xref: /linux/mm/memory.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <trace/events/kmem.h>
76 
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90 
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95 
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99 
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109 
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 					1;
119 #else
120 					2;
121 #endif
122 
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126 	/*
127 	 * Those arches which don't have hw access flag feature need to
128 	 * implement their own helper. By default, "true" means pagefault
129 	 * will be hit on old pte.
130 	 */
131 	return true;
132 }
133 #endif
134 
135 static int __init disable_randmaps(char *s)
136 {
137 	randomize_va_space = 0;
138 	return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141 
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144 
145 unsigned long highest_memmap_pfn __read_mostly;
146 
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 	return 0;
154 }
155 core_initcall(init_zero_pfn);
156 
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159 	trace_rss_stat(mm, member, count);
160 }
161 
162 #if defined(SPLIT_RSS_COUNTING)
163 
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166 	int i;
167 
168 	for (i = 0; i < NR_MM_COUNTERS; i++) {
169 		if (current->rss_stat.count[i]) {
170 			add_mm_counter(mm, i, current->rss_stat.count[i]);
171 			current->rss_stat.count[i] = 0;
172 		}
173 	}
174 	current->rss_stat.events = 0;
175 }
176 
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179 	struct task_struct *task = current;
180 
181 	if (likely(task->mm == mm))
182 		task->rss_stat.count[member] += val;
183 	else
184 		add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188 
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH	(64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 	if (unlikely(task != current))
194 		return;
195 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 		sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199 
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202 
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206 
207 #endif /* SPLIT_RSS_COUNTING */
208 
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 			   unsigned long addr)
215 {
216 	pgtable_t token = pmd_pgtable(*pmd);
217 	pmd_clear(pmd);
218 	pte_free_tlb(tlb, token, addr);
219 	mm_dec_nr_ptes(tlb->mm);
220 }
221 
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 				unsigned long addr, unsigned long end,
224 				unsigned long floor, unsigned long ceiling)
225 {
226 	pmd_t *pmd;
227 	unsigned long next;
228 	unsigned long start;
229 
230 	start = addr;
231 	pmd = pmd_offset(pud, addr);
232 	do {
233 		next = pmd_addr_end(addr, end);
234 		if (pmd_none_or_clear_bad(pmd))
235 			continue;
236 		free_pte_range(tlb, pmd, addr);
237 	} while (pmd++, addr = next, addr != end);
238 
239 	start &= PUD_MASK;
240 	if (start < floor)
241 		return;
242 	if (ceiling) {
243 		ceiling &= PUD_MASK;
244 		if (!ceiling)
245 			return;
246 	}
247 	if (end - 1 > ceiling - 1)
248 		return;
249 
250 	pmd = pmd_offset(pud, start);
251 	pud_clear(pud);
252 	pmd_free_tlb(tlb, pmd, start);
253 	mm_dec_nr_pmds(tlb->mm);
254 }
255 
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 				unsigned long addr, unsigned long end,
258 				unsigned long floor, unsigned long ceiling)
259 {
260 	pud_t *pud;
261 	unsigned long next;
262 	unsigned long start;
263 
264 	start = addr;
265 	pud = pud_offset(p4d, addr);
266 	do {
267 		next = pud_addr_end(addr, end);
268 		if (pud_none_or_clear_bad(pud))
269 			continue;
270 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 	} while (pud++, addr = next, addr != end);
272 
273 	start &= P4D_MASK;
274 	if (start < floor)
275 		return;
276 	if (ceiling) {
277 		ceiling &= P4D_MASK;
278 		if (!ceiling)
279 			return;
280 	}
281 	if (end - 1 > ceiling - 1)
282 		return;
283 
284 	pud = pud_offset(p4d, start);
285 	p4d_clear(p4d);
286 	pud_free_tlb(tlb, pud, start);
287 	mm_dec_nr_puds(tlb->mm);
288 }
289 
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 				unsigned long addr, unsigned long end,
292 				unsigned long floor, unsigned long ceiling)
293 {
294 	p4d_t *p4d;
295 	unsigned long next;
296 	unsigned long start;
297 
298 	start = addr;
299 	p4d = p4d_offset(pgd, addr);
300 	do {
301 		next = p4d_addr_end(addr, end);
302 		if (p4d_none_or_clear_bad(p4d))
303 			continue;
304 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 	} while (p4d++, addr = next, addr != end);
306 
307 	start &= PGDIR_MASK;
308 	if (start < floor)
309 		return;
310 	if (ceiling) {
311 		ceiling &= PGDIR_MASK;
312 		if (!ceiling)
313 			return;
314 	}
315 	if (end - 1 > ceiling - 1)
316 		return;
317 
318 	p4d = p4d_offset(pgd, start);
319 	pgd_clear(pgd);
320 	p4d_free_tlb(tlb, p4d, start);
321 }
322 
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327 			unsigned long addr, unsigned long end,
328 			unsigned long floor, unsigned long ceiling)
329 {
330 	pgd_t *pgd;
331 	unsigned long next;
332 
333 	/*
334 	 * The next few lines have given us lots of grief...
335 	 *
336 	 * Why are we testing PMD* at this top level?  Because often
337 	 * there will be no work to do at all, and we'd prefer not to
338 	 * go all the way down to the bottom just to discover that.
339 	 *
340 	 * Why all these "- 1"s?  Because 0 represents both the bottom
341 	 * of the address space and the top of it (using -1 for the
342 	 * top wouldn't help much: the masks would do the wrong thing).
343 	 * The rule is that addr 0 and floor 0 refer to the bottom of
344 	 * the address space, but end 0 and ceiling 0 refer to the top
345 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 	 * that end 0 case should be mythical).
347 	 *
348 	 * Wherever addr is brought up or ceiling brought down, we must
349 	 * be careful to reject "the opposite 0" before it confuses the
350 	 * subsequent tests.  But what about where end is brought down
351 	 * by PMD_SIZE below? no, end can't go down to 0 there.
352 	 *
353 	 * Whereas we round start (addr) and ceiling down, by different
354 	 * masks at different levels, in order to test whether a table
355 	 * now has no other vmas using it, so can be freed, we don't
356 	 * bother to round floor or end up - the tests don't need that.
357 	 */
358 
359 	addr &= PMD_MASK;
360 	if (addr < floor) {
361 		addr += PMD_SIZE;
362 		if (!addr)
363 			return;
364 	}
365 	if (ceiling) {
366 		ceiling &= PMD_MASK;
367 		if (!ceiling)
368 			return;
369 	}
370 	if (end - 1 > ceiling - 1)
371 		end -= PMD_SIZE;
372 	if (addr > end - 1)
373 		return;
374 	/*
375 	 * We add page table cache pages with PAGE_SIZE,
376 	 * (see pte_free_tlb()), flush the tlb if we need
377 	 */
378 	tlb_change_page_size(tlb, PAGE_SIZE);
379 	pgd = pgd_offset(tlb->mm, addr);
380 	do {
381 		next = pgd_addr_end(addr, end);
382 		if (pgd_none_or_clear_bad(pgd))
383 			continue;
384 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 	} while (pgd++, addr = next, addr != end);
386 }
387 
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 		unsigned long floor, unsigned long ceiling)
390 {
391 	while (vma) {
392 		struct vm_area_struct *next = vma->vm_next;
393 		unsigned long addr = vma->vm_start;
394 
395 		/*
396 		 * Hide vma from rmap and truncate_pagecache before freeing
397 		 * pgtables
398 		 */
399 		unlink_anon_vmas(vma);
400 		unlink_file_vma(vma);
401 
402 		if (is_vm_hugetlb_page(vma)) {
403 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 				floor, next ? next->vm_start : ceiling);
405 		} else {
406 			/*
407 			 * Optimization: gather nearby vmas into one call down
408 			 */
409 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 			       && !is_vm_hugetlb_page(next)) {
411 				vma = next;
412 				next = vma->vm_next;
413 				unlink_anon_vmas(vma);
414 				unlink_file_vma(vma);
415 			}
416 			free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		}
419 		vma = next;
420 	}
421 }
422 
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425 	spinlock_t *ptl;
426 	pgtable_t new = pte_alloc_one(mm);
427 	if (!new)
428 		return -ENOMEM;
429 
430 	/*
431 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 	 * visible before the pte is made visible to other CPUs by being
433 	 * put into page tables.
434 	 *
435 	 * The other side of the story is the pointer chasing in the page
436 	 * table walking code (when walking the page table without locking;
437 	 * ie. most of the time). Fortunately, these data accesses consist
438 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 	 * being the notable exception) will already guarantee loads are
440 	 * seen in-order. See the alpha page table accessors for the
441 	 * smp_read_barrier_depends() barriers in page table walking code.
442 	 */
443 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444 
445 	ptl = pmd_lock(mm, pmd);
446 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
447 		mm_inc_nr_ptes(mm);
448 		pmd_populate(mm, pmd, new);
449 		new = NULL;
450 	}
451 	spin_unlock(ptl);
452 	if (new)
453 		pte_free(mm, new);
454 	return 0;
455 }
456 
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 	pte_t *new = pte_alloc_one_kernel(&init_mm);
460 	if (!new)
461 		return -ENOMEM;
462 
463 	smp_wmb(); /* See comment in __pte_alloc */
464 
465 	spin_lock(&init_mm.page_table_lock);
466 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
467 		pmd_populate_kernel(&init_mm, pmd, new);
468 		new = NULL;
469 	}
470 	spin_unlock(&init_mm.page_table_lock);
471 	if (new)
472 		pte_free_kernel(&init_mm, new);
473 	return 0;
474 }
475 
476 static inline void init_rss_vec(int *rss)
477 {
478 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480 
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 	int i;
484 
485 	if (current->mm == mm)
486 		sync_mm_rss(mm);
487 	for (i = 0; i < NR_MM_COUNTERS; i++)
488 		if (rss[i])
489 			add_mm_counter(mm, i, rss[i]);
490 }
491 
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 			  pte_t pte, struct page *page)
501 {
502 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 	p4d_t *p4d = p4d_offset(pgd, addr);
504 	pud_t *pud = pud_offset(p4d, addr);
505 	pmd_t *pmd = pmd_offset(pud, addr);
506 	struct address_space *mapping;
507 	pgoff_t index;
508 	static unsigned long resume;
509 	static unsigned long nr_shown;
510 	static unsigned long nr_unshown;
511 
512 	/*
513 	 * Allow a burst of 60 reports, then keep quiet for that minute;
514 	 * or allow a steady drip of one report per second.
515 	 */
516 	if (nr_shown == 60) {
517 		if (time_before(jiffies, resume)) {
518 			nr_unshown++;
519 			return;
520 		}
521 		if (nr_unshown) {
522 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 				 nr_unshown);
524 			nr_unshown = 0;
525 		}
526 		nr_shown = 0;
527 	}
528 	if (nr_shown++ == 0)
529 		resume = jiffies + 60 * HZ;
530 
531 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 	index = linear_page_index(vma, addr);
533 
534 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535 		 current->comm,
536 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 	if (page)
538 		dump_page(page, "bad pte");
539 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 		 vma->vm_file,
543 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 		 mapping ? mapping->a_ops->readpage : NULL);
546 	dump_stack();
547 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549 
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 			    pte_t pte)
594 {
595 	unsigned long pfn = pte_pfn(pte);
596 
597 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 		if (likely(!pte_special(pte)))
599 			goto check_pfn;
600 		if (vma->vm_ops && vma->vm_ops->find_special_page)
601 			return vma->vm_ops->find_special_page(vma, addr);
602 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 			return NULL;
604 		if (is_zero_pfn(pfn))
605 			return NULL;
606 		if (pte_devmap(pte))
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 				pmd_t pmd)
650 {
651 	unsigned long pfn = pmd_pfn(pmd);
652 
653 	/*
654 	 * There is no pmd_special() but there may be special pmds, e.g.
655 	 * in a direct-access (dax) mapping, so let's just replicate the
656 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 	 */
658 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 		if (vma->vm_flags & VM_MIXEDMAP) {
660 			if (!pfn_valid(pfn))
661 				return NULL;
662 			goto out;
663 		} else {
664 			unsigned long off;
665 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 			if (pfn == vma->vm_pgoff + off)
667 				return NULL;
668 			if (!is_cow_mapping(vma->vm_flags))
669 				return NULL;
670 		}
671 	}
672 
673 	if (pmd_devmap(pmd))
674 		return NULL;
675 	if (is_huge_zero_pmd(pmd))
676 		return NULL;
677 	if (unlikely(pfn > highest_memmap_pfn))
678 		return NULL;
679 
680 	/*
681 	 * NOTE! We still have PageReserved() pages in the page tables.
682 	 * eg. VDSO mappings can cause them to exist.
683 	 */
684 out:
685 	return pfn_to_page(pfn);
686 }
687 #endif
688 
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694 
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 		unsigned long addr, int *rss)
699 {
700 	unsigned long vm_flags = vma->vm_flags;
701 	pte_t pte = *src_pte;
702 	struct page *page;
703 
704 	/* pte contains position in swap or file, so copy. */
705 	if (unlikely(!pte_present(pte))) {
706 		swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 		if (likely(!non_swap_entry(entry))) {
709 			if (swap_duplicate(entry) < 0)
710 				return entry.val;
711 
712 			/* make sure dst_mm is on swapoff's mmlist. */
713 			if (unlikely(list_empty(&dst_mm->mmlist))) {
714 				spin_lock(&mmlist_lock);
715 				if (list_empty(&dst_mm->mmlist))
716 					list_add(&dst_mm->mmlist,
717 							&src_mm->mmlist);
718 				spin_unlock(&mmlist_lock);
719 			}
720 			rss[MM_SWAPENTS]++;
721 		} else if (is_migration_entry(entry)) {
722 			page = migration_entry_to_page(entry);
723 
724 			rss[mm_counter(page)]++;
725 
726 			if (is_write_migration_entry(entry) &&
727 					is_cow_mapping(vm_flags)) {
728 				/*
729 				 * COW mappings require pages in both
730 				 * parent and child to be set to read.
731 				 */
732 				make_migration_entry_read(&entry);
733 				pte = swp_entry_to_pte(entry);
734 				if (pte_swp_soft_dirty(*src_pte))
735 					pte = pte_swp_mksoft_dirty(pte);
736 				set_pte_at(src_mm, addr, src_pte, pte);
737 			}
738 		} else if (is_device_private_entry(entry)) {
739 			page = device_private_entry_to_page(entry);
740 
741 			/*
742 			 * Update rss count even for unaddressable pages, as
743 			 * they should treated just like normal pages in this
744 			 * respect.
745 			 *
746 			 * We will likely want to have some new rss counters
747 			 * for unaddressable pages, at some point. But for now
748 			 * keep things as they are.
749 			 */
750 			get_page(page);
751 			rss[mm_counter(page)]++;
752 			page_dup_rmap(page, false);
753 
754 			/*
755 			 * We do not preserve soft-dirty information, because so
756 			 * far, checkpoint/restore is the only feature that
757 			 * requires that. And checkpoint/restore does not work
758 			 * when a device driver is involved (you cannot easily
759 			 * save and restore device driver state).
760 			 */
761 			if (is_write_device_private_entry(entry) &&
762 			    is_cow_mapping(vm_flags)) {
763 				make_device_private_entry_read(&entry);
764 				pte = swp_entry_to_pte(entry);
765 				set_pte_at(src_mm, addr, src_pte, pte);
766 			}
767 		}
768 		goto out_set_pte;
769 	}
770 
771 	/*
772 	 * If it's a COW mapping, write protect it both
773 	 * in the parent and the child
774 	 */
775 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
776 		ptep_set_wrprotect(src_mm, addr, src_pte);
777 		pte = pte_wrprotect(pte);
778 	}
779 
780 	/*
781 	 * If it's a shared mapping, mark it clean in
782 	 * the child
783 	 */
784 	if (vm_flags & VM_SHARED)
785 		pte = pte_mkclean(pte);
786 	pte = pte_mkold(pte);
787 
788 	page = vm_normal_page(vma, addr, pte);
789 	if (page) {
790 		get_page(page);
791 		page_dup_rmap(page, false);
792 		rss[mm_counter(page)]++;
793 	} else if (pte_devmap(pte)) {
794 		page = pte_page(pte);
795 	}
796 
797 out_set_pte:
798 	set_pte_at(dst_mm, addr, dst_pte, pte);
799 	return 0;
800 }
801 
802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804 		   unsigned long addr, unsigned long end)
805 {
806 	pte_t *orig_src_pte, *orig_dst_pte;
807 	pte_t *src_pte, *dst_pte;
808 	spinlock_t *src_ptl, *dst_ptl;
809 	int progress = 0;
810 	int rss[NR_MM_COUNTERS];
811 	swp_entry_t entry = (swp_entry_t){0};
812 
813 again:
814 	init_rss_vec(rss);
815 
816 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
817 	if (!dst_pte)
818 		return -ENOMEM;
819 	src_pte = pte_offset_map(src_pmd, addr);
820 	src_ptl = pte_lockptr(src_mm, src_pmd);
821 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
822 	orig_src_pte = src_pte;
823 	orig_dst_pte = dst_pte;
824 	arch_enter_lazy_mmu_mode();
825 
826 	do {
827 		/*
828 		 * We are holding two locks at this point - either of them
829 		 * could generate latencies in another task on another CPU.
