xref: /linux/mm/memory.c (revision dbcedec3a31119d7594baacc743300d127c99c56)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	do {
367 		unsigned long addr = vma->vm_start;
368 		struct vm_area_struct *next;
369 
370 		/*
371 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
372 		 * be 0.  This will underflow and is okay.
373 		 */
374 		next = mas_find(mas, ceiling - 1);
375 		if (unlikely(xa_is_zero(next)))
376 			next = NULL;
377 
378 		/*
379 		 * Hide vma from rmap and truncate_pagecache before freeing
380 		 * pgtables
381 		 */
382 		if (mm_wr_locked)
383 			vma_start_write(vma);
384 		unlink_anon_vmas(vma);
385 		unlink_file_vma(vma);
386 
387 		if (is_vm_hugetlb_page(vma)) {
388 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 				floor, next ? next->vm_start : ceiling);
390 		} else {
391 			/*
392 			 * Optimization: gather nearby vmas into one call down
393 			 */
394 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 			       && !is_vm_hugetlb_page(next)) {
396 				vma = next;
397 				next = mas_find(mas, ceiling - 1);
398 				if (unlikely(xa_is_zero(next)))
399 					next = NULL;
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	for (i = 0; i < NR_MM_COUNTERS; i++)
478 		if (rss[i])
479 			add_mm_counter(mm, i, rss[i]);
480 }
481 
482 /*
483  * This function is called to print an error when a bad pte
484  * is found. For example, we might have a PFN-mapped pte in
485  * a region that doesn't allow it.
486  *
487  * The calling function must still handle the error.
488  */
489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
490 			  pte_t pte, struct page *page)
491 {
492 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
493 	p4d_t *p4d = p4d_offset(pgd, addr);
494 	pud_t *pud = pud_offset(p4d, addr);
495 	pmd_t *pmd = pmd_offset(pud, addr);
496 	struct address_space *mapping;
497 	pgoff_t index;
498 	static unsigned long resume;
499 	static unsigned long nr_shown;
500 	static unsigned long nr_unshown;
501 
502 	/*
503 	 * Allow a burst of 60 reports, then keep quiet for that minute;
504 	 * or allow a steady drip of one report per second.
505 	 */
506 	if (nr_shown == 60) {
507 		if (time_before(jiffies, resume)) {
508 			nr_unshown++;
509 			return;
510 		}
511 		if (nr_unshown) {
512 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
513 				 nr_unshown);
514 			nr_unshown = 0;
515 		}
516 		nr_shown = 0;
517 	}
518 	if (nr_shown++ == 0)
519 		resume = jiffies + 60 * HZ;
520 
521 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
522 	index = linear_page_index(vma, addr);
523 
524 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
525 		 current->comm,
526 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
527 	if (page)
528 		dump_page(page, "bad pte");
529 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
530 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
531 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
532 		 vma->vm_file,
533 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
534 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
535 		 mapping ? mapping->a_ops->read_folio : NULL);
536 	dump_stack();
537 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
538 }
539 
540 /*
541  * vm_normal_page -- This function gets the "struct page" associated with a pte.
542  *
543  * "Special" mappings do not wish to be associated with a "struct page" (either
544  * it doesn't exist, or it exists but they don't want to touch it). In this
545  * case, NULL is returned here. "Normal" mappings do have a struct page.
546  *
547  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
548  * pte bit, in which case this function is trivial. Secondly, an architecture
549  * may not have a spare pte bit, which requires a more complicated scheme,
550  * described below.
551  *
552  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
553  * special mapping (even if there are underlying and valid "struct pages").
554  * COWed pages of a VM_PFNMAP are always normal.
555  *
556  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
557  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
558  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
559  * mapping will always honor the rule
560  *
561  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562  *
563  * And for normal mappings this is false.
564  *
565  * This restricts such mappings to be a linear translation from virtual address
566  * to pfn. To get around this restriction, we allow arbitrary mappings so long
567  * as the vma is not a COW mapping; in that case, we know that all ptes are
568  * special (because none can have been COWed).
569  *
570  *
571  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
572  *
573  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
574  * page" backing, however the difference is that _all_ pages with a struct
575  * page (that is, those where pfn_valid is true) are refcounted and considered
576  * normal pages by the VM. The disadvantage is that pages are refcounted
577  * (which can be slower and simply not an option for some PFNMAP users). The
578  * advantage is that we don't have to follow the strict linearity rule of
579  * PFNMAP mappings in order to support COWable mappings.
580  *
581  */
582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
583 			    pte_t pte)
584 {
585 	unsigned long pfn = pte_pfn(pte);
586 
587 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
588 		if (likely(!pte_special(pte)))
589 			goto check_pfn;
590 		if (vma->vm_ops && vma->vm_ops->find_special_page)
591 			return vma->vm_ops->find_special_page(vma, addr);
592 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 			return NULL;
594 		if (is_zero_pfn(pfn))
595 			return NULL;
596 		if (pte_devmap(pte))
597 		/*
598 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
599 		 * and will have refcounts incremented on their struct pages
600 		 * when they are inserted into PTEs, thus they are safe to
601 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
602 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
603 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
604 		 */
605 			return NULL;
606 
607 		print_bad_pte(vma, addr, pte, NULL);
608 		return NULL;
609 	}
610 
611 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
612 
613 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 		if (vma->vm_flags & VM_MIXEDMAP) {
615 			if (!pfn_valid(pfn))
616 				return NULL;
617 			goto out;
618 		} else {
619 			unsigned long off;
620 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
621 			if (pfn == vma->vm_pgoff + off)
622 				return NULL;
623 			if (!is_cow_mapping(vma->vm_flags))
624 				return NULL;
625 		}
626 	}
627 
628 	if (is_zero_pfn(pfn))
629 		return NULL;
630 
631 check_pfn:
632 	if (unlikely(pfn > highest_memmap_pfn)) {
633 		print_bad_pte(vma, addr, pte, NULL);
634 		return NULL;
635 	}
636 
637 	/*
638 	 * NOTE! We still have PageReserved() pages in the page tables.
639 	 * eg. VDSO mappings can cause them to exist.
640 	 */
641 out:
642 	return pfn_to_page(pfn);
643 }
644 
645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
646 			    pte_t pte)
647 {
648 	struct page *page = vm_normal_page(vma, addr, pte);
649 
650 	if (page)
651 		return page_folio(page);
652 	return NULL;
653 }
654 
655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
657 				pmd_t pmd)
658 {
659 	unsigned long pfn = pmd_pfn(pmd);
660 
661 	/*
662 	 * There is no pmd_special() but there may be special pmds, e.g.
663 	 * in a direct-access (dax) mapping, so let's just replicate the
664 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
665 	 */
666 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 		if (vma->vm_flags & VM_MIXEDMAP) {
668 			if (!pfn_valid(pfn))
669 				return NULL;
670 			goto out;
671 		} else {
672 			unsigned long off;
673 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 			if (pfn == vma->vm_pgoff + off)
675 				return NULL;
676 			if (!is_cow_mapping(vma->vm_flags))
677 				return NULL;
678 		}
679 	}
680 
681 	if (pmd_devmap(pmd))
682 		return NULL;
683 	if (is_huge_zero_pmd(pmd))
684 		return NULL;
685 	if (unlikely(pfn > highest_memmap_pfn))
686 		return NULL;
687 
688 	/*
689 	 * NOTE! We still have PageReserved() pages in the page tables.
690 	 * eg. VDSO mappings can cause them to exist.
691 	 */
692 out:
693 	return pfn_to_page(pfn);
694 }
695 
696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
697 				  unsigned long addr, pmd_t pmd)
698 {
699 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
700 
701 	if (page)
702 		return page_folio(page);
703 	return NULL;
704 }
705 #endif
706 
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 				  struct page *page, unsigned long address,
709 				  pte_t *ptep)
710 {
711 	struct folio *folio = page_folio(page);
712 	pte_t orig_pte;
713 	pte_t pte;
714 	swp_entry_t entry;
715 
716 	orig_pte = ptep_get(ptep);
717 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
718 	if (pte_swp_soft_dirty(orig_pte))
719 		pte = pte_mksoft_dirty(pte);
720 
721 	entry = pte_to_swp_entry(orig_pte);
722 	if (pte_swp_uffd_wp(orig_pte))
723 		pte = pte_mkuffd_wp(pte);
724 	else if (is_writable_device_exclusive_entry(entry))
725 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
726 
727 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
728 					   PageAnonExclusive(page)), folio);
729 
730 	/*
731 	 * No need to take a page reference as one was already
732 	 * created when the swap entry was made.
733 	 */
734 	if (folio_test_anon(folio))
735 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
736 	else
737 		/*
738 		 * Currently device exclusive access only supports anonymous
739 		 * memory so the entry shouldn't point to a filebacked page.
740 		 */
741 		WARN_ON_ONCE(1);
742 
743 	set_pte_at(vma->vm_mm, address, ptep, pte);
744 
745 	/*
746 	 * No need to invalidate - it was non-present before. However
747 	 * secondary CPUs may have mappings that need invalidating.
748 	 */
749 	update_mmu_cache(vma, address, ptep);
750 }
751 
752 /*
753  * Tries to restore an exclusive pte if the page lock can be acquired without
754  * sleeping.
755  */
756 static int
757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 			unsigned long addr)
759 {
760 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
761 	struct page *page = pfn_swap_entry_to_page(entry);
762 
763 	if (trylock_page(page)) {
764 		restore_exclusive_pte(vma, page, addr, src_pte);
765 		unlock_page(page);
766 		return 0;
767 	}
768 
769 	return -EBUSY;
770 }
771 
772 /*
773  * copy one vm_area from one task to the other. Assumes the page tables
774  * already present in the new task to be cleared in the whole range
775  * covered by this vma.
776  */
777 
778 static unsigned long
779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
780 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
782 {
783 	unsigned long vm_flags = dst_vma->vm_flags;
784 	pte_t orig_pte = ptep_get(src_pte);
785 	pte_t pte = orig_pte;
786 	struct folio *folio;
787 	struct page *page;
788 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
789 
790 	if (likely(!non_swap_entry(entry))) {
791 		if (swap_duplicate(entry) < 0)
792 			return -EIO;
793 
794 		/* make sure dst_mm is on swapoff's mmlist. */
795 		if (unlikely(list_empty(&dst_mm->mmlist))) {
796 			spin_lock(&mmlist_lock);
797 			if (list_empty(&dst_mm->mmlist))
798 				list_add(&dst_mm->mmlist,
799 						&src_mm->mmlist);
800 			spin_unlock(&mmlist_lock);
801 		}
802 		/* Mark the swap entry as shared. */
803 		if (pte_swp_exclusive(orig_pte)) {
804 			pte = pte_swp_clear_exclusive(orig_pte);
805 			set_pte_at(src_mm, addr, src_pte, pte);
806 		}
807 		rss[MM_SWAPENTS]++;
808 	} else if (is_migration_entry(entry)) {
809 		folio = pfn_swap_entry_folio(entry);
810 
811 		rss[mm_counter(folio)]++;
812 
813 		if (!is_readable_migration_entry(entry) &&
814 				is_cow_mapping(vm_flags)) {
815 			/*
816 			 * COW mappings require pages in both parent and child
817 			 * to be set to read. A previously exclusive entry is
818 			 * now shared.
819 			 */
820 			entry = make_readable_migration_entry(
821 							swp_offset(entry));
822 			pte = swp_entry_to_pte(entry);
823 			if (pte_swp_soft_dirty(orig_pte))
824 				pte = pte_swp_mksoft_dirty(pte);
825 			if (pte_swp_uffd_wp(orig_pte))
826 				pte = pte_swp_mkuffd_wp(pte);
827 			set_pte_at(src_mm, addr, src_pte, pte);
828 		}
829 	} else if (is_device_private_entry(entry)) {
830 		page = pfn_swap_entry_to_page(entry);
831 		folio = page_folio(page);
832 
833 		/*
834 		 * Update rss count even for unaddressable pages, as
835 		 * they should treated just like normal pages in this
836 		 * respect.
837 		 *
838 		 * We will likely want to have some new rss counters
839 		 * for unaddressable pages, at some point. But for now
840 		 * keep things as they are.
841 		 */
842 		folio_get(folio);
843 		rss[mm_counter(folio)]++;
844 		/* Cannot fail as these pages cannot get pinned. */
845 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
846 
847 		/*
848 		 * We do not preserve soft-dirty information, because so
849 		 * far, checkpoint/restore is the only feature that
850 		 * requires that. And checkpoint/restore does not work
851 		 * when a device driver is involved (you cannot easily
852 		 * save and restore device driver state).
853 		 */
854 		if (is_writable_device_private_entry(entry) &&
855 		    is_cow_mapping(vm_flags)) {
856 			entry = make_readable_device_private_entry(
857 							swp_offset(entry));
858 			pte = swp_entry_to_pte(entry);
859 			if (pte_swp_uffd_wp(orig_pte))
860 				pte = pte_swp_mkuffd_wp(pte);
861 			set_pte_at(src_mm, addr, src_pte, pte);
862 		}
863 	} else if (is_device_exclusive_entry(entry)) {
864 		/*
865 		 * Make device exclusive entries present by restoring the
866 		 * original entry then copying as for a present pte. Device
867 		 * exclusive entries currently only support private writable
868 		 * (ie. COW) mappings.
869 		 */
870 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
871 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
872 			return -EBUSY;
873 		return -ENOENT;
874 	} else if (is_pte_marker_entry(entry)) {
875 		pte_marker marker = copy_pte_marker(entry, dst_vma);
876 
877 		if (marker)
878 			set_pte_at(dst_mm, addr, dst_pte,
879 				   make_pte_marker(marker));
880 		return 0;
881 	}
882 	if (!userfaultfd_wp(dst_vma))
883 		pte = pte_swp_clear_uffd_wp(pte);
884 	set_pte_at(dst_mm, addr, dst_pte, pte);
885 	return 0;
886 }
887 
888 /*
889  * Copy a present and normal page.
890  *
891  * NOTE! The usual case is that this isn't required;
892  * instead, the caller can just increase the page refcount
893  * and re-use the pte the traditional way.
894  *
895  * And if we need a pre-allocated page but don't yet have
896  * one, return a negative error to let the preallocation
897  * code know so that it can do so outside the page table
898  * lock.
899  */
900 static inline int
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 		  struct folio **prealloc, struct page *page)
904 {
905 	struct folio *new_folio;
906 	pte_t pte;
907 
908 	new_folio = *prealloc;
909 	if (!new_folio)
910 		return -EAGAIN;
911 
912 	/*
913 	 * We have a prealloc page, all good!  Take it
914 	 * over and copy the page & arm it.
915 	 */
916 	*prealloc = NULL;
917 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
918 	__folio_mark_uptodate(new_folio);
919 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
920 	folio_add_lru_vma(new_folio, dst_vma);
921 	rss[MM_ANONPAGES]++;
922 
923 	/* All done, just insert the new page copy in the child */
924 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
925 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
927 		/* Uffd-wp needs to be delivered to dest pte as well */
928 		pte = pte_mkuffd_wp(pte);
929 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
930 	return 0;
931 }
932 
933 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
934 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
935 		pte_t pte, unsigned long addr, int nr)
936 {
937 	struct mm_struct *src_mm = src_vma->vm_mm;
938 
939 	/* If it's a COW mapping, write protect it both processes. */
940 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
941 		wrprotect_ptes(src_mm, addr, src_pte, nr);
942 		pte = pte_wrprotect(pte);
943 	}
944 
945 	/* If it's a shared mapping, mark it clean in the child. */
946 	if (src_vma->vm_flags & VM_SHARED)
947 		pte = pte_mkclean(pte);
948 	pte = pte_mkold(pte);
949 
950 	if (!userfaultfd_wp(dst_vma))
951 		pte = pte_clear_uffd_wp(pte);
952 
953 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
954 }
955 
956 /*
957  * Copy one present PTE, trying to batch-process subsequent PTEs that map
958  * consecutive pages of the same folio by copying them as well.
959  *
960  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
961  * Otherwise, returns the number of copied PTEs (at least 1).
962  */
963 static inline int
964 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
965 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
966 		 int max_nr, int *rss, struct folio **prealloc)
967 {
968 	struct page *page;
969 	struct folio *folio;
970 	bool any_writable;
971 	fpb_t flags = 0;
972 	int err, nr;
973 
974 	page = vm_normal_page(src_vma, addr, pte);
975 	if (unlikely(!page))
976 		goto copy_pte;
977 
978 	folio = page_folio(page);
979 
980 	/*
981 	 * If we likely have to copy, just don't bother with batching. Make
982 	 * sure that the common "small folio" case is as fast as possible
983 	 * by keeping the batching logic separate.
984 	 */
985 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
986 		if (src_vma->vm_flags & VM_SHARED)
987 			flags |= FPB_IGNORE_DIRTY;
988 		if (!vma_soft_dirty_enabled(src_vma))
989 			flags |= FPB_IGNORE_SOFT_DIRTY;
990 
991 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
992 				     &any_writable);
993 		folio_ref_add(folio, nr);
994 		if (folio_test_anon(folio)) {
995 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
996 								  nr, src_vma))) {
997 				folio_ref_sub(folio, nr);
998 				return -EAGAIN;
999 			}
1000 			rss[MM_ANONPAGES] += nr;
1001 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1002 		} else {
1003 			folio_dup_file_rmap_ptes(folio, page, nr);
1004 			rss[mm_counter_file(folio)] += nr;
1005 		}
1006 		if (any_writable)
1007 			pte = pte_mkwrite(pte, src_vma);
1008 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1009 				    addr, nr);
1010 		return nr;
1011 	}
1012 
1013 	folio_get(folio);
1014 	if (folio_test_anon(folio)) {
1015 		/*
1016 		 * If this page may have been pinned by the parent process,
1017 		 * copy the page immediately for the child so that we'll always
1018 		 * guarantee the pinned page won't be randomly replaced in the
1019 		 * future.
1020 		 */
1021 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1022 			/* Page may be pinned, we have to copy. */
1023 			folio_put(folio);
1024 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1025 						addr, rss, prealloc, page);
1026 			return err ? err : 1;
1027 		}
1028 		rss[MM_ANONPAGES]++;
1029 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1030 	} else {
1031 		folio_dup_file_rmap_pte(folio, page);
1032 		rss[mm_counter_file(folio)]++;
1033 	}
1034 
1035 copy_pte:
1036 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1037 	return 1;
1038 }
1039 
1040 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1041 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1042 {
1043 	struct folio *new_folio;
1044 
1045 	if (need_zero)
1046 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1047 	else
1048 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1049 					    addr, false);
1050 
1051 	if (!new_folio)
1052 		return NULL;
1053 
1054 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1055 		folio_put(new_folio);
1056 		return NULL;
1057 	}
1058 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1059 
1060 	return new_folio;
1061 }
1062 
1063 static int
1064 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1065 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066 	       unsigned long end)
1067 {
1068 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1069 	struct mm_struct *src_mm = src_vma->vm_mm;
1070 	pte_t *orig_src_pte, *orig_dst_pte;
1071 	pte_t *src_pte, *dst_pte;
1072 	pte_t ptent;
1073 	spinlock_t *src_ptl, *dst_ptl;
1074 	int progress, max_nr, ret = 0;
1075 	int rss[NR_MM_COUNTERS];
1076 	swp_entry_t entry = (swp_entry_t){0};
1077 	struct folio *prealloc = NULL;
1078 	int nr;
1079 
1080 again:
1081 	progress = 0;
1082 	init_rss_vec(rss);
1083 
1084 	/*
1085 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1086 	 * error handling here, assume that exclusive mmap_lock on dst and src
1087 	 * protects anon from unexpected THP transitions; with shmem and file
1088 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1089 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1090 	 * can remove such assumptions later, but this is good enough for now.
1091 	 */
1092 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1093 	if (!dst_pte) {
1094 		ret = -ENOMEM;
1095 		goto out;
1096 	}
1097 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1098 	if (!src_pte) {
1099 		pte_unmap_unlock(dst_pte, dst_ptl);
1100 		/* ret == 0 */
1101 		goto out;
1102 	}
1103 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1104 	orig_src_pte = src_pte;
1105 	orig_dst_pte = dst_pte;
1106 	arch_enter_lazy_mmu_mode();
1107 
1108 	do {
1109 		nr = 1;
1110 
1111 		/*
1112 		 * We are holding two locks at this point - either of them
1113 		 * could generate latencies in another task on another CPU.
1114 		 */
1115 		if (progress >= 32) {
1116 			progress = 0;
1117 			if (need_resched() ||
1118 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1119 				break;
1120 		}
1121 		ptent = ptep_get(src_pte);
1122 		if (pte_none(ptent)) {
1123 			progress++;
1124 			continue;
1125 		}
1126 		if (unlikely(!pte_present(ptent))) {
1127 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1128 						  dst_pte, src_pte,
1129 						  dst_vma, src_vma,
1130 						  addr, rss);
1131 			if (ret == -EIO) {
1132 				entry = pte_to_swp_entry(ptep_get(src_pte));
1133 				break;
1134 			} else if (ret == -EBUSY) {
1135 				break;
1136 			} else if (!ret) {
1137 				progress += 8;
1138 				continue;
1139 			}
1140 			ptent = ptep_get(src_pte);
1141 			VM_WARN_ON_ONCE(!pte_present(ptent));
1142 
1143 			/*
1144 			 * Device exclusive entry restored, continue by copying
1145 			 * the now present pte.
1146 			 */
1147 			WARN_ON_ONCE(ret != -ENOENT);
1148 		}
1149 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1150 		max_nr = (end - addr) / PAGE_SIZE;
1151 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1152 					ptent, addr, max_nr, rss, &prealloc);
1153 		/*
1154 		 * If we need a pre-allocated page for this pte, drop the
1155 		 * locks, allocate, and try again.
1156 		 */
1157 		if (unlikely(ret == -EAGAIN))
1158 			break;
1159 		if (unlikely(prealloc)) {
1160 			/*
1161 			 * pre-alloc page cannot be reused by next time so as
1162 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1163 			 * will allocate page according to address).  This
1164 			 * could only happen if one pinned pte changed.
