1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. 127 */ 128 void *high_memory; 129 EXPORT_SYMBOL(high_memory); 130 131 /* 132 * Randomize the address space (stacks, mmaps, brk, etc.). 133 * 134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 135 * as ancient (libc5 based) binaries can segfault. ) 136 */ 137 int randomize_va_space __read_mostly = 138 #ifdef CONFIG_COMPAT_BRK 139 1; 140 #else 141 2; 142 #endif 143 144 #ifndef arch_wants_old_prefaulted_pte 145 static inline bool arch_wants_old_prefaulted_pte(void) 146 { 147 /* 148 * Transitioning a PTE from 'old' to 'young' can be expensive on 149 * some architectures, even if it's performed in hardware. By 150 * default, "false" means prefaulted entries will be 'young'. 151 */ 152 return false; 153 } 154 #endif 155 156 static int __init disable_randmaps(char *s) 157 { 158 randomize_va_space = 0; 159 return 1; 160 } 161 __setup("norandmaps", disable_randmaps); 162 163 unsigned long zero_pfn __read_mostly; 164 EXPORT_SYMBOL(zero_pfn); 165 166 unsigned long highest_memmap_pfn __read_mostly; 167 168 /* 169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 170 */ 171 static int __init init_zero_pfn(void) 172 { 173 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 174 return 0; 175 } 176 early_initcall(init_zero_pfn); 177 178 void mm_trace_rss_stat(struct mm_struct *mm, int member) 179 { 180 trace_rss_stat(mm, member); 181 } 182 183 /* 184 * Note: this doesn't free the actual pages themselves. That 185 * has been handled earlier when unmapping all the memory regions. 186 */ 187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 188 unsigned long addr) 189 { 190 pgtable_t token = pmd_pgtable(*pmd); 191 pmd_clear(pmd); 192 pte_free_tlb(tlb, token, addr); 193 mm_dec_nr_ptes(tlb->mm); 194 } 195 196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 197 unsigned long addr, unsigned long end, 198 unsigned long floor, unsigned long ceiling) 199 { 200 pmd_t *pmd; 201 unsigned long next; 202 unsigned long start; 203 204 start = addr; 205 pmd = pmd_offset(pud, addr); 206 do { 207 next = pmd_addr_end(addr, end); 208 if (pmd_none_or_clear_bad(pmd)) 209 continue; 210 free_pte_range(tlb, pmd, addr); 211 } while (pmd++, addr = next, addr != end); 212 213 start &= PUD_MASK; 214 if (start < floor) 215 return; 216 if (ceiling) { 217 ceiling &= PUD_MASK; 218 if (!ceiling) 219 return; 220 } 221 if (end - 1 > ceiling - 1) 222 return; 223 224 pmd = pmd_offset(pud, start); 225 pud_clear(pud); 226 pmd_free_tlb(tlb, pmd, start); 227 mm_dec_nr_pmds(tlb->mm); 228 } 229 230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pud_t *pud; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pud = pud_offset(p4d, addr); 240 do { 241 next = pud_addr_end(addr, end); 242 if (pud_none_or_clear_bad(pud)) 243 continue; 244 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 245 } while (pud++, addr = next, addr != end); 246 247 start &= P4D_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= P4D_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pud = pud_offset(p4d, start); 259 p4d_clear(p4d); 260 pud_free_tlb(tlb, pud, start); 261 mm_dec_nr_puds(tlb->mm); 262 } 263 264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 p4d_t *p4d; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 p4d = p4d_offset(pgd, addr); 274 do { 275 next = p4d_addr_end(addr, end); 276 if (p4d_none_or_clear_bad(p4d)) 277 continue; 278 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 279 } while (p4d++, addr = next, addr != end); 280 281 start &= PGDIR_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= PGDIR_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 p4d = p4d_offset(pgd, start); 293 pgd_clear(pgd); 294 p4d_free_tlb(tlb, p4d, start); 295 } 296 297 /* 298 * This function frees user-level page tables of a process. 299 */ 300 void free_pgd_range(struct mmu_gather *tlb, 301 unsigned long addr, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 /* 308 * The next few lines have given us lots of grief... 309 * 310 * Why are we testing PMD* at this top level? Because often 311 * there will be no work to do at all, and we'd prefer not to 312 * go all the way down to the bottom just to discover that. 313 * 314 * Why all these "- 1"s? Because 0 represents both the bottom 315 * of the address space and the top of it (using -1 for the 316 * top wouldn't help much: the masks would do the wrong thing). 317 * The rule is that addr 0 and floor 0 refer to the bottom of 318 * the address space, but end 0 and ceiling 0 refer to the top 319 * Comparisons need to use "end - 1" and "ceiling - 1" (though 320 * that end 0 case should be mythical). 321 * 322 * Wherever addr is brought up or ceiling brought down, we must 323 * be careful to reject "the opposite 0" before it confuses the 324 * subsequent tests. But what about where end is brought down 325 * by PMD_SIZE below? no, end can't go down to 0 there. 326 * 327 * Whereas we round start (addr) and ceiling down, by different 328 * masks at different levels, in order to test whether a table 329 * now has no other vmas using it, so can be freed, we don't 330 * bother to round floor or end up - the tests don't need that. 331 */ 332 333 addr &= PMD_MASK; 334 if (addr < floor) { 335 addr += PMD_SIZE; 336 if (!addr) 337 return; 338 } 339 if (ceiling) { 340 ceiling &= PMD_MASK; 341 if (!ceiling) 342 return; 343 } 344 if (end - 1 > ceiling - 1) 345 end -= PMD_SIZE; 346 if (addr > end - 1) 347 return; 348 /* 349 * We add page table cache pages with PAGE_SIZE, 350 * (see pte_free_tlb()), flush the tlb if we need 351 */ 352 tlb_change_page_size(tlb, PAGE_SIZE); 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 363 struct vm_area_struct *vma, unsigned long floor, 364 unsigned long ceiling, bool mm_wr_locked) 365 { 366 do { 367 unsigned long addr = vma->vm_start; 368 struct vm_area_struct *next; 369 370 /* 371 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 372 * be 0. This will underflow and is okay. 373 */ 374 next = mas_find(mas, ceiling - 1); 375 if (unlikely(xa_is_zero(next))) 376 next = NULL; 377 378 /* 379 * Hide vma from rmap and truncate_pagecache before freeing 380 * pgtables 381 */ 382 if (mm_wr_locked) 383 vma_start_write(vma); 384 unlink_anon_vmas(vma); 385 unlink_file_vma(vma); 386 387 if (is_vm_hugetlb_page(vma)) { 388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 389 floor, next ? next->vm_start : ceiling); 390 } else { 391 /* 392 * Optimization: gather nearby vmas into one call down 393 */ 394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 395 && !is_vm_hugetlb_page(next)) { 396 vma = next; 397 next = mas_find(mas, ceiling - 1); 398 if (unlikely(xa_is_zero(next))) 399 next = NULL; 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 } 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 for (i = 0; i < NR_MM_COUNTERS; i++) 478 if (rss[i]) 479 add_mm_counter(mm, i, rss[i]); 480 } 481 482 /* 483 * This function is called to print an error when a bad pte 484 * is found. For example, we might have a PFN-mapped pte in 485 * a region that doesn't allow it. 486 * 487 * The calling function must still handle the error. 488 */ 489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 490 pte_t pte, struct page *page) 491 { 492 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 493 p4d_t *p4d = p4d_offset(pgd, addr); 494 pud_t *pud = pud_offset(p4d, addr); 495 pmd_t *pmd = pmd_offset(pud, addr); 496 struct address_space *mapping; 497 pgoff_t index; 498 static unsigned long resume; 499 static unsigned long nr_shown; 500 static unsigned long nr_unshown; 501 502 /* 503 * Allow a burst of 60 reports, then keep quiet for that minute; 504 * or allow a steady drip of one report per second. 505 */ 506 if (nr_shown == 60) { 507 if (time_before(jiffies, resume)) { 508 nr_unshown++; 509 return; 510 } 511 if (nr_unshown) { 512 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 513 nr_unshown); 514 nr_unshown = 0; 515 } 516 nr_shown = 0; 517 } 518 if (nr_shown++ == 0) 519 resume = jiffies + 60 * HZ; 520 521 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 522 index = linear_page_index(vma, addr); 523 524 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 525 current->comm, 526 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 527 if (page) 528 dump_page(page, "bad pte"); 529 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 530 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 531 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 532 vma->vm_file, 533 vma->vm_ops ? vma->vm_ops->fault : NULL, 534 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 535 mapping ? mapping->a_ops->read_folio : NULL); 536 dump_stack(); 537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 538 } 539 540 /* 541 * vm_normal_page -- This function gets the "struct page" associated with a pte. 542 * 543 * "Special" mappings do not wish to be associated with a "struct page" (either 544 * it doesn't exist, or it exists but they don't want to touch it). In this 545 * case, NULL is returned here. "Normal" mappings do have a struct page. 546 * 547 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 548 * pte bit, in which case this function is trivial. Secondly, an architecture 549 * may not have a spare pte bit, which requires a more complicated scheme, 550 * described below. 551 * 552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 553 * special mapping (even if there are underlying and valid "struct pages"). 554 * COWed pages of a VM_PFNMAP are always normal. 555 * 556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 559 * mapping will always honor the rule 560 * 561 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 562 * 563 * And for normal mappings this is false. 564 * 565 * This restricts such mappings to be a linear translation from virtual address 566 * to pfn. To get around this restriction, we allow arbitrary mappings so long 567 * as the vma is not a COW mapping; in that case, we know that all ptes are 568 * special (because none can have been COWed). 569 * 570 * 571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 572 * 573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 574 * page" backing, however the difference is that _all_ pages with a struct 575 * page (that is, those where pfn_valid is true) are refcounted and considered 576 * normal pages by the VM. The disadvantage is that pages are refcounted 577 * (which can be slower and simply not an option for some PFNMAP users). The 578 * advantage is that we don't have to follow the strict linearity rule of 579 * PFNMAP mappings in order to support COWable mappings. 580 * 581 */ 582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 583 pte_t pte) 584 { 585 unsigned long pfn = pte_pfn(pte); 586 587 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 588 if (likely(!pte_special(pte))) 589 goto check_pfn; 590 if (vma->vm_ops && vma->vm_ops->find_special_page) 591 return vma->vm_ops->find_special_page(vma, addr); 592 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 593 return NULL; 594 if (is_zero_pfn(pfn)) 595 return NULL; 596 if (pte_devmap(pte)) 597 /* 598 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 599 * and will have refcounts incremented on their struct pages 600 * when they are inserted into PTEs, thus they are safe to 601 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 602 * do not have refcounts. Example of legacy ZONE_DEVICE is 603 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 604 */ 605 return NULL; 606 607 print_bad_pte(vma, addr, pte, NULL); 608 return NULL; 609 } 610 611 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 612 613 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 614 if (vma->vm_flags & VM_MIXEDMAP) { 615 if (!pfn_valid(pfn)) 616 return NULL; 617 goto out; 618 } else { 619 unsigned long off; 620 off = (addr - vma->vm_start) >> PAGE_SHIFT; 621 if (pfn == vma->vm_pgoff + off) 622 return NULL; 623 if (!is_cow_mapping(vma->vm_flags)) 624 return NULL; 625 } 626 } 627 628 if (is_zero_pfn(pfn)) 629 return NULL; 630 631 check_pfn: 632 if (unlikely(pfn > highest_memmap_pfn)) { 633 print_bad_pte(vma, addr, pte, NULL); 634 return NULL; 635 } 636 637 /* 638 * NOTE! We still have PageReserved() pages in the page tables. 639 * eg. VDSO mappings can cause them to exist. 640 */ 641 out: 642 return pfn_to_page(pfn); 643 } 644 645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 646 pte_t pte) 647 { 648 struct page *page = vm_normal_page(vma, addr, pte); 649 650 if (page) 651 return page_folio(page); 652 return NULL; 653 } 654 655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 657 pmd_t pmd) 658 { 659 unsigned long pfn = pmd_pfn(pmd); 660 661 /* 662 * There is no pmd_special() but there may be special pmds, e.g. 663 * in a direct-access (dax) mapping, so let's just replicate the 664 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 665 */ 666 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 667 if (vma->vm_flags & VM_MIXEDMAP) { 668 if (!pfn_valid(pfn)) 669 return NULL; 670 goto out; 671 } else { 672 unsigned long off; 673 off = (addr - vma->vm_start) >> PAGE_SHIFT; 674 if (pfn == vma->vm_pgoff + off) 675 return NULL; 676 if (!is_cow_mapping(vma->vm_flags)) 677 return NULL; 678 } 679 } 680 681 if (pmd_devmap(pmd)) 682 return NULL; 683 if (is_huge_zero_pmd(pmd)) 684 return NULL; 685 if (unlikely(pfn > highest_memmap_pfn)) 686 return NULL; 687 688 /* 689 * NOTE! We still have PageReserved() pages in the page tables. 690 * eg. VDSO mappings can cause them to exist. 691 */ 692 out: 693 return pfn_to_page(pfn); 694 } 695 696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 697 unsigned long addr, pmd_t pmd) 698 { 699 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 700 701 if (page) 702 return page_folio(page); 703 return NULL; 704 } 705 #endif 706 707 static void restore_exclusive_pte(struct vm_area_struct *vma, 708 struct page *page, unsigned long address, 709 pte_t *ptep) 710 { 711 struct folio *folio = page_folio(page); 712 pte_t orig_pte; 713 pte_t pte; 714 swp_entry_t entry; 715 716 orig_pte = ptep_get(ptep); 717 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 718 if (pte_swp_soft_dirty(orig_pte)) 719 pte = pte_mksoft_dirty(pte); 720 721 entry = pte_to_swp_entry(orig_pte); 722 if (pte_swp_uffd_wp(orig_pte)) 723 pte = pte_mkuffd_wp(pte); 724 else if (is_writable_device_exclusive_entry(entry)) 725 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 726 727 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 728 PageAnonExclusive(page)), folio); 729 730 /* 731 * No need to take a page reference as one was already 732 * created when the swap entry was made. 733 */ 734 if (folio_test_anon(folio)) 735 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 736 else 737 /* 738 * Currently device exclusive access only supports anonymous 739 * memory so the entry shouldn't point to a filebacked page. 740 */ 741 WARN_ON_ONCE(1); 742 743 set_pte_at(vma->vm_mm, address, ptep, pte); 744 745 /* 746 * No need to invalidate - it was non-present before. However 747 * secondary CPUs may have mappings that need invalidating. 748 */ 749 update_mmu_cache(vma, address, ptep); 750 } 751 752 /* 753 * Tries to restore an exclusive pte if the page lock can be acquired without 754 * sleeping. 755 */ 756 static int 757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 758 unsigned long addr) 759 { 760 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 761 struct page *page = pfn_swap_entry_to_page(entry); 762 763 if (trylock_page(page)) { 764 restore_exclusive_pte(vma, page, addr, src_pte); 765 unlock_page(page); 766 return 0; 767 } 768 769 return -EBUSY; 770 } 771 772 /* 773 * copy one vm_area from one task to the other. Assumes the page tables 774 * already present in the new task to be cleared in the whole range 775 * covered by this vma. 776 */ 777 778 static unsigned long 779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 780 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 781 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 782 { 783 unsigned long vm_flags = dst_vma->vm_flags; 784 pte_t orig_pte = ptep_get(src_pte); 785 pte_t pte = orig_pte; 786 struct folio *folio; 787 struct page *page; 788 swp_entry_t entry = pte_to_swp_entry(orig_pte); 789 790 if (likely(!non_swap_entry(entry))) { 791 if (swap_duplicate(entry) < 0) 792 return -EIO; 793 794 /* make sure dst_mm is on swapoff's mmlist. */ 795 if (unlikely(list_empty(&dst_mm->mmlist))) { 796 spin_lock(&mmlist_lock); 797 if (list_empty(&dst_mm->mmlist)) 798 list_add(&dst_mm->mmlist, 799 &src_mm->mmlist); 800 spin_unlock(&mmlist_lock); 801 } 802 /* Mark the swap entry as shared. */ 803 if (pte_swp_exclusive(orig_pte)) { 804 pte = pte_swp_clear_exclusive(orig_pte); 805 set_pte_at(src_mm, addr, src_pte, pte); 806 } 807 rss[MM_SWAPENTS]++; 808 } else if (is_migration_entry(entry)) { 809 folio = pfn_swap_entry_folio(entry); 810 811 rss[mm_counter(folio)]++; 812 813 if (!is_readable_migration_entry(entry) && 814 is_cow_mapping(vm_flags)) { 815 /* 816 * COW mappings require pages in both parent and child 817 * to be set to read. A previously exclusive entry is 818 * now shared. 819 */ 820 entry = make_readable_migration_entry( 821 swp_offset(entry)); 822 pte = swp_entry_to_pte(entry); 823 if (pte_swp_soft_dirty(orig_pte)) 824 pte = pte_swp_mksoft_dirty(pte); 825 if (pte_swp_uffd_wp(orig_pte)) 826 pte = pte_swp_mkuffd_wp(pte); 827 set_pte_at(src_mm, addr, src_pte, pte); 828 } 829 } else if (is_device_private_entry(entry)) { 830 page = pfn_swap_entry_to_page(entry); 831 folio = page_folio(page); 832 833 /* 834 * Update rss count even for unaddressable pages, as 835 * they should treated just like normal pages in this 836 * respect. 837 * 838 * We will likely want to have some new rss counters 839 * for unaddressable pages, at some point. But for now 840 * keep things as they are. 841 */ 842 folio_get(folio); 843 rss[mm_counter(folio)]++; 844 /* Cannot fail as these pages cannot get pinned. */ 845 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 846 847 /* 848 * We do not preserve soft-dirty information, because so 849 * far, checkpoint/restore is the only feature that 850 * requires that. And checkpoint/restore does not work 851 * when a device driver is involved (you cannot easily 852 * save and restore device driver state). 853 */ 854 if (is_writable_device_private_entry(entry) && 855 is_cow_mapping(vm_flags)) { 856 entry = make_readable_device_private_entry( 857 swp_offset(entry)); 858 pte = swp_entry_to_pte(entry); 859 if (pte_swp_uffd_wp(orig_pte)) 860 pte = pte_swp_mkuffd_wp(pte); 861 set_pte_at(src_mm, addr, src_pte, pte); 862 } 863 } else if (is_device_exclusive_entry(entry)) { 864 /* 865 * Make device exclusive entries present by restoring the 866 * original entry then copying as for a present pte. Device 867 * exclusive entries currently only support private writable 868 * (ie. COW) mappings. 869 */ 870 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 871 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 872 return -EBUSY; 873 return -ENOENT; 874 } else if (is_pte_marker_entry(entry)) { 875 pte_marker marker = copy_pte_marker(entry, dst_vma); 876 877 if (marker) 878 set_pte_at(dst_mm, addr, dst_pte, 879 make_pte_marker(marker)); 880 return 0; 881 } 882 if (!userfaultfd_wp(dst_vma)) 883 pte = pte_swp_clear_uffd_wp(pte); 884 set_pte_at(dst_mm, addr, dst_pte, pte); 885 return 0; 886 } 887 888 /* 889 * Copy a present and normal page. 890 * 891 * NOTE! The usual case is that this isn't required; 892 * instead, the caller can just increase the page refcount 893 * and re-use the pte the traditional way. 894 * 895 * And if we need a pre-allocated page but don't yet have 896 * one, return a negative error to let the preallocation 897 * code know so that it can do so outside the page table 898 * lock. 899 */ 900 static inline int 901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 903 struct folio **prealloc, struct page *page) 904 { 905 struct folio *new_folio; 906 pte_t pte; 907 908 new_folio = *prealloc; 909 if (!new_folio) 910 return -EAGAIN; 911 912 /* 913 * We have a prealloc page, all good! Take it 914 * over and copy the page & arm it. 915 */ 916 *prealloc = NULL; 917 copy_user_highpage(&new_folio->page, page, addr, src_vma); 918 __folio_mark_uptodate(new_folio); 919 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 920 folio_add_lru_vma(new_folio, dst_vma); 921 rss[MM_ANONPAGES]++; 922 923 /* All done, just insert the new page copy in the child */ 924 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 925 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 926 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 927 /* Uffd-wp needs to be delivered to dest pte as well */ 928 pte = pte_mkuffd_wp(pte); 929 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 930 return 0; 931 } 932 933 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 934 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 935 pte_t pte, unsigned long addr, int nr) 936 { 937 struct mm_struct *src_mm = src_vma->vm_mm; 938 939 /* If it's a COW mapping, write protect it both processes. */ 940 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 941 wrprotect_ptes(src_mm, addr, src_pte, nr); 942 pte = pte_wrprotect(pte); 943 } 944 945 /* If it's a shared mapping, mark it clean in the child. */ 946 if (src_vma->vm_flags & VM_SHARED) 947 pte = pte_mkclean(pte); 948 pte = pte_mkold(pte); 949 950 if (!userfaultfd_wp(dst_vma)) 951 pte = pte_clear_uffd_wp(pte); 952 953 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 954 } 955 956 /* 957 * Copy one present PTE, trying to batch-process subsequent PTEs that map 958 * consecutive pages of the same folio by copying them as well. 959 * 960 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 961 * Otherwise, returns the number of copied PTEs (at least 1). 962 */ 963 static inline int 964 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 965 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 966 int max_nr, int *rss, struct folio **prealloc) 967 { 968 struct page *page; 969 struct folio *folio; 970 bool any_writable; 971 fpb_t flags = 0; 972 int err, nr; 973 974 page = vm_normal_page(src_vma, addr, pte); 975 if (unlikely(!page)) 976 goto copy_pte; 977 978 folio = page_folio(page); 979 980 /* 981 * If we likely have to copy, just don't bother with batching. Make 982 * sure that the common "small folio" case is as fast as possible 983 * by keeping the batching logic separate. 984 */ 985 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 986 if (src_vma->vm_flags & VM_SHARED) 987 flags |= FPB_IGNORE_DIRTY; 988 if (!vma_soft_dirty_enabled(src_vma)) 989 flags |= FPB_IGNORE_SOFT_DIRTY; 990 991 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 992 &any_writable); 993 folio_ref_add(folio, nr); 994 if (folio_test_anon(folio)) { 995 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 996 nr, src_vma))) { 997 folio_ref_sub(folio, nr); 998 return -EAGAIN; 999 } 1000 rss[MM_ANONPAGES] += nr; 1001 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1002 } else { 1003 folio_dup_file_rmap_ptes(folio, page, nr); 1004 rss[mm_counter_file(folio)] += nr; 1005 } 1006 if (any_writable) 1007 pte = pte_mkwrite(pte, src_vma); 1008 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1009 addr, nr); 1010 return nr; 1011 } 1012 1013 folio_get(folio); 1014 if (folio_test_anon(folio)) { 1015 /* 1016 * If this page may have been pinned by the parent process, 1017 * copy the page immediately for the child so that we'll always 1018 * guarantee the pinned page won't be randomly replaced in the 1019 * future. 