1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 void sync_mm_rss(struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (current->rss_stat.count[i]) { 134 add_mm_counter(mm, i, current->rss_stat.count[i]); 135 current->rss_stat.count[i] = 0; 136 } 137 } 138 current->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 sync_mm_rss(task->mm); 161 } 162 #else /* SPLIT_RSS_COUNTING */ 163 164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 166 167 static void check_sync_rss_stat(struct task_struct *task) 168 { 169 } 170 171 #endif /* SPLIT_RSS_COUNTING */ 172 173 #ifdef HAVE_GENERIC_MMU_GATHER 174 175 static int tlb_next_batch(struct mmu_gather *tlb) 176 { 177 struct mmu_gather_batch *batch; 178 179 batch = tlb->active; 180 if (batch->next) { 181 tlb->active = batch->next; 182 return 1; 183 } 184 185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 186 if (!batch) 187 return 0; 188 189 batch->next = NULL; 190 batch->nr = 0; 191 batch->max = MAX_GATHER_BATCH; 192 193 tlb->active->next = batch; 194 tlb->active = batch; 195 196 return 1; 197 } 198 199 /* tlb_gather_mmu 200 * Called to initialize an (on-stack) mmu_gather structure for page-table 201 * tear-down from @mm. The @fullmm argument is used when @mm is without 202 * users and we're going to destroy the full address space (exit/execve). 203 */ 204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 205 { 206 tlb->mm = mm; 207 208 tlb->fullmm = fullmm; 209 tlb->start = -1UL; 210 tlb->end = 0; 211 tlb->need_flush = 0; 212 tlb->fast_mode = (num_possible_cpus() == 1); 213 tlb->local.next = NULL; 214 tlb->local.nr = 0; 215 tlb->local.max = ARRAY_SIZE(tlb->__pages); 216 tlb->active = &tlb->local; 217 218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 219 tlb->batch = NULL; 220 #endif 221 } 222 223 void tlb_flush_mmu(struct mmu_gather *tlb) 224 { 225 struct mmu_gather_batch *batch; 226 227 if (!tlb->need_flush) 228 return; 229 tlb->need_flush = 0; 230 tlb_flush(tlb); 231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 232 tlb_table_flush(tlb); 233 #endif 234 235 if (tlb_fast_mode(tlb)) 236 return; 237 238 for (batch = &tlb->local; batch; batch = batch->next) { 239 free_pages_and_swap_cache(batch->pages, batch->nr); 240 batch->nr = 0; 241 } 242 tlb->active = &tlb->local; 243 } 244 245 /* tlb_finish_mmu 246 * Called at the end of the shootdown operation to free up any resources 247 * that were required. 248 */ 249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 250 { 251 struct mmu_gather_batch *batch, *next; 252 253 tlb->start = start; 254 tlb->end = end; 255 tlb_flush_mmu(tlb); 256 257 /* keep the page table cache within bounds */ 258 check_pgt_cache(); 259 260 for (batch = tlb->local.next; batch; batch = next) { 261 next = batch->next; 262 free_pages((unsigned long)batch, 0); 263 } 264 tlb->local.next = NULL; 265 } 266 267 /* __tlb_remove_page 268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 269 * handling the additional races in SMP caused by other CPUs caching valid 270 * mappings in their TLBs. Returns the number of free page slots left. 271 * When out of page slots we must call tlb_flush_mmu(). 272 */ 273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 274 { 275 struct mmu_gather_batch *batch; 276 277 VM_BUG_ON(!tlb->need_flush); 278 279 if (tlb_fast_mode(tlb)) { 280 free_page_and_swap_cache(page); 281 return 1; /* avoid calling tlb_flush_mmu() */ 282 } 283 284 batch = tlb->active; 285 batch->pages[batch->nr++] = page; 286 if (batch->nr == batch->max) { 287 if (!tlb_next_batch(tlb)) 288 return 0; 289 batch = tlb->active; 290 } 291 VM_BUG_ON(batch->nr > batch->max); 292 293 return batch->max - batch->nr; 294 } 295 296 #endif /* HAVE_GENERIC_MMU_GATHER */ 297 298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 299 300 /* 301 * See the comment near struct mmu_table_batch. 302 */ 303 304 static void tlb_remove_table_smp_sync(void *arg) 305 { 306 /* Simply deliver the interrupt */ 307 } 308 309 static void tlb_remove_table_one(void *table) 310 { 311 /* 312 * This isn't an RCU grace period and hence the page-tables cannot be 313 * assumed to be actually RCU-freed. 314 * 315 * It is however sufficient for software page-table walkers that rely on 316 * IRQ disabling. See the comment near struct mmu_table_batch. 317 */ 318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 319 __tlb_remove_table(table); 320 } 321 322 static void tlb_remove_table_rcu(struct rcu_head *head) 323 { 324 struct mmu_table_batch *batch; 325 int i; 326 327 batch = container_of(head, struct mmu_table_batch, rcu); 328 329 for (i = 0; i < batch->nr; i++) 330 __tlb_remove_table(batch->tables[i]); 331 332 free_page((unsigned long)batch); 333 } 334 335 void tlb_table_flush(struct mmu_gather *tlb) 336 { 337 struct mmu_table_batch **batch = &tlb->batch; 338 339 if (*batch) { 340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 341 *batch = NULL; 342 } 343 } 344 345 void tlb_remove_table(struct mmu_gather *tlb, void *table) 346 { 347 struct mmu_table_batch **batch = &tlb->batch; 348 349 tlb->need_flush = 1; 350 351 /* 352 * When there's less then two users of this mm there cannot be a 353 * concurrent page-table walk. 354 */ 355 if (atomic_read(&tlb->mm->mm_users) < 2) { 356 __tlb_remove_table(table); 357 return; 358 } 359 360 if (*batch == NULL) { 361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 362 if (*batch == NULL) { 363 tlb_remove_table_one(table); 364 return; 365 } 366 (*batch)->nr = 0; 367 } 368 (*batch)->tables[(*batch)->nr++] = table; 369 if ((*batch)->nr == MAX_TABLE_BATCH) 370 tlb_table_flush(tlb); 371 } 372 373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 374 375 /* 376 * If a p?d_bad entry is found while walking page tables, report 377 * the error, before resetting entry to p?d_none. Usually (but 378 * very seldom) called out from the p?d_none_or_clear_bad macros. 379 */ 380 381 void pgd_clear_bad(pgd_t *pgd) 382 { 383 pgd_ERROR(*pgd); 384 pgd_clear(pgd); 385 } 386 387 void pud_clear_bad(pud_t *pud) 388 { 389 pud_ERROR(*pud); 390 pud_clear(pud); 391 } 392 393 void pmd_clear_bad(pmd_t *pmd) 394 { 395 pmd_ERROR(*pmd); 396 pmd_clear(pmd); 397 } 398 399 /* 400 * Note: this doesn't free the actual pages themselves. That 401 * has been handled earlier when unmapping all the memory regions. 402 */ 403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 404 unsigned long addr) 405 { 406 pgtable_t token = pmd_pgtable(*pmd); 407 pmd_clear(pmd); 408 pte_free_tlb(tlb, token, addr); 409 tlb->mm->nr_ptes--; 410 } 411 412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 413 unsigned long addr, unsigned long end, 414 unsigned long floor, unsigned long ceiling) 415 { 416 pmd_t *pmd; 417 unsigned long next; 418 unsigned long start; 419 420 start = addr; 421 pmd = pmd_offset(pud, addr); 422 do { 423 next = pmd_addr_end(addr, end); 424 if (pmd_none_or_clear_bad(pmd)) 425 continue; 426 free_pte_range(tlb, pmd, addr); 427 } while (pmd++, addr = next, addr != end); 428 429 start &= PUD_MASK; 430 if (start < floor) 431 return; 432 if (ceiling) { 433 ceiling &= PUD_MASK; 434 if (!ceiling) 435 return; 436 } 437 if (end - 1 > ceiling - 1) 438 return; 439 440 pmd = pmd_offset(pud, start); 441 pud_clear(pud); 442 pmd_free_tlb(tlb, pmd, start); 443 } 444 445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 446 unsigned long addr, unsigned long end, 447 unsigned long floor, unsigned long ceiling) 448 { 449 pud_t *pud; 450 unsigned long next; 451 unsigned long start; 452 453 start = addr; 454 pud = pud_offset(pgd, addr); 455 do { 456 next = pud_addr_end(addr, end); 457 if (pud_none_or_clear_bad(pud)) 458 continue; 459 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 460 } while (pud++, addr = next, addr != end); 461 462 start &= PGDIR_MASK; 463 if (start < floor) 464 return; 465 if (ceiling) { 466 ceiling &= PGDIR_MASK; 467 if (!ceiling) 468 return; 469 } 470 if (end - 1 > ceiling - 1) 471 return; 472 473 pud = pud_offset(pgd, start); 474 pgd_clear(pgd); 475 pud_free_tlb(tlb, pud, start); 476 } 477 478 /* 479 * This function frees user-level page tables of a process. 480 * 481 * Must be called with pagetable lock held. 482 */ 483 void free_pgd_range(struct mmu_gather *tlb, 484 unsigned long addr, unsigned long end, 485 unsigned long floor, unsigned long ceiling) 486 { 487 pgd_t *pgd; 488 unsigned long next; 489 490 /* 491 * The next few lines have given us lots of grief... 492 * 493 * Why are we testing PMD* at this top level? Because often 494 * there will be no work to do at all, and we'd prefer not to 495 * go all the way down to the bottom just to discover that. 496 * 497 * Why all these "- 1"s? Because 0 represents both the bottom 498 * of the address space and the top of it (using -1 for the 499 * top wouldn't help much: the masks would do the wrong thing). 500 * The rule is that addr 0 and floor 0 refer to the bottom of 501 * the address space, but end 0 and ceiling 0 refer to the top 502 * Comparisons need to use "end - 1" and "ceiling - 1" (though 503 * that end 0 case should be mythical). 504 * 505 * Wherever addr is brought up or ceiling brought down, we must 506 * be careful to reject "the opposite 0" before it confuses the 507 * subsequent tests. But what about where end is brought down 508 * by PMD_SIZE below? no, end can't go down to 0 there. 509 * 510 * Whereas we round start (addr) and ceiling down, by different 511 * masks at different levels, in order to test whether a table 512 * now has no other vmas using it, so can be freed, we don't 513 * bother to round floor or end up - the tests don't need that. 514 */ 515 516 addr &= PMD_MASK; 517 if (addr < floor) { 518 addr += PMD_SIZE; 519 if (!addr) 520 return; 521 } 522 if (ceiling) { 523 ceiling &= PMD_MASK; 524 if (!ceiling) 525 return; 526 } 527 if (end - 1 > ceiling - 1) 528 end -= PMD_SIZE; 529 if (addr > end - 1) 530 return; 531 532 pgd = pgd_offset(tlb->mm, addr); 533 do { 534 next = pgd_addr_end(addr, end); 535 if (pgd_none_or_clear_bad(pgd)) 536 continue; 537 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 538 } while (pgd++, addr = next, addr != end); 539 } 540 541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 542 unsigned long floor, unsigned long ceiling) 543 { 544 while (vma) { 545 struct vm_area_struct *next = vma->vm_next; 546 unsigned long addr = vma->vm_start; 547 548 /* 549 * Hide vma from rmap and truncate_pagecache before freeing 550 * pgtables 551 */ 552 unlink_anon_vmas(vma); 553 unlink_file_vma(vma); 554 555 if (is_vm_hugetlb_page(vma)) { 556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 557 floor, next? next->vm_start: ceiling); 558 } else { 559 /* 560 * Optimization: gather nearby vmas into one call down 561 */ 562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 563 && !is_vm_hugetlb_page(next)) { 564 vma = next; 565 next = vma->vm_next; 566 unlink_anon_vmas(vma); 567 unlink_file_vma(vma); 568 } 569 free_pgd_range(tlb, addr, vma->vm_end, 570 floor, next? next->vm_start: ceiling); 571 } 572 vma = next; 573 } 574 } 575 576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 577 pmd_t *pmd, unsigned long address) 578 { 579 pgtable_t new = pte_alloc_one(mm, address); 580 int wait_split_huge_page; 581 if (!new) 582 return -ENOMEM; 583 584 /* 585 * Ensure all pte setup (eg. pte page lock and page clearing) are 586 * visible before the pte is made visible to other CPUs by being 587 * put into page tables. 588 * 589 * The other side of the story is the pointer chasing in the page 590 * table walking code (when walking the page table without locking; 591 * ie. most of the time). Fortunately, these data accesses consist 592 * of a chain of data-dependent loads, meaning most CPUs (alpha 593 * being the notable exception) will already guarantee loads are 594 * seen in-order. See the alpha page table accessors for the 595 * smp_read_barrier_depends() barriers in page table walking code. 596 */ 597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 598 599 spin_lock(&mm->page_table_lock); 600 wait_split_huge_page = 0; 601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 602 mm->nr_ptes++; 603 pmd_populate(mm, pmd, new); 604 new = NULL; 605 } else if (unlikely(pmd_trans_splitting(*pmd))) 606 wait_split_huge_page = 1; 607 spin_unlock(&mm->page_table_lock); 608 if (new) 609 pte_free(mm, new); 610 if (wait_split_huge_page) 611 wait_split_huge_page(vma->anon_vma, pmd); 612 return 0; 613 } 614 615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 616 { 617 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 618 if (!new) 619 return -ENOMEM; 620 621 smp_wmb(); /* See comment in __pte_alloc */ 622 623 spin_lock(&init_mm.page_table_lock); 624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 625 pmd_populate_kernel(&init_mm, pmd, new); 626 new = NULL; 627 } else 628 VM_BUG_ON(pmd_trans_splitting(*pmd)); 629 spin_unlock(&init_mm.page_table_lock); 630 if (new) 631 pte_free_kernel(&init_mm, new); 632 return 0; 633 } 634 635 static inline void init_rss_vec(int *rss) 636 { 637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 638 } 639 640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 641 { 642 int i; 643 644 if (current->mm == mm) 645 sync_mm_rss(mm); 646 for (i = 0; i < NR_MM_COUNTERS; i++) 647 if (rss[i]) 648 add_mm_counter(mm, i, rss[i]); 649 } 650 651 /* 652 * This function is called to print an error when a bad pte 653 * is found. For example, we might have a PFN-mapped pte in 654 * a region that doesn't allow it. 655 * 656 * The calling function must still handle the error. 657 */ 658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 659 pte_t pte, struct page *page) 660 { 661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 662 pud_t *pud = pud_offset(pgd, addr); 663 pmd_t *pmd = pmd_offset(pud, addr); 664 struct address_space *mapping; 665 pgoff_t index; 666 static unsigned long resume; 667 static unsigned long nr_shown; 668 static unsigned long nr_unshown; 669 670 /* 671 * Allow a burst of 60 reports, then keep quiet for that minute; 672 * or allow a steady drip of one report per second. 