1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 78 #include <trace/events/kmem.h> 79 80 #include <asm/io.h> 81 #include <asm/mmu_context.h> 82 #include <asm/pgalloc.h> 83 #include <linux/uaccess.h> 84 #include <asm/tlb.h> 85 #include <asm/tlbflush.h> 86 87 #include "pgalloc-track.h" 88 #include "internal.h" 89 90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 92 #endif 93 94 #ifndef CONFIG_NEED_MULTIPLE_NODES 95 /* use the per-pgdat data instead for discontigmem - mbligh */ 96 unsigned long max_mapnr; 97 EXPORT_SYMBOL(max_mapnr); 98 99 struct page *mem_map; 100 EXPORT_SYMBOL(mem_map); 101 #endif 102 103 /* 104 * A number of key systems in x86 including ioremap() rely on the assumption 105 * that high_memory defines the upper bound on direct map memory, then end 106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 108 * and ZONE_HIGHMEM. 109 */ 110 void *high_memory; 111 EXPORT_SYMBOL(high_memory); 112 113 /* 114 * Randomize the address space (stacks, mmaps, brk, etc.). 115 * 116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 117 * as ancient (libc5 based) binaries can segfault. ) 118 */ 119 int randomize_va_space __read_mostly = 120 #ifdef CONFIG_COMPAT_BRK 121 1; 122 #else 123 2; 124 #endif 125 126 #ifndef arch_faults_on_old_pte 127 static inline bool arch_faults_on_old_pte(void) 128 { 129 /* 130 * Those arches which don't have hw access flag feature need to 131 * implement their own helper. By default, "true" means pagefault 132 * will be hit on old pte. 133 */ 134 return true; 135 } 136 #endif 137 138 static int __init disable_randmaps(char *s) 139 { 140 randomize_va_space = 0; 141 return 1; 142 } 143 __setup("norandmaps", disable_randmaps); 144 145 unsigned long zero_pfn __read_mostly; 146 EXPORT_SYMBOL(zero_pfn); 147 148 unsigned long highest_memmap_pfn __read_mostly; 149 150 /* 151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 152 */ 153 static int __init init_zero_pfn(void) 154 { 155 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 156 return 0; 157 } 158 core_initcall(init_zero_pfn); 159 160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 161 { 162 trace_rss_stat(mm, member, count); 163 } 164 165 #if defined(SPLIT_RSS_COUNTING) 166 167 void sync_mm_rss(struct mm_struct *mm) 168 { 169 int i; 170 171 for (i = 0; i < NR_MM_COUNTERS; i++) { 172 if (current->rss_stat.count[i]) { 173 add_mm_counter(mm, i, current->rss_stat.count[i]); 174 current->rss_stat.count[i] = 0; 175 } 176 } 177 current->rss_stat.events = 0; 178 } 179 180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 181 { 182 struct task_struct *task = current; 183 184 if (likely(task->mm == mm)) 185 task->rss_stat.count[member] += val; 186 else 187 add_mm_counter(mm, member, val); 188 } 189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 191 192 /* sync counter once per 64 page faults */ 193 #define TASK_RSS_EVENTS_THRESH (64) 194 static void check_sync_rss_stat(struct task_struct *task) 195 { 196 if (unlikely(task != current)) 197 return; 198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 199 sync_mm_rss(task->mm); 200 } 201 #else /* SPLIT_RSS_COUNTING */ 202 203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 205 206 static void check_sync_rss_stat(struct task_struct *task) 207 { 208 } 209 210 #endif /* SPLIT_RSS_COUNTING */ 211 212 /* 213 * Note: this doesn't free the actual pages themselves. That 214 * has been handled earlier when unmapping all the memory regions. 215 */ 216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 217 unsigned long addr) 218 { 219 pgtable_t token = pmd_pgtable(*pmd); 220 pmd_clear(pmd); 221 pte_free_tlb(tlb, token, addr); 222 mm_dec_nr_ptes(tlb->mm); 223 } 224 225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 226 unsigned long addr, unsigned long end, 227 unsigned long floor, unsigned long ceiling) 228 { 229 pmd_t *pmd; 230 unsigned long next; 231 unsigned long start; 232 233 start = addr; 234 pmd = pmd_offset(pud, addr); 235 do { 236 next = pmd_addr_end(addr, end); 237 if (pmd_none_or_clear_bad(pmd)) 238 continue; 239 free_pte_range(tlb, pmd, addr); 240 } while (pmd++, addr = next, addr != end); 241 242 start &= PUD_MASK; 243 if (start < floor) 244 return; 245 if (ceiling) { 246 ceiling &= PUD_MASK; 247 if (!ceiling) 248 return; 249 } 250 if (end - 1 > ceiling - 1) 251 return; 252 253 pmd = pmd_offset(pud, start); 254 pud_clear(pud); 255 pmd_free_tlb(tlb, pmd, start); 256 mm_dec_nr_pmds(tlb->mm); 257 } 258 259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 260 unsigned long addr, unsigned long end, 261 unsigned long floor, unsigned long ceiling) 262 { 263 pud_t *pud; 264 unsigned long next; 265 unsigned long start; 266 267 start = addr; 268 pud = pud_offset(p4d, addr); 269 do { 270 next = pud_addr_end(addr, end); 271 if (pud_none_or_clear_bad(pud)) 272 continue; 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 274 } while (pud++, addr = next, addr != end); 275 276 start &= P4D_MASK; 277 if (start < floor) 278 return; 279 if (ceiling) { 280 ceiling &= P4D_MASK; 281 if (!ceiling) 282 return; 283 } 284 if (end - 1 > ceiling - 1) 285 return; 286 287 pud = pud_offset(p4d, start); 288 p4d_clear(p4d); 289 pud_free_tlb(tlb, pud, start); 290 mm_dec_nr_puds(tlb->mm); 291 } 292 293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 p4d_t *p4d; 298 unsigned long next; 299 unsigned long start; 300 301 start = addr; 302 p4d = p4d_offset(pgd, addr); 303 do { 304 next = p4d_addr_end(addr, end); 305 if (p4d_none_or_clear_bad(p4d)) 306 continue; 307 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 308 } while (p4d++, addr = next, addr != end); 309 310 start &= PGDIR_MASK; 311 if (start < floor) 312 return; 313 if (ceiling) { 314 ceiling &= PGDIR_MASK; 315 if (!ceiling) 316 return; 317 } 318 if (end - 1 > ceiling - 1) 319 return; 320 321 p4d = p4d_offset(pgd, start); 322 pgd_clear(pgd); 323 p4d_free_tlb(tlb, p4d, start); 324 } 325 326 /* 327 * This function frees user-level page tables of a process. 328 */ 329 void free_pgd_range(struct mmu_gather *tlb, 330 unsigned long addr, unsigned long end, 331 unsigned long floor, unsigned long ceiling) 332 { 333 pgd_t *pgd; 334 unsigned long next; 335 336 /* 337 * The next few lines have given us lots of grief... 338 * 339 * Why are we testing PMD* at this top level? Because often 340 * there will be no work to do at all, and we'd prefer not to 341 * go all the way down to the bottom just to discover that. 342 * 343 * Why all these "- 1"s? Because 0 represents both the bottom 344 * of the address space and the top of it (using -1 for the 345 * top wouldn't help much: the masks would do the wrong thing). 346 * The rule is that addr 0 and floor 0 refer to the bottom of 347 * the address space, but end 0 and ceiling 0 refer to the top 348 * Comparisons need to use "end - 1" and "ceiling - 1" (though 349 * that end 0 case should be mythical). 350 * 351 * Wherever addr is brought up or ceiling brought down, we must 352 * be careful to reject "the opposite 0" before it confuses the 353 * subsequent tests. But what about where end is brought down 354 * by PMD_SIZE below? no, end can't go down to 0 there. 355 * 356 * Whereas we round start (addr) and ceiling down, by different 357 * masks at different levels, in order to test whether a table 358 * now has no other vmas using it, so can be freed, we don't 359 * bother to round floor or end up - the tests don't need that. 360 */ 361 362 addr &= PMD_MASK; 363 if (addr < floor) { 364 addr += PMD_SIZE; 365 if (!addr) 366 return; 367 } 368 if (ceiling) { 369 ceiling &= PMD_MASK; 370 if (!ceiling) 371 return; 372 } 373 if (end - 1 > ceiling - 1) 374 end -= PMD_SIZE; 375 if (addr > end - 1) 376 return; 377 /* 378 * We add page table cache pages with PAGE_SIZE, 379 * (see pte_free_tlb()), flush the tlb if we need 380 */ 381 tlb_change_page_size(tlb, PAGE_SIZE); 382 pgd = pgd_offset(tlb->mm, addr); 383 do { 384 next = pgd_addr_end(addr, end); 385 if (pgd_none_or_clear_bad(pgd)) 386 continue; 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 388 } while (pgd++, addr = next, addr != end); 389 } 390 391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 392 unsigned long floor, unsigned long ceiling) 393 { 394 while (vma) { 395 struct vm_area_struct *next = vma->vm_next; 396 unsigned long addr = vma->vm_start; 397 398 /* 399 * Hide vma from rmap and truncate_pagecache before freeing 400 * pgtables 401 */ 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 405 if (is_vm_hugetlb_page(vma)) { 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 407 floor, next ? next->vm_start : ceiling); 408 } else { 409 /* 410 * Optimization: gather nearby vmas into one call down 411 */ 412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 413 && !is_vm_hugetlb_page(next)) { 414 vma = next; 415 next = vma->vm_next; 416 unlink_anon_vmas(vma); 417 unlink_file_vma(vma); 418 } 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 } 422 vma = next; 423 } 424 } 425 426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 427 { 428 spinlock_t *ptl; 429 pgtable_t new = pte_alloc_one(mm); 430 if (!new) 431 return -ENOMEM; 432 433 /* 434 * Ensure all pte setup (eg. pte page lock and page clearing) are 435 * visible before the pte is made visible to other CPUs by being 436 * put into page tables. 437 * 438 * The other side of the story is the pointer chasing in the page 439 * table walking code (when walking the page table without locking; 440 * ie. most of the time). Fortunately, these data accesses consist 441 * of a chain of data-dependent loads, meaning most CPUs (alpha 442 * being the notable exception) will already guarantee loads are 443 * seen in-order. See the alpha page table accessors for the 444 * smp_rmb() barriers in page table walking code. 445 */ 446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 447 448 ptl = pmd_lock(mm, pmd); 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 450 mm_inc_nr_ptes(mm); 451 pmd_populate(mm, pmd, new); 452 new = NULL; 453 } 454 spin_unlock(ptl); 455 if (new) 456 pte_free(mm, new); 457 return 0; 458 } 459 460 int __pte_alloc_kernel(pmd_t *pmd) 461 { 462 pte_t *new = pte_alloc_one_kernel(&init_mm); 463 if (!new) 464 return -ENOMEM; 465 466 smp_wmb(); /* See comment in __pte_alloc */ 467 468 spin_lock(&init_mm.page_table_lock); 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 470 pmd_populate_kernel(&init_mm, pmd, new); 471 new = NULL; 472 } 473 spin_unlock(&init_mm.page_table_lock); 474 if (new) 475 pte_free_kernel(&init_mm, new); 476 return 0; 477 } 478 479 static inline void init_rss_vec(int *rss) 480 { 481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 482 } 483 484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 485 { 486 int i; 487 488 if (current->mm == mm) 489 sync_mm_rss(mm); 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 /* 496 * This function is called to print an error when a bad pte 497 * is found. For example, we might have a PFN-mapped pte in 498 * a region that doesn't allow it. 499 * 500 * The calling function must still handle the error. 501 */ 502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 503 pte_t pte, struct page *page) 504 { 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 506 p4d_t *p4d = p4d_offset(pgd, addr); 507 pud_t *pud = pud_offset(p4d, addr); 508 pmd_t *pmd = pmd_offset(pud, addr); 509 struct address_space *mapping; 510 pgoff_t index; 511 static unsigned long resume; 512 static unsigned long nr_shown; 513 static unsigned long nr_unshown; 514 515 /* 516 * Allow a burst of 60 reports, then keep quiet for that minute; 517 * or allow a steady drip of one report per second. 518 */ 519 if (nr_shown == 60) { 520 if (time_before(jiffies, resume)) { 521 nr_unshown++; 522 return; 523 } 524 if (nr_unshown) { 525 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 526 nr_unshown); 527 nr_unshown = 0; 528 } 529 nr_shown = 0; 530 } 531 if (nr_shown++ == 0) 532 resume = jiffies + 60 * HZ; 533 534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 535 index = linear_page_index(vma, addr); 536 537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 538 current->comm, 539 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 540 if (page) 541 dump_page(page, "bad pte"); 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 545 vma->vm_file, 546 vma->vm_ops ? vma->vm_ops->fault : NULL, 547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 548 mapping ? mapping->a_ops->readpage : NULL); 549 dump_stack(); 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 551 } 552 553 /* 554 * vm_normal_page -- This function gets the "struct page" associated with a pte. 555 * 556 * "Special" mappings do not wish to be associated with a "struct page" (either 557 * it doesn't exist, or it exists but they don't want to touch it). In this 558 * case, NULL is returned here. "Normal" mappings do have a struct page. 559 * 560 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 561 * pte bit, in which case this function is trivial. Secondly, an architecture 562 * may not have a spare pte bit, which requires a more complicated scheme, 563 * described below. 564 * 565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 566 * special mapping (even if there are underlying and valid "struct pages"). 567 * COWed pages of a VM_PFNMAP are always normal. 568 * 569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 572 * mapping will always honor the rule 573 * 574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 575 * 576 * And for normal mappings this is false. 577 * 578 * This restricts such mappings to be a linear translation from virtual address 579 * to pfn. To get around this restriction, we allow arbitrary mappings so long 580 * as the vma is not a COW mapping; in that case, we know that all ptes are 581 * special (because none can have been COWed). 582 * 583 * 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 585 * 586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 587 * page" backing, however the difference is that _all_ pages with a struct 588 * page (that is, those where pfn_valid is true) are refcounted and considered 589 * normal pages by the VM. The disadvantage is that pages are refcounted 590 * (which can be slower and simply not an option for some PFNMAP users). The 591 * advantage is that we don't have to follow the strict linearity rule of 592 * PFNMAP mappings in order to support COWable mappings. 593 * 594 */ 595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 596 pte_t pte) 597 { 598 unsigned long pfn = pte_pfn(pte); 599 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 601 if (likely(!pte_special(pte))) 602 goto check_pfn; 603 if (vma->vm_ops && vma->vm_ops->find_special_page) 604 return vma->vm_ops->find_special_page(vma, addr); 605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 606 return NULL; 607 if (is_zero_pfn(pfn)) 608 return NULL; 609 if (pte_devmap(pte)) 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 652 pmd_t pmd) 653 { 654 unsigned long pfn = pmd_pfn(pmd); 655 656 /* 657 * There is no pmd_special() but there may be special pmds, e.g. 658 * in a direct-access (dax) mapping, so let's just replicate the 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 660 */ 661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 662 if (vma->vm_flags & VM_MIXEDMAP) { 663 if (!pfn_valid(pfn)) 664 return NULL; 665 goto out; 666 } else { 667 unsigned long off; 668 off = (addr - vma->vm_start) >> PAGE_SHIFT; 669 if (pfn == vma->vm_pgoff + off) 670 return NULL; 671 if (!is_cow_mapping(vma->vm_flags)) 672 return NULL; 673 } 674 } 675 676 if (pmd_devmap(pmd)) 677 return NULL; 678 if (is_huge_zero_pmd(pmd)) 679 return NULL; 680 if (unlikely(pfn > highest_memmap_pfn)) 681 return NULL; 682 683 /* 684 * NOTE! We still have PageReserved() pages in the page tables. 685 * eg. VDSO mappings can cause them to exist. 686 */ 687 out: 688 return pfn_to_page(pfn); 689 } 690 #endif 691 692 /* 693 * copy one vm_area from one task to the other. Assumes the page tables 694 * already present in the new task to be cleared in the whole range 695 * covered by this vma. 696 */ 697 698 static unsigned long 699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 701 unsigned long addr, int *rss) 702 { 703 unsigned long vm_flags = vma->vm_flags; 704 pte_t pte = *src_pte; 705 struct page *page; 706 swp_entry_t entry = pte_to_swp_entry(pte); 707 708 if (likely(!non_swap_entry(entry))) { 709 if (swap_duplicate(entry) < 0) 710 return entry.val; 711 712 /* make sure dst_mm is on swapoff's mmlist. */ 713 if (unlikely(list_empty(&dst_mm->mmlist))) { 714 spin_lock(&mmlist_lock); 715 if (list_empty(&dst_mm->mmlist)) 716 list_add(&dst_mm->mmlist, 717 &src_mm->mmlist); 718 spin_unlock(&mmlist_lock); 719 } 720 rss[MM_SWAPENTS]++; 721 } else if (is_migration_entry(entry)) { 722 page = migration_entry_to_page(entry); 723 724 rss[mm_counter(page)]++; 725 726 if (is_write_migration_entry(entry) && 727 is_cow_mapping(vm_flags)) { 728 /* 729 * COW mappings require pages in both 730 * parent and child to be set to read. 731 */ 732 make_migration_entry_read(&entry); 733 pte = swp_entry_to_pte(entry); 734 if (pte_swp_soft_dirty(*src_pte)) 735 pte = pte_swp_mksoft_dirty(pte); 736 if (pte_swp_uffd_wp(*src_pte)) 737 pte = pte_swp_mkuffd_wp(pte); 738 set_pte_at(src_mm, addr, src_pte, pte); 739 } 740 } else if (is_device_private_entry(entry)) { 741 page = device_private_entry_to_page(entry); 742 743 /* 744 * Update rss count even for unaddressable pages, as 745 * they should treated just like normal pages in this 746 * respect. 747 * 748 * We will likely want to have some new rss counters 749 * for unaddressable pages, at some point. But for now 750 * keep things as they are. 751 */ 752 get_page(page); 753 rss[mm_counter(page)]++; 754 page_dup_rmap(page, false); 755 756 /* 757 * We do not preserve soft-dirty information, because so 758 * far, checkpoint/restore is the only feature that 759 * requires that. And checkpoint/restore does not work 760 * when a device driver is involved (you cannot easily 761 * save and restore device driver state). 