1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif 195 196 /* 197 * If a p?d_bad entry is found while walking page tables, report 198 * the error, before resetting entry to p?d_none. Usually (but 199 * very seldom) called out from the p?d_none_or_clear_bad macros. 200 */ 201 202 void pgd_clear_bad(pgd_t *pgd) 203 { 204 pgd_ERROR(*pgd); 205 pgd_clear(pgd); 206 } 207 208 void pud_clear_bad(pud_t *pud) 209 { 210 pud_ERROR(*pud); 211 pud_clear(pud); 212 } 213 214 void pmd_clear_bad(pmd_t *pmd) 215 { 216 pmd_ERROR(*pmd); 217 pmd_clear(pmd); 218 } 219 220 /* 221 * Note: this doesn't free the actual pages themselves. That 222 * has been handled earlier when unmapping all the memory regions. 223 */ 224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 225 unsigned long addr) 226 { 227 pgtable_t token = pmd_pgtable(*pmd); 228 pmd_clear(pmd); 229 pte_free_tlb(tlb, token, addr); 230 tlb->mm->nr_ptes--; 231 } 232 233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 234 unsigned long addr, unsigned long end, 235 unsigned long floor, unsigned long ceiling) 236 { 237 pmd_t *pmd; 238 unsigned long next; 239 unsigned long start; 240 241 start = addr; 242 pmd = pmd_offset(pud, addr); 243 do { 244 next = pmd_addr_end(addr, end); 245 if (pmd_none_or_clear_bad(pmd)) 246 continue; 247 free_pte_range(tlb, pmd, addr); 248 } while (pmd++, addr = next, addr != end); 249 250 start &= PUD_MASK; 251 if (start < floor) 252 return; 253 if (ceiling) { 254 ceiling &= PUD_MASK; 255 if (!ceiling) 256 return; 257 } 258 if (end - 1 > ceiling - 1) 259 return; 260 261 pmd = pmd_offset(pud, start); 262 pud_clear(pud); 263 pmd_free_tlb(tlb, pmd, start); 264 } 265 266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 pud_t *pud; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 pud = pud_offset(pgd, addr); 276 do { 277 next = pud_addr_end(addr, end); 278 if (pud_none_or_clear_bad(pud)) 279 continue; 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 281 } while (pud++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 pud = pud_offset(pgd, start); 295 pgd_clear(pgd); 296 pud_free_tlb(tlb, pud, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 * 302 * Must be called with pagetable lock held. 303 */ 304 void free_pgd_range(struct mmu_gather *tlb, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 pgd_t *pgd; 309 unsigned long next; 310 311 /* 312 * The next few lines have given us lots of grief... 313 * 314 * Why are we testing PMD* at this top level? Because often 315 * there will be no work to do at all, and we'd prefer not to 316 * go all the way down to the bottom just to discover that. 317 * 318 * Why all these "- 1"s? Because 0 represents both the bottom 319 * of the address space and the top of it (using -1 for the 320 * top wouldn't help much: the masks would do the wrong thing). 321 * The rule is that addr 0 and floor 0 refer to the bottom of 322 * the address space, but end 0 and ceiling 0 refer to the top 323 * Comparisons need to use "end - 1" and "ceiling - 1" (though 324 * that end 0 case should be mythical). 325 * 326 * Wherever addr is brought up or ceiling brought down, we must 327 * be careful to reject "the opposite 0" before it confuses the 328 * subsequent tests. But what about where end is brought down 329 * by PMD_SIZE below? no, end can't go down to 0 there. 330 * 331 * Whereas we round start (addr) and ceiling down, by different 332 * masks at different levels, in order to test whether a table 333 * now has no other vmas using it, so can be freed, we don't 334 * bother to round floor or end up - the tests don't need that. 335 */ 336 337 addr &= PMD_MASK; 338 if (addr < floor) { 339 addr += PMD_SIZE; 340 if (!addr) 341 return; 342 } 343 if (ceiling) { 344 ceiling &= PMD_MASK; 345 if (!ceiling) 346 return; 347 } 348 if (end - 1 > ceiling - 1) 349 end -= PMD_SIZE; 350 if (addr > end - 1) 351 return; 352 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 363 unsigned long floor, unsigned long ceiling) 364 { 365 while (vma) { 366 struct vm_area_struct *next = vma->vm_next; 367 unsigned long addr = vma->vm_start; 368 369 /* 370 * Hide vma from rmap and truncate_pagecache before freeing 371 * pgtables 372 */ 373 unlink_anon_vmas(vma); 374 unlink_file_vma(vma); 375 376 if (is_vm_hugetlb_page(vma)) { 377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 378 floor, next? next->vm_start: ceiling); 379 } else { 380 /* 381 * Optimization: gather nearby vmas into one call down 382 */ 383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 384 && !is_vm_hugetlb_page(next)) { 385 vma = next; 386 next = vma->vm_next; 387 unlink_anon_vmas(vma); 388 unlink_file_vma(vma); 389 } 390 free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next? next->vm_start: ceiling); 392 } 393 vma = next; 394 } 395 } 396 397 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 398 { 399 pgtable_t new = pte_alloc_one(mm, address); 400 if (!new) 401 return -ENOMEM; 402 403 /* 404 * Ensure all pte setup (eg. pte page lock and page clearing) are 405 * visible before the pte is made visible to other CPUs by being 406 * put into page tables. 