xref: /linux/mm/memory.c (revision e190bfe56841551b1ad5abb42ebd0c4798cc8c01)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (task->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, task->rss_stat.count[i]);
135 			task->rss_stat.count[i] = 0;
136 		}
137 	}
138 	task->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		__sync_task_rss_stat(task, task->mm);
161 }
162 
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165 	long val = 0;
166 
167 	/*
168 	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 	 * The caller must guarantee task->mm is not invalid.
170 	 */
171 	val = atomic_long_read(&mm->rss_stat.count[member]);
172 	/*
173 	 * counter is updated in asynchronous manner and may go to minus.
174 	 * But it's never be expected number for users.
175 	 */
176 	if (val < 0)
177 		return 0;
178 	return (unsigned long)val;
179 }
180 
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183 	__sync_task_rss_stat(task, mm);
184 }
185 #else
186 
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189 
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193 
194 #endif
195 
196 /*
197  * If a p?d_bad entry is found while walking page tables, report
198  * the error, before resetting entry to p?d_none.  Usually (but
199  * very seldom) called out from the p?d_none_or_clear_bad macros.
200  */
201 
202 void pgd_clear_bad(pgd_t *pgd)
203 {
204 	pgd_ERROR(*pgd);
205 	pgd_clear(pgd);
206 }
207 
208 void pud_clear_bad(pud_t *pud)
209 {
210 	pud_ERROR(*pud);
211 	pud_clear(pud);
212 }
213 
214 void pmd_clear_bad(pmd_t *pmd)
215 {
216 	pmd_ERROR(*pmd);
217 	pmd_clear(pmd);
218 }
219 
220 /*
221  * Note: this doesn't free the actual pages themselves. That
222  * has been handled earlier when unmapping all the memory regions.
223  */
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 			   unsigned long addr)
226 {
227 	pgtable_t token = pmd_pgtable(*pmd);
228 	pmd_clear(pmd);
229 	pte_free_tlb(tlb, token, addr);
230 	tlb->mm->nr_ptes--;
231 }
232 
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 				unsigned long addr, unsigned long end,
235 				unsigned long floor, unsigned long ceiling)
236 {
237 	pmd_t *pmd;
238 	unsigned long next;
239 	unsigned long start;
240 
241 	start = addr;
242 	pmd = pmd_offset(pud, addr);
243 	do {
244 		next = pmd_addr_end(addr, end);
245 		if (pmd_none_or_clear_bad(pmd))
246 			continue;
247 		free_pte_range(tlb, pmd, addr);
248 	} while (pmd++, addr = next, addr != end);
249 
250 	start &= PUD_MASK;
251 	if (start < floor)
252 		return;
253 	if (ceiling) {
254 		ceiling &= PUD_MASK;
255 		if (!ceiling)
256 			return;
257 	}
258 	if (end - 1 > ceiling - 1)
259 		return;
260 
261 	pmd = pmd_offset(pud, start);
262 	pud_clear(pud);
263 	pmd_free_tlb(tlb, pmd, start);
264 }
265 
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	pud_t *pud;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	pud = pud_offset(pgd, addr);
276 	do {
277 		next = pud_addr_end(addr, end);
278 		if (pud_none_or_clear_bad(pud))
279 			continue;
280 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 	} while (pud++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	pud = pud_offset(pgd, start);
295 	pgd_clear(pgd);
296 	pud_free_tlb(tlb, pud, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  *
302  * Must be called with pagetable lock held.
303  */
304 void free_pgd_range(struct mmu_gather *tlb,
305 			unsigned long addr, unsigned long end,
306 			unsigned long floor, unsigned long ceiling)
307 {
308 	pgd_t *pgd;
309 	unsigned long next;
310 	unsigned long start;
311 
312 	/*
313 	 * The next few lines have given us lots of grief...
314 	 *
315 	 * Why are we testing PMD* at this top level?  Because often
316 	 * there will be no work to do at all, and we'd prefer not to
317 	 * go all the way down to the bottom just to discover that.
318 	 *
319 	 * Why all these "- 1"s?  Because 0 represents both the bottom
320 	 * of the address space and the top of it (using -1 for the
321 	 * top wouldn't help much: the masks would do the wrong thing).
322 	 * The rule is that addr 0 and floor 0 refer to the bottom of
323 	 * the address space, but end 0 and ceiling 0 refer to the top
324 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 	 * that end 0 case should be mythical).
326 	 *
327 	 * Wherever addr is brought up or ceiling brought down, we must
328 	 * be careful to reject "the opposite 0" before it confuses the
329 	 * subsequent tests.  But what about where end is brought down
330 	 * by PMD_SIZE below? no, end can't go down to 0 there.
331 	 *
332 	 * Whereas we round start (addr) and ceiling down, by different
333 	 * masks at different levels, in order to test whether a table
334 	 * now has no other vmas using it, so can be freed, we don't
335 	 * bother to round floor or end up - the tests don't need that.
336 	 */
337 
338 	addr &= PMD_MASK;
339 	if (addr < floor) {
340 		addr += PMD_SIZE;
341 		if (!addr)
342 			return;
343 	}
344 	if (ceiling) {
345 		ceiling &= PMD_MASK;
346 		if (!ceiling)
347 			return;
348 	}
349 	if (end - 1 > ceiling - 1)
350 		end -= PMD_SIZE;
351 	if (addr > end - 1)
352 		return;
353 
354 	start = addr;
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
365 		unsigned long floor, unsigned long ceiling)
366 {
367 	while (vma) {
368 		struct vm_area_struct *next = vma->vm_next;
369 		unsigned long addr = vma->vm_start;
370 
371 		/*
372 		 * Hide vma from rmap and truncate_pagecache before freeing
373 		 * pgtables
374 		 */
375 		unlink_anon_vmas(vma);
376 		unlink_file_vma(vma);
377 
378 		if (is_vm_hugetlb_page(vma)) {
379 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
380 				floor, next? next->vm_start: ceiling);
381 		} else {
382 			/*
383 			 * Optimization: gather nearby vmas into one call down
384 			 */
385 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
386 			       && !is_vm_hugetlb_page(next)) {
387 				vma = next;
388 				next = vma->vm_next;
389 				unlink_anon_vmas(vma);
390 				unlink_file_vma(vma);
391 			}
392 			free_pgd_range(tlb, addr, vma->vm_end,
393 				floor, next? next->vm_start: ceiling);
394 		}
395 		vma = next;
396 	}
397 }
398 
399 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
400 {
401 	pgtable_t new = pte_alloc_one(mm, address);
402 	if (!new)
403 		return -ENOMEM;
404 
405 	/*
406 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 	 * visible before the pte is made visible to other CPUs by being
408 	 * put into page tables.
409 	 *
410 	 * The other side of the story is the pointer chasing in the page
411 	 * table walking code (when walking the page table without locking;
412 	 * ie. most of the time). Fortunately, these data accesses consist
413 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 	 * being the notable exception) will already guarantee loads are
415 	 * seen in-order. See the alpha page table accessors for the
416 	 * smp_read_barrier_depends() barriers in page table walking code.
417 	 */
418 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
419 
420 	spin_lock(&mm->page_table_lock);
421 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
422 		mm->nr_ptes++;
423 		pmd_populate(mm, pmd, new);
424 		new = NULL;
425 	}
426 	spin_unlock(&mm->page_table_lock);
427 	if (new)
428 		pte_free(mm, new);
429 	return 0;
430 }
431 
432 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
433 {
434 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
435 	if (!new)
436 		return -ENOMEM;
437 
438 	smp_wmb(); /* See comment in __pte_alloc */
439 
440 	spin_lock(&init_mm.page_table_lock);
441 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
442 		pmd_populate_kernel(&init_mm, pmd, new);
443 		new = NULL;
444 	}
445 	spin_unlock(&init_mm.page_table_lock);
446 	if (new)
447 		pte_free_kernel(&init_mm, new);
448 	return 0;
449 }
450 
451 static inline void init_rss_vec(int *rss)
452 {
453 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
454 }
455 
456 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
457 {
458 	int i;
459 
460 	if (current->mm == mm)
461 		sync_mm_rss(current, mm);
462 	for (i = 0; i < NR_MM_COUNTERS; i++)
463 		if (rss[i])
464 			add_mm_counter(mm, i, rss[i]);
465 }
466 
467 /*
468  * This function is called to print an error when a bad pte
469  * is found. For example, we might have a PFN-mapped pte in
470  * a region that doesn't allow it.
471  *
472  * The calling function must still handle the error.
473  */
474 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
475 			  pte_t pte, struct page *page)
476 {
477 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
478 	pud_t *pud = pud_offset(pgd, addr);
479 	pmd_t *pmd = pmd_offset(pud, addr);
480 	struct address_space *mapping;
481 	pgoff_t index;
482 	static unsigned long resume;
483 	static unsigned long nr_shown;
484 	static unsigned long nr_unshown;
485 
486 	/*
487 	 * Allow a burst of 60 reports, then keep quiet for that minute;
488 	 * or allow a steady drip of one report per second.
489 	 */
490 	if (nr_shown == 60) {
491 		if (time_before(jiffies, resume)) {
492 			nr_unshown++;
493 			return;
494 		}
495 		if (nr_unshown) {
496 			printk(KERN_ALERT
497 				"BUG: Bad page map: %lu messages suppressed\n",
498 				nr_unshown);
499 			nr_unshown = 0;
500 		}
501 		nr_shown = 0;
502 	}
503 	if (nr_shown++ == 0)
504 		resume = jiffies + 60 * HZ;
505 
506 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
507 	index = linear_page_index(vma, addr);
508 
509 	printk(KERN_ALERT
510 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
511 		current->comm,
512 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
513 	if (page)
514 		dump_page(page);
515 	printk(KERN_ALERT
516 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
517 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
518 	/*
519 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
520 	 */
521 	if (vma->vm_ops)
522 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
523 				(unsigned long)vma->vm_ops->fault);
524 	if (vma->vm_file && vma->vm_file->f_op)
525 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
526 				(unsigned long)vma->vm_file->f_op->mmap);
527 	dump_stack();
528 	add_taint(TAINT_BAD_PAGE);
529 }
530 
531 static inline int is_cow_mapping(unsigned int flags)
532 {
533 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
534 }
535 
536 #ifndef is_zero_pfn
537 static inline int is_zero_pfn(unsigned long pfn)
538 {
539 	return pfn == zero_pfn;
540 }
541 #endif
542 
543 #ifndef my_zero_pfn
544 static inline unsigned long my_zero_pfn(unsigned long addr)
545 {
546 	return zero_pfn;
547 }
548 #endif
549 
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 #ifdef __HAVE_ARCH_PTE_SPECIAL
593 # define HAVE_PTE_SPECIAL 1
594 #else
595 # define HAVE_PTE_SPECIAL 0
596 #endif
597 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
598 				pte_t pte)
599 {
600 	unsigned long pfn = pte_pfn(pte);
601 
602 	if (HAVE_PTE_SPECIAL) {
603 		if (likely(!pte_special(pte)))
604 			goto check_pfn;
605 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 			return NULL;
607 		if (!is_zero_pfn(pfn))
608 			print_bad_pte(vma, addr, pte, NULL);
609 		return NULL;
610 	}
611 
612 	/* !HAVE_PTE_SPECIAL case follows: */
613 
614 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 		if (vma->vm_flags & VM_MIXEDMAP) {
616 			if (!pfn_valid(pfn))
617 				return NULL;
618 			goto out;
619 		} else {
620 			unsigned long off;
621 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 			if (pfn == vma->vm_pgoff + off)
623 				return NULL;
624 			if (!is_cow_mapping(vma->vm_flags))
625 				return NULL;
626 		}
627 	}
628 
629 	if (is_zero_pfn(pfn))
630 		return NULL;
631 check_pfn:
632 	if (unlikely(pfn > highest_memmap_pfn)) {
633 		print_bad_pte(vma, addr, pte, NULL);
634 		return NULL;
635 	}
636 
637 	/*
638 	 * NOTE! We still have PageReserved() pages in the page tables.
639 	 * eg. VDSO mappings can cause them to exist.
640 	 */
641 out:
642 	return pfn_to_page(pfn);
643 }
644 
645 /*
646  * copy one vm_area from one task to the other. Assumes the page tables
647  * already present in the new task to be cleared in the whole range
648  * covered by this vma.
649  */
650 
651 static inline unsigned long
652 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
653 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
654 		unsigned long addr, int *rss)
655 {
656 	unsigned long vm_flags = vma->vm_flags;
657 	pte_t pte = *src_pte;
658 	struct page *page;
659 
660 	/* pte contains position in swap or file, so copy. */
661 	if (unlikely(!pte_present(pte))) {
662 		if (!pte_file(pte)) {
663 			swp_entry_t entry = pte_to_swp_entry(pte);
664 
665 			if (swap_duplicate(entry) < 0)
666 				return entry.val;
667 
668 			/* make sure dst_mm is on swapoff's mmlist. */
669 			if (unlikely(list_empty(&dst_mm->mmlist))) {
670 				spin_lock(&mmlist_lock);
671 				if (list_empty(&dst_mm->mmlist))
672 					list_add(&dst_mm->mmlist,
673 						 &src_mm->mmlist);
674 				spin_unlock(&mmlist_lock);
675 			}
676 			if (likely(!non_swap_entry(entry)))
677 				rss[MM_SWAPENTS]++;
678 			else if (is_write_migration_entry(entry) &&
679 					is_cow_mapping(vm_flags)) {
680 				/*
681 				 * COW mappings require pages in both parent
682 				 * and child to be set to read.