762 */ 763 if (is_write_device_private_entry(entry) && 764 is_cow_mapping(vm_flags)) { 765 make_device_private_entry_read(&entry); 766 pte = swp_entry_to_pte(entry); 767 if (pte_swp_uffd_wp(*src_pte)) 768 pte = pte_swp_mkuffd_wp(pte); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 set_pte_at(dst_mm, addr, dst_pte, pte); 773 return 0; 774 } 775 776 static inline void 777 copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 778 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 779 unsigned long addr, int *rss) 780 { 781 unsigned long vm_flags = vma->vm_flags; 782 pte_t pte = *src_pte; 783 struct page *page; 784 785 /* 786 * If it's a COW mapping, write protect it both 787 * in the parent and the child 788 */ 789 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 790 ptep_set_wrprotect(src_mm, addr, src_pte); 791 pte = pte_wrprotect(pte); 792 } 793 794 /* 795 * If it's a shared mapping, mark it clean in 796 * the child 797 */ 798 if (vm_flags & VM_SHARED) 799 pte = pte_mkclean(pte); 800 pte = pte_mkold(pte); 801 802 /* 803 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 804 * does not have the VM_UFFD_WP, which means that the uffd 805 * fork event is not enabled. 806 */ 807 if (!(vm_flags & VM_UFFD_WP)) 808 pte = pte_clear_uffd_wp(pte); 809 810 page = vm_normal_page(vma, addr, pte); 811 if (page) { 812 get_page(page); 813 page_dup_rmap(page, false); 814 rss[mm_counter(page)]++; 815 } 816 817 set_pte_at(dst_mm, addr, dst_pte, pte); 818 } 819 820 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 821 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 822 unsigned long addr, unsigned long end) 823 { 824 pte_t *orig_src_pte, *orig_dst_pte; 825 pte_t *src_pte, *dst_pte; 826 spinlock_t *src_ptl, *dst_ptl; 827 int progress = 0; 828 int rss[NR_MM_COUNTERS]; 829 swp_entry_t entry = (swp_entry_t){0}; 830 831 again: 832 init_rss_vec(rss); 833 834 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 835 if (!dst_pte) 836 return -ENOMEM; 837 src_pte = pte_offset_map(src_pmd, addr); 838 src_ptl = pte_lockptr(src_mm, src_pmd); 839 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 840 orig_src_pte = src_pte; 841 orig_dst_pte = dst_pte; 842 arch_enter_lazy_mmu_mode(); 843 844 do { 845 /* 846 * We are holding two locks at this point - either of them 847 * could generate latencies in another task on another CPU. 848 */ 849 if (progress >= 32) { 850 progress = 0; 851 if (need_resched() || 852 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 853 break; 854 } 855 if (pte_none(*src_pte)) { 856 progress++; 857 continue; 858 } 859 if (unlikely(!pte_present(*src_pte))) { 860 entry.val = copy_nonpresent_pte(dst_mm, src_mm, 861 dst_pte, src_pte, 862 vma, addr, rss); 863 if (entry.val) 864 break; 865 progress += 8; 866 continue; 867 } 868 copy_present_pte(dst_mm, src_mm, dst_pte, src_pte, 869 vma, addr, rss); 870 progress += 8; 871 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 872 873 arch_leave_lazy_mmu_mode(); 874 spin_unlock(src_ptl); 875 pte_unmap(orig_src_pte); 876 add_mm_rss_vec(dst_mm, rss); 877 pte_unmap_unlock(orig_dst_pte, dst_ptl); 878 cond_resched(); 879 880 if (entry.val) { 881 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 882 return -ENOMEM; 883 progress = 0; 884 } 885 if (addr != end) 886 goto again; 887 return 0; 888 } 889 890 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 891 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 892 unsigned long addr, unsigned long end) 893 { 894 pmd_t *src_pmd, *dst_pmd; 895 unsigned long next; 896 897 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 898 if (!dst_pmd) 899 return -ENOMEM; 900 src_pmd = pmd_offset(src_pud, addr); 901 do { 902 next = pmd_addr_end(addr, end); 903 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 904 || pmd_devmap(*src_pmd)) { 905 int err; 906 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 907 err = copy_huge_pmd(dst_mm, src_mm, 908 dst_pmd, src_pmd, addr, vma); 909 if (err == -ENOMEM) 910 return -ENOMEM; 911 if (!err) 912 continue; 913 /* fall through */ 914 } 915 if (pmd_none_or_clear_bad(src_pmd)) 916 continue; 917 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 918 vma, addr, next)) 919 return -ENOMEM; 920 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 921 return 0; 922 } 923 924 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 925 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 926 unsigned long addr, unsigned long end) 927 { 928 pud_t *src_pud, *dst_pud; 929 unsigned long next; 930 931 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 932 if (!dst_pud) 933 return -ENOMEM; 934 src_pud = pud_offset(src_p4d, addr); 935 do { 936 next = pud_addr_end(addr, end); 937 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 938 int err; 939 940 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 941 err = copy_huge_pud(dst_mm, src_mm, 942 dst_pud, src_pud, addr, vma); 943 if (err == -ENOMEM) 944 return -ENOMEM; 945 if (!err) 946 continue; 947 /* fall through */ 948 } 949 if (pud_none_or_clear_bad(src_pud)) 950 continue; 951 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 952 vma, addr, next)) 953 return -ENOMEM; 954 } while (dst_pud++, src_pud++, addr = next, addr != end); 955 return 0; 956 } 957 958 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 959 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 960 unsigned long addr, unsigned long end) 961 { 962 p4d_t *src_p4d, *dst_p4d; 963 unsigned long next; 964 965 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 966 if (!dst_p4d) 967 return -ENOMEM; 968 src_p4d = p4d_offset(src_pgd, addr); 969 do { 970 next = p4d_addr_end(addr, end); 971 if (p4d_none_or_clear_bad(src_p4d)) 972 continue; 973 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 974 vma, addr, next)) 975 return -ENOMEM; 976 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 977 return 0; 978 } 979 980 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 981 struct vm_area_struct *vma) 982 { 983 pgd_t *src_pgd, *dst_pgd; 984 unsigned long next; 985 unsigned long addr = vma->vm_start; 986 unsigned long end = vma->vm_end; 987 struct mmu_notifier_range range; 988 bool is_cow; 989 int ret; 990 991 /* 992 * Don't copy ptes where a page fault will fill them correctly. 993 * Fork becomes much lighter when there are big shared or private 994 * readonly mappings. The tradeoff is that copy_page_range is more 995 * efficient than faulting. 996 */ 997 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 998 !vma->anon_vma) 999 return 0; 1000 1001 if (is_vm_hugetlb_page(vma)) 1002 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1003 1004 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1005 /* 1006 * We do not free on error cases below as remove_vma 1007 * gets called on error from higher level routine 1008 */ 1009 ret = track_pfn_copy(vma); 1010 if (ret) 1011 return ret; 1012 } 1013 1014 /* 1015 * We need to invalidate the secondary MMU mappings only when 1016 * there could be a permission downgrade on the ptes of the 1017 * parent mm. And a permission downgrade will only happen if 1018 * is_cow_mapping() returns true. 1019 */ 1020 is_cow = is_cow_mapping(vma->vm_flags); 1021 1022 if (is_cow) { 1023 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1024 0, vma, src_mm, addr, end); 1025 mmu_notifier_invalidate_range_start(&range); 1026 } 1027 1028 ret = 0; 1029 dst_pgd = pgd_offset(dst_mm, addr); 1030 src_pgd = pgd_offset(src_mm, addr); 1031 do { 1032 next = pgd_addr_end(addr, end); 1033 if (pgd_none_or_clear_bad(src_pgd)) 1034 continue; 1035 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1036 vma, addr, next))) { 1037 ret = -ENOMEM; 1038 break; 1039 } 1040 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1041 1042 if (is_cow) 1043 mmu_notifier_invalidate_range_end(&range); 1044 return ret; 1045 } 1046 1047 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1048 struct vm_area_struct *vma, pmd_t *pmd, 1049 unsigned long addr, unsigned long end, 1050 struct zap_details *details) 1051 { 1052 struct mm_struct *mm = tlb->mm; 1053 int force_flush = 0; 1054 int rss[NR_MM_COUNTERS]; 1055 spinlock_t *ptl; 1056 pte_t *start_pte; 1057 pte_t *pte; 1058 swp_entry_t entry; 1059 1060 tlb_change_page_size(tlb, PAGE_SIZE); 1061 again: 1062 init_rss_vec(rss); 1063 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1064 pte = start_pte; 1065 flush_tlb_batched_pending(mm); 1066 arch_enter_lazy_mmu_mode(); 1067 do { 1068 pte_t ptent = *pte; 1069 if (pte_none(ptent)) 1070 continue; 1071 1072 if (need_resched()) 1073 break; 1074 1075 if (pte_present(ptent)) { 1076 struct page *page; 1077 1078 page = vm_normal_page(vma, addr, ptent); 1079 if (unlikely(details) && page) { 1080 /* 1081 * unmap_shared_mapping_pages() wants to 1082 * invalidate cache without truncating: 1083 * unmap shared but keep private pages. 1084 */ 1085 if (details->check_mapping && 1086 details->check_mapping != page_rmapping(page)) 1087 continue; 1088 } 1089 ptent = ptep_get_and_clear_full(mm, addr, pte, 1090 tlb->fullmm); 1091 tlb_remove_tlb_entry(tlb, pte, addr); 1092 if (unlikely(!page)) 1093 continue; 1094 1095 if (!PageAnon(page)) { 1096 if (pte_dirty(ptent)) { 1097 force_flush = 1; 1098 set_page_dirty(page); 1099 } 1100 if (pte_young(ptent) && 1101 likely(!(vma->vm_flags & VM_SEQ_READ))) 1102 mark_page_accessed(page); 1103 } 1104 rss[mm_counter(page)]--; 1105 page_remove_rmap(page, false); 1106 if (unlikely(page_mapcount(page) < 0)) 1107 print_bad_pte(vma, addr, ptent, page); 1108 if (unlikely(__tlb_remove_page(tlb, page))) { 1109 force_flush = 1; 1110 addr += PAGE_SIZE; 1111 break; 1112 } 1113 continue; 1114 } 1115 1116 entry = pte_to_swp_entry(ptent); 1117 if (is_device_private_entry(entry)) { 1118 struct page *page = device_private_entry_to_page(entry); 1119 1120 if (unlikely(details && details->check_mapping)) { 1121 /* 1122 * unmap_shared_mapping_pages() wants to 1123 * invalidate cache without truncating: 1124 * unmap shared but keep private pages. 1125 */ 1126 if (details->check_mapping != 1127 page_rmapping(page)) 1128 continue; 1129 } 1130 1131 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1132 rss[mm_counter(page)]--; 1133 page_remove_rmap(page, false); 1134 put_page(page); 1135 continue; 1136 } 1137 1138 /* If details->check_mapping, we leave swap entries. */ 1139 if (unlikely(details)) 1140 continue; 1141 1142 if (!non_swap_entry(entry)) 1143 rss[MM_SWAPENTS]--; 1144 else if (is_migration_entry(entry)) { 1145 struct page *page; 1146 1147 page = migration_entry_to_page(entry); 1148 rss[mm_counter(page)]--; 1149 } 1150 if (unlikely(!free_swap_and_cache(entry))) 1151 print_bad_pte(vma, addr, ptent, NULL); 1152 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1153 } while (pte++, addr += PAGE_SIZE, addr != end); 1154 1155 add_mm_rss_vec(mm, rss); 1156 arch_leave_lazy_mmu_mode(); 1157 1158 /* Do the actual TLB flush before dropping ptl */ 1159 if (force_flush) 1160 tlb_flush_mmu_tlbonly(tlb); 1161 pte_unmap_unlock(start_pte, ptl); 1162 1163 /* 1164 * If we forced a TLB flush (either due to running out of 1165 * batch buffers or because we needed to flush dirty TLB 1166 * entries before releasing the ptl), free the batched 1167 * memory too. Restart if we didn't do everything. 1168 */ 1169 if (force_flush) { 1170 force_flush = 0; 1171 tlb_flush_mmu(tlb); 1172 } 1173 1174 if (addr != end) { 1175 cond_resched(); 1176 goto again; 1177 } 1178 1179 return addr; 1180 } 1181 1182 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1183 struct vm_area_struct *vma, pud_t *pud, 1184 unsigned long addr, unsigned long end, 1185 struct zap_details *details) 1186 { 1187 pmd_t *pmd; 1188 unsigned long next; 1189 1190 pmd = pmd_offset(pud, addr); 1191 do { 1192 next = pmd_addr_end(addr, end); 1193 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1194 if (next - addr != HPAGE_PMD_SIZE) 1195 __split_huge_pmd(vma, pmd, addr, false, NULL); 1196 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1197 goto next; 1198 /* fall through */ 1199 } 1200 /* 1201 * Here there can be other concurrent MADV_DONTNEED or 1202 * trans huge page faults running, and if the pmd is 1203 * none or trans huge it can change under us. This is 1204 * because MADV_DONTNEED holds the mmap_lock in read 1205 * mode. 1206 */ 1207 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1208 goto next; 1209 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1210 next: 1211 cond_resched(); 1212 } while (pmd++, addr = next, addr != end); 1213 1214 return addr; 1215 } 1216 1217 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1218 struct vm_area_struct *vma, p4d_t *p4d, 1219 unsigned long addr, unsigned long end, 1220 struct zap_details *details) 1221 { 1222 pud_t *pud; 1223 unsigned long next; 1224 1225 pud = pud_offset(p4d, addr); 1226 do { 1227 next = pud_addr_end(addr, end); 1228 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1229 if (next - addr != HPAGE_PUD_SIZE) { 1230 mmap_assert_locked(tlb->mm); 1231 split_huge_pud(vma, pud, addr); 1232 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1233 goto next; 1234 /* fall through */ 1235 } 1236 if (pud_none_or_clear_bad(pud)) 1237 continue; 1238 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1239 next: 1240 cond_resched(); 1241 } while (pud++, addr = next, addr != end); 1242 1243 return addr; 1244 } 1245 1246 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1247 struct vm_area_struct *vma, pgd_t *pgd, 1248 unsigned long addr, unsigned long end, 1249 struct zap_details *details) 1250 { 1251 p4d_t *p4d; 1252 unsigned long next; 1253 1254 p4d = p4d_offset(pgd, addr); 1255 do { 1256 next = p4d_addr_end(addr, end); 1257 if (p4d_none_or_clear_bad(p4d)) 1258 continue; 1259 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1260 } while (p4d++, addr = next, addr != end); 1261 1262 return addr; 1263 } 1264 1265 void unmap_page_range(struct mmu_gather *tlb, 1266 struct vm_area_struct *vma, 1267 unsigned long addr, unsigned long end, 1268 struct zap_details *details) 1269 { 1270 pgd_t *pgd; 1271 unsigned long next; 1272 1273 BUG_ON(addr >= end); 1274 tlb_start_vma(tlb, vma); 1275 pgd = pgd_offset(vma->vm_mm, addr); 1276 do { 1277 next = pgd_addr_end(addr, end); 1278 if (pgd_none_or_clear_bad(pgd)) 1279 continue; 1280 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1281 } while (pgd++, addr = next, addr != end); 1282 tlb_end_vma(tlb, vma); 1283 } 1284 1285 1286 static void unmap_single_vma(struct mmu_gather *tlb, 1287 struct vm_area_struct *vma, unsigned long start_addr, 1288 unsigned long end_addr, 1289 struct zap_details *details) 1290 { 1291 unsigned long start = max(vma->vm_start, start_addr); 1292 unsigned long end; 1293 1294 if (start >= vma->vm_end) 1295 return; 1296 end = min(vma->vm_end, end_addr); 1297 if (end <= vma->vm_start) 1298 return; 1299 1300 if (vma->vm_file) 1301 uprobe_munmap(vma, start, end); 1302 1303 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1304 untrack_pfn(vma, 0, 0); 1305 1306 if (start != end) { 1307 if (unlikely(is_vm_hugetlb_page(vma))) { 1308 /* 1309 * It is undesirable to test vma->vm_file as it 1310 * should be non-null for valid hugetlb area. 1311 * However, vm_file will be NULL in the error 1312 * cleanup path of mmap_region. When 1313 * hugetlbfs ->mmap method fails, 1314 * mmap_region() nullifies vma->vm_file 1315 * before calling this function to clean up. 1316 * Since no pte has actually been setup, it is 1317 * safe to do nothing in this case. 1318 */ 1319 if (vma->vm_file) { 1320 i_mmap_lock_write(vma->vm_file->f_mapping); 1321 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1322 i_mmap_unlock_write(vma->vm_file->f_mapping); 1323 } 1324 } else 1325 unmap_page_range(tlb, vma, start, end, details); 1326 } 1327 } 1328 1329 /** 1330 * unmap_vmas - unmap a range of memory covered by a list of vma's 1331 * @tlb: address of the caller's struct mmu_gather 1332 * @vma: the starting vma 1333 * @start_addr: virtual address at which to start unmapping 1334 * @end_addr: virtual address at which to end unmapping 1335 * 1336 * Unmap all pages in the vma list. 1337 * 1338 * Only addresses between `start' and `end' will be unmapped. 1339 * 1340 * The VMA list must be sorted in ascending virtual address order. 1341 * 1342 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1343 * range after unmap_vmas() returns. So the only responsibility here is to 1344 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1345 * drops the lock and schedules. 1346 */ 1347 void unmap_vmas(struct mmu_gather *tlb, 1348 struct vm_area_struct *vma, unsigned long start_addr, 1349 unsigned long end_addr) 1350 { 1351 struct mmu_notifier_range range; 1352 1353 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1354 start_addr, end_addr); 1355 mmu_notifier_invalidate_range_start(&range); 1356 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1357 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1358 mmu_notifier_invalidate_range_end(&range); 1359 } 1360 1361 /** 1362 * zap_page_range - remove user pages in a given range 1363 * @vma: vm_area_struct holding the applicable pages 1364 * @start: starting address of pages to zap 1365 * @size: number of bytes to zap 1366 * 1367 * Caller must protect the VMA list 1368 */ 1369 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1370 unsigned long size) 1371 { 1372 struct mmu_notifier_range range; 1373 struct mmu_gather tlb; 1374 1375 lru_add_drain(); 1376 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1377 start, start + size); 1378 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1379 update_hiwater_rss(vma->vm_mm); 1380 mmu_notifier_invalidate_range_start(&range); 1381 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1382 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1383 mmu_notifier_invalidate_range_end(&range); 1384 tlb_finish_mmu(&tlb, start, range.end); 1385 } 1386 1387 /** 1388 * zap_page_range_single - remove user pages in a given range 1389 * @vma: vm_area_struct holding the applicable pages 1390 * @address: starting address of pages to zap 1391 * @size: number of bytes to zap 1392 * @details: details of shared cache invalidation 1393 * 1394 * The range must fit into one VMA. 1395 */ 1396 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1397 unsigned long size, struct zap_details *details) 1398 { 1399 struct mmu_notifier_range range; 1400 struct mmu_gather tlb; 1401 1402 lru_add_drain(); 1403 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1404 address, address + size); 1405 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1406 update_hiwater_rss(vma->vm_mm); 1407 mmu_notifier_invalidate_range_start(&range); 1408 unmap_single_vma(&tlb, vma, address, range.end, details); 1409 mmu_notifier_invalidate_range_end(&range); 1410 tlb_finish_mmu(&tlb, address, range.end); 1411 } 1412 1413 /** 1414 * zap_vma_ptes - remove ptes mapping the vma 1415 * @vma: vm_area_struct holding ptes to be zapped 1416 * @address: starting address of pages to zap 1417 * @size: number of bytes to zap 1418 * 1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1420 * 1421 * The entire address range must be fully contained within the vma. 1422 * 1423 */ 1424 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1425 unsigned long size) 1426 { 1427 if (address < vma->vm_start || address + size > vma->vm_end || 1428 !