407 * 408 * The other side of the story is the pointer chasing in the page 409 * table walking code (when walking the page table without locking; 410 * ie. most of the time). Fortunately, these data accesses consist 411 * of a chain of data-dependent loads, meaning most CPUs (alpha 412 * being the notable exception) will already guarantee loads are 413 * seen in-order. See the alpha page table accessors for the 414 * smp_read_barrier_depends() barriers in page table walking code. 415 */ 416 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 417 418 spin_lock(&mm->page_table_lock); 419 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 420 mm->nr_ptes++; 421 pmd_populate(mm, pmd, new); 422 new = NULL; 423 } 424 spin_unlock(&mm->page_table_lock); 425 if (new) 426 pte_free(mm, new); 427 return 0; 428 } 429 430 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 431 { 432 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 433 if (!new) 434 return -ENOMEM; 435 436 smp_wmb(); /* See comment in __pte_alloc */ 437 438 spin_lock(&init_mm.page_table_lock); 439 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 440 pmd_populate_kernel(&init_mm, pmd, new); 441 new = NULL; 442 } 443 spin_unlock(&init_mm.page_table_lock); 444 if (new) 445 pte_free_kernel(&init_mm, new); 446 return 0; 447 } 448 449 static inline void init_rss_vec(int *rss) 450 { 451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 452 } 453 454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 455 { 456 int i; 457 458 if (current->mm == mm) 459 sync_mm_rss(current, mm); 460 for (i = 0; i < NR_MM_COUNTERS; i++) 461 if (rss[i]) 462 add_mm_counter(mm, i, rss[i]); 463 } 464 465 /* 466 * This function is called to print an error when a bad pte 467 * is found. For example, we might have a PFN-mapped pte in 468 * a region that doesn't allow it. 469 * 470 * The calling function must still handle the error. 471 */ 472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 473 pte_t pte, struct page *page) 474 { 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 476 pud_t *pud = pud_offset(pgd, addr); 477 pmd_t *pmd = pmd_offset(pud, addr); 478 struct address_space *mapping; 479 pgoff_t index; 480 static unsigned long resume; 481 static unsigned long nr_shown; 482 static unsigned long nr_unshown; 483 484 /* 485 * Allow a burst of 60 reports, then keep quiet for that minute; 486 * or allow a steady drip of one report per second. 487 */ 488 if (nr_shown == 60) { 489 if (time_before(jiffies, resume)) { 490 nr_unshown++; 491 return; 492 } 493 if (nr_unshown) { 494 printk(KERN_ALERT 495 "BUG: Bad page map: %lu messages suppressed\n", 496 nr_unshown); 497 nr_unshown = 0; 498 } 499 nr_shown = 0; 500 } 501 if (nr_shown++ == 0) 502 resume = jiffies + 60 * HZ; 503 504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 505 index = linear_page_index(vma, addr); 506 507 printk(KERN_ALERT 508 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 509 current->comm, 510 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 511 if (page) 512 dump_page(page); 513 printk(KERN_ALERT 514 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 515 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 516 /* 517 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 518 */ 519 if (vma->vm_ops) 520 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 521 (unsigned long)vma->vm_ops->fault); 522 if (vma->vm_file && vma->vm_file->f_op) 523 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 524 (unsigned long)vma->vm_file->f_op->mmap); 525 dump_stack(); 526 add_taint(TAINT_BAD_PAGE); 527 } 528 529 static inline int is_cow_mapping(unsigned int flags) 530 { 531 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 532 } 533 534 #ifndef is_zero_pfn 535 static inline int is_zero_pfn(unsigned long pfn) 536 { 537 return pfn == zero_pfn; 538 } 539 #endif 540 541 #ifndef my_zero_pfn 542 static inline unsigned long my_zero_pfn(unsigned long addr) 543 { 544 return zero_pfn; 545 } 546 #endif 547 548 /* 549 * vm_normal_page -- This function gets the "struct page" associated with a pte. 550 * 551 * "Special" mappings do not wish to be associated with a "struct page" (either 552 * it doesn't exist, or it exists but they don't want to touch it). In this 553 * case, NULL is returned here. "Normal" mappings do have a struct page. 554 * 555 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 556 * pte bit, in which case this function is trivial. Secondly, an architecture 557 * may not have a spare pte bit, which requires a more complicated scheme, 558 * described below. 559 * 560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 561 * special mapping (even if there are underlying and valid "struct pages"). 