1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/init.h> 51 52 #include <asm/pgalloc.h> 53 #include <asm/uaccess.h> 54 #include <asm/tlb.h> 55 #include <asm/tlbflush.h> 56 #include <asm/pgtable.h> 57 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 61 #ifndef CONFIG_NEED_MULTIPLE_NODES 62 /* use the per-pgdat data instead for discontigmem - mbligh */ 63 unsigned long max_mapnr; 64 struct page *mem_map; 65 66 EXPORT_SYMBOL(max_mapnr); 67 EXPORT_SYMBOL(mem_map); 68 #endif 69 70 unsigned long num_physpages; 71 /* 72 * A number of key systems in x86 including ioremap() rely on the assumption 73 * that high_memory defines the upper bound on direct map memory, then end 74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 76 * and ZONE_HIGHMEM. 77 */ 78 void * high_memory; 79 unsigned long vmalloc_earlyreserve; 80 81 EXPORT_SYMBOL(num_physpages); 82 EXPORT_SYMBOL(high_memory); 83 EXPORT_SYMBOL(vmalloc_earlyreserve); 84 85 int randomize_va_space __read_mostly = 1; 86 87 static int __init disable_randmaps(char *s) 88 { 89 randomize_va_space = 0; 90 return 0; 91 } 92 __setup("norandmaps", disable_randmaps); 93 94 95 /* 96 * If a p?d_bad entry is found while walking page tables, report 97 * the error, before resetting entry to p?d_none. Usually (but 98 * very seldom) called out from the p?d_none_or_clear_bad macros. 99 */ 100 101 void pgd_clear_bad(pgd_t *pgd) 102 { 103 pgd_ERROR(*pgd); 104 pgd_clear(pgd); 105 } 106 107 void pud_clear_bad(pud_t *pud) 108 { 109 pud_ERROR(*pud); 110 pud_clear(pud); 111 } 112 113 void pmd_clear_bad(pmd_t *pmd) 114 { 115 pmd_ERROR(*pmd); 116 pmd_clear(pmd); 117 } 118 119 /* 120 * Note: this doesn't free the actual pages themselves. That 121 * has been handled earlier when unmapping all the memory regions. 122 */ 123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 124 { 125 struct page *page = pmd_page(*pmd); 126 pmd_clear(pmd); 127 pte_lock_deinit(page); 128 pte_free_tlb(tlb, page); 129 dec_page_state(nr_page_table_pages); 130 tlb->mm->nr_ptes--; 131 } 132 133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 134 unsigned long addr, unsigned long end, 135 unsigned long floor, unsigned long ceiling) 136 { 137 pmd_t *pmd; 138 unsigned long next; 139 unsigned long start; 140 141 start = addr; 142 pmd = pmd_offset(pud, addr); 143 do { 144 next = pmd_addr_end(addr, end); 145 if (pmd_none_or_clear_bad(pmd)) 146 continue; 147 free_pte_range(tlb, pmd); 148 } while (pmd++, addr = next, addr != end); 149 150 start &= PUD_MASK; 151 if (start < floor) 152 return; 153 if (ceiling) { 154 ceiling &= PUD_MASK; 155 if (!ceiling) 156 return; 157 } 158 if (end - 1 > ceiling - 1) 159 return; 160 161 pmd = pmd_offset(pud, start); 162 pud_clear(pud); 163 pmd_free_tlb(tlb, pmd); 164 } 165 166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 167 unsigned long addr, unsigned long end, 168 unsigned long floor, unsigned long ceiling) 169 { 170 pud_t *pud; 171 unsigned long next; 172 unsigned long start; 173 174 start = addr; 175 pud = pud_offset(pgd, addr); 176 do { 177 next = pud_addr_end(addr, end); 178 if (pud_none_or_clear_bad(pud)) 179 continue; 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 181 } while (pud++, addr = next, addr != end); 182 183 start &= PGDIR_MASK; 184 if (start < floor) 185 return; 186 if (ceiling) { 187 ceiling &= PGDIR_MASK; 188 if (!ceiling) 189 return; 190 } 191 if (end - 1 > ceiling - 1) 192 return; 193 194 pud = pud_offset(pgd, start); 195 pgd_clear(pgd); 196 pud_free_tlb(tlb, pud); 197 } 198 199 /* 200 * This function frees user-level page tables of a process. 201 * 202 * Must be called with pagetable lock held. 203 */ 204 void free_pgd_range(struct mmu_gather **tlb, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pgd_t *pgd; 209 unsigned long next; 210 unsigned long start; 211 212 /* 213 * The next few lines have given us lots of grief... 214 * 215 * Why are we testing PMD* at this top level? Because often 216 * there will be no work to do at all, and we'd prefer not to 217 * go all the way down to the bottom just to discover that. 218 * 219 * Why all these "- 1"s? Because 0 represents both the bottom 220 * of the address space and the top of it (using -1 for the 221 * top wouldn't help much: the masks would do the wrong thing). 222 * The rule is that addr 0 and floor 0 refer to the bottom of 223 * the address space, but end 0 and ceiling 0 refer to the top 224 * Comparisons need to use "end - 1" and "ceiling - 1" (though 225 * that end 0 case should be mythical). 226 * 227 * Wherever addr is brought up or ceiling brought down, we must 228 * be careful to reject "the opposite 0" before it confuses the 229 * subsequent tests. But what about where end is brought down 230 * by PMD_SIZE below? no, end can't go down to 0 there. 231 * 232 * Whereas we round start (addr) and ceiling down, by different 233 * masks at different levels, in order to test whether a table 234 * now has no other vmas using it, so can be freed, we don't 235 * bother to round floor or end up - the tests don't need that. 236 */ 237 238 addr &= PMD_MASK; 239 if (addr < floor) { 240 addr += PMD_SIZE; 241 if (!addr) 242 return; 243 } 244 if (ceiling) { 245 ceiling &= PMD_MASK; 246 if (!ceiling) 247 return; 248 } 249 if (end - 1 > ceiling - 1) 250 end -= PMD_SIZE; 251 if (addr > end - 1) 252 return; 253 254 start = addr; 255 pgd = pgd_offset((*tlb)->mm, addr); 256 do { 257 next = pgd_addr_end(addr, end); 258 if (pgd_none_or_clear_bad(pgd)) 259 continue; 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 261 } while (pgd++, addr = next, addr != end); 262 263 if (!(*tlb)->fullmm) 264 flush_tlb_pgtables((*tlb)->mm, start, end); 265 } 266 267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 268 unsigned long floor, unsigned long ceiling) 269 { 270 while (vma) { 271 struct vm_area_struct *next = vma->vm_next; 272 unsigned long addr = vma->vm_start; 273 274 /* 275 * Hide vma from rmap and vmtruncate before freeing pgtables 276 */ 277 anon_vma_unlink(vma); 278 unlink_file_vma(vma); 279 280 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) { 281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 282 floor, next? next->vm_start: ceiling); 283 } else { 284 /* 285 * Optimization: gather nearby vmas into one call down 286 */ 287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 288 && !is_hugepage_only_range(vma->vm_mm, next->vm_start, 289 HPAGE_SIZE)) { 290 vma = next; 291 next = vma->vm_next; 292 anon_vma_unlink(vma); 293 unlink_file_vma(vma); 294 } 295 free_pgd_range(tlb, addr, vma->vm_end, 296 floor, next? next->vm_start: ceiling); 297 } 298 vma = next; 299 } 300 } 301 302 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 303 { 304 struct page *new = pte_alloc_one(mm, address); 305 if (!new) 306 return -ENOMEM; 307 308 pte_lock_init(new); 309 spin_lock(&mm->page_table_lock); 310 if (pmd_present(*pmd)) { /* Another has populated it */ 311 pte_lock_deinit(new); 312 pte_free(new); 313 } else { 314 mm->nr_ptes++; 315 inc_page_state(nr_page_table_pages); 316 pmd_populate(mm, pmd, new); 317 } 318 spin_unlock(&mm->page_table_lock); 319 return 0; 320 } 321 322 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 323 { 324 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 325 if (!new) 326 return -ENOMEM; 327 328 spin_lock(&init_mm.page_table_lock); 329 if (pmd_present(*pmd)) /* Another has populated it */ 330 pte_free_kernel(new); 331 else 332 pmd_populate_kernel(&init_mm, pmd, new); 333 spin_unlock(&init_mm.page_table_lock); 334 return 0; 335 } 336 337 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 338 { 339 if (file_rss) 340 add_mm_counter(mm, file_rss, file_rss); 341 if (anon_rss) 342 add_mm_counter(mm, anon_rss, anon_rss); 343 } 344 345 /* 346 * This function is called to print an error when a bad pte 347 * is found. For example, we might have a PFN-mapped pte in 348 * a region that doesn't allow it. 349 * 350 * The calling function must still handle the error. 351 */ 352 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 353 { 354 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 355 "vm_flags = %lx, vaddr = %lx\n", 356 (long long)pte_val(pte), 357 (vma->vm_mm == current->mm ? current->comm : "???"), 358 vma->vm_flags, vaddr); 359 dump_stack(); 360 } 361 362 static inline int is_cow_mapping(unsigned int flags) 363 { 364 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 365 } 366 367 /* 368 * This function gets the "struct page" associated with a pte. 369 * 370 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping 371 * will have each page table entry just pointing to a raw page frame 372 * number, and as far as the VM layer is concerned, those do not have 373 * pages associated with them - even if the PFN might point to memory 374 * that otherwise is perfectly fine and has a "struct page". 