1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif 195 196 /* 197 * If a p?d_bad entry is found while walking page tables, report 198 * the error, before resetting entry to p?d_none. Usually (but 199 * very seldom) called out from the p?d_none_or_clear_bad macros. 200 */ 201 202 void pgd_clear_bad(pgd_t *pgd) 203 { 204 pgd_ERROR(*pgd); 205 pgd_clear(pgd); 206 } 207 208 void pud_clear_bad(pud_t *pud) 209 { 210 pud_ERROR(*pud); 211 pud_clear(pud); 212 } 213 214 void pmd_clear_bad(pmd_t *pmd) 215 { 216 pmd_ERROR(*pmd); 217 pmd_clear(pmd); 218 } 219 220 /* 221 * Note: this doesn't free the actual pages themselves. That 222 * has been handled earlier when unmapping all the memory regions. 223 */ 224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 225 unsigned long addr) 226 { 227 pgtable_t token = pmd_pgtable(*pmd); 228 pmd_clear(pmd); 229 pte_free_tlb(tlb, token, addr); 230 tlb->mm->nr_ptes--; 231 } 232 233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 234 unsigned long addr, unsigned long end, 235 unsigned long floor, unsigned long ceiling) 236 { 237 pmd_t *pmd; 238 unsigned long next; 239 unsigned long start; 240 241 start = addr; 242 pmd = pmd_offset(pud, addr); 243 do { 244 next = pmd_addr_end(addr, end); 245 if (pmd_none_or_clear_bad(pmd)) 246 continue; 247 free_pte_range(tlb, pmd, addr); 248 } while (pmd++, addr = next, addr != end); 249 250 start &= PUD_MASK; 251 if (start < floor) 252 return; 253 if (ceiling) { 254 ceiling &= PUD_MASK; 255 if (!ceiling) 256 return; 257 } 258 if (end - 1 > ceiling - 1) 259 return; 260 261 pmd = pmd_offset(pud, start); 262 pud_clear(pud); 263 pmd_free_tlb(tlb, pmd, start); 264 } 265 266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 pud_t *pud; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 pud = pud_offset(pgd, addr); 276 do { 277 next = pud_addr_end(addr, end); 278 if (pud_none_or_clear_bad(pud)) 279 continue; 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 281 } while (pud++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 pud = pud_offset(pgd, start); 295 pgd_clear(pgd); 296 pud_free_tlb(tlb, pud, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 * 302 * Must be called with pagetable lock held. 303 */ 304 void free_pgd_range(struct mmu_gather *tlb, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 pgd_t *pgd; 309 unsigned long next; 310 unsigned long start; 311 312 /* 313 * The next few lines have given us lots of grief... 314 * 315 * Why are we testing PMD* at this top level? Because often 316 * there will be no work to do at all, and we'd prefer not to 317 * go all the way down to the bottom just to discover that. 318 * 319 * Why all these "- 1"s? Because 0 represents both the bottom 320 * of the address space and the top of it (using -1 for the 321 * top wouldn't help much: the masks would do the wrong thing). 322 * The rule is that addr 0 and floor 0 refer to the bottom of 323 * the address space, but end 0 and ceiling 0 refer to the top 324 * Comparisons need to use "end - 1" and "ceiling - 1" (though 325 * that end 0 case should be mythical). 326 * 327 * Wherever addr is brought up or ceiling brought down, we must 328 * be careful to reject "the opposite 0" before it confuses the 329 * subsequent tests. But what about where end is brought down 330 * by PMD_SIZE below? no, end can't go down to 0 there. 331 * 332 * Whereas we round start (addr) and ceiling down, by different 333 * masks at different levels, in order to test whether a table 334 * now has no other vmas using it, so can be freed, we don't 335 * bother to round floor or end up - the tests don't need that. 336 */ 337 338 addr &= PMD_MASK; 339 if (addr < floor) { 340 addr += PMD_SIZE; 341 if (!addr) 342 return; 343 } 344 if (ceiling) { 345 ceiling &= PMD_MASK; 346 if (!ceiling) 347 return; 348 } 349 if (end - 1 > ceiling - 1) 350 end -= PMD_SIZE; 351 if (addr > end - 1) 352 return; 353 354 start = addr; 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 365 unsigned long floor, unsigned long ceiling) 366 { 367 while (vma) { 368 struct vm_area_struct *next = vma->vm_next; 369 unsigned long addr = vma->vm_start; 370 371 /* 372 * Hide vma from rmap and truncate_pagecache before freeing 373 * pgtables 374 */ 375 unlink_anon_vmas(vma); 376 unlink_file_vma(vma); 377 378 if (is_vm_hugetlb_page(vma)) { 379 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 380 floor, next? next->vm_start: ceiling); 381 } else { 382 /* 383 * Optimization: gather nearby vmas into one call down 384 */ 385 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 386 && !is_vm_hugetlb_page(next)) { 387 vma = next; 388 next = vma->vm_next; 389 unlink_anon_vmas(vma); 390 unlink_file_vma(vma); 391 } 392 free_pgd_range(tlb, addr, vma->vm_end, 393 floor, next? next->vm_start: ceiling); 394 } 395 vma = next; 396 } 397 } 398 399 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 400 { 401 pgtable_t new = pte_alloc_one(mm, address); 402 if (!new) 403 return -ENOMEM; 404 405 /* 406 * Ensure all pte setup (eg. pte page lock and page clearing) are 407 * visible before the pte is made visible to other CPUs by being 408 * put into page tables. 409 * 410 * The other side of the story is the pointer chasing in the page 411 * table walking code (when walking the page table without locking; 412 * ie. most of the time). Fortunately, these data accesses consist 413 * of a chain of data-dependent loads, meaning most CPUs (alpha 414 * being the notable exception) will already guarantee loads are 415 * seen in-order. See the alpha page table accessors for the 416 * smp_read_barrier_depends() barriers in page table walking code. 417 */ 418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 419 420 spin_lock(&mm->page_table_lock); 421 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 422 mm->nr_ptes++; 423 pmd_populate(mm, pmd, new); 424 new = NULL; 425 } 426 spin_unlock(&mm->page_table_lock); 427 if (new) 428 pte_free(mm, new); 429 return 0; 430 } 431 432 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 433 { 434 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 435 if (!new) 436 return -ENOMEM; 437 438 smp_wmb(); /* See comment in __pte_alloc */ 439 440 spin_lock(&init_mm.page_table_lock); 441 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 442 pmd_populate_kernel(&init_mm, pmd, new); 443 new = NULL; 444 } 445 spin_unlock(&init_mm.page_table_lock); 446 if (new) 447 pte_free_kernel(&init_mm, new); 448 return 0; 449 } 450 451 static inline void init_rss_vec(int *rss) 452 { 453 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 454 } 455 456 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 457 { 458 int i; 459 460 if (current->mm == mm) 461 sync_mm_rss(current, mm); 462 for (i = 0; i < NR_MM_COUNTERS; i++) 463 if (rss[i]) 464 add_mm_counter(mm, i, rss[i]); 465 } 466 467 /* 468 * This function is called to print an error when a bad pte 469 * is found. For example, we might have a PFN-mapped pte in 470 * a region that doesn't allow it. 471 * 472 * The calling function must still handle the error. 473 */ 474 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 475 pte_t pte, struct page *page) 476 { 477 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 478 pud_t *pud = pud_offset(pgd, addr); 479 pmd_t *pmd = pmd_offset(pud, addr); 480 struct address_space *mapping; 481 pgoff_t index; 482 static unsigned long resume; 483 static unsigned long nr_shown; 484 static unsigned long nr_unshown; 485 486 /* 487 * Allow a burst of 60 reports, then keep quiet for that minute; 488 * or allow a steady drip of one report per second. 489 */ 490 if (nr_shown == 60) { 491 if (time_before(jiffies, resume)) { 492 nr_unshown++; 493 return; 494 } 495 if (nr_unshown) { 496 printk(KERN_ALERT 497 "BUG: Bad page map: %lu messages suppressed\n", 498 nr_unshown); 499 nr_unshown = 0; 500 } 501 nr_shown = 0; 502 } 503 if (nr_shown++ == 0) 504 resume = jiffies + 60 * HZ; 505 506 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 507 index = linear_page_index(vma, addr); 508 509 printk(KERN_ALERT 510 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 511 current->comm, 512 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 513 if (page) 514 dump_page(page); 515 printk(KERN_ALERT 516 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 517 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 518 /* 519 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 520 */ 521 if (vma->vm_ops) 522 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 523 (unsigned long)vma->vm_ops->fault); 524 if (vma->vm_file && vma->vm_file->f_op) 525 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 526 (unsigned long)vma->vm_file->f_op->mmap); 527 dump_stack(); 528 add_taint(TAINT_BAD_PAGE); 529 } 530 531 static inline int is_cow_mapping(unsigned int flags) 532 { 533 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 534 } 535 536 #ifndef is_zero_pfn 537 static inline int is_zero_pfn(unsigned long pfn) 538 { 539 return pfn == zero_pfn; 540 } 541 #endif 542 543 #ifndef my_zero_pfn 544 static inline unsigned long my_zero_pfn(unsigned long addr) 545 { 546 return zero_pfn; 547 } 548 #endif 549 550 /* 551 * vm_normal_page -- This function gets the "struct page" associated with a pte. 552 * 553 * "Special" mappings do not wish to be associated with a "struct page" (either 554 * it doesn't exist, or it exists but they don't want to touch it). In this 555 * case, NULL is returned here. "Normal" mappings do have a struct page. 556 * 557 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 558 * pte bit, in which case this function is trivial. Secondly, an architecture 559 * may not have a spare pte bit, which requires a more complicated scheme, 560 * described below. 561 * 562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 563 * special mapping (even if there are underlying and valid "struct pages"). 564 * COWed pages of a VM_PFNMAP are always normal. 565 * 566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 569 * mapping will always honor the rule 570 * 571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 572 * 573 * And for normal mappings this is false. 574 * 575 * This restricts such mappings to be a linear translation from virtual address 576 * to pfn. To get around this restriction, we allow arbitrary mappings so long 577 * as the vma is not a COW mapping; in that case, we know that all ptes are 578 * special (because none can have been COWed). 579 * 580 * 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 582 * 583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 584 * page" backing, however the difference is that _all_ pages with a struct 585 * page (that is, those where pfn_valid is true) are refcounted and considered 586 * normal pages by the VM. The disadvantage is that pages are refcounted 587 * (which can be slower and simply not an option for some PFNMAP users). The 588 * advantage is that we don't have to follow the strict linearity rule of 589 * PFNMAP mappings in order to support COWable mappings. 590 * 591 */ 592 #ifdef __HAVE_ARCH_PTE_SPECIAL 593 # define HAVE_PTE_SPECIAL 1 594 #else 595 # define HAVE_PTE_SPECIAL 0 596 #endif 597 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 598 pte_t pte) 599 { 600 unsigned long pfn = pte_pfn(pte); 601 602 if (HAVE_PTE_SPECIAL) { 603 if (likely(!pte_special(pte))) 604 goto check_pfn; 605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 606 return NULL; 607 if (!is_zero_pfn(pfn)) 608 print_bad_pte(vma, addr, pte, NULL); 609 return NULL; 610 } 611 612 /* !HAVE_PTE_SPECIAL case follows: */ 613 614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 615 if (vma->vm_flags & VM_MIXEDMAP) { 616 if (!pfn_valid(pfn)) 617 return NULL; 618 goto out; 619 } else { 620 unsigned long off; 621 off = (addr - vma->vm_start) >> PAGE_SHIFT; 622 if (pfn == vma->vm_pgoff + off) 623 return NULL; 624 if (!is_cow_mapping(vma->vm_flags)) 625 return NULL; 626 } 627 } 628 629 if (is_zero_pfn(pfn)) 630 return NULL; 631 check_pfn: 632 if (unlikely(pfn > highest_memmap_pfn)) { 633 print_bad_pte(vma, addr, pte, NULL); 634 return NULL; 635 } 636 637 /* 638 * NOTE! We still have PageReserved() pages in the page tables. 639 * eg. VDSO mappings can cause them to exist. 