830 		 */
831 		if (progress >= 32) {
832 			progress = 0;
833 			if (need_resched() ||
834 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
835 				break;
836 		}
837 		if (pte_none(*src_pte)) {
838 			progress++;
839 			continue;
840 		}
841 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
842 							vma, addr, rss);
843 		if (entry.val)
844 			break;
845 		progress += 8;
846 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
847 
848 	arch_leave_lazy_mmu_mode();
849 	spin_unlock(src_ptl);
850 	pte_unmap(orig_src_pte);
851 	add_mm_rss_vec(dst_mm, rss);
852 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
853 	cond_resched();
854 
855 	if (entry.val) {
856 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
857 			return -ENOMEM;
858 		progress = 0;
859 	}
860 	if (addr != end)
861 		goto again;
862 	return 0;
863 }
864 
865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867 		unsigned long addr, unsigned long end)
868 {
869 	pmd_t *src_pmd, *dst_pmd;
870 	unsigned long next;
871 
872 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
873 	if (!dst_pmd)
874 		return -ENOMEM;
875 	src_pmd = pmd_offset(src_pud, addr);
876 	do {
877 		next = pmd_addr_end(addr, end);
878 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879 			|| pmd_devmap(*src_pmd)) {
880 			int err;
881 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
882 			err = copy_huge_pmd(dst_mm, src_mm,
883 					    dst_pmd, src_pmd, addr, vma);
884 			if (err == -ENOMEM)
885 				return -ENOMEM;
886 			if (!err)
887 				continue;
888 			/* fall through */
889 		}
890 		if (pmd_none_or_clear_bad(src_pmd))
891 			continue;
892 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
893 						vma, addr, next))
894 			return -ENOMEM;
895 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
896 	return 0;
897 }
898 
899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
901 		unsigned long addr, unsigned long end)
902 {
903 	pud_t *src_pud, *dst_pud;
904 	unsigned long next;
905 
906 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
907 	if (!dst_pud)
908 		return -ENOMEM;
909 	src_pud = pud_offset(src_p4d, addr);
910 	do {
911 		next = pud_addr_end(addr, end);
912 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
913 			int err;
914 
915 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916 			err = copy_huge_pud(dst_mm, src_mm,
917 					    dst_pud, src_pud, addr, vma);
918 			if (err == -ENOMEM)
919 				return -ENOMEM;
920 			if (!err)
921 				continue;
922 			/* fall through */
923 		}
924 		if (pud_none_or_clear_bad(src_pud))
925 			continue;
926 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
927 						vma, addr, next))
928 			return -ENOMEM;
929 	} while (dst_pud++, src_pud++, addr = next, addr != end);
930 	return 0;
931 }
932 
933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935 		unsigned long addr, unsigned long end)
936 {
937 	p4d_t *src_p4d, *dst_p4d;
938 	unsigned long next;
939 
940 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
941 	if (!dst_p4d)
942 		return -ENOMEM;
943 	src_p4d = p4d_offset(src_pgd, addr);
944 	do {
945 		next = p4d_addr_end(addr, end);
946 		if (p4d_none_or_clear_bad(src_p4d))
947 			continue;
948 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
949 						vma, addr, next))
950 			return -ENOMEM;
951 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
952 	return 0;
953 }
954 
955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956 		struct vm_area_struct *vma)
957 {
958 	pgd_t *src_pgd, *dst_pgd;
959 	unsigned long next;
960 	unsigned long addr = vma->vm_start;
961 	unsigned long end = vma->vm_end;
962 	struct mmu_notifier_range range;
963 	bool is_cow;
964 	int ret;
965 
966 	/*
967 	 * Don't copy ptes where a page fault will fill them correctly.
968 	 * Fork becomes much lighter when there are big shared or private
969 	 * readonly mappings. The tradeoff is that copy_page_range is more
970 	 * efficient than faulting.
971 	 */
972 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
973 			!vma->anon_vma)
974 		return 0;
975 
976 	if (is_vm_hugetlb_page(vma))
977 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
978 
979 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
980 		/*
981 		 * We do not free on error cases below as remove_vma
982 		 * gets called on error from higher level routine
983 		 */
984 		ret = track_pfn_copy(vma);
985 		if (ret)
986 			return ret;
987 	}
988 
989 	/*
990 	 * We need to invalidate the secondary MMU mappings only when
991 	 * there could be a permission downgrade on the ptes of the
992 	 * parent mm. And a permission downgrade will only happen if
993 	 * is_cow_mapping() returns true.
994 	 */
995 	is_cow = is_cow_mapping(vma->vm_flags);
996 
997 	if (is_cow) {
998 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999 					0, vma, src_mm, addr, end);
1000 		mmu_notifier_invalidate_range_start(&range);
1001 	}
1002 
1003 	ret = 0;
1004 	dst_pgd = pgd_offset(dst_mm, addr);
1005 	src_pgd = pgd_offset(src_mm, addr);
1006 	do {
1007 		next = pgd_addr_end(addr, end);
1008 		if (pgd_none_or_clear_bad(src_pgd))
1009 			continue;
1010 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1011 					    vma, addr, next))) {
1012 			ret = -ENOMEM;
1013 			break;
1014 		}
1015 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1016 
1017 	if (is_cow)
1018 		mmu_notifier_invalidate_range_end(&range);
1019 	return ret;
1020 }
1021 
1022 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1023 				struct vm_area_struct *vma, pmd_t *pmd,
1024 				unsigned long addr, unsigned long end,
1025 				struct zap_details *details)
1026 {
1027 	struct mm_struct *mm = tlb->mm;
1028 	int force_flush = 0;
1029 	int rss[NR_MM_COUNTERS];
1030 	spinlock_t *ptl;
1031 	pte_t *start_pte;
1032 	pte_t *pte;
1033 	swp_entry_t entry;
1034 
1035 	tlb_change_page_size(tlb, PAGE_SIZE);
1036 again:
1037 	init_rss_vec(rss);
1038 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1039 	pte = start_pte;
1040 	flush_tlb_batched_pending(mm);
1041 	arch_enter_lazy_mmu_mode();
1042 	do {
1043 		pte_t ptent = *pte;
1044 		if (pte_none(ptent))
1045 			continue;
1046 
1047 		if (need_resched())
1048 			break;
1049 
1050 		if (pte_present(ptent)) {
1051 			struct page *page;
1052 
1053 			page = vm_normal_page(vma, addr, ptent);
1054 			if (unlikely(details) && page) {
1055 				/*
1056 				 * unmap_shared_mapping_pages() wants to
1057 				 * invalidate cache without truncating:
1058 				 * unmap shared but keep private pages.
1059 				 */
1060 				if (details->check_mapping &&
1061 				    details->check_mapping != page_rmapping(page))
1062 					continue;
1063 			}
1064 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1065 							tlb->fullmm);
1066 			tlb_remove_tlb_entry(tlb, pte, addr);
1067 			if (unlikely(!page))
1068 				continue;
1069 
1070 			if (!PageAnon(page)) {
1071 				if (pte_dirty(ptent)) {
1072 					force_flush = 1;
1073 					set_page_dirty(page);
1074 				}
1075 				if (pte_young(ptent) &&
1076 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1077 					mark_page_accessed(page);
1078 			}
1079 			rss[mm_counter(page)]--;
1080 			page_remove_rmap(page, false);
1081 			if (unlikely(page_mapcount(page) < 0))
1082 				print_bad_pte(vma, addr, ptent, page);
1083 			if (unlikely(__tlb_remove_page(tlb, page))) {
1084 				force_flush = 1;
1085 				addr += PAGE_SIZE;
1086 				break;
1087 			}
1088 			continue;
1089 		}
1090 
1091 		entry = pte_to_swp_entry(ptent);
1092 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093 			struct page *page = device_private_entry_to_page(entry);
1094 
1095 			if (unlikely(details && details->check_mapping)) {
1096 				/*
1097 				 * unmap_shared_mapping_pages() wants to
1098 				 * invalidate cache without truncating:
1099 				 * unmap shared but keep private pages.
1100 				 */
1101 				if (details->check_mapping !=
1102 				    page_rmapping(page))
1103 					continue;
1104 			}
1105 
1106 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107 			rss[mm_counter(page)]--;
1108 			page_remove_rmap(page, false);
1109 			put_page(page);
1110 			continue;
1111 		}
1112 
1113 		/* If details->check_mapping, we leave swap entries. */
1114 		if (unlikely(details))
1115 			continue;
1116 
1117 		if (!non_swap_entry(entry))
1118 			rss[MM_SWAPENTS]--;
1119 		else if (is_migration_entry(entry)) {
1120 			struct page *page;
1121 
1122 			page = migration_entry_to_page(entry);
1123 			rss[mm_counter(page)]--;
1124 		}
1125 		if (unlikely(!free_swap_and_cache(entry)))
1126 			print_bad_pte(vma, addr, ptent, NULL);
1127 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1128 	} while (pte++, addr += PAGE_SIZE, addr != end);
1129 
1130 	add_mm_rss_vec(mm, rss);
1131 	arch_leave_lazy_mmu_mode();
1132 
1133 	/* Do the actual TLB flush before dropping ptl */
1134 	if (force_flush)
1135 		tlb_flush_mmu_tlbonly(tlb);
1136 	pte_unmap_unlock(start_pte, ptl);
1137 
1138 	/*
1139 	 * If we forced a TLB flush (either due to running out of
1140 	 * batch buffers or because we needed to flush dirty TLB
1141 	 * entries before releasing the ptl), free the batched
1142 	 * memory too. Restart if we didn't do everything.
1143 	 */
1144 	if (force_flush) {
1145 		force_flush = 0;
1146 		tlb_flush_mmu(tlb);
1147 	}
1148 
1149 	if (addr != end) {
1150 		cond_resched();
1151 		goto again;
1152 	}
1153 
1154 	return addr;
1155 }
1156 
1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1158 				struct vm_area_struct *vma, pud_t *pud,
1159 				unsigned long addr, unsigned long end,
1160 				struct zap_details *details)
1161 {
1162 	pmd_t *pmd;
1163 	unsigned long next;
1164 
1165 	pmd = pmd_offset(pud, addr);
1166 	do {
1167 		next = pmd_addr_end(addr, end);
1168 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1169 			if (next - addr != HPAGE_PMD_SIZE)
1170 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1171 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1172 				goto next;
1173 			/* fall through */
1174 		}
1175 		/*
1176 		 * Here there can be other concurrent MADV_DONTNEED or
1177 		 * trans huge page faults running, and if the pmd is
1178 		 * none or trans huge it can change under us. This is
1179 		 * because MADV_DONTNEED holds the mmap_sem in read
1180 		 * mode.
1181 		 */
1182 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1183 			goto next;
1184 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1185 next:
1186 		cond_resched();
1187 	} while (pmd++, addr = next, addr != end);
1188 
1189 	return addr;
1190 }
1191 
1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1193 				struct vm_area_struct *vma, p4d_t *p4d,
1194 				unsigned long addr, unsigned long end,
1195 				struct zap_details *details)
1196 {
1197 	pud_t *pud;
1198 	unsigned long next;
1199 
1200 	pud = pud_offset(p4d, addr);
1201 	do {
1202 		next = pud_addr_end(addr, end);
1203 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204 			if (next - addr != HPAGE_PUD_SIZE) {
1205 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206 				split_huge_pud(vma, pud, addr);
1207 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1208 				goto next;
1209 			/* fall through */
1210 		}
1211 		if (pud_none_or_clear_bad(pud))
1212 			continue;
1213 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1214 next:
1215 		cond_resched();
1216 	} while (pud++, addr = next, addr != end);
1217 
1218 	return addr;
1219 }
1220 
1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222 				struct vm_area_struct *vma, pgd_t *pgd,
1223 				unsigned long addr, unsigned long end,
1224 				struct zap_details *details)
1225 {
1226 	p4d_t *p4d;
1227 	unsigned long next;
1228 
1229 	p4d = p4d_offset(pgd, addr);
1230 	do {
1231 		next = p4d_addr_end(addr, end);
1232 		if (p4d_none_or_clear_bad(p4d))
1233 			continue;
1234 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235 	} while (p4d++, addr = next, addr != end);
1236 
1237 	return addr;
1238 }
1239 
1240 void unmap_page_range(struct mmu_gather *tlb,
1241 			     struct vm_area_struct *vma,
1242 			     unsigned long addr, unsigned long end,
1243 			     struct zap_details *details)
1244 {
1245 	pgd_t *pgd;
1246 	unsigned long next;
1247 
1248 	BUG_ON(addr >= end);
1249 	tlb_start_vma(tlb, vma);
1250 	pgd = pgd_offset(vma->vm_mm, addr);
1251 	do {
1252 		next = pgd_addr_end(addr, end);
1253 		if (pgd_none_or_clear_bad(pgd))
1254 			continue;
1255 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1256 	} while (pgd++, addr = next, addr != end);
1257 	tlb_end_vma(tlb, vma);
1258 }
1259 
1260 
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262 		struct vm_area_struct *vma, unsigned long start_addr,
1263 		unsigned long end_addr,
1264 		struct zap_details *details)
1265 {
1266 	unsigned long start = max(vma->vm_start, start_addr);
1267 	unsigned long end;
1268 
1269 	if (start >= vma->vm_end)
1270 		return;
1271 	end = min(vma->vm_end, end_addr);
1272 	if (end <= vma->vm_start)
1273 		return;
1274 
1275 	if (vma->vm_file)
1276 		uprobe_munmap(vma, start, end);
1277 
1278 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1279 		untrack_pfn(vma, 0, 0);
1280 
1281 	if (start != end) {
1282 		if (unlikely(is_vm_hugetlb_page(vma))) {
1283 			/*
1284 			 * It is undesirable to test vma->vm_file as it
1285 			 * should be non-null for valid hugetlb area.
1286 			 * However, vm_file will be NULL in the error
1287 			 * cleanup path of mmap_region. When
1288 			 * hugetlbfs ->mmap method fails,
1289 			 * mmap_region() nullifies vma->vm_file
1290 			 * before calling this function to clean up.
1291 			 * Since no pte has actually been setup, it is
1292 			 * safe to do nothing in this case.
1293 			 */
1294 			if (vma->vm_file) {
1295 				i_mmap_lock_write(vma->vm_file->f_mapping);
1296 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1298 			}
1299 		} else
1300 			unmap_page_range(tlb, vma, start, end, details);
1301 	}
1302 }
1303 
1304 /**
1305  * unmap_vmas - unmap a range of memory covered by a list of vma's
1306  * @tlb: address of the caller's struct mmu_gather
1307  * @vma: the starting vma
1308  * @start_addr: virtual address at which to start unmapping
1309  * @end_addr: virtual address at which to end unmapping
1310  *
1311  * Unmap all pages in the vma list.
1312  *
1313  * Only addresses between `start' and `end' will be unmapped.
1314  *
1315  * The VMA list must be sorted in ascending virtual address order.
1316  *
1317  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318  * range after unmap_vmas() returns.  So the only responsibility here is to
1319  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320  * drops the lock and schedules.
1321  */
1322 void unmap_vmas(struct mmu_gather *tlb,
1323 		struct vm_area_struct *vma, unsigned long start_addr,
1324 		unsigned long end_addr)
1325 {
1326 	struct mmu_notifier_range range;
1327 
1328 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329 				start_addr, end_addr);
1330 	mmu_notifier_invalidate_range_start(&range);
1331 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1332 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1333 	mmu_notifier_invalidate_range_end(&range);
1334 }
1335 
1336 /**
1337  * zap_page_range - remove user pages in a given range
1338  * @vma: vm_area_struct holding the applicable pages
1339  * @start: starting address of pages to zap
1340  * @size: number of bytes to zap
1341  *
1342  * Caller must protect the VMA list
1343  */
1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1345 		unsigned long size)
1346 {
1347 	struct mmu_notifier_range range;
1348 	struct mmu_gather tlb;
1349 
1350 	lru_add_drain();
1351 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1352 				start, start + size);
1353 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354 	update_hiwater_rss(vma->vm_mm);
1355 	mmu_notifier_invalidate_range_start(&range);
1356 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358 	mmu_notifier_invalidate_range_end(&range);
1359 	tlb_finish_mmu(&tlb, start, range.end);
1360 }
1361 
1362 /**
1363  * zap_page_range_single - remove user pages in a given range
1364  * @vma: vm_area_struct holding the applicable pages
1365  * @address: starting address of pages to zap
1366  * @size: number of bytes to zap
1367  * @details: details of shared cache invalidation
1368  *
1369  * The range must fit into one VMA.
1370  */
1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1372 		unsigned long size, struct zap_details *details)
1373 {
1374 	struct mmu_notifier_range range;
1375 	struct mmu_gather tlb;
1376 
1377 	lru_add_drain();
1378 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379 				address, address + size);
1380 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381 	update_hiwater_rss(vma->vm_mm);
1382 	mmu_notifier_invalidate_range_start(&range);
1383 	unmap_single_vma(&tlb, vma, address, range.end, details);
1384 	mmu_notifier_invalidate_range_end(&range);
1385 	tlb_finish_mmu(&tlb, address, range.end);
1386 }
1387 
1388 /**
1389  * zap_vma_ptes - remove ptes mapping the vma
1390  * @vma: vm_area_struct holding ptes to be zapped
1391  * @address: starting address of pages to zap
1392  * @size: number of bytes to zap
1393  *
1394  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1395  *
1396  * The entire address range must be fully contained within the vma.
