytes;
4785 		addr += bytes;
4786 	}
4787 	mmap_read_unlock(mm);
4788 
4789 	return buf - old_buf;
4790 }
4791 
4792 /**
4793  * access_remote_vm - access another process' address space
4794  * @mm:		the mm_struct of the target address space
4795  * @addr:	start address to access
4796  * @buf:	source or destination buffer
4797  * @len:	number of bytes to transfer
4798  * @gup_flags:	flags modifying lookup behaviour
4799  *
4800  * The caller must hold a reference on @mm.
4801  *
4802  * Return: number of bytes copied from source to destination.
4803  */
4804 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4805 		void *buf, int len, unsigned int gup_flags)
4806 {
4807 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4808 }
4809 
4810 /*
4811  * Access another process' address space.
4812  * Source/target buffer must be kernel space,
4813  * Do not walk the page table directly, use get_user_pages
4814  */
4815 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4816 		void *buf, int len, unsigned int gup_flags)
4817 {
4818 	struct mm_struct *mm;
4819 	int ret;
4820 
4821 	mm = get_task_mm(tsk);
4822 	if (!mm)
4823 		return 0;
4824 
4825 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4826 
4827 	mmput(mm);
4828 
4829 	return ret;
4830 }
4831 EXPORT_SYMBOL_GPL(access_process_vm);
4832 
4833 /*
4834  * Print the name of a VMA.
4835  */
4836 void print_vma_addr(char *prefix, unsigned long ip)
4837 {
4838 	struct mm_struct *mm = current->mm;
4839 	struct vm_area_struct *vma;
4840 
4841 	/*
4842 	 * we might be running from an atomic context so we cannot sleep
4843 	 */
4844 	if (!mmap_read_trylock(mm))
4845 		return;
4846 
4847 	vma = find_vma(mm, ip);
4848 	if (vma && vma->vm_file) {
4849 		struct file *f = vma->vm_file;
4850 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4851 		if (buf) {
4852 			char *p;
4853 
4854 			p = file_path(f, buf, PAGE_SIZE);
4855 			if (IS_ERR(p))
4856 				p = "?";
4857 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4858 					vma->vm_start,
4859 					vma->vm_end - vma->vm_start);
4860 			free_page((unsigned long)buf);
4861 		}
4862 	}
4863 	mmap_read_unlock(mm);
4864 }
4865 
4866 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4867 void __might_fault(const char *file, int line)
4868 {
4869 	/*
4870 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4871 	 * holding the mmap_lock, this is safe because kernel memory doesn't
4872 	 * get paged out, therefore we'll never actually fault, and the
4873 	 * below annotations will generate false positives.
4874 	 */
4875 	if (uaccess_kernel())
4876 		return;
4877 	if (pagefault_disabled())
4878 		return;
4879 	__might_sleep(file, line, 0);
4880 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4881 	if (current->mm)
4882 		might_lock_read(&current->mm->mmap_lock);
4883 #endif
4884 }
4885 EXPORT_SYMBOL(__might_fault);
4886 #endif
4887 
4888 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4889 /*
4890  * Process all subpages of the specified huge page with the specified
4891  * operation.  The target subpage will be processed last to keep its
4892  * cache lines hot.