562 * COWed pages of a VM_PFNMAP are always normal. 563 * 564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 567 * mapping will always honor the rule 568 * 569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 570 * 571 * And for normal mappings this is false. 572 * 573 * This restricts such mappings to be a linear translation from virtual address 574 * to pfn. To get around this restriction, we allow arbitrary mappings so long 575 * as the vma is not a COW mapping; in that case, we know that all ptes are 576 * special (because none can have been COWed). 577 * 578 * 579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 580 * 581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 582 * page" backing, however the difference is that _all_ pages with a struct 583 * page (that is, those where pfn_valid is true) are refcounted and considered 584 * normal pages by the VM. The disadvantage is that pages are refcounted 585 * (which can be slower and simply not an option for some PFNMAP users). The 586 * advantage is that we don't have to follow the strict linearity rule of 587 * PFNMAP mappings in order to support COWable mappings. 588 * 589 */ 590 #ifdef __HAVE_ARCH_PTE_SPECIAL 591 # define HAVE_PTE_SPECIAL 1 592 #else 593 # define HAVE_PTE_SPECIAL 0 594 #endif 595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 596 pte_t pte) 597 { 598 unsigned long pfn = pte_pfn(pte); 599 600 if (HAVE_PTE_SPECIAL) { 601 if (likely(!pte_special(pte))) 602 goto check_pfn; 603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 604 return NULL; 605 if (!is_zero_pfn(pfn)) 606 print_bad_pte(vma, addr, pte, NULL); 607 return NULL; 608 } 609 610 /* !HAVE_PTE_SPECIAL case follows: */ 611 612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 613 if (vma->vm_flags & VM_MIXEDMAP) { 614 if (!pfn_valid(pfn)) 615 return NULL; 616 goto out; 617 } else { 618 unsigned long off; 619 off = (addr - vma->vm_start) >> PAGE_SHIFT; 620 if (pfn == vma->vm_pgoff + off) 621 return NULL; 622 if (!is_cow_mapping(vma->vm_flags)) 623 return NULL; 624 } 625 } 626 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 check_pfn: 630 if (unlikely(pfn > highest_memmap_pfn)) { 631 print_bad_pte(vma, addr, pte, NULL); 632 return NULL; 633 } 634 635 /* 636 * NOTE! We still have PageReserved() pages in the page tables. 637 * eg. VDSO mappings can cause them to exist. 638 */ 639 out: 640 return pfn_to_page(pfn); 641 } 642 643 /* 644 * copy one vm_area from one task to the other. Assumes the page tables 645 * already present in the new task to be cleared in the whole range 646 * covered by this vma. 647 */ 648 649 static inline unsigned long 650 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 651 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 652 unsigned long addr, int *rss) 653 { 654 unsigned long vm_flags = vma->vm_flags; 655 pte_t pte = *src_pte; 656 struct page *page; 657 658 /* pte contains position in swap or file, so copy. */ 659 if (unlikely(!pte_present(pte))) { 660 if (!pte_file(pte)) { 661 swp_entry_t entry = pte_to_swp_entry(pte); 662 663 if (swap_duplicate(entry) < 0) 664 return entry.val; 665 666 /* make sure dst_mm is on swapoff's mmlist. */ 667 if (unlikely(list_empty(&dst_mm->mmlist))) { 668 spin_lock(&mmlist_lock); 669 if (list_empty(&dst_mm->mmlist)) 670 list_add(&dst_mm->mmlist, 671 &src_mm->mmlist); 672 spin_unlock(&mmlist_lock); 673 } 674 if (likely(!non_swap_entry(entry))) 675 rss[MM_SWAPENTS]++; 676 else if (is_write_migration_entry(entry) && 677 is_cow_mapping(vm_flags)) { 678 /* 679 * COW mappings require pages in both parent 680 * and child to be set to read. 681 */ 682 make_migration_entry_read(&entry); 683 pte = swp_entry_to_pte(entry); 684 set_pte_at(src_mm, addr, src_pte, pte); 685 } 686 } 687 goto out_set_pte; 688 } 689 690 /* 691 * If it's a COW mapping, write protect it both 692 * in the parent and the child 693 */ 694 if (is_cow_mapping(vm_flags)) { 695 ptep_set_wrprotect(src_mm, addr, src_pte); 696 pte = pte_wrprotect(pte); 697 } 698 699 /* 700 * If it's a shared mapping, mark it clean in 701 * the child 702 */ 703 if (vm_flags & VM_SHARED) 704 pte = pte_mkclean(pte); 705 pte = pte_mkold(pte); 706 707 page = vm_normal_page(vma, addr, pte); 708 if (page) { 709 get_page(page); 710 page_dup_rmap(page); 711 if (PageAnon(page)) 712 rss[MM_ANONPAGES]++; 713 else 714 rss[MM_FILEPAGES]++; 715 } 716 717 out_set_pte: 718 set_pte_at(dst_mm, addr, dst_pte, pte); 719 return 0; 720 } 721 722 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 723 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 724 unsigned long addr, unsigned long end) 725 { 726 pte_t *orig_src_pte, *orig_dst_pte; 727 pte_t *src_pte, *dst_pte; 728 spinlock_t *src_ptl, *dst_ptl; 729 int progress = 0; 730 int rss[NR_MM_COUNTERS]; 731 swp_entry_t entry = (swp_entry_t){0}; 732 733 again: 734 init_rss_vec(rss); 735 736 