375 * 376 * The way we recognize those mappings is through the rules set up 377 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, 378 * and the vm_pgoff will point to the first PFN mapped: thus every 379 * page that is a raw mapping will always honor the rule 380 * 381 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 382 * 383 * and if that isn't true, the page has been COW'ed (in which case it 384 * _does_ have a "struct page" associated with it even if it is in a 385 * VM_PFNMAP range). 386 */ 387 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 388 { 389 unsigned long pfn = pte_pfn(pte); 390 391 if (vma->vm_flags & VM_PFNMAP) { 392 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 393 if (pfn == vma->vm_pgoff + off) 394 return NULL; 395 if (!is_cow_mapping(vma->vm_flags)) 396 return NULL; 397 } 398 399 /* 400 * Add some anal sanity checks for now. Eventually, 401 * we should just do "return pfn_to_page(pfn)", but 402 * in the meantime we check that we get a valid pfn, 403 * and that the resulting page looks ok. 404 * 405 * Remove this test eventually! 406 */ 407 if (unlikely(!pfn_valid(pfn))) { 408 print_bad_pte(vma, pte, addr); 409 return NULL; 410 } 411 412 /* 413 * NOTE! We still have PageReserved() pages in the page 414 * tables. 415 * 416 * The PAGE_ZERO() pages and various VDSO mappings can 417 * cause them to exist. 418 */ 419 return pfn_to_page(pfn); 420 } 421 422 /* 423 * copy one vm_area from one task to the other. Assumes the page tables 424 * already present in the new task to be cleared in the whole range 425 * covered by this vma. 426 */ 427 428 static inline void 429 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 430 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 431 unsigned long addr, int *rss) 432 { 433 unsigned long vm_flags = vma->vm_flags; 434 pte_t pte = *src_pte; 435 struct page *page; 436 437 /* pte contains position in swap or file, so copy. */ 438 if (unlikely(!pte_present(pte))) { 439 if (!pte_file(pte)) { 440 swap_duplicate(pte_to_swp_entry(pte)); 441 /* make sure dst_mm is on swapoff's mmlist. */ 442 if (unlikely(list_empty(&dst_mm->mmlist))) { 443 spin_lock(&mmlist_lock); 444 if (list_empty(&dst_mm->mmlist)) 445 list_add(&dst_mm->mmlist, 446 &src_mm->mmlist); 447 spin_unlock(&mmlist_lock); 448 } 449 } 450 goto out_set_pte; 451 } 452 453 /* 454 * If it's a COW mapping, write protect it both 455 * in the parent and the child 456 */ 457 if (is_cow_mapping(vm_flags)) { 458 ptep_set_wrprotect(src_mm, addr, src_pte); 459 pte = *src_pte; 460 } 461 462 /* 463 * If it's a shared mapping, mark it clean in 464 * the child 465 */ 466 if (vm_flags & VM_SHARED) 467 pte = pte_mkclean(pte); 468 pte = pte_mkold(pte); 469 470 page = vm_normal_page(vma, addr, pte); 471 if (page) { 472 get_page(page); 473 page_dup_rmap(page); 474 rss[!!PageAnon(page)]++; 475 } 476 477 out_set_pte: 478 set_pte_at(dst_mm, addr, dst_pte, pte); 479 } 480 481 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 482 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 483 unsigned long addr, unsigned long end) 484 { 485 pte_t *src_pte, *dst_pte; 486 spinlock_t *src_ptl, *dst_ptl; 487 int progress = 0; 488 int rss[2]; 489 490 again: 491 rss[1] = rss[0] = 0; 492 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 493 if (!dst_pte) 494 return -ENOMEM; 495 src_pte = pte_offset_map_nested(src_pmd, addr); 496 src_ptl = pte_lockptr(src_mm, src_pmd); 497 spin_lock(src_ptl); 498 499 do { 500 /* 501 * We are holding two locks at this point - either of them 502 * could generate latencies in another task on another CPU. 503 */ 504 if (progress >= 32) { 505 progress = 0; 506 if (need_resched() || 507 need_lockbreak(src_ptl) || 508 need_lockbreak(dst_ptl)) 509 break; 510 } 511 if (pte_none(*src_pte)) { 512 progress++; 513 continue; 514 } 515 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 516 progress += 8; 517 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 518 519 spin_unlock(src_ptl); 520 pte_unmap_nested(src_pte - 1); 521 add_mm_rss(dst_mm, rss[0], rss[1]); 522 pte_unmap_unlock(dst_pte - 1, dst_ptl); 523 cond_resched(); 524 if (addr != end) 525 goto again; 526 return 0; 527 } 528 529 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 530 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 531 unsigned long addr, unsigned long end) 532 { 533 pmd_t *src_pmd, *dst_pmd; 534 unsigned long next; 535 536 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 537 if (!dst_pmd) 538 return -ENOMEM; 539 src_pmd = pmd_offset(src_pud, addr); 540 do { 541 next = pmd_addr_end(addr, end); 542 if (pmd_none_or_clear_bad(src_pmd)) 543 continue; 544 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 545 vma, addr, next)) 546 return -ENOMEM; 547 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 548 return 0; 549 } 550 551 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 552 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 553 unsigned long addr, unsigned long end) 554 { 555 pud_t *src_pud, *dst_pud; 556 unsigned long next; 557 558 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 559 if (!dst_pud) 560 return -ENOMEM; 561 src_pud = pud_offset(src_pgd, addr); 562 do { 563 next = pud_addr_end(addr, end); 564 if (pud_none_or_clear_bad(src_pud)) 565 continue; 566 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 567 vma, addr, next)) 568 return -ENOMEM; 569 } while (dst_pud++, src_pud++, addr = next, addr != end); 570 return 0; 571 } 572 573 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 574 struct vm_area_struct *vma) 575 { 576 pgd_t *src_pgd, *dst_pgd; 577 unsigned long next; 578 unsigned long addr = vma->vm_start; 579 unsigned long end = vma->vm_end; 580 581 /* 582 * Don't copy ptes where a page fault will fill them correctly. 583 * Fork becomes much lighter when there are big shared or private 584 * readonly mappings. The tradeoff is that copy_page_range is more 585 * efficient than faulting. 586 */ 587 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 588 if (!vma->anon_vma) 589 return 0; 590 } 591 592 if (is_vm_hugetlb_page(vma)) 593 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 594 595 dst_pgd = pgd_offset(dst_mm, addr); 596 src_pgd = pgd_offset(src_mm, addr); 597 do { 598 next = pgd_addr_end(addr, end); 599 if (pgd_none_or_clear_bad(src_pgd)) 600 continue; 601 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 602 vma, addr, next)) 603 return -ENOMEM; 604 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 605 return 0; 606 } 607 608 static unsigned long zap_pte_range(struct mmu_gather *tlb, 609 struct vm_area_struct *vma, pmd_t *pmd, 610 unsigned long addr, unsigned long end, 611 long *zap_work, struct zap_details *details) 612 { 613 struct mm_struct *mm = tlb->mm; 614 pte_t *pte; 615 spinlock_t *ptl; 616 int file_rss = 0; 617 int anon_rss = 0; 618 619 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 620 do { 621 pte_t ptent = *pte; 622 if (pte_none(ptent)) { 623 (*zap_work)--; 624 continue; 625 } 626 627 (*zap_work) -= PAGE_SIZE; 628 629 if (pte_present(ptent)) { 630 struct page *page; 631 632 page = vm_normal_page(vma, addr, ptent); 633 if (unlikely(details) && page) { 634 /* 635 * unmap_shared_mapping_pages() wants to 636 * invalidate cache without truncating: 637 * unmap shared but keep private pages. 638 */ 639 if (details->check_mapping && 640 details->check_mapping != page->mapping) 641 continue; 642 /* 643 * Each page->index must be checked when 644 * invalidating or truncating nonlinear. 645 */ 646 if (details->nonlinear_vma && 647 (page->index < details->first_index || 648 page->index > details->last_index)) 649 continue; 650 } 651 ptent = ptep_get_and_clear_full(mm, addr, pte, 652 tlb->fullmm); 653 tlb_remove_tlb_entry(tlb, pte, addr); 654 if (unlikely(!page)) 655 continue; 656 if (unlikely(details) && details->nonlinear_vma 657 && linear_page_index(details->nonlinear_vma, 658 addr) != page->index) 659 set_pte_at(mm, addr, pte, 660 pgoff_to_pte(page->index)); 661 if (PageAnon(page)) 662 anon_rss--; 663 else { 664 if (pte_dirty(ptent)) 665 set_page_dirty(page); 666 if (pte_young(ptent)) 667 mark_page_accessed(page); 668 file_rss--; 669 } 670 page_remove_rmap(page); 671 tlb_remove_page(tlb, page); 672 continue; 673 } 674 /* 675 * If details->check_mapping, we leave swap entries; 676 * if details->nonlinear_vma, we leave file entries. 