1397  *
1398  */
1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1400 		unsigned long size)
1401 {
1402 	if (address < vma->vm_start || address + size > vma->vm_end ||
1403 	    		!(vma->vm_flags & VM_PFNMAP))
1404 		return;
1405 
1406 	zap_page_range_single(vma, address, size, NULL);
1407 }
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1409 
1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1411 			spinlock_t **ptl)
1412 {
1413 	pgd_t *pgd;
1414 	p4d_t *p4d;
1415 	pud_t *pud;
1416 	pmd_t *pmd;
1417 
1418 	pgd = pgd_offset(mm, addr);
1419 	p4d = p4d_alloc(mm, pgd, addr);
1420 	if (!p4d)
1421 		return NULL;
1422 	pud = pud_alloc(mm, p4d, addr);
1423 	if (!pud)
1424 		return NULL;
1425 	pmd = pmd_alloc(mm, pud, addr);
1426 	if (!pmd)
1427 		return NULL;
1428 
1429 	VM_BUG_ON(pmd_trans_huge(*pmd));
1430 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1431 }
1432 
1433 /*
1434  * This is the old fallback for page remapping.
1435  *
1436  * For historical reasons, it only allows reserved pages. Only
1437  * old drivers should use this, and they needed to mark their
1438  * pages reserved for the old functions anyway.
1439  */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441 			struct page *page, pgprot_t prot)
1442 {
1443 	struct mm_struct *mm = vma->vm_mm;
1444 	int retval;
1445 	pte_t *pte;
1446 	spinlock_t *ptl;
1447 
1448 	retval = -EINVAL;
1449 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1450 		goto out;
1451 	retval = -ENOMEM;
1452 	flush_dcache_page(page);
1453 	pte = get_locked_pte(mm, addr, &ptl);
1454 	if (!pte)
1455 		goto out;
1456 	retval = -EBUSY;
1457 	if (!pte_none(*pte))
1458 		goto out_unlock;
1459 
1460 	/* Ok, finally just insert the thing.. */
1461 	get_page(page);
1462 	inc_mm_counter_fast(mm, mm_counter_file(page));
1463 	page_add_file_rmap(page, false);
1464 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465 
1466 	retval = 0;
1467 out_unlock:
1468 	pte_unmap_unlock(pte, ptl);
1469 out:
1470 	return retval;
1471 }
1472 
1473 /**
1474  * vm_insert_page - insert single page into user vma
1475  * @vma: user vma to map to
1476  * @addr: target user address of this page
1477  * @page: source kernel page
1478  *
1479  * This allows drivers to insert individual pages they've allocated
1480  * into a user vma.
1481  *
1482  * The page has to be a nice clean _individual_ kernel allocation.
1483  * If you allocate a compound page, you need to have marked it as
1484  * such (__GFP_COMP), or manually just split the page up yourself
1485  * (see split_page()).
1486  *
1487  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488  * took an arbitrary page protection parameter. This doesn't allow
1489  * that. Your vma protection will have to be set up correctly, which
1490  * means that if you want a shared writable mapping, you'd better
1491  * ask for a shared writable mapping!
1492  *
1493  * The page does not need to be reserved.
1494  *
1495  * Usually this function is called from f_op->mmap() handler
1496  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498  * function from other places, for example from page-fault handler.
1499  *
1500  * Return: %0 on success, negative error code otherwise.
1501  */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503 			struct page *page)
1504 {
1505 	if (addr < vma->vm_start || addr >= vma->vm_end)
1506 		return -EFAULT;
1507 	if (!page_count(page))
1508 		return -EINVAL;
1509 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1512 		vma->vm_flags |= VM_MIXEDMAP;
1513 	}
1514 	return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517 
1518 /*
1519  * __vm_map_pages - maps range of kernel pages into user vma
1520  * @vma: user vma to map to
1521  * @pages: pointer to array of source kernel pages
1522  * @num: number of pages in page array
1523  * @offset: user's requested vm_pgoff
1524  *
1525  * This allows drivers to map range of kernel pages into a user vma.
1526  *
1527  * Return: 0 on success and error code otherwise.
1528  */
1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530 				unsigned long num, unsigned long offset)
1531 {
1532 	unsigned long count = vma_pages(vma);
1533 	unsigned long uaddr = vma->vm_start;
1534 	int ret, i;
1535 
1536 	/* Fail if the user requested offset is beyond the end of the object */
1537 	if (offset >= num)
1538 		return -ENXIO;
1539 
1540 	/* Fail if the user requested size exceeds available object size */
1541 	if (count > num - offset)
1542 		return -ENXIO;
1543 
1544 	for (i = 0; i < count; i++) {
1545 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1546 		if (ret < 0)
1547 			return ret;
1548 		uaddr += PAGE_SIZE;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * vm_map_pages - maps range of kernel pages starts with non zero offset
1556  * @vma: user vma to map to
1557  * @pages: pointer to array of source kernel pages
1558  * @num: number of pages in page array
1559  *
1560  * Maps an object consisting of @num pages, catering for the user's
1561  * requested vm_pgoff
1562  *
1563  * If we fail to insert any page into the vma, the function will return
1564  * immediately leaving any previously inserted pages present.  Callers
1565  * from the mmap handler may immediately return the error as their caller
1566  * will destroy the vma, removing any successfully inserted pages. Other
1567  * callers should make their own arrangements for calling unmap_region().
1568  *
1569  * Context: Process context. Called by mmap handlers.
1570  * Return: 0 on success and error code otherwise.
1571  */
1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1573 				unsigned long num)
1574 {
1575 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1576 }
1577 EXPORT_SYMBOL(vm_map_pages);
1578 
1579 /**
1580  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581  * @vma: user vma to map to
1582  * @pages: pointer to array of source kernel pages
1583  * @num: number of pages in page array
1584  *
1585  * Similar to vm_map_pages(), except that it explicitly sets the offset
1586  * to 0. This function is intended for the drivers that did not consider
1587  * vm_pgoff.
1588  *
1589  * Context: Process context. Called by mmap handlers.
1590  * Return: 0 on success and error code otherwise.
1591  */
1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1593 				unsigned long num)
1594 {
1595 	return __vm_map_pages(vma, pages, num, 0);
1596 }
1597 EXPORT_SYMBOL(vm_map_pages_zero);
1598 
1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1601 {
1602 	struct mm_struct *mm = vma->vm_mm;
1603 	pte_t *pte, entry;
1604 	spinlock_t *ptl;
1605 
1606 	pte = get_locked_pte(mm, addr, &ptl);
1607 	if (!pte)
1608 		return VM_FAULT_OOM;
1609 	if (!pte_none(*pte)) {
1610 		if (mkwrite) {
1611 			/*
1612 			 * For read faults on private mappings the PFN passed
1613 			 * in may not match the PFN we have mapped if the
1614 			 * mapped PFN is a writeable COW page.  In the mkwrite
1615 			 * case we are creating a writable PTE for a shared
1616 			 * mapping and we expect the PFNs to match. If they
1617 			 * don't match, we are likely racing with block
1618 			 * allocation and mapping invalidation so just skip the
1619 			 * update.
1620 			 */
1621 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1623 				goto out_unlock;
1624 			}
1625 			entry = pte_mkyoung(*pte);
1626 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628 				update_mmu_cache(vma, addr, pte);
1629 		}
1630 		goto out_unlock;
1631 	}
1632 
1633 	/* Ok, finally just insert the thing.. */
1634 	if (pfn_t_devmap(pfn))
1635 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1636 	else
1637 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1638 
1639 	if (mkwrite) {
1640 		entry = pte_mkyoung(entry);
1641 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1642 	}
1643 
1644 	set_pte_at(mm, addr, pte, entry);
1645 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1646 
1647 out_unlock:
1648 	pte_unmap_unlock(pte, ptl);
1649 	return VM_FAULT_NOPAGE;
1650 }
1651 
1652 /**
1653  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654  * @vma: user vma to map to
1655  * @addr: target user address of this page
1656  * @pfn: source kernel pfn
1657  * @pgprot: pgprot flags for the inserted page
1658  *
1659  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660  * to override pgprot on a per-page basis.
1661  *
1662  * This only makes sense for IO mappings, and it makes no sense for
1663  * COW mappings.  In general, using multiple vmas is preferable;
1664  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1665  * impractical.
1666  *
1667  * Context: Process context.  May allocate using %GFP_KERNEL.
1668  * Return: vm_fault_t value.
1669  */
1670 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1671 			unsigned long pfn, pgprot_t pgprot)
1672 {
1673 	/*
1674 	 * Technically, architectures with pte_special can avoid all these
1675 	 * restrictions (same for remap_pfn_range).  However we would like
1676 	 * consistency in testing and feature parity among all, so we should
1677 	 * try to keep these invariants in place for everybody.
1678 	 */
1679 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1680 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1681 						(VM_PFNMAP|VM_MIXEDMAP));
1682 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1683 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1684 
1685 	if (addr < vma->vm_start || addr >= vma->vm_end)
1686 		return VM_FAULT_SIGBUS;
1687 
1688 	if (!pfn_modify_allowed(pfn, pgprot))
1689 		return VM_FAULT_SIGBUS;
1690 
1691 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1692 
1693 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1694 			false);
1695 }
1696 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1697 
1698 /**
1699  * vmf_insert_pfn - insert single pfn into user vma
1700  * @vma: user vma to map to
1701  * @addr: target user address of this page
1702  * @pfn: source kernel pfn
1703  *
1704  * Similar to vm_insert_page, this allows drivers to insert individual pages
1705  * they've allocated into a user vma. Same comments apply.
1706  *
1707  * This function should only be called from a vm_ops->fault handler, and
1708  * in that case the handler should return the result of this function.
1709  *
1710  * vma cannot be a COW mapping.
1711  *
1712  * As this is called only for pages that do not currently exist, we
1713  * do not need to flush old virtual caches or the TLB.
1714  *
1715  * Context: Process context.  May allocate using %GFP_KERNEL.
1716  * Return: vm_fault_t value.
1717  */
1718 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1719 			unsigned long pfn)
1720 {
1721 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1722 }
1723 EXPORT_SYMBOL(vmf_insert_pfn);
1724 
1725 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1726 {
1727 	/* these checks mirror the abort conditions in vm_normal_page */
1728 	if (vma->vm_flags & VM_MIXEDMAP)
1729 		return true;
1730 	if (pfn_t_devmap(pfn))
1731 		return true;
1732 	if (pfn_t_special(pfn))
1733 		return true;
1734 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1735 		return true;
1736 	return false;
1737 }
1738 
1739 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1740 		unsigned long addr, pfn_t pfn, bool mkwrite)
1741 {
1742 	pgprot_t pgprot = vma->vm_page_prot;
1743 	int err;
1744 
1745 	BUG_ON(!vm_mixed_ok(vma, pfn));
1746 
1747 	if (addr < vma->vm_start || addr >= vma->vm_end)
1748 		return VM_FAULT_SIGBUS;
1749 
1750 	track_pfn_insert(vma, &pgprot, pfn);
1751 
1752 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1753 		return VM_FAULT_SIGBUS;
1754 
1755 	/*
1756 	 * If we don't have pte special, then we have to use the pfn_valid()
1757 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1758 	 * refcount the page if pfn_valid is true (hence insert_page rather
1759 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1760 	 * without pte special, it would there be refcounted as a normal page.
1761 	 */
1762 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1763 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1764 		struct page *page;
1765 
1766 		/*
1767 		 * At this point we are committed to insert_page()
1768 		 * regardless of whether the caller specified flags that
1769 		 * result in pfn_t_has_page() == false.
1770 		 */
1771 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1772 		err = insert_page(vma, addr, page, pgprot);
1773 	} else {
1774 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1775 	}
1776 
1777 	if (err == -ENOMEM)
1778 		return VM_FAULT_OOM;
1779 	if (err < 0 && err != -EBUSY)
1780 		return VM_FAULT_SIGBUS;
1781 
1782 	return VM_FAULT_NOPAGE;
1783 }
1784 
1785 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1786 		pfn_t pfn)
1787 {
1788 	return __vm_insert_mixed(vma, addr, pfn, false);
1789 }
1790 EXPORT_SYMBOL(vmf_insert_mixed);
1791 
1792 /*
1793  *  If the insertion of PTE failed because someone else already added a
1794  *  different entry in the mean time, we treat that as success as we assume
1795  *  the same entry was actually inserted.
1796  */
1797 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1798 		unsigned long addr, pfn_t pfn)
1799 {
1800 	return __vm_insert_mixed(vma, addr, pfn, true);
1801 }
1802 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1803 
1804 /*
1805  * maps a range of physical memory into the requested pages. the old
1806  * mappings are removed. any references to nonexistent pages results
1807  * in null mappings (currently treated as "copy-on-access")
1808  */
1809 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1810 			unsigned long addr, unsigned long end,
1811 			unsigned long pfn, pgprot_t prot)
1812 {
1813 	pte_t *pte;
1814 	spinlock_t *ptl;
1815 	int err = 0;
1816 
1817 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1818 	if (!pte)
1819 		return -ENOMEM;
1820 	arch_enter_lazy_mmu_mode();
1821 	do {
1822 		BUG_ON(!pte_none(*pte));
1823 		if (!pfn_modify_allowed(pfn, prot)) {
1824 			err = -EACCES;
1825 			break;
1826 		}
1827 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1828 		pfn++;
1829 	} while (pte++, addr += PAGE_SIZE, addr != end);
1830 	arch_leave_lazy_mmu_mode();
1831 	pte_unmap_unlock(pte - 1, ptl);
1832 	return err;
1833 }
1834 
1835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1836 			unsigned long addr, unsigned long end,
1837 			unsigned long pfn, pgprot_t prot)
1838 {
1839 	pmd_t *pmd;
1840 	unsigned long next;
1841 	int err;
1842 
1843 	pfn -= addr >> PAGE_SHIFT;
1844 	pmd = pmd_alloc(mm, pud, addr);
1845 	if (!pmd)
1846 		return -ENOMEM;
1847 	VM_BUG_ON(pmd_trans_huge(*pmd));
1848 	do {
1849 		next = pmd_addr_end(addr, end);
1850 		err = remap_pte_range(mm, pmd, addr, next,
1851 				pfn + (addr >> PAGE_SHIFT), prot);
1852 		if (err)
1853 			return err;
1854 	} while (pmd++, addr = next, addr != end);
1855 	return 0;
1856 }
1857 
1858 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1859 			unsigned long addr, unsigned long end,
1860 			unsigned long pfn, pgprot_t prot)
1861 {
1862 	pud_t *pud;
1863 	unsigned long next;
1864 	int err;
1865 
1866 	pfn -= addr >> PAGE_SHIFT;
1867 	pud = pud_alloc(mm, p4d, addr);
1868 	if (!pud)
1869 		return -ENOMEM;
1870 	do {
1871 		next = pud_addr_end(addr, end);
1872 		err = remap_pmd_range(mm, pud, addr, next,
1873 				pfn + (addr >> PAGE_SHIFT), prot);
1874 		if (err)
1875 			return err;
1876 	} while (pud++, addr = next, addr != end);
1877 	return 0;
1878 }
1879 
1880 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1881 			unsigned long addr, unsigned long end,
1882 			unsigned long pfn, pgprot_t prot)
1883 {
1884 	p4d_t *p4d;
1885 	unsigned long next;
1886 	int err;
1887 
1888 	pfn -= addr >> PAGE_SHIFT;
1889 	p4d = p4d_alloc(mm, pgd, addr);
1890 	if (!p4d)
1891 		return -ENOMEM;
1892 	do {
1893 		next = p4d_addr_end(addr, end);
1894 		err = remap_pud_range(mm, p4d, addr, next,
1895 				pfn + (addr >> PAGE_SHIFT), prot);
1896 		if (err)
1897 			return err;
1898 	} while (p4d++, addr = next, addr != end);
1899 	return 0;
1900 }
1901 
1902 /**
1903  * remap_pfn_range - remap kernel memory to userspace
1904  * @vma: user vma to map to
1905  * @addr: target user address to start at
1906  * @pfn: physical address of kernel memory
1907  * @size: size of map area
1908  * @prot: page protection flags for this mapping
1909  *
1910  * Note: this is only safe if the mm semaphore is held when called.
1911  *
1912  * Return: %0 on success, negative error code otherwise.
1913  */
1914 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1915 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1916 {
1917 	pgd_t *pgd;
1918 	unsigned long next;
1919 	unsigned long end = addr + PAGE_ALIGN(size);
1920 	struct mm_struct *mm = vma->vm_mm;
1921 	unsigned long remap_pfn = pfn;
1922 	int err;
1923 
1924 	/*
1925 	 * Physically remapped pages are special. Tell the
1926 	 * rest of the world about it:
1927 	 *   VM_IO tells people not to look at these pages
1928 	 *	(accesses can have side effects).
1929 	 *   VM_PFNMAP tells the core MM that the base pages are just
1930 	 *	raw PFN mappings, and do not have a "struct page" associated
1931 	 *	with them.
1932 	 *   VM_DONTEXPAND
1933 	 *      Disable vma merging and expanding with mremap().
1934 	 *   VM_DONTDUMP
1935 	 *      Omit vma from core dump, even when VM_IO turned off.
1936 	 *
1937 	 * There's a horrible special case to handle copy-on-write
1938 	 * behaviour that some programs depend on. We mark the "original"
1939 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1940 	 * See vm_normal_page() for details.
1941 	 */
1942 	if (is_cow_mapping(vma->vm_flags)) {
1943 		if (addr != vma->vm_start || end != vma->vm_end)
1944 			return -EINVAL;
1945 		vma->vm_pgoff = pfn;
1946 	}
1947 
1948 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1949 	if (err)
1950 		return -EINVAL;
1951 
1952 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1953 
1954 	BUG_ON(addr >= end);
1955 	pfn -= addr >> PAGE_SHIFT;
1956 	pgd = pgd_offset(mm, addr);
1957 	flush_cache_range(vma, addr, end);
1958 	do {
1959 		next = pgd_addr_end(addr, end);
1960 		err = remap_p4d_range(mm, pgd, addr, next,
1961 				pfn + (addr >> PAGE_SHIFT), prot);
1962 		if (err)
1963 			break;
1964 	} while (pgd++, addr = next, addr != end);
1965 
1966 	if (err)
1967 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1968 
1969 	return err;
1970 }
1971 EXPORT_SYMBOL(remap_pfn_range);
1972 
1973 /**
1974  * vm_iomap_memory - remap memory to userspace
1975  * @vma: user vma to map to
1976  * @start: start of area
1977  * @len: size of area
1978  *
1979  * This is a simplified io_remap_pfn_range() for common driver use. The
1980  * driver just needs to give us the physical memory range to be mapped,
1981  * we'll figure out the rest from the vma information.