673 */ 674 if (nr_shown == 60) { 675 if (time_before(jiffies, resume)) { 676 nr_unshown++; 677 return; 678 } 679 if (nr_unshown) { 680 printk(KERN_ALERT 681 "BUG: Bad page map: %lu messages suppressed\n", 682 nr_unshown); 683 nr_unshown = 0; 684 } 685 nr_shown = 0; 686 } 687 if (nr_shown++ == 0) 688 resume = jiffies + 60 * HZ; 689 690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 691 index = linear_page_index(vma, addr); 692 693 printk(KERN_ALERT 694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 695 current->comm, 696 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 697 if (page) 698 dump_page(page); 699 printk(KERN_ALERT 700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 702 /* 703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 704 */ 705 if (vma->vm_ops) 706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 707 (unsigned long)vma->vm_ops->fault); 708 if (vma->vm_file && vma->vm_file->f_op) 709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 710 (unsigned long)vma->vm_file->f_op->mmap); 711 dump_stack(); 712 add_taint(TAINT_BAD_PAGE); 713 } 714 715 static inline int is_cow_mapping(vm_flags_t flags) 716 { 717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 718 } 719 720 #ifndef is_zero_pfn 721 static inline int is_zero_pfn(unsigned long pfn) 722 { 723 return pfn == zero_pfn; 724 } 725 #endif 726 727 #ifndef my_zero_pfn 728 static inline unsigned long my_zero_pfn(unsigned long addr) 729 { 730 return zero_pfn; 731 } 732 #endif 733 734 /* 735 * vm_normal_page -- This function gets the "struct page" associated with a pte. 736 * 737 * "Special" mappings do not wish to be associated with a "struct page" (either 738 * it doesn't exist, or it exists but they don't want to touch it). In this 739 * case, NULL is returned here. "Normal" mappings do have a struct page. 740 * 741 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 742 * pte bit, in which case this function is trivial. Secondly, an architecture 743 * may not have a spare pte bit, which requires a more complicated scheme, 744 * described below. 745 * 746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 747 * special mapping (even if there are underlying and valid "struct pages"). 748 * COWed pages of a VM_PFNMAP are always normal. 749 * 750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 753 * mapping will always honor the rule 754 * 755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 756 * 757 * And for normal mappings this is false. 758 * 759 * This restricts such mappings to be a linear translation from virtual address 760 * to pfn. To get around this restriction, we allow arbitrary mappings so long 761 * as the vma is not a COW mapping; in that case, we know that all ptes are 762 * special (because none can have been COWed). 763 * 764 * 765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 766 * 767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 768 * page" backing, however the difference is that _all_ pages with a struct 769 * page (that is, those where pfn_valid is true) are refcounted and considered 770 * normal pages by the VM. The disadvantage is that pages are refcounted 771 * (which can be slower and simply not an option for some PFNMAP users). The 772 * advantage is that we don't have to follow the strict linearity rule of 773 * PFNMAP mappings in order to support COWable mappings. 774 * 775 */ 776 #ifdef __HAVE_ARCH_PTE_SPECIAL 777 # define HAVE_PTE_SPECIAL 1 778 #else 779 # define HAVE_PTE_SPECIAL 0 780 #endif 781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 782 pte_t pte) 783 { 784 unsigned long pfn = pte_pfn(pte); 785 786 if (HAVE_PTE_SPECIAL) { 787 if (likely(!pte_special(pte))) 788 goto check_pfn; 789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 790 return NULL; 791 if (!is_zero_pfn(pfn)) 792 print_bad_pte(vma, addr, pte, NULL); 793 return NULL; 794 } 795 796 /* !HAVE_PTE_SPECIAL case follows: */ 797 798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 799 if (vma->vm_flags & VM_MIXEDMAP) { 800 if (!pfn_valid(pfn)) 801 return NULL; 802 goto out; 803 } else { 804 unsigned long off; 805 off = (addr - vma->vm_start) >> PAGE_SHIFT; 806 if (pfn == vma->vm_pgoff + off) 807 return NULL; 808 if (!is_cow_mapping(vma->vm_flags)) 809 return NULL; 810 } 811 } 812 813 if (is_zero_pfn(pfn)) 814 return NULL; 815 check_pfn: 816 if (unlikely(pfn > highest_memmap_pfn)) { 817 print_bad_pte(vma, addr, pte, NULL); 818 return NULL; 819 } 820 821 /* 822 * NOTE! We still have PageReserved() pages in the page tables. 823 * eg. VDSO mappings can cause them to exist. 824 */ 825 out: 826 return pfn_to_page(pfn); 827 } 828 829 /* 830 * copy one vm_area from one task to the other. Assumes the page tables 831 * already present in the new task to be cleared in the whole range 832 * covered by this vma. 833 */ 834 835 static inline unsigned long 836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 838 unsigned long addr, int *rss) 839 { 840 unsigned long vm_flags = vma->vm_flags; 841 pte_t pte = *src_pte; 842 struct page *page; 843 844 /* pte contains position in swap or file, so copy. */ 845 if (unlikely(!pte_present(pte))) { 846 if (!pte_file(pte)) { 847 swp_entry_t entry = pte_to_swp_entry(pte); 848 849 if (swap_duplicate(entry) < 0) 850 return entry.val; 851 852 /* make sure dst_mm is on swapoff's mmlist. */ 853 if (unlikely(list_empty(&dst_mm->mmlist))) { 854 spin_lock(&mmlist_lock); 855 if (list_empty(&dst_mm->mmlist)) 856 list_add(&dst_mm->mmlist, 857 &src_mm->mmlist); 858 spin_unlock(&mmlist_lock); 859 } 860 if (likely(!non_swap_entry(entry))) 861 rss[MM_SWAPENTS]++; 862 else if (is_migration_entry(entry)) { 863 page = migration_entry_to_page(entry); 864 865 if (PageAnon(page)) 866 rss[MM_ANONPAGES]++; 867 else 868 rss[MM_FILEPAGES]++; 869 870 if (is_write_migration_entry(entry) && 871 is_cow_mapping(vm_flags)) { 872 /* 873 * COW mappings require pages in both 874 * parent and child to be set to read. 875 */ 876 make_migration_entry_read(&entry); 877 pte = swp_entry_to_pte(entry); 878 set_pte_at(src_mm, addr, src_pte, pte); 879 } 880 } 881 } 882 goto out_set_pte; 883 } 884 885 /* 886 * If it's a COW mapping, write protect it both 887 * in the parent and the child 888 */ 889 if (is_cow_mapping(vm_flags)) { 890 ptep_set_wrprotect(src_mm, addr, src_pte); 891 pte = pte_wrprotect(pte); 892 } 893 894 /* 895 * If it's a shared mapping, mark it clean in 896 * the child 897 */ 898 if (vm_flags & VM_SHARED) 899 pte = pte_mkclean(pte); 900 pte = pte_mkold(pte); 901 902 page = vm_normal_page(vma, addr, pte); 903 if (page) { 904 get_page(page); 905 page_dup_rmap(page); 906 if (PageAnon(page)) 907 rss[MM_ANONPAGES]++; 908 else 909 rss[MM_FILEPAGES]++; 910 } 911 912 out_set_pte: 913 set_pte_at(dst_mm, addr, dst_pte, pte); 914 return 0; 915 } 916 917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 919 unsigned long addr, unsigned long end) 920 { 921 pte_t *orig_src_pte, *orig_dst_pte; 922 pte_t *src_pte, *dst_pte; 923 spinlock_t *src_ptl, *dst_ptl; 924 int progress = 0; 925 int rss[NR_MM_COUNTERS]; 926 swp_entry_t entry = (swp_entry_t){0}; 927 928 again: 929 init_rss_vec(rss); 930 931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 932 if (!dst_pte) 933 return -ENOMEM; 934 src_pte = pte_offset_map(src_pmd, addr); 935 src_ptl = pte_lockptr(src_mm, src_pmd); 936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 937 orig_src_pte = src_pte; 938 orig_dst_pte = dst_pte; 939 arch_enter_lazy_mmu_mode(); 940 941 do { 942 /* 943 * We are holding two locks at this point - either of them 944 * could generate latencies in another task on another CPU. 945 */ 946 if (progress >= 32) { 947 progress = 0; 948 if (need_resched() || 949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 950 break; 951 } 952 if (pte_none(*src_pte)) { 953 progress++; 954 continue; 955 } 956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 957 vma, addr, rss); 958 if (entry.val) 959 break; 960 progress += 8; 961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 962 963 arch_leave_lazy_mmu_mode(); 964 spin_unlock(src_ptl); 965 pte_unmap(orig_src_pte); 966 add_mm_rss_vec(dst_mm, rss); 967 pte_unmap_unlock(orig_dst_pte, dst_ptl); 968 cond_resched(); 969 970 if (entry.val) { 971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 972 return -ENOMEM; 973 progress = 0; 974 } 975 if (addr != end) 976 goto again; 977 return 0; 978 } 979 980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 982 unsigned long addr, unsigned long end) 983 { 984 pmd_t *src_pmd, *dst_pmd; 985 unsigned long next; 986 987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 988 if (!dst_pmd) 989 return -ENOMEM; 990 src_pmd = pmd_offset(src_pud, addr); 991 do { 992 next = pmd_addr_end(addr, end); 993 if (pmd_trans_huge(*src_pmd)) { 994 int err; 995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 996 err = copy_huge_pmd(dst_mm, src_mm, 997 dst_pmd, src_pmd, addr, vma); 998 if (err == -ENOMEM) 999 return -ENOMEM; 1000 if (!err) 1001 continue; 1002 /* fall through */ 1003 } 1004 if (pmd_none_or_clear_bad(src_pmd)) 1005 continue; 1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1007 vma, addr, next)) 1008 return -ENOMEM; 1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1010 return 0; 1011 } 1012 1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1015 unsigned long addr, unsigned long end) 1016 { 1017 pud_t *src_pud, *dst_pud; 1018 unsigned long next; 1019 1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1021 if (!dst_pud) 1022 return -ENOMEM; 1023 src_pud = pud_offset(src_pgd, addr); 1024 do { 1025 next = pud_addr_end(addr, end); 1026 if (pud_none_or_clear_bad(src_pud)) 1027 continue; 1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1029 vma, addr, next)) 1030 return -ENOMEM; 1031 } while (dst_pud++, src_pud++, addr = next, addr != end); 1032 return 0; 1033 } 1034 1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1036 struct vm_area_struct *vma) 1037 { 1038 pgd_t *src_pgd, *dst_pgd; 1039 unsigned long next; 1040 unsigned long addr = vma->vm_start; 1041 unsigned long end = vma->vm_end; 1042 int ret; 1043 1044 /* 1045 * Don't copy ptes where a page fault will fill them correctly. 1046 * Fork becomes much lighter when there are big shared or private 1047 * readonly mappings. The tradeoff is that copy_page_range is more 1048 * efficient than faulting. 1049 */ 1050 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 1051 if (!vma->anon_vma) 1052 return 0; 1053 } 1054 1055 if (is_vm_hugetlb_page(vma)) 1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1057 1058 if (unlikely(is_pfn_mapping(vma))) { 1059 /* 1060 * We do not free on error cases below as remove_vma 1061 * gets called on error from higher level routine 1062 */ 1063 ret = track_pfn_vma_copy(vma); 1064 if (ret) 1065 return ret; 1066 } 1067 1068 /* 1069 * We need to invalidate the secondary MMU mappings only when 1070 * there could be a permission downgrade on the ptes of the 1071 * parent mm. And a permission downgrade will only happen if 1072 * is_cow_mapping() returns true. 1073 */ 1074 if (is_cow_mapping(vma->vm_flags)) 1075 mmu_notifier_invalidate_range_start(src_mm, addr, end); 1076 1077 ret = 0; 1078 dst_pgd = pgd_offset(dst_mm, addr); 1079 src_pgd = pgd_offset(src_mm, addr); 1080 do { 1081 next = pgd_addr_end(addr, end); 1082 if (pgd_none_or_clear_bad(src_pgd)) 1083 continue; 1084 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1085 vma, addr, next))) { 1086 ret = -ENOMEM; 1087 break; 1088 } 1089 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1090 1091 if (is_cow_mapping(vma->vm_flags)) 1092 mmu_notifier_invalidate_range_end(src_mm, 1093 vma->vm_start, end); 1094 return ret; 1095 } 1096 1097 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1098 struct vm_area_struct *vma, pmd_t *pmd, 1099 unsigned long addr, unsigned long end, 1100 struct zap_details *details) 1101 { 1102 struct mm_struct *mm = tlb->mm; 1103 int force_flush = 0; 1104 int rss[NR_MM_COUNTERS]; 1105 spinlock_t *ptl; 1106 pte_t *start_pte; 1107 pte_t *pte; 1108 1109 again: 1110 init_rss_vec(rss); 1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1112 pte = start_pte; 1113 arch_enter_lazy_mmu_mode(); 1114 do { 1115 pte_t ptent = *pte; 1116 if (pte_none(ptent)) { 1117 continue; 1118 } 1119 1120 if (pte_present(ptent)) { 1121 struct page *page; 1122 1123 page = vm_normal_page(vma, addr, ptent); 1124 if (unlikely(details) && page) { 1125 /* 1126 * unmap_shared_mapping_pages() wants to 1127 * invalidate cache without truncating: 1128 * unmap shared but keep private pages. 1129 */ 1130 if (details->check_mapping && 1131 details->check_mapping != page->mapping) 1132 continue; 1133 /* 1134 * Each page->index must be checked when 1135 * invalidating or truncating nonlinear. 1136 */ 1137 if (details->nonlinear_vma && 1138 (page->index < details->first_index || 1139 page->index > details->last_index)) 1140 continue; 1141 } 1142 ptent = ptep_get_and_clear_full(mm, addr, pte, 1143 tlb->fullmm); 1144 tlb_remove_tlb_entry(tlb, pte, addr); 1145 if (unlikely(!page)) 1146 continue; 1147 if (unlikely(details) && details->nonlinear_vma 1148 && linear_page_index(details->nonlinear_vma, 1149 addr) != page->index) 1150 set_pte_at(mm, addr, pte, 1151 pgoff_to_pte(page->index)); 1152 if (PageAnon(page)) 1153 rss[MM_ANONPAGES]--; 1154 else { 1155 if (pte_dirty(ptent)) 1156 set_page_dirty(page); 1157 if (pte_young(ptent) && 1158 likely(!VM_SequentialReadHint(vma))) 1159 mark_page_accessed(page); 1160 rss[MM_FILEPAGES]--; 1161 } 1162 page_remove_rmap(page); 1163 if (unlikely(page_mapcount(page) < 0)) 1164 print_bad_pte(vma, addr, ptent, page); 1165 force_flush = !__tlb_remove_page(tlb, page); 1166 if (force_flush) 1167 break; 1168 continue; 1169 } 1170 /* 1171 * If details->check_mapping, we leave swap entries; 1172 * if details->nonlinear_vma, we leave file entries. 