677 */ 678 if (unlikely(details)) 679 continue; 680 if (!pte_file(ptent)) 681 free_swap_and_cache(pte_to_swp_entry(ptent)); 682 pte_clear_full(mm, addr, pte, tlb->fullmm); 683 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 684 685 add_mm_rss(mm, file_rss, anon_rss); 686 pte_unmap_unlock(pte - 1, ptl); 687 688 return addr; 689 } 690 691 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 692 struct vm_area_struct *vma, pud_t *pud, 693 unsigned long addr, unsigned long end, 694 long *zap_work, struct zap_details *details) 695 { 696 pmd_t *pmd; 697 unsigned long next; 698 699 pmd = pmd_offset(pud, addr); 700 do { 701 next = pmd_addr_end(addr, end); 702 if (pmd_none_or_clear_bad(pmd)) { 703 (*zap_work)--; 704 continue; 705 } 706 next = zap_pte_range(tlb, vma, pmd, addr, next, 707 zap_work, details); 708 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 709 710 return addr; 711 } 712 713 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 714 struct vm_area_struct *vma, pgd_t *pgd, 715 unsigned long addr, unsigned long end, 716 long *zap_work, struct zap_details *details) 717 { 718 pud_t *pud; 719 unsigned long next; 720 721 pud = pud_offset(pgd, addr); 722 do { 723 next = pud_addr_end(addr, end); 724 if (pud_none_or_clear_bad(pud)) { 725 (*zap_work)--; 726 continue; 727 } 728 next = zap_pmd_range(tlb, vma, pud, addr, next, 729 zap_work, details); 730 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 731 732 return addr; 733 } 734 735 static unsigned long unmap_page_range(struct mmu_gather *tlb, 736 struct vm_area_struct *vma, 737 unsigned long addr, unsigned long end, 738 long *zap_work, struct zap_details *details) 739 { 740 pgd_t *pgd; 741 unsigned long next; 742 743 if (details && !details->check_mapping && !details->nonlinear_vma) 744 details = NULL; 745 746 BUG_ON(addr >= end); 747 tlb_start_vma(tlb, vma); 748 pgd = pgd_offset(vma->vm_mm, addr); 749 do { 750 next = pgd_addr_end(addr, end); 751 if (pgd_none_or_clear_bad(pgd)) { 752 (*zap_work)--; 753 continue; 754 } 755 next = zap_pud_range(tlb, vma, pgd, addr, next, 756 zap_work, details); 757 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 758 tlb_end_vma(tlb, vma); 759 760 return addr; 761 } 762 763 #ifdef CONFIG_PREEMPT 764 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 765 #else 766 /* No preempt: go for improved straight-line efficiency */ 767 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 768 #endif 769 770 /** 771 * unmap_vmas - unmap a range of memory covered by a list of vma's 772 * @tlbp: address of the caller's struct mmu_gather 773 * @vma: the starting vma 774 * @start_addr: virtual address at which to start unmapping 775 * @end_addr: virtual address at which to end unmapping 776 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 777 * @details: details of nonlinear truncation or shared cache invalidation 778 * 779 * Returns the end address of the unmapping (restart addr if interrupted). 780 * 781 * Unmap all pages in the vma list. 782 * 783 * We aim to not hold locks for too long (for scheduling latency reasons). 784 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 785 * return the ending mmu_gather to the caller. 786 * 787 * Only addresses between `start' and `end' will be unmapped. 788 * 789 * The VMA list must be sorted in ascending virtual address order. 790 * 791 * unmap_vmas() assumes that the caller will flush the whole unmapped address 792 * range after unmap_vmas() returns. So the only responsibility here is to 793 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 794 * drops the lock and schedules. 795 */ 796 unsigned long unmap_vmas(struct mmu_gather **tlbp, 797 struct vm_area_struct *vma, unsigned long start_addr, 798 unsigned long end_addr, unsigned long *nr_accounted, 799 struct zap_details *details) 800 { 801 long zap_work = ZAP_BLOCK_SIZE; 802 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 803 int tlb_start_valid = 0; 804 unsigned long start = start_addr; 805 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 806 int fullmm = (*tlbp)->fullmm; 807 808 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 809 unsigned long end; 810 811 start = max(vma->vm_start, start_addr); 812 if (start >= vma->vm_end) 813 continue; 814 end = min(vma->vm_end, end_addr); 815 if (end <= vma->vm_start) 816 continue; 817 818 if (vma->vm_flags & VM_ACCOUNT) 819 *nr_accounted += (end - start) >> PAGE_SHIFT; 820 821 while (start != end) { 822 if (!tlb_start_valid) { 823 tlb_start = start; 824 tlb_start_valid = 1; 825 } 826 827 if (unlikely(is_vm_hugetlb_page(vma))) { 828 unmap_hugepage_range(vma, start, end); 829 zap_work -= (end - start) / 830 (HPAGE_SIZE / PAGE_SIZE); 831 start = end; 832 } else 833 start = unmap_page_range(*tlbp, vma, 834 start, end, &zap_work, details); 835 836 if (zap_work > 0) { 837 BUG_ON(start != end); 838 break; 839 } 840 841 tlb_finish_mmu(*tlbp, tlb_start, start); 842 843 if (need_resched() || 844 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 845 if (i_mmap_lock) { 846 *tlbp = NULL; 847 goto out; 848 } 849 cond_resched(); 850 } 851 852 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 853 tlb_start_valid = 0; 854 zap_work = ZAP_BLOCK_SIZE; 855 } 856 } 857 out: 858 return start; /* which is now the end (or restart) address */ 859 } 860 861 /** 862 * zap_page_range - remove user pages in a given range 863 * @vma: vm_area_struct holding the applicable pages 864 * @address: starting address of pages to zap 865 * @size: number of bytes to zap 866 * @details: details of nonlinear truncation or shared cache invalidation 867 */ 868 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 869 unsigned long size, struct zap_details *details) 870 { 871 struct mm_struct *mm = vma->vm_mm; 872 struct mmu_gather *tlb; 873 unsigned long end = address + size; 874 unsigned long nr_accounted = 0; 875 876 lru_add_drain(); 877 tlb = tlb_gather_mmu(mm, 0); 878 update_hiwater_rss(mm); 879 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 880 if (tlb) 881 tlb_finish_mmu(tlb, address, end); 882 return end; 883 } 884 885 /* 886 * Do a quick page-table lookup for a single page. 887 */ 888 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 889 unsigned int flags) 890 { 891 pgd_t *pgd; 892 pud_t *pud; 893 pmd_t *pmd; 894 pte_t *ptep, pte; 895 spinlock_t *ptl; 896 struct page *page; 897 struct mm_struct *mm = vma->vm_mm; 898 899 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 900 if (!IS_ERR(page)) { 901 BUG_ON(flags & FOLL_GET); 902 goto out; 903 } 904 905 page = NULL; 906 pgd = pgd_offset(mm, address); 907 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 908 goto no_page_table; 909 910 pud = pud_offset(pgd, address); 911 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 912 goto no_page_table; 913 914 pmd = pmd_offset(pud, address); 915 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 916 goto no_page_table; 917 918 if (pmd_huge(*pmd)) { 919 BUG_ON(flags & FOLL_GET); 920 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 921 goto out; 922 } 923 924 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 925 if (!ptep) 926 goto out; 927 928 pte = *ptep; 929 if (!pte_present(pte)) 930 goto unlock; 931 if ((flags & FOLL_WRITE) && !pte_write(pte)) 932 goto unlock; 933 page = vm_normal_page(vma, address, pte); 934 if (unlikely(!page)) 935 goto unlock; 936 937 if (flags & FOLL_GET) 938 get_page(page); 939 if (flags & FOLL_TOUCH) { 940 if ((flags & FOLL_WRITE) && 941 !pte_dirty(pte) && !PageDirty(page)) 942 set_page_dirty(page); 943 mark_page_accessed(page); 944 } 945 unlock: 946 pte_unmap_unlock(ptep, ptl); 947 out: 948 return page; 949 950 no_page_table: 951 /* 952 * When core dumping an enormous anonymous area that nobody 953 * has touched so far, we don't want to allocate page tables. 954 */ 955 if (flags & FOLL_ANON) { 956 page = ZERO_PAGE(address); 957 if (flags & FOLL_GET) 958 get_page(page); 959 BUG_ON(flags & FOLL_WRITE); 960 } 961 return page; 962 } 963 964 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 965 unsigned long start, int len, int write, int force, 966 struct page **pages, struct vm_area_struct **vmas) 967 { 968 int i; 969 unsigned int vm_flags; 970 971 /* 972 * Require read or write permissions. 973 * If 'force' is set, we only require the "MAY" flags. 974 */ 975 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 976 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 977 i = 0; 978 979 do { 980 struct vm_area_struct *vma; 981 unsigned int foll_flags; 982 983 vma = find_extend_vma(mm, start); 984 if (!vma && in_gate_area(tsk, start)) { 985 unsigned long pg = start & PAGE_MASK; 986 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 987 pgd_t *pgd; 988 pud_t *pud; 989 pmd_t *pmd; 990 pte_t *pte; 991 if (write) /* user gate pages are read-only */ 992 return i ? : -EFAULT; 993 if (pg > TASK_SIZE) 994 pgd = pgd_offset_k(pg); 995 else 996 pgd = pgd_offset_gate(mm, pg); 997 BUG_ON(pgd_none(*pgd)); 998 pud = pud_offset(pgd, pg); 999 BUG_ON(pud_none(*pud)); 1000 pmd = pmd_offset(pud, pg); 1001 if (pmd_none(*pmd)) 1002 return i ? : -EFAULT; 1003 pte = pte_offset_map(pmd, pg); 1004 if (pte_none(*pte)) { 1005 pte_unmap(pte); 1006 return i ? : -EFAULT; 1007 } 1008 if (pages) { 1009 struct page *page = vm_normal_page(gate_vma, start, *pte); 1010 pages[i] = page; 1011 if (page) 1012 get_page(page); 1013 } 1014 pte_unmap(pte); 1015 if (vmas) 1016 vmas[i] = gate_vma; 1017 i++; 1018 start += PAGE_SIZE; 1019 len--; 1020 continue; 1021 } 1022 1023 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1024 || !