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 737 if (!dst_pte) 738 return -ENOMEM; 739 src_pte = pte_offset_map(src_pmd, addr); 740 src_ptl = pte_lockptr(src_mm, src_pmd); 741 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 742 orig_src_pte = src_pte; 743 orig_dst_pte = dst_pte; 744 arch_enter_lazy_mmu_mode(); 745 746 do { 747 /* 748 * We are holding two locks at this point - either of them 749 * could generate latencies in another task on another CPU. 750 */ 751 if (progress >= 32) { 752 progress = 0; 753 if (need_resched() || 754 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 755 break; 756 } 757 if (pte_none(*src_pte)) { 758 progress++; 759 continue; 760 } 761 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 762 vma, addr, rss); 763 if (entry.val) 764 break; 765 progress += 8; 766 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 767 768 arch_leave_lazy_mmu_mode(); 769 spin_unlock(src_ptl); 770 pte_unmap(orig_src_pte); 771 add_mm_rss_vec(dst_mm, rss); 772 pte_unmap_unlock(orig_dst_pte, dst_ptl); 773 cond_resched(); 774 775 if (entry.val) { 776 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 777 return -ENOMEM; 778 progress = 0; 779 } 780 if (addr != end) 781 goto again; 782 return 0; 783 } 784 785 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 786 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 787 unsigned long addr, unsigned long end) 788 { 789 pmd_t *src_pmd, *dst_pmd; 790 unsigned long next; 791 792 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 793 if (!dst_pmd) 794 return -ENOMEM; 795 src_pmd = pmd_offset(src_pud, addr); 796 do { 797 next = pmd_addr_end(addr, end); 798 if (pmd_none_or_clear_bad(src_pmd)) 799 continue; 800 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 801 vma, addr, next)) 802 return -ENOMEM; 803 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 804 return 0; 805 } 806 807 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 808 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 809 unsigned long addr, unsigned long end) 810 { 811 pud_t *src_pud, *dst_pud; 812 unsigned long next; 813 814 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 815 if (!dst_pud) 816 return -ENOMEM; 817 src_pud = pud_offset(src_pgd, addr); 818 do { 819 next = pud_addr_end(addr, end); 820 if (pud_none_or_clear_bad(src_pud)) 821 continue; 822 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 823 vma, addr, next)) 824 return -ENOMEM; 825 } while (dst_pud++, src_pud++, addr = next, addr != end); 826 return 0; 827 } 828 829 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 830 struct vm_area_struct *vma) 831 { 832 pgd_t *src_pgd, *dst_pgd; 833 unsigned long next; 834 unsigned long addr = vma->vm_start; 835 unsigned long end = vma->vm_end; 836 int ret; 837 838 /* 839 * Don't copy ptes where a page fault will fill them correctly. 840 * Fork becomes much lighter when there are big shared or private 841 * readonly mappings. The tradeoff is that copy_page_range is more 842 * efficient than faulting. 843 */ 844 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 845 if (!vma->anon_vma) 846 return 0; 847 } 848 849 if (is_vm_hugetlb_page(vma)) 850 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 851 852 if (unlikely(is_pfn_mapping(vma))) { 853 /* 854 * We do not free on error cases below as remove_vma 855 * gets called on error from higher level routine 856 */ 857 ret = track_pfn_vma_copy(vma); 858 if (ret) 859 return ret; 860 } 861 862 /* 863 * We need to invalidate the secondary MMU mappings only when 864 * there could be a permission downgrade on the ptes of the 865 * parent mm. And a permission downgrade will only happen if 866 * is_cow_mapping() returns true. 867 */ 868 if (is_cow_mapping(vma->vm_flags)) 869 mmu_notifier_invalidate_range_start(src_mm, addr, end); 870 871 ret = 0; 872 dst_pgd = pgd_offset(dst_mm, addr); 873 src_pgd = pgd_offset(src_mm, addr); 874 do { 875 next = pgd_addr_end(addr, end); 876 if (pgd_none_or_clear_bad(src_pgd)) 877 continue; 878 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 879 vma, addr, next))) { 880 ret = -ENOMEM; 881 break; 882 } 883 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 884 885 if (is_cow_mapping(vma->vm_flags)) 886 mmu_notifier_invalidate_range_end(src_mm, 887 vma->vm_start, end); 888 return ret; 889 } 890 891 static unsigned long zap_pte_range(struct mmu_gather *tlb, 892 struct vm_area_struct *vma, pmd_t *pmd, 893 unsigned long addr, unsigned long end, 894 long *zap_work, struct zap_details *details) 895 { 896 struct mm_struct *mm = tlb->mm; 897 pte_t *pte; 898 spinlock_t *ptl; 899 int rss[NR_MM_COUNTERS]; 900 901 init_rss_vec(rss); 902 903 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 904 arch_enter_lazy_mmu_mode(); 905 do { 906 pte_t ptent = *pte; 907 if (pte_none(ptent)) { 908 (*zap_work)--; 909 continue; 910 } 911 912 (*zap_work) -= PAGE_SIZE; 913 914 if (pte_present(ptent)) { 915 struct page *page; 916 917 page = vm_normal_page(vma, addr, ptent); 918 if (unlikely(details) && page) { 919 /* 920 * unmap_shared_mapping_pages() wants to 921 * invalidate cache without truncating: 922 * unmap shared but keep private pages. 