1020 */ 1021 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1022 /* Page may be pinned, we have to copy. */ 1023 folio_put(folio); 1024 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1025 addr, rss, prealloc, page); 1026 return err ? err : 1; 1027 } 1028 rss[MM_ANONPAGES]++; 1029 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1030 } else { 1031 folio_dup_file_rmap_pte(folio, page); 1032 rss[mm_counter_file(folio)]++; 1033 } 1034 1035 copy_pte: 1036 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1037 return 1; 1038 } 1039 1040 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1041 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1042 { 1043 struct folio *new_folio; 1044 1045 if (need_zero) 1046 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1047 else 1048 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 1049 addr, false); 1050 1051 if (!new_folio) 1052 return NULL; 1053 1054 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1055 folio_put(new_folio); 1056 return NULL; 1057 } 1058 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1059 1060 return new_folio; 1061 } 1062 1063 static int 1064 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1065 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1066 unsigned long end) 1067 { 1068 struct mm_struct *dst_mm = dst_vma->vm_mm; 1069 struct mm_struct *src_mm = src_vma->vm_mm; 1070 pte_t *orig_src_pte, *orig_dst_pte; 1071 pte_t *src_pte, *dst_pte; 1072 pte_t ptent; 1073 spinlock_t *src_ptl, *dst_ptl; 1074 int progress, max_nr, ret = 0; 1075 int rss[NR_MM_COUNTERS]; 1076 swp_entry_t entry = (swp_entry_t){0}; 1077 struct folio *prealloc = NULL; 1078 int nr; 1079 1080 again: 1081 progress = 0; 1082 init_rss_vec(rss); 1083 1084 /* 1085 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1086 * error handling here, assume that exclusive mmap_lock on dst and src 1087 * protects anon from unexpected THP transitions; with shmem and file 1088 * protected by mmap_lock-less collapse skipping areas with anon_vma 1089 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1090 * can remove such assumptions later, but this is good enough for now. 1091 */ 1092 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1093 if (!dst_pte) { 1094 ret = -ENOMEM; 1095 goto out; 1096 } 1097 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1098 if (!src_pte) { 1099 pte_unmap_unlock(dst_pte, dst_ptl); 1100 /* ret == 0 */ 1101 goto out; 1102 } 1103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1104 orig_src_pte = src_pte; 1105 orig_dst_pte = dst_pte; 1106 arch_enter_lazy_mmu_mode(); 1107 1108 do { 1109 nr = 1; 1110 1111 /* 1112 * We are holding two locks at this point - either of them 1113 * could generate latencies in another task on another CPU. 1114 */ 1115 if (progress >= 32) { 1116 progress = 0; 1117 if (need_resched() || 1118 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1119 break; 1120 } 1121 ptent = ptep_get(src_pte); 1122 if (pte_none(ptent)) { 1123 progress++; 1124 continue; 1125 } 1126 if (unlikely(!pte_present(ptent))) { 1127 ret = copy_nonpresent_pte(dst_mm, src_mm, 1128 dst_pte, src_pte, 1129 dst_vma, src_vma, 1130 addr, rss); 1131 if (ret == -EIO) { 1132 entry = pte_to_swp_entry(ptep_get(src_pte)); 1133 break; 1134 } else if (ret == -EBUSY) { 1135 break; 1136 } else if (!ret) { 1137 progress += 8; 1138 continue; 1139 } 1140 ptent = ptep_get(src_pte); 1141 VM_WARN_ON_ONCE(!pte_present(ptent)); 1142 1143 /* 1144 * Device exclusive entry restored, continue by copying 1145 * the now present pte. 1146 */ 1147 WARN_ON_ONCE(ret != -ENOENT); 1148 } 1149 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1150 max_nr = (end - addr) / PAGE_SIZE; 1151 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1152 ptent, addr, max_nr, rss, &prealloc); 1153 /* 1154 * If we need a pre-allocated page for this pte, drop the 1155 * locks, allocate, and try again. 1156 */ 1157 if (unlikely(ret == -EAGAIN)) 1158 break; 1159 if (unlikely(prealloc)) { 1160 /* 1161 * pre-alloc page cannot be reused by next time so as 1162 * to strictly follow mempolicy (e.g., alloc_page_vma() 1163 * will allocate page according to address). This 1164 * could only happen if one pinned pte changed. 1165 */ 1166 folio_put(prealloc); 1167 prealloc = NULL; 1168 } 1169 nr = ret; 1170 progress += 8 * nr; 1171 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1172 addr != end); 1173 1174 arch_leave_lazy_mmu_mode(); 1175 pte_unmap_unlock(orig_src_pte, src_ptl); 1176 add_mm_rss_vec(dst_mm, rss); 1177 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1178 cond_resched(); 1179 1180 if (ret == -EIO) { 1181 VM_WARN_ON_ONCE(!entry.val); 1182 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1183 ret = -ENOMEM; 1184 goto out; 1185 } 1186 entry.val = 0; 1187 } else if (ret == -EBUSY) { 1188 goto out; 1189 } else if (ret == -EAGAIN) { 1190 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1191 if (!prealloc) 1192 return -ENOMEM; 1193 } else if (ret < 0) { 1194 VM_WARN_ON_ONCE(1); 1195 } 1196 1197 /* We've captured and resolved the error. Reset, try again. */ 1198 ret = 0; 1199 1200 if (addr != end) 1201 goto again; 1202 out: 1203 if (unlikely(prealloc)) 1204 folio_put(prealloc); 1205 return ret; 1206 } 1207 1208 static inline int 1209 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1210 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1211 unsigned long end) 1212 { 1213 struct mm_struct *dst_mm = dst_vma->vm_mm; 1214 struct mm_struct *src_mm = src_vma->vm_mm; 1215 pmd_t *src_pmd, *dst_pmd; 1216 unsigned long next; 1217 1218 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1219 if (!dst_pmd) 1220 return -ENOMEM; 1221 src_pmd = pmd_offset(src_pud, addr); 1222 do { 1223 next = pmd_addr_end(addr, end); 1224 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1225 || pmd_devmap(*src_pmd)) { 1226 int err; 1227 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1228 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1229 addr, dst_vma, src_vma); 1230 if (err == -ENOMEM) 1231 return -ENOMEM; 1232 if (!err) 1233 continue; 1234 /* fall through */ 1235 } 1236 if (pmd_none_or_clear_bad(src_pmd)) 1237 continue; 1238 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1239 addr, next)) 1240 return -ENOMEM; 1241 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1242 return 0; 1243 } 1244 1245 static inline int 1246 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1247 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1248 unsigned long end) 1249 { 1250 struct mm_struct *dst_mm = dst_vma->vm_mm; 1251 struct mm_struct *src_mm = src_vma->vm_mm; 1252 pud_t *src_pud, *dst_pud; 1253 unsigned long next; 1254 1255 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1256 if (!dst_pud) 1257 return -ENOMEM; 1258 src_pud = pud_offset(src_p4d, addr); 1259 do { 1260 next = pud_addr_end(addr, end); 1261 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1262 int err; 1263 1264 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1265 err = copy_huge_pud(dst_mm, src_mm, 1266 dst_pud, src_pud, addr, src_vma); 1267 if (err == -ENOMEM) 1268 return -ENOMEM; 1269 if (!err) 1270 continue; 1271 /* fall through */ 1272 } 1273 if (pud_none_or_clear_bad(src_pud)) 1274 continue; 1275 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1276 addr, next)) 1277 return -ENOMEM; 1278 } while (dst_pud++, src_pud++, addr = next, addr != end); 1279 return 0; 1280 } 1281 1282 static inline int 1283 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1284 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1285 unsigned long end) 1286 { 1287 struct mm_struct *dst_mm = dst_vma->vm_mm; 1288 p4d_t *src_p4d, *dst_p4d; 1289 unsigned long next; 1290 1291 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1292 if (!dst_p4d) 1293 return -ENOMEM; 1294 src_p4d = p4d_offset(src_pgd, addr); 1295 do { 1296 next = p4d_addr_end(addr, end); 1297 if (p4d_none_or_clear_bad(src_p4d)) 1298 continue; 1299 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1300 addr, next)) 1301 return -ENOMEM; 1302 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1303 return 0; 1304 } 1305 1306 /* 1307 * Return true if the vma needs to copy the pgtable during this fork(). Return 1308 * false when we can speed up fork() by allowing lazy page faults later until 1309 * when the child accesses the memory range. 1310 */ 1311 static bool 1312 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1313 { 1314 /* 1315 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1316 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1317 * contains uffd-wp protection information, that's something we can't 1318 * retrieve from page cache, and skip copying will lose those info. 1319 */ 1320 if (userfaultfd_wp(dst_vma)) 1321 return true; 1322 1323 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1324 return true; 1325 1326 if (src_vma->anon_vma) 1327 return true; 1328 1329 /* 1330 * Don't copy ptes where a page fault will fill them correctly. Fork 1331 * becomes much lighter when there are big shared or private readonly 1332 * mappings. The tradeoff is that copy_page_range is more efficient 1333 * than faulting. 1334 */ 1335 return false; 1336 } 1337 1338 int 1339 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1340 { 1341 pgd_t *src_pgd, *dst_pgd; 1342 unsigned long next; 1343 unsigned long addr = src_vma->vm_start; 1344 unsigned long end = src_vma->vm_end; 1345 struct mm_struct *dst_mm = dst_vma->vm_mm; 1346 struct mm_struct *src_mm = src_vma->vm_mm; 1347 struct mmu_notifier_range range; 1348 bool is_cow; 1349 int ret; 1350 1351 if (!vma_needs_copy(dst_vma, src_vma)) 1352 return 0; 1353 1354 if (is_vm_hugetlb_page(src_vma)) 1355 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1356 1357 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1358 /* 1359 * We do not free on error cases below as remove_vma 1360 * gets called on error from higher level routine 1361 */ 1362 ret = track_pfn_copy(src_vma); 1363 if (ret) 1364 return ret; 1365 } 1366 1367 /* 1368 * We need to invalidate the secondary MMU mappings only when 1369 * there could be a permission downgrade on the ptes of the 1370 * parent mm. And a permission downgrade will only happen if 1371 * is_cow_mapping() returns true. 1372 */ 1373 is_cow = is_cow_mapping(src_vma->vm_flags); 1374 1375 if (is_cow) { 1376 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1377 0, src_mm, addr, end); 1378 mmu_notifier_invalidate_range_start(&range); 1379 /* 1380 * Disabling preemption is not needed for the write side, as 1381 * the read side doesn't spin, but goes to the mmap_lock. 1382 * 1383 * Use the raw variant of the seqcount_t write API to avoid 1384 * lockdep complaining about preemptibility. 1385 */ 1386 vma_assert_write_locked(src_vma); 1387 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1388 } 1389 1390 ret = 0; 1391 dst_pgd = pgd_offset(dst_mm, addr); 1392 src_pgd = pgd_offset(src_mm, addr); 1393 do { 1394 next = pgd_addr_end(addr, end); 1395 if (pgd_none_or_clear_bad(src_pgd)) 1396 continue; 1397 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1398 addr, next))) { 1399 untrack_pfn_clear(dst_vma); 1400 ret = -ENOMEM; 1401 break; 1402 } 1403 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1404 1405 if (is_cow) { 1406 raw_write_seqcount_end(&src_mm->write_protect_seq); 1407 mmu_notifier_invalidate_range_end(&range); 1408 } 1409 return ret; 1410 } 1411 1412 /* Whether we should zap all COWed (private) pages too */ 1413 static inline bool should_zap_cows(struct zap_details *details) 1414 { 1415 /* By default, zap all pages */ 1416 if (!details) 1417 return true; 1418 1419 /* Or, we zap COWed pages only if the caller wants to */ 1420 return details->even_cows; 1421 } 1422 1423 /* Decides whether we should zap this folio with the folio pointer specified */ 1424 static inline bool should_zap_folio(struct zap_details *details, 1425 struct folio *folio) 1426 { 1427 /* If we can make a decision without *folio.. */ 1428 if (should_zap_cows(details)) 1429 return true; 1430 1431 /* Otherwise we should only zap non-anon folios */ 1432 return !folio_test_anon(folio); 1433 } 1434 1435 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1436 { 1437 if (!details) 1438 return false; 1439 1440 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1441 } 1442 1443 /* 1444 * This function makes sure that we'll replace the none pte with an uffd-wp 1445 * swap special pte marker when necessary. Must be with the pgtable lock held. 1446 */ 1447 static inline void 1448 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1449 unsigned long addr, pte_t *pte, int nr, 1450 struct zap_details *details, pte_t pteval) 1451 { 1452 /* Zap on anonymous always means dropping everything */ 1453 if (vma_is_anonymous(vma)) 1454 return; 1455 1456 if (zap_drop_file_uffd_wp(details)) 1457 return; 1458 1459 for (;;) { 1460 /* the PFN in the PTE is irrelevant. */ 1461 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1462 if (--nr == 0) 1463 break; 1464 pte++; 1465 addr += PAGE_SIZE; 1466 } 1467 } 1468 1469 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1470 struct vm_area_struct *vma, struct folio *folio, 1471 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1472 unsigned long addr, struct zap_details *details, int *rss, 1473 bool *force_flush, bool *force_break) 1474 { 1475 struct mm_struct *mm = tlb->mm; 1476 bool delay_rmap = false; 1477 1478 if (!folio_test_anon(folio)) { 1479 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1480 if (pte_dirty(ptent)) { 1481 folio_mark_dirty(folio); 1482 if (tlb_delay_rmap(tlb)) { 1483 delay_rmap = true; 1484 *force_flush = true; 1485 } 1486 } 1487 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1488 folio_mark_accessed(folio); 1489 rss[mm_counter(folio)] -= nr; 1490 } else { 1491 /* We don't need up-to-date accessed/dirty bits. */ 1492 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1493 rss[MM_ANONPAGES] -= nr; 1494 } 1495 /* Checking a single PTE in a batch is sufficient. */ 1496 arch_check_zapped_pte(vma, ptent); 1497 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1498 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1499 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1500 ptent); 1501 1502 if (!delay_rmap) { 1503 folio_remove_rmap_ptes(folio, page, nr, vma); 1504 1505 /* Only sanity-check the first page in a batch. */ 1506 if (unlikely(page_mapcount(page) < 0)) 1507 print_bad_pte(vma, addr, ptent, page); 1508 } 1509 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1510 *force_flush = true; 1511 *force_break = true; 1512 } 1513 } 1514 1515 /* 1516 * Zap or skip at least one present PTE, trying to batch-process subsequent 1517 * PTEs that map consecutive pages of the same folio. 1518 * 1519 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1520 */ 1521 static inline int zap_present_ptes(struct mmu_gather *tlb, 1522 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1523 unsigned int max_nr, unsigned long addr, 1524 struct zap_details *details, int *rss, bool *force_flush, 1525 bool *force_break) 1526 { 1527 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1528 struct mm_struct *mm = tlb->mm; 1529 struct folio *folio; 1530 struct page *page; 1531 int nr; 1532 1533 page = vm_normal_page(vma, addr, ptent); 1534 if (!page) { 1535 /* We don't need up-to-date accessed/dirty bits. */ 1536 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1537 arch_check_zapped_pte(vma, ptent); 1538 tlb_remove_tlb_entry(tlb, pte, addr); 1539 if (userfaultfd_pte_wp(vma, ptent)) 1540 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1541 details, ptent); 1542 ksm_might_unmap_zero_page(mm, ptent); 1543 return 1; 1544 } 1545 1546 folio = page_folio(page); 1547 if (unlikely(!should_zap_folio(details, folio))) 1548 return 1; 1549 1550 /* 1551 * Make sure that the common "small folio" case is as fast as possible 1552 * by keeping the batching logic separate. 1553 */ 1554 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1555 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1556 NULL); 1557 1558 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1559 addr, details, rss, force_flush, 1560 force_break); 1561 return nr; 1562 } 1563 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1564 details, rss, force_flush, force_break); 1565 return 1; 1566 } 1567 1568 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1569 struct vm_area_struct *vma, pmd_t *pmd, 1570 unsigned long addr, unsigned long end, 1571 struct zap_details *details) 1572 { 1573 bool force_flush = false, force_break = false; 1574 struct mm_struct *mm = tlb->mm; 1575 int rss[NR_MM_COUNTERS]; 1576 spinlock_t *ptl; 1577 pte_t *start_pte; 1578 pte_t *pte; 1579 swp_entry_t entry; 1580 int nr; 1581 1582 tlb_change_page_size(tlb, PAGE_SIZE); 1583 init_rss_vec(rss); 1584 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1585 if (!pte) 1586 return addr; 1587 1588 flush_tlb_batched_pending(mm); 1589 arch_enter_lazy_mmu_mode(); 1590 do { 1591 pte_t ptent = ptep_get(pte); 1592 struct folio *folio; 1593 struct page *page; 1594 int max_nr; 1595 1596 nr = 1; 1597 if (pte_none(ptent)) 1598 continue; 1599 1600 if (need_resched()) 1601 break; 1602 1603 if (pte_present(ptent)) { 1604 max_nr = (end - addr) / PAGE_SIZE; 1605 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1606 addr, details, rss, &force_flush, 1607 &force_break); 1608 if (unlikely(force_break)) { 1609 addr += nr * PAGE_SIZE; 1610 break; 1611 } 1612 continue; 1613 } 1614 1615 entry = pte_to_swp_entry(ptent); 1616 if (is_device_private_entry(entry) || 1617 is_device_exclusive_entry(entry)) { 1618 page = pfn_swap_entry_to_page(entry); 1619 folio = page_folio(page); 1620 if (unlikely(!should_zap_folio(details, folio))) 1621 continue; 1622 /* 1623 * Both device private/exclusive mappings should only 1624 * work with anonymous page so far, so we don't need to 1625 * consider uffd-wp bit when zap. For more information, 1626 * see zap_install_uffd_wp_if_needed(). 1627 */ 1628 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1629 rss[mm_counter(folio)]--; 1630 if (is_device_private_entry(entry)) 1631 folio_remove_rmap_pte(folio, page, vma); 1632 folio_put(folio); 1633 } else if (!non_swap_entry(entry)) { 1634 /* Genuine swap entry, hence a private anon page */ 1635 if (!should_zap_cows(details)) 1636 continue; 1637 rss[MM_SWAPENTS]--; 1638 if (unlikely(!free_swap_and_cache(entry))) 1639 print_bad_pte(vma, addr, ptent, NULL); 1640 } else if (is_migration_entry(entry)) { 1641 folio = pfn_swap_entry_folio(entry); 1642 if (!should_zap_folio(details, folio)) 1643 continue; 1644 rss[mm_counter(folio)]--; 1645 } else if (pte_marker_entry_uffd_wp(entry)) { 1646 /* 1647 * For anon: always drop the marker; for file: only 1648 * drop the marker if explicitly requested. 1649 */ 1650 if (!vma_is_anonymous(vma) && 1651 !zap_drop_file_uffd_wp(details)) 1652 continue; 1653 } else if (is_hwpoison_entry(entry) || 1654 is_poisoned_swp_entry(entry)) { 1655 if (!should_zap_cows(details)) 1656 continue; 1657 } else { 1658 /* We should have covered all the swap entry types */ 1659 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1660 WARN_ON_ONCE(1); 1661 } 1662 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1663 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent); 1664 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1665 1666 add_mm_rss_vec(mm, rss); 1667 arch_leave_lazy_mmu_mode(); 1668 1669 /* Do the actual TLB flush before dropping ptl */ 1670 if (force_flush) { 1671 tlb_flush_mmu_tlbonly(tlb); 1672 tlb_flush_rmaps(tlb, vma); 1673 } 1674 pte_unmap_unlock(start_pte, ptl); 1675 1676 /* 1677 * If we forced a TLB flush (either due to running out of 1678 * batch buffers or because we needed to flush dirty TLB 1679 * entries before releasing the ptl), free the batched 1680 * memory too. Come back again if we didn't do everything. 1681 */ 1682 if (force_flush) 1683 tlb_flush_mmu(tlb); 1684 1685 return addr; 1686 } 1687 1688 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1689 struct vm_area_struct *vma, pud_t *pud, 1690 unsigned long addr, unsigned long end, 1691 struct zap_details *details) 1692 { 1693 pmd_t *pmd; 1694 unsigned long next; 1695 1696 pmd = pmd_offset(pud, addr); 1697 do { 1698 next = pmd_addr_end(addr, end); 1699 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1700 if (next - addr != HPAGE_PMD_SIZE) 1701 __split_huge_pmd(vma, pmd, addr, false, NULL); 1702 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1703 addr = next; 1704 continue; 1705 } 1706 /* fall through */ 1707 } else if (details && details->single_folio && 1708 folio_test_pmd_mappable(details->single_folio) && 1709 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1710 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1711 /* 1712 * Take and drop THP pmd lock so that we cannot return 1713 * prematurely, while zap_huge_pmd() has cleared *pmd, 1714 * but not yet decremented compound_mapcount(). 1715 */ 1716 spin_unlock(ptl); 1717 } 1718 if (pmd_none(*pmd)) { 1719 addr = next; 1720 continue; 1721 } 1722 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1723 if (addr != next) 1724 pmd--; 1725 } while (pmd++, cond_resched(), addr != end); 1726 1727 return addr; 1728 } 1729 1730 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1731 struct vm_area_struct *vma, p4d_t *p4d, 1732 unsigned long addr, unsigned long end, 1733 struct zap_details *details) 1734 { 1735 pud_t *pud; 1736 unsigned long next; 1737 1738 pud = pud_offset(p4d, addr); 1739 do { 1740 next = pud_addr_end(addr, end); 1741 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1742 if (next - addr != HPAGE_PUD_SIZE) { 1743 mmap_assert_locked(tlb->mm); 1744 split_huge_pud(vma, pud, addr); 1745 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1746 goto next; 1747 /* fall through */ 1748 } 1749 if (pud_none_or_clear_bad(pud)) 1750 continue; 1751 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1752 next: 1753 cond_resched(); 1754 } while (pud++, addr = next, addr != end); 1755 1756 return addr; 1757 } 1758 1759 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1760 struct vm_area_struct *vma, pgd_t *pgd, 1761 unsigned long addr, unsigned long end, 1762 struct zap_details *details) 1763 { 1764 p4d_t *p4d; 1765 unsigned long next; 1766 1767 p4d = p4d_offset(pgd, addr); 1768 do { 1769 next = p4d_addr_end(addr, end); 1770 if (p4d_none_or_clear_bad(p4d)) 1771 continue; 1772 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1773 } while (p4d++, addr = next, addr != end); 1774 1775 return addr; 1776 } 1777 1778 void unmap_page_range(struct mmu_gather *tlb, 1779 struct vm_area_struct *vma, 1780 unsigned long addr, unsigned long end, 1781 struct zap_details *details) 1782 { 1783 pgd_t *pgd; 1784 unsigned long next; 1785 1786 BUG_ON(addr >= end); 1787 tlb_start_vma(tlb, vma); 1788 pgd = pgd_offset(vma->vm_mm, addr); 1789 do { 1790 next = pgd_addr_end(addr, end); 1791 if (pgd_none_or_clear_bad(pgd)) 1792 continue; 1793 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1794 } while (pgd++, addr = next, addr != end); 1795 tlb_end_vma(tlb, vma); 1796 } 1797 1798 1799 static void unmap_single_vma(struct mmu_gather *tlb, 1800 struct vm_area_struct *vma, unsigned long start_addr, 1801 unsigned long end_addr, 1802 struct zap_details *details, bool mm_wr_locked) 1803 { 1804 unsigned long start = max(vma->vm_start, start_addr); 1805 unsigned long end; 1806 1807 if (start >= vma->vm_end) 1808 return; 1809 end = min(vma->vm_end, end_addr); 1810 if (end <= vma->vm_start) 1811 return; 1812 1813 if (vma->vm_file) 1814 uprobe_munmap(vma, start, end); 1815 1816 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1817 untrack_pfn(vma, 0, 0, mm_wr_locked); 1818 1819 if (start != end) { 1820 if (unlikely(is_vm_hugetlb_page(vma))) { 1821 /* 1822 * It is undesirable to test vma->vm_file as it 1823 * should be non-null for valid hugetlb area. 1824 * However, vm_file will be NULL in the error 1825 * cleanup path of mmap_region. When 1826 * hugetlbfs ->mmap method fails, 1827 * mmap_region() nullifies vma->vm_file 1828 * before calling this function to clean up. 1829 * Since no pte has actually been setup, it is 1830 * safe to do nothing in this case. 1831 */ 1832 if (vma->vm_file) { 1833 zap_flags_t zap_flags = details ? 