xref: /linux/mm/memory.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65 
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69 
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80 
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84 
85 int randomize_va_space __read_mostly = 1;
86 
87 static int __init disable_randmaps(char *s)
88 {
89 	randomize_va_space = 0;
90 	return 0;
91 }
92 __setup("norandmaps", disable_randmaps);
93 
94 
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100 
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103 	pgd_ERROR(*pgd);
104 	pgd_clear(pgd);
105 }
106 
107 void pud_clear_bad(pud_t *pud)
108 {
109 	pud_ERROR(*pud);
110 	pud_clear(pud);
111 }
112 
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115 	pmd_ERROR(*pmd);
116 	pmd_clear(pmd);
117 }
118 
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125 	struct page *page = pmd_page(*pmd);
126 	pmd_clear(pmd);
127 	pte_lock_deinit(page);
128 	pte_free_tlb(tlb, page);
129 	dec_page_state(nr_page_table_pages);
130 	tlb->mm->nr_ptes--;
131 }
132 
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 				unsigned long addr, unsigned long end,
135 				unsigned long floor, unsigned long ceiling)
136 {
137 	pmd_t *pmd;
138 	unsigned long next;
139 	unsigned long start;
140 
141 	start = addr;
142 	pmd = pmd_offset(pud, addr);
143 	do {
144 		next = pmd_addr_end(addr, end);
145 		if (pmd_none_or_clear_bad(pmd))
146 			continue;
147 		free_pte_range(tlb, pmd);
148 	} while (pmd++, addr = next, addr != end);
149 
150 	start &= PUD_MASK;
151 	if (start < floor)
152 		return;
153 	if (ceiling) {
154 		ceiling &= PUD_MASK;
155 		if (!ceiling)
156 			return;
157 	}
158 	if (end - 1 > ceiling - 1)
159 		return;
160 
161 	pmd = pmd_offset(pud, start);
162 	pud_clear(pud);
163 	pmd_free_tlb(tlb, pmd);
164 }
165 
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 				unsigned long addr, unsigned long end,
168 				unsigned long floor, unsigned long ceiling)
169 {
170 	pud_t *pud;
171 	unsigned long next;
172 	unsigned long start;
173 
174 	start = addr;
175 	pud = pud_offset(pgd, addr);
176 	do {
177 		next = pud_addr_end(addr, end);
178 		if (pud_none_or_clear_bad(pud))
179 			continue;
180 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 	} while (pud++, addr = next, addr != end);
182 
183 	start &= PGDIR_MASK;
184 	if (start < floor)
185 		return;
186 	if (ceiling) {
187 		ceiling &= PGDIR_MASK;
188 		if (!ceiling)
189 			return;
190 	}
191 	if (end - 1 > ceiling - 1)
192 		return;
193 
194 	pud = pud_offset(pgd, start);
195 	pgd_clear(pgd);
196 	pud_free_tlb(tlb, pud);
197 }
198 
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205 			unsigned long addr, unsigned long end,
206 			unsigned long floor, unsigned long ceiling)
207 {
208 	pgd_t *pgd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	/*
213 	 * The next few lines have given us lots of grief...
214 	 *
215 	 * Why are we testing PMD* at this top level?  Because often
216 	 * there will be no work to do at all, and we'd prefer not to
217 	 * go all the way down to the bottom just to discover that.
218 	 *
219 	 * Why all these "- 1"s?  Because 0 represents both the bottom
220 	 * of the address space and the top of it (using -1 for the
221 	 * top wouldn't help much: the masks would do the wrong thing).
222 	 * The rule is that addr 0 and floor 0 refer to the bottom of
223 	 * the address space, but end 0 and ceiling 0 refer to the top
224 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 	 * that end 0 case should be mythical).
226 	 *
227 	 * Wherever addr is brought up or ceiling brought down, we must
228 	 * be careful to reject "the opposite 0" before it confuses the
229 	 * subsequent tests.  But what about where end is brought down
230 	 * by PMD_SIZE below? no, end can't go down to 0 there.
231 	 *
232 	 * Whereas we round start (addr) and ceiling down, by different
233 	 * masks at different levels, in order to test whether a table
234 	 * now has no other vmas using it, so can be freed, we don't
235 	 * bother to round floor or end up - the tests don't need that.
236 	 */
237 
238 	addr &= PMD_MASK;
239 	if (addr < floor) {
240 		addr += PMD_SIZE;
241 		if (!addr)
242 			return;
243 	}
244 	if (ceiling) {
245 		ceiling &= PMD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		end -= PMD_SIZE;
251 	if (addr > end - 1)
252 		return;
253 
254 	start = addr;
255 	pgd = pgd_offset((*tlb)->mm, addr);
256 	do {
257 		next = pgd_addr_end(addr, end);
258 		if (pgd_none_or_clear_bad(pgd))
259 			continue;
260 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 	} while (pgd++, addr = next, addr != end);
262 
263 	if (!(*tlb)->fullmm)
264 		flush_tlb_pgtables((*tlb)->mm, start, end);
265 }
266 
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 		unsigned long floor, unsigned long ceiling)
269 {
270 	while (vma) {
271 		struct vm_area_struct *next = vma->vm_next;
272 		unsigned long addr = vma->vm_start;
273 
274 		/*
275 		 * Hide vma from rmap and vmtruncate before freeing pgtables
276 		 */
277 		anon_vma_unlink(vma);
278 		unlink_file_vma(vma);
279 
280 		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
281 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 				floor, next? next->vm_start: ceiling);
283 		} else {
284 			/*
285 			 * Optimization: gather nearby vmas into one call down
286 			 */
287 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
289 							HPAGE_SIZE)) {
290 				vma = next;
291 				next = vma->vm_next;
292 				anon_vma_unlink(vma);
293 				unlink_file_vma(vma);
294 			}
295 			free_pgd_range(tlb, addr, vma->vm_end,
296 				floor, next? next->vm_start: ceiling);
297 		}
298 		vma = next;
299 	}
300 }
301 
302 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
303 {
304 	struct page *new = pte_alloc_one(mm, address);
305 	if (!new)
306 		return -ENOMEM;
307 
308 	pte_lock_init(new);
309 	spin_lock(&mm->page_table_lock);
310 	if (pmd_present(*pmd)) {	/* Another has populated it */
311 		pte_lock_deinit(new);
312 		pte_free(new);
313 	} else {
314 		mm->nr_ptes++;
315 		inc_page_state(nr_page_table_pages);
316 		pmd_populate(mm, pmd, new);
317 	}
318 	spin_unlock(&mm->page_table_lock);
319 	return 0;
320 }
321 
322 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
323 {
324 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
325 	if (!new)
326 		return -ENOMEM;
327 
328 	spin_lock(&init_mm.page_table_lock);
329 	if (pmd_present(*pmd))		/* Another has populated it */
330 		pte_free_kernel(new);
331 	else
332 		pmd_populate_kernel(&init_mm, pmd, new);
333 	spin_unlock(&init_mm.page_table_lock);
334 	return 0;
335 }
336 
337 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
338 {
339 	if (file_rss)
340 		add_mm_counter(mm, file_rss, file_rss);
341 	if (anon_rss)
342 		add_mm_counter(mm, anon_rss, anon_rss);
343 }
344 
345 /*
346  * This function is called to print an error when a bad pte
347  * is found. For example, we might have a PFN-mapped pte in
348  * a region that doesn't allow it.
349  *
350  * The calling function must still handle the error.
351  */
352 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
353 {
354 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
355 			"vm_flags = %lx, vaddr = %lx\n",
356 		(long long)pte_val(pte),
357 		(vma->vm_mm == current->mm ? current->comm : "???"),
358 		vma->vm_flags, vaddr);
359 	dump_stack();
360 }
361 
362 static inline int is_cow_mapping(unsigned int flags)
363 {
364 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
365 }
366 
367 /*
368  * This function gets the "struct page" associated with a pte.
369  *
370  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
371  * will have each page table entry just pointing to a raw page frame
372  * number, and as far as the VM layer is concerned, those do not have
373  * pages associated with them - even if the PFN might point to memory
374  * that otherwise is perfectly fine and has a "struct page".
375  *
376  * The way we recognize those mappings is through the rules set up
377  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
378  * and the vm_pgoff will point to the first PFN mapped: thus every
379  * page that is a raw mapping will always honor the rule
380  *
381  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
382  *
383  * and if that isn't true, the page has been COW'ed (in which case it
384  * _does_ have a "struct page" associated with it even if it is in a
385  * VM_PFNMAP range).
386  */
387 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
388 {
389 	unsigned long pfn = pte_pfn(pte);
390 
391 	if (vma->vm_flags & VM_PFNMAP) {
392 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
393 		if (pfn == vma->vm_pgoff + off)
394 			return NULL;
395 		if (!is_cow_mapping(vma->vm_flags))
396 			return NULL;
397 	}
398 
399 	/*
400 	 * Add some anal sanity checks for now. Eventually,
401 	 * we should just do "return pfn_to_page(pfn)", but
402 	 * in the meantime we check that we get a valid pfn,
403 	 * and that the resulting page looks ok.
404 	 *
405 	 * Remove this test eventually!
406 	 */
407 	if (unlikely(!pfn_valid(pfn))) {
408 		print_bad_pte(vma, pte, addr);
409 		return NULL;
410 	}
411 
412 	/*
413 	 * NOTE! We still have PageReserved() pages in the page
414 	 * tables.
415 	 *
416 	 * The PAGE_ZERO() pages and various VDSO mappings can
417 	 * cause them to exist.
418 	 */
419 	return pfn_to_page(pfn);
420 }
421 
422 /*
423  * copy one vm_area from one task to the other. Assumes the page tables
424  * already present in the new task to be cleared in the whole range
425  * covered by this vma.