640 */ 641 out: 642 return pfn_to_page(pfn); 643 } 644 645 /* 646 * copy one vm_area from one task to the other. Assumes the page tables 647 * already present in the new task to be cleared in the whole range 648 * covered by this vma. 649 */ 650 651 static inline unsigned long 652 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 653 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 654 unsigned long addr, int *rss) 655 { 656 unsigned long vm_flags = vma->vm_flags; 657 pte_t pte = *src_pte; 658 struct page *page; 659 660 /* pte contains position in swap or file, so copy. */ 661 if (unlikely(!pte_present(pte))) { 662 if (!pte_file(pte)) { 663 swp_entry_t entry = pte_to_swp_entry(pte); 664 665 if (swap_duplicate(entry) < 0) 666 return entry.val; 667 668 /* make sure dst_mm is on swapoff's mmlist. */ 669 if (unlikely(list_empty(&dst_mm->mmlist))) { 670 spin_lock(&mmlist_lock); 671 if (list_empty(&dst_mm->mmlist)) 672 list_add(&dst_mm->mmlist, 673 &src_mm->mmlist); 674 spin_unlock(&mmlist_lock); 675 } 676 if (likely(!non_swap_entry(entry))) 677 rss[MM_SWAPENTS]++; 678 else if (is_write_migration_entry(entry) && 679 is_cow_mapping(vm_flags)) { 680 /* 681 * COW mappings require pages in both parent 682 * and child to be set to read. 683 */ 684 make_migration_entry_read(&entry); 685 pte = swp_entry_to_pte(entry); 686 set_pte_at(src_mm, addr, src_pte, pte); 687 } 688 } 689 goto out_set_pte; 690 } 691 692 /* 693 * If it's a COW mapping, write protect it both 694 * in the parent and the child 695 */ 696 if (is_cow_mapping(vm_flags)) { 697 ptep_set_wrprotect(src_mm, addr, src_pte); 698 pte = pte_wrprotect(pte); 699 } 700 701 /* 702 * If it's a shared mapping, mark it clean in 703 * the child 704 */ 705 if (vm_flags & VM_SHARED) 706 pte = pte_mkclean(pte); 707 pte = pte_mkold(pte); 708 709 page = vm_normal_page(vma, addr, pte); 710 if (page) { 711 get_page(page); 712 page_dup_rmap(page); 713 if (PageAnon(page)) 714 rss[MM_ANONPAGES]++; 715 else 716 rss[MM_FILEPAGES]++; 717 } 718 719 out_set_pte: 720 set_pte_at(dst_mm, addr, dst_pte, pte); 721 return 0; 722 } 723 724 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 725 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 726 unsigned long addr, unsigned long end) 727 { 728 pte_t *orig_src_pte, *orig_dst_pte; 729 pte_t *src_pte, *dst_pte; 730 spinlock_t *src_ptl, *dst_ptl; 731 int progress = 0; 732 int rss[NR_MM_COUNTERS]; 733 swp_entry_t entry = (swp_entry_t){0}; 734 735 again: 736 init_rss_vec(rss); 737 738 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 739 if (!dst_pte) 740 return -ENOMEM; 741 src_pte = pte_offset_map_nested(src_pmd, addr); 742 src_ptl = pte_lockptr(src_mm, src_pmd); 743 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 744 orig_src_pte = src_pte; 745 orig_dst_pte = dst_pte; 746 arch_enter_lazy_mmu_mode(); 747 748 do { 749 /* 750 * We are holding two locks at this point - either of them 751 * could generate latencies in another task on another CPU. 752 */ 753 if (progress >= 32) { 754 progress = 0; 755 if (need_resched() || 756 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 757 break; 758 } 759 if (pte_none(*src_pte)) { 760 progress++; 761 continue; 762 } 763 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 764 vma, addr, rss); 765 if (entry.val) 766 break; 767 progress += 8; 768 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 769 770 arch_leave_lazy_mmu_mode(); 771 spin_unlock(src_ptl); 772 pte_unmap_nested(orig_src_pte); 773 add_mm_rss_vec(dst_mm, rss); 774 pte_unmap_unlock(orig_dst_pte, dst_ptl); 775 cond_resched(); 776 777 if (entry.val) { 778 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 779 return -ENOMEM; 780 progress = 0; 781 } 782 if (addr != end) 783 goto again; 784 return 0; 785 } 786 787 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 788 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 789 unsigned long addr, unsigned long end) 790 { 791 pmd_t *src_pmd, *dst_pmd; 792 unsigned long next; 793 794 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 795 if (!dst_pmd) 796 return -ENOMEM; 797 src_pmd = pmd_offset(src_pud, addr); 798 do { 799 next = pmd_addr_end(addr, end); 800 if (pmd_none_or_clear_bad(src_pmd)) 801 continue; 802 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 803 vma, addr, next)) 804 return -ENOMEM; 805 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 806 return 0; 807 } 808 809 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 810 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 811 unsigned long addr, unsigned long end) 812 { 813 pud_t *src_pud, *dst_pud; 814 unsigned long next; 815 816 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 817 if (!dst_pud) 818 return -ENOMEM; 819 src_pud = pud_offset(src_pgd, addr); 820 do { 821 next = pud_addr_end(addr, end); 822 if (pud_none_or_clear_bad(src_pud)) 823 continue; 824 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 825 vma, addr, next)) 826 return -ENOMEM; 827 } while (dst_pud++, src_pud++, addr = next, addr != end); 828 return 0; 829 } 830 831 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 832 struct vm_area_struct *vma) 833 { 834 pgd_t *src_pgd, *dst_pgd; 835 unsigned long next; 836 unsigned long addr = vma->vm_start; 837 unsigned long end = vma->vm_end; 838 int ret; 839 840 /* 841 * Don't copy ptes where a page fault will fill them correctly. 842 * Fork becomes much lighter when there are big shared or private 843 * readonly mappings. The tradeoff is that copy_page_range is more 844 * efficient than faulting. 845 */ 846 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 847 if (!vma->anon_vma) 848 return 0; 849 } 850 851 if (is_vm_hugetlb_page(vma)) 852 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 853 854 if (unlikely(is_pfn_mapping(vma))) { 855 /* 856 * We do not free on error cases below as remove_vma 857 * gets called on error from higher level routine 858 */ 859 ret = track_pfn_vma_copy(vma); 860 if (ret) 861 return ret; 862 } 863 864 /* 865 * We need to invalidate the secondary MMU mappings only when 866 * there could be a permission downgrade on the ptes of the 867 * parent mm. And a permission downgrade will only happen if 868 * is_cow_mapping() returns true. 869 */ 870 if (is_cow_mapping(vma->vm_flags)) 871 mmu_notifier_invalidate_range_start(src_mm, addr, end); 872 873 ret = 0; 874 dst_pgd = pgd_offset(dst_mm, addr); 875 src_pgd = pgd_offset(src_mm, addr); 876 do { 877 next = pgd_addr_end(addr, end); 878 if (pgd_none_or_clear_bad(src_pgd)) 879 continue; 880 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 881 vma, addr, next))) { 882 ret = -ENOMEM; 883 break; 884 } 885 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 886 887 if (is_cow_mapping(vma->vm_flags)) 888 mmu_notifier_invalidate_range_end(src_mm, 889 vma->vm_start, end); 890 return ret; 891 } 892 893 static unsigned long zap_pte_range(struct mmu_gather *tlb, 894 struct vm_area_struct *vma, pmd_t *pmd, 895 unsigned long addr, unsigned long end, 896 long *zap_work, struct zap_details *details) 897 { 898 struct mm_struct *mm = tlb->mm; 899 pte_t *pte; 900 spinlock_t *ptl; 901 int rss[NR_MM_COUNTERS]; 902 903 init_rss_vec(rss); 904 905 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 906 arch_enter_lazy_mmu_mode(); 907 do { 908 pte_t ptent = *pte; 909 if (pte_none(ptent)) { 910 (*zap_work)--; 911 continue; 912 } 913 914 (*zap_work) -= PAGE_SIZE; 915 916 if (pte_present(ptent)) { 917 struct page *page; 918 919 page = vm_normal_page(vma, addr, ptent); 920 if (unlikely(details) && page) { 921 /* 922 * unmap_shared_mapping_pages() wants to 923 * invalidate cache without truncating: 924 * unmap shared but keep private pages. 925 */ 926 if (details->check_mapping && 927 details->check_mapping != page->mapping) 928 continue; 929 /* 930 * Each page->index must be checked when 931 * invalidating or truncating nonlinear. 932 */ 933 if (details->nonlinear_vma && 934 (page->index < details->first_index || 935 page->index > details->last_index)) 936 continue; 937 } 938 ptent = ptep_get_and_clear_full(mm, addr, pte, 939 tlb->fullmm); 940 tlb_remove_tlb_entry(tlb, pte, addr); 941 if (unlikely(!page)) 942 continue; 943 if (unlikely(details) && details->nonlinear_vma 944 && linear_page_index(details->nonlinear_vma, 945 addr) != page->index) 946 set_pte_at(mm, addr, pte, 947 pgoff_to_pte(page->index)); 948 if (PageAnon(page)) 949 rss[MM_ANONPAGES]--; 950 else { 951 if (pte_dirty(ptent)) 952 set_page_dirty(page); 953 if (pte_young(ptent) && 954 likely(!VM_SequentialReadHint(vma))) 955 mark_page_accessed(page); 956 rss[MM_FILEPAGES]--; 957 } 958 page_remove_rmap(page); 959 if (unlikely(page_mapcount(page) < 0)) 960 print_bad_pte(vma, addr, ptent, page); 961 tlb_remove_page(tlb, page); 962 continue; 963 } 964 /* 965 * If details->check_mapping, we leave swap entries; 966 * if details->nonlinear_vma, we leave file entries. 967 */ 968 if (unlikely(details)) 969 continue; 970 if (pte_file(ptent)) { 971 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 972 print_bad_pte(vma, addr, ptent, NULL); 973 } else { 974 swp_entry_t entry = pte_to_swp_entry(ptent); 975 976 if (!non_swap_entry(entry)) 977 rss[MM_SWAPENTS]--; 978 if (unlikely(!free_swap_and_cache(entry))) 979 print_bad_pte(vma, addr, ptent, NULL); 980 } 981 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 982 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 983 984 add_mm_rss_vec(mm, rss); 985 arch_leave_lazy_mmu_mode(); 986 pte_unmap_unlock(pte - 1, ptl); 987 988 return addr; 989 } 990 991 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 992 struct vm_area_struct *vma, pud_t *pud, 993 unsigned long addr, unsigned long end, 994 long *zap_work, struct zap_details *details) 995 { 996 pmd_t *pmd; 997 unsigned long next; 998 999 pmd = pmd_offset(pud, addr); 1000 do { 1001 next = pmd_addr_end(addr, end); 1002 if (pmd_none_or_clear_bad(pmd)) { 1003 (*zap_work)--; 1004 continue; 1005 } 1006 next = zap_pte_range(tlb, vma, pmd, addr, next, 1007 zap_work, details); 1008 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1009 1010 return addr; 1011 } 1012 1013 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1014 struct vm_area_struct *vma, pgd_t *pgd, 1015 unsigned long addr, unsigned long end, 1016 long *zap_work, struct zap_details *details) 1017 { 1018 pud_t *pud; 1019 unsigned long next; 1020 1021 pud = pud_offset(pgd, addr); 1022 do { 1023 next = pud_addr_end(addr, end); 1024 if (pud_none_or_clear_bad(pud)) { 1025 (*zap_work)--; 1026 continue; 1027 } 1028 next = zap_pmd_range(tlb, vma, pud, addr, next, 1029 zap_work, details); 1030 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1031 1032 return addr; 1033 } 1034 1035 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1036 struct vm_area_struct *vma, 1037 unsigned long addr, unsigned long end, 1038 long *zap_work, struct zap_details *details) 1039 { 1040 pgd_t *pgd; 1041 unsigned long next; 1042 1043 if (details && !details->check_mapping && !details->nonlinear_vma) 1044 details = NULL; 1045 1046 BUG_ON(addr >= end); 1047 mem_cgroup_uncharge_start(); 1048 tlb_start_vma(tlb, vma); 1049 pgd = pgd_offset(vma->vm_mm, addr); 1050 do { 1051 next = pgd_addr_end(addr, end); 1052 if (pgd_none_or_clear_bad(pgd)) { 1053 (*zap_work)--; 1054 continue; 1055 } 1056 next = zap_pud_range(tlb, vma, pgd, addr, next, 1057 zap_work, details); 1058 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1059 tlb_end_vma(tlb, vma); 1060 mem_cgroup_uncharge_end(); 1061 1062 return addr; 1063 } 1064 1065 #ifdef CONFIG_PREEMPT 1066 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1067 #else 1068 /* No preempt: go for improved straight-line efficiency */ 1069 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1070 #endif 1071 1072 /** 1073 * unmap_vmas - unmap a range of memory covered by a list of vma's 1074 * @tlbp: address of the caller's struct mmu_gather 1075 * @vma: the starting vma 1076 * @start_addr: virtual address at which to start unmapping 1077 * @end_addr: virtual address at which to end unmapping 1078 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1079 * @details: details of nonlinear truncation or shared cache invalidation 1080 * 1081 * Returns the end address of the unmapping (restart addr if interrupted). 1082 * 1083 * Unmap all pages in the vma list. 1084 * 1085 * We aim to not hold locks for too long (for scheduling latency reasons). 1086 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1087 * return the ending mmu_gather to the caller. 1088 * 1089 * Only addresses between `start' and `end' will be unmapped. 1090 * 1091 * The VMA list must be sorted in ascending virtual address order. 