(vma->vm_flags & VM_PFNMAP)) 1429 return; 1430 1431 zap_page_range_single(vma, address, size, NULL); 1432 } 1433 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1434 1435 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1436 { 1437 pgd_t *pgd; 1438 p4d_t *p4d; 1439 pud_t *pud; 1440 pmd_t *pmd; 1441 1442 pgd = pgd_offset(mm, addr); 1443 p4d = p4d_alloc(mm, pgd, addr); 1444 if (!p4d) 1445 return NULL; 1446 pud = pud_alloc(mm, p4d, addr); 1447 if (!pud) 1448 return NULL; 1449 pmd = pmd_alloc(mm, pud, addr); 1450 if (!pmd) 1451 return NULL; 1452 1453 VM_BUG_ON(pmd_trans_huge(*pmd)); 1454 return pmd; 1455 } 1456 1457 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1458 spinlock_t **ptl) 1459 { 1460 pmd_t *pmd = walk_to_pmd(mm, addr); 1461 1462 if (!pmd) 1463 return NULL; 1464 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1465 } 1466 1467 static int validate_page_before_insert(struct page *page) 1468 { 1469 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1470 return -EINVAL; 1471 flush_dcache_page(page); 1472 return 0; 1473 } 1474 1475 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1476 unsigned long addr, struct page *page, pgprot_t prot) 1477 { 1478 if (!pte_none(*pte)) 1479 return -EBUSY; 1480 /* Ok, finally just insert the thing.. */ 1481 get_page(page); 1482 inc_mm_counter_fast(mm, mm_counter_file(page)); 1483 page_add_file_rmap(page, false); 1484 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1485 return 0; 1486 } 1487 1488 /* 1489 * This is the old fallback for page remapping. 1490 * 1491 * For historical reasons, it only allows reserved pages. Only 1492 * old drivers should use this, and they needed to mark their 1493 * pages reserved for the old functions anyway. 1494 */ 1495 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1496 struct page *page, pgprot_t prot) 1497 { 1498 struct mm_struct *mm = vma->vm_mm; 1499 int retval; 1500 pte_t *pte; 1501 spinlock_t *ptl; 1502 1503 retval = validate_page_before_insert(page); 1504 if (retval) 1505 goto out; 1506 retval = -ENOMEM; 1507 pte = get_locked_pte(mm, addr, &ptl); 1508 if (!pte) 1509 goto out; 1510 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1511 pte_unmap_unlock(pte, ptl); 1512 out: 1513 return retval; 1514 } 1515 1516 #ifdef pte_index 1517 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1518 unsigned long addr, struct page *page, pgprot_t prot) 1519 { 1520 int err; 1521 1522 if (!page_count(page)) 1523 return -EINVAL; 1524 err = validate_page_before_insert(page); 1525 if (err) 1526 return err; 1527 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1528 } 1529 1530 /* insert_pages() amortizes the cost of spinlock operations 1531 * when inserting pages in a loop. Arch *must* define pte_index. 1532 */ 1533 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1534 struct page **pages, unsigned long *num, pgprot_t prot) 1535 { 1536 pmd_t *pmd = NULL; 1537 pte_t *start_pte, *pte; 1538 spinlock_t *pte_lock; 1539 struct mm_struct *const mm = vma->vm_mm; 1540 unsigned long curr_page_idx = 0; 1541 unsigned long remaining_pages_total = *num; 1542 unsigned long pages_to_write_in_pmd; 1543 int ret; 1544 more: 1545 ret = -EFAULT; 1546 pmd = walk_to_pmd(mm, addr); 1547 if (!pmd) 1548 goto out; 1549 1550 pages_to_write_in_pmd = min_t(unsigned long, 1551 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1552 1553 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1554 ret = -ENOMEM; 1555 if (pte_alloc(mm, pmd)) 1556 goto out; 1557 1558 while (pages_to_write_in_pmd) { 1559 int pte_idx = 0; 1560 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1561 1562 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1563 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1564 int err = insert_page_in_batch_locked(mm, pte, 1565 addr, pages[curr_page_idx], prot); 1566 if (unlikely(err)) { 1567 pte_unmap_unlock(start_pte, pte_lock); 1568 ret = err; 1569 remaining_pages_total -= pte_idx; 1570 goto out; 1571 } 1572 addr += PAGE_SIZE; 1573 ++curr_page_idx; 1574 } 1575 pte_unmap_unlock(start_pte, pte_lock); 1576 pages_to_write_in_pmd -= batch_size; 1577 remaining_pages_total -= batch_size; 1578 } 1579 if (remaining_pages_total) 1580 goto more; 1581 ret = 0; 1582 out: 1583 *num = remaining_pages_total; 1584 return ret; 1585 } 1586 #endif /* ifdef pte_index */ 1587 1588 /** 1589 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1590 * @vma: user vma to map to 1591 * @addr: target start user address of these pages 1592 * @pages: source kernel pages 1593 * @num: in: number of pages to map. out: number of pages that were *not* 1594 * mapped. (0 means all pages were successfully mapped). 1595 * 1596 * Preferred over vm_insert_page() when inserting multiple pages. 1597 * 1598 * In case of error, we may have mapped a subset of the provided 1599 * pages. It is the caller's responsibility to account for this case. 1600 * 1601 * The same restrictions apply as in vm_insert_page(). 1602 */ 1603 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1604 struct page **pages, unsigned long *num) 1605 { 1606 #ifdef pte_index 1607 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1608 1609 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1610 return -EFAULT; 1611 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1612 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1613 BUG_ON(vma->vm_flags & VM_PFNMAP); 1614 vma->vm_flags |= VM_MIXEDMAP; 1615 } 1616 /* Defer page refcount checking till we're about to map that page. */ 1617 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1618 #else 1619 unsigned long idx = 0, pgcount = *num; 1620 int err = -EINVAL; 1621 1622 for (; idx < pgcount; ++idx) { 1623 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1624 if (err) 1625 break; 1626 } 1627 *num = pgcount - idx; 1628 return err; 1629 #endif /* ifdef pte_index */ 1630 } 1631 EXPORT_SYMBOL(vm_insert_pages); 1632 1633 /** 1634 * vm_insert_page - insert single page into user vma 1635 * @vma: user vma to map to 1636 * @addr: target user address of this page 1637 * @page: source kernel page 1638 * 1639 * This allows drivers to insert individual pages they've allocated 1640 * into a user vma. 1641 * 1642 * The page has to be a nice clean _individual_ kernel allocation. 1643 * If you allocate a compound page, you need to have marked it as 1644 * such (__GFP_COMP), or manually just split the page up yourself 1645 * (see split_page()). 1646 * 1647 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1648 * took an arbitrary page protection parameter. This doesn't allow 1649 * that. Your vma protection will have to be set up correctly, which 1650 * means that if you want a shared writable mapping, you'd better 1651 * ask for a shared writable mapping! 1652 * 1653 * The page does not need to be reserved. 1654 * 1655 * Usually this function is called from f_op->mmap() handler 1656 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1657 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1658 * function from other places, for example from page-fault handler. 1659 * 1660 * Return: %0 on success, negative error code otherwise. 1661 */ 1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1663 struct page *page) 1664 { 1665 if (addr < vma->vm_start || addr >= vma->vm_end) 1666 return -EFAULT; 1667 if (!page_count(page)) 1668 return -EINVAL; 1669 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1670 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1671 BUG_ON(vma->vm_flags & VM_PFNMAP); 1672 vma->vm_flags |= VM_MIXEDMAP; 1673 } 1674 return insert_page(vma, addr, page, vma->vm_page_prot); 1675 } 1676 EXPORT_SYMBOL(vm_insert_page); 1677 1678 /* 1679 * __vm_map_pages - maps range of kernel pages into user vma 1680 * @vma: user vma to map to 1681 * @pages: pointer to array of source kernel pages 1682 * @num: number of pages in page array 1683 * @offset: user's requested vm_pgoff 1684 * 1685 * This allows drivers to map range of kernel pages into a user vma. 1686 * 1687 * Return: 0 on success and error code otherwise. 1688 */ 1689 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1690 unsigned long num, unsigned long offset) 1691 { 1692 unsigned long count = vma_pages(vma); 1693 unsigned long uaddr = vma->vm_start; 1694 int ret, i; 1695 1696 /* Fail if the user requested offset is beyond the end of the object */ 1697 if (offset >= num) 1698 return -ENXIO; 1699 1700 /* Fail if the user requested size exceeds available object size */ 1701 if (count > num - offset) 1702 return -ENXIO; 1703 1704 for (i = 0; i < count; i++) { 1705 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1706 if (ret < 0) 1707 return ret; 1708 uaddr += PAGE_SIZE; 1709 } 1710 1711 return 0; 1712 } 1713 1714 /** 1715 * vm_map_pages - maps range of kernel pages starts with non zero offset 1716 * @vma: user vma to map to 1717 * @pages: pointer to array of source kernel pages 1718 * @num: number of pages in page array 1719 * 1720 * Maps an object consisting of @num pages, catering for the user's 1721 * requested vm_pgoff 1722 * 1723 * If we fail to insert any page into the vma, the function will return 1724 * immediately leaving any previously inserted pages present. Callers 1725 * from the mmap handler may immediately return the error as their caller 1726 * will destroy the vma, removing any successfully inserted pages. Other 1727 * callers should make their own arrangements for calling unmap_region(). 1728 * 1729 * Context: Process context. Called by mmap handlers. 1730 * Return: 0 on success and error code otherwise. 1731 */ 1732 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1733 unsigned long num) 1734 { 1735 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1736 } 1737 EXPORT_SYMBOL(vm_map_pages); 1738 1739 /** 1740 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1741 * @vma: user vma to map to 1742 * @pages: pointer to array of source kernel pages 1743 * @num: number of pages in page array 1744 * 1745 * Similar to vm_map_pages(), except that it explicitly sets the offset 1746 * to 0. This function is intended for the drivers that did not consider 1747 * vm_pgoff. 1748 * 1749 * Context: Process context. Called by mmap handlers. 1750 * Return: 0 on success and error code otherwise. 1751 */ 1752 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1753 unsigned long num) 1754 { 1755 return __vm_map_pages(vma, pages, num, 0); 1756 } 1757 EXPORT_SYMBOL(vm_map_pages_zero); 1758 1759 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1760 pfn_t pfn, pgprot_t prot, bool mkwrite) 1761 { 1762 struct mm_struct *mm = vma->vm_mm; 1763 pte_t *pte, entry; 1764 spinlock_t *ptl; 1765 1766 pte = get_locked_pte(mm, addr, &ptl); 1767 if (!pte) 1768 return VM_FAULT_OOM; 1769 if (!pte_none(*pte)) { 1770 if (mkwrite) { 1771 /* 1772 * For read faults on private mappings the PFN passed 1773 * in may not match the PFN we have mapped if the 1774 * mapped PFN is a writeable COW page. In the mkwrite 1775 * case we are creating a writable PTE for a shared 1776 * mapping and we expect the PFNs to match. If they 1777 * don't match, we are likely racing with block 1778 * allocation and mapping invalidation so just skip the 1779 * update. 1780 */ 1781 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1782 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1783 goto out_unlock; 1784 } 1785 entry = pte_mkyoung(*pte); 1786 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1787 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1788 update_mmu_cache(vma, addr, pte); 1789 } 1790 goto out_unlock; 1791 } 1792 1793 /* Ok, finally just insert the thing.. */ 1794 if (pfn_t_devmap(pfn)) 1795 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1796 else 1797 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1798 1799 if (mkwrite) { 1800 entry = pte_mkyoung(entry); 1801 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1802 } 1803 1804 set_pte_at(mm, addr, pte, entry); 1805 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1806 1807 out_unlock: 1808 pte_unmap_unlock(pte, ptl); 1809 return VM_FAULT_NOPAGE; 1810 } 1811 1812 /** 1813 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1814 * @vma: user vma to map to 1815 * @addr: target user address of this page 1816 * @pfn: source kernel pfn 1817 * @pgprot: pgprot flags for the inserted page 1818 * 1819 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1820 * to override pgprot on a per-page basis. 1821 * 1822 * This only makes sense for IO mappings, and it makes no sense for 1823 * COW mappings. In general, using multiple vmas is preferable; 1824 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1825 * impractical. 1826 * 1827 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1828 * a value of @pgprot different from that of @vma->vm_page_prot. 1829 * 1830 * Context: Process context. May allocate using %GFP_KERNEL. 1831 * Return: vm_fault_t value. 1832 */ 1833 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1834 unsigned long pfn, pgprot_t pgprot) 1835 { 1836 /* 1837 * Technically, architectures with pte_special can avoid all these 1838 * restrictions (same for remap_pfn_range). However we would like 1839 * consistency in testing and feature parity among all, so we should 1840 * try to keep these invariants in place for everybody. 1841 */ 1842 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1843 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1844 (VM_PFNMAP|VM_MIXEDMAP)); 1845 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1846 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1847 1848 if (addr < vma->vm_start || addr >= vma->vm_end) 1849 return VM_FAULT_SIGBUS; 1850 1851 if (!pfn_modify_allowed(pfn, pgprot)) 1852 return VM_FAULT_SIGBUS; 1853 1854 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1855 1856 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1857 false); 1858 } 1859 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1860 1861 /** 1862 * vmf_insert_pfn - insert single pfn into user vma 1863 * @vma: user vma to map to 1864 * @addr: target user address of this page 1865 * @pfn: source kernel pfn 1866 * 1867 * Similar to vm_insert_page, this allows drivers to insert individual pages 1868 * they've allocated into a user vma. Same comments apply. 1869 * 1870 * This function should only be called from a vm_ops->fault handler, and 1871 * in that case the handler should return the result of this function. 1872 * 1873 * vma cannot be a COW mapping. 1874 * 1875 * As this is called only for pages that do not currently exist, we 1876 * do not need to flush old virtual caches or the TLB. 1877 * 1878 * Context: Process context. May allocate using %GFP_KERNEL. 1879 * Return: vm_fault_t value. 1880 */ 1881 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1882 unsigned long pfn) 1883 { 1884 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1885 } 1886 EXPORT_SYMBOL(vmf_insert_pfn); 1887 1888 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1889 { 1890 /* these checks mirror the abort conditions in vm_normal_page */ 1891 if (vma->vm_flags & VM_MIXEDMAP) 1892 return true; 1893 if (pfn_t_devmap(pfn)) 1894 return true; 1895 if (pfn_t_special(pfn)) 1896 return true; 1897 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1898 return true; 1899 return false; 1900 } 1901 1902 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1903 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 1904 bool mkwrite) 1905 { 1906 int err; 1907 1908 BUG_ON(!vm_mixed_ok(vma, pfn)); 1909 1910 if (addr < vma->vm_start || addr >= vma->vm_end) 1911 return VM_FAULT_SIGBUS; 1912 1913 track_pfn_insert(vma, &pgprot, pfn); 1914 1915 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1916 return VM_FAULT_SIGBUS; 1917 1918 /* 1919 * If we don't have pte special, then we have to use the pfn_valid() 1920 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1921 * refcount the page if pfn_valid is true (hence insert_page rather 1922 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1923 * without pte special, it would there be refcounted as a normal page. 1924 */ 1925 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1926 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1927 struct page *page; 1928 1929 /* 1930 * At this point we are committed to insert_page() 1931 * regardless of whether the caller specified flags that 1932 * result in pfn_t_has_page() == false. 1933 */ 1934 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1935 err = insert_page(vma, addr, page, pgprot); 1936 } else { 1937 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1938 } 1939 1940 if (err == -ENOMEM) 1941 return VM_FAULT_OOM; 1942 if (err < 0 && err != -EBUSY) 1943 return VM_FAULT_SIGBUS; 1944 1945 return VM_FAULT_NOPAGE; 1946 } 1947 1948 /** 1949 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 1950 * @vma: user vma to map to 1951 * @addr: target user address of this page 1952 * @pfn: source kernel pfn 1953 * @pgprot: pgprot flags for the inserted page 1954 * 1955 * This is exactly like vmf_insert_mixed(), except that it allows drivers 1956 * to override pgprot on a per-page basis. 1957 * 1958 * Typically this function should be used by drivers to set caching- and 1959 * encryption bits different than those of @vma->vm_page_prot, because 1960 * the caching- or encryption mode may not be known at mmap() time. 1961 * This is ok as long as @vma->vm_page_prot is not used by the core vm 1962 * to set caching and encryption bits for those vmas (except for COW pages). 1963 * This is ensured by core vm only modifying these page table entries using 1964 * functions that don't touch caching- or encryption bits, using pte_modify() 1965 * if needed. (See for example mprotect()). 1966 * Also when new page-table entries are created, this is only done using the 1967 * fault() callback, and never using the value of vma->vm_page_prot, 1968 * except for page-table entries that point to anonymous pages as the result 1969 * of COW. 1970 * 1971 * Context: Process context. May allocate using %GFP_KERNEL. 1972 * Return: vm_fault_t value. 1973 */ 1974 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 1975 pfn_t pfn, pgprot_t pgprot) 1976 { 1977 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 1978 } 1979 EXPORT_SYMBOL(vmf_insert_mixed_prot); 1980 1981 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1982 pfn_t pfn) 1983 { 1984 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 1985 } 1986 EXPORT_SYMBOL(vmf_insert_mixed); 1987 1988 /* 1989 * If the insertion of PTE failed because someone else already added a 1990 * different entry in the mean time, we treat that as success as we assume 1991 * the same entry was actually inserted. 