1173 */ 1174 if (unlikely(details)) 1175 continue; 1176 if (pte_file(ptent)) { 1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1178 print_bad_pte(vma, addr, ptent, NULL); 1179 } else { 1180 swp_entry_t entry = pte_to_swp_entry(ptent); 1181 1182 if (!non_swap_entry(entry)) 1183 rss[MM_SWAPENTS]--; 1184 else if (is_migration_entry(entry)) { 1185 struct page *page; 1186 1187 page = migration_entry_to_page(entry); 1188 1189 if (PageAnon(page)) 1190 rss[MM_ANONPAGES]--; 1191 else 1192 rss[MM_FILEPAGES]--; 1193 } 1194 if (unlikely(!free_swap_and_cache(entry))) 1195 print_bad_pte(vma, addr, ptent, NULL); 1196 } 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1198 } while (pte++, addr += PAGE_SIZE, addr != end); 1199 1200 add_mm_rss_vec(mm, rss); 1201 arch_leave_lazy_mmu_mode(); 1202 pte_unmap_unlock(start_pte, ptl); 1203 1204 /* 1205 * mmu_gather ran out of room to batch pages, we break out of 1206 * the PTE lock to avoid doing the potential expensive TLB invalidate 1207 * and page-free while holding it. 1208 */ 1209 if (force_flush) { 1210 force_flush = 0; 1211 1212 #ifdef HAVE_GENERIC_MMU_GATHER 1213 tlb->start = addr; 1214 tlb->end = end; 1215 #endif 1216 tlb_flush_mmu(tlb); 1217 if (addr != end) 1218 goto again; 1219 } 1220 1221 return addr; 1222 } 1223 1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1225 struct vm_area_struct *vma, pud_t *pud, 1226 unsigned long addr, unsigned long end, 1227 struct zap_details *details) 1228 { 1229 pmd_t *pmd; 1230 unsigned long next; 1231 1232 pmd = pmd_offset(pud, addr); 1233 do { 1234 next = pmd_addr_end(addr, end); 1235 if (pmd_trans_huge(*pmd)) { 1236 if (next - addr != HPAGE_PMD_SIZE) { 1237 #ifdef CONFIG_DEBUG_VM 1238 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1240 __func__, addr, end, 1241 vma->vm_start, 1242 vma->vm_end); 1243 BUG(); 1244 } 1245 #endif 1246 split_huge_page_pmd(vma->vm_mm, pmd); 1247 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1248 goto next; 1249 /* fall through */ 1250 } 1251 /* 1252 * Here there can be other concurrent MADV_DONTNEED or 1253 * trans huge page faults running, and if the pmd is 1254 * none or trans huge it can change under us. This is 1255 * because MADV_DONTNEED holds the mmap_sem in read 1256 * mode. 1257 */ 1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1259 goto next; 1260 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1261 next: 1262 cond_resched(); 1263 } while (pmd++, addr = next, addr != end); 1264 1265 return addr; 1266 } 1267 1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1269 struct vm_area_struct *vma, pgd_t *pgd, 1270 unsigned long addr, unsigned long end, 1271 struct zap_details *details) 1272 { 1273 pud_t *pud; 1274 unsigned long next; 1275 1276 pud = pud_offset(pgd, addr); 1277 do { 1278 next = pud_addr_end(addr, end); 1279 if (pud_none_or_clear_bad(pud)) 1280 continue; 1281 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1282 } while (pud++, addr = next, addr != end); 1283 1284 return addr; 1285 } 1286 1287 static void unmap_page_range(struct mmu_gather *tlb, 1288 struct vm_area_struct *vma, 1289 unsigned long addr, unsigned long end, 1290 struct zap_details *details) 1291 { 1292 pgd_t *pgd; 1293 unsigned long next; 1294 1295 if (details && !details->check_mapping && !details->nonlinear_vma) 1296 details = NULL; 1297 1298 BUG_ON(addr >= end); 1299 mem_cgroup_uncharge_start(); 1300 tlb_start_vma(tlb, vma); 1301 pgd = pgd_offset(vma->vm_mm, addr); 1302 do { 1303 next = pgd_addr_end(addr, end); 1304 if (pgd_none_or_clear_bad(pgd)) 1305 continue; 1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1307 } while (pgd++, addr = next, addr != end); 1308 tlb_end_vma(tlb, vma); 1309 mem_cgroup_uncharge_end(); 1310 } 1311 1312 1313 static void unmap_single_vma(struct mmu_gather *tlb, 1314 struct vm_area_struct *vma, unsigned long start_addr, 1315 unsigned long end_addr, 1316 struct zap_details *details) 1317 { 1318 unsigned long start = max(vma->vm_start, start_addr); 1319 unsigned long end; 1320 1321 if (start >= vma->vm_end) 1322 return; 1323 end = min(vma->vm_end, end_addr); 1324 if (end <= vma->vm_start) 1325 return; 1326 1327 if (vma->vm_file) 1328 uprobe_munmap(vma, start, end); 1329 1330 if (unlikely(is_pfn_mapping(vma))) 1331 untrack_pfn_vma(vma, 0, 0); 1332 1333 if (start != end) { 1334 if (unlikely(is_vm_hugetlb_page(vma))) { 1335 /* 1336 * It is undesirable to test vma->vm_file as it 1337 * should be non-null for valid hugetlb area. 1338 * However, vm_file will be NULL in the error 1339 * cleanup path of do_mmap_pgoff. When 1340 * hugetlbfs ->mmap method fails, 1341 * do_mmap_pgoff() nullifies vma->vm_file 1342 * before calling this function to clean up. 1343 * Since no pte has actually been setup, it is 1344 * safe to do nothing in this case. 1345 */ 1346 if (vma->vm_file) 1347 unmap_hugepage_range(vma, start, end, NULL); 1348 } else 1349 unmap_page_range(tlb, vma, start, end, details); 1350 } 1351 } 1352 1353 /** 1354 * unmap_vmas - unmap a range of memory covered by a list of vma's 1355 * @tlb: address of the caller's struct mmu_gather 1356 * @vma: the starting vma 1357 * @start_addr: virtual address at which to start unmapping 1358 * @end_addr: virtual address at which to end unmapping 1359 * 1360 * Unmap all pages in the vma list. 1361 * 1362 * Only addresses between `start' and `end' will be unmapped. 1363 * 1364 * The VMA list must be sorted in ascending virtual address order. 1365 * 1366 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1367 * range after unmap_vmas() returns. So the only responsibility here is to 1368 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1369 * drops the lock and schedules. 1370 */ 1371 void unmap_vmas(struct mmu_gather *tlb, 1372 struct vm_area_struct *vma, unsigned long start_addr, 1373 unsigned long end_addr) 1374 { 1375 struct mm_struct *mm = vma->vm_mm; 1376 1377 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1378 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1379 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1380 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1381 } 1382 1383 /** 1384 * zap_page_range - remove user pages in a given range 1385 * @vma: vm_area_struct holding the applicable pages 1386 * @start: starting address of pages to zap 1387 * @size: number of bytes to zap 1388 * @details: details of nonlinear truncation or shared cache invalidation 1389 * 1390 * Caller must protect the VMA list 1391 */ 1392 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1393 unsigned long size, struct zap_details *details) 1394 { 1395 struct mm_struct *mm = vma->vm_mm; 1396 struct mmu_gather tlb; 1397 unsigned long end = start + size; 1398 1399 lru_add_drain(); 1400 tlb_gather_mmu(&tlb, mm, 0); 1401 update_hiwater_rss(mm); 1402 mmu_notifier_invalidate_range_start(mm, start, end); 1403 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1404 unmap_single_vma(&tlb, vma, start, end, details); 1405 mmu_notifier_invalidate_range_end(mm, start, end); 1406 tlb_finish_mmu(&tlb, start, end); 1407 } 1408 1409 /** 1410 * zap_page_range_single - remove user pages in a given range 1411 * @vma: vm_area_struct holding the applicable pages 1412 * @address: starting address of pages to zap 1413 * @size: number of bytes to zap 1414 * @details: details of nonlinear truncation or shared cache invalidation 1415 * 1416 * The range must fit into one VMA. 1417 */ 1418 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1419 unsigned long size, struct zap_details *details) 1420 { 1421 struct mm_struct *mm = vma->vm_mm; 1422 struct mmu_gather tlb; 1423 unsigned long end = address + size; 1424 1425 lru_add_drain(); 1426 tlb_gather_mmu(&tlb, mm, 0); 1427 update_hiwater_rss(mm); 1428 mmu_notifier_invalidate_range_start(mm, address, end); 1429 unmap_single_vma(&tlb, vma, address, end, details); 1430 mmu_notifier_invalidate_range_end(mm, address, end); 1431 tlb_finish_mmu(&tlb, address, end); 1432 } 1433 1434 /** 1435 * zap_vma_ptes - remove ptes mapping the vma 1436 * @vma: vm_area_struct holding ptes to be zapped 1437 * @address: starting address of pages to zap 1438 * @size: number of bytes to zap 1439 * 1440 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1441 * 1442 * The entire address range must be fully contained within the vma. 1443 * 1444 * Returns 0 if successful. 1445 */ 1446 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1447 unsigned long size) 1448 { 1449 if (address < vma->vm_start || address + size > vma->vm_end || 1450 !(vma->vm_flags & VM_PFNMAP)) 1451 return -1; 1452 zap_page_range_single(vma, address, size, NULL); 1453 return 0; 1454 } 1455 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1456 1457 /** 1458 * follow_page - look up a page descriptor from a user-virtual address 1459 * @vma: vm_area_struct mapping @address 1460 * @address: virtual address to look up 1461 * @flags: flags modifying lookup behaviour 1462 * 1463 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1464 * 1465 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1466 * an error pointer if there is a mapping to something not represented 1467 * by a page descriptor (see also vm_normal_page()). 1468 */ 1469 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1470 unsigned int flags) 1471 { 1472 pgd_t *pgd; 1473 pud_t *pud; 1474 pmd_t *pmd; 1475 pte_t *ptep, pte; 1476 spinlock_t *ptl; 1477 struct page *page; 1478 struct mm_struct *mm = vma->vm_mm; 1479 1480 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1481 if (!IS_ERR(page)) { 1482 BUG_ON(flags & FOLL_GET); 1483 goto out; 1484 } 1485 1486 page = NULL; 1487 pgd = pgd_offset(mm, address); 1488 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1489 goto no_page_table; 1490 1491 pud = pud_offset(pgd, address); 1492 if (pud_none(*pud)) 1493 goto no_page_table; 1494 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1495 BUG_ON(flags & FOLL_GET); 1496 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1497 goto out; 1498 } 1499 if (unlikely(pud_bad(*pud))) 1500 goto no_page_table; 1501 1502 pmd = pmd_offset(pud, address); 1503 if (pmd_none(*pmd)) 1504 goto no_page_table; 1505 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1506 BUG_ON(flags & FOLL_GET); 1507 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1508 goto out; 1509 } 1510 if (pmd_trans_huge(*pmd)) { 1511 if (flags & FOLL_SPLIT) { 1512 split_huge_page_pmd(mm, pmd); 1513 goto split_fallthrough; 1514 } 1515 spin_lock(&mm->page_table_lock); 1516 if (likely(pmd_trans_huge(*pmd))) { 1517 if (unlikely(pmd_trans_splitting(*pmd))) { 1518 spin_unlock(&mm->page_table_lock); 1519 wait_split_huge_page(vma->anon_vma, pmd); 1520 } else { 1521 page = follow_trans_huge_pmd(mm, address, 1522 pmd, flags); 1523 spin_unlock(&mm->page_table_lock); 1524 goto out; 1525 } 1526 } else 1527 spin_unlock(&mm->page_table_lock); 1528 /* fall through */ 1529 } 1530 split_fallthrough: 1531 if (unlikely(pmd_bad(*pmd))) 1532 goto no_page_table; 1533 1534 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1535 1536 pte = *ptep; 1537 if (!pte_present(pte)) 1538 goto no_page; 1539 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1540 goto unlock; 1541 1542 page = vm_normal_page(vma, address, pte); 1543 if (unlikely(!page)) { 1544 if ((flags & FOLL_DUMP) || 1545 !is_zero_pfn(pte_pfn(pte))) 1546 goto bad_page; 1547 page = pte_page(pte); 1548 } 1549 1550 if (flags & FOLL_GET) 1551 get_page_foll(page); 1552 if (flags & FOLL_TOUCH) { 1553 if ((flags & FOLL_WRITE) && 1554 !pte_dirty(pte) && !PageDirty(page)) 1555 set_page_dirty(page); 1556 /* 1557 * pte_mkyoung() would be more correct here, but atomic care 1558 * is needed to avoid losing the dirty bit: it is easier to use 1559 * mark_page_accessed(). 1560 */ 1561 mark_page_accessed(page); 1562 } 1563 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1564 /* 1565 * The preliminary mapping check is mainly to avoid the 1566 * pointless overhead of lock_page on the ZERO_PAGE 1567 * which might bounce very badly if there is contention. 1568 * 1569 * If the page is already locked, we don't need to 1570 * handle it now - vmscan will handle it later if and 1571 * when it attempts to reclaim the page. 1572 */ 1573 if (page->mapping && trylock_page(page)) { 1574 lru_add_drain(); /* push cached pages to LRU */ 1575 /* 1576 * Because we lock page here and migration is 1577 * blocked by the pte's page reference, we need 1578 * only check for file-cache page truncation. 1579 */ 1580 if (page->mapping) 1581 mlock_vma_page(page); 1582 unlock_page(page); 1583 } 1584 } 1585 unlock: 1586 pte_unmap_unlock(ptep, ptl); 1587 out: 1588 return page; 1589 1590 bad_page: 1591 pte_unmap_unlock(ptep, ptl); 1592 return ERR_PTR(-EFAULT); 1593 1594 no_page: 1595 pte_unmap_unlock(ptep, ptl); 1596 if (!pte_none(pte)) 1597 return page; 1598 1599 no_page_table: 1600 /* 1601 * When core dumping an enormous anonymous area that nobody 1602 * has touched so far, we don't want to allocate unnecessary pages or 1603 * page tables. Return error instead of NULL to skip handle_mm_fault, 1604 * then get_dump_page() will return NULL to leave a hole in the dump. 1605 * But we can only make this optimization where a hole would surely 1606 * be zero-filled if handle_mm_fault() actually did handle it. 1607 */ 1608 if ((flags & FOLL_DUMP) && 1609 (!vma->vm_ops || !vma->vm_ops->fault)) 1610 return ERR_PTR(-EFAULT); 1611 return page; 1612 } 1613 1614 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1615 { 1616 return stack_guard_page_start(vma, addr) || 1617 stack_guard_page_end(vma, addr+PAGE_SIZE); 1618 } 1619 1620 /** 1621 * __get_user_pages() - pin user pages in memory 1622 * @tsk: task_struct of target task 1623 * @mm: mm_struct of target mm 1624 * @start: starting user address 1625 * @nr_pages: number of pages from start to pin 1626 * @gup_flags: flags modifying pin behaviour 1627 * @pages: array that receives pointers to the pages pinned. 1628 * Should be at least nr_pages long. Or NULL, if caller 1629 * only intends to ensure the pages are faulted in. 1630 * @vmas: array of pointers to vmas corresponding to each page. 1631 * Or NULL if the caller does not require them. 1632 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1633 * 1634 * Returns number of pages pinned. This may be fewer than the number 1635 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1636 * were pinned, returns -errno. Each page returned must be released 1637 * with a put_page() call when it is finished with. vmas will only 1638 * remain valid while mmap_sem is held. 1639 * 1640 * Must be called with mmap_sem held for read or write. 1641 * 1642 * __get_user_pages walks a process's page tables and takes a reference to 1643 * each struct page that each user address corresponds to at a given 1644 * instant. That is, it takes the page that would be accessed if a user 1645 * thread accesses the given user virtual address at that instant. 1646 * 1647 * This does not guarantee that the page exists in the user mappings when 1648 * __get_user_pages returns, and there may even be a completely different 1649 * page there in some cases (eg. if mmapped pagecache has been invalidated 1650 * and subsequently re faulted). However it does guarantee that the page 1651 * won't be freed completely. And mostly callers simply care that the page 1652 * contains data that was valid *at some point in time*. Typically, an IO 1653 * or similar operation cannot guarantee anything stronger anyway because 1654 * locks can't be held over the syscall boundary. 