1092 * 1093 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1094 * range after unmap_vmas() returns. So the only responsibility here is to 1095 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1096 * drops the lock and schedules. 1097 */ 1098 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1099 struct vm_area_struct *vma, unsigned long start_addr, 1100 unsigned long end_addr, unsigned long *nr_accounted, 1101 struct zap_details *details) 1102 { 1103 long zap_work = ZAP_BLOCK_SIZE; 1104 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1105 int tlb_start_valid = 0; 1106 unsigned long start = start_addr; 1107 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1108 int fullmm = (*tlbp)->fullmm; 1109 struct mm_struct *mm = vma->vm_mm; 1110 1111 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1112 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1113 unsigned long end; 1114 1115 start = max(vma->vm_start, start_addr); 1116 if (start >= vma->vm_end) 1117 continue; 1118 end = min(vma->vm_end, end_addr); 1119 if (end <= vma->vm_start) 1120 continue; 1121 1122 if (vma->vm_flags & VM_ACCOUNT) 1123 *nr_accounted += (end - start) >> PAGE_SHIFT; 1124 1125 if (unlikely(is_pfn_mapping(vma))) 1126 untrack_pfn_vma(vma, 0, 0); 1127 1128 while (start != end) { 1129 if (!tlb_start_valid) { 1130 tlb_start = start; 1131 tlb_start_valid = 1; 1132 } 1133 1134 if (unlikely(is_vm_hugetlb_page(vma))) { 1135 /* 1136 * It is undesirable to test vma->vm_file as it 1137 * should be non-null for valid hugetlb area. 1138 * However, vm_file will be NULL in the error 1139 * cleanup path of do_mmap_pgoff. When 1140 * hugetlbfs ->mmap method fails, 1141 * do_mmap_pgoff() nullifies vma->vm_file 1142 * before calling this function to clean up. 1143 * Since no pte has actually been setup, it is 1144 * safe to do nothing in this case. 1145 */ 1146 if (vma->vm_file) { 1147 unmap_hugepage_range(vma, start, end, NULL); 1148 zap_work -= (end - start) / 1149 pages_per_huge_page(hstate_vma(vma)); 1150 } 1151 1152 start = end; 1153 } else 1154 start = unmap_page_range(*tlbp, vma, 1155 start, end, &zap_work, details); 1156 1157 if (zap_work > 0) { 1158 BUG_ON(start != end); 1159 break; 1160 } 1161 1162 tlb_finish_mmu(*tlbp, tlb_start, start); 1163 1164 if (need_resched() || 1165 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1166 if (i_mmap_lock) { 1167 *tlbp = NULL; 1168 goto out; 1169 } 1170 cond_resched(); 1171 } 1172 1173 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1174 tlb_start_valid = 0; 1175 zap_work = ZAP_BLOCK_SIZE; 1176 } 1177 } 1178 out: 1179 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1180 return start; /* which is now the end (or restart) address */ 1181 } 1182 1183 /** 1184 * zap_page_range - remove user pages in a given range 1185 * @vma: vm_area_struct holding the applicable pages 1186 * @address: starting address of pages to zap 1187 * @size: number of bytes to zap 1188 * @details: details of nonlinear truncation or shared cache invalidation 1189 */ 1190 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1191 unsigned long size, struct zap_details *details) 1192 { 1193 struct mm_struct *mm = vma->vm_mm; 1194 struct mmu_gather *tlb; 1195 unsigned long end = address + size; 1196 unsigned long nr_accounted = 0; 1197 1198 lru_add_drain(); 1199 tlb = tlb_gather_mmu(mm, 0); 1200 update_hiwater_rss(mm); 1201 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1202 if (tlb) 1203 tlb_finish_mmu(tlb, address, end); 1204 return end; 1205 } 1206 1207 /** 1208 * zap_vma_ptes - remove ptes mapping the vma 1209 * @vma: vm_area_struct holding ptes to be zapped 1210 * @address: starting address of pages to zap 1211 * @size: number of bytes to zap 1212 * 1213 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1214 * 1215 * The entire address range must be fully contained within the vma. 1216 * 1217 * Returns 0 if successful. 1218 */ 1219 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1220 unsigned long size) 1221 { 1222 if (address < vma->vm_start || address + size > vma->vm_end || 1223 !(vma->vm_flags & VM_PFNMAP)) 1224 return -1; 1225 zap_page_range(vma, address, size, NULL); 1226 return 0; 1227 } 1228 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1229 1230 /** 1231 * follow_page - look up a page descriptor from a user-virtual address 1232 * @vma: vm_area_struct mapping @address 1233 * @address: virtual address to look up 1234 * @flags: flags modifying lookup behaviour 1235 * 1236 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1237 * 1238 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1239 * an error pointer if there is a mapping to something not represented 1240 * by a page descriptor (see also vm_normal_page()). 1241 */ 1242 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1243 unsigned int flags) 1244 { 1245 pgd_t *pgd; 1246 pud_t *pud; 1247 pmd_t *pmd; 1248 pte_t *ptep, pte; 1249 spinlock_t *ptl; 1250 struct page *page; 1251 struct mm_struct *mm = vma->vm_mm; 1252 1253 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1254 if (!IS_ERR(page)) { 1255 BUG_ON(flags & FOLL_GET); 1256 goto out; 1257 } 1258 1259 page = NULL; 1260 pgd = pgd_offset(mm, address); 1261 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1262 goto no_page_table; 1263 1264 pud = pud_offset(pgd, address); 1265 if (pud_none(*pud)) 1266 goto no_page_table; 1267 if (pud_huge(*pud)) { 1268 BUG_ON(flags & FOLL_GET); 1269 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1270 goto out; 1271 } 1272 if (unlikely(pud_bad(*pud))) 1273 goto no_page_table; 1274 1275 pmd = pmd_offset(pud, address); 1276 if (pmd_none(*pmd)) 1277 goto no_page_table; 1278 if (pmd_huge(*pmd)) { 1279 BUG_ON(flags & FOLL_GET); 1280 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1281 goto out; 1282 } 1283 if (unlikely(pmd_bad(*pmd))) 1284 goto no_page_table; 1285 1286 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1287 1288 pte = *ptep; 1289 if (!pte_present(pte)) 1290 goto no_page; 1291 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1292 goto unlock; 1293 1294 page = vm_normal_page(vma, address, pte); 1295 if (unlikely(!page)) { 1296 if ((flags & FOLL_DUMP) || 1297 !is_zero_pfn(pte_pfn(pte))) 1298 goto bad_page; 1299 page = pte_page(pte); 1300 } 1301 1302 if (flags & FOLL_GET) 1303 get_page(page); 1304 if (flags & FOLL_TOUCH) { 1305 if ((flags & FOLL_WRITE) && 1306 !pte_dirty(pte) && !PageDirty(page)) 1307 set_page_dirty(page); 1308 /* 1309 * pte_mkyoung() would be more correct here, but atomic care 1310 * is needed to avoid losing the dirty bit: it is easier to use 1311 * mark_page_accessed(). 1312 */ 1313 mark_page_accessed(page); 1314 } 1315 unlock: 1316 pte_unmap_unlock(ptep, ptl); 1317 out: 1318 return page; 1319 1320 bad_page: 1321 pte_unmap_unlock(ptep, ptl); 1322 return ERR_PTR(-EFAULT); 1323 1324 no_page: 1325 pte_unmap_unlock(ptep, ptl); 1326 if (!pte_none(pte)) 1327 return page; 1328 1329 no_page_table: 1330 /* 1331 * When core dumping an enormous anonymous area that nobody 1332 * has touched so far, we don't want to allocate unnecessary pages or 1333 * page tables. Return error instead of NULL to skip handle_mm_fault, 1334 * then get_dump_page() will return NULL to leave a hole in the dump. 1335 * But we can only make this optimization where a hole would surely 1336 * be zero-filled if handle_mm_fault() actually did handle it. 1337 */ 1338 if ((flags & FOLL_DUMP) && 1339 (!vma->vm_ops || !vma->vm_ops->fault)) 1340 return ERR_PTR(-EFAULT); 1341 return page; 1342 } 1343 1344 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1345 unsigned long start, int nr_pages, unsigned int gup_flags, 1346 struct page **pages, struct vm_area_struct **vmas) 1347 { 1348 int i; 1349 unsigned long vm_flags; 1350 1351 if (nr_pages <= 0) 1352 return 0; 1353 1354 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1355 1356 /* 1357 * Require read or write permissions. 1358 * If FOLL_FORCE is set, we only require the "MAY" flags. 1359 */ 1360 vm_flags = (gup_flags & FOLL_WRITE) ? 1361 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1362 vm_flags &= (gup_flags & FOLL_FORCE) ? 1363 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1364 i = 0; 1365 1366 do { 1367 struct vm_area_struct *vma; 1368 1369 vma = find_extend_vma(mm, start); 1370 if (!vma && in_gate_area(tsk, start)) { 1371 unsigned long pg = start & PAGE_MASK; 1372 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1373 pgd_t *pgd; 1374 pud_t *pud; 1375 pmd_t *pmd; 1376 pte_t *pte; 1377 1378 /* user gate pages are read-only */ 1379 if (gup_flags & FOLL_WRITE) 1380 return i ? : -EFAULT; 1381 if (pg > TASK_SIZE) 1382 pgd = pgd_offset_k(pg); 1383 else 1384 pgd = pgd_offset_gate(mm, pg); 1385 BUG_ON(pgd_none(*pgd)); 1386 pud = pud_offset(pgd, pg); 1387 BUG_ON(pud_none(*pud)); 1388 pmd = pmd_offset(pud, pg); 1389 if (pmd_none(*pmd)) 1390 return i ? : -EFAULT; 1391 pte = pte_offset_map(pmd, pg); 1392 if (pte_none(*pte)) { 1393 pte_unmap(pte); 1394 return i ? : -EFAULT; 1395 } 1396 if (pages) { 1397 struct page *page = vm_normal_page(gate_vma, start, *pte); 1398 pages[i] = page; 1399 if (page) 1400 get_page(page); 1401 } 1402 pte_unmap(pte); 1403 if (vmas) 1404 vmas[i] = gate_vma; 1405 i++; 1406 start += PAGE_SIZE; 1407 nr_pages--; 1408 continue; 1409 } 1410 1411 if (!vma || 1412 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1413 !(vm_flags & vma->vm_flags)) 1414 return i ? : -EFAULT; 1415 1416 if (is_vm_hugetlb_page(vma)) { 1417 i = follow_hugetlb_page(mm, vma, pages, vmas, 1418 &start, &nr_pages, i, gup_flags); 1419 continue; 1420 } 1421 1422 do { 1423 struct page *page; 1424 unsigned int foll_flags = gup_flags; 1425 1426 /* 1427 * If we have a pending SIGKILL, don't keep faulting 1428 * pages and potentially allocating memory. 1429 */ 1430 if (unlikely(fatal_signal_pending(current))) 1431 return i ? i : -ERESTARTSYS; 1432 1433 cond_resched(); 1434 while (!(page = follow_page(vma, start, foll_flags))) { 1435 int ret; 1436 1437 ret = handle_mm_fault(mm, vma, start, 1438 (foll_flags & FOLL_WRITE) ? 1439 FAULT_FLAG_WRITE : 0); 1440 1441 if (ret & VM_FAULT_ERROR) { 1442 if (ret & VM_FAULT_OOM) 1443 return i ? i : -ENOMEM; 1444 if (ret & 1445 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) 1446 return i ? i : -EFAULT; 1447 BUG(); 1448 } 1449 if (ret & VM_FAULT_MAJOR) 1450 tsk->maj_flt++; 1451 else 1452 tsk->min_flt++; 1453 1454 /* 1455 * The VM_FAULT_WRITE bit tells us that 1456 * do_wp_page has broken COW when necessary, 1457 * even if maybe_mkwrite decided not to set 1458 * pte_write. We can thus safely do subsequent 1459 * page lookups as if they were reads. But only 1460 * do so when looping for pte_write is futile: 1461 * in some cases userspace may also be wanting 1462 * to write to the gotten user page, which a 1463 * read fault here might prevent (a readonly 1464 * page might get reCOWed by userspace write). 1465 */ 1466 if ((ret & VM_FAULT_WRITE) && 1467 !(vma->vm_flags & VM_WRITE)) 1468 foll_flags &= ~FOLL_WRITE; 1469 1470 cond_resched(); 1471 } 1472 if (IS_ERR(page)) 1473 return i ? i : PTR_ERR(page); 1474 if (pages) { 1475 pages[i] = page; 1476 1477 flush_anon_page(vma, page, start); 1478 flush_dcache_page(page); 1479 } 1480 if (vmas) 1481 vmas[i] = vma; 1482 i++; 1483 start += PAGE_SIZE; 1484 nr_pages--; 1485 } while (nr_pages && start < vma->vm_end); 1486 } while (nr_pages); 1487 return i; 1488 } 1489 1490 /** 1491 * get_user_pages() - pin user pages in memory 1492 * @tsk: task_struct of target task 1493 * @mm: mm_struct of target mm 1494 * @start: starting user address 1495 * @nr_pages: number of pages from start to pin 1496 * @write: whether pages will be written to by the caller 1497 * @force: whether to force write access even if user mapping is 1498 * readonly. This will result in the page being COWed even 1499 * in MAP_SHARED mappings. You do not want this. 1500 * @pages: array that receives pointers to the pages pinned. 1501 * Should be at least nr_pages long. Or NULL, if caller 1502 * only intends to ensure the pages are faulted in. 1503 * @vmas: array of pointers to vmas corresponding to each page. 1504 * Or NULL if the caller does not require them. 1505 * 1506 * Returns number of pages pinned. This may be fewer than the number 1507 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1508 * were pinned, returns -errno. Each page returned must be released 1509 * with a put_page() call when it is finished with. vmas will only 1510 * remain valid while mmap_sem is held. 1511 * 1512 * Must be called with mmap_sem held for read or write. 