1165 			 */
1166 			folio_put(prealloc);
1167 			prealloc = NULL;
1168 		}
1169 		nr = ret;
1170 		progress += 8 * nr;
1171 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1172 		 addr != end);
1173 
1174 	arch_leave_lazy_mmu_mode();
1175 	pte_unmap_unlock(orig_src_pte, src_ptl);
1176 	add_mm_rss_vec(dst_mm, rss);
1177 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1178 	cond_resched();
1179 
1180 	if (ret == -EIO) {
1181 		VM_WARN_ON_ONCE(!entry.val);
1182 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1183 			ret = -ENOMEM;
1184 			goto out;
1185 		}
1186 		entry.val = 0;
1187 	} else if (ret == -EBUSY) {
1188 		goto out;
1189 	} else if (ret ==  -EAGAIN) {
1190 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1191 		if (!prealloc)
1192 			return -ENOMEM;
1193 	} else if (ret < 0) {
1194 		VM_WARN_ON_ONCE(1);
1195 	}
1196 
1197 	/* We've captured and resolved the error. Reset, try again. */
1198 	ret = 0;
1199 
1200 	if (addr != end)
1201 		goto again;
1202 out:
1203 	if (unlikely(prealloc))
1204 		folio_put(prealloc);
1205 	return ret;
1206 }
1207 
1208 static inline int
1209 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1210 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1211 	       unsigned long end)
1212 {
1213 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1214 	struct mm_struct *src_mm = src_vma->vm_mm;
1215 	pmd_t *src_pmd, *dst_pmd;
1216 	unsigned long next;
1217 
1218 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1219 	if (!dst_pmd)
1220 		return -ENOMEM;
1221 	src_pmd = pmd_offset(src_pud, addr);
1222 	do {
1223 		next = pmd_addr_end(addr, end);
1224 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1225 			|| pmd_devmap(*src_pmd)) {
1226 			int err;
1227 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1228 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1229 					    addr, dst_vma, src_vma);
1230 			if (err == -ENOMEM)
1231 				return -ENOMEM;
1232 			if (!err)
1233 				continue;
1234 			/* fall through */
1235 		}
1236 		if (pmd_none_or_clear_bad(src_pmd))
1237 			continue;
1238 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1239 				   addr, next))
1240 			return -ENOMEM;
1241 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1242 	return 0;
1243 }
1244 
1245 static inline int
1246 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1247 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1248 	       unsigned long end)
1249 {
1250 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1251 	struct mm_struct *src_mm = src_vma->vm_mm;
1252 	pud_t *src_pud, *dst_pud;
1253 	unsigned long next;
1254 
1255 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1256 	if (!dst_pud)
1257 		return -ENOMEM;
1258 	src_pud = pud_offset(src_p4d, addr);
1259 	do {
1260 		next = pud_addr_end(addr, end);
1261 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1262 			int err;
1263 
1264 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1265 			err = copy_huge_pud(dst_mm, src_mm,
1266 					    dst_pud, src_pud, addr, src_vma);
1267 			if (err == -ENOMEM)
1268 				return -ENOMEM;
1269 			if (!err)
1270 				continue;
1271 			/* fall through */
1272 		}
1273 		if (pud_none_or_clear_bad(src_pud))
1274 			continue;
1275 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1276 				   addr, next))
1277 			return -ENOMEM;
1278 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1279 	return 0;
1280 }
1281 
1282 static inline int
1283 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1284 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1285 	       unsigned long end)
1286 {
1287 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1288 	p4d_t *src_p4d, *dst_p4d;
1289 	unsigned long next;
1290 
1291 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1292 	if (!dst_p4d)
1293 		return -ENOMEM;
1294 	src_p4d = p4d_offset(src_pgd, addr);
1295 	do {
1296 		next = p4d_addr_end(addr, end);
1297 		if (p4d_none_or_clear_bad(src_p4d))
1298 			continue;
1299 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1300 				   addr, next))
1301 			return -ENOMEM;
1302 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Return true if the vma needs to copy the pgtable during this fork().  Return
1308  * false when we can speed up fork() by allowing lazy page faults later until
1309  * when the child accesses the memory range.
1310  */
1311 static bool
1312 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1313 {
1314 	/*
1315 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1316 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1317 	 * contains uffd-wp protection information, that's something we can't
1318 	 * retrieve from page cache, and skip copying will lose those info.
1319 	 */
1320 	if (userfaultfd_wp(dst_vma))
1321 		return true;
1322 
1323 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1324 		return true;
1325 
1326 	if (src_vma->anon_vma)
1327 		return true;
1328 
1329 	/*
1330 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1331 	 * becomes much lighter when there are big shared or private readonly
1332 	 * mappings. The tradeoff is that copy_page_range is more efficient
1333 	 * than faulting.
1334 	 */
1335 	return false;
1336 }
1337 
1338 int
1339 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1340 {
1341 	pgd_t *src_pgd, *dst_pgd;
1342 	unsigned long next;
1343 	unsigned long addr = src_vma->vm_start;
1344 	unsigned long end = src_vma->vm_end;
1345 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1346 	struct mm_struct *src_mm = src_vma->vm_mm;
1347 	struct mmu_notifier_range range;
1348 	bool is_cow;
1349 	int ret;
1350 
1351 	if (!vma_needs_copy(dst_vma, src_vma))
1352 		return 0;
1353 
1354 	if (is_vm_hugetlb_page(src_vma))
1355 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1356 
1357 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1358 		/*
1359 		 * We do not free on error cases below as remove_vma
1360 		 * gets called on error from higher level routine
1361 		 */
1362 		ret = track_pfn_copy(src_vma);
1363 		if (ret)
1364 			return ret;
1365 	}
1366 
1367 	/*
1368 	 * We need to invalidate the secondary MMU mappings only when
1369 	 * there could be a permission downgrade on the ptes of the
1370 	 * parent mm. And a permission downgrade will only happen if
1371 	 * is_cow_mapping() returns true.
1372 	 */
1373 	is_cow = is_cow_mapping(src_vma->vm_flags);
1374 
1375 	if (is_cow) {
1376 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1377 					0, src_mm, addr, end);
1378 		mmu_notifier_invalidate_range_start(&range);
1379 		/*
1380 		 * Disabling preemption is not needed for the write side, as
1381 		 * the read side doesn't spin, but goes to the mmap_lock.
1382 		 *
1383 		 * Use the raw variant of the seqcount_t write API to avoid
1384 		 * lockdep complaining about preemptibility.
1385 		 */
1386 		vma_assert_write_locked(src_vma);
1387 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1388 	}
1389 
1390 	ret = 0;
1391 	dst_pgd = pgd_offset(dst_mm, addr);
1392 	src_pgd = pgd_offset(src_mm, addr);
1393 	do {
1394 		next = pgd_addr_end(addr, end);
1395 		if (pgd_none_or_clear_bad(src_pgd))
1396 			continue;
1397 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1398 					    addr, next))) {
1399 			untrack_pfn_clear(dst_vma);
1400 			ret = -ENOMEM;
1401 			break;
1402 		}
1403 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1404 
1405 	if (is_cow) {
1406 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1407 		mmu_notifier_invalidate_range_end(&range);
1408 	}
1409 	return ret;
1410 }
1411 
1412 /* Whether we should zap all COWed (private) pages too */
1413 static inline bool should_zap_cows(struct zap_details *details)
1414 {
1415 	/* By default, zap all pages */
1416 	if (!details)
1417 		return true;
1418 
1419 	/* Or, we zap COWed pages only if the caller wants to */
1420 	return details->even_cows;
1421 }
1422 
1423 /* Decides whether we should zap this folio with the folio pointer specified */
1424 static inline bool should_zap_folio(struct zap_details *details,
1425 				    struct folio *folio)
1426 {
1427 	/* If we can make a decision without *folio.. */
1428 	if (should_zap_cows(details))
1429 		return true;
1430 
1431 	/* Otherwise we should only zap non-anon folios */
1432 	return !folio_test_anon(folio);
1433 }
1434 
1435 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1436 {
1437 	if (!details)
1438 		return false;
1439 
1440 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1441 }
1442 
1443 /*
1444  * This function makes sure that we'll replace the none pte with an uffd-wp
1445  * swap special pte marker when necessary. Must be with the pgtable lock held.
1446  */
1447 static inline void
1448 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1449 			      unsigned long addr, pte_t *pte, int nr,
1450 			      struct zap_details *details, pte_t pteval)
1451 {
1452 	/* Zap on anonymous always means dropping everything */
1453 	if (vma_is_anonymous(vma))
1454 		return;
1455 
1456 	if (zap_drop_file_uffd_wp(details))
1457 		return;
1458 
1459 	for (;;) {
1460 		/* the PFN in the PTE is irrelevant. */
1461 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1462 		if (--nr == 0)
1463 			break;
1464 		pte++;
1465 		addr += PAGE_SIZE;
1466 	}
1467 }
1468 
1469 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1470 		struct vm_area_struct *vma, struct folio *folio,
1471 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1472 		unsigned long addr, struct zap_details *details, int *rss,
1473 		bool *force_flush, bool *force_break)
1474 {
1475 	struct mm_struct *mm = tlb->mm;
1476 	bool delay_rmap = false;
1477 
1478 	if (!folio_test_anon(folio)) {
1479 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1480 		if (pte_dirty(ptent)) {
1481 			folio_mark_dirty(folio);
1482 			if (tlb_delay_rmap(tlb)) {
1483 				delay_rmap = true;
1484 				*force_flush = true;
1485 			}
1486 		}
1487 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1488 			folio_mark_accessed(folio);
1489 		rss[mm_counter(folio)] -= nr;
1490 	} else {
1491 		/* We don't need up-to-date accessed/dirty bits. */
1492 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1493 		rss[MM_ANONPAGES] -= nr;
1494 	}
1495 	/* Checking a single PTE in a batch is sufficient. */
1496 	arch_check_zapped_pte(vma, ptent);
1497 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1498 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1499 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1500 					      ptent);
1501 
1502 	if (!delay_rmap) {
1503 		folio_remove_rmap_ptes(folio, page, nr, vma);
1504 
1505 		/* Only sanity-check the first page in a batch. */
1506 		if (unlikely(page_mapcount(page) < 0))
1507 			print_bad_pte(vma, addr, ptent, page);
1508 	}
1509 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1510 		*force_flush = true;
1511 		*force_break = true;
1512 	}
1513 }
1514 
1515 /*
1516  * Zap or skip at least one present PTE, trying to batch-process subsequent
1517  * PTEs that map consecutive pages of the same folio.
1518  *
1519  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1520  */
1521 static inline int zap_present_ptes(struct mmu_gather *tlb,
1522 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1523 		unsigned int max_nr, unsigned long addr,
1524 		struct zap_details *details, int *rss, bool *force_flush,
1525 		bool *force_break)
1526 {
1527 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1528 	struct mm_struct *mm = tlb->mm;
1529 	struct folio *folio;
1530 	struct page *page;
1531 	int nr;
1532 
1533 	page = vm_normal_page(vma, addr, ptent);
1534 	if (!page) {
1535 		/* We don't need up-to-date accessed/dirty bits. */
1536 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1537 		arch_check_zapped_pte(vma, ptent);
1538 		tlb_remove_tlb_entry(tlb, pte, addr);
1539 		if (userfaultfd_pte_wp(vma, ptent))
1540 			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1541 						      details, ptent);
1542 		ksm_might_unmap_zero_page(mm, ptent);
1543 		return 1;
1544 	}
1545 
1546 	folio = page_folio(page);
1547 	if (unlikely(!should_zap_folio(details, folio)))
1548 		return 1;
1549 
1550 	/*
1551 	 * Make sure that the common "small folio" case is as fast as possible
1552 	 * by keeping the batching logic separate.
1553 	 */
1554 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1555 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1556 				     NULL);
1557 
1558 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1559 				       addr, details, rss, force_flush,
1560 				       force_break);
1561 		return nr;
1562 	}
1563 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1564 			       details, rss, force_flush, force_break);
1565 	return 1;
1566 }
1567 
1568 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1569 				struct vm_area_struct *vma, pmd_t *pmd,
1570 				unsigned long addr, unsigned long end,
1571 				struct zap_details *details)
1572 {
1573 	bool force_flush = false, force_break = false;
1574 	struct mm_struct *mm = tlb->mm;
1575 	int rss[NR_MM_COUNTERS];
1576 	spinlock_t *ptl;
1577 	pte_t *start_pte;
1578 	pte_t *pte;
1579 	swp_entry_t entry;
1580 	int nr;
1581 
1582 	tlb_change_page_size(tlb, PAGE_SIZE);
1583 	init_rss_vec(rss);
1584 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1585 	if (!pte)
1586 		return addr;
1587 
1588 	flush_tlb_batched_pending(mm);
1589 	arch_enter_lazy_mmu_mode();
1590 	do {
1591 		pte_t ptent = ptep_get(pte);
1592 		struct folio *folio;
1593 		struct page *page;
1594 		int max_nr;
1595 
1596 		nr = 1;
1597 		if (pte_none(ptent))
1598 			continue;
1599 
1600 		if (need_resched())
1601 			break;
1602 
1603 		if (pte_present(ptent)) {
1604 			max_nr = (end - addr) / PAGE_SIZE;
1605 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1606 					      addr, details, rss, &force_flush,
1607 					      &force_break);
1608 			if (unlikely(force_break)) {
1609 				addr += nr * PAGE_SIZE;
1610 				break;
1611 			}
1612 			continue;
1613 		}
1614 
1615 		entry = pte_to_swp_entry(ptent);
1616 		if (is_device_private_entry(entry) ||
1617 		    is_device_exclusive_entry(entry)) {
1618 			page = pfn_swap_entry_to_page(entry);
1619 			folio = page_folio(page);
1620 			if (unlikely(!should_zap_folio(details, folio)))
1621 				continue;
1622 			/*
1623 			 * Both device private/exclusive mappings should only
1624 			 * work with anonymous page so far, so we don't need to
1625 			 * consider uffd-wp bit when zap. For more information,
1626 			 * see zap_install_uffd_wp_if_needed().
1627 			 */
1628 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1629 			rss[mm_counter(folio)]--;
1630 			if (is_device_private_entry(entry))
1631 				folio_remove_rmap_pte(folio, page, vma);
1632 			folio_put(folio);
1633 		} else if (!non_swap_entry(entry)) {
1634 			/* Genuine swap entry, hence a private anon page */
1635 			if (!should_zap_cows(details))
1636 				continue;
1637 			rss[MM_SWAPENTS]--;
1638 			if (unlikely(!free_swap_and_cache(entry)))
1639 				print_bad_pte(vma, addr, ptent, NULL);
1640 		} else if (is_migration_entry(entry)) {
1641 			folio = pfn_swap_entry_folio(entry);
1642 			if (!should_zap_folio(details, folio))
1643 				continue;
1644 			rss[mm_counter(folio)]--;
1645 		} else if (pte_marker_entry_uffd_wp(entry)) {
1646 			/*
1647 			 * For anon: always drop the marker; for file: only
1648 			 * drop the marker if explicitly requested.
1649 			 */
1650 			if (!vma_is_anonymous(vma) &&
1651 			    !zap_drop_file_uffd_wp(details))
1652 				continue;
1653 		} else if (is_hwpoison_entry(entry) ||
1654 			   is_poisoned_swp_entry(entry)) {
1655 			if (!should_zap_cows(details))
1656 				continue;
1657 		} else {
1658 			/* We should have covered all the swap entry types */
1659 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1660 			WARN_ON_ONCE(1);
1661 		}
1662 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1663 		zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent);
1664 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1665 
1666 	add_mm_rss_vec(mm, rss);
1667 	arch_leave_lazy_mmu_mode();
1668 
1669 	/* Do the actual TLB flush before dropping ptl */
1670 	if (force_flush) {
1671 		tlb_flush_mmu_tlbonly(tlb);
1672 		tlb_flush_rmaps(tlb, vma);
1673 	}
1674 	pte_unmap_unlock(start_pte, ptl);
1675 
1676 	/*
1677 	 * If we forced a TLB flush (either due to running out of
1678 	 * batch buffers or because we needed to flush dirty TLB
1679 	 * entries before releasing the ptl), free the batched
1680 	 * memory too. Come back again if we didn't do everything.
1681 	 */
1682 	if (force_flush)
1683 		tlb_flush_mmu(tlb);
1684 
1685 	return addr;
1686 }
1687 
1688 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1689 				struct vm_area_struct *vma, pud_t *pud,
1690 				unsigned long addr, unsigned long end,
1691 				struct zap_details *details)
1692 {
1693 	pmd_t *pmd;
1694 	unsigned long next;
1695 
1696 	pmd = pmd_offset(pud, addr);
1697 	do {
1698 		next = pmd_addr_end(addr, end);
1699 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1700 			if (next - addr != HPAGE_PMD_SIZE)
1701 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1702 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1703 				addr = next;
1704 				continue;
1705 			}
1706 			/* fall through */
1707 		} else if (details && details->single_folio &&
1708 			   folio_test_pmd_mappable(details->single_folio) &&
1709 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1710 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1711 			/*
1712 			 * Take and drop THP pmd lock so that we cannot return
1713 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1714 			 * but not yet decremented compound_mapcount().
1715 			 */
1716 			spin_unlock(ptl);
1717 		}
1718 		if (pmd_none(*pmd)) {
1719 			addr = next;
1720 			continue;
1721 		}
1722 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1723 		if (addr != next)
1724 			pmd--;
1725 	} while (pmd++, cond_resched(), addr != end);
1726 
1727 	return addr;
1728 }
1729 
1730 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1731 				struct vm_area_struct *vma, p4d_t *p4d,
1732 				unsigned long addr, unsigned long end,
1733 				struct zap_details *details)
1734 {
1735 	pud_t *pud;
1736 	unsigned long next;
1737 
1738 	pud = pud_offset(p4d, addr);
1739 	do {
1740 		next = pud_addr_end(addr, end);
1741 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1742 			if (next - addr != HPAGE_PUD_SIZE) {
1743 				mmap_assert_locked(tlb->mm);
1744 				split_huge_pud(vma, pud, addr);
1745 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1746 				goto next;
1747 			/* fall through */
1748 		}
1749 		if (pud_none_or_clear_bad(pud))
1750 			continue;
1751 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1752 next:
1753 		cond_resched();
1754 	} while (pud++, addr = next, addr != end);
1755 
1756 	return addr;
1757 }
1758 
1759 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1760 				struct vm_area_struct *vma, pgd_t *pgd,
1761 				unsigned long addr, unsigned long end,
1762 				struct zap_details *details)
1763 {
1764 	p4d_t *p4d;
1765 	unsigned long next;
1766 
1767 	p4d = p4d_offset(pgd, addr);
1768 	do {
1769 		next = p4d_addr_end(addr, end);
1770 		if (p4d_none_or_clear_bad(p4d))
1771 			continue;
1772 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1773 	} while (p4d++, addr = next, addr != end);
1774 
1775 	return addr;
1776 }
1777 
1778 void unmap_page_range(struct mmu_gather *tlb,
1779 			     struct vm_area_struct *vma,
1780 			     unsigned long addr, unsigned long end,
1781 			     struct zap_details *details)
1782 {
1783 	pgd_t *pgd;
1784 	unsigned long next;
1785 
1786 	BUG_ON(addr >= end);
1787 	tlb_start_vma(tlb, vma);
1788 	pgd = pgd_offset(vma->vm_mm, addr);
1789 	do {
1790 		next = pgd_addr_end(addr, end);
1791 		if (pgd_none_or_clear_bad(pgd))
1792 			continue;
1793 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1794 	} while (pgd++, addr = next, addr != end);
1795 	tlb_end_vma(tlb, vma);
1796 }
1797 
1798 
1799 static void unmap_single_vma(struct mmu_gather *tlb,
1800 		struct vm_area_struct *vma, unsigned long start_addr,
1801 		unsigned long end_addr,
1802 		struct zap_details *details, bool mm_wr_locked)
1803 {
1804 	unsigned long start = max(vma->vm_start, start_addr);
1805 	unsigned long end;
1806 
1807 	if (start >= vma->vm_end)
1808 		return;
1809 	end = min(vma->vm_end, end_addr);
1810 	if (end <= vma->vm_start)
1811 		return;
1812 
1813 	if (vma->vm_file)
1814 		uprobe_munmap(vma, start, end);
1815 
1816 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1817 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1818 
1819 	if (start != end) {
1820 		if (unlikely(is_vm_hugetlb_page(vma))) {
1821 			/*
1822 			 * It is undesirable to test vma->vm_file as it
1823 			 * should be non-null for valid hugetlb area.
1824 			 * However, vm_file will be NULL in the error
1825 			 * cleanup path of mmap_region. When
1826 			 * hugetlbfs ->mmap method fails,
1827 			 * mmap_region() nullifies vma->vm_file
1828 			 * before calling this function to clean up.
1829 			 * Since no pte has actually been setup, it is
1830 			 * safe to do nothing in this case.
1831 			 */
1832 			if (vma->vm_file) {
1833 				zap_flags_t zap_flags = details ?
1834 				    details->zap_flags : 0;
1835 				__unmap_hugepage_range(tlb, vma, start, end,
1836 							     NULL, zap_flags);
1837 			}
1838 		} else
1839 			unmap_page_range(tlb, vma, start, end, details);
1840 	}
1841 }
1842 
1843 /**
1844  * unmap_vmas - unmap a range of memory covered by a list of vma's
1845  * @tlb: address of the caller's struct mmu_gather
1846  * @mas: the maple state
1847  * @vma: the starting vma
1848  * @start_addr: virtual address at which to start unmapping
1849  * @end_addr: virtual address at which to end unmapping
1850  * @tree_end: The maximum index to check
1851  * @mm_wr_locked: lock flag
1852  *
1853  * Unmap all pages in the vma list.
1854  *
1855  * Only addresses between `start' and `end' will be unmapped.
1856  *
1857  * The VMA list must be sorted in ascending virtual address order.
1858  *
1859  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1860  * range after unmap_vmas() returns.  So the only responsibility here is to
1861  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1862  * drops the lock and schedules.
1863  */
1864 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1865 		struct vm_area_struct *vma, unsigned long start_addr,
1866 		unsigned long end_addr, unsigned long tree_end,
1867 		bool mm_wr_locked)
1868 {
1869 	struct mmu_notifier_range range;
1870 	struct zap_details details = {
1871 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1872 		/* Careful - we need to zap private pages too! */
1873 		.even_cows = true,
1874 	};
1875 
1876 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1877 				start_addr, end_addr);
1878 	mmu_notifier_invalidate_range_start(&range);
1879 	do {
1880 		unsigned long start = start_addr;
1881 		unsigned long end = end_addr;
1882 		hugetlb_zap_begin(vma, &start, &end);
1883 		unmap_single_vma(tlb, vma, start, end, &details,
1884 				 mm_wr_locked);
1885 		hugetlb_zap_end(vma, &details);
1886 		vma = mas_find(mas, tree_end - 1);
1887 	} while (vma && likely(!xa_is_zero(vma)));
1888 	mmu_notifier_invalidate_range_end(&range);
1889 }
1890 
1891 /**
1892  * zap_page_range_single - remove user pages in a given range
1893  * @vma: vm_area_struct holding the applicable pages
1894  * @address: starting address of pages to zap
1895  * @size: number of bytes to zap
1896  * @details: details of shared cache invalidation
1897  *
1898  * The range must fit into one VMA.
1899  */
1900 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1901 		unsigned long size, struct zap_details *details)
1902 {
1903 	const unsigned long end = address + size;
1904 	struct mmu_notifier_range range;
1905 	struct mmu_gather tlb;
1906 
1907 	lru_add_drain();
1908 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1909 				address, end);
1910 	hugetlb_zap_begin(vma, &range.start, &range.end);
1911 	tlb_gather_mmu(&tlb, vma->vm_mm);
1912 	update_hiwater_rss(vma->vm_mm);
1913 	mmu_notifier_invalidate_range_start(&range);
1914 	/*
1915 	 * unmap 'address-end' not 'range.start-range.end' as range
1916 	 * could have been expanded for hugetlb pmd sharing.
1917 	 */
1918 	unmap_single_vma(&tlb, vma, address, end, details, false);
1919 	mmu_notifier_invalidate_range_end(&range);
1920 	tlb_finish_mmu(&tlb);
1921 	hugetlb_zap_end(vma, details);
1922 }
1923 
1924 /**
1925  * zap_vma_ptes - remove ptes mapping the vma
1926  * @vma: vm_area_struct holding ptes to be zapped
1927  * @address: starting address of pages to zap
1928  * @size: number of bytes to zap
1929  *
1930  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1931  *
1932  * The entire address range must be fully contained within the vma.