1982  *
1983  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1984  * whatever write-combining details or similar.
1985  *
1986  * Return: %0 on success, negative error code otherwise.
1987  */
1988 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1989 {
1990 	unsigned long vm_len, pfn, pages;
1991 
1992 	/* Check that the physical memory area passed in looks valid */
1993 	if (start + len < start)
1994 		return -EINVAL;
1995 	/*
1996 	 * You *really* shouldn't map things that aren't page-aligned,
1997 	 * but we've historically allowed it because IO memory might
1998 	 * just have smaller alignment.
1999 	 */
2000 	len += start & ~PAGE_MASK;
2001 	pfn = start >> PAGE_SHIFT;
2002 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2003 	if (pfn + pages < pfn)
2004 		return -EINVAL;
2005 
2006 	/* We start the mapping 'vm_pgoff' pages into the area */
2007 	if (vma->vm_pgoff > pages)
2008 		return -EINVAL;
2009 	pfn += vma->vm_pgoff;
2010 	pages -= vma->vm_pgoff;
2011 
2012 	/* Can we fit all of the mapping? */
2013 	vm_len = vma->vm_end - vma->vm_start;
2014 	if (vm_len >> PAGE_SHIFT > pages)
2015 		return -EINVAL;
2016 
2017 	/* Ok, let it rip */
2018 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2019 }
2020 EXPORT_SYMBOL(vm_iomap_memory);
2021 
2022 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2023 				     unsigned long addr, unsigned long end,
2024 				     pte_fn_t fn, void *data, bool create)
2025 {
2026 	pte_t *pte;
2027 	int err = 0;
2028 	spinlock_t *uninitialized_var(ptl);
2029 
2030 	if (create) {
2031 		pte = (mm == &init_mm) ?
2032 			pte_alloc_kernel(pmd, addr) :
2033 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2034 		if (!pte)
2035 			return -ENOMEM;
2036 	} else {
2037 		pte = (mm == &init_mm) ?
2038 			pte_offset_kernel(pmd, addr) :
2039 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2040 	}
2041 
2042 	BUG_ON(pmd_huge(*pmd));
2043 
2044 	arch_enter_lazy_mmu_mode();
2045 
2046 	do {
2047 		if (create || !pte_none(*pte)) {
2048 			err = fn(pte++, addr, data);
2049 			if (err)
2050 				break;
2051 		}
2052 	} while (addr += PAGE_SIZE, addr != end);
2053 
2054 	arch_leave_lazy_mmu_mode();
2055 
2056 	if (mm != &init_mm)
2057 		pte_unmap_unlock(pte-1, ptl);
2058 	return err;
2059 }
2060 
2061 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2062 				     unsigned long addr, unsigned long end,
2063 				     pte_fn_t fn, void *data, bool create)
2064 {
2065 	pmd_t *pmd;
2066 	unsigned long next;
2067 	int err = 0;
2068 
2069 	BUG_ON(pud_huge(*pud));
2070 
2071 	if (create) {
2072 		pmd = pmd_alloc(mm, pud, addr);
2073 		if (!pmd)
2074 			return -ENOMEM;
2075 	} else {
2076 		pmd = pmd_offset(pud, addr);
2077 	}
2078 	do {
2079 		next = pmd_addr_end(addr, end);
2080 		if (create || !pmd_none_or_clear_bad(pmd)) {
2081 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2082 						 create);
2083 			if (err)
2084 				break;
2085 		}
2086 	} while (pmd++, addr = next, addr != end);
2087 	return err;
2088 }
2089 
2090 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2091 				     unsigned long addr, unsigned long end,
2092 				     pte_fn_t fn, void *data, bool create)
2093 {
2094 	pud_t *pud;
2095 	unsigned long next;
2096 	int err = 0;
2097 
2098 	if (create) {
2099 		pud = pud_alloc(mm, p4d, addr);
2100 		if (!pud)
2101 			return -ENOMEM;
2102 	} else {
2103 		pud = pud_offset(p4d, addr);
2104 	}
2105 	do {
2106 		next = pud_addr_end(addr, end);
2107 		if (create || !pud_none_or_clear_bad(pud)) {
2108 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2109 						 create);
2110 			if (err)
2111 				break;
2112 		}
2113 	} while (pud++, addr = next, addr != end);
2114 	return err;
2115 }
2116 
2117 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2118 				     unsigned long addr, unsigned long end,
2119 				     pte_fn_t fn, void *data, bool create)
2120 {
2121 	p4d_t *p4d;
2122 	unsigned long next;
2123 	int err = 0;
2124 
2125 	if (create) {
2126 		p4d = p4d_alloc(mm, pgd, addr);
2127 		if (!p4d)
2128 			return -ENOMEM;
2129 	} else {
2130 		p4d = p4d_offset(pgd, addr);
2131 	}
2132 	do {
2133 		next = p4d_addr_end(addr, end);
2134 		if (create || !p4d_none_or_clear_bad(p4d)) {
2135 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2136 						 create);
2137 			if (err)
2138 				break;
2139 		}
2140 	} while (p4d++, addr = next, addr != end);
2141 	return err;
2142 }
2143 
2144 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2145 				 unsigned long size, pte_fn_t fn,
2146 				 void *data, bool create)
2147 {
2148 	pgd_t *pgd;
2149 	unsigned long next;
2150 	unsigned long end = addr + size;
2151 	int err = 0;
2152 
2153 	if (WARN_ON(addr >= end))
2154 		return -EINVAL;
2155 
2156 	pgd = pgd_offset(mm, addr);
2157 	do {
2158 		next = pgd_addr_end(addr, end);
2159 		if (!create && pgd_none_or_clear_bad(pgd))
2160 			continue;
2161 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2162 		if (err)
2163 			break;
2164 	} while (pgd++, addr = next, addr != end);
2165 
2166 	return err;
2167 }
2168 
2169 /*
2170  * Scan a region of virtual memory, filling in page tables as necessary
2171  * and calling a provided function on each leaf page table.
2172  */
2173 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2174 			unsigned long size, pte_fn_t fn, void *data)
2175 {
2176 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2177 }
2178 EXPORT_SYMBOL_GPL(apply_to_page_range);
2179 
2180 /*
2181  * Scan a region of virtual memory, calling a provided function on
2182  * each leaf page table where it exists.
2183  *
2184  * Unlike apply_to_page_range, this does _not_ fill in page tables
2185  * where they are absent.
2186  */
2187 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2188 				 unsigned long size, pte_fn_t fn, void *data)
2189 {
2190 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2191 }
2192 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2193 
2194 /*
2195  * handle_pte_fault chooses page fault handler according to an entry which was
2196  * read non-atomically.  Before making any commitment, on those architectures
2197  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2198  * parts, do_swap_page must check under lock before unmapping the pte and
2199  * proceeding (but do_wp_page is only called after already making such a check;
2200  * and do_anonymous_page can safely check later on).
2201  */
2202 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2203 				pte_t *page_table, pte_t orig_pte)
2204 {
2205 	int same = 1;
2206 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2207 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2208 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2209 		spin_lock(ptl);
2210 		same = pte_same(*page_table, orig_pte);
2211 		spin_unlock(ptl);
2212 	}
2213 #endif
2214 	pte_unmap(page_table);
2215 	return same;
2216 }
2217 
2218 static inline bool cow_user_page(struct page *dst, struct page *src,
2219 				 struct vm_fault *vmf)
2220 {
2221 	bool ret;
2222 	void *kaddr;
2223 	void __user *uaddr;
2224 	bool force_mkyoung;
2225 	struct vm_area_struct *vma = vmf->vma;
2226 	struct mm_struct *mm = vma->vm_mm;
2227 	unsigned long addr = vmf->address;
2228 
2229 	debug_dma_assert_idle(src);
2230 
2231 	if (likely(src)) {
2232 		copy_user_highpage(dst, src, addr, vma);
2233 		return true;
2234 	}
2235 
2236 	/*
2237 	 * If the source page was a PFN mapping, we don't have
2238 	 * a "struct page" for it. We do a best-effort copy by
2239 	 * just copying from the original user address. If that
2240 	 * fails, we just zero-fill it. Live with it.
2241 	 */
2242 	kaddr = kmap_atomic(dst);
2243 	uaddr = (void __user *)(addr & PAGE_MASK);
2244 
2245 	/*
2246 	 * On architectures with software "accessed" bits, we would
2247 	 * take a double page fault, so mark it accessed here.
2248 	 */
2249 	force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
2250 	if (force_mkyoung) {
2251 		pte_t entry;
2252 
2253 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2254 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2255 			/*
2256 			 * Other thread has already handled the fault
2257 			 * and we don't need to do anything. If it's
2258 			 * not the case, the fault will be triggered
2259 			 * again on the same address.
2260 			 */
2261 			ret = false;
2262 			goto pte_unlock;
2263 		}
2264 
2265 		entry = pte_mkyoung(vmf->orig_pte);
2266 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2267 			update_mmu_cache(vma, addr, vmf->pte);
2268 	}
2269 
2270 	/*
2271 	 * This really shouldn't fail, because the page is there
2272 	 * in the page tables. But it might just be unreadable,
2273 	 * in which case we just give up and fill the result with
2274 	 * zeroes.
2275 	 */
2276 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2277 		/*
2278 		 * Give a warn in case there can be some obscure
2279 		 * use-case
2280 		 */
2281 		WARN_ON_ONCE(1);
2282 		clear_page(kaddr);
2283 	}
2284 
2285 	ret = true;
2286 
2287 pte_unlock:
2288 	if (force_mkyoung)
2289 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2290 	kunmap_atomic(kaddr);
2291 	flush_dcache_page(dst);
2292 
2293 	return ret;
2294 }
2295 
2296 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2297 {
2298 	struct file *vm_file = vma->vm_file;
2299 
2300 	if (vm_file)
2301 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2302 
2303 	/*
2304 	 * Special mappings (e.g. VDSO) do not have any file so fake
2305 	 * a default GFP_KERNEL for them.
2306 	 */
2307 	return GFP_KERNEL;
2308 }
2309 
2310 /*
2311  * Notify the address space that the page is about to become writable so that
2312  * it can prohibit this or wait for the page to get into an appropriate state.
2313  *
2314  * We do this without the lock held, so that it can sleep if it needs to.
2315  */
2316 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2317 {
2318 	vm_fault_t ret;
2319 	struct page *page = vmf->page;
2320 	unsigned int old_flags = vmf->flags;
2321 
2322 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2323 
2324 	if (vmf->vma->vm_file &&
2325 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2326 		return VM_FAULT_SIGBUS;
2327 
2328 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2329 	/* Restore original flags so that caller is not surprised */
2330 	vmf->flags = old_flags;
2331 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2332 		return ret;
2333 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2334 		lock_page(page);
2335 		if (!page->mapping) {
2336 			unlock_page(page);
2337 			return 0; /* retry */
2338 		}
2339 		ret |= VM_FAULT_LOCKED;
2340 	} else
2341 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Handle dirtying of a page in shared file mapping on a write fault.
2347  *
2348  * The function expects the page to be locked and unlocks it.
2349  */
2350 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2351 {
2352 	struct vm_area_struct *vma = vmf->vma;
2353 	struct address_space *mapping;
2354 	struct page *page = vmf->page;
2355 	bool dirtied;
2356 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2357 
2358 	dirtied = set_page_dirty(page);
2359 	VM_BUG_ON_PAGE(PageAnon(page), page);
2360 	/*
2361 	 * Take a local copy of the address_space - page.mapping may be zeroed
2362 	 * by truncate after unlock_page().   The address_space itself remains
2363 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2364 	 * release semantics to prevent the compiler from undoing this copying.
2365 	 */
2366 	mapping = page_rmapping(page);
2367 	unlock_page(page);
2368 
2369 	if (!page_mkwrite)
2370 		file_update_time(vma->vm_file);
2371 
2372 	/*
2373 	 * Throttle page dirtying rate down to writeback speed.
2374 	 *
2375 	 * mapping may be NULL here because some device drivers do not
2376 	 * set page.mapping but still dirty their pages
2377 	 *
2378 	 * Drop the mmap_sem before waiting on IO, if we can. The file
2379 	 * is pinning the mapping, as per above.
2380 	 */
2381 	if ((dirtied || page_mkwrite) && mapping) {
2382 		struct file *fpin;
2383 
2384 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2385 		balance_dirty_pages_ratelimited(mapping);
2386 		if (fpin) {
2387 			fput(fpin);
2388 			return VM_FAULT_RETRY;
2389 		}
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 /*
2396  * Handle write page faults for pages that can be reused in the current vma
2397  *
2398  * This can happen either due to the mapping being with the VM_SHARED flag,
2399  * or due to us being the last reference standing to the page. In either
2400  * case, all we need to do here is to mark the page as writable and update
2401  * any related book-keeping.
2402  */
2403 static inline void wp_page_reuse(struct vm_fault *vmf)
2404 	__releases(vmf->ptl)
2405 {
2406 	struct vm_area_struct *vma = vmf->vma;
2407 	struct page *page = vmf->page;
2408 	pte_t entry;
2409 	/*
2410 	 * Clear the pages cpupid information as the existing
2411 	 * information potentially belongs to a now completely
2412 	 * unrelated process.
2413 	 */
2414 	if (page)
2415 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2416 
2417 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2418 	entry = pte_mkyoung(vmf->orig_pte);
2419 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2420 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2421 		update_mmu_cache(vma, vmf->address, vmf->pte);
2422 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2423 }
2424 
2425 /*
2426  * Handle the case of a page which we actually need to copy to a new page.
2427  *
2428  * Called with mmap_sem locked and the old page referenced, but
2429  * without the ptl held.
2430  *
2431  * High level logic flow:
2432  *
2433  * - Allocate a page, copy the content of the old page to the new one.
2434  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2435  * - Take the PTL. If the pte changed, bail out and release the allocated page
2436  * - If the pte is still the way we remember it, update the page table and all
2437  *   relevant references. This includes dropping the reference the page-table
2438  *   held to the old page, as well as updating the rmap.
2439  * - In any case, unlock the PTL and drop the reference we took to the old page.
2440  */
2441 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2442 {
2443 	struct vm_area_struct *vma = vmf->vma;
2444 	struct mm_struct *mm = vma->vm_mm;
2445 	struct page *old_page = vmf->page;
2446 	struct page *new_page = NULL;
2447 	pte_t entry;
2448 	int page_copied = 0;
2449 	struct mem_cgroup *memcg;
2450 	struct mmu_notifier_range range;
2451 
2452 	if (unlikely(anon_vma_prepare(vma)))
2453 		goto oom;
2454 
2455 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2456 		new_page = alloc_zeroed_user_highpage_movable(vma,
2457 							      vmf->address);
2458 		if (!new_page)
2459 			goto oom;
2460 	} else {
2461 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2462 				vmf->address);
2463 		if (!new_page)
2464 			goto oom;
2465 
2466 		if (!cow_user_page(new_page, old_page, vmf)) {
2467 			/*
2468 			 * COW failed, if the fault was solved by other,
2469 			 * it's fine. If not, userspace would re-fault on
2470 			 * the same address and we will handle the fault
2471 			 * from the second attempt.
2472 			 */
2473 			put_page(new_page);
2474 			if (old_page)
2475 				put_page(old_page);
2476 			return 0;
2477 		}
2478 	}
2479 
2480 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2481 		goto oom_free_new;
2482 
2483 	__SetPageUptodate(new_page);
2484 
2485 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2486 				vmf->address & PAGE_MASK,
2487 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2488 	mmu_notifier_invalidate_range_start(&range);
2489 
2490 	/*
2491 	 * Re-check the pte - we dropped the lock
2492 	 */
2493 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2494 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2495 		if (old_page) {
2496 			if (!PageAnon(old_page)) {
2497 				dec_mm_counter_fast(mm,
2498 						mm_counter_file(old_page));
2499 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2500 			}
2501 		} else {
2502 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2503 		}
2504 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2505 		entry = mk_pte(new_page, vma->vm_page_prot);
2506 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2507 		/*
2508 		 * Clear the pte entry and flush it first, before updating the
2509 		 * pte with the new entry. This will avoid a race condition
2510 		 * seen in the presence of one thread doing SMC and another
2511 		 * thread doing COW.
2512 		 */
2513 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2514 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2515 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2516 		lru_cache_add_active_or_unevictable(new_page, vma);
2517 		/*
2518 		 * We call the notify macro here because, when using secondary
2519 		 * mmu page tables (such as kvm shadow page tables), we want the
2520 		 * new page to be mapped directly into the secondary page table.
2521 		 */
2522 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2523 		update_mmu_cache(vma, vmf->address, vmf->pte);
2524 		if (old_page) {
2525 			/*
2526 			 * Only after switching the pte to the new page may
2527 			 * we remove the mapcount here. Otherwise another
2528 			 * process may come and find the rmap count decremented
2529 			 * before the pte is switched to the new page, and
2530 			 * "reuse" the old page writing into it while our pte
2531 			 * here still points into it and can be read by other
2532 			 * threads.