1992 */ 1993 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1994 unsigned long addr, pfn_t pfn) 1995 { 1996 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 1997 } 1998 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1999 2000 /* 2001 * maps a range of physical memory into the requested pages. the old 2002 * mappings are removed. any references to nonexistent pages results 2003 * in null mappings (currently treated as "copy-on-access") 2004 */ 2005 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2006 unsigned long addr, unsigned long end, 2007 unsigned long pfn, pgprot_t prot) 2008 { 2009 pte_t *pte; 2010 spinlock_t *ptl; 2011 int err = 0; 2012 2013 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2014 if (!pte) 2015 return -ENOMEM; 2016 arch_enter_lazy_mmu_mode(); 2017 do { 2018 BUG_ON(!pte_none(*pte)); 2019 if (!pfn_modify_allowed(pfn, prot)) { 2020 err = -EACCES; 2021 break; 2022 } 2023 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2024 pfn++; 2025 } while (pte++, addr += PAGE_SIZE, addr != end); 2026 arch_leave_lazy_mmu_mode(); 2027 pte_unmap_unlock(pte - 1, ptl); 2028 return err; 2029 } 2030 2031 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2032 unsigned long addr, unsigned long end, 2033 unsigned long pfn, pgprot_t prot) 2034 { 2035 pmd_t *pmd; 2036 unsigned long next; 2037 int err; 2038 2039 pfn -= addr >> PAGE_SHIFT; 2040 pmd = pmd_alloc(mm, pud, addr); 2041 if (!pmd) 2042 return -ENOMEM; 2043 VM_BUG_ON(pmd_trans_huge(*pmd)); 2044 do { 2045 next = pmd_addr_end(addr, end); 2046 err = remap_pte_range(mm, pmd, addr, next, 2047 pfn + (addr >> PAGE_SHIFT), prot); 2048 if (err) 2049 return err; 2050 } while (pmd++, addr = next, addr != end); 2051 return 0; 2052 } 2053 2054 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2055 unsigned long addr, unsigned long end, 2056 unsigned long pfn, pgprot_t prot) 2057 { 2058 pud_t *pud; 2059 unsigned long next; 2060 int err; 2061 2062 pfn -= addr >> PAGE_SHIFT; 2063 pud = pud_alloc(mm, p4d, addr); 2064 if (!pud) 2065 return -ENOMEM; 2066 do { 2067 next = pud_addr_end(addr, end); 2068 err = remap_pmd_range(mm, pud, addr, next, 2069 pfn + (addr >> PAGE_SHIFT), prot); 2070 if (err) 2071 return err; 2072 } while (pud++, addr = next, addr != end); 2073 return 0; 2074 } 2075 2076 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2077 unsigned long addr, unsigned long end, 2078 unsigned long pfn, pgprot_t prot) 2079 { 2080 p4d_t *p4d; 2081 unsigned long next; 2082 int err; 2083 2084 pfn -= addr >> PAGE_SHIFT; 2085 p4d = p4d_alloc(mm, pgd, addr); 2086 if (!p4d) 2087 return -ENOMEM; 2088 do { 2089 next = p4d_addr_end(addr, end); 2090 err = remap_pud_range(mm, p4d, addr, next, 2091 pfn + (addr >> PAGE_SHIFT), prot); 2092 if (err) 2093 return err; 2094 } while (p4d++, addr = next, addr != end); 2095 return 0; 2096 } 2097 2098 /** 2099 * remap_pfn_range - remap kernel memory to userspace 2100 * @vma: user vma to map to 2101 * @addr: target page aligned user address to start at 2102 * @pfn: page frame number of kernel physical memory address 2103 * @size: size of mapping area 2104 * @prot: page protection flags for this mapping 2105 * 2106 * Note: this is only safe if the mm semaphore is held when called. 2107 * 2108 * Return: %0 on success, negative error code otherwise. 2109 */ 2110 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2111 unsigned long pfn, unsigned long size, pgprot_t prot) 2112 { 2113 pgd_t *pgd; 2114 unsigned long next; 2115 unsigned long end = addr + PAGE_ALIGN(size); 2116 struct mm_struct *mm = vma->vm_mm; 2117 unsigned long remap_pfn = pfn; 2118 int err; 2119 2120 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2121 return -EINVAL; 2122 2123 /* 2124 * Physically remapped pages are special. Tell the 2125 * rest of the world about it: 2126 * VM_IO tells people not to look at these pages 2127 * (accesses can have side effects). 2128 * VM_PFNMAP tells the core MM that the base pages are just 2129 * raw PFN mappings, and do not have a "struct page" associated 2130 * with them. 2131 * VM_DONTEXPAND 2132 * Disable vma merging and expanding with mremap(). 2133 * VM_DONTDUMP 2134 * Omit vma from core dump, even when VM_IO turned off. 2135 * 2136 * There's a horrible special case to handle copy-on-write 2137 * behaviour that some programs depend on. We mark the "original" 2138 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2139 * See vm_normal_page() for details. 2140 */ 2141 if (is_cow_mapping(vma->vm_flags)) { 2142 if (addr != vma->vm_start || end != vma->vm_end) 2143 return -EINVAL; 2144 vma->vm_pgoff = pfn; 2145 } 2146 2147 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2148 if (err) 2149 return -EINVAL; 2150 2151 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2152 2153 BUG_ON(addr >= end); 2154 pfn -= addr >> PAGE_SHIFT; 2155 pgd = pgd_offset(mm, addr); 2156 flush_cache_range(vma, addr, end); 2157 do { 2158 next = pgd_addr_end(addr, end); 2159 err = remap_p4d_range(mm, pgd, addr, next, 2160 pfn + (addr >> PAGE_SHIFT), prot); 2161 if (err) 2162 break; 2163 } while (pgd++, addr = next, addr != end); 2164 2165 if (err) 2166 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2167 2168 return err; 2169 } 2170 EXPORT_SYMBOL(remap_pfn_range); 2171 2172 /** 2173 * vm_iomap_memory - remap memory to userspace 2174 * @vma: user vma to map to 2175 * @start: start of the physical memory to be mapped 2176 * @len: size of area 2177 * 2178 * This is a simplified io_remap_pfn_range() for common driver use. The 2179 * driver just needs to give us the physical memory range to be mapped, 2180 * we'll figure out the rest from the vma information. 2181 * 2182 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2183 * whatever write-combining details or similar. 2184 * 2185 * Return: %0 on success, negative error code otherwise. 2186 */ 2187 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2188 { 2189 unsigned long vm_len, pfn, pages; 2190 2191 /* Check that the physical memory area passed in looks valid */ 2192 if (start + len < start) 2193 return -EINVAL; 2194 /* 2195 * You *really* shouldn't map things that aren't page-aligned, 2196 * but we've historically allowed it because IO memory might 2197 * just have smaller alignment. 2198 */ 2199 len += start & ~PAGE_MASK; 2200 pfn = start >> PAGE_SHIFT; 2201 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2202 if (pfn + pages < pfn) 2203 return -EINVAL; 2204 2205 /* We start the mapping 'vm_pgoff' pages into the area */ 2206 if (vma->vm_pgoff > pages) 2207 return -EINVAL; 2208 pfn += vma->vm_pgoff; 2209 pages -= vma->vm_pgoff; 2210 2211 /* Can we fit all of the mapping? */ 2212 vm_len = vma->vm_end - vma->vm_start; 2213 if (vm_len >> PAGE_SHIFT > pages) 2214 return -EINVAL; 2215 2216 /* Ok, let it rip */ 2217 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2218 } 2219 EXPORT_SYMBOL(vm_iomap_memory); 2220 2221 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2222 unsigned long addr, unsigned long end, 2223 pte_fn_t fn, void *data, bool create, 2224 pgtbl_mod_mask *mask) 2225 { 2226 pte_t *pte; 2227 int err = 0; 2228 spinlock_t *ptl; 2229 2230 if (create) { 2231 pte = (mm == &init_mm) ? 2232 pte_alloc_kernel_track(pmd, addr, mask) : 2233 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2234 if (!pte) 2235 return -ENOMEM; 2236 } else { 2237 pte = (mm == &init_mm) ? 2238 pte_offset_kernel(pmd, addr) : 2239 pte_offset_map_lock(mm, pmd, addr, &ptl); 2240 } 2241 2242 BUG_ON(pmd_huge(*pmd)); 2243 2244 arch_enter_lazy_mmu_mode(); 2245 2246 do { 2247 if (create || !pte_none(*pte)) { 2248 err = fn(pte++, addr, data); 2249 if (err) 2250 break; 2251 } 2252 } while (addr += PAGE_SIZE, addr != end); 2253 *mask |= PGTBL_PTE_MODIFIED; 2254 2255 arch_leave_lazy_mmu_mode(); 2256 2257 if (mm != &init_mm) 2258 pte_unmap_unlock(pte-1, ptl); 2259 return err; 2260 } 2261 2262 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2263 unsigned long addr, unsigned long end, 2264 pte_fn_t fn, void *data, bool create, 2265 pgtbl_mod_mask *mask) 2266 { 2267 pmd_t *pmd; 2268 unsigned long next; 2269 int err = 0; 2270 2271 BUG_ON(pud_huge(*pud)); 2272 2273 if (create) { 2274 pmd = pmd_alloc_track(mm, pud, addr, mask); 2275 if (!pmd) 2276 return -ENOMEM; 2277 } else { 2278 pmd = pmd_offset(pud, addr); 2279 } 2280 do { 2281 next = pmd_addr_end(addr, end); 2282 if (create || !pmd_none_or_clear_bad(pmd)) { 2283 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2284 create, mask); 2285 if (err) 2286 break; 2287 } 2288 } while (pmd++, addr = next, addr != end); 2289 return err; 2290 } 2291 2292 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2293 unsigned long addr, unsigned long end, 2294 pte_fn_t fn, void *data, bool create, 2295 pgtbl_mod_mask *mask) 2296 { 2297 pud_t *pud; 2298 unsigned long next; 2299 int err = 0; 2300 2301 if (create) { 2302 pud = pud_alloc_track(mm, p4d, addr, mask); 2303 if (!pud) 2304 return -ENOMEM; 2305 } else { 2306 pud = pud_offset(p4d, addr); 2307 } 2308 do { 2309 next = pud_addr_end(addr, end); 2310 if (create || !pud_none_or_clear_bad(pud)) { 2311 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2312 create, mask); 2313 if (err) 2314 break; 2315 } 2316 } while (pud++, addr = next, addr != end); 2317 return err; 2318 } 2319 2320 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2321 unsigned long addr, unsigned long end, 2322 pte_fn_t fn, void *data, bool create, 2323 pgtbl_mod_mask *mask) 2324 { 2325 p4d_t *p4d; 2326 unsigned long next; 2327 int err = 0; 2328 2329 if (create) { 2330 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2331 if (!p4d) 2332 return -ENOMEM; 2333 } else { 2334 p4d = p4d_offset(pgd, addr); 2335 } 2336 do { 2337 next = p4d_addr_end(addr, end); 2338 if (create || !p4d_none_or_clear_bad(p4d)) { 2339 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2340 create, mask); 2341 if (err) 2342 break; 2343 } 2344 } while (p4d++, addr = next, addr != end); 2345 return err; 2346 } 2347 2348 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2349 unsigned long size, pte_fn_t fn, 2350 void *data, bool create) 2351 { 2352 pgd_t *pgd; 2353 unsigned long start = addr, next; 2354 unsigned long end = addr + size; 2355 pgtbl_mod_mask mask = 0; 2356 int err = 0; 2357 2358 if (WARN_ON(addr >= end)) 2359 return -EINVAL; 2360 2361 pgd = pgd_offset(mm, addr); 2362 do { 2363 next = pgd_addr_end(addr, end); 2364 if (!create && pgd_none_or_clear_bad(pgd)) 2365 continue; 2366 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); 2367 if (err) 2368 break; 2369 } while (pgd++, addr = next, addr != end); 2370 2371 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2372 arch_sync_kernel_mappings(start, start + size); 2373 2374 return err; 2375 } 2376 2377 /* 2378 * Scan a region of virtual memory, filling in page tables as necessary 2379 * and calling a provided function on each leaf page table. 2380 */ 2381 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2382 unsigned long size, pte_fn_t fn, void *data) 2383 { 2384 return __apply_to_page_range(mm, addr, size, fn, data, true); 2385 } 2386 EXPORT_SYMBOL_GPL(apply_to_page_range); 2387 2388 /* 2389 * Scan a region of virtual memory, calling a provided function on 2390 * each leaf page table where it exists. 2391 * 2392 * Unlike apply_to_page_range, this does _not_ fill in page tables 2393 * where they are absent. 2394 */ 2395 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2396 unsigned long size, pte_fn_t fn, void *data) 2397 { 2398 return __apply_to_page_range(mm, addr, size, fn, data, false); 2399 } 2400 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2401 2402 /* 2403 * handle_pte_fault chooses page fault handler according to an entry which was 2404 * read non-atomically. Before making any commitment, on those architectures 2405 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2406 * parts, do_swap_page must check under lock before unmapping the pte and 2407 * proceeding (but do_wp_page is only called after already making such a check; 2408 * and do_anonymous_page can safely check later on). 2409 */ 2410 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2411 pte_t *page_table, pte_t orig_pte) 2412 { 2413 int same = 1; 2414 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2415 if (sizeof(pte_t) > sizeof(unsigned long)) { 2416 spinlock_t *ptl = pte_lockptr(mm, pmd); 2417 spin_lock(ptl); 2418 same = pte_same(*page_table, orig_pte); 2419 spin_unlock(ptl); 2420 } 2421 #endif 2422 pte_unmap(page_table); 2423 return same; 2424 } 2425 2426 static inline bool cow_user_page(struct page *dst, struct page *src, 2427 struct vm_fault *vmf) 2428 { 2429 bool ret; 2430 void *kaddr; 2431 void __user *uaddr; 2432 bool locked = false; 2433 struct vm_area_struct *vma = vmf->vma; 2434 struct mm_struct *mm = vma->vm_mm; 2435 unsigned long addr = vmf->address; 2436 2437 if (likely(src)) { 2438 copy_user_highpage(dst, src, addr, vma); 2439 return true; 2440 } 2441 2442 /* 2443 * If the source page was a PFN mapping, we don't have 2444 * a "struct page" for it. We do a best-effort copy by 2445 * just copying from the original user address. If that 2446 * fails, we just zero-fill it. Live with it. 2447 */ 2448 kaddr = kmap_atomic(dst); 2449 uaddr = (void __user *)(addr & PAGE_MASK); 2450 2451 /* 2452 * On architectures with software "accessed" bits, we would 2453 * take a double page fault, so mark it accessed here. 2454 */ 2455 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2456 pte_t entry; 2457 2458 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2459 locked = true; 2460 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2461 /* 2462 * Other thread has already handled the fault 2463 * and update local tlb only 2464 */ 2465 update_mmu_tlb(vma, addr, vmf->pte); 2466 ret = false; 2467 goto pte_unlock; 2468 } 2469 2470 entry = pte_mkyoung(vmf->orig_pte); 2471 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2472 update_mmu_cache(vma, addr, vmf->pte); 2473 } 2474 2475 /* 2476 * This really shouldn't fail, because the page is there 2477 * in the page tables. But it might just be unreadable, 2478 * in which case we just give up and fill the result with 2479 * zeroes. 2480 */ 2481 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2482 if (locked) 2483 goto warn; 2484 2485 /* Re-validate under PTL if the page is still mapped */ 2486 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2487 locked = true; 2488 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2489 /* The PTE changed under us, update local tlb */ 2490 update_mmu_tlb(vma, addr, vmf->pte); 2491 ret = false; 2492 goto pte_unlock; 2493 } 2494 2495 /* 2496 * The same page can be mapped back since last copy attempt. 2497 * Try to copy again under PTL. 2498 */ 2499 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2500 /* 2501 * Give a warn in case there can be some obscure 2502 * use-case 2503 */ 2504 warn: 2505 WARN_ON_ONCE(1); 2506 clear_page(kaddr); 2507 } 2508 } 2509 2510 ret = true; 2511 2512 pte_unlock: 2513 if (locked) 2514 pte_unmap_unlock(vmf->pte, vmf->ptl); 2515 kunmap_atomic(kaddr); 2516 flush_dcache_page(dst); 2517 2518 return ret; 2519 } 2520 2521 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2522 { 2523 struct file *vm_file = vma->vm_file; 2524 2525 if (vm_file) 2526 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2527 2528 /* 2529 * Special mappings (e.g. VDSO) do not have any file so fake 2530 * a default GFP_KERNEL for them. 2531 */ 2532 return GFP_KERNEL; 2533 } 2534 2535 /* 2536 * Notify the address space that the page is about to become writable so that 2537 * it can prohibit this or wait for the page to get into an appropriate state. 2538 * 2539 * We do this without the lock held, so that it can sleep if it needs to. 2540 */ 2541 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2542 { 2543 vm_fault_t ret; 2544 struct page *page = vmf->page; 2545 unsigned int old_flags = vmf->flags; 2546 2547 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2548 2549 if (vmf->vma->vm_file && 2550 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2551 return VM_FAULT_SIGBUS; 2552 2553 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2554 /* Restore original flags so that caller is not surprised */ 2555 vmf->flags = old_flags; 2556 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2557 return ret; 2558 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2559 lock_page(page); 2560 if (!page->mapping) { 2561 unlock_page(page); 2562 return 0; /* retry */ 2563 } 2564 ret |= VM_FAULT_LOCKED; 2565 } else 2566 VM_BUG_ON_PAGE(!PageLocked(page), page); 2567 return ret; 2568 } 2569 2570 /* 2571 * Handle dirtying of a page in shared file mapping on a write fault. 2572 * 2573 * The function expects the page to be locked and unlocks it. 2574 */ 2575 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2576 { 2577 struct vm_area_struct *vma = vmf->vma; 2578 struct address_space *mapping; 2579 struct page *page = vmf->page; 2580 bool dirtied; 2581 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2582 2583 dirtied = set_page_dirty(page); 2584 VM_BUG_ON_PAGE(PageAnon(page), page); 2585 /* 2586 * Take a local copy of the address_space - page.mapping may be zeroed 2587 * by truncate after unlock_page(). The address_space itself remains 2588 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2589 * release semantics to prevent the compiler from undoing this copying. 2590 */ 2591 mapping = page_rmapping(page); 2592 unlock_page(page); 2593 2594 if (!page_mkwrite) 2595 file_update_time(vma->vm_file); 2596 2597 /* 2598 * Throttle page dirtying rate down to writeback speed. 2599 * 2600 * mapping may be NULL here because some device drivers do not 2601 * set page.mapping but still dirty their pages 2602 * 2603 * Drop the mmap_lock before waiting on IO, if we can. The file 2604 * is pinning the mapping, as per above. 2605 */ 2606 if ((dirtied || page_mkwrite) && mapping) { 2607 struct file *fpin; 2608 2609 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2610 balance_dirty_pages_ratelimited(mapping); 2611 if (fpin) { 2612 fput(fpin); 2613 return VM_FAULT_RETRY; 2614 } 2615 } 2616 2617 return 0; 2618 } 2619 2620 /* 2621 * Handle write page faults for pages that can be reused in the current vma 2622 * 2623 * This can happen either due to the mapping being with the VM_SHARED flag, 2624 * or due to us being the last reference standing to the page. In either 2625 * case, all we need to do here is to mark the page as writable and update 2626 * any related book-keeping. 