683 				 */
684 				make_migration_entry_read(&entry);
685 				pte = swp_entry_to_pte(entry);
686 				set_pte_at(src_mm, addr, src_pte, pte);
687 			}
688 		}
689 		goto out_set_pte;
690 	}
691 
692 	/*
693 	 * If it's a COW mapping, write protect it both
694 	 * in the parent and the child
695 	 */
696 	if (is_cow_mapping(vm_flags)) {
697 		ptep_set_wrprotect(src_mm, addr, src_pte);
698 		pte = pte_wrprotect(pte);
699 	}
700 
701 	/*
702 	 * If it's a shared mapping, mark it clean in
703 	 * the child
704 	 */
705 	if (vm_flags & VM_SHARED)
706 		pte = pte_mkclean(pte);
707 	pte = pte_mkold(pte);
708 
709 	page = vm_normal_page(vma, addr, pte);
710 	if (page) {
711 		get_page(page);
712 		page_dup_rmap(page);
713 		if (PageAnon(page))
714 			rss[MM_ANONPAGES]++;
715 		else
716 			rss[MM_FILEPAGES]++;
717 	}
718 
719 out_set_pte:
720 	set_pte_at(dst_mm, addr, dst_pte, pte);
721 	return 0;
722 }
723 
724 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
725 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
726 		unsigned long addr, unsigned long end)
727 {
728 	pte_t *orig_src_pte, *orig_dst_pte;
729 	pte_t *src_pte, *dst_pte;
730 	spinlock_t *src_ptl, *dst_ptl;
731 	int progress = 0;
732 	int rss[NR_MM_COUNTERS];
733 	swp_entry_t entry = (swp_entry_t){0};
734 
735 again:
736 	init_rss_vec(rss);
737 
738 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
739 	if (!dst_pte)
740 		return -ENOMEM;
741 	src_pte = pte_offset_map_nested(src_pmd, addr);
742 	src_ptl = pte_lockptr(src_mm, src_pmd);
743 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
744 	orig_src_pte = src_pte;
745 	orig_dst_pte = dst_pte;
746 	arch_enter_lazy_mmu_mode();
747 
748 	do {
749 		/*
750 		 * We are holding two locks at this point - either of them
751 		 * could generate latencies in another task on another CPU.
752 		 */
753 		if (progress >= 32) {
754 			progress = 0;
755 			if (need_resched() ||
756 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
757 				break;
758 		}
759 		if (pte_none(*src_pte)) {
760 			progress++;
761 			continue;
762 		}
763 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
764 							vma, addr, rss);
765 		if (entry.val)
766 			break;
767 		progress += 8;
768 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
769 
770 	arch_leave_lazy_mmu_mode();
771 	spin_unlock(src_ptl);
772 	pte_unmap_nested(orig_src_pte);
773 	add_mm_rss_vec(dst_mm, rss);
774 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
775 	cond_resched();
776 
777 	if (entry.val) {
778 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
779 			return -ENOMEM;
780 		progress = 0;
781 	}
782 	if (addr != end)
783 		goto again;
784 	return 0;
785 }
786 
787 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
788 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
789 		unsigned long addr, unsigned long end)
790 {
791 	pmd_t *src_pmd, *dst_pmd;
792 	unsigned long next;
793 
794 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
795 	if (!dst_pmd)
796 		return -ENOMEM;
797 	src_pmd = pmd_offset(src_pud, addr);
798 	do {
799 		next = pmd_addr_end(addr, end);
800 		if (pmd_none_or_clear_bad(src_pmd))
801 			continue;
802 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
803 						vma, addr, next))
804 			return -ENOMEM;
805 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
806 	return 0;
807 }
808 
809 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
810 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
811 		unsigned long addr, unsigned long end)
812 {
813 	pud_t *src_pud, *dst_pud;
814 	unsigned long next;
815 
816 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
817 	if (!dst_pud)
818 		return -ENOMEM;
819 	src_pud = pud_offset(src_pgd, addr);
820 	do {
821 		next = pud_addr_end(addr, end);
822 		if (pud_none_or_clear_bad(src_pud))
823 			continue;
824 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
825 						vma, addr, next))
826 			return -ENOMEM;
827 	} while (dst_pud++, src_pud++, addr = next, addr != end);
828 	return 0;
829 }
830 
831 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
832 		struct vm_area_struct *vma)
833 {
834 	pgd_t *src_pgd, *dst_pgd;
835 	unsigned long next;
836 	unsigned long addr = vma->vm_start;
837 	unsigned long end = vma->vm_end;
838 	int ret;
839 
840 	/*
841 	 * Don't copy ptes where a page fault will fill them correctly.
842 	 * Fork becomes much lighter when there are big shared or private
843 	 * readonly mappings. The tradeoff is that copy_page_range is more
844 	 * efficient than faulting.
845 	 */
846 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
847 		if (!vma->anon_vma)
848 			return 0;
849 	}
850 
851 	if (is_vm_hugetlb_page(vma))
852 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
853 
854 	if (unlikely(is_pfn_mapping(vma))) {
855 		/*
856 		 * We do not free on error cases below as remove_vma
857 		 * gets called on error from higher level routine
858 		 */
859 		ret = track_pfn_vma_copy(vma);
860 		if (ret)
861 			return ret;
862 	}
863 
864 	/*
865 	 * We need to invalidate the secondary MMU mappings only when
866 	 * there could be a permission downgrade on the ptes of the
867 	 * parent mm. And a permission downgrade will only happen if
868 	 * is_cow_mapping() returns true.
869 	 */
870 	if (is_cow_mapping(vma->vm_flags))
871 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
872 
873 	ret = 0;
874 	dst_pgd = pgd_offset(dst_mm, addr);
875 	src_pgd = pgd_offset(src_mm, addr);
876 	do {
877 		next = pgd_addr_end(addr, end);
878 		if (pgd_none_or_clear_bad(src_pgd))
879 			continue;
880 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
881 					    vma, addr, next))) {
882 			ret = -ENOMEM;
883 			break;
884 		}
885 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
886 
887 	if (is_cow_mapping(vma->vm_flags))
888 		mmu_notifier_invalidate_range_end(src_mm,
889 						  vma->vm_start, end);
890 	return ret;
891 }
892 
893 static unsigned long zap_pte_range(struct mmu_gather *tlb,
894 				struct vm_area_struct *vma, pmd_t *pmd,
895 				unsigned long addr, unsigned long end,
896 				long *zap_work, struct zap_details *details)
897 {
898 	struct mm_struct *mm = tlb->mm;
899 	pte_t *pte;
900 	spinlock_t *ptl;
901 	int rss[NR_MM_COUNTERS];
902 
903 	init_rss_vec(rss);
904 
905 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
906 	arch_enter_lazy_mmu_mode();
907 	do {
908 		pte_t ptent = *pte;
909 		if (pte_none(ptent)) {
910 			(*zap_work)--;
911 			continue;
912 		}
913 
914 		(*zap_work) -= PAGE_SIZE;
915 
916 		if (pte_present(ptent)) {
917 			struct page *page;
918 
919 			page = vm_normal_page(vma, addr, ptent);
920 			if (unlikely(details) && page) {
921 				/*
922 				 * unmap_shared_mapping_pages() wants to
923 				 * invalidate cache without truncating:
924 				 * unmap shared but keep private pages.
925 				 */
926 				if (details->check_mapping &&
927 				    details->check_mapping != page->mapping)
928 					continue;
929 				/*
930 				 * Each page->index must be checked when
931 				 * invalidating or truncating nonlinear.
932 				 */
933 				if (details->nonlinear_vma &&
934 				    (page->index < details->first_index ||
935 				     page->index > details->last_index))
936 					continue;
937 			}
938 			ptent = ptep_get_and_clear_full(mm, addr, pte,
939 							tlb->fullmm);
940 			tlb_remove_tlb_entry(tlb, pte, addr);
941 			if (unlikely(!page))
942 				continue;
943 			if (unlikely(details) && details->nonlinear_vma
944 			    && linear_page_index(details->nonlinear_vma,
945 						addr) != page->index)
946 				set_pte_at(mm, addr, pte,
947 					   pgoff_to_pte(page->index));
948 			if (PageAnon(page))
949 				rss[MM_ANONPAGES]--;
950 			else {
951 				if (pte_dirty(ptent))
952 					set_page_dirty(page);
953 				if (pte_young(ptent) &&
954 				    likely(!VM_SequentialReadHint(vma)))
955 					mark_page_accessed(page);
956 				rss[MM_FILEPAGES]--;
957 			}
958 			page_remove_rmap(page);
959 			if (unlikely(page_mapcount(page) < 0))
960 				print_bad_pte(vma, addr, ptent, page);
961 			tlb_remove_page(tlb, page);
962 			continue;
963 		}
964 		/*
965 		 * If details->check_mapping, we leave swap entries;
966 		 * if details->nonlinear_vma, we leave file entries.
967 		 */
968 		if (unlikely(details))
969 			continue;
970 		if (pte_file(ptent)) {
971 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
972 				print_bad_pte(vma, addr, ptent, NULL);
973 		} else {
974 			swp_entry_t entry = pte_to_swp_entry(ptent);
975 
976 			if (!non_swap_entry(entry))
977 				rss[MM_SWAPENTS]--;
978 			if (unlikely(!free_swap_and_cache(entry)))
979 				print_bad_pte(vma, addr, ptent, NULL);
980 		}
981 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
982 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
983 
984 	add_mm_rss_vec(mm, rss);
985 	arch_leave_lazy_mmu_mode();
986 	pte_unmap_unlock(pte - 1, ptl);
987 
988 	return addr;
989 }
990 
991 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
992 				struct vm_area_struct *vma, pud_t *pud,
993 				unsigned long addr, unsigned long end,
994 				long *zap_work, struct zap_details *details)
995 {
996 	pmd_t *pmd;
997 	unsigned long next;
998 
999 	pmd = pmd_offset(pud, addr);
1000 	do {
1001 		next = pmd_addr_end(addr, end);
1002 		if (pmd_none_or_clear_bad(pmd)) {
1003 			(*zap_work)--;
1004 			continue;
1005 		}
1006 		next = zap_pte_range(tlb, vma, pmd, addr, next,
1007 						zap_work, details);
1008 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
1009 
1010 	return addr;
1011 }
1012 
1013 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1014 				struct vm_area_struct *vma, pgd_t *pgd,
1015 				unsigned long addr, unsigned long end,
1016 				long *zap_work, struct zap_details *details)
1017 {
1018 	pud_t *pud;
1019 	unsigned long next;
1020 
1021 	pud = pud_offset(pgd, addr);
1022 	do {
1023 		next = pud_addr_end(addr, end);
1024 		if (pud_none_or_clear_bad(pud)) {
1025 			(*zap_work)--;
1026 			continue;
1027 		}
1028 		next = zap_pmd_range(tlb, vma, pud, addr, next,
1029 						zap_work, details);
1030 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
1031 
1032 	return addr;
1033 }
1034 
1035 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1036 				struct vm_area_struct *vma,
1037 				unsigned long addr, unsigned long end,
1038 				long *zap_work, struct zap_details *details)
1039 {
1040 	pgd_t *pgd;
1041 	unsigned long next;
1042 
1043 	if (details && !details->check_mapping && !details->nonlinear_vma)
1044 		details = NULL;
1045 
1046 	BUG_ON(addr >= end);
1047 	mem_cgroup_uncharge_start();
1048 	tlb_start_vma(tlb, vma);
1049 	pgd = pgd_offset(vma->vm_mm, addr);
1050 	do {
1051 		next = pgd_addr_end(addr, end);
1052 		if (pgd_none_or_clear_bad(pgd)) {
1053 			(*zap_work)--;
1054 			continue;
1055 		}
1056 		next = zap_pud_range(tlb, vma, pgd, addr, next,
1057 						zap_work, details);
1058 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
1059 	tlb_end_vma(tlb, vma);
1060 	mem_cgroup_uncharge_end();
1061 
1062 	return addr;
1063 }
1064 
1065 #ifdef CONFIG_PREEMPT
1066 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1067 #else
1068 /* No preempt: go for improved straight-line efficiency */
1069 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1070 #endif
1071 
1072 /**
1073  * unmap_vmas - unmap a range of memory covered by a list of vma's
1074  * @tlbp: address of the caller's struct mmu_gather
1075  * @vma: the starting vma
1076  * @start_addr: virtual address at which to start unmapping
1077  * @end_addr: virtual address at which to end unmapping
1078  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1079  * @details: details of nonlinear truncation or shared cache invalidation
1080  *
1081  * Returns the end address of the unmapping (restart addr if interrupted).
1082  *
1083  * Unmap all pages in the vma list.
1084  *
1085  * We aim to not hold locks for too long (for scheduling latency reasons).
1086  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1087  * return the ending mmu_gather to the caller.
1088  *
1089  * Only addresses between `start' and `end' will be unmapped.
1090  *
1091  * The VMA list must be sorted in ascending virtual address order.
1092  *
1093  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1094  * range after unmap_vmas() returns.  So the only responsibility here is to
1095  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1096  * drops the lock and schedules.