426  */
427 
428 static inline void
429 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
430 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
431 		unsigned long addr, int *rss)
432 {
433 	unsigned long vm_flags = vma->vm_flags;
434 	pte_t pte = *src_pte;
435 	struct page *page;
436 
437 	/* pte contains position in swap or file, so copy. */
438 	if (unlikely(!pte_present(pte))) {
439 		if (!pte_file(pte)) {
440 			swap_duplicate(pte_to_swp_entry(pte));
441 			/* make sure dst_mm is on swapoff's mmlist. */
442 			if (unlikely(list_empty(&dst_mm->mmlist))) {
443 				spin_lock(&mmlist_lock);
444 				if (list_empty(&dst_mm->mmlist))
445 					list_add(&dst_mm->mmlist,
446 						 &src_mm->mmlist);
447 				spin_unlock(&mmlist_lock);
448 			}
449 		}
450 		goto out_set_pte;
451 	}
452 
453 	/*
454 	 * If it's a COW mapping, write protect it both
455 	 * in the parent and the child
456 	 */
457 	if (is_cow_mapping(vm_flags)) {
458 		ptep_set_wrprotect(src_mm, addr, src_pte);
459 		pte = *src_pte;
460 	}
461 
462 	/*
463 	 * If it's a shared mapping, mark it clean in
464 	 * the child
465 	 */
466 	if (vm_flags & VM_SHARED)
467 		pte = pte_mkclean(pte);
468 	pte = pte_mkold(pte);
469 
470 	page = vm_normal_page(vma, addr, pte);
471 	if (page) {
472 		get_page(page);
473 		page_dup_rmap(page);
474 		rss[!!PageAnon(page)]++;
475 	}
476 
477 out_set_pte:
478 	set_pte_at(dst_mm, addr, dst_pte, pte);
479 }
480 
481 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
482 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
483 		unsigned long addr, unsigned long end)
484 {
485 	pte_t *src_pte, *dst_pte;
486 	spinlock_t *src_ptl, *dst_ptl;
487 	int progress = 0;
488 	int rss[2];
489 
490 again:
491 	rss[1] = rss[0] = 0;
492 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
493 	if (!dst_pte)
494 		return -ENOMEM;
495 	src_pte = pte_offset_map_nested(src_pmd, addr);
496 	src_ptl = pte_lockptr(src_mm, src_pmd);
497 	spin_lock(src_ptl);
498 
499 	do {
500 		/*
501 		 * We are holding two locks at this point - either of them
502 		 * could generate latencies in another task on another CPU.
503 		 */
504 		if (progress >= 32) {
505 			progress = 0;
506 			if (need_resched() ||
507 			    need_lockbreak(src_ptl) ||
508 			    need_lockbreak(dst_ptl))
509 				break;
510 		}
511 		if (pte_none(*src_pte)) {
512 			progress++;
513 			continue;
514 		}
515 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
516 		progress += 8;
517 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
518 
519 	spin_unlock(src_ptl);
520 	pte_unmap_nested(src_pte - 1);
521 	add_mm_rss(dst_mm, rss[0], rss[1]);
522 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
523 	cond_resched();
524 	if (addr != end)
525 		goto again;
526 	return 0;
527 }
528 
529 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
530 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
531 		unsigned long addr, unsigned long end)
532 {
533 	pmd_t *src_pmd, *dst_pmd;
534 	unsigned long next;
535 
536 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
537 	if (!dst_pmd)
538 		return -ENOMEM;
539 	src_pmd = pmd_offset(src_pud, addr);
540 	do {
541 		next = pmd_addr_end(addr, end);
542 		if (pmd_none_or_clear_bad(src_pmd))
543 			continue;
544 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
545 						vma, addr, next))
546 			return -ENOMEM;
547 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
548 	return 0;
549 }
550 
551 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
552 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
553 		unsigned long addr, unsigned long end)
554 {
555 	pud_t *src_pud, *dst_pud;
556 	unsigned long next;
557 
558 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
559 	if (!dst_pud)
560 		return -ENOMEM;
561 	src_pud = pud_offset(src_pgd, addr);
562 	do {
563 		next = pud_addr_end(addr, end);
564 		if (pud_none_or_clear_bad(src_pud))
565 			continue;
566 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
567 						vma, addr, next))
568 			return -ENOMEM;
569 	} while (dst_pud++, src_pud++, addr = next, addr != end);
570 	return 0;
571 }
572 
573 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
574 		struct vm_area_struct *vma)
575 {
576 	pgd_t *src_pgd, *dst_pgd;
577 	unsigned long next;
578 	unsigned long addr = vma->vm_start;
579 	unsigned long end = vma->vm_end;
580 
581 	/*
582 	 * Don't copy ptes where a page fault will fill them correctly.
583 	 * Fork becomes much lighter when there are big shared or private
584 	 * readonly mappings. The tradeoff is that copy_page_range is more
585 	 * efficient than faulting.
586 	 */
587 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
588 		if (!vma->anon_vma)
589 			return 0;
590 	}
591 
592 	if (is_vm_hugetlb_page(vma))
593 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
594 
595 	dst_pgd = pgd_offset(dst_mm, addr);
596 	src_pgd = pgd_offset(src_mm, addr);
597 	do {
598 		next = pgd_addr_end(addr, end);
599 		if (pgd_none_or_clear_bad(src_pgd))
600 			continue;
601 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
602 						vma, addr, next))
603 			return -ENOMEM;
604 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
605 	return 0;
606 }
607 
608 static unsigned long zap_pte_range(struct mmu_gather *tlb,
609 				struct vm_area_struct *vma, pmd_t *pmd,
610 				unsigned long addr, unsigned long end,
611 				long *zap_work, struct zap_details *details)
612 {
613 	struct mm_struct *mm = tlb->mm;
614 	pte_t *pte;
615 	spinlock_t *ptl;
616 	int file_rss = 0;
617 	int anon_rss = 0;
618 
619 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
620 	do {
621 		pte_t ptent = *pte;
622 		if (pte_none(ptent)) {
623 			(*zap_work)--;
624 			continue;
625 		}
626 
627 		(*zap_work) -= PAGE_SIZE;
628 
629 		if (pte_present(ptent)) {
630 			struct page *page;
631 
632 			page = vm_normal_page(vma, addr, ptent);
633 			if (unlikely(details) && page) {
634 				/*
635 				 * unmap_shared_mapping_pages() wants to
636 				 * invalidate cache without truncating:
637 				 * unmap shared but keep private pages.
638 				 */
639 				if (details->check_mapping &&
640 				    details->check_mapping != page->mapping)
641 					continue;
642 				/*
643 				 * Each page->index must be checked when
644 				 * invalidating or truncating nonlinear.
645 				 */
646 				if (details->nonlinear_vma &&
647 				    (page->index < details->first_index ||
648 				     page->index > details->last_index))
649 					continue;
650 			}
651 			ptent = ptep_get_and_clear_full(mm, addr, pte,
652 							tlb->fullmm);
653 			tlb_remove_tlb_entry(tlb, pte, addr);
654 			if (unlikely(!page))
655 				continue;
656 			if (unlikely(details) && details->nonlinear_vma
657 			    && linear_page_index(details->nonlinear_vma,
658 						addr) != page->index)
659 				set_pte_at(mm, addr, pte,
660 					   pgoff_to_pte(page->index));
661 			if (PageAnon(page))
662 				anon_rss--;
663 			else {
664 				if (pte_dirty(ptent))
665 					set_page_dirty(page);
666 				if (pte_young(ptent))
667 					mark_page_accessed(page);
668 				file_rss--;
669 			}
670 			page_remove_rmap(page);
671 			tlb_remove_page(tlb, page);
672 			continue;
673 		}
674 		/*
675 		 * If details->check_mapping, we leave swap entries;
676 		 * if details->nonlinear_vma, we leave file entries.
677 		 */
678 		if (unlikely(details))
679 			continue;
680 		if (!pte_file(ptent))
681 			free_swap_and_cache(pte_to_swp_entry(ptent));
682 		pte_clear_full(mm, addr, pte, tlb->fullmm);
683 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
684 
685 	add_mm_rss(mm, file_rss, anon_rss);
686 	pte_unmap_unlock(pte - 1, ptl);
687 
688 	return addr;
689 }
690 
691 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
692 				struct vm_area_struct *vma, pud_t *pud,
693 				unsigned long addr, unsigned long end,
694 				long *zap_work, struct zap_details *details)
695 {
696 	pmd_t *pmd;
697 	unsigned long next;
698 
699 	pmd = pmd_offset(pud, addr);
700 	do {
701 		next = pmd_addr_end(addr, end);
702 		if (pmd_none_or_clear_bad(pmd)) {
703 			(*zap_work)--;
704 			continue;
705 		}
706 		next = zap_pte_range(tlb, vma, pmd, addr, next,
707 						zap_work, details);
708 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
709 
710 	return addr;
711 }
712 
713 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
714 				struct vm_area_struct *vma, pgd_t *pgd,
715 				unsigned long addr, unsigned long end,
716 				long *zap_work, struct zap_details *details)
717 {
718 	pud_t *pud;
719 	unsigned long next;
720 
721 	pud = pud_offset(pgd, addr);
722 	do {
723 		next = pud_addr_end(addr, end);
724 		if (pud_none_or_clear_bad(pud)) {
725 			(*zap_work)--;
726 			continue;
727 		}
728 		next = zap_pmd_range(tlb, vma, pud, addr, next,
729 						zap_work, details);
730 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
731 
732 	return addr;
733 }
734 
735 static unsigned long unmap_page_range(struct mmu_gather *tlb,
736 				struct vm_area_struct *vma,
737 				unsigned long addr, unsigned long end,
738 				long *zap_work, struct zap_details *details)
739 {
740 	pgd_t *pgd;
741 	unsigned long next;
742 
743 	if (details && !details->check_mapping && !details->nonlinear_vma)
744 		details = NULL;
745 
746 	BUG_ON(addr >= end);
747 	tlb_start_vma(tlb, vma);
748 	pgd = pgd_offset(vma->vm_mm, addr);
749 	do {
750 		next = pgd_addr_end(addr, end);
751 		if (pgd_none_or_clear_bad(pgd)) {
752 			(*zap_work)--;
753 			continue;
754 		}
755 		next = zap_pud_range(tlb, vma, pgd, addr, next,
756 						zap_work, details);
757 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
758 	tlb_end_vma(tlb, vma);
759 
760 	return addr;
761 }
762 
763 #ifdef CONFIG_PREEMPT
764 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
765 #else
766 /* No preempt: go for improved straight-line efficiency */
767 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
768 #endif
769 
770 /**
771  * unmap_vmas - unmap a range of memory covered by a list of vma's
772  * @tlbp: address of the caller's struct mmu_gather
773  * @vma: the starting vma
774  * @start_addr: virtual address at which to start unmapping
775  * @end_addr: virtual address at which to end unmapping
776  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
777  * @details: details of nonlinear truncation or shared cache invalidation
778  *
779  * Returns the end address of the unmapping (restart addr if interrupted).