1933  *
1934  */
1935 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1936 		unsigned long size)
1937 {
1938 	if (!range_in_vma(vma, address, address + size) ||
1939 	    		!(vma->vm_flags & VM_PFNMAP))
1940 		return;
1941 
1942 	zap_page_range_single(vma, address, size, NULL);
1943 }
1944 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1945 
1946 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1947 {
1948 	pgd_t *pgd;
1949 	p4d_t *p4d;
1950 	pud_t *pud;
1951 	pmd_t *pmd;
1952 
1953 	pgd = pgd_offset(mm, addr);
1954 	p4d = p4d_alloc(mm, pgd, addr);
1955 	if (!p4d)
1956 		return NULL;
1957 	pud = pud_alloc(mm, p4d, addr);
1958 	if (!pud)
1959 		return NULL;
1960 	pmd = pmd_alloc(mm, pud, addr);
1961 	if (!pmd)
1962 		return NULL;
1963 
1964 	VM_BUG_ON(pmd_trans_huge(*pmd));
1965 	return pmd;
1966 }
1967 
1968 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1969 			spinlock_t **ptl)
1970 {
1971 	pmd_t *pmd = walk_to_pmd(mm, addr);
1972 
1973 	if (!pmd)
1974 		return NULL;
1975 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1976 }
1977 
1978 static int validate_page_before_insert(struct page *page)
1979 {
1980 	struct folio *folio = page_folio(page);
1981 
1982 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
1983 	    page_has_type(page))
1984 		return -EINVAL;
1985 	flush_dcache_folio(folio);
1986 	return 0;
1987 }
1988 
1989 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1990 			unsigned long addr, struct page *page, pgprot_t prot)
1991 {
1992 	struct folio *folio = page_folio(page);
1993 
1994 	if (!pte_none(ptep_get(pte)))
1995 		return -EBUSY;
1996 	/* Ok, finally just insert the thing.. */
1997 	folio_get(folio);
1998 	inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
1999 	folio_add_file_rmap_pte(folio, page, vma);
2000 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
2001 	return 0;
2002 }
2003 
2004 /*
2005  * This is the old fallback for page remapping.
2006  *
2007  * For historical reasons, it only allows reserved pages. Only
2008  * old drivers should use this, and they needed to mark their
2009  * pages reserved for the old functions anyway.
2010  */
2011 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2012 			struct page *page, pgprot_t prot)
2013 {
2014 	int retval;
2015 	pte_t *pte;
2016 	spinlock_t *ptl;
2017 
2018 	retval = validate_page_before_insert(page);
2019 	if (retval)
2020 		goto out;
2021 	retval = -ENOMEM;
2022 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2023 	if (!pte)
2024 		goto out;
2025 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2026 	pte_unmap_unlock(pte, ptl);
2027 out:
2028 	return retval;
2029 }
2030 
2031 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2032 			unsigned long addr, struct page *page, pgprot_t prot)
2033 {
2034 	int err;
2035 
2036 	if (!page_count(page))
2037 		return -EINVAL;
2038 	err = validate_page_before_insert(page);
2039 	if (err)
2040 		return err;
2041 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2042 }
2043 
2044 /* insert_pages() amortizes the cost of spinlock operations
2045  * when inserting pages in a loop.
2046  */
2047 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2048 			struct page **pages, unsigned long *num, pgprot_t prot)
2049 {
2050 	pmd_t *pmd = NULL;
2051 	pte_t *start_pte, *pte;
2052 	spinlock_t *pte_lock;
2053 	struct mm_struct *const mm = vma->vm_mm;
2054 	unsigned long curr_page_idx = 0;
2055 	unsigned long remaining_pages_total = *num;
2056 	unsigned long pages_to_write_in_pmd;
2057 	int ret;
2058 more:
2059 	ret = -EFAULT;
2060 	pmd = walk_to_pmd(mm, addr);
2061 	if (!pmd)
2062 		goto out;
2063 
2064 	pages_to_write_in_pmd = min_t(unsigned long,
2065 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2066 
2067 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2068 	ret = -ENOMEM;
2069 	if (pte_alloc(mm, pmd))
2070 		goto out;
2071 
2072 	while (pages_to_write_in_pmd) {
2073 		int pte_idx = 0;
2074 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2075 
2076 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2077 		if (!start_pte) {
2078 			ret = -EFAULT;
2079 			goto out;
2080 		}
2081 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2082 			int err = insert_page_in_batch_locked(vma, pte,
2083 				addr, pages[curr_page_idx], prot);
2084 			if (unlikely(err)) {
2085 				pte_unmap_unlock(start_pte, pte_lock);
2086 				ret = err;
2087 				remaining_pages_total -= pte_idx;
2088 				goto out;
2089 			}
2090 			addr += PAGE_SIZE;
2091 			++curr_page_idx;
2092 		}
2093 		pte_unmap_unlock(start_pte, pte_lock);
2094 		pages_to_write_in_pmd -= batch_size;
2095 		remaining_pages_total -= batch_size;
2096 	}
2097 	if (remaining_pages_total)
2098 		goto more;
2099 	ret = 0;
2100 out:
2101 	*num = remaining_pages_total;
2102 	return ret;
2103 }
2104 
2105 /**
2106  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2107  * @vma: user vma to map to
2108  * @addr: target start user address of these pages
2109  * @pages: source kernel pages
2110  * @num: in: number of pages to map. out: number of pages that were *not*
2111  * mapped. (0 means all pages were successfully mapped).
2112  *
2113  * Preferred over vm_insert_page() when inserting multiple pages.
2114  *
2115  * In case of error, we may have mapped a subset of the provided
2116  * pages. It is the caller's responsibility to account for this case.
2117  *
2118  * The same restrictions apply as in vm_insert_page().
2119  */
2120 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2121 			struct page **pages, unsigned long *num)
2122 {
2123 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2124 
2125 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2126 		return -EFAULT;
2127 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2128 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2129 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2130 		vm_flags_set(vma, VM_MIXEDMAP);
2131 	}
2132 	/* Defer page refcount checking till we're about to map that page. */
2133 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2134 }
2135 EXPORT_SYMBOL(vm_insert_pages);
2136 
2137 /**
2138  * vm_insert_page - insert single page into user vma
2139  * @vma: user vma to map to
2140  * @addr: target user address of this page
2141  * @page: source kernel page
2142  *
2143  * This allows drivers to insert individual pages they've allocated
2144  * into a user vma.
2145  *
2146  * The page has to be a nice clean _individual_ kernel allocation.
2147  * If you allocate a compound page, you need to have marked it as
2148  * such (__GFP_COMP), or manually just split the page up yourself
2149  * (see split_page()).
2150  *
2151  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2152  * took an arbitrary page protection parameter. This doesn't allow
2153  * that. Your vma protection will have to be set up correctly, which
2154  * means that if you want a shared writable mapping, you'd better
2155  * ask for a shared writable mapping!
2156  *
2157  * The page does not need to be reserved.
2158  *
2159  * Usually this function is called from f_op->mmap() handler
2160  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2161  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2162  * function from other places, for example from page-fault handler.
2163  *
2164  * Return: %0 on success, negative error code otherwise.
2165  */
2166 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2167 			struct page *page)
2168 {
2169 	if (addr < vma->vm_start || addr >= vma->vm_end)
2170 		return -EFAULT;
2171 	if (!page_count(page))
2172 		return -EINVAL;
2173 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2174 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2175 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2176 		vm_flags_set(vma, VM_MIXEDMAP);
2177 	}
2178 	return insert_page(vma, addr, page, vma->vm_page_prot);
2179 }
2180 EXPORT_SYMBOL(vm_insert_page);
2181 
2182 /*
2183  * __vm_map_pages - maps range of kernel pages into user vma
2184  * @vma: user vma to map to
2185  * @pages: pointer to array of source kernel pages
2186  * @num: number of pages in page array
2187  * @offset: user's requested vm_pgoff
2188  *
2189  * This allows drivers to map range of kernel pages into a user vma.
2190  *
2191  * Return: 0 on success and error code otherwise.
2192  */
2193 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2194 				unsigned long num, unsigned long offset)
2195 {
2196 	unsigned long count = vma_pages(vma);
2197 	unsigned long uaddr = vma->vm_start;
2198 	int ret, i;
2199 
2200 	/* Fail if the user requested offset is beyond the end of the object */
2201 	if (offset >= num)
2202 		return -ENXIO;
2203 
2204 	/* Fail if the user requested size exceeds available object size */
2205 	if (count > num - offset)
2206 		return -ENXIO;
2207 
2208 	for (i = 0; i < count; i++) {
2209 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2210 		if (ret < 0)
2211 			return ret;
2212 		uaddr += PAGE_SIZE;
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 /**
2219  * vm_map_pages - maps range of kernel pages starts with non zero offset
2220  * @vma: user vma to map to
2221  * @pages: pointer to array of source kernel pages
2222  * @num: number of pages in page array
2223  *
2224  * Maps an object consisting of @num pages, catering for the user's
2225  * requested vm_pgoff
2226  *
2227  * If we fail to insert any page into the vma, the function will return
2228  * immediately leaving any previously inserted pages present.  Callers
2229  * from the mmap handler may immediately return the error as their caller
2230  * will destroy the vma, removing any successfully inserted pages. Other
2231  * callers should make their own arrangements for calling unmap_region().
2232  *
2233  * Context: Process context. Called by mmap handlers.
2234  * Return: 0 on success and error code otherwise.
2235  */
2236 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2237 				unsigned long num)
2238 {
2239 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2240 }
2241 EXPORT_SYMBOL(vm_map_pages);
2242 
2243 /**
2244  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2245  * @vma: user vma to map to
2246  * @pages: pointer to array of source kernel pages
2247  * @num: number of pages in page array
2248  *
2249  * Similar to vm_map_pages(), except that it explicitly sets the offset
2250  * to 0. This function is intended for the drivers that did not consider
2251  * vm_pgoff.
2252  *
2253  * Context: Process context. Called by mmap handlers.
2254  * Return: 0 on success and error code otherwise.
2255  */
2256 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2257 				unsigned long num)
2258 {
2259 	return __vm_map_pages(vma, pages, num, 0);
2260 }
2261 EXPORT_SYMBOL(vm_map_pages_zero);
2262 
2263 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2264 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2265 {
2266 	struct mm_struct *mm = vma->vm_mm;
2267 	pte_t *pte, entry;
2268 	spinlock_t *ptl;
2269 
2270 	pte = get_locked_pte(mm, addr, &ptl);
2271 	if (!pte)
2272 		return VM_FAULT_OOM;
2273 	entry = ptep_get(pte);
2274 	if (!pte_none(entry)) {
2275 		if (mkwrite) {
2276 			/*
2277 			 * For read faults on private mappings the PFN passed
2278 			 * in may not match the PFN we have mapped if the
2279 			 * mapped PFN is a writeable COW page.  In the mkwrite
2280 			 * case we are creating a writable PTE for a shared
2281 			 * mapping and we expect the PFNs to match. If they
2282 			 * don't match, we are likely racing with block
2283 			 * allocation and mapping invalidation so just skip the
2284 			 * update.
2285 			 */
2286 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2287 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2288 				goto out_unlock;
2289 			}
2290 			entry = pte_mkyoung(entry);
2291 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2292 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2293 				update_mmu_cache(vma, addr, pte);
2294 		}
2295 		goto out_unlock;
2296 	}
2297 
2298 	/* Ok, finally just insert the thing.. */
2299 	if (pfn_t_devmap(pfn))
2300 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2301 	else
2302 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2303 
2304 	if (mkwrite) {
2305 		entry = pte_mkyoung(entry);
2306 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2307 	}
2308 
2309 	set_pte_at(mm, addr, pte, entry);
2310 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2311 
2312 out_unlock:
2313 	pte_unmap_unlock(pte, ptl);
2314 	return VM_FAULT_NOPAGE;
2315 }
2316 
2317 /**
2318  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2319  * @vma: user vma to map to
2320  * @addr: target user address of this page
2321  * @pfn: source kernel pfn
2322  * @pgprot: pgprot flags for the inserted page
2323  *
2324  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2325  * to override pgprot on a per-page basis.
2326  *
2327  * This only makes sense for IO mappings, and it makes no sense for
2328  * COW mappings.  In general, using multiple vmas is preferable;
2329  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2330  * impractical.
2331  *
2332  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2333  * caching- and encryption bits different than those of @vma->vm_page_prot,
2334  * because the caching- or encryption mode may not be known at mmap() time.
2335  *
2336  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2337  * to set caching and encryption bits for those vmas (except for COW pages).
2338  * This is ensured by core vm only modifying these page table entries using
2339  * functions that don't touch caching- or encryption bits, using pte_modify()
2340  * if needed. (See for example mprotect()).
2341  *
2342  * Also when new page-table entries are created, this is only done using the
2343  * fault() callback, and never using the value of vma->vm_page_prot,
2344  * except for page-table entries that point to anonymous pages as the result
2345  * of COW.
2346  *
2347  * Context: Process context.  May allocate using %GFP_KERNEL.
2348  * Return: vm_fault_t value.
2349  */
2350 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2351 			unsigned long pfn, pgprot_t pgprot)
2352 {
2353 	/*
2354 	 * Technically, architectures with pte_special can avoid all these
2355 	 * restrictions (same for remap_pfn_range).  However we would like
2356 	 * consistency in testing and feature parity among all, so we should
2357 	 * try to keep these invariants in place for everybody.
2358 	 */
2359 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2360 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2361 						(VM_PFNMAP|VM_MIXEDMAP));
2362 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2363 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2364 
2365 	if (addr < vma->vm_start || addr >= vma->vm_end)
2366 		return VM_FAULT_SIGBUS;
2367 
2368 	if (!pfn_modify_allowed(pfn, pgprot))
2369 		return VM_FAULT_SIGBUS;
2370 
2371 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2372 
2373 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2374 			false);
2375 }
2376 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2377 
2378 /**
2379  * vmf_insert_pfn - insert single pfn into user vma
2380  * @vma: user vma to map to
2381  * @addr: target user address of this page
2382  * @pfn: source kernel pfn
2383  *
2384  * Similar to vm_insert_page, this allows drivers to insert individual pages
2385  * they've allocated into a user vma. Same comments apply.
2386  *
2387  * This function should only be called from a vm_ops->fault handler, and
2388  * in that case the handler should return the result of this function.
2389  *
2390  * vma cannot be a COW mapping.
2391  *
2392  * As this is called only for pages that do not currently exist, we
2393  * do not need to flush old virtual caches or the TLB.
2394  *
2395  * Context: Process context.  May allocate using %GFP_KERNEL.
2396  * Return: vm_fault_t value.
2397  */
2398 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2399 			unsigned long pfn)
2400 {
2401 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2402 }
2403 EXPORT_SYMBOL(vmf_insert_pfn);
2404 
2405 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2406 {
2407 	/* these checks mirror the abort conditions in vm_normal_page */
2408 	if (vma->vm_flags & VM_MIXEDMAP)
2409 		return true;
2410 	if (pfn_t_devmap(pfn))
2411 		return true;
2412 	if (pfn_t_special(pfn))
2413 		return true;
2414 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2415 		return true;
2416 	return false;
2417 }
2418 
2419 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2420 		unsigned long addr, pfn_t pfn, bool mkwrite)
2421 {
2422 	pgprot_t pgprot = vma->vm_page_prot;
2423 	int err;
2424 
2425 	BUG_ON(!vm_mixed_ok(vma, pfn));
2426 
2427 	if (addr < vma->vm_start || addr >= vma->vm_end)
2428 		return VM_FAULT_SIGBUS;
2429 
2430 	track_pfn_insert(vma, &pgprot, pfn);
2431 
2432 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2433 		return VM_FAULT_SIGBUS;
2434 
2435 	/*
2436 	 * If we don't have pte special, then we have to use the pfn_valid()
2437 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2438 	 * refcount the page if pfn_valid is true (hence insert_page rather
2439 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2440 	 * without pte special, it would there be refcounted as a normal page.
2441 	 */
2442 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2443 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2444 		struct page *page;
2445 
2446 		/*
2447 		 * At this point we are committed to insert_page()
2448 		 * regardless of whether the caller specified flags that
2449 		 * result in pfn_t_has_page() == false.
2450 		 */
2451 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2452 		err = insert_page(vma, addr, page, pgprot);
2453 	} else {
2454 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2455 	}
2456 
2457 	if (err == -ENOMEM)
2458 		return VM_FAULT_OOM;
2459 	if (err < 0 && err != -EBUSY)
2460 		return VM_FAULT_SIGBUS;
2461 
2462 	return VM_FAULT_NOPAGE;
2463 }
2464 
2465 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2466 		pfn_t pfn)
2467 {
2468 	return __vm_insert_mixed(vma, addr, pfn, false);
2469 }
2470 EXPORT_SYMBOL(vmf_insert_mixed);
2471 
2472 /*
2473  *  If the insertion of PTE failed because someone else already added a
2474  *  different entry in the mean time, we treat that as success as we assume
2475  *  the same entry was actually inserted.
2476  */
2477 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2478 		unsigned long addr, pfn_t pfn)
2479 {
2480 	return __vm_insert_mixed(vma, addr, pfn, true);
2481 }
2482 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2483 
2484 /*
2485  * maps a range of physical memory into the requested pages. the old
2486  * mappings are removed. any references to nonexistent pages results
2487  * in null mappings (currently treated as "copy-on-access")
2488  */
2489 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2490 			unsigned long addr, unsigned long end,
2491 			unsigned long pfn, pgprot_t prot)
2492 {
2493 	pte_t *pte, *mapped_pte;
2494 	spinlock_t *ptl;
2495 	int err = 0;
2496 
2497 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2498 	if (!pte)
2499 		return -ENOMEM;
2500 	arch_enter_lazy_mmu_mode();
2501 	do {
2502 		BUG_ON(!pte_none(ptep_get(pte)));
2503 		if (!pfn_modify_allowed(pfn, prot)) {
2504 			err = -EACCES;
2505 			break;
2506 		}
2507 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2508 		pfn++;
2509 	} while (pte++, addr += PAGE_SIZE, addr != end);
2510 	arch_leave_lazy_mmu_mode();
2511 	pte_unmap_unlock(mapped_pte, ptl);
2512 	return err;
2513 }
2514 
2515 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2516 			unsigned long addr, unsigned long end,
2517 			unsigned long pfn, pgprot_t prot)
2518 {
2519 	pmd_t *pmd;
2520 	unsigned long next;
2521 	int err;
2522 
2523 	pfn -= addr >> PAGE_SHIFT;
2524 	pmd = pmd_alloc(mm, pud, addr);
2525 	if (!pmd)
2526 		return -ENOMEM;
2527 	VM_BUG_ON(pmd_trans_huge(*pmd));
2528 	do {
2529 		next = pmd_addr_end(addr, end);
2530 		err = remap_pte_range(mm, pmd, addr, next,
2531 				pfn + (addr >> PAGE_SHIFT), prot);
2532 		if (err)
2533 			return err;
2534 	} while (pmd++, addr = next, addr != end);
2535 	return 0;
2536 }
2537 
2538 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2539 			unsigned long addr, unsigned long end,
2540 			unsigned long pfn, pgprot_t prot)
2541 {
2542 	pud_t *pud;
2543 	unsigned long next;
2544 	int err;
2545 
2546 	pfn -= addr >> PAGE_SHIFT;
2547 	pud = pud_alloc(mm, p4d, addr);
2548 	if (!pud)
2549 		return -ENOMEM;
2550 	do {
2551 		next = pud_addr_end(addr, end);
2552 		err = remap_pmd_range(mm, pud, addr, next,
2553 				pfn + (addr >> PAGE_SHIFT), prot);
2554 		if (err)
2555 			return err;
2556 	} while (pud++, addr = next, addr != end);
2557 	return 0;
2558 }
2559 
2560 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2561 			unsigned long addr, unsigned long end,
2562 			unsigned long pfn, pgprot_t prot)
2563 {
2564 	p4d_t *p4d;
2565 	unsigned long next;
2566 	int err;
2567 
2568 	pfn -= addr >> PAGE_SHIFT;
2569 	p4d = p4d_alloc(mm, pgd, addr);
2570 	if (!p4d)
2571 		return -ENOMEM;
2572 	do {
2573 		next = p4d_addr_end(addr, end);
2574 		err = remap_pud_range(mm, p4d, addr, next,
2575 				pfn + (addr >> PAGE_SHIFT), prot);
2576 		if (err)
2577 			return err;
2578 	} while (p4d++, addr = next, addr != end);
2579 	return 0;
2580 }
2581 
2582 /*
2583  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2584  * must have pre-validated the caching bits of the pgprot_t.
2585  */
2586 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2587 		unsigned long pfn, unsigned long size, pgprot_t prot)
2588 {
2589 	pgd_t *pgd;
2590 	unsigned long next;
2591 	unsigned long end = addr + PAGE_ALIGN(size);
2592 	struct mm_struct *mm = vma->vm_mm;
2593 	int err;
2594 
2595 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2596 		return -EINVAL;
2597 
2598 	/*
2599 	 * Physically remapped pages are special. Tell the
2600 	 * rest of the world about it:
2601 	 *   VM_IO tells people not to look at these pages
2602 	 *	(accesses can have side effects).
2603 	 *   VM_PFNMAP tells the core MM that the base pages are just
2604 	 *	raw PFN mappings, and do not have a "struct page" associated
2605 	 *	with them.
2606 	 *   VM_DONTEXPAND
2607 	 *      Disable vma merging and expanding with mremap().
2608 	 *   VM_DONTDUMP
2609 	 *      Omit vma from core dump, even when VM_IO turned off.
2610 	 *
2611 	 * There's a horrible special case to handle copy-on-write
2612 	 * behaviour that some programs depend on. We mark the "original"
2613 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2614 	 * See vm_normal_page() for details.
2615 	 */
2616 	if (is_cow_mapping(vma->vm_flags)) {
2617 		if (addr != vma->vm_start || end != vma->vm_end)
2618 			return -EINVAL;
2619 		vma->vm_pgoff = pfn;
2620 	}
2621 
2622 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2623 
2624 	BUG_ON(addr >= end);
2625 	pfn -= addr >> PAGE_SHIFT;
2626 	pgd = pgd_offset(mm, addr);
2627 	flush_cache_range(vma, addr, end);
2628 	do {
2629 		next = pgd_addr_end(addr, end);
2630 		err = remap_p4d_range(mm, pgd, addr, next,
2631 				pfn + (addr >> PAGE_SHIFT), prot);
2632 		if (err)
2633 			return err;
2634 	} while (pgd++, addr = next, addr != end);
2635 
2636 	return 0;
2637 }
2638 
2639 /**
2640  * remap_pfn_range - remap kernel memory to userspace
2641  * @vma: user vma to map to
2642  * @addr: target page aligned user address to start at
2643  * @pfn: page frame number of kernel physical memory address
2644  * @size: size of mapping area
2645  * @prot: page protection flags for this mapping
2646  *
2647  * Note: this is only safe if the mm semaphore is held when called.
2648  *
2649  * Return: %0 on success, negative error code otherwise.