(vm_flags & vma->vm_flags)) 1025 return i ? : -EFAULT; 1026 1027 if (is_vm_hugetlb_page(vma)) { 1028 i = follow_hugetlb_page(mm, vma, pages, vmas, 1029 &start, &len, i); 1030 continue; 1031 } 1032 1033 foll_flags = FOLL_TOUCH; 1034 if (pages) 1035 foll_flags |= FOLL_GET; 1036 if (!write && !(vma->vm_flags & VM_LOCKED) && 1037 (!vma->vm_ops || !vma->vm_ops->nopage)) 1038 foll_flags |= FOLL_ANON; 1039 1040 do { 1041 struct page *page; 1042 1043 if (write) 1044 foll_flags |= FOLL_WRITE; 1045 1046 cond_resched(); 1047 while (!(page = follow_page(vma, start, foll_flags))) { 1048 int ret; 1049 ret = __handle_mm_fault(mm, vma, start, 1050 foll_flags & FOLL_WRITE); 1051 /* 1052 * The VM_FAULT_WRITE bit tells us that do_wp_page has 1053 * broken COW when necessary, even if maybe_mkwrite 1054 * decided not to set pte_write. We can thus safely do 1055 * subsequent page lookups as if they were reads. 1056 */ 1057 if (ret & VM_FAULT_WRITE) 1058 foll_flags &= ~FOLL_WRITE; 1059 1060 switch (ret & ~VM_FAULT_WRITE) { 1061 case VM_FAULT_MINOR: 1062 tsk->min_flt++; 1063 break; 1064 case VM_FAULT_MAJOR: 1065 tsk->maj_flt++; 1066 break; 1067 case VM_FAULT_SIGBUS: 1068 return i ? i : -EFAULT; 1069 case VM_FAULT_OOM: 1070 return i ? i : -ENOMEM; 1071 default: 1072 BUG(); 1073 } 1074 } 1075 if (pages) { 1076 pages[i] = page; 1077 flush_dcache_page(page); 1078 } 1079 if (vmas) 1080 vmas[i] = vma; 1081 i++; 1082 start += PAGE_SIZE; 1083 len--; 1084 } while (len && start < vma->vm_end); 1085 } while (len); 1086 return i; 1087 } 1088 EXPORT_SYMBOL(get_user_pages); 1089 1090 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1091 unsigned long addr, unsigned long end, pgprot_t prot) 1092 { 1093 pte_t *pte; 1094 spinlock_t *ptl; 1095 1096 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1097 if (!pte) 1098 return -ENOMEM; 1099 do { 1100 struct page *page = ZERO_PAGE(addr); 1101 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); 1102 page_cache_get(page); 1103 page_add_file_rmap(page); 1104 inc_mm_counter(mm, file_rss); 1105 BUG_ON(!pte_none(*pte)); 1106 set_pte_at(mm, addr, pte, zero_pte); 1107 } while (pte++, addr += PAGE_SIZE, addr != end); 1108 pte_unmap_unlock(pte - 1, ptl); 1109 return 0; 1110 } 1111 1112 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1113 unsigned long addr, unsigned long end, pgprot_t prot) 1114 { 1115 pmd_t *pmd; 1116 unsigned long next; 1117 1118 pmd = pmd_alloc(mm, pud, addr); 1119 if (!pmd) 1120 return -ENOMEM; 1121 do { 1122 next = pmd_addr_end(addr, end); 1123 if (zeromap_pte_range(mm, pmd, addr, next, prot)) 1124 return -ENOMEM; 1125 } while (pmd++, addr = next, addr != end); 1126 return 0; 1127 } 1128 1129 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1130 unsigned long addr, unsigned long end, pgprot_t prot) 1131 { 1132 pud_t *pud; 1133 unsigned long next; 1134 1135 pud = pud_alloc(mm, pgd, addr); 1136 if (!pud) 1137 return -ENOMEM; 1138 do { 1139 next = pud_addr_end(addr, end); 1140 if (zeromap_pmd_range(mm, pud, addr, next, prot)) 1141 return -ENOMEM; 1142 } while (pud++, addr = next, addr != end); 1143 return 0; 1144 } 1145 1146 int zeromap_page_range(struct vm_area_struct *vma, 1147 unsigned long addr, unsigned long size, pgprot_t prot) 1148 { 1149 pgd_t *pgd; 1150 unsigned long next; 1151 unsigned long end = addr + size; 1152 struct mm_struct *mm = vma->vm_mm; 1153 int err; 1154 1155 BUG_ON(addr >= end); 1156 pgd = pgd_offset(mm, addr); 1157 flush_cache_range(vma, addr, end); 1158 do { 1159 next = pgd_addr_end(addr, end); 1160 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1161 if (err) 1162 break; 1163 } while (pgd++, addr = next, addr != end); 1164 return err; 1165 } 1166 1167 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) 1168 { 1169 pgd_t * pgd = pgd_offset(mm, addr); 1170 pud_t * pud = pud_alloc(mm, pgd, addr); 1171 if (pud) { 1172 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1173 if (pmd) 1174 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1175 } 1176 return NULL; 1177 } 1178 1179 /* 1180 * This is the old fallback for page remapping. 1181 * 1182 * For historical reasons, it only allows reserved pages. Only 1183 * old drivers should use this, and they needed to mark their 1184 * pages reserved for the old functions anyway. 1185 */ 1186 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) 1187 { 1188 int retval; 1189 pte_t *pte; 1190 spinlock_t *ptl; 1191 1192 retval = -EINVAL; 1193 if (PageAnon(page)) 1194 goto out; 1195 retval = -ENOMEM; 1196 flush_dcache_page(page); 1197 pte = get_locked_pte(mm, addr, &ptl); 1198 if (!pte) 1199 goto out; 1200 retval = -EBUSY; 1201 if (!pte_none(*pte)) 1202 goto out_unlock; 1203 1204 /* Ok, finally just insert the thing.. */ 1205 get_page(page); 1206 inc_mm_counter(mm, file_rss); 1207 page_add_file_rmap(page); 1208 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1209 1210 retval = 0; 1211 out_unlock: 1212 pte_unmap_unlock(pte, ptl); 1213 out: 1214 return retval; 1215 } 1216 1217 /* 1218 * This allows drivers to insert individual pages they've allocated 1219 * into a user vma. 1220 * 1221 * The page has to be a nice clean _individual_ kernel allocation. 1222 * If you allocate a compound page, you need to have marked it as 1223 * such (__GFP_COMP), or manually just split the page up yourself 1224 * (which is mainly an issue of doing "set_page_count(page, 1)" for 1225 * each sub-page, and then freeing them one by one when you free 1226 * them rather than freeing it as a compound page). 1227 * 1228 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1229 * took an arbitrary page protection parameter. This doesn't allow 1230 * that. Your vma protection will have to be set up correctly, which 1231 * means that if you want a shared writable mapping, you'd better 1232 * ask for a shared writable mapping! 1233 * 1234 * The page does not need to be reserved. 1235 */ 1236 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) 1237 { 1238 if (addr < vma->vm_start || addr >= vma->vm_end) 1239 return -EFAULT; 1240 if (!page_count(page)) 1241 return -EINVAL; 1242 vma->vm_flags |= VM_INSERTPAGE; 1243 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); 1244 } 1245 EXPORT_SYMBOL(vm_insert_page); 1246 1247 /* 1248 * maps a range of physical memory into the requested pages. the old 1249 * mappings are removed. any references to nonexistent pages results 1250 * in null mappings (currently treated as "copy-on-access") 1251 */ 1252 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1253 unsigned long addr, unsigned long end, 1254 unsigned long pfn, pgprot_t prot) 1255 { 1256 pte_t *pte; 1257 spinlock_t *ptl; 1258 1259 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1260 if (!pte) 1261 return -ENOMEM; 1262 do { 1263 BUG_ON(!pte_none(*pte)); 1264 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1265 pfn++; 1266 } while (pte++, addr += PAGE_SIZE, addr != end); 1267 pte_unmap_unlock(pte - 1, ptl); 1268 return 0; 1269 } 1270 1271 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1272 unsigned long addr, unsigned long end, 1273 unsigned long pfn, pgprot_t prot) 1274 { 1275 pmd_t *pmd; 1276 unsigned long next; 1277 1278 pfn -= addr >> PAGE_SHIFT; 1279 pmd = pmd_alloc(mm, pud, addr); 1280 if (!pmd) 1281 return -ENOMEM; 1282 do { 1283 next = pmd_addr_end(addr, end); 1284 if (remap_pte_range(mm, pmd, addr, next, 1285 pfn + (addr >> PAGE_SHIFT), prot)) 1286 return -ENOMEM; 1287 } while (pmd++, addr = next, addr != end); 1288 return 0; 1289 } 1290 1291 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1292 unsigned long addr, unsigned long end, 1293 unsigned long pfn, pgprot_t prot) 1294 { 1295 pud_t *pud; 1296 unsigned long next; 1297 1298 pfn -= addr >> PAGE_SHIFT; 1299 pud = pud_alloc(mm, pgd, addr); 1300 if (!pud) 1301 return -ENOMEM; 1302 do { 1303 next = pud_addr_end(addr, end); 1304 if (remap_pmd_range(mm, pud, addr, next, 1305 pfn + (addr >> PAGE_SHIFT), prot)) 1306 return -ENOMEM; 1307 } while (pud++, addr = next, addr != end); 1308 return 0; 1309 } 1310 1311 /* Note: this is only safe if the mm semaphore is held when called. */ 1312 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1313 unsigned long pfn, unsigned long size, pgprot_t prot) 1314 { 1315 pgd_t *pgd; 1316 unsigned long next; 1317 unsigned long end = addr + PAGE_ALIGN(size); 1318 struct mm_struct *mm = vma->vm_mm; 1319 int err; 1320 1321 /* 1322 * Physically remapped pages are special. Tell the 1323 * rest of the world about it: 1324 * VM_IO tells people not to look at these pages 1325 * (accesses can have side effects). 