1655 * 1656 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1657 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1658 * appropriate) must be called after the page is finished with, and 1659 * before put_page is called. 1660 * 1661 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1662 * or mmap_sem contention, and if waiting is needed to pin all pages, 1663 * *@nonblocking will be set to 0. 1664 * 1665 * In most cases, get_user_pages or get_user_pages_fast should be used 1666 * instead of __get_user_pages. __get_user_pages should be used only if 1667 * you need some special @gup_flags. 1668 */ 1669 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1670 unsigned long start, int nr_pages, unsigned int gup_flags, 1671 struct page **pages, struct vm_area_struct **vmas, 1672 int *nonblocking) 1673 { 1674 int i; 1675 unsigned long vm_flags; 1676 1677 if (nr_pages <= 0) 1678 return 0; 1679 1680 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1681 1682 /* 1683 * Require read or write permissions. 1684 * If FOLL_FORCE is set, we only require the "MAY" flags. 1685 */ 1686 vm_flags = (gup_flags & FOLL_WRITE) ? 1687 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1688 vm_flags &= (gup_flags & FOLL_FORCE) ? 1689 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1690 i = 0; 1691 1692 do { 1693 struct vm_area_struct *vma; 1694 1695 vma = find_extend_vma(mm, start); 1696 if (!vma && in_gate_area(mm, start)) { 1697 unsigned long pg = start & PAGE_MASK; 1698 pgd_t *pgd; 1699 pud_t *pud; 1700 pmd_t *pmd; 1701 pte_t *pte; 1702 1703 /* user gate pages are read-only */ 1704 if (gup_flags & FOLL_WRITE) 1705 return i ? : -EFAULT; 1706 if (pg > TASK_SIZE) 1707 pgd = pgd_offset_k(pg); 1708 else 1709 pgd = pgd_offset_gate(mm, pg); 1710 BUG_ON(pgd_none(*pgd)); 1711 pud = pud_offset(pgd, pg); 1712 BUG_ON(pud_none(*pud)); 1713 pmd = pmd_offset(pud, pg); 1714 if (pmd_none(*pmd)) 1715 return i ? : -EFAULT; 1716 VM_BUG_ON(pmd_trans_huge(*pmd)); 1717 pte = pte_offset_map(pmd, pg); 1718 if (pte_none(*pte)) { 1719 pte_unmap(pte); 1720 return i ? : -EFAULT; 1721 } 1722 vma = get_gate_vma(mm); 1723 if (pages) { 1724 struct page *page; 1725 1726 page = vm_normal_page(vma, start, *pte); 1727 if (!page) { 1728 if (!(gup_flags & FOLL_DUMP) && 1729 is_zero_pfn(pte_pfn(*pte))) 1730 page = pte_page(*pte); 1731 else { 1732 pte_unmap(pte); 1733 return i ? : -EFAULT; 1734 } 1735 } 1736 pages[i] = page; 1737 get_page(page); 1738 } 1739 pte_unmap(pte); 1740 goto next_page; 1741 } 1742 1743 if (!vma || 1744 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1745 !(vm_flags & vma->vm_flags)) 1746 return i ? : -EFAULT; 1747 1748 if (is_vm_hugetlb_page(vma)) { 1749 i = follow_hugetlb_page(mm, vma, pages, vmas, 1750 &start, &nr_pages, i, gup_flags); 1751 continue; 1752 } 1753 1754 do { 1755 struct page *page; 1756 unsigned int foll_flags = gup_flags; 1757 1758 /* 1759 * If we have a pending SIGKILL, don't keep faulting 1760 * pages and potentially allocating memory. 1761 */ 1762 if (unlikely(fatal_signal_pending(current))) 1763 return i ? i : -ERESTARTSYS; 1764 1765 cond_resched(); 1766 while (!(page = follow_page(vma, start, foll_flags))) { 1767 int ret; 1768 unsigned int fault_flags = 0; 1769 1770 /* For mlock, just skip the stack guard page. */ 1771 if (foll_flags & FOLL_MLOCK) { 1772 if (stack_guard_page(vma, start)) 1773 goto next_page; 1774 } 1775 if (foll_flags & FOLL_WRITE) 1776 fault_flags |= FAULT_FLAG_WRITE; 1777 if (nonblocking) 1778 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1779 if (foll_flags & FOLL_NOWAIT) 1780 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1781 1782 ret = handle_mm_fault(mm, vma, start, 1783 fault_flags); 1784 1785 if (ret & VM_FAULT_ERROR) { 1786 if (ret & VM_FAULT_OOM) 1787 return i ? i : -ENOMEM; 1788 if (ret & (VM_FAULT_HWPOISON | 1789 VM_FAULT_HWPOISON_LARGE)) { 1790 if (i) 1791 return i; 1792 else if (gup_flags & FOLL_HWPOISON) 1793 return -EHWPOISON; 1794 else 1795 return -EFAULT; 1796 } 1797 if (ret & VM_FAULT_SIGBUS) 1798 return i ? i : -EFAULT; 1799 BUG(); 1800 } 1801 1802 if (tsk) { 1803 if (ret & VM_FAULT_MAJOR) 1804 tsk->maj_flt++; 1805 else 1806 tsk->min_flt++; 1807 } 1808 1809 if (ret & VM_FAULT_RETRY) { 1810 if (nonblocking) 1811 *nonblocking = 0; 1812 return i; 1813 } 1814 1815 /* 1816 * The VM_FAULT_WRITE bit tells us that 1817 * do_wp_page has broken COW when necessary, 1818 * even if maybe_mkwrite decided not to set 1819 * pte_write. We can thus safely do subsequent 1820 * page lookups as if they were reads. But only 1821 * do so when looping for pte_write is futile: 1822 * in some cases userspace may also be wanting 1823 * to write to the gotten user page, which a 1824 * read fault here might prevent (a readonly 1825 * page might get reCOWed by userspace write). 1826 */ 1827 if ((ret & VM_FAULT_WRITE) && 1828 !(vma->vm_flags & VM_WRITE)) 1829 foll_flags &= ~FOLL_WRITE; 1830 1831 cond_resched(); 1832 } 1833 if (IS_ERR(page)) 1834 return i ? i : PTR_ERR(page); 1835 if (pages) { 1836 pages[i] = page; 1837 1838 flush_anon_page(vma, page, start); 1839 flush_dcache_page(page); 1840 } 1841 next_page: 1842 if (vmas) 1843 vmas[i] = vma; 1844 i++; 1845 start += PAGE_SIZE; 1846 nr_pages--; 1847 } while (nr_pages && start < vma->vm_end); 1848 } while (nr_pages); 1849 return i; 1850 } 1851 EXPORT_SYMBOL(__get_user_pages); 1852 1853 /* 1854 * fixup_user_fault() - manually resolve a user page fault 1855 * @tsk: the task_struct to use for page fault accounting, or 1856 * NULL if faults are not to be recorded. 1857 * @mm: mm_struct of target mm 1858 * @address: user address 1859 * @fault_flags:flags to pass down to handle_mm_fault() 1860 * 1861 * This is meant to be called in the specific scenario where for locking reasons 1862 * we try to access user memory in atomic context (within a pagefault_disable() 1863 * section), this returns -EFAULT, and we want to resolve the user fault before 1864 * trying again. 1865 * 1866 * Typically this is meant to be used by the futex code. 1867 * 1868 * The main difference with get_user_pages() is that this function will 1869 * unconditionally call handle_mm_fault() which will in turn perform all the 1870 * necessary SW fixup of the dirty and young bits in the PTE, while 1871 * handle_mm_fault() only guarantees to update these in the struct page. 1872 * 1873 * This is important for some architectures where those bits also gate the 1874 * access permission to the page because they are maintained in software. On 1875 * such architectures, gup() will not be enough to make a subsequent access 1876 * succeed. 1877 * 1878 * This should be called with the mm_sem held for read. 1879 */ 1880 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1881 unsigned long address, unsigned int fault_flags) 1882 { 1883 struct vm_area_struct *vma; 1884 int ret; 1885 1886 vma = find_extend_vma(mm, address); 1887 if (!vma || address < vma->vm_start) 1888 return -EFAULT; 1889 1890 ret = handle_mm_fault(mm, vma, address, fault_flags); 1891 if (ret & VM_FAULT_ERROR) { 1892 if (ret & VM_FAULT_OOM) 1893 return -ENOMEM; 1894 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1895 return -EHWPOISON; 1896 if (ret & VM_FAULT_SIGBUS) 1897 return -EFAULT; 1898 BUG(); 1899 } 1900 if (tsk) { 1901 if (ret & VM_FAULT_MAJOR) 1902 tsk->maj_flt++; 1903 else 1904 tsk->min_flt++; 1905 } 1906 return 0; 1907 } 1908 1909 /* 1910 * get_user_pages() - pin user pages in memory 1911 * @tsk: the task_struct to use for page fault accounting, or 1912 * NULL if faults are not to be recorded. 1913 * @mm: mm_struct of target mm 1914 * @start: starting user address 1915 * @nr_pages: number of pages from start to pin 1916 * @write: whether pages will be written to by the caller 1917 * @force: whether to force write access even if user mapping is 1918 * readonly. This will result in the page being COWed even 1919 * in MAP_SHARED mappings. You do not want this. 1920 * @pages: array that receives pointers to the pages pinned. 1921 * Should be at least nr_pages long. Or NULL, if caller 1922 * only intends to ensure the pages are faulted in. 1923 * @vmas: array of pointers to vmas corresponding to each page. 1924 * Or NULL if the caller does not require them. 1925 * 1926 * Returns number of pages pinned. This may be fewer than the number 1927 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1928 * were pinned, returns -errno. Each page returned must be released 1929 * with a put_page() call when it is finished with. vmas will only 1930 * remain valid while mmap_sem is held. 1931 * 1932 * Must be called with mmap_sem held for read or write. 1933 * 1934 * get_user_pages walks a process's page tables and takes a reference to 1935 * each struct page that each user address corresponds to at a given 1936 * instant. That is, it takes the page that would be accessed if a user 1937 * thread accesses the given user virtual address at that instant. 1938 * 1939 * This does not guarantee that the page exists in the user mappings when 1940 * get_user_pages returns, and there may even be a completely different 1941 * page there in some cases (eg. if mmapped pagecache has been invalidated 1942 * and subsequently re faulted). However it does guarantee that the page 1943 * won't be freed completely. And mostly callers simply care that the page 1944 * contains data that was valid *at some point in time*. Typically, an IO 1945 * or similar operation cannot guarantee anything stronger anyway because 1946 * locks can't be held over the syscall boundary. 1947 * 1948 * If write=0, the page must not be written to. If the page is written to, 1949 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1950 * after the page is finished with, and before put_page is called. 1951 * 1952 * get_user_pages is typically used for fewer-copy IO operations, to get a 1953 * handle on the memory by some means other than accesses via the user virtual 1954 * addresses. The pages may be submitted for DMA to devices or accessed via 1955 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1956 * use the correct cache flushing APIs. 1957 * 1958 * See also get_user_pages_fast, for performance critical applications. 1959 */ 1960 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1961 unsigned long start, int nr_pages, int write, int force, 1962 struct page **pages, struct vm_area_struct **vmas) 1963 { 1964 int flags = FOLL_TOUCH; 1965 1966 if (pages) 1967 flags |= FOLL_GET; 1968 if (write) 1969 flags |= FOLL_WRITE; 1970 if (force) 1971 flags |= FOLL_FORCE; 1972 1973 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1974 NULL); 1975 } 1976 EXPORT_SYMBOL(get_user_pages); 1977 1978 /** 1979 * get_dump_page() - pin user page in memory while writing it to core dump 1980 * @addr: user address 1981 * 1982 * Returns struct page pointer of user page pinned for dump, 1983 * to be freed afterwards by page_cache_release() or put_page(). 1984 * 1985 * Returns NULL on any kind of failure - a hole must then be inserted into 1986 * the corefile, to preserve alignment with its headers; and also returns 1987 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1988 * allowing a hole to be left in the corefile to save diskspace. 1989 * 1990 * Called without mmap_sem, but after all other threads have been killed. 1991 */ 1992 #ifdef CONFIG_ELF_CORE 1993 struct page *get_dump_page(unsigned long addr) 1994 { 1995 struct vm_area_struct *vma; 1996 struct page *page; 1997 1998 if (__get_user_pages(current, current->mm, addr, 1, 1999 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2000 NULL) < 1) 2001 return NULL; 2002 flush_cache_page(vma, addr, page_to_pfn(page)); 2003 return page; 2004 } 2005 #endif /* CONFIG_ELF_CORE */ 2006 2007 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2008 spinlock_t **ptl) 2009 { 2010 pgd_t * pgd = pgd_offset(mm, addr); 2011 pud_t * pud = pud_alloc(mm, pgd, addr); 2012 if (pud) { 2013 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2014 if (pmd) { 2015 VM_BUG_ON(pmd_trans_huge(*pmd)); 2016 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2017 } 2018 } 2019 return NULL; 2020 } 2021 2022 /* 2023 * This is the old fallback for page remapping. 2024 * 2025 * For historical reasons, it only allows reserved pages. Only 2026 * old drivers should use this, and they needed to mark their 2027 * pages reserved for the old functions anyway. 2028 */ 2029 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2030 struct page *page, pgprot_t prot) 2031 { 2032 struct mm_struct *mm = vma->vm_mm; 2033 int retval; 2034 pte_t *pte; 2035 spinlock_t *ptl; 2036 2037 retval = -EINVAL; 2038 if (PageAnon(page)) 2039 goto out; 2040 retval = -ENOMEM; 2041 flush_dcache_page(page); 2042 pte = get_locked_pte(mm, addr, &ptl); 2043 if (!pte) 2044 goto out; 2045 retval = -EBUSY; 2046 if (!pte_none(*pte)) 2047 goto out_unlock; 2048 2049 /* Ok, finally just insert the thing.. */ 2050 get_page(page); 2051 inc_mm_counter_fast(mm, MM_FILEPAGES); 2052 page_add_file_rmap(page); 2053 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2054 2055 retval = 0; 2056 pte_unmap_unlock(pte, ptl); 2057 return retval; 2058 out_unlock: 2059 pte_unmap_unlock(pte, ptl); 2060 out: 2061 return retval; 2062 } 2063 2064 /** 2065 * vm_insert_page - insert single page into user vma 2066 * @vma: user vma to map to 2067 * @addr: target user address of this page 2068 * @page: source kernel page 2069 * 2070 * This allows drivers to insert individual pages they've allocated 2071 * into a user vma. 2072 * 2073 * The page has to be a nice clean _individual_ kernel allocation. 2074 * If you allocate a compound page, you need to have marked it as 2075 * such (__GFP_COMP), or manually just split the page up yourself 2076 * (see split_page()). 2077 * 2078 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2079 * took an arbitrary page protection parameter. This doesn't allow 2080 * that. Your vma protection will have to be set up correctly, which 2081 * means that if you want a shared writable mapping, you'd better 2082 * ask for a shared writable mapping! 2083 * 2084 * The page does not need to be reserved. 