780  *
781  * Unmap all pages in the vma list.
782  *
783  * We aim to not hold locks for too long (for scheduling latency reasons).
784  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
785  * return the ending mmu_gather to the caller.
786  *
787  * Only addresses between `start' and `end' will be unmapped.
788  *
789  * The VMA list must be sorted in ascending virtual address order.
790  *
791  * unmap_vmas() assumes that the caller will flush the whole unmapped address
792  * range after unmap_vmas() returns.  So the only responsibility here is to
793  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
794  * drops the lock and schedules.
795  */
796 unsigned long unmap_vmas(struct mmu_gather **tlbp,
797 		struct vm_area_struct *vma, unsigned long start_addr,
798 		unsigned long end_addr, unsigned long *nr_accounted,
799 		struct zap_details *details)
800 {
801 	long zap_work = ZAP_BLOCK_SIZE;
802 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
803 	int tlb_start_valid = 0;
804 	unsigned long start = start_addr;
805 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
806 	int fullmm = (*tlbp)->fullmm;
807 
808 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
809 		unsigned long end;
810 
811 		start = max(vma->vm_start, start_addr);
812 		if (start >= vma->vm_end)
813 			continue;
814 		end = min(vma->vm_end, end_addr);
815 		if (end <= vma->vm_start)
816 			continue;
817 
818 		if (vma->vm_flags & VM_ACCOUNT)
819 			*nr_accounted += (end - start) >> PAGE_SHIFT;
820 
821 		while (start != end) {
822 			if (!tlb_start_valid) {
823 				tlb_start = start;
824 				tlb_start_valid = 1;
825 			}
826 
827 			if (unlikely(is_vm_hugetlb_page(vma))) {
828 				unmap_hugepage_range(vma, start, end);
829 				zap_work -= (end - start) /
830 						(HPAGE_SIZE / PAGE_SIZE);
831 				start = end;
832 			} else
833 				start = unmap_page_range(*tlbp, vma,
834 						start, end, &zap_work, details);
835 
836 			if (zap_work > 0) {
837 				BUG_ON(start != end);
838 				break;
839 			}
840 
841 			tlb_finish_mmu(*tlbp, tlb_start, start);
842 
843 			if (need_resched() ||
844 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
845 				if (i_mmap_lock) {
846 					*tlbp = NULL;
847 					goto out;
848 				}
849 				cond_resched();
850 			}
851 
852 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
853 			tlb_start_valid = 0;
854 			zap_work = ZAP_BLOCK_SIZE;
855 		}
856 	}
857 out:
858 	return start;	/* which is now the end (or restart) address */
859 }
860 
861 /**
862  * zap_page_range - remove user pages in a given range
863  * @vma: vm_area_struct holding the applicable pages
864  * @address: starting address of pages to zap
865  * @size: number of bytes to zap
866  * @details: details of nonlinear truncation or shared cache invalidation
867  */
868 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
869 		unsigned long size, struct zap_details *details)
870 {
871 	struct mm_struct *mm = vma->vm_mm;
872 	struct mmu_gather *tlb;
873 	unsigned long end = address + size;
874 	unsigned long nr_accounted = 0;
875 
876 	lru_add_drain();
877 	tlb = tlb_gather_mmu(mm, 0);
878 	update_hiwater_rss(mm);
879 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
880 	if (tlb)
881 		tlb_finish_mmu(tlb, address, end);
882 	return end;
883 }
884 
885 /*
886  * Do a quick page-table lookup for a single page.
887  */
888 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
889 			unsigned int flags)
890 {
891 	pgd_t *pgd;
892 	pud_t *pud;
893 	pmd_t *pmd;
894 	pte_t *ptep, pte;
895 	spinlock_t *ptl;
896 	struct page *page;
897 	struct mm_struct *mm = vma->vm_mm;
898 
899 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
900 	if (!IS_ERR(page)) {
901 		BUG_ON(flags & FOLL_GET);
902 		goto out;
903 	}
904 
905 	page = NULL;
906 	pgd = pgd_offset(mm, address);
907 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
908 		goto no_page_table;
909 
910 	pud = pud_offset(pgd, address);
911 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
912 		goto no_page_table;
913 
914 	pmd = pmd_offset(pud, address);
915 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
916 		goto no_page_table;
917 
918 	if (pmd_huge(*pmd)) {
919 		BUG_ON(flags & FOLL_GET);
920 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
921 		goto out;
922 	}
923 
924 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
925 	if (!ptep)
926 		goto out;
927 
928 	pte = *ptep;
929 	if (!pte_present(pte))
930 		goto unlock;
931 	if ((flags & FOLL_WRITE) && !pte_write(pte))
932 		goto unlock;
933 	page = vm_normal_page(vma, address, pte);
934 	if (unlikely(!page))
935 		goto unlock;
936 
937 	if (flags & FOLL_GET)
938 		get_page(page);
939 	if (flags & FOLL_TOUCH) {
940 		if ((flags & FOLL_WRITE) &&
941 		    !pte_dirty(pte) && !PageDirty(page))
942 			set_page_dirty(page);
943 		mark_page_accessed(page);
944 	}
945 unlock:
946 	pte_unmap_unlock(ptep, ptl);
947 out:
948 	return page;
949 
950 no_page_table:
951 	/*
952 	 * When core dumping an enormous anonymous area that nobody
953 	 * has touched so far, we don't want to allocate page tables.
954 	 */
955 	if (flags & FOLL_ANON) {
956 		page = ZERO_PAGE(address);
957 		if (flags & FOLL_GET)
958 			get_page(page);
959 		BUG_ON(flags & FOLL_WRITE);
960 	}
961 	return page;
962 }
963 
964 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
965 		unsigned long start, int len, int write, int force,
966 		struct page **pages, struct vm_area_struct **vmas)
967 {
968 	int i;
969 	unsigned int vm_flags;
970 
971 	/*
972 	 * Require read or write permissions.
973 	 * If 'force' is set, we only require the "MAY" flags.
974 	 */
975 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
976 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
977 	i = 0;
978 
979 	do {
980 		struct vm_area_struct *vma;
981 		unsigned int foll_flags;
982 
983 		vma = find_extend_vma(mm, start);
984 		if (!vma && in_gate_area(tsk, start)) {
985 			unsigned long pg = start & PAGE_MASK;
986 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
987 			pgd_t *pgd;
988 			pud_t *pud;
989 			pmd_t *pmd;
990 			pte_t *pte;
991 			if (write) /* user gate pages are read-only */
992 				return i ? : -EFAULT;
993 			if (pg > TASK_SIZE)
994 				pgd = pgd_offset_k(pg);
995 			else
996 				pgd = pgd_offset_gate(mm, pg);
997 			BUG_ON(pgd_none(*pgd));
998 			pud = pud_offset(pgd, pg);
999 			BUG_ON(pud_none(*pud));
1000 			pmd = pmd_offset(pud, pg);
1001 			if (pmd_none(*pmd))
1002 				return i ? : -EFAULT;
1003 			pte = pte_offset_map(pmd, pg);
1004 			if (pte_none(*pte)) {
1005 				pte_unmap(pte);
1006 				return i ? : -EFAULT;
1007 			}
1008 			if (pages) {
1009 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1010 				pages[i] = page;
1011 				if (page)
1012 					get_page(page);
1013 			}
1014 			pte_unmap(pte);
1015 			if (vmas)
1016 				vmas[i] = gate_vma;
1017 			i++;
1018 			start += PAGE_SIZE;
1019 			len--;
1020 			continue;
1021 		}
1022 
1023 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1024 				|| !(vm_flags & vma->vm_flags))
1025 			return i ? : -EFAULT;
1026 
1027 		if (is_vm_hugetlb_page(vma)) {
1028 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1029 						&start, &len, i);
1030 			continue;
1031 		}
1032 
1033 		foll_flags = FOLL_TOUCH;
1034 		if (pages)
1035 			foll_flags |= FOLL_GET;
1036 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1037 		    (!vma->vm_ops || !vma->vm_ops->nopage))
1038 			foll_flags |= FOLL_ANON;
1039 
1040 		do {
1041 			struct page *page;
1042 
1043 			if (write)
1044 				foll_flags |= FOLL_WRITE;
1045 
1046 			cond_resched();
1047 			while (!(page = follow_page(vma, start, foll_flags))) {
1048 				int ret;
1049 				ret = __handle_mm_fault(mm, vma, start,
1050 						foll_flags & FOLL_WRITE);
1051 				/*
1052 				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1053 				 * broken COW when necessary, even if maybe_mkwrite
1054 				 * decided not to set pte_write. We can thus safely do
1055 				 * subsequent page lookups as if they were reads.
