1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 #ifndef CONFIG_NUMA 98 unsigned long max_mapnr; 99 EXPORT_SYMBOL(max_mapnr); 100 101 struct page *mem_map; 102 EXPORT_SYMBOL(mem_map); 103 #endif 104 105 static vm_fault_t do_fault(struct vm_fault *vmf); 106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 107 static bool vmf_pte_changed(struct vm_fault *vmf); 108 109 /* 110 * Return true if the original pte was a uffd-wp pte marker (so the pte was 111 * wr-protected). 112 */ 113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 114 { 115 if (!userfaultfd_wp(vmf->vma)) 116 return false; 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. 127 */ 128 void *high_memory; 129 EXPORT_SYMBOL(high_memory); 130 131 /* 132 * Randomize the address space (stacks, mmaps, brk, etc.). 133 * 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 135 * as ancient (libc5 based) binaries can segfault. ) 136 */ 137 int randomize_va_space __read_mostly = 138 #ifdef CONFIG_COMPAT_BRK 139 1; 140 #else 141 2; 142 #endif 143 144 #ifndef arch_wants_old_prefaulted_pte 145 static inline bool arch_wants_old_prefaulted_pte(void) 146 { 147 /* 148 * Transitioning a PTE from 'old' to 'young' can be expensive on 149 * some architectures, even if it's performed in hardware. By 150 * default, "false" means prefaulted entries will be 'young'. 151 */ 152 return false; 153 } 154 #endif 155 156 static int __init disable_randmaps(char *s) 157 { 158 randomize_va_space = 0; 159 return 1; 160 } 161 __setup("norandmaps", disable_randmaps); 162 163 unsigned long zero_pfn __read_mostly; 164 EXPORT_SYMBOL(zero_pfn); 165 166 unsigned long highest_memmap_pfn __read_mostly; 167 168 /* 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 170 */ 171 static int __init init_zero_pfn(void) 172 { 173 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 174 return 0; 175 } 176 early_initcall(init_zero_pfn); 177 178 void mm_trace_rss_stat(struct mm_struct *mm, int member) 179 { 180 trace_rss_stat(mm, member); 181 } 182 183 /* 184 * Note: this doesn't free the actual pages themselves. That 185 * has been handled earlier when unmapping all the memory regions. 186 */ 187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 188 unsigned long addr) 189 { 190 pgtable_t token = pmd_pgtable(*pmd); 191 pmd_clear(pmd); 192 pte_free_tlb(tlb, token, addr); 193 mm_dec_nr_ptes(tlb->mm); 194 } 195 196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 197 unsigned long addr, unsigned long end, 198 unsigned long floor, unsigned long ceiling) 199 { 200 pmd_t *pmd; 201 unsigned long next; 202 unsigned long start; 203 204 start = addr; 205 pmd = pmd_offset(pud, addr); 206 do { 207 next = pmd_addr_end(addr, end); 208 if (pmd_none_or_clear_bad(pmd)) 209 continue; 210 free_pte_range(tlb, pmd, addr); 211 } while (pmd++, addr = next, addr != end); 212 213 start &= PUD_MASK; 214 if (start < floor) 215 return; 216 if (ceiling) { 217 ceiling &= PUD_MASK; 218 if (!ceiling) 219 return; 220 } 221 if (end - 1 > ceiling - 1) 222 return; 223 224 pmd = pmd_offset(pud, start); 225 pud_clear(pud); 226 pmd_free_tlb(tlb, pmd, start); 227 mm_dec_nr_pmds(tlb->mm); 228 } 229 230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pud_t *pud; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pud = pud_offset(p4d, addr); 240 do { 241 next = pud_addr_end(addr, end); 242 if (pud_none_or_clear_bad(pud)) 243 continue; 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 245 } while (pud++, addr = next, addr != end); 246 247 start &= P4D_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= P4D_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pud = pud_offset(p4d, start); 259 p4d_clear(p4d); 260 pud_free_tlb(tlb, pud, start); 261 mm_dec_nr_puds(tlb->mm); 262 } 263 264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 p4d_t *p4d; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 p4d = p4d_offset(pgd, addr); 274 do { 275 next = p4d_addr_end(addr, end); 276 if (p4d_none_or_clear_bad(p4d)) 277 continue; 278 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 279 } while (p4d++, addr = next, addr != end); 280 281 start &= PGDIR_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= PGDIR_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 p4d = p4d_offset(pgd, start); 293 pgd_clear(pgd); 294 p4d_free_tlb(tlb, p4d, start); 295 } 296 297 /* 298 * This function frees user-level page tables of a process. 299 */ 300 void free_pgd_range(struct mmu_gather *tlb, 301 unsigned long addr, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 /* 308 * The next few lines have given us lots of grief... 309 * 310 * Why are we testing PMD* at this top level? Because often 311 * there will be no work to do at all, and we'd prefer not to 312 * go all the way down to the bottom just to discover that. 313 * 314 * Why all these "- 1"s? Because 0 represents both the bottom 315 * of the address space and the top of it (using -1 for the 316 * top wouldn't help much: the masks would do the wrong thing). 317 * The rule is that addr 0 and floor 0 refer to the bottom of 318 * the address space, but end 0 and ceiling 0 refer to the top 319 * Comparisons need to use "end - 1" and "ceiling - 1" (though 320 * that end 0 case should be mythical). 321 * 322 * Wherever addr is brought up or ceiling brought down, we must 323 * be careful to reject "the opposite 0" before it confuses the 324 * subsequent tests. But what about where end is brought down 325 * by PMD_SIZE below? no, end can't go down to 0 there. 326 * 327 * Whereas we round start (addr) and ceiling down, by different 328 * masks at different levels, in order to test whether a table 329 * now has no other vmas using it, so can be freed, we don't 330 * bother to round floor or end up - the tests don't need that. 331 */ 332 333 addr &= PMD_MASK; 334 if (addr < floor) { 335 addr += PMD_SIZE; 336 if (!addr) 337 return; 338 } 339 if (ceiling) { 340 ceiling &= PMD_MASK; 341 if (!ceiling) 342 return; 343 } 344 if (end - 1 > ceiling - 1) 345 end -= PMD_SIZE; 346 if (addr > end - 1) 347 return; 348 /* 349 * We add page table cache pages with PAGE_SIZE, 350 * (see pte_free_tlb()), flush the tlb if we need 351 */ 352 tlb_change_page_size(tlb, PAGE_SIZE); 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 363 struct vm_area_struct *vma, unsigned long floor, 364 unsigned long ceiling, bool mm_wr_locked) 365 { 366 struct unlink_vma_file_batch vb; 367 368 do { 369 unsigned long addr = vma->vm_start; 370 struct vm_area_struct *next; 371 372 /* 373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 374 * be 0. This will underflow and is okay. 375 */ 376 next = mas_find(mas, ceiling - 1); 377 if (unlikely(xa_is_zero(next))) 378 next = NULL; 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 388 if (is_vm_hugetlb_page(vma)) { 389 unlink_file_vma(vma); 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 unlink_file_vma_batch_init(&vb); 394 unlink_file_vma_batch_add(&vb, vma); 395 396 /* 397 * Optimization: gather nearby vmas into one call down 398 */ 399 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 400 && !is_vm_hugetlb_page(next)) { 401 vma = next; 402 next = mas_find(mas, ceiling - 1); 403 if (unlikely(xa_is_zero(next))) 404 next = NULL; 405 if (mm_wr_locked) 406 vma_start_write(vma); 407 unlink_anon_vmas(vma); 408 unlink_file_vma_batch_add(&vb, vma); 409 } 410 unlink_file_vma_batch_final(&vb); 411 free_pgd_range(tlb, addr, vma->vm_end, 412 floor, next ? next->vm_start : ceiling); 413 } 414 vma = next; 415 } while (vma); 416 } 417 418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 419 { 420 spinlock_t *ptl = pmd_lock(mm, pmd); 421 422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 423 mm_inc_nr_ptes(mm); 424 /* 425 * Ensure all pte setup (eg. pte page lock and page clearing) are 426 * visible before the pte is made visible to other CPUs by being 427 * put into page tables. 428 * 429 * The other side of the story is the pointer chasing in the page 430 * table walking code (when walking the page table without locking; 431 * ie. most of the time). Fortunately, these data accesses consist 432 * of a chain of data-dependent loads, meaning most CPUs (alpha 433 * being the notable exception) will already guarantee loads are 434 * seen in-order. See the alpha page table accessors for the 435 * smp_rmb() barriers in page table walking code. 436 */ 437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 438 pmd_populate(mm, pmd, *pte); 439 *pte = NULL; 440 } 441 spin_unlock(ptl); 442 } 443 444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 445 { 446 pgtable_t new = pte_alloc_one(mm); 447 if (!new) 448 return -ENOMEM; 449 450 pmd_install(mm, pmd, &new); 451 if (new) 452 pte_free(mm, new); 453 return 0; 454 } 455 456 int __pte_alloc_kernel(pmd_t *pmd) 457 { 458 pte_t *new = pte_alloc_one_kernel(&init_mm); 459 if (!new) 460 return -ENOMEM; 461 462 spin_lock(&init_mm.page_table_lock); 463 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 464 smp_wmb(); /* See comment in pmd_install() */ 465 pmd_populate_kernel(&init_mm, pmd, new); 466 new = NULL; 467 } 468 spin_unlock(&init_mm.page_table_lock); 469 if (new) 470 pte_free_kernel(&init_mm, new); 471 return 0; 472 } 473 474 static inline void init_rss_vec(int *rss) 475 { 476 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 477 } 478 479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 480 { 481 int i; 482 483 for (i = 0; i < NR_MM_COUNTERS; i++) 484 if (rss[i]) 485 add_mm_counter(mm, i, rss[i]); 486 } 487 488 /* 489 * This function is called to print an error when a bad pte 490 * is found. For example, we might have a PFN-mapped pte in 491 * a region that doesn't allow it. 492 * 493 * The calling function must still handle the error. 494 */ 495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 496 pte_t pte, struct page *page) 497 { 498 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 499 p4d_t *p4d = p4d_offset(pgd, addr); 500 pud_t *pud = pud_offset(p4d, addr); 501 pmd_t *pmd = pmd_offset(pud, addr); 502 struct address_space *mapping; 503 pgoff_t index; 504 static unsigned long resume; 505 static unsigned long nr_shown; 506 static unsigned long nr_unshown; 507 508 /* 509 * Allow a burst of 60 reports, then keep quiet for that minute; 510 * or allow a steady drip of one report per second. 511 */ 512 if (nr_shown == 60) { 513 if (time_before(jiffies, resume)) { 514 nr_unshown++; 515 return; 516 } 517 if (nr_unshown) { 518 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 519 nr_unshown); 520 nr_unshown = 0; 521 } 522 nr_shown = 0; 523 } 524 if (nr_shown++ == 0) 525 resume = jiffies + 60 * HZ; 526 527 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 528 index = linear_page_index(vma, addr); 529 530 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 531 current->comm, 532 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 533 if (page) 534 dump_page(page, "bad pte"); 535 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 536 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 537 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 538 vma->vm_file, 539 vma->vm_ops ? vma->vm_ops->fault : NULL, 540 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 541 mapping ? mapping->a_ops->read_folio : NULL); 542 dump_stack(); 543 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 544 } 545 546 /* 547 * vm_normal_page -- This function gets the "struct page" associated with a pte. 548 * 549 * "Special" mappings do not wish to be associated with a "struct page" (either 550 * it doesn't exist, or it exists but they don't want to touch it). In this 551 * case, NULL is returned here. "Normal" mappings do have a struct page. 552 * 553 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 554 * pte bit, in which case this function is trivial. Secondly, an architecture 555 * may not have a spare pte bit, which requires a more complicated scheme, 556 * described below. 557 * 558 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 559 * special mapping (even if there are underlying and valid "struct pages"). 560 * COWed pages of a VM_PFNMAP are always normal. 561 * 562 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 563 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 564 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 565 * mapping will always honor the rule 566 * 567 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 568 * 569 * And for normal mappings this is false. 570 * 571 * This restricts such mappings to be a linear translation from virtual address 572 * to pfn. To get around this restriction, we allow arbitrary mappings so long 573 * as the vma is not a COW mapping; in that case, we know that all ptes are 574 * special (because none can have been COWed). 575 * 576 * 577 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 578 * 579 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 580 * page" backing, however the difference is that _all_ pages with a struct 581 * page (that is, those where pfn_valid is true) are refcounted and considered 582 * normal pages by the VM. The only exception are zeropages, which are 583 * *never* refcounted. 584 * 585 * The disadvantage is that pages are refcounted (which can be slower and 586 * simply not an option for some PFNMAP users). The advantage is that we 587 * don't have to follow the strict linearity rule of PFNMAP mappings in 588 * order to support COWable mappings. 589 * 590 */ 591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 592 pte_t pte) 593 { 594 unsigned long pfn = pte_pfn(pte); 595 596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 597 if (likely(!pte_special(pte))) 598 goto check_pfn; 599 if (vma->vm_ops && vma->vm_ops->find_special_page) 600 return vma->vm_ops->find_special_page(vma, addr); 601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 602 return NULL; 603 if (is_zero_pfn(pfn)) 604 return NULL; 605 if (pte_devmap(pte)) 606 /* 607 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 608 * and will have refcounts incremented on their struct pages 609 * when they are inserted into PTEs, thus they are safe to 610 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 611 * do not have refcounts. Example of legacy ZONE_DEVICE is 612 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 613 */ 614 return NULL; 615 616 print_bad_pte(vma, addr, pte, NULL); 617 return NULL; 618 } 619 620 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 621 622 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 623 if (vma->vm_flags & VM_MIXEDMAP) { 624 if (!pfn_valid(pfn)) 625 return NULL; 626 if (is_zero_pfn(pfn)) 627 return NULL; 628 goto out; 629 } else { 630 unsigned long off; 631 off = (addr - vma->vm_start) >> PAGE_SHIFT; 632 if (pfn == vma->vm_pgoff + off) 633 return NULL; 634 if (!is_cow_mapping(vma->vm_flags)) 635 return NULL; 636 } 637 } 638 639 if (is_zero_pfn(pfn)) 640 return NULL; 641 642 check_pfn: 643 if (unlikely(pfn > highest_memmap_pfn)) { 644 print_bad_pte(vma, addr, pte, NULL); 645 return NULL; 646 } 647 648 /* 649 * NOTE! We still have PageReserved() pages in the page tables. 650 * eg. VDSO mappings can cause them to exist. 651 */ 652 out: 653 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 654 return pfn_to_page(pfn); 655 } 656 657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 658 pte_t pte) 659 { 660 struct page *page = vm_normal_page(vma, addr, pte); 661 662 if (page) 663 return page_folio(page); 664 return NULL; 665 } 666 667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 669 pmd_t pmd) 670 { 671 unsigned long pfn = pmd_pfn(pmd); 672 673 /* Currently it's only used for huge pfnmaps */ 674 if (unlikely(pmd_special(pmd))) 675 return NULL; 676 677 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 678 if (vma->vm_flags & VM_MIXEDMAP) { 679 if (!pfn_valid(pfn)) 680 return NULL; 681 goto out; 682 } else { 683 unsigned long off; 684 off = (addr - vma->vm_start) >> PAGE_SHIFT; 685 if (pfn == vma->vm_pgoff + off) 686 return NULL; 687 if (!is_cow_mapping(vma->vm_flags)) 688 return NULL; 689 } 690 } 691 692 if (pmd_devmap(pmd)) 693 return NULL; 694 if (is_huge_zero_pmd(pmd)) 695 return NULL; 696 if (unlikely(pfn > highest_memmap_pfn)) 697 return NULL; 698 699 /* 700 * NOTE! We still have PageReserved() pages in the page tables. 701 * eg. VDSO mappings can cause them to exist. 702 */ 703 out: 704 return pfn_to_page(pfn); 705 } 706 707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 708 unsigned long addr, pmd_t pmd) 709 { 710 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 711 712 if (page) 713 return page_folio(page); 714 return NULL; 715 } 716 #endif 717 718 static void restore_exclusive_pte(struct vm_area_struct *vma, 719 struct page *page, unsigned long address, 720 pte_t *ptep) 721 { 722 struct folio *folio = page_folio(page); 723 pte_t orig_pte; 724 pte_t pte; 725 swp_entry_t entry; 726 727 orig_pte = ptep_get(ptep); 728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 729 if (pte_swp_soft_dirty(orig_pte)) 730 pte = pte_mksoft_dirty(pte); 731 732 entry = pte_to_swp_entry(orig_pte); 733 if (pte_swp_uffd_wp(orig_pte)) 734 pte = pte_mkuffd_wp(pte); 735 else if (is_writable_device_exclusive_entry(entry)) 736 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 737 738 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 739 PageAnonExclusive(page)), folio); 740 741 /* 742 * No need to take a page reference as one was already 743 * created when the swap entry was made. 744 */ 745 if (folio_test_anon(folio)) 746 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 747 else 748 /* 749 * Currently device exclusive access only supports anonymous 750 * memory so the entry shouldn't point to a filebacked page. 751 */ 752 WARN_ON_ONCE(1); 753 754 set_pte_at(vma->vm_mm, address, ptep, pte); 755 756 /* 757 * No need to invalidate - it was non-present before. However 758 * secondary CPUs may have mappings that need invalidating. 759 */ 760 update_mmu_cache(vma, address, ptep); 761 } 762 763 /* 764 * Tries to restore an exclusive pte if the page lock can be acquired without 765 * sleeping. 766 */ 767 static int 768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 769 unsigned long addr) 770 { 771 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 772 struct page *page = pfn_swap_entry_to_page(entry); 773 774 if (trylock_page(page)) { 775 restore_exclusive_pte(vma, page, addr, src_pte); 776 unlock_page(page); 777 return 0; 778 } 779 780 return -EBUSY; 781 } 782 783 /* 784 * copy one vm_area from one task to the other. Assumes the page tables 785 * already present in the new task to be cleared in the whole range 786 * covered by this vma. 787 */ 788 789 static unsigned long 790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 791 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 792 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 793 { 794 unsigned long vm_flags = dst_vma->vm_flags; 795 pte_t orig_pte = ptep_get(src_pte); 796 pte_t pte = orig_pte; 797 struct folio *folio; 798 struct page *page; 799 swp_entry_t entry = pte_to_swp_entry(orig_pte); 800 801 if (likely(!non_swap_entry(entry))) { 802 if (swap_duplicate(entry) < 0) 803 return -EIO; 804 805 /* make sure dst_mm is on swapoff's mmlist. */ 806 if (unlikely(list_empty(&dst_mm->mmlist))) { 807 spin_lock(&mmlist_lock); 808 if (list_empty(&dst_mm->mmlist)) 809 list_add(&dst_mm->mmlist, 810 &src_mm->mmlist); 811 spin_unlock(&mmlist_lock); 812 } 813 /* Mark the swap entry as shared. */ 814 if (pte_swp_exclusive(orig_pte)) { 815 pte = pte_swp_clear_exclusive(orig_pte); 816 set_pte_at(src_mm, addr, src_pte, pte); 817 } 818 rss[MM_SWAPENTS]++; 819 } else if (is_migration_entry(entry)) { 820 folio = pfn_swap_entry_folio(entry); 821 822 rss[mm_counter(folio)]++; 823 824 if (!is_readable_migration_entry(entry) && 825 is_cow_mapping(vm_flags)) { 826 /* 827 * COW mappings require pages in both parent and child 828 * to be set to read. A previously exclusive entry is 829 * now shared. 830 */ 831 entry = make_readable_migration_entry( 832 swp_offset(entry)); 833 pte = swp_entry_to_pte(entry); 834 if (pte_swp_soft_dirty(orig_pte)) 835 pte = pte_swp_mksoft_dirty(pte); 836 if (pte_swp_uffd_wp(orig_pte)) 837 pte = pte_swp_mkuffd_wp(pte); 838 set_pte_at(src_mm, addr, src_pte, pte); 839 } 840 } else if (is_device_private_entry(entry)) { 841 page = pfn_swap_entry_to_page(entry); 842 folio = page_folio(page); 843 844 /* 845 * Update rss count even for unaddressable pages, as 846 * they should treated just like normal pages in this 847 * respect. 848 * 849 * We will likely want to have some new rss counters 850 * for unaddressable pages, at some point. But for now 851 * keep things as they are. 852 */ 853 folio_get(folio); 854 rss[mm_counter(folio)]++; 855 /* Cannot fail as these pages cannot get pinned. */ 856 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 857 858 /* 859 * We do not preserve soft-dirty information, because so 860 * far, checkpoint/restore is the only feature that 861 * requires that. And checkpoint/restore does not work 862 * when a device driver is involved (you cannot easily 863 * save and restore device driver state). 864 */ 865 if (is_writable_device_private_entry(entry) && 866 is_cow_mapping(vm_flags)) { 867 entry = make_readable_device_private_entry( 868 swp_offset(entry)); 869 pte = swp_entry_to_pte(entry); 870 if (pte_swp_uffd_wp(orig_pte)) 871 pte = pte_swp_mkuffd_wp(pte); 872 set_pte_at(src_mm, addr, src_pte, pte); 873 } 874 } else if (is_device_exclusive_entry(entry)) { 875 /* 876 * Make device exclusive entries present by restoring the 877 * original entry then copying as for a present pte. Device 878 * exclusive entries currently only support private writable 879 * (ie. COW) mappings. 880 */ 881 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 882 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 883 return -EBUSY; 884 return -ENOENT; 885 } else if (is_pte_marker_entry(entry)) { 886 pte_marker marker = copy_pte_marker(entry, dst_vma); 887 888 if (marker) 889 set_pte_at(dst_mm, addr, dst_pte, 890 make_pte_marker(marker)); 891 return 0; 892 } 893 if (!userfaultfd_wp(dst_vma)) 894 pte = pte_swp_clear_uffd_wp(pte); 895 set_pte_at(dst_mm, addr, dst_pte, pte); 896 return 0; 897 } 898 899 /* 900 * Copy a present and normal page. 901 * 902 * NOTE! The usual case is that this isn't required; 903 * instead, the caller can just increase the page refcount 904 * and re-use the pte the traditional way. 905 * 906 * And if we need a pre-allocated page but don't yet have 907 * one, return a negative error to let the preallocation 908 * code know so that it can do so outside the page table 909 * lock. 910 */ 911 static inline int 912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 913 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 914 struct folio **prealloc, struct page *page) 915 { 916 struct folio *new_folio; 917 pte_t pte; 918 919 new_folio = *prealloc; 920 if (!new_folio) 921 return -EAGAIN; 922 923 /* 924 * We have a prealloc page, all good! Take it 925 * over and copy the page & arm it. 926 */ 927 928 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 929 return -EHWPOISON; 930 931 *prealloc = NULL; 932 __folio_mark_uptodate(new_folio); 933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 934 folio_add_lru_vma(new_folio, dst_vma); 935 rss[MM_ANONPAGES]++; 936 937 /* All done, just insert the new page copy in the child */ 938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 941 /* Uffd-wp needs to be delivered to dest pte as well */ 942 pte = pte_mkuffd_wp(pte); 943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 944 return 0; 945 } 946 947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 949 pte_t pte, unsigned long addr, int nr) 950 { 951 struct mm_struct *src_mm = src_vma->vm_mm; 952 953 /* If it's a COW mapping, write protect it both processes. */ 954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 955 wrprotect_ptes(src_mm, addr, src_pte, nr); 956 pte = pte_wrprotect(pte); 957 } 958 959 /* If it's a shared mapping, mark it clean in the child. */ 960 if (src_vma->vm_flags & VM_SHARED) 961 pte = pte_mkclean(pte); 962 pte = pte_mkold(pte); 963 964 if (!userfaultfd_wp(dst_vma)) 965 pte = pte_clear_uffd_wp(pte); 966 967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 968 } 969 970 /* 971 * Copy one present PTE, trying to batch-process subsequent PTEs that map 972 * consecutive pages of the same folio by copying them as well. 973 * 974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 975 * Otherwise, returns the number of copied PTEs (at least 1). 976 */ 977 static inline int 978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 980 int max_nr, int *rss, struct folio **prealloc) 981 { 982 struct page *page; 983 struct folio *folio; 984 bool any_writable; 985 fpb_t flags = 0; 986 int err, nr; 987 988 page = vm_normal_page(src_vma, addr, pte); 989 if (unlikely(!page)) 990 goto copy_pte; 991 992 folio = page_folio(page); 993 994 /* 995 * If we likely have to copy, just don't bother with batching. Make 996 * sure that the common "small folio" case is as fast as possible 997 * by keeping the batching logic separate. 998 */ 999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1000 if (src_vma->vm_flags & VM_SHARED) 1001 flags |= FPB_IGNORE_DIRTY; 1002 if (!vma_soft_dirty_enabled(src_vma)) 1003 flags |= FPB_IGNORE_SOFT_DIRTY; 1004 1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1006 &any_writable, NULL, NULL); 1007 folio_ref_add(folio, nr); 1008 if (folio_test_anon(folio)) { 1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1010 nr, src_vma))) { 1011 folio_ref_sub(folio, nr); 1012 return -EAGAIN; 1013 } 1014 rss[MM_ANONPAGES] += nr; 1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1016 } else { 1017 folio_dup_file_rmap_ptes(folio, page, nr); 1018 rss[mm_counter_file(folio)] += nr; 1019 } 1020 if (any_writable) 1021 pte = pte_mkwrite(pte, src_vma); 1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1023 addr, nr); 1024 return nr; 1025 } 1026 1027 folio_get(folio); 1028 if (folio_test_anon(folio)) { 1029 /* 1030 * If this page may have been pinned by the parent process, 1031 * copy the page immediately for the child so that we'll always 1032 * guarantee the pinned page won't be randomly replaced in the 1033 * future. 