2650  */
2651 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2652 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2653 {
2654 	int err;
2655 
2656 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2657 	if (err)
2658 		return -EINVAL;
2659 
2660 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2661 	if (err)
2662 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2663 	return err;
2664 }
2665 EXPORT_SYMBOL(remap_pfn_range);
2666 
2667 /**
2668  * vm_iomap_memory - remap memory to userspace
2669  * @vma: user vma to map to
2670  * @start: start of the physical memory to be mapped
2671  * @len: size of area
2672  *
2673  * This is a simplified io_remap_pfn_range() for common driver use. The
2674  * driver just needs to give us the physical memory range to be mapped,
2675  * we'll figure out the rest from the vma information.
2676  *
2677  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2678  * whatever write-combining details or similar.
2679  *
2680  * Return: %0 on success, negative error code otherwise.
2681  */
2682 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2683 {
2684 	unsigned long vm_len, pfn, pages;
2685 
2686 	/* Check that the physical memory area passed in looks valid */
2687 	if (start + len < start)
2688 		return -EINVAL;
2689 	/*
2690 	 * You *really* shouldn't map things that aren't page-aligned,
2691 	 * but we've historically allowed it because IO memory might
2692 	 * just have smaller alignment.
2693 	 */
2694 	len += start & ~PAGE_MASK;
2695 	pfn = start >> PAGE_SHIFT;
2696 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2697 	if (pfn + pages < pfn)
2698 		return -EINVAL;
2699 
2700 	/* We start the mapping 'vm_pgoff' pages into the area */
2701 	if (vma->vm_pgoff > pages)
2702 		return -EINVAL;
2703 	pfn += vma->vm_pgoff;
2704 	pages -= vma->vm_pgoff;
2705 
2706 	/* Can we fit all of the mapping? */
2707 	vm_len = vma->vm_end - vma->vm_start;
2708 	if (vm_len >> PAGE_SHIFT > pages)
2709 		return -EINVAL;
2710 
2711 	/* Ok, let it rip */
2712 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2713 }
2714 EXPORT_SYMBOL(vm_iomap_memory);
2715 
2716 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2717 				     unsigned long addr, unsigned long end,
2718 				     pte_fn_t fn, void *data, bool create,
2719 				     pgtbl_mod_mask *mask)
2720 {
2721 	pte_t *pte, *mapped_pte;
2722 	int err = 0;
2723 	spinlock_t *ptl;
2724 
2725 	if (create) {
2726 		mapped_pte = pte = (mm == &init_mm) ?
2727 			pte_alloc_kernel_track(pmd, addr, mask) :
2728 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2729 		if (!pte)
2730 			return -ENOMEM;
2731 	} else {
2732 		mapped_pte = pte = (mm == &init_mm) ?
2733 			pte_offset_kernel(pmd, addr) :
2734 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2735 		if (!pte)
2736 			return -EINVAL;
2737 	}
2738 
2739 	arch_enter_lazy_mmu_mode();
2740 
2741 	if (fn) {
2742 		do {
2743 			if (create || !pte_none(ptep_get(pte))) {
2744 				err = fn(pte++, addr, data);
2745 				if (err)
2746 					break;
2747 			}
2748 		} while (addr += PAGE_SIZE, addr != end);
2749 	}
2750 	*mask |= PGTBL_PTE_MODIFIED;
2751 
2752 	arch_leave_lazy_mmu_mode();
2753 
2754 	if (mm != &init_mm)
2755 		pte_unmap_unlock(mapped_pte, ptl);
2756 	return err;
2757 }
2758 
2759 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2760 				     unsigned long addr, unsigned long end,
2761 				     pte_fn_t fn, void *data, bool create,
2762 				     pgtbl_mod_mask *mask)
2763 {
2764 	pmd_t *pmd;
2765 	unsigned long next;
2766 	int err = 0;
2767 
2768 	BUG_ON(pud_huge(*pud));
2769 
2770 	if (create) {
2771 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2772 		if (!pmd)
2773 			return -ENOMEM;
2774 	} else {
2775 		pmd = pmd_offset(pud, addr);
2776 	}
2777 	do {
2778 		next = pmd_addr_end(addr, end);
2779 		if (pmd_none(*pmd) && !create)
2780 			continue;
2781 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2782 			return -EINVAL;
2783 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2784 			if (!create)
2785 				continue;
2786 			pmd_clear_bad(pmd);
2787 		}
2788 		err = apply_to_pte_range(mm, pmd, addr, next,
2789 					 fn, data, create, mask);
2790 		if (err)
2791 			break;
2792 	} while (pmd++, addr = next, addr != end);
2793 
2794 	return err;
2795 }
2796 
2797 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2798 				     unsigned long addr, unsigned long end,
2799 				     pte_fn_t fn, void *data, bool create,
2800 				     pgtbl_mod_mask *mask)
2801 {
2802 	pud_t *pud;
2803 	unsigned long next;
2804 	int err = 0;
2805 
2806 	if (create) {
2807 		pud = pud_alloc_track(mm, p4d, addr, mask);
2808 		if (!pud)
2809 			return -ENOMEM;
2810 	} else {
2811 		pud = pud_offset(p4d, addr);
2812 	}
2813 	do {
2814 		next = pud_addr_end(addr, end);
2815 		if (pud_none(*pud) && !create)
2816 			continue;
2817 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2818 			return -EINVAL;
2819 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2820 			if (!create)
2821 				continue;
2822 			pud_clear_bad(pud);
2823 		}
2824 		err = apply_to_pmd_range(mm, pud, addr, next,
2825 					 fn, data, create, mask);
2826 		if (err)
2827 			break;
2828 	} while (pud++, addr = next, addr != end);
2829 
2830 	return err;
2831 }
2832 
2833 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2834 				     unsigned long addr, unsigned long end,
2835 				     pte_fn_t fn, void *data, bool create,
2836 				     pgtbl_mod_mask *mask)
2837 {
2838 	p4d_t *p4d;
2839 	unsigned long next;
2840 	int err = 0;
2841 
2842 	if (create) {
2843 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2844 		if (!p4d)
2845 			return -ENOMEM;
2846 	} else {
2847 		p4d = p4d_offset(pgd, addr);
2848 	}
2849 	do {
2850 		next = p4d_addr_end(addr, end);
2851 		if (p4d_none(*p4d) && !create)
2852 			continue;
2853 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2854 			return -EINVAL;
2855 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2856 			if (!create)
2857 				continue;
2858 			p4d_clear_bad(p4d);
2859 		}
2860 		err = apply_to_pud_range(mm, p4d, addr, next,
2861 					 fn, data, create, mask);
2862 		if (err)
2863 			break;
2864 	} while (p4d++, addr = next, addr != end);
2865 
2866 	return err;
2867 }
2868 
2869 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2870 				 unsigned long size, pte_fn_t fn,
2871 				 void *data, bool create)
2872 {
2873 	pgd_t *pgd;
2874 	unsigned long start = addr, next;
2875 	unsigned long end = addr + size;
2876 	pgtbl_mod_mask mask = 0;
2877 	int err = 0;
2878 
2879 	if (WARN_ON(addr >= end))
2880 		return -EINVAL;
2881 
2882 	pgd = pgd_offset(mm, addr);
2883 	do {
2884 		next = pgd_addr_end(addr, end);
2885 		if (pgd_none(*pgd) && !create)
2886 			continue;
2887 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2888 			return -EINVAL;
2889 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2890 			if (!create)
2891 				continue;
2892 			pgd_clear_bad(pgd);
2893 		}
2894 		err = apply_to_p4d_range(mm, pgd, addr, next,
2895 					 fn, data, create, &mask);
2896 		if (err)
2897 			break;
2898 	} while (pgd++, addr = next, addr != end);
2899 
2900 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2901 		arch_sync_kernel_mappings(start, start + size);
2902 
2903 	return err;
2904 }
2905 
2906 /*
2907  * Scan a region of virtual memory, filling in page tables as necessary
2908  * and calling a provided function on each leaf page table.
2909  */
2910 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2911 			unsigned long size, pte_fn_t fn, void *data)
2912 {
2913 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2914 }
2915 EXPORT_SYMBOL_GPL(apply_to_page_range);
2916 
2917 /*
2918  * Scan a region of virtual memory, calling a provided function on
2919  * each leaf page table where it exists.
2920  *
2921  * Unlike apply_to_page_range, this does _not_ fill in page tables
2922  * where they are absent.
2923  */
2924 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2925 				 unsigned long size, pte_fn_t fn, void *data)
2926 {
2927 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2928 }
2929 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2930 
2931 /*
2932  * handle_pte_fault chooses page fault handler according to an entry which was
2933  * read non-atomically.  Before making any commitment, on those architectures
2934  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2935  * parts, do_swap_page must check under lock before unmapping the pte and
2936  * proceeding (but do_wp_page is only called after already making such a check;
2937  * and do_anonymous_page can safely check later on).
2938  */
2939 static inline int pte_unmap_same(struct vm_fault *vmf)
2940 {
2941 	int same = 1;
2942 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2943 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2944 		spin_lock(vmf->ptl);
2945 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2946 		spin_unlock(vmf->ptl);
2947 	}
2948 #endif
2949 	pte_unmap(vmf->pte);
2950 	vmf->pte = NULL;
2951 	return same;
2952 }
2953 
2954 /*
2955  * Return:
2956  *	0:		copied succeeded
2957  *	-EHWPOISON:	copy failed due to hwpoison in source page
2958  *	-EAGAIN:	copied failed (some other reason)
2959  */
2960 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2961 				      struct vm_fault *vmf)
2962 {
2963 	int ret;
2964 	void *kaddr;
2965 	void __user *uaddr;
2966 	struct vm_area_struct *vma = vmf->vma;
2967 	struct mm_struct *mm = vma->vm_mm;
2968 	unsigned long addr = vmf->address;
2969 
2970 	if (likely(src)) {
2971 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2972 			memory_failure_queue(page_to_pfn(src), 0);
2973 			return -EHWPOISON;
2974 		}
2975 		return 0;
2976 	}
2977 
2978 	/*
2979 	 * If the source page was a PFN mapping, we don't have
2980 	 * a "struct page" for it. We do a best-effort copy by
2981 	 * just copying from the original user address. If that
2982 	 * fails, we just zero-fill it. Live with it.
2983 	 */
2984 	kaddr = kmap_local_page(dst);
2985 	pagefault_disable();
2986 	uaddr = (void __user *)(addr & PAGE_MASK);
2987 
2988 	/*
2989 	 * On architectures with software "accessed" bits, we would
2990 	 * take a double page fault, so mark it accessed here.
2991 	 */
2992 	vmf->pte = NULL;
2993 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2994 		pte_t entry;
2995 
2996 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2997 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2998 			/*
2999 			 * Other thread has already handled the fault
3000 			 * and update local tlb only
3001 			 */
3002 			if (vmf->pte)
3003 				update_mmu_tlb(vma, addr, vmf->pte);
3004 			ret = -EAGAIN;
3005 			goto pte_unlock;
3006 		}
3007 
3008 		entry = pte_mkyoung(vmf->orig_pte);
3009 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3010 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3011 	}
3012 
3013 	/*
3014 	 * This really shouldn't fail, because the page is there
3015 	 * in the page tables. But it might just be unreadable,
3016 	 * in which case we just give up and fill the result with
3017 	 * zeroes.
3018 	 */
3019 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3020 		if (vmf->pte)
3021 			goto warn;
3022 
3023 		/* Re-validate under PTL if the page is still mapped */
3024 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3025 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3026 			/* The PTE changed under us, update local tlb */
3027 			if (vmf->pte)
3028 				update_mmu_tlb(vma, addr, vmf->pte);
3029 			ret = -EAGAIN;
3030 			goto pte_unlock;
3031 		}
3032 
3033 		/*
3034 		 * The same page can be mapped back since last copy attempt.
3035 		 * Try to copy again under PTL.
3036 		 */
3037 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3038 			/*
3039 			 * Give a warn in case there can be some obscure
3040 			 * use-case
3041 			 */
3042 warn:
3043 			WARN_ON_ONCE(1);
3044 			clear_page(kaddr);
3045 		}
3046 	}
3047 
3048 	ret = 0;
3049 
3050 pte_unlock:
3051 	if (vmf->pte)
3052 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3053 	pagefault_enable();
3054 	kunmap_local(kaddr);
3055 	flush_dcache_page(dst);
3056 
3057 	return ret;
3058 }
3059 
3060 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3061 {
3062 	struct file *vm_file = vma->vm_file;
3063 
3064 	if (vm_file)
3065 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3066 
3067 	/*
3068 	 * Special mappings (e.g. VDSO) do not have any file so fake
3069 	 * a default GFP_KERNEL for them.
3070 	 */
3071 	return GFP_KERNEL;
3072 }
3073 
3074 /*
3075  * Notify the address space that the page is about to become writable so that
3076  * it can prohibit this or wait for the page to get into an appropriate state.
3077  *
3078  * We do this without the lock held, so that it can sleep if it needs to.
3079  */
3080 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3081 {
3082 	vm_fault_t ret;
3083 	unsigned int old_flags = vmf->flags;
3084 
3085 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3086 
3087 	if (vmf->vma->vm_file &&
3088 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3089 		return VM_FAULT_SIGBUS;
3090 
3091 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3092 	/* Restore original flags so that caller is not surprised */
3093 	vmf->flags = old_flags;
3094 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3095 		return ret;
3096 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3097 		folio_lock(folio);
3098 		if (!folio->mapping) {
3099 			folio_unlock(folio);
3100 			return 0; /* retry */
3101 		}
3102 		ret |= VM_FAULT_LOCKED;
3103 	} else
3104 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3105 	return ret;
3106 }
3107 
3108 /*
3109  * Handle dirtying of a page in shared file mapping on a write fault.
3110  *
3111  * The function expects the page to be locked and unlocks it.
3112  */
3113 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3114 {
3115 	struct vm_area_struct *vma = vmf->vma;
3116 	struct address_space *mapping;
3117 	struct folio *folio = page_folio(vmf->page);
3118 	bool dirtied;
3119 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3120 
3121 	dirtied = folio_mark_dirty(folio);
3122 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3123 	/*
3124 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3125 	 * by truncate after folio_unlock().   The address_space itself remains
3126 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3127 	 * release semantics to prevent the compiler from undoing this copying.
3128 	 */
3129 	mapping = folio_raw_mapping(folio);
3130 	folio_unlock(folio);
3131 
3132 	if (!page_mkwrite)
3133 		file_update_time(vma->vm_file);
3134 
3135 	/*
3136 	 * Throttle page dirtying rate down to writeback speed.
3137 	 *
3138 	 * mapping may be NULL here because some device drivers do not
3139 	 * set page.mapping but still dirty their pages
3140 	 *
3141 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3142 	 * is pinning the mapping, as per above.
3143 	 */
3144 	if ((dirtied || page_mkwrite) && mapping) {
3145 		struct file *fpin;
3146 
3147 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3148 		balance_dirty_pages_ratelimited(mapping);
3149 		if (fpin) {
3150 			fput(fpin);
3151 			return VM_FAULT_COMPLETED;
3152 		}
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 /*
3159  * Handle write page faults for pages that can be reused in the current vma
3160  *
3161  * This can happen either due to the mapping being with the VM_SHARED flag,
3162  * or due to us being the last reference standing to the page. In either
3163  * case, all we need to do here is to mark the page as writable and update
3164  * any related book-keeping.
3165  */
3166 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3167 	__releases(vmf->ptl)
3168 {
3169 	struct vm_area_struct *vma = vmf->vma;
3170 	pte_t entry;
3171 
3172 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3173 
3174 	if (folio) {
3175 		VM_BUG_ON(folio_test_anon(folio) &&
3176 			  !PageAnonExclusive(vmf->page));
3177 		/*
3178 		 * Clear the folio's cpupid information as the existing
3179 		 * information potentially belongs to a now completely
3180 		 * unrelated process.
3181 		 */
3182 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3183 	}
3184 
3185 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3186 	entry = pte_mkyoung(vmf->orig_pte);
3187 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3188 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3189 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3190 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3191 	count_vm_event(PGREUSE);
3192 }
3193 
3194 /*
3195  * We could add a bitflag somewhere, but for now, we know that all
3196  * vm_ops that have a ->map_pages have been audited and don't need
3197  * the mmap_lock to be held.
3198  */
3199 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3200 {
3201 	struct vm_area_struct *vma = vmf->vma;
3202 
3203 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3204 		return 0;
3205 	vma_end_read(vma);
3206 	return VM_FAULT_RETRY;
3207 }
3208 
3209 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3210 {
3211 	struct vm_area_struct *vma = vmf->vma;
3212 
3213 	if (likely(vma->anon_vma))
3214 		return 0;
3215 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3216 		vma_end_read(vma);
3217 		return VM_FAULT_RETRY;
3218 	}
3219 	if (__anon_vma_prepare(vma))
3220 		return VM_FAULT_OOM;
3221 	return 0;
3222 }
3223 
3224 /*
3225  * Handle the case of a page which we actually need to copy to a new page,
3226  * either due to COW or unsharing.
3227  *
3228  * Called with mmap_lock locked and the old page referenced, but
3229  * without the ptl held.
3230  *
3231  * High level logic flow:
3232  *
3233  * - Allocate a page, copy the content of the old page to the new one.
3234  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3235  * - Take the PTL. If the pte changed, bail out and release the allocated page
3236  * - If the pte is still the way we remember it, update the page table and all
3237  *   relevant references. This includes dropping the reference the page-table
3238  *   held to the old page, as well as updating the rmap.
3239  * - In any case, unlock the PTL and drop the reference we took to the old page.
3240  */
3241 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3242 {
3243 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3244 	struct vm_area_struct *vma = vmf->vma;
3245 	struct mm_struct *mm = vma->vm_mm;
3246 	struct folio *old_folio = NULL;
3247 	struct folio *new_folio = NULL;
3248 	pte_t entry;
3249 	int page_copied = 0;
3250 	struct mmu_notifier_range range;
3251 	vm_fault_t ret;
3252 	bool pfn_is_zero;
3253 
3254 	delayacct_wpcopy_start();
3255 
3256 	if (vmf->page)
3257 		old_folio = page_folio(vmf->page);
3258 	ret = vmf_anon_prepare(vmf);
3259 	if (unlikely(ret))
3260 		goto out;
3261 
3262 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3263 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3264 	if (!new_folio)
3265 		goto oom;
3266 
3267 	if (!pfn_is_zero) {
3268 		int err;
3269 
3270 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3271 		if (err) {
3272 			/*
3273 			 * COW failed, if the fault was solved by other,
3274 			 * it's fine. If not, userspace would re-fault on
3275 			 * the same address and we will handle the fault
3276 			 * from the second attempt.
3277 			 * The -EHWPOISON case will not be retried.
3278 			 */
3279 			folio_put(new_folio);
3280 			if (old_folio)
3281 				folio_put(old_folio);
3282 
3283 			delayacct_wpcopy_end();
3284 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3285 		}
3286 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3287 	}
3288 
3289 	__folio_mark_uptodate(new_folio);
3290 
3291 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3292 				vmf->address & PAGE_MASK,
3293 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3294 	mmu_notifier_invalidate_range_start(&range);
3295 
3296 	/*
3297 	 * Re-check the pte - we dropped the lock
3298 	 */
3299 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3300 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3301 		if (old_folio) {
3302 			if (!folio_test_anon(old_folio)) {
3303 				dec_mm_counter(mm, mm_counter_file(old_folio));
3304 				inc_mm_counter(mm, MM_ANONPAGES);
3305 			}
3306 		} else {
3307 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3308 			inc_mm_counter(mm, MM_ANONPAGES);
3309 		}
3310 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3311 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3312 		entry = pte_sw_mkyoung(entry);
3313 		if (unlikely(unshare)) {
3314 			if (pte_soft_dirty(vmf->orig_pte))
3315 				entry = pte_mksoft_dirty(entry);
3316 			if (pte_uffd_wp(vmf->orig_pte))
3317 				entry = pte_mkuffd_wp(entry);
3318 		} else {
3319 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3320 		}
3321 
3322 		/*
3323 		 * Clear the pte entry and flush it first, before updating the
3324 		 * pte with the new entry, to keep TLBs on different CPUs in
3325 		 * sync. This code used to set the new PTE then flush TLBs, but
3326 		 * that left a window where the new PTE could be loaded into
3327 		 * some TLBs while the old PTE remains in others.
3328 		 */
3329 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3330 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3331 		folio_add_lru_vma(new_folio, vma);
3332 		/*
3333 		 * We call the notify macro here because, when using secondary
3334 		 * mmu page tables (such as kvm shadow page tables), we want the
3335 		 * new page to be mapped directly into the secondary page table.
3336 		 */
3337 		BUG_ON(unshare && pte_write(entry));
3338 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3339 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3340 		if (old_folio) {
3341 			/*
3342 			 * Only after switching the pte to the new page may
3343 			 * we remove the mapcount here. Otherwise another
3344 			 * process may come and find the rmap count decremented
3345 			 * before the pte is switched to the new page, and
3346 			 * "reuse" the old page writing into it while our pte
3347 			 * here still points into it and can be read by other
3348 			 * threads.
3349 			 *
3350 			 * The critical issue is to order this
3351 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3352 			 * above. Those stores are ordered by (if nothing else,)
3353 			 * the barrier present in the atomic_add_negative
3354 			 * in folio_remove_rmap_pte();
3355 			 *
3356 			 * Then the TLB flush in ptep_clear_flush ensures that
3357 			 * no process can access the old page before the
3358 			 * decremented mapcount is visible. And the old page
3359 			 * cannot be reused until after the decremented
3360 			 * mapcount is visible. So transitively, TLBs to
3361 			 * old page will be flushed before it can be reused.
3362 			 */
3363 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3364 		}
3365 
3366 		/* Free the old page.. */
3367 		new_folio = old_folio;
3368 		page_copied = 1;
3369 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3370 	} else if (vmf->pte) {
3371 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3372 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3373 	}
3374 
3375 	mmu_notifier_invalidate_range_end(&range);
3376 
3377 	if (new_folio)
3378 		folio_put(new_folio);
3379 	if (old_folio) {
3380 		if (page_copied)
3381 			free_swap_cache(old_folio);
3382 		folio_put(old_folio);
3383 	}
3384 
3385 	delayacct_wpcopy_end();
3386 	return 0;
3387 oom:
3388 	ret = VM_FAULT_OOM;
3389 out:
3390 	if (old_folio)
3391 		folio_put(old_folio);
3392 
3393 	delayacct_wpcopy_end();
3394 	return ret;
3395 }
3396 
3397 /**
3398  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3399  *			  writeable once the page is prepared
3400  *
3401  * @vmf: structure describing the fault
3402  * @folio: the folio of vmf->page
3403  *
3404  * This function handles all that is needed to finish a write page fault in a
3405  * shared mapping due to PTE being read-only once the mapped page is prepared.
3406  * It handles locking of PTE and modifying it.
3407  *
3408  * The function expects the page to be locked or other protection against
3409  * concurrent faults / writeback (such as DAX radix tree locks).
3410  *
3411  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3412  * we acquired PTE lock.
3413  */
3414 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3415 {
3416 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3417 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3418 				       &vmf->ptl);
3419 	if (!vmf->pte)
3420 		return VM_FAULT_NOPAGE;
3421 	/*
3422 	 * We might have raced with another page fault while we released the
3423 	 * pte_offset_map_lock.