1326 * VM_RESERVED is specified all over the place, because 1327 * in 2.4 it kept swapout's vma scan off this vma; but 1328 * in 2.6 the LRU scan won't even find its pages, so this 1329 * flag means no more than count its pages in reserved_vm, 1330 * and omit it from core dump, even when VM_IO turned off. 1331 * VM_PFNMAP tells the core MM that the base pages are just 1332 * raw PFN mappings, and do not have a "struct page" associated 1333 * with them. 1334 * 1335 * There's a horrible special case to handle copy-on-write 1336 * behaviour that some programs depend on. We mark the "original" 1337 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1338 */ 1339 if (is_cow_mapping(vma->vm_flags)) { 1340 if (addr != vma->vm_start || end != vma->vm_end) 1341 return -EINVAL; 1342 vma->vm_pgoff = pfn; 1343 } 1344 1345 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1346 1347 BUG_ON(addr >= end); 1348 pfn -= addr >> PAGE_SHIFT; 1349 pgd = pgd_offset(mm, addr); 1350 flush_cache_range(vma, addr, end); 1351 do { 1352 next = pgd_addr_end(addr, end); 1353 err = remap_pud_range(mm, pgd, addr, next, 1354 pfn + (addr >> PAGE_SHIFT), prot); 1355 if (err) 1356 break; 1357 } while (pgd++, addr = next, addr != end); 1358 return err; 1359 } 1360 EXPORT_SYMBOL(remap_pfn_range); 1361 1362 /* 1363 * handle_pte_fault chooses page fault handler according to an entry 1364 * which was read non-atomically. Before making any commitment, on 1365 * those architectures or configurations (e.g. i386 with PAE) which 1366 * might give a mix of unmatched parts, do_swap_page and do_file_page 1367 * must check under lock before unmapping the pte and proceeding 1368 * (but do_wp_page is only called after already making such a check; 1369 * and do_anonymous_page and do_no_page can safely check later on). 1370 */ 1371 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1372 pte_t *page_table, pte_t orig_pte) 1373 { 1374 int same = 1; 1375 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1376 if (sizeof(pte_t) > sizeof(unsigned long)) { 1377 spinlock_t *ptl = pte_lockptr(mm, pmd); 1378 spin_lock(ptl); 1379 same = pte_same(*page_table, orig_pte); 1380 spin_unlock(ptl); 1381 } 1382 #endif 1383 pte_unmap(page_table); 1384 return same; 1385 } 1386 1387 /* 1388 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1389 * servicing faults for write access. In the normal case, do always want 1390 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1391 * that do not have writing enabled, when used by access_process_vm. 1392 */ 1393 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1394 { 1395 if (likely(vma->vm_flags & VM_WRITE)) 1396 pte = pte_mkwrite(pte); 1397 return pte; 1398 } 1399 1400 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va) 1401 { 1402 /* 1403 * If the source page was a PFN mapping, we don't have 1404 * a "struct page" for it. We do a best-effort copy by 1405 * just copying from the original user address. If that 1406 * fails, we just zero-fill it. Live with it. 1407 */ 1408 if (unlikely(!src)) { 1409 void *kaddr = kmap_atomic(dst, KM_USER0); 1410 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1411 1412 /* 1413 * This really shouldn't fail, because the page is there 1414 * in the page tables. But it might just be unreadable, 1415 * in which case we just give up and fill the result with 1416 * zeroes. 1417 */ 1418 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1419 memset(kaddr, 0, PAGE_SIZE); 1420 kunmap_atomic(kaddr, KM_USER0); 1421 return; 1422 1423 } 1424 copy_user_highpage(dst, src, va); 1425 } 1426 1427 /* 1428 * This routine handles present pages, when users try to write 1429 * to a shared page. It is done by copying the page to a new address 1430 * and decrementing the shared-page counter for the old page. 1431 * 1432 * Note that this routine assumes that the protection checks have been 1433 * done by the caller (the low-level page fault routine in most cases). 1434 * Thus we can safely just mark it writable once we've done any necessary 1435 * COW. 1436 * 1437 * We also mark the page dirty at this point even though the page will 1438 * change only once the write actually happens. This avoids a few races, 1439 * and potentially makes it more efficient. 1440 * 1441 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1442 * but allow concurrent faults), with pte both mapped and locked. 1443 * We return with mmap_sem still held, but pte unmapped and unlocked. 1444 */ 1445 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1446 unsigned long address, pte_t *page_table, pmd_t *pmd, 1447 spinlock_t *ptl, pte_t orig_pte) 1448 { 1449 struct page *old_page, *new_page; 1450 pte_t entry; 1451 int ret = VM_FAULT_MINOR; 1452 1453 old_page = vm_normal_page(vma, address, orig_pte); 1454 if (!old_page) 1455 goto gotten; 1456 1457 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { 1458 int reuse = can_share_swap_page(old_page); 1459 unlock_page(old_page); 1460 if (reuse) { 1461 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1462 entry = pte_mkyoung(orig_pte); 1463 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1464 ptep_set_access_flags(vma, address, page_table, entry, 1); 1465 update_mmu_cache(vma, address, entry); 1466 lazy_mmu_prot_update(entry); 1467 ret |= VM_FAULT_WRITE; 1468 goto unlock; 1469 } 1470 } 1471 1472 /* 1473 * Ok, we need to copy. Oh, well.. 1474 */ 1475 page_cache_get(old_page); 1476 gotten: 1477 pte_unmap_unlock(page_table, ptl); 1478 1479 if (unlikely(anon_vma_prepare(vma))) 1480 goto oom; 1481 if (old_page == ZERO_PAGE(address)) { 1482 new_page = alloc_zeroed_user_highpage(vma, address); 1483 if (!new_page) 1484 goto oom; 1485 } else { 1486 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1487 if (!new_page) 1488 goto oom; 1489 cow_user_page(new_page, old_page, address); 1490 } 1491 1492 /* 1493 * Re-check the pte - we dropped the lock 1494 */ 1495 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1496 if (likely(pte_same(*page_table, orig_pte))) { 1497 if (old_page) { 1498 page_remove_rmap(old_page); 1499 if (!PageAnon(old_page)) { 1500 dec_mm_counter(mm, file_rss); 1501 inc_mm_counter(mm, anon_rss); 1502 } 1503 } else 1504 inc_mm_counter(mm, anon_rss); 1505 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1506 entry = mk_pte(new_page, vma->vm_page_prot); 1507 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1508 ptep_establish(vma, address, page_table, entry); 1509 update_mmu_cache(vma, address, entry); 1510 lazy_mmu_prot_update(entry); 1511 lru_cache_add_active(new_page); 1512 page_add_new_anon_rmap(new_page, vma, address); 1513 1514 /* Free the old page.. */ 1515 new_page = old_page; 1516 ret |= VM_FAULT_WRITE; 1517 } 1518 if (new_page) 1519 page_cache_release(new_page); 1520 if (old_page) 1521 page_cache_release(old_page); 1522 unlock: 1523 pte_unmap_unlock(page_table, ptl); 1524 return ret; 1525 oom: 1526 if (old_page) 1527 page_cache_release(old_page); 1528 return VM_FAULT_OOM; 1529 } 1530 1531 /* 1532 * Helper functions for unmap_mapping_range(). 1533 * 1534 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1535 * 1536 * We have to restart searching the prio_tree whenever we drop the lock, 1537 * since the iterator is only valid while the lock is held, and anyway 1538 * a later vma might be split and reinserted earlier while lock dropped. 1539 * 1540 * The list of nonlinear vmas could be handled more efficiently, using 1541 * a placeholder, but handle it in the same way until a need is shown. 1542 * It is important to search the prio_tree before nonlinear list: a vma 1543 * may become nonlinear and be shifted from prio_tree to nonlinear list 1544 * while the lock is dropped; but never shifted from list to prio_tree. 1545 * 1546 * In order to make forward progress despite restarting the search, 1547 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1548 * quickly skip it next time around. Since the prio_tree search only 1549 * shows us those vmas affected by unmapping the range in question, we 1550 * can't efficiently keep all vmas in step with mapping->truncate_count: 1551 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1552 * mapping->truncate_count and vma->vm_truncate_count are protected by 1553 * i_mmap_lock. 1554 * 1555 * In order to make forward progress despite repeatedly restarting some 1556 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1557 * and restart from that address when we reach that vma again. It might 1558 * have been split or merged, shrunk or extended, but never shifted: so 1559 * restart_addr remains valid so long as it remains in the vma's range. 1560 * unmap_mapping_range forces truncate_count to leap over page-aligned 1561 * values so we can save vma's restart_addr in its truncate_count field. 