1056 				 */
1057 				if (ret & VM_FAULT_WRITE)
1058 					foll_flags &= ~FOLL_WRITE;
1059 
1060 				switch (ret & ~VM_FAULT_WRITE) {
1061 				case VM_FAULT_MINOR:
1062 					tsk->min_flt++;
1063 					break;
1064 				case VM_FAULT_MAJOR:
1065 					tsk->maj_flt++;
1066 					break;
1067 				case VM_FAULT_SIGBUS:
1068 					return i ? i : -EFAULT;
1069 				case VM_FAULT_OOM:
1070 					return i ? i : -ENOMEM;
1071 				default:
1072 					BUG();
1073 				}
1074 			}
1075 			if (pages) {
1076 				pages[i] = page;
1077 				flush_dcache_page(page);
1078 			}
1079 			if (vmas)
1080 				vmas[i] = vma;
1081 			i++;
1082 			start += PAGE_SIZE;
1083 			len--;
1084 		} while (len && start < vma->vm_end);
1085 	} while (len);
1086 	return i;
1087 }
1088 EXPORT_SYMBOL(get_user_pages);
1089 
1090 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1091 			unsigned long addr, unsigned long end, pgprot_t prot)
1092 {
1093 	pte_t *pte;
1094 	spinlock_t *ptl;
1095 
1096 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1097 	if (!pte)
1098 		return -ENOMEM;
1099 	do {
1100 		struct page *page = ZERO_PAGE(addr);
1101 		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1102 		page_cache_get(page);
1103 		page_add_file_rmap(page);
1104 		inc_mm_counter(mm, file_rss);
1105 		BUG_ON(!pte_none(*pte));
1106 		set_pte_at(mm, addr, pte, zero_pte);
1107 	} while (pte++, addr += PAGE_SIZE, addr != end);
1108 	pte_unmap_unlock(pte - 1, ptl);
1109 	return 0;
1110 }
1111 
1112 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1113 			unsigned long addr, unsigned long end, pgprot_t prot)
1114 {
1115 	pmd_t *pmd;
1116 	unsigned long next;
1117 
1118 	pmd = pmd_alloc(mm, pud, addr);
1119 	if (!pmd)
1120 		return -ENOMEM;
1121 	do {
1122 		next = pmd_addr_end(addr, end);
1123 		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1124 			return -ENOMEM;
1125 	} while (pmd++, addr = next, addr != end);
1126 	return 0;
1127 }
1128 
1129 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1130 			unsigned long addr, unsigned long end, pgprot_t prot)
1131 {
1132 	pud_t *pud;
1133 	unsigned long next;
1134 
1135 	pud = pud_alloc(mm, pgd, addr);
1136 	if (!pud)
1137 		return -ENOMEM;
1138 	do {
1139 		next = pud_addr_end(addr, end);
1140 		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1141 			return -ENOMEM;
1142 	} while (pud++, addr = next, addr != end);
1143 	return 0;
1144 }
1145 
1146 int zeromap_page_range(struct vm_area_struct *vma,
1147 			unsigned long addr, unsigned long size, pgprot_t prot)
1148 {
1149 	pgd_t *pgd;
1150 	unsigned long next;
1151 	unsigned long end = addr + size;
1152 	struct mm_struct *mm = vma->vm_mm;
1153 	int err;
1154 
1155 	BUG_ON(addr >= end);
1156 	pgd = pgd_offset(mm, addr);
1157 	flush_cache_range(vma, addr, end);
1158 	do {
1159 		next = pgd_addr_end(addr, end);
1160 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1161 		if (err)
1162 			break;
1163 	} while (pgd++, addr = next, addr != end);
1164 	return err;
1165 }
1166 
1167 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1168 {
1169 	pgd_t * pgd = pgd_offset(mm, addr);
1170 	pud_t * pud = pud_alloc(mm, pgd, addr);
1171 	if (pud) {
1172 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1173 		if (pmd)
1174 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1175 	}
1176 	return NULL;
1177 }
1178 
1179 /*
1180  * This is the old fallback for page remapping.
1181  *
1182  * For historical reasons, it only allows reserved pages. Only
1183  * old drivers should use this, and they needed to mark their
1184  * pages reserved for the old functions anyway.
1185  */
1186 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1187 {
1188 	int retval;
1189 	pte_t *pte;
1190 	spinlock_t *ptl;
1191 
1192 	retval = -EINVAL;
1193 	if (PageAnon(page))
1194 		goto out;
1195 	retval = -ENOMEM;
1196 	flush_dcache_page(page);
1197 	pte = get_locked_pte(mm, addr, &ptl);
1198 	if (!pte)
1199 		goto out;
1200 	retval = -EBUSY;
1201 	if (!pte_none(*pte))
1202 		goto out_unlock;
1203 
1204 	/* Ok, finally just insert the thing.. */
1205 	get_page(page);
1206 	inc_mm_counter(mm, file_rss);
1207 	page_add_file_rmap(page);
1208 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1209 
1210 	retval = 0;
1211 out_unlock:
1212 	pte_unmap_unlock(pte, ptl);
1213 out:
1214 	return retval;
1215 }
1216 
1217 /*
1218  * This allows drivers to insert individual pages they've allocated
1219  * into a user vma.
1220  *
1221  * The page has to be a nice clean _individual_ kernel allocation.
1222  * If you allocate a compound page, you need to have marked it as
1223  * such (__GFP_COMP), or manually just split the page up yourself
1224  * (which is mainly an issue of doing "set_page_count(page, 1)" for
1225  * each sub-page, and then freeing them one by one when you free
1226  * them rather than freeing it as a compound page).
1227  *
1228  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1229  * took an arbitrary page protection parameter. This doesn't allow
1230  * that. Your vma protection will have to be set up correctly, which
1231  * means that if you want a shared writable mapping, you'd better
1232  * ask for a shared writable mapping!
1233  *
1234  * The page does not need to be reserved.
1235  */
1236 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1237 {
1238 	if (addr < vma->vm_start || addr >= vma->vm_end)
1239 		return -EFAULT;
1240 	if (!page_count(page))
1241 		return -EINVAL;
1242 	vma->vm_flags |= VM_INSERTPAGE;
1243 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1244 }
1245 EXPORT_SYMBOL(vm_insert_page);
1246 
1247 /*
1248  * maps a range of physical memory into the requested pages. the old
1249  * mappings are removed. any references to nonexistent pages results
1250  * in null mappings (currently treated as "copy-on-access")
1251  */
1252 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1253 			unsigned long addr, unsigned long end,
1254 			unsigned long pfn, pgprot_t prot)
1255 {
1256 	pte_t *pte;
1257 	spinlock_t *ptl;
1258 
1259 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1260 	if (!pte)
1261 		return -ENOMEM;
1262 	do {
1263 		BUG_ON(!pte_none(*pte));
1264 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1265 		pfn++;
1266 	} while (pte++, addr += PAGE_SIZE, addr != end);
1267 	pte_unmap_unlock(pte - 1, ptl);
1268 	return 0;
1269 }
1270 
1271 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1272 			unsigned long addr, unsigned long end,
1273 			unsigned long pfn, pgprot_t prot)
1274 {
1275 	pmd_t *pmd;
1276 	unsigned long next;
1277 
1278 	pfn -= addr >> PAGE_SHIFT;
1279 	pmd = pmd_alloc(mm, pud, addr);
1280 	if (!pmd)
1281 		return -ENOMEM;
1282 	do {
1283 		next = pmd_addr_end(addr, end);
1284 		if (remap_pte_range(mm, pmd, addr, next,
1285 				pfn + (addr >> PAGE_SHIFT), prot))
1286 			return -ENOMEM;
1287 	} while (pmd++, addr = next, addr != end);
1288 	return 0;
1289 }
1290 
1291 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1292 			unsigned long addr, unsigned long end,
1293 			unsigned long pfn, pgprot_t prot)
1294 {
1295 	pud_t *pud;
1296 	unsigned long next;
1297 
1298 	pfn -= addr >> PAGE_SHIFT;
1299 	pud = pud_alloc(mm, pgd, addr);
1300 	if (!pud)
1301 		return -ENOMEM;
1302 	do {
1303 		next = pud_addr_end(addr, end);
1304 		if (remap_pmd_range(mm, pud, addr, next,
1305 				pfn + (addr >> PAGE_SHIFT), prot))
1306 			return -ENOMEM;
1307 	} while (pud++, addr = next, addr != end);
1308 	return 0;
1309 }
1310 
1311 /*  Note: this is only safe if the mm semaphore is held when called. */
1312 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1313 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1314 {
1315 	pgd_t *pgd;
1316 	unsigned long next;
1317 	unsigned long end = addr + PAGE_ALIGN(size);
1318 	struct mm_struct *mm = vma->vm_mm;
1319 	int err;
1320 
1321 	/*
1322 	 * Physically remapped pages are special. Tell the
1323 	 * rest of the world about it:
1324 	 *   VM_IO tells people not to look at these pages
1325 	 *	(accesses can have side effects).
1326 	 *   VM_RESERVED is specified all over the place, because
1327 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1328 	 *	in 2.6 the LRU scan won't even find its pages, so this
1329 	 *	flag means no more than count its pages in reserved_vm,
1330 	 * 	and omit it from core dump, even when VM_IO turned off.
1331 	 *   VM_PFNMAP tells the core MM that the base pages are just
1332 	 *	raw PFN mappings, and do not have a "struct page" associated
1333 	 *	with them.