3424 	 */
3425 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3426 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3427 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3428 		return VM_FAULT_NOPAGE;
3429 	}
3430 	wp_page_reuse(vmf, folio);
3431 	return 0;
3432 }
3433 
3434 /*
3435  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3436  * mapping
3437  */
3438 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3439 {
3440 	struct vm_area_struct *vma = vmf->vma;
3441 
3442 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3443 		vm_fault_t ret;
3444 
3445 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3446 		ret = vmf_can_call_fault(vmf);
3447 		if (ret)
3448 			return ret;
3449 
3450 		vmf->flags |= FAULT_FLAG_MKWRITE;
3451 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3452 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3453 			return ret;
3454 		return finish_mkwrite_fault(vmf, NULL);
3455 	}
3456 	wp_page_reuse(vmf, NULL);
3457 	return 0;
3458 }
3459 
3460 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3461 	__releases(vmf->ptl)
3462 {
3463 	struct vm_area_struct *vma = vmf->vma;
3464 	vm_fault_t ret = 0;
3465 
3466 	folio_get(folio);
3467 
3468 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3469 		vm_fault_t tmp;
3470 
3471 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3472 		tmp = vmf_can_call_fault(vmf);
3473 		if (tmp) {
3474 			folio_put(folio);
3475 			return tmp;
3476 		}
3477 
3478 		tmp = do_page_mkwrite(vmf, folio);
3479 		if (unlikely(!tmp || (tmp &
3480 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3481 			folio_put(folio);
3482 			return tmp;
3483 		}
3484 		tmp = finish_mkwrite_fault(vmf, folio);
3485 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3486 			folio_unlock(folio);
3487 			folio_put(folio);
3488 			return tmp;
3489 		}
3490 	} else {
3491 		wp_page_reuse(vmf, folio);
3492 		folio_lock(folio);
3493 	}
3494 	ret |= fault_dirty_shared_page(vmf);
3495 	folio_put(folio);
3496 
3497 	return ret;
3498 }
3499 
3500 static bool wp_can_reuse_anon_folio(struct folio *folio,
3501 				    struct vm_area_struct *vma)
3502 {
3503 	/*
3504 	 * We could currently only reuse a subpage of a large folio if no
3505 	 * other subpages of the large folios are still mapped. However,
3506 	 * let's just consistently not reuse subpages even if we could
3507 	 * reuse in that scenario, and give back a large folio a bit
3508 	 * sooner.
3509 	 */
3510 	if (folio_test_large(folio))
3511 		return false;
3512 
3513 	/*
3514 	 * We have to verify under folio lock: these early checks are
3515 	 * just an optimization to avoid locking the folio and freeing
3516 	 * the swapcache if there is little hope that we can reuse.
3517 	 *
3518 	 * KSM doesn't necessarily raise the folio refcount.
3519 	 */
3520 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3521 		return false;
3522 	if (!folio_test_lru(folio))
3523 		/*
3524 		 * We cannot easily detect+handle references from
3525 		 * remote LRU caches or references to LRU folios.
3526 		 */
3527 		lru_add_drain();
3528 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3529 		return false;
3530 	if (!folio_trylock(folio))
3531 		return false;
3532 	if (folio_test_swapcache(folio))
3533 		folio_free_swap(folio);
3534 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3535 		folio_unlock(folio);
3536 		return false;
3537 	}
3538 	/*
3539 	 * Ok, we've got the only folio reference from our mapping
3540 	 * and the folio is locked, it's dark out, and we're wearing
3541 	 * sunglasses. Hit it.
3542 	 */
3543 	folio_move_anon_rmap(folio, vma);
3544 	folio_unlock(folio);
3545 	return true;
3546 }
3547 
3548 /*
3549  * This routine handles present pages, when
3550  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3551  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3552  *   (FAULT_FLAG_UNSHARE)
3553  *
3554  * It is done by copying the page to a new address and decrementing the
3555  * shared-page counter for the old page.
3556  *
3557  * Note that this routine assumes that the protection checks have been
3558  * done by the caller (the low-level page fault routine in most cases).
3559  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3560  * done any necessary COW.
3561  *
3562  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3563  * though the page will change only once the write actually happens. This
3564  * avoids a few races, and potentially makes it more efficient.
3565  *
3566  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3567  * but allow concurrent faults), with pte both mapped and locked.
3568  * We return with mmap_lock still held, but pte unmapped and unlocked.
3569  */
3570 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3571 	__releases(vmf->ptl)
3572 {
3573 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3574 	struct vm_area_struct *vma = vmf->vma;
3575 	struct folio *folio = NULL;
3576 	pte_t pte;
3577 
3578 	if (likely(!unshare)) {
3579 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3580 			if (!userfaultfd_wp_async(vma)) {
3581 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3582 				return handle_userfault(vmf, VM_UFFD_WP);
3583 			}
3584 
3585 			/*
3586 			 * Nothing needed (cache flush, TLB invalidations,
3587 			 * etc.) because we're only removing the uffd-wp bit,
3588 			 * which is completely invisible to the user.
3589 			 */
3590 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3591 
3592 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3593 			/*
3594 			 * Update this to be prepared for following up CoW
3595 			 * handling
3596 			 */
3597 			vmf->orig_pte = pte;
3598 		}
3599 
3600 		/*
3601 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3602 		 * is flushed in this case before copying.
3603 		 */
3604 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3605 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3606 			flush_tlb_page(vmf->vma, vmf->address);
3607 	}
3608 
3609 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3610 
3611 	if (vmf->page)
3612 		folio = page_folio(vmf->page);
3613 
3614 	/*
3615 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3616 	 * FAULT_FLAG_WRITE set at this point.
3617 	 */
3618 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3619 		/*
3620 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3621 		 * VM_PFNMAP VMA.
3622 		 *
3623 		 * We should not cow pages in a shared writeable mapping.
3624 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3625 		 */
3626 		if (!vmf->page)
3627 			return wp_pfn_shared(vmf);
3628 		return wp_page_shared(vmf, folio);
3629 	}
3630 
3631 	/*
3632 	 * Private mapping: create an exclusive anonymous page copy if reuse
3633 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3634 	 *
3635 	 * If we encounter a page that is marked exclusive, we must reuse
3636 	 * the page without further checks.
3637 	 */
3638 	if (folio && folio_test_anon(folio) &&
3639 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3640 		if (!PageAnonExclusive(vmf->page))
3641 			SetPageAnonExclusive(vmf->page);
3642 		if (unlikely(unshare)) {
3643 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3644 			return 0;
3645 		}
3646 		wp_page_reuse(vmf, folio);
3647 		return 0;
3648 	}
3649 	/*
3650 	 * Ok, we need to copy. Oh, well..
3651 	 */
3652 	if (folio)
3653 		folio_get(folio);
3654 
3655 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3656 #ifdef CONFIG_KSM
3657 	if (folio && folio_test_ksm(folio))
3658 		count_vm_event(COW_KSM);
3659 #endif
3660 	return wp_page_copy(vmf);
3661 }
3662 
3663 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3664 		unsigned long start_addr, unsigned long end_addr,
3665 		struct zap_details *details)
3666 {
3667 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3668 }
3669 
3670 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3671 					    pgoff_t first_index,
3672 					    pgoff_t last_index,
3673 					    struct zap_details *details)
3674 {
3675 	struct vm_area_struct *vma;
3676 	pgoff_t vba, vea, zba, zea;
3677 
3678 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3679 		vba = vma->vm_pgoff;
3680 		vea = vba + vma_pages(vma) - 1;
3681 		zba = max(first_index, vba);
3682 		zea = min(last_index, vea);
3683 
3684 		unmap_mapping_range_vma(vma,
3685 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3686 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3687 				details);
3688 	}
3689 }
3690 
3691 /**
3692  * unmap_mapping_folio() - Unmap single folio from processes.
3693  * @folio: The locked folio to be unmapped.
3694  *
3695  * Unmap this folio from any userspace process which still has it mmaped.
3696  * Typically, for efficiency, the range of nearby pages has already been
3697  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3698  * truncation or invalidation holds the lock on a folio, it may find that
3699  * the page has been remapped again: and then uses unmap_mapping_folio()
3700  * to unmap it finally.
3701  */
3702 void unmap_mapping_folio(struct folio *folio)
3703 {
3704 	struct address_space *mapping = folio->mapping;
3705 	struct zap_details details = { };
3706 	pgoff_t	first_index;
3707 	pgoff_t	last_index;
3708 
3709 	VM_BUG_ON(!folio_test_locked(folio));
3710 
3711 	first_index = folio->index;
3712 	last_index = folio_next_index(folio) - 1;
3713 
3714 	details.even_cows = false;
3715 	details.single_folio = folio;
3716 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3717 
3718 	i_mmap_lock_read(mapping);
3719 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3720 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3721 					 last_index, &details);
3722 	i_mmap_unlock_read(mapping);
3723 }
3724 
3725 /**
3726  * unmap_mapping_pages() - Unmap pages from processes.
3727  * @mapping: The address space containing pages to be unmapped.
3728  * @start: Index of first page to be unmapped.
3729  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3730  * @even_cows: Whether to unmap even private COWed pages.
3731  *
3732  * Unmap the pages in this address space from any userspace process which
3733  * has them mmaped.  Generally, you want to remove COWed pages as well when
3734  * a file is being truncated, but not when invalidating pages from the page
3735  * cache.
3736  */
3737 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3738 		pgoff_t nr, bool even_cows)
3739 {
3740 	struct zap_details details = { };
3741 	pgoff_t	first_index = start;
3742 	pgoff_t	last_index = start + nr - 1;
3743 
3744 	details.even_cows = even_cows;
3745 	if (last_index < first_index)
3746 		last_index = ULONG_MAX;
3747 
3748 	i_mmap_lock_read(mapping);
3749 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3750 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3751 					 last_index, &details);
3752 	i_mmap_unlock_read(mapping);
3753 }
3754 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3755 
3756 /**
3757  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3758  * address_space corresponding to the specified byte range in the underlying
3759  * file.
3760  *
3761  * @mapping: the address space containing mmaps to be unmapped.
3762  * @holebegin: byte in first page to unmap, relative to the start of
3763  * the underlying file.  This will be rounded down to a PAGE_SIZE
3764  * boundary.  Note that this is different from truncate_pagecache(), which
3765  * must keep the partial page.  In contrast, we must get rid of
3766  * partial pages.
3767  * @holelen: size of prospective hole in bytes.  This will be rounded
3768  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3769  * end of the file.
3770  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3771  * but 0 when invalidating pagecache, don't throw away private data.
3772  */
3773 void unmap_mapping_range(struct address_space *mapping,
3774 		loff_t const holebegin, loff_t const holelen, int even_cows)
3775 {
3776 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3777 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3778 
3779 	/* Check for overflow. */
3780 	if (sizeof(holelen) > sizeof(hlen)) {
3781 		long long holeend =
3782 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3783 		if (holeend & ~(long long)ULONG_MAX)
3784 			hlen = ULONG_MAX - hba + 1;
3785 	}
3786 
3787 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3788 }
3789 EXPORT_SYMBOL(unmap_mapping_range);
3790 
3791 /*
3792  * Restore a potential device exclusive pte to a working pte entry
3793  */
3794 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3795 {
3796 	struct folio *folio = page_folio(vmf->page);
3797 	struct vm_area_struct *vma = vmf->vma;
3798 	struct mmu_notifier_range range;
3799 	vm_fault_t ret;
3800 
3801 	/*
3802 	 * We need a reference to lock the folio because we don't hold
3803 	 * the PTL so a racing thread can remove the device-exclusive
3804 	 * entry and unmap it. If the folio is free the entry must
3805 	 * have been removed already. If it happens to have already
3806 	 * been re-allocated after being freed all we do is lock and
3807 	 * unlock it.
3808 	 */
3809 	if (!folio_try_get(folio))
3810 		return 0;
3811 
3812 	ret = folio_lock_or_retry(folio, vmf);
3813 	if (ret) {
3814 		folio_put(folio);
3815 		return ret;
3816 	}
3817 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3818 				vma->vm_mm, vmf->address & PAGE_MASK,
3819 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3820 	mmu_notifier_invalidate_range_start(&range);
3821 
3822 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3823 				&vmf->ptl);
3824 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3825 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3826 
3827 	if (vmf->pte)
3828 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3829 	folio_unlock(folio);
3830 	folio_put(folio);
3831 
3832 	mmu_notifier_invalidate_range_end(&range);
3833 	return 0;
3834 }
3835 
3836 static inline bool should_try_to_free_swap(struct folio *folio,
3837 					   struct vm_area_struct *vma,
3838 					   unsigned int fault_flags)
3839 {
3840 	if (!folio_test_swapcache(folio))
3841 		return false;
3842 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3843 	    folio_test_mlocked(folio))
3844 		return true;
3845 	/*
3846 	 * If we want to map a page that's in the swapcache writable, we
3847 	 * have to detect via the refcount if we're really the exclusive
3848 	 * user. Try freeing the swapcache to get rid of the swapcache
3849 	 * reference only in case it's likely that we'll be the exlusive user.
3850 	 */
3851 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3852 		folio_ref_count(folio) == 2;
3853 }
3854 
3855 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3856 {
3857 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3858 				       vmf->address, &vmf->ptl);
3859 	if (!vmf->pte)
3860 		return 0;
3861 	/*
3862 	 * Be careful so that we will only recover a special uffd-wp pte into a
3863 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3864 	 *
3865 	 * This should also cover the case where e.g. the pte changed
3866 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3867 	 * So is_pte_marker() check is not enough to safely drop the pte.
3868 	 */
3869 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3870 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3871 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3872 	return 0;
3873 }
3874 
3875 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3876 {
3877 	if (vma_is_anonymous(vmf->vma))
3878 		return do_anonymous_page(vmf);
3879 	else
3880 		return do_fault(vmf);
3881 }
3882 
3883 /*
3884  * This is actually a page-missing access, but with uffd-wp special pte
3885  * installed.  It means this pte was wr-protected before being unmapped.
3886  */
3887 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3888 {
3889 	/*
3890 	 * Just in case there're leftover special ptes even after the region
3891 	 * got unregistered - we can simply clear them.
3892 	 */
3893 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3894 		return pte_marker_clear(vmf);
3895 
3896 	return do_pte_missing(vmf);
3897 }
3898 
3899 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3900 {
3901 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3902 	unsigned long marker = pte_marker_get(entry);
3903 
3904 	/*
3905 	 * PTE markers should never be empty.  If anything weird happened,
3906 	 * the best thing to do is to kill the process along with its mm.
3907 	 */
3908 	if (WARN_ON_ONCE(!marker))
3909 		return VM_FAULT_SIGBUS;
3910 
3911 	/* Higher priority than uffd-wp when data corrupted */
3912 	if (marker & PTE_MARKER_POISONED)
3913 		return VM_FAULT_HWPOISON;
3914 
3915 	if (pte_marker_entry_uffd_wp(entry))
3916 		return pte_marker_handle_uffd_wp(vmf);
3917 
3918 	/* This is an unknown pte marker */
3919 	return VM_FAULT_SIGBUS;
3920 }
3921 
3922 /*
3923  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3924  * but allow concurrent faults), and pte mapped but not yet locked.
3925  * We return with pte unmapped and unlocked.
3926  *
3927  * We return with the mmap_lock locked or unlocked in the same cases
3928  * as does filemap_fault().
3929  */
3930 vm_fault_t do_swap_page(struct vm_fault *vmf)
3931 {
3932 	struct vm_area_struct *vma = vmf->vma;
3933 	struct folio *swapcache, *folio = NULL;
3934 	struct page *page;
3935 	struct swap_info_struct *si = NULL;
3936 	rmap_t rmap_flags = RMAP_NONE;
3937 	bool need_clear_cache = false;
3938 	bool exclusive = false;
3939 	swp_entry_t entry;
3940 	pte_t pte;
3941 	vm_fault_t ret = 0;
3942 	void *shadow = NULL;
3943 
3944 	if (!pte_unmap_same(vmf))
3945 		goto out;
3946 
3947 	entry = pte_to_swp_entry(vmf->orig_pte);
3948 	if (unlikely(non_swap_entry(entry))) {
3949 		if (is_migration_entry(entry)) {
3950 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3951 					     vmf->address);
3952 		} else if (is_device_exclusive_entry(entry)) {
3953 			vmf->page = pfn_swap_entry_to_page(entry);
3954 			ret = remove_device_exclusive_entry(vmf);
3955 		} else if (is_device_private_entry(entry)) {
3956 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3957 				/*
3958 				 * migrate_to_ram is not yet ready to operate
3959 				 * under VMA lock.
3960 				 */
3961 				vma_end_read(vma);
3962 				ret = VM_FAULT_RETRY;
3963 				goto out;
3964 			}
3965 
3966 			vmf->page = pfn_swap_entry_to_page(entry);
3967 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3968 					vmf->address, &vmf->ptl);
3969 			if (unlikely(!vmf->pte ||
3970 				     !pte_same(ptep_get(vmf->pte),
3971 							vmf->orig_pte)))
3972 				goto unlock;
3973 
3974 			/*
3975 			 * Get a page reference while we know the page can't be
3976 			 * freed.
3977 			 */
3978 			get_page(vmf->page);
3979 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3980 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3981 			put_page(vmf->page);
3982 		} else if (is_hwpoison_entry(entry)) {
3983 			ret = VM_FAULT_HWPOISON;
3984 		} else if (is_pte_marker_entry(entry)) {
3985 			ret = handle_pte_marker(vmf);
3986 		} else {
3987 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3988 			ret = VM_FAULT_SIGBUS;
3989 		}
3990 		goto out;
3991 	}
3992 
3993 	/* Prevent swapoff from happening to us. */
3994 	si = get_swap_device(entry);
3995 	if (unlikely(!si))
3996 		goto out;
3997 
3998 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3999 	if (folio)
4000 		page = folio_file_page(folio, swp_offset(entry));
4001 	swapcache = folio;
4002 
4003 	if (!folio) {
4004 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4005 		    __swap_count(entry) == 1) {
4006 			/*
4007 			 * Prevent parallel swapin from proceeding with
4008 			 * the cache flag. Otherwise, another thread may
4009 			 * finish swapin first, free the entry, and swapout
4010 			 * reusing the same entry. It's undetectable as
4011 			 * pte_same() returns true due to entry reuse.
4012 			 */
4013 			if (swapcache_prepare(entry)) {
4014 				/* Relax a bit to prevent rapid repeated page faults */
4015 				schedule_timeout_uninterruptible(1);
4016 				goto out;
4017 			}
4018 			need_clear_cache = true;
4019 
4020 			/* skip swapcache */
4021 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4022 						vma, vmf->address, false);
4023 			page = &folio->page;
4024 			if (folio) {
4025 				__folio_set_locked(folio);
4026 				__folio_set_swapbacked(folio);
4027 
4028 				if (mem_cgroup_swapin_charge_folio(folio,
4029 							vma->vm_mm, GFP_KERNEL,
4030 							entry)) {
4031 					ret = VM_FAULT_OOM;
4032 					goto out_page;
4033 				}
4034 				mem_cgroup_swapin_uncharge_swap(entry);
4035 
4036 				shadow = get_shadow_from_swap_cache(entry);
4037 				if (shadow)
4038 					workingset_refault(folio, shadow);
4039 
4040 				folio_add_lru(folio);
4041 
4042 				/* To provide entry to swap_read_folio() */
4043 				folio->swap = entry;
4044 				swap_read_folio(folio, true, NULL);
4045 				folio->private = NULL;
4046 			}
4047 		} else {
4048 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4049 						vmf);
4050 			if (page)
4051 				folio = page_folio(page);
4052 			swapcache = folio;
4053 		}
4054 
4055 		if (!folio) {
4056 			/*
4057 			 * Back out if somebody else faulted in this pte
4058 			 * while we released the pte lock.
4059 			 */
4060 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4061 					vmf->address, &vmf->ptl);
4062 			if (likely(vmf->pte &&
4063 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4064 				ret = VM_FAULT_OOM;
4065 			goto unlock;
4066 		}
4067 
4068 		/* Had to read the page from swap area: Major fault */
4069 		ret = VM_FAULT_MAJOR;
4070 		count_vm_event(PGMAJFAULT);
4071 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4072 	} else if (PageHWPoison(page)) {
4073 		/*
4074 		 * hwpoisoned dirty swapcache pages are kept for killing
4075 		 * owner processes (which may be unknown at hwpoison time)
4076 		 */
4077 		ret = VM_FAULT_HWPOISON;
4078 		goto out_release;
4079 	}
4080 
4081 	ret |= folio_lock_or_retry(folio, vmf);
4082 	if (ret & VM_FAULT_RETRY)
4083 		goto out_release;
4084 
4085 	if (swapcache) {
4086 		/*
4087 		 * Make sure folio_free_swap() or swapoff did not release the
4088 		 * swapcache from under us.  The page pin, and pte_same test
4089 		 * below, are not enough to exclude that.  Even if it is still
4090 		 * swapcache, we need to check that the page's swap has not
4091 		 * changed.
4092 		 */
4093 		if (unlikely(!folio_test_swapcache(folio) ||
4094 			     page_swap_entry(page).val != entry.val))
4095 			goto out_page;
4096 
4097 		/*
4098 		 * KSM sometimes has to copy on read faults, for example, if
4099 		 * page->index of !PageKSM() pages would be nonlinear inside the
4100 		 * anon VMA -- PageKSM() is lost on actual swapout.
4101 		 */
4102 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4103 		if (unlikely(!folio)) {
4104 			ret = VM_FAULT_OOM;
4105 			folio = swapcache;
4106 			goto out_page;
4107 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4108 			ret = VM_FAULT_HWPOISON;
4109 			folio = swapcache;
4110 			goto out_page;
4111 		}
4112 		if (folio != swapcache)
4113 			page = folio_page(folio, 0);
4114 
4115 		/*
4116 		 * If we want to map a page that's in the swapcache writable, we
4117 		 * have to detect via the refcount if we're really the exclusive
4118 		 * owner. Try removing the extra reference from the local LRU
4119 		 * caches if required.
4120 		 */
4121 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4122 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4123 			lru_add_drain();
4124 	}
4125 
4126 	folio_throttle_swaprate(folio, GFP_KERNEL);
4127 
4128 	/*
4129 	 * Back out if somebody else already faulted in this pte.
4130 	 */
4131 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4132 			&vmf->ptl);
4133 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4134 		goto out_nomap;
4135 
4136 	if (unlikely(!folio_test_uptodate(folio))) {
4137 		ret = VM_FAULT_SIGBUS;
4138 		goto out_nomap;
4139 	}
4140 
4141 	/*
4142 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4143 	 * must never point at an anonymous page in the swapcache that is
4144 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4145 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4146 	 * check after taking the PT lock and making sure that nobody
4147 	 * concurrently faulted in this page and set PG_anon_exclusive.
4148 	 */
4149 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4150 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4151 
4152 	/*
4153 	 * Check under PT lock (to protect against concurrent fork() sharing
4154 	 * the swap entry concurrently) for certainly exclusive pages.
4155 	 */
4156 	if (!folio_test_ksm(folio)) {
4157 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4158 		if (folio != swapcache) {
4159 			/*
4160 			 * We have a fresh page that is not exposed to the
4161 			 * swapcache -> certainly exclusive.
4162 			 */
4163 			exclusive = true;
4164 		} else if (exclusive && folio_test_writeback(folio) &&
4165 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4166 			/*
4167 			 * This is tricky: not all swap backends support
4168 			 * concurrent page modifications while under writeback.