4893  */
4894 static inline void process_huge_page(
4895 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4896 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4897 	void *arg)
4898 {
4899 	int i, n, base, l;
4900 	unsigned long addr = addr_hint &
4901 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4902 
4903 	/* Process target subpage last to keep its cache lines hot */
4904 	might_sleep();
4905 	n = (addr_hint - addr) / PAGE_SIZE;
4906 	if (2 * n <= pages_per_huge_page) {
4907 		/* If target subpage in first half of huge page */
4908 		base = 0;
4909 		l = n;
4910 		/* Process subpages at the end of huge page */
4911 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4912 			cond_resched();
4913 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4914 		}
4915 	} else {
4916 		/* If target subpage in second half of huge page */
4917 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4918 		l = pages_per_huge_page - n;
4919 		/* Process subpages at the begin of huge page */
4920 		for (i = 0; i < base; i++) {
4921 			cond_resched();
4922 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4923 		}
4924 	}
4925 	/*
4926 	 * Process remaining subpages in left-right-left-right pattern
4927 	 * towards the target subpage
4928 	 */
4929 	for (i = 0; i < l; i++) {
4930 		int left_idx = base + i;
4931 		int right_idx = base + 2 * l - 1 - i;
4932 
4933 		cond_resched();
4934 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4935 		cond_resched();
4936 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4937 	}
4938 }
4939 
4940 static void clear_gigantic_page(struct page *page,
4941 				unsigned long addr,
4942 				unsigned int pages_per_huge_page)
4943 {
4944 	int i;
4945 	struct page *p = page;
4946 
4947 	might_sleep();
4948 	for (i = 0; i < pages_per_huge_page;
4949 	     i++, p = mem_map_next(p, page, i)) {
4950 		cond_resched();
4951 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4952 	}
4953 }
4954 
4955 static void clear_subpage(unsigned long addr, int idx, void *arg)
4956 {
4957 	struct page *page = arg;
4958 
4959 	clear_user_highpage(page + idx, addr);
4960 }
4961 
4962 void clear_huge_page(struct page *page,
4963 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4964 {
4965 	unsigned long addr = addr_hint &
4966 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4967 
4968 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4969 		clear_gigantic_page(page, addr, pages_per_huge_page);
4970 		return;
4971 	}
4972 
4973 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4974 }
4975 
4976 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4977 				    unsigned long addr,
4978 				    struct vm_area_struct *vma,
4979 				    unsigned int pages_per_huge_page)
4980 {
4981 	int i;
4982 	struct page *dst_base = dst;
4983 	struct page *src_base = src;
4984 
4985 	for (i = 0; i < pages_per_huge_page; ) {
4986 		cond_resched();
4987 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4988 
4989 		i++;
4990 		dst = mem_map_next(dst, dst_base, i);
4991 		src = mem_map_next(src, src_base, i);
4992 	}
4993 }
4994 
4995 struct copy_subpage_arg {
4996 	struct page *dst;
4997 	struct page *src;
4998 	struct vm_area_struct *vma;
4999 };
5000 
5001 static void copy_subpage(unsigned long addr, int idx, void *arg)
5002 {
5003 	struct copy_subpage_arg *copy_arg = arg;
5004 
5005 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5006 			   addr, copy_arg->vma);
5007 }
5008 
5009 void copy_user_huge_page(struct page *dst, struct page *src,
5010 			 unsigned long addr_hint, struct vm_area_struct *vma,
5011 			 unsigned int pages_per_huge_page)
5012 {
5013 	unsigned long addr = addr_hint &
5014 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5015 	struct copy_subpage_arg arg = {
5016 		.dst = dst,
5017 		.src = src,
5018 		.vma = vma,
5019 	};
5020 
5021 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5022 		copy_user_gigantic_page(dst, src, addr, vma,
5023 					pages_per_huge_page);
5024 		return;
5025 	}
5026 
5027 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5028 }
5029 
5030 long copy_huge_page_from_user(struct page *dst_page,
5031 				const void __user *usr_src,
5032 				unsigned int pages_per_huge_page,
5033 				bool allow_pagefault)
5034 {
5035 	void *src = (void *)usr_src;
5036 	void *page_kaddr;
5037 	unsigned long i, rc = 0;
5038 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5039 
5040 	for (i = 0; i < pages_per_huge_page; i++) {
5041 		if (allow_pagefault)
5042 			page_kaddr = kmap(dst_page + i);
5043 		else
5044 			page_kaddr = kmap_atomic(dst_page + i);
5045 		rc = copy_from_user(page_kaddr,
5046 				(const void __user *)(src + i * PAGE_SIZE),
5047 				PAGE_SIZE);
5048 		if (allow_pagefault)
5049 			kunmap(dst_page + i);
5050 		else
5051 			kunmap_atomic(page_kaddr);
5052 
5053 		ret_val -= (PAGE_SIZE - rc);
5054 		if (rc)
5055 			break;
5056 
5057 		cond_resched();
5058 	}
5059 	return ret_val;
5060 }
5061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5062 
5063 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5064 
5065 static struct kmem_cache *page_ptl_cachep;
5066 
5067 void __init ptlock_cache_init(void)
5068 {
5069 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5070 			SLAB_PANIC, NULL);
5071 }
5072 
5073 bool ptlock_alloc(struct page *page)
5074 {
5075 	spinlock_t *ptl;
5076 
5077 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5078 	if (!ptl)
5079 		return false;
5080 	page->ptl = ptl;
5081 	return true;
5082 }
5083 
5084 void ptlock_free(struct page *page)
5085 {
5086 	kmem_cache_free(page_ptl_cachep, page->ptl);
5087 }
5088 #endif
5089