1034 */ 1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1036 /* Page may be pinned, we have to copy. */ 1037 folio_put(folio); 1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1039 addr, rss, prealloc, page); 1040 return err ? err : 1; 1041 } 1042 rss[MM_ANONPAGES]++; 1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1044 } else { 1045 folio_dup_file_rmap_pte(folio, page); 1046 rss[mm_counter_file(folio)]++; 1047 } 1048 1049 copy_pte: 1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1051 return 1; 1052 } 1053 1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1056 { 1057 struct folio *new_folio; 1058 1059 if (need_zero) 1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1061 else 1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1063 1064 if (!new_folio) 1065 return NULL; 1066 1067 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1068 folio_put(new_folio); 1069 return NULL; 1070 } 1071 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1072 1073 return new_folio; 1074 } 1075 1076 static int 1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1079 unsigned long end) 1080 { 1081 struct mm_struct *dst_mm = dst_vma->vm_mm; 1082 struct mm_struct *src_mm = src_vma->vm_mm; 1083 pte_t *orig_src_pte, *orig_dst_pte; 1084 pte_t *src_pte, *dst_pte; 1085 pmd_t dummy_pmdval; 1086 pte_t ptent; 1087 spinlock_t *src_ptl, *dst_ptl; 1088 int progress, max_nr, ret = 0; 1089 int rss[NR_MM_COUNTERS]; 1090 swp_entry_t entry = (swp_entry_t){0}; 1091 struct folio *prealloc = NULL; 1092 int nr; 1093 1094 again: 1095 progress = 0; 1096 init_rss_vec(rss); 1097 1098 /* 1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1100 * error handling here, assume that exclusive mmap_lock on dst and src 1101 * protects anon from unexpected THP transitions; with shmem and file 1102 * protected by mmap_lock-less collapse skipping areas with anon_vma 1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1104 * can remove such assumptions later, but this is good enough for now. 1105 */ 1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1107 if (!dst_pte) { 1108 ret = -ENOMEM; 1109 goto out; 1110 } 1111 1112 /* 1113 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1114 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1115 * the PTE page is stable, and there is no need to get pmdval and do 1116 * pmd_same() check. 1117 */ 1118 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1119 &src_ptl); 1120 if (!src_pte) { 1121 pte_unmap_unlock(dst_pte, dst_ptl); 1122 /* ret == 0 */ 1123 goto out; 1124 } 1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1126 orig_src_pte = src_pte; 1127 orig_dst_pte = dst_pte; 1128 arch_enter_lazy_mmu_mode(); 1129 1130 do { 1131 nr = 1; 1132 1133 /* 1134 * We are holding two locks at this point - either of them 1135 * could generate latencies in another task on another CPU. 1136 */ 1137 if (progress >= 32) { 1138 progress = 0; 1139 if (need_resched() || 1140 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1141 break; 1142 } 1143 ptent = ptep_get(src_pte); 1144 if (pte_none(ptent)) { 1145 progress++; 1146 continue; 1147 } 1148 if (unlikely(!pte_present(ptent))) { 1149 ret = copy_nonpresent_pte(dst_mm, src_mm, 1150 dst_pte, src_pte, 1151 dst_vma, src_vma, 1152 addr, rss); 1153 if (ret == -EIO) { 1154 entry = pte_to_swp_entry(ptep_get(src_pte)); 1155 break; 1156 } else if (ret == -EBUSY) { 1157 break; 1158 } else if (!ret) { 1159 progress += 8; 1160 continue; 1161 } 1162 ptent = ptep_get(src_pte); 1163 VM_WARN_ON_ONCE(!pte_present(ptent)); 1164 1165 /* 1166 * Device exclusive entry restored, continue by copying 1167 * the now present pte. 1168 */ 1169 WARN_ON_ONCE(ret != -ENOENT); 1170 } 1171 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1172 max_nr = (end - addr) / PAGE_SIZE; 1173 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1174 ptent, addr, max_nr, rss, &prealloc); 1175 /* 1176 * If we need a pre-allocated page for this pte, drop the 1177 * locks, allocate, and try again. 1178 * If copy failed due to hwpoison in source page, break out. 1179 */ 1180 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1181 break; 1182 if (unlikely(prealloc)) { 1183 /* 1184 * pre-alloc page cannot be reused by next time so as 1185 * to strictly follow mempolicy (e.g., alloc_page_vma() 1186 * will allocate page according to address). This 1187 * could only happen if one pinned pte changed. 1188 */ 1189 folio_put(prealloc); 1190 prealloc = NULL; 1191 } 1192 nr = ret; 1193 progress += 8 * nr; 1194 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1195 addr != end); 1196 1197 arch_leave_lazy_mmu_mode(); 1198 pte_unmap_unlock(orig_src_pte, src_ptl); 1199 add_mm_rss_vec(dst_mm, rss); 1200 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1201 cond_resched(); 1202 1203 if (ret == -EIO) { 1204 VM_WARN_ON_ONCE(!entry.val); 1205 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1206 ret = -ENOMEM; 1207 goto out; 1208 } 1209 entry.val = 0; 1210 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1211 goto out; 1212 } else if (ret == -EAGAIN) { 1213 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1214 if (!prealloc) 1215 return -ENOMEM; 1216 } else if (ret < 0) { 1217 VM_WARN_ON_ONCE(1); 1218 } 1219 1220 /* We've captured and resolved the error. Reset, try again. */ 1221 ret = 0; 1222 1223 if (addr != end) 1224 goto again; 1225 out: 1226 if (unlikely(prealloc)) 1227 folio_put(prealloc); 1228 return ret; 1229 } 1230 1231 static inline int 1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1233 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1234 unsigned long end) 1235 { 1236 struct mm_struct *dst_mm = dst_vma->vm_mm; 1237 struct mm_struct *src_mm = src_vma->vm_mm; 1238 pmd_t *src_pmd, *dst_pmd; 1239 unsigned long next; 1240 1241 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1242 if (!dst_pmd) 1243 return -ENOMEM; 1244 src_pmd = pmd_offset(src_pud, addr); 1245 do { 1246 next = pmd_addr_end(addr, end); 1247 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1248 || pmd_devmap(*src_pmd)) { 1249 int err; 1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1252 addr, dst_vma, src_vma); 1253 if (err == -ENOMEM) 1254 return -ENOMEM; 1255 if (!err) 1256 continue; 1257 /* fall through */ 1258 } 1259 if (pmd_none_or_clear_bad(src_pmd)) 1260 continue; 1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1262 addr, next)) 1263 return -ENOMEM; 1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1265 return 0; 1266 } 1267 1268 static inline int 1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1271 unsigned long end) 1272 { 1273 struct mm_struct *dst_mm = dst_vma->vm_mm; 1274 struct mm_struct *src_mm = src_vma->vm_mm; 1275 pud_t *src_pud, *dst_pud; 1276 unsigned long next; 1277 1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1279 if (!dst_pud) 1280 return -ENOMEM; 1281 src_pud = pud_offset(src_p4d, addr); 1282 do { 1283 next = pud_addr_end(addr, end); 1284 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1285 int err; 1286 1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1288 err = copy_huge_pud(dst_mm, src_mm, 1289 dst_pud, src_pud, addr, src_vma); 1290 if (err == -ENOMEM) 1291 return -ENOMEM; 1292 if (!err) 1293 continue; 1294 /* fall through */ 1295 } 1296 if (pud_none_or_clear_bad(src_pud)) 1297 continue; 1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1299 addr, next)) 1300 return -ENOMEM; 1301 } while (dst_pud++, src_pud++, addr = next, addr != end); 1302 return 0; 1303 } 1304 1305 static inline int 1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1308 unsigned long end) 1309 { 1310 struct mm_struct *dst_mm = dst_vma->vm_mm; 1311 p4d_t *src_p4d, *dst_p4d; 1312 unsigned long next; 1313 1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1315 if (!dst_p4d) 1316 return -ENOMEM; 1317 src_p4d = p4d_offset(src_pgd, addr); 1318 do { 1319 next = p4d_addr_end(addr, end); 1320 if (p4d_none_or_clear_bad(src_p4d)) 1321 continue; 1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1323 addr, next)) 1324 return -ENOMEM; 1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1326 return 0; 1327 } 1328 1329 /* 1330 * Return true if the vma needs to copy the pgtable during this fork(). Return 1331 * false when we can speed up fork() by allowing lazy page faults later until 1332 * when the child accesses the memory range. 1333 */ 1334 static bool 1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1336 { 1337 /* 1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1340 * contains uffd-wp protection information, that's something we can't 1341 * retrieve from page cache, and skip copying will lose those info. 1342 */ 1343 if (userfaultfd_wp(dst_vma)) 1344 return true; 1345 1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1347 return true; 1348 1349 if (src_vma->anon_vma) 1350 return true; 1351 1352 /* 1353 * Don't copy ptes where a page fault will fill them correctly. Fork 1354 * becomes much lighter when there are big shared or private readonly 1355 * mappings. The tradeoff is that copy_page_range is more efficient 1356 * than faulting. 1357 */ 1358 return false; 1359 } 1360 1361 int 1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1363 { 1364 pgd_t *src_pgd, *dst_pgd; 1365 unsigned long addr = src_vma->vm_start; 1366 unsigned long end = src_vma->vm_end; 1367 struct mm_struct *dst_mm = dst_vma->vm_mm; 1368 struct mm_struct *src_mm = src_vma->vm_mm; 1369 struct mmu_notifier_range range; 1370 unsigned long next, pfn; 1371 bool is_cow; 1372 int ret; 1373 1374 if (!vma_needs_copy(dst_vma, src_vma)) 1375 return 0; 1376 1377 if (is_vm_hugetlb_page(src_vma)) 1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1379 1380 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1381 ret = track_pfn_copy(dst_vma, src_vma, &pfn); 1382 if (ret) 1383 return ret; 1384 } 1385 1386 /* 1387 * We need to invalidate the secondary MMU mappings only when 1388 * there could be a permission downgrade on the ptes of the 1389 * parent mm. And a permission downgrade will only happen if 1390 * is_cow_mapping() returns true. 1391 */ 1392 is_cow = is_cow_mapping(src_vma->vm_flags); 1393 1394 if (is_cow) { 1395 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1396 0, src_mm, addr, end); 1397 mmu_notifier_invalidate_range_start(&range); 1398 /* 1399 * Disabling preemption is not needed for the write side, as 1400 * the read side doesn't spin, but goes to the mmap_lock. 1401 * 1402 * Use the raw variant of the seqcount_t write API to avoid 1403 * lockdep complaining about preemptibility. 1404 */ 1405 vma_assert_write_locked(src_vma); 1406 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1407 } 1408 1409 ret = 0; 1410 dst_pgd = pgd_offset(dst_mm, addr); 1411 src_pgd = pgd_offset(src_mm, addr); 1412 do { 1413 next = pgd_addr_end(addr, end); 1414 if (pgd_none_or_clear_bad(src_pgd)) 1415 continue; 1416 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1417 addr, next))) { 1418 ret = -ENOMEM; 1419 break; 1420 } 1421 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1422 1423 if (is_cow) { 1424 raw_write_seqcount_end(&src_mm->write_protect_seq); 1425 mmu_notifier_invalidate_range_end(&range); 1426 } 1427 if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP)) 1428 untrack_pfn_copy(dst_vma, pfn); 1429 return ret; 1430 } 1431 1432 /* Whether we should zap all COWed (private) pages too */ 1433 static inline bool should_zap_cows(struct zap_details *details) 1434 { 1435 /* By default, zap all pages */ 1436 if (!details || details->reclaim_pt) 1437 return true; 1438 1439 /* Or, we zap COWed pages only if the caller wants to */ 1440 return details->even_cows; 1441 } 1442 1443 /* Decides whether we should zap this folio with the folio pointer specified */ 1444 static inline bool should_zap_folio(struct zap_details *details, 1445 struct folio *folio) 1446 { 1447 /* If we can make a decision without *folio.. */ 1448 if (should_zap_cows(details)) 1449 return true; 1450 1451 /* Otherwise we should only zap non-anon folios */ 1452 return !folio_test_anon(folio); 1453 } 1454 1455 static inline bool zap_drop_markers(struct zap_details *details) 1456 { 1457 if (!details) 1458 return false; 1459 1460 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1461 } 1462 1463 /* 1464 * This function makes sure that we'll replace the none pte with an uffd-wp 1465 * swap special pte marker when necessary. Must be with the pgtable lock held. 1466 * 1467 * Returns true if uffd-wp ptes was installed, false otherwise. 1468 */ 1469 static inline bool 1470 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1471 unsigned long addr, pte_t *pte, int nr, 1472 struct zap_details *details, pte_t pteval) 1473 { 1474 bool was_installed = false; 1475 1476 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1477 /* Zap on anonymous always means dropping everything */ 1478 if (vma_is_anonymous(vma)) 1479 return false; 1480 1481 if (zap_drop_markers(details)) 1482 return false; 1483 1484 for (;;) { 1485 /* the PFN in the PTE is irrelevant. */ 1486 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1487 was_installed = true; 1488 if (--nr == 0) 1489 break; 1490 pte++; 1491 addr += PAGE_SIZE; 1492 } 1493 #endif 1494 return was_installed; 1495 } 1496 1497 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1498 struct vm_area_struct *vma, struct folio *folio, 1499 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1500 unsigned long addr, struct zap_details *details, int *rss, 1501 bool *force_flush, bool *force_break, bool *any_skipped) 1502 { 1503 struct mm_struct *mm = tlb->mm; 1504 bool delay_rmap = false; 1505 1506 if (!folio_test_anon(folio)) { 1507 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1508 if (pte_dirty(ptent)) { 1509 folio_mark_dirty(folio); 1510 if (tlb_delay_rmap(tlb)) { 1511 delay_rmap = true; 1512 *force_flush = true; 1513 } 1514 } 1515 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1516 folio_mark_accessed(folio); 1517 rss[mm_counter(folio)] -= nr; 1518 } else { 1519 /* We don't need up-to-date accessed/dirty bits. */ 1520 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1521 rss[MM_ANONPAGES] -= nr; 1522 } 1523 /* Checking a single PTE in a batch is sufficient. */ 1524 arch_check_zapped_pte(vma, ptent); 1525 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1526 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1527 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1528 nr, details, ptent); 1529 1530 if (!delay_rmap) { 1531 folio_remove_rmap_ptes(folio, page, nr, vma); 1532 1533 if (unlikely(folio_mapcount(folio) < 0)) 1534 print_bad_pte(vma, addr, ptent, page); 1535 } 1536 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1537 *force_flush = true; 1538 *force_break = true; 1539 } 1540 } 1541 1542 /* 1543 * Zap or skip at least one present PTE, trying to batch-process subsequent 1544 * PTEs that map consecutive pages of the same folio. 1545 * 1546 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1547 */ 1548 static inline int zap_present_ptes(struct mmu_gather *tlb, 1549 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1550 unsigned int max_nr, unsigned long addr, 1551 struct zap_details *details, int *rss, bool *force_flush, 1552 bool *force_break, bool *any_skipped) 1553 { 1554 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1555 struct mm_struct *mm = tlb->mm; 1556 struct folio *folio; 1557 struct page *page; 1558 int nr; 1559 1560 page = vm_normal_page(vma, addr, ptent); 1561 if (!page) { 1562 /* We don't need up-to-date accessed/dirty bits. */ 1563 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1564 arch_check_zapped_pte(vma, ptent); 1565 tlb_remove_tlb_entry(tlb, pte, addr); 1566 if (userfaultfd_pte_wp(vma, ptent)) 1567 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1568 pte, 1, details, ptent); 1569 ksm_might_unmap_zero_page(mm, ptent); 1570 return 1; 1571 } 1572 1573 folio = page_folio(page); 1574 if (unlikely(!should_zap_folio(details, folio))) { 1575 *any_skipped = true; 1576 return 1; 1577 } 1578 1579 /* 1580 * Make sure that the common "small folio" case is as fast as possible 1581 * by keeping the batching logic separate. 1582 */ 1583 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1584 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1585 NULL, NULL, NULL); 1586 1587 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1588 addr, details, rss, force_flush, 1589 force_break, any_skipped); 1590 return nr; 1591 } 1592 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1593 details, rss, force_flush, force_break, any_skipped); 1594 return 1; 1595 } 1596 1597 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1598 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1599 unsigned int max_nr, unsigned long addr, 1600 struct zap_details *details, int *rss, bool *any_skipped) 1601 { 1602 swp_entry_t entry; 1603 int nr = 1; 1604 1605 *any_skipped = true; 1606 entry = pte_to_swp_entry(ptent); 1607 if (is_device_private_entry(entry) || 1608 is_device_exclusive_entry(entry)) { 1609 struct page *page = pfn_swap_entry_to_page(entry); 1610 struct folio *folio = page_folio(page); 1611 1612 if (unlikely(!should_zap_folio(details, folio))) 1613 return 1; 1614 /* 1615 * Both device private/exclusive mappings should only 1616 * work with anonymous page so far, so we don't need to 1617 * consider uffd-wp bit when zap. For more information, 1618 * see zap_install_uffd_wp_if_needed(). 1619 */ 1620 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1621 rss[mm_counter(folio)]--; 1622 if (is_device_private_entry(entry)) 1623 folio_remove_rmap_pte(folio, page, vma); 1624 folio_put(folio); 1625 } else if (!non_swap_entry(entry)) { 1626 /* Genuine swap entries, hence a private anon pages */ 1627 if (!should_zap_cows(details)) 1628 return 1; 1629 1630 nr = swap_pte_batch(pte, max_nr, ptent); 1631 rss[MM_SWAPENTS] -= nr; 1632 free_swap_and_cache_nr(entry, nr); 1633 } else if (is_migration_entry(entry)) { 1634 struct folio *folio = pfn_swap_entry_folio(entry); 1635 1636 if (!should_zap_folio(details, folio)) 1637 return 1; 1638 rss[mm_counter(folio)]--; 1639 } else if (pte_marker_entry_uffd_wp(entry)) { 1640 /* 1641 * For anon: always drop the marker; for file: only 1642 * drop the marker if explicitly requested. 1643 */ 1644 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1645 return 1; 1646 } else if (is_guard_swp_entry(entry)) { 1647 /* 1648 * Ordinary zapping should not remove guard PTE 1649 * markers. Only do so if we should remove PTE markers 1650 * in general. 1651 */ 1652 if (!zap_drop_markers(details)) 1653 return 1; 1654 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1655 if (!should_zap_cows(details)) 1656 return 1; 1657 } else { 1658 /* We should have covered all the swap entry types */ 1659 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1660 WARN_ON_ONCE(1); 1661 } 1662 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1663 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1664 1665 return nr; 1666 } 1667 1668 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1669 struct vm_area_struct *vma, pte_t *pte, 1670 unsigned long addr, unsigned long end, 1671 struct zap_details *details, int *rss, 1672 bool *force_flush, bool *force_break, 1673 bool *any_skipped) 1674 { 1675 pte_t ptent = ptep_get(pte); 1676 int max_nr = (end - addr) / PAGE_SIZE; 1677 int nr = 0; 1678 1679 /* Skip all consecutive none ptes */ 1680 if (pte_none(ptent)) { 1681 for (nr = 1; nr < max_nr; nr++) { 1682 ptent = ptep_get(pte + nr); 1683 if (!pte_none(ptent)) 1684 break; 1685 } 1686 max_nr -= nr; 1687 if (!max_nr) 1688 return nr; 1689 pte += nr; 1690 addr += nr * PAGE_SIZE; 1691 } 1692 1693 if (pte_present(ptent)) 1694 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1695 details, rss, force_flush, force_break, 1696 any_skipped); 1697 else 1698 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1699 details, rss, any_skipped); 1700 1701 return nr; 1702 } 1703 1704 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1705 struct vm_area_struct *vma, pmd_t *pmd, 1706 unsigned long addr, unsigned long end, 1707 struct zap_details *details) 1708 { 1709 bool force_flush = false, force_break = false; 1710 struct mm_struct *mm = tlb->mm; 1711 int rss[NR_MM_COUNTERS]; 1712 spinlock_t *ptl; 1713 pte_t *start_pte; 1714 pte_t *pte; 1715 pmd_t pmdval; 1716 unsigned long start = addr; 1717 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1718 bool direct_reclaim = true; 1719 int nr; 1720 1721 retry: 1722 tlb_change_page_size(tlb, PAGE_SIZE); 1723 init_rss_vec(rss); 1724 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1725 if (!pte) 1726 return addr; 1727 1728 flush_tlb_batched_pending(mm); 1729 arch_enter_lazy_mmu_mode(); 1730 do { 1731 bool any_skipped = false; 1732 1733 if (need_resched()) { 1734 direct_reclaim = false; 1735 break; 1736 } 1737 1738 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1739 &force_flush, &force_break, &any_skipped); 1740 if (any_skipped) 1741 can_reclaim_pt = false; 1742 if (unlikely(force_break)) { 1743 addr += nr * PAGE_SIZE; 1744 direct_reclaim = false; 1745 break; 1746 } 1747 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1748 1749 /* 1750 * Fast path: try to hold the pmd lock and unmap the PTE page. 1751 * 1752 * If the pte lock was released midway (retry case), or if the attempt 1753 * to hold the pmd lock failed, then we need to recheck all pte entries 1754 * to ensure they are still none, thereby preventing the pte entries 1755 * from being repopulated by another thread. 1756 */ 1757 if (can_reclaim_pt && direct_reclaim && addr == end) 1758 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1759 1760 add_mm_rss_vec(mm, rss); 1761 arch_leave_lazy_mmu_mode(); 1762 1763 /* Do the actual TLB flush before dropping ptl */ 1764 if (force_flush) { 1765 tlb_flush_mmu_tlbonly(tlb); 1766 tlb_flush_rmaps(tlb, vma); 1767 } 1768 pte_unmap_unlock(start_pte, ptl); 1769 1770 /* 1771 * If we forced a TLB flush (either due to running out of 1772 * batch buffers or because we needed to flush dirty TLB 1773 * entries before releasing the ptl), free the batched 1774 * memory too. Come back again if we didn't do everything. 1775 */ 1776 if (force_flush) 1777 tlb_flush_mmu(tlb); 1778 1779 if (addr != end) { 1780 cond_resched(); 1781 force_flush = false; 1782 force_break = false; 1783 goto retry; 1784 } 1785 1786 if (can_reclaim_pt) { 1787 if (direct_reclaim) 1788 free_pte(mm, start, tlb, pmdval); 1789 else 1790 try_to_free_pte(mm, pmd, start, tlb); 1791 } 1792 1793 return addr; 1794 } 1795 1796 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1797 struct vm_area_struct *vma, pud_t *pud, 1798 unsigned long addr, unsigned long end, 1799 struct zap_details *details) 1800 { 1801 pmd_t *pmd; 1802 unsigned long next; 1803 1804 pmd = pmd_offset(pud, addr); 1805 do { 1806 next = pmd_addr_end(addr, end); 1807 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1808 if (next - addr != HPAGE_PMD_SIZE) 1809 __split_huge_pmd(vma, pmd, addr, false, NULL); 1810 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1811 addr = next; 1812 continue; 1813 } 1814 /* fall through */ 1815 } else if (details && details->single_folio && 1816 folio_test_pmd_mappable(details->single_folio) && 1817 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1818 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1819 /* 1820 * Take and drop THP pmd lock so that we cannot return 1821 * prematurely, while zap_huge_pmd() has cleared *pmd, 1822 * but not yet decremented compound_mapcount(). 1823 */ 1824 spin_unlock(ptl); 1825 } 1826 if (pmd_none(*pmd)) { 1827 addr = next; 1828 continue; 1829 } 1830 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1831 if (addr != next) 1832 pmd--; 1833 } while (pmd++, cond_resched(), addr != end); 1834 1835 return addr; 1836 } 1837 1838 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1839 struct vm_area_struct *vma, p4d_t *p4d, 1840 unsigned long addr, unsigned long end, 1841 struct zap_details *details) 1842 { 1843 pud_t *pud; 1844 unsigned long next; 1845 1846 pud = pud_offset(p4d, addr); 1847 do { 1848 next = pud_addr_end(addr, end); 1849 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1850 if (next - addr != HPAGE_PUD_SIZE) { 1851 mmap_assert_locked(tlb->mm); 1852 split_huge_pud(vma, pud, addr); 1853 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1854 goto next; 1855 /* fall through */ 1856 } 1857 if (pud_none_or_clear_bad(pud)) 1858 continue; 1859 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1860 next: 1861 cond_resched(); 1862 } while (pud++, addr = next, addr != end); 1863 1864 return addr; 1865 } 1866 1867 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1868 struct vm_area_struct *vma, pgd_t *pgd, 1869 unsigned long addr, unsigned long end, 1870 struct zap_details *details) 1871 { 1872 p4d_t *p4d; 1873 unsigned long next; 1874 1875 p4d = p4d_offset(pgd, addr); 1876 do { 1877 next = p4d_addr_end(addr, end); 1878 if (p4d_none_or_clear_bad(p4d)) 1879 continue; 1880 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1881 } while (p4d++, addr = next, addr != end); 1882 1883 return addr; 1884 } 1885 1886 void unmap_page_range(struct mmu_gather *tlb, 1887 struct vm_area_struct *vma, 1888 unsigned long addr, unsigned long end, 1889 struct zap_details *details) 1890 { 1891 pgd_t *pgd; 1892 unsigned long next; 1893 1894 BUG_ON(addr >= end); 1895 tlb_start_vma(tlb, vma); 1896 pgd = pgd_offset(vma->vm_mm, addr); 1897 do { 1898 next = pgd_addr_end(addr, end); 1899 if (pgd_none_or_clear_bad(pgd)) 1900 continue; 1901 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1902 } while (pgd++, addr = next, addr != end); 1903 tlb_end_vma(tlb, vma); 1904 } 1905 1906 1907 static void unmap_single_vma(struct mmu_gather *tlb, 1908 struct vm_area_struct *vma, unsigned long start_addr, 1909 unsigned long end_addr, 1910 struct zap_details *details, bool mm_wr_locked) 1911 { 1912 unsigned long start = max(vma->vm_start, start_addr); 1913 unsigned long end; 1914 1915 if (start >= vma->vm_end) 1916 return; 1917 end = min(vma->vm_end, end_addr); 1918 if (end <= vma->vm_start) 1919 return; 1920 1921 if (vma->vm_file) 1922 uprobe_munmap(vma, start, end); 1923 1924 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1925 untrack_pfn(vma, 0, 0, mm_wr_locked); 1926 1927 if (start != end) { 1928 if (unlikely(is_vm_hugetlb_page(vma))) { 1929 /* 1930 * It is undesirable to test vma->vm_file as it 1931 * should be non-null for valid hugetlb area. 1932 * However, vm_file will be NULL in the error 1933 * cleanup path of mmap_region. When 1934 * hugetlbfs ->mmap method fails, 1935 * mmap_region() nullifies vma->vm_file 1936 * before calling this function to clean up. 1937 * Since no pte has actually been setup, it is 1938 * safe to do nothing in this case. 1939 */ 1940 if (vma->vm_file) { 1941 zap_flags_t zap_flags = details ? 1942 details->zap_flags : 0; 1943 __unmap_hugepage_range(tlb, vma, start, end, 1944 NULL, zap_flags); 1945 } 1946 } else 1947 unmap_page_range(tlb, vma, start, end, details); 1948 } 1949 } 1950 1951 /** 1952 * unmap_vmas - unmap a range of memory covered by a list of vma's 1953 * @tlb: address of the caller's struct mmu_gather 1954 * @mas: the maple state 1955 * @vma: the starting vma 1956 * @start_addr: virtual address at which to start unmapping 1957 * @end_addr: virtual address at which to end unmapping 1958 * @tree_end: The maximum index to check 1959 * @mm_wr_locked: lock flag 1960 * 1961 * Unmap all pages in the vma list. 1962 * 1963 * Only addresses between `start' and `end' will be unmapped. 