4169 			 *
4170 			 * So if we stumble over such a page in the swapcache
4171 			 * we must not set the page exclusive, otherwise we can
4172 			 * map it writable without further checks and modify it
4173 			 * while still under writeback.
4174 			 *
4175 			 * For these problematic swap backends, simply drop the
4176 			 * exclusive marker: this is perfectly fine as we start
4177 			 * writeback only if we fully unmapped the page and
4178 			 * there are no unexpected references on the page after
4179 			 * unmapping succeeded. After fully unmapped, no
4180 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4181 			 * appear, so dropping the exclusive marker and mapping
4182 			 * it only R/O is fine.
4183 			 */
4184 			exclusive = false;
4185 		}
4186 	}
4187 
4188 	/*
4189 	 * Some architectures may have to restore extra metadata to the page
4190 	 * when reading from swap. This metadata may be indexed by swap entry
4191 	 * so this must be called before swap_free().
4192 	 */
4193 	arch_swap_restore(entry, folio);
4194 
4195 	/*
4196 	 * Remove the swap entry and conditionally try to free up the swapcache.
4197 	 * We're already holding a reference on the page but haven't mapped it
4198 	 * yet.
4199 	 */
4200 	swap_free(entry);
4201 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4202 		folio_free_swap(folio);
4203 
4204 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4205 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4206 	pte = mk_pte(page, vma->vm_page_prot);
4207 
4208 	/*
4209 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4210 	 * certainly not shared either because we just allocated them without
4211 	 * exposing them to the swapcache or because the swap entry indicates
4212 	 * exclusivity.
4213 	 */
4214 	if (!folio_test_ksm(folio) &&
4215 	    (exclusive || folio_ref_count(folio) == 1)) {
4216 		if (vmf->flags & FAULT_FLAG_WRITE) {
4217 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4218 			vmf->flags &= ~FAULT_FLAG_WRITE;
4219 		}
4220 		rmap_flags |= RMAP_EXCLUSIVE;
4221 	}
4222 	flush_icache_page(vma, page);
4223 	if (pte_swp_soft_dirty(vmf->orig_pte))
4224 		pte = pte_mksoft_dirty(pte);
4225 	if (pte_swp_uffd_wp(vmf->orig_pte))
4226 		pte = pte_mkuffd_wp(pte);
4227 	vmf->orig_pte = pte;
4228 
4229 	/* ksm created a completely new copy */
4230 	if (unlikely(folio != swapcache && swapcache)) {
4231 		folio_add_new_anon_rmap(folio, vma, vmf->address);
4232 		folio_add_lru_vma(folio, vma);
4233 	} else {
4234 		folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4235 					rmap_flags);
4236 	}
4237 
4238 	VM_BUG_ON(!folio_test_anon(folio) ||
4239 			(pte_write(pte) && !PageAnonExclusive(page)));
4240 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4241 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4242 
4243 	folio_unlock(folio);
4244 	if (folio != swapcache && swapcache) {
4245 		/*
4246 		 * Hold the lock to avoid the swap entry to be reused
4247 		 * until we take the PT lock for the pte_same() check
4248 		 * (to avoid false positives from pte_same). For
4249 		 * further safety release the lock after the swap_free
4250 		 * so that the swap count won't change under a
4251 		 * parallel locked swapcache.
4252 		 */
4253 		folio_unlock(swapcache);
4254 		folio_put(swapcache);
4255 	}
4256 
4257 	if (vmf->flags & FAULT_FLAG_WRITE) {
4258 		ret |= do_wp_page(vmf);
4259 		if (ret & VM_FAULT_ERROR)
4260 			ret &= VM_FAULT_ERROR;
4261 		goto out;
4262 	}
4263 
4264 	/* No need to invalidate - it was non-present before */
4265 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4266 unlock:
4267 	if (vmf->pte)
4268 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4269 out:
4270 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4271 	if (need_clear_cache)
4272 		swapcache_clear(si, entry);
4273 	if (si)
4274 		put_swap_device(si);
4275 	return ret;
4276 out_nomap:
4277 	if (vmf->pte)
4278 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4279 out_page:
4280 	folio_unlock(folio);
4281 out_release:
4282 	folio_put(folio);
4283 	if (folio != swapcache && swapcache) {
4284 		folio_unlock(swapcache);
4285 		folio_put(swapcache);
4286 	}
4287 	if (need_clear_cache)
4288 		swapcache_clear(si, entry);
4289 	if (si)
4290 		put_swap_device(si);
4291 	return ret;
4292 }
4293 
4294 static bool pte_range_none(pte_t *pte, int nr_pages)
4295 {
4296 	int i;
4297 
4298 	for (i = 0; i < nr_pages; i++) {
4299 		if (!pte_none(ptep_get_lockless(pte + i)))
4300 			return false;
4301 	}
4302 
4303 	return true;
4304 }
4305 
4306 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4307 {
4308 	struct vm_area_struct *vma = vmf->vma;
4309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4310 	unsigned long orders;
4311 	struct folio *folio;
4312 	unsigned long addr;
4313 	pte_t *pte;
4314 	gfp_t gfp;
4315 	int order;
4316 
4317 	/*
4318 	 * If uffd is active for the vma we need per-page fault fidelity to
4319 	 * maintain the uffd semantics.
4320 	 */
4321 	if (unlikely(userfaultfd_armed(vma)))
4322 		goto fallback;
4323 
4324 	/*
4325 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4326 	 * for this vma. Then filter out the orders that can't be allocated over
4327 	 * the faulting address and still be fully contained in the vma.
4328 	 */
4329 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4330 					  BIT(PMD_ORDER) - 1);
4331 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4332 
4333 	if (!orders)
4334 		goto fallback;
4335 
4336 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4337 	if (!pte)
4338 		return ERR_PTR(-EAGAIN);
4339 
4340 	/*
4341 	 * Find the highest order where the aligned range is completely
4342 	 * pte_none(). Note that all remaining orders will be completely
4343 	 * pte_none().
4344 	 */
4345 	order = highest_order(orders);
4346 	while (orders) {
4347 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4348 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4349 			break;
4350 		order = next_order(&orders, order);
4351 	}
4352 
4353 	pte_unmap(pte);
4354 
4355 	/* Try allocating the highest of the remaining orders. */
4356 	gfp = vma_thp_gfp_mask(vma);
4357 	while (orders) {
4358 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4359 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4360 		if (folio) {
4361 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4362 				folio_put(folio);
4363 				goto next;
4364 			}
4365 			folio_throttle_swaprate(folio, gfp);
4366 			clear_huge_page(&folio->page, vmf->address, 1 << order);
4367 			return folio;
4368 		}
4369 next:
4370 		order = next_order(&orders, order);
4371 	}
4372 
4373 fallback:
4374 #endif
4375 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4376 }
4377 
4378 /*
4379  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4380  * but allow concurrent faults), and pte mapped but not yet locked.
4381  * We return with mmap_lock still held, but pte unmapped and unlocked.
4382  */
4383 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4384 {
4385 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4386 	struct vm_area_struct *vma = vmf->vma;
4387 	unsigned long addr = vmf->address;
4388 	struct folio *folio;
4389 	vm_fault_t ret = 0;
4390 	int nr_pages = 1;
4391 	pte_t entry;
4392 	int i;
4393 
4394 	/* File mapping without ->vm_ops ? */
4395 	if (vma->vm_flags & VM_SHARED)
4396 		return VM_FAULT_SIGBUS;
4397 
4398 	/*
4399 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4400 	 * be distinguished from a transient failure of pte_offset_map().
4401 	 */
4402 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4403 		return VM_FAULT_OOM;
4404 
4405 	/* Use the zero-page for reads */
4406 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4407 			!mm_forbids_zeropage(vma->vm_mm)) {
4408 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4409 						vma->vm_page_prot));
4410 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4411 				vmf->address, &vmf->ptl);
4412 		if (!vmf->pte)
4413 			goto unlock;
4414 		if (vmf_pte_changed(vmf)) {
4415 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4416 			goto unlock;
4417 		}
4418 		ret = check_stable_address_space(vma->vm_mm);
4419 		if (ret)
4420 			goto unlock;
4421 		/* Deliver the page fault to userland, check inside PT lock */
4422 		if (userfaultfd_missing(vma)) {
4423 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4424 			return handle_userfault(vmf, VM_UFFD_MISSING);
4425 		}
4426 		goto setpte;
4427 	}
4428 
4429 	/* Allocate our own private page. */
4430 	if (unlikely(anon_vma_prepare(vma)))
4431 		goto oom;
4432 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4433 	folio = alloc_anon_folio(vmf);
4434 	if (IS_ERR(folio))
4435 		return 0;
4436 	if (!folio)
4437 		goto oom;
4438 
4439 	nr_pages = folio_nr_pages(folio);
4440 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4441 
4442 	/*
4443 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4444 	 * preceding stores to the page contents become visible before
4445 	 * the set_pte_at() write.
4446 	 */
4447 	__folio_mark_uptodate(folio);
4448 
4449 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4450 	entry = pte_sw_mkyoung(entry);
4451 	if (vma->vm_flags & VM_WRITE)
4452 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4453 
4454 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4455 	if (!vmf->pte)
4456 		goto release;
4457 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4458 		update_mmu_tlb(vma, addr, vmf->pte);
4459 		goto release;
4460 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4461 		for (i = 0; i < nr_pages; i++)
4462 			update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4463 		goto release;
4464 	}
4465 
4466 	ret = check_stable_address_space(vma->vm_mm);
4467 	if (ret)
4468 		goto release;
4469 
4470 	/* Deliver the page fault to userland, check inside PT lock */
4471 	if (userfaultfd_missing(vma)) {
4472 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4473 		folio_put(folio);
4474 		return handle_userfault(vmf, VM_UFFD_MISSING);
4475 	}
4476 
4477 	folio_ref_add(folio, nr_pages - 1);
4478 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4479 	folio_add_new_anon_rmap(folio, vma, addr);
4480 	folio_add_lru_vma(folio, vma);
4481 setpte:
4482 	if (uffd_wp)
4483 		entry = pte_mkuffd_wp(entry);
4484 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4485 
4486 	/* No need to invalidate - it was non-present before */
4487 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4488 unlock:
4489 	if (vmf->pte)
4490 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4491 	return ret;
4492 release:
4493 	folio_put(folio);
4494 	goto unlock;
4495 oom:
4496 	return VM_FAULT_OOM;
4497 }
4498 
4499 /*
4500  * The mmap_lock must have been held on entry, and may have been
4501  * released depending on flags and vma->vm_ops->fault() return value.
4502  * See filemap_fault() and __lock_page_retry().
4503  */
4504 static vm_fault_t __do_fault(struct vm_fault *vmf)
4505 {
4506 	struct vm_area_struct *vma = vmf->vma;
4507 	struct folio *folio;
4508 	vm_fault_t ret;
4509 
4510 	/*
4511 	 * Preallocate pte before we take page_lock because this might lead to
4512 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4513 	 *				lock_page(A)
4514 	 *				SetPageWriteback(A)
4515 	 *				unlock_page(A)
4516 	 * lock_page(B)
4517 	 *				lock_page(B)
4518 	 * pte_alloc_one
4519 	 *   shrink_page_list
4520 	 *     wait_on_page_writeback(A)
4521 	 *				SetPageWriteback(B)
4522 	 *				unlock_page(B)
4523 	 *				# flush A, B to clear the writeback
4524 	 */
4525 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4526 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4527 		if (!vmf->prealloc_pte)
4528 			return VM_FAULT_OOM;
4529 	}
4530 
4531 	ret = vma->vm_ops->fault(vmf);
4532 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4533 			    VM_FAULT_DONE_COW)))
4534 		return ret;
4535 
4536 	folio = page_folio(vmf->page);
4537 	if (unlikely(PageHWPoison(vmf->page))) {
4538 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4539 		if (ret & VM_FAULT_LOCKED) {
4540 			if (page_mapped(vmf->page))
4541 				unmap_mapping_folio(folio);
4542 			/* Retry if a clean folio was removed from the cache. */
4543 			if (mapping_evict_folio(folio->mapping, folio))
4544 				poisonret = VM_FAULT_NOPAGE;
4545 			folio_unlock(folio);
4546 		}
4547 		folio_put(folio);
4548 		vmf->page = NULL;
4549 		return poisonret;
4550 	}
4551 
4552 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4553 		folio_lock(folio);
4554 	else
4555 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4556 
4557 	return ret;
4558 }
4559 
4560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4561 static void deposit_prealloc_pte(struct vm_fault *vmf)
4562 {
4563 	struct vm_area_struct *vma = vmf->vma;
4564 
4565 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4566 	/*
4567 	 * We are going to consume the prealloc table,
4568 	 * count that as nr_ptes.
4569 	 */
4570 	mm_inc_nr_ptes(vma->vm_mm);
4571 	vmf->prealloc_pte = NULL;
4572 }
4573 
4574 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4575 {
4576 	struct folio *folio = page_folio(page);
4577 	struct vm_area_struct *vma = vmf->vma;
4578 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4579 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4580 	pmd_t entry;
4581 	vm_fault_t ret = VM_FAULT_FALLBACK;
4582 
4583 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4584 		return ret;
4585 
4586 	if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4587 		return ret;
4588 
4589 	/*
4590 	 * Just backoff if any subpage of a THP is corrupted otherwise
4591 	 * the corrupted page may mapped by PMD silently to escape the
4592 	 * check.  This kind of THP just can be PTE mapped.  Access to
4593 	 * the corrupted subpage should trigger SIGBUS as expected.
4594 	 */
4595 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4596 		return ret;
4597 
4598 	/*
4599 	 * Archs like ppc64 need additional space to store information
4600 	 * related to pte entry. Use the preallocated table for that.
4601 	 */
4602 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4603 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4604 		if (!vmf->prealloc_pte)
4605 			return VM_FAULT_OOM;
4606 	}
4607 
4608 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4609 	if (unlikely(!pmd_none(*vmf->pmd)))
4610 		goto out;
4611 
4612 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4613 
4614 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4615 	if (write)
4616 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4617 
4618 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4619 	folio_add_file_rmap_pmd(folio, page, vma);
4620 
4621 	/*
4622 	 * deposit and withdraw with pmd lock held
4623 	 */
4624 	if (arch_needs_pgtable_deposit())
4625 		deposit_prealloc_pte(vmf);
4626 
4627 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4628 
4629 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4630 
4631 	/* fault is handled */
4632 	ret = 0;
4633 	count_vm_event(THP_FILE_MAPPED);
4634 out:
4635 	spin_unlock(vmf->ptl);
4636 	return ret;
4637 }
4638 #else
4639 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4640 {
4641 	return VM_FAULT_FALLBACK;
4642 }
4643 #endif
4644 
4645 /**
4646  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4647  * @vmf: Fault decription.
4648  * @folio: The folio that contains @page.
4649  * @page: The first page to create a PTE for.
4650  * @nr: The number of PTEs to create.
4651  * @addr: The first address to create a PTE for.
4652  */
4653 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4654 		struct page *page, unsigned int nr, unsigned long addr)
4655 {
4656 	struct vm_area_struct *vma = vmf->vma;
4657 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4658 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4659 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4660 	pte_t entry;
4661 
4662 	flush_icache_pages(vma, page, nr);
4663 	entry = mk_pte(page, vma->vm_page_prot);
4664 
4665 	if (prefault && arch_wants_old_prefaulted_pte())
4666 		entry = pte_mkold(entry);
4667 	else
4668 		entry = pte_sw_mkyoung(entry);
4669 
4670 	if (write)
4671 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4672 	if (unlikely(uffd_wp))
4673 		entry = pte_mkuffd_wp(entry);
4674 	/* copy-on-write page */
4675 	if (write && !(vma->vm_flags & VM_SHARED)) {
4676 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4677 		VM_BUG_ON_FOLIO(nr != 1, folio);
4678 		folio_add_new_anon_rmap(folio, vma, addr);
4679 		folio_add_lru_vma(folio, vma);
4680 	} else {
4681 		add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr);
4682 		folio_add_file_rmap_ptes(folio, page, nr, vma);
4683 	}
4684 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4685 
4686 	/* no need to invalidate: a not-present page won't be cached */
4687 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4688 }
4689 
4690 static bool vmf_pte_changed(struct vm_fault *vmf)
4691 {
4692 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4693 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4694 
4695 	return !pte_none(ptep_get(vmf->pte));
4696 }
4697 
4698 /**
4699  * finish_fault - finish page fault once we have prepared the page to fault
4700  *
4701  * @vmf: structure describing the fault
4702  *
4703  * This function handles all that is needed to finish a page fault once the
4704  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4705  * given page, adds reverse page mapping, handles memcg charges and LRU
4706  * addition.
4707  *
4708  * The function expects the page to be locked and on success it consumes a
4709  * reference of a page being mapped (for the PTE which maps it).
4710  *
4711  * Return: %0 on success, %VM_FAULT_ code in case of error.
4712  */
4713 vm_fault_t finish_fault(struct vm_fault *vmf)
4714 {
4715 	struct vm_area_struct *vma = vmf->vma;
4716 	struct page *page;
4717 	vm_fault_t ret;
4718 
4719 	/* Did we COW the page? */
4720 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4721 		page = vmf->cow_page;
4722 	else
4723 		page = vmf->page;
4724 
4725 	/*
4726 	 * check even for read faults because we might have lost our CoWed
4727 	 * page
4728 	 */
4729 	if (!(vma->vm_flags & VM_SHARED)) {
4730 		ret = check_stable_address_space(vma->vm_mm);
4731 		if (ret)
4732 			return ret;
4733 	}
4734 
4735 	if (pmd_none(*vmf->pmd)) {
4736 		if (PageTransCompound(page)) {
4737 			ret = do_set_pmd(vmf, page);
4738 			if (ret != VM_FAULT_FALLBACK)
4739 				return ret;
4740 		}
4741 
4742 		if (vmf->prealloc_pte)
4743 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4744 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4745 			return VM_FAULT_OOM;
4746 	}
4747 
4748 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4749 				      vmf->address, &vmf->ptl);
4750 	if (!vmf->pte)
4751 		return VM_FAULT_NOPAGE;
4752 
4753 	/* Re-check under ptl */
4754 	if (likely(!vmf_pte_changed(vmf))) {
4755 		struct folio *folio = page_folio(page);
4756 
4757 		set_pte_range(vmf, folio, page, 1, vmf->address);
4758 		ret = 0;
4759 	} else {
4760 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4761 		ret = VM_FAULT_NOPAGE;
4762 	}
4763 
4764 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4765 	return ret;
4766 }
4767 
4768 static unsigned long fault_around_pages __read_mostly =
4769 	65536 >> PAGE_SHIFT;
4770 
4771 #ifdef CONFIG_DEBUG_FS
4772 static int fault_around_bytes_get(void *data, u64 *val)
4773 {
4774 	*val = fault_around_pages << PAGE_SHIFT;
4775 	return 0;
4776 }
4777 
4778 /*
4779  * fault_around_bytes must be rounded down to the nearest page order as it's
4780  * what do_fault_around() expects to see.
4781  */
4782 static int fault_around_bytes_set(void *data, u64 val)
4783 {
4784 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4785 		return -EINVAL;
4786 
4787 	/*
4788 	 * The minimum value is 1 page, however this results in no fault-around
4789 	 * at all. See should_fault_around().
4790 	 */
4791 	val = max(val, PAGE_SIZE);
4792 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4793 
4794 	return 0;
4795 }
4796 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4797 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4798 
4799 static int __init fault_around_debugfs(void)
4800 {
4801 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4802 				   &fault_around_bytes_fops);
4803 	return 0;
4804 }
4805 late_initcall(fault_around_debugfs);
4806 #endif
4807 
4808 /*
4809  * do_fault_around() tries to map few pages around the fault address. The hope
4810  * is that the pages will be needed soon and this will lower the number of
4811  * faults to handle.
4812  *
4813  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4814  * not ready to be mapped: not up-to-date, locked, etc.
4815  *
4816  * This function doesn't cross VMA or page table boundaries, in order to call
4817  * map_pages() and acquire a PTE lock only once.
4818  *
4819  * fault_around_pages defines how many pages we'll try to map.
4820  * do_fault_around() expects it to be set to a power of two less than or equal
4821  * to PTRS_PER_PTE.
4822  *
4823  * The virtual address of the area that we map is naturally aligned to
4824  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4825  * (and therefore to page order).  This way it's easier to guarantee
4826  * that we don't cross page table boundaries.
4827  */
4828 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4829 {
4830 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4831 	pgoff_t pte_off = pte_index(vmf->address);
4832 	/* The page offset of vmf->address within the VMA. */
4833 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4834 	pgoff_t from_pte, to_pte;
4835 	vm_fault_t ret;
4836 
4837 	/* The PTE offset of the start address, clamped to the VMA. */
4838 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4839 		       pte_off - min(pte_off, vma_off));
4840 
4841 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4842 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4843 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4844 
4845 	if (pmd_none(*vmf->pmd)) {
4846 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4847 		if (!vmf->prealloc_pte)
4848 			return VM_FAULT_OOM;
4849 	}
4850 
4851 	rcu_read_lock();
4852 	ret = vmf->vma->vm_ops->map_pages(vmf,
4853 			vmf->pgoff + from_pte - pte_off,
4854 			vmf->pgoff + to_pte - pte_off);
4855 	rcu_read_unlock();
4856 
4857 	return ret;
4858 }
4859 
4860 /* Return true if we should do read fault-around, false otherwise */
4861 static inline bool should_fault_around(struct vm_fault *vmf)
4862 {
4863 	/* No ->map_pages?  No way to fault around... */
4864 	if (!vmf->vma->vm_ops->map_pages)
4865 		return false;
4866 
4867 	if (uffd_disable_fault_around(vmf->vma))
4868 		return false;
4869 
4870 	/* A single page implies no faulting 'around' at all. */
4871 	return fault_around_pages > 1;
4872 }
4873 
4874 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4875 {
4876 	vm_fault_t ret = 0;
4877 	struct folio *folio;
4878 
4879 	/*
4880 	 * Let's call ->map_pages() first and use ->fault() as fallback
4881 	 * if page by the offset is not ready to be mapped (cold cache or
4882 	 * something).