1834 details->zap_flags : 0; 1835 __unmap_hugepage_range(tlb, vma, start, end, 1836 NULL, zap_flags); 1837 } 1838 } else 1839 unmap_page_range(tlb, vma, start, end, details); 1840 } 1841 } 1842 1843 /** 1844 * unmap_vmas - unmap a range of memory covered by a list of vma's 1845 * @tlb: address of the caller's struct mmu_gather 1846 * @mas: the maple state 1847 * @vma: the starting vma 1848 * @start_addr: virtual address at which to start unmapping 1849 * @end_addr: virtual address at which to end unmapping 1850 * @tree_end: The maximum index to check 1851 * @mm_wr_locked: lock flag 1852 * 1853 * Unmap all pages in the vma list. 1854 * 1855 * Only addresses between `start' and `end' will be unmapped. 1856 * 1857 * The VMA list must be sorted in ascending virtual address order. 1858 * 1859 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1860 * range after unmap_vmas() returns. So the only responsibility here is to 1861 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1862 * drops the lock and schedules. 1863 */ 1864 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1865 struct vm_area_struct *vma, unsigned long start_addr, 1866 unsigned long end_addr, unsigned long tree_end, 1867 bool mm_wr_locked) 1868 { 1869 struct mmu_notifier_range range; 1870 struct zap_details details = { 1871 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1872 /* Careful - we need to zap private pages too! */ 1873 .even_cows = true, 1874 }; 1875 1876 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1877 start_addr, end_addr); 1878 mmu_notifier_invalidate_range_start(&range); 1879 do { 1880 unsigned long start = start_addr; 1881 unsigned long end = end_addr; 1882 hugetlb_zap_begin(vma, &start, &end); 1883 unmap_single_vma(tlb, vma, start, end, &details, 1884 mm_wr_locked); 1885 hugetlb_zap_end(vma, &details); 1886 vma = mas_find(mas, tree_end - 1); 1887 } while (vma && likely(!xa_is_zero(vma))); 1888 mmu_notifier_invalidate_range_end(&range); 1889 } 1890 1891 /** 1892 * zap_page_range_single - remove user pages in a given range 1893 * @vma: vm_area_struct holding the applicable pages 1894 * @address: starting address of pages to zap 1895 * @size: number of bytes to zap 1896 * @details: details of shared cache invalidation 1897 * 1898 * The range must fit into one VMA. 1899 */ 1900 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1901 unsigned long size, struct zap_details *details) 1902 { 1903 const unsigned long end = address + size; 1904 struct mmu_notifier_range range; 1905 struct mmu_gather tlb; 1906 1907 lru_add_drain(); 1908 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1909 address, end); 1910 hugetlb_zap_begin(vma, &range.start, &range.end); 1911 tlb_gather_mmu(&tlb, vma->vm_mm); 1912 update_hiwater_rss(vma->vm_mm); 1913 mmu_notifier_invalidate_range_start(&range); 1914 /* 1915 * unmap 'address-end' not 'range.start-range.end' as range 1916 * could have been expanded for hugetlb pmd sharing. 1917 */ 1918 unmap_single_vma(&tlb, vma, address, end, details, false); 1919 mmu_notifier_invalidate_range_end(&range); 1920 tlb_finish_mmu(&tlb); 1921 hugetlb_zap_end(vma, details); 1922 } 1923 1924 /** 1925 * zap_vma_ptes - remove ptes mapping the vma 1926 * @vma: vm_area_struct holding ptes to be zapped 1927 * @address: starting address of pages to zap 1928 * @size: number of bytes to zap 1929 * 1930 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1931 * 1932 * The entire address range must be fully contained within the vma. 1933 * 1934 */ 1935 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1936 unsigned long size) 1937 { 1938 if (!range_in_vma(vma, address, address + size) || 1939 !(vma->vm_flags & VM_PFNMAP)) 1940 return; 1941 1942 zap_page_range_single(vma, address, size, NULL); 1943 } 1944 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1945 1946 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1947 { 1948 pgd_t *pgd; 1949 p4d_t *p4d; 1950 pud_t *pud; 1951 pmd_t *pmd; 1952 1953 pgd = pgd_offset(mm, addr); 1954 p4d = p4d_alloc(mm, pgd, addr); 1955 if (!p4d) 1956 return NULL; 1957 pud = pud_alloc(mm, p4d, addr); 1958 if (!pud) 1959 return NULL; 1960 pmd = pmd_alloc(mm, pud, addr); 1961 if (!pmd) 1962 return NULL; 1963 1964 VM_BUG_ON(pmd_trans_huge(*pmd)); 1965 return pmd; 1966 } 1967 1968 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1969 spinlock_t **ptl) 1970 { 1971 pmd_t *pmd = walk_to_pmd(mm, addr); 1972 1973 if (!pmd) 1974 return NULL; 1975 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1976 } 1977 1978 static int validate_page_before_insert(struct page *page) 1979 { 1980 struct folio *folio = page_folio(page); 1981 1982 if (folio_test_anon(folio) || folio_test_slab(folio) || 1983 page_has_type(page)) 1984 return -EINVAL; 1985 flush_dcache_folio(folio); 1986 return 0; 1987 } 1988 1989 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1990 unsigned long addr, struct page *page, pgprot_t prot) 1991 { 1992 struct folio *folio = page_folio(page); 1993 1994 if (!pte_none(ptep_get(pte))) 1995 return -EBUSY; 1996 /* Ok, finally just insert the thing.. */ 1997 folio_get(folio); 1998 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 1999 folio_add_file_rmap_pte(folio, page, vma); 2000 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 2001 return 0; 2002 } 2003 2004 /* 2005 * This is the old fallback for page remapping. 2006 * 2007 * For historical reasons, it only allows reserved pages. Only 2008 * old drivers should use this, and they needed to mark their 2009 * pages reserved for the old functions anyway. 2010 */ 2011 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2012 struct page *page, pgprot_t prot) 2013 { 2014 int retval; 2015 pte_t *pte; 2016 spinlock_t *ptl; 2017 2018 retval = validate_page_before_insert(page); 2019 if (retval) 2020 goto out; 2021 retval = -ENOMEM; 2022 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2023 if (!pte) 2024 goto out; 2025 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2026 pte_unmap_unlock(pte, ptl); 2027 out: 2028 return retval; 2029 } 2030 2031 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2032 unsigned long addr, struct page *page, pgprot_t prot) 2033 { 2034 int err; 2035 2036 if (!page_count(page)) 2037 return -EINVAL; 2038 err = validate_page_before_insert(page); 2039 if (err) 2040 return err; 2041 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2042 } 2043 2044 /* insert_pages() amortizes the cost of spinlock operations 2045 * when inserting pages in a loop. 2046 */ 2047 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2048 struct page **pages, unsigned long *num, pgprot_t prot) 2049 { 2050 pmd_t *pmd = NULL; 2051 pte_t *start_pte, *pte; 2052 spinlock_t *pte_lock; 2053 struct mm_struct *const mm = vma->vm_mm; 2054 unsigned long curr_page_idx = 0; 2055 unsigned long remaining_pages_total = *num; 2056 unsigned long pages_to_write_in_pmd; 2057 int ret; 2058 more: 2059 ret = -EFAULT; 2060 pmd = walk_to_pmd(mm, addr); 2061 if (!pmd) 2062 goto out; 2063 2064 pages_to_write_in_pmd = min_t(unsigned long, 2065 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2066 2067 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2068 ret = -ENOMEM; 2069 if (pte_alloc(mm, pmd)) 2070 goto out; 2071 2072 while (pages_to_write_in_pmd) { 2073 int pte_idx = 0; 2074 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2075 2076 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2077 if (!start_pte) { 2078 ret = -EFAULT; 2079 goto out; 2080 } 2081 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2082 int err = insert_page_in_batch_locked(vma, pte, 2083 addr, pages[curr_page_idx], prot); 2084 if (unlikely(err)) { 2085 pte_unmap_unlock(start_pte, pte_lock); 2086 ret = err; 2087 remaining_pages_total -= pte_idx; 2088 goto out; 2089 } 2090 addr += PAGE_SIZE; 2091 ++curr_page_idx; 2092 } 2093 pte_unmap_unlock(start_pte, pte_lock); 2094 pages_to_write_in_pmd -= batch_size; 2095 remaining_pages_total -= batch_size; 2096 } 2097 if (remaining_pages_total) 2098 goto more; 2099 ret = 0; 2100 out: 2101 *num = remaining_pages_total; 2102 return ret; 2103 } 2104 2105 /** 2106 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2107 * @vma: user vma to map to 2108 * @addr: target start user address of these pages 2109 * @pages: source kernel pages 2110 * @num: in: number of pages to map. out: number of pages that were *not* 2111 * mapped. (0 means all pages were successfully mapped). 2112 * 2113 * Preferred over vm_insert_page() when inserting multiple pages. 2114 * 2115 * In case of error, we may have mapped a subset of the provided 2116 * pages. It is the caller's responsibility to account for this case. 2117 * 2118 * The same restrictions apply as in vm_insert_page(). 2119 */ 2120 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2121 struct page **pages, unsigned long *num) 2122 { 2123 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2124 2125 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2126 return -EFAULT; 2127 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2128 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2129 BUG_ON(vma->vm_flags & VM_PFNMAP); 2130 vm_flags_set(vma, VM_MIXEDMAP); 2131 } 2132 /* Defer page refcount checking till we're about to map that page. */ 2133 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2134 } 2135 EXPORT_SYMBOL(vm_insert_pages); 2136 2137 /** 2138 * vm_insert_page - insert single page into user vma 2139 * @vma: user vma to map to 2140 * @addr: target user address of this page 2141 * @page: source kernel page 2142 * 2143 * This allows drivers to insert individual pages they've allocated 2144 * into a user vma. 2145 * 2146 * The page has to be a nice clean _individual_ kernel allocation. 2147 * If you allocate a compound page, you need to have marked it as 2148 * such (__GFP_COMP), or manually just split the page up yourself 2149 * (see split_page()). 2150 * 2151 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2152 * took an arbitrary page protection parameter. This doesn't allow 2153 * that. Your vma protection will have to be set up correctly, which 2154 * means that if you want a shared writable mapping, you'd better 2155 * ask for a shared writable mapping! 2156 * 2157 * The page does not need to be reserved. 2158 * 2159 * Usually this function is called from f_op->mmap() handler 2160 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2161 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2162 * function from other places, for example from page-fault handler. 2163 * 2164 * Return: %0 on success, negative error code otherwise. 2165 */ 2166 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2167 struct page *page) 2168 { 2169 if (addr < vma->vm_start || addr >= vma->vm_end) 2170 return -EFAULT; 2171 if (!page_count(page)) 2172 return -EINVAL; 2173 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2174 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2175 BUG_ON(vma->vm_flags & VM_PFNMAP); 2176 vm_flags_set(vma, VM_MIXEDMAP); 2177 } 2178 return insert_page(vma, addr, page, vma->vm_page_prot); 2179 } 2180 EXPORT_SYMBOL(vm_insert_page); 2181 2182 /* 2183 * __vm_map_pages - maps range of kernel pages into user vma 2184 * @vma: user vma to map to 2185 * @pages: pointer to array of source kernel pages 2186 * @num: number of pages in page array 2187 * @offset: user's requested vm_pgoff 2188 * 2189 * This allows drivers to map range of kernel pages into a user vma. 2190 * 2191 * Return: 0 on success and error code otherwise. 2192 */ 2193 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2194 unsigned long num, unsigned long offset) 2195 { 2196 unsigned long count = vma_pages(vma); 2197 unsigned long uaddr = vma->vm_start; 2198 int ret, i; 2199 2200 /* Fail if the user requested offset is beyond the end of the object */ 2201 if (offset >= num) 2202 return -ENXIO; 2203 2204 /* Fail if the user requested size exceeds available object size */ 2205 if (count > num - offset) 2206 return -ENXIO; 2207 2208 for (i = 0; i < count; i++) { 2209 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2210 if (ret < 0) 2211 return ret; 2212 uaddr += PAGE_SIZE; 2213 } 2214 2215 return 0; 2216 } 2217 2218 /** 2219 * vm_map_pages - maps range of kernel pages starts with non zero offset 2220 * @vma: user vma to map to 2221 * @pages: pointer to array of source kernel pages 2222 * @num: number of pages in page array 2223 * 2224 * Maps an object consisting of @num pages, catering for the user's 2225 * requested vm_pgoff 2226 * 2227 * If we fail to insert any page into the vma, the function will return 2228 * immediately leaving any previously inserted pages present. Callers 2229 * from the mmap handler may immediately return the error as their caller 2230 * will destroy the vma, removing any successfully inserted pages. Other 2231 * callers should make their own arrangements for calling unmap_region(). 2232 * 2233 * Context: Process context. Called by mmap handlers. 2234 * Return: 0 on success and error code otherwise. 2235 */ 2236 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2237 unsigned long num) 2238 { 2239 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2240 } 2241 EXPORT_SYMBOL(vm_map_pages); 2242 2243 /** 2244 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2245 * @vma: user vma to map to 2246 * @pages: pointer to array of source kernel pages 2247 * @num: number of pages in page array 2248 * 2249 * Similar to vm_map_pages(), except that it explicitly sets the offset 2250 * to 0. This function is intended for the drivers that did not consider 2251 * vm_pgoff. 2252 * 2253 * Context: Process context. Called by mmap handlers. 2254 * Return: 0 on success and error code otherwise. 2255 */ 2256 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2257 unsigned long num) 2258 { 2259 return __vm_map_pages(vma, pages, num, 0); 2260 } 2261 EXPORT_SYMBOL(vm_map_pages_zero); 2262 2263 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2264 pfn_t pfn, pgprot_t prot, bool mkwrite) 2265 { 2266 struct mm_struct *mm = vma->vm_mm; 2267 pte_t *pte, entry; 2268 spinlock_t *ptl; 2269 2270 pte = get_locked_pte(mm, addr, &ptl); 2271 if (!pte) 2272 return VM_FAULT_OOM; 2273 entry = ptep_get(pte); 2274 if (!pte_none(entry)) { 2275 if (mkwrite) { 2276 /* 2277 * For read faults on private mappings the PFN passed 2278 * in may not match the PFN we have mapped if the 2279 * mapped PFN is a writeable COW page. In the mkwrite 2280 * case we are creating a writable PTE for a shared 2281 * mapping and we expect the PFNs to match. If they 2282 * don't match, we are likely racing with block 2283 * allocation and mapping invalidation so just skip the 2284 * update. 2285 */ 2286 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2287 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2288 goto out_unlock; 2289 } 2290 entry = pte_mkyoung(entry); 2291 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2292 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2293 update_mmu_cache(vma, addr, pte); 2294 } 2295 goto out_unlock; 2296 } 2297 2298 /* Ok, finally just insert the thing.. */ 2299 if (pfn_t_devmap(pfn)) 2300 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2301 else 2302 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2303 2304 if (mkwrite) { 2305 entry = pte_mkyoung(entry); 2306 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2307 } 2308 2309 set_pte_at(mm, addr, pte, entry); 2310 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2311 2312 out_unlock: 2313 pte_unmap_unlock(pte, ptl); 2314 return VM_FAULT_NOPAGE; 2315 } 2316 2317 /** 2318 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2319 * @vma: user vma to map to 2320 * @addr: target user address of this page 2321 * @pfn: source kernel pfn 2322 * @pgprot: pgprot flags for the inserted page 2323 * 2324 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2325 * to override pgprot on a per-page basis. 2326 * 2327 * This only makes sense for IO mappings, and it makes no sense for 2328 * COW mappings. In general, using multiple vmas is preferable; 2329 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2330 * impractical. 2331 * 2332 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2333 * caching- and encryption bits different than those of @vma->vm_page_prot, 2334 * because the caching- or encryption mode may not be known at mmap() time. 2335 * 2336 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2337 * to set caching and encryption bits for those vmas (except for COW pages). 2338 * This is ensured by core vm only modifying these page table entries using 2339 * functions that don't touch caching- or encryption bits, using pte_modify() 2340 * if needed. (See for example mprotect()). 2341 * 2342 * Also when new page-table entries are created, this is only done using the 2343 * fault() callback, and never using the value of vma->vm_page_prot, 2344 * except for page-table entries that point to anonymous pages as the result 2345 * of COW. 2346 * 2347 * Context: Process context. May allocate using %GFP_KERNEL. 2348 * Return: vm_fault_t value. 2349 */ 2350 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2351 unsigned long pfn, pgprot_t pgprot) 2352 { 2353 /* 2354 * Technically, architectures with pte_special can avoid all these 2355 * restrictions (same for remap_pfn_range). However we would like 2356 * consistency in testing and feature parity among all, so we should 2357 * try to keep these invariants in place for everybody. 2358 */ 2359 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2360 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2361 (VM_PFNMAP|VM_MIXEDMAP)); 2362 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2363 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2364 2365 if (addr < vma->vm_start || addr >= vma->vm_end) 2366 return VM_FAULT_SIGBUS; 2367 2368 if (!pfn_modify_allowed(pfn, pgprot)) 2369 return VM_FAULT_SIGBUS; 2370 2371 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2372 2373 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2374 false); 2375 } 2376 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2377 2378 /** 2379 * vmf_insert_pfn - insert single pfn into user vma 2380 * @vma: user vma to map to 2381 * @addr: target user address of this page 2382 * @pfn: source kernel pfn 2383 * 2384 * Similar to vm_insert_page, this allows drivers to insert individual pages 2385 * they've allocated into a user vma. Same comments apply. 2386 * 2387 * This function should only be called from a vm_ops->fault handler, and 2388 * in that case the handler should return the result of this function. 2389 * 2390 * vma cannot be a COW mapping. 2391 * 2392 * As this is called only for pages that do not currently exist, we 2393 * do not need to flush old virtual caches or the TLB. 2394 * 2395 * Context: Process context. May allocate using %GFP_KERNEL. 2396 * Return: vm_fault_t value. 2397 */ 2398 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2399 unsigned long pfn) 2400 { 2401 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2402 } 2403 EXPORT_SYMBOL(vmf_insert_pfn); 2404 2405 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2406 { 2407 /* these checks mirror the abort conditions in vm_normal_page */ 2408 if (vma->vm_flags & VM_MIXEDMAP) 2409 return true; 2410 if (pfn_t_devmap(pfn)) 2411 return true; 2412 if (pfn_t_special(pfn)) 2413 return true; 2414 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2415 return true; 2416 return false; 2417 } 2418 2419 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2420 unsigned long addr, pfn_t pfn, bool mkwrite) 2421 { 2422 pgprot_t pgprot = vma->vm_page_prot; 2423 int err; 2424 2425 BUG_ON(!vm_mixed_ok(vma, pfn)); 2426 2427 if (addr < vma->vm_start || addr >= vma->vm_end) 2428 return VM_FAULT_SIGBUS; 2429 2430 track_pfn_insert(vma, &pgprot, pfn); 2431 2432 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2433 return VM_FAULT_SIGBUS; 2434 2435 /* 2436 * If we don't have pte special, then we have to use the pfn_valid() 2437 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2438 * refcount the page if pfn_valid is true (hence insert_page rather 2439 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2440 * without pte special, it would there be refcounted as a normal page. 2441 */ 2442 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2443 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2444 struct page *page; 2445 2446 /* 2447 * At this point we are committed to insert_page() 2448 * regardless of whether the caller specified flags that 2449 * result in pfn_t_has_page() == false. 2450 */ 2451 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2452 err = insert_page(vma, addr, page, pgprot); 2453 } else { 2454 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2455 } 2456 2457 if (err == -ENOMEM) 2458 return VM_FAULT_OOM; 2459 if (err < 0 && err != -EBUSY) 2460 return VM_FAULT_SIGBUS; 2461 2462 return VM_FAULT_NOPAGE; 2463 } 2464 2465 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2466 pfn_t pfn) 2467 { 2468 return __vm_insert_mixed(vma, addr, pfn, false); 2469 } 2470 EXPORT_SYMBOL(vmf_insert_mixed); 2471 2472 /* 2473 * If the insertion of PTE failed because someone else already added a 2474 * different entry in the mean time, we treat that as success as we assume 2475 * the same entry was actually inserted. 