2627 */ 2628 static inline void wp_page_reuse(struct vm_fault *vmf) 2629 __releases(vmf->ptl) 2630 { 2631 struct vm_area_struct *vma = vmf->vma; 2632 struct page *page = vmf->page; 2633 pte_t entry; 2634 /* 2635 * Clear the pages cpupid information as the existing 2636 * information potentially belongs to a now completely 2637 * unrelated process. 2638 */ 2639 if (page) 2640 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2641 2642 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2643 entry = pte_mkyoung(vmf->orig_pte); 2644 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2645 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2646 update_mmu_cache(vma, vmf->address, vmf->pte); 2647 pte_unmap_unlock(vmf->pte, vmf->ptl); 2648 count_vm_event(PGREUSE); 2649 } 2650 2651 /* 2652 * Handle the case of a page which we actually need to copy to a new page. 2653 * 2654 * Called with mmap_lock locked and the old page referenced, but 2655 * without the ptl held. 2656 * 2657 * High level logic flow: 2658 * 2659 * - Allocate a page, copy the content of the old page to the new one. 2660 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2661 * - Take the PTL. If the pte changed, bail out and release the allocated page 2662 * - If the pte is still the way we remember it, update the page table and all 2663 * relevant references. This includes dropping the reference the page-table 2664 * held to the old page, as well as updating the rmap. 2665 * - In any case, unlock the PTL and drop the reference we took to the old page. 2666 */ 2667 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2668 { 2669 struct vm_area_struct *vma = vmf->vma; 2670 struct mm_struct *mm = vma->vm_mm; 2671 struct page *old_page = vmf->page; 2672 struct page *new_page = NULL; 2673 pte_t entry; 2674 int page_copied = 0; 2675 struct mmu_notifier_range range; 2676 2677 if (unlikely(anon_vma_prepare(vma))) 2678 goto oom; 2679 2680 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2681 new_page = alloc_zeroed_user_highpage_movable(vma, 2682 vmf->address); 2683 if (!new_page) 2684 goto oom; 2685 } else { 2686 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2687 vmf->address); 2688 if (!new_page) 2689 goto oom; 2690 2691 if (!cow_user_page(new_page, old_page, vmf)) { 2692 /* 2693 * COW failed, if the fault was solved by other, 2694 * it's fine. If not, userspace would re-fault on 2695 * the same address and we will handle the fault 2696 * from the second attempt. 2697 */ 2698 put_page(new_page); 2699 if (old_page) 2700 put_page(old_page); 2701 return 0; 2702 } 2703 } 2704 2705 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2706 goto oom_free_new; 2707 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2708 2709 __SetPageUptodate(new_page); 2710 2711 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2712 vmf->address & PAGE_MASK, 2713 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2714 mmu_notifier_invalidate_range_start(&range); 2715 2716 /* 2717 * Re-check the pte - we dropped the lock 2718 */ 2719 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2720 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2721 if (old_page) { 2722 if (!PageAnon(old_page)) { 2723 dec_mm_counter_fast(mm, 2724 mm_counter_file(old_page)); 2725 inc_mm_counter_fast(mm, MM_ANONPAGES); 2726 } 2727 } else { 2728 inc_mm_counter_fast(mm, MM_ANONPAGES); 2729 } 2730 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2731 entry = mk_pte(new_page, vma->vm_page_prot); 2732 entry = pte_sw_mkyoung(entry); 2733 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2734 /* 2735 * Clear the pte entry and flush it first, before updating the 2736 * pte with the new entry. This will avoid a race condition 2737 * seen in the presence of one thread doing SMC and another 2738 * thread doing COW. 2739 */ 2740 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2741 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2742 lru_cache_add_inactive_or_unevictable(new_page, vma); 2743 /* 2744 * We call the notify macro here because, when using secondary 2745 * mmu page tables (such as kvm shadow page tables), we want the 2746 * new page to be mapped directly into the secondary page table. 2747 */ 2748 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2749 update_mmu_cache(vma, vmf->address, vmf->pte); 2750 if (old_page) { 2751 /* 2752 * Only after switching the pte to the new page may 2753 * we remove the mapcount here. Otherwise another 2754 * process may come and find the rmap count decremented 2755 * before the pte is switched to the new page, and 2756 * "reuse" the old page writing into it while our pte 2757 * here still points into it and can be read by other 2758 * threads. 2759 * 2760 * The critical issue is to order this 2761 * page_remove_rmap with the ptp_clear_flush above. 2762 * Those stores are ordered by (if nothing else,) 2763 * the barrier present in the atomic_add_negative 2764 * in page_remove_rmap. 2765 * 2766 * Then the TLB flush in ptep_clear_flush ensures that 2767 * no process can access the old page before the 2768 * decremented mapcount is visible. And the old page 2769 * cannot be reused until after the decremented 2770 * mapcount is visible. So transitively, TLBs to 2771 * old page will be flushed before it can be reused. 2772 */ 2773 page_remove_rmap(old_page, false); 2774 } 2775 2776 /* Free the old page.. */ 2777 new_page = old_page; 2778 page_copied = 1; 2779 } else { 2780 update_mmu_tlb(vma, vmf->address, vmf->pte); 2781 } 2782 2783 if (new_page) 2784 put_page(new_page); 2785 2786 pte_unmap_unlock(vmf->pte, vmf->ptl); 2787 /* 2788 * No need to double call mmu_notifier->invalidate_range() callback as 2789 * the above ptep_clear_flush_notify() did already call it. 2790 */ 2791 mmu_notifier_invalidate_range_only_end(&range); 2792 if (old_page) { 2793 /* 2794 * Don't let another task, with possibly unlocked vma, 2795 * keep the mlocked page. 2796 */ 2797 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2798 lock_page(old_page); /* LRU manipulation */ 2799 if (PageMlocked(old_page)) 2800 munlock_vma_page(old_page); 2801 unlock_page(old_page); 2802 } 2803 put_page(old_page); 2804 } 2805 return page_copied ? VM_FAULT_WRITE : 0; 2806 oom_free_new: 2807 put_page(new_page); 2808 oom: 2809 if (old_page) 2810 put_page(old_page); 2811 return VM_FAULT_OOM; 2812 } 2813 2814 /** 2815 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2816 * writeable once the page is prepared 2817 * 2818 * @vmf: structure describing the fault 2819 * 2820 * This function handles all that is needed to finish a write page fault in a 2821 * shared mapping due to PTE being read-only once the mapped page is prepared. 2822 * It handles locking of PTE and modifying it. 2823 * 2824 * The function expects the page to be locked or other protection against 2825 * concurrent faults / writeback (such as DAX radix tree locks). 2826 * 2827 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2828 * we acquired PTE lock. 2829 */ 2830 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2831 { 2832 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2833 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2834 &vmf->ptl); 2835 /* 2836 * We might have raced with another page fault while we released the 2837 * pte_offset_map_lock. 2838 */ 2839 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2840 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 2841 pte_unmap_unlock(vmf->pte, vmf->ptl); 2842 return VM_FAULT_NOPAGE; 2843 } 2844 wp_page_reuse(vmf); 2845 return 0; 2846 } 2847 2848 /* 2849 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2850 * mapping 2851 */ 2852 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2853 { 2854 struct vm_area_struct *vma = vmf->vma; 2855 2856 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2857 vm_fault_t ret; 2858 2859 pte_unmap_unlock(vmf->pte, vmf->ptl); 2860 vmf->flags |= FAULT_FLAG_MKWRITE; 2861 ret = vma->vm_ops->pfn_mkwrite(vmf); 2862 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2863 return ret; 2864 return finish_mkwrite_fault(vmf); 2865 } 2866 wp_page_reuse(vmf); 2867 return VM_FAULT_WRITE; 2868 } 2869 2870 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2871 __releases(vmf->ptl) 2872 { 2873 struct vm_area_struct *vma = vmf->vma; 2874 vm_fault_t ret = VM_FAULT_WRITE; 2875 2876 get_page(vmf->page); 2877 2878 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2879 vm_fault_t tmp; 2880 2881 pte_unmap_unlock(vmf->pte, vmf->ptl); 2882 tmp = do_page_mkwrite(vmf); 2883 if (unlikely(!tmp || (tmp & 2884 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2885 put_page(vmf->page); 2886 return tmp; 2887 } 2888 tmp = finish_mkwrite_fault(vmf); 2889 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2890 unlock_page(vmf->page); 2891 put_page(vmf->page); 2892 return tmp; 2893 } 2894 } else { 2895 wp_page_reuse(vmf); 2896 lock_page(vmf->page); 2897 } 2898 ret |= fault_dirty_shared_page(vmf); 2899 put_page(vmf->page); 2900 2901 return ret; 2902 } 2903 2904 /* 2905 * This routine handles present pages, when users try to write 2906 * to a shared page. It is done by copying the page to a new address 2907 * and decrementing the shared-page counter for the old page. 2908 * 2909 * Note that this routine assumes that the protection checks have been 2910 * done by the caller (the low-level page fault routine in most cases). 2911 * Thus we can safely just mark it writable once we've done any necessary 2912 * COW. 2913 * 2914 * We also mark the page dirty at this point even though the page will 2915 * change only once the write actually happens. This avoids a few races, 2916 * and potentially makes it more efficient. 2917 * 2918 * We enter with non-exclusive mmap_lock (to exclude vma changes, 2919 * but allow concurrent faults), with pte both mapped and locked. 2920 * We return with mmap_lock still held, but pte unmapped and unlocked. 2921 */ 2922 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2923 __releases(vmf->ptl) 2924 { 2925 struct vm_area_struct *vma = vmf->vma; 2926 2927 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 2928 pte_unmap_unlock(vmf->pte, vmf->ptl); 2929 return handle_userfault(vmf, VM_UFFD_WP); 2930 } 2931 2932 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2933 if (!vmf->page) { 2934 /* 2935 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2936 * VM_PFNMAP VMA. 2937 * 2938 * We should not cow pages in a shared writeable mapping. 2939 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2940 */ 2941 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2942 (VM_WRITE|VM_SHARED)) 2943 return wp_pfn_shared(vmf); 2944 2945 pte_unmap_unlock(vmf->pte, vmf->ptl); 2946 return wp_page_copy(vmf); 2947 } 2948 2949 /* 2950 * Take out anonymous pages first, anonymous shared vmas are 2951 * not dirty accountable. 2952 */ 2953 if (PageAnon(vmf->page)) { 2954 struct page *page = vmf->page; 2955 2956 /* PageKsm() doesn't necessarily raise the page refcount */ 2957 if (PageKsm(page) || page_count(page) != 1) 2958 goto copy; 2959 if (!trylock_page(page)) 2960 goto copy; 2961 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 2962 unlock_page(page); 2963 goto copy; 2964 } 2965 /* 2966 * Ok, we've got the only map reference, and the only 2967 * page count reference, and the page is locked, 2968 * it's dark out, and we're wearing sunglasses. Hit it. 2969 */ 2970 unlock_page(page); 2971 wp_page_reuse(vmf); 2972 return VM_FAULT_WRITE; 2973 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2974 (VM_WRITE|VM_SHARED))) { 2975 return wp_page_shared(vmf); 2976 } 2977 copy: 2978 /* 2979 * Ok, we need to copy. Oh, well.. 2980 */ 2981 get_page(vmf->page); 2982 2983 pte_unmap_unlock(vmf->pte, vmf->ptl); 2984 return wp_page_copy(vmf); 2985 } 2986 2987 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2988 unsigned long start_addr, unsigned long end_addr, 2989 struct zap_details *details) 2990 { 2991 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2992 } 2993 2994 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2995 struct zap_details *details) 2996 { 2997 struct vm_area_struct *vma; 2998 pgoff_t vba, vea, zba, zea; 2999 3000 vma_interval_tree_foreach(vma, root, 3001 details->first_index, details->last_index) { 3002 3003 vba = vma->vm_pgoff; 3004 vea = vba + vma_pages(vma) - 1; 3005 zba = details->first_index; 3006 if (zba < vba) 3007 zba = vba; 3008 zea = details->last_index; 3009 if (zea > vea) 3010 zea = vea; 3011 3012 unmap_mapping_range_vma(vma, 3013 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3014 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3015 details); 3016 } 3017 } 3018 3019 /** 3020 * unmap_mapping_pages() - Unmap pages from processes. 3021 * @mapping: The address space containing pages to be unmapped. 3022 * @start: Index of first page to be unmapped. 3023 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3024 * @even_cows: Whether to unmap even private COWed pages. 3025 * 3026 * Unmap the pages in this address space from any userspace process which 3027 * has them mmaped. Generally, you want to remove COWed pages as well when 3028 * a file is being truncated, but not when invalidating pages from the page 3029 * cache. 3030 */ 3031 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3032 pgoff_t nr, bool even_cows) 3033 { 3034 struct zap_details details = { }; 3035 3036 details.check_mapping = even_cows ? NULL : mapping; 3037 details.first_index = start; 3038 details.last_index = start + nr - 1; 3039 if (details.last_index < details.first_index) 3040 details.last_index = ULONG_MAX; 3041 3042 i_mmap_lock_write(mapping); 3043 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3044 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3045 i_mmap_unlock_write(mapping); 3046 } 3047 3048 /** 3049 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3050 * address_space corresponding to the specified byte range in the underlying 3051 * file. 3052 * 3053 * @mapping: the address space containing mmaps to be unmapped. 3054 * @holebegin: byte in first page to unmap, relative to the start of 3055 * the underlying file. This will be rounded down to a PAGE_SIZE 3056 * boundary. Note that this is different from truncate_pagecache(), which 3057 * must keep the partial page. In contrast, we must get rid of 3058 * partial pages. 3059 * @holelen: size of prospective hole in bytes. This will be rounded 3060 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3061 * end of the file. 3062 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3063 * but 0 when invalidating pagecache, don't throw away private data. 3064 */ 3065 void unmap_mapping_range(struct address_space *mapping, 3066 loff_t const holebegin, loff_t const holelen, int even_cows) 3067 { 3068 pgoff_t hba = holebegin >> PAGE_SHIFT; 3069 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3070 3071 /* Check for overflow. */ 3072 if (sizeof(holelen) > sizeof(hlen)) { 3073 long long holeend = 3074 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3075 if (holeend & ~(long long)ULONG_MAX) 3076 hlen = ULONG_MAX - hba + 1; 3077 } 3078 3079 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3080 } 3081 EXPORT_SYMBOL(unmap_mapping_range); 3082 3083 /* 3084 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3085 * but allow concurrent faults), and pte mapped but not yet locked. 3086 * We return with pte unmapped and unlocked. 3087 * 3088 * We return with the mmap_lock locked or unlocked in the same cases 3089 * as does filemap_fault(). 3090 */ 3091 vm_fault_t do_swap_page(struct vm_fault *vmf) 3092 { 3093 struct vm_area_struct *vma = vmf->vma; 3094 struct page *page = NULL, *swapcache; 3095 swp_entry_t entry; 3096 pte_t pte; 3097 int locked; 3098 int exclusive = 0; 3099 vm_fault_t ret = 0; 3100 void *shadow = NULL; 3101 3102 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3103 goto out; 3104 3105 entry = pte_to_swp_entry(vmf->orig_pte); 3106 if (unlikely(non_swap_entry(entry))) { 3107 if (is_migration_entry(entry)) { 3108 migration_entry_wait(vma->vm_mm, vmf->pmd, 3109 vmf->address); 3110 } else if (is_device_private_entry(entry)) { 3111 vmf->page = device_private_entry_to_page(entry); 3112 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3113 } else if (is_hwpoison_entry(entry)) { 3114 ret = VM_FAULT_HWPOISON; 3115 } else { 3116 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3117 ret = VM_FAULT_SIGBUS; 3118 } 3119 goto out; 3120 } 3121 3122 3123 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3124 page = lookup_swap_cache(entry, vma, vmf->address); 3125 swapcache = page; 3126 3127 if (!page) { 3128 struct swap_info_struct *si = swp_swap_info(entry); 3129 3130 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3131 __swap_count(entry) == 1) { 3132 /* skip swapcache */ 3133 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3134 vmf->address); 3135 if (page) { 3136 int err; 3137 3138 __SetPageLocked(page); 3139 __SetPageSwapBacked(page); 3140 set_page_private(page, entry.val); 3141 3142 /* Tell memcg to use swap ownership records */ 3143 SetPageSwapCache(page); 3144 err = mem_cgroup_charge(page, vma->vm_mm, 3145 GFP_KERNEL); 3146 ClearPageSwapCache(page); 3147 if (err) { 3148 ret = VM_FAULT_OOM; 3149 goto out_page; 3150 } 3151 3152 shadow = get_shadow_from_swap_cache(entry); 3153 if (shadow) 3154 workingset_refault(page, shadow); 3155 3156 lru_cache_add(page); 3157 swap_readpage(page, true); 3158 } 3159 } else { 3160 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3161 vmf); 3162 swapcache = page; 3163 } 3164 3165 if (!page) { 3166 /* 3167 * Back out if somebody else faulted in this pte 3168 * while we released the pte lock. 3169 */ 3170 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3171 vmf->address, &vmf->ptl); 3172 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3173 ret = VM_FAULT_OOM; 3174 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3175 goto unlock; 3176 } 3177 3178 /* Had to read the page from swap area: Major fault */ 3179 ret = VM_FAULT_MAJOR; 3180 count_vm_event(PGMAJFAULT); 3181 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3182 } else if (PageHWPoison(page)) { 3183 /* 3184 * hwpoisoned dirty swapcache pages are kept for killing 3185 * owner processes (which may be unknown at hwpoison time) 3186 */ 3187 ret = VM_FAULT_HWPOISON; 3188 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3189 goto out_release; 3190 } 3191 3192 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3193 3194 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3195 if (!locked) { 3196 ret |= VM_FAULT_RETRY; 3197 goto out_release; 3198 } 3199 3200 /* 3201 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3202 * release the swapcache from under us. The page pin, and pte_same 3203 * test below, are not enough to exclude that. Even if it is still 3204 * swapcache, we need to check that the page's swap has not changed. 