4883 	 */
4884 	if (should_fault_around(vmf)) {
4885 		ret = do_fault_around(vmf);
4886 		if (ret)
4887 			return ret;
4888 	}
4889 
4890 	ret = vmf_can_call_fault(vmf);
4891 	if (ret)
4892 		return ret;
4893 
4894 	ret = __do_fault(vmf);
4895 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4896 		return ret;
4897 
4898 	ret |= finish_fault(vmf);
4899 	folio = page_folio(vmf->page);
4900 	folio_unlock(folio);
4901 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4902 		folio_put(folio);
4903 	return ret;
4904 }
4905 
4906 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4907 {
4908 	struct vm_area_struct *vma = vmf->vma;
4909 	struct folio *folio;
4910 	vm_fault_t ret;
4911 
4912 	ret = vmf_can_call_fault(vmf);
4913 	if (!ret)
4914 		ret = vmf_anon_prepare(vmf);
4915 	if (ret)
4916 		return ret;
4917 
4918 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4919 	if (!folio)
4920 		return VM_FAULT_OOM;
4921 
4922 	vmf->cow_page = &folio->page;
4923 
4924 	ret = __do_fault(vmf);
4925 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4926 		goto uncharge_out;
4927 	if (ret & VM_FAULT_DONE_COW)
4928 		return ret;
4929 
4930 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4931 	__folio_mark_uptodate(folio);
4932 
4933 	ret |= finish_fault(vmf);
4934 	unlock_page(vmf->page);
4935 	put_page(vmf->page);
4936 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4937 		goto uncharge_out;
4938 	return ret;
4939 uncharge_out:
4940 	folio_put(folio);
4941 	return ret;
4942 }
4943 
4944 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4945 {
4946 	struct vm_area_struct *vma = vmf->vma;
4947 	vm_fault_t ret, tmp;
4948 	struct folio *folio;
4949 
4950 	ret = vmf_can_call_fault(vmf);
4951 	if (ret)
4952 		return ret;
4953 
4954 	ret = __do_fault(vmf);
4955 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4956 		return ret;
4957 
4958 	folio = page_folio(vmf->page);
4959 
4960 	/*
4961 	 * Check if the backing address space wants to know that the page is
4962 	 * about to become writable
4963 	 */
4964 	if (vma->vm_ops->page_mkwrite) {
4965 		folio_unlock(folio);
4966 		tmp = do_page_mkwrite(vmf, folio);
4967 		if (unlikely(!tmp ||
4968 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4969 			folio_put(folio);
4970 			return tmp;
4971 		}
4972 	}
4973 
4974 	ret |= finish_fault(vmf);
4975 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4976 					VM_FAULT_RETRY))) {
4977 		folio_unlock(folio);
4978 		folio_put(folio);
4979 		return ret;
4980 	}
4981 
4982 	ret |= fault_dirty_shared_page(vmf);
4983 	return ret;
4984 }
4985 
4986 /*
4987  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4988  * but allow concurrent faults).
4989  * The mmap_lock may have been released depending on flags and our
4990  * return value.  See filemap_fault() and __folio_lock_or_retry().
4991  * If mmap_lock is released, vma may become invalid (for example
4992  * by other thread calling munmap()).
4993  */
4994 static vm_fault_t do_fault(struct vm_fault *vmf)
4995 {
4996 	struct vm_area_struct *vma = vmf->vma;
4997 	struct mm_struct *vm_mm = vma->vm_mm;
4998 	vm_fault_t ret;
4999 
5000 	/*
5001 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5002 	 */
5003 	if (!vma->vm_ops->fault) {
5004 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5005 					       vmf->address, &vmf->ptl);
5006 		if (unlikely(!vmf->pte))
5007 			ret = VM_FAULT_SIGBUS;
5008 		else {
5009 			/*
5010 			 * Make sure this is not a temporary clearing of pte
5011 			 * by holding ptl and checking again. A R/M/W update
5012 			 * of pte involves: take ptl, clearing the pte so that
5013 			 * we don't have concurrent modification by hardware
5014 			 * followed by an update.
5015 			 */
5016 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5017 				ret = VM_FAULT_SIGBUS;
5018 			else
5019 				ret = VM_FAULT_NOPAGE;
5020 
5021 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5022 		}
5023 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5024 		ret = do_read_fault(vmf);
5025 	else if (!(vma->vm_flags & VM_SHARED))
5026 		ret = do_cow_fault(vmf);
5027 	else
5028 		ret = do_shared_fault(vmf);
5029 
5030 	/* preallocated pagetable is unused: free it */
5031 	if (vmf->prealloc_pte) {
5032 		pte_free(vm_mm, vmf->prealloc_pte);
5033 		vmf->prealloc_pte = NULL;
5034 	}
5035 	return ret;
5036 }
5037 
5038 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
5039 		      unsigned long addr, int page_nid, int *flags)
5040 {
5041 	folio_get(folio);
5042 
5043 	/* Record the current PID acceesing VMA */
5044 	vma_set_access_pid_bit(vma);
5045 
5046 	count_vm_numa_event(NUMA_HINT_FAULTS);
5047 	if (page_nid == numa_node_id()) {
5048 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5049 		*flags |= TNF_FAULT_LOCAL;
5050 	}
5051 
5052 	return mpol_misplaced(folio, vma, addr);
5053 }
5054 
5055 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5056 {
5057 	struct vm_area_struct *vma = vmf->vma;
5058 	struct folio *folio = NULL;
5059 	int nid = NUMA_NO_NODE;
5060 	bool writable = false;
5061 	int last_cpupid;
5062 	int target_nid;
5063 	pte_t pte, old_pte;
5064 	int flags = 0;
5065 
5066 	/*
5067 	 * The pte cannot be used safely until we verify, while holding the page
5068 	 * table lock, that its contents have not changed during fault handling.
5069 	 */
5070 	spin_lock(vmf->ptl);
5071 	/* Read the live PTE from the page tables: */
5072 	old_pte = ptep_get(vmf->pte);
5073 
5074 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5075 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5076 		goto out;
5077 	}
5078 
5079 	pte = pte_modify(old_pte, vma->vm_page_prot);
5080 
5081 	/*
5082 	 * Detect now whether the PTE could be writable; this information
5083 	 * is only valid while holding the PT lock.
5084 	 */
5085 	writable = pte_write(pte);
5086 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
5087 	    can_change_pte_writable(vma, vmf->address, pte))
5088 		writable = true;
5089 
5090 	folio = vm_normal_folio(vma, vmf->address, pte);
5091 	if (!folio || folio_is_zone_device(folio))
5092 		goto out_map;
5093 
5094 	/* TODO: handle PTE-mapped THP */
5095 	if (folio_test_large(folio))
5096 		goto out_map;
5097 
5098 	/*
5099 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5100 	 * much anyway since they can be in shared cache state. This misses
5101 	 * the case where a mapping is writable but the process never writes
5102 	 * to it but pte_write gets cleared during protection updates and
5103 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5104 	 * background writeback, dirty balancing and application behaviour.
5105 	 */
5106 	if (!writable)
5107 		flags |= TNF_NO_GROUP;
5108 
5109 	/*
5110 	 * Flag if the folio is shared between multiple address spaces. This
5111 	 * is later used when determining whether to group tasks together
5112 	 */
5113 	if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
5114 		flags |= TNF_SHARED;
5115 
5116 	nid = folio_nid(folio);
5117 	/*
5118 	 * For memory tiering mode, cpupid of slow memory page is used
5119 	 * to record page access time.  So use default value.
5120 	 */
5121 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5122 	    !node_is_toptier(nid))
5123 		last_cpupid = (-1 & LAST_CPUPID_MASK);
5124 	else
5125 		last_cpupid = folio_last_cpupid(folio);
5126 	target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
5127 	if (target_nid == NUMA_NO_NODE) {
5128 		folio_put(folio);
5129 		goto out_map;
5130 	}
5131 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5132 	writable = false;
5133 
5134 	/* Migrate to the requested node */
5135 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
5136 		nid = target_nid;
5137 		flags |= TNF_MIGRATED;
5138 	} else {
5139 		flags |= TNF_MIGRATE_FAIL;
5140 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5141 					       vmf->address, &vmf->ptl);
5142 		if (unlikely(!vmf->pte))
5143 			goto out;
5144 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5145 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5146 			goto out;
5147 		}
5148 		goto out_map;
5149 	}
5150 
5151 out:
5152 	if (nid != NUMA_NO_NODE)
5153 		task_numa_fault(last_cpupid, nid, 1, flags);
5154 	return 0;
5155 out_map:
5156 	/*
5157 	 * Make it present again, depending on how arch implements
5158 	 * non-accessible ptes, some can allow access by kernel mode.
5159 	 */
5160 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5161 	pte = pte_modify(old_pte, vma->vm_page_prot);
5162 	pte = pte_mkyoung(pte);
5163 	if (writable)
5164 		pte = pte_mkwrite(pte, vma);
5165 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5166 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
5167 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5168 	goto out;
5169 }
5170 
5171 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5172 {
5173 	struct vm_area_struct *vma = vmf->vma;
5174 	if (vma_is_anonymous(vma))
5175 		return do_huge_pmd_anonymous_page(vmf);
5176 	if (vma->vm_ops->huge_fault)
5177 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5178 	return VM_FAULT_FALLBACK;
5179 }
5180 
5181 /* `inline' is required to avoid gcc 4.1.2 build error */
5182 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5183 {
5184 	struct vm_area_struct *vma = vmf->vma;
5185 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5186 	vm_fault_t ret;
5187 
5188 	if (vma_is_anonymous(vma)) {
5189 		if (likely(!unshare) &&
5190 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5191 			if (userfaultfd_wp_async(vmf->vma))
5192 				goto split;
5193 			return handle_userfault(vmf, VM_UFFD_WP);
5194 		}
5195 		return do_huge_pmd_wp_page(vmf);
5196 	}
5197 
5198 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5199 		if (vma->vm_ops->huge_fault) {
5200 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5201 			if (!(ret & VM_FAULT_FALLBACK))
5202 				return ret;
5203 		}
5204 	}
5205 
5206 split:
5207 	/* COW or write-notify handled on pte level: split pmd. */
5208 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5209 
5210 	return VM_FAULT_FALLBACK;
5211 }
5212 
5213 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5214 {
5215 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5216 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5217 	struct vm_area_struct *vma = vmf->vma;
5218 	/* No support for anonymous transparent PUD pages yet */
5219 	if (vma_is_anonymous(vma))
5220 		return VM_FAULT_FALLBACK;
5221 	if (vma->vm_ops->huge_fault)
5222 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5223 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5224 	return VM_FAULT_FALLBACK;
5225 }
5226 
5227 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5228 {
5229 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5230 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5231 	struct vm_area_struct *vma = vmf->vma;
5232 	vm_fault_t ret;
5233 
5234 	/* No support for anonymous transparent PUD pages yet */
5235 	if (vma_is_anonymous(vma))
5236 		goto split;
5237 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5238 		if (vma->vm_ops->huge_fault) {
5239 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5240 			if (!(ret & VM_FAULT_FALLBACK))
5241 				return ret;
5242 		}
5243 	}
5244 split:
5245 	/* COW or write-notify not handled on PUD level: split pud.*/
5246 	__split_huge_pud(vma, vmf->pud, vmf->address);
5247 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5248 	return VM_FAULT_FALLBACK;
5249 }
5250 
5251 /*
5252  * These routines also need to handle stuff like marking pages dirty
5253  * and/or accessed for architectures that don't do it in hardware (most
5254  * RISC architectures).  The early dirtying is also good on the i386.
5255  *
5256  * There is also a hook called "update_mmu_cache()" that architectures
5257  * with external mmu caches can use to update those (ie the Sparc or
5258  * PowerPC hashed page tables that act as extended TLBs).
5259  *
5260  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5261  * concurrent faults).
5262  *
5263  * The mmap_lock may have been released depending on flags and our return value.
5264  * See filemap_fault() and __folio_lock_or_retry().
5265  */
5266 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5267 {
5268 	pte_t entry;
5269 
5270 	if (unlikely(pmd_none(*vmf->pmd))) {
5271 		/*
5272 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5273 		 * want to allocate huge page, and if we expose page table
5274 		 * for an instant, it will be difficult to retract from
5275 		 * concurrent faults and from rmap lookups.
5276 		 */
5277 		vmf->pte = NULL;
5278 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5279 	} else {
5280 		/*
5281 		 * A regular pmd is established and it can't morph into a huge
5282 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5283 		 * mode; but shmem or file collapse to THP could still morph
5284 		 * it into a huge pmd: just retry later if so.
5285 		 */
5286 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5287 						 vmf->address, &vmf->ptl);
5288 		if (unlikely(!vmf->pte))
5289 			return 0;
5290 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5291 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5292 
5293 		if (pte_none(vmf->orig_pte)) {
5294 			pte_unmap(vmf->pte);
5295 			vmf->pte = NULL;
5296 		}
5297 	}
5298 
5299 	if (!vmf->pte)
5300 		return do_pte_missing(vmf);
5301 
5302 	if (!pte_present(vmf->orig_pte))
5303 		return do_swap_page(vmf);
5304 
5305 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5306 		return do_numa_page(vmf);
5307 
5308 	spin_lock(vmf->ptl);
5309 	entry = vmf->orig_pte;
5310 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5311 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5312 		goto unlock;
5313 	}
5314 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5315 		if (!pte_write(entry))
5316 			return do_wp_page(vmf);
5317 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5318 			entry = pte_mkdirty(entry);
5319 	}
5320 	entry = pte_mkyoung(entry);
5321 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5322 				vmf->flags & FAULT_FLAG_WRITE)) {
5323 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5324 				vmf->pte, 1);
5325 	} else {
5326 		/* Skip spurious TLB flush for retried page fault */
5327 		if (vmf->flags & FAULT_FLAG_TRIED)
5328 			goto unlock;
5329 		/*
5330 		 * This is needed only for protection faults but the arch code
5331 		 * is not yet telling us if this is a protection fault or not.
5332 		 * This still avoids useless tlb flushes for .text page faults
5333 		 * with threads.
5334 		 */
5335 		if (vmf->flags & FAULT_FLAG_WRITE)
5336 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5337 						     vmf->pte);
5338 	}
5339 unlock:
5340 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5341 	return 0;
5342 }
5343 
5344 /*
5345  * On entry, we hold either the VMA lock or the mmap_lock
5346  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5347  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5348  * and __folio_lock_or_retry().
5349  */
5350 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5351 		unsigned long address, unsigned int flags)
5352 {
5353 	struct vm_fault vmf = {
5354 		.vma = vma,
5355 		.address = address & PAGE_MASK,
5356 		.real_address = address,
5357 		.flags = flags,
5358 		.pgoff = linear_page_index(vma, address),
5359 		.gfp_mask = __get_fault_gfp_mask(vma),
5360 	};
5361 	struct mm_struct *mm = vma->vm_mm;
5362 	unsigned long vm_flags = vma->vm_flags;
5363 	pgd_t *pgd;
5364 	p4d_t *p4d;
5365 	vm_fault_t ret;
5366 
5367 	pgd = pgd_offset(mm, address);
5368 	p4d = p4d_alloc(mm, pgd, address);
5369 	if (!p4d)
5370 		return VM_FAULT_OOM;
5371 
5372 	vmf.pud = pud_alloc(mm, p4d, address);
5373 	if (!vmf.pud)
5374 		return VM_FAULT_OOM;
5375 retry_pud:
5376 	if (pud_none(*vmf.pud) &&
5377 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
5378 		ret = create_huge_pud(&vmf);
5379 		if (!(ret & VM_FAULT_FALLBACK))
5380 			return ret;
5381 	} else {
5382 		pud_t orig_pud = *vmf.pud;
5383 
5384 		barrier();
5385 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5386 
5387 			/*
5388 			 * TODO once we support anonymous PUDs: NUMA case and
5389 			 * FAULT_FLAG_UNSHARE handling.
5390 			 */
5391 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5392 				ret = wp_huge_pud(&vmf, orig_pud);
5393 				if (!(ret & VM_FAULT_FALLBACK))
5394 					return ret;
5395 			} else {
5396 				huge_pud_set_accessed(&vmf, orig_pud);
5397 				return 0;
5398 			}
5399 		}
5400 	}
5401 
5402 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5403 	if (!vmf.pmd)
5404 		return VM_FAULT_OOM;
5405 
5406 	/* Huge pud page fault raced with pmd_alloc? */
5407 	if (pud_trans_unstable(vmf.pud))
5408 		goto retry_pud;
5409 
5410 	if (pmd_none(*vmf.pmd) &&
5411 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
5412 		ret = create_huge_pmd(&vmf);
5413 		if (!(ret & VM_FAULT_FALLBACK))
5414 			return ret;
5415 	} else {
5416 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5417 
5418 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5419 			VM_BUG_ON(thp_migration_supported() &&
5420 					  !is_pmd_migration_entry(vmf.orig_pmd));
5421 			if (is_pmd_migration_entry(vmf.orig_pmd))
5422 				pmd_migration_entry_wait(mm, vmf.pmd);
5423 			return 0;
5424 		}
5425 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5426 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5427 				return do_huge_pmd_numa_page(&vmf);
5428 
5429 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5430 			    !pmd_write(vmf.orig_pmd)) {
5431 				ret = wp_huge_pmd(&vmf);
5432 				if (!(ret & VM_FAULT_FALLBACK))
5433 					return ret;
5434 			} else {
5435 				huge_pmd_set_accessed(&vmf);
5436 				return 0;
5437 			}
5438 		}
5439 	}
5440 
5441 	return handle_pte_fault(&vmf);
5442 }
5443 
5444 /**
5445  * mm_account_fault - Do page fault accounting
5446  * @mm: mm from which memcg should be extracted. It can be NULL.
5447  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5448  *        of perf event counters, but we'll still do the per-task accounting to
5449  *        the task who triggered this page fault.
5450  * @address: the faulted address.
5451  * @flags: the fault flags.
5452  * @ret: the fault retcode.
5453  *
5454  * This will take care of most of the page fault accounting.  Meanwhile, it
5455  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5456  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5457  * still be in per-arch page fault handlers at the entry of page fault.
5458  */
5459 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5460 				    unsigned long address, unsigned int flags,
5461 				    vm_fault_t ret)
5462 {
5463 	bool major;
5464 
5465 	/* Incomplete faults will be accounted upon completion. */
5466 	if (ret & VM_FAULT_RETRY)
5467 		return;
5468 
5469 	/*
5470 	 * To preserve the behavior of older kernels, PGFAULT counters record
5471 	 * both successful and failed faults, as opposed to perf counters,
5472 	 * which ignore failed cases.
5473 	 */
5474 	count_vm_event(PGFAULT);
5475 	count_memcg_event_mm(mm, PGFAULT);
5476 
5477 	/*
5478 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5479 	 * valid).  That includes arch_vma_access_permitted() failing before
5480 	 * reaching here. So this is not a "this many hardware page faults"
5481 	 * counter.  We should use the hw profiling for that.
5482 	 */
5483 	if (ret & VM_FAULT_ERROR)
5484 		return;
5485 
5486 	/*
5487 	 * We define the fault as a major fault when the final successful fault
5488 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5489 	 * handle it immediately previously).
5490 	 */
5491 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5492 
5493 	if (major)
5494 		current->maj_flt++;
5495 	else
5496 		current->min_flt++;
5497 
5498 	/*
5499 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5500 	 * accounting for the per thread fault counters who triggered the
5501 	 * fault, and we skip the perf event updates.
5502 	 */
5503 	if (!regs)
5504 		return;
5505 
5506 	if (major)
5507 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5508 	else
5509 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5510 }
5511 
5512 #ifdef CONFIG_LRU_GEN
5513 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5514 {
5515 	/* the LRU algorithm only applies to accesses with recency */
5516 	current->in_lru_fault = vma_has_recency(vma);
5517 }
5518 
5519 static void lru_gen_exit_fault(void)
5520 {
5521 	current->in_lru_fault = false;
5522 }
5523 #else
5524 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5525 {
5526 }
5527 
5528 static void lru_gen_exit_fault(void)
5529 {
5530 }
5531 #endif /* CONFIG_LRU_GEN */
5532 
5533 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5534 				       unsigned int *flags)
5535 {
5536 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5537 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5538 			return VM_FAULT_SIGSEGV;
5539 		/*
5540 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5541 		 * just treat it like an ordinary read-fault otherwise.
5542 		 */
5543 		if (!is_cow_mapping(vma->vm_flags))
5544 			*flags &= ~FAULT_FLAG_UNSHARE;
5545 	} else if (*flags & FAULT_FLAG_WRITE) {
5546 		/* Write faults on read-only mappings are impossible ... */
5547 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5548 			return VM_FAULT_SIGSEGV;
5549 		/* ... and FOLL_FORCE only applies to COW mappings. */
5550 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5551 				 !is_cow_mapping(vma->vm_flags)))
5552 			return VM_FAULT_SIGSEGV;
5553 	}
5554 #ifdef CONFIG_PER_VMA_LOCK
5555 	/*
5556 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5557 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5558 	 */
5559 	if (WARN_ON_ONCE((*flags &
5560 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5561 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5562 		return VM_FAULT_SIGSEGV;
5563 #endif
5564 
5565 	return 0;
5566 }
5567 
5568 /*
5569  * By the time we get here, we already hold the mm semaphore
5570  *
5571  * The mmap_lock may have been released depending on flags and our
5572  * return value.  See filemap_fault() and __folio_lock_or_retry().
5573  */
5574 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5575 			   unsigned int flags, struct pt_regs *regs)
5576 {
5577 	/* If the fault handler drops the mmap_lock, vma may be freed */
5578 	struct mm_struct *mm = vma->vm_mm;
5579 	vm_fault_t ret;
5580 
5581 	__set_current_state(TASK_RUNNING);
5582 
5583 	ret = sanitize_fault_flags(vma, &flags);
5584 	if (ret)
5585 		goto out;
5586 
5587 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5588 					    flags & FAULT_FLAG_INSTRUCTION,
5589 					    flags & FAULT_FLAG_REMOTE)) {
5590 		ret = VM_FAULT_SIGSEGV;
5591 		goto out;
5592 	}
5593 
5594 	/*
5595 	 * Enable the memcg OOM handling for faults triggered in user
5596 	 * space.  Kernel faults are handled more gracefully.
5597 	 */
5598 	if (flags & FAULT_FLAG_USER)
5599 		mem_cgroup_enter_user_fault();
5600 
5601 	lru_gen_enter_fault(vma);
5602 
5603 	if (unlikely(is_vm_hugetlb_page(vma)))
5604 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5605 	else
5606 		ret = __handle_mm_fault(vma, address, flags);
5607 
5608 	lru_gen_exit_fault();
5609 
5610 	if (flags & FAULT_FLAG_USER) {
5611 		mem_cgroup_exit_user_fault();
5612 		/*
5613 		 * The task may have entered a memcg OOM situation but
5614 		 * if the allocation error was handled gracefully (no
5615 		 * VM_FAULT_OOM), there is no need to kill anything.
5616 		 * Just clean up the OOM state peacefully.
5617 		 */
5618 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5619 			mem_cgroup_oom_synchronize(false);
5620 	}
5621 out:
5622 	mm_account_fault(mm, regs, address, flags, ret);
5623 
5624 	return ret;
5625 }
5626 EXPORT_SYMBOL_GPL(handle_mm_fault);
5627 
5628 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5629 #include <linux/extable.h>
5630 
5631 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5632 {
5633 	if (likely(mmap_read_trylock(mm)))
5634 		return true;
5635 
5636 	if (regs && !user_mode(regs)) {
5637 		unsigned long ip = exception_ip(regs);
5638 		if (!search_exception_tables(ip))
5639 			return false;
5640 	}
5641 
5642 	return !mmap_read_lock_killable(mm);
5643 }
5644 
5645 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5646 {
5647 	/*
5648 	 * We don't have this operation yet.
5649 	 *
5650 	 * It should be easy enough to do: it's basically a
5651 	 *    atomic_long_try_cmpxchg_acquire()
5652 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5653 	 * it also needs the proper lockdep magic etc.
5654 	 */
5655 	return false;
5656 }
5657 
5658 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5659 {
5660 	mmap_read_unlock(mm);
5661 	if (regs && !user_mode(regs)) {
5662 		unsigned long ip = exception_ip(regs);
5663 		if (!search_exception_tables(ip))
5664 			return false;
5665 	}
5666 	return !mmap_write_lock_killable(mm);
5667 }
5668 
5669 /*
5670  * Helper for page fault handling.