1513 * 1514 * get_user_pages walks a process's page tables and takes a reference to 1515 * each struct page that each user address corresponds to at a given 1516 * instant. That is, it takes the page that would be accessed if a user 1517 * thread accesses the given user virtual address at that instant. 1518 * 1519 * This does not guarantee that the page exists in the user mappings when 1520 * get_user_pages returns, and there may even be a completely different 1521 * page there in some cases (eg. if mmapped pagecache has been invalidated 1522 * and subsequently re faulted). However it does guarantee that the page 1523 * won't be freed completely. And mostly callers simply care that the page 1524 * contains data that was valid *at some point in time*. Typically, an IO 1525 * or similar operation cannot guarantee anything stronger anyway because 1526 * locks can't be held over the syscall boundary. 1527 * 1528 * If write=0, the page must not be written to. If the page is written to, 1529 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1530 * after the page is finished with, and before put_page is called. 1531 * 1532 * get_user_pages is typically used for fewer-copy IO operations, to get a 1533 * handle on the memory by some means other than accesses via the user virtual 1534 * addresses. The pages may be submitted for DMA to devices or accessed via 1535 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1536 * use the correct cache flushing APIs. 1537 * 1538 * See also get_user_pages_fast, for performance critical applications. 1539 */ 1540 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1541 unsigned long start, int nr_pages, int write, int force, 1542 struct page **pages, struct vm_area_struct **vmas) 1543 { 1544 int flags = FOLL_TOUCH; 1545 1546 if (pages) 1547 flags |= FOLL_GET; 1548 if (write) 1549 flags |= FOLL_WRITE; 1550 if (force) 1551 flags |= FOLL_FORCE; 1552 1553 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 1554 } 1555 EXPORT_SYMBOL(get_user_pages); 1556 1557 /** 1558 * get_dump_page() - pin user page in memory while writing it to core dump 1559 * @addr: user address 1560 * 1561 * Returns struct page pointer of user page pinned for dump, 1562 * to be freed afterwards by page_cache_release() or put_page(). 1563 * 1564 * Returns NULL on any kind of failure - a hole must then be inserted into 1565 * the corefile, to preserve alignment with its headers; and also returns 1566 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1567 * allowing a hole to be left in the corefile to save diskspace. 1568 * 1569 * Called without mmap_sem, but after all other threads have been killed. 1570 */ 1571 #ifdef CONFIG_ELF_CORE 1572 struct page *get_dump_page(unsigned long addr) 1573 { 1574 struct vm_area_struct *vma; 1575 struct page *page; 1576 1577 if (__get_user_pages(current, current->mm, addr, 1, 1578 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) 1579 return NULL; 1580 flush_cache_page(vma, addr, page_to_pfn(page)); 1581 return page; 1582 } 1583 #endif /* CONFIG_ELF_CORE */ 1584 1585 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1586 spinlock_t **ptl) 1587 { 1588 pgd_t * pgd = pgd_offset(mm, addr); 1589 pud_t * pud = pud_alloc(mm, pgd, addr); 1590 if (pud) { 1591 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1592 if (pmd) 1593 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1594 } 1595 return NULL; 1596 } 1597 1598 /* 1599 * This is the old fallback for page remapping. 1600 * 1601 * For historical reasons, it only allows reserved pages. Only 1602 * old drivers should use this, and they needed to mark their 1603 * pages reserved for the old functions anyway. 1604 */ 1605 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1606 struct page *page, pgprot_t prot) 1607 { 1608 struct mm_struct *mm = vma->vm_mm; 1609 int retval; 1610 pte_t *pte; 1611 spinlock_t *ptl; 1612 1613 retval = -EINVAL; 1614 if (PageAnon(page)) 1615 goto out; 1616 retval = -ENOMEM; 1617 flush_dcache_page(page); 1618 pte = get_locked_pte(mm, addr, &ptl); 1619 if (!pte) 1620 goto out; 1621 retval = -EBUSY; 1622 if (!pte_none(*pte)) 1623 goto out_unlock; 1624 1625 /* Ok, finally just insert the thing.. */ 1626 get_page(page); 1627 inc_mm_counter_fast(mm, MM_FILEPAGES); 1628 page_add_file_rmap(page); 1629 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1630 1631 retval = 0; 1632 pte_unmap_unlock(pte, ptl); 1633 return retval; 1634 out_unlock: 1635 pte_unmap_unlock(pte, ptl); 1636 out: 1637 return retval; 1638 } 1639 1640 /** 1641 * vm_insert_page - insert single page into user vma 1642 * @vma: user vma to map to 1643 * @addr: target user address of this page 1644 * @page: source kernel page 1645 * 1646 * This allows drivers to insert individual pages they've allocated 1647 * into a user vma. 1648 * 1649 * The page has to be a nice clean _individual_ kernel allocation. 1650 * If you allocate a compound page, you need to have marked it as 1651 * such (__GFP_COMP), or manually just split the page up yourself 1652 * (see split_page()). 1653 * 1654 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1655 * took an arbitrary page protection parameter. This doesn't allow 1656 * that. Your vma protection will have to be set up correctly, which 1657 * means that if you want a shared writable mapping, you'd better 1658 * ask for a shared writable mapping! 1659 * 1660 * The page does not need to be reserved. 1661 */ 1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1663 struct page *page) 1664 { 1665 if (addr < vma->vm_start || addr >= vma->vm_end) 1666 return -EFAULT; 1667 if (!page_count(page)) 1668 return -EINVAL; 1669 vma->vm_flags |= VM_INSERTPAGE; 1670 return insert_page(vma, addr, page, vma->vm_page_prot); 1671 } 1672 EXPORT_SYMBOL(vm_insert_page); 1673 1674 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1675 unsigned long pfn, pgprot_t prot) 1676 { 1677 struct mm_struct *mm = vma->vm_mm; 1678 int retval; 1679 pte_t *pte, entry; 1680 spinlock_t *ptl; 1681 1682 retval = -ENOMEM; 1683 pte = get_locked_pte(mm, addr, &ptl); 1684 if (!pte) 1685 goto out; 1686 retval = -EBUSY; 1687 if (!pte_none(*pte)) 1688 goto out_unlock; 1689 1690 /* Ok, finally just insert the thing.. */ 1691 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1692 set_pte_at(mm, addr, pte, entry); 1693 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1694 1695 retval = 0; 1696 out_unlock: 1697 pte_unmap_unlock(pte, ptl); 1698 out: 1699 return retval; 1700 } 1701 1702 /** 1703 * vm_insert_pfn - insert single pfn into user vma 1704 * @vma: user vma to map to 1705 * @addr: target user address of this page 1706 * @pfn: source kernel pfn 1707 * 1708 * Similar to vm_inert_page, this allows drivers to insert individual pages 1709 * they've allocated into a user vma. Same comments apply. 1710 * 1711 * This function should only be called from a vm_ops->fault handler, and 1712 * in that case the handler should return NULL. 1713 * 1714 * vma cannot be a COW mapping. 1715 * 1716 * As this is called only for pages that do not currently exist, we 1717 * do not need to flush old virtual caches or the TLB. 1718 */ 1719 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1720 unsigned long pfn) 1721 { 1722 int ret; 1723 pgprot_t pgprot = vma->vm_page_prot; 1724 /* 1725 * Technically, architectures with pte_special can avoid all these 1726 * restrictions (same for remap_pfn_range). However we would like 1727 * consistency in testing and feature parity among all, so we should 1728 * try to keep these invariants in place for everybody. 1729 */ 1730 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1731 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1732 (VM_PFNMAP|VM_MIXEDMAP)); 1733 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1734 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1735 1736 if (addr < vma->vm_start || addr >= vma->vm_end) 1737 return -EFAULT; 1738 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1739 return -EINVAL; 1740 1741 ret = insert_pfn(vma, addr, pfn, pgprot); 1742 1743 if (ret) 1744 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1745 1746 return ret; 1747 } 1748 EXPORT_SYMBOL(vm_insert_pfn); 1749 1750 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1751 unsigned long pfn) 1752 { 1753 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1754 1755 if (addr < vma->vm_start || addr >= vma->vm_end) 1756 return -EFAULT; 1757 1758 /* 1759 * If we don't have pte special, then we have to use the pfn_valid() 1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1761 * refcount the page if pfn_valid is true (hence insert_page rather 1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1763 * without pte special, it would there be refcounted as a normal page. 1764 */ 1765 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1766 struct page *page; 1767 1768 page = pfn_to_page(pfn); 1769 return insert_page(vma, addr, page, vma->vm_page_prot); 1770 } 1771 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1772 } 1773 EXPORT_SYMBOL(vm_insert_mixed); 1774 1775 /* 1776 * maps a range of physical memory into the requested pages. the old 1777 * mappings are removed. any references to nonexistent pages results 1778 * in null mappings (currently treated as "copy-on-access") 1779 */ 1780 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1781 unsigned long addr, unsigned long end, 1782 unsigned long pfn, pgprot_t prot) 1783 { 1784 pte_t *pte; 1785 spinlock_t *ptl; 1786 1787 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1788 if (!pte) 1789 return -ENOMEM; 1790 arch_enter_lazy_mmu_mode(); 1791 do { 1792 BUG_ON(!pte_none(*pte)); 1793 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1794 pfn++; 1795 } while (pte++, addr += PAGE_SIZE, addr != end); 1796 arch_leave_lazy_mmu_mode(); 1797 pte_unmap_unlock(pte - 1, ptl); 1798 return 0; 1799 } 1800 1801 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1802 unsigned long addr, unsigned long end, 1803 unsigned long pfn, pgprot_t prot) 1804 { 1805 pmd_t *pmd; 1806 unsigned long next; 1807 1808 pfn -= addr >> PAGE_SHIFT; 1809 pmd = pmd_alloc(mm, pud, addr); 1810 if (!pmd) 1811 return -ENOMEM; 1812 do { 1813 next = pmd_addr_end(addr, end); 1814 if (remap_pte_range(mm, pmd, addr, next, 1815 pfn + (addr >> PAGE_SHIFT), prot)) 1816 return -ENOMEM; 1817 } while (pmd++, addr = next, addr != end); 1818 return 0; 1819 } 1820 1821 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1822 unsigned long addr, unsigned long end, 1823 unsigned long pfn, pgprot_t prot) 1824 { 1825 pud_t *pud; 1826 unsigned long next; 1827 1828 pfn -= addr >> PAGE_SHIFT; 1829 pud = pud_alloc(mm, pgd, addr); 1830 if (!pud) 1831 return -ENOMEM; 1832 do { 1833 next = pud_addr_end(addr, end); 1834 if (remap_pmd_range(mm, pud, addr, next, 1835 pfn + (addr >> PAGE_SHIFT), prot)) 1836 return -ENOMEM; 1837 } while (pud++, addr = next, addr != end); 1838 return 0; 1839 } 1840 1841 /** 1842 * remap_pfn_range - remap kernel memory to userspace 1843 * @vma: user vma to map to 1844 * @addr: target user address to start at 1845 * @pfn: physical address of kernel memory 1846 * @size: size of map area 1847 * @prot: page protection flags for this mapping 1848 * 1849 * Note: this is only safe if the mm semaphore is held when called. 1850 */ 1851 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1852 unsigned long pfn, unsigned long size, pgprot_t prot) 1853 { 1854 pgd_t *pgd; 1855 unsigned long next; 1856 unsigned long end = addr + PAGE_ALIGN(size); 1857 struct mm_struct *mm = vma->vm_mm; 1858 int err; 1859 1860 /* 1861 * Physically remapped pages are special. Tell the 1862 * rest of the world about it: 1863 * VM_IO tells people not to look at these pages 1864 * (accesses can have side effects). 