2085 */ 2086 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2087 struct page *page) 2088 { 2089 if (addr < vma->vm_start || addr >= vma->vm_end) 2090 return -EFAULT; 2091 if (!page_count(page)) 2092 return -EINVAL; 2093 vma->vm_flags |= VM_INSERTPAGE; 2094 return insert_page(vma, addr, page, vma->vm_page_prot); 2095 } 2096 EXPORT_SYMBOL(vm_insert_page); 2097 2098 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2099 unsigned long pfn, pgprot_t prot) 2100 { 2101 struct mm_struct *mm = vma->vm_mm; 2102 int retval; 2103 pte_t *pte, entry; 2104 spinlock_t *ptl; 2105 2106 retval = -ENOMEM; 2107 pte = get_locked_pte(mm, addr, &ptl); 2108 if (!pte) 2109 goto out; 2110 retval = -EBUSY; 2111 if (!pte_none(*pte)) 2112 goto out_unlock; 2113 2114 /* Ok, finally just insert the thing.. */ 2115 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2116 set_pte_at(mm, addr, pte, entry); 2117 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2118 2119 retval = 0; 2120 out_unlock: 2121 pte_unmap_unlock(pte, ptl); 2122 out: 2123 return retval; 2124 } 2125 2126 /** 2127 * vm_insert_pfn - insert single pfn into user vma 2128 * @vma: user vma to map to 2129 * @addr: target user address of this page 2130 * @pfn: source kernel pfn 2131 * 2132 * Similar to vm_inert_page, this allows drivers to insert individual pages 2133 * they've allocated into a user vma. Same comments apply. 2134 * 2135 * This function should only be called from a vm_ops->fault handler, and 2136 * in that case the handler should return NULL. 2137 * 2138 * vma cannot be a COW mapping. 2139 * 2140 * As this is called only for pages that do not currently exist, we 2141 * do not need to flush old virtual caches or the TLB. 2142 */ 2143 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2144 unsigned long pfn) 2145 { 2146 int ret; 2147 pgprot_t pgprot = vma->vm_page_prot; 2148 /* 2149 * Technically, architectures with pte_special can avoid all these 2150 * restrictions (same for remap_pfn_range). However we would like 2151 * consistency in testing and feature parity among all, so we should 2152 * try to keep these invariants in place for everybody. 2153 */ 2154 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2155 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2156 (VM_PFNMAP|VM_MIXEDMAP)); 2157 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2158 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2159 2160 if (addr < vma->vm_start || addr >= vma->vm_end) 2161 return -EFAULT; 2162 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 2163 return -EINVAL; 2164 2165 ret = insert_pfn(vma, addr, pfn, pgprot); 2166 2167 if (ret) 2168 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 2169 2170 return ret; 2171 } 2172 EXPORT_SYMBOL(vm_insert_pfn); 2173 2174 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2175 unsigned long pfn) 2176 { 2177 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2178 2179 if (addr < vma->vm_start || addr >= vma->vm_end) 2180 return -EFAULT; 2181 2182 /* 2183 * If we don't have pte special, then we have to use the pfn_valid() 2184 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2185 * refcount the page if pfn_valid is true (hence insert_page rather 2186 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2187 * without pte special, it would there be refcounted as a normal page. 2188 */ 2189 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2190 struct page *page; 2191 2192 page = pfn_to_page(pfn); 2193 return insert_page(vma, addr, page, vma->vm_page_prot); 2194 } 2195 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2196 } 2197 EXPORT_SYMBOL(vm_insert_mixed); 2198 2199 /* 2200 * maps a range of physical memory into the requested pages. the old 2201 * mappings are removed. any references to nonexistent pages results 2202 * in null mappings (currently treated as "copy-on-access") 2203 */ 2204 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2205 unsigned long addr, unsigned long end, 2206 unsigned long pfn, pgprot_t prot) 2207 { 2208 pte_t *pte; 2209 spinlock_t *ptl; 2210 2211 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2212 if (!pte) 2213 return -ENOMEM; 2214 arch_enter_lazy_mmu_mode(); 2215 do { 2216 BUG_ON(!pte_none(*pte)); 2217 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2218 pfn++; 2219 } while (pte++, addr += PAGE_SIZE, addr != end); 2220 arch_leave_lazy_mmu_mode(); 2221 pte_unmap_unlock(pte - 1, ptl); 2222 return 0; 2223 } 2224 2225 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2226 unsigned long addr, unsigned long end, 2227 unsigned long pfn, pgprot_t prot) 2228 { 2229 pmd_t *pmd; 2230 unsigned long next; 2231 2232 pfn -= addr >> PAGE_SHIFT; 2233 pmd = pmd_alloc(mm, pud, addr); 2234 if (!pmd) 2235 return -ENOMEM; 2236 VM_BUG_ON(pmd_trans_huge(*pmd)); 2237 do { 2238 next = pmd_addr_end(addr, end); 2239 if (remap_pte_range(mm, pmd, addr, next, 2240 pfn + (addr >> PAGE_SHIFT), prot)) 2241 return -ENOMEM; 2242 } while (pmd++, addr = next, addr != end); 2243 return 0; 2244 } 2245 2246 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2247 unsigned long addr, unsigned long end, 2248 unsigned long pfn, pgprot_t prot) 2249 { 2250 pud_t *pud; 2251 unsigned long next; 2252 2253 pfn -= addr >> PAGE_SHIFT; 2254 pud = pud_alloc(mm, pgd, addr); 2255 if (!pud) 2256 return -ENOMEM; 2257 do { 2258 next = pud_addr_end(addr, end); 2259 if (remap_pmd_range(mm, pud, addr, next, 2260 pfn + (addr >> PAGE_SHIFT), prot)) 2261 return -ENOMEM; 2262 } while (pud++, addr = next, addr != end); 2263 return 0; 2264 } 2265 2266 /** 2267 * remap_pfn_range - remap kernel memory to userspace 2268 * @vma: user vma to map to 2269 * @addr: target user address to start at 2270 * @pfn: physical address of kernel memory 2271 * @size: size of map area 2272 * @prot: page protection flags for this mapping 2273 * 2274 * Note: this is only safe if the mm semaphore is held when called. 2275 */ 2276 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2277 unsigned long pfn, unsigned long size, pgprot_t prot) 2278 { 2279 pgd_t *pgd; 2280 unsigned long next; 2281 unsigned long end = addr + PAGE_ALIGN(size); 2282 struct mm_struct *mm = vma->vm_mm; 2283 int err; 2284 2285 /* 2286 * Physically remapped pages are special. Tell the 2287 * rest of the world about it: 2288 * VM_IO tells people not to look at these pages 2289 * (accesses can have side effects). 2290 * VM_RESERVED is specified all over the place, because 2291 * in 2.4 it kept swapout's vma scan off this vma; but 2292 * in 2.6 the LRU scan won't even find its pages, so this 2293 * flag means no more than count its pages in reserved_vm, 2294 * and omit it from core dump, even when VM_IO turned off. 2295 * VM_PFNMAP tells the core MM that the base pages are just 2296 * raw PFN mappings, and do not have a "struct page" associated 2297 * with them. 2298 * 2299 * There's a horrible special case to handle copy-on-write 2300 * behaviour that some programs depend on. We mark the "original" 2301 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2302 */ 2303 if (addr == vma->vm_start && end == vma->vm_end) { 2304 vma->vm_pgoff = pfn; 2305 vma->vm_flags |= VM_PFN_AT_MMAP; 2306 } else if (is_cow_mapping(vma->vm_flags)) 2307 return -EINVAL; 2308 2309 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2310 2311 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2312 if (err) { 2313 /* 2314 * To indicate that track_pfn related cleanup is not 2315 * needed from higher level routine calling unmap_vmas 2316 */ 2317 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2318 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2319 return -EINVAL; 2320 } 2321 2322 BUG_ON(addr >= end); 2323 pfn -= addr >> PAGE_SHIFT; 2324 pgd = pgd_offset(mm, addr); 2325 flush_cache_range(vma, addr, end); 2326 do { 2327 next = pgd_addr_end(addr, end); 2328 err = remap_pud_range(mm, pgd, addr, next, 2329 pfn + (addr >> PAGE_SHIFT), prot); 2330 if (err) 2331 break; 2332 } while (pgd++, addr = next, addr != end); 2333 2334 if (err) 2335 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2336 2337 return err; 2338 } 2339 EXPORT_SYMBOL(remap_pfn_range); 2340 2341 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2342 unsigned long addr, unsigned long end, 2343 pte_fn_t fn, void *data) 2344 { 2345 pte_t *pte; 2346 int err; 2347 pgtable_t token; 2348 spinlock_t *uninitialized_var(ptl); 2349 2350 pte = (mm == &init_mm) ? 2351 pte_alloc_kernel(pmd, addr) : 2352 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2353 if (!pte) 2354 return -ENOMEM; 2355 2356 BUG_ON(pmd_huge(*pmd)); 2357 2358 arch_enter_lazy_mmu_mode(); 2359 2360 token = pmd_pgtable(*pmd); 2361 2362 do { 2363 err = fn(pte++, token, addr, data); 2364 if (err) 2365 break; 2366 } while (addr += PAGE_SIZE, addr != end); 2367 2368 arch_leave_lazy_mmu_mode(); 2369 2370 if (mm != &init_mm) 2371 pte_unmap_unlock(pte-1, ptl); 2372 return err; 2373 } 2374 2375 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2376 unsigned long addr, unsigned long end, 2377 pte_fn_t fn, void *data) 2378 { 2379 pmd_t *pmd; 2380 unsigned long next; 2381 int err; 2382 2383 BUG_ON(pud_huge(*pud)); 2384 2385 pmd = pmd_alloc(mm, pud, addr); 2386 if (!pmd) 2387 return -ENOMEM; 2388 do { 2389 next = pmd_addr_end(addr, end); 2390 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2391 if (err) 2392 break; 2393 } while (pmd++, addr = next, addr != end); 2394 return err; 2395 } 2396 2397 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2398 unsigned long addr, unsigned long end, 2399 pte_fn_t fn, void *data) 2400 { 2401 pud_t *pud; 2402 unsigned long next; 2403 int err; 2404 2405 pud = pud_alloc(mm, pgd, addr); 2406 if (!pud) 2407 return -ENOMEM; 2408 do { 2409 next = pud_addr_end(addr, end); 2410 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2411 if (err) 2412 break; 2413 } while (pud++, addr = next, addr != end); 2414 return err; 2415 } 2416 2417 /* 2418 * Scan a region of virtual memory, filling in page tables as necessary 2419 * and calling a provided function on each leaf page table. 2420 */ 2421 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2422 unsigned long size, pte_fn_t fn, void *data) 2423 { 2424 pgd_t *pgd; 2425 unsigned long next; 2426 unsigned long end = addr + size; 2427 int err; 2428 2429 BUG_ON(addr >= end); 2430 pgd = pgd_offset(mm, addr); 2431 do { 2432 next = pgd_addr_end(addr, end); 2433 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2434 if (err) 2435 break; 2436 } while (pgd++, addr = next, addr != end); 2437 2438 return err; 2439 } 2440 EXPORT_SYMBOL_GPL(apply_to_page_range); 2441 2442 /* 2443 * handle_pte_fault chooses page fault handler according to an entry 2444 * which was read non-atomically. Before making any commitment, on 2445 * those architectures or configurations (e.g. i386 with PAE) which 2446 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2447 * must check under lock before unmapping the pte and proceeding 2448 * (but do_wp_page is only called after already making such a check; 2449 * and do_anonymous_page can safely check later on). 2450 */ 2451 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2452 pte_t *page_table, pte_t orig_pte) 2453 { 2454 int same = 1; 2455 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2456 if (sizeof(pte_t) > sizeof(unsigned long)) { 2457 spinlock_t *ptl = pte_lockptr(mm, pmd); 2458 spin_lock(ptl); 2459 same = pte_same(*page_table, orig_pte); 2460 spin_unlock(ptl); 2461 } 2462 #endif 2463 pte_unmap(page_table); 2464 return same; 2465 } 2466 2467 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2468 { 2469 /* 2470 * If the source page was a PFN mapping, we don't have 2471 * a "struct page" for it. We do a best-effort copy by 2472 * just copying from the original user address. If that 2473 * fails, we just zero-fill it. Live with it. 2474 */ 2475 if (unlikely(!src)) { 2476 void *kaddr = kmap_atomic(dst); 2477 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2478 2479 /* 2480 * This really shouldn't fail, because the page is there 2481 * in the page tables. But it might just be unreadable, 2482 * in which case we just give up and fill the result with 2483 * zeroes. 2484 */ 2485 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2486 clear_page(kaddr); 2487 kunmap_atomic(kaddr); 2488 flush_dcache_page(dst); 2489 } else 2490 copy_user_highpage(dst, src, va, vma); 2491 } 2492 2493 /* 2494 * This routine handles present pages, when users try to write 2495 * to a shared page. It is done by copying the page to a new address 2496 * and decrementing the shared-page counter for the old page. 2497 * 2498 * Note that this routine assumes that the protection checks have been 2499 * done by the caller (the low-level page fault routine in most cases). 2500 * Thus we can safely just mark it writable once we've done any necessary 2501 * COW. 2502 * 2503 * We also mark the page dirty at this point even though the page will 2504 * change only once the write actually happens. This avoids a few races, 2505 * and potentially makes it more efficient. 2506 * 2507 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2508 * but allow concurrent faults), with pte both mapped and locked. 2509 * We return with mmap_sem still held, but pte unmapped and unlocked. 2510 */ 2511 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2512 unsigned long address, pte_t *page_table, pmd_t *pmd, 2513 spinlock_t *ptl, pte_t orig_pte) 2514 __releases(ptl) 2515 { 2516 struct page *old_page, *new_page; 2517 pte_t entry; 2518 int ret = 0; 2519 int page_mkwrite = 0; 2520 struct page *dirty_page = NULL; 2521 2522 old_page = vm_normal_page(vma, address, orig_pte); 2523 if (!old_page) { 2524 /* 2525 * VM_MIXEDMAP !pfn_valid() case 2526 * 2527 * We should not cow pages in a shared writeable mapping. 2528 * Just mark the pages writable as we can't do any dirty 2529 * accounting on raw pfn maps. 2530 */ 2531 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2532 (VM_WRITE|VM_SHARED)) 2533 goto reuse; 2534 goto gotten; 2535 } 2536 2537 /* 2538 * Take out anonymous pages first, anonymous shared vmas are 2539 * not dirty accountable. 2540 */ 2541 if (PageAnon(old_page) && !PageKsm(old_page)) { 2542 if (!trylock_page(old_page)) { 2543 page_cache_get(old_page); 2544 pte_unmap_unlock(page_table, ptl); 2545 lock_page(old_page); 2546 page_table = pte_offset_map_lock(mm, pmd, address, 2547 &ptl); 2548 if (!pte_same(*page_table, orig_pte)) { 2549 unlock_page(old_page); 2550 goto unlock; 2551 } 2552 page_cache_release(old_page); 2553 } 2554 if (reuse_swap_page(old_page)) { 2555 /* 2556 * The page is all ours. Move it to our anon_vma so 2557 * the rmap code will not search our parent or siblings. 2558 * Protected against the rmap code by the page lock. 2559 */ 2560 page_move_anon_rmap(old_page, vma, address); 2561 unlock_page(old_page); 2562 goto reuse; 2563 } 2564 unlock_page(old_page); 2565 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2566 (VM_WRITE|VM_SHARED))) { 2567 /* 2568 * Only catch write-faults on shared writable pages, 2569 * read-only shared pages can get COWed by 2570 * get_user_pages(.write=1, .force=1). 