1334 	 *
1335 	 * There's a horrible special case to handle copy-on-write
1336 	 * behaviour that some programs depend on. We mark the "original"
1337 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1338 	 */
1339 	if (is_cow_mapping(vma->vm_flags)) {
1340 		if (addr != vma->vm_start || end != vma->vm_end)
1341 			return -EINVAL;
1342 		vma->vm_pgoff = pfn;
1343 	}
1344 
1345 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1346 
1347 	BUG_ON(addr >= end);
1348 	pfn -= addr >> PAGE_SHIFT;
1349 	pgd = pgd_offset(mm, addr);
1350 	flush_cache_range(vma, addr, end);
1351 	do {
1352 		next = pgd_addr_end(addr, end);
1353 		err = remap_pud_range(mm, pgd, addr, next,
1354 				pfn + (addr >> PAGE_SHIFT), prot);
1355 		if (err)
1356 			break;
1357 	} while (pgd++, addr = next, addr != end);
1358 	return err;
1359 }
1360 EXPORT_SYMBOL(remap_pfn_range);
1361 
1362 /*
1363  * handle_pte_fault chooses page fault handler according to an entry
1364  * which was read non-atomically.  Before making any commitment, on
1365  * those architectures or configurations (e.g. i386 with PAE) which
1366  * might give a mix of unmatched parts, do_swap_page and do_file_page
1367  * must check under lock before unmapping the pte and proceeding
1368  * (but do_wp_page is only called after already making such a check;
1369  * and do_anonymous_page and do_no_page can safely check later on).
1370  */
1371 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1372 				pte_t *page_table, pte_t orig_pte)
1373 {
1374 	int same = 1;
1375 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1376 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1377 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1378 		spin_lock(ptl);
1379 		same = pte_same(*page_table, orig_pte);
1380 		spin_unlock(ptl);
1381 	}
1382 #endif
1383 	pte_unmap(page_table);
1384 	return same;
1385 }
1386 
1387 /*
1388  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1389  * servicing faults for write access.  In the normal case, do always want
1390  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1391  * that do not have writing enabled, when used by access_process_vm.
1392  */
1393 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1394 {
1395 	if (likely(vma->vm_flags & VM_WRITE))
1396 		pte = pte_mkwrite(pte);
1397 	return pte;
1398 }
1399 
1400 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1401 {
1402 	/*
1403 	 * If the source page was a PFN mapping, we don't have
1404 	 * a "struct page" for it. We do a best-effort copy by
1405 	 * just copying from the original user address. If that
1406 	 * fails, we just zero-fill it. Live with it.
1407 	 */
1408 	if (unlikely(!src)) {
1409 		void *kaddr = kmap_atomic(dst, KM_USER0);
1410 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1411 
1412 		/*
1413 		 * This really shouldn't fail, because the page is there
1414 		 * in the page tables. But it might just be unreadable,
1415 		 * in which case we just give up and fill the result with
1416 		 * zeroes.
1417 		 */
1418 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1419 			memset(kaddr, 0, PAGE_SIZE);
1420 		kunmap_atomic(kaddr, KM_USER0);
1421 		return;
1422 
1423 	}
1424 	copy_user_highpage(dst, src, va);
1425 }
1426 
1427 /*
1428  * This routine handles present pages, when users try to write
1429  * to a shared page. It is done by copying the page to a new address
1430  * and decrementing the shared-page counter for the old page.
1431  *
1432  * Note that this routine assumes that the protection checks have been
1433  * done by the caller (the low-level page fault routine in most cases).
1434  * Thus we can safely just mark it writable once we've done any necessary
1435  * COW.
1436  *
1437  * We also mark the page dirty at this point even though the page will
1438  * change only once the write actually happens. This avoids a few races,
1439  * and potentially makes it more efficient.
1440  *
1441  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1442  * but allow concurrent faults), with pte both mapped and locked.
1443  * We return with mmap_sem still held, but pte unmapped and unlocked.
1444  */
1445 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1446 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1447 		spinlock_t *ptl, pte_t orig_pte)
1448 {
1449 	struct page *old_page, *new_page;
1450 	pte_t entry;
1451 	int ret = VM_FAULT_MINOR;
1452 
1453 	old_page = vm_normal_page(vma, address, orig_pte);
1454 	if (!old_page)
1455 		goto gotten;
1456 
1457 	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1458 		int reuse = can_share_swap_page(old_page);
1459 		unlock_page(old_page);
1460 		if (reuse) {
1461 			flush_cache_page(vma, address, pte_pfn(orig_pte));
1462 			entry = pte_mkyoung(orig_pte);
1463 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1464 			ptep_set_access_flags(vma, address, page_table, entry, 1);
1465 			update_mmu_cache(vma, address, entry);
1466 			lazy_mmu_prot_update(entry);
1467 			ret |= VM_FAULT_WRITE;
1468 			goto unlock;
1469 		}
1470 	}
1471 
1472 	/*
1473 	 * Ok, we need to copy. Oh, well..
1474 	 */
1475 	page_cache_get(old_page);
1476 gotten:
1477 	pte_unmap_unlock(page_table, ptl);
1478 
1479 	if (unlikely(anon_vma_prepare(vma)))
1480 		goto oom;
1481 	if (old_page == ZERO_PAGE(address)) {
1482 		new_page = alloc_zeroed_user_highpage(vma, address);
1483 		if (!new_page)
1484 			goto oom;
1485 	} else {
1486 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1487 		if (!new_page)
1488 			goto oom;
1489 		cow_user_page(new_page, old_page, address);
1490 	}
1491 
1492 	/*
1493 	 * Re-check the pte - we dropped the lock
1494 	 */
1495 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1496 	if (likely(pte_same(*page_table, orig_pte))) {
1497 		if (old_page) {
1498 			page_remove_rmap(old_page);
1499 			if (!PageAnon(old_page)) {
1500 				dec_mm_counter(mm, file_rss);
1501 				inc_mm_counter(mm, anon_rss);
1502 			}
1503 		} else
1504 			inc_mm_counter(mm, anon_rss);
1505 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1506 		entry = mk_pte(new_page, vma->vm_page_prot);
1507 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1508 		ptep_establish(vma, address, page_table, entry);
1509 		update_mmu_cache(vma, address, entry);
1510 		lazy_mmu_prot_update(entry);
1511 		lru_cache_add_active(new_page);
1512 		page_add_new_anon_rmap(new_page, vma, address);
1513 
1514 		/* Free the old page.. */
1515 		new_page = old_page;
1516 		ret |= VM_FAULT_WRITE;
1517 	}
1518 	if (new_page)
1519 		page_cache_release(new_page);
1520 	if (old_page)
1521 		page_cache_release(old_page);
1522 unlock:
1523 	pte_unmap_unlock(page_table, ptl);
1524 	return ret;
1525 oom:
1526 	if (old_page)
1527 		page_cache_release(old_page);
1528 	return VM_FAULT_OOM;
1529 }
1530 
1531 /*
1532  * Helper functions for unmap_mapping_range().
1533  *
1534  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1535  *
1536  * We have to restart searching the prio_tree whenever we drop the lock,
1537  * since the iterator is only valid while the lock is held, and anyway
1538  * a later vma might be split and reinserted earlier while lock dropped.
1539  *
1540  * The list of nonlinear vmas could be handled more efficiently, using
1541  * a placeholder, but handle it in the same way until a need is shown.
1542  * It is important to search the prio_tree before nonlinear list: a vma
1543  * may become nonlinear and be shifted from prio_tree to nonlinear list
1544  * while the lock is dropped; but never shifted from list to prio_tree.
1545  *
1546  * In order to make forward progress despite restarting the search,
1547  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1548  * quickly skip it next time around.  Since the prio_tree search only
1549  * shows us those vmas affected by unmapping the range in question, we
1550  * can't efficiently keep all vmas in step with mapping->truncate_count:
1551  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1552  * mapping->truncate_count and vma->vm_truncate_count are protected by
1553  * i_mmap_lock.
1554  *
1555  * In order to make forward progress despite repeatedly restarting some
1556  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1557  * and restart from that address when we reach that vma again.  It might
1558  * have been split or merged, shrunk or extended, but never shifted: so
1559  * restart_addr remains valid so long as it remains in the vma's range.
1560  * unmap_mapping_range forces truncate_count to leap over page-aligned
1561  * values so we can save vma's restart_addr in its truncate_count field.