923 */ 924 if (details->check_mapping && 925 details->check_mapping != page->mapping) 926 continue; 927 /* 928 * Each page->index must be checked when 929 * invalidating or truncating nonlinear. 930 */ 931 if (details->nonlinear_vma && 932 (page->index < details->first_index || 933 page->index > details->last_index)) 934 continue; 935 } 936 ptent = ptep_get_and_clear_full(mm, addr, pte, 937 tlb->fullmm); 938 tlb_remove_tlb_entry(tlb, pte, addr); 939 if (unlikely(!page)) 940 continue; 941 if (unlikely(details) && details->nonlinear_vma 942 && linear_page_index(details->nonlinear_vma, 943 addr) != page->index) 944 set_pte_at(mm, addr, pte, 945 pgoff_to_pte(page->index)); 946 if (PageAnon(page)) 947 rss[MM_ANONPAGES]--; 948 else { 949 if (pte_dirty(ptent)) 950 set_page_dirty(page); 951 if (pte_young(ptent) && 952 likely(!VM_SequentialReadHint(vma))) 953 mark_page_accessed(page); 954 rss[MM_FILEPAGES]--; 955 } 956 page_remove_rmap(page); 957 if (unlikely(page_mapcount(page) < 0)) 958 print_bad_pte(vma, addr, ptent, page); 959 tlb_remove_page(tlb, page); 960 continue; 961 } 962 /* 963 * If details->check_mapping, we leave swap entries; 964 * if details->nonlinear_vma, we leave file entries. 965 */ 966 if (unlikely(details)) 967 continue; 968 if (pte_file(ptent)) { 969 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 970 print_bad_pte(vma, addr, ptent, NULL); 971 } else { 972 swp_entry_t entry = pte_to_swp_entry(ptent); 973 974 if (!non_swap_entry(entry)) 975 rss[MM_SWAPENTS]--; 976 if (unlikely(!free_swap_and_cache(entry))) 977 print_bad_pte(vma, addr, ptent, NULL); 978 } 979 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 980 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 981 982 add_mm_rss_vec(mm, rss); 983 arch_leave_lazy_mmu_mode(); 984 pte_unmap_unlock(pte - 1, ptl); 985 986 return addr; 987 } 988 989 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 990 struct vm_area_struct *vma, pud_t *pud, 991 unsigned long addr, unsigned long end, 992 long *zap_work, struct zap_details *details) 993 { 994 pmd_t *pmd; 995 unsigned long next; 996 997 pmd = pmd_offset(pud, addr); 998 do { 999 next = pmd_addr_end(addr, end); 1000 if (pmd_none_or_clear_bad(pmd)) { 1001 (*zap_work)--; 1002 continue; 1003 } 1004 next = zap_pte_range(tlb, vma, pmd, addr, next, 1005 zap_work, details); 1006 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1007 1008 return addr; 1009 } 1010 1011 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1012 struct vm_area_struct *vma, pgd_t *pgd, 1013 unsigned long addr, unsigned long end, 1014 long *zap_work, struct zap_details *details) 1015 { 1016 pud_t *pud; 1017 unsigned long next; 1018 1019 pud = pud_offset(pgd, addr); 1020 do { 1021 next = pud_addr_end(addr, end); 1022 if (pud_none_or_clear_bad(pud)) { 1023 (*zap_work)--; 1024 continue; 1025 } 1026 next = zap_pmd_range(tlb, vma, pud, addr, next, 1027 zap_work, details); 1028 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1029 1030 return addr; 1031 } 1032 1033 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1034 struct vm_area_struct *vma, 1035 unsigned long addr, unsigned long end, 1036 long *zap_work, struct zap_details *details) 1037 { 1038 pgd_t *pgd; 1039 unsigned long next; 1040 1041 if (details && !details->check_mapping && !details->nonlinear_vma) 1042 details = NULL; 1043 1044 BUG_ON(addr >= end); 1045 mem_cgroup_uncharge_start(); 1046 tlb_start_vma(tlb, vma); 1047 pgd = pgd_offset(vma->vm_mm, addr); 1048 do { 1049 next = pgd_addr_end(addr, end); 1050 if (pgd_none_or_clear_bad(pgd)) { 1051 (*zap_work)--; 1052 continue; 1053 } 1054 next = zap_pud_range(tlb, vma, pgd, addr, next, 1055 zap_work, details); 1056 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1057 tlb_end_vma(tlb, vma); 1058 mem_cgroup_uncharge_end(); 1059 1060 return addr; 1061 } 1062 1063 #ifdef CONFIG_PREEMPT 1064 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1065 #else 1066 /* No preempt: go for improved straight-line efficiency */ 1067 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1068 #endif 1069 1070 /** 1071 * unmap_vmas - unmap a range of memory covered by a list of vma's 1072 * @tlbp: address of the caller's struct mmu_gather 1073 * @vma: the starting vma 1074 * @start_addr: virtual address at which to start unmapping 1075 * @end_addr: virtual address at which to end unmapping 1076 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1077 * @details: details of nonlinear truncation or shared cache invalidation 1078 * 1079 * Returns the end address of the unmapping (restart addr if interrupted). 1080 * 1081 * Unmap all pages in the vma list. 1082 * 1083 * We aim to not hold locks for too long (for scheduling latency reasons). 