1097  */
1098 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1099 		struct vm_area_struct *vma, unsigned long start_addr,
1100 		unsigned long end_addr, unsigned long *nr_accounted,
1101 		struct zap_details *details)
1102 {
1103 	long zap_work = ZAP_BLOCK_SIZE;
1104 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1105 	int tlb_start_valid = 0;
1106 	unsigned long start = start_addr;
1107 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1108 	int fullmm = (*tlbp)->fullmm;
1109 	struct mm_struct *mm = vma->vm_mm;
1110 
1111 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1112 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1113 		unsigned long end;
1114 
1115 		start = max(vma->vm_start, start_addr);
1116 		if (start >= vma->vm_end)
1117 			continue;
1118 		end = min(vma->vm_end, end_addr);
1119 		if (end <= vma->vm_start)
1120 			continue;
1121 
1122 		if (vma->vm_flags & VM_ACCOUNT)
1123 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1124 
1125 		if (unlikely(is_pfn_mapping(vma)))
1126 			untrack_pfn_vma(vma, 0, 0);
1127 
1128 		while (start != end) {
1129 			if (!tlb_start_valid) {
1130 				tlb_start = start;
1131 				tlb_start_valid = 1;
1132 			}
1133 
1134 			if (unlikely(is_vm_hugetlb_page(vma))) {
1135 				/*
1136 				 * It is undesirable to test vma->vm_file as it
1137 				 * should be non-null for valid hugetlb area.
1138 				 * However, vm_file will be NULL in the error
1139 				 * cleanup path of do_mmap_pgoff. When
1140 				 * hugetlbfs ->mmap method fails,
1141 				 * do_mmap_pgoff() nullifies vma->vm_file
1142 				 * before calling this function to clean up.
1143 				 * Since no pte has actually been setup, it is
1144 				 * safe to do nothing in this case.
1145 				 */
1146 				if (vma->vm_file) {
1147 					unmap_hugepage_range(vma, start, end, NULL);
1148 					zap_work -= (end - start) /
1149 					pages_per_huge_page(hstate_vma(vma));
1150 				}
1151 
1152 				start = end;
1153 			} else
1154 				start = unmap_page_range(*tlbp, vma,
1155 						start, end, &zap_work, details);
1156 
1157 			if (zap_work > 0) {
1158 				BUG_ON(start != end);
1159 				break;
1160 			}
1161 
1162 			tlb_finish_mmu(*tlbp, tlb_start, start);
1163 
1164 			if (need_resched() ||
1165 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1166 				if (i_mmap_lock) {
1167 					*tlbp = NULL;
1168 					goto out;
1169 				}
1170 				cond_resched();
1171 			}
1172 
1173 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1174 			tlb_start_valid = 0;
1175 			zap_work = ZAP_BLOCK_SIZE;
1176 		}
1177 	}
1178 out:
1179 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1180 	return start;	/* which is now the end (or restart) address */
1181 }
1182 
1183 /**
1184  * zap_page_range - remove user pages in a given range
1185  * @vma: vm_area_struct holding the applicable pages
1186  * @address: starting address of pages to zap
1187  * @size: number of bytes to zap
1188  * @details: details of nonlinear truncation or shared cache invalidation
1189  */
1190 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1191 		unsigned long size, struct zap_details *details)
1192 {
1193 	struct mm_struct *mm = vma->vm_mm;
1194 	struct mmu_gather *tlb;
1195 	unsigned long end = address + size;
1196 	unsigned long nr_accounted = 0;
1197 
1198 	lru_add_drain();
1199 	tlb = tlb_gather_mmu(mm, 0);
1200 	update_hiwater_rss(mm);
1201 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1202 	if (tlb)
1203 		tlb_finish_mmu(tlb, address, end);
1204 	return end;
1205 }
1206 
1207 /**
1208  * zap_vma_ptes - remove ptes mapping the vma
1209  * @vma: vm_area_struct holding ptes to be zapped
1210  * @address: starting address of pages to zap
1211  * @size: number of bytes to zap
1212  *
1213  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1214  *
1215  * The entire address range must be fully contained within the vma.
1216  *
1217  * Returns 0 if successful.
1218  */
1219 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1220 		unsigned long size)
1221 {
1222 	if (address < vma->vm_start || address + size > vma->vm_end ||
1223 	    		!(vma->vm_flags & VM_PFNMAP))
1224 		return -1;
1225 	zap_page_range(vma, address, size, NULL);
1226 	return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1229 
1230 /**
1231  * follow_page - look up a page descriptor from a user-virtual address
1232  * @vma: vm_area_struct mapping @address
1233  * @address: virtual address to look up
1234  * @flags: flags modifying lookup behaviour
1235  *
1236  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1237  *
1238  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1239  * an error pointer if there is a mapping to something not represented
1240  * by a page descriptor (see also vm_normal_page()).
1241  */
1242 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1243 			unsigned int flags)
1244 {
1245 	pgd_t *pgd;
1246 	pud_t *pud;
1247 	pmd_t *pmd;
1248 	pte_t *ptep, pte;
1249 	spinlock_t *ptl;
1250 	struct page *page;
1251 	struct mm_struct *mm = vma->vm_mm;
1252 
1253 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1254 	if (!IS_ERR(page)) {
1255 		BUG_ON(flags & FOLL_GET);
1256 		goto out;
1257 	}
1258 
1259 	page = NULL;
1260 	pgd = pgd_offset(mm, address);
1261 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1262 		goto no_page_table;
1263 
1264 	pud = pud_offset(pgd, address);
1265 	if (pud_none(*pud))
1266 		goto no_page_table;
1267 	if (pud_huge(*pud)) {
1268 		BUG_ON(flags & FOLL_GET);
1269 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1270 		goto out;
1271 	}
1272 	if (unlikely(pud_bad(*pud)))
1273 		goto no_page_table;
1274 
1275 	pmd = pmd_offset(pud, address);
1276 	if (pmd_none(*pmd))
1277 		goto no_page_table;
1278 	if (pmd_huge(*pmd)) {
1279 		BUG_ON(flags & FOLL_GET);
1280 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1281 		goto out;
1282 	}
1283 	if (unlikely(pmd_bad(*pmd)))
1284 		goto no_page_table;
1285 
1286 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1287 
1288 	pte = *ptep;
1289 	if (!pte_present(pte))
1290 		goto no_page;
1291 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1292 		goto unlock;
1293 
1294 	page = vm_normal_page(vma, address, pte);
1295 	if (unlikely(!page)) {
1296 		if ((flags & FOLL_DUMP) ||
1297 		    !is_zero_pfn(pte_pfn(pte)))
1298 			goto bad_page;
1299 		page = pte_page(pte);
1300 	}
1301 
1302 	if (flags & FOLL_GET)
1303 		get_page(page);
1304 	if (flags & FOLL_TOUCH) {
1305 		if ((flags & FOLL_WRITE) &&
1306 		    !pte_dirty(pte) && !PageDirty(page))
1307 			set_page_dirty(page);
1308 		/*
1309 		 * pte_mkyoung() would be more correct here, but atomic care
1310 		 * is needed to avoid losing the dirty bit: it is easier to use
1311 		 * mark_page_accessed().
1312 		 */
1313 		mark_page_accessed(page);
1314 	}
1315 unlock:
1316 	pte_unmap_unlock(ptep, ptl);
1317 out:
1318 	return page;
1319 
1320 bad_page:
1321 	pte_unmap_unlock(ptep, ptl);
1322 	return ERR_PTR(-EFAULT);
1323 
1324 no_page:
1325 	pte_unmap_unlock(ptep, ptl);
1326 	if (!pte_none(pte))
1327 		return page;
1328 
1329 no_page_table:
1330 	/*
1331 	 * When core dumping an enormous anonymous area that nobody
1332 	 * has touched so far, we don't want to allocate unnecessary pages or
1333 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1334 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1335 	 * But we can only make this optimization where a hole would surely
1336 	 * be zero-filled if handle_mm_fault() actually did handle it.
1337 	 */
1338 	if ((flags & FOLL_DUMP) &&
1339 	    (!vma->vm_ops || !vma->vm_ops->fault))
1340 		return ERR_PTR(-EFAULT);
1341 	return page;
1342 }
1343 
1344 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1345 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1346 		     struct page **pages, struct vm_area_struct **vmas)
1347 {
1348 	int i;
1349 	unsigned long vm_flags;
1350 
1351 	if (nr_pages <= 0)
1352 		return 0;
1353 
1354 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1355 
1356 	/*
1357 	 * Require read or write permissions.
1358 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1359 	 */
1360 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1361 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1362 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1363 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1364 	i = 0;
1365 
1366 	do {
1367 		struct vm_area_struct *vma;
1368 
1369 		vma = find_extend_vma(mm, start);
1370 		if (!vma && in_gate_area(tsk, start)) {
1371 			unsigned long pg = start & PAGE_MASK;
1372 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1373 			pgd_t *pgd;
1374 			pud_t *pud;
1375 			pmd_t *pmd;
1376 			pte_t *pte;
1377 
1378 			/* user gate pages are read-only */
1379 			if (gup_flags & FOLL_WRITE)
1380 				return i ? : -EFAULT;
1381 			if (pg > TASK_SIZE)
1382 				pgd = pgd_offset_k(pg);
1383 			else
1384 				pgd = pgd_offset_gate(mm, pg);
1385 			BUG_ON(pgd_none(*pgd));
1386 			pud = pud_offset(pgd, pg);
1387 			BUG_ON(pud_none(*pud));
1388 			pmd = pmd_offset(pud, pg);
1389 			if (pmd_none(*pmd))
1390 				return i ? : -EFAULT;
1391 			pte = pte_offset_map(pmd, pg);
1392 			if (pte_none(*pte)) {
1393 				pte_unmap(pte);
1394 				return i ? : -EFAULT;
1395 			}
1396 			if (pages) {
1397 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1398 				pages[i] = page;
1399 				if (page)
1400 					get_page(page);
1401 			}
1402 			pte_unmap(pte);
1403 			if (vmas)
1404 				vmas[i] = gate_vma;
1405 			i++;
1406 			start += PAGE_SIZE;
1407 			nr_pages--;
1408 			continue;
1409 		}
1410 
1411 		if (!vma ||
1412 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1413 		    !(vm_flags & vma->vm_flags))
1414 			return i ? : -EFAULT;
1415 
1416 		if (is_vm_hugetlb_page(vma)) {
1417 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1418 					&start, &nr_pages, i, gup_flags);
1419 			continue;
1420 		}
1421 
1422 		do {
1423 			struct page *page;
1424 			unsigned int foll_flags = gup_flags;
1425 
1426 			/*
1427 			 * If we have a pending SIGKILL, don't keep faulting
1428 			 * pages and potentially allocating memory.
1429 			 */
1430 			if (unlikely(fatal_signal_pending(current)))
1431 				return i ? i : -ERESTARTSYS;
1432 
1433 			cond_resched();
1434 			while (!(page = follow_page(vma, start, foll_flags))) {
1435 				int ret;
1436 
1437 				ret = handle_mm_fault(mm, vma, start,
1438 					(foll_flags & FOLL_WRITE) ?
1439 					FAULT_FLAG_WRITE : 0);
1440 
1441 				if (ret & VM_FAULT_ERROR) {
1442 					if (ret & VM_FAULT_OOM)
1443 						return i ? i : -ENOMEM;
1444 					if (ret &
1445 					    (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1446 						return i ? i : -EFAULT;
1447 					BUG();
1448 				}
1449 				if (ret & VM_FAULT_MAJOR)
1450 					tsk->maj_flt++;
1451 				else
1452 					tsk->min_flt++;
1453 
1454 				/*
1455 				 * The VM_FAULT_WRITE bit tells us that
1456 				 * do_wp_page has broken COW when necessary,
1457 				 * even if maybe_mkwrite decided not to set
1458 				 * pte_write. We can thus safely do subsequent
1459 				 * page lookups as if they were reads. But only
1460 				 * do so when looping for pte_write is futile:
1461 				 * in some cases userspace may also be wanting
1462 				 * to write to the gotten user page, which a
1463 				 * read fault here might prevent (a readonly
1464 				 * page might get reCOWed by userspace write).
1465 				 */
1466 				if ((ret & VM_FAULT_WRITE) &&
1467 				    !(vma->vm_flags & VM_WRITE))
1468 					foll_flags &= ~FOLL_WRITE;
1469 
1470 				cond_resched();
1471 			}
1472 			if (IS_ERR(page))
1473 				return i ? i : PTR_ERR(page);
1474 			if (pages) {
1475 				pages[i] = page;
1476 
1477 				flush_anon_page(vma, page, start);
1478 				flush_dcache_page(page);
1479 			}
1480 			if (vmas)
1481 				vmas[i] = vma;
1482 			i++;
1483 			start += PAGE_SIZE;
1484 			nr_pages--;
1485 		} while (nr_pages && start < vma->vm_end);
1486 	} while (nr_pages);
1487 	return i;
1488 }
1489 
1490 /**
1491  * get_user_pages() - pin user pages in memory
1492  * @tsk:	task_struct of target task
1493  * @mm:		mm_struct of target mm
1494  * @start:	starting user address
1495  * @nr_pages:	number of pages from start to pin
1496  * @write:	whether pages will be written to by the caller
1497  * @force:	whether to force write access even if user mapping is
1498  *		readonly. This will result in the page being COWed even
1499  *		in MAP_SHARED mappings. You do not want this.
1500  * @pages:	array that receives pointers to the pages pinned.
1501  *		Should be at least nr_pages long. Or NULL, if caller
1502  *		only intends to ensure the pages are faulted in.
1503  * @vmas:	array of pointers to vmas corresponding to each page.