1964 * 1965 * The VMA list must be sorted in ascending virtual address order. 1966 * 1967 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1968 * range after unmap_vmas() returns. So the only responsibility here is to 1969 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1970 * drops the lock and schedules. 1971 */ 1972 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1973 struct vm_area_struct *vma, unsigned long start_addr, 1974 unsigned long end_addr, unsigned long tree_end, 1975 bool mm_wr_locked) 1976 { 1977 struct mmu_notifier_range range; 1978 struct zap_details details = { 1979 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1980 /* Careful - we need to zap private pages too! */ 1981 .even_cows = true, 1982 }; 1983 1984 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1985 start_addr, end_addr); 1986 mmu_notifier_invalidate_range_start(&range); 1987 do { 1988 unsigned long start = start_addr; 1989 unsigned long end = end_addr; 1990 hugetlb_zap_begin(vma, &start, &end); 1991 unmap_single_vma(tlb, vma, start, end, &details, 1992 mm_wr_locked); 1993 hugetlb_zap_end(vma, &details); 1994 vma = mas_find(mas, tree_end - 1); 1995 } while (vma && likely(!xa_is_zero(vma))); 1996 mmu_notifier_invalidate_range_end(&range); 1997 } 1998 1999 /** 2000 * zap_page_range_single - remove user pages in a given range 2001 * @vma: vm_area_struct holding the applicable pages 2002 * @address: starting address of pages to zap 2003 * @size: number of bytes to zap 2004 * @details: details of shared cache invalidation 2005 * 2006 * The range must fit into one VMA. 2007 */ 2008 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2009 unsigned long size, struct zap_details *details) 2010 { 2011 const unsigned long end = address + size; 2012 struct mmu_notifier_range range; 2013 struct mmu_gather tlb; 2014 2015 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2016 address, end); 2017 hugetlb_zap_begin(vma, &range.start, &range.end); 2018 tlb_gather_mmu(&tlb, vma->vm_mm); 2019 update_hiwater_rss(vma->vm_mm); 2020 mmu_notifier_invalidate_range_start(&range); 2021 /* 2022 * unmap 'address-end' not 'range.start-range.end' as range 2023 * could have been expanded for hugetlb pmd sharing. 2024 */ 2025 unmap_single_vma(&tlb, vma, address, end, details, false); 2026 mmu_notifier_invalidate_range_end(&range); 2027 tlb_finish_mmu(&tlb); 2028 hugetlb_zap_end(vma, details); 2029 } 2030 2031 /** 2032 * zap_vma_ptes - remove ptes mapping the vma 2033 * @vma: vm_area_struct holding ptes to be zapped 2034 * @address: starting address of pages to zap 2035 * @size: number of bytes to zap 2036 * 2037 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2038 * 2039 * The entire address range must be fully contained within the vma. 2040 * 2041 */ 2042 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2043 unsigned long size) 2044 { 2045 if (!range_in_vma(vma, address, address + size) || 2046 !(vma->vm_flags & VM_PFNMAP)) 2047 return; 2048 2049 zap_page_range_single(vma, address, size, NULL); 2050 } 2051 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2052 2053 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2054 { 2055 pgd_t *pgd; 2056 p4d_t *p4d; 2057 pud_t *pud; 2058 pmd_t *pmd; 2059 2060 pgd = pgd_offset(mm, addr); 2061 p4d = p4d_alloc(mm, pgd, addr); 2062 if (!p4d) 2063 return NULL; 2064 pud = pud_alloc(mm, p4d, addr); 2065 if (!pud) 2066 return NULL; 2067 pmd = pmd_alloc(mm, pud, addr); 2068 if (!pmd) 2069 return NULL; 2070 2071 VM_BUG_ON(pmd_trans_huge(*pmd)); 2072 return pmd; 2073 } 2074 2075 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2076 spinlock_t **ptl) 2077 { 2078 pmd_t *pmd = walk_to_pmd(mm, addr); 2079 2080 if (!pmd) 2081 return NULL; 2082 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2083 } 2084 2085 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2086 { 2087 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2088 /* 2089 * Whoever wants to forbid the zeropage after some zeropages 2090 * might already have been mapped has to scan the page tables and 2091 * bail out on any zeropages. Zeropages in COW mappings can 2092 * be unshared using FAULT_FLAG_UNSHARE faults. 2093 */ 2094 if (mm_forbids_zeropage(vma->vm_mm)) 2095 return false; 2096 /* zeropages in COW mappings are common and unproblematic. */ 2097 if (is_cow_mapping(vma->vm_flags)) 2098 return true; 2099 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2100 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2101 return true; 2102 /* 2103 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2104 * find the shared zeropage and longterm-pin it, which would 2105 * be problematic as soon as the zeropage gets replaced by a different 2106 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2107 * now differ to what GUP looked up. FSDAX is incompatible to 2108 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2109 * check_vma_flags). 2110 */ 2111 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2112 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2113 } 2114 2115 static int validate_page_before_insert(struct vm_area_struct *vma, 2116 struct page *page) 2117 { 2118 struct folio *folio = page_folio(page); 2119 2120 if (!folio_ref_count(folio)) 2121 return -EINVAL; 2122 if (unlikely(is_zero_folio(folio))) { 2123 if (!vm_mixed_zeropage_allowed(vma)) 2124 return -EINVAL; 2125 return 0; 2126 } 2127 if (folio_test_anon(folio) || folio_test_slab(folio) || 2128 page_has_type(page)) 2129 return -EINVAL; 2130 flush_dcache_folio(folio); 2131 return 0; 2132 } 2133 2134 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2135 unsigned long addr, struct page *page, pgprot_t prot) 2136 { 2137 struct folio *folio = page_folio(page); 2138 pte_t pteval; 2139 2140 if (!pte_none(ptep_get(pte))) 2141 return -EBUSY; 2142 /* Ok, finally just insert the thing.. */ 2143 pteval = mk_pte(page, prot); 2144 if (unlikely(is_zero_folio(folio))) { 2145 pteval = pte_mkspecial(pteval); 2146 } else { 2147 folio_get(folio); 2148 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2149 folio_add_file_rmap_pte(folio, page, vma); 2150 } 2151 set_pte_at(vma->vm_mm, addr, pte, pteval); 2152 return 0; 2153 } 2154 2155 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2156 struct page *page, pgprot_t prot) 2157 { 2158 int retval; 2159 pte_t *pte; 2160 spinlock_t *ptl; 2161 2162 retval = validate_page_before_insert(vma, page); 2163 if (retval) 2164 goto out; 2165 retval = -ENOMEM; 2166 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2167 if (!pte) 2168 goto out; 2169 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2170 pte_unmap_unlock(pte, ptl); 2171 out: 2172 return retval; 2173 } 2174 2175 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2176 unsigned long addr, struct page *page, pgprot_t prot) 2177 { 2178 int err; 2179 2180 err = validate_page_before_insert(vma, page); 2181 if (err) 2182 return err; 2183 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2184 } 2185 2186 /* insert_pages() amortizes the cost of spinlock operations 2187 * when inserting pages in a loop. 2188 */ 2189 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2190 struct page **pages, unsigned long *num, pgprot_t prot) 2191 { 2192 pmd_t *pmd = NULL; 2193 pte_t *start_pte, *pte; 2194 spinlock_t *pte_lock; 2195 struct mm_struct *const mm = vma->vm_mm; 2196 unsigned long curr_page_idx = 0; 2197 unsigned long remaining_pages_total = *num; 2198 unsigned long pages_to_write_in_pmd; 2199 int ret; 2200 more: 2201 ret = -EFAULT; 2202 pmd = walk_to_pmd(mm, addr); 2203 if (!pmd) 2204 goto out; 2205 2206 pages_to_write_in_pmd = min_t(unsigned long, 2207 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2208 2209 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2210 ret = -ENOMEM; 2211 if (pte_alloc(mm, pmd)) 2212 goto out; 2213 2214 while (pages_to_write_in_pmd) { 2215 int pte_idx = 0; 2216 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2217 2218 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2219 if (!start_pte) { 2220 ret = -EFAULT; 2221 goto out; 2222 } 2223 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2224 int err = insert_page_in_batch_locked(vma, pte, 2225 addr, pages[curr_page_idx], prot); 2226 if (unlikely(err)) { 2227 pte_unmap_unlock(start_pte, pte_lock); 2228 ret = err; 2229 remaining_pages_total -= pte_idx; 2230 goto out; 2231 } 2232 addr += PAGE_SIZE; 2233 ++curr_page_idx; 2234 } 2235 pte_unmap_unlock(start_pte, pte_lock); 2236 pages_to_write_in_pmd -= batch_size; 2237 remaining_pages_total -= batch_size; 2238 } 2239 if (remaining_pages_total) 2240 goto more; 2241 ret = 0; 2242 out: 2243 *num = remaining_pages_total; 2244 return ret; 2245 } 2246 2247 /** 2248 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2249 * @vma: user vma to map to 2250 * @addr: target start user address of these pages 2251 * @pages: source kernel pages 2252 * @num: in: number of pages to map. out: number of pages that were *not* 2253 * mapped. (0 means all pages were successfully mapped). 2254 * 2255 * Preferred over vm_insert_page() when inserting multiple pages. 2256 * 2257 * In case of error, we may have mapped a subset of the provided 2258 * pages. It is the caller's responsibility to account for this case. 2259 * 2260 * The same restrictions apply as in vm_insert_page(). 2261 */ 2262 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2263 struct page **pages, unsigned long *num) 2264 { 2265 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2266 2267 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2268 return -EFAULT; 2269 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2270 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2271 BUG_ON(vma->vm_flags & VM_PFNMAP); 2272 vm_flags_set(vma, VM_MIXEDMAP); 2273 } 2274 /* Defer page refcount checking till we're about to map that page. */ 2275 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2276 } 2277 EXPORT_SYMBOL(vm_insert_pages); 2278 2279 /** 2280 * vm_insert_page - insert single page into user vma 2281 * @vma: user vma to map to 2282 * @addr: target user address of this page 2283 * @page: source kernel page 2284 * 2285 * This allows drivers to insert individual pages they've allocated 2286 * into a user vma. The zeropage is supported in some VMAs, 2287 * see vm_mixed_zeropage_allowed(). 2288 * 2289 * The page has to be a nice clean _individual_ kernel allocation. 2290 * If you allocate a compound page, you need to have marked it as 2291 * such (__GFP_COMP), or manually just split the page up yourself 2292 * (see split_page()). 2293 * 2294 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2295 * took an arbitrary page protection parameter. This doesn't allow 2296 * that. Your vma protection will have to be set up correctly, which 2297 * means that if you want a shared writable mapping, you'd better 2298 * ask for a shared writable mapping! 2299 * 2300 * The page does not need to be reserved. 2301 * 2302 * Usually this function is called from f_op->mmap() handler 2303 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2304 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2305 * function from other places, for example from page-fault handler. 2306 * 2307 * Return: %0 on success, negative error code otherwise. 2308 */ 2309 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2310 struct page *page) 2311 { 2312 if (addr < vma->vm_start || addr >= vma->vm_end) 2313 return -EFAULT; 2314 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2315 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2316 BUG_ON(vma->vm_flags & VM_PFNMAP); 2317 vm_flags_set(vma, VM_MIXEDMAP); 2318 } 2319 return insert_page(vma, addr, page, vma->vm_page_prot); 2320 } 2321 EXPORT_SYMBOL(vm_insert_page); 2322 2323 /* 2324 * __vm_map_pages - maps range of kernel pages into user vma 2325 * @vma: user vma to map to 2326 * @pages: pointer to array of source kernel pages 2327 * @num: number of pages in page array 2328 * @offset: user's requested vm_pgoff 2329 * 2330 * This allows drivers to map range of kernel pages into a user vma. 2331 * The zeropage is supported in some VMAs, see 2332 * vm_mixed_zeropage_allowed(). 2333 * 2334 * Return: 0 on success and error code otherwise. 2335 */ 2336 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2337 unsigned long num, unsigned long offset) 2338 { 2339 unsigned long count = vma_pages(vma); 2340 unsigned long uaddr = vma->vm_start; 2341 int ret, i; 2342 2343 /* Fail if the user requested offset is beyond the end of the object */ 2344 if (offset >= num) 2345 return -ENXIO; 2346 2347 /* Fail if the user requested size exceeds available object size */ 2348 if (count > num - offset) 2349 return -ENXIO; 2350 2351 for (i = 0; i < count; i++) { 2352 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2353 if (ret < 0) 2354 return ret; 2355 uaddr += PAGE_SIZE; 2356 } 2357 2358 return 0; 2359 } 2360 2361 /** 2362 * vm_map_pages - maps range of kernel pages starts with non zero offset 2363 * @vma: user vma to map to 2364 * @pages: pointer to array of source kernel pages 2365 * @num: number of pages in page array 2366 * 2367 * Maps an object consisting of @num pages, catering for the user's 2368 * requested vm_pgoff 2369 * 2370 * If we fail to insert any page into the vma, the function will return 2371 * immediately leaving any previously inserted pages present. Callers 2372 * from the mmap handler may immediately return the error as their caller 2373 * will destroy the vma, removing any successfully inserted pages. Other 2374 * callers should make their own arrangements for calling unmap_region(). 2375 * 2376 * Context: Process context. Called by mmap handlers. 2377 * Return: 0 on success and error code otherwise. 2378 */ 2379 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2380 unsigned long num) 2381 { 2382 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2383 } 2384 EXPORT_SYMBOL(vm_map_pages); 2385 2386 /** 2387 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2388 * @vma: user vma to map to 2389 * @pages: pointer to array of source kernel pages 2390 * @num: number of pages in page array 2391 * 2392 * Similar to vm_map_pages(), except that it explicitly sets the offset 2393 * to 0. This function is intended for the drivers that did not consider 2394 * vm_pgoff. 2395 * 2396 * Context: Process context. Called by mmap handlers. 2397 * Return: 0 on success and error code otherwise. 2398 */ 2399 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2400 unsigned long num) 2401 { 2402 return __vm_map_pages(vma, pages, num, 0); 2403 } 2404 EXPORT_SYMBOL(vm_map_pages_zero); 2405 2406 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2407 pfn_t pfn, pgprot_t prot, bool mkwrite) 2408 { 2409 struct mm_struct *mm = vma->vm_mm; 2410 pte_t *pte, entry; 2411 spinlock_t *ptl; 2412 2413 pte = get_locked_pte(mm, addr, &ptl); 2414 if (!pte) 2415 return VM_FAULT_OOM; 2416 entry = ptep_get(pte); 2417 if (!pte_none(entry)) { 2418 if (mkwrite) { 2419 /* 2420 * For read faults on private mappings the PFN passed 2421 * in may not match the PFN we have mapped if the 2422 * mapped PFN is a writeable COW page. In the mkwrite 2423 * case we are creating a writable PTE for a shared 2424 * mapping and we expect the PFNs to match. If they 2425 * don't match, we are likely racing with block 2426 * allocation and mapping invalidation so just skip the 2427 * update. 2428 */ 2429 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2430 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2431 goto out_unlock; 2432 } 2433 entry = pte_mkyoung(entry); 2434 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2435 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2436 update_mmu_cache(vma, addr, pte); 2437 } 2438 goto out_unlock; 2439 } 2440 2441 /* Ok, finally just insert the thing.. */ 2442 if (pfn_t_devmap(pfn)) 2443 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2444 else 2445 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2446 2447 if (mkwrite) { 2448 entry = pte_mkyoung(entry); 2449 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2450 } 2451 2452 set_pte_at(mm, addr, pte, entry); 2453 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2454 2455 out_unlock: 2456 pte_unmap_unlock(pte, ptl); 2457 return VM_FAULT_NOPAGE; 2458 } 2459 2460 /** 2461 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2462 * @vma: user vma to map to 2463 * @addr: target user address of this page 2464 * @pfn: source kernel pfn 2465 * @pgprot: pgprot flags for the inserted page 2466 * 2467 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2468 * to override pgprot on a per-page basis. 2469 * 2470 * This only makes sense for IO mappings, and it makes no sense for 2471 * COW mappings. In general, using multiple vmas is preferable; 2472 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2473 * impractical. 2474 * 2475 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2476 * caching- and encryption bits different than those of @vma->vm_page_prot, 2477 * because the caching- or encryption mode may not be known at mmap() time. 2478 * 2479 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2480 * to set caching and encryption bits for those vmas (except for COW pages). 2481 * This is ensured by core vm only modifying these page table entries using 2482 * functions that don't touch caching- or encryption bits, using pte_modify() 2483 * if needed. (See for example mprotect()). 2484 * 2485 * Also when new page-table entries are created, this is only done using the 2486 * fault() callback, and never using the value of vma->vm_page_prot, 2487 * except for page-table entries that point to anonymous pages as the result 2488 * of COW. 2489 * 2490 * Context: Process context. May allocate using %GFP_KERNEL. 2491 * Return: vm_fault_t value. 2492 */ 2493 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2494 unsigned long pfn, pgprot_t pgprot) 2495 { 2496 /* 2497 * Technically, architectures with pte_special can avoid all these 2498 * restrictions (same for remap_pfn_range). However we would like 2499 * consistency in testing and feature parity among all, so we should 2500 * try to keep these invariants in place for everybody. 2501 */ 2502 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2503 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2504 (VM_PFNMAP|VM_MIXEDMAP)); 2505 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2506 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2507 2508 if (addr < vma->vm_start || addr >= vma->vm_end) 2509 return VM_FAULT_SIGBUS; 2510 2511 if (!pfn_modify_allowed(pfn, pgprot)) 2512 return VM_FAULT_SIGBUS; 2513 2514 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2515 2516 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2517 false); 2518 } 2519 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2520 2521 /** 2522 * vmf_insert_pfn - insert single pfn into user vma 2523 * @vma: user vma to map to 2524 * @addr: target user address of this page 2525 * @pfn: source kernel pfn 2526 * 2527 * Similar to vm_insert_page, this allows drivers to insert individual pages 2528 * they've allocated into a user vma. Same comments apply. 2529 * 2530 * This function should only be called from a vm_ops->fault handler, and 2531 * in that case the handler should return the result of this function. 2532 * 2533 * vma cannot be a COW mapping. 2534 * 2535 * As this is called only for pages that do not currently exist, we 2536 * do not need to flush old virtual caches or the TLB. 2537 * 2538 * Context: Process context. May allocate using %GFP_KERNEL. 2539 * Return: vm_fault_t value. 2540 */ 2541 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2542 unsigned long pfn) 2543 { 2544 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2545 } 2546 EXPORT_SYMBOL(vmf_insert_pfn); 2547 2548 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2549 { 2550 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2551 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2552 return false; 2553 /* these checks mirror the abort conditions in vm_normal_page */ 2554 if (vma->vm_flags & VM_MIXEDMAP) 2555 return true; 2556 if (pfn_t_devmap(pfn)) 2557 return true; 2558 if (pfn_t_special(pfn)) 2559 return true; 2560 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2561 return true; 2562 return false; 2563 } 2564 2565 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2566 unsigned long addr, pfn_t pfn, bool mkwrite) 2567 { 2568 pgprot_t pgprot = vma->vm_page_prot; 2569 int err; 2570 2571 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2572 return VM_FAULT_SIGBUS; 2573 2574 if (addr < vma->vm_start || addr >= vma->vm_end) 2575 return VM_FAULT_SIGBUS; 2576 2577 track_pfn_insert(vma, &pgprot, pfn); 2578 2579 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2580 return VM_FAULT_SIGBUS; 2581 2582 /* 2583 * If we don't have pte special, then we have to use the pfn_valid() 2584 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2585 * refcount the page if pfn_valid is true (hence insert_page rather 2586 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2587 * without pte special, it would there be refcounted as a normal page. 2588 */ 2589 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2590 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2591 struct page *page; 2592 2593 /* 2594 * At this point we are committed to insert_page() 2595 * regardless of whether the caller specified flags that 2596 * result in pfn_t_has_page() == false. 2597 */ 2598 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2599 err = insert_page(vma, addr, page, pgprot); 2600 } else { 2601 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2602 } 2603 2604 if (err == -ENOMEM) 2605 return VM_FAULT_OOM; 2606 if (err < 0 && err != -EBUSY) 2607 return VM_FAULT_SIGBUS; 2608 2609 return VM_FAULT_NOPAGE; 2610 } 2611 2612 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2613 pfn_t pfn) 2614 { 2615 return __vm_insert_mixed(vma, addr, pfn, false); 2616 } 2617 EXPORT_SYMBOL(vmf_insert_mixed); 2618 2619 /* 2620 * If the insertion of PTE failed because someone else already added a 2621 * different entry in the mean time, we treat that as success as we assume 2622 * the same entry was actually inserted. 2623 */ 2624 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2625 unsigned long addr, pfn_t pfn) 2626 { 2627 return __vm_insert_mixed(vma, addr, pfn, true); 2628 } 2629 2630 /* 2631 * maps a range of physical memory into the requested pages. the old 2632 * mappings are removed. any references to nonexistent pages results 2633 * in null mappings (currently treated as "copy-on-access") 2634 */ 2635 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2636 unsigned long addr, unsigned long end, 2637 unsigned long pfn, pgprot_t prot) 2638 { 2639 pte_t *pte, *mapped_pte; 2640 spinlock_t *ptl; 2641 int err = 0; 2642 2643 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2644 if (!pte) 2645 return -ENOMEM; 2646 arch_enter_lazy_mmu_mode(); 2647 do { 2648 BUG_ON(!pte_none(ptep_get(pte))); 2649 if (!pfn_modify_allowed(pfn, prot)) { 2650 err = -EACCES; 2651 break; 2652 } 2653 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2654 pfn++; 2655 } while (pte++, addr += PAGE_SIZE, addr != end); 2656 arch_leave_lazy_mmu_mode(); 2657 pte_unmap_unlock(mapped_pte, ptl); 2658 return err; 2659 } 2660 2661 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2662 unsigned long addr, unsigned long end, 2663 unsigned long pfn, pgprot_t prot) 2664 { 2665 pmd_t *pmd; 2666 unsigned long next; 2667 int err; 2668 2669 pfn -= addr >> PAGE_SHIFT; 2670 pmd = pmd_alloc(mm, pud, addr); 2671 if (!pmd) 2672 return -ENOMEM; 2673 VM_BUG_ON(pmd_trans_huge(*pmd)); 2674 do { 2675 next = pmd_addr_end(addr, end); 2676 err = remap_pte_range(mm, pmd, addr, next, 2677 pfn + (addr >> PAGE_SHIFT), prot); 2678 if (err) 2679 return err; 2680 } while (pmd++, addr = next, addr != end); 2681 return 0; 2682 } 2683 2684 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2685 unsigned long addr, unsigned long end, 2686 unsigned long pfn, pgprot_t prot) 2687 { 2688 pud_t *pud; 2689 unsigned long next; 2690 int err; 2691 2692 pfn -= addr >> PAGE_SHIFT; 2693 pud = pud_alloc(mm, p4d, addr); 2694 if (!pud) 2695 return -ENOMEM; 2696 do { 2697 next = pud_addr_end(addr, end); 2698 err = remap_pmd_range(mm, pud, addr, next, 2699 pfn + (addr >> PAGE_SHIFT), prot); 2700 if (err) 2701 return err; 2702 } while (pud++, addr = next, addr != end); 2703 return 0; 2704 } 2705 2706 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2707 unsigned long addr, unsigned long end, 2708 unsigned long pfn, pgprot_t prot) 2709 { 2710 p4d_t *p4d; 2711 unsigned long next; 2712 int err; 2713 2714 pfn -= addr >> PAGE_SHIFT; 2715 p4d = p4d_alloc(mm, pgd, addr); 2716 if (!p4d) 2717 return -ENOMEM; 2718 do { 2719 next = p4d_addr_end(addr, end); 2720 err = remap_pud_range(mm, p4d, addr, next, 2721 pfn + (addr >> PAGE_SHIFT), prot); 2722 if (err) 2723 return err; 2724 } while (p4d++, addr = next, addr != end); 2725 return 0; 2726 } 2727 2728 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2729 unsigned long pfn, unsigned long size, pgprot_t prot) 2730 { 2731 pgd_t *pgd; 2732 unsigned long next; 2733 unsigned long end = addr + PAGE_ALIGN(size); 2734 struct mm_struct *mm = vma->vm_mm; 2735 int err; 2736 2737 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2738 return -EINVAL; 2739 2740 /* 2741 * Physically remapped pages are special. Tell the 2742 * rest of the world about it: 2743 * VM_IO tells people not to look at these pages 2744 * (accesses can have side effects). 2745 * VM_PFNMAP tells the core MM that the base pages are just 2746 * raw PFN mappings, and do not have a "struct page" associated 2747 * with them. 2748 * VM_DONTEXPAND 2749 * Disable vma merging and expanding with mremap(). 2750 * VM_DONTDUMP 2751 * Omit vma from core dump, even when VM_IO turned off. 2752 * 2753 * There's a horrible special case to handle copy-on-write 2754 * behaviour that some programs depend on. We mark the "original" 2755 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2756 * See vm_normal_page() for details. 2757 */ 2758 if (is_cow_mapping(vma->vm_flags)) { 2759 if (addr != vma->vm_start || end != vma->vm_end) 2760 return -EINVAL; 2761 vma->vm_pgoff = pfn; 2762 } 2763 2764 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2765 2766 BUG_ON(addr >= end); 2767 pfn -= addr >> PAGE_SHIFT; 2768 pgd = pgd_offset(mm, addr); 2769 flush_cache_range(vma, addr, end); 2770 do { 2771 next = pgd_addr_end(addr, end); 2772 err = remap_p4d_range(mm, pgd, addr, next, 2773 pfn + (addr >> PAGE_SHIFT), prot); 2774 if (err) 2775 return err; 2776 } while (pgd++, addr = next, addr != end); 2777 2778 return 0; 2779 } 2780 2781 /* 2782 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2783 * must have pre-validated the caching bits of the pgprot_t. 2784 */ 2785 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2786 unsigned long pfn, unsigned long size, pgprot_t prot) 2787 { 2788 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2789 2790 if (!error) 2791 return 0; 2792 2793 /* 2794 * A partial pfn range mapping is dangerous: it does not 2795 * maintain page reference counts, and callers may free 2796 * pages due to the error. So zap it early. 