2476 */ 2477 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2478 unsigned long addr, pfn_t pfn) 2479 { 2480 return __vm_insert_mixed(vma, addr, pfn, true); 2481 } 2482 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2483 2484 /* 2485 * maps a range of physical memory into the requested pages. the old 2486 * mappings are removed. any references to nonexistent pages results 2487 * in null mappings (currently treated as "copy-on-access") 2488 */ 2489 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2490 unsigned long addr, unsigned long end, 2491 unsigned long pfn, pgprot_t prot) 2492 { 2493 pte_t *pte, *mapped_pte; 2494 spinlock_t *ptl; 2495 int err = 0; 2496 2497 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2498 if (!pte) 2499 return -ENOMEM; 2500 arch_enter_lazy_mmu_mode(); 2501 do { 2502 BUG_ON(!pte_none(ptep_get(pte))); 2503 if (!pfn_modify_allowed(pfn, prot)) { 2504 err = -EACCES; 2505 break; 2506 } 2507 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2508 pfn++; 2509 } while (pte++, addr += PAGE_SIZE, addr != end); 2510 arch_leave_lazy_mmu_mode(); 2511 pte_unmap_unlock(mapped_pte, ptl); 2512 return err; 2513 } 2514 2515 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2516 unsigned long addr, unsigned long end, 2517 unsigned long pfn, pgprot_t prot) 2518 { 2519 pmd_t *pmd; 2520 unsigned long next; 2521 int err; 2522 2523 pfn -= addr >> PAGE_SHIFT; 2524 pmd = pmd_alloc(mm, pud, addr); 2525 if (!pmd) 2526 return -ENOMEM; 2527 VM_BUG_ON(pmd_trans_huge(*pmd)); 2528 do { 2529 next = pmd_addr_end(addr, end); 2530 err = remap_pte_range(mm, pmd, addr, next, 2531 pfn + (addr >> PAGE_SHIFT), prot); 2532 if (err) 2533 return err; 2534 } while (pmd++, addr = next, addr != end); 2535 return 0; 2536 } 2537 2538 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2539 unsigned long addr, unsigned long end, 2540 unsigned long pfn, pgprot_t prot) 2541 { 2542 pud_t *pud; 2543 unsigned long next; 2544 int err; 2545 2546 pfn -= addr >> PAGE_SHIFT; 2547 pud = pud_alloc(mm, p4d, addr); 2548 if (!pud) 2549 return -ENOMEM; 2550 do { 2551 next = pud_addr_end(addr, end); 2552 err = remap_pmd_range(mm, pud, addr, next, 2553 pfn + (addr >> PAGE_SHIFT), prot); 2554 if (err) 2555 return err; 2556 } while (pud++, addr = next, addr != end); 2557 return 0; 2558 } 2559 2560 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2561 unsigned long addr, unsigned long end, 2562 unsigned long pfn, pgprot_t prot) 2563 { 2564 p4d_t *p4d; 2565 unsigned long next; 2566 int err; 2567 2568 pfn -= addr >> PAGE_SHIFT; 2569 p4d = p4d_alloc(mm, pgd, addr); 2570 if (!p4d) 2571 return -ENOMEM; 2572 do { 2573 next = p4d_addr_end(addr, end); 2574 err = remap_pud_range(mm, p4d, addr, next, 2575 pfn + (addr >> PAGE_SHIFT), prot); 2576 if (err) 2577 return err; 2578 } while (p4d++, addr = next, addr != end); 2579 return 0; 2580 } 2581 2582 /* 2583 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2584 * must have pre-validated the caching bits of the pgprot_t. 2585 */ 2586 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2587 unsigned long pfn, unsigned long size, pgprot_t prot) 2588 { 2589 pgd_t *pgd; 2590 unsigned long next; 2591 unsigned long end = addr + PAGE_ALIGN(size); 2592 struct mm_struct *mm = vma->vm_mm; 2593 int err; 2594 2595 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2596 return -EINVAL; 2597 2598 /* 2599 * Physically remapped pages are special. Tell the 2600 * rest of the world about it: 2601 * VM_IO tells people not to look at these pages 2602 * (accesses can have side effects). 2603 * VM_PFNMAP tells the core MM that the base pages are just 2604 * raw PFN mappings, and do not have a "struct page" associated 2605 * with them. 2606 * VM_DONTEXPAND 2607 * Disable vma merging and expanding with mremap(). 2608 * VM_DONTDUMP 2609 * Omit vma from core dump, even when VM_IO turned off. 2610 * 2611 * There's a horrible special case to handle copy-on-write 2612 * behaviour that some programs depend on. We mark the "original" 2613 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2614 * See vm_normal_page() for details. 2615 */ 2616 if (is_cow_mapping(vma->vm_flags)) { 2617 if (addr != vma->vm_start || end != vma->vm_end) 2618 return -EINVAL; 2619 vma->vm_pgoff = pfn; 2620 } 2621 2622 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2623 2624 BUG_ON(addr >= end); 2625 pfn -= addr >> PAGE_SHIFT; 2626 pgd = pgd_offset(mm, addr); 2627 flush_cache_range(vma, addr, end); 2628 do { 2629 next = pgd_addr_end(addr, end); 2630 err = remap_p4d_range(mm, pgd, addr, next, 2631 pfn + (addr >> PAGE_SHIFT), prot); 2632 if (err) 2633 return err; 2634 } while (pgd++, addr = next, addr != end); 2635 2636 return 0; 2637 } 2638 2639 /** 2640 * remap_pfn_range - remap kernel memory to userspace 2641 * @vma: user vma to map to 2642 * @addr: target page aligned user address to start at 2643 * @pfn: page frame number of kernel physical memory address 2644 * @size: size of mapping area 2645 * @prot: page protection flags for this mapping 2646 * 2647 * Note: this is only safe if the mm semaphore is held when called. 2648 * 2649 * Return: %0 on success, negative error code otherwise. 2650 */ 2651 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2652 unsigned long pfn, unsigned long size, pgprot_t prot) 2653 { 2654 int err; 2655 2656 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2657 if (err) 2658 return -EINVAL; 2659 2660 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2661 if (err) 2662 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2663 return err; 2664 } 2665 EXPORT_SYMBOL(remap_pfn_range); 2666 2667 /** 2668 * vm_iomap_memory - remap memory to userspace 2669 * @vma: user vma to map to 2670 * @start: start of the physical memory to be mapped 2671 * @len: size of area 2672 * 2673 * This is a simplified io_remap_pfn_range() for common driver use. The 2674 * driver just needs to give us the physical memory range to be mapped, 2675 * we'll figure out the rest from the vma information. 2676 * 2677 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2678 * whatever write-combining details or similar. 2679 * 2680 * Return: %0 on success, negative error code otherwise. 2681 */ 2682 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2683 { 2684 unsigned long vm_len, pfn, pages; 2685 2686 /* Check that the physical memory area passed in looks valid */ 2687 if (start + len < start) 2688 return -EINVAL; 2689 /* 2690 * You *really* shouldn't map things that aren't page-aligned, 2691 * but we've historically allowed it because IO memory might 2692 * just have smaller alignment. 2693 */ 2694 len += start & ~PAGE_MASK; 2695 pfn = start >> PAGE_SHIFT; 2696 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2697 if (pfn + pages < pfn) 2698 return -EINVAL; 2699 2700 /* We start the mapping 'vm_pgoff' pages into the area */ 2701 if (vma->vm_pgoff > pages) 2702 return -EINVAL; 2703 pfn += vma->vm_pgoff; 2704 pages -= vma->vm_pgoff; 2705 2706 /* Can we fit all of the mapping? */ 2707 vm_len = vma->vm_end - vma->vm_start; 2708 if (vm_len >> PAGE_SHIFT > pages) 2709 return -EINVAL; 2710 2711 /* Ok, let it rip */ 2712 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2713 } 2714 EXPORT_SYMBOL(vm_iomap_memory); 2715 2716 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2717 unsigned long addr, unsigned long end, 2718 pte_fn_t fn, void *data, bool create, 2719 pgtbl_mod_mask *mask) 2720 { 2721 pte_t *pte, *mapped_pte; 2722 int err = 0; 2723 spinlock_t *ptl; 2724 2725 if (create) { 2726 mapped_pte = pte = (mm == &init_mm) ? 2727 pte_alloc_kernel_track(pmd, addr, mask) : 2728 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2729 if (!pte) 2730 return -ENOMEM; 2731 } else { 2732 mapped_pte = pte = (mm == &init_mm) ? 2733 pte_offset_kernel(pmd, addr) : 2734 pte_offset_map_lock(mm, pmd, addr, &ptl); 2735 if (!pte) 2736 return -EINVAL; 2737 } 2738 2739 arch_enter_lazy_mmu_mode(); 2740 2741 if (fn) { 2742 do { 2743 if (create || !pte_none(ptep_get(pte))) { 2744 err = fn(pte++, addr, data); 2745 if (err) 2746 break; 2747 } 2748 } while (addr += PAGE_SIZE, addr != end); 2749 } 2750 *mask |= PGTBL_PTE_MODIFIED; 2751 2752 arch_leave_lazy_mmu_mode(); 2753 2754 if (mm != &init_mm) 2755 pte_unmap_unlock(mapped_pte, ptl); 2756 return err; 2757 } 2758 2759 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2760 unsigned long addr, unsigned long end, 2761 pte_fn_t fn, void *data, bool create, 2762 pgtbl_mod_mask *mask) 2763 { 2764 pmd_t *pmd; 2765 unsigned long next; 2766 int err = 0; 2767 2768 BUG_ON(pud_huge(*pud)); 2769 2770 if (create) { 2771 pmd = pmd_alloc_track(mm, pud, addr, mask); 2772 if (!pmd) 2773 return -ENOMEM; 2774 } else { 2775 pmd = pmd_offset(pud, addr); 2776 } 2777 do { 2778 next = pmd_addr_end(addr, end); 2779 if (pmd_none(*pmd) && !create) 2780 continue; 2781 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2782 return -EINVAL; 2783 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2784 if (!create) 2785 continue; 2786 pmd_clear_bad(pmd); 2787 } 2788 err = apply_to_pte_range(mm, pmd, addr, next, 2789 fn, data, create, mask); 2790 if (err) 2791 break; 2792 } while (pmd++, addr = next, addr != end); 2793 2794 return err; 2795 } 2796 2797 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2798 unsigned long addr, unsigned long end, 2799 pte_fn_t fn, void *data, bool create, 2800 pgtbl_mod_mask *mask) 2801 { 2802 pud_t *pud; 2803 unsigned long next; 2804 int err = 0; 2805 2806 if (create) { 2807 pud = pud_alloc_track(mm, p4d, addr, mask); 2808 if (!pud) 2809 return -ENOMEM; 2810 } else { 2811 pud = pud_offset(p4d, addr); 2812 } 2813 do { 2814 next = pud_addr_end(addr, end); 2815 if (pud_none(*pud) && !create) 2816 continue; 2817 if (WARN_ON_ONCE(pud_leaf(*pud))) 2818 return -EINVAL; 2819 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2820 if (!create) 2821 continue; 2822 pud_clear_bad(pud); 2823 } 2824 err = apply_to_pmd_range(mm, pud, addr, next, 2825 fn, data, create, mask); 2826 if (err) 2827 break; 2828 } while (pud++, addr = next, addr != end); 2829 2830 return err; 2831 } 2832 2833 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2834 unsigned long addr, unsigned long end, 2835 pte_fn_t fn, void *data, bool create, 2836 pgtbl_mod_mask *mask) 2837 { 2838 p4d_t *p4d; 2839 unsigned long next; 2840 int err = 0; 2841 2842 if (create) { 2843 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2844 if (!p4d) 2845 return -ENOMEM; 2846 } else { 2847 p4d = p4d_offset(pgd, addr); 2848 } 2849 do { 2850 next = p4d_addr_end(addr, end); 2851 if (p4d_none(*p4d) && !create) 2852 continue; 2853 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2854 return -EINVAL; 2855 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2856 if (!create) 2857 continue; 2858 p4d_clear_bad(p4d); 2859 } 2860 err = apply_to_pud_range(mm, p4d, addr, next, 2861 fn, data, create, mask); 2862 if (err) 2863 break; 2864 } while (p4d++, addr = next, addr != end); 2865 2866 return err; 2867 } 2868 2869 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2870 unsigned long size, pte_fn_t fn, 2871 void *data, bool create) 2872 { 2873 pgd_t *pgd; 2874 unsigned long start = addr, next; 2875 unsigned long end = addr + size; 2876 pgtbl_mod_mask mask = 0; 2877 int err = 0; 2878 2879 if (WARN_ON(addr >= end)) 2880 return -EINVAL; 2881 2882 pgd = pgd_offset(mm, addr); 2883 do { 2884 next = pgd_addr_end(addr, end); 2885 if (pgd_none(*pgd) && !create) 2886 continue; 2887 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2888 return -EINVAL; 2889 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2890 if (!create) 2891 continue; 2892 pgd_clear_bad(pgd); 2893 } 2894 err = apply_to_p4d_range(mm, pgd, addr, next, 2895 fn, data, create, &mask); 2896 if (err) 2897 break; 2898 } while (pgd++, addr = next, addr != end); 2899 2900 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2901 arch_sync_kernel_mappings(start, start + size); 2902 2903 return err; 2904 } 2905 2906 /* 2907 * Scan a region of virtual memory, filling in page tables as necessary 2908 * and calling a provided function on each leaf page table. 2909 */ 2910 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2911 unsigned long size, pte_fn_t fn, void *data) 2912 { 2913 return __apply_to_page_range(mm, addr, size, fn, data, true); 2914 } 2915 EXPORT_SYMBOL_GPL(apply_to_page_range); 2916 2917 /* 2918 * Scan a region of virtual memory, calling a provided function on 2919 * each leaf page table where it exists. 2920 * 2921 * Unlike apply_to_page_range, this does _not_ fill in page tables 2922 * where they are absent. 2923 */ 2924 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2925 unsigned long size, pte_fn_t fn, void *data) 2926 { 2927 return __apply_to_page_range(mm, addr, size, fn, data, false); 2928 } 2929 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2930 2931 /* 2932 * handle_pte_fault chooses page fault handler according to an entry which was 2933 * read non-atomically. Before making any commitment, on those architectures 2934 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2935 * parts, do_swap_page must check under lock before unmapping the pte and 2936 * proceeding (but do_wp_page is only called after already making such a check; 2937 * and do_anonymous_page can safely check later on). 2938 */ 2939 static inline int pte_unmap_same(struct vm_fault *vmf) 2940 { 2941 int same = 1; 2942 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2943 if (sizeof(pte_t) > sizeof(unsigned long)) { 2944 spin_lock(vmf->ptl); 2945 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2946 spin_unlock(vmf->ptl); 2947 } 2948 #endif 2949 pte_unmap(vmf->pte); 2950 vmf->pte = NULL; 2951 return same; 2952 } 2953 2954 /* 2955 * Return: 2956 * 0: copied succeeded 2957 * -EHWPOISON: copy failed due to hwpoison in source page 2958 * -EAGAIN: copied failed (some other reason) 2959 */ 2960 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2961 struct vm_fault *vmf) 2962 { 2963 int ret; 2964 void *kaddr; 2965 void __user *uaddr; 2966 struct vm_area_struct *vma = vmf->vma; 2967 struct mm_struct *mm = vma->vm_mm; 2968 unsigned long addr = vmf->address; 2969 2970 if (likely(src)) { 2971 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2972 memory_failure_queue(page_to_pfn(src), 0); 2973 return -EHWPOISON; 2974 } 2975 return 0; 2976 } 2977 2978 /* 2979 * If the source page was a PFN mapping, we don't have 2980 * a "struct page" for it. We do a best-effort copy by 2981 * just copying from the original user address. If that 2982 * fails, we just zero-fill it. Live with it. 2983 */ 2984 kaddr = kmap_local_page(dst); 2985 pagefault_disable(); 2986 uaddr = (void __user *)(addr & PAGE_MASK); 2987 2988 /* 2989 * On architectures with software "accessed" bits, we would 2990 * take a double page fault, so mark it accessed here. 2991 */ 2992 vmf->pte = NULL; 2993 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2994 pte_t entry; 2995 2996 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2997 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2998 /* 2999 * Other thread has already handled the fault 3000 * and update local tlb only 3001 */ 3002 if (vmf->pte) 3003 update_mmu_tlb(vma, addr, vmf->pte); 3004 ret = -EAGAIN; 3005 goto pte_unlock; 3006 } 3007 3008 entry = pte_mkyoung(vmf->orig_pte); 3009 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3010 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3011 } 3012 3013 /* 3014 * This really shouldn't fail, because the page is there 3015 * in the page tables. But it might just be unreadable, 3016 * in which case we just give up and fill the result with 3017 * zeroes. 3018 */ 3019 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3020 if (vmf->pte) 3021 goto warn; 3022 3023 /* Re-validate under PTL if the page is still mapped */ 3024 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3025 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3026 /* The PTE changed under us, update local tlb */ 3027 if (vmf->pte) 3028 update_mmu_tlb(vma, addr, vmf->pte); 3029 ret = -EAGAIN; 3030 goto pte_unlock; 3031 } 3032 3033 /* 3034 * The same page can be mapped back since last copy attempt. 3035 * Try to copy again under PTL. 3036 */ 3037 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3038 /* 3039 * Give a warn in case there can be some obscure 3040 * use-case 3041 */ 3042 warn: 3043 WARN_ON_ONCE(1); 3044 clear_page(kaddr); 3045 } 3046 } 3047 3048 ret = 0; 3049 3050 pte_unlock: 3051 if (vmf->pte) 3052 pte_unmap_unlock(vmf->pte, vmf->ptl); 3053 pagefault_enable(); 3054 kunmap_local(kaddr); 3055 flush_dcache_page(dst); 3056 3057 return ret; 3058 } 3059 3060 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3061 { 3062 struct file *vm_file = vma->vm_file; 3063 3064 if (vm_file) 3065 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3066 3067 /* 3068 * Special mappings (e.g. VDSO) do not have any file so fake 3069 * a default GFP_KERNEL for them. 3070 */ 3071 return GFP_KERNEL; 3072 } 3073 3074 /* 3075 * Notify the address space that the page is about to become writable so that 3076 * it can prohibit this or wait for the page to get into an appropriate state. 3077 * 3078 * We do this without the lock held, so that it can sleep if it needs to. 3079 */ 3080 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3081 { 3082 vm_fault_t ret; 3083 unsigned int old_flags = vmf->flags; 3084 3085 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3086 3087 if (vmf->vma->vm_file && 3088 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3089 return VM_FAULT_SIGBUS; 3090 3091 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3092 /* Restore original flags so that caller is not surprised */ 3093 vmf->flags = old_flags; 3094 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3095 return ret; 3096 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3097 folio_lock(folio); 3098 if (!folio->mapping) { 3099 folio_unlock(folio); 3100 return 0; /* retry */ 3101 } 3102 ret |= VM_FAULT_LOCKED; 3103 } else 3104 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3105 return ret; 3106 } 3107 3108 /* 3109 * Handle dirtying of a page in shared file mapping on a write fault. 3110 * 3111 * The function expects the page to be locked and unlocks it. 3112 */ 3113 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3114 { 3115 struct vm_area_struct *vma = vmf->vma; 3116 struct address_space *mapping; 3117 struct folio *folio = page_folio(vmf->page); 3118 bool dirtied; 3119 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3120 3121 dirtied = folio_mark_dirty(folio); 3122 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3123 /* 3124 * Take a local copy of the address_space - folio.mapping may be zeroed 3125 * by truncate after folio_unlock(). The address_space itself remains 3126 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3127 * release semantics to prevent the compiler from undoing this copying. 3128 */ 3129 mapping = folio_raw_mapping(folio); 3130 folio_unlock(folio); 3131 3132 if (!page_mkwrite) 3133 file_update_time(vma->vm_file); 3134 3135 /* 3136 * Throttle page dirtying rate down to writeback speed. 3137 * 3138 * mapping may be NULL here because some device drivers do not 3139 * set page.mapping but still dirty their pages 3140 * 3141 * Drop the mmap_lock before waiting on IO, if we can. The file 3142 * is pinning the mapping, as per above. 3143 */ 3144 if ((dirtied || page_mkwrite) && mapping) { 3145 struct file *fpin; 3146 3147 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3148 balance_dirty_pages_ratelimited(mapping); 3149 if (fpin) { 3150 fput(fpin); 3151 return VM_FAULT_COMPLETED; 3152 } 3153 } 3154 3155 return 0; 3156 } 3157 3158 /* 3159 * Handle write page faults for pages that can be reused in the current vma 3160 * 3161 * This can happen either due to the mapping being with the VM_SHARED flag, 3162 * or due to us being the last reference standing to the page. In either 3163 * case, all we need to do here is to mark the page as writable and update 3164 * any related book-keeping. 3165 */ 3166 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3167 __releases(vmf->ptl) 3168 { 3169 struct vm_area_struct *vma = vmf->vma; 3170 pte_t entry; 3171 3172 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3173 3174 if (folio) { 3175 VM_BUG_ON(folio_test_anon(folio) && 3176 !PageAnonExclusive(vmf->page)); 3177 /* 3178 * Clear the folio's cpupid information as the existing 3179 * information potentially belongs to a now completely 3180 * unrelated process. 3181 */ 3182 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3183 } 3184 3185 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3186 entry = pte_mkyoung(vmf->orig_pte); 3187 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3188 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3189 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3190 pte_unmap_unlock(vmf->pte, vmf->ptl); 3191 count_vm_event(PGREUSE); 3192 } 3193 3194 /* 3195 * We could add a bitflag somewhere, but for now, we know that all 3196 * vm_ops that have a ->map_pages have been audited and don't need 3197 * the mmap_lock to be held. 3198 */ 3199 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3200 { 3201 struct vm_area_struct *vma = vmf->vma; 3202 3203 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3204 return 0; 3205 vma_end_read(vma); 3206 return VM_FAULT_RETRY; 3207 } 3208 3209 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 3210 { 3211 struct vm_area_struct *vma = vmf->vma; 3212 3213 if (likely(vma->anon_vma)) 3214 return 0; 3215 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3216 vma_end_read(vma); 3217 return VM_FAULT_RETRY; 3218 } 3219 if (__anon_vma_prepare(vma)) 3220 return VM_FAULT_OOM; 3221 return 0; 3222 } 3223 3224 /* 3225 * Handle the case of a page which we actually need to copy to a new page, 3226 * either due to COW or unsharing. 3227 * 3228 * Called with mmap_lock locked and the old page referenced, but 3229 * without the ptl held. 3230 * 3231 * High level logic flow: 3232 * 3233 * - Allocate a page, copy the content of the old page to the new one. 3234 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3235 * - Take the PTL. If the pte changed, bail out and release the allocated page 3236 * - If the pte is still the way we remember it, update the page table and all 3237 * relevant references. This includes dropping the reference the page-table 3238 * held to the old page, as well as updating the rmap. 3239 * - In any case, unlock the PTL and drop the reference we took to the old page. 3240 */ 3241 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3242 { 3243 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3244 struct vm_area_struct *vma = vmf->vma; 3245 struct mm_struct *mm = vma->vm_mm; 3246 struct folio *old_folio = NULL; 3247 struct folio *new_folio = NULL; 3248 pte_t entry; 3249 int page_copied = 0; 3250 struct mmu_notifier_range range; 3251 vm_fault_t ret; 3252 bool pfn_is_zero; 3253 3254 delayacct_wpcopy_start(); 3255 3256 if (vmf->page) 3257 old_folio = page_folio(vmf->page); 3258 ret = vmf_anon_prepare(vmf); 3259 if (unlikely(ret)) 3260 goto out; 3261 3262 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3263 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3264 if (!new_folio) 3265 goto oom; 3266 3267 if (!pfn_is_zero) { 3268 int err; 3269 3270 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3271 if (err) { 3272 /* 3273 * COW failed, if the fault was solved by other, 3274 * it's fine. If not, userspace would re-fault on 3275 * the same address and we will handle the fault 3276 * from the second attempt. 3277 * The -EHWPOISON case will not be retried. 3278 */ 3279 folio_put(new_folio); 3280 if (old_folio) 3281 folio_put(old_folio); 3282 3283 delayacct_wpcopy_end(); 3284 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3285 } 3286 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3287 } 3288 3289 __folio_mark_uptodate(new_folio); 3290 3291 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3292 vmf->address & PAGE_MASK, 3293 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3294 mmu_notifier_invalidate_range_start(&range); 3295 3296 /* 3297 * Re-check the pte - we dropped the lock 3298 */ 3299 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3300 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3301 if (old_folio) { 3302 if (!folio_test_anon(old_folio)) { 3303 dec_mm_counter(mm, mm_counter_file(old_folio)); 3304 inc_mm_counter(mm, MM_ANONPAGES); 3305 } 3306 } else { 3307 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3308 inc_mm_counter(mm, MM_ANONPAGES); 3309 } 3310 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3311 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3312 entry = pte_sw_mkyoung(entry); 3313 if (unlikely(unshare)) { 3314 if (pte_soft_dirty(vmf->orig_pte)) 3315 entry = pte_mksoft_dirty(entry); 3316 if (pte_uffd_wp(vmf->orig_pte)) 3317 entry = pte_mkuffd_wp(entry); 3318 } else { 3319 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3320 } 3321 3322 /* 3323 * Clear the pte entry and flush it first, before updating the 3324 * pte with the new entry, to keep TLBs on different CPUs in 3325 * sync. This code used to set the new PTE then flush TLBs, but 3326 * that left a window where the new PTE could be loaded into 3327 * some TLBs while the old PTE remains in others. 