3205 */ 3206 if (unlikely((!PageSwapCache(page) || 3207 page_private(page) != entry.val)) && swapcache) 3208 goto out_page; 3209 3210 page = ksm_might_need_to_copy(page, vma, vmf->address); 3211 if (unlikely(!page)) { 3212 ret = VM_FAULT_OOM; 3213 page = swapcache; 3214 goto out_page; 3215 } 3216 3217 cgroup_throttle_swaprate(page, GFP_KERNEL); 3218 3219 /* 3220 * Back out if somebody else already faulted in this pte. 3221 */ 3222 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3223 &vmf->ptl); 3224 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3225 goto out_nomap; 3226 3227 if (unlikely(!PageUptodate(page))) { 3228 ret = VM_FAULT_SIGBUS; 3229 goto out_nomap; 3230 } 3231 3232 /* 3233 * The page isn't present yet, go ahead with the fault. 3234 * 3235 * Be careful about the sequence of operations here. 3236 * To get its accounting right, reuse_swap_page() must be called 3237 * while the page is counted on swap but not yet in mapcount i.e. 3238 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3239 * must be called after the swap_free(), or it will never succeed. 3240 */ 3241 3242 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3243 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3244 pte = mk_pte(page, vma->vm_page_prot); 3245 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3246 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3247 vmf->flags &= ~FAULT_FLAG_WRITE; 3248 ret |= VM_FAULT_WRITE; 3249 exclusive = RMAP_EXCLUSIVE; 3250 } 3251 flush_icache_page(vma, page); 3252 if (pte_swp_soft_dirty(vmf->orig_pte)) 3253 pte = pte_mksoft_dirty(pte); 3254 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3255 pte = pte_mkuffd_wp(pte); 3256 pte = pte_wrprotect(pte); 3257 } 3258 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3259 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3260 vmf->orig_pte = pte; 3261 3262 /* ksm created a completely new copy */ 3263 if (unlikely(page != swapcache && swapcache)) { 3264 page_add_new_anon_rmap(page, vma, vmf->address, false); 3265 lru_cache_add_inactive_or_unevictable(page, vma); 3266 } else { 3267 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3268 } 3269 3270 swap_free(entry); 3271 if (mem_cgroup_swap_full(page) || 3272 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3273 try_to_free_swap(page); 3274 unlock_page(page); 3275 if (page != swapcache && swapcache) { 3276 /* 3277 * Hold the lock to avoid the swap entry to be reused 3278 * until we take the PT lock for the pte_same() check 3279 * (to avoid false positives from pte_same). For 3280 * further safety release the lock after the swap_free 3281 * so that the swap count won't change under a 3282 * parallel locked swapcache. 3283 */ 3284 unlock_page(swapcache); 3285 put_page(swapcache); 3286 } 3287 3288 if (vmf->flags & FAULT_FLAG_WRITE) { 3289 ret |= do_wp_page(vmf); 3290 if (ret & VM_FAULT_ERROR) 3291 ret &= VM_FAULT_ERROR; 3292 goto out; 3293 } 3294 3295 /* No need to invalidate - it was non-present before */ 3296 update_mmu_cache(vma, vmf->address, vmf->pte); 3297 unlock: 3298 pte_unmap_unlock(vmf->pte, vmf->ptl); 3299 out: 3300 return ret; 3301 out_nomap: 3302 pte_unmap_unlock(vmf->pte, vmf->ptl); 3303 out_page: 3304 unlock_page(page); 3305 out_release: 3306 put_page(page); 3307 if (page != swapcache && swapcache) { 3308 unlock_page(swapcache); 3309 put_page(swapcache); 3310 } 3311 return ret; 3312 } 3313 3314 /* 3315 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3316 * but allow concurrent faults), and pte mapped but not yet locked. 3317 * We return with mmap_lock still held, but pte unmapped and unlocked. 3318 */ 3319 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3320 { 3321 struct vm_area_struct *vma = vmf->vma; 3322 struct page *page; 3323 vm_fault_t ret = 0; 3324 pte_t entry; 3325 3326 /* File mapping without ->vm_ops ? */ 3327 if (vma->vm_flags & VM_SHARED) 3328 return VM_FAULT_SIGBUS; 3329 3330 /* 3331 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3332 * pte_offset_map() on pmds where a huge pmd might be created 3333 * from a different thread. 3334 * 3335 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3336 * parallel threads are excluded by other means. 3337 * 3338 * Here we only have mmap_read_lock(mm). 3339 */ 3340 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3341 return VM_FAULT_OOM; 3342 3343 /* See the comment in pte_alloc_one_map() */ 3344 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3345 return 0; 3346 3347 /* Use the zero-page for reads */ 3348 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3349 !mm_forbids_zeropage(vma->vm_mm)) { 3350 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3351 vma->vm_page_prot)); 3352 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3353 vmf->address, &vmf->ptl); 3354 if (!pte_none(*vmf->pte)) { 3355 update_mmu_tlb(vma, vmf->address, vmf->pte); 3356 goto unlock; 3357 } 3358 ret = check_stable_address_space(vma->vm_mm); 3359 if (ret) 3360 goto unlock; 3361 /* Deliver the page fault to userland, check inside PT lock */ 3362 if (userfaultfd_missing(vma)) { 3363 pte_unmap_unlock(vmf->pte, vmf->ptl); 3364 return handle_userfault(vmf, VM_UFFD_MISSING); 3365 } 3366 goto setpte; 3367 } 3368 3369 /* Allocate our own private page. */ 3370 if (unlikely(anon_vma_prepare(vma))) 3371 goto oom; 3372 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3373 if (!page) 3374 goto oom; 3375 3376 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3377 goto oom_free_page; 3378 cgroup_throttle_swaprate(page, GFP_KERNEL); 3379 3380 /* 3381 * The memory barrier inside __SetPageUptodate makes sure that 3382 * preceding stores to the page contents become visible before 3383 * the set_pte_at() write. 3384 */ 3385 __SetPageUptodate(page); 3386 3387 entry = mk_pte(page, vma->vm_page_prot); 3388 entry = pte_sw_mkyoung(entry); 3389 if (vma->vm_flags & VM_WRITE) 3390 entry = pte_mkwrite(pte_mkdirty(entry)); 3391 3392 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3393 &vmf->ptl); 3394 if (!pte_none(*vmf->pte)) { 3395 update_mmu_cache(vma, vmf->address, vmf->pte); 3396 goto release; 3397 } 3398 3399 ret = check_stable_address_space(vma->vm_mm); 3400 if (ret) 3401 goto release; 3402 3403 /* Deliver the page fault to userland, check inside PT lock */ 3404 if (userfaultfd_missing(vma)) { 3405 pte_unmap_unlock(vmf->pte, vmf->ptl); 3406 put_page(page); 3407 return handle_userfault(vmf, VM_UFFD_MISSING); 3408 } 3409 3410 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3411 page_add_new_anon_rmap(page, vma, vmf->address, false); 3412 lru_cache_add_inactive_or_unevictable(page, vma); 3413 setpte: 3414 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3415 3416 /* No need to invalidate - it was non-present before */ 3417 update_mmu_cache(vma, vmf->address, vmf->pte); 3418 unlock: 3419 pte_unmap_unlock(vmf->pte, vmf->ptl); 3420 return ret; 3421 release: 3422 put_page(page); 3423 goto unlock; 3424 oom_free_page: 3425 put_page(page); 3426 oom: 3427 return VM_FAULT_OOM; 3428 } 3429 3430 /* 3431 * The mmap_lock must have been held on entry, and may have been 3432 * released depending on flags and vma->vm_ops->fault() return value. 3433 * See filemap_fault() and __lock_page_retry(). 3434 */ 3435 static vm_fault_t __do_fault(struct vm_fault *vmf) 3436 { 3437 struct vm_area_struct *vma = vmf->vma; 3438 vm_fault_t ret; 3439 3440 /* 3441 * Preallocate pte before we take page_lock because this might lead to 3442 * deadlocks for memcg reclaim which waits for pages under writeback: 3443 * lock_page(A) 3444 * SetPageWriteback(A) 3445 * unlock_page(A) 3446 * lock_page(B) 3447 * lock_page(B) 3448 * pte_alloc_pne 3449 * shrink_page_list 3450 * wait_on_page_writeback(A) 3451 * SetPageWriteback(B) 3452 * unlock_page(B) 3453 * # flush A, B to clear the writeback 3454 */ 3455 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3456 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3457 if (!vmf->prealloc_pte) 3458 return VM_FAULT_OOM; 3459 smp_wmb(); /* See comment in __pte_alloc() */ 3460 } 3461 3462 ret = vma->vm_ops->fault(vmf); 3463 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3464 VM_FAULT_DONE_COW))) 3465 return ret; 3466 3467 if (unlikely(PageHWPoison(vmf->page))) { 3468 if (ret & VM_FAULT_LOCKED) 3469 unlock_page(vmf->page); 3470 put_page(vmf->page); 3471 vmf->page = NULL; 3472 return VM_FAULT_HWPOISON; 3473 } 3474 3475 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3476 lock_page(vmf->page); 3477 else 3478 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3479 3480 return ret; 3481 } 3482 3483 /* 3484 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3485 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3486 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3487 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3488 */ 3489 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3490 { 3491 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3492 } 3493 3494 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3495 { 3496 struct vm_area_struct *vma = vmf->vma; 3497 3498 if (!pmd_none(*vmf->pmd)) 3499 goto map_pte; 3500 if (vmf->prealloc_pte) { 3501 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3502 if (unlikely(!pmd_none(*vmf->pmd))) { 3503 spin_unlock(vmf->ptl); 3504 goto map_pte; 3505 } 3506 3507 mm_inc_nr_ptes(vma->vm_mm); 3508 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3509 spin_unlock(vmf->ptl); 3510 vmf->prealloc_pte = NULL; 3511 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3512 return VM_FAULT_OOM; 3513 } 3514 map_pte: 3515 /* 3516 * If a huge pmd materialized under us just retry later. Use 3517 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3518 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3519 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3520 * running immediately after a huge pmd fault in a different thread of 3521 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3522 * All we have to ensure is that it is a regular pmd that we can walk 3523 * with pte_offset_map() and we can do that through an atomic read in 3524 * C, which is what pmd_trans_unstable() provides. 3525 */ 3526 if (pmd_devmap_trans_unstable(vmf->pmd)) 3527 return VM_FAULT_NOPAGE; 3528 3529 /* 3530 * At this point we know that our vmf->pmd points to a page of ptes 3531 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3532 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3533 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3534 * be valid and we will re-check to make sure the vmf->pte isn't 3535 * pte_none() under vmf->ptl protection when we return to 3536 * alloc_set_pte(). 3537 */ 3538 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3539 &vmf->ptl); 3540 return 0; 3541 } 3542 3543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3544 static void deposit_prealloc_pte(struct vm_fault *vmf) 3545 { 3546 struct vm_area_struct *vma = vmf->vma; 3547 3548 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3549 /* 3550 * We are going to consume the prealloc table, 3551 * count that as nr_ptes. 3552 */ 3553 mm_inc_nr_ptes(vma->vm_mm); 3554 vmf->prealloc_pte = NULL; 3555 } 3556 3557 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3558 { 3559 struct vm_area_struct *vma = vmf->vma; 3560 bool write = vmf->flags & FAULT_FLAG_WRITE; 3561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3562 pmd_t entry; 3563 int i; 3564 vm_fault_t ret; 3565 3566 if (!transhuge_vma_suitable(vma, haddr)) 3567 return VM_FAULT_FALLBACK; 3568 3569 ret = VM_FAULT_FALLBACK; 3570 page = compound_head(page); 3571 3572 /* 3573 * Archs like ppc64 need additonal space to store information 3574 * related to pte entry. Use the preallocated table for that. 3575 */ 3576 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3577 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3578 if (!vmf->prealloc_pte) 3579 return VM_FAULT_OOM; 3580 smp_wmb(); /* See comment in __pte_alloc() */ 3581 } 3582 3583 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3584 if (unlikely(!pmd_none(*vmf->pmd))) 3585 goto out; 3586 3587 for (i = 0; i < HPAGE_PMD_NR; i++) 3588 flush_icache_page(vma, page + i); 3589 3590 entry = mk_huge_pmd(page, vma->vm_page_prot); 3591 if (write) 3592 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3593 3594 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3595 page_add_file_rmap(page, true); 3596 /* 3597 * deposit and withdraw with pmd lock held 3598 */ 3599 if (arch_needs_pgtable_deposit()) 3600 deposit_prealloc_pte(vmf); 3601 3602 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3603 3604 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3605 3606 /* fault is handled */ 3607 ret = 0; 3608 count_vm_event(THP_FILE_MAPPED); 3609 out: 3610 spin_unlock(vmf->ptl); 3611 return ret; 3612 } 3613 #else 3614 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3615 { 3616 BUILD_BUG(); 3617 return 0; 3618 } 3619 #endif 3620 3621 /** 3622 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3623 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3624 * 3625 * @vmf: fault environment 3626 * @page: page to map 3627 * 3628 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3629 * return. 3630 * 3631 * Target users are page handler itself and implementations of 3632 * vm_ops->map_pages. 3633 * 3634 * Return: %0 on success, %VM_FAULT_ code in case of error. 3635 */ 3636 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3637 { 3638 struct vm_area_struct *vma = vmf->vma; 3639 bool write = vmf->flags & FAULT_FLAG_WRITE; 3640 pte_t entry; 3641 vm_fault_t ret; 3642 3643 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3644 ret = do_set_pmd(vmf, page); 3645 if (ret != VM_FAULT_FALLBACK) 3646 return ret; 3647 } 3648 3649 if (!vmf->pte) { 3650 ret = pte_alloc_one_map(vmf); 3651 if (ret) 3652 return ret; 3653 } 3654 3655 /* Re-check under ptl */ 3656 if (unlikely(!pte_none(*vmf->pte))) { 3657 update_mmu_tlb(vma, vmf->address, vmf->pte); 3658 return VM_FAULT_NOPAGE; 3659 } 3660 3661 flush_icache_page(vma, page); 3662 entry = mk_pte(page, vma->vm_page_prot); 3663 entry = pte_sw_mkyoung(entry); 3664 if (write) 3665 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3666 /* copy-on-write page */ 3667 if (write && !(vma->vm_flags & VM_SHARED)) { 3668 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3669 page_add_new_anon_rmap(page, vma, vmf->address, false); 3670 lru_cache_add_inactive_or_unevictable(page, vma); 3671 } else { 3672 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3673 page_add_file_rmap(page, false); 3674 } 3675 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3676 3677 /* no need to invalidate: a not-present page won't be cached */ 3678 update_mmu_cache(vma, vmf->address, vmf->pte); 3679 3680 return 0; 3681 } 3682 3683 3684 /** 3685 * finish_fault - finish page fault once we have prepared the page to fault 3686 * 3687 * @vmf: structure describing the fault 3688 * 3689 * This function handles all that is needed to finish a page fault once the 3690 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3691 * given page, adds reverse page mapping, handles memcg charges and LRU 3692 * addition. 3693 * 3694 * The function expects the page to be locked and on success it consumes a 3695 * reference of a page being mapped (for the PTE which maps it). 3696 * 3697 * Return: %0 on success, %VM_FAULT_ code in case of error. 3698 */ 3699 vm_fault_t finish_fault(struct vm_fault *vmf) 3700 { 3701 struct page *page; 3702 vm_fault_t ret = 0; 3703 3704 /* Did we COW the page? */ 3705 if ((vmf->flags & FAULT_FLAG_WRITE) && 3706 !(vmf->vma->vm_flags & VM_SHARED)) 3707 page = vmf->cow_page; 3708 else 3709 page = vmf->page; 3710 3711 /* 3712 * check even for read faults because we might have lost our CoWed 3713 * page 3714 */ 3715 if (!(vmf->vma->vm_flags & VM_SHARED)) 3716 ret = check_stable_address_space(vmf->vma->vm_mm); 3717 if (!ret) 3718 ret = alloc_set_pte(vmf, page); 3719 if (vmf->pte) 3720 pte_unmap_unlock(vmf->pte, vmf->ptl); 3721 return ret; 3722 } 3723 3724 static unsigned long fault_around_bytes __read_mostly = 3725 rounddown_pow_of_two(65536); 3726 3727 #ifdef CONFIG_DEBUG_FS 3728 static int fault_around_bytes_get(void *data, u64 *val) 3729 { 3730 *val = fault_around_bytes; 3731 return 0; 3732 } 3733 3734 /* 3735 * fault_around_bytes must be rounded down to the nearest page order as it's 3736 * what do_fault_around() expects to see. 3737 */ 3738 static int fault_around_bytes_set(void *data, u64 val) 3739 { 3740 if (val / PAGE_SIZE > PTRS_PER_PTE) 3741 return -EINVAL; 3742 if (val > PAGE_SIZE) 3743 fault_around_bytes = rounddown_pow_of_two(val); 3744 else 3745 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3746 return 0; 3747 } 3748 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3749 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3750 3751 static int __init fault_around_debugfs(void) 3752 { 3753 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3754 &fault_around_bytes_fops); 3755 return 0; 3756 } 3757 late_initcall(fault_around_debugfs); 3758 #endif 3759 3760 /* 3761 * do_fault_around() tries to map few pages around the fault address. The hope 3762 * is that the pages will be needed soon and this will lower the number of 3763 * faults to handle. 3764 * 3765 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3766 * not ready to be mapped: not up-to-date, locked, etc. 3767 * 3768 * This function is called with the page table lock taken. In the split ptlock 3769 * case the page table lock only protects only those entries which belong to 3770 * the page table corresponding to the fault address. 3771 * 3772 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3773 * only once. 3774 * 3775 * fault_around_bytes defines how many bytes we'll try to map. 3776 * do_fault_around() expects it to be set to a power of two less than or equal 3777 * to PTRS_PER_PTE. 3778 * 3779 * The virtual address of the area that we map is naturally aligned to 3780 * fault_around_bytes rounded down to the machine page size 3781 * (and therefore to page order). This way it's easier to guarantee 3782 * that we don't cross page table boundaries. 3783 */ 3784 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3785 { 3786 unsigned long address = vmf->address, nr_pages, mask; 3787 pgoff_t start_pgoff = vmf->pgoff; 3788 pgoff_t end_pgoff; 3789 int off; 3790 vm_fault_t ret = 0; 3791 3792 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3793 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3794 3795 vmf->address = max(address & mask, vmf->vma->vm_start); 3796 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3797 start_pgoff -= off; 3798 3799 /* 3800 * end_pgoff is either the end of the page table, the end of 3801 * the vma or nr_pages from start_pgoff, depending what is nearest. 