1865 * VM_RESERVED is specified all over the place, because 1866 * in 2.4 it kept swapout's vma scan off this vma; but 1867 * in 2.6 the LRU scan won't even find its pages, so this 1868 * flag means no more than count its pages in reserved_vm, 1869 * and omit it from core dump, even when VM_IO turned off. 1870 * VM_PFNMAP tells the core MM that the base pages are just 1871 * raw PFN mappings, and do not have a "struct page" associated 1872 * with them. 1873 * 1874 * There's a horrible special case to handle copy-on-write 1875 * behaviour that some programs depend on. We mark the "original" 1876 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1877 */ 1878 if (addr == vma->vm_start && end == vma->vm_end) { 1879 vma->vm_pgoff = pfn; 1880 vma->vm_flags |= VM_PFN_AT_MMAP; 1881 } else if (is_cow_mapping(vma->vm_flags)) 1882 return -EINVAL; 1883 1884 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1885 1886 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1887 if (err) { 1888 /* 1889 * To indicate that track_pfn related cleanup is not 1890 * needed from higher level routine calling unmap_vmas 1891 */ 1892 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1893 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1894 return -EINVAL; 1895 } 1896 1897 BUG_ON(addr >= end); 1898 pfn -= addr >> PAGE_SHIFT; 1899 pgd = pgd_offset(mm, addr); 1900 flush_cache_range(vma, addr, end); 1901 do { 1902 next = pgd_addr_end(addr, end); 1903 err = remap_pud_range(mm, pgd, addr, next, 1904 pfn + (addr >> PAGE_SHIFT), prot); 1905 if (err) 1906 break; 1907 } while (pgd++, addr = next, addr != end); 1908 1909 if (err) 1910 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1911 1912 return err; 1913 } 1914 EXPORT_SYMBOL(remap_pfn_range); 1915 1916 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1917 unsigned long addr, unsigned long end, 1918 pte_fn_t fn, void *data) 1919 { 1920 pte_t *pte; 1921 int err; 1922 pgtable_t token; 1923 spinlock_t *uninitialized_var(ptl); 1924 1925 pte = (mm == &init_mm) ? 1926 pte_alloc_kernel(pmd, addr) : 1927 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1928 if (!pte) 1929 return -ENOMEM; 1930 1931 BUG_ON(pmd_huge(*pmd)); 1932 1933 arch_enter_lazy_mmu_mode(); 1934 1935 token = pmd_pgtable(*pmd); 1936 1937 do { 1938 err = fn(pte++, token, addr, data); 1939 if (err) 1940 break; 1941 } while (addr += PAGE_SIZE, addr != end); 1942 1943 arch_leave_lazy_mmu_mode(); 1944 1945 if (mm != &init_mm) 1946 pte_unmap_unlock(pte-1, ptl); 1947 return err; 1948 } 1949 1950 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1951 unsigned long addr, unsigned long end, 1952 pte_fn_t fn, void *data) 1953 { 1954 pmd_t *pmd; 1955 unsigned long next; 1956 int err; 1957 1958 BUG_ON(pud_huge(*pud)); 1959 1960 pmd = pmd_alloc(mm, pud, addr); 1961 if (!pmd) 1962 return -ENOMEM; 1963 do { 1964 next = pmd_addr_end(addr, end); 1965 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1966 if (err) 1967 break; 1968 } while (pmd++, addr = next, addr != end); 1969 return err; 1970 } 1971 1972 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1973 unsigned long addr, unsigned long end, 1974 pte_fn_t fn, void *data) 1975 { 1976 pud_t *pud; 1977 unsigned long next; 1978 int err; 1979 1980 pud = pud_alloc(mm, pgd, addr); 1981 if (!pud) 1982 return -ENOMEM; 1983 do { 1984 next = pud_addr_end(addr, end); 1985 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1986 if (err) 1987 break; 1988 } while (pud++, addr = next, addr != end); 1989 return err; 1990 } 1991 1992 /* 1993 * Scan a region of virtual memory, filling in page tables as necessary 1994 * and calling a provided function on each leaf page table. 1995 */ 1996 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1997 unsigned long size, pte_fn_t fn, void *data) 1998 { 1999 pgd_t *pgd; 2000 unsigned long next; 2001 unsigned long start = addr, end = addr + size; 2002 int err; 2003 2004 BUG_ON(addr >= end); 2005 mmu_notifier_invalidate_range_start(mm, start, end); 2006 pgd = pgd_offset(mm, addr); 2007 do { 2008 next = pgd_addr_end(addr, end); 2009 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2010 if (err) 2011 break; 2012 } while (pgd++, addr = next, addr != end); 2013 mmu_notifier_invalidate_range_end(mm, start, end); 2014 return err; 2015 } 2016 EXPORT_SYMBOL_GPL(apply_to_page_range); 2017 2018 /* 2019 * handle_pte_fault chooses page fault handler according to an entry 2020 * which was read non-atomically. Before making any commitment, on 2021 * those architectures or configurations (e.g. i386 with PAE) which 2022 * might give a mix of unmatched parts, do_swap_page and do_file_page 2023 * must check under lock before unmapping the pte and proceeding 2024 * (but do_wp_page is only called after already making such a check; 2025 * and do_anonymous_page and do_no_page can safely check later on). 2026 */ 2027 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2028 pte_t *page_table, pte_t orig_pte) 2029 { 2030 int same = 1; 2031 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2032 if (sizeof(pte_t) > sizeof(unsigned long)) { 2033 spinlock_t *ptl = pte_lockptr(mm, pmd); 2034 spin_lock(ptl); 2035 same = pte_same(*page_table, orig_pte); 2036 spin_unlock(ptl); 2037 } 2038 #endif 2039 pte_unmap(page_table); 2040 return same; 2041 } 2042 2043 /* 2044 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 2045 * servicing faults for write access. In the normal case, do always want 2046 * pte_mkwrite. But get_user_pages can cause write faults for mappings 2047 * that do not have writing enabled, when used by access_process_vm. 2048 */ 2049 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 2050 { 2051 if (likely(vma->vm_flags & VM_WRITE)) 2052 pte = pte_mkwrite(pte); 2053 return pte; 2054 } 2055 2056 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2057 { 2058 /* 2059 * If the source page was a PFN mapping, we don't have 2060 * a "struct page" for it. We do a best-effort copy by 2061 * just copying from the original user address. If that 2062 * fails, we just zero-fill it. Live with it. 2063 */ 2064 if (unlikely(!src)) { 2065 void *kaddr = kmap_atomic(dst, KM_USER0); 2066 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2067 2068 /* 2069 * This really shouldn't fail, because the page is there 2070 * in the page tables. But it might just be unreadable, 2071 * in which case we just give up and fill the result with 2072 * zeroes. 2073 */ 2074 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2075 memset(kaddr, 0, PAGE_SIZE); 2076 kunmap_atomic(kaddr, KM_USER0); 2077 flush_dcache_page(dst); 2078 } else 2079 copy_user_highpage(dst, src, va, vma); 2080 } 2081 2082 /* 2083 * This routine handles present pages, when users try to write 2084 * to a shared page. It is done by copying the page to a new address 2085 * and decrementing the shared-page counter for the old page. 2086 * 2087 * Note that this routine assumes that the protection checks have been 2088 * done by the caller (the low-level page fault routine in most cases). 2089 * Thus we can safely just mark it writable once we've done any necessary 2090 * COW. 2091 * 2092 * We also mark the page dirty at this point even though the page will 2093 * change only once the write actually happens. This avoids a few races, 2094 * and potentially makes it more efficient. 2095 * 2096 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2097 * but allow concurrent faults), with pte both mapped and locked. 2098 * We return with mmap_sem still held, but pte unmapped and unlocked. 2099 */ 2100 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2101 unsigned long address, pte_t *page_table, pmd_t *pmd, 2102 spinlock_t *ptl, pte_t orig_pte) 2103 { 2104 struct page *old_page, *new_page; 2105 pte_t entry; 2106 int reuse = 0, ret = 0; 2107 int page_mkwrite = 0; 2108 struct page *dirty_page = NULL; 2109 2110 old_page = vm_normal_page(vma, address, orig_pte); 2111 if (!old_page) { 2112 /* 2113 * VM_MIXEDMAP !pfn_valid() case 2114 * 2115 * We should not cow pages in a shared writeable mapping. 2116 * Just mark the pages writable as we can't do any dirty 2117 * accounting on raw pfn maps. 2118 */ 2119 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2120 (VM_WRITE|VM_SHARED)) 2121 goto reuse; 2122 goto gotten; 2123 } 2124 2125 /* 2126 * Take out anonymous pages first, anonymous shared vmas are 2127 * not dirty accountable. 2128 */ 2129 if (PageAnon(old_page) && !PageKsm(old_page)) { 2130 if (!trylock_page(old_page)) { 2131 page_cache_get(old_page); 2132 pte_unmap_unlock(page_table, ptl); 2133 lock_page(old_page); 2134 page_table = pte_offset_map_lock(mm, pmd, address, 2135 &ptl); 2136 if (!pte_same(*page_table, orig_pte)) { 2137 unlock_page(old_page); 2138 page_cache_release(old_page); 2139 goto unlock; 2140 } 2141 page_cache_release(old_page); 2142 } 2143 reuse = reuse_swap_page(old_page); 2144 if (reuse) 2145 /* 2146 * The page is all ours. Move it to our anon_vma so 2147 * the rmap code will not search our parent or siblings. 2148 * Protected against the rmap code by the page lock. 2149 */ 2150 page_move_anon_rmap(old_page, vma, address); 2151 unlock_page(old_page); 2152 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2153 (VM_WRITE|VM_SHARED))) { 2154 /* 2155 * Only catch write-faults on shared writable pages, 2156 * read-only shared pages can get COWed by 2157 * get_user_pages(.write=1, .force=1). 2158 */ 2159 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2160 struct vm_fault vmf; 2161 int tmp; 2162 2163 vmf.virtual_address = (void __user *)(address & 2164 PAGE_MASK); 2165 vmf.pgoff = old_page->index; 2166 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2167 vmf.page = old_page; 2168 2169 /* 2170 * Notify the address space that the page is about to 2171 * become writable so that it can prohibit this or wait 2172 * for the page to get into an appropriate state. 2173 * 2174 * We do this without the lock held, so that it can 2175 * sleep if it needs to. 2176 */ 2177 page_cache_get(old_page); 2178 pte_unmap_unlock(page_table, ptl); 2179 2180 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2181 if (unlikely(tmp & 2182 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2183 ret = tmp; 2184 goto unwritable_page; 2185 } 2186 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2187 lock_page(old_page); 2188 if (!old_page->mapping) { 2189 ret = 0; /* retry the fault */ 2190 unlock_page(old_page); 2191 goto unwritable_page; 2192 } 2193 } else 2194 VM_BUG_ON(!PageLocked(old_page)); 2195 2196 /* 2197 * Since we dropped the lock we need to revalidate 2198 * the PTE as someone else may have changed it. If 2199 * they did, we just return, as we can count on the 2200 * MMU to tell us if they didn't also make it writable. 2201 */ 2202 page_table = pte_offset_map_lock(mm, pmd, address, 2203 &ptl); 2204 if (!pte_same(*page_table, orig_pte)) { 2205 unlock_page(old_page); 2206 page_cache_release(old_page); 2207 goto unlock; 2208 } 2209 2210 page_mkwrite = 1; 2211 } 2212 dirty_page = old_page; 2213 get_page(dirty_page); 2214 reuse = 1; 2215 } 2216 2217 if (reuse) { 2218 reuse: 2219 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2220 entry = pte_mkyoung(orig_pte); 2221 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2222 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2223 update_mmu_cache(vma, address, page_table); 2224 ret |= VM_FAULT_WRITE; 2225 goto unlock; 2226 } 2227 2228 /* 2229 * Ok, we need to copy. Oh, well.. 2230 */ 2231 page_cache_get(old_page); 2232 gotten: 2233 pte_unmap_unlock(page_table, ptl); 2234 2235 if (unlikely(anon_vma_prepare(vma))) 2236 goto oom; 2237 2238 if (is_zero_pfn(pte_pfn(orig_pte))) { 2239 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2240 if (!new_page) 2241 goto oom; 2242 } else { 2243 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2244 if (!new_page) 2245 goto oom; 2246 cow_user_page(new_page, old_page, address, vma); 2247 } 2248 __SetPageUptodate(new_page); 2249 2250 /* 2251 * Don't let another task, with possibly unlocked vma, 2252 * keep the mlocked page. 2253 */ 2254 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2255 lock_page(old_page); /* for LRU manipulation */ 2256 clear_page_mlock(old_page); 2257 unlock_page(old_page); 2258 } 2259 2260 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2261 goto oom_free_new; 2262 2263 /* 2264 * Re-check the pte - we dropped the lock 2265 */ 2266 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2267 if (likely(pte_same(*page_table, orig_pte))) { 2268 if (old_page) { 2269 if (!PageAnon(old_page)) { 2270 dec_mm_counter_fast(mm, MM_FILEPAGES); 2271 inc_mm_counter_fast(mm, MM_ANONPAGES); 2272 } 2273 } else 2274 inc_mm_counter_fast(mm, MM_ANONPAGES); 2275 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2276 entry = mk_pte(new_page, vma->vm_page_prot); 2277 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2278 /* 2279 * Clear the pte entry and flush it first, before updating the 2280 * pte with the new entry. This will avoid a race condition 2281 * seen in the presence of one thread doing SMC and another 2282 * thread doing COW. 2283 */ 2284 ptep_clear_flush(vma, address, page_table); 2285 page_add_new_anon_rmap(new_page, vma, address); 2286 /* 2287 * We call the notify macro here because, when using secondary 2288 * mmu page tables (such as kvm shadow page tables), we want the 2289 * new page to be mapped directly into the secondary page table. 