3328 */ 3329 ptep_clear_flush(vma, vmf->address, vmf->pte); 3330 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3331 folio_add_lru_vma(new_folio, vma); 3332 /* 3333 * We call the notify macro here because, when using secondary 3334 * mmu page tables (such as kvm shadow page tables), we want the 3335 * new page to be mapped directly into the secondary page table. 3336 */ 3337 BUG_ON(unshare && pte_write(entry)); 3338 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3339 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3340 if (old_folio) { 3341 /* 3342 * Only after switching the pte to the new page may 3343 * we remove the mapcount here. Otherwise another 3344 * process may come and find the rmap count decremented 3345 * before the pte is switched to the new page, and 3346 * "reuse" the old page writing into it while our pte 3347 * here still points into it and can be read by other 3348 * threads. 3349 * 3350 * The critical issue is to order this 3351 * folio_remove_rmap_pte() with the ptp_clear_flush 3352 * above. Those stores are ordered by (if nothing else,) 3353 * the barrier present in the atomic_add_negative 3354 * in folio_remove_rmap_pte(); 3355 * 3356 * Then the TLB flush in ptep_clear_flush ensures that 3357 * no process can access the old page before the 3358 * decremented mapcount is visible. And the old page 3359 * cannot be reused until after the decremented 3360 * mapcount is visible. So transitively, TLBs to 3361 * old page will be flushed before it can be reused. 3362 */ 3363 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3364 } 3365 3366 /* Free the old page.. */ 3367 new_folio = old_folio; 3368 page_copied = 1; 3369 pte_unmap_unlock(vmf->pte, vmf->ptl); 3370 } else if (vmf->pte) { 3371 update_mmu_tlb(vma, vmf->address, vmf->pte); 3372 pte_unmap_unlock(vmf->pte, vmf->ptl); 3373 } 3374 3375 mmu_notifier_invalidate_range_end(&range); 3376 3377 if (new_folio) 3378 folio_put(new_folio); 3379 if (old_folio) { 3380 if (page_copied) 3381 free_swap_cache(old_folio); 3382 folio_put(old_folio); 3383 } 3384 3385 delayacct_wpcopy_end(); 3386 return 0; 3387 oom: 3388 ret = VM_FAULT_OOM; 3389 out: 3390 if (old_folio) 3391 folio_put(old_folio); 3392 3393 delayacct_wpcopy_end(); 3394 return ret; 3395 } 3396 3397 /** 3398 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3399 * writeable once the page is prepared 3400 * 3401 * @vmf: structure describing the fault 3402 * @folio: the folio of vmf->page 3403 * 3404 * This function handles all that is needed to finish a write page fault in a 3405 * shared mapping due to PTE being read-only once the mapped page is prepared. 3406 * It handles locking of PTE and modifying it. 3407 * 3408 * The function expects the page to be locked or other protection against 3409 * concurrent faults / writeback (such as DAX radix tree locks). 3410 * 3411 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3412 * we acquired PTE lock. 3413 */ 3414 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3415 { 3416 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3417 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3418 &vmf->ptl); 3419 if (!vmf->pte) 3420 return VM_FAULT_NOPAGE; 3421 /* 3422 * We might have raced with another page fault while we released the 3423 * pte_offset_map_lock. 3424 */ 3425 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3426 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3427 pte_unmap_unlock(vmf->pte, vmf->ptl); 3428 return VM_FAULT_NOPAGE; 3429 } 3430 wp_page_reuse(vmf, folio); 3431 return 0; 3432 } 3433 3434 /* 3435 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3436 * mapping 3437 */ 3438 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3439 { 3440 struct vm_area_struct *vma = vmf->vma; 3441 3442 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3443 vm_fault_t ret; 3444 3445 pte_unmap_unlock(vmf->pte, vmf->ptl); 3446 ret = vmf_can_call_fault(vmf); 3447 if (ret) 3448 return ret; 3449 3450 vmf->flags |= FAULT_FLAG_MKWRITE; 3451 ret = vma->vm_ops->pfn_mkwrite(vmf); 3452 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3453 return ret; 3454 return finish_mkwrite_fault(vmf, NULL); 3455 } 3456 wp_page_reuse(vmf, NULL); 3457 return 0; 3458 } 3459 3460 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3461 __releases(vmf->ptl) 3462 { 3463 struct vm_area_struct *vma = vmf->vma; 3464 vm_fault_t ret = 0; 3465 3466 folio_get(folio); 3467 3468 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3469 vm_fault_t tmp; 3470 3471 pte_unmap_unlock(vmf->pte, vmf->ptl); 3472 tmp = vmf_can_call_fault(vmf); 3473 if (tmp) { 3474 folio_put(folio); 3475 return tmp; 3476 } 3477 3478 tmp = do_page_mkwrite(vmf, folio); 3479 if (unlikely(!tmp || (tmp & 3480 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3481 folio_put(folio); 3482 return tmp; 3483 } 3484 tmp = finish_mkwrite_fault(vmf, folio); 3485 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3486 folio_unlock(folio); 3487 folio_put(folio); 3488 return tmp; 3489 } 3490 } else { 3491 wp_page_reuse(vmf, folio); 3492 folio_lock(folio); 3493 } 3494 ret |= fault_dirty_shared_page(vmf); 3495 folio_put(folio); 3496 3497 return ret; 3498 } 3499 3500 static bool wp_can_reuse_anon_folio(struct folio *folio, 3501 struct vm_area_struct *vma) 3502 { 3503 /* 3504 * We could currently only reuse a subpage of a large folio if no 3505 * other subpages of the large folios are still mapped. However, 3506 * let's just consistently not reuse subpages even if we could 3507 * reuse in that scenario, and give back a large folio a bit 3508 * sooner. 3509 */ 3510 if (folio_test_large(folio)) 3511 return false; 3512 3513 /* 3514 * We have to verify under folio lock: these early checks are 3515 * just an optimization to avoid locking the folio and freeing 3516 * the swapcache if there is little hope that we can reuse. 3517 * 3518 * KSM doesn't necessarily raise the folio refcount. 3519 */ 3520 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3521 return false; 3522 if (!folio_test_lru(folio)) 3523 /* 3524 * We cannot easily detect+handle references from 3525 * remote LRU caches or references to LRU folios. 3526 */ 3527 lru_add_drain(); 3528 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3529 return false; 3530 if (!folio_trylock(folio)) 3531 return false; 3532 if (folio_test_swapcache(folio)) 3533 folio_free_swap(folio); 3534 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3535 folio_unlock(folio); 3536 return false; 3537 } 3538 /* 3539 * Ok, we've got the only folio reference from our mapping 3540 * and the folio is locked, it's dark out, and we're wearing 3541 * sunglasses. Hit it. 3542 */ 3543 folio_move_anon_rmap(folio, vma); 3544 folio_unlock(folio); 3545 return true; 3546 } 3547 3548 /* 3549 * This routine handles present pages, when 3550 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3551 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3552 * (FAULT_FLAG_UNSHARE) 3553 * 3554 * It is done by copying the page to a new address and decrementing the 3555 * shared-page counter for the old page. 3556 * 3557 * Note that this routine assumes that the protection checks have been 3558 * done by the caller (the low-level page fault routine in most cases). 3559 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3560 * done any necessary COW. 3561 * 3562 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3563 * though the page will change only once the write actually happens. This 3564 * avoids a few races, and potentially makes it more efficient. 3565 * 3566 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3567 * but allow concurrent faults), with pte both mapped and locked. 3568 * We return with mmap_lock still held, but pte unmapped and unlocked. 3569 */ 3570 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3571 __releases(vmf->ptl) 3572 { 3573 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3574 struct vm_area_struct *vma = vmf->vma; 3575 struct folio *folio = NULL; 3576 pte_t pte; 3577 3578 if (likely(!unshare)) { 3579 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3580 if (!userfaultfd_wp_async(vma)) { 3581 pte_unmap_unlock(vmf->pte, vmf->ptl); 3582 return handle_userfault(vmf, VM_UFFD_WP); 3583 } 3584 3585 /* 3586 * Nothing needed (cache flush, TLB invalidations, 3587 * etc.) because we're only removing the uffd-wp bit, 3588 * which is completely invisible to the user. 3589 */ 3590 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3591 3592 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3593 /* 3594 * Update this to be prepared for following up CoW 3595 * handling 3596 */ 3597 vmf->orig_pte = pte; 3598 } 3599 3600 /* 3601 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3602 * is flushed in this case before copying. 3603 */ 3604 if (unlikely(userfaultfd_wp(vmf->vma) && 3605 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3606 flush_tlb_page(vmf->vma, vmf->address); 3607 } 3608 3609 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3610 3611 if (vmf->page) 3612 folio = page_folio(vmf->page); 3613 3614 /* 3615 * Shared mapping: we are guaranteed to have VM_WRITE and 3616 * FAULT_FLAG_WRITE set at this point. 3617 */ 3618 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3619 /* 3620 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3621 * VM_PFNMAP VMA. 3622 * 3623 * We should not cow pages in a shared writeable mapping. 3624 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3625 */ 3626 if (!vmf->page) 3627 return wp_pfn_shared(vmf); 3628 return wp_page_shared(vmf, folio); 3629 } 3630 3631 /* 3632 * Private mapping: create an exclusive anonymous page copy if reuse 3633 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3634 * 3635 * If we encounter a page that is marked exclusive, we must reuse 3636 * the page without further checks. 3637 */ 3638 if (folio && folio_test_anon(folio) && 3639 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3640 if (!PageAnonExclusive(vmf->page)) 3641 SetPageAnonExclusive(vmf->page); 3642 if (unlikely(unshare)) { 3643 pte_unmap_unlock(vmf->pte, vmf->ptl); 3644 return 0; 3645 } 3646 wp_page_reuse(vmf, folio); 3647 return 0; 3648 } 3649 /* 3650 * Ok, we need to copy. Oh, well.. 3651 */ 3652 if (folio) 3653 folio_get(folio); 3654 3655 pte_unmap_unlock(vmf->pte, vmf->ptl); 3656 #ifdef CONFIG_KSM 3657 if (folio && folio_test_ksm(folio)) 3658 count_vm_event(COW_KSM); 3659 #endif 3660 return wp_page_copy(vmf); 3661 } 3662 3663 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3664 unsigned long start_addr, unsigned long end_addr, 3665 struct zap_details *details) 3666 { 3667 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3668 } 3669 3670 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3671 pgoff_t first_index, 3672 pgoff_t last_index, 3673 struct zap_details *details) 3674 { 3675 struct vm_area_struct *vma; 3676 pgoff_t vba, vea, zba, zea; 3677 3678 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3679 vba = vma->vm_pgoff; 3680 vea = vba + vma_pages(vma) - 1; 3681 zba = max(first_index, vba); 3682 zea = min(last_index, vea); 3683 3684 unmap_mapping_range_vma(vma, 3685 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3686 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3687 details); 3688 } 3689 } 3690 3691 /** 3692 * unmap_mapping_folio() - Unmap single folio from processes. 3693 * @folio: The locked folio to be unmapped. 3694 * 3695 * Unmap this folio from any userspace process which still has it mmaped. 3696 * Typically, for efficiency, the range of nearby pages has already been 3697 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3698 * truncation or invalidation holds the lock on a folio, it may find that 3699 * the page has been remapped again: and then uses unmap_mapping_folio() 3700 * to unmap it finally. 3701 */ 3702 void unmap_mapping_folio(struct folio *folio) 3703 { 3704 struct address_space *mapping = folio->mapping; 3705 struct zap_details details = { }; 3706 pgoff_t first_index; 3707 pgoff_t last_index; 3708 3709 VM_BUG_ON(!folio_test_locked(folio)); 3710 3711 first_index = folio->index; 3712 last_index = folio_next_index(folio) - 1; 3713 3714 details.even_cows = false; 3715 details.single_folio = folio; 3716 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3717 3718 i_mmap_lock_read(mapping); 3719 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3720 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3721 last_index, &details); 3722 i_mmap_unlock_read(mapping); 3723 } 3724 3725 /** 3726 * unmap_mapping_pages() - Unmap pages from processes. 3727 * @mapping: The address space containing pages to be unmapped. 3728 * @start: Index of first page to be unmapped. 3729 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3730 * @even_cows: Whether to unmap even private COWed pages. 3731 * 3732 * Unmap the pages in this address space from any userspace process which 3733 * has them mmaped. Generally, you want to remove COWed pages as well when 3734 * a file is being truncated, but not when invalidating pages from the page 3735 * cache. 3736 */ 3737 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3738 pgoff_t nr, bool even_cows) 3739 { 3740 struct zap_details details = { }; 3741 pgoff_t first_index = start; 3742 pgoff_t last_index = start + nr - 1; 3743 3744 details.even_cows = even_cows; 3745 if (last_index < first_index) 3746 last_index = ULONG_MAX; 3747 3748 i_mmap_lock_read(mapping); 3749 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3750 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3751 last_index, &details); 3752 i_mmap_unlock_read(mapping); 3753 } 3754 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3755 3756 /** 3757 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3758 * address_space corresponding to the specified byte range in the underlying 3759 * file. 3760 * 3761 * @mapping: the address space containing mmaps to be unmapped. 3762 * @holebegin: byte in first page to unmap, relative to the start of 3763 * the underlying file. This will be rounded down to a PAGE_SIZE 3764 * boundary. Note that this is different from truncate_pagecache(), which 3765 * must keep the partial page. In contrast, we must get rid of 3766 * partial pages. 3767 * @holelen: size of prospective hole in bytes. This will be rounded 3768 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3769 * end of the file. 3770 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3771 * but 0 when invalidating pagecache, don't throw away private data. 3772 */ 3773 void unmap_mapping_range(struct address_space *mapping, 3774 loff_t const holebegin, loff_t const holelen, int even_cows) 3775 { 3776 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3777 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3778 3779 /* Check for overflow. */ 3780 if (sizeof(holelen) > sizeof(hlen)) { 3781 long long holeend = 3782 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3783 if (holeend & ~(long long)ULONG_MAX) 3784 hlen = ULONG_MAX - hba + 1; 3785 } 3786 3787 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3788 } 3789 EXPORT_SYMBOL(unmap_mapping_range); 3790 3791 /* 3792 * Restore a potential device exclusive pte to a working pte entry 3793 */ 3794 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3795 { 3796 struct folio *folio = page_folio(vmf->page); 3797 struct vm_area_struct *vma = vmf->vma; 3798 struct mmu_notifier_range range; 3799 vm_fault_t ret; 3800 3801 /* 3802 * We need a reference to lock the folio because we don't hold 3803 * the PTL so a racing thread can remove the device-exclusive 3804 * entry and unmap it. If the folio is free the entry must 3805 * have been removed already. If it happens to have already 3806 * been re-allocated after being freed all we do is lock and 3807 * unlock it. 3808 */ 3809 if (!folio_try_get(folio)) 3810 return 0; 3811 3812 ret = folio_lock_or_retry(folio, vmf); 3813 if (ret) { 3814 folio_put(folio); 3815 return ret; 3816 } 3817 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3818 vma->vm_mm, vmf->address & PAGE_MASK, 3819 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3820 mmu_notifier_invalidate_range_start(&range); 3821 3822 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3823 &vmf->ptl); 3824 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3825 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3826 3827 if (vmf->pte) 3828 pte_unmap_unlock(vmf->pte, vmf->ptl); 3829 folio_unlock(folio); 3830 folio_put(folio); 3831 3832 mmu_notifier_invalidate_range_end(&range); 3833 return 0; 3834 } 3835 3836 static inline bool should_try_to_free_swap(struct folio *folio, 3837 struct vm_area_struct *vma, 3838 unsigned int fault_flags) 3839 { 3840 if (!folio_test_swapcache(folio)) 3841 return false; 3842 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3843 folio_test_mlocked(folio)) 3844 return true; 3845 /* 3846 * If we want to map a page that's in the swapcache writable, we 3847 * have to detect via the refcount if we're really the exclusive 3848 * user. Try freeing the swapcache to get rid of the swapcache 3849 * reference only in case it's likely that we'll be the exlusive user. 3850 */ 3851 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3852 folio_ref_count(folio) == 2; 3853 } 3854 3855 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3856 { 3857 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3858 vmf->address, &vmf->ptl); 3859 if (!vmf->pte) 3860 return 0; 3861 /* 3862 * Be careful so that we will only recover a special uffd-wp pte into a 3863 * none pte. Otherwise it means the pte could have changed, so retry. 3864 * 3865 * This should also cover the case where e.g. the pte changed 3866 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3867 * So is_pte_marker() check is not enough to safely drop the pte. 3868 */ 3869 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3870 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3871 pte_unmap_unlock(vmf->pte, vmf->ptl); 3872 return 0; 3873 } 3874 3875 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3876 { 3877 if (vma_is_anonymous(vmf->vma)) 3878 return do_anonymous_page(vmf); 3879 else 3880 return do_fault(vmf); 3881 } 3882 3883 /* 3884 * This is actually a page-missing access, but with uffd-wp special pte 3885 * installed. It means this pte was wr-protected before being unmapped. 3886 */ 3887 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3888 { 3889 /* 3890 * Just in case there're leftover special ptes even after the region 3891 * got unregistered - we can simply clear them. 3892 */ 3893 if (unlikely(!userfaultfd_wp(vmf->vma))) 3894 return pte_marker_clear(vmf); 3895 3896 return do_pte_missing(vmf); 3897 } 3898 3899 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3900 { 3901 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3902 unsigned long marker = pte_marker_get(entry); 3903 3904 /* 3905 * PTE markers should never be empty. If anything weird happened, 3906 * the best thing to do is to kill the process along with its mm. 3907 */ 3908 if (WARN_ON_ONCE(!marker)) 3909 return VM_FAULT_SIGBUS; 3910 3911 /* Higher priority than uffd-wp when data corrupted */ 3912 if (marker & PTE_MARKER_POISONED) 3913 return VM_FAULT_HWPOISON; 3914 3915 if (pte_marker_entry_uffd_wp(entry)) 3916 return pte_marker_handle_uffd_wp(vmf); 3917 3918 /* This is an unknown pte marker */ 3919 return VM_FAULT_SIGBUS; 3920 } 3921 3922 /* 3923 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3924 * but allow concurrent faults), and pte mapped but not yet locked. 3925 * We return with pte unmapped and unlocked. 3926 * 3927 * We return with the mmap_lock locked or unlocked in the same cases 3928 * as does filemap_fault(). 3929 */ 3930 vm_fault_t do_swap_page(struct vm_fault *vmf) 3931 { 3932 struct vm_area_struct *vma = vmf->vma; 3933 struct folio *swapcache, *folio = NULL; 3934 struct page *page; 3935 struct swap_info_struct *si = NULL; 3936 rmap_t rmap_flags = RMAP_NONE; 3937 bool need_clear_cache = false; 3938 bool exclusive = false; 3939 swp_entry_t entry; 3940 pte_t pte; 3941 vm_fault_t ret = 0; 3942 void *shadow = NULL; 3943 3944 if (!pte_unmap_same(vmf)) 3945 goto out; 3946 3947 entry = pte_to_swp_entry(vmf->orig_pte); 3948 if (unlikely(non_swap_entry(entry))) { 3949 if (is_migration_entry(entry)) { 3950 migration_entry_wait(vma->vm_mm, vmf->pmd, 3951 vmf->address); 3952 } else if (is_device_exclusive_entry(entry)) { 3953 vmf->page = pfn_swap_entry_to_page(entry); 3954 ret = remove_device_exclusive_entry(vmf); 3955 } else if (is_device_private_entry(entry)) { 3956 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3957 /* 3958 * migrate_to_ram is not yet ready to operate 3959 * under VMA lock. 3960 */ 3961 vma_end_read(vma); 3962 ret = VM_FAULT_RETRY; 3963 goto out; 3964 } 3965 3966 vmf->page = pfn_swap_entry_to_page(entry); 3967 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3968 vmf->address, &vmf->ptl); 3969 if (unlikely(!vmf->pte || 3970 !pte_same(ptep_get(vmf->pte), 3971 vmf->orig_pte))) 3972 goto unlock; 3973 3974 /* 3975 * Get a page reference while we know the page can't be 3976 * freed. 3977 */ 3978 get_page(vmf->page); 3979 pte_unmap_unlock(vmf->pte, vmf->ptl); 3980 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3981 put_page(vmf->page); 3982 } else if (is_hwpoison_entry(entry)) { 3983 ret = VM_FAULT_HWPOISON; 3984 } else if (is_pte_marker_entry(entry)) { 3985 ret = handle_pte_marker(vmf); 3986 } else { 3987 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3988 ret = VM_FAULT_SIGBUS; 3989 } 3990 goto out; 3991 } 3992 3993 /* Prevent swapoff from happening to us. */ 3994 si = get_swap_device(entry); 3995 if (unlikely(!si)) 3996 goto out; 3997 3998 folio = swap_cache_get_folio(entry, vma, vmf->address); 3999 if (folio) 4000 page = folio_file_page(folio, swp_offset(entry)); 4001 swapcache = folio; 4002 4003 if (!folio) { 4004 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4005 __swap_count(entry) == 1) { 4006 /* 4007 * Prevent parallel swapin from proceeding with 4008 * the cache flag. Otherwise, another thread may 4009 * finish swapin first, free the entry, and swapout 4010 * reusing the same entry. It's undetectable as 4011 * pte_same() returns true due to entry reuse. 4012 */ 4013 if (swapcache_prepare(entry)) { 4014 /* Relax a bit to prevent rapid repeated page faults */ 4015 schedule_timeout_uninterruptible(1); 4016 goto out; 4017 } 4018 need_clear_cache = true; 4019 4020 /* skip swapcache */ 4021 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 4022 vma, vmf->address, false); 4023 page = &folio->page; 4024 if (folio) { 4025 __folio_set_locked(folio); 4026 __folio_set_swapbacked(folio); 4027 4028 if (mem_cgroup_swapin_charge_folio(folio, 4029 vma->vm_mm, GFP_KERNEL, 4030 entry)) { 4031 ret = VM_FAULT_OOM; 4032 goto out_page; 4033 } 4034 mem_cgroup_swapin_uncharge_swap(entry); 4035 4036 shadow = get_shadow_from_swap_cache(entry); 4037 if (shadow) 4038 workingset_refault(folio, shadow); 4039 4040 folio_add_lru(folio); 4041 4042 /* To provide entry to swap_read_folio() */ 4043 folio->swap = entry; 4044 swap_read_folio(folio, true, NULL); 4045 folio->private = NULL; 4046 } 4047 } else { 4048 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4049 vmf); 4050 if (page) 4051 folio = page_folio(page); 4052 swapcache = folio; 4053 } 4054 4055 if (!folio) { 4056 /* 4057 * Back out if somebody else faulted in this pte 4058 * while we released the pte lock. 4059 */ 4060 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4061 vmf->address, &vmf->ptl); 4062 if (likely(vmf->pte && 4063 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4064 ret = VM_FAULT_OOM; 4065 goto unlock; 4066 } 4067 4068 /* Had to read the page from swap area: Major fault */ 4069 ret = VM_FAULT_MAJOR; 4070 count_vm_event(PGMAJFAULT); 4071 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4072 } else if (PageHWPoison(page)) { 4073 /* 4074 * hwpoisoned dirty swapcache pages are kept for killing 4075 * owner processes (which may be unknown at hwpoison time) 4076 */ 4077 ret = VM_FAULT_HWPOISON; 4078 goto out_release; 4079 } 4080 4081 ret |= folio_lock_or_retry(folio, vmf); 4082 if (ret & VM_FAULT_RETRY) 4083 goto out_release; 4084 4085 if (swapcache) { 4086 /* 4087 * Make sure folio_free_swap() or swapoff did not release the 4088 * swapcache from under us. The page pin, and pte_same test 4089 * below, are not enough to exclude that. Even if it is still 4090 * swapcache, we need to check that the page's swap has not 4091 * changed. 