1562 */ 1563 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1564 1565 static void reset_vma_truncate_counts(struct address_space *mapping) 1566 { 1567 struct vm_area_struct *vma; 1568 struct prio_tree_iter iter; 1569 1570 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1571 vma->vm_truncate_count = 0; 1572 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1573 vma->vm_truncate_count = 0; 1574 } 1575 1576 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1577 unsigned long start_addr, unsigned long end_addr, 1578 struct zap_details *details) 1579 { 1580 unsigned long restart_addr; 1581 int need_break; 1582 1583 again: 1584 restart_addr = vma->vm_truncate_count; 1585 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1586 start_addr = restart_addr; 1587 if (start_addr >= end_addr) { 1588 /* Top of vma has been split off since last time */ 1589 vma->vm_truncate_count = details->truncate_count; 1590 return 0; 1591 } 1592 } 1593 1594 restart_addr = zap_page_range(vma, start_addr, 1595 end_addr - start_addr, details); 1596 need_break = need_resched() || 1597 need_lockbreak(details->i_mmap_lock); 1598 1599 if (restart_addr >= end_addr) { 1600 /* We have now completed this vma: mark it so */ 1601 vma->vm_truncate_count = details->truncate_count; 1602 if (!need_break) 1603 return 0; 1604 } else { 1605 /* Note restart_addr in vma's truncate_count field */ 1606 vma->vm_truncate_count = restart_addr; 1607 if (!need_break) 1608 goto again; 1609 } 1610 1611 spin_unlock(details->i_mmap_lock); 1612 cond_resched(); 1613 spin_lock(details->i_mmap_lock); 1614 return -EINTR; 1615 } 1616 1617 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1618 struct zap_details *details) 1619 { 1620 struct vm_area_struct *vma; 1621 struct prio_tree_iter iter; 1622 pgoff_t vba, vea, zba, zea; 1623 1624 restart: 1625 vma_prio_tree_foreach(vma, &iter, root, 1626 details->first_index, details->last_index) { 1627 /* Skip quickly over those we have already dealt with */ 1628 if (vma->vm_truncate_count == details->truncate_count) 1629 continue; 1630 1631 vba = vma->vm_pgoff; 1632 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1633 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1634 zba = details->first_index; 1635 if (zba < vba) 1636 zba = vba; 1637 zea = details->last_index; 1638 if (zea > vea) 1639 zea = vea; 1640 1641 if (unmap_mapping_range_vma(vma, 1642 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1643 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1644 details) < 0) 1645 goto restart; 1646 } 1647 } 1648 1649 static inline void unmap_mapping_range_list(struct list_head *head, 1650 struct zap_details *details) 1651 { 1652 struct vm_area_struct *vma; 1653 1654 /* 1655 * In nonlinear VMAs there is no correspondence between virtual address 1656 * offset and file offset. So we must perform an exhaustive search 1657 * across *all* the pages in each nonlinear VMA, not just the pages 1658 * whose virtual address lies outside the file truncation point. 1659 */ 1660 restart: 1661 list_for_each_entry(vma, head, shared.vm_set.list) { 1662 /* Skip quickly over those we have already dealt with */ 1663 if (vma->vm_truncate_count == details->truncate_count) 1664 continue; 1665 details->nonlinear_vma = vma; 1666 if (unmap_mapping_range_vma(vma, vma->vm_start, 1667 vma->vm_end, details) < 0) 1668 goto restart; 1669 } 1670 } 1671 1672 /** 1673 * unmap_mapping_range - unmap the portion of all mmaps 1674 * in the specified address_space corresponding to the specified 1675 * page range in the underlying file. 1676 * @mapping: the address space containing mmaps to be unmapped. 1677 * @holebegin: byte in first page to unmap, relative to the start of 1678 * the underlying file. This will be rounded down to a PAGE_SIZE 1679 * boundary. Note that this is different from vmtruncate(), which 1680 * must keep the partial page. In contrast, we must get rid of 1681 * partial pages. 1682 * @holelen: size of prospective hole in bytes. This will be rounded 1683 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1684 * end of the file. 1685 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1686 * but 0 when invalidating pagecache, don't throw away private data. 1687 */ 1688 void unmap_mapping_range(struct address_space *mapping, 1689 loff_t const holebegin, loff_t const holelen, int even_cows) 1690 { 1691 struct zap_details details; 1692 pgoff_t hba = holebegin >> PAGE_SHIFT; 1693 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1694 1695 /* Check for overflow. */ 1696 if (sizeof(holelen) > sizeof(hlen)) { 1697 long long holeend = 1698 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1699 if (holeend & ~(long long)ULONG_MAX) 1700 hlen = ULONG_MAX - hba + 1; 1701 } 1702 1703 details.check_mapping = even_cows? NULL: mapping; 1704 details.nonlinear_vma = NULL; 1705 details.first_index = hba; 1706 details.last_index = hba + hlen - 1; 1707 if (details.last_index < details.first_index) 1708 details.last_index = ULONG_MAX; 1709 details.i_mmap_lock = &mapping->i_mmap_lock; 1710 1711 spin_lock(&mapping->i_mmap_lock); 1712 1713 /* serialize i_size write against truncate_count write */ 1714 smp_wmb(); 1715 /* Protect against page faults, and endless unmapping loops */ 1716 mapping->truncate_count++; 1717 /* 1718 * For archs where spin_lock has inclusive semantics like ia64 1719 * this smp_mb() will prevent to read pagetable contents 1720 * before the truncate_count increment is visible to 1721 * other cpus. 1722 */ 1723 smp_mb(); 1724 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1725 if (mapping->truncate_count == 0) 1726 reset_vma_truncate_counts(mapping); 1727 mapping->truncate_count++; 1728 } 1729 details.truncate_count = mapping->truncate_count; 1730 1731 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1732 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1733 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1734 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1735 spin_unlock(&mapping->i_mmap_lock); 1736 } 1737 EXPORT_SYMBOL(unmap_mapping_range); 1738 1739 /* 1740 * Handle all mappings that got truncated by a "truncate()" 1741 * system call. 1742 * 1743 * NOTE! We have to be ready to update the memory sharing 1744 * between the file and the memory map for a potential last 1745 * incomplete page. Ugly, but necessary. 1746 */ 1747 int vmtruncate(struct inode * inode, loff_t offset) 1748 { 1749 struct address_space *mapping = inode->i_mapping; 1750 unsigned long limit; 1751 1752 if (inode->i_size < offset) 1753 goto do_expand; 1754 /* 1755 * truncation of in-use swapfiles is disallowed - it would cause 1756 * subsequent swapout to scribble on the now-freed blocks. 1757 */ 1758 if (IS_SWAPFILE(inode)) 1759 goto out_busy; 1760 i_size_write(inode, offset); 1761 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1762 truncate_inode_pages(mapping, offset); 1763 goto out_truncate; 1764 1765 do_expand: 1766 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1767 if (limit != RLIM_INFINITY && offset > limit) 1768 goto out_sig; 1769 if (offset > inode->i_sb->s_maxbytes) 1770 goto out_big; 1771 i_size_write(inode, offset); 1772 1773 out_truncate: 1774 if (inode->i_op && inode->i_op->truncate) 1775 inode->i_op->truncate(inode); 1776 return 0; 1777 out_sig: 1778 send_sig(SIGXFSZ, current, 0); 1779 out_big: 1780 return -EFBIG; 1781 out_busy: 1782 return -ETXTBSY; 1783 } 1784 EXPORT_SYMBOL(vmtruncate); 1785 1786 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 1787 { 1788 struct address_space *mapping = inode->i_mapping; 1789 1790 /* 1791 * If the underlying filesystem is not going to provide 1792 * a way to truncate a range of blocks (punch a hole) - 1793 * we should return failure right now. 1794 */ 1795 if (!inode->i_op || !inode->i_op->truncate_range) 1796 return -ENOSYS; 1797 1798 mutex_lock(&inode->i_mutex); 1799 down_write(&inode->i_alloc_sem); 1800 unmap_mapping_range(mapping, offset, (end - offset), 1); 1801 truncate_inode_pages_range(mapping, offset, end); 1802 inode->i_op->truncate_range(inode, offset, end); 1803 up_write(&inode->i_alloc_sem); 1804 mutex_unlock(&inode->i_mutex); 1805 1806 return 0; 1807 } 1808 EXPORT_SYMBOL(vmtruncate_range); 1809 1810 /* 1811 * Primitive swap readahead code. We simply read an aligned block of 1812 * (1 << page_cluster) entries in the swap area. This method is chosen 1813 * because it doesn't cost us any seek time. We also make sure to queue 1814 * the 'original' request together with the readahead ones... 1815 * 1816 * This has been extended to use the NUMA policies from the mm triggering 1817 * the readahead. 1818 * 1819 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1820 */ 1821 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 1822 { 1823 #ifdef CONFIG_NUMA 1824 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 1825 #endif 1826 int i, num; 1827 struct page *new_page; 1828 unsigned long offset; 1829 1830 /* 1831 * Get the number of handles we should do readahead io to. 1832 */ 1833 num = valid_swaphandles(entry, &offset); 1834 for (i = 0; i < num; offset++, i++) { 1835 /* Ok, do the async read-ahead now */ 1836 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 1837 offset), vma, addr); 1838 if (!new_page) 1839 break; 1840 page_cache_release(new_page); 1841 #ifdef CONFIG_NUMA 1842 /* 1843 * Find the next applicable VMA for the NUMA policy. 