2797 */ 2798 zap_page_range_single(vma, addr, size, NULL); 2799 return error; 2800 } 2801 2802 /** 2803 * remap_pfn_range - remap kernel memory to userspace 2804 * @vma: user vma to map to 2805 * @addr: target page aligned user address to start at 2806 * @pfn: page frame number of kernel physical memory address 2807 * @size: size of mapping area 2808 * @prot: page protection flags for this mapping 2809 * 2810 * Note: this is only safe if the mm semaphore is held when called. 2811 * 2812 * Return: %0 on success, negative error code otherwise. 2813 */ 2814 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2815 unsigned long pfn, unsigned long size, pgprot_t prot) 2816 { 2817 int err; 2818 2819 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2820 if (err) 2821 return -EINVAL; 2822 2823 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2824 if (err) 2825 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2826 return err; 2827 } 2828 EXPORT_SYMBOL(remap_pfn_range); 2829 2830 /** 2831 * vm_iomap_memory - remap memory to userspace 2832 * @vma: user vma to map to 2833 * @start: start of the physical memory to be mapped 2834 * @len: size of area 2835 * 2836 * This is a simplified io_remap_pfn_range() for common driver use. The 2837 * driver just needs to give us the physical memory range to be mapped, 2838 * we'll figure out the rest from the vma information. 2839 * 2840 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2841 * whatever write-combining details or similar. 2842 * 2843 * Return: %0 on success, negative error code otherwise. 2844 */ 2845 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2846 { 2847 unsigned long vm_len, pfn, pages; 2848 2849 /* Check that the physical memory area passed in looks valid */ 2850 if (start + len < start) 2851 return -EINVAL; 2852 /* 2853 * You *really* shouldn't map things that aren't page-aligned, 2854 * but we've historically allowed it because IO memory might 2855 * just have smaller alignment. 2856 */ 2857 len += start & ~PAGE_MASK; 2858 pfn = start >> PAGE_SHIFT; 2859 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2860 if (pfn + pages < pfn) 2861 return -EINVAL; 2862 2863 /* We start the mapping 'vm_pgoff' pages into the area */ 2864 if (vma->vm_pgoff > pages) 2865 return -EINVAL; 2866 pfn += vma->vm_pgoff; 2867 pages -= vma->vm_pgoff; 2868 2869 /* Can we fit all of the mapping? */ 2870 vm_len = vma->vm_end - vma->vm_start; 2871 if (vm_len >> PAGE_SHIFT > pages) 2872 return -EINVAL; 2873 2874 /* Ok, let it rip */ 2875 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2876 } 2877 EXPORT_SYMBOL(vm_iomap_memory); 2878 2879 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2880 unsigned long addr, unsigned long end, 2881 pte_fn_t fn, void *data, bool create, 2882 pgtbl_mod_mask *mask) 2883 { 2884 pte_t *pte, *mapped_pte; 2885 int err = 0; 2886 spinlock_t *ptl; 2887 2888 if (create) { 2889 mapped_pte = pte = (mm == &init_mm) ? 2890 pte_alloc_kernel_track(pmd, addr, mask) : 2891 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2892 if (!pte) 2893 return -ENOMEM; 2894 } else { 2895 mapped_pte = pte = (mm == &init_mm) ? 2896 pte_offset_kernel(pmd, addr) : 2897 pte_offset_map_lock(mm, pmd, addr, &ptl); 2898 if (!pte) 2899 return -EINVAL; 2900 } 2901 2902 arch_enter_lazy_mmu_mode(); 2903 2904 if (fn) { 2905 do { 2906 if (create || !pte_none(ptep_get(pte))) { 2907 err = fn(pte++, addr, data); 2908 if (err) 2909 break; 2910 } 2911 } while (addr += PAGE_SIZE, addr != end); 2912 } 2913 *mask |= PGTBL_PTE_MODIFIED; 2914 2915 arch_leave_lazy_mmu_mode(); 2916 2917 if (mm != &init_mm) 2918 pte_unmap_unlock(mapped_pte, ptl); 2919 return err; 2920 } 2921 2922 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2923 unsigned long addr, unsigned long end, 2924 pte_fn_t fn, void *data, bool create, 2925 pgtbl_mod_mask *mask) 2926 { 2927 pmd_t *pmd; 2928 unsigned long next; 2929 int err = 0; 2930 2931 BUG_ON(pud_leaf(*pud)); 2932 2933 if (create) { 2934 pmd = pmd_alloc_track(mm, pud, addr, mask); 2935 if (!pmd) 2936 return -ENOMEM; 2937 } else { 2938 pmd = pmd_offset(pud, addr); 2939 } 2940 do { 2941 next = pmd_addr_end(addr, end); 2942 if (pmd_none(*pmd) && !create) 2943 continue; 2944 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2945 return -EINVAL; 2946 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2947 if (!create) 2948 continue; 2949 pmd_clear_bad(pmd); 2950 } 2951 err = apply_to_pte_range(mm, pmd, addr, next, 2952 fn, data, create, mask); 2953 if (err) 2954 break; 2955 } while (pmd++, addr = next, addr != end); 2956 2957 return err; 2958 } 2959 2960 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2961 unsigned long addr, unsigned long end, 2962 pte_fn_t fn, void *data, bool create, 2963 pgtbl_mod_mask *mask) 2964 { 2965 pud_t *pud; 2966 unsigned long next; 2967 int err = 0; 2968 2969 if (create) { 2970 pud = pud_alloc_track(mm, p4d, addr, mask); 2971 if (!pud) 2972 return -ENOMEM; 2973 } else { 2974 pud = pud_offset(p4d, addr); 2975 } 2976 do { 2977 next = pud_addr_end(addr, end); 2978 if (pud_none(*pud) && !create) 2979 continue; 2980 if (WARN_ON_ONCE(pud_leaf(*pud))) 2981 return -EINVAL; 2982 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2983 if (!create) 2984 continue; 2985 pud_clear_bad(pud); 2986 } 2987 err = apply_to_pmd_range(mm, pud, addr, next, 2988 fn, data, create, mask); 2989 if (err) 2990 break; 2991 } while (pud++, addr = next, addr != end); 2992 2993 return err; 2994 } 2995 2996 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2997 unsigned long addr, unsigned long end, 2998 pte_fn_t fn, void *data, bool create, 2999 pgtbl_mod_mask *mask) 3000 { 3001 p4d_t *p4d; 3002 unsigned long next; 3003 int err = 0; 3004 3005 if (create) { 3006 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3007 if (!p4d) 3008 return -ENOMEM; 3009 } else { 3010 p4d = p4d_offset(pgd, addr); 3011 } 3012 do { 3013 next = p4d_addr_end(addr, end); 3014 if (p4d_none(*p4d) && !create) 3015 continue; 3016 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3017 return -EINVAL; 3018 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3019 if (!create) 3020 continue; 3021 p4d_clear_bad(p4d); 3022 } 3023 err = apply_to_pud_range(mm, p4d, addr, next, 3024 fn, data, create, mask); 3025 if (err) 3026 break; 3027 } while (p4d++, addr = next, addr != end); 3028 3029 return err; 3030 } 3031 3032 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3033 unsigned long size, pte_fn_t fn, 3034 void *data, bool create) 3035 { 3036 pgd_t *pgd; 3037 unsigned long start = addr, next; 3038 unsigned long end = addr + size; 3039 pgtbl_mod_mask mask = 0; 3040 int err = 0; 3041 3042 if (WARN_ON(addr >= end)) 3043 return -EINVAL; 3044 3045 pgd = pgd_offset(mm, addr); 3046 do { 3047 next = pgd_addr_end(addr, end); 3048 if (pgd_none(*pgd) && !create) 3049 continue; 3050 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3051 err = -EINVAL; 3052 break; 3053 } 3054 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3055 if (!create) 3056 continue; 3057 pgd_clear_bad(pgd); 3058 } 3059 err = apply_to_p4d_range(mm, pgd, addr, next, 3060 fn, data, create, &mask); 3061 if (err) 3062 break; 3063 } while (pgd++, addr = next, addr != end); 3064 3065 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3066 arch_sync_kernel_mappings(start, start + size); 3067 3068 return err; 3069 } 3070 3071 /* 3072 * Scan a region of virtual memory, filling in page tables as necessary 3073 * and calling a provided function on each leaf page table. 3074 */ 3075 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3076 unsigned long size, pte_fn_t fn, void *data) 3077 { 3078 return __apply_to_page_range(mm, addr, size, fn, data, true); 3079 } 3080 EXPORT_SYMBOL_GPL(apply_to_page_range); 3081 3082 /* 3083 * Scan a region of virtual memory, calling a provided function on 3084 * each leaf page table where it exists. 3085 * 3086 * Unlike apply_to_page_range, this does _not_ fill in page tables 3087 * where they are absent. 3088 */ 3089 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3090 unsigned long size, pte_fn_t fn, void *data) 3091 { 3092 return __apply_to_page_range(mm, addr, size, fn, data, false); 3093 } 3094 3095 /* 3096 * handle_pte_fault chooses page fault handler according to an entry which was 3097 * read non-atomically. Before making any commitment, on those architectures 3098 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3099 * parts, do_swap_page must check under lock before unmapping the pte and 3100 * proceeding (but do_wp_page is only called after already making such a check; 3101 * and do_anonymous_page can safely check later on). 3102 */ 3103 static inline int pte_unmap_same(struct vm_fault *vmf) 3104 { 3105 int same = 1; 3106 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3107 if (sizeof(pte_t) > sizeof(unsigned long)) { 3108 spin_lock(vmf->ptl); 3109 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3110 spin_unlock(vmf->ptl); 3111 } 3112 #endif 3113 pte_unmap(vmf->pte); 3114 vmf->pte = NULL; 3115 return same; 3116 } 3117 3118 /* 3119 * Return: 3120 * 0: copied succeeded 3121 * -EHWPOISON: copy failed due to hwpoison in source page 3122 * -EAGAIN: copied failed (some other reason) 3123 */ 3124 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3125 struct vm_fault *vmf) 3126 { 3127 int ret; 3128 void *kaddr; 3129 void __user *uaddr; 3130 struct vm_area_struct *vma = vmf->vma; 3131 struct mm_struct *mm = vma->vm_mm; 3132 unsigned long addr = vmf->address; 3133 3134 if (likely(src)) { 3135 if (copy_mc_user_highpage(dst, src, addr, vma)) 3136 return -EHWPOISON; 3137 return 0; 3138 } 3139 3140 /* 3141 * If the source page was a PFN mapping, we don't have 3142 * a "struct page" for it. We do a best-effort copy by 3143 * just copying from the original user address. If that 3144 * fails, we just zero-fill it. Live with it. 3145 */ 3146 kaddr = kmap_local_page(dst); 3147 pagefault_disable(); 3148 uaddr = (void __user *)(addr & PAGE_MASK); 3149 3150 /* 3151 * On architectures with software "accessed" bits, we would 3152 * take a double page fault, so mark it accessed here. 3153 */ 3154 vmf->pte = NULL; 3155 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3156 pte_t entry; 3157 3158 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3159 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3160 /* 3161 * Other thread has already handled the fault 3162 * and update local tlb only 3163 */ 3164 if (vmf->pte) 3165 update_mmu_tlb(vma, addr, vmf->pte); 3166 ret = -EAGAIN; 3167 goto pte_unlock; 3168 } 3169 3170 entry = pte_mkyoung(vmf->orig_pte); 3171 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3172 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3173 } 3174 3175 /* 3176 * This really shouldn't fail, because the page is there 3177 * in the page tables. But it might just be unreadable, 3178 * in which case we just give up and fill the result with 3179 * zeroes. 3180 */ 3181 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3182 if (vmf->pte) 3183 goto warn; 3184 3185 /* Re-validate under PTL if the page is still mapped */ 3186 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3187 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3188 /* The PTE changed under us, update local tlb */ 3189 if (vmf->pte) 3190 update_mmu_tlb(vma, addr, vmf->pte); 3191 ret = -EAGAIN; 3192 goto pte_unlock; 3193 } 3194 3195 /* 3196 * The same page can be mapped back since last copy attempt. 3197 * Try to copy again under PTL. 3198 */ 3199 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3200 /* 3201 * Give a warn in case there can be some obscure 3202 * use-case 3203 */ 3204 warn: 3205 WARN_ON_ONCE(1); 3206 clear_page(kaddr); 3207 } 3208 } 3209 3210 ret = 0; 3211 3212 pte_unlock: 3213 if (vmf->pte) 3214 pte_unmap_unlock(vmf->pte, vmf->ptl); 3215 pagefault_enable(); 3216 kunmap_local(kaddr); 3217 flush_dcache_page(dst); 3218 3219 return ret; 3220 } 3221 3222 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3223 { 3224 struct file *vm_file = vma->vm_file; 3225 3226 if (vm_file) 3227 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3228 3229 /* 3230 * Special mappings (e.g. VDSO) do not have any file so fake 3231 * a default GFP_KERNEL for them. 3232 */ 3233 return GFP_KERNEL; 3234 } 3235 3236 /* 3237 * Notify the address space that the page is about to become writable so that 3238 * it can prohibit this or wait for the page to get into an appropriate state. 3239 * 3240 * We do this without the lock held, so that it can sleep if it needs to. 3241 */ 3242 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3243 { 3244 vm_fault_t ret; 3245 unsigned int old_flags = vmf->flags; 3246 3247 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3248 3249 if (vmf->vma->vm_file && 3250 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3251 return VM_FAULT_SIGBUS; 3252 3253 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3254 /* Restore original flags so that caller is not surprised */ 3255 vmf->flags = old_flags; 3256 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3257 return ret; 3258 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3259 folio_lock(folio); 3260 if (!folio->mapping) { 3261 folio_unlock(folio); 3262 return 0; /* retry */ 3263 } 3264 ret |= VM_FAULT_LOCKED; 3265 } else 3266 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3267 return ret; 3268 } 3269 3270 /* 3271 * Handle dirtying of a page in shared file mapping on a write fault. 3272 * 3273 * The function expects the page to be locked and unlocks it. 3274 */ 3275 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3276 { 3277 struct vm_area_struct *vma = vmf->vma; 3278 struct address_space *mapping; 3279 struct folio *folio = page_folio(vmf->page); 3280 bool dirtied; 3281 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3282 3283 dirtied = folio_mark_dirty(folio); 3284 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3285 /* 3286 * Take a local copy of the address_space - folio.mapping may be zeroed 3287 * by truncate after folio_unlock(). The address_space itself remains 3288 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3289 * release semantics to prevent the compiler from undoing this copying. 3290 */ 3291 mapping = folio_raw_mapping(folio); 3292 folio_unlock(folio); 3293 3294 if (!page_mkwrite) 3295 file_update_time(vma->vm_file); 3296 3297 /* 3298 * Throttle page dirtying rate down to writeback speed. 3299 * 3300 * mapping may be NULL here because some device drivers do not 3301 * set page.mapping but still dirty their pages 3302 * 3303 * Drop the mmap_lock before waiting on IO, if we can. The file 3304 * is pinning the mapping, as per above. 3305 */ 3306 if ((dirtied || page_mkwrite) && mapping) { 3307 struct file *fpin; 3308 3309 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3310 balance_dirty_pages_ratelimited(mapping); 3311 if (fpin) { 3312 fput(fpin); 3313 return VM_FAULT_COMPLETED; 3314 } 3315 } 3316 3317 return 0; 3318 } 3319 3320 /* 3321 * Handle write page faults for pages that can be reused in the current vma 3322 * 3323 * This can happen either due to the mapping being with the VM_SHARED flag, 3324 * or due to us being the last reference standing to the page. In either 3325 * case, all we need to do here is to mark the page as writable and update 3326 * any related book-keeping. 3327 */ 3328 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3329 __releases(vmf->ptl) 3330 { 3331 struct vm_area_struct *vma = vmf->vma; 3332 pte_t entry; 3333 3334 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3335 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3336 3337 if (folio) { 3338 VM_BUG_ON(folio_test_anon(folio) && 3339 !PageAnonExclusive(vmf->page)); 3340 /* 3341 * Clear the folio's cpupid information as the existing 3342 * information potentially belongs to a now completely 3343 * unrelated process. 3344 */ 3345 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3346 } 3347 3348 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3349 entry = pte_mkyoung(vmf->orig_pte); 3350 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3351 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3352 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3353 pte_unmap_unlock(vmf->pte, vmf->ptl); 3354 count_vm_event(PGREUSE); 3355 } 3356 3357 /* 3358 * We could add a bitflag somewhere, but for now, we know that all 3359 * vm_ops that have a ->map_pages have been audited and don't need 3360 * the mmap_lock to be held. 3361 */ 3362 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3363 { 3364 struct vm_area_struct *vma = vmf->vma; 3365 3366 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3367 return 0; 3368 vma_end_read(vma); 3369 return VM_FAULT_RETRY; 3370 } 3371 3372 /** 3373 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3374 * @vmf: The vm_fault descriptor passed from the fault handler. 3375 * 3376 * When preparing to insert an anonymous page into a VMA from a 3377 * fault handler, call this function rather than anon_vma_prepare(). 3378 * If this vma does not already have an associated anon_vma and we are 3379 * only protected by the per-VMA lock, the caller must retry with the 3380 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3381 * determine if this VMA can share its anon_vma, and that's not safe to 3382 * do with only the per-VMA lock held for this VMA. 3383 * 3384 * Return: 0 if fault handling can proceed. Any other value should be 3385 * returned to the caller. 3386 */ 3387 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3388 { 3389 struct vm_area_struct *vma = vmf->vma; 3390 vm_fault_t ret = 0; 3391 3392 if (likely(vma->anon_vma)) 3393 return 0; 3394 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3395 if (!mmap_read_trylock(vma->vm_mm)) 3396 return VM_FAULT_RETRY; 3397 } 3398 if (__anon_vma_prepare(vma)) 3399 ret = VM_FAULT_OOM; 3400 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3401 mmap_read_unlock(vma->vm_mm); 3402 return ret; 3403 } 3404 3405 /* 3406 * Handle the case of a page which we actually need to copy to a new page, 3407 * either due to COW or unsharing. 3408 * 3409 * Called with mmap_lock locked and the old page referenced, but 3410 * without the ptl held. 3411 * 3412 * High level logic flow: 3413 * 3414 * - Allocate a page, copy the content of the old page to the new one. 3415 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3416 * - Take the PTL. If the pte changed, bail out and release the allocated page 3417 * - If the pte is still the way we remember it, update the page table and all 3418 * relevant references. This includes dropping the reference the page-table 3419 * held to the old page, as well as updating the rmap. 3420 * - In any case, unlock the PTL and drop the reference we took to the old page. 3421 */ 3422 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3423 { 3424 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3425 struct vm_area_struct *vma = vmf->vma; 3426 struct mm_struct *mm = vma->vm_mm; 3427 struct folio *old_folio = NULL; 3428 struct folio *new_folio = NULL; 3429 pte_t entry; 3430 int page_copied = 0; 3431 struct mmu_notifier_range range; 3432 vm_fault_t ret; 3433 bool pfn_is_zero; 3434 3435 delayacct_wpcopy_start(); 3436 3437 if (vmf->page) 3438 old_folio = page_folio(vmf->page); 3439 ret = vmf_anon_prepare(vmf); 3440 if (unlikely(ret)) 3441 goto out; 3442 3443 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3444 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3445 if (!new_folio) 3446 goto oom; 3447 3448 if (!pfn_is_zero) { 3449 int err; 3450 3451 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3452 if (err) { 3453 /* 3454 * COW failed, if the fault was solved by other, 3455 * it's fine. If not, userspace would re-fault on 3456 * the same address and we will handle the fault 3457 * from the second attempt. 3458 * The -EHWPOISON case will not be retried. 3459 */ 3460 folio_put(new_folio); 3461 if (old_folio) 3462 folio_put(old_folio); 3463 3464 delayacct_wpcopy_end(); 3465 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3466 } 3467 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3468 } 3469 3470 __folio_mark_uptodate(new_folio); 3471 3472 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3473 vmf->address & PAGE_MASK, 3474 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3475 mmu_notifier_invalidate_range_start(&range); 3476 3477 /* 3478 * Re-check the pte - we dropped the lock 3479 */ 3480 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3481 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3482 if (old_folio) { 3483 if (!folio_test_anon(old_folio)) { 3484 dec_mm_counter(mm, mm_counter_file(old_folio)); 3485 inc_mm_counter(mm, MM_ANONPAGES); 3486 } 3487 } else { 3488 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3489 inc_mm_counter(mm, MM_ANONPAGES); 3490 } 3491 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3492 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3493 entry = pte_sw_mkyoung(entry); 3494 if (unlikely(unshare)) { 3495 if (pte_soft_dirty(vmf->orig_pte)) 3496 entry = pte_mksoft_dirty(entry); 3497 if (pte_uffd_wp(vmf->orig_pte)) 3498 entry = pte_mkuffd_wp(entry); 3499 } else { 3500 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3501 } 3502 3503 /* 3504 * Clear the pte entry and flush it first, before updating the 3505 * pte with the new entry, to keep TLBs on different CPUs in 3506 * sync. This code used to set the new PTE then flush TLBs, but 3507 * that left a window where the new PTE could be loaded into 3508 * some TLBs while the old PTE remains in others. 3509 */ 3510 ptep_clear_flush(vma, vmf->address, vmf->pte); 3511 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3512 folio_add_lru_vma(new_folio, vma); 3513 BUG_ON(unshare && pte_write(entry)); 3514 set_pte_at(mm, vmf->address, vmf->pte, entry); 3515 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3516 if (old_folio) { 3517 /* 3518 * Only after switching the pte to the new page may 3519 * we remove the mapcount here. Otherwise another 3520 * process may come and find the rmap count decremented 3521 * before the pte is switched to the new page, and 3522 * "reuse" the old page writing into it while our pte 3523 * here still points into it and can be read by other 3524 * threads. 3525 * 3526 * The critical issue is to order this 3527 * folio_remove_rmap_pte() with the ptp_clear_flush 3528 * above. Those stores are ordered by (if nothing else,) 3529 * the barrier present in the atomic_add_negative 3530 * in folio_remove_rmap_pte(); 3531 * 3532 * Then the TLB flush in ptep_clear_flush ensures that 3533 * no process can access the old page before the 3534 * decremented mapcount is visible. And the old page 3535 * cannot be reused until after the decremented 3536 * mapcount is visible. So transitively, TLBs to 3537 * old page will be flushed before it can be reused. 3538 */ 3539 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3540 } 3541 3542 /* Free the old page.. */ 3543 new_folio = old_folio; 3544 page_copied = 1; 3545 pte_unmap_unlock(vmf->pte, vmf->ptl); 3546 } else if (vmf->pte) { 3547 update_mmu_tlb(vma, vmf->address, vmf->pte); 3548 pte_unmap_unlock(vmf->pte, vmf->ptl); 3549 } 3550 3551 mmu_notifier_invalidate_range_end(&range); 3552 3553 if (new_folio) 3554 folio_put(new_folio); 3555 if (old_folio) { 3556 if (page_copied) 3557 free_swap_cache(old_folio); 3558 folio_put(old_folio); 3559 } 3560 3561 delayacct_wpcopy_end(); 3562 return 0; 3563 oom: 3564 ret = VM_FAULT_OOM; 3565 out: 3566 if (old_folio) 3567 folio_put(old_folio); 3568 3569 delayacct_wpcopy_end(); 3570 return ret; 3571 } 3572 3573 /** 3574 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3575 * writeable once the page is prepared 3576 * 3577 * @vmf: structure describing the fault 3578 * @folio: the folio of vmf->page 3579 * 3580 * This function handles all that is needed to finish a write page fault in a 3581 * shared mapping due to PTE being read-only once the mapped page is prepared. 3582 * It handles locking of PTE and modifying it. 3583 * 3584 * The function expects the page to be locked or other protection against 3585 * concurrent faults / writeback (such as DAX radix tree locks). 3586 * 3587 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3588 * we acquired PTE lock. 3589 */ 3590 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3591 { 3592 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3593 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3594 &vmf->ptl); 3595 if (!vmf->pte) 3596 return VM_FAULT_NOPAGE; 3597 /* 3598 * We might have raced with another page fault while we released the 3599 * pte_offset_map_lock. 3600 */ 3601 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3602 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3603 pte_unmap_unlock(vmf->pte, vmf->ptl); 3604 return VM_FAULT_NOPAGE; 3605 } 3606 wp_page_reuse(vmf, folio); 3607 return 0; 3608 } 3609 3610 /* 3611 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3612 * mapping 3613 */ 3614 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3615 { 3616 struct vm_area_struct *vma = vmf->vma; 3617 3618 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3619 vm_fault_t ret; 3620 3621 pte_unmap_unlock(vmf->pte, vmf->ptl); 3622 ret = vmf_can_call_fault(vmf); 3623 if (ret) 3624 return ret; 3625 3626 vmf->flags |= FAULT_FLAG_MKWRITE; 3627 ret = vma->vm_ops->pfn_mkwrite(vmf); 3628 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3629 return ret; 3630 return finish_mkwrite_fault(vmf, NULL); 3631 } 3632 wp_page_reuse(vmf, NULL); 3633 return 0; 3634 } 3635 3636 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3637 __releases(vmf->ptl) 3638 { 3639 struct vm_area_struct *vma = vmf->vma; 3640 vm_fault_t ret = 0; 3641 3642 folio_get(folio); 3643 3644 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3645 vm_fault_t tmp; 3646 3647 pte_unmap_unlock(vmf->pte, vmf->ptl); 3648 tmp = vmf_can_call_fault(vmf); 3649 if (tmp) { 3650 folio_put(folio); 3651 return tmp; 3652 } 3653 3654 tmp = do_page_mkwrite(vmf, folio); 3655 if (unlikely(!tmp || (tmp & 3656 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3657 folio_put(folio); 3658 return tmp; 3659 } 3660 tmp = finish_mkwrite_fault(vmf, folio); 3661 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3662 folio_unlock(folio); 3663 folio_put(folio); 3664 return tmp; 3665 } 3666 } else { 3667 wp_page_reuse(vmf, folio); 3668 folio_lock(folio); 3669 } 3670 ret |= fault_dirty_shared_page(vmf); 3671 folio_put(folio); 3672 3673 return ret; 3674 } 3675 3676 static bool wp_can_reuse_anon_folio(struct folio *folio, 3677 struct vm_area_struct *vma) 3678 { 3679 /* 3680 * We could currently only reuse a subpage of a large folio if no 3681 * other subpages of the large folios are still mapped. However, 3682 * let's just consistently not reuse subpages even if we could 3683 * reuse in that scenario, and give back a large folio a bit 3684 * sooner. 