4092 */ 4093 if (unlikely(!folio_test_swapcache(folio) || 4094 page_swap_entry(page).val != entry.val)) 4095 goto out_page; 4096 4097 /* 4098 * KSM sometimes has to copy on read faults, for example, if 4099 * page->index of !PageKSM() pages would be nonlinear inside the 4100 * anon VMA -- PageKSM() is lost on actual swapout. 4101 */ 4102 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4103 if (unlikely(!folio)) { 4104 ret = VM_FAULT_OOM; 4105 folio = swapcache; 4106 goto out_page; 4107 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4108 ret = VM_FAULT_HWPOISON; 4109 folio = swapcache; 4110 goto out_page; 4111 } 4112 if (folio != swapcache) 4113 page = folio_page(folio, 0); 4114 4115 /* 4116 * If we want to map a page that's in the swapcache writable, we 4117 * have to detect via the refcount if we're really the exclusive 4118 * owner. Try removing the extra reference from the local LRU 4119 * caches if required. 4120 */ 4121 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4122 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4123 lru_add_drain(); 4124 } 4125 4126 folio_throttle_swaprate(folio, GFP_KERNEL); 4127 4128 /* 4129 * Back out if somebody else already faulted in this pte. 4130 */ 4131 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4132 &vmf->ptl); 4133 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4134 goto out_nomap; 4135 4136 if (unlikely(!folio_test_uptodate(folio))) { 4137 ret = VM_FAULT_SIGBUS; 4138 goto out_nomap; 4139 } 4140 4141 /* 4142 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4143 * must never point at an anonymous page in the swapcache that is 4144 * PG_anon_exclusive. Sanity check that this holds and especially, that 4145 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4146 * check after taking the PT lock and making sure that nobody 4147 * concurrently faulted in this page and set PG_anon_exclusive. 4148 */ 4149 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4150 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4151 4152 /* 4153 * Check under PT lock (to protect against concurrent fork() sharing 4154 * the swap entry concurrently) for certainly exclusive pages. 4155 */ 4156 if (!folio_test_ksm(folio)) { 4157 exclusive = pte_swp_exclusive(vmf->orig_pte); 4158 if (folio != swapcache) { 4159 /* 4160 * We have a fresh page that is not exposed to the 4161 * swapcache -> certainly exclusive. 4162 */ 4163 exclusive = true; 4164 } else if (exclusive && folio_test_writeback(folio) && 4165 data_race(si->flags & SWP_STABLE_WRITES)) { 4166 /* 4167 * This is tricky: not all swap backends support 4168 * concurrent page modifications while under writeback. 4169 * 4170 * So if we stumble over such a page in the swapcache 4171 * we must not set the page exclusive, otherwise we can 4172 * map it writable without further checks and modify it 4173 * while still under writeback. 4174 * 4175 * For these problematic swap backends, simply drop the 4176 * exclusive marker: this is perfectly fine as we start 4177 * writeback only if we fully unmapped the page and 4178 * there are no unexpected references on the page after 4179 * unmapping succeeded. After fully unmapped, no 4180 * further GUP references (FOLL_GET and FOLL_PIN) can 4181 * appear, so dropping the exclusive marker and mapping 4182 * it only R/O is fine. 4183 */ 4184 exclusive = false; 4185 } 4186 } 4187 4188 /* 4189 * Some architectures may have to restore extra metadata to the page 4190 * when reading from swap. This metadata may be indexed by swap entry 4191 * so this must be called before swap_free(). 4192 */ 4193 arch_swap_restore(entry, folio); 4194 4195 /* 4196 * Remove the swap entry and conditionally try to free up the swapcache. 4197 * We're already holding a reference on the page but haven't mapped it 4198 * yet. 4199 */ 4200 swap_free(entry); 4201 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4202 folio_free_swap(folio); 4203 4204 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4205 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 4206 pte = mk_pte(page, vma->vm_page_prot); 4207 4208 /* 4209 * Same logic as in do_wp_page(); however, optimize for pages that are 4210 * certainly not shared either because we just allocated them without 4211 * exposing them to the swapcache or because the swap entry indicates 4212 * exclusivity. 4213 */ 4214 if (!folio_test_ksm(folio) && 4215 (exclusive || folio_ref_count(folio) == 1)) { 4216 if (vmf->flags & FAULT_FLAG_WRITE) { 4217 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4218 vmf->flags &= ~FAULT_FLAG_WRITE; 4219 } 4220 rmap_flags |= RMAP_EXCLUSIVE; 4221 } 4222 flush_icache_page(vma, page); 4223 if (pte_swp_soft_dirty(vmf->orig_pte)) 4224 pte = pte_mksoft_dirty(pte); 4225 if (pte_swp_uffd_wp(vmf->orig_pte)) 4226 pte = pte_mkuffd_wp(pte); 4227 vmf->orig_pte = pte; 4228 4229 /* ksm created a completely new copy */ 4230 if (unlikely(folio != swapcache && swapcache)) { 4231 folio_add_new_anon_rmap(folio, vma, vmf->address); 4232 folio_add_lru_vma(folio, vma); 4233 } else { 4234 folio_add_anon_rmap_pte(folio, page, vma, vmf->address, 4235 rmap_flags); 4236 } 4237 4238 VM_BUG_ON(!folio_test_anon(folio) || 4239 (pte_write(pte) && !PageAnonExclusive(page))); 4240 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4241 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4242 4243 folio_unlock(folio); 4244 if (folio != swapcache && swapcache) { 4245 /* 4246 * Hold the lock to avoid the swap entry to be reused 4247 * until we take the PT lock for the pte_same() check 4248 * (to avoid false positives from pte_same). For 4249 * further safety release the lock after the swap_free 4250 * so that the swap count won't change under a 4251 * parallel locked swapcache. 4252 */ 4253 folio_unlock(swapcache); 4254 folio_put(swapcache); 4255 } 4256 4257 if (vmf->flags & FAULT_FLAG_WRITE) { 4258 ret |= do_wp_page(vmf); 4259 if (ret & VM_FAULT_ERROR) 4260 ret &= VM_FAULT_ERROR; 4261 goto out; 4262 } 4263 4264 /* No need to invalidate - it was non-present before */ 4265 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4266 unlock: 4267 if (vmf->pte) 4268 pte_unmap_unlock(vmf->pte, vmf->ptl); 4269 out: 4270 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4271 if (need_clear_cache) 4272 swapcache_clear(si, entry); 4273 if (si) 4274 put_swap_device(si); 4275 return ret; 4276 out_nomap: 4277 if (vmf->pte) 4278 pte_unmap_unlock(vmf->pte, vmf->ptl); 4279 out_page: 4280 folio_unlock(folio); 4281 out_release: 4282 folio_put(folio); 4283 if (folio != swapcache && swapcache) { 4284 folio_unlock(swapcache); 4285 folio_put(swapcache); 4286 } 4287 if (need_clear_cache) 4288 swapcache_clear(si, entry); 4289 if (si) 4290 put_swap_device(si); 4291 return ret; 4292 } 4293 4294 static bool pte_range_none(pte_t *pte, int nr_pages) 4295 { 4296 int i; 4297 4298 for (i = 0; i < nr_pages; i++) { 4299 if (!pte_none(ptep_get_lockless(pte + i))) 4300 return false; 4301 } 4302 4303 return true; 4304 } 4305 4306 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4307 { 4308 struct vm_area_struct *vma = vmf->vma; 4309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4310 unsigned long orders; 4311 struct folio *folio; 4312 unsigned long addr; 4313 pte_t *pte; 4314 gfp_t gfp; 4315 int order; 4316 4317 /* 4318 * If uffd is active for the vma we need per-page fault fidelity to 4319 * maintain the uffd semantics. 4320 */ 4321 if (unlikely(userfaultfd_armed(vma))) 4322 goto fallback; 4323 4324 /* 4325 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4326 * for this vma. Then filter out the orders that can't be allocated over 4327 * the faulting address and still be fully contained in the vma. 4328 */ 4329 orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true, 4330 BIT(PMD_ORDER) - 1); 4331 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4332 4333 if (!orders) 4334 goto fallback; 4335 4336 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4337 if (!pte) 4338 return ERR_PTR(-EAGAIN); 4339 4340 /* 4341 * Find the highest order where the aligned range is completely 4342 * pte_none(). Note that all remaining orders will be completely 4343 * pte_none(). 4344 */ 4345 order = highest_order(orders); 4346 while (orders) { 4347 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4348 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4349 break; 4350 order = next_order(&orders, order); 4351 } 4352 4353 pte_unmap(pte); 4354 4355 /* Try allocating the highest of the remaining orders. */ 4356 gfp = vma_thp_gfp_mask(vma); 4357 while (orders) { 4358 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4359 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4360 if (folio) { 4361 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4362 folio_put(folio); 4363 goto next; 4364 } 4365 folio_throttle_swaprate(folio, gfp); 4366 clear_huge_page(&folio->page, vmf->address, 1 << order); 4367 return folio; 4368 } 4369 next: 4370 order = next_order(&orders, order); 4371 } 4372 4373 fallback: 4374 #endif 4375 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4376 } 4377 4378 /* 4379 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4380 * but allow concurrent faults), and pte mapped but not yet locked. 4381 * We return with mmap_lock still held, but pte unmapped and unlocked. 4382 */ 4383 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4384 { 4385 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4386 struct vm_area_struct *vma = vmf->vma; 4387 unsigned long addr = vmf->address; 4388 struct folio *folio; 4389 vm_fault_t ret = 0; 4390 int nr_pages = 1; 4391 pte_t entry; 4392 int i; 4393 4394 /* File mapping without ->vm_ops ? */ 4395 if (vma->vm_flags & VM_SHARED) 4396 return VM_FAULT_SIGBUS; 4397 4398 /* 4399 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4400 * be distinguished from a transient failure of pte_offset_map(). 4401 */ 4402 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4403 return VM_FAULT_OOM; 4404 4405 /* Use the zero-page for reads */ 4406 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4407 !mm_forbids_zeropage(vma->vm_mm)) { 4408 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4409 vma->vm_page_prot)); 4410 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4411 vmf->address, &vmf->ptl); 4412 if (!vmf->pte) 4413 goto unlock; 4414 if (vmf_pte_changed(vmf)) { 4415 update_mmu_tlb(vma, vmf->address, vmf->pte); 4416 goto unlock; 4417 } 4418 ret = check_stable_address_space(vma->vm_mm); 4419 if (ret) 4420 goto unlock; 4421 /* Deliver the page fault to userland, check inside PT lock */ 4422 if (userfaultfd_missing(vma)) { 4423 pte_unmap_unlock(vmf->pte, vmf->ptl); 4424 return handle_userfault(vmf, VM_UFFD_MISSING); 4425 } 4426 goto setpte; 4427 } 4428 4429 /* Allocate our own private page. */ 4430 if (unlikely(anon_vma_prepare(vma))) 4431 goto oom; 4432 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4433 folio = alloc_anon_folio(vmf); 4434 if (IS_ERR(folio)) 4435 return 0; 4436 if (!folio) 4437 goto oom; 4438 4439 nr_pages = folio_nr_pages(folio); 4440 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4441 4442 /* 4443 * The memory barrier inside __folio_mark_uptodate makes sure that 4444 * preceding stores to the page contents become visible before 4445 * the set_pte_at() write. 4446 */ 4447 __folio_mark_uptodate(folio); 4448 4449 entry = mk_pte(&folio->page, vma->vm_page_prot); 4450 entry = pte_sw_mkyoung(entry); 4451 if (vma->vm_flags & VM_WRITE) 4452 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4453 4454 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4455 if (!vmf->pte) 4456 goto release; 4457 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4458 update_mmu_tlb(vma, addr, vmf->pte); 4459 goto release; 4460 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4461 for (i = 0; i < nr_pages; i++) 4462 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i); 4463 goto release; 4464 } 4465 4466 ret = check_stable_address_space(vma->vm_mm); 4467 if (ret) 4468 goto release; 4469 4470 /* Deliver the page fault to userland, check inside PT lock */ 4471 if (userfaultfd_missing(vma)) { 4472 pte_unmap_unlock(vmf->pte, vmf->ptl); 4473 folio_put(folio); 4474 return handle_userfault(vmf, VM_UFFD_MISSING); 4475 } 4476 4477 folio_ref_add(folio, nr_pages - 1); 4478 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4479 folio_add_new_anon_rmap(folio, vma, addr); 4480 folio_add_lru_vma(folio, vma); 4481 setpte: 4482 if (uffd_wp) 4483 entry = pte_mkuffd_wp(entry); 4484 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4485 4486 /* No need to invalidate - it was non-present before */ 4487 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4488 unlock: 4489 if (vmf->pte) 4490 pte_unmap_unlock(vmf->pte, vmf->ptl); 4491 return ret; 4492 release: 4493 folio_put(folio); 4494 goto unlock; 4495 oom: 4496 return VM_FAULT_OOM; 4497 } 4498 4499 /* 4500 * The mmap_lock must have been held on entry, and may have been 4501 * released depending on flags and vma->vm_ops->fault() return value. 4502 * See filemap_fault() and __lock_page_retry(). 4503 */ 4504 static vm_fault_t __do_fault(struct vm_fault *vmf) 4505 { 4506 struct vm_area_struct *vma = vmf->vma; 4507 struct folio *folio; 4508 vm_fault_t ret; 4509 4510 /* 4511 * Preallocate pte before we take page_lock because this might lead to 4512 * deadlocks for memcg reclaim which waits for pages under writeback: 4513 * lock_page(A) 4514 * SetPageWriteback(A) 4515 * unlock_page(A) 4516 * lock_page(B) 4517 * lock_page(B) 4518 * pte_alloc_one 4519 * shrink_page_list 4520 * wait_on_page_writeback(A) 4521 * SetPageWriteback(B) 4522 * unlock_page(B) 4523 * # flush A, B to clear the writeback 4524 */ 4525 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4526 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4527 if (!vmf->prealloc_pte) 4528 return VM_FAULT_OOM; 4529 } 4530 4531 ret = vma->vm_ops->fault(vmf); 4532 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4533 VM_FAULT_DONE_COW))) 4534 return ret; 4535 4536 folio = page_folio(vmf->page); 4537 if (unlikely(PageHWPoison(vmf->page))) { 4538 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4539 if (ret & VM_FAULT_LOCKED) { 4540 if (page_mapped(vmf->page)) 4541 unmap_mapping_folio(folio); 4542 /* Retry if a clean folio was removed from the cache. */ 4543 if (mapping_evict_folio(folio->mapping, folio)) 4544 poisonret = VM_FAULT_NOPAGE; 4545 folio_unlock(folio); 4546 } 4547 folio_put(folio); 4548 vmf->page = NULL; 4549 return poisonret; 4550 } 4551 4552 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4553 folio_lock(folio); 4554 else 4555 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4556 4557 return ret; 4558 } 4559 4560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4561 static void deposit_prealloc_pte(struct vm_fault *vmf) 4562 { 4563 struct vm_area_struct *vma = vmf->vma; 4564 4565 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4566 /* 4567 * We are going to consume the prealloc table, 4568 * count that as nr_ptes. 4569 */ 4570 mm_inc_nr_ptes(vma->vm_mm); 4571 vmf->prealloc_pte = NULL; 4572 } 4573 4574 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4575 { 4576 struct folio *folio = page_folio(page); 4577 struct vm_area_struct *vma = vmf->vma; 4578 bool write = vmf->flags & FAULT_FLAG_WRITE; 4579 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4580 pmd_t entry; 4581 vm_fault_t ret = VM_FAULT_FALLBACK; 4582 4583 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4584 return ret; 4585 4586 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER) 4587 return ret; 4588 4589 /* 4590 * Just backoff if any subpage of a THP is corrupted otherwise 4591 * the corrupted page may mapped by PMD silently to escape the 4592 * check. This kind of THP just can be PTE mapped. Access to 4593 * the corrupted subpage should trigger SIGBUS as expected. 4594 */ 4595 if (unlikely(folio_test_has_hwpoisoned(folio))) 4596 return ret; 4597 4598 /* 4599 * Archs like ppc64 need additional space to store information 4600 * related to pte entry. Use the preallocated table for that. 4601 */ 4602 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4603 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4604 if (!vmf->prealloc_pte) 4605 return VM_FAULT_OOM; 4606 } 4607 4608 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4609 if (unlikely(!pmd_none(*vmf->pmd))) 4610 goto out; 4611 4612 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4613 4614 entry = mk_huge_pmd(page, vma->vm_page_prot); 4615 if (write) 4616 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4617 4618 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 4619 folio_add_file_rmap_pmd(folio, page, vma); 4620 4621 /* 4622 * deposit and withdraw with pmd lock held 4623 */ 4624 if (arch_needs_pgtable_deposit()) 4625 deposit_prealloc_pte(vmf); 4626 4627 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4628 4629 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4630 4631 /* fault is handled */ 4632 ret = 0; 4633 count_vm_event(THP_FILE_MAPPED); 4634 out: 4635 spin_unlock(vmf->ptl); 4636 return ret; 4637 } 4638 #else 4639 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4640 { 4641 return VM_FAULT_FALLBACK; 4642 } 4643 #endif 4644 4645 /** 4646 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4647 * @vmf: Fault decription. 4648 * @folio: The folio that contains @page. 4649 * @page: The first page to create a PTE for. 4650 * @nr: The number of PTEs to create. 4651 * @addr: The first address to create a PTE for. 4652 */ 4653 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4654 struct page *page, unsigned int nr, unsigned long addr) 4655 { 4656 struct vm_area_struct *vma = vmf->vma; 4657 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4658 bool write = vmf->flags & FAULT_FLAG_WRITE; 4659 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4660 pte_t entry; 4661 4662 flush_icache_pages(vma, page, nr); 4663 entry = mk_pte(page, vma->vm_page_prot); 4664 4665 if (prefault && arch_wants_old_prefaulted_pte()) 4666 entry = pte_mkold(entry); 4667 else 4668 entry = pte_sw_mkyoung(entry); 4669 4670 if (write) 4671 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4672 if (unlikely(uffd_wp)) 4673 entry = pte_mkuffd_wp(entry); 4674 /* copy-on-write page */ 4675 if (write && !(vma->vm_flags & VM_SHARED)) { 4676 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4677 VM_BUG_ON_FOLIO(nr != 1, folio); 4678 folio_add_new_anon_rmap(folio, vma, addr); 4679 folio_add_lru_vma(folio, vma); 4680 } else { 4681 add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr); 4682 folio_add_file_rmap_ptes(folio, page, nr, vma); 4683 } 4684 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4685 4686 /* no need to invalidate: a not-present page won't be cached */ 4687 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4688 } 4689 4690 static bool vmf_pte_changed(struct vm_fault *vmf) 4691 { 4692 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4693 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4694 4695 return !pte_none(ptep_get(vmf->pte)); 4696 } 4697 4698 /** 4699 * finish_fault - finish page fault once we have prepared the page to fault 4700 * 4701 * @vmf: structure describing the fault 4702 * 4703 * This function handles all that is needed to finish a page fault once the 4704 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4705 * given page, adds reverse page mapping, handles memcg charges and LRU 4706 * addition. 4707 * 4708 * The function expects the page to be locked and on success it consumes a 4709 * reference of a page being mapped (for the PTE which maps it). 4710 * 4711 * Return: %0 on success, %VM_FAULT_ code in case of error. 4712 */ 4713 vm_fault_t finish_fault(struct vm_fault *vmf) 4714 { 4715 struct vm_area_struct *vma = vmf->vma; 4716 struct page *page; 4717 vm_fault_t ret; 4718 4719 /* Did we COW the page? */ 4720 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4721 page = vmf->cow_page; 4722 else 4723 page = vmf->page; 4724 4725 /* 4726 * check even for read faults because we might have lost our CoWed 4727 * page 4728 */ 4729 if (!(vma->vm_flags & VM_SHARED)) { 4730 ret = check_stable_address_space(vma->vm_mm); 4731 if (ret) 4732 return ret; 4733 } 4734 4735 if (pmd_none(*vmf->pmd)) { 4736 if (PageTransCompound(page)) { 4737 ret = do_set_pmd(vmf, page); 4738 if (ret != VM_FAULT_FALLBACK) 4739 return ret; 4740 } 4741 4742 if (vmf->prealloc_pte) 4743 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4744 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4745 return VM_FAULT_OOM; 4746 } 4747 4748 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4749 vmf->address, &vmf->ptl); 4750 if (!vmf->pte) 4751 return VM_FAULT_NOPAGE; 4752 4753 /* Re-check under ptl */ 4754 if (likely(!vmf_pte_changed(vmf))) { 4755 struct folio *folio = page_folio(page); 4756 4757 set_pte_range(vmf, folio, page, 1, vmf->address); 4758 ret = 0; 4759 } else { 4760 update_mmu_tlb(vma, vmf->address, vmf->pte); 4761 ret = VM_FAULT_NOPAGE; 4762 } 4763 4764 pte_unmap_unlock(vmf->pte, vmf->ptl); 4765 return ret; 4766 } 4767 4768 static unsigned long fault_around_pages __read_mostly = 4769 65536 >> PAGE_SHIFT; 4770 4771 #ifdef CONFIG_DEBUG_FS 4772 static int fault_around_bytes_get(void *data, u64 *val) 4773 { 4774 *val = fault_around_pages << PAGE_SHIFT; 4775 return 0; 4776 } 4777 4778 /* 4779 * fault_around_bytes must be rounded down to the nearest page order as it's 4780 * what do_fault_around() expects to see. 4781 */ 4782 static int fault_around_bytes_set(void *data, u64 val) 4783 { 4784 if (val / PAGE_SIZE > PTRS_PER_PTE) 4785 return -EINVAL; 4786 4787 /* 4788 * The minimum value is 1 page, however this results in no fault-around 4789 * at all. See should_fault_around(). 4790 */ 4791 val = max(val, PAGE_SIZE); 4792 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 4793 4794 return 0; 4795 } 4796 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4797 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4798 4799 static int __init fault_around_debugfs(void) 4800 { 4801 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4802 &fault_around_bytes_fops); 4803 return 0; 4804 } 4805 late_initcall(fault_around_debugfs); 4806 #endif 4807 4808 /* 4809 * do_fault_around() tries to map few pages around the fault address. The hope 4810 * is that the pages will be needed soon and this will lower the number of 4811 * faults to handle. 4812 * 4813 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4814 * not ready to be mapped: not up-to-date, locked, etc. 4815 * 4816 * This function doesn't cross VMA or page table boundaries, in order to call 4817 * map_pages() and acquire a PTE lock only once. 4818 * 4819 * fault_around_pages defines how many pages we'll try to map. 4820 * do_fault_around() expects it to be set to a power of two less than or equal 4821 * to PTRS_PER_PTE. 4822 * 4823 * The virtual address of the area that we map is naturally aligned to 4824 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4825 * (and therefore to page order). This way it's easier to guarantee 4826 * that we don't cross page table boundaries. 