2290 */ 2291 set_pte_at_notify(mm, address, page_table, entry); 2292 update_mmu_cache(vma, address, page_table); 2293 if (old_page) { 2294 /* 2295 * Only after switching the pte to the new page may 2296 * we remove the mapcount here. Otherwise another 2297 * process may come and find the rmap count decremented 2298 * before the pte is switched to the new page, and 2299 * "reuse" the old page writing into it while our pte 2300 * here still points into it and can be read by other 2301 * threads. 2302 * 2303 * The critical issue is to order this 2304 * page_remove_rmap with the ptp_clear_flush above. 2305 * Those stores are ordered by (if nothing else,) 2306 * the barrier present in the atomic_add_negative 2307 * in page_remove_rmap. 2308 * 2309 * Then the TLB flush in ptep_clear_flush ensures that 2310 * no process can access the old page before the 2311 * decremented mapcount is visible. And the old page 2312 * cannot be reused until after the decremented 2313 * mapcount is visible. So transitively, TLBs to 2314 * old page will be flushed before it can be reused. 2315 */ 2316 page_remove_rmap(old_page); 2317 } 2318 2319 /* Free the old page.. */ 2320 new_page = old_page; 2321 ret |= VM_FAULT_WRITE; 2322 } else 2323 mem_cgroup_uncharge_page(new_page); 2324 2325 if (new_page) 2326 page_cache_release(new_page); 2327 if (old_page) 2328 page_cache_release(old_page); 2329 unlock: 2330 pte_unmap_unlock(page_table, ptl); 2331 if (dirty_page) { 2332 /* 2333 * Yes, Virginia, this is actually required to prevent a race 2334 * with clear_page_dirty_for_io() from clearing the page dirty 2335 * bit after it clear all dirty ptes, but before a racing 2336 * do_wp_page installs a dirty pte. 2337 * 2338 * do_no_page is protected similarly. 2339 */ 2340 if (!page_mkwrite) { 2341 wait_on_page_locked(dirty_page); 2342 set_page_dirty_balance(dirty_page, page_mkwrite); 2343 } 2344 put_page(dirty_page); 2345 if (page_mkwrite) { 2346 struct address_space *mapping = dirty_page->mapping; 2347 2348 set_page_dirty(dirty_page); 2349 unlock_page(dirty_page); 2350 page_cache_release(dirty_page); 2351 if (mapping) { 2352 /* 2353 * Some device drivers do not set page.mapping 2354 * but still dirty their pages 2355 */ 2356 balance_dirty_pages_ratelimited(mapping); 2357 } 2358 } 2359 2360 /* file_update_time outside page_lock */ 2361 if (vma->vm_file) 2362 file_update_time(vma->vm_file); 2363 } 2364 return ret; 2365 oom_free_new: 2366 page_cache_release(new_page); 2367 oom: 2368 if (old_page) { 2369 if (page_mkwrite) { 2370 unlock_page(old_page); 2371 page_cache_release(old_page); 2372 } 2373 page_cache_release(old_page); 2374 } 2375 return VM_FAULT_OOM; 2376 2377 unwritable_page: 2378 page_cache_release(old_page); 2379 return ret; 2380 } 2381 2382 /* 2383 * Helper functions for unmap_mapping_range(). 2384 * 2385 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2386 * 2387 * We have to restart searching the prio_tree whenever we drop the lock, 2388 * since the iterator is only valid while the lock is held, and anyway 2389 * a later vma might be split and reinserted earlier while lock dropped. 2390 * 2391 * The list of nonlinear vmas could be handled more efficiently, using 2392 * a placeholder, but handle it in the same way until a need is shown. 2393 * It is important to search the prio_tree before nonlinear list: a vma 2394 * may become nonlinear and be shifted from prio_tree to nonlinear list 2395 * while the lock is dropped; but never shifted from list to prio_tree. 2396 * 2397 * In order to make forward progress despite restarting the search, 2398 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2399 * quickly skip it next time around. Since the prio_tree search only 2400 * shows us those vmas affected by unmapping the range in question, we 2401 * can't efficiently keep all vmas in step with mapping->truncate_count: 2402 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2403 * mapping->truncate_count and vma->vm_truncate_count are protected by 2404 * i_mmap_lock. 2405 * 2406 * In order to make forward progress despite repeatedly restarting some 2407 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2408 * and restart from that address when we reach that vma again. It might 2409 * have been split or merged, shrunk or extended, but never shifted: so 2410 * restart_addr remains valid so long as it remains in the vma's range. 2411 * unmap_mapping_range forces truncate_count to leap over page-aligned 2412 * values so we can save vma's restart_addr in its truncate_count field. 2413 */ 2414 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2415 2416 static void reset_vma_truncate_counts(struct address_space *mapping) 2417 { 2418 struct vm_area_struct *vma; 2419 struct prio_tree_iter iter; 2420 2421 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2422 vma->vm_truncate_count = 0; 2423 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2424 vma->vm_truncate_count = 0; 2425 } 2426 2427 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2428 unsigned long start_addr, unsigned long end_addr, 2429 struct zap_details *details) 2430 { 2431 unsigned long restart_addr; 2432 int need_break; 2433 2434 /* 2435 * files that support invalidating or truncating portions of the 2436 * file from under mmaped areas must have their ->fault function 2437 * return a locked page (and set VM_FAULT_LOCKED in the return). 2438 * This provides synchronisation against concurrent unmapping here. 2439 */ 2440 2441 again: 2442 restart_addr = vma->vm_truncate_count; 2443 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2444 start_addr = restart_addr; 2445 if (start_addr >= end_addr) { 2446 /* Top of vma has been split off since last time */ 2447 vma->vm_truncate_count = details->truncate_count; 2448 return 0; 2449 } 2450 } 2451 2452 restart_addr = zap_page_range(vma, start_addr, 2453 end_addr - start_addr, details); 2454 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2455 2456 if (restart_addr >= end_addr) { 2457 /* We have now completed this vma: mark it so */ 2458 vma->vm_truncate_count = details->truncate_count; 2459 if (!need_break) 2460 return 0; 2461 } else { 2462 /* Note restart_addr in vma's truncate_count field */ 2463 vma->vm_truncate_count = restart_addr; 2464 if (!need_break) 2465 goto again; 2466 } 2467 2468 spin_unlock(details->i_mmap_lock); 2469 cond_resched(); 2470 spin_lock(details->i_mmap_lock); 2471 return -EINTR; 2472 } 2473 2474 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2475 struct zap_details *details) 2476 { 2477 struct vm_area_struct *vma; 2478 struct prio_tree_iter iter; 2479 pgoff_t vba, vea, zba, zea; 2480 2481 restart: 2482 vma_prio_tree_foreach(vma, &iter, root, 2483 details->first_index, details->last_index) { 2484 /* Skip quickly over those we have already dealt with */ 2485 if (vma->vm_truncate_count == details->truncate_count) 2486 continue; 2487 2488 vba = vma->vm_pgoff; 2489 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2490 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2491 zba = details->first_index; 2492 if (zba < vba) 2493 zba = vba; 2494 zea = details->last_index; 2495 if (zea > vea) 2496 zea = vea; 2497 2498 if (unmap_mapping_range_vma(vma, 2499 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2500 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2501 details) < 0) 2502 goto restart; 2503 } 2504 } 2505 2506 static inline void unmap_mapping_range_list(struct list_head *head, 2507 struct zap_details *details) 2508 { 2509 struct vm_area_struct *vma; 2510 2511 /* 2512 * In nonlinear VMAs there is no correspondence between virtual address 2513 * offset and file offset. So we must perform an exhaustive search 2514 * across *all* the pages in each nonlinear VMA, not just the pages 2515 * whose virtual address lies outside the file truncation point. 2516 */ 2517 restart: 2518 list_for_each_entry(vma, head, shared.vm_set.list) { 2519 /* Skip quickly over those we have already dealt with */ 2520 if (vma->vm_truncate_count == details->truncate_count) 2521 continue; 2522 details->nonlinear_vma = vma; 2523 if (unmap_mapping_range_vma(vma, vma->vm_start, 2524 vma->vm_end, details) < 0) 2525 goto restart; 2526 } 2527 } 2528 2529 /** 2530 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2531 * @mapping: the address space containing mmaps to be unmapped. 2532 * @holebegin: byte in first page to unmap, relative to the start of 2533 * the underlying file. This will be rounded down to a PAGE_SIZE 2534 * boundary. Note that this is different from truncate_pagecache(), which 2535 * must keep the partial page. In contrast, we must get rid of 2536 * partial pages. 2537 * @holelen: size of prospective hole in bytes. This will be rounded 2538 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2539 * end of the file. 2540 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2541 * but 0 when invalidating pagecache, don't throw away private data. 2542 */ 2543 void unmap_mapping_range(struct address_space *mapping, 2544 loff_t const holebegin, loff_t const holelen, int even_cows) 2545 { 2546 struct zap_details details; 2547 pgoff_t hba = holebegin >> PAGE_SHIFT; 2548 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2549 2550 /* Check for overflow. */ 2551 if (sizeof(holelen) > sizeof(hlen)) { 2552 long long holeend = 2553 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2554 if (holeend & ~(long long)ULONG_MAX) 2555 hlen = ULONG_MAX - hba + 1; 2556 } 2557 2558 details.check_mapping = even_cows? NULL: mapping; 2559 details.nonlinear_vma = NULL; 2560 details.first_index = hba; 2561 details.last_index = hba + hlen - 1; 2562 if (details.last_index < details.first_index) 2563 details.last_index = ULONG_MAX; 2564 details.i_mmap_lock = &mapping->i_mmap_lock; 2565 2566 spin_lock(&mapping->i_mmap_lock); 2567 2568 /* Protect against endless unmapping loops */ 2569 mapping->truncate_count++; 2570 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2571 if (mapping->truncate_count == 0) 2572 reset_vma_truncate_counts(mapping); 2573 mapping->truncate_count++; 2574 } 2575 details.truncate_count = mapping->truncate_count; 2576 2577 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2578 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2579 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2580 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2581 spin_unlock(&mapping->i_mmap_lock); 2582 } 2583 EXPORT_SYMBOL(unmap_mapping_range); 2584 2585 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2586 { 2587 struct address_space *mapping = inode->i_mapping; 2588 2589 /* 2590 * If the underlying filesystem is not going to provide 2591 * a way to truncate a range of blocks (punch a hole) - 2592 * we should return failure right now. 2593 */ 2594 if (!inode->i_op->truncate_range) 2595 return -ENOSYS; 2596 2597 mutex_lock(&inode->i_mutex); 2598 down_write(&inode->i_alloc_sem); 2599 unmap_mapping_range(mapping, offset, (end - offset), 1); 2600 truncate_inode_pages_range(mapping, offset, end); 2601 unmap_mapping_range(mapping, offset, (end - offset), 1); 2602 inode->i_op->truncate_range(inode, offset, end); 2603 up_write(&inode->i_alloc_sem); 2604 mutex_unlock(&inode->i_mutex); 2605 2606 return 0; 2607 } 2608 2609 /* 2610 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2611 * but allow concurrent faults), and pte mapped but not yet locked. 2612 * We return with mmap_sem still held, but pte unmapped and unlocked. 