3685 */ 3686 if (folio_test_large(folio)) 3687 return false; 3688 3689 /* 3690 * We have to verify under folio lock: these early checks are 3691 * just an optimization to avoid locking the folio and freeing 3692 * the swapcache if there is little hope that we can reuse. 3693 * 3694 * KSM doesn't necessarily raise the folio refcount. 3695 */ 3696 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3697 return false; 3698 if (!folio_test_lru(folio)) 3699 /* 3700 * We cannot easily detect+handle references from 3701 * remote LRU caches or references to LRU folios. 3702 */ 3703 lru_add_drain(); 3704 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3705 return false; 3706 if (!folio_trylock(folio)) 3707 return false; 3708 if (folio_test_swapcache(folio)) 3709 folio_free_swap(folio); 3710 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3711 folio_unlock(folio); 3712 return false; 3713 } 3714 /* 3715 * Ok, we've got the only folio reference from our mapping 3716 * and the folio is locked, it's dark out, and we're wearing 3717 * sunglasses. Hit it. 3718 */ 3719 folio_move_anon_rmap(folio, vma); 3720 folio_unlock(folio); 3721 return true; 3722 } 3723 3724 /* 3725 * This routine handles present pages, when 3726 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3727 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3728 * (FAULT_FLAG_UNSHARE) 3729 * 3730 * It is done by copying the page to a new address and decrementing the 3731 * shared-page counter for the old page. 3732 * 3733 * Note that this routine assumes that the protection checks have been 3734 * done by the caller (the low-level page fault routine in most cases). 3735 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3736 * done any necessary COW. 3737 * 3738 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3739 * though the page will change only once the write actually happens. This 3740 * avoids a few races, and potentially makes it more efficient. 3741 * 3742 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3743 * but allow concurrent faults), with pte both mapped and locked. 3744 * We return with mmap_lock still held, but pte unmapped and unlocked. 3745 */ 3746 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3747 __releases(vmf->ptl) 3748 { 3749 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3750 struct vm_area_struct *vma = vmf->vma; 3751 struct folio *folio = NULL; 3752 pte_t pte; 3753 3754 if (likely(!unshare)) { 3755 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3756 if (!userfaultfd_wp_async(vma)) { 3757 pte_unmap_unlock(vmf->pte, vmf->ptl); 3758 return handle_userfault(vmf, VM_UFFD_WP); 3759 } 3760 3761 /* 3762 * Nothing needed (cache flush, TLB invalidations, 3763 * etc.) because we're only removing the uffd-wp bit, 3764 * which is completely invisible to the user. 3765 */ 3766 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3767 3768 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3769 /* 3770 * Update this to be prepared for following up CoW 3771 * handling 3772 */ 3773 vmf->orig_pte = pte; 3774 } 3775 3776 /* 3777 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3778 * is flushed in this case before copying. 3779 */ 3780 if (unlikely(userfaultfd_wp(vmf->vma) && 3781 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3782 flush_tlb_page(vmf->vma, vmf->address); 3783 } 3784 3785 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3786 3787 if (vmf->page) 3788 folio = page_folio(vmf->page); 3789 3790 /* 3791 * Shared mapping: we are guaranteed to have VM_WRITE and 3792 * FAULT_FLAG_WRITE set at this point. 3793 */ 3794 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3795 /* 3796 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3797 * VM_PFNMAP VMA. 3798 * 3799 * We should not cow pages in a shared writeable mapping. 3800 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3801 */ 3802 if (!vmf->page) 3803 return wp_pfn_shared(vmf); 3804 return wp_page_shared(vmf, folio); 3805 } 3806 3807 /* 3808 * Private mapping: create an exclusive anonymous page copy if reuse 3809 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3810 * 3811 * If we encounter a page that is marked exclusive, we must reuse 3812 * the page without further checks. 3813 */ 3814 if (folio && folio_test_anon(folio) && 3815 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3816 if (!PageAnonExclusive(vmf->page)) 3817 SetPageAnonExclusive(vmf->page); 3818 if (unlikely(unshare)) { 3819 pte_unmap_unlock(vmf->pte, vmf->ptl); 3820 return 0; 3821 } 3822 wp_page_reuse(vmf, folio); 3823 return 0; 3824 } 3825 /* 3826 * Ok, we need to copy. Oh, well.. 3827 */ 3828 if (folio) 3829 folio_get(folio); 3830 3831 pte_unmap_unlock(vmf->pte, vmf->ptl); 3832 #ifdef CONFIG_KSM 3833 if (folio && folio_test_ksm(folio)) 3834 count_vm_event(COW_KSM); 3835 #endif 3836 return wp_page_copy(vmf); 3837 } 3838 3839 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3840 unsigned long start_addr, unsigned long end_addr, 3841 struct zap_details *details) 3842 { 3843 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3844 } 3845 3846 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3847 pgoff_t first_index, 3848 pgoff_t last_index, 3849 struct zap_details *details) 3850 { 3851 struct vm_area_struct *vma; 3852 pgoff_t vba, vea, zba, zea; 3853 3854 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3855 vba = vma->vm_pgoff; 3856 vea = vba + vma_pages(vma) - 1; 3857 zba = max(first_index, vba); 3858 zea = min(last_index, vea); 3859 3860 unmap_mapping_range_vma(vma, 3861 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3862 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3863 details); 3864 } 3865 } 3866 3867 /** 3868 * unmap_mapping_folio() - Unmap single folio from processes. 3869 * @folio: The locked folio to be unmapped. 3870 * 3871 * Unmap this folio from any userspace process which still has it mmaped. 3872 * Typically, for efficiency, the range of nearby pages has already been 3873 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3874 * truncation or invalidation holds the lock on a folio, it may find that 3875 * the page has been remapped again: and then uses unmap_mapping_folio() 3876 * to unmap it finally. 3877 */ 3878 void unmap_mapping_folio(struct folio *folio) 3879 { 3880 struct address_space *mapping = folio->mapping; 3881 struct zap_details details = { }; 3882 pgoff_t first_index; 3883 pgoff_t last_index; 3884 3885 VM_BUG_ON(!folio_test_locked(folio)); 3886 3887 first_index = folio->index; 3888 last_index = folio_next_index(folio) - 1; 3889 3890 details.even_cows = false; 3891 details.single_folio = folio; 3892 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3893 3894 i_mmap_lock_read(mapping); 3895 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3896 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3897 last_index, &details); 3898 i_mmap_unlock_read(mapping); 3899 } 3900 3901 /** 3902 * unmap_mapping_pages() - Unmap pages from processes. 3903 * @mapping: The address space containing pages to be unmapped. 3904 * @start: Index of first page to be unmapped. 3905 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3906 * @even_cows: Whether to unmap even private COWed pages. 3907 * 3908 * Unmap the pages in this address space from any userspace process which 3909 * has them mmaped. Generally, you want to remove COWed pages as well when 3910 * a file is being truncated, but not when invalidating pages from the page 3911 * cache. 3912 */ 3913 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3914 pgoff_t nr, bool even_cows) 3915 { 3916 struct zap_details details = { }; 3917 pgoff_t first_index = start; 3918 pgoff_t last_index = start + nr - 1; 3919 3920 details.even_cows = even_cows; 3921 if (last_index < first_index) 3922 last_index = ULONG_MAX; 3923 3924 i_mmap_lock_read(mapping); 3925 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3926 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3927 last_index, &details); 3928 i_mmap_unlock_read(mapping); 3929 } 3930 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3931 3932 /** 3933 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3934 * address_space corresponding to the specified byte range in the underlying 3935 * file. 3936 * 3937 * @mapping: the address space containing mmaps to be unmapped. 3938 * @holebegin: byte in first page to unmap, relative to the start of 3939 * the underlying file. This will be rounded down to a PAGE_SIZE 3940 * boundary. Note that this is different from truncate_pagecache(), which 3941 * must keep the partial page. In contrast, we must get rid of 3942 * partial pages. 3943 * @holelen: size of prospective hole in bytes. This will be rounded 3944 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3945 * end of the file. 3946 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3947 * but 0 when invalidating pagecache, don't throw away private data. 3948 */ 3949 void unmap_mapping_range(struct address_space *mapping, 3950 loff_t const holebegin, loff_t const holelen, int even_cows) 3951 { 3952 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3953 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3954 3955 /* Check for overflow. */ 3956 if (sizeof(holelen) > sizeof(hlen)) { 3957 long long holeend = 3958 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3959 if (holeend & ~(long long)ULONG_MAX) 3960 hlen = ULONG_MAX - hba + 1; 3961 } 3962 3963 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3964 } 3965 EXPORT_SYMBOL(unmap_mapping_range); 3966 3967 /* 3968 * Restore a potential device exclusive pte to a working pte entry 3969 */ 3970 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3971 { 3972 struct folio *folio = page_folio(vmf->page); 3973 struct vm_area_struct *vma = vmf->vma; 3974 struct mmu_notifier_range range; 3975 vm_fault_t ret; 3976 3977 /* 3978 * We need a reference to lock the folio because we don't hold 3979 * the PTL so a racing thread can remove the device-exclusive 3980 * entry and unmap it. If the folio is free the entry must 3981 * have been removed already. If it happens to have already 3982 * been re-allocated after being freed all we do is lock and 3983 * unlock it. 3984 */ 3985 if (!folio_try_get(folio)) 3986 return 0; 3987 3988 ret = folio_lock_or_retry(folio, vmf); 3989 if (ret) { 3990 folio_put(folio); 3991 return ret; 3992 } 3993 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3994 vma->vm_mm, vmf->address & PAGE_MASK, 3995 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3996 mmu_notifier_invalidate_range_start(&range); 3997 3998 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3999 &vmf->ptl); 4000 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4001 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 4002 4003 if (vmf->pte) 4004 pte_unmap_unlock(vmf->pte, vmf->ptl); 4005 folio_unlock(folio); 4006 folio_put(folio); 4007 4008 mmu_notifier_invalidate_range_end(&range); 4009 return 0; 4010 } 4011 4012 static inline bool should_try_to_free_swap(struct folio *folio, 4013 struct vm_area_struct *vma, 4014 unsigned int fault_flags) 4015 { 4016 if (!folio_test_swapcache(folio)) 4017 return false; 4018 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4019 folio_test_mlocked(folio)) 4020 return true; 4021 /* 4022 * If we want to map a page that's in the swapcache writable, we 4023 * have to detect via the refcount if we're really the exclusive 4024 * user. Try freeing the swapcache to get rid of the swapcache 4025 * reference only in case it's likely that we'll be the exlusive user. 4026 */ 4027 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4028 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4029 } 4030 4031 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4032 { 4033 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4034 vmf->address, &vmf->ptl); 4035 if (!vmf->pte) 4036 return 0; 4037 /* 4038 * Be careful so that we will only recover a special uffd-wp pte into a 4039 * none pte. Otherwise it means the pte could have changed, so retry. 4040 * 4041 * This should also cover the case where e.g. the pte changed 4042 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4043 * So is_pte_marker() check is not enough to safely drop the pte. 4044 */ 4045 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4046 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4047 pte_unmap_unlock(vmf->pte, vmf->ptl); 4048 return 0; 4049 } 4050 4051 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4052 { 4053 if (vma_is_anonymous(vmf->vma)) 4054 return do_anonymous_page(vmf); 4055 else 4056 return do_fault(vmf); 4057 } 4058 4059 /* 4060 * This is actually a page-missing access, but with uffd-wp special pte 4061 * installed. It means this pte was wr-protected before being unmapped. 4062 */ 4063 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4064 { 4065 /* 4066 * Just in case there're leftover special ptes even after the region 4067 * got unregistered - we can simply clear them. 4068 */ 4069 if (unlikely(!userfaultfd_wp(vmf->vma))) 4070 return pte_marker_clear(vmf); 4071 4072 return do_pte_missing(vmf); 4073 } 4074 4075 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4076 { 4077 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4078 unsigned long marker = pte_marker_get(entry); 4079 4080 /* 4081 * PTE markers should never be empty. If anything weird happened, 4082 * the best thing to do is to kill the process along with its mm. 4083 */ 4084 if (WARN_ON_ONCE(!marker)) 4085 return VM_FAULT_SIGBUS; 4086 4087 /* Higher priority than uffd-wp when data corrupted */ 4088 if (marker & PTE_MARKER_POISONED) 4089 return VM_FAULT_HWPOISON; 4090 4091 /* Hitting a guard page is always a fatal condition. */ 4092 if (marker & PTE_MARKER_GUARD) 4093 return VM_FAULT_SIGSEGV; 4094 4095 if (pte_marker_entry_uffd_wp(entry)) 4096 return pte_marker_handle_uffd_wp(vmf); 4097 4098 /* This is an unknown pte marker */ 4099 return VM_FAULT_SIGBUS; 4100 } 4101 4102 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4103 { 4104 struct vm_area_struct *vma = vmf->vma; 4105 struct folio *folio; 4106 swp_entry_t entry; 4107 4108 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4109 if (!folio) 4110 return NULL; 4111 4112 entry = pte_to_swp_entry(vmf->orig_pte); 4113 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4114 GFP_KERNEL, entry)) { 4115 folio_put(folio); 4116 return NULL; 4117 } 4118 4119 return folio; 4120 } 4121 4122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4123 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4124 { 4125 struct swap_info_struct *si = swp_swap_info(entry); 4126 pgoff_t offset = swp_offset(entry); 4127 int i; 4128 4129 /* 4130 * While allocating a large folio and doing swap_read_folio, which is 4131 * the case the being faulted pte doesn't have swapcache. We need to 4132 * ensure all PTEs have no cache as well, otherwise, we might go to 4133 * swap devices while the content is in swapcache. 4134 */ 4135 for (i = 0; i < max_nr; i++) { 4136 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4137 return i; 4138 } 4139 4140 return i; 4141 } 4142 4143 /* 4144 * Check if the PTEs within a range are contiguous swap entries 4145 * and have consistent swapcache, zeromap. 4146 */ 4147 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4148 { 4149 unsigned long addr; 4150 swp_entry_t entry; 4151 int idx; 4152 pte_t pte; 4153 4154 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4155 idx = (vmf->address - addr) / PAGE_SIZE; 4156 pte = ptep_get(ptep); 4157 4158 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4159 return false; 4160 entry = pte_to_swp_entry(pte); 4161 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4162 return false; 4163 4164 /* 4165 * swap_read_folio() can't handle the case a large folio is hybridly 4166 * from different backends. And they are likely corner cases. Similar 4167 * things might be added once zswap support large folios. 4168 */ 4169 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4170 return false; 4171 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4172 return false; 4173 4174 return true; 4175 } 4176 4177 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4178 unsigned long addr, 4179 unsigned long orders) 4180 { 4181 int order, nr; 4182 4183 order = highest_order(orders); 4184 4185 /* 4186 * To swap in a THP with nr pages, we require that its first swap_offset 4187 * is aligned with that number, as it was when the THP was swapped out. 4188 * This helps filter out most invalid entries. 4189 */ 4190 while (orders) { 4191 nr = 1 << order; 4192 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4193 break; 4194 order = next_order(&orders, order); 4195 } 4196 4197 return orders; 4198 } 4199 4200 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4201 { 4202 struct vm_area_struct *vma = vmf->vma; 4203 unsigned long orders; 4204 struct folio *folio; 4205 unsigned long addr; 4206 swp_entry_t entry; 4207 spinlock_t *ptl; 4208 pte_t *pte; 4209 gfp_t gfp; 4210 int order; 4211 4212 /* 4213 * If uffd is active for the vma we need per-page fault fidelity to 4214 * maintain the uffd semantics. 4215 */ 4216 if (unlikely(userfaultfd_armed(vma))) 4217 goto fallback; 4218 4219 /* 4220 * A large swapped out folio could be partially or fully in zswap. We 4221 * lack handling for such cases, so fallback to swapping in order-0 4222 * folio. 4223 */ 4224 if (!zswap_never_enabled()) 4225 goto fallback; 4226 4227 entry = pte_to_swp_entry(vmf->orig_pte); 4228 /* 4229 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4230 * and suitable for swapping THP. 4231 */ 4232 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4233 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4234 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4235 orders = thp_swap_suitable_orders(swp_offset(entry), 4236 vmf->address, orders); 4237 4238 if (!orders) 4239 goto fallback; 4240 4241 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4242 vmf->address & PMD_MASK, &ptl); 4243 if (unlikely(!pte)) 4244 goto fallback; 4245 4246 /* 4247 * For do_swap_page, find the highest order where the aligned range is 4248 * completely swap entries with contiguous swap offsets. 4249 */ 4250 order = highest_order(orders); 4251 while (orders) { 4252 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4253 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4254 break; 4255 order = next_order(&orders, order); 4256 } 4257 4258 pte_unmap_unlock(pte, ptl); 4259 4260 /* Try allocating the highest of the remaining orders. */ 4261 gfp = vma_thp_gfp_mask(vma); 4262 while (orders) { 4263 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4264 folio = vma_alloc_folio(gfp, order, vma, addr); 4265 if (folio) { 4266 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4267 gfp, entry)) 4268 return folio; 4269 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4270 folio_put(folio); 4271 } 4272 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4273 order = next_order(&orders, order); 4274 } 4275 4276 fallback: 4277 return __alloc_swap_folio(vmf); 4278 } 4279 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4280 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4281 { 4282 return __alloc_swap_folio(vmf); 4283 } 4284 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4285 4286 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4287 4288 /* 4289 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4290 * but allow concurrent faults), and pte mapped but not yet locked. 4291 * We return with pte unmapped and unlocked. 4292 * 4293 * We return with the mmap_lock locked or unlocked in the same cases 4294 * as does filemap_fault(). 4295 */ 4296 vm_fault_t do_swap_page(struct vm_fault *vmf) 4297 { 4298 struct vm_area_struct *vma = vmf->vma; 4299 struct folio *swapcache, *folio = NULL; 4300 DECLARE_WAITQUEUE(wait, current); 4301 struct page *page; 4302 struct swap_info_struct *si = NULL; 4303 rmap_t rmap_flags = RMAP_NONE; 4304 bool need_clear_cache = false; 4305 bool exclusive = false; 4306 swp_entry_t entry; 4307 pte_t pte; 4308 vm_fault_t ret = 0; 4309 void *shadow = NULL; 4310 int nr_pages; 4311 unsigned long page_idx; 4312 unsigned long address; 4313 pte_t *ptep; 4314 4315 if (!pte_unmap_same(vmf)) 4316 goto out; 4317 4318 entry = pte_to_swp_entry(vmf->orig_pte); 4319 if (unlikely(non_swap_entry(entry))) { 4320 if (is_migration_entry(entry)) { 4321 migration_entry_wait(vma->vm_mm, vmf->pmd, 4322 vmf->address); 4323 } else if (is_device_exclusive_entry(entry)) { 4324 vmf->page = pfn_swap_entry_to_page(entry); 4325 ret = remove_device_exclusive_entry(vmf); 4326 } else if (is_device_private_entry(entry)) { 4327 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4328 /* 4329 * migrate_to_ram is not yet ready to operate 4330 * under VMA lock. 4331 */ 4332 vma_end_read(vma); 4333 ret = VM_FAULT_RETRY; 4334 goto out; 4335 } 4336 4337 vmf->page = pfn_swap_entry_to_page(entry); 4338 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4339 vmf->address, &vmf->ptl); 4340 if (unlikely(!vmf->pte || 4341 !pte_same(ptep_get(vmf->pte), 4342 vmf->orig_pte))) 4343 goto unlock; 4344 4345 /* 4346 * Get a page reference while we know the page can't be 4347 * freed. 4348 */ 4349 if (trylock_page(vmf->page)) { 4350 get_page(vmf->page); 4351 pte_unmap_unlock(vmf->pte, vmf->ptl); 4352 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4353 unlock_page(vmf->page); 4354 put_page(vmf->page); 4355 } else { 4356 pte_unmap_unlock(vmf->pte, vmf->ptl); 4357 } 4358 } else if (is_hwpoison_entry(entry)) { 4359 ret = VM_FAULT_HWPOISON; 4360 } else if (is_pte_marker_entry(entry)) { 4361 ret = handle_pte_marker(vmf); 4362 } else { 4363 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4364 ret = VM_FAULT_SIGBUS; 4365 } 4366 goto out; 4367 } 4368 4369 /* Prevent swapoff from happening to us. */ 4370 si = get_swap_device(entry); 4371 if (unlikely(!si)) 4372 goto out; 4373 4374 folio = swap_cache_get_folio(entry, vma, vmf->address); 4375 if (folio) 4376 page = folio_file_page(folio, swp_offset(entry)); 4377 swapcache = folio; 4378 4379 if (!folio) { 4380 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4381 __swap_count(entry) == 1) { 4382 /* skip swapcache */ 4383 folio = alloc_swap_folio(vmf); 4384 if (folio) { 4385 __folio_set_locked(folio); 4386 __folio_set_swapbacked(folio); 4387 4388 nr_pages = folio_nr_pages(folio); 4389 if (folio_test_large(folio)) 4390 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4391 /* 4392 * Prevent parallel swapin from proceeding with 4393 * the cache flag. Otherwise, another thread 4394 * may finish swapin first, free the entry, and 4395 * swapout reusing the same entry. It's 4396 * undetectable as pte_same() returns true due 4397 * to entry reuse. 4398 */ 4399 if (swapcache_prepare(entry, nr_pages)) { 4400 /* 4401 * Relax a bit to prevent rapid 4402 * repeated page faults. 4403 */ 4404 add_wait_queue(&swapcache_wq, &wait); 4405 schedule_timeout_uninterruptible(1); 4406 remove_wait_queue(&swapcache_wq, &wait); 4407 goto out_page; 4408 } 4409 need_clear_cache = true; 4410 4411 mem_cgroup_swapin_uncharge_swap(entry, nr_pages); 4412 4413 shadow = get_shadow_from_swap_cache(entry); 4414 if (shadow) 4415 workingset_refault(folio, shadow); 4416 4417 folio_add_lru(folio); 4418 4419 /* To provide entry to swap_read_folio() */ 4420 folio->swap = entry; 4421 swap_read_folio(folio, NULL); 4422 folio->private = NULL; 4423 } 4424 } else { 4425 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4426 vmf); 4427 swapcache = folio; 4428 } 4429 4430 if (!folio) { 4431 /* 4432 * Back out if somebody else faulted in this pte 4433 * while we released the pte lock. 4434 */ 4435 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4436 vmf->address, &vmf->ptl); 4437 if (likely(vmf->pte && 4438 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4439 ret = VM_FAULT_OOM; 4440 goto unlock; 4441 } 4442 4443 /* Had to read the page from swap area: Major fault */ 4444 ret = VM_FAULT_MAJOR; 4445 count_vm_event(PGMAJFAULT); 4446 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4447 page = folio_file_page(folio, swp_offset(entry)); 4448 } else if (PageHWPoison(page)) { 4449 /* 4450 * hwpoisoned dirty swapcache pages are kept for killing 4451 * owner processes (which may be unknown at hwpoison time) 4452 */ 4453 ret = VM_FAULT_HWPOISON; 4454 goto out_release; 4455 } 4456 4457 ret |= folio_lock_or_retry(folio, vmf); 4458 if (ret & VM_FAULT_RETRY) 4459 goto out_release; 4460 4461 if (swapcache) { 4462 /* 4463 * Make sure folio_free_swap() or swapoff did not release the 4464 * swapcache from under us. The page pin, and pte_same test 4465 * below, are not enough to exclude that. Even if it is still 4466 * swapcache, we need to check that the page's swap has not 4467 * changed. 4468 */ 4469 if (unlikely(!folio_test_swapcache(folio) || 4470 page_swap_entry(page).val != entry.val)) 4471 goto out_page; 4472 4473 /* 4474 * KSM sometimes has to copy on read faults, for example, if 4475 * page->index of !PageKSM() pages would be nonlinear inside the 4476 * anon VMA -- PageKSM() is lost on actual swapout. 4477 */ 4478 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4479 if (unlikely(!folio)) { 4480 ret = VM_FAULT_OOM; 4481 folio = swapcache; 4482 goto out_page; 4483 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4484 ret = VM_FAULT_HWPOISON; 4485 folio = swapcache; 4486 goto out_page; 4487 } 4488 if (folio != swapcache) 4489 page = folio_page(folio, 0); 4490 4491 /* 4492 * If we want to map a page that's in the swapcache writable, we 4493 * have to detect via the refcount if we're really the exclusive 4494 * owner. Try removing the extra reference from the local LRU 4495 * caches if required. 