1562  */
1563 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1564 
1565 static void reset_vma_truncate_counts(struct address_space *mapping)
1566 {
1567 	struct vm_area_struct *vma;
1568 	struct prio_tree_iter iter;
1569 
1570 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1571 		vma->vm_truncate_count = 0;
1572 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1573 		vma->vm_truncate_count = 0;
1574 }
1575 
1576 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1577 		unsigned long start_addr, unsigned long end_addr,
1578 		struct zap_details *details)
1579 {
1580 	unsigned long restart_addr;
1581 	int need_break;
1582 
1583 again:
1584 	restart_addr = vma->vm_truncate_count;
1585 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1586 		start_addr = restart_addr;
1587 		if (start_addr >= end_addr) {
1588 			/* Top of vma has been split off since last time */
1589 			vma->vm_truncate_count = details->truncate_count;
1590 			return 0;
1591 		}
1592 	}
1593 
1594 	restart_addr = zap_page_range(vma, start_addr,
1595 					end_addr - start_addr, details);
1596 	need_break = need_resched() ||
1597 			need_lockbreak(details->i_mmap_lock);
1598 
1599 	if (restart_addr >= end_addr) {
1600 		/* We have now completed this vma: mark it so */
1601 		vma->vm_truncate_count = details->truncate_count;
1602 		if (!need_break)
1603 			return 0;
1604 	} else {
1605 		/* Note restart_addr in vma's truncate_count field */
1606 		vma->vm_truncate_count = restart_addr;
1607 		if (!need_break)
1608 			goto again;
1609 	}
1610 
1611 	spin_unlock(details->i_mmap_lock);
1612 	cond_resched();
1613 	spin_lock(details->i_mmap_lock);
1614 	return -EINTR;
1615 }
1616 
1617 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1618 					    struct zap_details *details)
1619 {
1620 	struct vm_area_struct *vma;
1621 	struct prio_tree_iter iter;
1622 	pgoff_t vba, vea, zba, zea;
1623 
1624 restart:
1625 	vma_prio_tree_foreach(vma, &iter, root,
1626 			details->first_index, details->last_index) {
1627 		/* Skip quickly over those we have already dealt with */
1628 		if (vma->vm_truncate_count == details->truncate_count)
1629 			continue;
1630 
1631 		vba = vma->vm_pgoff;
1632 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1633 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1634 		zba = details->first_index;
1635 		if (zba < vba)
1636 			zba = vba;
1637 		zea = details->last_index;
1638 		if (zea > vea)
1639 			zea = vea;
1640 
1641 		if (unmap_mapping_range_vma(vma,
1642 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1643 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1644 				details) < 0)
1645 			goto restart;
1646 	}
1647 }
1648 
1649 static inline void unmap_mapping_range_list(struct list_head *head,
1650 					    struct zap_details *details)
1651 {
1652 	struct vm_area_struct *vma;
1653 
1654 	/*
1655 	 * In nonlinear VMAs there is no correspondence between virtual address
1656 	 * offset and file offset.  So we must perform an exhaustive search
1657 	 * across *all* the pages in each nonlinear VMA, not just the pages
1658 	 * whose virtual address lies outside the file truncation point.
1659 	 */
1660 restart:
1661 	list_for_each_entry(vma, head, shared.vm_set.list) {
1662 		/* Skip quickly over those we have already dealt with */
1663 		if (vma->vm_truncate_count == details->truncate_count)
1664 			continue;
1665 		details->nonlinear_vma = vma;
1666 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1667 					vma->vm_end, details) < 0)
1668 			goto restart;
1669 	}
1670 }
1671 
1672 /**
1673  * unmap_mapping_range - unmap the portion of all mmaps
1674  * in the specified address_space corresponding to the specified
1675  * page range in the underlying file.
1676  * @mapping: the address space containing mmaps to be unmapped.
1677  * @holebegin: byte in first page to unmap, relative to the start of
1678  * the underlying file.  This will be rounded down to a PAGE_SIZE
1679  * boundary.  Note that this is different from vmtruncate(), which
1680  * must keep the partial page.  In contrast, we must get rid of
1681  * partial pages.
1682  * @holelen: size of prospective hole in bytes.  This will be rounded
1683  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1684  * end of the file.
1685  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1686  * but 0 when invalidating pagecache, don't throw away private data.
1687  */
1688 void unmap_mapping_range(struct address_space *mapping,
1689 		loff_t const holebegin, loff_t const holelen, int even_cows)
1690 {
1691 	struct zap_details details;
1692 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1693 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1694 
1695 	/* Check for overflow. */
1696 	if (sizeof(holelen) > sizeof(hlen)) {
1697 		long long holeend =
1698 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1699 		if (holeend & ~(long long)ULONG_MAX)
1700 			hlen = ULONG_MAX - hba + 1;
1701 	}
1702 
1703 	details.check_mapping = even_cows? NULL: mapping;
1704 	details.nonlinear_vma = NULL;
1705 	details.first_index = hba;
1706 	details.last_index = hba + hlen - 1;
1707 	if (details.last_index < details.first_index)
1708 		details.last_index = ULONG_MAX;
1709 	details.i_mmap_lock = &mapping->i_mmap_lock;
1710 
1711 	spin_lock(&mapping->i_mmap_lock);
1712 
1713 	/* serialize i_size write against truncate_count write */
1714 	smp_wmb();
1715 	/* Protect against page faults, and endless unmapping loops */
1716 	mapping->truncate_count++;
1717 	/*
1718 	 * For archs where spin_lock has inclusive semantics like ia64
1719 	 * this smp_mb() will prevent to read pagetable contents
1720 	 * before the truncate_count increment is visible to
1721 	 * other cpus.
1722 	 */
1723 	smp_mb();
1724 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1725 		if (mapping->truncate_count == 0)
1726 			reset_vma_truncate_counts(mapping);
1727 		mapping->truncate_count++;
1728 	}
1729 	details.truncate_count = mapping->truncate_count;
1730 
1731 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1732 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1733 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1734 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1735 	spin_unlock(&mapping->i_mmap_lock);
1736 }
1737 EXPORT_SYMBOL(unmap_mapping_range);
1738 
1739 /*
1740  * Handle all mappings that got truncated by a "truncate()"
1741  * system call.
1742  *
1743  * NOTE! We have to be ready to update the memory sharing
1744  * between the file and the memory map for a potential last
1745  * incomplete page.  Ugly, but necessary.
1746  */
1747 int vmtruncate(struct inode * inode, loff_t offset)
1748 {
1749 	struct address_space *mapping = inode->i_mapping;
1750 	unsigned long limit;
1751 
1752 	if (inode->i_size < offset)
1753 		goto do_expand;
1754 	/*
1755 	 * truncation of in-use swapfiles is disallowed - it would cause
1756 	 * subsequent swapout to scribble on the now-freed blocks.
1757 	 */
1758 	if (IS_SWAPFILE(inode))
1759 		goto out_busy;
1760 	i_size_write(inode, offset);
1761 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1762 	truncate_inode_pages(mapping, offset);
1763 	goto out_truncate;
1764 
1765 do_expand:
1766 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1767 	if (limit != RLIM_INFINITY && offset > limit)
1768 		goto out_sig;
1769 	if (offset > inode->i_sb->s_maxbytes)
1770 		goto out_big;
1771 	i_size_write(inode, offset);
1772 
1773 out_truncate:
1774 	if (inode->i_op && inode->i_op->truncate)
1775 		inode->i_op->truncate(inode);
1776 	return 0;
1777 out_sig:
1778 	send_sig(SIGXFSZ, current, 0);
1779 out_big:
1780 	return -EFBIG;
1781 out_busy:
1782 	return -ETXTBSY;
1783 }
1784 EXPORT_SYMBOL(vmtruncate);
1785 
1786 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1787 {
1788 	struct address_space *mapping = inode->i_mapping;
1789 
1790 	/*
1791 	 * If the underlying filesystem is not going to provide
1792 	 * a way to truncate a range of blocks (punch a hole) -
1793 	 * we should return failure right now.
1794 	 */
1795 	if (!inode->i_op || !inode->i_op->truncate_range)
1796 		return -ENOSYS;
1797 
1798 	mutex_lock(&inode->i_mutex);
1799 	down_write(&inode->i_alloc_sem);
1800 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1801 	truncate_inode_pages_range(mapping, offset, end);
1802 	inode->i_op->truncate_range(inode, offset, end);
1803 	up_write(&inode->i_alloc_sem);
1804 	mutex_unlock(&inode->i_mutex);
1805 
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL(vmtruncate_range);
1809 
1810 /*
1811  * Primitive swap readahead code. We simply read an aligned block of
1812  * (1 << page_cluster) entries in the swap area. This method is chosen
1813  * because it doesn't cost us any seek time.  We also make sure to queue
1814  * the 'original' request together with the readahead ones...
1815  *
1816  * This has been extended to use the NUMA policies from the mm triggering
1817  * the readahead.
1818  *
1819  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1820  */
1821 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1822 {
1823 #ifdef CONFIG_NUMA
1824 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1825 #endif
1826 	int i, num;
1827 	struct page *new_page;
1828 	unsigned long offset;
1829 
1830 	/*
1831 	 * Get the number of handles we should do readahead io to.
1832 	 */
1833 	num = valid_swaphandles(entry, &offset);
1834 	for (i = 0; i < num; offset++, i++) {
1835 		/* Ok, do the async read-ahead now */
1836 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1837 							   offset), vma, addr);
1838 		if (!new_page)
1839 			break;
1840 		page_cache_release(new_page);
1841 #ifdef CONFIG_NUMA
1842 		/*
1843 		 * Find the next applicable VMA for the NUMA policy.
1844 		 */
1845 		addr += PAGE_SIZE;
1846 		if (addr == 0)
1847 			vma = NULL;
1848 		if (vma) {
1849 			if (addr >= vma->vm_end) {
1850 				vma = next_vma;
1851 				next_vma = vma ? vma->vm_next : NULL;
1852 			}
1853 			if (vma && addr < vma->vm_start)
1854 				vma = NULL;
1855 		} else {
1856 			if (next_vma && addr >= next_vma->vm_start) {
1857 				vma = next_vma;
1858 				next_vma = vma->vm_next;
1859 			}
1860 		}
1861 #endif
1862 	}
1863 	lru_add_drain();	/* Push any new pages onto the LRU now */
1864 }
1865 
1866 /*
1867  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1868  * but allow concurrent faults), and pte mapped but not yet locked.
1869  * We return with mmap_sem still held, but pte unmapped and unlocked.
1870  */
1871 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1872 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1873 		int write_access, pte_t orig_pte)
1874 {
1875 	spinlock_t *ptl;
1876 	struct page *page;
1877 	swp_entry_t entry;
1878 	pte_t pte;
1879 	int ret = VM_FAULT_MINOR;
1880 
1881 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1882 		goto out;
1883 
1884 	entry = pte_to_swp_entry(orig_pte);
1885 again:
1886 	page = lookup_swap_cache(entry);
1887 	if (!page) {
1888  		swapin_readahead(entry, address, vma);
1889  		page = read_swap_cache_async(entry, vma, address);
1890 		if (!page) {
1891 			/*
1892 			 * Back out if somebody else faulted in this pte
1893 			 * while we released the pte lock.