2613 */ 2614 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2615 unsigned long address, pte_t *page_table, pmd_t *pmd, 2616 unsigned int flags, pte_t orig_pte) 2617 { 2618 spinlock_t *ptl; 2619 struct page *page; 2620 swp_entry_t entry; 2621 pte_t pte; 2622 struct mem_cgroup *ptr = NULL; 2623 int ret = 0; 2624 2625 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2626 goto out; 2627 2628 entry = pte_to_swp_entry(orig_pte); 2629 if (unlikely(non_swap_entry(entry))) { 2630 if (is_migration_entry(entry)) { 2631 migration_entry_wait(mm, pmd, address); 2632 } else if (is_hwpoison_entry(entry)) { 2633 ret = VM_FAULT_HWPOISON; 2634 } else { 2635 print_bad_pte(vma, address, orig_pte, NULL); 2636 ret = VM_FAULT_SIGBUS; 2637 } 2638 goto out; 2639 } 2640 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2641 page = lookup_swap_cache(entry); 2642 if (!page) { 2643 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2644 page = swapin_readahead(entry, 2645 GFP_HIGHUSER_MOVABLE, vma, address); 2646 if (!page) { 2647 /* 2648 * Back out if somebody else faulted in this pte 2649 * while we released the pte lock. 2650 */ 2651 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2652 if (likely(pte_same(*page_table, orig_pte))) 2653 ret = VM_FAULT_OOM; 2654 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2655 goto unlock; 2656 } 2657 2658 /* Had to read the page from swap area: Major fault */ 2659 ret = VM_FAULT_MAJOR; 2660 count_vm_event(PGMAJFAULT); 2661 } else if (PageHWPoison(page)) { 2662 /* 2663 * hwpoisoned dirty swapcache pages are kept for killing 2664 * owner processes (which may be unknown at hwpoison time) 2665 */ 2666 ret = VM_FAULT_HWPOISON; 2667 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2668 goto out_release; 2669 } 2670 2671 lock_page(page); 2672 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2673 2674 page = ksm_might_need_to_copy(page, vma, address); 2675 if (!page) { 2676 ret = VM_FAULT_OOM; 2677 goto out; 2678 } 2679 2680 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2681 ret = VM_FAULT_OOM; 2682 goto out_page; 2683 } 2684 2685 /* 2686 * Back out if somebody else already faulted in this pte. 2687 */ 2688 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2689 if (unlikely(!pte_same(*page_table, orig_pte))) 2690 goto out_nomap; 2691 2692 if (unlikely(!PageUptodate(page))) { 2693 ret = VM_FAULT_SIGBUS; 2694 goto out_nomap; 2695 } 2696 2697 /* 2698 * The page isn't present yet, go ahead with the fault. 2699 * 2700 * Be careful about the sequence of operations here. 2701 * To get its accounting right, reuse_swap_page() must be called 2702 * while the page is counted on swap but not yet in mapcount i.e. 2703 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2704 * must be called after the swap_free(), or it will never succeed. 2705 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2706 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2707 * in page->private. In this case, a record in swap_cgroup is silently 2708 * discarded at swap_free(). 2709 */ 2710 2711 inc_mm_counter_fast(mm, MM_ANONPAGES); 2712 dec_mm_counter_fast(mm, MM_SWAPENTS); 2713 pte = mk_pte(page, vma->vm_page_prot); 2714 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2715 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2716 flags &= ~FAULT_FLAG_WRITE; 2717 } 2718 flush_icache_page(vma, page); 2719 set_pte_at(mm, address, page_table, pte); 2720 page_add_anon_rmap(page, vma, address); 2721 /* It's better to call commit-charge after rmap is established */ 2722 mem_cgroup_commit_charge_swapin(page, ptr); 2723 2724 swap_free(entry); 2725 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2726 try_to_free_swap(page); 2727 unlock_page(page); 2728 2729 if (flags & FAULT_FLAG_WRITE) { 2730 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2731 if (ret & VM_FAULT_ERROR) 2732 ret &= VM_FAULT_ERROR; 2733 goto out; 2734 } 2735 2736 /* No need to invalidate - it was non-present before */ 2737 update_mmu_cache(vma, address, page_table); 2738 unlock: 2739 pte_unmap_unlock(page_table, ptl); 2740 out: 2741 return ret; 2742 out_nomap: 2743 mem_cgroup_cancel_charge_swapin(ptr); 2744 pte_unmap_unlock(page_table, ptl); 2745 out_page: 2746 unlock_page(page); 2747 out_release: 2748 page_cache_release(page); 2749 return ret; 2750 } 2751 2752 /* 2753 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2754 * but allow concurrent faults), and pte mapped but not yet locked. 2755 * We return with mmap_sem still held, but pte unmapped and unlocked. 2756 */ 2757 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2758 unsigned long address, pte_t *page_table, pmd_t *pmd, 2759 unsigned int flags) 2760 { 2761 struct page *page; 2762 spinlock_t *ptl; 2763 pte_t entry; 2764 2765 if (!(flags & FAULT_FLAG_WRITE)) { 2766 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2767 vma->vm_page_prot)); 2768 ptl = pte_lockptr(mm, pmd); 2769 spin_lock(ptl); 2770 if (!pte_none(*page_table)) 2771 goto unlock; 2772 goto setpte; 2773 } 2774 2775 /* Allocate our own private page. */ 2776 pte_unmap(page_table); 2777 2778 if (unlikely(anon_vma_prepare(vma))) 2779 goto oom; 2780 page = alloc_zeroed_user_highpage_movable(vma, address); 2781 if (!page) 2782 goto oom; 2783 __SetPageUptodate(page); 2784 2785 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2786 goto oom_free_page; 2787 2788 entry = mk_pte(page, vma->vm_page_prot); 2789 if (vma->vm_flags & VM_WRITE) 2790 entry = pte_mkwrite(pte_mkdirty(entry)); 2791 2792 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2793 if (!pte_none(*page_table)) 2794 goto release; 2795 2796 inc_mm_counter_fast(mm, MM_ANONPAGES); 2797 page_add_new_anon_rmap(page, vma, address); 2798 setpte: 2799 set_pte_at(mm, address, page_table, entry); 2800 2801 /* No need to invalidate - it was non-present before */ 2802 update_mmu_cache(vma, address, page_table); 2803 unlock: 2804 pte_unmap_unlock(page_table, ptl); 2805 return 0; 2806 release: 2807 mem_cgroup_uncharge_page(page); 2808 page_cache_release(page); 2809 goto unlock; 2810 oom_free_page: 2811 page_cache_release(page); 2812 oom: 2813 return VM_FAULT_OOM; 2814 } 2815 2816 /* 2817 * __do_fault() tries to create a new page mapping. It aggressively 2818 * tries to share with existing pages, but makes a separate copy if 2819 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2820 * the next page fault. 2821 * 2822 * As this is called only for pages that do not currently exist, we 2823 * do not need to flush old virtual caches or the TLB. 2824 * 2825 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2826 * but allow concurrent faults), and pte neither mapped nor locked. 2827 * We return with mmap_sem still held, but pte unmapped and unlocked. 2828 */ 2829 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2830 unsigned long address, pmd_t *pmd, 2831 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2832 { 2833 pte_t *page_table; 2834 spinlock_t *ptl; 2835 struct page *page; 2836 pte_t entry; 2837 int anon = 0; 2838 int charged = 0; 2839 struct page *dirty_page = NULL; 2840 struct vm_fault vmf; 2841 int ret; 2842 int page_mkwrite = 0; 2843 2844 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2845 vmf.pgoff = pgoff; 2846 vmf.flags = flags; 2847 vmf.page = NULL; 2848 2849 ret = vma->vm_ops->fault(vma, &vmf); 2850 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2851 return ret; 2852 2853 if (unlikely(PageHWPoison(vmf.page))) { 2854 if (ret & VM_FAULT_LOCKED) 2855 unlock_page(vmf.page); 2856 return VM_FAULT_HWPOISON; 2857 } 2858 2859 /* 2860 * For consistency in subsequent calls, make the faulted page always 2861 * locked. 2862 */ 2863 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2864 lock_page(vmf.page); 2865 else 2866 VM_BUG_ON(!PageLocked(vmf.page)); 2867 2868 /* 2869 * Should we do an early C-O-W break? 2870 */ 2871 page = vmf.page; 2872 if (flags & FAULT_FLAG_WRITE) { 2873 if (!(vma->vm_flags & VM_SHARED)) { 2874 anon = 1; 2875 if (unlikely(anon_vma_prepare(vma))) { 2876 ret = VM_FAULT_OOM; 2877 goto out; 2878 } 2879 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2880 vma, address); 2881 if (!page) { 2882 ret = VM_FAULT_OOM; 2883 goto out; 2884 } 2885 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2886 ret = VM_FAULT_OOM; 2887 page_cache_release(page); 2888 goto out; 2889 } 2890 charged = 1; 2891 /* 2892 * Don't let another task, with possibly unlocked vma, 2893 * keep the mlocked page. 2894 */ 2895 if (vma->vm_flags & VM_LOCKED) 2896 clear_page_mlock(vmf.page); 2897 copy_user_highpage(page, vmf.page, address, vma); 2898 __SetPageUptodate(page); 2899 } else { 2900 /* 2901 * If the page will be shareable, see if the backing 2902 * address space wants to know that the page is about 2903 * to become writable 2904 */ 2905 if (vma->vm_ops->page_mkwrite) { 2906 int tmp; 2907 2908 unlock_page(page); 2909 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2910 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2911 if (unlikely(tmp & 2912 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2913 ret = tmp; 2914 goto unwritable_page; 2915 } 2916 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2917 lock_page(page); 2918 if (!page->mapping) { 2919 ret = 0; /* retry the fault */ 2920 unlock_page(page); 2921 goto unwritable_page; 2922 } 2923 } else 2924 VM_BUG_ON(!PageLocked(page)); 2925 page_mkwrite = 1; 2926 } 2927 } 2928 2929 } 2930 2931 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2932 2933 /* 2934 * This silly early PAGE_DIRTY setting removes a race 2935 * due to the bad i386 page protection. But it's valid 2936 * for other architectures too. 2937 * 2938 * Note that if FAULT_FLAG_WRITE is set, we either now have 2939 * an exclusive copy of the page, or this is a shared mapping, 2940 * so we can make it writable and dirty to avoid having to 2941 * handle that later. 2942 */ 2943 /* Only go through if we didn't race with anybody else... */ 2944 if (likely(pte_same(*page_table, orig_pte))) { 2945 flush_icache_page(vma, page); 2946 entry = mk_pte(page, vma->vm_page_prot); 2947 if (flags & FAULT_FLAG_WRITE) 2948 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2949 if (anon) { 2950 inc_mm_counter_fast(mm, MM_ANONPAGES); 2951 page_add_new_anon_rmap(page, vma, address); 2952 } else { 2953 inc_mm_counter_fast(mm, MM_FILEPAGES); 2954 page_add_file_rmap(page); 2955 if (flags & FAULT_FLAG_WRITE) { 2956 dirty_page = page; 2957 get_page(dirty_page); 2958 } 2959 } 2960 set_pte_at(mm, address, page_table, entry); 2961 2962 /* no need to invalidate: a not-present page won't be cached */ 2963 update_mmu_cache(vma, address, page_table); 2964 } else { 2965 if (charged) 2966 mem_cgroup_uncharge_page(page); 2967 if (anon) 2968 page_cache_release(page); 2969 else 2970 anon = 1; /* no anon but release faulted_page */ 2971 } 2972 2973 pte_unmap_unlock(page_table, ptl); 2974 2975 out: 2976 if (dirty_page) { 2977 struct address_space *mapping = page->mapping; 2978 2979 if (set_page_dirty(dirty_page)) 2980 page_mkwrite = 1; 2981 unlock_page(dirty_page); 2982 put_page(dirty_page); 2983 if (page_mkwrite && mapping) { 2984 /* 2985 * Some device drivers do not set page.mapping but still 2986 * dirty their pages 2987 */ 2988 balance_dirty_pages_ratelimited(mapping); 2989 } 2990 2991 /* file_update_time outside page_lock */ 2992 if (vma->vm_file) 2993 file_update_time(vma->vm_file); 2994 } else { 2995 unlock_page(vmf.page); 2996 if (anon) 2997 page_cache_release(vmf.page); 2998 } 2999 3000 return ret; 3001 3002 unwritable_page: 3003 page_cache_release(page); 3004 return ret; 3005 } 3006 3007 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3008 unsigned long address, pte_t *page_table, pmd_t *pmd, 3009 unsigned int flags, pte_t orig_pte) 3010 { 3011 pgoff_t pgoff = (((address & PAGE_MASK) 3012 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3013 3014 pte_unmap(page_table); 3015 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3016 } 3017 3018 /* 3019 * Fault of a previously existing named mapping. Repopulate the pte 3020 * from the encoded file_pte if possible. This enables swappable 3021 * nonlinear vmas. 3022 * 3023 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3024 * but allow concurrent faults), and pte mapped but not yet locked. 3025 * We return with mmap_sem still held, but pte unmapped and unlocked. 3026 */ 3027 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3028 unsigned long address, pte_t *page_table, pmd_t *pmd, 3029 unsigned int flags, pte_t orig_pte) 3030 { 3031 pgoff_t pgoff; 3032 3033 flags |= FAULT_FLAG_NONLINEAR; 3034 3035 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3036 return 0; 3037 3038 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3039 /* 3040 * Page table corrupted: show pte and kill process. 3041 */ 3042 print_bad_pte(vma, address, orig_pte, NULL); 3043 return VM_FAULT_SIGBUS; 3044 } 3045 3046 pgoff = pte_to_pgoff(orig_pte); 3047 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3048 } 3049 3050 /* 3051 * These routines also need to handle stuff like marking pages dirty 3052 * and/or accessed for architectures that don't do it in hardware (most 3053 * RISC architectures). The early dirtying is also good on the i386. 