1084 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1085 * return the ending mmu_gather to the caller. 1086 * 1087 * Only addresses between `start' and `end' will be unmapped. 1088 * 1089 * The VMA list must be sorted in ascending virtual address order. 1090 * 1091 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1092 * range after unmap_vmas() returns. So the only responsibility here is to 1093 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1094 * drops the lock and schedules. 1095 */ 1096 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1097 struct vm_area_struct *vma, unsigned long start_addr, 1098 unsigned long end_addr, unsigned long *nr_accounted, 1099 struct zap_details *details) 1100 { 1101 long zap_work = ZAP_BLOCK_SIZE; 1102 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1103 int tlb_start_valid = 0; 1104 unsigned long start = start_addr; 1105 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1106 int fullmm = (*tlbp)->fullmm; 1107 struct mm_struct *mm = vma->vm_mm; 1108 1109 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1110 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1111 unsigned long end; 1112 1113 start = max(vma->vm_start, start_addr); 1114 if (start >= vma->vm_end) 1115 continue; 1116 end = min(vma->vm_end, end_addr); 1117 if (end <= vma->vm_start) 1118 continue; 1119 1120 if (vma->vm_flags & VM_ACCOUNT) 1121 *nr_accounted += (end - start) >> PAGE_SHIFT; 1122 1123 if (unlikely(is_pfn_mapping(vma))) 1124 untrack_pfn_vma(vma, 0, 0); 1125 1126 while (start != end) { 1127 if (!tlb_start_valid) { 1128 tlb_start = start; 1129 tlb_start_valid = 1; 1130 } 1131 1132 if (unlikely(is_vm_hugetlb_page(vma))) { 1133 /* 1134 * It is undesirable to test vma->vm_file as it 1135 * should be non-null for valid hugetlb area. 1136 * However, vm_file will be NULL in the error 1137 * cleanup path of do_mmap_pgoff. When 1138 * hugetlbfs ->mmap method fails, 1139 * do_mmap_pgoff() nullifies vma->vm_file 1140 * before calling this function to clean up. 1141 * Since no pte has actually been setup, it is 1142 * safe to do nothing in this case. 1143 */ 1144 if (vma->vm_file) { 1145 unmap_hugepage_range(vma, start, end, NULL); 1146 zap_work -= (end - start) / 1147 pages_per_huge_page(hstate_vma(vma)); 1148 } 1149 1150 start = end; 1151 } else 1152 start = unmap_page_range(*tlbp, vma, 1153 start, end, &zap_work, details); 1154 1155 if (zap_work > 0) { 1156 BUG_ON(start != end); 1157 break; 1158 } 1159 1160 tlb_finish_mmu(*tlbp, tlb_start, start); 1161 1162 if (need_resched() || 1163 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1164 if (i_mmap_lock) { 1165 *tlbp = NULL; 1166 goto out; 1167 } 1168 cond_resched(); 1169 } 1170 1171 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1172 tlb_start_valid = 0; 1173 zap_work = ZAP_BLOCK_SIZE; 1174 } 1175 } 1176 out: 1177 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1178 return start; /* which is now the end (or restart) address */ 1179 } 1180 1181 /** 1182 * zap_page_range - remove user pages in a given range 1183 * @vma: vm_area_struct holding the applicable pages 1184 * @address: starting address of pages to zap 1185 * @size: number of bytes to zap 1186 * @details: details of nonlinear truncation or shared cache invalidation 1187 */ 1188 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1189 unsigned long size, struct zap_details *details) 1190 { 1191 struct mm_struct *mm = vma->vm_mm; 1192 struct mmu_gather *tlb; 1193 unsigned long end = address + size; 1194 unsigned long nr_accounted = 0; 1195 1196 lru_add_drain(); 1197 tlb = tlb_gather_mmu(mm, 0); 1198 update_hiwater_rss(mm); 1199 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1200 if (tlb) 1201 tlb_finish_mmu(tlb, address, end); 1202 return end; 1203 } 1204 1205 /** 1206 * zap_vma_ptes - remove ptes mapping the vma 1207 * @vma: vm_area_struct holding ptes to be zapped 1208 * @address: starting address of pages to zap 1209 * @size: number of bytes to zap 1210 * 1211 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1212 * 1213 * The entire address range must be fully contained within the vma. 1214 * 1215 * Returns 0 if successful. 1216 */ 1217 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1218 unsigned long size) 1219 { 1220 if (address < vma->vm_start || address + size > vma->vm_end || 1221 !(vma->vm_flags & VM_PFNMAP)) 1222 return -1; 1223 zap_page_range(vma, address, size, NULL); 1224 return 0; 1225 } 1226 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1227 1228 /** 1229 * follow_page - look up a page descriptor from a user-virtual address 1230 * @vma: vm_area_struct mapping @address 1231 * @address: virtual address to look up 1232 * @flags: flags modifying lookup behaviour 1233 * 1234 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1235 * 1236 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1237 * an error pointer if there is a mapping to something not represented 1238 * by a page descriptor (see also vm_normal_page()). 