2571 */ 2572 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2573 struct vm_fault vmf; 2574 int tmp; 2575 2576 vmf.virtual_address = (void __user *)(address & 2577 PAGE_MASK); 2578 vmf.pgoff = old_page->index; 2579 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2580 vmf.page = old_page; 2581 2582 /* 2583 * Notify the address space that the page is about to 2584 * become writable so that it can prohibit this or wait 2585 * for the page to get into an appropriate state. 2586 * 2587 * We do this without the lock held, so that it can 2588 * sleep if it needs to. 2589 */ 2590 page_cache_get(old_page); 2591 pte_unmap_unlock(page_table, ptl); 2592 2593 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2594 if (unlikely(tmp & 2595 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2596 ret = tmp; 2597 goto unwritable_page; 2598 } 2599 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2600 lock_page(old_page); 2601 if (!old_page->mapping) { 2602 ret = 0; /* retry the fault */ 2603 unlock_page(old_page); 2604 goto unwritable_page; 2605 } 2606 } else 2607 VM_BUG_ON(!PageLocked(old_page)); 2608 2609 /* 2610 * Since we dropped the lock we need to revalidate 2611 * the PTE as someone else may have changed it. If 2612 * they did, we just return, as we can count on the 2613 * MMU to tell us if they didn't also make it writable. 2614 */ 2615 page_table = pte_offset_map_lock(mm, pmd, address, 2616 &ptl); 2617 if (!pte_same(*page_table, orig_pte)) { 2618 unlock_page(old_page); 2619 goto unlock; 2620 } 2621 2622 page_mkwrite = 1; 2623 } 2624 dirty_page = old_page; 2625 get_page(dirty_page); 2626 2627 reuse: 2628 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2629 entry = pte_mkyoung(orig_pte); 2630 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2631 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2632 update_mmu_cache(vma, address, page_table); 2633 pte_unmap_unlock(page_table, ptl); 2634 ret |= VM_FAULT_WRITE; 2635 2636 if (!dirty_page) 2637 return ret; 2638 2639 /* 2640 * Yes, Virginia, this is actually required to prevent a race 2641 * with clear_page_dirty_for_io() from clearing the page dirty 2642 * bit after it clear all dirty ptes, but before a racing 2643 * do_wp_page installs a dirty pte. 2644 * 2645 * __do_fault is protected similarly. 2646 */ 2647 if (!page_mkwrite) { 2648 wait_on_page_locked(dirty_page); 2649 set_page_dirty_balance(dirty_page, page_mkwrite); 2650 } 2651 put_page(dirty_page); 2652 if (page_mkwrite) { 2653 struct address_space *mapping = dirty_page->mapping; 2654 2655 set_page_dirty(dirty_page); 2656 unlock_page(dirty_page); 2657 page_cache_release(dirty_page); 2658 if (mapping) { 2659 /* 2660 * Some device drivers do not set page.mapping 2661 * but still dirty their pages 2662 */ 2663 balance_dirty_pages_ratelimited(mapping); 2664 } 2665 } 2666 2667 /* file_update_time outside page_lock */ 2668 if (vma->vm_file) 2669 file_update_time(vma->vm_file); 2670 2671 return ret; 2672 } 2673 2674 /* 2675 * Ok, we need to copy. Oh, well.. 2676 */ 2677 page_cache_get(old_page); 2678 gotten: 2679 pte_unmap_unlock(page_table, ptl); 2680 2681 if (unlikely(anon_vma_prepare(vma))) 2682 goto oom; 2683 2684 if (is_zero_pfn(pte_pfn(orig_pte))) { 2685 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2686 if (!new_page) 2687 goto oom; 2688 } else { 2689 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2690 if (!new_page) 2691 goto oom; 2692 cow_user_page(new_page, old_page, address, vma); 2693 } 2694 __SetPageUptodate(new_page); 2695 2696 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2697 goto oom_free_new; 2698 2699 /* 2700 * Re-check the pte - we dropped the lock 2701 */ 2702 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2703 if (likely(pte_same(*page_table, orig_pte))) { 2704 if (old_page) { 2705 if (!PageAnon(old_page)) { 2706 dec_mm_counter_fast(mm, MM_FILEPAGES); 2707 inc_mm_counter_fast(mm, MM_ANONPAGES); 2708 } 2709 } else 2710 inc_mm_counter_fast(mm, MM_ANONPAGES); 2711 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2712 entry = mk_pte(new_page, vma->vm_page_prot); 2713 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2714 /* 2715 * Clear the pte entry and flush it first, before updating the 2716 * pte with the new entry. This will avoid a race condition 2717 * seen in the presence of one thread doing SMC and another 2718 * thread doing COW. 2719 */ 2720 ptep_clear_flush(vma, address, page_table); 2721 page_add_new_anon_rmap(new_page, vma, address); 2722 /* 2723 * We call the notify macro here because, when using secondary 2724 * mmu page tables (such as kvm shadow page tables), we want the 2725 * new page to be mapped directly into the secondary page table. 2726 */ 2727 set_pte_at_notify(mm, address, page_table, entry); 2728 update_mmu_cache(vma, address, page_table); 2729 if (old_page) { 2730 /* 2731 * Only after switching the pte to the new page may 2732 * we remove the mapcount here. Otherwise another 2733 * process may come and find the rmap count decremented 2734 * before the pte is switched to the new page, and 2735 * "reuse" the old page writing into it while our pte 2736 * here still points into it and can be read by other 2737 * threads. 2738 * 2739 * The critical issue is to order this 2740 * page_remove_rmap with the ptp_clear_flush above. 2741 * Those stores are ordered by (if nothing else,) 2742 * the barrier present in the atomic_add_negative 2743 * in page_remove_rmap. 2744 * 2745 * Then the TLB flush in ptep_clear_flush ensures that 2746 * no process can access the old page before the 2747 * decremented mapcount is visible. And the old page 2748 * cannot be reused until after the decremented 2749 * mapcount is visible. So transitively, TLBs to 2750 * old page will be flushed before it can be reused. 2751 */ 2752 page_remove_rmap(old_page); 2753 } 2754 2755 /* Free the old page.. */ 2756 new_page = old_page; 2757 ret |= VM_FAULT_WRITE; 2758 } else 2759 mem_cgroup_uncharge_page(new_page); 2760 2761 if (new_page) 2762 page_cache_release(new_page); 2763 unlock: 2764 pte_unmap_unlock(page_table, ptl); 2765 if (old_page) { 2766 /* 2767 * Don't let another task, with possibly unlocked vma, 2768 * keep the mlocked page. 2769 */ 2770 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2771 lock_page(old_page); /* LRU manipulation */ 2772 munlock_vma_page(old_page); 2773 unlock_page(old_page); 2774 } 2775 page_cache_release(old_page); 2776 } 2777 return ret; 2778 oom_free_new: 2779 page_cache_release(new_page); 2780 oom: 2781 if (old_page) { 2782 if (page_mkwrite) { 2783 unlock_page(old_page); 2784 page_cache_release(old_page); 2785 } 2786 page_cache_release(old_page); 2787 } 2788 return VM_FAULT_OOM; 2789 2790 unwritable_page: 2791 page_cache_release(old_page); 2792 return ret; 2793 } 2794 2795 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2796 unsigned long start_addr, unsigned long end_addr, 2797 struct zap_details *details) 2798 { 2799 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2800 } 2801 2802 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2803 struct zap_details *details) 2804 { 2805 struct vm_area_struct *vma; 2806 struct prio_tree_iter iter; 2807 pgoff_t vba, vea, zba, zea; 2808 2809 vma_prio_tree_foreach(vma, &iter, root, 2810 details->first_index, details->last_index) { 2811 2812 vba = vma->vm_pgoff; 2813 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2814 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2815 zba = details->first_index; 2816 if (zba < vba) 2817 zba = vba; 2818 zea = details->last_index; 2819 if (zea > vea) 2820 zea = vea; 2821 2822 unmap_mapping_range_vma(vma, 2823 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2824 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2825 details); 2826 } 2827 } 2828 2829 static inline void unmap_mapping_range_list(struct list_head *head, 2830 struct zap_details *details) 2831 { 2832 struct vm_area_struct *vma; 2833 2834 /* 2835 * In nonlinear VMAs there is no correspondence between virtual address 2836 * offset and file offset. So we must perform an exhaustive search 2837 * across *all* the pages in each nonlinear VMA, not just the pages 2838 * whose virtual address lies outside the file truncation point. 2839 */ 2840 list_for_each_entry(vma, head, shared.vm_set.list) { 2841 details->nonlinear_vma = vma; 2842 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2843 } 2844 } 2845 2846 /** 2847 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2848 * @mapping: the address space containing mmaps to be unmapped. 2849 * @holebegin: byte in first page to unmap, relative to the start of 2850 * the underlying file. This will be rounded down to a PAGE_SIZE 2851 * boundary. Note that this is different from truncate_pagecache(), which 2852 * must keep the partial page. In contrast, we must get rid of 2853 * partial pages. 2854 * @holelen: size of prospective hole in bytes. This will be rounded 2855 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2856 * end of the file. 2857 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2858 * but 0 when invalidating pagecache, don't throw away private data. 2859 */ 2860 void unmap_mapping_range(struct address_space *mapping, 2861 loff_t const holebegin, loff_t const holelen, int even_cows) 2862 { 2863 struct zap_details details; 2864 pgoff_t hba = holebegin >> PAGE_SHIFT; 2865 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2866 2867 /* Check for overflow. */ 2868 if (sizeof(holelen) > sizeof(hlen)) { 2869 long long holeend = 2870 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2871 if (holeend & ~(long long)ULONG_MAX) 2872 hlen = ULONG_MAX - hba + 1; 2873 } 2874 2875 details.check_mapping = even_cows? NULL: mapping; 2876 details.nonlinear_vma = NULL; 2877 details.first_index = hba; 2878 details.last_index = hba + hlen - 1; 2879 if (details.last_index < details.first_index) 2880 details.last_index = ULONG_MAX; 2881 2882 2883 mutex_lock(&mapping->i_mmap_mutex); 2884 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2885 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2886 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2887 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2888 mutex_unlock(&mapping->i_mmap_mutex); 2889 } 2890 EXPORT_SYMBOL(unmap_mapping_range); 2891 2892 /* 2893 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2894 * but allow concurrent faults), and pte mapped but not yet locked. 2895 * We return with mmap_sem still held, but pte unmapped and unlocked. 2896 */ 2897 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2898 unsigned long address, pte_t *page_table, pmd_t *pmd, 2899 unsigned int flags, pte_t orig_pte) 2900 { 2901 spinlock_t *ptl; 2902 struct page *page, *swapcache = NULL; 2903 swp_entry_t entry; 2904 pte_t pte; 2905 int locked; 2906 struct mem_cgroup *ptr; 2907 int exclusive = 0; 2908 int ret = 0; 2909 2910 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2911 goto out; 2912 2913 entry = pte_to_swp_entry(orig_pte); 2914 if (unlikely(non_swap_entry(entry))) { 2915 if (is_migration_entry(entry)) { 2916 migration_entry_wait(mm, pmd, address); 2917 } else if (is_hwpoison_entry(entry)) { 2918 ret = VM_FAULT_HWPOISON; 2919 } else { 2920 print_bad_pte(vma, address, orig_pte, NULL); 2921 ret = VM_FAULT_SIGBUS; 2922 } 2923 goto out; 2924 } 2925 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2926 page = lookup_swap_cache(entry); 2927 if (!page) { 2928 page = swapin_readahead(entry, 2929 GFP_HIGHUSER_MOVABLE, vma, address); 2930 if (!page) { 2931 /* 2932 * Back out if somebody else faulted in this pte 2933 * while we released the pte lock. 2934 */ 2935 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2936 if (likely(pte_same(*page_table, orig_pte))) 2937 ret = VM_FAULT_OOM; 2938 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2939 goto unlock; 2940 } 2941 2942 /* Had to read the page from swap area: Major fault */ 2943 ret = VM_FAULT_MAJOR; 2944 count_vm_event(PGMAJFAULT); 2945 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2946 } else if (PageHWPoison(page)) { 2947 /* 2948 * hwpoisoned dirty swapcache pages are kept for killing 2949 * owner processes (which may be unknown at hwpoison time) 2950 */ 2951 ret = VM_FAULT_HWPOISON; 2952 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2953 goto out_release; 2954 } 2955 2956 locked = lock_page_or_retry(page, mm, flags); 2957 2958 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2959 if (!locked) { 2960 ret |= VM_FAULT_RETRY; 2961 goto out_release; 2962 } 2963 2964 /* 2965 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2966 * release the swapcache from under us. The page pin, and pte_same 2967 * test below, are not enough to exclude that. Even if it is still 2968 * swapcache, we need to check that the page's swap has not changed. 2969 */ 2970 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2971 goto out_page; 2972 2973 if (ksm_might_need_to_copy(page, vma, address)) { 2974 swapcache = page; 2975 page = ksm_does_need_to_copy(page, vma, address); 2976 2977 if (unlikely(!page)) { 2978 ret = VM_FAULT_OOM; 2979 page = swapcache; 2980 swapcache = NULL; 2981 goto out_page; 2982 } 2983 } 2984 2985 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2986 ret = VM_FAULT_OOM; 2987 goto out_page; 2988 } 2989 2990 /* 2991 * Back out if somebody else already faulted in this pte. 2992 */ 2993 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2994 if (unlikely(!pte_same(*page_table, orig_pte))) 2995 goto out_nomap; 2996 2997 if (unlikely(!PageUptodate(page))) { 2998 ret = VM_FAULT_SIGBUS; 2999 goto out_nomap; 3000 } 3001 3002 /* 3003 * The page isn't present yet, go ahead with the fault. 3004 * 3005 * Be careful about the sequence of operations here. 3006 * To get its accounting right, reuse_swap_page() must be called 3007 * while the page is counted on swap but not yet in mapcount i.e. 3008 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3009 * must be called after the swap_free(), or it will never succeed. 3010 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3011 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3012 * in page->private. In this case, a record in swap_cgroup is silently 3013 * discarded at swap_free(). 