1894 			 */
1895 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1896 			if (likely(pte_same(*page_table, orig_pte)))
1897 				ret = VM_FAULT_OOM;
1898 			goto unlock;
1899 		}
1900 
1901 		/* Had to read the page from swap area: Major fault */
1902 		ret = VM_FAULT_MAJOR;
1903 		inc_page_state(pgmajfault);
1904 		grab_swap_token();
1905 	}
1906 
1907 	mark_page_accessed(page);
1908 	lock_page(page);
1909 	if (!PageSwapCache(page)) {
1910 		/* Page migration has occured */
1911 		unlock_page(page);
1912 		page_cache_release(page);
1913 		goto again;
1914 	}
1915 
1916 	/*
1917 	 * Back out if somebody else already faulted in this pte.
1918 	 */
1919 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1920 	if (unlikely(!pte_same(*page_table, orig_pte)))
1921 		goto out_nomap;
1922 
1923 	if (unlikely(!PageUptodate(page))) {
1924 		ret = VM_FAULT_SIGBUS;
1925 		goto out_nomap;
1926 	}
1927 
1928 	/* The page isn't present yet, go ahead with the fault. */
1929 
1930 	inc_mm_counter(mm, anon_rss);
1931 	pte = mk_pte(page, vma->vm_page_prot);
1932 	if (write_access && can_share_swap_page(page)) {
1933 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1934 		write_access = 0;
1935 	}
1936 
1937 	flush_icache_page(vma, page);
1938 	set_pte_at(mm, address, page_table, pte);
1939 	page_add_anon_rmap(page, vma, address);
1940 
1941 	swap_free(entry);
1942 	if (vm_swap_full())
1943 		remove_exclusive_swap_page(page);
1944 	unlock_page(page);
1945 
1946 	if (write_access) {
1947 		if (do_wp_page(mm, vma, address,
1948 				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1949 			ret = VM_FAULT_OOM;
1950 		goto out;
1951 	}
1952 
1953 	/* No need to invalidate - it was non-present before */
1954 	update_mmu_cache(vma, address, pte);
1955 	lazy_mmu_prot_update(pte);
1956 unlock:
1957 	pte_unmap_unlock(page_table, ptl);
1958 out:
1959 	return ret;
1960 out_nomap:
1961 	pte_unmap_unlock(page_table, ptl);
1962 	unlock_page(page);
1963 	page_cache_release(page);
1964 	return ret;
1965 }
1966 
1967 /*
1968  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1969  * but allow concurrent faults), and pte mapped but not yet locked.
1970  * We return with mmap_sem still held, but pte unmapped and unlocked.
1971  */
1972 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1973 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1974 		int write_access)
1975 {
1976 	struct page *page;
1977 	spinlock_t *ptl;
1978 	pte_t entry;
1979 
1980 	if (write_access) {
1981 		/* Allocate our own private page. */
1982 		pte_unmap(page_table);
1983 
1984 		if (unlikely(anon_vma_prepare(vma)))
1985 			goto oom;
1986 		page = alloc_zeroed_user_highpage(vma, address);
1987 		if (!page)
1988 			goto oom;
1989 
1990 		entry = mk_pte(page, vma->vm_page_prot);
1991 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1992 
1993 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1994 		if (!pte_none(*page_table))
1995 			goto release;
1996 		inc_mm_counter(mm, anon_rss);
1997 		lru_cache_add_active(page);
1998 		page_add_new_anon_rmap(page, vma, address);
1999 	} else {
2000 		/* Map the ZERO_PAGE - vm_page_prot is readonly */
2001 		page = ZERO_PAGE(address);
2002 		page_cache_get(page);
2003 		entry = mk_pte(page, vma->vm_page_prot);
2004 
2005 		ptl = pte_lockptr(mm, pmd);
2006 		spin_lock(ptl);
2007 		if (!pte_none(*page_table))
2008 			goto release;
2009 		inc_mm_counter(mm, file_rss);
2010 		page_add_file_rmap(page);
2011 	}
2012 
2013 	set_pte_at(mm, address, page_table, entry);
2014 
2015 	/* No need to invalidate - it was non-present before */
2016 	update_mmu_cache(vma, address, entry);
2017 	lazy_mmu_prot_update(entry);
2018 unlock:
2019 	pte_unmap_unlock(page_table, ptl);
2020 	return VM_FAULT_MINOR;
2021 release:
2022 	page_cache_release(page);
2023 	goto unlock;
2024 oom:
2025 	return VM_FAULT_OOM;
2026 }
2027 
2028 /*
2029  * do_no_page() tries to create a new page mapping. It aggressively
2030  * tries to share with existing pages, but makes a separate copy if
2031  * the "write_access" parameter is true in order to avoid the next
2032  * page fault.
2033  *
2034  * As this is called only for pages that do not currently exist, we
2035  * do not need to flush old virtual caches or the TLB.
2036  *
2037  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2038  * but allow concurrent faults), and pte mapped but not yet locked.
2039  * We return with mmap_sem still held, but pte unmapped and unlocked.
2040  */
2041 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2042 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2043 		int write_access)
2044 {
2045 	spinlock_t *ptl;
2046 	struct page *new_page;
2047 	struct address_space *mapping = NULL;
2048 	pte_t entry;
2049 	unsigned int sequence = 0;
2050 	int ret = VM_FAULT_MINOR;
2051 	int anon = 0;
2052 
2053 	pte_unmap(page_table);
2054 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2055 
2056 	if (vma->vm_file) {
2057 		mapping = vma->vm_file->f_mapping;
2058 		sequence = mapping->truncate_count;
2059 		smp_rmb(); /* serializes i_size against truncate_count */
2060 	}
2061 retry:
2062 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2063 	/*
2064 	 * No smp_rmb is needed here as long as there's a full
2065 	 * spin_lock/unlock sequence inside the ->nopage callback
2066 	 * (for the pagecache lookup) that acts as an implicit
2067 	 * smp_mb() and prevents the i_size read to happen
2068 	 * after the next truncate_count read.
2069 	 */
2070 
2071 	/* no page was available -- either SIGBUS or OOM */
2072 	if (new_page == NOPAGE_SIGBUS)
2073 		return VM_FAULT_SIGBUS;
2074 	if (new_page == NOPAGE_OOM)
2075 		return VM_FAULT_OOM;
2076 
2077 	/*
2078 	 * Should we do an early C-O-W break?
2079 	 */
2080 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
2081 		struct page *page;
2082 
2083 		if (unlikely(anon_vma_prepare(vma)))
2084 			goto oom;
2085 		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2086 		if (!page)
2087 			goto oom;
2088 		copy_user_highpage(page, new_page, address);
2089 		page_cache_release(new_page);
2090 		new_page = page;
2091 		anon = 1;
2092 	}
2093 
2094 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095 	/*
2096 	 * For a file-backed vma, someone could have truncated or otherwise
2097 	 * invalidated this page.  If unmap_mapping_range got called,
2098 	 * retry getting the page.
2099 	 */
2100 	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2101 		pte_unmap_unlock(page_table, ptl);
2102 		page_cache_release(new_page);
2103 		cond_resched();
2104 		sequence = mapping->truncate_count;
2105 		smp_rmb();
2106 		goto retry;
2107 	}
2108 
2109 	/*
2110 	 * This silly early PAGE_DIRTY setting removes a race
2111 	 * due to the bad i386 page protection. But it's valid
2112 	 * for other architectures too.
2113 	 *
2114 	 * Note that if write_access is true, we either now have
2115 	 * an exclusive copy of the page, or this is a shared mapping,
2116 	 * so we can make it writable and dirty to avoid having to
2117 	 * handle that later.
2118 	 */
2119 	/* Only go through if we didn't race with anybody else... */
2120 	if (pte_none(*page_table)) {
2121 		flush_icache_page(vma, new_page);
2122 		entry = mk_pte(new_page, vma->vm_page_prot);
2123 		if (write_access)
2124 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2125 		set_pte_at(mm, address, page_table, entry);
2126 		if (anon) {
2127 			inc_mm_counter(mm, anon_rss);
2128 			lru_cache_add_active(new_page);
2129 			page_add_new_anon_rmap(new_page, vma, address);
2130 		} else {
2131 			inc_mm_counter(mm, file_rss);
2132 			page_add_file_rmap(new_page);
2133 		}
2134 	} else {
2135 		/* One of our sibling threads was faster, back out. */
2136 		page_cache_release(new_page);
2137 		goto unlock;
2138 	}
2139 
2140 	/* no need to invalidate: a not-present page shouldn't be cached */
2141 	update_mmu_cache(vma, address, entry);
2142 	lazy_mmu_prot_update(entry);
2143 unlock:
2144 	pte_unmap_unlock(page_table, ptl);
2145 	return ret;
2146 oom:
2147 	page_cache_release(new_page);
2148 	return VM_FAULT_OOM;
2149 }
2150 
2151 /*
2152  * Fault of a previously existing named mapping. Repopulate the pte
2153  * from the encoded file_pte if possible. This enables swappable
2154  * nonlinear vmas.
2155  *
2156  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2157  * but allow concurrent faults), and pte mapped but not yet locked.
2158  * We return with mmap_sem still held, but pte unmapped and unlocked.
2159  */
2160 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2161 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2162 		int write_access, pte_t orig_pte)
2163 {
2164 	pgoff_t pgoff;
2165 	int err;
2166 
2167 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2168 		return VM_FAULT_MINOR;
2169 
2170 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2171 		/*
2172 		 * Page table corrupted: show pte and kill process.