1239 */ 1240 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1241 unsigned int flags) 1242 { 1243 pgd_t *pgd; 1244 pud_t *pud; 1245 pmd_t *pmd; 1246 pte_t *ptep, pte; 1247 spinlock_t *ptl; 1248 struct page *page; 1249 struct mm_struct *mm = vma->vm_mm; 1250 1251 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1252 if (!IS_ERR(page)) { 1253 BUG_ON(flags & FOLL_GET); 1254 goto out; 1255 } 1256 1257 page = NULL; 1258 pgd = pgd_offset(mm, address); 1259 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1260 goto no_page_table; 1261 1262 pud = pud_offset(pgd, address); 1263 if (pud_none(*pud)) 1264 goto no_page_table; 1265 if (pud_huge(*pud)) { 1266 BUG_ON(flags & FOLL_GET); 1267 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1268 goto out; 1269 } 1270 if (unlikely(pud_bad(*pud))) 1271 goto no_page_table; 1272 1273 pmd = pmd_offset(pud, address); 1274 if (pmd_none(*pmd)) 1275 goto no_page_table; 1276 if (pmd_huge(*pmd)) { 1277 BUG_ON(flags & FOLL_GET); 1278 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1279 goto out; 1280 } 1281 if (unlikely(pmd_bad(*pmd))) 1282 goto no_page_table; 1283 1284 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1285 1286 pte = *ptep; 1287 if (!pte_present(pte)) 1288 goto no_page; 1289 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1290 goto unlock; 1291 1292 page = vm_normal_page(vma, address, pte); 1293 if (unlikely(!page)) { 1294 if ((flags & FOLL_DUMP) || 1295 !is_zero_pfn(pte_pfn(pte))) 1296 goto bad_page; 1297 page = pte_page(pte); 1298 } 1299 1300 if (flags & FOLL_GET) 1301 get_page(page); 1302 if (flags & FOLL_TOUCH) { 1303 if ((flags & FOLL_WRITE) && 1304 !pte_dirty(pte) && !PageDirty(page)) 1305 set_page_dirty(page); 1306 /* 1307 * pte_mkyoung() would be more correct here, but atomic care 1308 * is needed to avoid losing the dirty bit: it is easier to use 1309 * mark_page_accessed(). 1310 */ 1311 mark_page_accessed(page); 1312 } 1313 unlock: 1314 pte_unmap_unlock(ptep, ptl); 1315 out: 1316 return page; 1317 1318 bad_page: 1319 pte_unmap_unlock(ptep, ptl); 1320 return ERR_PTR(-EFAULT); 1321 1322 no_page: 1323 pte_unmap_unlock(ptep, ptl); 1324 if (!pte_none(pte)) 1325 return page; 1326 1327 no_page_table: 1328 /* 1329 * When core dumping an enormous anonymous area that nobody 1330 * has touched so far, we don't want to allocate unnecessary pages or 1331 * page tables. Return error instead of NULL to skip handle_mm_fault, 1332 * then get_dump_page() will return NULL to leave a hole in the dump. 1333 * But we can only make this optimization where a hole would surely 1334 * be zero-filled if handle_mm_fault() actually did handle it. 1335 */ 1336 if ((flags & FOLL_DUMP) && 1337 (!vma->vm_ops || !vma->vm_ops->fault)) 1338 return ERR_PTR(-EFAULT); 1339 return page; 1340 } 1341 1342 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1343 unsigned long start, int nr_pages, unsigned int gup_flags, 1344 struct page **pages, struct vm_area_struct **vmas) 1345 { 1346 int i; 1347 unsigned long vm_flags; 1348 1349 if (nr_pages <= 0) 1350 return 0; 1351 1352 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1353 1354 /* 1355 * Require read or write permissions. 1356 * If FOLL_FORCE is set, we only require the "MAY" flags. 1357 */ 1358 vm_flags = (gup_flags & FOLL_WRITE) ? 1359 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1360 vm_flags &= (gup_flags & FOLL_FORCE) ? 1361 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1362 i = 0; 1363 1364 do { 1365 struct vm_area_struct *vma; 1366 1367 vma = find_extend_vma(mm, start); 1368 if (!vma && in_gate_area(tsk, start)) { 1369 unsigned long pg = start & PAGE_MASK; 1370 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1371 pgd_t *pgd; 1372 pud_t *pud; 1373 pmd_t *pmd; 1374 pte_t *pte; 1375 1376 /* user gate pages are read-only */ 1377 if (gup_flags & FOLL_WRITE) 1378 return i ? : -EFAULT; 1379 if (pg > TASK_SIZE) 1380 pgd = pgd_offset_k(pg); 1381 else 1382 pgd = pgd_offset_gate(mm, pg); 1383 BUG_ON(pgd_none(*pgd)); 1384 pud = pud_offset(pgd, pg); 1385 BUG_ON(pud_none(*pud)); 1386 pmd = pmd_offset(pud, pg); 1387 if (pmd_none(*pmd)) 1388 return i ? : -EFAULT; 1389 pte = pte_offset_map(pmd, pg); 1390 if (pte_none(*pte)) { 1391 pte_unmap(pte); 1392 return i ? : -EFAULT; 1393 } 1394 if (pages) { 1395 struct page *page; 1396 1397 page = vm_normal_page(gate_vma, start, *pte); 1398 if (!page) { 1399 if (!(gup_flags & FOLL_DUMP) && 1400 is_zero_pfn(pte_pfn(*pte))) 1401 page = pte_page(*pte); 1402 else { 1403 pte_unmap(pte); 1404 return i ? : -EFAULT; 1405 } 1406 } 1407 pages[i] = page; 1408 get_page(page); 1409 } 1410 pte_unmap(pte); 1411 if (vmas) 1412 vmas[i] = gate_vma; 1413 i++; 1414 start += PAGE_SIZE; 1415 nr_pages--; 1416 continue; 1417 } 1418 1419 if (!vma || 1420 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1421 !