2533 			 *
2534 			 * The critical issue is to order this
2535 			 * page_remove_rmap with the ptp_clear_flush above.
2536 			 * Those stores are ordered by (if nothing else,)
2537 			 * the barrier present in the atomic_add_negative
2538 			 * in page_remove_rmap.
2539 			 *
2540 			 * Then the TLB flush in ptep_clear_flush ensures that
2541 			 * no process can access the old page before the
2542 			 * decremented mapcount is visible. And the old page
2543 			 * cannot be reused until after the decremented
2544 			 * mapcount is visible. So transitively, TLBs to
2545 			 * old page will be flushed before it can be reused.
2546 			 */
2547 			page_remove_rmap(old_page, false);
2548 		}
2549 
2550 		/* Free the old page.. */
2551 		new_page = old_page;
2552 		page_copied = 1;
2553 	} else {
2554 		mem_cgroup_cancel_charge(new_page, memcg, false);
2555 	}
2556 
2557 	if (new_page)
2558 		put_page(new_page);
2559 
2560 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2561 	/*
2562 	 * No need to double call mmu_notifier->invalidate_range() callback as
2563 	 * the above ptep_clear_flush_notify() did already call it.
2564 	 */
2565 	mmu_notifier_invalidate_range_only_end(&range);
2566 	if (old_page) {
2567 		/*
2568 		 * Don't let another task, with possibly unlocked vma,
2569 		 * keep the mlocked page.
2570 		 */
2571 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2572 			lock_page(old_page);	/* LRU manipulation */
2573 			if (PageMlocked(old_page))
2574 				munlock_vma_page(old_page);
2575 			unlock_page(old_page);
2576 		}
2577 		put_page(old_page);
2578 	}
2579 	return page_copied ? VM_FAULT_WRITE : 0;
2580 oom_free_new:
2581 	put_page(new_page);
2582 oom:
2583 	if (old_page)
2584 		put_page(old_page);
2585 	return VM_FAULT_OOM;
2586 }
2587 
2588 /**
2589  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2590  *			  writeable once the page is prepared
2591  *
2592  * @vmf: structure describing the fault
2593  *
2594  * This function handles all that is needed to finish a write page fault in a
2595  * shared mapping due to PTE being read-only once the mapped page is prepared.
2596  * It handles locking of PTE and modifying it.
2597  *
2598  * The function expects the page to be locked or other protection against
2599  * concurrent faults / writeback (such as DAX radix tree locks).
2600  *
2601  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2602  * we acquired PTE lock.
2603  */
2604 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2605 {
2606 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2607 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2608 				       &vmf->ptl);
2609 	/*
2610 	 * We might have raced with another page fault while we released the
2611 	 * pte_offset_map_lock.
2612 	 */
2613 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2614 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2615 		return VM_FAULT_NOPAGE;
2616 	}
2617 	wp_page_reuse(vmf);
2618 	return 0;
2619 }
2620 
2621 /*
2622  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2623  * mapping
2624  */
2625 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2626 {
2627 	struct vm_area_struct *vma = vmf->vma;
2628 
2629 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2630 		vm_fault_t ret;
2631 
2632 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2633 		vmf->flags |= FAULT_FLAG_MKWRITE;
2634 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2635 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2636 			return ret;
2637 		return finish_mkwrite_fault(vmf);
2638 	}
2639 	wp_page_reuse(vmf);
2640 	return VM_FAULT_WRITE;
2641 }
2642 
2643 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2644 	__releases(vmf->ptl)
2645 {
2646 	struct vm_area_struct *vma = vmf->vma;
2647 	vm_fault_t ret = VM_FAULT_WRITE;
2648 
2649 	get_page(vmf->page);
2650 
2651 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2652 		vm_fault_t tmp;
2653 
2654 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2655 		tmp = do_page_mkwrite(vmf);
2656 		if (unlikely(!tmp || (tmp &
2657 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2658 			put_page(vmf->page);
2659 			return tmp;
2660 		}
2661 		tmp = finish_mkwrite_fault(vmf);
2662 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2663 			unlock_page(vmf->page);
2664 			put_page(vmf->page);
2665 			return tmp;
2666 		}
2667 	} else {
2668 		wp_page_reuse(vmf);
2669 		lock_page(vmf->page);
2670 	}
2671 	ret |= fault_dirty_shared_page(vmf);
2672 	put_page(vmf->page);
2673 
2674 	return ret;
2675 }
2676 
2677 /*
2678  * This routine handles present pages, when users try to write
2679  * to a shared page. It is done by copying the page to a new address
2680  * and decrementing the shared-page counter for the old page.
2681  *
2682  * Note that this routine assumes that the protection checks have been
2683  * done by the caller (the low-level page fault routine in most cases).
2684  * Thus we can safely just mark it writable once we've done any necessary
2685  * COW.
2686  *
2687  * We also mark the page dirty at this point even though the page will
2688  * change only once the write actually happens. This avoids a few races,
2689  * and potentially makes it more efficient.
2690  *
2691  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2692  * but allow concurrent faults), with pte both mapped and locked.
2693  * We return with mmap_sem still held, but pte unmapped and unlocked.
2694  */
2695 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2696 	__releases(vmf->ptl)
2697 {
2698 	struct vm_area_struct *vma = vmf->vma;
2699 
2700 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2701 	if (!vmf->page) {
2702 		/*
2703 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2704 		 * VM_PFNMAP VMA.
2705 		 *
2706 		 * We should not cow pages in a shared writeable mapping.
2707 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2708 		 */
2709 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2710 				     (VM_WRITE|VM_SHARED))
2711 			return wp_pfn_shared(vmf);
2712 
2713 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2714 		return wp_page_copy(vmf);
2715 	}
2716 
2717 	/*
2718 	 * Take out anonymous pages first, anonymous shared vmas are
2719 	 * not dirty accountable.
2720 	 */
2721 	if (PageAnon(vmf->page)) {
2722 		int total_map_swapcount;
2723 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2724 					   page_count(vmf->page) != 1))
2725 			goto copy;
2726 		if (!trylock_page(vmf->page)) {
2727 			get_page(vmf->page);
2728 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2729 			lock_page(vmf->page);
2730 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2731 					vmf->address, &vmf->ptl);
2732 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2733 				unlock_page(vmf->page);
2734 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2735 				put_page(vmf->page);
2736 				return 0;
2737 			}
2738 			put_page(vmf->page);
2739 		}
2740 		if (PageKsm(vmf->page)) {
2741 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2742 						     vmf->address);
2743 			unlock_page(vmf->page);
2744 			if (!reused)
2745 				goto copy;
2746 			wp_page_reuse(vmf);
2747 			return VM_FAULT_WRITE;
2748 		}
2749 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2750 			if (total_map_swapcount == 1) {
2751 				/*
2752 				 * The page is all ours. Move it to
2753 				 * our anon_vma so the rmap code will
2754 				 * not search our parent or siblings.
2755 				 * Protected against the rmap code by
2756 				 * the page lock.
2757 				 */
2758 				page_move_anon_rmap(vmf->page, vma);
2759 			}
2760 			unlock_page(vmf->page);
2761 			wp_page_reuse(vmf);
2762 			return VM_FAULT_WRITE;
2763 		}
2764 		unlock_page(vmf->page);
2765 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2766 					(VM_WRITE|VM_SHARED))) {
2767 		return wp_page_shared(vmf);
2768 	}
2769 copy:
2770 	/*
2771 	 * Ok, we need to copy. Oh, well..
2772 	 */
2773 	get_page(vmf->page);
2774 
2775 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2776 	return wp_page_copy(vmf);
2777 }
2778 
2779 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2780 		unsigned long start_addr, unsigned long end_addr,
2781 		struct zap_details *details)
2782 {
2783 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2784 }
2785 
2786 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2787 					    struct zap_details *details)
2788 {
2789 	struct vm_area_struct *vma;
2790 	pgoff_t vba, vea, zba, zea;
2791 
2792 	vma_interval_tree_foreach(vma, root,
2793 			details->first_index, details->last_index) {
2794 
2795 		vba = vma->vm_pgoff;
2796 		vea = vba + vma_pages(vma) - 1;
2797 		zba = details->first_index;
2798 		if (zba < vba)
2799 			zba = vba;
2800 		zea = details->last_index;
2801 		if (zea > vea)
2802 			zea = vea;
2803 
2804 		unmap_mapping_range_vma(vma,
2805 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2806 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2807 				details);
2808 	}
2809 }
2810 
2811 /**
2812  * unmap_mapping_pages() - Unmap pages from processes.
2813  * @mapping: The address space containing pages to be unmapped.
2814  * @start: Index of first page to be unmapped.
2815  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2816  * @even_cows: Whether to unmap even private COWed pages.
2817  *
2818  * Unmap the pages in this address space from any userspace process which
2819  * has them mmaped.  Generally, you want to remove COWed pages as well when
2820  * a file is being truncated, but not when invalidating pages from the page
2821  * cache.
2822  */
2823 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2824 		pgoff_t nr, bool even_cows)
2825 {
2826 	struct zap_details details = { };
2827 
2828 	details.check_mapping = even_cows ? NULL : mapping;
2829 	details.first_index = start;
2830 	details.last_index = start + nr - 1;
2831 	if (details.last_index < details.first_index)
2832 		details.last_index = ULONG_MAX;
2833 
2834 	i_mmap_lock_write(mapping);
2835 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2836 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2837 	i_mmap_unlock_write(mapping);
2838 }
2839 
2840 /**
2841  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2842  * address_space corresponding to the specified byte range in the underlying
2843  * file.
2844  *
2845  * @mapping: the address space containing mmaps to be unmapped.
2846  * @holebegin: byte in first page to unmap, relative to the start of
2847  * the underlying file.  This will be rounded down to a PAGE_SIZE
2848  * boundary.  Note that this is different from truncate_pagecache(), which
2849  * must keep the partial page.  In contrast, we must get rid of
2850  * partial pages.
2851  * @holelen: size of prospective hole in bytes.  This will be rounded
2852  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2853  * end of the file.
2854  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2855  * but 0 when invalidating pagecache, don't throw away private data.
2856  */
2857 void unmap_mapping_range(struct address_space *mapping,
2858 		loff_t const holebegin, loff_t const holelen, int even_cows)
2859 {
2860 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2861 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862 
2863 	/* Check for overflow. */
2864 	if (sizeof(holelen) > sizeof(hlen)) {
2865 		long long holeend =
2866 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867 		if (holeend & ~(long long)ULONG_MAX)
2868 			hlen = ULONG_MAX - hba + 1;
2869 	}
2870 
2871 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2872 }
2873 EXPORT_SYMBOL(unmap_mapping_range);
2874 
2875 /*
2876  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877  * but allow concurrent faults), and pte mapped but not yet locked.
2878  * We return with pte unmapped and unlocked.
2879  *
2880  * We return with the mmap_sem locked or unlocked in the same cases
2881  * as does filemap_fault().
2882  */
2883 vm_fault_t do_swap_page(struct vm_fault *vmf)
2884 {
2885 	struct vm_area_struct *vma = vmf->vma;
2886 	struct page *page = NULL, *swapcache;
2887 	struct mem_cgroup *memcg;
2888 	swp_entry_t entry;
2889 	pte_t pte;
2890 	int locked;
2891 	int exclusive = 0;
2892 	vm_fault_t ret = 0;
2893 
2894 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2895 		goto out;
2896 
2897 	entry = pte_to_swp_entry(vmf->orig_pte);
2898 	if (unlikely(non_swap_entry(entry))) {
2899 		if (is_migration_entry(entry)) {
2900 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2901 					     vmf->address);
2902 		} else if (is_device_private_entry(entry)) {
2903 			vmf->page = device_private_entry_to_page(entry);
2904 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2905 		} else if (is_hwpoison_entry(entry)) {
2906 			ret = VM_FAULT_HWPOISON;
2907 		} else {
2908 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2909 			ret = VM_FAULT_SIGBUS;
2910 		}
2911 		goto out;
2912 	}
2913 
2914 
2915 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2916 	page = lookup_swap_cache(entry, vma, vmf->address);
2917 	swapcache = page;
2918 
2919 	if (!page) {
2920 		struct swap_info_struct *si = swp_swap_info(entry);
2921 
2922 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2923 				__swap_count(entry) == 1) {
2924 			/* skip swapcache */
2925 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2926 							vmf->address);
2927 			if (page) {
2928 				__SetPageLocked(page);
2929 				__SetPageSwapBacked(page);
2930 				set_page_private(page, entry.val);
2931 				lru_cache_add_anon(page);
2932 				swap_readpage(page, true);
2933 			}
2934 		} else {
2935 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2936 						vmf);
2937 			swapcache = page;
2938 		}
2939 
2940 		if (!page) {
2941 			/*
2942 			 * Back out if somebody else faulted in this pte
2943 			 * while we released the pte lock.
2944 			 */
2945 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2946 					vmf->address, &vmf->ptl);
2947 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2948 				ret = VM_FAULT_OOM;
2949 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2950 			goto unlock;
2951 		}
2952 
2953 		/* Had to read the page from swap area: Major fault */
2954 		ret = VM_FAULT_MAJOR;
2955 		count_vm_event(PGMAJFAULT);
2956 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2957 	} else if (PageHWPoison(page)) {
2958 		/*
2959 		 * hwpoisoned dirty swapcache pages are kept for killing
2960 		 * owner processes (which may be unknown at hwpoison time)
2961 		 */
2962 		ret = VM_FAULT_HWPOISON;
2963 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2964 		goto out_release;
2965 	}
2966 
2967 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2968 
2969 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2970 	if (!locked) {
2971 		ret |= VM_FAULT_RETRY;
2972 		goto out_release;
2973 	}
2974 
2975 	/*
2976 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2977 	 * release the swapcache from under us.  The page pin, and pte_same
2978 	 * test below, are not enough to exclude that.  Even if it is still
2979 	 * swapcache, we need to check that the page's swap has not changed.
2980 	 */
2981 	if (unlikely((!PageSwapCache(page) ||
2982 			page_private(page) != entry.val)) && swapcache)
2983 		goto out_page;
2984 
2985 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2986 	if (unlikely(!page)) {
2987 		ret = VM_FAULT_OOM;
2988 		page = swapcache;
2989 		goto out_page;
2990 	}
2991 
2992 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2993 					&memcg, false)) {
2994 		ret = VM_FAULT_OOM;
2995 		goto out_page;
2996 	}
2997 
2998 	/*
2999 	 * Back out if somebody else already faulted in this pte.
3000 	 */
3001 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3002 			&vmf->ptl);
3003 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3004 		goto out_nomap;
3005 
3006 	if (unlikely(!PageUptodate(page))) {
3007 		ret = VM_FAULT_SIGBUS;
3008 		goto out_nomap;
3009 	}
3010 
3011 	/*
3012 	 * The page isn't present yet, go ahead with the fault.
3013 	 *
3014 	 * Be careful about the sequence of operations here.
3015 	 * To get its accounting right, reuse_swap_page() must be called
3016 	 * while the page is counted on swap but not yet in mapcount i.e.
3017 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3018 	 * must be called after the swap_free(), or it will never succeed.
3019 	 */
3020 
3021 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3022 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3023 	pte = mk_pte(page, vma->vm_page_prot);
3024 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3025 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3026 		vmf->flags &= ~FAULT_FLAG_WRITE;
3027 		ret |= VM_FAULT_WRITE;
3028 		exclusive = RMAP_EXCLUSIVE;
3029 	}
3030 	flush_icache_page(vma, page);
3031 	if (pte_swp_soft_dirty(vmf->orig_pte))
3032 		pte = pte_mksoft_dirty(pte);
3033 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3034 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3035 	vmf->orig_pte = pte;
3036 
3037 	/* ksm created a completely new copy */
3038 	if (unlikely(page != swapcache && swapcache)) {
3039 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3040 		mem_cgroup_commit_charge(page, memcg, false, false);
3041 		lru_cache_add_active_or_unevictable(page, vma);
3042 	} else {
3043 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3044 		mem_cgroup_commit_charge(page, memcg, true, false);
3045 		activate_page(page);
3046 	}
3047 
3048 	swap_free(entry);
3049 	if (mem_cgroup_swap_full(page) ||
3050 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3051 		try_to_free_swap(page);
3052 	unlock_page(page);
3053 	if (page != swapcache && swapcache) {
3054 		/*
3055 		 * Hold the lock to avoid the swap entry to be reused
3056 		 * until we take the PT lock for the pte_same() check
3057 		 * (to avoid false positives from pte_same). For
3058 		 * further safety release the lock after the swap_free
3059 		 * so that the swap count won't change under a
3060 		 * parallel locked swapcache.
3061 		 */
3062 		unlock_page(swapcache);
3063 		put_page(swapcache);
3064 	}
3065 
3066 	if (vmf->flags & FAULT_FLAG_WRITE) {
3067 		ret |= do_wp_page(vmf);
3068 		if (ret & VM_FAULT_ERROR)
3069 			ret &= VM_FAULT_ERROR;
3070 		goto out;
3071 	}
3072 
3073 	/* No need to invalidate - it was non-present before */
3074 	update_mmu_cache(vma, vmf->address, vmf->pte);
3075 unlock:
3076 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3077 out:
3078 	return ret;
3079 out_nomap:
3080 	mem_cgroup_cancel_charge(page, memcg, false);
3081 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3082 out_page:
3083 	unlock_page(page);
3084 out_release:
3085 	put_page(page);
3086 	if (page != swapcache && swapcache) {
3087 		unlock_page(swapcache);
3088 		put_page(swapcache);
3089 	}
3090 	return ret;
3091 }
3092 
3093 /*
3094  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3095  * but allow concurrent faults), and pte mapped but not yet locked.