3014 */ 3015 3016 inc_mm_counter_fast(mm, MM_ANONPAGES); 3017 dec_mm_counter_fast(mm, MM_SWAPENTS); 3018 pte = mk_pte(page, vma->vm_page_prot); 3019 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3020 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3021 flags &= ~FAULT_FLAG_WRITE; 3022 ret |= VM_FAULT_WRITE; 3023 exclusive = 1; 3024 } 3025 flush_icache_page(vma, page); 3026 set_pte_at(mm, address, page_table, pte); 3027 do_page_add_anon_rmap(page, vma, address, exclusive); 3028 /* It's better to call commit-charge after rmap is established */ 3029 mem_cgroup_commit_charge_swapin(page, ptr); 3030 3031 swap_free(entry); 3032 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3033 try_to_free_swap(page); 3034 unlock_page(page); 3035 if (swapcache) { 3036 /* 3037 * Hold the lock to avoid the swap entry to be reused 3038 * until we take the PT lock for the pte_same() check 3039 * (to avoid false positives from pte_same). For 3040 * further safety release the lock after the swap_free 3041 * so that the swap count won't change under a 3042 * parallel locked swapcache. 3043 */ 3044 unlock_page(swapcache); 3045 page_cache_release(swapcache); 3046 } 3047 3048 if (flags & FAULT_FLAG_WRITE) { 3049 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3050 if (ret & VM_FAULT_ERROR) 3051 ret &= VM_FAULT_ERROR; 3052 goto out; 3053 } 3054 3055 /* No need to invalidate - it was non-present before */ 3056 update_mmu_cache(vma, address, page_table); 3057 unlock: 3058 pte_unmap_unlock(page_table, ptl); 3059 out: 3060 return ret; 3061 out_nomap: 3062 mem_cgroup_cancel_charge_swapin(ptr); 3063 pte_unmap_unlock(page_table, ptl); 3064 out_page: 3065 unlock_page(page); 3066 out_release: 3067 page_cache_release(page); 3068 if (swapcache) { 3069 unlock_page(swapcache); 3070 page_cache_release(swapcache); 3071 } 3072 return ret; 3073 } 3074 3075 /* 3076 * This is like a special single-page "expand_{down|up}wards()", 3077 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3078 * doesn't hit another vma. 3079 */ 3080 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3081 { 3082 address &= PAGE_MASK; 3083 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3084 struct vm_area_struct *prev = vma->vm_prev; 3085 3086 /* 3087 * Is there a mapping abutting this one below? 3088 * 3089 * That's only ok if it's the same stack mapping 3090 * that has gotten split.. 3091 */ 3092 if (prev && prev->vm_end == address) 3093 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3094 3095 expand_downwards(vma, address - PAGE_SIZE); 3096 } 3097 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3098 struct vm_area_struct *next = vma->vm_next; 3099 3100 /* As VM_GROWSDOWN but s/below/above/ */ 3101 if (next && next->vm_start == address + PAGE_SIZE) 3102 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3103 3104 expand_upwards(vma, address + PAGE_SIZE); 3105 } 3106 return 0; 3107 } 3108 3109 /* 3110 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3111 * but allow concurrent faults), and pte mapped but not yet locked. 3112 * We return with mmap_sem still held, but pte unmapped and unlocked. 3113 */ 3114 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3115 unsigned long address, pte_t *page_table, pmd_t *pmd, 3116 unsigned int flags) 3117 { 3118 struct page *page; 3119 spinlock_t *ptl; 3120 pte_t entry; 3121 3122 pte_unmap(page_table); 3123 3124 /* Check if we need to add a guard page to the stack */ 3125 if (check_stack_guard_page(vma, address) < 0) 3126 return VM_FAULT_SIGBUS; 3127 3128 /* Use the zero-page for reads */ 3129 if (!(flags & FAULT_FLAG_WRITE)) { 3130 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3131 vma->vm_page_prot)); 3132 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3133 if (!pte_none(*page_table)) 3134 goto unlock; 3135 goto setpte; 3136 } 3137 3138 /* Allocate our own private page. */ 3139 if (unlikely(anon_vma_prepare(vma))) 3140 goto oom; 3141 page = alloc_zeroed_user_highpage_movable(vma, address); 3142 if (!page) 3143 goto oom; 3144 __SetPageUptodate(page); 3145 3146 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3147 goto oom_free_page; 3148 3149 entry = mk_pte(page, vma->vm_page_prot); 3150 if (vma->vm_flags & VM_WRITE) 3151 entry = pte_mkwrite(pte_mkdirty(entry)); 3152 3153 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3154 if (!pte_none(*page_table)) 3155 goto release; 3156 3157 inc_mm_counter_fast(mm, MM_ANONPAGES); 3158 page_add_new_anon_rmap(page, vma, address); 3159 setpte: 3160 set_pte_at(mm, address, page_table, entry); 3161 3162 /* No need to invalidate - it was non-present before */ 3163 update_mmu_cache(vma, address, page_table); 3164 unlock: 3165 pte_unmap_unlock(page_table, ptl); 3166 return 0; 3167 release: 3168 mem_cgroup_uncharge_page(page); 3169 page_cache_release(page); 3170 goto unlock; 3171 oom_free_page: 3172 page_cache_release(page); 3173 oom: 3174 return VM_FAULT_OOM; 3175 } 3176 3177 /* 3178 * __do_fault() tries to create a new page mapping. It aggressively 3179 * tries to share with existing pages, but makes a separate copy if 3180 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3181 * the next page fault. 3182 * 3183 * As this is called only for pages that do not currently exist, we 3184 * do not need to flush old virtual caches or the TLB. 3185 * 3186 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3187 * but allow concurrent faults), and pte neither mapped nor locked. 3188 * We return with mmap_sem still held, but pte unmapped and unlocked. 3189 */ 3190 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3191 unsigned long address, pmd_t *pmd, 3192 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3193 { 3194 pte_t *page_table; 3195 spinlock_t *ptl; 3196 struct page *page; 3197 struct page *cow_page; 3198 pte_t entry; 3199 int anon = 0; 3200 struct page *dirty_page = NULL; 3201 struct vm_fault vmf; 3202 int ret; 3203 int page_mkwrite = 0; 3204 3205 /* 3206 * If we do COW later, allocate page befor taking lock_page() 3207 * on the file cache page. This will reduce lock holding time. 3208 */ 3209 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3210 3211 if (unlikely(anon_vma_prepare(vma))) 3212 return VM_FAULT_OOM; 3213 3214 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3215 if (!cow_page) 3216 return VM_FAULT_OOM; 3217 3218 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3219 page_cache_release(cow_page); 3220 return VM_FAULT_OOM; 3221 } 3222 } else 3223 cow_page = NULL; 3224 3225 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3226 vmf.pgoff = pgoff; 3227 vmf.flags = flags; 3228 vmf.page = NULL; 3229 3230 ret = vma->vm_ops->fault(vma, &vmf); 3231 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3232 VM_FAULT_RETRY))) 3233 goto uncharge_out; 3234 3235 if (unlikely(PageHWPoison(vmf.page))) { 3236 if (ret & VM_FAULT_LOCKED) 3237 unlock_page(vmf.page); 3238 ret = VM_FAULT_HWPOISON; 3239 goto uncharge_out; 3240 } 3241 3242 /* 3243 * For consistency in subsequent calls, make the faulted page always 3244 * locked. 3245 */ 3246 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3247 lock_page(vmf.page); 3248 else 3249 VM_BUG_ON(!PageLocked(vmf.page)); 3250 3251 /* 3252 * Should we do an early C-O-W break? 3253 */ 3254 page = vmf.page; 3255 if (flags & FAULT_FLAG_WRITE) { 3256 if (!(vma->vm_flags & VM_SHARED)) { 3257 page = cow_page; 3258 anon = 1; 3259 copy_user_highpage(page, vmf.page, address, vma); 3260 __SetPageUptodate(page); 3261 } else { 3262 /* 3263 * If the page will be shareable, see if the backing 3264 * address space wants to know that the page is about 3265 * to become writable 3266 */ 3267 if (vma->vm_ops->page_mkwrite) { 3268 int tmp; 3269 3270 unlock_page(page); 3271 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3272 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3273 if (unlikely(tmp & 3274 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3275 ret = tmp; 3276 goto unwritable_page; 3277 } 3278 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3279 lock_page(page); 3280 if (!page->mapping) { 3281 ret = 0; /* retry the fault */ 3282 unlock_page(page); 3283 goto unwritable_page; 3284 } 3285 } else 3286 VM_BUG_ON(!PageLocked(page)); 3287 page_mkwrite = 1; 3288 } 3289 } 3290 3291 } 3292 3293 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3294 3295 /* 3296 * This silly early PAGE_DIRTY setting removes a race 3297 * due to the bad i386 page protection. But it's valid 3298 * for other architectures too. 3299 * 3300 * Note that if FAULT_FLAG_WRITE is set, we either now have 3301 * an exclusive copy of the page, or this is a shared mapping, 3302 * so we can make it writable and dirty to avoid having to 3303 * handle that later. 3304 */ 3305 /* Only go through if we didn't race with anybody else... */ 3306 if (likely(pte_same(*page_table, orig_pte))) { 3307 flush_icache_page(vma, page); 3308 entry = mk_pte(page, vma->vm_page_prot); 3309 if (flags & FAULT_FLAG_WRITE) 3310 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3311 if (anon) { 3312 inc_mm_counter_fast(mm, MM_ANONPAGES); 3313 page_add_new_anon_rmap(page, vma, address); 3314 } else { 3315 inc_mm_counter_fast(mm, MM_FILEPAGES); 3316 page_add_file_rmap(page); 3317 if (flags & FAULT_FLAG_WRITE) { 3318 dirty_page = page; 3319 get_page(dirty_page); 3320 } 3321 } 3322 set_pte_at(mm, address, page_table, entry); 3323 3324 /* no need to invalidate: a not-present page won't be cached */ 3325 update_mmu_cache(vma, address, page_table); 3326 } else { 3327 if (cow_page) 3328 mem_cgroup_uncharge_page(cow_page); 3329 if (anon) 3330 page_cache_release(page); 3331 else 3332 anon = 1; /* no anon but release faulted_page */ 3333 } 3334 3335 pte_unmap_unlock(page_table, ptl); 3336 3337 if (dirty_page) { 3338 struct address_space *mapping = page->mapping; 3339 3340 if (set_page_dirty(dirty_page)) 3341 page_mkwrite = 1; 3342 unlock_page(dirty_page); 3343 put_page(dirty_page); 3344 if (page_mkwrite && mapping) { 3345 /* 3346 * Some device drivers do not set page.mapping but still 3347 * dirty their pages 3348 */ 3349 balance_dirty_pages_ratelimited(mapping); 3350 } 3351 3352 /* file_update_time outside page_lock */ 3353 if (vma->vm_file) 3354 file_update_time(vma->vm_file); 3355 } else { 3356 unlock_page(vmf.page); 3357 if (anon) 3358 page_cache_release(vmf.page); 3359 } 3360 3361 return ret; 3362 3363 unwritable_page: 3364 page_cache_release(page); 3365 return ret; 3366 uncharge_out: 3367 /* fs's fault handler get error */ 3368 if (cow_page) { 3369 mem_cgroup_uncharge_page(cow_page); 3370 page_cache_release(cow_page); 3371 } 3372 return ret; 3373 } 3374 3375 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3376 unsigned long address, pte_t *page_table, pmd_t *pmd, 3377 unsigned int flags, pte_t orig_pte) 3378 { 3379 pgoff_t pgoff = (((address & PAGE_MASK) 3380 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3381 3382 pte_unmap(page_table); 3383 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3384 } 3385 3386 /* 3387 * Fault of a previously existing named mapping. Repopulate the pte 3388 * from the encoded file_pte if possible. This enables swappable 3389 * nonlinear vmas. 3390 * 3391 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3392 * but allow concurrent faults), and pte mapped but not yet locked. 3393 * We return with mmap_sem still held, but pte unmapped and unlocked. 3394 */ 3395 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3396 unsigned long address, pte_t *page_table, pmd_t *pmd, 3397 unsigned int flags, pte_t orig_pte) 3398 { 3399 pgoff_t pgoff; 3400 3401 flags |= FAULT_FLAG_NONLINEAR; 3402 3403 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3404 return 0; 3405 3406 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3407 /* 3408 * Page table corrupted: show pte and kill process. 3409 */ 3410 print_bad_pte(vma, address, orig_pte, NULL); 3411 return VM_FAULT_SIGBUS; 3412 } 3413 3414 pgoff = pte_to_pgoff(orig_pte); 3415 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3416 } 3417 3418 /* 3419 * These routines also need to handle stuff like marking pages dirty 3420 * and/or accessed for architectures that don't do it in hardware (most 3421 * RISC architectures). The early dirtying is also good on the i386. 3422 * 3423 * There is also a hook called "update_mmu_cache()" that architectures 3424 * with external mmu caches can use to update those (ie the Sparc or 3425 * PowerPC hashed page tables that act as extended TLBs). 3426 * 3427 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3428 * but allow concurrent faults), and pte mapped but not yet locked. 3429 * We return with mmap_sem still held, but pte unmapped and unlocked. 3430 */ 3431 int handle_pte_fault(struct mm_struct *mm, 3432 struct vm_area_struct *vma, unsigned long address, 3433 pte_t *pte, pmd_t *pmd, unsigned int flags) 3434 { 3435 pte_t entry; 3436 spinlock_t *ptl; 3437 3438 entry = *pte; 3439 if (!pte_present(entry)) { 3440 if (pte_none(entry)) { 3441 if (vma->vm_ops) { 3442 if (likely(vma->vm_ops->fault)) 3443 return do_linear_fault(mm, vma, address, 3444 pte, pmd, flags, entry); 3445 } 3446 return do_anonymous_page(mm, vma, address, 3447 pte, pmd, flags); 3448 } 3449 if (pte_file(entry)) 3450 return do_nonlinear_fault(mm, vma, address, 3451 pte, pmd, flags, entry); 3452 return do_swap_page(mm, vma, address, 3453 pte, pmd, flags, entry); 3454 } 3455 3456 ptl = pte_lockptr(mm, pmd); 3457 spin_lock(ptl); 3458 if (unlikely(!pte_same(*pte, entry))) 3459 goto unlock; 3460 if (flags & FAULT_FLAG_WRITE) { 3461 if (!pte_write(entry)) 3462 return do_wp_page(mm, vma, address, 3463 pte, pmd, ptl, entry); 3464 entry = pte_mkdirty(entry); 3465 } 3466 entry = pte_mkyoung(entry); 3467 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3468 update_mmu_cache(vma, address, pte); 3469 } else { 3470 /* 3471 * This is needed only for protection faults but the arch code 3472 * is not yet telling us if this is a protection fault or not. 3473 * This still avoids useless tlb flushes for .text page faults 3474 * with threads. 