2173 		 */
2174 		print_bad_pte(vma, orig_pte, address);
2175 		return VM_FAULT_OOM;
2176 	}
2177 	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2178 
2179 	pgoff = pte_to_pgoff(orig_pte);
2180 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2181 					vma->vm_page_prot, pgoff, 0);
2182 	if (err == -ENOMEM)
2183 		return VM_FAULT_OOM;
2184 	if (err)
2185 		return VM_FAULT_SIGBUS;
2186 	return VM_FAULT_MAJOR;
2187 }
2188 
2189 /*
2190  * These routines also need to handle stuff like marking pages dirty
2191  * and/or accessed for architectures that don't do it in hardware (most
2192  * RISC architectures).  The early dirtying is also good on the i386.
2193  *
2194  * There is also a hook called "update_mmu_cache()" that architectures
2195  * with external mmu caches can use to update those (ie the Sparc or
2196  * PowerPC hashed page tables that act as extended TLBs).
2197  *
2198  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2199  * but allow concurrent faults), and pte mapped but not yet locked.
2200  * We return with mmap_sem still held, but pte unmapped and unlocked.
2201  */
2202 static inline int handle_pte_fault(struct mm_struct *mm,
2203 		struct vm_area_struct *vma, unsigned long address,
2204 		pte_t *pte, pmd_t *pmd, int write_access)
2205 {
2206 	pte_t entry;
2207 	pte_t old_entry;
2208 	spinlock_t *ptl;
2209 
2210 	old_entry = entry = *pte;
2211 	if (!pte_present(entry)) {
2212 		if (pte_none(entry)) {
2213 			if (!vma->vm_ops || !vma->vm_ops->nopage)
2214 				return do_anonymous_page(mm, vma, address,
2215 					pte, pmd, write_access);
2216 			return do_no_page(mm, vma, address,
2217 					pte, pmd, write_access);
2218 		}
2219 		if (pte_file(entry))
2220 			return do_file_page(mm, vma, address,
2221 					pte, pmd, write_access, entry);
2222 		return do_swap_page(mm, vma, address,
2223 					pte, pmd, write_access, entry);
2224 	}
2225 
2226 	ptl = pte_lockptr(mm, pmd);
2227 	spin_lock(ptl);
2228 	if (unlikely(!pte_same(*pte, entry)))
2229 		goto unlock;
2230 	if (write_access) {
2231 		if (!pte_write(entry))
2232 			return do_wp_page(mm, vma, address,
2233 					pte, pmd, ptl, entry);
2234 		entry = pte_mkdirty(entry);
2235 	}
2236 	entry = pte_mkyoung(entry);
2237 	if (!pte_same(old_entry, entry)) {
2238 		ptep_set_access_flags(vma, address, pte, entry, write_access);
2239 		update_mmu_cache(vma, address, entry);
2240 		lazy_mmu_prot_update(entry);
2241 	} else {
2242 		/*
2243 		 * This is needed only for protection faults but the arch code
2244 		 * is not yet telling us if this is a protection fault or not.
2245 		 * This still avoids useless tlb flushes for .text page faults
2246 		 * with threads.
2247 		 */
2248 		if (write_access)
2249 			flush_tlb_page(vma, address);
2250 	}
2251 unlock:
2252 	pte_unmap_unlock(pte, ptl);
2253 	return VM_FAULT_MINOR;
2254 }
2255 
2256 /*
2257  * By the time we get here, we already hold the mm semaphore
2258  */
2259 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2260 		unsigned long address, int write_access)
2261 {
2262 	pgd_t *pgd;
2263 	pud_t *pud;
2264 	pmd_t *pmd;
2265 	pte_t *pte;
2266 
2267 	__set_current_state(TASK_RUNNING);
2268 
2269 	inc_page_state(pgfault);
2270 
2271 	if (unlikely(is_vm_hugetlb_page(vma)))
2272 		return hugetlb_fault(mm, vma, address, write_access);
2273 
2274 	pgd = pgd_offset(mm, address);
2275 	pud = pud_alloc(mm, pgd, address);
2276 	if (!pud)
2277 		return VM_FAULT_OOM;
2278 	pmd = pmd_alloc(mm, pud, address);
2279 	if (!pmd)
2280 		return VM_FAULT_OOM;
2281 	pte = pte_alloc_map(mm, pmd, address);
2282 	if (!pte)
2283 		return VM_FAULT_OOM;
2284 
2285 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2286 }
2287 
2288 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2289 
2290 #ifndef __PAGETABLE_PUD_FOLDED
2291 /*
2292  * Allocate page upper directory.
2293  * We've already handled the fast-path in-line.
2294  */
2295 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2296 {
2297 	pud_t *new = pud_alloc_one(mm, address);
2298 	if (!new)
2299 		return -ENOMEM;
2300 
2301 	spin_lock(&mm->page_table_lock);
2302 	if (pgd_present(*pgd))		/* Another has populated it */
2303 		pud_free(new);
2304 	else
2305 		pgd_populate(mm, pgd, new);
2306 	spin_unlock(&mm->page_table_lock);
2307 	return 0;
2308 }
2309 #else
2310 /* Workaround for gcc 2.96 */
2311 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2312 {
2313 	return 0;
2314 }
2315 #endif /* __PAGETABLE_PUD_FOLDED */
2316 
2317 #ifndef __PAGETABLE_PMD_FOLDED
2318 /*
2319  * Allocate page middle directory.
2320  * We've already handled the fast-path in-line.
2321  */
2322 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2323 {
2324 	pmd_t *new = pmd_alloc_one(mm, address);
2325 	if (!new)
2326 		return -ENOMEM;
2327 
2328 	spin_lock(&mm->page_table_lock);
2329 #ifndef __ARCH_HAS_4LEVEL_HACK
2330 	if (pud_present(*pud))		/* Another has populated it */
2331 		pmd_free(new);
2332 	else
2333 		pud_populate(mm, pud, new);
2334 #else
2335 	if (pgd_present(*pud))		/* Another has populated it */
2336 		pmd_free(new);
2337 	else
2338 		pgd_populate(mm, pud, new);
2339 #endif /* __ARCH_HAS_4LEVEL_HACK */
2340 	spin_unlock(&mm->page_table_lock);
2341 	return 0;
2342 }
2343 #else
2344 /* Workaround for gcc 2.96 */
2345 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2346 {
2347 	return 0;
2348 }
2349 #endif /* __PAGETABLE_PMD_FOLDED */
2350 
2351 int make_pages_present(unsigned long addr, unsigned long end)
2352 {
2353 	int ret, len, write;
2354 	struct vm_area_struct * vma;
2355 
2356 	vma = find_vma(current->mm, addr);
2357 	if (!vma)
2358 		return -1;
2359 	write = (vma->vm_flags & VM_WRITE) != 0;
2360 	if (addr >= end)
2361 		BUG();
2362 	if (end > vma->vm_end)
2363 		BUG();
2364 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2365 	ret = get_user_pages(current, current->mm, addr,
2366 			len, write, 0, NULL, NULL);
2367 	if (ret < 0)
2368 		return ret;
2369 	return ret == len ? 0 : -1;
2370 }
2371 
2372 /*
2373  * Map a vmalloc()-space virtual address to the physical page.
2374  */
2375 struct page * vmalloc_to_page(void * vmalloc_addr)
2376 {
2377 	unsigned long addr = (unsigned long) vmalloc_addr;
2378 	struct page *page = NULL;
2379 	pgd_t *pgd = pgd_offset_k(addr);
2380 	pud_t *pud;
2381 	pmd_t *pmd;
2382 	pte_t *ptep, pte;
2383 
2384 	if (!pgd_none(*pgd)) {
2385 		pud = pud_offset(pgd, addr);
2386 		if (!pud_none(*pud)) {
2387 			pmd = pmd_offset(pud, addr);
2388 			if (!pmd_none(*pmd)) {
2389 				ptep = pte_offset_map(pmd, addr);
2390 				pte = *ptep;
2391 				if (pte_present(pte))
2392 					page = pte_page(pte);
2393 				pte_unmap(ptep);
2394 			}
2395 		}
2396 	}
2397 	return page;
2398 }
2399 
2400 EXPORT_SYMBOL(vmalloc_to_page);
2401 
2402 /*
2403  * Map a vmalloc()-space virtual address to the physical page frame number.
2404  */
2405 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2406 {
2407 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2408 }
2409 
2410 EXPORT_SYMBOL(vmalloc_to_pfn);
2411 
2412 #if !defined(__HAVE_ARCH_GATE_AREA)
2413 
2414 #if defined(AT_SYSINFO_EHDR)
2415 static struct vm_area_struct gate_vma;
2416 
2417 static int __init gate_vma_init(void)
2418 {
2419 	gate_vma.vm_mm = NULL;
2420 	gate_vma.vm_start = FIXADDR_USER_START;
2421 	gate_vma.vm_end = FIXADDR_USER_END;
2422 	gate_vma.vm_page_prot = PAGE_READONLY;
2423 	gate_vma.vm_flags = 0;
2424 	return 0;
2425 }
2426 __initcall(gate_vma_init);
2427 #endif
2428 
2429 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2430 {
2431 #ifdef AT_SYSINFO_EHDR
2432 	return &gate_vma;
2433 #else
2434 	return NULL;
2435 #endif
2436 }
2437 
2438 int in_gate_area_no_task(unsigned long addr)
2439 {
2440 #ifdef AT_SYSINFO_EHDR
2441 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2442 		return 1;
2443 #endif
2444 	return 0;
2445 }
2446 
2447 #endif	/* __HAVE_ARCH_GATE_AREA */
2448