3096  * We return with mmap_sem still held, but pte unmapped and unlocked.
3097  */
3098 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3099 {
3100 	struct vm_area_struct *vma = vmf->vma;
3101 	struct mem_cgroup *memcg;
3102 	struct page *page;
3103 	vm_fault_t ret = 0;
3104 	pte_t entry;
3105 
3106 	/* File mapping without ->vm_ops ? */
3107 	if (vma->vm_flags & VM_SHARED)
3108 		return VM_FAULT_SIGBUS;
3109 
3110 	/*
3111 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3112 	 * pte_offset_map() on pmds where a huge pmd might be created
3113 	 * from a different thread.
3114 	 *
3115 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3116 	 * parallel threads are excluded by other means.
3117 	 *
3118 	 * Here we only have down_read(mmap_sem).
3119 	 */
3120 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3121 		return VM_FAULT_OOM;
3122 
3123 	/* See the comment in pte_alloc_one_map() */
3124 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3125 		return 0;
3126 
3127 	/* Use the zero-page for reads */
3128 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3129 			!mm_forbids_zeropage(vma->vm_mm)) {
3130 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3131 						vma->vm_page_prot));
3132 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3133 				vmf->address, &vmf->ptl);
3134 		if (!pte_none(*vmf->pte))
3135 			goto unlock;
3136 		ret = check_stable_address_space(vma->vm_mm);
3137 		if (ret)
3138 			goto unlock;
3139 		/* Deliver the page fault to userland, check inside PT lock */
3140 		if (userfaultfd_missing(vma)) {
3141 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3142 			return handle_userfault(vmf, VM_UFFD_MISSING);
3143 		}
3144 		goto setpte;
3145 	}
3146 
3147 	/* Allocate our own private page. */
3148 	if (unlikely(anon_vma_prepare(vma)))
3149 		goto oom;
3150 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3151 	if (!page)
3152 		goto oom;
3153 
3154 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3155 					false))
3156 		goto oom_free_page;
3157 
3158 	/*
3159 	 * The memory barrier inside __SetPageUptodate makes sure that
3160 	 * preceding stores to the page contents become visible before
3161 	 * the set_pte_at() write.
3162 	 */
3163 	__SetPageUptodate(page);
3164 
3165 	entry = mk_pte(page, vma->vm_page_prot);
3166 	if (vma->vm_flags & VM_WRITE)
3167 		entry = pte_mkwrite(pte_mkdirty(entry));
3168 
3169 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3170 			&vmf->ptl);
3171 	if (!pte_none(*vmf->pte))
3172 		goto release;
3173 
3174 	ret = check_stable_address_space(vma->vm_mm);
3175 	if (ret)
3176 		goto release;
3177 
3178 	/* Deliver the page fault to userland, check inside PT lock */
3179 	if (userfaultfd_missing(vma)) {
3180 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3181 		mem_cgroup_cancel_charge(page, memcg, false);
3182 		put_page(page);
3183 		return handle_userfault(vmf, VM_UFFD_MISSING);
3184 	}
3185 
3186 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3187 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3188 	mem_cgroup_commit_charge(page, memcg, false, false);
3189 	lru_cache_add_active_or_unevictable(page, vma);
3190 setpte:
3191 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3192 
3193 	/* No need to invalidate - it was non-present before */
3194 	update_mmu_cache(vma, vmf->address, vmf->pte);
3195 unlock:
3196 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3197 	return ret;
3198 release:
3199 	mem_cgroup_cancel_charge(page, memcg, false);
3200 	put_page(page);
3201 	goto unlock;
3202 oom_free_page:
3203 	put_page(page);
3204 oom:
3205 	return VM_FAULT_OOM;
3206 }
3207 
3208 /*
3209  * The mmap_sem must have been held on entry, and may have been
3210  * released depending on flags and vma->vm_ops->fault() return value.
3211  * See filemap_fault() and __lock_page_retry().
3212  */
3213 static vm_fault_t __do_fault(struct vm_fault *vmf)
3214 {
3215 	struct vm_area_struct *vma = vmf->vma;
3216 	vm_fault_t ret;
3217 
3218 	/*
3219 	 * Preallocate pte before we take page_lock because this might lead to
3220 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3221 	 *				lock_page(A)
3222 	 *				SetPageWriteback(A)
3223 	 *				unlock_page(A)
3224 	 * lock_page(B)
3225 	 *				lock_page(B)
3226 	 * pte_alloc_pne
3227 	 *   shrink_page_list
3228 	 *     wait_on_page_writeback(A)
3229 	 *				SetPageWriteback(B)
3230 	 *				unlock_page(B)
3231 	 *				# flush A, B to clear the writeback
3232 	 */
3233 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3234 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3235 		if (!vmf->prealloc_pte)
3236 			return VM_FAULT_OOM;
3237 		smp_wmb(); /* See comment in __pte_alloc() */
3238 	}
3239 
3240 	ret = vma->vm_ops->fault(vmf);
3241 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3242 			    VM_FAULT_DONE_COW)))
3243 		return ret;
3244 
3245 	if (unlikely(PageHWPoison(vmf->page))) {
3246 		if (ret & VM_FAULT_LOCKED)
3247 			unlock_page(vmf->page);
3248 		put_page(vmf->page);
3249 		vmf->page = NULL;
3250 		return VM_FAULT_HWPOISON;
3251 	}
3252 
3253 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3254 		lock_page(vmf->page);
3255 	else
3256 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3257 
3258 	return ret;
3259 }
3260 
3261 /*
3262  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3263  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3264  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3265  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3266  */
3267 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3268 {
3269 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3270 }
3271 
3272 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3273 {
3274 	struct vm_area_struct *vma = vmf->vma;
3275 
3276 	if (!pmd_none(*vmf->pmd))
3277 		goto map_pte;
3278 	if (vmf->prealloc_pte) {
3279 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3280 		if (unlikely(!pmd_none(*vmf->pmd))) {
3281 			spin_unlock(vmf->ptl);
3282 			goto map_pte;
3283 		}
3284 
3285 		mm_inc_nr_ptes(vma->vm_mm);
3286 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3287 		spin_unlock(vmf->ptl);
3288 		vmf->prealloc_pte = NULL;
3289 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3290 		return VM_FAULT_OOM;
3291 	}
3292 map_pte:
3293 	/*
3294 	 * If a huge pmd materialized under us just retry later.  Use
3295 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3296 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3297 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3298 	 * running immediately after a huge pmd fault in a different thread of
3299 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3300 	 * All we have to ensure is that it is a regular pmd that we can walk
3301 	 * with pte_offset_map() and we can do that through an atomic read in
3302 	 * C, which is what pmd_trans_unstable() provides.
3303 	 */
3304 	if (pmd_devmap_trans_unstable(vmf->pmd))
3305 		return VM_FAULT_NOPAGE;
3306 
3307 	/*
3308 	 * At this point we know that our vmf->pmd points to a page of ptes
3309 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3310 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3311 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3312 	 * be valid and we will re-check to make sure the vmf->pte isn't
3313 	 * pte_none() under vmf->ptl protection when we return to
3314 	 * alloc_set_pte().
3315 	 */
3316 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3317 			&vmf->ptl);
3318 	return 0;
3319 }
3320 
3321 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3322 static void deposit_prealloc_pte(struct vm_fault *vmf)
3323 {
3324 	struct vm_area_struct *vma = vmf->vma;
3325 
3326 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3327 	/*
3328 	 * We are going to consume the prealloc table,
3329 	 * count that as nr_ptes.
3330 	 */
3331 	mm_inc_nr_ptes(vma->vm_mm);
3332 	vmf->prealloc_pte = NULL;
3333 }
3334 
3335 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3336 {
3337 	struct vm_area_struct *vma = vmf->vma;
3338 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3339 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3340 	pmd_t entry;
3341 	int i;
3342 	vm_fault_t ret;
3343 
3344 	if (!transhuge_vma_suitable(vma, haddr))
3345 		return VM_FAULT_FALLBACK;
3346 
3347 	ret = VM_FAULT_FALLBACK;
3348 	page = compound_head(page);
3349 
3350 	/*
3351 	 * Archs like ppc64 need additonal space to store information
3352 	 * related to pte entry. Use the preallocated table for that.
3353 	 */
3354 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3355 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3356 		if (!vmf->prealloc_pte)
3357 			return VM_FAULT_OOM;
3358 		smp_wmb(); /* See comment in __pte_alloc() */
3359 	}
3360 
3361 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3362 	if (unlikely(!pmd_none(*vmf->pmd)))
3363 		goto out;
3364 
3365 	for (i = 0; i < HPAGE_PMD_NR; i++)
3366 		flush_icache_page(vma, page + i);
3367 
3368 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3369 	if (write)
3370 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3371 
3372 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3373 	page_add_file_rmap(page, true);
3374 	/*
3375 	 * deposit and withdraw with pmd lock held
3376 	 */
3377 	if (arch_needs_pgtable_deposit())
3378 		deposit_prealloc_pte(vmf);
3379 
3380 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3381 
3382 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3383 
3384 	/* fault is handled */
3385 	ret = 0;
3386 	count_vm_event(THP_FILE_MAPPED);
3387 out:
3388 	spin_unlock(vmf->ptl);
3389 	return ret;
3390 }
3391 #else
3392 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3393 {
3394 	BUILD_BUG();
3395 	return 0;
3396 }
3397 #endif
3398 
3399 /**
3400  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3401  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3402  *
3403  * @vmf: fault environment
3404  * @memcg: memcg to charge page (only for private mappings)
3405  * @page: page to map
3406  *
3407  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3408  * return.
3409  *
3410  * Target users are page handler itself and implementations of
3411  * vm_ops->map_pages.
3412  *
3413  * Return: %0 on success, %VM_FAULT_ code in case of error.
3414  */
3415 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3416 		struct page *page)
3417 {
3418 	struct vm_area_struct *vma = vmf->vma;
3419 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3420 	pte_t entry;
3421 	vm_fault_t ret;
3422 
3423 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3424 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3425 		/* THP on COW? */
3426 		VM_BUG_ON_PAGE(memcg, page);
3427 
3428 		ret = do_set_pmd(vmf, page);
3429 		if (ret != VM_FAULT_FALLBACK)
3430 			return ret;
3431 	}
3432 
3433 	if (!vmf->pte) {
3434 		ret = pte_alloc_one_map(vmf);
3435 		if (ret)
3436 			return ret;
3437 	}
3438 
3439 	/* Re-check under ptl */
3440 	if (unlikely(!pte_none(*vmf->pte)))
3441 		return VM_FAULT_NOPAGE;
3442 
3443 	flush_icache_page(vma, page);
3444 	entry = mk_pte(page, vma->vm_page_prot);
3445 	if (write)
3446 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3447 	/* copy-on-write page */
3448 	if (write && !(vma->vm_flags & VM_SHARED)) {
3449 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3450 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3451 		mem_cgroup_commit_charge(page, memcg, false, false);
3452 		lru_cache_add_active_or_unevictable(page, vma);
3453 	} else {
3454 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3455 		page_add_file_rmap(page, false);
3456 	}
3457 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3458 
3459 	/* no need to invalidate: a not-present page won't be cached */
3460 	update_mmu_cache(vma, vmf->address, vmf->pte);
3461 
3462 	return 0;
3463 }
3464 
3465 
3466 /**
3467  * finish_fault - finish page fault once we have prepared the page to fault
3468  *
3469  * @vmf: structure describing the fault
3470  *
3471  * This function handles all that is needed to finish a page fault once the
3472  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3473  * given page, adds reverse page mapping, handles memcg charges and LRU
3474  * addition.
3475  *
3476  * The function expects the page to be locked and on success it consumes a
3477  * reference of a page being mapped (for the PTE which maps it).
3478  *
3479  * Return: %0 on success, %VM_FAULT_ code in case of error.
3480  */
3481 vm_fault_t finish_fault(struct vm_fault *vmf)
3482 {
3483 	struct page *page;
3484 	vm_fault_t ret = 0;
3485 
3486 	/* Did we COW the page? */
3487 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3488 	    !(vmf->vma->vm_flags & VM_SHARED))
3489 		page = vmf->cow_page;
3490 	else
3491 		page = vmf->page;
3492 
3493 	/*
3494 	 * check even for read faults because we might have lost our CoWed
3495 	 * page
3496 	 */
3497 	if (!(vmf->vma->vm_flags & VM_SHARED))
3498 		ret = check_stable_address_space(vmf->vma->vm_mm);
3499 	if (!ret)
3500 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3501 	if (vmf->pte)
3502 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3503 	return ret;
3504 }
3505 
3506 static unsigned long fault_around_bytes __read_mostly =
3507 	rounddown_pow_of_two(65536);
3508 
3509 #ifdef CONFIG_DEBUG_FS
3510 static int fault_around_bytes_get(void *data, u64 *val)
3511 {
3512 	*val = fault_around_bytes;
3513 	return 0;
3514 }
3515 
3516 /*
3517  * fault_around_bytes must be rounded down to the nearest page order as it's
3518  * what do_fault_around() expects to see.
3519  */
3520 static int fault_around_bytes_set(void *data, u64 val)
3521 {
3522 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3523 		return -EINVAL;
3524 	if (val > PAGE_SIZE)
3525 		fault_around_bytes = rounddown_pow_of_two(val);
3526 	else
3527 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3528 	return 0;
3529 }
3530 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3531 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3532 
3533 static int __init fault_around_debugfs(void)
3534 {
3535 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3536 				   &fault_around_bytes_fops);
3537 	return 0;
3538 }
3539 late_initcall(fault_around_debugfs);
3540 #endif
3541 
3542 /*
3543  * do_fault_around() tries to map few pages around the fault address. The hope
3544  * is that the pages will be needed soon and this will lower the number of
3545  * faults to handle.
3546  *
3547  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3548  * not ready to be mapped: not up-to-date, locked, etc.
3549  *
3550  * This function is called with the page table lock taken. In the split ptlock
3551  * case the page table lock only protects only those entries which belong to
3552  * the page table corresponding to the fault address.
3553  *
3554  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3555  * only once.
3556  *
3557  * fault_around_bytes defines how many bytes we'll try to map.
3558  * do_fault_around() expects it to be set to a power of two less than or equal
3559  * to PTRS_PER_PTE.
3560  *
3561  * The virtual address of the area that we map is naturally aligned to
3562  * fault_around_bytes rounded down to the machine page size
3563  * (and therefore to page order).  This way it's easier to guarantee
3564  * that we don't cross page table boundaries.
3565  */
3566 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3567 {
3568 	unsigned long address = vmf->address, nr_pages, mask;
3569 	pgoff_t start_pgoff = vmf->pgoff;
3570 	pgoff_t end_pgoff;
3571 	int off;
3572 	vm_fault_t ret = 0;
3573 
3574 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3575 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3576 
3577 	vmf->address = max(address & mask, vmf->vma->vm_start);
3578 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3579 	start_pgoff -= off;
3580 
3581 	/*
3582 	 *  end_pgoff is either the end of the page table, the end of
3583 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3584 	 */
3585 	end_pgoff = start_pgoff -
3586 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3587 		PTRS_PER_PTE - 1;
3588 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3589 			start_pgoff + nr_pages - 1);
3590 
3591 	if (pmd_none(*vmf->pmd)) {
3592 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3593 		if (!vmf->prealloc_pte)
3594 			goto out;
3595 		smp_wmb(); /* See comment in __pte_alloc() */
3596 	}
3597 
3598 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3599 
3600 	/* Huge page is mapped? Page fault is solved */
3601 	if (pmd_trans_huge(*vmf->pmd)) {
3602 		ret = VM_FAULT_NOPAGE;
3603 		goto out;
3604 	}
3605 
3606 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3607 	if (!vmf->pte)
3608 		goto out;
3609 
3610 	/* check if the page fault is solved */
3611 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3612 	if (!pte_none(*vmf->pte))
3613 		ret = VM_FAULT_NOPAGE;
3614 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3615 out:
3616 	vmf->address = address;
3617 	vmf->pte = NULL;
3618 	return ret;
3619 }
3620 
3621 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3622 {
3623 	struct vm_area_struct *vma = vmf->vma;
3624 	vm_fault_t ret = 0;
3625 
3626 	/*
3627 	 * Let's call ->map_pages() first and use ->fault() as fallback
3628 	 * if page by the offset is not ready to be mapped (cold cache or
3629 	 * something).