3475 */ 3476 if (flags & FAULT_FLAG_WRITE) 3477 flush_tlb_fix_spurious_fault(vma, address); 3478 } 3479 unlock: 3480 pte_unmap_unlock(pte, ptl); 3481 return 0; 3482 } 3483 3484 /* 3485 * By the time we get here, we already hold the mm semaphore 3486 */ 3487 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3488 unsigned long address, unsigned int flags) 3489 { 3490 pgd_t *pgd; 3491 pud_t *pud; 3492 pmd_t *pmd; 3493 pte_t *pte; 3494 3495 __set_current_state(TASK_RUNNING); 3496 3497 count_vm_event(PGFAULT); 3498 mem_cgroup_count_vm_event(mm, PGFAULT); 3499 3500 /* do counter updates before entering really critical section. */ 3501 check_sync_rss_stat(current); 3502 3503 if (unlikely(is_vm_hugetlb_page(vma))) 3504 return hugetlb_fault(mm, vma, address, flags); 3505 3506 retry: 3507 pgd = pgd_offset(mm, address); 3508 pud = pud_alloc(mm, pgd, address); 3509 if (!pud) 3510 return VM_FAULT_OOM; 3511 pmd = pmd_alloc(mm, pud, address); 3512 if (!pmd) 3513 return VM_FAULT_OOM; 3514 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3515 if (!vma->vm_ops) 3516 return do_huge_pmd_anonymous_page(mm, vma, address, 3517 pmd, flags); 3518 } else { 3519 pmd_t orig_pmd = *pmd; 3520 int ret; 3521 3522 barrier(); 3523 if (pmd_trans_huge(orig_pmd)) { 3524 if (flags & FAULT_FLAG_WRITE && 3525 !pmd_write(orig_pmd) && 3526 !pmd_trans_splitting(orig_pmd)) { 3527 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3528 orig_pmd); 3529 /* 3530 * If COW results in an oom, the huge pmd will 3531 * have been split, so retry the fault on the 3532 * pte for a smaller charge. 3533 */ 3534 if (unlikely(ret & VM_FAULT_OOM)) 3535 goto retry; 3536 return ret; 3537 } 3538 return 0; 3539 } 3540 } 3541 3542 /* 3543 * Use __pte_alloc instead of pte_alloc_map, because we can't 3544 * run pte_offset_map on the pmd, if an huge pmd could 3545 * materialize from under us from a different thread. 3546 */ 3547 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3548 return VM_FAULT_OOM; 3549 /* if an huge pmd materialized from under us just retry later */ 3550 if (unlikely(pmd_trans_huge(*pmd))) 3551 return 0; 3552 /* 3553 * A regular pmd is established and it can't morph into a huge pmd 3554 * from under us anymore at this point because we hold the mmap_sem 3555 * read mode and khugepaged takes it in write mode. So now it's 3556 * safe to run pte_offset_map(). 3557 */ 3558 pte = pte_offset_map(pmd, address); 3559 3560 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3561 } 3562 3563 #ifndef __PAGETABLE_PUD_FOLDED 3564 /* 3565 * Allocate page upper directory. 3566 * We've already handled the fast-path in-line. 3567 */ 3568 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3569 { 3570 pud_t *new = pud_alloc_one(mm, address); 3571 if (!new) 3572 return -ENOMEM; 3573 3574 smp_wmb(); /* See comment in __pte_alloc */ 3575 3576 spin_lock(&mm->page_table_lock); 3577 if (pgd_present(*pgd)) /* Another has populated it */ 3578 pud_free(mm, new); 3579 else 3580 pgd_populate(mm, pgd, new); 3581 spin_unlock(&mm->page_table_lock); 3582 return 0; 3583 } 3584 #endif /* __PAGETABLE_PUD_FOLDED */ 3585 3586 #ifndef __PAGETABLE_PMD_FOLDED 3587 /* 3588 * Allocate page middle directory. 3589 * We've already handled the fast-path in-line. 3590 */ 3591 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3592 { 3593 pmd_t *new = pmd_alloc_one(mm, address); 3594 if (!new) 3595 return -ENOMEM; 3596 3597 smp_wmb(); /* See comment in __pte_alloc */ 3598 3599 spin_lock(&mm->page_table_lock); 3600 #ifndef __ARCH_HAS_4LEVEL_HACK 3601 if (pud_present(*pud)) /* Another has populated it */ 3602 pmd_free(mm, new); 3603 else 3604 pud_populate(mm, pud, new); 3605 #else 3606 if (pgd_present(*pud)) /* Another has populated it */ 3607 pmd_free(mm, new); 3608 else 3609 pgd_populate(mm, pud, new); 3610 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3611 spin_unlock(&mm->page_table_lock); 3612 return 0; 3613 } 3614 #endif /* __PAGETABLE_PMD_FOLDED */ 3615 3616 int make_pages_present(unsigned long addr, unsigned long end) 3617 { 3618 int ret, len, write; 3619 struct vm_area_struct * vma; 3620 3621 vma = find_vma(current->mm, addr); 3622 if (!vma) 3623 return -ENOMEM; 3624 /* 3625 * We want to touch writable mappings with a write fault in order 3626 * to break COW, except for shared mappings because these don't COW 3627 * and we would not want to dirty them for nothing. 3628 */ 3629 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3630 BUG_ON(addr >= end); 3631 BUG_ON(end > vma->vm_end); 3632 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3633 ret = get_user_pages(current, current->mm, addr, 3634 len, write, 0, NULL, NULL); 3635 if (ret < 0) 3636 return ret; 3637 return ret == len ? 0 : -EFAULT; 3638 } 3639 3640 #if !defined(__HAVE_ARCH_GATE_AREA) 3641 3642 #if defined(AT_SYSINFO_EHDR) 3643 static struct vm_area_struct gate_vma; 3644 3645 static int __init gate_vma_init(void) 3646 { 3647 gate_vma.vm_mm = NULL; 3648 gate_vma.vm_start = FIXADDR_USER_START; 3649 gate_vma.vm_end = FIXADDR_USER_END; 3650 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3651 gate_vma.vm_page_prot = __P101; 3652 3653 return 0; 3654 } 3655 __initcall(gate_vma_init); 3656 #endif 3657 3658 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3659 { 3660 #ifdef AT_SYSINFO_EHDR 3661 return &gate_vma; 3662 #else 3663 return NULL; 3664 #endif 3665 } 3666 3667 int in_gate_area_no_mm(unsigned long addr) 3668 { 3669 #ifdef AT_SYSINFO_EHDR 3670 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3671 return 1; 3672 #endif 3673 return 0; 3674 } 3675 3676 #endif /* __HAVE_ARCH_GATE_AREA */ 3677 3678 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3679 pte_t **ptepp, spinlock_t **ptlp) 3680 { 3681 pgd_t *pgd; 3682 pud_t *pud; 3683 pmd_t *pmd; 3684 pte_t *ptep; 3685 3686 pgd = pgd_offset(mm, address); 3687 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3688 goto out; 3689 3690 pud = pud_offset(pgd, address); 3691 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3692 goto out; 3693 3694 pmd = pmd_offset(pud, address); 3695 VM_BUG_ON(pmd_trans_huge(*pmd)); 3696 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3697 goto out; 3698 3699 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3700 if (pmd_huge(*pmd)) 3701 goto out; 3702 3703 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3704 if (!ptep) 3705 goto out; 3706 if (!pte_present(*ptep)) 3707 goto unlock; 3708 *ptepp = ptep; 3709 return 0; 3710 unlock: 3711 pte_unmap_unlock(ptep, *ptlp); 3712 out: 3713 return -EINVAL; 3714 } 3715 3716 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3717 pte_t **ptepp, spinlock_t **ptlp) 3718 { 3719 int res; 3720 3721 /* (void) is needed to make gcc happy */ 3722 (void) __cond_lock(*ptlp, 3723 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3724 return res; 3725 } 3726 3727 /** 3728 * follow_pfn - look up PFN at a user virtual address 3729 * @vma: memory mapping 3730 * @address: user virtual address 3731 * @pfn: location to store found PFN 3732 * 3733 * Only IO mappings and raw PFN mappings are allowed. 3734 * 3735 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3736 */ 3737 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3738 unsigned long *pfn) 3739 { 3740 int ret = -EINVAL; 3741 spinlock_t *ptl; 3742 pte_t *ptep; 3743 3744 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3745 return ret; 3746 3747 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3748 if (ret) 3749 return ret; 3750 *pfn = pte_pfn(*ptep); 3751 pte_unmap_unlock(ptep, ptl); 3752 return 0; 3753 } 3754 EXPORT_SYMBOL(follow_pfn); 3755 3756 #ifdef CONFIG_HAVE_IOREMAP_PROT 3757 int follow_phys(struct vm_area_struct *vma, 3758 unsigned long address, unsigned int flags, 3759 unsigned long *prot, resource_size_t *phys) 3760 { 3761 int ret = -EINVAL; 3762 pte_t *ptep, pte; 3763 spinlock_t *ptl; 3764 3765 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3766 goto out; 3767 3768 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3769 goto out; 3770 pte = *ptep; 3771 3772 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3773 goto unlock; 3774 3775 *prot = pgprot_val(pte_pgprot(pte)); 3776 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3777 3778 ret = 0; 3779 unlock: 3780 pte_unmap_unlock(ptep, ptl); 3781 out: 3782 return ret; 3783 } 3784 3785 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3786 void *buf, int len, int write) 3787 { 3788 resource_size_t phys_addr; 3789 unsigned long prot = 0; 3790 void __iomem *maddr; 3791 int offset = addr & (PAGE_SIZE-1); 3792 3793 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3794 return -EINVAL; 3795 3796 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3797 if (write) 3798 memcpy_toio(maddr + offset, buf, len); 3799 else 3800 memcpy_fromio(buf, maddr + offset, len); 3801 iounmap(maddr); 3802 3803 return len; 3804 } 3805 #endif 3806 3807 /* 3808 * Access another process' address space as given in mm. If non-NULL, use the 3809 * given task for page fault accounting. 3810 */ 3811 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3812 unsigned long addr, void *buf, int len, int write) 3813 { 3814 struct vm_area_struct *vma; 3815 void *old_buf = buf; 3816 3817 down_read(&mm->mmap_sem); 3818 /* ignore errors, just check how much was successfully transferred */ 3819 while (len) { 3820 int bytes, ret, offset; 3821 void *maddr; 3822 struct page *page = NULL; 3823 3824 ret = get_user_pages(tsk, mm, addr, 1, 3825 write, 1, &page, &vma); 3826 if (ret <= 0) { 3827 /* 3828 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3829 * we can access using slightly different code. 3830 */ 3831 #ifdef CONFIG_HAVE_IOREMAP_PROT 3832 vma = find_vma(mm, addr); 3833 if (!vma || vma->vm_start > addr) 3834 break; 3835 if (vma->vm_ops && vma->vm_ops->access) 3836 ret = vma->vm_ops->access(vma, addr, buf, 3837 len, write); 3838 if (ret <= 0) 3839 #endif 3840 break; 3841 bytes = ret; 3842 } else { 3843 bytes = len; 3844 offset = addr & (PAGE_SIZE-1); 3845 if (bytes > PAGE_SIZE-offset) 3846 bytes = PAGE_SIZE-offset; 3847 3848 maddr = kmap(page); 3849 if (write) { 3850 copy_to_user_page(vma, page, addr, 3851 maddr + offset, buf, bytes); 3852 set_page_dirty_lock(page); 3853 } else { 3854 copy_from_user_page(vma, page, addr, 3855 buf, maddr + offset, bytes); 3856 } 3857 kunmap(page); 3858 page_cache_release(page); 3859 } 3860 len -= bytes; 3861 buf += bytes; 3862 addr += bytes; 3863 } 3864 up_read(&mm->mmap_sem); 3865 3866 return buf - old_buf; 3867 } 3868 3869 /** 3870 * access_remote_vm - access another process' address space 3871 * @mm: the mm_struct of the target address space 3872 * @addr: start address to access 3873 * @buf: source or destination buffer 3874 * @len: number of bytes to transfer 3875 * @write: whether the access is a write 3876 * 3877 * The caller must hold a reference on @mm. 3878 */ 3879 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3880 void *buf, int len, int write) 3881 { 3882 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3883 } 3884 3885 /* 3886 * Access another process' address space. 3887 * Source/target buffer must be kernel space, 3888 * Do not walk the page table directly, use get_user_pages 3889 */ 3890 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3891 void *buf, int len, int write) 3892 { 3893 struct mm_struct *mm; 3894 int ret; 3895 3896 mm = get_task_mm(tsk); 3897 if (!mm) 3898 return 0; 3899 3900 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3901 mmput(mm); 3902 3903 return ret; 3904 } 3905 3906 /* 3907 * Print the name of a VMA. 3908 */ 3909 void print_vma_addr(char *prefix, unsigned long ip) 3910 { 3911 struct mm_struct *mm = current->mm; 3912 struct vm_area_struct *vma; 3913 3914 /* 3915 * Do not print if we are in atomic 3916 * contexts (in exception stacks, etc.): 3917 */ 3918 if (preempt_count()) 3919 return; 3920 3921 down_read(&mm->mmap_sem); 3922 vma = find_vma(mm, ip); 3923 if (vma && vma->vm_file) { 3924 struct file *f = vma->vm_file; 3925 char *buf = (char *)__get_free_page(GFP_KERNEL); 3926 if (buf) { 3927 char *p, *s; 3928 3929 p = d_path(&f->f_path, buf, PAGE_SIZE); 3930 if (IS_ERR(p)) 3931 p = "?"; 3932 s = strrchr(p, '/'); 3933 if (s) 3934 p = s+1; 3935 printk("%s%s[%lx+%lx]", prefix, p, 3936 vma->vm_start, 3937 vma->vm_end - vma->vm_start); 3938 free_page((unsigned long)buf); 3939 } 3940 } 3941 up_read(¤t->mm->mmap_sem); 3942 } 3943 3944 #ifdef CONFIG_PROVE_LOCKING 3945 void might_fault(void) 3946 { 3947 /* 3948 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3949 * holding the mmap_sem, this is safe because kernel memory doesn't 3950 * get paged out, therefore we'll never actually fault, and the 3951 * below annotations will generate false positives. 3952 */ 3953 if (segment_eq(get_fs(), KERNEL_DS)) 3954 return; 3955 3956 might_sleep(); 3957 /* 3958 * it would be nicer only to annotate paths which are not under 3959 * pagefault_disable, however that requires a larger audit and 3960 * providing helpers like get_user_atomic. 3961 */ 3962 if (!in_atomic() && current->mm) 3963 might_lock_read(¤t->mm->mmap_sem); 3964 } 3965 EXPORT_SYMBOL(might_fault); 3966 #endif 3967 3968 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3969 static void clear_gigantic_page(struct page *page, 3970 unsigned long addr, 3971 unsigned int pages_per_huge_page) 3972 { 3973 int i; 3974 struct page *p = page; 3975 3976 might_sleep(); 3977 for (i = 0; i < pages_per_huge_page; 3978 i++, p = mem_map_next(p, page, i)) { 3979 cond_resched(); 3980 clear_user_highpage(p, addr + i * PAGE_SIZE); 3981 } 3982 } 3983 void clear_huge_page(struct page *page, 3984 unsigned long addr, unsigned int pages_per_huge_page) 3985 { 3986 int i; 3987 3988 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3989 clear_gigantic_page(page, addr, pages_per_huge_page); 3990 return; 3991 } 3992 3993 might_sleep(); 3994 for (i = 0; i < pages_per_huge_page; i++) { 3995 cond_resched(); 3996 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3997 } 3998 } 3999 4000 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4001 unsigned long addr, 4002 struct vm_area_struct *vma, 4003 unsigned int pages_per_huge_page) 4004 { 4005 int i; 4006 struct page *dst_base = dst; 4007 struct page *src_base = src; 4008 4009 for (i = 0; i < pages_per_huge_page; ) { 4010 cond_resched(); 4011 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4012 4013 i++; 4014 dst = mem_map_next(dst, dst_base, i); 4015 src = mem_map_next(src, src_base, i); 4016 } 4017 } 4018 4019 void copy_user_huge_page(struct page *dst, struct page *src, 4020 unsigned long addr, struct vm_area_struct *vma, 4021 unsigned int pages_per_huge_page) 4022 { 4023 int i; 4024 4025 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4026 copy_user_gigantic_page(dst, src, addr, vma, 4027 pages_per_huge_page); 4028 return; 4029 } 4030 4031 might_sleep(); 4032 for (i = 0; i < pages_per_huge_page; i++) { 4033 cond_resched(); 4034 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4035 } 4036 } 4037 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4038