3802 */ 3803 end_pgoff = start_pgoff - 3804 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3805 PTRS_PER_PTE - 1; 3806 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3807 start_pgoff + nr_pages - 1); 3808 3809 if (pmd_none(*vmf->pmd)) { 3810 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3811 if (!vmf->prealloc_pte) 3812 goto out; 3813 smp_wmb(); /* See comment in __pte_alloc() */ 3814 } 3815 3816 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3817 3818 /* Huge page is mapped? Page fault is solved */ 3819 if (pmd_trans_huge(*vmf->pmd)) { 3820 ret = VM_FAULT_NOPAGE; 3821 goto out; 3822 } 3823 3824 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3825 if (!vmf->pte) 3826 goto out; 3827 3828 /* check if the page fault is solved */ 3829 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3830 if (!pte_none(*vmf->pte)) 3831 ret = VM_FAULT_NOPAGE; 3832 pte_unmap_unlock(vmf->pte, vmf->ptl); 3833 out: 3834 vmf->address = address; 3835 vmf->pte = NULL; 3836 return ret; 3837 } 3838 3839 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3840 { 3841 struct vm_area_struct *vma = vmf->vma; 3842 vm_fault_t ret = 0; 3843 3844 /* 3845 * Let's call ->map_pages() first and use ->fault() as fallback 3846 * if page by the offset is not ready to be mapped (cold cache or 3847 * something). 3848 */ 3849 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3850 ret = do_fault_around(vmf); 3851 if (ret) 3852 return ret; 3853 } 3854 3855 ret = __do_fault(vmf); 3856 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3857 return ret; 3858 3859 ret |= finish_fault(vmf); 3860 unlock_page(vmf->page); 3861 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3862 put_page(vmf->page); 3863 return ret; 3864 } 3865 3866 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3867 { 3868 struct vm_area_struct *vma = vmf->vma; 3869 vm_fault_t ret; 3870 3871 if (unlikely(anon_vma_prepare(vma))) 3872 return VM_FAULT_OOM; 3873 3874 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3875 if (!vmf->cow_page) 3876 return VM_FAULT_OOM; 3877 3878 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 3879 put_page(vmf->cow_page); 3880 return VM_FAULT_OOM; 3881 } 3882 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 3883 3884 ret = __do_fault(vmf); 3885 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3886 goto uncharge_out; 3887 if (ret & VM_FAULT_DONE_COW) 3888 return ret; 3889 3890 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3891 __SetPageUptodate(vmf->cow_page); 3892 3893 ret |= finish_fault(vmf); 3894 unlock_page(vmf->page); 3895 put_page(vmf->page); 3896 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3897 goto uncharge_out; 3898 return ret; 3899 uncharge_out: 3900 put_page(vmf->cow_page); 3901 return ret; 3902 } 3903 3904 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3905 { 3906 struct vm_area_struct *vma = vmf->vma; 3907 vm_fault_t ret, tmp; 3908 3909 ret = __do_fault(vmf); 3910 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3911 return ret; 3912 3913 /* 3914 * Check if the backing address space wants to know that the page is 3915 * about to become writable 3916 */ 3917 if (vma->vm_ops->page_mkwrite) { 3918 unlock_page(vmf->page); 3919 tmp = do_page_mkwrite(vmf); 3920 if (unlikely(!tmp || 3921 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3922 put_page(vmf->page); 3923 return tmp; 3924 } 3925 } 3926 3927 ret |= finish_fault(vmf); 3928 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3929 VM_FAULT_RETRY))) { 3930 unlock_page(vmf->page); 3931 put_page(vmf->page); 3932 return ret; 3933 } 3934 3935 ret |= fault_dirty_shared_page(vmf); 3936 return ret; 3937 } 3938 3939 /* 3940 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3941 * but allow concurrent faults). 3942 * The mmap_lock may have been released depending on flags and our 3943 * return value. See filemap_fault() and __lock_page_or_retry(). 3944 * If mmap_lock is released, vma may become invalid (for example 3945 * by other thread calling munmap()). 3946 */ 3947 static vm_fault_t do_fault(struct vm_fault *vmf) 3948 { 3949 struct vm_area_struct *vma = vmf->vma; 3950 struct mm_struct *vm_mm = vma->vm_mm; 3951 vm_fault_t ret; 3952 3953 /* 3954 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3955 */ 3956 if (!vma->vm_ops->fault) { 3957 /* 3958 * If we find a migration pmd entry or a none pmd entry, which 3959 * should never happen, return SIGBUS 3960 */ 3961 if (unlikely(!pmd_present(*vmf->pmd))) 3962 ret = VM_FAULT_SIGBUS; 3963 else { 3964 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3965 vmf->pmd, 3966 vmf->address, 3967 &vmf->ptl); 3968 /* 3969 * Make sure this is not a temporary clearing of pte 3970 * by holding ptl and checking again. A R/M/W update 3971 * of pte involves: take ptl, clearing the pte so that 3972 * we don't have concurrent modification by hardware 3973 * followed by an update. 3974 */ 3975 if (unlikely(pte_none(*vmf->pte))) 3976 ret = VM_FAULT_SIGBUS; 3977 else 3978 ret = VM_FAULT_NOPAGE; 3979 3980 pte_unmap_unlock(vmf->pte, vmf->ptl); 3981 } 3982 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3983 ret = do_read_fault(vmf); 3984 else if (!(vma->vm_flags & VM_SHARED)) 3985 ret = do_cow_fault(vmf); 3986 else 3987 ret = do_shared_fault(vmf); 3988 3989 /* preallocated pagetable is unused: free it */ 3990 if (vmf->prealloc_pte) { 3991 pte_free(vm_mm, vmf->prealloc_pte); 3992 vmf->prealloc_pte = NULL; 3993 } 3994 return ret; 3995 } 3996 3997 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3998 unsigned long addr, int page_nid, 3999 int *flags) 4000 { 4001 get_page(page); 4002 4003 count_vm_numa_event(NUMA_HINT_FAULTS); 4004 if (page_nid == numa_node_id()) { 4005 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4006 *flags |= TNF_FAULT_LOCAL; 4007 } 4008 4009 return mpol_misplaced(page, vma, addr); 4010 } 4011 4012 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4013 { 4014 struct vm_area_struct *vma = vmf->vma; 4015 struct page *page = NULL; 4016 int page_nid = NUMA_NO_NODE; 4017 int last_cpupid; 4018 int target_nid; 4019 bool migrated = false; 4020 pte_t pte, old_pte; 4021 bool was_writable = pte_savedwrite(vmf->orig_pte); 4022 int flags = 0; 4023 4024 /* 4025 * The "pte" at this point cannot be used safely without 4026 * validation through pte_unmap_same(). It's of NUMA type but 4027 * the pfn may be screwed if the read is non atomic. 4028 */ 4029 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4030 spin_lock(vmf->ptl); 4031 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4032 pte_unmap_unlock(vmf->pte, vmf->ptl); 4033 goto out; 4034 } 4035 4036 /* 4037 * Make it present again, Depending on how arch implementes non 4038 * accessible ptes, some can allow access by kernel mode. 4039 */ 4040 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4041 pte = pte_modify(old_pte, vma->vm_page_prot); 4042 pte = pte_mkyoung(pte); 4043 if (was_writable) 4044 pte = pte_mkwrite(pte); 4045 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4046 update_mmu_cache(vma, vmf->address, vmf->pte); 4047 4048 page = vm_normal_page(vma, vmf->address, pte); 4049 if (!page) { 4050 pte_unmap_unlock(vmf->pte, vmf->ptl); 4051 return 0; 4052 } 4053 4054 /* TODO: handle PTE-mapped THP */ 4055 if (PageCompound(page)) { 4056 pte_unmap_unlock(vmf->pte, vmf->ptl); 4057 return 0; 4058 } 4059 4060 /* 4061 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4062 * much anyway since they can be in shared cache state. This misses 4063 * the case where a mapping is writable but the process never writes 4064 * to it but pte_write gets cleared during protection updates and 4065 * pte_dirty has unpredictable behaviour between PTE scan updates, 4066 * background writeback, dirty balancing and application behaviour. 4067 */ 4068 if (!pte_write(pte)) 4069 flags |= TNF_NO_GROUP; 4070 4071 /* 4072 * Flag if the page is shared between multiple address spaces. This 4073 * is later used when determining whether to group tasks together 4074 */ 4075 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4076 flags |= TNF_SHARED; 4077 4078 last_cpupid = page_cpupid_last(page); 4079 page_nid = page_to_nid(page); 4080 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4081 &flags); 4082 pte_unmap_unlock(vmf->pte, vmf->ptl); 4083 if (target_nid == NUMA_NO_NODE) { 4084 put_page(page); 4085 goto out; 4086 } 4087 4088 /* Migrate to the requested node */ 4089 migrated = migrate_misplaced_page(page, vma, target_nid); 4090 if (migrated) { 4091 page_nid = target_nid; 4092 flags |= TNF_MIGRATED; 4093 } else 4094 flags |= TNF_MIGRATE_FAIL; 4095 4096 out: 4097 if (page_nid != NUMA_NO_NODE) 4098 task_numa_fault(last_cpupid, page_nid, 1, flags); 4099 return 0; 4100 } 4101 4102 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4103 { 4104 if (vma_is_anonymous(vmf->vma)) 4105 return do_huge_pmd_anonymous_page(vmf); 4106 if (vmf->vma->vm_ops->huge_fault) 4107 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4108 return VM_FAULT_FALLBACK; 4109 } 4110 4111 /* `inline' is required to avoid gcc 4.1.2 build error */ 4112 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4113 { 4114 if (vma_is_anonymous(vmf->vma)) { 4115 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4116 return handle_userfault(vmf, VM_UFFD_WP); 4117 return do_huge_pmd_wp_page(vmf, orig_pmd); 4118 } 4119 if (vmf->vma->vm_ops->huge_fault) { 4120 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4121 4122 if (!(ret & VM_FAULT_FALLBACK)) 4123 return ret; 4124 } 4125 4126 /* COW or write-notify handled on pte level: split pmd. */ 4127 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4128 4129 return VM_FAULT_FALLBACK; 4130 } 4131 4132 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4133 { 4134 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4135 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4136 /* No support for anonymous transparent PUD pages yet */ 4137 if (vma_is_anonymous(vmf->vma)) 4138 goto split; 4139 if (vmf->vma->vm_ops->huge_fault) { 4140 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4141 4142 if (!(ret & VM_FAULT_FALLBACK)) 4143 return ret; 4144 } 4145 split: 4146 /* COW or write-notify not handled on PUD level: split pud.*/ 4147 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4149 return VM_FAULT_FALLBACK; 4150 } 4151 4152 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4153 { 4154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4155 /* No support for anonymous transparent PUD pages yet */ 4156 if (vma_is_anonymous(vmf->vma)) 4157 return VM_FAULT_FALLBACK; 4158 if (vmf->vma->vm_ops->huge_fault) 4159 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4160 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4161 return VM_FAULT_FALLBACK; 4162 } 4163 4164 /* 4165 * These routines also need to handle stuff like marking pages dirty 4166 * and/or accessed for architectures that don't do it in hardware (most 4167 * RISC architectures). The early dirtying is also good on the i386. 4168 * 4169 * There is also a hook called "update_mmu_cache()" that architectures 4170 * with external mmu caches can use to update those (ie the Sparc or 4171 * PowerPC hashed page tables that act as extended TLBs). 4172 * 4173 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4174 * concurrent faults). 4175 * 4176 * The mmap_lock may have been released depending on flags and our return value. 4177 * See filemap_fault() and __lock_page_or_retry(). 4178 */ 4179 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4180 { 4181 pte_t entry; 4182 4183 if (unlikely(pmd_none(*vmf->pmd))) { 4184 /* 4185 * Leave __pte_alloc() until later: because vm_ops->fault may 4186 * want to allocate huge page, and if we expose page table 4187 * for an instant, it will be difficult to retract from 4188 * concurrent faults and from rmap lookups. 4189 */ 4190 vmf->pte = NULL; 4191 } else { 4192 /* See comment in pte_alloc_one_map() */ 4193 if (pmd_devmap_trans_unstable(vmf->pmd)) 4194 return 0; 4195 /* 4196 * A regular pmd is established and it can't morph into a huge 4197 * pmd from under us anymore at this point because we hold the 4198 * mmap_lock read mode and khugepaged takes it in write mode. 4199 * So now it's safe to run pte_offset_map(). 4200 */ 4201 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4202 vmf->orig_pte = *vmf->pte; 4203 4204 /* 4205 * some architectures can have larger ptes than wordsize, 4206 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4207 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4208 * accesses. The code below just needs a consistent view 4209 * for the ifs and we later double check anyway with the 4210 * ptl lock held. So here a barrier will do. 4211 */ 4212 barrier(); 4213 if (pte_none(vmf->orig_pte)) { 4214 pte_unmap(vmf->pte); 4215 vmf->pte = NULL; 4216 } 4217 } 4218 4219 if (!vmf->pte) { 4220 if (vma_is_anonymous(vmf->vma)) 4221 return do_anonymous_page(vmf); 4222 else 4223 return do_fault(vmf); 4224 } 4225 4226 if (!pte_present(vmf->orig_pte)) 4227 return do_swap_page(vmf); 4228 4229 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4230 return do_numa_page(vmf); 4231 4232 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4233 spin_lock(vmf->ptl); 4234 entry = vmf->orig_pte; 4235 if (unlikely(!pte_same(*vmf->pte, entry))) { 4236 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4237 goto unlock; 4238 } 4239 if (vmf->flags & FAULT_FLAG_WRITE) { 4240 if (!pte_write(entry)) 4241 return do_wp_page(vmf); 4242 entry = pte_mkdirty(entry); 4243 } 4244 entry = pte_mkyoung(entry); 4245 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4246 vmf->flags & FAULT_FLAG_WRITE)) { 4247 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4248 } else { 4249 /* Skip spurious TLB flush for retried page fault */ 4250 if (vmf->flags & FAULT_FLAG_TRIED) 4251 goto unlock; 4252 /* 4253 * This is needed only for protection faults but the arch code 4254 * is not yet telling us if this is a protection fault or not. 4255 * This still avoids useless tlb flushes for .text page faults 4256 * with threads. 4257 */ 4258 if (vmf->flags & FAULT_FLAG_WRITE) 4259 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4260 } 4261 unlock: 4262 pte_unmap_unlock(vmf->pte, vmf->ptl); 4263 return 0; 4264 } 4265 4266 /* 4267 * By the time we get here, we already hold the mm semaphore 4268 * 4269 * The mmap_lock may have been released depending on flags and our 4270 * return value. See filemap_fault() and __lock_page_or_retry(). 4271 */ 4272 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4273 unsigned long address, unsigned int flags) 4274 { 4275 struct vm_fault vmf = { 4276 .vma = vma, 4277 .address = address & PAGE_MASK, 4278 .flags = flags, 4279 .pgoff = linear_page_index(vma, address), 4280 .gfp_mask = __get_fault_gfp_mask(vma), 4281 }; 4282 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4283 struct mm_struct *mm = vma->vm_mm; 4284 pgd_t *pgd; 4285 p4d_t *p4d; 4286 vm_fault_t ret; 4287 4288 pgd = pgd_offset(mm, address); 4289 p4d = p4d_alloc(mm, pgd, address); 4290 if (!p4d) 4291 return VM_FAULT_OOM; 4292 4293 vmf.pud = pud_alloc(mm, p4d, address); 4294 if (!vmf.pud) 4295 return VM_FAULT_OOM; 4296 retry_pud: 4297 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4298 ret = create_huge_pud(&vmf); 4299 if (!(ret & VM_FAULT_FALLBACK)) 4300 return ret; 4301 } else { 4302 pud_t orig_pud = *vmf.pud; 4303 4304 barrier(); 4305 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4306 4307 /* NUMA case for anonymous PUDs would go here */ 4308 4309 if (dirty && !pud_write(orig_pud)) { 4310 ret = wp_huge_pud(&vmf, orig_pud); 4311 if (!(ret & VM_FAULT_FALLBACK)) 4312 return ret; 4313 } else { 4314 huge_pud_set_accessed(&vmf, orig_pud); 4315 return 0; 4316 } 4317 } 4318 } 4319 4320 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4321 if (!vmf.pmd) 4322 return VM_FAULT_OOM; 4323 4324 /* Huge pud page fault raced with pmd_alloc? */ 4325 if (pud_trans_unstable(vmf.pud)) 4326 goto retry_pud; 4327 4328 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4329 ret = create_huge_pmd(&vmf); 4330 if (!(ret & VM_FAULT_FALLBACK)) 4331 return ret; 4332 } else { 4333 pmd_t orig_pmd = *vmf.pmd; 4334 4335 barrier(); 4336 if (unlikely(is_swap_pmd(orig_pmd))) { 4337 VM_BUG_ON(thp_migration_supported() && 4338 !is_pmd_migration_entry(orig_pmd)); 4339 if (is_pmd_migration_entry(orig_pmd)) 4340 pmd_migration_entry_wait(mm, vmf.pmd); 4341 return 0; 4342 } 4343 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4344 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4345 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4346 4347 if (dirty && !pmd_write(orig_pmd)) { 4348 ret = wp_huge_pmd(&vmf, orig_pmd); 4349 if (!(ret & VM_FAULT_FALLBACK)) 4350 return ret; 4351 } else { 4352 huge_pmd_set_accessed(&vmf, orig_pmd); 4353 return 0; 4354 } 4355 } 4356 } 4357 4358 return handle_pte_fault(&vmf); 4359 } 4360 4361 /** 4362 * mm_account_fault - Do page fault accountings 4363 * 4364 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4365 * of perf event counters, but we'll still do the per-task accounting to 4366 * the task who triggered this page fault. 4367 * @address: the faulted address. 4368 * @flags: the fault flags. 4369 * @ret: the fault retcode. 4370 * 4371 * This will take care of most of the page fault accountings. Meanwhile, it 4372 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4373 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4374 * still be in per-arch page fault handlers at the entry of page fault. 4375 */ 4376 static inline void mm_account_fault(struct pt_regs *regs, 4377 unsigned long address, unsigned int flags, 4378 vm_fault_t ret) 4379 { 4380 bool major; 4381 4382 /* 4383 * We don't do accounting for some specific faults: 4384 * 4385 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4386 * includes arch_vma_access_permitted() failing before reaching here. 4387 * So this is not a "this many hardware page faults" counter. We 4388 * should use the hw profiling for that. 4389 * 4390 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4391 * once they're completed. 4392 */ 4393 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4394 return; 4395 4396 /* 4397 * We define the fault as a major fault when the final successful fault 4398 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4399 * handle it immediately previously). 