3630 	 */
3631 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3632 		ret = do_fault_around(vmf);
3633 		if (ret)
3634 			return ret;
3635 	}
3636 
3637 	ret = __do_fault(vmf);
3638 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3639 		return ret;
3640 
3641 	ret |= finish_fault(vmf);
3642 	unlock_page(vmf->page);
3643 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3644 		put_page(vmf->page);
3645 	return ret;
3646 }
3647 
3648 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3649 {
3650 	struct vm_area_struct *vma = vmf->vma;
3651 	vm_fault_t ret;
3652 
3653 	if (unlikely(anon_vma_prepare(vma)))
3654 		return VM_FAULT_OOM;
3655 
3656 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3657 	if (!vmf->cow_page)
3658 		return VM_FAULT_OOM;
3659 
3660 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3661 				&vmf->memcg, false)) {
3662 		put_page(vmf->cow_page);
3663 		return VM_FAULT_OOM;
3664 	}
3665 
3666 	ret = __do_fault(vmf);
3667 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3668 		goto uncharge_out;
3669 	if (ret & VM_FAULT_DONE_COW)
3670 		return ret;
3671 
3672 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3673 	__SetPageUptodate(vmf->cow_page);
3674 
3675 	ret |= finish_fault(vmf);
3676 	unlock_page(vmf->page);
3677 	put_page(vmf->page);
3678 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3679 		goto uncharge_out;
3680 	return ret;
3681 uncharge_out:
3682 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3683 	put_page(vmf->cow_page);
3684 	return ret;
3685 }
3686 
3687 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3688 {
3689 	struct vm_area_struct *vma = vmf->vma;
3690 	vm_fault_t ret, tmp;
3691 
3692 	ret = __do_fault(vmf);
3693 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694 		return ret;
3695 
3696 	/*
3697 	 * Check if the backing address space wants to know that the page is
3698 	 * about to become writable
3699 	 */
3700 	if (vma->vm_ops->page_mkwrite) {
3701 		unlock_page(vmf->page);
3702 		tmp = do_page_mkwrite(vmf);
3703 		if (unlikely(!tmp ||
3704 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3705 			put_page(vmf->page);
3706 			return tmp;
3707 		}
3708 	}
3709 
3710 	ret |= finish_fault(vmf);
3711 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3712 					VM_FAULT_RETRY))) {
3713 		unlock_page(vmf->page);
3714 		put_page(vmf->page);
3715 		return ret;
3716 	}
3717 
3718 	ret |= fault_dirty_shared_page(vmf);
3719 	return ret;
3720 }
3721 
3722 /*
3723  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3724  * but allow concurrent faults).
3725  * The mmap_sem may have been released depending on flags and our
3726  * return value.  See filemap_fault() and __lock_page_or_retry().
3727  * If mmap_sem is released, vma may become invalid (for example
3728  * by other thread calling munmap()).
3729  */
3730 static vm_fault_t do_fault(struct vm_fault *vmf)
3731 {
3732 	struct vm_area_struct *vma = vmf->vma;
3733 	struct mm_struct *vm_mm = vma->vm_mm;
3734 	vm_fault_t ret;
3735 
3736 	/*
3737 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3738 	 */
3739 	if (!vma->vm_ops->fault) {
3740 		/*
3741 		 * If we find a migration pmd entry or a none pmd entry, which
3742 		 * should never happen, return SIGBUS
3743 		 */
3744 		if (unlikely(!pmd_present(*vmf->pmd)))
3745 			ret = VM_FAULT_SIGBUS;
3746 		else {
3747 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3748 						       vmf->pmd,
3749 						       vmf->address,
3750 						       &vmf->ptl);
3751 			/*
3752 			 * Make sure this is not a temporary clearing of pte
3753 			 * by holding ptl and checking again. A R/M/W update
3754 			 * of pte involves: take ptl, clearing the pte so that
3755 			 * we don't have concurrent modification by hardware
3756 			 * followed by an update.
3757 			 */
3758 			if (unlikely(pte_none(*vmf->pte)))
3759 				ret = VM_FAULT_SIGBUS;
3760 			else
3761 				ret = VM_FAULT_NOPAGE;
3762 
3763 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3764 		}
3765 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3766 		ret = do_read_fault(vmf);
3767 	else if (!(vma->vm_flags & VM_SHARED))
3768 		ret = do_cow_fault(vmf);
3769 	else
3770 		ret = do_shared_fault(vmf);
3771 
3772 	/* preallocated pagetable is unused: free it */
3773 	if (vmf->prealloc_pte) {
3774 		pte_free(vm_mm, vmf->prealloc_pte);
3775 		vmf->prealloc_pte = NULL;
3776 	}
3777 	return ret;
3778 }
3779 
3780 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3781 				unsigned long addr, int page_nid,
3782 				int *flags)
3783 {
3784 	get_page(page);
3785 
3786 	count_vm_numa_event(NUMA_HINT_FAULTS);
3787 	if (page_nid == numa_node_id()) {
3788 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3789 		*flags |= TNF_FAULT_LOCAL;
3790 	}
3791 
3792 	return mpol_misplaced(page, vma, addr);
3793 }
3794 
3795 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3796 {
3797 	struct vm_area_struct *vma = vmf->vma;
3798 	struct page *page = NULL;
3799 	int page_nid = NUMA_NO_NODE;
3800 	int last_cpupid;
3801 	int target_nid;
3802 	bool migrated = false;
3803 	pte_t pte, old_pte;
3804 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3805 	int flags = 0;
3806 
3807 	/*
3808 	 * The "pte" at this point cannot be used safely without
3809 	 * validation through pte_unmap_same(). It's of NUMA type but
3810 	 * the pfn may be screwed if the read is non atomic.
3811 	 */
3812 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3813 	spin_lock(vmf->ptl);
3814 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3815 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3816 		goto out;
3817 	}
3818 
3819 	/*
3820 	 * Make it present again, Depending on how arch implementes non
3821 	 * accessible ptes, some can allow access by kernel mode.
3822 	 */
3823 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3824 	pte = pte_modify(old_pte, vma->vm_page_prot);
3825 	pte = pte_mkyoung(pte);
3826 	if (was_writable)
3827 		pte = pte_mkwrite(pte);
3828 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3829 	update_mmu_cache(vma, vmf->address, vmf->pte);
3830 
3831 	page = vm_normal_page(vma, vmf->address, pte);
3832 	if (!page) {
3833 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3834 		return 0;
3835 	}
3836 
3837 	/* TODO: handle PTE-mapped THP */
3838 	if (PageCompound(page)) {
3839 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3840 		return 0;
3841 	}
3842 
3843 	/*
3844 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3845 	 * much anyway since they can be in shared cache state. This misses
3846 	 * the case where a mapping is writable but the process never writes
3847 	 * to it but pte_write gets cleared during protection updates and
3848 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3849 	 * background writeback, dirty balancing and application behaviour.
3850 	 */
3851 	if (!pte_write(pte))
3852 		flags |= TNF_NO_GROUP;
3853 
3854 	/*
3855 	 * Flag if the page is shared between multiple address spaces. This
3856 	 * is later used when determining whether to group tasks together
3857 	 */
3858 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3859 		flags |= TNF_SHARED;
3860 
3861 	last_cpupid = page_cpupid_last(page);
3862 	page_nid = page_to_nid(page);
3863 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3864 			&flags);
3865 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3866 	if (target_nid == NUMA_NO_NODE) {
3867 		put_page(page);
3868 		goto out;
3869 	}
3870 
3871 	/* Migrate to the requested node */
3872 	migrated = migrate_misplaced_page(page, vma, target_nid);
3873 	if (migrated) {
3874 		page_nid = target_nid;
3875 		flags |= TNF_MIGRATED;
3876 	} else
3877 		flags |= TNF_MIGRATE_FAIL;
3878 
3879 out:
3880 	if (page_nid != NUMA_NO_NODE)
3881 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3882 	return 0;
3883 }
3884 
3885 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3886 {
3887 	if (vma_is_anonymous(vmf->vma))
3888 		return do_huge_pmd_anonymous_page(vmf);
3889 	if (vmf->vma->vm_ops->huge_fault)
3890 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3891 	return VM_FAULT_FALLBACK;
3892 }
3893 
3894 /* `inline' is required to avoid gcc 4.1.2 build error */
3895 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3896 {
3897 	if (vma_is_anonymous(vmf->vma))
3898 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3899 	if (vmf->vma->vm_ops->huge_fault)
3900 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3901 
3902 	/* COW handled on pte level: split pmd */
3903 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3904 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3905 
3906 	return VM_FAULT_FALLBACK;
3907 }
3908 
3909 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3910 {
3911 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3912 }
3913 
3914 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3915 {
3916 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3917 	/* No support for anonymous transparent PUD pages yet */
3918 	if (vma_is_anonymous(vmf->vma))
3919 		return VM_FAULT_FALLBACK;
3920 	if (vmf->vma->vm_ops->huge_fault)
3921 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3922 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3923 	return VM_FAULT_FALLBACK;
3924 }
3925 
3926 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3927 {
3928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3929 	/* No support for anonymous transparent PUD pages yet */
3930 	if (vma_is_anonymous(vmf->vma))
3931 		return VM_FAULT_FALLBACK;
3932 	if (vmf->vma->vm_ops->huge_fault)
3933 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3934 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3935 	return VM_FAULT_FALLBACK;
3936 }
3937 
3938 /*
3939  * These routines also need to handle stuff like marking pages dirty
3940  * and/or accessed for architectures that don't do it in hardware (most
3941  * RISC architectures).  The early dirtying is also good on the i386.
3942  *
3943  * There is also a hook called "update_mmu_cache()" that architectures
3944  * with external mmu caches can use to update those (ie the Sparc or
3945  * PowerPC hashed page tables that act as extended TLBs).
3946  *
3947  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3948  * concurrent faults).
3949  *
3950  * The mmap_sem may have been released depending on flags and our return value.
3951  * See filemap_fault() and __lock_page_or_retry().
3952  */
3953 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3954 {
3955 	pte_t entry;
3956 
3957 	if (unlikely(pmd_none(*vmf->pmd))) {
3958 		/*
3959 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3960 		 * want to allocate huge page, and if we expose page table
3961 		 * for an instant, it will be difficult to retract from
3962 		 * concurrent faults and from rmap lookups.
3963 		 */
3964 		vmf->pte = NULL;
3965 	} else {
3966 		/* See comment in pte_alloc_one_map() */
3967 		if (pmd_devmap_trans_unstable(vmf->pmd))
3968 			return 0;
3969 		/*
3970 		 * A regular pmd is established and it can't morph into a huge
3971 		 * pmd from under us anymore at this point because we hold the
3972 		 * mmap_sem read mode and khugepaged takes it in write mode.
3973 		 * So now it's safe to run pte_offset_map().
3974 		 */
3975 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3976 		vmf->orig_pte = *vmf->pte;
3977 
3978 		/*
3979 		 * some architectures can have larger ptes than wordsize,
3980 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3981 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3982 		 * accesses.  The code below just needs a consistent view
3983 		 * for the ifs and we later double check anyway with the
3984 		 * ptl lock held. So here a barrier will do.
3985 		 */
3986 		barrier();
3987 		if (pte_none(vmf->orig_pte)) {
3988 			pte_unmap(vmf->pte);
3989 			vmf->pte = NULL;
3990 		}
3991 	}
3992 
3993 	if (!vmf->pte) {
3994 		if (vma_is_anonymous(vmf->vma))
3995 			return do_anonymous_page(vmf);
3996 		else
3997 			return do_fault(vmf);
3998 	}
3999 
4000 	if (!pte_present(vmf->orig_pte))
4001 		return do_swap_page(vmf);
4002 
4003 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4004 		return do_numa_page(vmf);
4005 
4006 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4007 	spin_lock(vmf->ptl);
4008 	entry = vmf->orig_pte;
4009 	if (unlikely(!pte_same(*vmf->pte, entry)))
4010 		goto unlock;
4011 	if (vmf->flags & FAULT_FLAG_WRITE) {
4012 		if (!pte_write(entry))
4013 			return do_wp_page(vmf);
4014 		entry = pte_mkdirty(entry);
4015 	}
4016 	entry = pte_mkyoung(entry);
4017 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4018 				vmf->flags & FAULT_FLAG_WRITE)) {
4019 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4020 	} else {
4021 		/*
4022 		 * This is needed only for protection faults but the arch code
4023 		 * is not yet telling us if this is a protection fault or not.
4024 		 * This still avoids useless tlb flushes for .text page faults
4025 		 * with threads.
4026 		 */
4027 		if (vmf->flags & FAULT_FLAG_WRITE)
4028 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4029 	}
4030 unlock:
4031 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4032 	return 0;
4033 }
4034 
4035 /*
4036  * By the time we get here, we already hold the mm semaphore
4037  *
4038  * The mmap_sem may have been released depending on flags and our
4039  * return value.  See filemap_fault() and __lock_page_or_retry().
4040  */
4041 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4042 		unsigned long address, unsigned int flags)
4043 {
4044 	struct vm_fault vmf = {
4045 		.vma = vma,
4046 		.address = address & PAGE_MASK,
4047 		.flags = flags,
4048 		.pgoff = linear_page_index(vma, address),
4049 		.gfp_mask = __get_fault_gfp_mask(vma),
4050 	};
4051 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4052 	struct mm_struct *mm = vma->vm_mm;
4053 	pgd_t *pgd;
4054 	p4d_t *p4d;
4055 	vm_fault_t ret;
4056 
4057 	pgd = pgd_offset(mm, address);
4058 	p4d = p4d_alloc(mm, pgd, address);
4059 	if (!p4d)
4060 		return VM_FAULT_OOM;
4061 
4062 	vmf.pud = pud_alloc(mm, p4d, address);
4063 	if (!vmf.pud)
4064 		return VM_FAULT_OOM;
4065 retry_pud:
4066 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4067 		ret = create_huge_pud(&vmf);
4068 		if (!(ret & VM_FAULT_FALLBACK))
4069 			return ret;
4070 	} else {
4071 		pud_t orig_pud = *vmf.pud;
4072 
4073 		barrier();
4074 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4075 
4076 			/* NUMA case for anonymous PUDs would go here */
4077 
4078 			if (dirty && !pud_write(orig_pud)) {
4079 				ret = wp_huge_pud(&vmf, orig_pud);
4080 				if (!(ret & VM_FAULT_FALLBACK))
4081 					return ret;
4082 			} else {
4083 				huge_pud_set_accessed(&vmf, orig_pud);
4084 				return 0;
4085 			}
4086 		}
4087 	}
4088 
4089 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4090 	if (!vmf.pmd)
4091 		return VM_FAULT_OOM;
4092 
4093 	/* Huge pud page fault raced with pmd_alloc? */
4094 	if (pud_trans_unstable(vmf.pud))
4095 		goto retry_pud;
4096 
4097 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4098 		ret = create_huge_pmd(&vmf);
4099 		if (!(ret & VM_FAULT_FALLBACK))
4100 			return ret;
4101 	} else {
4102 		pmd_t orig_pmd = *vmf.pmd;
4103 
4104 		barrier();
4105 		if (unlikely(is_swap_pmd(orig_pmd))) {
4106 			VM_BUG_ON(thp_migration_supported() &&
4107 					  !is_pmd_migration_entry(orig_pmd));
4108 			if (is_pmd_migration_entry(orig_pmd))
4109 				pmd_migration_entry_wait(mm, vmf.pmd);
4110 			return 0;
4111 		}
4112 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4113 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4114 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4115 
4116 			if (dirty && !pmd_write(orig_pmd)) {
4117 				ret = wp_huge_pmd(&vmf, orig_pmd);
4118 				if (!(ret & VM_FAULT_FALLBACK))
4119 					return ret;
4120 			} else {
4121 				huge_pmd_set_accessed(&vmf, orig_pmd);
4122 				return 0;
4123 			}
4124 		}
4125 	}
4126 
4127 	return handle_pte_fault(&vmf);
4128 }
4129 
4130 /*
4131  * By the time we get here, we already hold the mm semaphore
4132  *
4133  * The mmap_sem may have been released depending on flags and our
4134  * return value.  See filemap_fault() and __lock_page_or_retry().
4135  */
4136 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4137 		unsigned int flags)
4138 {
4139 	vm_fault_t ret;
4140 
4141 	__set_current_state(TASK_RUNNING);
4142 
4143 	count_vm_event(PGFAULT);
4144 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4145 
4146 	/* do counter updates before entering really critical section. */
4147 	check_sync_rss_stat(current);
4148 
4149 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4150 					    flags & FAULT_FLAG_INSTRUCTION,
4151 					    flags & FAULT_FLAG_REMOTE))
4152 		return VM_FAULT_SIGSEGV;
4153 
4154 	/*
4155 	 * Enable the memcg OOM handling for faults triggered in user
4156 	 * space.  Kernel faults are handled more gracefully.
4157 	 */
4158 	if (flags & FAULT_FLAG_USER)
4159 		mem_cgroup_enter_user_fault();
4160 
4161 	if (unlikely(is_vm_hugetlb_page(vma)))
4162 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4163 	else
4164 		ret = __handle_mm_fault(vma, address, flags);
4165 
4166 	if (flags & FAULT_FLAG_USER) {
4167 		mem_cgroup_exit_user_fault();
4168 		/*
4169 		 * The task may have entered a memcg OOM situation but
4170 		 * if the allocation error was handled gracefully (no
4171 		 * VM_FAULT_OOM), there is no need to kill anything.
4172 		 * Just clean up the OOM state peacefully.
4173 		 */
4174 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4175 			mem_cgroup_oom_synchronize(false);
4176 	}
4177 
4178 	return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(handle_mm_fault);
4181 
4182 #ifndef __PAGETABLE_P4D_FOLDED
4183 /*
4184  * Allocate p4d page table.
4185  * We've already handled the fast-path in-line.
4186  */
4187 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4188 {
4189 	p4d_t *new = p4d_alloc_one(mm, address);
4190 	if (!new)
4191 		return -ENOMEM;
4192 
4193 	smp_wmb(); /* See comment in __pte_alloc */
4194 
4195 	spin_lock(&mm->page_table_lock);
4196 	if (pgd_present(*pgd))		/* Another has populated it */
4197 		p4d_free(mm, new);
4198 	else
4199 		pgd_populate(mm, pgd, new);
4200 	spin_unlock(&mm->page_table_lock);
4201 	return 0;
4202 }
4203 #endif /* __PAGETABLE_P4D_FOLDED */
4204 
4205 #ifndef __PAGETABLE_PUD_FOLDED
4206 /*
4207  * Allocate page upper directory.
4208  * We've already handled the fast-path in-line.