5671  *
5672  * This is kind of equivalend to "mmap_read_lock()" followed
5673  * by "find_extend_vma()", except it's a lot more careful about
5674  * the locking (and will drop the lock on failure).
5675  *
5676  * For example, if we have a kernel bug that causes a page
5677  * fault, we don't want to just use mmap_read_lock() to get
5678  * the mm lock, because that would deadlock if the bug were
5679  * to happen while we're holding the mm lock for writing.
5680  *
5681  * So this checks the exception tables on kernel faults in
5682  * order to only do this all for instructions that are actually
5683  * expected to fault.
5684  *
5685  * We can also actually take the mm lock for writing if we
5686  * need to extend the vma, which helps the VM layer a lot.
5687  */
5688 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5689 			unsigned long addr, struct pt_regs *regs)
5690 {
5691 	struct vm_area_struct *vma;
5692 
5693 	if (!get_mmap_lock_carefully(mm, regs))
5694 		return NULL;
5695 
5696 	vma = find_vma(mm, addr);
5697 	if (likely(vma && (vma->vm_start <= addr)))
5698 		return vma;
5699 
5700 	/*
5701 	 * Well, dang. We might still be successful, but only
5702 	 * if we can extend a vma to do so.
5703 	 */
5704 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5705 		mmap_read_unlock(mm);
5706 		return NULL;
5707 	}
5708 
5709 	/*
5710 	 * We can try to upgrade the mmap lock atomically,
5711 	 * in which case we can continue to use the vma
5712 	 * we already looked up.
5713 	 *
5714 	 * Otherwise we'll have to drop the mmap lock and
5715 	 * re-take it, and also look up the vma again,
5716 	 * re-checking it.
5717 	 */
5718 	if (!mmap_upgrade_trylock(mm)) {
5719 		if (!upgrade_mmap_lock_carefully(mm, regs))
5720 			return NULL;
5721 
5722 		vma = find_vma(mm, addr);
5723 		if (!vma)
5724 			goto fail;
5725 		if (vma->vm_start <= addr)
5726 			goto success;
5727 		if (!(vma->vm_flags & VM_GROWSDOWN))
5728 			goto fail;
5729 	}
5730 
5731 	if (expand_stack_locked(vma, addr))
5732 		goto fail;
5733 
5734 success:
5735 	mmap_write_downgrade(mm);
5736 	return vma;
5737 
5738 fail:
5739 	mmap_write_unlock(mm);
5740 	return NULL;
5741 }
5742 #endif
5743 
5744 #ifdef CONFIG_PER_VMA_LOCK
5745 /*
5746  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5747  * stable and not isolated. If the VMA is not found or is being modified the
5748  * function returns NULL.
5749  */
5750 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5751 					  unsigned long address)
5752 {
5753 	MA_STATE(mas, &mm->mm_mt, address, address);
5754 	struct vm_area_struct *vma;
5755 
5756 	rcu_read_lock();
5757 retry:
5758 	vma = mas_walk(&mas);
5759 	if (!vma)
5760 		goto inval;
5761 
5762 	if (!vma_start_read(vma))
5763 		goto inval;
5764 
5765 	/*
5766 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5767 	 * This check must happen after vma_start_read(); otherwise, a
5768 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5769 	 * from its anon_vma.
5770 	 */
5771 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5772 		goto inval_end_read;
5773 
5774 	/* Check since vm_start/vm_end might change before we lock the VMA */
5775 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5776 		goto inval_end_read;
5777 
5778 	/* Check if the VMA got isolated after we found it */
5779 	if (vma->detached) {
5780 		vma_end_read(vma);
5781 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5782 		/* The area was replaced with another one */
5783 		goto retry;
5784 	}
5785 
5786 	rcu_read_unlock();
5787 	return vma;
5788 
5789 inval_end_read:
5790 	vma_end_read(vma);
5791 inval:
5792 	rcu_read_unlock();
5793 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5794 	return NULL;
5795 }
5796 #endif /* CONFIG_PER_VMA_LOCK */
5797 
5798 #ifndef __PAGETABLE_P4D_FOLDED
5799 /*
5800  * Allocate p4d page table.
5801  * We've already handled the fast-path in-line.
5802  */
5803 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5804 {
5805 	p4d_t *new = p4d_alloc_one(mm, address);
5806 	if (!new)
5807 		return -ENOMEM;
5808 
5809 	spin_lock(&mm->page_table_lock);
5810 	if (pgd_present(*pgd)) {	/* Another has populated it */
5811 		p4d_free(mm, new);
5812 	} else {
5813 		smp_wmb(); /* See comment in pmd_install() */
5814 		pgd_populate(mm, pgd, new);
5815 	}
5816 	spin_unlock(&mm->page_table_lock);
5817 	return 0;
5818 }
5819 #endif /* __PAGETABLE_P4D_FOLDED */
5820 
5821 #ifndef __PAGETABLE_PUD_FOLDED
5822 /*
5823  * Allocate page upper directory.
5824  * We've already handled the fast-path in-line.
5825  */
5826 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5827 {
5828 	pud_t *new = pud_alloc_one(mm, address);
5829 	if (!new)
5830 		return -ENOMEM;
5831 
5832 	spin_lock(&mm->page_table_lock);
5833 	if (!p4d_present(*p4d)) {
5834 		mm_inc_nr_puds(mm);
5835 		smp_wmb(); /* See comment in pmd_install() */
5836 		p4d_populate(mm, p4d, new);
5837 	} else	/* Another has populated it */
5838 		pud_free(mm, new);
5839 	spin_unlock(&mm->page_table_lock);
5840 	return 0;
5841 }
5842 #endif /* __PAGETABLE_PUD_FOLDED */
5843 
5844 #ifndef __PAGETABLE_PMD_FOLDED
5845 /*
5846  * Allocate page middle directory.
5847  * We've already handled the fast-path in-line.
5848  */
5849 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5850 {
5851 	spinlock_t *ptl;
5852 	pmd_t *new = pmd_alloc_one(mm, address);
5853 	if (!new)
5854 		return -ENOMEM;
5855 
5856 	ptl = pud_lock(mm, pud);
5857 	if (!pud_present(*pud)) {
5858 		mm_inc_nr_pmds(mm);
5859 		smp_wmb(); /* See comment in pmd_install() */
5860 		pud_populate(mm, pud, new);
5861 	} else {	/* Another has populated it */
5862 		pmd_free(mm, new);
5863 	}
5864 	spin_unlock(ptl);
5865 	return 0;
5866 }
5867 #endif /* __PAGETABLE_PMD_FOLDED */
5868 
5869 /**
5870  * follow_pte - look up PTE at a user virtual address
5871  * @mm: the mm_struct of the target address space
5872  * @address: user virtual address
5873  * @ptepp: location to store found PTE
5874  * @ptlp: location to store the lock for the PTE
5875  *
5876  * On a successful return, the pointer to the PTE is stored in @ptepp;
5877  * the corresponding lock is taken and its location is stored in @ptlp.
5878  * The contents of the PTE are only stable until @ptlp is released;
5879  * any further use, if any, must be protected against invalidation
5880  * with MMU notifiers.
5881  *
5882  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5883  * should be taken for read.
5884  *
5885  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5886  * it is not a good general-purpose API.
5887  *
5888  * Return: zero on success, -ve otherwise.
5889  */
5890 int follow_pte(struct mm_struct *mm, unsigned long address,
5891 	       pte_t **ptepp, spinlock_t **ptlp)
5892 {
5893 	pgd_t *pgd;
5894 	p4d_t *p4d;
5895 	pud_t *pud;
5896 	pmd_t *pmd;
5897 	pte_t *ptep;
5898 
5899 	pgd = pgd_offset(mm, address);
5900 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5901 		goto out;
5902 
5903 	p4d = p4d_offset(pgd, address);
5904 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5905 		goto out;
5906 
5907 	pud = pud_offset(p4d, address);
5908 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5909 		goto out;
5910 
5911 	pmd = pmd_offset(pud, address);
5912 	VM_BUG_ON(pmd_trans_huge(*pmd));
5913 
5914 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5915 	if (!ptep)
5916 		goto out;
5917 	if (!pte_present(ptep_get(ptep)))
5918 		goto unlock;
5919 	*ptepp = ptep;
5920 	return 0;
5921 unlock:
5922 	pte_unmap_unlock(ptep, *ptlp);
5923 out:
5924 	return -EINVAL;
5925 }
5926 EXPORT_SYMBOL_GPL(follow_pte);
5927 
5928 /**
5929  * follow_pfn - look up PFN at a user virtual address
5930  * @vma: memory mapping
5931  * @address: user virtual address
5932  * @pfn: location to store found PFN
5933  *
5934  * Only IO mappings and raw PFN mappings are allowed.
5935  *
5936  * This function does not allow the caller to read the permissions
5937  * of the PTE.  Do not use it.
5938  *
5939  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5940  */
5941 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5942 	unsigned long *pfn)
5943 {
5944 	int ret = -EINVAL;
5945 	spinlock_t *ptl;
5946 	pte_t *ptep;
5947 
5948 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5949 		return ret;
5950 
5951 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5952 	if (ret)
5953 		return ret;
5954 	*pfn = pte_pfn(ptep_get(ptep));
5955 	pte_unmap_unlock(ptep, ptl);
5956 	return 0;
5957 }
5958 EXPORT_SYMBOL(follow_pfn);
5959 
5960 #ifdef CONFIG_HAVE_IOREMAP_PROT
5961 int follow_phys(struct vm_area_struct *vma,
5962 		unsigned long address, unsigned int flags,
5963 		unsigned long *prot, resource_size_t *phys)
5964 {
5965 	int ret = -EINVAL;
5966 	pte_t *ptep, pte;
5967 	spinlock_t *ptl;
5968 
5969 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5970 		goto out;
5971 
5972 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5973 		goto out;
5974 	pte = ptep_get(ptep);
5975 
5976 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5977 		goto unlock;
5978 
5979 	*prot = pgprot_val(pte_pgprot(pte));
5980 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5981 
5982 	ret = 0;
5983 unlock:
5984 	pte_unmap_unlock(ptep, ptl);
5985 out:
5986 	return ret;
5987 }
5988 
5989 /**
5990  * generic_access_phys - generic implementation for iomem mmap access
5991  * @vma: the vma to access
5992  * @addr: userspace address, not relative offset within @vma
5993  * @buf: buffer to read/write
5994  * @len: length of transfer
5995  * @write: set to FOLL_WRITE when writing, otherwise reading
5996  *
5997  * This is a generic implementation for &vm_operations_struct.access for an
5998  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5999  * not page based.
6000  */
6001 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6002 			void *buf, int len, int write)
6003 {
6004 	resource_size_t phys_addr;
6005 	unsigned long prot = 0;
6006 	void __iomem *maddr;
6007 	pte_t *ptep, pte;
6008 	spinlock_t *ptl;
6009 	int offset = offset_in_page(addr);
6010 	int ret = -EINVAL;
6011 
6012 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6013 		return -EINVAL;
6014 
6015 retry:
6016 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
6017 		return -EINVAL;
6018 	pte = ptep_get(ptep);
6019 	pte_unmap_unlock(ptep, ptl);
6020 
6021 	prot = pgprot_val(pte_pgprot(pte));
6022 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6023 
6024 	if ((write & FOLL_WRITE) && !pte_write(pte))
6025 		return -EINVAL;
6026 
6027 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6028 	if (!maddr)
6029 		return -ENOMEM;
6030 
6031 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
6032 		goto out_unmap;
6033 
6034 	if (!pte_same(pte, ptep_get(ptep))) {
6035 		pte_unmap_unlock(ptep, ptl);
6036 		iounmap(maddr);
6037 
6038 		goto retry;
6039 	}
6040 
6041 	if (write)
6042 		memcpy_toio(maddr + offset, buf, len);
6043 	else
6044 		memcpy_fromio(buf, maddr + offset, len);
6045 	ret = len;
6046 	pte_unmap_unlock(ptep, ptl);
6047 out_unmap:
6048 	iounmap(maddr);
6049 
6050 	return ret;
6051 }
6052 EXPORT_SYMBOL_GPL(generic_access_phys);
6053 #endif
6054 
6055 /*
6056  * Access another process' address space as given in mm.
6057  */
6058 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6059 			      void *buf, int len, unsigned int gup_flags)
6060 {
6061 	void *old_buf = buf;
6062 	int write = gup_flags & FOLL_WRITE;
6063 
6064 	if (mmap_read_lock_killable(mm))
6065 		return 0;
6066 
6067 	/* Untag the address before looking up the VMA */
6068 	addr = untagged_addr_remote(mm, addr);
6069 
6070 	/* Avoid triggering the temporary warning in __get_user_pages */
6071 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6072 		return 0;
6073 
6074 	/* ignore errors, just check how much was successfully transferred */
6075 	while (len) {
6076 		int bytes, offset;
6077 		void *maddr;
6078 		struct vm_area_struct *vma = NULL;
6079 		struct page *page = get_user_page_vma_remote(mm, addr,
6080 							     gup_flags, &vma);
6081 
6082 		if (IS_ERR(page)) {
6083 			/* We might need to expand the stack to access it */
6084 			vma = vma_lookup(mm, addr);
6085 			if (!vma) {
6086 				vma = expand_stack(mm, addr);
6087 
6088 				/* mmap_lock was dropped on failure */
6089 				if (!vma)
6090 					return buf - old_buf;
6091 
6092 				/* Try again if stack expansion worked */
6093 				continue;
6094 			}
6095 
6096 			/*
6097 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6098 			 * we can access using slightly different code.
6099 			 */
6100 			bytes = 0;
6101 #ifdef CONFIG_HAVE_IOREMAP_PROT
6102 			if (vma->vm_ops && vma->vm_ops->access)
6103 				bytes = vma->vm_ops->access(vma, addr, buf,
6104 							    len, write);
6105 #endif
6106 			if (bytes <= 0)
6107 				break;
6108 		} else {
6109 			bytes = len;
6110 			offset = addr & (PAGE_SIZE-1);
6111 			if (bytes > PAGE_SIZE-offset)
6112 				bytes = PAGE_SIZE-offset;
6113 
6114 			maddr = kmap_local_page(page);
6115 			if (write) {
6116 				copy_to_user_page(vma, page, addr,
6117 						  maddr + offset, buf, bytes);
6118 				set_page_dirty_lock(page);
6119 			} else {
6120 				copy_from_user_page(vma, page, addr,
6121 						    buf, maddr + offset, bytes);
6122 			}
6123 			unmap_and_put_page(page, maddr);
6124 		}
6125 		len -= bytes;
6126 		buf += bytes;
6127 		addr += bytes;
6128 	}
6129 	mmap_read_unlock(mm);
6130 
6131 	return buf - old_buf;
6132 }
6133 
6134 /**
6135  * access_remote_vm - access another process' address space
6136  * @mm:		the mm_struct of the target address space
6137  * @addr:	start address to access
6138  * @buf:	source or destination buffer
6139  * @len:	number of bytes to transfer
6140  * @gup_flags:	flags modifying lookup behaviour
6141  *
6142  * The caller must hold a reference on @mm.
6143  *
6144  * Return: number of bytes copied from source to destination.
6145  */
6146 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6147 		void *buf, int len, unsigned int gup_flags)
6148 {
6149 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6150 }
6151 
6152 /*
6153  * Access another process' address space.
6154  * Source/target buffer must be kernel space,
6155  * Do not walk the page table directly, use get_user_pages
6156  */
6157 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6158 		void *buf, int len, unsigned int gup_flags)
6159 {
6160 	struct mm_struct *mm;
6161 	int ret;
6162 
6163 	mm = get_task_mm(tsk);
6164 	if (!mm)
6165 		return 0;
6166 
6167 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6168 
6169 	mmput(mm);
6170 
6171 	return ret;
6172 }
6173 EXPORT_SYMBOL_GPL(access_process_vm);
6174 
6175 /*
6176  * Print the name of a VMA.
6177  */
6178 void print_vma_addr(char *prefix, unsigned long ip)
6179 {
6180 	struct mm_struct *mm = current->mm;
6181 	struct vm_area_struct *vma;
6182 
6183 	/*
6184 	 * we might be running from an atomic context so we cannot sleep
6185 	 */
6186 	if (!mmap_read_trylock(mm))
6187 		return;
6188 
6189 	vma = find_vma(mm, ip);
6190 	if (vma && vma->vm_file) {
6191 		struct file *f = vma->vm_file;
6192 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
6193 		if (buf) {
6194 			char *p;
6195 
6196 			p = file_path(f, buf, PAGE_SIZE);
6197 			if (IS_ERR(p))
6198 				p = "?";
6199 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
6200 					vma->vm_start,
6201 					vma->vm_end - vma->vm_start);
6202 			free_page((unsigned long)buf);
6203 		}
6204 	}
6205 	mmap_read_unlock(mm);
6206 }
6207 
6208 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6209 void __might_fault(const char *file, int line)
6210 {
6211 	if (pagefault_disabled())
6212 		return;
6213 	__might_sleep(file, line);
6214 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6215 	if (current->mm)
6216 		might_lock_read(&current->mm->mmap_lock);
6217 #endif
6218 }
6219 EXPORT_SYMBOL(__might_fault);
6220 #endif
6221 
6222 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6223 /*
6224  * Process all subpages of the specified huge page with the specified
6225  * operation.  The target subpage will be processed last to keep its
6226  * cache lines hot.
6227  */
6228 static inline int process_huge_page(
6229 	unsigned long addr_hint, unsigned int pages_per_huge_page,
6230 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6231 	void *arg)
6232 {
6233 	int i, n, base, l, ret;
6234 	unsigned long addr = addr_hint &
6235 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6236 
6237 	/* Process target subpage last to keep its cache lines hot */
6238 	might_sleep();
6239 	n = (addr_hint - addr) / PAGE_SIZE;
6240 	if (2 * n <= pages_per_huge_page) {
6241 		/* If target subpage in first half of huge page */
6242 		base = 0;
6243 		l = n;
6244 		/* Process subpages at the end of huge page */
6245 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6246 			cond_resched();
6247 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6248 			if (ret)
6249 				return ret;
6250 		}
6251 	} else {
6252 		/* If target subpage in second half of huge page */
6253 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6254 		l = pages_per_huge_page - n;
6255 		/* Process subpages at the begin of huge page */
6256 		for (i = 0; i < base; i++) {
6257 			cond_resched();
6258 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6259 			if (ret)
6260 				return ret;
6261 		}
6262 	}
6263 	/*
6264 	 * Process remaining subpages in left-right-left-right pattern
6265 	 * towards the target subpage
6266 	 */
6267 	for (i = 0; i < l; i++) {
6268 		int left_idx = base + i;
6269 		int right_idx = base + 2 * l - 1 - i;
6270 
6271 		cond_resched();
6272 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6273 		if (ret)
6274 			return ret;
6275 		cond_resched();
6276 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6277 		if (ret)
6278 			return ret;
6279 	}
6280 	return 0;
6281 }
6282 
6283 static void clear_gigantic_page(struct page *page,
6284 				unsigned long addr,
6285 				unsigned int pages_per_huge_page)
6286 {
6287 	int i;
6288 	struct page *p;
6289 
6290 	might_sleep();
6291 	for (i = 0; i < pages_per_huge_page; i++) {
6292 		p = nth_page(page, i);
6293 		cond_resched();
6294 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6295 	}
6296 }
6297 
6298 static int clear_subpage(unsigned long addr, int idx, void *arg)
6299 {
6300 	struct page *page = arg;
6301 
6302 	clear_user_highpage(nth_page(page, idx), addr);
6303 	return 0;
6304 }
6305 
6306 void clear_huge_page(struct page *page,
6307 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6308 {
6309 	unsigned long addr = addr_hint &
6310 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6311 
6312 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6313 		clear_gigantic_page(page, addr, pages_per_huge_page);
6314 		return;
6315 	}
6316 
6317 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6318 }
6319 
6320 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6321 				     unsigned long addr,
6322 				     struct vm_area_struct *vma,
6323 				     unsigned int pages_per_huge_page)
6324 {
6325 	int i;
6326 	struct page *dst_page;
6327 	struct page *src_page;
6328 
6329 	for (i = 0; i < pages_per_huge_page; i++) {
6330 		dst_page = folio_page(dst, i);
6331 		src_page = folio_page(src, i);
6332 
6333 		cond_resched();
6334 		if (copy_mc_user_highpage(dst_page, src_page,
6335 					  addr + i*PAGE_SIZE, vma)) {
6336 			memory_failure_queue(page_to_pfn(src_page), 0);
6337 			return -EHWPOISON;
6338 		}
6339 	}
6340 	return 0;
6341 }
6342 
6343 struct copy_subpage_arg {
6344 	struct page *dst;
6345 	struct page *src;
6346 	struct vm_area_struct *vma;
6347 };
6348 
6349 static int copy_subpage(unsigned long addr, int idx, void *arg)
6350 {
6351 	struct copy_subpage_arg *copy_arg = arg;
6352 	struct page *dst = nth_page(copy_arg->dst, idx);
6353 	struct page *src = nth_page(copy_arg->src, idx);
6354 
6355 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6356 		memory_failure_queue(page_to_pfn(src), 0);
6357 		return -EHWPOISON;
6358 	}
6359 	return 0;
6360 }
6361 
6362 int copy_user_large_folio(struct folio *dst, struct folio *src,
6363 			  unsigned long addr_hint, struct vm_area_struct *vma)
6364 {
6365 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6366 	unsigned long addr = addr_hint &
6367 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6368 	struct copy_subpage_arg arg = {
6369 		.dst = &dst->page,
6370 		.src = &src->page,
6371 		.vma = vma,
6372 	};
6373 
6374 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6375 		return copy_user_gigantic_page(dst, src, addr, vma,
6376 					       pages_per_huge_page);
6377 
6378 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6379 }
6380 
6381 long copy_folio_from_user(struct folio *dst_folio,
6382 			   const void __user *usr_src,
6383 			   bool allow_pagefault)
6384 {
6385 	void *kaddr;
6386 	unsigned long i, rc = 0;
6387 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6388 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6389 	struct page *subpage;
6390 
6391 	for (i = 0; i < nr_pages; i++) {
6392 		subpage = folio_page(dst_folio, i);
6393 		kaddr = kmap_local_page(subpage);
6394 		if (!allow_pagefault)
6395 			pagefault_disable();
6396 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6397 		if (!allow_pagefault)
6398 			pagefault_enable();
6399 		kunmap_local(kaddr);
6400 
6401 		ret_val -= (PAGE_SIZE - rc);
6402 		if (rc)
6403 			break;
6404 
6405 		flush_dcache_page(subpage);
6406 
6407 		cond_resched();
6408 	}
6409 	return ret_val;
6410 }
6411 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6412 
6413 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6414 
6415 static struct kmem_cache *page_ptl_cachep;
6416 
6417 void __init ptlock_cache_init(void)
6418 {
6419 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6420 			SLAB_PANIC, NULL);
6421 }
6422 
6423 bool ptlock_alloc(struct ptdesc *ptdesc)
6424 {
6425 	spinlock_t *ptl;
6426 
6427 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6428 	if (!ptl)
6429 		return false;
6430 	ptdesc->ptl = ptl;
6431 	return true;
6432 }
6433 
6434 void ptlock_free(struct ptdesc *ptdesc)
6435 {
6436 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6437 }
6438 #endif
6439