4827 */ 4828 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4829 { 4830 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4831 pgoff_t pte_off = pte_index(vmf->address); 4832 /* The page offset of vmf->address within the VMA. */ 4833 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4834 pgoff_t from_pte, to_pte; 4835 vm_fault_t ret; 4836 4837 /* The PTE offset of the start address, clamped to the VMA. */ 4838 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4839 pte_off - min(pte_off, vma_off)); 4840 4841 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4842 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4843 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4844 4845 if (pmd_none(*vmf->pmd)) { 4846 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4847 if (!vmf->prealloc_pte) 4848 return VM_FAULT_OOM; 4849 } 4850 4851 rcu_read_lock(); 4852 ret = vmf->vma->vm_ops->map_pages(vmf, 4853 vmf->pgoff + from_pte - pte_off, 4854 vmf->pgoff + to_pte - pte_off); 4855 rcu_read_unlock(); 4856 4857 return ret; 4858 } 4859 4860 /* Return true if we should do read fault-around, false otherwise */ 4861 static inline bool should_fault_around(struct vm_fault *vmf) 4862 { 4863 /* No ->map_pages? No way to fault around... */ 4864 if (!vmf->vma->vm_ops->map_pages) 4865 return false; 4866 4867 if (uffd_disable_fault_around(vmf->vma)) 4868 return false; 4869 4870 /* A single page implies no faulting 'around' at all. */ 4871 return fault_around_pages > 1; 4872 } 4873 4874 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4875 { 4876 vm_fault_t ret = 0; 4877 struct folio *folio; 4878 4879 /* 4880 * Let's call ->map_pages() first and use ->fault() as fallback 4881 * if page by the offset is not ready to be mapped (cold cache or 4882 * something). 4883 */ 4884 if (should_fault_around(vmf)) { 4885 ret = do_fault_around(vmf); 4886 if (ret) 4887 return ret; 4888 } 4889 4890 ret = vmf_can_call_fault(vmf); 4891 if (ret) 4892 return ret; 4893 4894 ret = __do_fault(vmf); 4895 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4896 return ret; 4897 4898 ret |= finish_fault(vmf); 4899 folio = page_folio(vmf->page); 4900 folio_unlock(folio); 4901 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4902 folio_put(folio); 4903 return ret; 4904 } 4905 4906 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4907 { 4908 struct vm_area_struct *vma = vmf->vma; 4909 struct folio *folio; 4910 vm_fault_t ret; 4911 4912 ret = vmf_can_call_fault(vmf); 4913 if (!ret) 4914 ret = vmf_anon_prepare(vmf); 4915 if (ret) 4916 return ret; 4917 4918 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 4919 if (!folio) 4920 return VM_FAULT_OOM; 4921 4922 vmf->cow_page = &folio->page; 4923 4924 ret = __do_fault(vmf); 4925 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4926 goto uncharge_out; 4927 if (ret & VM_FAULT_DONE_COW) 4928 return ret; 4929 4930 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4931 __folio_mark_uptodate(folio); 4932 4933 ret |= finish_fault(vmf); 4934 unlock_page(vmf->page); 4935 put_page(vmf->page); 4936 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4937 goto uncharge_out; 4938 return ret; 4939 uncharge_out: 4940 folio_put(folio); 4941 return ret; 4942 } 4943 4944 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4945 { 4946 struct vm_area_struct *vma = vmf->vma; 4947 vm_fault_t ret, tmp; 4948 struct folio *folio; 4949 4950 ret = vmf_can_call_fault(vmf); 4951 if (ret) 4952 return ret; 4953 4954 ret = __do_fault(vmf); 4955 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4956 return ret; 4957 4958 folio = page_folio(vmf->page); 4959 4960 /* 4961 * Check if the backing address space wants to know that the page is 4962 * about to become writable 4963 */ 4964 if (vma->vm_ops->page_mkwrite) { 4965 folio_unlock(folio); 4966 tmp = do_page_mkwrite(vmf, folio); 4967 if (unlikely(!tmp || 4968 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4969 folio_put(folio); 4970 return tmp; 4971 } 4972 } 4973 4974 ret |= finish_fault(vmf); 4975 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4976 VM_FAULT_RETRY))) { 4977 folio_unlock(folio); 4978 folio_put(folio); 4979 return ret; 4980 } 4981 4982 ret |= fault_dirty_shared_page(vmf); 4983 return ret; 4984 } 4985 4986 /* 4987 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4988 * but allow concurrent faults). 4989 * The mmap_lock may have been released depending on flags and our 4990 * return value. See filemap_fault() and __folio_lock_or_retry(). 4991 * If mmap_lock is released, vma may become invalid (for example 4992 * by other thread calling munmap()). 4993 */ 4994 static vm_fault_t do_fault(struct vm_fault *vmf) 4995 { 4996 struct vm_area_struct *vma = vmf->vma; 4997 struct mm_struct *vm_mm = vma->vm_mm; 4998 vm_fault_t ret; 4999 5000 /* 5001 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5002 */ 5003 if (!vma->vm_ops->fault) { 5004 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5005 vmf->address, &vmf->ptl); 5006 if (unlikely(!vmf->pte)) 5007 ret = VM_FAULT_SIGBUS; 5008 else { 5009 /* 5010 * Make sure this is not a temporary clearing of pte 5011 * by holding ptl and checking again. A R/M/W update 5012 * of pte involves: take ptl, clearing the pte so that 5013 * we don't have concurrent modification by hardware 5014 * followed by an update. 5015 */ 5016 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5017 ret = VM_FAULT_SIGBUS; 5018 else 5019 ret = VM_FAULT_NOPAGE; 5020 5021 pte_unmap_unlock(vmf->pte, vmf->ptl); 5022 } 5023 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5024 ret = do_read_fault(vmf); 5025 else if (!(vma->vm_flags & VM_SHARED)) 5026 ret = do_cow_fault(vmf); 5027 else 5028 ret = do_shared_fault(vmf); 5029 5030 /* preallocated pagetable is unused: free it */ 5031 if (vmf->prealloc_pte) { 5032 pte_free(vm_mm, vmf->prealloc_pte); 5033 vmf->prealloc_pte = NULL; 5034 } 5035 return ret; 5036 } 5037 5038 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma, 5039 unsigned long addr, int page_nid, int *flags) 5040 { 5041 folio_get(folio); 5042 5043 /* Record the current PID acceesing VMA */ 5044 vma_set_access_pid_bit(vma); 5045 5046 count_vm_numa_event(NUMA_HINT_FAULTS); 5047 if (page_nid == numa_node_id()) { 5048 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5049 *flags |= TNF_FAULT_LOCAL; 5050 } 5051 5052 return mpol_misplaced(folio, vma, addr); 5053 } 5054 5055 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5056 { 5057 struct vm_area_struct *vma = vmf->vma; 5058 struct folio *folio = NULL; 5059 int nid = NUMA_NO_NODE; 5060 bool writable = false; 5061 int last_cpupid; 5062 int target_nid; 5063 pte_t pte, old_pte; 5064 int flags = 0; 5065 5066 /* 5067 * The pte cannot be used safely until we verify, while holding the page 5068 * table lock, that its contents have not changed during fault handling. 5069 */ 5070 spin_lock(vmf->ptl); 5071 /* Read the live PTE from the page tables: */ 5072 old_pte = ptep_get(vmf->pte); 5073 5074 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5075 pte_unmap_unlock(vmf->pte, vmf->ptl); 5076 goto out; 5077 } 5078 5079 pte = pte_modify(old_pte, vma->vm_page_prot); 5080 5081 /* 5082 * Detect now whether the PTE could be writable; this information 5083 * is only valid while holding the PT lock. 5084 */ 5085 writable = pte_write(pte); 5086 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 5087 can_change_pte_writable(vma, vmf->address, pte)) 5088 writable = true; 5089 5090 folio = vm_normal_folio(vma, vmf->address, pte); 5091 if (!folio || folio_is_zone_device(folio)) 5092 goto out_map; 5093 5094 /* TODO: handle PTE-mapped THP */ 5095 if (folio_test_large(folio)) 5096 goto out_map; 5097 5098 /* 5099 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5100 * much anyway since they can be in shared cache state. This misses 5101 * the case where a mapping is writable but the process never writes 5102 * to it but pte_write gets cleared during protection updates and 5103 * pte_dirty has unpredictable behaviour between PTE scan updates, 5104 * background writeback, dirty balancing and application behaviour. 5105 */ 5106 if (!writable) 5107 flags |= TNF_NO_GROUP; 5108 5109 /* 5110 * Flag if the folio is shared between multiple address spaces. This 5111 * is later used when determining whether to group tasks together 5112 */ 5113 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED)) 5114 flags |= TNF_SHARED; 5115 5116 nid = folio_nid(folio); 5117 /* 5118 * For memory tiering mode, cpupid of slow memory page is used 5119 * to record page access time. So use default value. 5120 */ 5121 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 5122 !node_is_toptier(nid)) 5123 last_cpupid = (-1 & LAST_CPUPID_MASK); 5124 else 5125 last_cpupid = folio_last_cpupid(folio); 5126 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags); 5127 if (target_nid == NUMA_NO_NODE) { 5128 folio_put(folio); 5129 goto out_map; 5130 } 5131 pte_unmap_unlock(vmf->pte, vmf->ptl); 5132 writable = false; 5133 5134 /* Migrate to the requested node */ 5135 if (migrate_misplaced_folio(folio, vma, target_nid)) { 5136 nid = target_nid; 5137 flags |= TNF_MIGRATED; 5138 } else { 5139 flags |= TNF_MIGRATE_FAIL; 5140 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5141 vmf->address, &vmf->ptl); 5142 if (unlikely(!vmf->pte)) 5143 goto out; 5144 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5145 pte_unmap_unlock(vmf->pte, vmf->ptl); 5146 goto out; 5147 } 5148 goto out_map; 5149 } 5150 5151 out: 5152 if (nid != NUMA_NO_NODE) 5153 task_numa_fault(last_cpupid, nid, 1, flags); 5154 return 0; 5155 out_map: 5156 /* 5157 * Make it present again, depending on how arch implements 5158 * non-accessible ptes, some can allow access by kernel mode. 5159 */ 5160 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 5161 pte = pte_modify(old_pte, vma->vm_page_prot); 5162 pte = pte_mkyoung(pte); 5163 if (writable) 5164 pte = pte_mkwrite(pte, vma); 5165 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 5166 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 5167 pte_unmap_unlock(vmf->pte, vmf->ptl); 5168 goto out; 5169 } 5170 5171 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5172 { 5173 struct vm_area_struct *vma = vmf->vma; 5174 if (vma_is_anonymous(vma)) 5175 return do_huge_pmd_anonymous_page(vmf); 5176 if (vma->vm_ops->huge_fault) 5177 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5178 return VM_FAULT_FALLBACK; 5179 } 5180 5181 /* `inline' is required to avoid gcc 4.1.2 build error */ 5182 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5183 { 5184 struct vm_area_struct *vma = vmf->vma; 5185 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5186 vm_fault_t ret; 5187 5188 if (vma_is_anonymous(vma)) { 5189 if (likely(!unshare) && 5190 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5191 if (userfaultfd_wp_async(vmf->vma)) 5192 goto split; 5193 return handle_userfault(vmf, VM_UFFD_WP); 5194 } 5195 return do_huge_pmd_wp_page(vmf); 5196 } 5197 5198 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5199 if (vma->vm_ops->huge_fault) { 5200 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5201 if (!(ret & VM_FAULT_FALLBACK)) 5202 return ret; 5203 } 5204 } 5205 5206 split: 5207 /* COW or write-notify handled on pte level: split pmd. */ 5208 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5209 5210 return VM_FAULT_FALLBACK; 5211 } 5212 5213 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5214 { 5215 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5216 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5217 struct vm_area_struct *vma = vmf->vma; 5218 /* No support for anonymous transparent PUD pages yet */ 5219 if (vma_is_anonymous(vma)) 5220 return VM_FAULT_FALLBACK; 5221 if (vma->vm_ops->huge_fault) 5222 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5223 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5224 return VM_FAULT_FALLBACK; 5225 } 5226 5227 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5228 { 5229 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5230 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5231 struct vm_area_struct *vma = vmf->vma; 5232 vm_fault_t ret; 5233 5234 /* No support for anonymous transparent PUD pages yet */ 5235 if (vma_is_anonymous(vma)) 5236 goto split; 5237 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5238 if (vma->vm_ops->huge_fault) { 5239 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5240 if (!(ret & VM_FAULT_FALLBACK)) 5241 return ret; 5242 } 5243 } 5244 split: 5245 /* COW or write-notify not handled on PUD level: split pud.*/ 5246 __split_huge_pud(vma, vmf->pud, vmf->address); 5247 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5248 return VM_FAULT_FALLBACK; 5249 } 5250 5251 /* 5252 * These routines also need to handle stuff like marking pages dirty 5253 * and/or accessed for architectures that don't do it in hardware (most 5254 * RISC architectures). The early dirtying is also good on the i386. 5255 * 5256 * There is also a hook called "update_mmu_cache()" that architectures 5257 * with external mmu caches can use to update those (ie the Sparc or 5258 * PowerPC hashed page tables that act as extended TLBs). 5259 * 5260 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5261 * concurrent faults). 5262 * 5263 * The mmap_lock may have been released depending on flags and our return value. 5264 * See filemap_fault() and __folio_lock_or_retry(). 5265 */ 5266 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5267 { 5268 pte_t entry; 5269 5270 if (unlikely(pmd_none(*vmf->pmd))) { 5271 /* 5272 * Leave __pte_alloc() until later: because vm_ops->fault may 5273 * want to allocate huge page, and if we expose page table 5274 * for an instant, it will be difficult to retract from 5275 * concurrent faults and from rmap lookups. 5276 */ 5277 vmf->pte = NULL; 5278 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5279 } else { 5280 /* 5281 * A regular pmd is established and it can't morph into a huge 5282 * pmd by anon khugepaged, since that takes mmap_lock in write 5283 * mode; but shmem or file collapse to THP could still morph 5284 * it into a huge pmd: just retry later if so. 5285 */ 5286 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5287 vmf->address, &vmf->ptl); 5288 if (unlikely(!vmf->pte)) 5289 return 0; 5290 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5291 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5292 5293 if (pte_none(vmf->orig_pte)) { 5294 pte_unmap(vmf->pte); 5295 vmf->pte = NULL; 5296 } 5297 } 5298 5299 if (!vmf->pte) 5300 return do_pte_missing(vmf); 5301 5302 if (!pte_present(vmf->orig_pte)) 5303 return do_swap_page(vmf); 5304 5305 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5306 return do_numa_page(vmf); 5307 5308 spin_lock(vmf->ptl); 5309 entry = vmf->orig_pte; 5310 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5311 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5312 goto unlock; 5313 } 5314 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5315 if (!pte_write(entry)) 5316 return do_wp_page(vmf); 5317 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5318 entry = pte_mkdirty(entry); 5319 } 5320 entry = pte_mkyoung(entry); 5321 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5322 vmf->flags & FAULT_FLAG_WRITE)) { 5323 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5324 vmf->pte, 1); 5325 } else { 5326 /* Skip spurious TLB flush for retried page fault */ 5327 if (vmf->flags & FAULT_FLAG_TRIED) 5328 goto unlock; 5329 /* 5330 * This is needed only for protection faults but the arch code 5331 * is not yet telling us if this is a protection fault or not. 5332 * This still avoids useless tlb flushes for .text page faults 5333 * with threads. 5334 */ 5335 if (vmf->flags & FAULT_FLAG_WRITE) 5336 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5337 vmf->pte); 5338 } 5339 unlock: 5340 pte_unmap_unlock(vmf->pte, vmf->ptl); 5341 return 0; 5342 } 5343 5344 /* 5345 * On entry, we hold either the VMA lock or the mmap_lock 5346 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5347 * the result, the mmap_lock is not held on exit. See filemap_fault() 5348 * and __folio_lock_or_retry(). 5349 */ 5350 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5351 unsigned long address, unsigned int flags) 5352 { 5353 struct vm_fault vmf = { 5354 .vma = vma, 5355 .address = address & PAGE_MASK, 5356 .real_address = address, 5357 .flags = flags, 5358 .pgoff = linear_page_index(vma, address), 5359 .gfp_mask = __get_fault_gfp_mask(vma), 5360 }; 5361 struct mm_struct *mm = vma->vm_mm; 5362 unsigned long vm_flags = vma->vm_flags; 5363 pgd_t *pgd; 5364 p4d_t *p4d; 5365 vm_fault_t ret; 5366 5367 pgd = pgd_offset(mm, address); 5368 p4d = p4d_alloc(mm, pgd, address); 5369 if (!p4d) 5370 return VM_FAULT_OOM; 5371 5372 vmf.pud = pud_alloc(mm, p4d, address); 5373 if (!vmf.pud) 5374 return VM_FAULT_OOM; 5375 retry_pud: 5376 if (pud_none(*vmf.pud) && 5377 thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) { 5378 ret = create_huge_pud(&vmf); 5379 if (!(ret & VM_FAULT_FALLBACK)) 5380 return ret; 5381 } else { 5382 pud_t orig_pud = *vmf.pud; 5383 5384 barrier(); 5385 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5386 5387 /* 5388 * TODO once we support anonymous PUDs: NUMA case and 5389 * FAULT_FLAG_UNSHARE handling. 5390 */ 5391 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5392 ret = wp_huge_pud(&vmf, orig_pud); 5393 if (!(ret & VM_FAULT_FALLBACK)) 5394 return ret; 5395 } else { 5396 huge_pud_set_accessed(&vmf, orig_pud); 5397 return 0; 5398 } 5399 } 5400 } 5401 5402 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5403 if (!vmf.pmd) 5404 return VM_FAULT_OOM; 5405 5406 /* Huge pud page fault raced with pmd_alloc? */ 5407 if (pud_trans_unstable(vmf.pud)) 5408 goto retry_pud; 5409 5410 if (pmd_none(*vmf.pmd) && 5411 thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) { 5412 ret = create_huge_pmd(&vmf); 5413 if (!(ret & VM_FAULT_FALLBACK)) 5414 return ret; 5415 } else { 5416 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5417 5418 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5419 VM_BUG_ON(thp_migration_supported() && 5420 !is_pmd_migration_entry(vmf.orig_pmd)); 5421 if (is_pmd_migration_entry(vmf.orig_pmd)) 5422 pmd_migration_entry_wait(mm, vmf.pmd); 5423 return 0; 5424 } 5425 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5426 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5427 return do_huge_pmd_numa_page(&vmf); 5428 5429 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5430 !pmd_write(vmf.orig_pmd)) { 5431 ret = wp_huge_pmd(&vmf); 5432 if (!(ret & VM_FAULT_FALLBACK)) 5433 return ret; 5434 } else { 5435 huge_pmd_set_accessed(&vmf); 5436 return 0; 5437 } 5438 } 5439 } 5440 5441 return handle_pte_fault(&vmf); 5442 } 5443 5444 /** 5445 * mm_account_fault - Do page fault accounting 5446 * @mm: mm from which memcg should be extracted. It can be NULL. 5447 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5448 * of perf event counters, but we'll still do the per-task accounting to 5449 * the task who triggered this page fault. 5450 * @address: the faulted address. 5451 * @flags: the fault flags. 5452 * @ret: the fault retcode. 5453 * 5454 * This will take care of most of the page fault accounting. Meanwhile, it 5455 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5456 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5457 * still be in per-arch page fault handlers at the entry of page fault. 5458 */ 5459 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5460 unsigned long address, unsigned int flags, 5461 vm_fault_t ret) 5462 { 5463 bool major; 5464 5465 /* Incomplete faults will be accounted upon completion. */ 5466 if (ret & VM_FAULT_RETRY) 5467 return; 5468 5469 /* 5470 * To preserve the behavior of older kernels, PGFAULT counters record 5471 * both successful and failed faults, as opposed to perf counters, 5472 * which ignore failed cases. 5473 */ 5474 count_vm_event(PGFAULT); 5475 count_memcg_event_mm(mm, PGFAULT); 5476 5477 /* 5478 * Do not account for unsuccessful faults (e.g. when the address wasn't 5479 * valid). That includes arch_vma_access_permitted() failing before 5480 * reaching here. So this is not a "this many hardware page faults" 5481 * counter. We should use the hw profiling for that. 5482 */ 5483 if (ret & VM_FAULT_ERROR) 5484 return; 5485 5486 /* 5487 * We define the fault as a major fault when the final successful fault 5488 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5489 * handle it immediately previously). 5490 */ 5491 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5492 5493 if (major) 5494 current->maj_flt++; 5495 else 5496 current->min_flt++; 5497 5498 /* 5499 * If the fault is done for GUP, regs will be NULL. We only do the 5500 * accounting for the per thread fault counters who triggered the 5501 * fault, and we skip the perf event updates. 5502 */ 5503 if (!regs) 5504 return; 5505 5506 if (major) 5507 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5508 else 5509 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5510 } 5511 5512 #ifdef CONFIG_LRU_GEN 5513 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5514 { 5515 /* the LRU algorithm only applies to accesses with recency */ 5516 current->in_lru_fault = vma_has_recency(vma); 5517 } 5518 5519 static void lru_gen_exit_fault(void) 5520 { 5521 current->in_lru_fault = false; 5522 } 5523 #else 5524 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5525 { 5526 } 5527 5528 static void lru_gen_exit_fault(void) 5529 { 5530 } 5531 #endif /* CONFIG_LRU_GEN */ 5532 5533 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5534 unsigned int *flags) 5535 { 5536 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5537 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5538 return VM_FAULT_SIGSEGV; 5539 /* 5540 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5541 * just treat it like an ordinary read-fault otherwise. 5542 */ 5543 if (!is_cow_mapping(vma->vm_flags)) 5544 *flags &= ~FAULT_FLAG_UNSHARE; 5545 } else if (*flags & FAULT_FLAG_WRITE) { 5546 /* Write faults on read-only mappings are impossible ... */ 5547 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5548 return VM_FAULT_SIGSEGV; 5549 /* ... and FOLL_FORCE only applies to COW mappings. */ 5550 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5551 !is_cow_mapping(vma->vm_flags))) 5552 return VM_FAULT_SIGSEGV; 5553 } 5554 #ifdef CONFIG_PER_VMA_LOCK 5555 /* 5556 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5557 * the assumption that lock is dropped on VM_FAULT_RETRY. 5558 */ 5559 if (WARN_ON_ONCE((*flags & 5560 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5561 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5562 return VM_FAULT_SIGSEGV; 5563 #endif 5564 5565 return 0; 5566 } 5567 5568 /* 5569 * By the time we get here, we already hold the mm semaphore 5570 * 5571 * The mmap_lock may have been released depending on flags and our 5572 * return value. See filemap_fault() and __folio_lock_or_retry(). 