4496 */ 4497 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4498 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4499 lru_add_drain(); 4500 } 4501 4502 folio_throttle_swaprate(folio, GFP_KERNEL); 4503 4504 /* 4505 * Back out if somebody else already faulted in this pte. 4506 */ 4507 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4508 &vmf->ptl); 4509 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4510 goto out_nomap; 4511 4512 if (unlikely(!folio_test_uptodate(folio))) { 4513 ret = VM_FAULT_SIGBUS; 4514 goto out_nomap; 4515 } 4516 4517 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4518 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4519 unsigned long nr = folio_nr_pages(folio); 4520 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4521 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4522 pte_t *folio_ptep = vmf->pte - idx; 4523 pte_t folio_pte = ptep_get(folio_ptep); 4524 4525 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4526 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4527 goto out_nomap; 4528 4529 page_idx = idx; 4530 address = folio_start; 4531 ptep = folio_ptep; 4532 goto check_folio; 4533 } 4534 4535 nr_pages = 1; 4536 page_idx = 0; 4537 address = vmf->address; 4538 ptep = vmf->pte; 4539 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4540 int nr = folio_nr_pages(folio); 4541 unsigned long idx = folio_page_idx(folio, page); 4542 unsigned long folio_start = address - idx * PAGE_SIZE; 4543 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4544 pte_t *folio_ptep; 4545 pte_t folio_pte; 4546 4547 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4548 goto check_folio; 4549 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4550 goto check_folio; 4551 4552 folio_ptep = vmf->pte - idx; 4553 folio_pte = ptep_get(folio_ptep); 4554 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4555 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4556 goto check_folio; 4557 4558 page_idx = idx; 4559 address = folio_start; 4560 ptep = folio_ptep; 4561 nr_pages = nr; 4562 entry = folio->swap; 4563 page = &folio->page; 4564 } 4565 4566 check_folio: 4567 /* 4568 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4569 * must never point at an anonymous page in the swapcache that is 4570 * PG_anon_exclusive. Sanity check that this holds and especially, that 4571 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4572 * check after taking the PT lock and making sure that nobody 4573 * concurrently faulted in this page and set PG_anon_exclusive. 4574 */ 4575 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4576 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4577 4578 /* 4579 * Check under PT lock (to protect against concurrent fork() sharing 4580 * the swap entry concurrently) for certainly exclusive pages. 4581 */ 4582 if (!folio_test_ksm(folio)) { 4583 exclusive = pte_swp_exclusive(vmf->orig_pte); 4584 if (folio != swapcache) { 4585 /* 4586 * We have a fresh page that is not exposed to the 4587 * swapcache -> certainly exclusive. 4588 */ 4589 exclusive = true; 4590 } else if (exclusive && folio_test_writeback(folio) && 4591 data_race(si->flags & SWP_STABLE_WRITES)) { 4592 /* 4593 * This is tricky: not all swap backends support 4594 * concurrent page modifications while under writeback. 4595 * 4596 * So if we stumble over such a page in the swapcache 4597 * we must not set the page exclusive, otherwise we can 4598 * map it writable without further checks and modify it 4599 * while still under writeback. 4600 * 4601 * For these problematic swap backends, simply drop the 4602 * exclusive marker: this is perfectly fine as we start 4603 * writeback only if we fully unmapped the page and 4604 * there are no unexpected references on the page after 4605 * unmapping succeeded. After fully unmapped, no 4606 * further GUP references (FOLL_GET and FOLL_PIN) can 4607 * appear, so dropping the exclusive marker and mapping 4608 * it only R/O is fine. 4609 */ 4610 exclusive = false; 4611 } 4612 } 4613 4614 /* 4615 * Some architectures may have to restore extra metadata to the page 4616 * when reading from swap. This metadata may be indexed by swap entry 4617 * so this must be called before swap_free(). 4618 */ 4619 arch_swap_restore(folio_swap(entry, folio), folio); 4620 4621 /* 4622 * Remove the swap entry and conditionally try to free up the swapcache. 4623 * We're already holding a reference on the page but haven't mapped it 4624 * yet. 4625 */ 4626 swap_free_nr(entry, nr_pages); 4627 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4628 folio_free_swap(folio); 4629 4630 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4631 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4632 pte = mk_pte(page, vma->vm_page_prot); 4633 if (pte_swp_soft_dirty(vmf->orig_pte)) 4634 pte = pte_mksoft_dirty(pte); 4635 if (pte_swp_uffd_wp(vmf->orig_pte)) 4636 pte = pte_mkuffd_wp(pte); 4637 4638 /* 4639 * Same logic as in do_wp_page(); however, optimize for pages that are 4640 * certainly not shared either because we just allocated them without 4641 * exposing them to the swapcache or because the swap entry indicates 4642 * exclusivity. 4643 */ 4644 if (!folio_test_ksm(folio) && 4645 (exclusive || folio_ref_count(folio) == 1)) { 4646 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4647 !pte_needs_soft_dirty_wp(vma, pte)) { 4648 pte = pte_mkwrite(pte, vma); 4649 if (vmf->flags & FAULT_FLAG_WRITE) { 4650 pte = pte_mkdirty(pte); 4651 vmf->flags &= ~FAULT_FLAG_WRITE; 4652 } 4653 } 4654 rmap_flags |= RMAP_EXCLUSIVE; 4655 } 4656 folio_ref_add(folio, nr_pages - 1); 4657 flush_icache_pages(vma, page, nr_pages); 4658 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4659 4660 /* ksm created a completely new copy */ 4661 if (unlikely(folio != swapcache && swapcache)) { 4662 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4663 folio_add_lru_vma(folio, vma); 4664 } else if (!folio_test_anon(folio)) { 4665 /* 4666 * We currently only expect small !anon folios which are either 4667 * fully exclusive or fully shared, or new allocated large 4668 * folios which are fully exclusive. If we ever get large 4669 * folios within swapcache here, we have to be careful. 4670 */ 4671 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4672 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4673 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4674 } else { 4675 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4676 rmap_flags); 4677 } 4678 4679 VM_BUG_ON(!folio_test_anon(folio) || 4680 (pte_write(pte) && !PageAnonExclusive(page))); 4681 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4682 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4683 pte, pte, nr_pages); 4684 4685 folio_unlock(folio); 4686 if (folio != swapcache && swapcache) { 4687 /* 4688 * Hold the lock to avoid the swap entry to be reused 4689 * until we take the PT lock for the pte_same() check 4690 * (to avoid false positives from pte_same). For 4691 * further safety release the lock after the swap_free 4692 * so that the swap count won't change under a 4693 * parallel locked swapcache. 4694 */ 4695 folio_unlock(swapcache); 4696 folio_put(swapcache); 4697 } 4698 4699 if (vmf->flags & FAULT_FLAG_WRITE) { 4700 ret |= do_wp_page(vmf); 4701 if (ret & VM_FAULT_ERROR) 4702 ret &= VM_FAULT_ERROR; 4703 goto out; 4704 } 4705 4706 /* No need to invalidate - it was non-present before */ 4707 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4708 unlock: 4709 if (vmf->pte) 4710 pte_unmap_unlock(vmf->pte, vmf->ptl); 4711 out: 4712 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4713 if (need_clear_cache) { 4714 swapcache_clear(si, entry, nr_pages); 4715 if (waitqueue_active(&swapcache_wq)) 4716 wake_up(&swapcache_wq); 4717 } 4718 if (si) 4719 put_swap_device(si); 4720 return ret; 4721 out_nomap: 4722 if (vmf->pte) 4723 pte_unmap_unlock(vmf->pte, vmf->ptl); 4724 out_page: 4725 folio_unlock(folio); 4726 out_release: 4727 folio_put(folio); 4728 if (folio != swapcache && swapcache) { 4729 folio_unlock(swapcache); 4730 folio_put(swapcache); 4731 } 4732 if (need_clear_cache) { 4733 swapcache_clear(si, entry, nr_pages); 4734 if (waitqueue_active(&swapcache_wq)) 4735 wake_up(&swapcache_wq); 4736 } 4737 if (si) 4738 put_swap_device(si); 4739 return ret; 4740 } 4741 4742 static bool pte_range_none(pte_t *pte, int nr_pages) 4743 { 4744 int i; 4745 4746 for (i = 0; i < nr_pages; i++) { 4747 if (!pte_none(ptep_get_lockless(pte + i))) 4748 return false; 4749 } 4750 4751 return true; 4752 } 4753 4754 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4755 { 4756 struct vm_area_struct *vma = vmf->vma; 4757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4758 unsigned long orders; 4759 struct folio *folio; 4760 unsigned long addr; 4761 pte_t *pte; 4762 gfp_t gfp; 4763 int order; 4764 4765 /* 4766 * If uffd is active for the vma we need per-page fault fidelity to 4767 * maintain the uffd semantics. 4768 */ 4769 if (unlikely(userfaultfd_armed(vma))) 4770 goto fallback; 4771 4772 /* 4773 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4774 * for this vma. Then filter out the orders that can't be allocated over 4775 * the faulting address and still be fully contained in the vma. 4776 */ 4777 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4778 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4779 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4780 4781 if (!orders) 4782 goto fallback; 4783 4784 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4785 if (!pte) 4786 return ERR_PTR(-EAGAIN); 4787 4788 /* 4789 * Find the highest order where the aligned range is completely 4790 * pte_none(). Note that all remaining orders will be completely 4791 * pte_none(). 4792 */ 4793 order = highest_order(orders); 4794 while (orders) { 4795 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4796 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4797 break; 4798 order = next_order(&orders, order); 4799 } 4800 4801 pte_unmap(pte); 4802 4803 if (!orders) 4804 goto fallback; 4805 4806 /* Try allocating the highest of the remaining orders. */ 4807 gfp = vma_thp_gfp_mask(vma); 4808 while (orders) { 4809 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4810 folio = vma_alloc_folio(gfp, order, vma, addr); 4811 if (folio) { 4812 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4813 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4814 folio_put(folio); 4815 goto next; 4816 } 4817 folio_throttle_swaprate(folio, gfp); 4818 /* 4819 * When a folio is not zeroed during allocation 4820 * (__GFP_ZERO not used) or user folios require special 4821 * handling, folio_zero_user() is used to make sure 4822 * that the page corresponding to the faulting address 4823 * will be hot in the cache after zeroing. 4824 */ 4825 if (user_alloc_needs_zeroing()) 4826 folio_zero_user(folio, vmf->address); 4827 return folio; 4828 } 4829 next: 4830 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4831 order = next_order(&orders, order); 4832 } 4833 4834 fallback: 4835 #endif 4836 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4837 } 4838 4839 /* 4840 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4841 * but allow concurrent faults), and pte mapped but not yet locked. 4842 * We return with mmap_lock still held, but pte unmapped and unlocked. 4843 */ 4844 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4845 { 4846 struct vm_area_struct *vma = vmf->vma; 4847 unsigned long addr = vmf->address; 4848 struct folio *folio; 4849 vm_fault_t ret = 0; 4850 int nr_pages = 1; 4851 pte_t entry; 4852 4853 /* File mapping without ->vm_ops ? */ 4854 if (vma->vm_flags & VM_SHARED) 4855 return VM_FAULT_SIGBUS; 4856 4857 /* 4858 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4859 * be distinguished from a transient failure of pte_offset_map(). 4860 */ 4861 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4862 return VM_FAULT_OOM; 4863 4864 /* Use the zero-page for reads */ 4865 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4866 !mm_forbids_zeropage(vma->vm_mm)) { 4867 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4868 vma->vm_page_prot)); 4869 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4870 vmf->address, &vmf->ptl); 4871 if (!vmf->pte) 4872 goto unlock; 4873 if (vmf_pte_changed(vmf)) { 4874 update_mmu_tlb(vma, vmf->address, vmf->pte); 4875 goto unlock; 4876 } 4877 ret = check_stable_address_space(vma->vm_mm); 4878 if (ret) 4879 goto unlock; 4880 /* Deliver the page fault to userland, check inside PT lock */ 4881 if (userfaultfd_missing(vma)) { 4882 pte_unmap_unlock(vmf->pte, vmf->ptl); 4883 return handle_userfault(vmf, VM_UFFD_MISSING); 4884 } 4885 goto setpte; 4886 } 4887 4888 /* Allocate our own private page. */ 4889 ret = vmf_anon_prepare(vmf); 4890 if (ret) 4891 return ret; 4892 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4893 folio = alloc_anon_folio(vmf); 4894 if (IS_ERR(folio)) 4895 return 0; 4896 if (!folio) 4897 goto oom; 4898 4899 nr_pages = folio_nr_pages(folio); 4900 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4901 4902 /* 4903 * The memory barrier inside __folio_mark_uptodate makes sure that 4904 * preceding stores to the page contents become visible before 4905 * the set_pte_at() write. 4906 */ 4907 __folio_mark_uptodate(folio); 4908 4909 entry = mk_pte(&folio->page, vma->vm_page_prot); 4910 entry = pte_sw_mkyoung(entry); 4911 if (vma->vm_flags & VM_WRITE) 4912 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4913 4914 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4915 if (!vmf->pte) 4916 goto release; 4917 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4918 update_mmu_tlb(vma, addr, vmf->pte); 4919 goto release; 4920 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4921 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4922 goto release; 4923 } 4924 4925 ret = check_stable_address_space(vma->vm_mm); 4926 if (ret) 4927 goto release; 4928 4929 /* Deliver the page fault to userland, check inside PT lock */ 4930 if (userfaultfd_missing(vma)) { 4931 pte_unmap_unlock(vmf->pte, vmf->ptl); 4932 folio_put(folio); 4933 return handle_userfault(vmf, VM_UFFD_MISSING); 4934 } 4935 4936 folio_ref_add(folio, nr_pages - 1); 4937 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4938 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4939 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4940 folio_add_lru_vma(folio, vma); 4941 setpte: 4942 if (vmf_orig_pte_uffd_wp(vmf)) 4943 entry = pte_mkuffd_wp(entry); 4944 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4945 4946 /* No need to invalidate - it was non-present before */ 4947 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4948 unlock: 4949 if (vmf->pte) 4950 pte_unmap_unlock(vmf->pte, vmf->ptl); 4951 return ret; 4952 release: 4953 folio_put(folio); 4954 goto unlock; 4955 oom: 4956 return VM_FAULT_OOM; 4957 } 4958 4959 /* 4960 * The mmap_lock must have been held on entry, and may have been 4961 * released depending on flags and vma->vm_ops->fault() return value. 4962 * See filemap_fault() and __lock_page_retry(). 4963 */ 4964 static vm_fault_t __do_fault(struct vm_fault *vmf) 4965 { 4966 struct vm_area_struct *vma = vmf->vma; 4967 struct folio *folio; 4968 vm_fault_t ret; 4969 4970 /* 4971 * Preallocate pte before we take page_lock because this might lead to 4972 * deadlocks for memcg reclaim which waits for pages under writeback: 4973 * lock_page(A) 4974 * SetPageWriteback(A) 4975 * unlock_page(A) 4976 * lock_page(B) 4977 * lock_page(B) 4978 * pte_alloc_one 4979 * shrink_folio_list 4980 * wait_on_page_writeback(A) 4981 * SetPageWriteback(B) 4982 * unlock_page(B) 4983 * # flush A, B to clear the writeback 4984 */ 4985 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4986 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4987 if (!vmf->prealloc_pte) 4988 return VM_FAULT_OOM; 4989 } 4990 4991 ret = vma->vm_ops->fault(vmf); 4992 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4993 VM_FAULT_DONE_COW))) 4994 return ret; 4995 4996 folio = page_folio(vmf->page); 4997 if (unlikely(PageHWPoison(vmf->page))) { 4998 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4999 if (ret & VM_FAULT_LOCKED) { 5000 if (page_mapped(vmf->page)) 5001 unmap_mapping_folio(folio); 5002 /* Retry if a clean folio was removed from the cache. */ 5003 if (mapping_evict_folio(folio->mapping, folio)) 5004 poisonret = VM_FAULT_NOPAGE; 5005 folio_unlock(folio); 5006 } 5007 folio_put(folio); 5008 vmf->page = NULL; 5009 return poisonret; 5010 } 5011 5012 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5013 folio_lock(folio); 5014 else 5015 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5016 5017 return ret; 5018 } 5019 5020 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5021 static void deposit_prealloc_pte(struct vm_fault *vmf) 5022 { 5023 struct vm_area_struct *vma = vmf->vma; 5024 5025 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5026 /* 5027 * We are going to consume the prealloc table, 5028 * count that as nr_ptes. 5029 */ 5030 mm_inc_nr_ptes(vma->vm_mm); 5031 vmf->prealloc_pte = NULL; 5032 } 5033 5034 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5035 { 5036 struct folio *folio = page_folio(page); 5037 struct vm_area_struct *vma = vmf->vma; 5038 bool write = vmf->flags & FAULT_FLAG_WRITE; 5039 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5040 pmd_t entry; 5041 vm_fault_t ret = VM_FAULT_FALLBACK; 5042 5043 /* 5044 * It is too late to allocate a small folio, we already have a large 5045 * folio in the pagecache: especially s390 KVM cannot tolerate any 5046 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5047 * PMD mappings if THPs are disabled. 5048 */ 5049 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5050 return ret; 5051 5052 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5053 return ret; 5054 5055 if (folio_order(folio) != HPAGE_PMD_ORDER) 5056 return ret; 5057 page = &folio->page; 5058 5059 /* 5060 * Just backoff if any subpage of a THP is corrupted otherwise 5061 * the corrupted page may mapped by PMD silently to escape the 5062 * check. This kind of THP just can be PTE mapped. Access to 5063 * the corrupted subpage should trigger SIGBUS as expected. 5064 */ 5065 if (unlikely(folio_test_has_hwpoisoned(folio))) 5066 return ret; 5067 5068 /* 5069 * Archs like ppc64 need additional space to store information 5070 * related to pte entry. Use the preallocated table for that. 5071 */ 5072 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5073 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5074 if (!vmf->prealloc_pte) 5075 return VM_FAULT_OOM; 5076 } 5077 5078 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5079 if (unlikely(!pmd_none(*vmf->pmd))) 5080 goto out; 5081 5082 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5083 5084 entry = mk_huge_pmd(page, vma->vm_page_prot); 5085 if (write) 5086 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5087 5088 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5089 folio_add_file_rmap_pmd(folio, page, vma); 5090 5091 /* 5092 * deposit and withdraw with pmd lock held 5093 */ 5094 if (arch_needs_pgtable_deposit()) 5095 deposit_prealloc_pte(vmf); 5096 5097 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5098 5099 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5100 5101 /* fault is handled */ 5102 ret = 0; 5103 count_vm_event(THP_FILE_MAPPED); 5104 out: 5105 spin_unlock(vmf->ptl); 5106 return ret; 5107 } 5108 #else 5109 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5110 { 5111 return VM_FAULT_FALLBACK; 5112 } 5113 #endif 5114 5115 /** 5116 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5117 * @vmf: Fault decription. 5118 * @folio: The folio that contains @page. 5119 * @page: The first page to create a PTE for. 5120 * @nr: The number of PTEs to create. 5121 * @addr: The first address to create a PTE for. 5122 */ 5123 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5124 struct page *page, unsigned int nr, unsigned long addr) 5125 { 5126 struct vm_area_struct *vma = vmf->vma; 5127 bool write = vmf->flags & FAULT_FLAG_WRITE; 5128 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5129 pte_t entry; 5130 5131 flush_icache_pages(vma, page, nr); 5132 entry = mk_pte(page, vma->vm_page_prot); 5133 5134 if (prefault && arch_wants_old_prefaulted_pte()) 5135 entry = pte_mkold(entry); 5136 else 5137 entry = pte_sw_mkyoung(entry); 5138 5139 if (write) 5140 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5141 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5142 entry = pte_mkuffd_wp(entry); 5143 /* copy-on-write page */ 5144 if (write && !(vma->vm_flags & VM_SHARED)) { 5145 VM_BUG_ON_FOLIO(nr != 1, folio); 5146 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5147 folio_add_lru_vma(folio, vma); 5148 } else { 5149 folio_add_file_rmap_ptes(folio, page, nr, vma); 5150 } 5151 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5152 5153 /* no need to invalidate: a not-present page won't be cached */ 5154 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5155 } 5156 5157 static bool vmf_pte_changed(struct vm_fault *vmf) 5158 { 5159 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5160 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5161 5162 return !pte_none(ptep_get(vmf->pte)); 5163 } 5164 5165 /** 5166 * finish_fault - finish page fault once we have prepared the page to fault 5167 * 5168 * @vmf: structure describing the fault 5169 * 5170 * This function handles all that is needed to finish a page fault once the 5171 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5172 * given page, adds reverse page mapping, handles memcg charges and LRU 5173 * addition. 5174 * 5175 * The function expects the page to be locked and on success it consumes a 5176 * reference of a page being mapped (for the PTE which maps it). 5177 * 5178 * Return: %0 on success, %VM_FAULT_ code in case of error. 5179 */ 5180 vm_fault_t finish_fault(struct vm_fault *vmf) 5181 { 5182 struct vm_area_struct *vma = vmf->vma; 5183 struct page *page; 5184 struct folio *folio; 5185 vm_fault_t ret; 5186 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5187 !(vma->vm_flags & VM_SHARED); 5188 int type, nr_pages; 5189 unsigned long addr; 5190 bool needs_fallback = false; 5191 5192 fallback: 5193 addr = vmf->address; 5194 5195 /* Did we COW the page? */ 5196 if (is_cow) 5197 page = vmf->cow_page; 5198 else 5199 page = vmf->page; 5200 5201 /* 5202 * check even for read faults because we might have lost our CoWed 5203 * page 5204 */ 5205 if (!(vma->vm_flags & VM_SHARED)) { 5206 ret = check_stable_address_space(vma->vm_mm); 5207 if (ret) 5208 return ret; 5209 } 5210 5211 if (pmd_none(*vmf->pmd)) { 5212 if (PageTransCompound(page)) { 5213 ret = do_set_pmd(vmf, page); 5214 if (ret != VM_FAULT_FALLBACK) 5215 return ret; 5216 } 5217 5218 if (vmf->prealloc_pte) 5219 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5220 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5221 return VM_FAULT_OOM; 5222 } 5223 5224 folio = page_folio(page); 5225 nr_pages = folio_nr_pages(folio); 5226 5227 /* 5228 * Using per-page fault to maintain the uffd semantics, and same 5229 * approach also applies to non-anonymous-shmem faults to avoid 5230 * inflating the RSS of the process. 5231 */ 5232 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5233 unlikely(needs_fallback)) { 5234 nr_pages = 1; 5235 } else if (nr_pages > 1) { 5236 pgoff_t idx = folio_page_idx(folio, page); 5237 /* The page offset of vmf->address within the VMA. */ 5238 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5239 /* The index of the entry in the pagetable for fault page. */ 5240 pgoff_t pte_off = pte_index(vmf->address); 5241 5242 /* 5243 * Fallback to per-page fault in case the folio size in page 5244 * cache beyond the VMA limits and PMD pagetable limits. 5245 */ 5246 if (unlikely(vma_off < idx || 5247 vma_off + (nr_pages - idx) > vma_pages(vma) || 5248 pte_off < idx || 5249 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5250 nr_pages = 1; 5251 } else { 5252 /* Now we can set mappings for the whole large folio. */ 5253 addr = vmf->address - idx * PAGE_SIZE; 5254 page = &folio->page; 5255 } 5256 } 5257 5258 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5259 addr, &vmf->ptl); 5260 if (!vmf->pte) 5261 return VM_FAULT_NOPAGE; 5262 5263 /* Re-check under ptl */ 5264 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5265 update_mmu_tlb(vma, addr, vmf->pte); 5266 ret = VM_FAULT_NOPAGE; 5267 goto unlock; 5268 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5269 needs_fallback = true; 5270 pte_unmap_unlock(vmf->pte, vmf->ptl); 5271 goto fallback; 5272 } 5273 5274 folio_ref_add(folio, nr_pages - 1); 5275 set_pte_range(vmf, folio, page, nr_pages, addr); 5276 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5277 add_mm_counter(vma->vm_mm, type, nr_pages); 5278 ret = 0; 5279 5280 unlock: 5281 pte_unmap_unlock(vmf->pte, vmf->ptl); 5282 return ret; 5283 } 5284 5285 static unsigned long fault_around_pages __read_mostly = 5286 65536 >> PAGE_SHIFT; 5287 5288 #ifdef CONFIG_DEBUG_FS 5289 static int fault_around_bytes_get(void *data, u64 *val) 5290 { 5291 *val = fault_around_pages << PAGE_SHIFT; 5292 return 0; 5293 } 5294 5295 /* 5296 * fault_around_bytes must be rounded down to the nearest page order as it's 5297 * what do_fault_around() expects to see. 5298 */ 5299 static int fault_around_bytes_set(void *data, u64 val) 5300 { 5301 if (val / PAGE_SIZE > PTRS_PER_PTE) 5302 return -EINVAL; 5303 5304 /* 5305 * The minimum value is 1 page, however this results in no fault-around 5306 * at all. See should_fault_around(). 5307 */ 5308 val = max(val, PAGE_SIZE); 5309 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5310 5311 return 0; 5312 } 5313 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5314 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5315 5316 static int __init fault_around_debugfs(void) 5317 { 5318 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5319 &fault_around_bytes_fops); 5320 return 0; 5321 } 5322 late_initcall(fault_around_debugfs); 5323 #endif 5324 5325 /* 5326 * do_fault_around() tries to map few pages around the fault address. The hope 5327 * is that the pages will be needed soon and this will lower the number of 5328 * faults to handle. 5329 * 5330 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5331 * not ready to be mapped: not up-to-date, locked, etc. 5332 * 5333 * This function doesn't cross VMA or page table boundaries, in order to call 5334 * map_pages() and acquire a PTE lock only once. 5335 * 5336 * fault_around_pages defines how many pages we'll try to map. 5337 * do_fault_around() expects it to be set to a power of two less than or equal 5338 * to PTRS_PER_PTE. 5339 * 5340 * The virtual address of the area that we map is naturally aligned to 5341 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5342 * (and therefore to page order). This way it's easier to guarantee 5343 * that we don't cross page table boundaries. 