3054 * 3055 * There is also a hook called "update_mmu_cache()" that architectures 3056 * with external mmu caches can use to update those (ie the Sparc or 3057 * PowerPC hashed page tables that act as extended TLBs). 3058 * 3059 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3060 * but allow concurrent faults), and pte mapped but not yet locked. 3061 * We return with mmap_sem still held, but pte unmapped and unlocked. 3062 */ 3063 static inline int handle_pte_fault(struct mm_struct *mm, 3064 struct vm_area_struct *vma, unsigned long address, 3065 pte_t *pte, pmd_t *pmd, unsigned int flags) 3066 { 3067 pte_t entry; 3068 spinlock_t *ptl; 3069 3070 entry = *pte; 3071 if (!pte_present(entry)) { 3072 if (pte_none(entry)) { 3073 if (vma->vm_ops) { 3074 if (likely(vma->vm_ops->fault)) 3075 return do_linear_fault(mm, vma, address, 3076 pte, pmd, flags, entry); 3077 } 3078 return do_anonymous_page(mm, vma, address, 3079 pte, pmd, flags); 3080 } 3081 if (pte_file(entry)) 3082 return do_nonlinear_fault(mm, vma, address, 3083 pte, pmd, flags, entry); 3084 return do_swap_page(mm, vma, address, 3085 pte, pmd, flags, entry); 3086 } 3087 3088 ptl = pte_lockptr(mm, pmd); 3089 spin_lock(ptl); 3090 if (unlikely(!pte_same(*pte, entry))) 3091 goto unlock; 3092 if (flags & FAULT_FLAG_WRITE) { 3093 if (!pte_write(entry)) 3094 return do_wp_page(mm, vma, address, 3095 pte, pmd, ptl, entry); 3096 entry = pte_mkdirty(entry); 3097 } 3098 entry = pte_mkyoung(entry); 3099 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3100 update_mmu_cache(vma, address, pte); 3101 } else { 3102 /* 3103 * This is needed only for protection faults but the arch code 3104 * is not yet telling us if this is a protection fault or not. 3105 * This still avoids useless tlb flushes for .text page faults 3106 * with threads. 3107 */ 3108 if (flags & FAULT_FLAG_WRITE) 3109 flush_tlb_page(vma, address); 3110 } 3111 unlock: 3112 pte_unmap_unlock(pte, ptl); 3113 return 0; 3114 } 3115 3116 /* 3117 * By the time we get here, we already hold the mm semaphore 3118 */ 3119 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3120 unsigned long address, unsigned int flags) 3121 { 3122 pgd_t *pgd; 3123 pud_t *pud; 3124 pmd_t *pmd; 3125 pte_t *pte; 3126 3127 __set_current_state(TASK_RUNNING); 3128 3129 count_vm_event(PGFAULT); 3130 3131 /* do counter updates before entering really critical section. */ 3132 check_sync_rss_stat(current); 3133 3134 if (unlikely(is_vm_hugetlb_page(vma))) 3135 return hugetlb_fault(mm, vma, address, flags); 3136 3137 pgd = pgd_offset(mm, address); 3138 pud = pud_alloc(mm, pgd, address); 3139 if (!pud) 3140 return VM_FAULT_OOM; 3141 pmd = pmd_alloc(mm, pud, address); 3142 if (!pmd) 3143 return VM_FAULT_OOM; 3144 pte = pte_alloc_map(mm, pmd, address); 3145 if (!pte) 3146 return VM_FAULT_OOM; 3147 3148 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3149 } 3150 3151 #ifndef __PAGETABLE_PUD_FOLDED 3152 /* 3153 * Allocate page upper directory. 3154 * We've already handled the fast-path in-line. 3155 */ 3156 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3157 { 3158 pud_t *new = pud_alloc_one(mm, address); 3159 if (!new) 3160 return -ENOMEM; 3161 3162 smp_wmb(); /* See comment in __pte_alloc */ 3163 3164 spin_lock(&mm->page_table_lock); 3165 if (pgd_present(*pgd)) /* Another has populated it */ 3166 pud_free(mm, new); 3167 else 3168 pgd_populate(mm, pgd, new); 3169 spin_unlock(&mm->page_table_lock); 3170 return 0; 3171 } 3172 #endif /* __PAGETABLE_PUD_FOLDED */ 3173 3174 #ifndef __PAGETABLE_PMD_FOLDED 3175 /* 3176 * Allocate page middle directory. 3177 * We've already handled the fast-path in-line. 3178 */ 3179 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3180 { 3181 pmd_t *new = pmd_alloc_one(mm, address); 3182 if (!new) 3183 return -ENOMEM; 3184 3185 smp_wmb(); /* See comment in __pte_alloc */ 3186 3187 spin_lock(&mm->page_table_lock); 3188 #ifndef __ARCH_HAS_4LEVEL_HACK 3189 if (pud_present(*pud)) /* Another has populated it */ 3190 pmd_free(mm, new); 3191 else 3192 pud_populate(mm, pud, new); 3193 #else 3194 if (pgd_present(*pud)) /* Another has populated it */ 3195 pmd_free(mm, new); 3196 else 3197 pgd_populate(mm, pud, new); 3198 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3199 spin_unlock(&mm->page_table_lock); 3200 return 0; 3201 } 3202 #endif /* __PAGETABLE_PMD_FOLDED */ 3203 3204 int make_pages_present(unsigned long addr, unsigned long end) 3205 { 3206 int ret, len, write; 3207 struct vm_area_struct * vma; 3208 3209 vma = find_vma(current->mm, addr); 3210 if (!vma) 3211 return -ENOMEM; 3212 write = (vma->vm_flags & VM_WRITE) != 0; 3213 BUG_ON(addr >= end); 3214 BUG_ON(end > vma->vm_end); 3215 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3216 ret = get_user_pages(current, current->mm, addr, 3217 len, write, 0, NULL, NULL); 3218 if (ret < 0) 3219 return ret; 3220 return ret == len ? 0 : -EFAULT; 3221 } 3222 3223 #if !defined(__HAVE_ARCH_GATE_AREA) 3224 3225 #if defined(AT_SYSINFO_EHDR) 3226 static struct vm_area_struct gate_vma; 3227 3228 static int __init gate_vma_init(void) 3229 { 3230 gate_vma.vm_mm = NULL; 3231 gate_vma.vm_start = FIXADDR_USER_START; 3232 gate_vma.vm_end = FIXADDR_USER_END; 3233 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3234 gate_vma.vm_page_prot = __P101; 3235 /* 3236 * Make sure the vDSO gets into every core dump. 3237 * Dumping its contents makes post-mortem fully interpretable later 3238 * without matching up the same kernel and hardware config to see 3239 * what PC values meant. 3240 */ 3241 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3242 return 0; 3243 } 3244 __initcall(gate_vma_init); 3245 #endif 3246 3247 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3248 { 3249 #ifdef AT_SYSINFO_EHDR 3250 return &gate_vma; 3251 #else 3252 return NULL; 3253 #endif 3254 } 3255 3256 int in_gate_area_no_task(unsigned long addr) 3257 { 3258 #ifdef AT_SYSINFO_EHDR 3259 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3260 return 1; 3261 #endif 3262 return 0; 3263 } 3264 3265 #endif /* __HAVE_ARCH_GATE_AREA */ 3266 3267 static int follow_pte(struct mm_struct *mm, unsigned long address, 3268 pte_t **ptepp, spinlock_t **ptlp) 3269 { 3270 pgd_t *pgd; 3271 pud_t *pud; 3272 pmd_t *pmd; 3273 pte_t *ptep; 3274 3275 pgd = pgd_offset(mm, address); 3276 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3277 goto out; 3278 3279 pud = pud_offset(pgd, address); 3280 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3281 goto out; 3282 3283 pmd = pmd_offset(pud, address); 3284 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3285 goto out; 3286 3287 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3288 if (pmd_huge(*pmd)) 3289 goto out; 3290 3291 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3292 if (!ptep) 3293 goto out; 3294 if (!pte_present(*ptep)) 3295 goto unlock; 3296 *ptepp = ptep; 3297 return 0; 3298 unlock: 3299 pte_unmap_unlock(ptep, *ptlp); 3300 out: 3301 return -EINVAL; 3302 } 3303 3304 /** 3305 * follow_pfn - look up PFN at a user virtual address 3306 * @vma: memory mapping 3307 * @address: user virtual address 3308 * @pfn: location to store found PFN 3309 * 3310 * Only IO mappings and raw PFN mappings are allowed. 3311 * 3312 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3313 */ 3314 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3315 unsigned long *pfn) 3316 { 3317 int ret = -EINVAL; 3318 spinlock_t *ptl; 3319 pte_t *ptep; 3320 3321 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3322 return ret; 3323 3324 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3325 if (ret) 3326 return ret; 3327 *pfn = pte_pfn(*ptep); 3328 pte_unmap_unlock(ptep, ptl); 3329 return 0; 3330 } 3331 EXPORT_SYMBOL(follow_pfn); 3332 3333 #ifdef CONFIG_HAVE_IOREMAP_PROT 3334 int follow_phys(struct vm_area_struct *vma, 3335 unsigned long address, unsigned int flags, 3336 unsigned long *prot, resource_size_t *phys) 3337 { 3338 int ret = -EINVAL; 3339 pte_t *ptep, pte; 3340 spinlock_t *ptl; 3341 3342 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3343 goto out; 3344 3345 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3346 goto out; 3347 pte = *ptep; 3348 3349 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3350 goto unlock; 3351 3352 *prot = pgprot_val(pte_pgprot(pte)); 3353 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3354 3355 ret = 0; 3356 unlock: 3357 pte_unmap_unlock(ptep, ptl); 3358 out: 3359 return ret; 3360 } 3361 3362 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3363 void *buf, int len, int write) 3364 { 3365 resource_size_t phys_addr; 3366 unsigned long prot = 0; 3367 void __iomem *maddr; 3368 int offset = addr & (PAGE_SIZE-1); 3369 3370 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3371 return -EINVAL; 3372 3373 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3374 if (write) 3375 memcpy_toio(maddr + offset, buf, len); 3376 else 3377 memcpy_fromio(buf, maddr + offset, len); 3378 iounmap(maddr); 3379 3380 return len; 3381 } 3382 #endif 3383 3384 /* 3385 * Access another process' address space. 3386 * Source/target buffer must be kernel space, 3387 * Do not walk the page table directly, use get_user_pages 3388 */ 3389 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3390 { 3391 struct mm_struct *mm; 3392 struct vm_area_struct *vma; 3393 void *old_buf = buf; 3394 3395 mm = get_task_mm(tsk); 3396 if (!mm) 3397 return 0; 3398 3399 down_read(&mm->mmap_sem); 3400 /* ignore errors, just check how much was successfully transferred */ 3401 while (len) { 3402 int bytes, ret, offset; 3403 void *maddr; 3404 struct page *page = NULL; 3405 3406 ret = get_user_pages(tsk, mm, addr, 1, 3407 write, 1, &page, &vma); 3408 if (ret <= 0) { 3409 /* 3410 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3411 * we can access using slightly different code. 3412 */ 3413 #ifdef CONFIG_HAVE_IOREMAP_PROT 3414 vma = find_vma(mm, addr); 3415 if (!vma) 3416 break; 3417 if (vma->vm_ops && vma->vm_ops->access) 3418 ret = vma->vm_ops->access(vma, addr, buf, 3419 len, write); 3420 if (ret <= 0) 3421 #endif 3422 break; 3423 bytes = ret; 3424 } else { 3425 bytes = len; 3426 offset = addr & (PAGE_SIZE-1); 3427 if (bytes > PAGE_SIZE-offset) 3428 bytes = PAGE_SIZE-offset; 3429 3430 maddr = kmap(page); 3431 if (write) { 3432 copy_to_user_page(vma, page, addr, 3433 maddr + offset, buf, bytes); 3434 set_page_dirty_lock(page); 3435 } else { 3436 copy_from_user_page(vma, page, addr, 3437 buf, maddr + offset, bytes); 3438 } 3439 kunmap(page); 3440 page_cache_release(page); 3441 } 3442 len -= bytes; 3443 buf += bytes; 3444 addr += bytes; 3445 } 3446 up_read(&mm->mmap_sem); 3447 mmput(mm); 3448 3449 return buf - old_buf; 3450 } 3451 3452 /* 3453 * Print the name of a VMA. 3454 */ 3455 void print_vma_addr(char *prefix, unsigned long ip) 3456 { 3457 struct mm_struct *mm = current->mm; 3458 struct vm_area_struct *vma; 3459 3460 /* 3461 * Do not print if we are in atomic 3462 * contexts (in exception stacks, etc.): 3463 */ 3464 if (preempt_count()) 3465 return; 3466 3467 down_read(&mm->mmap_sem); 3468 vma = find_vma(mm, ip); 3469 if (vma && vma->vm_file) { 3470 struct file *f = vma->vm_file; 3471 char *buf = (char *)__get_free_page(GFP_KERNEL); 3472 if (buf) { 3473 char *p, *s; 3474 3475 p = d_path(&f->f_path, buf, PAGE_SIZE); 3476 if (IS_ERR(p)) 3477 p = "?"; 3478 s = strrchr(p, '/'); 3479 if (s) 3480 p = s+1; 3481 printk("%s%s[%lx+%lx]", prefix, p, 3482 vma->vm_start, 3483 vma->vm_end - vma->vm_start); 3484 free_page((unsigned long)buf); 3485 } 3486 } 3487 up_read(¤t->mm->mmap_sem); 3488 } 3489 3490 #ifdef CONFIG_PROVE_LOCKING 3491 void might_fault(void) 3492 { 3493 /* 3494 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3495 * holding the mmap_sem, this is safe because kernel memory doesn't 3496 * get paged out, therefore we'll never actually fault, and the 3497 * below annotations will generate false positives. 3498 */ 3499 if (segment_eq(get_fs(), KERNEL_DS)) 3500 return; 3501 3502 might_sleep(); 3503 /* 3504 * it would be nicer only to annotate paths which are not under 3505 * pagefault_disable, however that requires a larger audit and 3506 * providing helpers like get_user_atomic. 3507 */ 3508 if (!in_atomic() && current->mm) 3509 might_lock_read(¤t->mm->mmap_sem); 3510 } 3511 EXPORT_SYMBOL(might_fault); 3512 #endif 3513