1844 */ 1845 addr += PAGE_SIZE; 1846 if (addr == 0) 1847 vma = NULL; 1848 if (vma) { 1849 if (addr >= vma->vm_end) { 1850 vma = next_vma; 1851 next_vma = vma ? vma->vm_next : NULL; 1852 } 1853 if (vma && addr < vma->vm_start) 1854 vma = NULL; 1855 } else { 1856 if (next_vma && addr >= next_vma->vm_start) { 1857 vma = next_vma; 1858 next_vma = vma->vm_next; 1859 } 1860 } 1861 #endif 1862 } 1863 lru_add_drain(); /* Push any new pages onto the LRU now */ 1864 } 1865 1866 /* 1867 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1868 * but allow concurrent faults), and pte mapped but not yet locked. 1869 * We return with mmap_sem still held, but pte unmapped and unlocked. 1870 */ 1871 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 1872 unsigned long address, pte_t *page_table, pmd_t *pmd, 1873 int write_access, pte_t orig_pte) 1874 { 1875 spinlock_t *ptl; 1876 struct page *page; 1877 swp_entry_t entry; 1878 pte_t pte; 1879 int ret = VM_FAULT_MINOR; 1880 1881 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 1882 goto out; 1883 1884 entry = pte_to_swp_entry(orig_pte); 1885 again: 1886 page = lookup_swap_cache(entry); 1887 if (!page) { 1888 swapin_readahead(entry, address, vma); 1889 page = read_swap_cache_async(entry, vma, address); 1890 if (!page) { 1891 /* 1892 * Back out if somebody else faulted in this pte 1893 * while we released the pte lock. 1894 */ 1895 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1896 if (likely(pte_same(*page_table, orig_pte))) 1897 ret = VM_FAULT_OOM; 1898 goto unlock; 1899 } 1900 1901 /* Had to read the page from swap area: Major fault */ 1902 ret = VM_FAULT_MAJOR; 1903 inc_page_state(pgmajfault); 1904 grab_swap_token(); 1905 } 1906 1907 mark_page_accessed(page); 1908 lock_page(page); 1909 if (!PageSwapCache(page)) { 1910 /* Page migration has occured */ 1911 unlock_page(page); 1912 page_cache_release(page); 1913 goto again; 1914 } 1915 1916 /* 1917 * Back out if somebody else already faulted in this pte. 1918 */ 1919 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1920 if (unlikely(!pte_same(*page_table, orig_pte))) 1921 goto out_nomap; 1922 1923 if (unlikely(!PageUptodate(page))) { 1924 ret = VM_FAULT_SIGBUS; 1925 goto out_nomap; 1926 } 1927 1928 /* The page isn't present yet, go ahead with the fault. */ 1929 1930 inc_mm_counter(mm, anon_rss); 1931 pte = mk_pte(page, vma->vm_page_prot); 1932 if (write_access && can_share_swap_page(page)) { 1933 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 1934 write_access = 0; 1935 } 1936 1937 flush_icache_page(vma, page); 1938 set_pte_at(mm, address, page_table, pte); 1939 page_add_anon_rmap(page, vma, address); 1940 1941 swap_free(entry); 1942 if (vm_swap_full()) 1943 remove_exclusive_swap_page(page); 1944 unlock_page(page); 1945 1946 if (write_access) { 1947 if (do_wp_page(mm, vma, address, 1948 page_table, pmd, ptl, pte) == VM_FAULT_OOM) 1949 ret = VM_FAULT_OOM; 1950 goto out; 1951 } 1952 1953 /* No need to invalidate - it was non-present before */ 1954 update_mmu_cache(vma, address, pte); 1955 lazy_mmu_prot_update(pte); 1956 unlock: 1957 pte_unmap_unlock(page_table, ptl); 1958 out: 1959 return ret; 1960 out_nomap: 1961 pte_unmap_unlock(page_table, ptl); 1962 unlock_page(page); 1963 page_cache_release(page); 1964 return ret; 1965 } 1966 1967 /* 1968 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1969 * but allow concurrent faults), and pte mapped but not yet locked. 1970 * We return with mmap_sem still held, but pte unmapped and unlocked. 1971 */ 1972 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 1973 unsigned long address, pte_t *page_table, pmd_t *pmd, 1974 int write_access) 1975 { 1976 struct page *page; 1977 spinlock_t *ptl; 1978 pte_t entry; 1979 1980 if (write_access) { 1981 /* Allocate our own private page. */ 1982 pte_unmap(page_table); 1983 1984 if (unlikely(anon_vma_prepare(vma))) 1985 goto oom; 1986 page = alloc_zeroed_user_highpage(vma, address); 1987 if (!page) 1988 goto oom; 1989 1990 entry = mk_pte(page, vma->vm_page_prot); 1991 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1992 1993 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1994 if (!pte_none(*page_table)) 1995 goto release; 1996 inc_mm_counter(mm, anon_rss); 1997 lru_cache_add_active(page); 1998 page_add_new_anon_rmap(page, vma, address); 1999 } else { 2000 /* Map the ZERO_PAGE - vm_page_prot is readonly */ 2001 page = ZERO_PAGE(address); 2002 page_cache_get(page); 2003 entry = mk_pte(page, vma->vm_page_prot); 2004 2005 ptl = pte_lockptr(mm, pmd); 2006 spin_lock(ptl); 2007 if (!pte_none(*page_table)) 2008 goto release; 2009 inc_mm_counter(mm, file_rss); 2010 page_add_file_rmap(page); 2011 } 2012 2013 set_pte_at(mm, address, page_table, entry); 2014 2015 /* No need to invalidate - it was non-present before */ 2016 update_mmu_cache(vma, address, entry); 2017 lazy_mmu_prot_update(entry); 2018 unlock: 2019 pte_unmap_unlock(page_table, ptl); 2020 return VM_FAULT_MINOR; 2021 release: 2022 page_cache_release(page); 2023 goto unlock; 2024 oom: 2025 return VM_FAULT_OOM; 2026 } 2027 2028 /* 2029 * do_no_page() tries to create a new page mapping. It aggressively 2030 * tries to share with existing pages, but makes a separate copy if 2031 * the "write_access" parameter is true in order to avoid the next 2032 * page fault. 2033 * 2034 * As this is called only for pages that do not currently exist, we 2035 * do not need to flush old virtual caches or the TLB. 2036 * 2037 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2038 * but allow concurrent faults), and pte mapped but not yet locked. 2039 * We return with mmap_sem still held, but pte unmapped and unlocked. 2040 */ 2041 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2042 unsigned long address, pte_t *page_table, pmd_t *pmd, 2043 int write_access) 2044 { 2045 spinlock_t *ptl; 2046 struct page *new_page; 2047 struct address_space *mapping = NULL; 2048 pte_t entry; 2049 unsigned int sequence = 0; 2050 int ret = VM_FAULT_MINOR; 2051 int anon = 0; 2052 2053 pte_unmap(page_table); 2054 BUG_ON(vma->vm_flags & VM_PFNMAP); 2055 2056 if (vma->vm_file) { 2057 mapping = vma->vm_file->f_mapping; 2058 sequence = mapping->truncate_count; 2059 smp_rmb(); /* serializes i_size against truncate_count */ 2060 } 2061 retry: 2062 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 2063 /* 2064 * No smp_rmb is needed here as long as there's a full 2065 * spin_lock/unlock sequence inside the ->nopage callback 2066 * (for the pagecache lookup) that acts as an implicit 2067 * smp_mb() and prevents the i_size read to happen 2068 * after the next truncate_count read. 2069 */ 2070 2071 /* no page was available -- either SIGBUS or OOM */ 2072 if (new_page == NOPAGE_SIGBUS) 2073 return VM_FAULT_SIGBUS; 2074 if (new_page == NOPAGE_OOM) 2075 return VM_FAULT_OOM; 2076 2077 /* 2078 * Should we do an early C-O-W break? 2079 */ 2080 if (write_access && !(vma->vm_flags & VM_SHARED)) { 2081 struct page *page; 2082 2083 if (unlikely(anon_vma_prepare(vma))) 2084 goto oom; 2085 page = alloc_page_vma(GFP_HIGHUSER, vma, address); 2086 if (!page) 2087 goto oom; 2088 copy_user_highpage(page, new_page, address); 2089 page_cache_release(new_page); 2090 new_page = page; 2091 anon = 1; 2092 } 2093 2094 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2095 /* 2096 * For a file-backed vma, someone could have truncated or otherwise 2097 * invalidated this page. If unmap_mapping_range got called, 2098 * retry getting the page. 2099 */ 2100 if (mapping && unlikely(sequence != mapping->truncate_count)) { 2101 pte_unmap_unlock(page_table, ptl); 2102 page_cache_release(new_page); 2103 cond_resched(); 2104 sequence = mapping->truncate_count; 2105 smp_rmb(); 2106 goto retry; 2107 } 2108 2109 /* 2110 * This silly early PAGE_DIRTY setting removes a race 2111 * due to the bad i386 page protection. But it's valid 2112 * for other architectures too. 2113 * 2114 * Note that if write_access is true, we either now have 2115 * an exclusive copy of the page, or this is a shared mapping, 2116 * so we can make it writable and dirty to avoid having to 2117 * handle that later. 