5344 */ 5345 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5346 { 5347 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5348 pgoff_t pte_off = pte_index(vmf->address); 5349 /* The page offset of vmf->address within the VMA. */ 5350 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5351 pgoff_t from_pte, to_pte; 5352 vm_fault_t ret; 5353 5354 /* The PTE offset of the start address, clamped to the VMA. */ 5355 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5356 pte_off - min(pte_off, vma_off)); 5357 5358 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5359 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5360 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5361 5362 if (pmd_none(*vmf->pmd)) { 5363 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5364 if (!vmf->prealloc_pte) 5365 return VM_FAULT_OOM; 5366 } 5367 5368 rcu_read_lock(); 5369 ret = vmf->vma->vm_ops->map_pages(vmf, 5370 vmf->pgoff + from_pte - pte_off, 5371 vmf->pgoff + to_pte - pte_off); 5372 rcu_read_unlock(); 5373 5374 return ret; 5375 } 5376 5377 /* Return true if we should do read fault-around, false otherwise */ 5378 static inline bool should_fault_around(struct vm_fault *vmf) 5379 { 5380 /* No ->map_pages? No way to fault around... */ 5381 if (!vmf->vma->vm_ops->map_pages) 5382 return false; 5383 5384 if (uffd_disable_fault_around(vmf->vma)) 5385 return false; 5386 5387 /* A single page implies no faulting 'around' at all. */ 5388 return fault_around_pages > 1; 5389 } 5390 5391 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5392 { 5393 vm_fault_t ret = 0; 5394 struct folio *folio; 5395 5396 /* 5397 * Let's call ->map_pages() first and use ->fault() as fallback 5398 * if page by the offset is not ready to be mapped (cold cache or 5399 * something). 5400 */ 5401 if (should_fault_around(vmf)) { 5402 ret = do_fault_around(vmf); 5403 if (ret) 5404 return ret; 5405 } 5406 5407 ret = vmf_can_call_fault(vmf); 5408 if (ret) 5409 return ret; 5410 5411 ret = __do_fault(vmf); 5412 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5413 return ret; 5414 5415 ret |= finish_fault(vmf); 5416 folio = page_folio(vmf->page); 5417 folio_unlock(folio); 5418 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5419 folio_put(folio); 5420 return ret; 5421 } 5422 5423 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5424 { 5425 struct vm_area_struct *vma = vmf->vma; 5426 struct folio *folio; 5427 vm_fault_t ret; 5428 5429 ret = vmf_can_call_fault(vmf); 5430 if (!ret) 5431 ret = vmf_anon_prepare(vmf); 5432 if (ret) 5433 return ret; 5434 5435 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5436 if (!folio) 5437 return VM_FAULT_OOM; 5438 5439 vmf->cow_page = &folio->page; 5440 5441 ret = __do_fault(vmf); 5442 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5443 goto uncharge_out; 5444 if (ret & VM_FAULT_DONE_COW) 5445 return ret; 5446 5447 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5448 ret = VM_FAULT_HWPOISON; 5449 goto unlock; 5450 } 5451 __folio_mark_uptodate(folio); 5452 5453 ret |= finish_fault(vmf); 5454 unlock: 5455 unlock_page(vmf->page); 5456 put_page(vmf->page); 5457 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5458 goto uncharge_out; 5459 return ret; 5460 uncharge_out: 5461 folio_put(folio); 5462 return ret; 5463 } 5464 5465 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5466 { 5467 struct vm_area_struct *vma = vmf->vma; 5468 vm_fault_t ret, tmp; 5469 struct folio *folio; 5470 5471 ret = vmf_can_call_fault(vmf); 5472 if (ret) 5473 return ret; 5474 5475 ret = __do_fault(vmf); 5476 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5477 return ret; 5478 5479 folio = page_folio(vmf->page); 5480 5481 /* 5482 * Check if the backing address space wants to know that the page is 5483 * about to become writable 5484 */ 5485 if (vma->vm_ops->page_mkwrite) { 5486 folio_unlock(folio); 5487 tmp = do_page_mkwrite(vmf, folio); 5488 if (unlikely(!tmp || 5489 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5490 folio_put(folio); 5491 return tmp; 5492 } 5493 } 5494 5495 ret |= finish_fault(vmf); 5496 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5497 VM_FAULT_RETRY))) { 5498 folio_unlock(folio); 5499 folio_put(folio); 5500 return ret; 5501 } 5502 5503 ret |= fault_dirty_shared_page(vmf); 5504 return ret; 5505 } 5506 5507 /* 5508 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5509 * but allow concurrent faults). 5510 * The mmap_lock may have been released depending on flags and our 5511 * return value. See filemap_fault() and __folio_lock_or_retry(). 5512 * If mmap_lock is released, vma may become invalid (for example 5513 * by other thread calling munmap()). 5514 */ 5515 static vm_fault_t do_fault(struct vm_fault *vmf) 5516 { 5517 struct vm_area_struct *vma = vmf->vma; 5518 struct mm_struct *vm_mm = vma->vm_mm; 5519 vm_fault_t ret; 5520 5521 /* 5522 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5523 */ 5524 if (!vma->vm_ops->fault) { 5525 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5526 vmf->address, &vmf->ptl); 5527 if (unlikely(!vmf->pte)) 5528 ret = VM_FAULT_SIGBUS; 5529 else { 5530 /* 5531 * Make sure this is not a temporary clearing of pte 5532 * by holding ptl and checking again. A R/M/W update 5533 * of pte involves: take ptl, clearing the pte so that 5534 * we don't have concurrent modification by hardware 5535 * followed by an update. 5536 */ 5537 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5538 ret = VM_FAULT_SIGBUS; 5539 else 5540 ret = VM_FAULT_NOPAGE; 5541 5542 pte_unmap_unlock(vmf->pte, vmf->ptl); 5543 } 5544 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5545 ret = do_read_fault(vmf); 5546 else if (!(vma->vm_flags & VM_SHARED)) 5547 ret = do_cow_fault(vmf); 5548 else 5549 ret = do_shared_fault(vmf); 5550 5551 /* preallocated pagetable is unused: free it */ 5552 if (vmf->prealloc_pte) { 5553 pte_free(vm_mm, vmf->prealloc_pte); 5554 vmf->prealloc_pte = NULL; 5555 } 5556 return ret; 5557 } 5558 5559 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5560 unsigned long addr, int *flags, 5561 bool writable, int *last_cpupid) 5562 { 5563 struct vm_area_struct *vma = vmf->vma; 5564 5565 /* 5566 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5567 * much anyway since they can be in shared cache state. This misses 5568 * the case where a mapping is writable but the process never writes 5569 * to it but pte_write gets cleared during protection updates and 5570 * pte_dirty has unpredictable behaviour between PTE scan updates, 5571 * background writeback, dirty balancing and application behaviour. 5572 */ 5573 if (!writable) 5574 *flags |= TNF_NO_GROUP; 5575 5576 /* 5577 * Flag if the folio is shared between multiple address spaces. This 5578 * is later used when determining whether to group tasks together 5579 */ 5580 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5581 *flags |= TNF_SHARED; 5582 /* 5583 * For memory tiering mode, cpupid of slow memory page is used 5584 * to record page access time. So use default value. 5585 */ 5586 if (folio_use_access_time(folio)) 5587 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5588 else 5589 *last_cpupid = folio_last_cpupid(folio); 5590 5591 /* Record the current PID acceesing VMA */ 5592 vma_set_access_pid_bit(vma); 5593 5594 count_vm_numa_event(NUMA_HINT_FAULTS); 5595 #ifdef CONFIG_NUMA_BALANCING 5596 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5597 #endif 5598 if (folio_nid(folio) == numa_node_id()) { 5599 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5600 *flags |= TNF_FAULT_LOCAL; 5601 } 5602 5603 return mpol_misplaced(folio, vmf, addr); 5604 } 5605 5606 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5607 unsigned long fault_addr, pte_t *fault_pte, 5608 bool writable) 5609 { 5610 pte_t pte, old_pte; 5611 5612 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5613 pte = pte_modify(old_pte, vma->vm_page_prot); 5614 pte = pte_mkyoung(pte); 5615 if (writable) 5616 pte = pte_mkwrite(pte, vma); 5617 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5618 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5619 } 5620 5621 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5622 struct folio *folio, pte_t fault_pte, 5623 bool ignore_writable, bool pte_write_upgrade) 5624 { 5625 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5626 unsigned long start, end, addr = vmf->address; 5627 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5628 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5629 pte_t *start_ptep; 5630 5631 /* Stay within the VMA and within the page table. */ 5632 start = max3(addr_start, pt_start, vma->vm_start); 5633 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5634 vma->vm_end); 5635 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5636 5637 /* Restore all PTEs' mapping of the large folio */ 5638 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5639 pte_t ptent = ptep_get(start_ptep); 5640 bool writable = false; 5641 5642 if (!pte_present(ptent) || !pte_protnone(ptent)) 5643 continue; 5644 5645 if (pfn_folio(pte_pfn(ptent)) != folio) 5646 continue; 5647 5648 if (!ignore_writable) { 5649 ptent = pte_modify(ptent, vma->vm_page_prot); 5650 writable = pte_write(ptent); 5651 if (!writable && pte_write_upgrade && 5652 can_change_pte_writable(vma, addr, ptent)) 5653 writable = true; 5654 } 5655 5656 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5657 } 5658 } 5659 5660 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5661 { 5662 struct vm_area_struct *vma = vmf->vma; 5663 struct folio *folio = NULL; 5664 int nid = NUMA_NO_NODE; 5665 bool writable = false, ignore_writable = false; 5666 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5667 int last_cpupid; 5668 int target_nid; 5669 pte_t pte, old_pte; 5670 int flags = 0, nr_pages; 5671 5672 /* 5673 * The pte cannot be used safely until we verify, while holding the page 5674 * table lock, that its contents have not changed during fault handling. 5675 */ 5676 spin_lock(vmf->ptl); 5677 /* Read the live PTE from the page tables: */ 5678 old_pte = ptep_get(vmf->pte); 5679 5680 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5681 pte_unmap_unlock(vmf->pte, vmf->ptl); 5682 return 0; 5683 } 5684 5685 pte = pte_modify(old_pte, vma->vm_page_prot); 5686 5687 /* 5688 * Detect now whether the PTE could be writable; this information 5689 * is only valid while holding the PT lock. 5690 */ 5691 writable = pte_write(pte); 5692 if (!writable && pte_write_upgrade && 5693 can_change_pte_writable(vma, vmf->address, pte)) 5694 writable = true; 5695 5696 folio = vm_normal_folio(vma, vmf->address, pte); 5697 if (!folio || folio_is_zone_device(folio)) 5698 goto out_map; 5699 5700 nid = folio_nid(folio); 5701 nr_pages = folio_nr_pages(folio); 5702 5703 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5704 writable, &last_cpupid); 5705 if (target_nid == NUMA_NO_NODE) 5706 goto out_map; 5707 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5708 flags |= TNF_MIGRATE_FAIL; 5709 goto out_map; 5710 } 5711 /* The folio is isolated and isolation code holds a folio reference. */ 5712 pte_unmap_unlock(vmf->pte, vmf->ptl); 5713 writable = false; 5714 ignore_writable = true; 5715 5716 /* Migrate to the requested node */ 5717 if (!migrate_misplaced_folio(folio, target_nid)) { 5718 nid = target_nid; 5719 flags |= TNF_MIGRATED; 5720 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5721 return 0; 5722 } 5723 5724 flags |= TNF_MIGRATE_FAIL; 5725 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5726 vmf->address, &vmf->ptl); 5727 if (unlikely(!vmf->pte)) 5728 return 0; 5729 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5730 pte_unmap_unlock(vmf->pte, vmf->ptl); 5731 return 0; 5732 } 5733 out_map: 5734 /* 5735 * Make it present again, depending on how arch implements 5736 * non-accessible ptes, some can allow access by kernel mode. 5737 */ 5738 if (folio && folio_test_large(folio)) 5739 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5740 pte_write_upgrade); 5741 else 5742 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5743 writable); 5744 pte_unmap_unlock(vmf->pte, vmf->ptl); 5745 5746 if (nid != NUMA_NO_NODE) 5747 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5748 return 0; 5749 } 5750 5751 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5752 { 5753 struct vm_area_struct *vma = vmf->vma; 5754 if (vma_is_anonymous(vma)) 5755 return do_huge_pmd_anonymous_page(vmf); 5756 if (vma->vm_ops->huge_fault) 5757 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5758 return VM_FAULT_FALLBACK; 5759 } 5760 5761 /* `inline' is required to avoid gcc 4.1.2 build error */ 5762 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5763 { 5764 struct vm_area_struct *vma = vmf->vma; 5765 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5766 vm_fault_t ret; 5767 5768 if (vma_is_anonymous(vma)) { 5769 if (likely(!unshare) && 5770 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5771 if (userfaultfd_wp_async(vmf->vma)) 5772 goto split; 5773 return handle_userfault(vmf, VM_UFFD_WP); 5774 } 5775 return do_huge_pmd_wp_page(vmf); 5776 } 5777 5778 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5779 if (vma->vm_ops->huge_fault) { 5780 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5781 if (!(ret & VM_FAULT_FALLBACK)) 5782 return ret; 5783 } 5784 } 5785 5786 split: 5787 /* COW or write-notify handled on pte level: split pmd. */ 5788 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5789 5790 return VM_FAULT_FALLBACK; 5791 } 5792 5793 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5794 { 5795 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5796 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5797 struct vm_area_struct *vma = vmf->vma; 5798 /* No support for anonymous transparent PUD pages yet */ 5799 if (vma_is_anonymous(vma)) 5800 return VM_FAULT_FALLBACK; 5801 if (vma->vm_ops->huge_fault) 5802 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5803 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5804 return VM_FAULT_FALLBACK; 5805 } 5806 5807 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5808 { 5809 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5810 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5811 struct vm_area_struct *vma = vmf->vma; 5812 vm_fault_t ret; 5813 5814 /* No support for anonymous transparent PUD pages yet */ 5815 if (vma_is_anonymous(vma)) 5816 goto split; 5817 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5818 if (vma->vm_ops->huge_fault) { 5819 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5820 if (!(ret & VM_FAULT_FALLBACK)) 5821 return ret; 5822 } 5823 } 5824 split: 5825 /* COW or write-notify not handled on PUD level: split pud.*/ 5826 __split_huge_pud(vma, vmf->pud, vmf->address); 5827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5828 return VM_FAULT_FALLBACK; 5829 } 5830 5831 /* 5832 * These routines also need to handle stuff like marking pages dirty 5833 * and/or accessed for architectures that don't do it in hardware (most 5834 * RISC architectures). The early dirtying is also good on the i386. 5835 * 5836 * There is also a hook called "update_mmu_cache()" that architectures 5837 * with external mmu caches can use to update those (ie the Sparc or 5838 * PowerPC hashed page tables that act as extended TLBs). 5839 * 5840 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5841 * concurrent faults). 5842 * 5843 * The mmap_lock may have been released depending on flags and our return value. 5844 * See filemap_fault() and __folio_lock_or_retry(). 5845 */ 5846 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5847 { 5848 pte_t entry; 5849 5850 if (unlikely(pmd_none(*vmf->pmd))) { 5851 /* 5852 * Leave __pte_alloc() until later: because vm_ops->fault may 5853 * want to allocate huge page, and if we expose page table 5854 * for an instant, it will be difficult to retract from 5855 * concurrent faults and from rmap lookups. 5856 */ 5857 vmf->pte = NULL; 5858 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5859 } else { 5860 pmd_t dummy_pmdval; 5861 5862 /* 5863 * A regular pmd is established and it can't morph into a huge 5864 * pmd by anon khugepaged, since that takes mmap_lock in write 5865 * mode; but shmem or file collapse to THP could still morph 5866 * it into a huge pmd: just retry later if so. 5867 * 5868 * Use the maywrite version to indicate that vmf->pte may be 5869 * modified, but since we will use pte_same() to detect the 5870 * change of the !pte_none() entry, there is no need to recheck 5871 * the pmdval. Here we chooes to pass a dummy variable instead 5872 * of NULL, which helps new user think about why this place is 5873 * special. 5874 */ 5875 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 5876 vmf->address, &dummy_pmdval, 5877 &vmf->ptl); 5878 if (unlikely(!vmf->pte)) 5879 return 0; 5880 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5881 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5882 5883 if (pte_none(vmf->orig_pte)) { 5884 pte_unmap(vmf->pte); 5885 vmf->pte = NULL; 5886 } 5887 } 5888 5889 if (!vmf->pte) 5890 return do_pte_missing(vmf); 5891 5892 if (!pte_present(vmf->orig_pte)) 5893 return do_swap_page(vmf); 5894 5895 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5896 return do_numa_page(vmf); 5897 5898 spin_lock(vmf->ptl); 5899 entry = vmf->orig_pte; 5900 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5901 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5902 goto unlock; 5903 } 5904 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5905 if (!pte_write(entry)) 5906 return do_wp_page(vmf); 5907 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5908 entry = pte_mkdirty(entry); 5909 } 5910 entry = pte_mkyoung(entry); 5911 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5912 vmf->flags & FAULT_FLAG_WRITE)) { 5913 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5914 vmf->pte, 1); 5915 } else { 5916 /* Skip spurious TLB flush for retried page fault */ 5917 if (vmf->flags & FAULT_FLAG_TRIED) 5918 goto unlock; 5919 /* 5920 * This is needed only for protection faults but the arch code 5921 * is not yet telling us if this is a protection fault or not. 5922 * This still avoids useless tlb flushes for .text page faults 5923 * with threads. 5924 */ 5925 if (vmf->flags & FAULT_FLAG_WRITE) 5926 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5927 vmf->pte); 5928 } 5929 unlock: 5930 pte_unmap_unlock(vmf->pte, vmf->ptl); 5931 return 0; 5932 } 5933 5934 /* 5935 * On entry, we hold either the VMA lock or the mmap_lock 5936 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5937 * the result, the mmap_lock is not held on exit. See filemap_fault() 5938 * and __folio_lock_or_retry(). 5939 */ 5940 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5941 unsigned long address, unsigned int flags) 5942 { 5943 struct vm_fault vmf = { 5944 .vma = vma, 5945 .address = address & PAGE_MASK, 5946 .real_address = address, 5947 .flags = flags, 5948 .pgoff = linear_page_index(vma, address), 5949 .gfp_mask = __get_fault_gfp_mask(vma), 5950 }; 5951 struct mm_struct *mm = vma->vm_mm; 5952 unsigned long vm_flags = vma->vm_flags; 5953 pgd_t *pgd; 5954 p4d_t *p4d; 5955 vm_fault_t ret; 5956 5957 pgd = pgd_offset(mm, address); 5958 p4d = p4d_alloc(mm, pgd, address); 5959 if (!p4d) 5960 return VM_FAULT_OOM; 5961 5962 vmf.pud = pud_alloc(mm, p4d, address); 5963 if (!vmf.pud) 5964 return VM_FAULT_OOM; 5965 retry_pud: 5966 if (pud_none(*vmf.pud) && 5967 thp_vma_allowable_order(vma, vm_flags, 5968 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5969 ret = create_huge_pud(&vmf); 5970 if (!(ret & VM_FAULT_FALLBACK)) 5971 return ret; 5972 } else { 5973 pud_t orig_pud = *vmf.pud; 5974 5975 barrier(); 5976 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5977 5978 /* 5979 * TODO once we support anonymous PUDs: NUMA case and 5980 * FAULT_FLAG_UNSHARE handling. 5981 */ 5982 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5983 ret = wp_huge_pud(&vmf, orig_pud); 5984 if (!(ret & VM_FAULT_FALLBACK)) 5985 return ret; 5986 } else { 5987 huge_pud_set_accessed(&vmf, orig_pud); 5988 return 0; 5989 } 5990 } 5991 } 5992 5993 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5994 if (!vmf.pmd) 5995 return VM_FAULT_OOM; 5996 5997 /* Huge pud page fault raced with pmd_alloc? */ 5998 if (pud_trans_unstable(vmf.pud)) 5999 goto retry_pud; 6000 6001 if (pmd_none(*vmf.pmd) && 6002 thp_vma_allowable_order(vma, vm_flags, 6003 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6004 ret = create_huge_pmd(&vmf); 6005 if (!(ret & VM_FAULT_FALLBACK)) 6006 return ret; 6007 } else { 6008 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6009 6010 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6011 VM_BUG_ON(thp_migration_supported() && 6012 !is_pmd_migration_entry(vmf.orig_pmd)); 6013 if (is_pmd_migration_entry(vmf.orig_pmd)) 6014 pmd_migration_entry_wait(mm, vmf.pmd); 6015 return 0; 6016 } 6017 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 6018 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6019 return do_huge_pmd_numa_page(&vmf); 6020 6021 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6022 !pmd_write(vmf.orig_pmd)) { 6023 ret = wp_huge_pmd(&vmf); 6024 if (!(ret & VM_FAULT_FALLBACK)) 6025 return ret; 6026 } else { 6027 huge_pmd_set_accessed(&vmf); 6028 return 0; 6029 } 6030 } 6031 } 6032 6033 return handle_pte_fault(&vmf); 6034 } 6035 6036 /** 6037 * mm_account_fault - Do page fault accounting 6038 * @mm: mm from which memcg should be extracted. It can be NULL. 6039 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6040 * of perf event counters, but we'll still do the per-task accounting to 6041 * the task who triggered this page fault. 6042 * @address: the faulted address. 6043 * @flags: the fault flags. 6044 * @ret: the fault retcode. 6045 * 6046 * This will take care of most of the page fault accounting. Meanwhile, it 6047 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6048 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6049 * still be in per-arch page fault handlers at the entry of page fault. 6050 */ 6051 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6052 unsigned long address, unsigned int flags, 6053 vm_fault_t ret) 6054 { 6055 bool major; 6056 6057 /* Incomplete faults will be accounted upon completion. */ 6058 if (ret & VM_FAULT_RETRY) 6059 return; 6060 6061 /* 6062 * To preserve the behavior of older kernels, PGFAULT counters record 6063 * both successful and failed faults, as opposed to perf counters, 6064 * which ignore failed cases. 6065 */ 6066 count_vm_event(PGFAULT); 6067 count_memcg_event_mm(mm, PGFAULT); 6068 6069 /* 6070 * Do not account for unsuccessful faults (e.g. when the address wasn't 6071 * valid). That includes arch_vma_access_permitted() failing before 6072 * reaching here. So this is not a "this many hardware page faults" 6073 * counter. We should use the hw profiling for that. 6074 */ 6075 if (ret & VM_FAULT_ERROR) 6076 return; 6077 6078 /* 6079 * We define the fault as a major fault when the final successful fault 6080 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6081 * handle it immediately previously). 6082 */ 6083 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6084 6085 if (major) 6086 current->maj_flt++; 6087 else 6088 current->min_flt++; 6089 6090 /* 6091 * If the fault is done for GUP, regs will be NULL. We only do the 6092 * accounting for the per thread fault counters who triggered the 6093 * fault, and we skip the perf event updates. 6094 */ 6095 if (!regs) 6096 return; 6097 6098 if (major) 6099 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6100 else 6101 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6102 } 6103 6104 #ifdef CONFIG_LRU_GEN 6105 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6106 { 6107 /* the LRU algorithm only applies to accesses with recency */ 6108 current->in_lru_fault = vma_has_recency(vma); 6109 } 6110 6111 static void lru_gen_exit_fault(void) 6112 { 6113 current->in_lru_fault = false; 6114 } 6115 #else 6116 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6117 { 6118 } 6119 6120 static void lru_gen_exit_fault(void) 6121 { 6122 } 6123 #endif /* CONFIG_LRU_GEN */ 6124 6125 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6126 unsigned int *flags) 6127 { 6128 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6129 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6130 return VM_FAULT_SIGSEGV; 6131 /* 6132 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6133 * just treat it like an ordinary read-fault otherwise. 6134 */ 6135 if (!is_cow_mapping(vma->vm_flags)) 6136 *flags &= ~FAULT_FLAG_UNSHARE; 6137 } else if (*flags & FAULT_FLAG_WRITE) { 6138 /* Write faults on read-only mappings are impossible ... */ 6139 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6140 return VM_FAULT_SIGSEGV; 6141 /* ... and FOLL_FORCE only applies to COW mappings. */ 6142 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6143 !is_cow_mapping(vma->vm_flags))) 6144 return VM_FAULT_SIGSEGV; 6145 } 6146 #ifdef CONFIG_PER_VMA_LOCK 6147 /* 6148 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6149 * the assumption that lock is dropped on VM_FAULT_RETRY. 6150 */ 6151 if (WARN_ON_ONCE((*flags & 6152 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6153 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6154 return VM_FAULT_SIGSEGV; 6155 #endif 6156 6157 return 0; 6158 } 6159 6160 /* 6161 * By the time we get here, we already hold either the VMA lock or the 6162 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6163 * 6164 * The mmap_lock may have been released depending on flags and our 6165 * return value. See filemap_fault() and __folio_lock_or_retry(). 6166 */ 6167 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6168 unsigned int flags, struct pt_regs *regs) 6169 { 6170 /* If the fault handler drops the mmap_lock, vma may be freed */ 6171 struct mm_struct *mm = vma->vm_mm; 6172 vm_fault_t ret; 6173 bool is_droppable; 6174 6175 __set_current_state(TASK_RUNNING); 6176 6177 ret = sanitize_fault_flags(vma, &flags); 6178 if (ret) 6179 goto out; 6180 6181 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6182 flags & FAULT_FLAG_INSTRUCTION, 6183 flags & FAULT_FLAG_REMOTE)) { 6184 ret = VM_FAULT_SIGSEGV; 6185 goto out; 6186 } 6187 6188 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6189 6190 /* 6191 * Enable the memcg OOM handling for faults triggered in user 6192 * space. Kernel faults are handled more gracefully. 6193 */ 6194 if (flags & FAULT_FLAG_USER) 6195 mem_cgroup_enter_user_fault(); 6196 6197 lru_gen_enter_fault(vma); 6198 6199 if (unlikely(is_vm_hugetlb_page(vma))) 6200 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6201 else 6202 ret = __handle_mm_fault(vma, address, flags); 6203 6204 /* 6205 * Warning: It is no longer safe to dereference vma-> after this point, 6206 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6207 * vma might be destroyed from underneath us. 6208 */ 6209 6210 lru_gen_exit_fault(); 6211 6212 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6213 if (is_droppable) 6214 ret &= ~VM_FAULT_OOM; 6215 6216 if (flags & FAULT_FLAG_USER) { 6217 mem_cgroup_exit_user_fault(); 6218 /* 6219 * The task may have entered a memcg OOM situation but 6220 * if the allocation error was handled gracefully (no 6221 * VM_FAULT_OOM), there is no need to kill anything. 6222 * Just clean up the OOM state peacefully. 