4209  */
4210 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4211 {
4212 	pud_t *new = pud_alloc_one(mm, address);
4213 	if (!new)
4214 		return -ENOMEM;
4215 
4216 	smp_wmb(); /* See comment in __pte_alloc */
4217 
4218 	spin_lock(&mm->page_table_lock);
4219 #ifndef __ARCH_HAS_5LEVEL_HACK
4220 	if (!p4d_present(*p4d)) {
4221 		mm_inc_nr_puds(mm);
4222 		p4d_populate(mm, p4d, new);
4223 	} else	/* Another has populated it */
4224 		pud_free(mm, new);
4225 #else
4226 	if (!pgd_present(*p4d)) {
4227 		mm_inc_nr_puds(mm);
4228 		pgd_populate(mm, p4d, new);
4229 	} else	/* Another has populated it */
4230 		pud_free(mm, new);
4231 #endif /* __ARCH_HAS_5LEVEL_HACK */
4232 	spin_unlock(&mm->page_table_lock);
4233 	return 0;
4234 }
4235 #endif /* __PAGETABLE_PUD_FOLDED */
4236 
4237 #ifndef __PAGETABLE_PMD_FOLDED
4238 /*
4239  * Allocate page middle directory.
4240  * We've already handled the fast-path in-line.
4241  */
4242 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4243 {
4244 	spinlock_t *ptl;
4245 	pmd_t *new = pmd_alloc_one(mm, address);
4246 	if (!new)
4247 		return -ENOMEM;
4248 
4249 	smp_wmb(); /* See comment in __pte_alloc */
4250 
4251 	ptl = pud_lock(mm, pud);
4252 	if (!pud_present(*pud)) {
4253 		mm_inc_nr_pmds(mm);
4254 		pud_populate(mm, pud, new);
4255 	} else	/* Another has populated it */
4256 		pmd_free(mm, new);
4257 	spin_unlock(ptl);
4258 	return 0;
4259 }
4260 #endif /* __PAGETABLE_PMD_FOLDED */
4261 
4262 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4263 			    struct mmu_notifier_range *range,
4264 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4265 {
4266 	pgd_t *pgd;
4267 	p4d_t *p4d;
4268 	pud_t *pud;
4269 	pmd_t *pmd;
4270 	pte_t *ptep;
4271 
4272 	pgd = pgd_offset(mm, address);
4273 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4274 		goto out;
4275 
4276 	p4d = p4d_offset(pgd, address);
4277 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4278 		goto out;
4279 
4280 	pud = pud_offset(p4d, address);
4281 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4282 		goto out;
4283 
4284 	pmd = pmd_offset(pud, address);
4285 	VM_BUG_ON(pmd_trans_huge(*pmd));
4286 
4287 	if (pmd_huge(*pmd)) {
4288 		if (!pmdpp)
4289 			goto out;
4290 
4291 		if (range) {
4292 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4293 						NULL, mm, address & PMD_MASK,
4294 						(address & PMD_MASK) + PMD_SIZE);
4295 			mmu_notifier_invalidate_range_start(range);
4296 		}
4297 		*ptlp = pmd_lock(mm, pmd);
4298 		if (pmd_huge(*pmd)) {
4299 			*pmdpp = pmd;
4300 			return 0;
4301 		}
4302 		spin_unlock(*ptlp);
4303 		if (range)
4304 			mmu_notifier_invalidate_range_end(range);
4305 	}
4306 
4307 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4308 		goto out;
4309 
4310 	if (range) {
4311 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4312 					address & PAGE_MASK,
4313 					(address & PAGE_MASK) + PAGE_SIZE);
4314 		mmu_notifier_invalidate_range_start(range);
4315 	}
4316 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4317 	if (!pte_present(*ptep))
4318 		goto unlock;
4319 	*ptepp = ptep;
4320 	return 0;
4321 unlock:
4322 	pte_unmap_unlock(ptep, *ptlp);
4323 	if (range)
4324 		mmu_notifier_invalidate_range_end(range);
4325 out:
4326 	return -EINVAL;
4327 }
4328 
4329 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4330 			     pte_t **ptepp, spinlock_t **ptlp)
4331 {
4332 	int res;
4333 
4334 	/* (void) is needed to make gcc happy */
4335 	(void) __cond_lock(*ptlp,
4336 			   !(res = __follow_pte_pmd(mm, address, NULL,
4337 						    ptepp, NULL, ptlp)));
4338 	return res;
4339 }
4340 
4341 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4342 		   struct mmu_notifier_range *range,
4343 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4344 {
4345 	int res;
4346 
4347 	/* (void) is needed to make gcc happy */
4348 	(void) __cond_lock(*ptlp,
4349 			   !(res = __follow_pte_pmd(mm, address, range,
4350 						    ptepp, pmdpp, ptlp)));
4351 	return res;
4352 }
4353 EXPORT_SYMBOL(follow_pte_pmd);
4354 
4355 /**
4356  * follow_pfn - look up PFN at a user virtual address
4357  * @vma: memory mapping
4358  * @address: user virtual address
4359  * @pfn: location to store found PFN
4360  *
4361  * Only IO mappings and raw PFN mappings are allowed.
4362  *
4363  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4364  */
4365 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4366 	unsigned long *pfn)
4367 {
4368 	int ret = -EINVAL;
4369 	spinlock_t *ptl;
4370 	pte_t *ptep;
4371 
4372 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4373 		return ret;
4374 
4375 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4376 	if (ret)
4377 		return ret;
4378 	*pfn = pte_pfn(*ptep);
4379 	pte_unmap_unlock(ptep, ptl);
4380 	return 0;
4381 }
4382 EXPORT_SYMBOL(follow_pfn);
4383 
4384 #ifdef CONFIG_HAVE_IOREMAP_PROT
4385 int follow_phys(struct vm_area_struct *vma,
4386 		unsigned long address, unsigned int flags,
4387 		unsigned long *prot, resource_size_t *phys)
4388 {
4389 	int ret = -EINVAL;
4390 	pte_t *ptep, pte;
4391 	spinlock_t *ptl;
4392 
4393 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4394 		goto out;
4395 
4396 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4397 		goto out;
4398 	pte = *ptep;
4399 
4400 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4401 		goto unlock;
4402 
4403 	*prot = pgprot_val(pte_pgprot(pte));
4404 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4405 
4406 	ret = 0;
4407 unlock:
4408 	pte_unmap_unlock(ptep, ptl);
4409 out:
4410 	return ret;
4411 }
4412 
4413 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4414 			void *buf, int len, int write)
4415 {
4416 	resource_size_t phys_addr;
4417 	unsigned long prot = 0;
4418 	void __iomem *maddr;
4419 	int offset = addr & (PAGE_SIZE-1);
4420 
4421 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4422 		return -EINVAL;
4423 
4424 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4425 	if (!maddr)
4426 		return -ENOMEM;
4427 
4428 	if (write)
4429 		memcpy_toio(maddr + offset, buf, len);
4430 	else
4431 		memcpy_fromio(buf, maddr + offset, len);
4432 	iounmap(maddr);
4433 
4434 	return len;
4435 }
4436 EXPORT_SYMBOL_GPL(generic_access_phys);
4437 #endif
4438 
4439 /*
4440  * Access another process' address space as given in mm.  If non-NULL, use the
4441  * given task for page fault accounting.
4442  */
4443 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4444 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4445 {
4446 	struct vm_area_struct *vma;
4447 	void *old_buf = buf;
4448 	int write = gup_flags & FOLL_WRITE;
4449 
4450 	if (down_read_killable(&mm->mmap_sem))
4451 		return 0;
4452 
4453 	/* ignore errors, just check how much was successfully transferred */
4454 	while (len) {
4455 		int bytes, ret, offset;
4456 		void *maddr;
4457 		struct page *page = NULL;
4458 
4459 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4460 				gup_flags, &page, &vma, NULL);
4461 		if (ret <= 0) {
4462 #ifndef CONFIG_HAVE_IOREMAP_PROT
4463 			break;
4464 #else
4465 			/*
4466 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4467 			 * we can access using slightly different code.
4468 			 */
4469 			vma = find_vma(mm, addr);
4470 			if (!vma || vma->vm_start > addr)
4471 				break;
4472 			if (vma->vm_ops && vma->vm_ops->access)
4473 				ret = vma->vm_ops->access(vma, addr, buf,
4474 							  len, write);
4475 			if (ret <= 0)
4476 				break;
4477 			bytes = ret;
4478 #endif
4479 		} else {
4480 			bytes = len;
4481 			offset = addr & (PAGE_SIZE-1);
4482 			if (bytes > PAGE_SIZE-offset)
4483 				bytes = PAGE_SIZE-offset;
4484 
4485 			maddr = kmap(page);
4486 			if (write) {
4487 				copy_to_user_page(vma, page, addr,
4488 						  maddr + offset, buf, bytes);
4489 				set_page_dirty_lock(page);
4490 			} else {
4491 				copy_from_user_page(vma, page, addr,
4492 						    buf, maddr + offset, bytes);
4493 			}
4494 			kunmap(page);
4495 			put_page(page);
4496 		}
4497 		len -= bytes;
4498 		buf += bytes;
4499 		addr += bytes;
4500 	}
4501 	up_read(&mm->mmap_sem);
4502 
4503 	return buf - old_buf;
4504 }
4505 
4506 /**
4507  * access_remote_vm - access another process' address space
4508  * @mm:		the mm_struct of the target address space
4509  * @addr:	start address to access
4510  * @buf:	source or destination buffer
4511  * @len:	number of bytes to transfer
4512  * @gup_flags:	flags modifying lookup behaviour
4513  *
4514  * The caller must hold a reference on @mm.
4515  *
4516  * Return: number of bytes copied from source to destination.
4517  */
4518 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4519 		void *buf, int len, unsigned int gup_flags)
4520 {
4521 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4522 }
4523 
4524 /*
4525  * Access another process' address space.
4526  * Source/target buffer must be kernel space,
4527  * Do not walk the page table directly, use get_user_pages
4528  */
4529 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4530 		void *buf, int len, unsigned int gup_flags)
4531 {
4532 	struct mm_struct *mm;
4533 	int ret;
4534 
4535 	mm = get_task_mm(tsk);
4536 	if (!mm)
4537 		return 0;
4538 
4539 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4540 
4541 	mmput(mm);
4542 
4543 	return ret;
4544 }
4545 EXPORT_SYMBOL_GPL(access_process_vm);
4546 
4547 /*
4548  * Print the name of a VMA.
4549  */
4550 void print_vma_addr(char *prefix, unsigned long ip)
4551 {
4552 	struct mm_struct *mm = current->mm;
4553 	struct vm_area_struct *vma;
4554 
4555 	/*
4556 	 * we might be running from an atomic context so we cannot sleep
4557 	 */
4558 	if (!down_read_trylock(&mm->mmap_sem))
4559 		return;
4560 
4561 	vma = find_vma(mm, ip);
4562 	if (vma && vma->vm_file) {
4563 		struct file *f = vma->vm_file;
4564 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4565 		if (buf) {
4566 			char *p;
4567 
4568 			p = file_path(f, buf, PAGE_SIZE);
4569 			if (IS_ERR(p))
4570 				p = "?";
4571 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4572 					vma->vm_start,
4573 					vma->vm_end - vma->vm_start);
4574 			free_page((unsigned long)buf);
4575 		}
4576 	}
4577 	up_read(&mm->mmap_sem);
4578 }
4579 
4580 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4581 void __might_fault(const char *file, int line)
4582 {
4583 	/*
4584 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4585 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4586 	 * get paged out, therefore we'll never actually fault, and the
4587 	 * below annotations will generate false positives.
4588 	 */
4589 	if (uaccess_kernel())
4590 		return;
4591 	if (pagefault_disabled())
4592 		return;
4593 	__might_sleep(file, line, 0);
4594 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4595 	if (current->mm)
4596 		might_lock_read(&current->mm->mmap_sem);
4597 #endif
4598 }
4599 EXPORT_SYMBOL(__might_fault);
4600 #endif
4601 
4602 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4603 /*
4604  * Process all subpages of the specified huge page with the specified
4605  * operation.  The target subpage will be processed last to keep its
4606  * cache lines hot.
4607  */
4608 static inline void process_huge_page(
4609 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4610 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4611 	void *arg)
4612 {
4613 	int i, n, base, l;
4614 	unsigned long addr = addr_hint &
4615 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4616 
4617 	/* Process target subpage last to keep its cache lines hot */
4618 	might_sleep();
4619 	n = (addr_hint - addr) / PAGE_SIZE;
4620 	if (2 * n <= pages_per_huge_page) {
4621 		/* If target subpage in first half of huge page */
4622 		base = 0;
4623 		l = n;
4624 		/* Process subpages at the end of huge page */
4625 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4626 			cond_resched();
4627 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4628 		}
4629 	} else {
4630 		/* If target subpage in second half of huge page */
4631 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4632 		l = pages_per_huge_page - n;
4633 		/* Process subpages at the begin of huge page */
4634 		for (i = 0; i < base; i++) {
4635 			cond_resched();
4636 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4637 		}
4638 	}
4639 	/*
4640 	 * Process remaining subpages in left-right-left-right pattern
4641 	 * towards the target subpage
4642 	 */
4643 	for (i = 0; i < l; i++) {
4644 		int left_idx = base + i;
4645 		int right_idx = base + 2 * l - 1 - i;
4646 
4647 		cond_resched();
4648 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4649 		cond_resched();
4650 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4651 	}
4652 }
4653 
4654 static void clear_gigantic_page(struct page *page,
4655 				unsigned long addr,
4656 				unsigned int pages_per_huge_page)
4657 {
4658 	int i;
4659 	struct page *p = page;
4660 
4661 	might_sleep();
4662 	for (i = 0; i < pages_per_huge_page;
4663 	     i++, p = mem_map_next(p, page, i)) {
4664 		cond_resched();
4665 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4666 	}
4667 }
4668 
4669 static void clear_subpage(unsigned long addr, int idx, void *arg)
4670 {
4671 	struct page *page = arg;
4672 
4673 	clear_user_highpage(page + idx, addr);
4674 }
4675 
4676 void clear_huge_page(struct page *page,
4677 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4678 {
4679 	unsigned long addr = addr_hint &
4680 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4681 
4682 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4683 		clear_gigantic_page(page, addr, pages_per_huge_page);
4684 		return;
4685 	}
4686 
4687 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4688 }
4689 
4690 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4691 				    unsigned long addr,
4692 				    struct vm_area_struct *vma,
4693 				    unsigned int pages_per_huge_page)
4694 {
4695 	int i;
4696 	struct page *dst_base = dst;
4697 	struct page *src_base = src;
4698 
4699 	for (i = 0; i < pages_per_huge_page; ) {
4700 		cond_resched();
4701 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4702 
4703 		i++;
4704 		dst = mem_map_next(dst, dst_base, i);
4705 		src = mem_map_next(src, src_base, i);
4706 	}
4707 }
4708 
4709 struct copy_subpage_arg {
4710 	struct page *dst;
4711 	struct page *src;
4712 	struct vm_area_struct *vma;
4713 };
4714 
4715 static void copy_subpage(unsigned long addr, int idx, void *arg)
4716 {
4717 	struct copy_subpage_arg *copy_arg = arg;
4718 
4719 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4720 			   addr, copy_arg->vma);
4721 }
4722 
4723 void copy_user_huge_page(struct page *dst, struct page *src,
4724 			 unsigned long addr_hint, struct vm_area_struct *vma,
4725 			 unsigned int pages_per_huge_page)
4726 {
4727 	unsigned long addr = addr_hint &
4728 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4729 	struct copy_subpage_arg arg = {
4730 		.dst = dst,
4731 		.src = src,
4732 		.vma = vma,
4733 	};
4734 
4735 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4736 		copy_user_gigantic_page(dst, src, addr, vma,
4737 					pages_per_huge_page);
4738 		return;
4739 	}
4740 
4741 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4742 }
4743 
4744 long copy_huge_page_from_user(struct page *dst_page,
4745 				const void __user *usr_src,
4746 				unsigned int pages_per_huge_page,
4747 				bool allow_pagefault)
4748 {
4749 	void *src = (void *)usr_src;
4750 	void *page_kaddr;
4751 	unsigned long i, rc = 0;
4752 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4753 
4754 	for (i = 0; i < pages_per_huge_page; i++) {
4755 		if (allow_pagefault)
4756 			page_kaddr = kmap(dst_page + i);
4757 		else
4758 			page_kaddr = kmap_atomic(dst_page + i);
4759 		rc = copy_from_user(page_kaddr,
4760 				(const void __user *)(src + i * PAGE_SIZE),
4761 				PAGE_SIZE);
4762 		if (allow_pagefault)
4763 			kunmap(dst_page + i);
4764 		else
4765 			kunmap_atomic(page_kaddr);
4766 
4767 		ret_val -= (PAGE_SIZE - rc);
4768 		if (rc)
4769 			break;
4770 
4771 		cond_resched();
4772 	}
4773 	return ret_val;
4774 }
4775 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4776 
4777 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4778 
4779 static struct kmem_cache *page_ptl_cachep;
4780 
4781 void __init ptlock_cache_init(void)
4782 {
4783 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4784 			SLAB_PANIC, NULL);
4785 }
4786 
4787 bool ptlock_alloc(struct page *page)
4788 {
4789 	spinlock_t *ptl;
4790 
4791 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4792 	if (!ptl)
4793 		return false;
4794 	page->ptl = ptl;
4795 	return true;
4796 }
4797 
4798 void ptlock_free(struct page *page)
4799 {
4800 	kmem_cache_free(page_ptl_cachep, page->ptl);
4801 }
4802 #endif
4803