2118 */ 2119 /* Only go through if we didn't race with anybody else... */ 2120 if (pte_none(*page_table)) { 2121 flush_icache_page(vma, new_page); 2122 entry = mk_pte(new_page, vma->vm_page_prot); 2123 if (write_access) 2124 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2125 set_pte_at(mm, address, page_table, entry); 2126 if (anon) { 2127 inc_mm_counter(mm, anon_rss); 2128 lru_cache_add_active(new_page); 2129 page_add_new_anon_rmap(new_page, vma, address); 2130 } else { 2131 inc_mm_counter(mm, file_rss); 2132 page_add_file_rmap(new_page); 2133 } 2134 } else { 2135 /* One of our sibling threads was faster, back out. */ 2136 page_cache_release(new_page); 2137 goto unlock; 2138 } 2139 2140 /* no need to invalidate: a not-present page shouldn't be cached */ 2141 update_mmu_cache(vma, address, entry); 2142 lazy_mmu_prot_update(entry); 2143 unlock: 2144 pte_unmap_unlock(page_table, ptl); 2145 return ret; 2146 oom: 2147 page_cache_release(new_page); 2148 return VM_FAULT_OOM; 2149 } 2150 2151 /* 2152 * Fault of a previously existing named mapping. Repopulate the pte 2153 * from the encoded file_pte if possible. This enables swappable 2154 * nonlinear vmas. 2155 * 2156 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2157 * but allow concurrent faults), and pte mapped but not yet locked. 2158 * We return with mmap_sem still held, but pte unmapped and unlocked. 2159 */ 2160 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, 2161 unsigned long address, pte_t *page_table, pmd_t *pmd, 2162 int write_access, pte_t orig_pte) 2163 { 2164 pgoff_t pgoff; 2165 int err; 2166 2167 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2168 return VM_FAULT_MINOR; 2169 2170 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2171 /* 2172 * Page table corrupted: show pte and kill process. 2173 */ 2174 print_bad_pte(vma, orig_pte, address); 2175 return VM_FAULT_OOM; 2176 } 2177 /* We can then assume vm->vm_ops && vma->vm_ops->populate */ 2178 2179 pgoff = pte_to_pgoff(orig_pte); 2180 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, 2181 vma->vm_page_prot, pgoff, 0); 2182 if (err == -ENOMEM) 2183 return VM_FAULT_OOM; 2184 if (err) 2185 return VM_FAULT_SIGBUS; 2186 return VM_FAULT_MAJOR; 2187 } 2188 2189 /* 2190 * These routines also need to handle stuff like marking pages dirty 2191 * and/or accessed for architectures that don't do it in hardware (most 2192 * RISC architectures). The early dirtying is also good on the i386. 2193 * 2194 * There is also a hook called "update_mmu_cache()" that architectures 2195 * with external mmu caches can use to update those (ie the Sparc or 2196 * PowerPC hashed page tables that act as extended TLBs). 2197 * 2198 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2199 * but allow concurrent faults), and pte mapped but not yet locked. 2200 * We return with mmap_sem still held, but pte unmapped and unlocked. 2201 */ 2202 static inline int handle_pte_fault(struct mm_struct *mm, 2203 struct vm_area_struct *vma, unsigned long address, 2204 pte_t *pte, pmd_t *pmd, int write_access) 2205 { 2206 pte_t entry; 2207 pte_t old_entry; 2208 spinlock_t *ptl; 2209 2210 old_entry = entry = *pte; 2211 if (!pte_present(entry)) { 2212 if (pte_none(entry)) { 2213 if (!vma->vm_ops || !vma->vm_ops->nopage) 2214 return do_anonymous_page(mm, vma, address, 2215 pte, pmd, write_access); 2216 return do_no_page(mm, vma, address, 2217 pte, pmd, write_access); 2218 } 2219 if (pte_file(entry)) 2220 return do_file_page(mm, vma, address, 2221 pte, pmd, write_access, entry); 2222 return do_swap_page(mm, vma, address, 2223 pte, pmd, write_access, entry); 2224 } 2225 2226 ptl = pte_lockptr(mm, pmd); 2227 spin_lock(ptl); 2228 if (unlikely(!pte_same(*pte, entry))) 2229 goto unlock; 2230 if (write_access) { 2231 if (!pte_write(entry)) 2232 return do_wp_page(mm, vma, address, 2233 pte, pmd, ptl, entry); 2234 entry = pte_mkdirty(entry); 2235 } 2236 entry = pte_mkyoung(entry); 2237 if (!pte_same(old_entry, entry)) { 2238 ptep_set_access_flags(vma, address, pte, entry, write_access); 2239 update_mmu_cache(vma, address, entry); 2240 lazy_mmu_prot_update(entry); 2241 } else { 2242 /* 2243 * This is needed only for protection faults but the arch code 2244 * is not yet telling us if this is a protection fault or not. 2245 * This still avoids useless tlb flushes for .text page faults 2246 * with threads. 2247 */ 2248 if (write_access) 2249 flush_tlb_page(vma, address); 2250 } 2251 unlock: 2252 pte_unmap_unlock(pte, ptl); 2253 return VM_FAULT_MINOR; 2254 } 2255 2256 /* 2257 * By the time we get here, we already hold the mm semaphore 2258 */ 2259 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2260 unsigned long address, int write_access) 2261 { 2262 pgd_t *pgd; 2263 pud_t *pud; 2264 pmd_t *pmd; 2265 pte_t *pte; 2266 2267 __set_current_state(TASK_RUNNING); 2268 2269 inc_page_state(pgfault); 2270 2271 if (unlikely(is_vm_hugetlb_page(vma))) 2272 return hugetlb_fault(mm, vma, address, write_access); 2273 2274 pgd = pgd_offset(mm, address); 2275 pud = pud_alloc(mm, pgd, address); 2276 if (!pud) 2277 return VM_FAULT_OOM; 2278 pmd = pmd_alloc(mm, pud, address); 2279 if (!pmd) 2280 return VM_FAULT_OOM; 2281 pte = pte_alloc_map(mm, pmd, address); 2282 if (!pte) 2283 return VM_FAULT_OOM; 2284 2285 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2286 } 2287 2288 EXPORT_SYMBOL_GPL(__handle_mm_fault); 2289 2290 #ifndef __PAGETABLE_PUD_FOLDED 2291 /* 2292 * Allocate page upper directory. 2293 * We've already handled the fast-path in-line. 2294 */ 2295 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2296 { 2297 pud_t *new = pud_alloc_one(mm, address); 2298 if (!new) 2299 return -ENOMEM; 2300 2301 spin_lock(&mm->page_table_lock); 2302 if (pgd_present(*pgd)) /* Another has populated it */ 2303 pud_free(new); 2304 else 2305 pgd_populate(mm, pgd, new); 2306 spin_unlock(&mm->page_table_lock); 2307 return 0; 2308 } 2309 #else 2310 /* Workaround for gcc 2.96 */ 2311 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2312 { 2313 return 0; 2314 } 2315 #endif /* __PAGETABLE_PUD_FOLDED */ 2316 2317 #ifndef __PAGETABLE_PMD_FOLDED 2318 /* 2319 * Allocate page middle directory. 2320 * We've already handled the fast-path in-line. 2321 */ 2322 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2323 { 2324 pmd_t *new = pmd_alloc_one(mm, address); 2325 if (!new) 2326 return -ENOMEM; 2327 2328 spin_lock(&mm->page_table_lock); 2329 #ifndef __ARCH_HAS_4LEVEL_HACK 2330 if (pud_present(*pud)) /* Another has populated it */ 2331 pmd_free(new); 2332 else 2333 pud_populate(mm, pud, new); 2334 #else 2335 if (pgd_present(*pud)) /* Another has populated it */ 2336 pmd_free(new); 2337 else 2338 pgd_populate(mm, pud, new); 2339 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2340 spin_unlock(&mm->page_table_lock); 2341 return 0; 2342 } 2343 #else 2344 /* Workaround for gcc 2.96 */ 2345 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2346 { 2347 return 0; 2348 } 2349 #endif /* __PAGETABLE_PMD_FOLDED */ 2350 2351 int make_pages_present(unsigned long addr, unsigned long end) 2352 { 2353 int ret, len, write; 2354 struct vm_area_struct * vma; 2355 2356 vma = find_vma(current->mm, addr); 2357 if (!vma) 2358 return -1; 2359 write = (vma->vm_flags & VM_WRITE) != 0; 2360 if (addr >= end) 2361 BUG(); 2362 if (end > vma->vm_end) 2363 BUG(); 2364 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; 2365 ret = get_user_pages(current, current->mm, addr, 2366 len, write, 0, NULL, NULL); 2367 if (ret < 0) 2368 return ret; 2369 return ret == len ? 0 : -1; 2370 } 2371 2372 /* 2373 * Map a vmalloc()-space virtual address to the physical page. 2374 */ 2375 struct page * vmalloc_to_page(void * vmalloc_addr) 2376 { 2377 unsigned long addr = (unsigned long) vmalloc_addr; 2378 struct page *page = NULL; 2379 pgd_t *pgd = pgd_offset_k(addr); 2380 pud_t *pud; 2381 pmd_t *pmd; 2382 pte_t *ptep, pte; 2383 2384 if (!pgd_none(*pgd)) { 2385 pud = pud_offset(pgd, addr); 2386 if (!pud_none(*pud)) { 2387 pmd = pmd_offset(pud, addr); 2388 if (!pmd_none(*pmd)) { 2389 ptep = pte_offset_map(pmd, addr); 2390 pte = *ptep; 2391 if (pte_present(pte)) 2392 page = pte_page(pte); 2393 pte_unmap(ptep); 2394 } 2395 } 2396 } 2397 return page; 2398 } 2399 2400 EXPORT_SYMBOL(vmalloc_to_page); 2401 2402 /* 2403 * Map a vmalloc()-space virtual address to the physical page frame number. 2404 */ 2405 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2406 { 2407 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2408 } 2409 2410 EXPORT_SYMBOL(vmalloc_to_pfn); 2411 2412 #if !defined(__HAVE_ARCH_GATE_AREA) 2413 2414 #if defined(AT_SYSINFO_EHDR) 2415 static struct vm_area_struct gate_vma; 2416 2417 static int __init gate_vma_init(void) 2418 { 2419 gate_vma.vm_mm = NULL; 2420 gate_vma.vm_start = FIXADDR_USER_START; 2421 gate_vma.vm_end = FIXADDR_USER_END; 2422 gate_vma.vm_page_prot = PAGE_READONLY; 2423 gate_vma.vm_flags = 0; 2424 return 0; 2425 } 2426 __initcall(gate_vma_init); 2427 #endif 2428 2429 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2430 { 2431 #ifdef AT_SYSINFO_EHDR 2432 return &gate_vma; 2433 #else 2434 return NULL; 2435 #endif 2436 } 2437 2438 int in_gate_area_no_task(unsigned long addr) 2439 { 2440 #ifdef AT_SYSINFO_EHDR 2441 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2442 return 1; 2443 #endif 2444 return 0; 2445 } 2446 2447 #endif /* __HAVE_ARCH_GATE_AREA */ 2448