6223 */ 6224 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6225 mem_cgroup_oom_synchronize(false); 6226 } 6227 out: 6228 mm_account_fault(mm, regs, address, flags, ret); 6229 6230 return ret; 6231 } 6232 EXPORT_SYMBOL_GPL(handle_mm_fault); 6233 6234 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6235 #include <linux/extable.h> 6236 6237 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6238 { 6239 if (likely(mmap_read_trylock(mm))) 6240 return true; 6241 6242 if (regs && !user_mode(regs)) { 6243 unsigned long ip = exception_ip(regs); 6244 if (!search_exception_tables(ip)) 6245 return false; 6246 } 6247 6248 return !mmap_read_lock_killable(mm); 6249 } 6250 6251 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6252 { 6253 /* 6254 * We don't have this operation yet. 6255 * 6256 * It should be easy enough to do: it's basically a 6257 * atomic_long_try_cmpxchg_acquire() 6258 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6259 * it also needs the proper lockdep magic etc. 6260 */ 6261 return false; 6262 } 6263 6264 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6265 { 6266 mmap_read_unlock(mm); 6267 if (regs && !user_mode(regs)) { 6268 unsigned long ip = exception_ip(regs); 6269 if (!search_exception_tables(ip)) 6270 return false; 6271 } 6272 return !mmap_write_lock_killable(mm); 6273 } 6274 6275 /* 6276 * Helper for page fault handling. 6277 * 6278 * This is kind of equivalent to "mmap_read_lock()" followed 6279 * by "find_extend_vma()", except it's a lot more careful about 6280 * the locking (and will drop the lock on failure). 6281 * 6282 * For example, if we have a kernel bug that causes a page 6283 * fault, we don't want to just use mmap_read_lock() to get 6284 * the mm lock, because that would deadlock if the bug were 6285 * to happen while we're holding the mm lock for writing. 6286 * 6287 * So this checks the exception tables on kernel faults in 6288 * order to only do this all for instructions that are actually 6289 * expected to fault. 6290 * 6291 * We can also actually take the mm lock for writing if we 6292 * need to extend the vma, which helps the VM layer a lot. 6293 */ 6294 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6295 unsigned long addr, struct pt_regs *regs) 6296 { 6297 struct vm_area_struct *vma; 6298 6299 if (!get_mmap_lock_carefully(mm, regs)) 6300 return NULL; 6301 6302 vma = find_vma(mm, addr); 6303 if (likely(vma && (vma->vm_start <= addr))) 6304 return vma; 6305 6306 /* 6307 * Well, dang. We might still be successful, but only 6308 * if we can extend a vma to do so. 6309 */ 6310 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6311 mmap_read_unlock(mm); 6312 return NULL; 6313 } 6314 6315 /* 6316 * We can try to upgrade the mmap lock atomically, 6317 * in which case we can continue to use the vma 6318 * we already looked up. 6319 * 6320 * Otherwise we'll have to drop the mmap lock and 6321 * re-take it, and also look up the vma again, 6322 * re-checking it. 6323 */ 6324 if (!mmap_upgrade_trylock(mm)) { 6325 if (!upgrade_mmap_lock_carefully(mm, regs)) 6326 return NULL; 6327 6328 vma = find_vma(mm, addr); 6329 if (!vma) 6330 goto fail; 6331 if (vma->vm_start <= addr) 6332 goto success; 6333 if (!(vma->vm_flags & VM_GROWSDOWN)) 6334 goto fail; 6335 } 6336 6337 if (expand_stack_locked(vma, addr)) 6338 goto fail; 6339 6340 success: 6341 mmap_write_downgrade(mm); 6342 return vma; 6343 6344 fail: 6345 mmap_write_unlock(mm); 6346 return NULL; 6347 } 6348 #endif 6349 6350 #ifdef CONFIG_PER_VMA_LOCK 6351 /* 6352 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6353 * stable and not isolated. If the VMA is not found or is being modified the 6354 * function returns NULL. 6355 */ 6356 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6357 unsigned long address) 6358 { 6359 MA_STATE(mas, &mm->mm_mt, address, address); 6360 struct vm_area_struct *vma; 6361 6362 rcu_read_lock(); 6363 retry: 6364 vma = mas_walk(&mas); 6365 if (!vma) 6366 goto inval; 6367 6368 if (!vma_start_read(vma)) 6369 goto inval; 6370 6371 /* Check if the VMA got isolated after we found it */ 6372 if (vma->detached) { 6373 vma_end_read(vma); 6374 count_vm_vma_lock_event(VMA_LOCK_MISS); 6375 /* The area was replaced with another one */ 6376 goto retry; 6377 } 6378 /* 6379 * At this point, we have a stable reference to a VMA: The VMA is 6380 * locked and we know it hasn't already been isolated. 6381 * From here on, we can access the VMA without worrying about which 6382 * fields are accessible for RCU readers. 6383 */ 6384 6385 /* Check since vm_start/vm_end might change before we lock the VMA */ 6386 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6387 goto inval_end_read; 6388 6389 rcu_read_unlock(); 6390 return vma; 6391 6392 inval_end_read: 6393 vma_end_read(vma); 6394 inval: 6395 rcu_read_unlock(); 6396 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6397 return NULL; 6398 } 6399 #endif /* CONFIG_PER_VMA_LOCK */ 6400 6401 #ifndef __PAGETABLE_P4D_FOLDED 6402 /* 6403 * Allocate p4d page table. 6404 * We've already handled the fast-path in-line. 6405 */ 6406 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6407 { 6408 p4d_t *new = p4d_alloc_one(mm, address); 6409 if (!new) 6410 return -ENOMEM; 6411 6412 spin_lock(&mm->page_table_lock); 6413 if (pgd_present(*pgd)) { /* Another has populated it */ 6414 p4d_free(mm, new); 6415 } else { 6416 smp_wmb(); /* See comment in pmd_install() */ 6417 pgd_populate(mm, pgd, new); 6418 } 6419 spin_unlock(&mm->page_table_lock); 6420 return 0; 6421 } 6422 #endif /* __PAGETABLE_P4D_FOLDED */ 6423 6424 #ifndef __PAGETABLE_PUD_FOLDED 6425 /* 6426 * Allocate page upper directory. 6427 * We've already handled the fast-path in-line. 6428 */ 6429 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6430 { 6431 pud_t *new = pud_alloc_one(mm, address); 6432 if (!new) 6433 return -ENOMEM; 6434 6435 spin_lock(&mm->page_table_lock); 6436 if (!p4d_present(*p4d)) { 6437 mm_inc_nr_puds(mm); 6438 smp_wmb(); /* See comment in pmd_install() */ 6439 p4d_populate(mm, p4d, new); 6440 } else /* Another has populated it */ 6441 pud_free(mm, new); 6442 spin_unlock(&mm->page_table_lock); 6443 return 0; 6444 } 6445 #endif /* __PAGETABLE_PUD_FOLDED */ 6446 6447 #ifndef __PAGETABLE_PMD_FOLDED 6448 /* 6449 * Allocate page middle directory. 6450 * We've already handled the fast-path in-line. 6451 */ 6452 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6453 { 6454 spinlock_t *ptl; 6455 pmd_t *new = pmd_alloc_one(mm, address); 6456 if (!new) 6457 return -ENOMEM; 6458 6459 ptl = pud_lock(mm, pud); 6460 if (!pud_present(*pud)) { 6461 mm_inc_nr_pmds(mm); 6462 smp_wmb(); /* See comment in pmd_install() */ 6463 pud_populate(mm, pud, new); 6464 } else { /* Another has populated it */ 6465 pmd_free(mm, new); 6466 } 6467 spin_unlock(ptl); 6468 return 0; 6469 } 6470 #endif /* __PAGETABLE_PMD_FOLDED */ 6471 6472 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6473 spinlock_t *lock, pte_t *ptep, 6474 pgprot_t pgprot, unsigned long pfn_base, 6475 unsigned long addr_mask, bool writable, 6476 bool special) 6477 { 6478 args->lock = lock; 6479 args->ptep = ptep; 6480 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6481 args->pgprot = pgprot; 6482 args->writable = writable; 6483 args->special = special; 6484 } 6485 6486 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6487 { 6488 #ifdef CONFIG_LOCKDEP 6489 struct file *file = vma->vm_file; 6490 struct address_space *mapping = file ? file->f_mapping : NULL; 6491 6492 if (mapping) 6493 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6494 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6495 else 6496 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6497 #endif 6498 } 6499 6500 /** 6501 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6502 * @args: Pointer to struct @follow_pfnmap_args 6503 * 6504 * The caller needs to setup args->vma and args->address to point to the 6505 * virtual address as the target of such lookup. On a successful return, 6506 * the results will be put into other output fields. 6507 * 6508 * After the caller finished using the fields, the caller must invoke 6509 * another follow_pfnmap_end() to proper releases the locks and resources 6510 * of such look up request. 6511 * 6512 * During the start() and end() calls, the results in @args will be valid 6513 * as proper locks will be held. After the end() is called, all the fields 6514 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6515 * use of such information after end() may require proper synchronizations 6516 * by the caller with page table updates, otherwise it can create a 6517 * security bug. 6518 * 6519 * If the PTE maps a refcounted page, callers are responsible to protect 6520 * against invalidation with MMU notifiers; otherwise access to the PFN at 6521 * a later point in time can trigger use-after-free. 6522 * 6523 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6524 * should be taken for read, and the mmap semaphore cannot be released 6525 * before the end() is invoked. 6526 * 6527 * This function must not be used to modify PTE content. 6528 * 6529 * Return: zero on success, negative otherwise. 6530 */ 6531 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6532 { 6533 struct vm_area_struct *vma = args->vma; 6534 unsigned long address = args->address; 6535 struct mm_struct *mm = vma->vm_mm; 6536 spinlock_t *lock; 6537 pgd_t *pgdp; 6538 p4d_t *p4dp, p4d; 6539 pud_t *pudp, pud; 6540 pmd_t *pmdp, pmd; 6541 pte_t *ptep, pte; 6542 6543 pfnmap_lockdep_assert(vma); 6544 6545 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6546 goto out; 6547 6548 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6549 goto out; 6550 retry: 6551 pgdp = pgd_offset(mm, address); 6552 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6553 goto out; 6554 6555 p4dp = p4d_offset(pgdp, address); 6556 p4d = READ_ONCE(*p4dp); 6557 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6558 goto out; 6559 6560 pudp = pud_offset(p4dp, address); 6561 pud = READ_ONCE(*pudp); 6562 if (pud_none(pud)) 6563 goto out; 6564 if (pud_leaf(pud)) { 6565 lock = pud_lock(mm, pudp); 6566 if (!unlikely(pud_leaf(pud))) { 6567 spin_unlock(lock); 6568 goto retry; 6569 } 6570 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6571 pud_pfn(pud), PUD_MASK, pud_write(pud), 6572 pud_special(pud)); 6573 return 0; 6574 } 6575 6576 pmdp = pmd_offset(pudp, address); 6577 pmd = pmdp_get_lockless(pmdp); 6578 if (pmd_leaf(pmd)) { 6579 lock = pmd_lock(mm, pmdp); 6580 if (!unlikely(pmd_leaf(pmd))) { 6581 spin_unlock(lock); 6582 goto retry; 6583 } 6584 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6585 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6586 pmd_special(pmd)); 6587 return 0; 6588 } 6589 6590 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6591 if (!ptep) 6592 goto out; 6593 pte = ptep_get(ptep); 6594 if (!pte_present(pte)) 6595 goto unlock; 6596 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6597 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6598 pte_special(pte)); 6599 return 0; 6600 unlock: 6601 pte_unmap_unlock(ptep, lock); 6602 out: 6603 return -EINVAL; 6604 } 6605 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6606 6607 /** 6608 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6609 * @args: Pointer to struct @follow_pfnmap_args 6610 * 6611 * Must be used in pair of follow_pfnmap_start(). See the start() function 6612 * above for more information. 6613 */ 6614 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6615 { 6616 if (args->lock) 6617 spin_unlock(args->lock); 6618 if (args->ptep) 6619 pte_unmap(args->ptep); 6620 } 6621 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6622 6623 #ifdef CONFIG_HAVE_IOREMAP_PROT 6624 /** 6625 * generic_access_phys - generic implementation for iomem mmap access 6626 * @vma: the vma to access 6627 * @addr: userspace address, not relative offset within @vma 6628 * @buf: buffer to read/write 6629 * @len: length of transfer 6630 * @write: set to FOLL_WRITE when writing, otherwise reading 6631 * 6632 * This is a generic implementation for &vm_operations_struct.access for an 6633 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6634 * not page based. 6635 */ 6636 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6637 void *buf, int len, int write) 6638 { 6639 resource_size_t phys_addr; 6640 unsigned long prot = 0; 6641 void __iomem *maddr; 6642 int offset = offset_in_page(addr); 6643 int ret = -EINVAL; 6644 bool writable; 6645 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6646 6647 retry: 6648 if (follow_pfnmap_start(&args)) 6649 return -EINVAL; 6650 prot = pgprot_val(args.pgprot); 6651 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6652 writable = args.writable; 6653 follow_pfnmap_end(&args); 6654 6655 if ((write & FOLL_WRITE) && !writable) 6656 return -EINVAL; 6657 6658 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6659 if (!maddr) 6660 return -ENOMEM; 6661 6662 if (follow_pfnmap_start(&args)) 6663 goto out_unmap; 6664 6665 if ((prot != pgprot_val(args.pgprot)) || 6666 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6667 (writable != args.writable)) { 6668 follow_pfnmap_end(&args); 6669 iounmap(maddr); 6670 goto retry; 6671 } 6672 6673 if (write) 6674 memcpy_toio(maddr + offset, buf, len); 6675 else 6676 memcpy_fromio(buf, maddr + offset, len); 6677 ret = len; 6678 follow_pfnmap_end(&args); 6679 out_unmap: 6680 iounmap(maddr); 6681 6682 return ret; 6683 } 6684 EXPORT_SYMBOL_GPL(generic_access_phys); 6685 #endif 6686 6687 /* 6688 * Access another process' address space as given in mm. 6689 */ 6690 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6691 void *buf, int len, unsigned int gup_flags) 6692 { 6693 void *old_buf = buf; 6694 int write = gup_flags & FOLL_WRITE; 6695 6696 if (mmap_read_lock_killable(mm)) 6697 return 0; 6698 6699 /* Untag the address before looking up the VMA */ 6700 addr = untagged_addr_remote(mm, addr); 6701 6702 /* Avoid triggering the temporary warning in __get_user_pages */ 6703 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6704 return 0; 6705 6706 /* ignore errors, just check how much was successfully transferred */ 6707 while (len) { 6708 int bytes, offset; 6709 void *maddr; 6710 struct vm_area_struct *vma = NULL; 6711 struct page *page = get_user_page_vma_remote(mm, addr, 6712 gup_flags, &vma); 6713 6714 if (IS_ERR(page)) { 6715 /* We might need to expand the stack to access it */ 6716 vma = vma_lookup(mm, addr); 6717 if (!vma) { 6718 vma = expand_stack(mm, addr); 6719 6720 /* mmap_lock was dropped on failure */ 6721 if (!vma) 6722 return buf - old_buf; 6723 6724 /* Try again if stack expansion worked */ 6725 continue; 6726 } 6727 6728 /* 6729 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6730 * we can access using slightly different code. 6731 */ 6732 bytes = 0; 6733 #ifdef CONFIG_HAVE_IOREMAP_PROT 6734 if (vma->vm_ops && vma->vm_ops->access) 6735 bytes = vma->vm_ops->access(vma, addr, buf, 6736 len, write); 6737 #endif 6738 if (bytes <= 0) 6739 break; 6740 } else { 6741 bytes = len; 6742 offset = addr & (PAGE_SIZE-1); 6743 if (bytes > PAGE_SIZE-offset) 6744 bytes = PAGE_SIZE-offset; 6745 6746 maddr = kmap_local_page(page); 6747 if (write) { 6748 copy_to_user_page(vma, page, addr, 6749 maddr + offset, buf, bytes); 6750 set_page_dirty_lock(page); 6751 } else { 6752 copy_from_user_page(vma, page, addr, 6753 buf, maddr + offset, bytes); 6754 } 6755 unmap_and_put_page(page, maddr); 6756 } 6757 len -= bytes; 6758 buf += bytes; 6759 addr += bytes; 6760 } 6761 mmap_read_unlock(mm); 6762 6763 return buf - old_buf; 6764 } 6765 6766 /** 6767 * access_remote_vm - access another process' address space 6768 * @mm: the mm_struct of the target address space 6769 * @addr: start address to access 6770 * @buf: source or destination buffer 6771 * @len: number of bytes to transfer 6772 * @gup_flags: flags modifying lookup behaviour 6773 * 6774 * The caller must hold a reference on @mm. 6775 * 6776 * Return: number of bytes copied from source to destination. 6777 */ 6778 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6779 void *buf, int len, unsigned int gup_flags) 6780 { 6781 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6782 } 6783 6784 /* 6785 * Access another process' address space. 6786 * Source/target buffer must be kernel space, 6787 * Do not walk the page table directly, use get_user_pages 6788 */ 6789 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6790 void *buf, int len, unsigned int gup_flags) 6791 { 6792 struct mm_struct *mm; 6793 int ret; 6794 6795 mm = get_task_mm(tsk); 6796 if (!mm) 6797 return 0; 6798 6799 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6800 6801 mmput(mm); 6802 6803 return ret; 6804 } 6805 EXPORT_SYMBOL_GPL(access_process_vm); 6806 6807 #ifdef CONFIG_BPF_SYSCALL 6808 /* 6809 * Copy a string from another process's address space as given in mm. 6810 * If there is any error return -EFAULT. 6811 */ 6812 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6813 void *buf, int len, unsigned int gup_flags) 6814 { 6815 void *old_buf = buf; 6816 int err = 0; 6817 6818 *(char *)buf = '\0'; 6819 6820 if (mmap_read_lock_killable(mm)) 6821 return -EFAULT; 6822 6823 addr = untagged_addr_remote(mm, addr); 6824 6825 /* Avoid triggering the temporary warning in __get_user_pages */ 6826 if (!vma_lookup(mm, addr)) { 6827 err = -EFAULT; 6828 goto out; 6829 } 6830 6831 while (len) { 6832 int bytes, offset, retval; 6833 void *maddr; 6834 struct page *page; 6835 struct vm_area_struct *vma = NULL; 6836 6837 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6838 if (IS_ERR(page)) { 6839 /* 6840 * Treat as a total failure for now until we decide how 6841 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6842 * stack expansion. 6843 */ 6844 *(char *)buf = '\0'; 6845 err = -EFAULT; 6846 goto out; 6847 } 6848 6849 bytes = len; 6850 offset = addr & (PAGE_SIZE - 1); 6851 if (bytes > PAGE_SIZE - offset) 6852 bytes = PAGE_SIZE - offset; 6853 6854 maddr = kmap_local_page(page); 6855 retval = strscpy(buf, maddr + offset, bytes); 6856 if (retval >= 0) { 6857 /* Found the end of the string */ 6858 buf += retval; 6859 unmap_and_put_page(page, maddr); 6860 break; 6861 } 6862 6863 buf += bytes - 1; 6864 /* 6865 * Because strscpy always NUL terminates we need to 6866 * copy the last byte in the page if we are going to 6867 * load more pages 6868 */ 6869 if (bytes != len) { 6870 addr += bytes - 1; 6871 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 6872 buf += 1; 6873 addr += 1; 6874 } 6875 len -= bytes; 6876 6877 unmap_and_put_page(page, maddr); 6878 } 6879 6880 out: 6881 mmap_read_unlock(mm); 6882 if (err) 6883 return err; 6884 return buf - old_buf; 6885 } 6886 6887 /** 6888 * copy_remote_vm_str - copy a string from another process's address space. 6889 * @tsk: the task of the target address space 6890 * @addr: start address to read from 6891 * @buf: destination buffer 6892 * @len: number of bytes to copy 6893 * @gup_flags: flags modifying lookup behaviour 6894 * 6895 * The caller must hold a reference on @mm. 6896 * 6897 * Return: number of bytes copied from @addr (source) to @buf (destination); 6898 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 6899 * buffer. On any error, return -EFAULT. 6900 */ 6901 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 6902 void *buf, int len, unsigned int gup_flags) 6903 { 6904 struct mm_struct *mm; 6905 int ret; 6906 6907 if (unlikely(len == 0)) 6908 return 0; 6909 6910 mm = get_task_mm(tsk); 6911 if (!mm) { 6912 *(char *)buf = '\0'; 6913 return -EFAULT; 6914 } 6915 6916 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 6917 6918 mmput(mm); 6919 6920 return ret; 6921 } 6922 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 6923 #endif /* CONFIG_BPF_SYSCALL */ 6924 6925 /* 6926 * Print the name of a VMA. 6927 */ 6928 void print_vma_addr(char *prefix, unsigned long ip) 6929 { 6930 struct mm_struct *mm = current->mm; 6931 struct vm_area_struct *vma; 6932 6933 /* 6934 * we might be running from an atomic context so we cannot sleep 6935 */ 6936 if (!mmap_read_trylock(mm)) 6937 return; 6938 6939 vma = vma_lookup(mm, ip); 6940 if (vma && vma->vm_file) { 6941 struct file *f = vma->vm_file; 6942 ip -= vma->vm_start; 6943 ip += vma->vm_pgoff << PAGE_SHIFT; 6944 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6945 vma->vm_start, 6946 vma->vm_end - vma->vm_start); 6947 } 6948 mmap_read_unlock(mm); 6949 } 6950 6951 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6952 void __might_fault(const char *file, int line) 6953 { 6954 if (pagefault_disabled()) 6955 return; 6956 __might_sleep(file, line); 6957 if (current->mm) 6958 might_lock_read(¤t->mm->mmap_lock); 6959 } 6960 EXPORT_SYMBOL(__might_fault); 6961 #endif 6962 6963 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6964 /* 6965 * Process all subpages of the specified huge page with the specified 6966 * operation. The target subpage will be processed last to keep its 6967 * cache lines hot. 6968 */ 6969 static inline int process_huge_page( 6970 unsigned long addr_hint, unsigned int nr_pages, 6971 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6972 void *arg) 6973 { 6974 int i, n, base, l, ret; 6975 unsigned long addr = addr_hint & 6976 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6977 6978 /* Process target subpage last to keep its cache lines hot */ 6979 might_sleep(); 6980 n = (addr_hint - addr) / PAGE_SIZE; 6981 if (2 * n <= nr_pages) { 6982 /* If target subpage in first half of huge page */ 6983 base = 0; 6984 l = n; 6985 /* Process subpages at the end of huge page */ 6986 for (i = nr_pages - 1; i >= 2 * n; i--) { 6987 cond_resched(); 6988 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6989 if (ret) 6990 return ret; 6991 } 6992 } else { 6993 /* If target subpage in second half of huge page */ 6994 base = nr_pages - 2 * (nr_pages - n); 6995 l = nr_pages - n; 6996 /* Process subpages at the begin of huge page */ 6997 for (i = 0; i < base; i++) { 6998 cond_resched(); 6999 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7000 if (ret) 7001 return ret; 7002 } 7003 } 7004 /* 7005 * Process remaining subpages in left-right-left-right pattern 7006 * towards the target subpage 7007 */ 7008 for (i = 0; i < l; i++) { 7009 int left_idx = base + i; 7010 int right_idx = base + 2 * l - 1 - i; 7011 7012 cond_resched(); 7013 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7014 if (ret) 7015 return ret; 7016 cond_resched(); 7017 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7018 if (ret) 7019 return ret; 7020 } 7021 return 0; 7022 } 7023 7024 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7025 unsigned int nr_pages) 7026 { 7027 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7028 int i; 7029 7030 might_sleep(); 7031 for (i = 0; i < nr_pages; i++) { 7032 cond_resched(); 7033 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7034 } 7035 } 7036 7037 static int clear_subpage(unsigned long addr, int idx, void *arg) 7038 { 7039 struct folio *folio = arg; 7040 7041 clear_user_highpage(folio_page(folio, idx), addr); 7042 return 0; 7043 } 7044 7045 /** 7046 * folio_zero_user - Zero a folio which will be mapped to userspace. 7047 * @folio: The folio to zero. 7048 * @addr_hint: The address will be accessed or the base address if uncelar. 7049 */ 7050 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7051 { 7052 unsigned int nr_pages = folio_nr_pages(folio); 7053 7054 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7055 clear_gigantic_page(folio, addr_hint, nr_pages); 7056 else 7057 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7058 } 7059 7060 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7061 unsigned long addr_hint, 7062 struct vm_area_struct *vma, 7063 unsigned int nr_pages) 7064 { 7065 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7066 struct page *dst_page; 7067 struct page *src_page; 7068 int i; 7069 7070 for (i = 0; i < nr_pages; i++) { 7071 dst_page = folio_page(dst, i); 7072 src_page = folio_page(src, i); 7073 7074 cond_resched(); 7075 if (copy_mc_user_highpage(dst_page, src_page, 7076 addr + i*PAGE_SIZE, vma)) 7077 return -EHWPOISON; 7078 } 7079 return 0; 7080 } 7081 7082 struct copy_subpage_arg { 7083 struct folio *dst; 7084 struct folio *src; 7085 struct vm_area_struct *vma; 7086 }; 7087 7088 static int copy_subpage(unsigned long addr, int idx, void *arg) 7089 { 7090 struct copy_subpage_arg *copy_arg = arg; 7091 struct page *dst = folio_page(copy_arg->dst, idx); 7092 struct page *src = folio_page(copy_arg->src, idx); 7093 7094 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7095 return -EHWPOISON; 7096 return 0; 7097 } 7098 7099 int copy_user_large_folio(struct folio *dst, struct folio *src, 7100 unsigned long addr_hint, struct vm_area_struct *vma) 7101 { 7102 unsigned int nr_pages = folio_nr_pages(dst); 7103 struct copy_subpage_arg arg = { 7104 .dst = dst, 7105 .src = src, 7106 .vma = vma, 7107 }; 7108 7109 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7110 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7111 7112 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7113 } 7114 7115 long copy_folio_from_user(struct folio *dst_folio, 7116 const void __user *usr_src, 7117 bool allow_pagefault) 7118 { 7119 void *kaddr; 7120 unsigned long i, rc = 0; 7121 unsigned int nr_pages = folio_nr_pages(dst_folio); 7122 unsigned long ret_val = nr_pages * PAGE_SIZE; 7123 struct page *subpage; 7124 7125 for (i = 0; i < nr_pages; i++) { 7126 subpage = folio_page(dst_folio, i); 7127 kaddr = kmap_local_page(subpage); 7128 if (!allow_pagefault) 7129 pagefault_disable(); 7130 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7131 if (!allow_pagefault) 7132 pagefault_enable(); 7133 kunmap_local(kaddr); 7134 7135 ret_val -= (PAGE_SIZE - rc); 7136 if (rc) 7137 break; 7138 7139 flush_dcache_page(subpage); 7140 7141 cond_resched(); 7142 } 7143 return ret_val; 7144 } 7145 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7146 7147 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7148 7149 static struct kmem_cache *page_ptl_cachep; 7150 7151 void __init ptlock_cache_init(void) 7152 { 7153 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7154 SLAB_PANIC, NULL); 7155 } 7156 7157 bool ptlock_alloc(struct ptdesc *ptdesc) 7158 { 7159 spinlock_t *ptl; 7160 7161 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7162 if (!ptl) 7163 return false; 7164 ptdesc->ptl = ptl; 7165 return true; 7166 } 7167 7168 void ptlock_free(struct ptdesc *ptdesc) 7169 { 7170 if (ptdesc->ptl) 7171 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7172 } 7173 #endif 7174 7175 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7176 { 7177 if (is_vm_hugetlb_page(vma)) 7178 hugetlb_vma_lock_read(vma); 7179 } 7180 7181 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7182 { 7183 if (is_vm_hugetlb_page(vma)) 7184 hugetlb_vma_unlock_read(vma); 7185 } 7186