4400 */ 4401 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4402 4403 if (major) 4404 current->maj_flt++; 4405 else 4406 current->min_flt++; 4407 4408 /* 4409 * If the fault is done for GUP, regs will be NULL. We only do the 4410 * accounting for the per thread fault counters who triggered the 4411 * fault, and we skip the perf event updates. 4412 */ 4413 if (!regs) 4414 return; 4415 4416 if (major) 4417 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4418 else 4419 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4420 } 4421 4422 /* 4423 * By the time we get here, we already hold the mm semaphore 4424 * 4425 * The mmap_lock may have been released depending on flags and our 4426 * return value. See filemap_fault() and __lock_page_or_retry(). 4427 */ 4428 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4429 unsigned int flags, struct pt_regs *regs) 4430 { 4431 vm_fault_t ret; 4432 4433 __set_current_state(TASK_RUNNING); 4434 4435 count_vm_event(PGFAULT); 4436 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4437 4438 /* do counter updates before entering really critical section. */ 4439 check_sync_rss_stat(current); 4440 4441 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4442 flags & FAULT_FLAG_INSTRUCTION, 4443 flags & FAULT_FLAG_REMOTE)) 4444 return VM_FAULT_SIGSEGV; 4445 4446 /* 4447 * Enable the memcg OOM handling for faults triggered in user 4448 * space. Kernel faults are handled more gracefully. 4449 */ 4450 if (flags & FAULT_FLAG_USER) 4451 mem_cgroup_enter_user_fault(); 4452 4453 if (unlikely(is_vm_hugetlb_page(vma))) 4454 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4455 else 4456 ret = __handle_mm_fault(vma, address, flags); 4457 4458 if (flags & FAULT_FLAG_USER) { 4459 mem_cgroup_exit_user_fault(); 4460 /* 4461 * The task may have entered a memcg OOM situation but 4462 * if the allocation error was handled gracefully (no 4463 * VM_FAULT_OOM), there is no need to kill anything. 4464 * Just clean up the OOM state peacefully. 4465 */ 4466 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4467 mem_cgroup_oom_synchronize(false); 4468 } 4469 4470 mm_account_fault(regs, address, flags, ret); 4471 4472 return ret; 4473 } 4474 EXPORT_SYMBOL_GPL(handle_mm_fault); 4475 4476 #ifndef __PAGETABLE_P4D_FOLDED 4477 /* 4478 * Allocate p4d page table. 4479 * We've already handled the fast-path in-line. 4480 */ 4481 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4482 { 4483 p4d_t *new = p4d_alloc_one(mm, address); 4484 if (!new) 4485 return -ENOMEM; 4486 4487 smp_wmb(); /* See comment in __pte_alloc */ 4488 4489 spin_lock(&mm->page_table_lock); 4490 if (pgd_present(*pgd)) /* Another has populated it */ 4491 p4d_free(mm, new); 4492 else 4493 pgd_populate(mm, pgd, new); 4494 spin_unlock(&mm->page_table_lock); 4495 return 0; 4496 } 4497 #endif /* __PAGETABLE_P4D_FOLDED */ 4498 4499 #ifndef __PAGETABLE_PUD_FOLDED 4500 /* 4501 * Allocate page upper directory. 4502 * We've already handled the fast-path in-line. 4503 */ 4504 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4505 { 4506 pud_t *new = pud_alloc_one(mm, address); 4507 if (!new) 4508 return -ENOMEM; 4509 4510 smp_wmb(); /* See comment in __pte_alloc */ 4511 4512 spin_lock(&mm->page_table_lock); 4513 if (!p4d_present(*p4d)) { 4514 mm_inc_nr_puds(mm); 4515 p4d_populate(mm, p4d, new); 4516 } else /* Another has populated it */ 4517 pud_free(mm, new); 4518 spin_unlock(&mm->page_table_lock); 4519 return 0; 4520 } 4521 #endif /* __PAGETABLE_PUD_FOLDED */ 4522 4523 #ifndef __PAGETABLE_PMD_FOLDED 4524 /* 4525 * Allocate page middle directory. 4526 * We've already handled the fast-path in-line. 4527 */ 4528 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4529 { 4530 spinlock_t *ptl; 4531 pmd_t *new = pmd_alloc_one(mm, address); 4532 if (!new) 4533 return -ENOMEM; 4534 4535 smp_wmb(); /* See comment in __pte_alloc */ 4536 4537 ptl = pud_lock(mm, pud); 4538 if (!pud_present(*pud)) { 4539 mm_inc_nr_pmds(mm); 4540 pud_populate(mm, pud, new); 4541 } else /* Another has populated it */ 4542 pmd_free(mm, new); 4543 spin_unlock(ptl); 4544 return 0; 4545 } 4546 #endif /* __PAGETABLE_PMD_FOLDED */ 4547 4548 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4549 struct mmu_notifier_range *range, 4550 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4551 { 4552 pgd_t *pgd; 4553 p4d_t *p4d; 4554 pud_t *pud; 4555 pmd_t *pmd; 4556 pte_t *ptep; 4557 4558 pgd = pgd_offset(mm, address); 4559 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4560 goto out; 4561 4562 p4d = p4d_offset(pgd, address); 4563 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4564 goto out; 4565 4566 pud = pud_offset(p4d, address); 4567 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4568 goto out; 4569 4570 pmd = pmd_offset(pud, address); 4571 VM_BUG_ON(pmd_trans_huge(*pmd)); 4572 4573 if (pmd_huge(*pmd)) { 4574 if (!pmdpp) 4575 goto out; 4576 4577 if (range) { 4578 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4579 NULL, mm, address & PMD_MASK, 4580 (address & PMD_MASK) + PMD_SIZE); 4581 mmu_notifier_invalidate_range_start(range); 4582 } 4583 *ptlp = pmd_lock(mm, pmd); 4584 if (pmd_huge(*pmd)) { 4585 *pmdpp = pmd; 4586 return 0; 4587 } 4588 spin_unlock(*ptlp); 4589 if (range) 4590 mmu_notifier_invalidate_range_end(range); 4591 } 4592 4593 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4594 goto out; 4595 4596 if (range) { 4597 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4598 address & PAGE_MASK, 4599 (address & PAGE_MASK) + PAGE_SIZE); 4600 mmu_notifier_invalidate_range_start(range); 4601 } 4602 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4603 if (!pte_present(*ptep)) 4604 goto unlock; 4605 *ptepp = ptep; 4606 return 0; 4607 unlock: 4608 pte_unmap_unlock(ptep, *ptlp); 4609 if (range) 4610 mmu_notifier_invalidate_range_end(range); 4611 out: 4612 return -EINVAL; 4613 } 4614 4615 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4616 pte_t **ptepp, spinlock_t **ptlp) 4617 { 4618 int res; 4619 4620 /* (void) is needed to make gcc happy */ 4621 (void) __cond_lock(*ptlp, 4622 !(res = __follow_pte_pmd(mm, address, NULL, 4623 ptepp, NULL, ptlp))); 4624 return res; 4625 } 4626 4627 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4628 struct mmu_notifier_range *range, 4629 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4630 { 4631 int res; 4632 4633 /* (void) is needed to make gcc happy */ 4634 (void) __cond_lock(*ptlp, 4635 !(res = __follow_pte_pmd(mm, address, range, 4636 ptepp, pmdpp, ptlp))); 4637 return res; 4638 } 4639 EXPORT_SYMBOL(follow_pte_pmd); 4640 4641 /** 4642 * follow_pfn - look up PFN at a user virtual address 4643 * @vma: memory mapping 4644 * @address: user virtual address 4645 * @pfn: location to store found PFN 4646 * 4647 * Only IO mappings and raw PFN mappings are allowed. 4648 * 4649 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4650 */ 4651 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4652 unsigned long *pfn) 4653 { 4654 int ret = -EINVAL; 4655 spinlock_t *ptl; 4656 pte_t *ptep; 4657 4658 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4659 return ret; 4660 4661 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4662 if (ret) 4663 return ret; 4664 *pfn = pte_pfn(*ptep); 4665 pte_unmap_unlock(ptep, ptl); 4666 return 0; 4667 } 4668 EXPORT_SYMBOL(follow_pfn); 4669 4670 #ifdef CONFIG_HAVE_IOREMAP_PROT 4671 int follow_phys(struct vm_area_struct *vma, 4672 unsigned long address, unsigned int flags, 4673 unsigned long *prot, resource_size_t *phys) 4674 { 4675 int ret = -EINVAL; 4676 pte_t *ptep, pte; 4677 spinlock_t *ptl; 4678 4679 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4680 goto out; 4681 4682 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4683 goto out; 4684 pte = *ptep; 4685 4686 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4687 goto unlock; 4688 4689 *prot = pgprot_val(pte_pgprot(pte)); 4690 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4691 4692 ret = 0; 4693 unlock: 4694 pte_unmap_unlock(ptep, ptl); 4695 out: 4696 return ret; 4697 } 4698 4699 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4700 void *buf, int len, int write) 4701 { 4702 resource_size_t phys_addr; 4703 unsigned long prot = 0; 4704 void __iomem *maddr; 4705 int offset = addr & (PAGE_SIZE-1); 4706 4707 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4708 return -EINVAL; 4709 4710 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4711 if (!maddr) 4712 return -ENOMEM; 4713 4714 if (write) 4715 memcpy_toio(maddr + offset, buf, len); 4716 else 4717 memcpy_fromio(buf, maddr + offset, len); 4718 iounmap(maddr); 4719 4720 return len; 4721 } 4722 EXPORT_SYMBOL_GPL(generic_access_phys); 4723 #endif 4724 4725 /* 4726 * Access another process' address space as given in mm. If non-NULL, use the 4727 * given task for page fault accounting. 4728 */ 4729 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4730 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4731 { 4732 struct vm_area_struct *vma; 4733 void *old_buf = buf; 4734 int write = gup_flags & FOLL_WRITE; 4735 4736 if (mmap_read_lock_killable(mm)) 4737 return 0; 4738 4739 /* ignore errors, just check how much was successfully transferred */ 4740 while (len) { 4741 int bytes, ret, offset; 4742 void *maddr; 4743 struct page *page = NULL; 4744 4745 ret = get_user_pages_remote(mm, addr, 1, 4746 gup_flags, &page, &vma, NULL); 4747 if (ret <= 0) { 4748 #ifndef CONFIG_HAVE_IOREMAP_PROT 4749 break; 4750 #else 4751 /* 4752 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4753 * we can access using slightly different code. 4754 */ 4755 vma = find_vma(mm, addr); 4756 if (!vma || vma->vm_start > addr) 4757 break; 4758 if (vma->vm_ops && vma->vm_ops->access) 4759 ret = vma->vm_ops->access(vma, addr, buf, 4760 len, write); 4761 if (ret <= 0) 4762 break; 4763 bytes = ret; 4764 #endif 4765 } else { 4766 bytes = len; 4767 offset = addr & (PAGE_SIZE-1); 4768 if (bytes > PAGE_SIZE-offset) 4769 bytes = PAGE_SIZE-offset; 4770 4771 maddr = kmap(page); 4772 if (write) { 4773 copy_to_user_page(vma, page, addr, 4774 maddr + offset, buf, bytes); 4775 set_page_dirty_lock(page); 4776 } else { 4777 copy_from_user_page(vma, page, addr, 4778 buf, maddr + offset, bytes); 4779 } 4780 kunmap(page); 4781 put_page(page); 4782 } 4783 len -= bytes; 4784 buf += bytes; 4785 addr += bytes; 4786 } 4787 mmap_read_unlock(mm); 4788 4789 return buf - old_buf; 4790 } 4791 4792 /** 4793 * access_remote_vm - access another process' address space 4794 * @mm: the mm_struct of the target address space 4795 * @addr: start address to access 4796 * @buf: source or destination buffer 4797 * @len: number of bytes to transfer 4798 * @gup_flags: flags modifying lookup behaviour 4799 * 4800 * The caller must hold a reference on @mm. 4801 * 4802 * Return: number of bytes copied from source to destination. 4803 */ 4804 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4805 void *buf, int len, unsigned int gup_flags) 4806 { 4807 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4808 } 4809 4810 /* 4811 * Access another process' address space. 4812 * Source/target buffer must be kernel space, 4813 * Do not walk the page table directly, use get_user_pages 4814 */ 4815 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4816 void *buf, int len, unsigned int gup_flags) 4817 { 4818 struct mm_struct *mm; 4819 int ret; 4820 4821 mm = get_task_mm(tsk); 4822 if (!mm) 4823 return 0; 4824 4825 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4826 4827 mmput(mm); 4828 4829 return ret; 4830 } 4831 EXPORT_SYMBOL_GPL(access_process_vm); 4832 4833 /* 4834 * Print the name of a VMA. 4835 */ 4836 void print_vma_addr(char *prefix, unsigned long ip) 4837 { 4838 struct mm_struct *mm = current->mm; 4839 struct vm_area_struct *vma; 4840 4841 /* 4842 * we might be running from an atomic context so we cannot sleep 4843 */ 4844 if (!mmap_read_trylock(mm)) 4845 return; 4846 4847 vma = find_vma(mm, ip); 4848 if (vma && vma->vm_file) { 4849 struct file *f = vma->vm_file; 4850 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4851 if (buf) { 4852 char *p; 4853 4854 p = file_path(f, buf, PAGE_SIZE); 4855 if (IS_ERR(p)) 4856 p = "?"; 4857 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4858 vma->vm_start, 4859 vma->vm_end - vma->vm_start); 4860 free_page((unsigned long)buf); 4861 } 4862 } 4863 mmap_read_unlock(mm); 4864 } 4865 4866 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4867 void __might_fault(const char *file, int line) 4868 { 4869 /* 4870 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4871 * holding the mmap_lock, this is safe because kernel memory doesn't 4872 * get paged out, therefore we'll never actually fault, and the 4873 * below annotations will generate false positives. 4874 */ 4875 if (uaccess_kernel()) 4876 return; 4877 if (pagefault_disabled()) 4878 return; 4879 __might_sleep(file, line, 0); 4880 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4881 if (current->mm) 4882 might_lock_read(¤t->mm->mmap_lock); 4883 #endif 4884 } 4885 EXPORT_SYMBOL(__might_fault); 4886 #endif 4887 4888 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4889 /* 4890 * Process all subpages of the specified huge page with the specified 4891 * operation. The target subpage will be processed last to keep its 4892 * cache lines hot. 4893 */ 4894 static inline void process_huge_page( 4895 unsigned long addr_hint, unsigned int pages_per_huge_page, 4896 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4897 void *arg) 4898 { 4899 int i, n, base, l; 4900 unsigned long addr = addr_hint & 4901 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4902 4903 /* Process target subpage last to keep its cache lines hot */ 4904 might_sleep(); 4905 n = (addr_hint - addr) / PAGE_SIZE; 4906 if (2 * n <= pages_per_huge_page) { 4907 /* If target subpage in first half of huge page */ 4908 base = 0; 4909 l = n; 4910 /* Process subpages at the end of huge page */ 4911 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4912 cond_resched(); 4913 process_subpage(addr + i * PAGE_SIZE, i, arg); 4914 } 4915 } else { 4916 /* If target subpage in second half of huge page */ 4917 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4918 l = pages_per_huge_page - n; 4919 /* Process subpages at the begin of huge page */ 4920 for (i = 0; i < base; i++) { 4921 cond_resched(); 4922 process_subpage(addr + i * PAGE_SIZE, i, arg); 4923 } 4924 } 4925 /* 4926 * Process remaining subpages in left-right-left-right pattern 4927 * towards the target subpage 4928 */ 4929 for (i = 0; i < l; i++) { 4930 int left_idx = base + i; 4931 int right_idx = base + 2 * l - 1 - i; 4932 4933 cond_resched(); 4934 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4935 cond_resched(); 4936 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4937 } 4938 } 4939 4940 static void clear_gigantic_page(struct page *page, 4941 unsigned long addr, 4942 unsigned int pages_per_huge_page) 4943 { 4944 int i; 4945 struct page *p = page; 4946 4947 might_sleep(); 4948 for (i = 0; i < pages_per_huge_page; 4949 i++, p = mem_map_next(p, page, i)) { 4950 cond_resched(); 4951 clear_user_highpage(p, addr + i * PAGE_SIZE); 4952 } 4953 } 4954 4955 static void clear_subpage(unsigned long addr, int idx, void *arg) 4956 { 4957 struct page *page = arg; 4958 4959 clear_user_highpage(page + idx, addr); 4960 } 4961 4962 void clear_huge_page(struct page *page, 4963 unsigned long addr_hint, unsigned int pages_per_huge_page) 4964 { 4965 unsigned long addr = addr_hint & 4966 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4967 4968 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4969 clear_gigantic_page(page, addr, pages_per_huge_page); 4970 return; 4971 } 4972 4973 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4974 } 4975 4976 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4977 unsigned long addr, 4978 struct vm_area_struct *vma, 4979 unsigned int pages_per_huge_page) 4980 { 4981 int i; 4982 struct page *dst_base = dst; 4983 struct page *src_base = src; 4984 4985 for (i = 0; i < pages_per_huge_page; ) { 4986 cond_resched(); 4987 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4988 4989 i++; 4990 dst = mem_map_next(dst, dst_base, i); 4991 src = mem_map_next(src, src_base, i); 4992 } 4993 } 4994 4995 struct copy_subpage_arg { 4996 struct page *dst; 4997 struct page *src; 4998 struct vm_area_struct *vma; 4999 }; 5000 5001 static void copy_subpage(unsigned long addr, int idx, void *arg) 5002 { 5003 struct copy_subpage_arg *copy_arg = arg; 5004 5005 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5006 addr, copy_arg->vma); 5007 } 5008 5009 void copy_user_huge_page(struct page *dst, struct page *src, 5010 unsigned long addr_hint, struct vm_area_struct *vma, 5011 unsigned int pages_per_huge_page) 5012 { 5013 unsigned long addr = addr_hint & 5014 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5015 struct copy_subpage_arg arg = { 5016 .dst = dst, 5017 .src = src, 5018 .vma = vma, 5019 }; 5020 5021 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5022 copy_user_gigantic_page(dst, src, addr, vma, 5023 pages_per_huge_page); 5024 return; 5025 } 5026 5027 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5028 } 5029 5030 long copy_huge_page_from_user(struct page *dst_page, 5031 const void __user *usr_src, 5032 unsigned int pages_per_huge_page, 5033 bool allow_pagefault) 5034 { 5035 void *src = (void *)usr_src; 5036 void *page_kaddr; 5037 unsigned long i, rc = 0; 5038 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5039 5040 for (i = 0; i < pages_per_huge_page; i++) { 5041 if (allow_pagefault) 5042 page_kaddr = kmap(dst_page + i); 5043 else 5044 page_kaddr = kmap_atomic(dst_page + i); 5045 rc = copy_from_user(page_kaddr, 5046 (const void __user *)(src + i * PAGE_SIZE), 5047 PAGE_SIZE); 5048 if (allow_pagefault) 5049 kunmap(dst_page + i); 5050 else 5051 kunmap_atomic(page_kaddr); 5052 5053 ret_val -= (PAGE_SIZE - rc); 5054 if (rc) 5055 break; 5056 5057 cond_resched(); 5058 } 5059 return ret_val; 5060 } 5061 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5062 5063 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5064 5065 static struct kmem_cache *page_ptl_cachep; 5066 5067 void __init ptlock_cache_init(void) 5068 { 5069 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5070 SLAB_PANIC, NULL); 5071 } 5072 5073 bool ptlock_alloc(struct page *page) 5074 { 5075 spinlock_t *ptl; 5076 5077 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5078 if (!ptl) 5079 return false; 5080 page->ptl = ptl; 5081 return true; 5082 } 5083 5084 void ptlock_free(struct page *page) 5085 { 5086 kmem_cache_free(page_ptl_cachep, page->ptl); 5087 } 5088 #endif 5089