1504  *		Or NULL if the caller does not require them.
1505  *
1506  * Returns number of pages pinned. This may be fewer than the number
1507  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1508  * were pinned, returns -errno. Each page returned must be released
1509  * with a put_page() call when it is finished with. vmas will only
1510  * remain valid while mmap_sem is held.
1511  *
1512  * Must be called with mmap_sem held for read or write.
1513  *
1514  * get_user_pages walks a process's page tables and takes a reference to
1515  * each struct page that each user address corresponds to at a given
1516  * instant. That is, it takes the page that would be accessed if a user
1517  * thread accesses the given user virtual address at that instant.
1518  *
1519  * This does not guarantee that the page exists in the user mappings when
1520  * get_user_pages returns, and there may even be a completely different
1521  * page there in some cases (eg. if mmapped pagecache has been invalidated
1522  * and subsequently re faulted). However it does guarantee that the page
1523  * won't be freed completely. And mostly callers simply care that the page
1524  * contains data that was valid *at some point in time*. Typically, an IO
1525  * or similar operation cannot guarantee anything stronger anyway because
1526  * locks can't be held over the syscall boundary.
1527  *
1528  * If write=0, the page must not be written to. If the page is written to,
1529  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1530  * after the page is finished with, and before put_page is called.
1531  *
1532  * get_user_pages is typically used for fewer-copy IO operations, to get a
1533  * handle on the memory by some means other than accesses via the user virtual
1534  * addresses. The pages may be submitted for DMA to devices or accessed via
1535  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1536  * use the correct cache flushing APIs.
1537  *
1538  * See also get_user_pages_fast, for performance critical applications.
1539  */
1540 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1541 		unsigned long start, int nr_pages, int write, int force,
1542 		struct page **pages, struct vm_area_struct **vmas)
1543 {
1544 	int flags = FOLL_TOUCH;
1545 
1546 	if (pages)
1547 		flags |= FOLL_GET;
1548 	if (write)
1549 		flags |= FOLL_WRITE;
1550 	if (force)
1551 		flags |= FOLL_FORCE;
1552 
1553 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1554 }
1555 EXPORT_SYMBOL(get_user_pages);
1556 
1557 /**
1558  * get_dump_page() - pin user page in memory while writing it to core dump
1559  * @addr: user address
1560  *
1561  * Returns struct page pointer of user page pinned for dump,
1562  * to be freed afterwards by page_cache_release() or put_page().
1563  *
1564  * Returns NULL on any kind of failure - a hole must then be inserted into
1565  * the corefile, to preserve alignment with its headers; and also returns
1566  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1567  * allowing a hole to be left in the corefile to save diskspace.
1568  *
1569  * Called without mmap_sem, but after all other threads have been killed.
1570  */
1571 #ifdef CONFIG_ELF_CORE
1572 struct page *get_dump_page(unsigned long addr)
1573 {
1574 	struct vm_area_struct *vma;
1575 	struct page *page;
1576 
1577 	if (__get_user_pages(current, current->mm, addr, 1,
1578 			FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1579 		return NULL;
1580 	flush_cache_page(vma, addr, page_to_pfn(page));
1581 	return page;
1582 }
1583 #endif /* CONFIG_ELF_CORE */
1584 
1585 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1586 			spinlock_t **ptl)
1587 {
1588 	pgd_t * pgd = pgd_offset(mm, addr);
1589 	pud_t * pud = pud_alloc(mm, pgd, addr);
1590 	if (pud) {
1591 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1592 		if (pmd)
1593 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1594 	}
1595 	return NULL;
1596 }
1597 
1598 /*
1599  * This is the old fallback for page remapping.
1600  *
1601  * For historical reasons, it only allows reserved pages. Only
1602  * old drivers should use this, and they needed to mark their
1603  * pages reserved for the old functions anyway.
1604  */
1605 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1606 			struct page *page, pgprot_t prot)
1607 {
1608 	struct mm_struct *mm = vma->vm_mm;
1609 	int retval;
1610 	pte_t *pte;
1611 	spinlock_t *ptl;
1612 
1613 	retval = -EINVAL;
1614 	if (PageAnon(page))
1615 		goto out;
1616 	retval = -ENOMEM;
1617 	flush_dcache_page(page);
1618 	pte = get_locked_pte(mm, addr, &ptl);
1619 	if (!pte)
1620 		goto out;
1621 	retval = -EBUSY;
1622 	if (!pte_none(*pte))
1623 		goto out_unlock;
1624 
1625 	/* Ok, finally just insert the thing.. */
1626 	get_page(page);
1627 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1628 	page_add_file_rmap(page);
1629 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1630 
1631 	retval = 0;
1632 	pte_unmap_unlock(pte, ptl);
1633 	return retval;
1634 out_unlock:
1635 	pte_unmap_unlock(pte, ptl);
1636 out:
1637 	return retval;
1638 }
1639 
1640 /**
1641  * vm_insert_page - insert single page into user vma
1642  * @vma: user vma to map to
1643  * @addr: target user address of this page
1644  * @page: source kernel page
1645  *
1646  * This allows drivers to insert individual pages they've allocated
1647  * into a user vma.
1648  *
1649  * The page has to be a nice clean _individual_ kernel allocation.
1650  * If you allocate a compound page, you need to have marked it as
1651  * such (__GFP_COMP), or manually just split the page up yourself
1652  * (see split_page()).
1653  *
1654  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1655  * took an arbitrary page protection parameter. This doesn't allow
1656  * that. Your vma protection will have to be set up correctly, which
1657  * means that if you want a shared writable mapping, you'd better
1658  * ask for a shared writable mapping!
1659  *
1660  * The page does not need to be reserved.
1661  */
1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 			struct page *page)
1664 {
1665 	if (addr < vma->vm_start || addr >= vma->vm_end)
1666 		return -EFAULT;
1667 	if (!page_count(page))
1668 		return -EINVAL;
1669 	vma->vm_flags |= VM_INSERTPAGE;
1670 	return insert_page(vma, addr, page, vma->vm_page_prot);
1671 }
1672 EXPORT_SYMBOL(vm_insert_page);
1673 
1674 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1675 			unsigned long pfn, pgprot_t prot)
1676 {
1677 	struct mm_struct *mm = vma->vm_mm;
1678 	int retval;
1679 	pte_t *pte, entry;
1680 	spinlock_t *ptl;
1681 
1682 	retval = -ENOMEM;
1683 	pte = get_locked_pte(mm, addr, &ptl);
1684 	if (!pte)
1685 		goto out;
1686 	retval = -EBUSY;
1687 	if (!pte_none(*pte))
1688 		goto out_unlock;
1689 
1690 	/* Ok, finally just insert the thing.. */
1691 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1692 	set_pte_at(mm, addr, pte, entry);
1693 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1694 
1695 	retval = 0;
1696 out_unlock:
1697 	pte_unmap_unlock(pte, ptl);
1698 out:
1699 	return retval;
1700 }
1701 
1702 /**
1703  * vm_insert_pfn - insert single pfn into user vma
1704  * @vma: user vma to map to
1705  * @addr: target user address of this page
1706  * @pfn: source kernel pfn
1707  *
1708  * Similar to vm_inert_page, this allows drivers to insert individual pages
1709  * they've allocated into a user vma. Same comments apply.
1710  *
1711  * This function should only be called from a vm_ops->fault handler, and
1712  * in that case the handler should return NULL.
1713  *
1714  * vma cannot be a COW mapping.
1715  *
1716  * As this is called only for pages that do not currently exist, we
1717  * do not need to flush old virtual caches or the TLB.
1718  */
1719 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1720 			unsigned long pfn)
1721 {
1722 	int ret;
1723 	pgprot_t pgprot = vma->vm_page_prot;
1724 	/*
1725 	 * Technically, architectures with pte_special can avoid all these
1726 	 * restrictions (same for remap_pfn_range).  However we would like
1727 	 * consistency in testing and feature parity among all, so we should
1728 	 * try to keep these invariants in place for everybody.
1729 	 */
1730 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1731 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1732 						(VM_PFNMAP|VM_MIXEDMAP));
1733 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1734 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1735 
1736 	if (addr < vma->vm_start || addr >= vma->vm_end)
1737 		return -EFAULT;
1738 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1739 		return -EINVAL;
1740 
1741 	ret = insert_pfn(vma, addr, pfn, pgprot);
1742 
1743 	if (ret)
1744 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1745 
1746 	return ret;
1747 }
1748 EXPORT_SYMBOL(vm_insert_pfn);
1749 
1750 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1751 			unsigned long pfn)
1752 {
1753 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1754 
1755 	if (addr < vma->vm_start || addr >= vma->vm_end)
1756 		return -EFAULT;
1757 
1758 	/*
1759 	 * If we don't have pte special, then we have to use the pfn_valid()
1760 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 	 * refcount the page if pfn_valid is true (hence insert_page rather
1762 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1763 	 * without pte special, it would there be refcounted as a normal page.
1764 	 */
1765 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1766 		struct page *page;
1767 
1768 		page = pfn_to_page(pfn);
1769 		return insert_page(vma, addr, page, vma->vm_page_prot);
1770 	}
1771 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1772 }
1773 EXPORT_SYMBOL(vm_insert_mixed);
1774 
1775 /*
1776  * maps a range of physical memory into the requested pages. the old
1777  * mappings are removed. any references to nonexistent pages results
1778  * in null mappings (currently treated as "copy-on-access")
1779  */
1780 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1781 			unsigned long addr, unsigned long end,
1782 			unsigned long pfn, pgprot_t prot)
1783 {
1784 	pte_t *pte;
1785 	spinlock_t *ptl;
1786 
1787 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1788 	if (!pte)
1789 		return -ENOMEM;
1790 	arch_enter_lazy_mmu_mode();
1791 	do {
1792 		BUG_ON(!pte_none(*pte));
1793 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1794 		pfn++;
1795 	} while (pte++, addr += PAGE_SIZE, addr != end);
1796 	arch_leave_lazy_mmu_mode();
1797 	pte_unmap_unlock(pte - 1, ptl);
1798 	return 0;
1799 }
1800 
1801 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1802 			unsigned long addr, unsigned long end,
1803 			unsigned long pfn, pgprot_t prot)
1804 {
1805 	pmd_t *pmd;
1806 	unsigned long next;
1807 
1808 	pfn -= addr >> PAGE_SHIFT;
1809 	pmd = pmd_alloc(mm, pud, addr);
1810 	if (!pmd)
1811 		return -ENOMEM;
1812 	do {
1813 		next = pmd_addr_end(addr, end);
1814 		if (remap_pte_range(mm, pmd, addr, next,
1815 				pfn + (addr >> PAGE_SHIFT), prot))
1816 			return -ENOMEM;
1817 	} while (pmd++, addr = next, addr != end);
1818 	return 0;
1819 }
1820 
1821 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1822 			unsigned long addr, unsigned long end,
1823 			unsigned long pfn, pgprot_t prot)
1824 {
1825 	pud_t *pud;
1826 	unsigned long next;
1827 
1828 	pfn -= addr >> PAGE_SHIFT;
1829 	pud = pud_alloc(mm, pgd, addr);
1830 	if (!pud)
1831 		return -ENOMEM;
1832 	do {
1833 		next = pud_addr_end(addr, end);
1834 		if (remap_pmd_range(mm, pud, addr, next,
1835 				pfn + (addr >> PAGE_SHIFT), prot))
1836 			return -ENOMEM;
1837 	} while (pud++, addr = next, addr != end);
1838 	return 0;
1839 }
1840 
1841 /**
1842  * remap_pfn_range - remap kernel memory to userspace
1843  * @vma: user vma to map to
1844  * @addr: target user address to start at
1845  * @pfn: physical address of kernel memory
1846  * @size: size of map area
1847  * @prot: page protection flags for this mapping
1848  *
1849  *  Note: this is only safe if the mm semaphore is held when called.
1850  */
1851 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1852 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1853 {
1854 	pgd_t *pgd;
1855 	unsigned long next;
1856 	unsigned long end = addr + PAGE_ALIGN(size);
1857 	struct mm_struct *mm = vma->vm_mm;
1858 	int err;
1859 
1860 	/*
1861 	 * Physically remapped pages are special. Tell the
1862 	 * rest of the world about it:
1863 	 *   VM_IO tells people not to look at these pages
1864 	 *	(accesses can have side effects).
1865 	 *   VM_RESERVED is specified all over the place, because
1866 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1867 	 *	in 2.6 the LRU scan won't even find its pages, so this
1868 	 *	flag means no more than count its pages in reserved_vm,
1869 	 * 	and omit it from core dump, even when VM_IO turned off.
1870 	 *   VM_PFNMAP tells the core MM that the base pages are just
1871 	 *	raw PFN mappings, and do not have a "struct page" associated
1872 	 *	with them.