5573 */ 5574 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5575 unsigned int flags, struct pt_regs *regs) 5576 { 5577 /* If the fault handler drops the mmap_lock, vma may be freed */ 5578 struct mm_struct *mm = vma->vm_mm; 5579 vm_fault_t ret; 5580 5581 __set_current_state(TASK_RUNNING); 5582 5583 ret = sanitize_fault_flags(vma, &flags); 5584 if (ret) 5585 goto out; 5586 5587 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5588 flags & FAULT_FLAG_INSTRUCTION, 5589 flags & FAULT_FLAG_REMOTE)) { 5590 ret = VM_FAULT_SIGSEGV; 5591 goto out; 5592 } 5593 5594 /* 5595 * Enable the memcg OOM handling for faults triggered in user 5596 * space. Kernel faults are handled more gracefully. 5597 */ 5598 if (flags & FAULT_FLAG_USER) 5599 mem_cgroup_enter_user_fault(); 5600 5601 lru_gen_enter_fault(vma); 5602 5603 if (unlikely(is_vm_hugetlb_page(vma))) 5604 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5605 else 5606 ret = __handle_mm_fault(vma, address, flags); 5607 5608 lru_gen_exit_fault(); 5609 5610 if (flags & FAULT_FLAG_USER) { 5611 mem_cgroup_exit_user_fault(); 5612 /* 5613 * The task may have entered a memcg OOM situation but 5614 * if the allocation error was handled gracefully (no 5615 * VM_FAULT_OOM), there is no need to kill anything. 5616 * Just clean up the OOM state peacefully. 5617 */ 5618 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5619 mem_cgroup_oom_synchronize(false); 5620 } 5621 out: 5622 mm_account_fault(mm, regs, address, flags, ret); 5623 5624 return ret; 5625 } 5626 EXPORT_SYMBOL_GPL(handle_mm_fault); 5627 5628 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5629 #include <linux/extable.h> 5630 5631 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5632 { 5633 if (likely(mmap_read_trylock(mm))) 5634 return true; 5635 5636 if (regs && !user_mode(regs)) { 5637 unsigned long ip = exception_ip(regs); 5638 if (!search_exception_tables(ip)) 5639 return false; 5640 } 5641 5642 return !mmap_read_lock_killable(mm); 5643 } 5644 5645 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5646 { 5647 /* 5648 * We don't have this operation yet. 5649 * 5650 * It should be easy enough to do: it's basically a 5651 * atomic_long_try_cmpxchg_acquire() 5652 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5653 * it also needs the proper lockdep magic etc. 5654 */ 5655 return false; 5656 } 5657 5658 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5659 { 5660 mmap_read_unlock(mm); 5661 if (regs && !user_mode(regs)) { 5662 unsigned long ip = exception_ip(regs); 5663 if (!search_exception_tables(ip)) 5664 return false; 5665 } 5666 return !mmap_write_lock_killable(mm); 5667 } 5668 5669 /* 5670 * Helper for page fault handling. 5671 * 5672 * This is kind of equivalend to "mmap_read_lock()" followed 5673 * by "find_extend_vma()", except it's a lot more careful about 5674 * the locking (and will drop the lock on failure). 5675 * 5676 * For example, if we have a kernel bug that causes a page 5677 * fault, we don't want to just use mmap_read_lock() to get 5678 * the mm lock, because that would deadlock if the bug were 5679 * to happen while we're holding the mm lock for writing. 5680 * 5681 * So this checks the exception tables on kernel faults in 5682 * order to only do this all for instructions that are actually 5683 * expected to fault. 5684 * 5685 * We can also actually take the mm lock for writing if we 5686 * need to extend the vma, which helps the VM layer a lot. 5687 */ 5688 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5689 unsigned long addr, struct pt_regs *regs) 5690 { 5691 struct vm_area_struct *vma; 5692 5693 if (!get_mmap_lock_carefully(mm, regs)) 5694 return NULL; 5695 5696 vma = find_vma(mm, addr); 5697 if (likely(vma && (vma->vm_start <= addr))) 5698 return vma; 5699 5700 /* 5701 * Well, dang. We might still be successful, but only 5702 * if we can extend a vma to do so. 5703 */ 5704 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5705 mmap_read_unlock(mm); 5706 return NULL; 5707 } 5708 5709 /* 5710 * We can try to upgrade the mmap lock atomically, 5711 * in which case we can continue to use the vma 5712 * we already looked up. 5713 * 5714 * Otherwise we'll have to drop the mmap lock and 5715 * re-take it, and also look up the vma again, 5716 * re-checking it. 5717 */ 5718 if (!mmap_upgrade_trylock(mm)) { 5719 if (!upgrade_mmap_lock_carefully(mm, regs)) 5720 return NULL; 5721 5722 vma = find_vma(mm, addr); 5723 if (!vma) 5724 goto fail; 5725 if (vma->vm_start <= addr) 5726 goto success; 5727 if (!(vma->vm_flags & VM_GROWSDOWN)) 5728 goto fail; 5729 } 5730 5731 if (expand_stack_locked(vma, addr)) 5732 goto fail; 5733 5734 success: 5735 mmap_write_downgrade(mm); 5736 return vma; 5737 5738 fail: 5739 mmap_write_unlock(mm); 5740 return NULL; 5741 } 5742 #endif 5743 5744 #ifdef CONFIG_PER_VMA_LOCK 5745 /* 5746 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5747 * stable and not isolated. If the VMA is not found or is being modified the 5748 * function returns NULL. 5749 */ 5750 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5751 unsigned long address) 5752 { 5753 MA_STATE(mas, &mm->mm_mt, address, address); 5754 struct vm_area_struct *vma; 5755 5756 rcu_read_lock(); 5757 retry: 5758 vma = mas_walk(&mas); 5759 if (!vma) 5760 goto inval; 5761 5762 if (!vma_start_read(vma)) 5763 goto inval; 5764 5765 /* 5766 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5767 * This check must happen after vma_start_read(); otherwise, a 5768 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5769 * from its anon_vma. 5770 */ 5771 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5772 goto inval_end_read; 5773 5774 /* Check since vm_start/vm_end might change before we lock the VMA */ 5775 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5776 goto inval_end_read; 5777 5778 /* Check if the VMA got isolated after we found it */ 5779 if (vma->detached) { 5780 vma_end_read(vma); 5781 count_vm_vma_lock_event(VMA_LOCK_MISS); 5782 /* The area was replaced with another one */ 5783 goto retry; 5784 } 5785 5786 rcu_read_unlock(); 5787 return vma; 5788 5789 inval_end_read: 5790 vma_end_read(vma); 5791 inval: 5792 rcu_read_unlock(); 5793 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5794 return NULL; 5795 } 5796 #endif /* CONFIG_PER_VMA_LOCK */ 5797 5798 #ifndef __PAGETABLE_P4D_FOLDED 5799 /* 5800 * Allocate p4d page table. 5801 * We've already handled the fast-path in-line. 5802 */ 5803 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5804 { 5805 p4d_t *new = p4d_alloc_one(mm, address); 5806 if (!new) 5807 return -ENOMEM; 5808 5809 spin_lock(&mm->page_table_lock); 5810 if (pgd_present(*pgd)) { /* Another has populated it */ 5811 p4d_free(mm, new); 5812 } else { 5813 smp_wmb(); /* See comment in pmd_install() */ 5814 pgd_populate(mm, pgd, new); 5815 } 5816 spin_unlock(&mm->page_table_lock); 5817 return 0; 5818 } 5819 #endif /* __PAGETABLE_P4D_FOLDED */ 5820 5821 #ifndef __PAGETABLE_PUD_FOLDED 5822 /* 5823 * Allocate page upper directory. 5824 * We've already handled the fast-path in-line. 5825 */ 5826 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5827 { 5828 pud_t *new = pud_alloc_one(mm, address); 5829 if (!new) 5830 return -ENOMEM; 5831 5832 spin_lock(&mm->page_table_lock); 5833 if (!p4d_present(*p4d)) { 5834 mm_inc_nr_puds(mm); 5835 smp_wmb(); /* See comment in pmd_install() */ 5836 p4d_populate(mm, p4d, new); 5837 } else /* Another has populated it */ 5838 pud_free(mm, new); 5839 spin_unlock(&mm->page_table_lock); 5840 return 0; 5841 } 5842 #endif /* __PAGETABLE_PUD_FOLDED */ 5843 5844 #ifndef __PAGETABLE_PMD_FOLDED 5845 /* 5846 * Allocate page middle directory. 5847 * We've already handled the fast-path in-line. 5848 */ 5849 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5850 { 5851 spinlock_t *ptl; 5852 pmd_t *new = pmd_alloc_one(mm, address); 5853 if (!new) 5854 return -ENOMEM; 5855 5856 ptl = pud_lock(mm, pud); 5857 if (!pud_present(*pud)) { 5858 mm_inc_nr_pmds(mm); 5859 smp_wmb(); /* See comment in pmd_install() */ 5860 pud_populate(mm, pud, new); 5861 } else { /* Another has populated it */ 5862 pmd_free(mm, new); 5863 } 5864 spin_unlock(ptl); 5865 return 0; 5866 } 5867 #endif /* __PAGETABLE_PMD_FOLDED */ 5868 5869 /** 5870 * follow_pte - look up PTE at a user virtual address 5871 * @mm: the mm_struct of the target address space 5872 * @address: user virtual address 5873 * @ptepp: location to store found PTE 5874 * @ptlp: location to store the lock for the PTE 5875 * 5876 * On a successful return, the pointer to the PTE is stored in @ptepp; 5877 * the corresponding lock is taken and its location is stored in @ptlp. 5878 * The contents of the PTE are only stable until @ptlp is released; 5879 * any further use, if any, must be protected against invalidation 5880 * with MMU notifiers. 5881 * 5882 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5883 * should be taken for read. 5884 * 5885 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5886 * it is not a good general-purpose API. 5887 * 5888 * Return: zero on success, -ve otherwise. 5889 */ 5890 int follow_pte(struct mm_struct *mm, unsigned long address, 5891 pte_t **ptepp, spinlock_t **ptlp) 5892 { 5893 pgd_t *pgd; 5894 p4d_t *p4d; 5895 pud_t *pud; 5896 pmd_t *pmd; 5897 pte_t *ptep; 5898 5899 pgd = pgd_offset(mm, address); 5900 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5901 goto out; 5902 5903 p4d = p4d_offset(pgd, address); 5904 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5905 goto out; 5906 5907 pud = pud_offset(p4d, address); 5908 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5909 goto out; 5910 5911 pmd = pmd_offset(pud, address); 5912 VM_BUG_ON(pmd_trans_huge(*pmd)); 5913 5914 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5915 if (!ptep) 5916 goto out; 5917 if (!pte_present(ptep_get(ptep))) 5918 goto unlock; 5919 *ptepp = ptep; 5920 return 0; 5921 unlock: 5922 pte_unmap_unlock(ptep, *ptlp); 5923 out: 5924 return -EINVAL; 5925 } 5926 EXPORT_SYMBOL_GPL(follow_pte); 5927 5928 /** 5929 * follow_pfn - look up PFN at a user virtual address 5930 * @vma: memory mapping 5931 * @address: user virtual address 5932 * @pfn: location to store found PFN 5933 * 5934 * Only IO mappings and raw PFN mappings are allowed. 5935 * 5936 * This function does not allow the caller to read the permissions 5937 * of the PTE. Do not use it. 5938 * 5939 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5940 */ 5941 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5942 unsigned long *pfn) 5943 { 5944 int ret = -EINVAL; 5945 spinlock_t *ptl; 5946 pte_t *ptep; 5947 5948 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5949 return ret; 5950 5951 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5952 if (ret) 5953 return ret; 5954 *pfn = pte_pfn(ptep_get(ptep)); 5955 pte_unmap_unlock(ptep, ptl); 5956 return 0; 5957 } 5958 EXPORT_SYMBOL(follow_pfn); 5959 5960 #ifdef CONFIG_HAVE_IOREMAP_PROT 5961 int follow_phys(struct vm_area_struct *vma, 5962 unsigned long address, unsigned int flags, 5963 unsigned long *prot, resource_size_t *phys) 5964 { 5965 int ret = -EINVAL; 5966 pte_t *ptep, pte; 5967 spinlock_t *ptl; 5968 5969 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5970 goto out; 5971 5972 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5973 goto out; 5974 pte = ptep_get(ptep); 5975 5976 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5977 goto unlock; 5978 5979 *prot = pgprot_val(pte_pgprot(pte)); 5980 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5981 5982 ret = 0; 5983 unlock: 5984 pte_unmap_unlock(ptep, ptl); 5985 out: 5986 return ret; 5987 } 5988 5989 /** 5990 * generic_access_phys - generic implementation for iomem mmap access 5991 * @vma: the vma to access 5992 * @addr: userspace address, not relative offset within @vma 5993 * @buf: buffer to read/write 5994 * @len: length of transfer 5995 * @write: set to FOLL_WRITE when writing, otherwise reading 5996 * 5997 * This is a generic implementation for &vm_operations_struct.access for an 5998 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5999 * not page based. 6000 */ 6001 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6002 void *buf, int len, int write) 6003 { 6004 resource_size_t phys_addr; 6005 unsigned long prot = 0; 6006 void __iomem *maddr; 6007 pte_t *ptep, pte; 6008 spinlock_t *ptl; 6009 int offset = offset_in_page(addr); 6010 int ret = -EINVAL; 6011 6012 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6013 return -EINVAL; 6014 6015 retry: 6016 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 6017 return -EINVAL; 6018 pte = ptep_get(ptep); 6019 pte_unmap_unlock(ptep, ptl); 6020 6021 prot = pgprot_val(pte_pgprot(pte)); 6022 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 6023 6024 if ((write & FOLL_WRITE) && !pte_write(pte)) 6025 return -EINVAL; 6026 6027 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6028 if (!maddr) 6029 return -ENOMEM; 6030 6031 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 6032 goto out_unmap; 6033 6034 if (!pte_same(pte, ptep_get(ptep))) { 6035 pte_unmap_unlock(ptep, ptl); 6036 iounmap(maddr); 6037 6038 goto retry; 6039 } 6040 6041 if (write) 6042 memcpy_toio(maddr + offset, buf, len); 6043 else 6044 memcpy_fromio(buf, maddr + offset, len); 6045 ret = len; 6046 pte_unmap_unlock(ptep, ptl); 6047 out_unmap: 6048 iounmap(maddr); 6049 6050 return ret; 6051 } 6052 EXPORT_SYMBOL_GPL(generic_access_phys); 6053 #endif 6054 6055 /* 6056 * Access another process' address space as given in mm. 6057 */ 6058 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6059 void *buf, int len, unsigned int gup_flags) 6060 { 6061 void *old_buf = buf; 6062 int write = gup_flags & FOLL_WRITE; 6063 6064 if (mmap_read_lock_killable(mm)) 6065 return 0; 6066 6067 /* Untag the address before looking up the VMA */ 6068 addr = untagged_addr_remote(mm, addr); 6069 6070 /* Avoid triggering the temporary warning in __get_user_pages */ 6071 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6072 return 0; 6073 6074 /* ignore errors, just check how much was successfully transferred */ 6075 while (len) { 6076 int bytes, offset; 6077 void *maddr; 6078 struct vm_area_struct *vma = NULL; 6079 struct page *page = get_user_page_vma_remote(mm, addr, 6080 gup_flags, &vma); 6081 6082 if (IS_ERR(page)) { 6083 /* We might need to expand the stack to access it */ 6084 vma = vma_lookup(mm, addr); 6085 if (!vma) { 6086 vma = expand_stack(mm, addr); 6087 6088 /* mmap_lock was dropped on failure */ 6089 if (!vma) 6090 return buf - old_buf; 6091 6092 /* Try again if stack expansion worked */ 6093 continue; 6094 } 6095 6096 /* 6097 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6098 * we can access using slightly different code. 6099 */ 6100 bytes = 0; 6101 #ifdef CONFIG_HAVE_IOREMAP_PROT 6102 if (vma->vm_ops && vma->vm_ops->access) 6103 bytes = vma->vm_ops->access(vma, addr, buf, 6104 len, write); 6105 #endif 6106 if (bytes <= 0) 6107 break; 6108 } else { 6109 bytes = len; 6110 offset = addr & (PAGE_SIZE-1); 6111 if (bytes > PAGE_SIZE-offset) 6112 bytes = PAGE_SIZE-offset; 6113 6114 maddr = kmap_local_page(page); 6115 if (write) { 6116 copy_to_user_page(vma, page, addr, 6117 maddr + offset, buf, bytes); 6118 set_page_dirty_lock(page); 6119 } else { 6120 copy_from_user_page(vma, page, addr, 6121 buf, maddr + offset, bytes); 6122 } 6123 unmap_and_put_page(page, maddr); 6124 } 6125 len -= bytes; 6126 buf += bytes; 6127 addr += bytes; 6128 } 6129 mmap_read_unlock(mm); 6130 6131 return buf - old_buf; 6132 } 6133 6134 /** 6135 * access_remote_vm - access another process' address space 6136 * @mm: the mm_struct of the target address space 6137 * @addr: start address to access 6138 * @buf: source or destination buffer 6139 * @len: number of bytes to transfer 6140 * @gup_flags: flags modifying lookup behaviour 6141 * 6142 * The caller must hold a reference on @mm. 6143 * 6144 * Return: number of bytes copied from source to destination. 6145 */ 6146 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6147 void *buf, int len, unsigned int gup_flags) 6148 { 6149 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6150 } 6151 6152 /* 6153 * Access another process' address space. 6154 * Source/target buffer must be kernel space, 6155 * Do not walk the page table directly, use get_user_pages 6156 */ 6157 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6158 void *buf, int len, unsigned int gup_flags) 6159 { 6160 struct mm_struct *mm; 6161 int ret; 6162 6163 mm = get_task_mm(tsk); 6164 if (!mm) 6165 return 0; 6166 6167 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6168 6169 mmput(mm); 6170 6171 return ret; 6172 } 6173 EXPORT_SYMBOL_GPL(access_process_vm); 6174 6175 /* 6176 * Print the name of a VMA. 6177 */ 6178 void print_vma_addr(char *prefix, unsigned long ip) 6179 { 6180 struct mm_struct *mm = current->mm; 6181 struct vm_area_struct *vma; 6182 6183 /* 6184 * we might be running from an atomic context so we cannot sleep 6185 */ 6186 if (!mmap_read_trylock(mm)) 6187 return; 6188 6189 vma = find_vma(mm, ip); 6190 if (vma && vma->vm_file) { 6191 struct file *f = vma->vm_file; 6192 char *buf = (char *)__get_free_page(GFP_NOWAIT); 6193 if (buf) { 6194 char *p; 6195 6196 p = file_path(f, buf, PAGE_SIZE); 6197 if (IS_ERR(p)) 6198 p = "?"; 6199 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 6200 vma->vm_start, 6201 vma->vm_end - vma->vm_start); 6202 free_page((unsigned long)buf); 6203 } 6204 } 6205 mmap_read_unlock(mm); 6206 } 6207 6208 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6209 void __might_fault(const char *file, int line) 6210 { 6211 if (pagefault_disabled()) 6212 return; 6213 __might_sleep(file, line); 6214 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6215 if (current->mm) 6216 might_lock_read(¤t->mm->mmap_lock); 6217 #endif 6218 } 6219 EXPORT_SYMBOL(__might_fault); 6220 #endif 6221 6222 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6223 /* 6224 * Process all subpages of the specified huge page with the specified 6225 * operation. The target subpage will be processed last to keep its 6226 * cache lines hot. 6227 */ 6228 static inline int process_huge_page( 6229 unsigned long addr_hint, unsigned int pages_per_huge_page, 6230 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6231 void *arg) 6232 { 6233 int i, n, base, l, ret; 6234 unsigned long addr = addr_hint & 6235 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6236 6237 /* Process target subpage last to keep its cache lines hot */ 6238 might_sleep(); 6239 n = (addr_hint - addr) / PAGE_SIZE; 6240 if (2 * n <= pages_per_huge_page) { 6241 /* If target subpage in first half of huge page */ 6242 base = 0; 6243 l = n; 6244 /* Process subpages at the end of huge page */ 6245 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 6246 cond_resched(); 6247 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6248 if (ret) 6249 return ret; 6250 } 6251 } else { 6252 /* If target subpage in second half of huge page */ 6253 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 6254 l = pages_per_huge_page - n; 6255 /* Process subpages at the begin of huge page */ 6256 for (i = 0; i < base; i++) { 6257 cond_resched(); 6258 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6259 if (ret) 6260 return ret; 6261 } 6262 } 6263 /* 6264 * Process remaining subpages in left-right-left-right pattern 6265 * towards the target subpage 6266 */ 6267 for (i = 0; i < l; i++) { 6268 int left_idx = base + i; 6269 int right_idx = base + 2 * l - 1 - i; 6270 6271 cond_resched(); 6272 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6273 if (ret) 6274 return ret; 6275 cond_resched(); 6276 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6277 if (ret) 6278 return ret; 6279 } 6280 return 0; 6281 } 6282 6283 static void clear_gigantic_page(struct page *page, 6284 unsigned long addr, 6285 unsigned int pages_per_huge_page) 6286 { 6287 int i; 6288 struct page *p; 6289 6290 might_sleep(); 6291 for (i = 0; i < pages_per_huge_page; i++) { 6292 p = nth_page(page, i); 6293 cond_resched(); 6294 clear_user_highpage(p, addr + i * PAGE_SIZE); 6295 } 6296 } 6297 6298 static int clear_subpage(unsigned long addr, int idx, void *arg) 6299 { 6300 struct page *page = arg; 6301 6302 clear_user_highpage(nth_page(page, idx), addr); 6303 return 0; 6304 } 6305 6306 void clear_huge_page(struct page *page, 6307 unsigned long addr_hint, unsigned int pages_per_huge_page) 6308 { 6309 unsigned long addr = addr_hint & 6310 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6311 6312 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6313 clear_gigantic_page(page, addr, pages_per_huge_page); 6314 return; 6315 } 6316 6317 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6318 } 6319 6320 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6321 unsigned long addr, 6322 struct vm_area_struct *vma, 6323 unsigned int pages_per_huge_page) 6324 { 6325 int i; 6326 struct page *dst_page; 6327 struct page *src_page; 6328 6329 for (i = 0; i < pages_per_huge_page; i++) { 6330 dst_page = folio_page(dst, i); 6331 src_page = folio_page(src, i); 6332 6333 cond_resched(); 6334 if (copy_mc_user_highpage(dst_page, src_page, 6335 addr + i*PAGE_SIZE, vma)) { 6336 memory_failure_queue(page_to_pfn(src_page), 0); 6337 return -EHWPOISON; 6338 } 6339 } 6340 return 0; 6341 } 6342 6343 struct copy_subpage_arg { 6344 struct page *dst; 6345 struct page *src; 6346 struct vm_area_struct *vma; 6347 }; 6348 6349 static int copy_subpage(unsigned long addr, int idx, void *arg) 6350 { 6351 struct copy_subpage_arg *copy_arg = arg; 6352 struct page *dst = nth_page(copy_arg->dst, idx); 6353 struct page *src = nth_page(copy_arg->src, idx); 6354 6355 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) { 6356 memory_failure_queue(page_to_pfn(src), 0); 6357 return -EHWPOISON; 6358 } 6359 return 0; 6360 } 6361 6362 int copy_user_large_folio(struct folio *dst, struct folio *src, 6363 unsigned long addr_hint, struct vm_area_struct *vma) 6364 { 6365 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6366 unsigned long addr = addr_hint & 6367 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6368 struct copy_subpage_arg arg = { 6369 .dst = &dst->page, 6370 .src = &src->page, 6371 .vma = vma, 6372 }; 6373 6374 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6375 return copy_user_gigantic_page(dst, src, addr, vma, 6376 pages_per_huge_page); 6377 6378 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6379 } 6380 6381 long copy_folio_from_user(struct folio *dst_folio, 6382 const void __user *usr_src, 6383 bool allow_pagefault) 6384 { 6385 void *kaddr; 6386 unsigned long i, rc = 0; 6387 unsigned int nr_pages = folio_nr_pages(dst_folio); 6388 unsigned long ret_val = nr_pages * PAGE_SIZE; 6389 struct page *subpage; 6390 6391 for (i = 0; i < nr_pages; i++) { 6392 subpage = folio_page(dst_folio, i); 6393 kaddr = kmap_local_page(subpage); 6394 if (!allow_pagefault) 6395 pagefault_disable(); 6396 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6397 if (!allow_pagefault) 6398 pagefault_enable(); 6399 kunmap_local(kaddr); 6400 6401 ret_val -= (PAGE_SIZE - rc); 6402 if (rc) 6403 break; 6404 6405 flush_dcache_page(subpage); 6406 6407 cond_resched(); 6408 } 6409 return ret_val; 6410 } 6411 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6412 6413 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6414 6415 static struct kmem_cache *page_ptl_cachep; 6416 6417 void __init ptlock_cache_init(void) 6418 { 6419 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6420 SLAB_PANIC, NULL); 6421 } 6422 6423 bool ptlock_alloc(struct ptdesc *ptdesc) 6424 { 6425 spinlock_t *ptl; 6426 6427 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6428 if (!ptl) 6429 return false; 6430 ptdesc->ptl = ptl; 6431 return true; 6432 } 6433 6434 void ptlock_free(struct ptdesc *ptdesc) 6435 { 6436 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6437 } 6438 #endif 6439