1873 	 *
1874 	 * There's a horrible special case to handle copy-on-write
1875 	 * behaviour that some programs depend on. We mark the "original"
1876 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1877 	 */
1878 	if (addr == vma->vm_start && end == vma->vm_end) {
1879 		vma->vm_pgoff = pfn;
1880 		vma->vm_flags |= VM_PFN_AT_MMAP;
1881 	} else if (is_cow_mapping(vma->vm_flags))
1882 		return -EINVAL;
1883 
1884 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1885 
1886 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1887 	if (err) {
1888 		/*
1889 		 * To indicate that track_pfn related cleanup is not
1890 		 * needed from higher level routine calling unmap_vmas
1891 		 */
1892 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1893 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1894 		return -EINVAL;
1895 	}
1896 
1897 	BUG_ON(addr >= end);
1898 	pfn -= addr >> PAGE_SHIFT;
1899 	pgd = pgd_offset(mm, addr);
1900 	flush_cache_range(vma, addr, end);
1901 	do {
1902 		next = pgd_addr_end(addr, end);
1903 		err = remap_pud_range(mm, pgd, addr, next,
1904 				pfn + (addr >> PAGE_SHIFT), prot);
1905 		if (err)
1906 			break;
1907 	} while (pgd++, addr = next, addr != end);
1908 
1909 	if (err)
1910 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1911 
1912 	return err;
1913 }
1914 EXPORT_SYMBOL(remap_pfn_range);
1915 
1916 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1917 				     unsigned long addr, unsigned long end,
1918 				     pte_fn_t fn, void *data)
1919 {
1920 	pte_t *pte;
1921 	int err;
1922 	pgtable_t token;
1923 	spinlock_t *uninitialized_var(ptl);
1924 
1925 	pte = (mm == &init_mm) ?
1926 		pte_alloc_kernel(pmd, addr) :
1927 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1928 	if (!pte)
1929 		return -ENOMEM;
1930 
1931 	BUG_ON(pmd_huge(*pmd));
1932 
1933 	arch_enter_lazy_mmu_mode();
1934 
1935 	token = pmd_pgtable(*pmd);
1936 
1937 	do {
1938 		err = fn(pte++, token, addr, data);
1939 		if (err)
1940 			break;
1941 	} while (addr += PAGE_SIZE, addr != end);
1942 
1943 	arch_leave_lazy_mmu_mode();
1944 
1945 	if (mm != &init_mm)
1946 		pte_unmap_unlock(pte-1, ptl);
1947 	return err;
1948 }
1949 
1950 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1951 				     unsigned long addr, unsigned long end,
1952 				     pte_fn_t fn, void *data)
1953 {
1954 	pmd_t *pmd;
1955 	unsigned long next;
1956 	int err;
1957 
1958 	BUG_ON(pud_huge(*pud));
1959 
1960 	pmd = pmd_alloc(mm, pud, addr);
1961 	if (!pmd)
1962 		return -ENOMEM;
1963 	do {
1964 		next = pmd_addr_end(addr, end);
1965 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1966 		if (err)
1967 			break;
1968 	} while (pmd++, addr = next, addr != end);
1969 	return err;
1970 }
1971 
1972 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1973 				     unsigned long addr, unsigned long end,
1974 				     pte_fn_t fn, void *data)
1975 {
1976 	pud_t *pud;
1977 	unsigned long next;
1978 	int err;
1979 
1980 	pud = pud_alloc(mm, pgd, addr);
1981 	if (!pud)
1982 		return -ENOMEM;
1983 	do {
1984 		next = pud_addr_end(addr, end);
1985 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1986 		if (err)
1987 			break;
1988 	} while (pud++, addr = next, addr != end);
1989 	return err;
1990 }
1991 
1992 /*
1993  * Scan a region of virtual memory, filling in page tables as necessary
1994  * and calling a provided function on each leaf page table.
1995  */
1996 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1997 			unsigned long size, pte_fn_t fn, void *data)
1998 {
1999 	pgd_t *pgd;
2000 	unsigned long next;
2001 	unsigned long start = addr, end = addr + size;
2002 	int err;
2003 
2004 	BUG_ON(addr >= end);
2005 	mmu_notifier_invalidate_range_start(mm, start, end);
2006 	pgd = pgd_offset(mm, addr);
2007 	do {
2008 		next = pgd_addr_end(addr, end);
2009 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2010 		if (err)
2011 			break;
2012 	} while (pgd++, addr = next, addr != end);
2013 	mmu_notifier_invalidate_range_end(mm, start, end);
2014 	return err;
2015 }
2016 EXPORT_SYMBOL_GPL(apply_to_page_range);
2017 
2018 /*
2019  * handle_pte_fault chooses page fault handler according to an entry
2020  * which was read non-atomically.  Before making any commitment, on
2021  * those architectures or configurations (e.g. i386 with PAE) which
2022  * might give a mix of unmatched parts, do_swap_page and do_file_page
2023  * must check under lock before unmapping the pte and proceeding
2024  * (but do_wp_page is only called after already making such a check;
2025  * and do_anonymous_page and do_no_page can safely check later on).
2026  */
2027 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2028 				pte_t *page_table, pte_t orig_pte)
2029 {
2030 	int same = 1;
2031 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2032 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2033 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2034 		spin_lock(ptl);
2035 		same = pte_same(*page_table, orig_pte);
2036 		spin_unlock(ptl);
2037 	}
2038 #endif
2039 	pte_unmap(page_table);
2040 	return same;
2041 }
2042 
2043 /*
2044  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
2045  * servicing faults for write access.  In the normal case, do always want
2046  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
2047  * that do not have writing enabled, when used by access_process_vm.
2048  */
2049 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2050 {
2051 	if (likely(vma->vm_flags & VM_WRITE))
2052 		pte = pte_mkwrite(pte);
2053 	return pte;
2054 }
2055 
2056 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2057 {
2058 	/*
2059 	 * If the source page was a PFN mapping, we don't have
2060 	 * a "struct page" for it. We do a best-effort copy by
2061 	 * just copying from the original user address. If that
2062 	 * fails, we just zero-fill it. Live with it.
2063 	 */
2064 	if (unlikely(!src)) {
2065 		void *kaddr = kmap_atomic(dst, KM_USER0);
2066 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2067 
2068 		/*
2069 		 * This really shouldn't fail, because the page is there
2070 		 * in the page tables. But it might just be unreadable,
2071 		 * in which case we just give up and fill the result with
2072 		 * zeroes.
2073 		 */
2074 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2075 			memset(kaddr, 0, PAGE_SIZE);
2076 		kunmap_atomic(kaddr, KM_USER0);
2077 		flush_dcache_page(dst);
2078 	} else
2079 		copy_user_highpage(dst, src, va, vma);
2080 }
2081 
2082 /*
2083  * This routine handles present pages, when users try to write
2084  * to a shared page. It is done by copying the page to a new address
2085  * and decrementing the shared-page counter for the old page.
2086  *
2087  * Note that this routine assumes that the protection checks have been
2088  * done by the caller (the low-level page fault routine in most cases).
2089  * Thus we can safely just mark it writable once we've done any necessary
2090  * COW.
2091  *
2092  * We also mark the page dirty at this point even though the page will
2093  * change only once the write actually happens. This avoids a few races,
2094  * and potentially makes it more efficient.
2095  *
2096  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2097  * but allow concurrent faults), with pte both mapped and locked.
2098  * We return with mmap_sem still held, but pte unmapped and unlocked.
2099  */
2100 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2101 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2102 		spinlock_t *ptl, pte_t orig_pte)
2103 {
2104 	struct page *old_page, *new_page;
2105 	pte_t entry;
2106 	int reuse = 0, ret = 0;
2107 	int page_mkwrite = 0;
2108 	struct page *dirty_page = NULL;
2109 
2110 	old_page = vm_normal_page(vma, address, orig_pte);
2111 	if (!old_page) {
2112 		/*
2113 		 * VM_MIXEDMAP !pfn_valid() case
2114 		 *
2115 		 * We should not cow pages in a shared writeable mapping.
2116 		 * Just mark the pages writable as we can't do any dirty
2117 		 * accounting on raw pfn maps.
2118 		 */
2119 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2120 				     (VM_WRITE|VM_SHARED))
2121 			goto reuse;
2122 		goto gotten;
2123 	}
2124 
2125 	/*
2126 	 * Take out anonymous pages first, anonymous shared vmas are
2127 	 * not dirty accountable.
2128 	 */
2129 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2130 		if (!trylock_page(old_page)) {
2131 			page_cache_get(old_page);
2132 			pte_unmap_unlock(page_table, ptl);
2133 			lock_page(old_page);
2134 			page_table = pte_offset_map_lock(mm, pmd, address,
2135 							 &ptl);
2136 			if (!pte_same(*page_table, orig_pte)) {
2137 				unlock_page(old_page);
2138 				page_cache_release(old_page);
2139 				goto unlock;
2140 			}
2141 			page_cache_release(old_page);
2142 		}
2143 		reuse = reuse_swap_page(old_page);
2144 		if (reuse)
2145 			/*
2146 			 * The page is all ours.  Move it to our anon_vma so
2147 			 * the rmap code will not search our parent or siblings.
2148 			 * Protected against the rmap code by the page lock.
2149 			 */
2150 			page_move_anon_rmap(old_page, vma, address);
2151 		unlock_page(old_page);
2152 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2153 					(VM_WRITE|VM_SHARED))) {
2154 		/*
2155 		 * Only catch write-faults on shared writable pages,
2156 		 * read-only shared pages can get COWed by
2157 		 * get_user_pages(.write=1, .force=1).
2158 		 */
2159 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2160 			struct vm_fault vmf;
2161 			int tmp;
2162 
2163 			vmf.virtual_address = (void __user *)(address &
2164 								PAGE_MASK);
2165 			vmf.pgoff = old_page->index;
2166 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2167 			vmf.page = old_page;
2168 
2169 			/*
2170 			 * Notify the address space that the page is about to
2171 			 * become writable so that it can prohibit this or wait
2172 			 * for the page to get into an appropriate state.
2173 			 *
2174 			 * We do this without the lock held, so that it can
2175 			 * sleep if it needs to.
2176 			 */
2177 			page_cache_get(old_page);
2178 			pte_unmap_unlock(page_table, ptl);
2179 
2180 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2181 			if (unlikely(tmp &
2182 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2183 				ret = tmp;
2184 				goto unwritable_page;
2185 			}
2186 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2187 				lock_page(old_page);
2188 				if (!old_page->mapping) {
2189 					ret = 0; /* retry the fault */
2190 					unlock_page(old_page);
2191 					goto unwritable_page;
2192 				}
2193 			} else
2194 				VM_BUG_ON(!PageLocked(old_page));
2195 
2196 			/*
2197 			 * Since we dropped the lock we need to revalidate
2198 			 * the PTE as someone else may have changed it.  If
2199 			 * they did, we just return, as we can count on the
2200 			 * MMU to tell us if they didn't also make it writable.
2201 			 */
2202 			page_table = pte_offset_map_lock(mm, pmd, address,
2203 							 &ptl);
2204 			if (!pte_same(*page_table, orig_pte)) {
2205 				unlock_page(old_page);
2206 				page_cache_release(old_page);
2207 				goto unlock;
2208 			}
2209 
2210 			page_mkwrite = 1;
2211 		}
2212 		dirty_page = old_page;
2213 		get_page(dirty_page);
2214 		reuse = 1;
2215 	}
2216 
2217 	if (reuse) {
2218 reuse:
2219 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2220 		entry = pte_mkyoung(orig_pte);
2221 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2222 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2223 			update_mmu_cache(vma, address, page_table);
2224 		ret |= VM_FAULT_WRITE;
2225 		goto unlock;
2226 	}
2227 
2228 	/*
2229 	 * Ok, we need to copy. Oh, well..
2230 	 */
2231 	page_cache_get(old_page);
2232 gotten:
2233 	pte_unmap_unlock(page_table, ptl);
2234 
2235 	if (unlikely(anon_vma_prepare(vma)))
2236 		goto oom;
2237 
2238 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2239 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2240 		if (!new_page)
2241 			goto oom;
2242 	} else {
2243 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2244 		if (!new_page)
2245 			goto oom;
2246 		cow_user_page(new_page, old_page, address, vma);
2247 	}
2248 	__SetPageUptodate(new_page);
2249 
2250 	/*
2251 	 * Don't let another task, with possibly unlocked vma,
2252 	 * keep the mlocked page.
2253 	 */
2254 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2255 		lock_page(old_page);	/* for LRU manipulation */
2256 		clear_page_mlock(old_page);
2257 		unlock_page(old_page);
2258 	}
2259 
2260 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2261 		goto oom_free_new;
2262 
2263 	/*
2264 	 * Re-check the pte - we dropped the lock
2265 	 */
2266 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2267 	if (likely(pte_same(*page_table, orig_pte))) {
2268 		if (old_page) {
2269 			if (!PageAnon(old_page)) {
2270 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2271 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2272 			}
2273 		} else
2274 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2275 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2276 		entry = mk_pte(new_page, vma->vm_page_prot);
2277 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2278 		/*
2279 		 * Clear the pte entry and flush it first, before updating the
2280 		 * pte with the new entry. This will avoid a race condition
2281 		 * seen in the presence of one thread doing SMC and another
2282 		 * thread doing COW.
2283 		 */
2284 		ptep_clear_flush(vma, address, page_table);
2285 		page_add_new_anon_rmap(new_page, vma, address);
2286 		/*
2287 		 * We call the notify macro here because, when using secondary
2288 		 * mmu page tables (such as kvm shadow page tables), we want the
2289 		 * new page to be mapped directly into the secondary page table.
2290 		 */
2291 		set_pte_at_notify(mm, address, page_table, entry);
2292 		update_mmu_cache(vma, address, page_table);
2293 		if (old_page) {
2294 			/*
2295 			 * Only after switching the pte to the new page may
2296 			 * we remove the mapcount here. Otherwise another
2297 			 * process may come and find the rmap count decremented
2298 			 * before the pte is switched to the new page, and
2299 			 * "reuse" the old page writing into it while our pte
2300 			 * here still points into it and can be read by other
2301 			 * threads.
2302 			 *
2303 			 * The critical issue is to order this
2304 			 * page_remove_rmap with the ptp_clear_flush above.
2305 			 * Those stores are ordered by (if nothing else,)
2306 			 * the barrier present in the atomic_add_negative
2307 			 * in page_remove_rmap.
2308 			 *
2309 			 * Then the TLB flush in ptep_clear_flush ensures that
2310 			 * no process can access the old page before the
2311 			 * decremented mapcount is visible. And the old page
2312 			 * cannot be reused until after the decremented
2313 			 * mapcount is visible. So transitively, TLBs to
2314 			 * old page will be flushed before it can be reused.
2315 			 */
2316 			page_remove_rmap(old_page);
2317 		}
2318 
2319 		/* Free the old page.. */
2320 		new_page = old_page;
2321 		ret |= VM_FAULT_WRITE;
2322 	} else
2323 		mem_cgroup_uncharge_page(new_page);
2324 
2325 	if (new_page)
2326 		page_cache_release(new_page);
2327 	if (old_page)
2328 		page_cache_release(old_page);
2329 unlock:
2330 	pte_unmap_unlock(page_table, ptl);
2331 	if (dirty_page) {
2332 		/*
2333 		 * Yes, Virginia, this is actually required to prevent a race
2334 		 * with clear_page_dirty_for_io() from clearing the page dirty
2335 		 * bit after it clear all dirty ptes, but before a racing
2336 		 * do_wp_page installs a dirty pte.
2337 		 *
2338 		 * do_no_page is protected similarly.
2339 		 */
2340 		if (!page_mkwrite) {
2341 			wait_on_page_locked(dirty_page);
2342 			set_page_dirty_balance(dirty_page, page_mkwrite);
2343 		}
2344 		put_page(dirty_page);
2345 		if (page_mkwrite) {
2346 			struct address_space *mapping = dirty_page->mapping;
2347 
2348 			set_page_dirty(dirty_page);
2349 			unlock_page(dirty_page);
2350 			page_cache_release(dirty_page);
2351 			if (mapping)	{
2352 				/*
2353 				 * Some device drivers do not set page.mapping
2354 				 * but still dirty their pages
2355 				 */
2356 				balance_dirty_pages_ratelimited(mapping);
2357 			}
2358 		}
2359 
2360 		/* file_update_time outside page_lock */
2361 		if (vma->vm_file)
2362 			file_update_time(vma->vm_file);
2363 	}
2364 	return ret;
2365 oom_free_new:
2366 	page_cache_release(new_page);
2367 oom:
2368 	if (old_page) {
2369 		if (page_mkwrite) {
2370 			unlock_page(old_page);
2371 			page_cache_release(old_page);
2372 		}
2373 		page_cache_release(old_page);
2374 	}
2375 	return VM_FAULT_OOM;
2376 
2377 unwritable_page:
2378 	page_cache_release(old_page);
2379 	return ret;
2380 }
2381 
2382 /*
2383  * Helper functions for unmap_mapping_range().
2384  *
2385  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2386  *
2387  * We have to restart searching the prio_tree whenever we drop the lock,
2388  * since the iterator is only valid while the lock is held, and anyway
2389  * a later vma might be split and reinserted earlier while lock dropped.
2390  *
2391  * The list of nonlinear vmas could be handled more efficiently, using
2392  * a placeholder, but handle it in the same way until a need is shown.
2393  * It is important to search the prio_tree before nonlinear list: a vma
2394  * may become nonlinear and be shifted from prio_tree to nonlinear list
2395  * while the lock is dropped; but never shifted from list to prio_tree.
2396  *
2397  * In order to make forward progress despite restarting the search,
2398  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2399  * quickly skip it next time around.  Since the prio_tree search only
2400  * shows us those vmas affected by unmapping the range in question, we
2401  * can't efficiently keep all vmas in step with mapping->truncate_count:
2402  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2403  * mapping->truncate_count and vma->vm_truncate_count are protected by
2404  * i_mmap_lock.
2405  *
2406  * In order to make forward progress despite repeatedly restarting some
2407  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2408  * and restart from that address when we reach that vma again.  It might
2409  * have been split or merged, shrunk or extended, but never shifted: so
2410  * restart_addr remains valid so long as it remains in the vma's range.
2411  * unmap_mapping_range forces truncate_count to leap over page-aligned
2412  * values so we can save vma's restart_addr in its truncate_count field.
2413  */
2414 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2415 
2416 static void reset_vma_truncate_counts(struct address_space *mapping)
2417 {
2418 	struct vm_area_struct *vma;
2419 	struct prio_tree_iter iter;
2420 
2421 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2422 		vma->vm_truncate_count = 0;
2423 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2424 		vma->vm_truncate_count = 0;
2425 }
2426 
2427 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2428 		unsigned long start_addr, unsigned long end_addr,
2429 		struct zap_details *details)
2430 {
2431 	unsigned long restart_addr;
2432 	int need_break;
2433 
2434 	/*
2435 	 * files that support invalidating or truncating portions of the
2436 	 * file from under mmaped areas must have their ->fault function
2437 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2438 	 * This provides synchronisation against concurrent unmapping here.
2439 	 */
2440 
2441 again:
2442 	restart_addr = vma->vm_truncate_count;
2443 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2444 		start_addr = restart_addr;
2445 		if (start_addr >= end_addr) {
2446 			/* Top of vma has been split off since last time */
2447 			vma->vm_truncate_count = details->truncate_count;
2448 			return 0;
2449 		}
2450 	}
2451 
2452 	restart_addr = zap_page_range(vma, start_addr,
2453 					end_addr - start_addr, details);
2454 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2455 
2456 	if (restart_addr >= end_addr) {
2457 		/* We have now completed this vma: mark it so */
2458 		vma->vm_truncate_count = details->truncate_count;
2459 		if (!need_break)
2460 			return 0;
2461 	} else {
2462 		/* Note restart_addr in vma's truncate_count field */
2463 		vma->vm_truncate_count = restart_addr;
2464 		if (!need_break)
2465 			goto again;
2466 	}
2467 
2468 	spin_unlock(details->i_mmap_lock);
2469 	cond_resched();
2470 	spin_lock(details->i_mmap_lock);
2471 	return -EINTR;
2472 }
2473 
2474 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2475 					    struct zap_details *details)
2476 {
2477 	struct vm_area_struct *vma;
2478 	struct prio_tree_iter iter;
2479 	pgoff_t vba, vea, zba, zea;
2480 
2481 restart:
2482 	vma_prio_tree_foreach(vma, &iter, root,
2483 			details->first_index, details->last_index) {
2484 		/* Skip quickly over those we have already dealt with */
2485 		if (vma->vm_truncate_count == details->truncate_count)
2486 			continue;
2487 
2488 		vba = vma->vm_pgoff;
2489 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2490 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2491 		zba = details->first_index;
2492 		if (zba < vba)
2493 			zba = vba;
2494 		zea = details->last_index;
2495 		if (zea > vea)
2496 			zea = vea;
2497 
2498 		if (unmap_mapping_range_vma(vma,
2499 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2500 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2501 				details) < 0)
2502 			goto restart;
2503 	}
2504 }
2505 
2506 static inline void unmap_mapping_range_list(struct list_head *head,
2507 					    struct zap_details *details)
2508 {
2509 	struct vm_area_struct *vma;
2510 
2511 	/*
2512 	 * In nonlinear VMAs there is no correspondence between virtual address
2513 	 * offset and file offset.  So we must perform an exhaustive search
2514 	 * across *all* the pages in each nonlinear VMA, not just the pages
2515 	 * whose virtual address lies outside the file truncation point.
2516 	 */
2517 restart:
2518 	list_for_each_entry(vma, head, shared.vm_set.list) {
2519 		/* Skip quickly over those we have already dealt with */
2520 		if (vma->vm_truncate_count == details->truncate_count)
2521 			continue;
2522 		details->nonlinear_vma = vma;
2523 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2524 					vma->vm_end, details) < 0)
2525 			goto restart;
2526 	}
2527 }
2528 
2529 /**
2530  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2531  * @mapping: the address space containing mmaps to be unmapped.
2532  * @holebegin: byte in first page to unmap, relative to the start of
2533  * the underlying file.  This will be rounded down to a PAGE_SIZE
2534  * boundary.  Note that this is different from truncate_pagecache(), which
2535  * must keep the partial page.  In contrast, we must get rid of
2536  * partial pages.
2537  * @holelen: size of prospective hole in bytes.  This will be rounded
2538  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2539  * end of the file.
2540  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2541  * but 0 when invalidating pagecache, don't throw away private data.
2542  */
2543 void unmap_mapping_range(struct address_space *mapping,
2544 		loff_t const holebegin, loff_t const holelen, int even_cows)
2545 {
2546 	struct zap_details details;
2547 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2548 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2549 
2550 	/* Check for overflow. */
2551 	if (sizeof(holelen) > sizeof(hlen)) {
2552 		long long holeend =
2553 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2554 		if (holeend & ~(long long)ULONG_MAX)
2555 			hlen = ULONG_MAX - hba + 1;
2556 	}
2557 
2558 	details.check_mapping = even_cows? NULL: mapping;
2559 	details.nonlinear_vma = NULL;
2560 	details.first_index = hba;
2561 	details.last_index = hba + hlen - 1;
2562 	if (details.last_index < details.first_index)
2563 		details.last_index = ULONG_MAX;
2564 	details.i_mmap_lock = &mapping->i_mmap_lock;
2565 
2566 	spin_lock(&mapping->i_mmap_lock);
2567 
2568 	/* Protect against endless unmapping loops */
2569 	mapping->truncate_count++;
2570 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2571 		if (mapping->truncate_count == 0)
2572 			reset_vma_truncate_counts(mapping);
2573 		mapping->truncate_count++;
2574 	}
2575 	details.truncate_count = mapping->truncate_count;
2576 
2577 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2578 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2579 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2580 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2581 	spin_unlock(&mapping->i_mmap_lock);
2582 }
2583 EXPORT_SYMBOL(unmap_mapping_range);
2584 
2585 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2586 {
2587 	struct address_space *mapping = inode->i_mapping;
2588 
2589 	/*
2590 	 * If the underlying filesystem is not going to provide
2591 	 * a way to truncate a range of blocks (punch a hole) -
2592 	 * we should return failure right now.
2593 	 */
2594 	if (!inode->i_op->truncate_range)
2595 		return -ENOSYS;
2596 
2597 	mutex_lock(&inode->i_mutex);
2598 	down_write(&inode->i_alloc_sem);
2599 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2600 	truncate_inode_pages_range(mapping, offset, end);
2601 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2602 	inode->i_op->truncate_range(inode, offset, end);
2603 	up_write(&inode->i_alloc_sem);
2604 	mutex_unlock(&inode->i_mutex);
2605 
2606 	return 0;
2607 }
2608 
2609 /*
2610  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611  * but allow concurrent faults), and pte mapped but not yet locked.
2612  * We return with mmap_sem still held, but pte unmapped and unlocked.
2613  */
2614 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2615 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2616 		unsigned int flags, pte_t orig_pte)
2617 {
2618 	spinlock_t *ptl;
2619 	struct page *page;
2620 	swp_entry_t entry;
2621 	pte_t pte;
2622 	struct mem_cgroup *ptr = NULL;
2623 	int ret = 0;
2624 
2625 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2626 		goto out;
2627 
2628 	entry = pte_to_swp_entry(orig_pte);
2629 	if (unlikely(non_swap_entry(entry))) {
2630 		if (is_migration_entry(entry)) {
2631 			migration_entry_wait(mm, pmd, address);
2632 		} else if (is_hwpoison_entry(entry)) {
2633 			ret = VM_FAULT_HWPOISON;
2634 		} else {
2635 			print_bad_pte(vma, address, orig_pte, NULL);
2636 			ret = VM_FAULT_SIGBUS;
2637 		}
2638 		goto out;
2639 	}
2640 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2641 	page = lookup_swap_cache(entry);
2642 	if (!page) {
2643 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2644 		page = swapin_readahead(entry,
2645 					GFP_HIGHUSER_MOVABLE, vma, address);
2646 		if (!page) {
2647 			/*
2648 			 * Back out if somebody else faulted in this pte
2649 			 * while we released the pte lock.
2650 			 */
2651 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2652 			if (likely(pte_same(*page_table, orig_pte)))
2653 				ret = VM_FAULT_OOM;
2654 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2655 			goto unlock;
2656 		}
2657 
2658 		/* Had to read the page from swap area: Major fault */
2659 		ret = VM_FAULT_MAJOR;
2660 		count_vm_event(PGMAJFAULT);
2661 	} else if (PageHWPoison(page)) {
2662 		/*
2663 		 * hwpoisoned dirty swapcache pages are kept for killing
2664 		 * owner processes (which may be unknown at hwpoison time)
2665 		 */
2666 		ret = VM_FAULT_HWPOISON;
2667 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2668 		goto out_release;
2669 	}
2670 
2671 	lock_page(page);
2672 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2673 
2674 	page = ksm_might_need_to_copy(page, vma, address);
2675 	if (!page) {
2676 		ret = VM_FAULT_OOM;
2677 		goto out;
2678 	}
2679 
2680 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2681 		ret = VM_FAULT_OOM;
2682 		goto out_page;
2683 	}
2684 
2685 	/*
2686 	 * Back out if somebody else already faulted in this pte.
2687 	 */
2688 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2689 	if (unlikely(!pte_same(*page_table, orig_pte)))
2690 		goto out_nomap;
2691 
2692 	if (unlikely(!PageUptodate(page))) {
2693 		ret = VM_FAULT_SIGBUS;
2694 		goto out_nomap;
2695 	}
2696 
2697 	/*
2698 	 * The page isn't present yet, go ahead with the fault.
2699 	 *
2700 	 * Be careful about the sequence of operations here.
2701 	 * To get its accounting right, reuse_swap_page() must be called
2702 	 * while the page is counted on swap but not yet in mapcount i.e.
2703 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2704 	 * must be called after the swap_free(), or it will never succeed.
2705 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2706 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2707 	 * in page->private. In this case, a record in swap_cgroup  is silently
2708 	 * discarded at swap_free().
2709 	 */
2710 
2711 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2712 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2713 	pte = mk_pte(page, vma->vm_page_prot);
2714 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2715 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2716 		flags &= ~FAULT_FLAG_WRITE;
2717 	}
2718 	flush_icache_page(vma, page);
2719 	set_pte_at(mm, address, page_table, pte);
2720 	page_add_anon_rmap(page, vma, address);
2721 	/* It's better to call commit-charge after rmap is established */
2722 	mem_cgroup_commit_charge_swapin(page, ptr);
2723 
2724 	swap_free(entry);
2725 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2726 		try_to_free_swap(page);
2727 	unlock_page(page);
2728 
2729 	if (flags & FAULT_FLAG_WRITE) {
2730 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2731 		if (ret & VM_FAULT_ERROR)
2732 			ret &= VM_FAULT_ERROR;
2733 		goto out;
2734 	}
2735 
2736 	/* No need to invalidate - it was non-present before */
2737 	update_mmu_cache(vma, address, page_table);
2738 unlock:
2739 	pte_unmap_unlock(page_table, ptl);
2740 out:
2741 	return ret;
2742 out_nomap:
2743 	mem_cgroup_cancel_charge_swapin(ptr);
2744 	pte_unmap_unlock(page_table, ptl);
2745 out_page:
2746 	unlock_page(page);
2747 out_release:
2748 	page_cache_release(page);
2749 	return ret;
2750 }
2751 
2752 /*
2753  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2754  * but allow concurrent faults), and pte mapped but not yet locked.
2755  * We return with mmap_sem still held, but pte unmapped and unlocked.
2756  */
2757 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2758 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2759 		unsigned int flags)
2760 {
2761 	struct page *page;
2762 	spinlock_t *ptl;
2763 	pte_t entry;
2764 
2765 	if (!(flags & FAULT_FLAG_WRITE)) {
2766 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2767 						vma->vm_page_prot));
2768 		ptl = pte_lockptr(mm, pmd);
2769 		spin_lock(ptl);
2770 		if (!pte_none(*page_table))
2771 			goto unlock;
2772 		goto setpte;
2773 	}
2774 
2775 	/* Allocate our own private page. */
2776 	pte_unmap(page_table);
2777 
2778 	if (unlikely(anon_vma_prepare(vma)))
2779 		goto oom;
2780 	page = alloc_zeroed_user_highpage_movable(vma, address);
2781 	if (!page)
2782 		goto oom;
2783 	__SetPageUptodate(page);
2784 
2785 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2786 		goto oom_free_page;
2787 
2788 	entry = mk_pte(page, vma->vm_page_prot);
2789 	if (vma->vm_flags & VM_WRITE)
2790 		entry = pte_mkwrite(pte_mkdirty(entry));
2791 
2792 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2793 	if (!pte_none(*page_table))
2794 		goto release;
2795 
2796 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2797 	page_add_new_anon_rmap(page, vma, address);
2798 setpte:
2799 	set_pte_at(mm, address, page_table, entry);
2800 
2801 	/* No need to invalidate - it was non-present before */
2802 	update_mmu_cache(vma, address, page_table);
2803 unlock:
2804 	pte_unmap_unlock(page_table, ptl);
2805 	return 0;
2806 release:
2807 	mem_cgroup_uncharge_page(page);
2808 	page_cache_release(page);
2809 	goto unlock;
2810 oom_free_page:
2811 	page_cache_release(page);
2812 oom:
2813 	return VM_FAULT_OOM;
2814 }
2815 
2816 /*
2817  * __do_fault() tries to create a new page mapping. It aggressively
2818  * tries to share with existing pages, but makes a separate copy if
2819  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2820  * the next page fault.
2821  *
2822  * As this is called only for pages that do not currently exist, we
2823  * do not need to flush old virtual caches or the TLB.
2824  *
2825  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2826  * but allow concurrent faults), and pte neither mapped nor locked.
2827  * We return with mmap_sem still held, but pte unmapped and unlocked.
2828  */
2829 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2830 		unsigned long address, pmd_t *pmd,
2831 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2832 {
2833 	pte_t *page_table;
2834 	spinlock_t *ptl;
2835 	struct page *page;
2836 	pte_t entry;
2837 	int anon = 0;
2838 	int charged = 0;
2839 	struct page *dirty_page = NULL;
2840 	struct vm_fault vmf;
2841 	int ret;
2842 	int page_mkwrite = 0;
2843 
2844 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2845 	vmf.pgoff = pgoff;
2846 	vmf.flags = flags;
2847 	vmf.page = NULL;
2848 
2849 	ret = vma->vm_ops->fault(vma, &vmf);
2850 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2851 		return ret;
2852 
2853 	if (unlikely(PageHWPoison(vmf.page))) {
2854 		if (ret & VM_FAULT_LOCKED)
2855 			unlock_page(vmf.page);
2856 		return VM_FAULT_HWPOISON;
2857 	}
2858 
2859 	/*
2860 	 * For consistency in subsequent calls, make the faulted page always
2861 	 * locked.
2862 	 */
2863 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2864 		lock_page(vmf.page);
2865 	else
2866 		VM_BUG_ON(!PageLocked(vmf.page));
2867 
2868 	/*
2869 	 * Should we do an early C-O-W break?
2870 	 */
2871 	page = vmf.page;
2872 	if (flags & FAULT_FLAG_WRITE) {
2873 		if (!(vma->vm_flags & VM_SHARED)) {
2874 			anon = 1;
2875 			if (unlikely(anon_vma_prepare(vma))) {
2876 				ret = VM_FAULT_OOM;
2877 				goto out;
2878 			}
2879 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2880 						vma, address);
2881 			if (!page) {
2882 				ret = VM_FAULT_OOM;
2883 				goto out;
2884 			}
2885 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2886 				ret = VM_FAULT_OOM;
2887 				page_cache_release(page);
2888 				goto out;
2889 			}
2890 			charged = 1;
2891 			/*
2892 			 * Don't let another task, with possibly unlocked vma,
2893 			 * keep the mlocked page.
2894 			 */
2895 			if (vma->vm_flags & VM_LOCKED)
2896 				clear_page_mlock(vmf.page);
2897 			copy_user_highpage(page, vmf.page, address, vma);
2898 			__SetPageUptodate(page);
2899 		} else {
2900 			/*
2901 			 * If the page will be shareable, see if the backing
2902 			 * address space wants to know that the page is about
2903 			 * to become writable
2904 			 */
2905 			if (vma->vm_ops->page_mkwrite) {
2906 				int tmp;
2907 
2908 				unlock_page(page);
2909 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2910 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2911 				if (unlikely(tmp &
2912 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2913 					ret = tmp;
2914 					goto unwritable_page;
2915 				}
2916 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2917 					lock_page(page);
2918 					if (!page->mapping) {
2919 						ret = 0; /* retry the fault */
2920 						unlock_page(page);
2921 						goto unwritable_page;
2922 					}
2923 				} else
2924 					VM_BUG_ON(!PageLocked(page));
2925 				page_mkwrite = 1;
2926 			}
2927 		}
2928 
2929 	}
2930 
2931 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2932 
2933 	/*
2934 	 * This silly early PAGE_DIRTY setting removes a race
2935 	 * due to the bad i386 page protection. But it's valid
2936 	 * for other architectures too.
2937 	 *
2938 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2939 	 * an exclusive copy of the page, or this is a shared mapping,
2940 	 * so we can make it writable and dirty to avoid having to
2941 	 * handle that later.
2942 	 */
2943 	/* Only go through if we didn't race with anybody else... */
2944 	if (likely(pte_same(*page_table, orig_pte))) {
2945 		flush_icache_page(vma, page);
2946 		entry = mk_pte(page, vma->vm_page_prot);
2947 		if (flags & FAULT_FLAG_WRITE)
2948 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2949 		if (anon) {
2950 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2951 			page_add_new_anon_rmap(page, vma, address);
2952 		} else {
2953 			inc_mm_counter_fast(mm, MM_FILEPAGES);
2954 			page_add_file_rmap(page);
2955 			if (flags & FAULT_FLAG_WRITE) {
2956 				dirty_page = page;
2957 				get_page(dirty_page);
2958 			}
2959 		}
2960 		set_pte_at(mm, address, page_table, entry);
2961 
2962 		/* no need to invalidate: a not-present page won't be cached */
2963 		update_mmu_cache(vma, address, page_table);
2964 	} else {
2965 		if (charged)
2966 			mem_cgroup_uncharge_page(page);
2967 		if (anon)
2968 			page_cache_release(page);
2969 		else
2970 			anon = 1; /* no anon but release faulted_page */
2971 	}
2972 
2973 	pte_unmap_unlock(page_table, ptl);
2974 
2975 out:
2976 	if (dirty_page) {
2977 		struct address_space *mapping = page->mapping;
2978 
2979 		if (set_page_dirty(dirty_page))
2980 			page_mkwrite = 1;
2981 		unlock_page(dirty_page);
2982 		put_page(dirty_page);
2983 		if (page_mkwrite && mapping) {
2984 			/*
2985 			 * Some device drivers do not set page.mapping but still
2986 			 * dirty their pages
2987 			 */
2988 			balance_dirty_pages_ratelimited(mapping);
2989 		}
2990 
2991 		/* file_update_time outside page_lock */
2992 		if (vma->vm_file)
2993 			file_update_time(vma->vm_file);
2994 	} else {
2995 		unlock_page(vmf.page);
2996 		if (anon)
2997 			page_cache_release(vmf.page);
2998 	}
2999 
3000 	return ret;
3001 
3002 unwritable_page:
3003 	page_cache_release(page);
3004 	return ret;
3005 }
3006 
3007 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3009 		unsigned int flags, pte_t orig_pte)
3010 {
3011 	pgoff_t pgoff = (((address & PAGE_MASK)
3012 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3013 
3014 	pte_unmap(page_table);
3015 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3016 }
3017 
3018 /*
3019  * Fault of a previously existing named mapping. Repopulate the pte
3020  * from the encoded file_pte if possible. This enables swappable
3021  * nonlinear vmas.
3022  *
3023  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3024  * but allow concurrent faults), and pte mapped but not yet locked.
3025  * We return with mmap_sem still held, but pte unmapped and unlocked.
3026  */
3027 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3028 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3029 		unsigned int flags, pte_t orig_pte)
3030 {
3031 	pgoff_t pgoff;
3032 
3033 	flags |= FAULT_FLAG_NONLINEAR;
3034 
3035 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3036 		return 0;
3037 
3038 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3039 		/*
3040 		 * Page table corrupted: show pte and kill process.
3041 		 */
3042 		print_bad_pte(vma, address, orig_pte, NULL);
3043 		return VM_FAULT_SIGBUS;
3044 	}
3045 
3046 	pgoff = pte_to_pgoff(orig_pte);
3047 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3048 }
3049 
3050 /*
3051  * These routines also need to handle stuff like marking pages dirty
3052  * and/or accessed for architectures that don't do it in hardware (most
3053  * RISC architectures).  The early dirtying is also good on the i386.
3054  *
3055  * There is also a hook called "update_mmu_cache()" that architectures
3056  * with external mmu caches can use to update those (ie the Sparc or
3057  * PowerPC hashed page tables that act as extended TLBs).
3058  *
3059  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3060  * but allow concurrent faults), and pte mapped but not yet locked.
3061  * We return with mmap_sem still held, but pte unmapped and unlocked.
3062  */
3063 static inline int handle_pte_fault(struct mm_struct *mm,
3064 		struct vm_area_struct *vma, unsigned long address,
3065 		pte_t *pte, pmd_t *pmd, unsigned int flags)
3066 {
3067 	pte_t entry;
3068 	spinlock_t *ptl;
3069 
3070 	entry = *pte;
3071 	if (!pte_present(entry)) {
3072 		if (pte_none(entry)) {
3073 			if (vma->vm_ops) {
3074 				if (likely(vma->vm_ops->fault))
3075 					return do_linear_fault(mm, vma, address,
3076 						pte, pmd, flags, entry);
3077 			}
3078 			return do_anonymous_page(mm, vma, address,
3079 						 pte, pmd, flags);
3080 		}
3081 		if (pte_file(entry))
3082 			return do_nonlinear_fault(mm, vma, address,
3083 					pte, pmd, flags, entry);
3084 		return do_swap_page(mm, vma, address,
3085 					pte, pmd, flags, entry);
3086 	}
3087 
3088 	ptl = pte_lockptr(mm, pmd);
3089 	spin_lock(ptl);
3090 	if (unlikely(!pte_same(*pte, entry)))
3091 		goto unlock;
3092 	if (flags & FAULT_FLAG_WRITE) {
3093 		if (!pte_write(entry))
3094 			return do_wp_page(mm, vma, address,
3095 					pte, pmd, ptl, entry);
3096 		entry = pte_mkdirty(entry);
3097 	}
3098 	entry = pte_mkyoung(entry);
3099 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3100 		update_mmu_cache(vma, address, pte);
3101 	} else {
3102 		/*
3103 		 * This is needed only for protection faults but the arch code
3104 		 * is not yet telling us if this is a protection fault or not.
3105 		 * This still avoids useless tlb flushes for .text page faults
3106 		 * with threads.
3107 		 */
3108 		if (flags & FAULT_FLAG_WRITE)
3109 			flush_tlb_page(vma, address);
3110 	}
3111 unlock:
3112 	pte_unmap_unlock(pte, ptl);
3113 	return 0;
3114 }
3115 
3116 /*
3117  * By the time we get here, we already hold the mm semaphore
3118  */
3119 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3120 		unsigned long address, unsigned int flags)
3121 {
3122 	pgd_t *pgd;
3123 	pud_t *pud;
3124 	pmd_t *pmd;
3125 	pte_t *pte;
3126 
3127 	__set_current_state(TASK_RUNNING);
3128 
3129 	count_vm_event(PGFAULT);
3130 
3131 	/* do counter updates before entering really critical section. */
3132 	check_sync_rss_stat(current);
3133 
3134 	if (unlikely(is_vm_hugetlb_page(vma)))
3135 		return hugetlb_fault(mm, vma, address, flags);
3136 
3137 	pgd = pgd_offset(mm, address);
3138 	pud = pud_alloc(mm, pgd, address);
3139 	if (!pud)
3140 		return VM_FAULT_OOM;
3141 	pmd = pmd_alloc(mm, pud, address);
3142 	if (!pmd)
3143 		return VM_FAULT_OOM;
3144 	pte = pte_alloc_map(mm, pmd, address);
3145 	if (!pte)
3146 		return VM_FAULT_OOM;
3147 
3148 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3149 }
3150 
3151 #ifndef __PAGETABLE_PUD_FOLDED
3152 /*
3153  * Allocate page upper directory.
3154  * We've already handled the fast-path in-line.
3155  */
3156 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3157 {
3158 	pud_t *new = pud_alloc_one(mm, address);
3159 	if (!new)
3160 		return -ENOMEM;
3161 
3162 	smp_wmb(); /* See comment in __pte_alloc */
3163 
3164 	spin_lock(&mm->page_table_lock);
3165 	if (pgd_present(*pgd))		/* Another has populated it */
3166 		pud_free(mm, new);
3167 	else
3168 		pgd_populate(mm, pgd, new);
3169 	spin_unlock(&mm->page_table_lock);
3170 	return 0;
3171 }
3172 #endif /* __PAGETABLE_PUD_FOLDED */
3173 
3174 #ifndef __PAGETABLE_PMD_FOLDED
3175 /*
3176  * Allocate page middle directory.
3177  * We've already handled the fast-path in-line.
3178  */
3179 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3180 {
3181 	pmd_t *new = pmd_alloc_one(mm, address);
3182 	if (!new)
3183 		return -ENOMEM;
3184 
3185 	smp_wmb(); /* See comment in __pte_alloc */
3186 
3187 	spin_lock(&mm->page_table_lock);
3188 #ifndef __ARCH_HAS_4LEVEL_HACK
3189 	if (pud_present(*pud))		/* Another has populated it */
3190 		pmd_free(mm, new);
3191 	else
3192 		pud_populate(mm, pud, new);
3193 #else
3194 	if (pgd_present(*pud))		/* Another has populated it */
3195 		pmd_free(mm, new);
3196 	else
3197 		pgd_populate(mm, pud, new);
3198 #endif /* __ARCH_HAS_4LEVEL_HACK */
3199 	spin_unlock(&mm->page_table_lock);
3200 	return 0;
3201 }
3202 #endif /* __PAGETABLE_PMD_FOLDED */
3203 
3204 int make_pages_present(unsigned long addr, unsigned long end)
3205 {
3206 	int ret, len, write;
3207 	struct vm_area_struct * vma;
3208 
3209 	vma = find_vma(current->mm, addr);
3210 	if (!vma)
3211 		return -ENOMEM;
3212 	write = (vma->vm_flags & VM_WRITE) != 0;
3213 	BUG_ON(addr >= end);
3214 	BUG_ON(end > vma->vm_end);
3215 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3216 	ret = get_user_pages(current, current->mm, addr,
3217 			len, write, 0, NULL, NULL);
3218 	if (ret < 0)
3219 		return ret;
3220 	return ret == len ? 0 : -EFAULT;
3221 }
3222 
3223 #if !defined(__HAVE_ARCH_GATE_AREA)
3224 
3225 #if defined(AT_SYSINFO_EHDR)
3226 static struct vm_area_struct gate_vma;
3227 
3228 static int __init gate_vma_init(void)
3229 {
3230 	gate_vma.vm_mm = NULL;
3231 	gate_vma.vm_start = FIXADDR_USER_START;
3232 	gate_vma.vm_end = FIXADDR_USER_END;
3233 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3234 	gate_vma.vm_page_prot = __P101;
3235 	/*
3236 	 * Make sure the vDSO gets into every core dump.
3237 	 * Dumping its contents makes post-mortem fully interpretable later
3238 	 * without matching up the same kernel and hardware config to see
3239 	 * what PC values meant.
3240 	 */
3241 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3242 	return 0;
3243 }
3244 __initcall(gate_vma_init);
3245 #endif
3246 
3247 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3248 {
3249 #ifdef AT_SYSINFO_EHDR
3250 	return &gate_vma;
3251 #else
3252 	return NULL;
3253 #endif
3254 }
3255 
3256 int in_gate_area_no_task(unsigned long addr)
3257 {
3258 #ifdef AT_SYSINFO_EHDR
3259 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3260 		return 1;
3261 #endif
3262 	return 0;
3263 }
3264 
3265 #endif	/* __HAVE_ARCH_GATE_AREA */
3266 
3267 static int follow_pte(struct mm_struct *mm, unsigned long address,
3268 		pte_t **ptepp, spinlock_t **ptlp)
3269 {
3270 	pgd_t *pgd;
3271 	pud_t *pud;
3272 	pmd_t *pmd;
3273 	pte_t *ptep;
3274 
3275 	pgd = pgd_offset(mm, address);
3276 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3277 		goto out;
3278 
3279 	pud = pud_offset(pgd, address);
3280 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3281 		goto out;
3282 
3283 	pmd = pmd_offset(pud, address);
3284 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3285 		goto out;
3286 
3287 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3288 	if (pmd_huge(*pmd))
3289 		goto out;
3290 
3291 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3292 	if (!ptep)
3293 		goto out;
3294 	if (!pte_present(*ptep))
3295 		goto unlock;
3296 	*ptepp = ptep;
3297 	return 0;
3298 unlock:
3299 	pte_unmap_unlock(ptep, *ptlp);
3300 out:
3301 	return -EINVAL;
3302 }
3303 
3304 /**
3305  * follow_pfn - look up PFN at a user virtual address
3306  * @vma: memory mapping
3307  * @address: user virtual address
3308  * @pfn: location to store found PFN
3309  *
3310  * Only IO mappings and raw PFN mappings are allowed.
3311  *
3312  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3313  */
3314 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3315 	unsigned long *pfn)
3316 {
3317 	int ret = -EINVAL;
3318 	spinlock_t *ptl;
3319 	pte_t *ptep;
3320 
3321 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3322 		return ret;
3323 
3324 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3325 	if (ret)
3326 		return ret;
3327 	*pfn = pte_pfn(*ptep);
3328 	pte_unmap_unlock(ptep, ptl);
3329 	return 0;
3330 }
3331 EXPORT_SYMBOL(follow_pfn);
3332 
3333 #ifdef CONFIG_HAVE_IOREMAP_PROT
3334 int follow_phys(struct vm_area_struct *vma,
3335 		unsigned long address, unsigned int flags,
3336 		unsigned long *prot, resource_size_t *phys)
3337 {
3338 	int ret = -EINVAL;
3339 	pte_t *ptep, pte;
3340 	spinlock_t *ptl;
3341 
3342 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3343 		goto out;
3344 
3345 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3346 		goto out;
3347 	pte = *ptep;
3348 
3349 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3350 		goto unlock;
3351 
3352 	*prot = pgprot_val(pte_pgprot(pte));
3353 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3354 
3355 	ret = 0;
3356 unlock:
3357 	pte_unmap_unlock(ptep, ptl);
3358 out:
3359 	return ret;
3360 }
3361 
3362 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3363 			void *buf, int len, int write)
3364 {
3365 	resource_size_t phys_addr;
3366 	unsigned long prot = 0;
3367 	void __iomem *maddr;
3368 	int offset = addr & (PAGE_SIZE-1);
3369 
3370 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3371 		return -EINVAL;
3372 
3373 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3374 	if (write)
3375 		memcpy_toio(maddr + offset, buf, len);
3376 	else
3377 		memcpy_fromio(buf, maddr + offset, len);
3378 	iounmap(maddr);
3379 
3380 	return len;
3381 }
3382 #endif
3383 
3384 /*
3385  * Access another process' address space.
3386  * Source/target buffer must be kernel space,
3387  * Do not walk the page table directly, use get_user_pages
3388  */
3389 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3390 {
3391 	struct mm_struct *mm;
3392 	struct vm_area_struct *vma;
3393 	void *old_buf = buf;
3394 
3395 	mm = get_task_mm(tsk);
3396 	if (!mm)
3397 		return 0;
3398 
3399 	down_read(&mm->mmap_sem);
3400 	/* ignore errors, just check how much was successfully transferred */
3401 	while (len) {
3402 		int bytes, ret, offset;
3403 		void *maddr;
3404 		struct page *page = NULL;
3405 
3406 		ret = get_user_pages(tsk, mm, addr, 1,
3407 				write, 1, &page, &vma);
3408 		if (ret <= 0) {
3409 			/*
3410 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3411 			 * we can access using slightly different code.
3412 			 */
3413 #ifdef CONFIG_HAVE_IOREMAP_PROT
3414 			vma = find_vma(mm, addr);
3415 			if (!vma)
3416 				break;
3417 			if (vma->vm_ops && vma->vm_ops->access)
3418 				ret = vma->vm_ops->access(vma, addr, buf,
3419 							  len, write);
3420 			if (ret <= 0)
3421 #endif
3422 				break;
3423 			bytes = ret;
3424 		} else {
3425 			bytes = len;
3426 			offset = addr & (PAGE_SIZE-1);
3427 			if (bytes > PAGE_SIZE-offset)
3428 				bytes = PAGE_SIZE-offset;
3429 
3430 			maddr = kmap(page);
3431 			if (write) {
3432 				copy_to_user_page(vma, page, addr,
3433 						  maddr + offset, buf, bytes);
3434 				set_page_dirty_lock(page);
3435 			} else {
3436 				copy_from_user_page(vma, page, addr,
3437 						    buf, maddr + offset, bytes);
3438 			}
3439 			kunmap(page);
3440 			page_cache_release(page);
3441 		}
3442 		len -= bytes;
3443 		buf += bytes;
3444 		addr += bytes;
3445 	}
3446 	up_read(&mm->mmap_sem);
3447 	mmput(mm);
3448 
3449 	return buf - old_buf;
3450 }
3451 
3452 /*
3453  * Print the name of a VMA.
3454  */
3455 void print_vma_addr(char *prefix, unsigned long ip)
3456 {
3457 	struct mm_struct *mm = current->mm;
3458 	struct vm_area_struct *vma;
3459 
3460 	/*
3461 	 * Do not print if we are in atomic
3462 	 * contexts (in exception stacks, etc.):
3463 	 */
3464 	if (preempt_count())
3465 		return;
3466 
3467 	down_read(&mm->mmap_sem);
3468 	vma = find_vma(mm, ip);
3469 	if (vma && vma->vm_file) {
3470 		struct file *f = vma->vm_file;
3471 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3472 		if (buf) {
3473 			char *p, *s;
3474 
3475 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3476 			if (IS_ERR(p))
3477 				p = "?";
3478 			s = strrchr(p, '/');
3479 			if (s)
3480 				p = s+1;
3481 			printk("%s%s[%lx+%lx]", prefix, p,
3482 					vma->vm_start,
3483 					vma->vm_end - vma->vm_start);
3484 			free_page((unsigned long)buf);
3485 		}
3486 	}
3487 	up_read(&current->mm->mmap_sem);
3488 }
3489 
3490 #ifdef CONFIG_PROVE_LOCKING
3491 void might_fault(void)
3492 {
3493 	/*
3494 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3495 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3496 	 * get paged out, therefore we'll never actually fault, and the
3497 	 * below annotations will generate false positives.
3498 	 */
3499 	if (segment_eq(get_fs(), KERNEL_DS))
3500 		return;
3501 
3502 	might_sleep();
3503 	/*
3504 	 * it would be nicer only to annotate paths which are not under
3505 	 * pagefault_disable, however that requires a larger audit and
3506 	 * providing helpers like get_user_atomic.
3507 	 */
3508 	if (!in_atomic() && current->mm)
3509 		might_lock_read(&current->mm->mmap_sem);
3510 }
3511 EXPORT_SYMBOL(might_fault);
3512 #endif
3513