(vm_flags & vma->vm_flags)) 1422 return i ? : -EFAULT; 1423 1424 if (is_vm_hugetlb_page(vma)) { 1425 i = follow_hugetlb_page(mm, vma, pages, vmas, 1426 &start, &nr_pages, i, gup_flags); 1427 continue; 1428 } 1429 1430 do { 1431 struct page *page; 1432 unsigned int foll_flags = gup_flags; 1433 1434 /* 1435 * If we have a pending SIGKILL, don't keep faulting 1436 * pages and potentially allocating memory. 1437 */ 1438 if (unlikely(fatal_signal_pending(current))) 1439 return i ? i : -ERESTARTSYS; 1440 1441 cond_resched(); 1442 while (!(page = follow_page(vma, start, foll_flags))) { 1443 int ret; 1444 1445 ret = handle_mm_fault(mm, vma, start, 1446 (foll_flags & FOLL_WRITE) ? 1447 FAULT_FLAG_WRITE : 0); 1448 1449 if (ret & VM_FAULT_ERROR) { 1450 if (ret & VM_FAULT_OOM) 1451 return i ? i : -ENOMEM; 1452 if (ret & 1453 (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE| 1454 VM_FAULT_SIGBUS)) 1455 return i ? i : -EFAULT; 1456 BUG(); 1457 } 1458 if (ret & VM_FAULT_MAJOR) 1459 tsk->maj_flt++; 1460 else 1461 tsk->min_flt++; 1462 1463 /* 1464 * The VM_FAULT_WRITE bit tells us that 1465 * do_wp_page has broken COW when necessary, 1466 * even if maybe_mkwrite decided not to set 1467 * pte_write. We can thus safely do subsequent 1468 * page lookups as if they were reads. But only 1469 * do so when looping for pte_write is futile: 1470 * in some cases userspace may also be wanting 1471 * to write to the gotten user page, which a 1472 * read fault here might prevent (a readonly 1473 * page might get reCOWed by userspace write). 1474 */ 1475 if ((ret & VM_FAULT_WRITE) && 1476 !(vma->vm_flags & VM_WRITE)) 1477 foll_flags &= ~FOLL_WRITE; 1478 1479 cond_resched(); 1480 } 1481 if (IS_ERR(page)) 1482 return i ? i : PTR_ERR(page); 1483 if (pages) { 1484 pages[i] = page; 1485 1486 flush_anon_page(vma, page, start); 1487 flush_dcache_page(page); 1488 } 1489 if (vmas) 1490 vmas[i] = vma; 1491 i++; 1492 start += PAGE_SIZE; 1493 nr_pages--; 1494 } while (nr_pages && start < vma->vm_end); 1495 } while (nr_pages); 1496 return i; 1497 } 1498 1499 /** 1500 * get_user_pages() - pin user pages in memory 1501 * @tsk: task_struct of target task 1502 * @mm: mm_struct of target mm 1503 * @start: starting user address 1504 * @nr_pages: number of pages from start to pin 1505 * @write: whether pages will be written to by the caller 1506 * @force: whether to force write access even if user mapping is 1507 * readonly. This will result in the page being COWed even 1508 * in MAP_SHARED mappings. You do not want this. 1509 * @pages: array that receives pointers to the pages pinned. 1510 * Should be at least nr_pages long. Or NULL, if caller 1511 * only intends to ensure the pages are faulted in. 1512 * @vmas: array of pointers to vmas corresponding to each page. 1513 * Or NULL if the caller does not require them. 1514 * 1515 * Returns number of pages pinned. This may be fewer than the number 1516 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1517 * were pinned, returns -errno. Each page returned must be released 1518 * with a put_page() call when it is finished with. vmas will only 1519 * remain valid while mmap_sem is held. 1520 * 1521 * Must be called with mmap_sem held for read or write. 1522 * 1523 * get_user_pages walks a process's page tables and takes a reference to 1524 * each struct page that each user address corresponds to at a given 1525 * instant. That is, it takes the page that would be accessed if a user 1526 * thread accesses the given user virtual address at that instant. 1527 * 1528 * This does not guarantee that the page exists in the user mappings when 1529 * get_user_pages returns, and there may even be a completely different 1530 * page there in some cases (eg. if mmapped pagecache has been invalidated 1531 * and subsequently re faulted). However it does guarantee that the page 1532 * won't be freed completely. And mostly callers simply care that the page 1533 * contains data that was valid *at some point in time*. Typically, an IO 1534 * or similar operation cannot guarantee anything stronger anyway because 1535 * locks can't be held over the syscall boundary. 1536 * 1537 * If write=0, the page must not be written to. If the page is written to, 1538 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1539 * after the page is finished with, and before put_page is called. 1540 * 1541 * get_user_pages is typically used for fewer-copy IO operations, to get a 1542 * handle on the memory by some means other than accesses via the user virtual 1543 * addresses. The pages may be submitted for DMA to devices or accessed via 1544 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1545 * use the correct cache flushing APIs. 1546 * 1547 * See also get_user_pages_fast, for performance critical applications. 1548 */ 1549 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1550 unsigned long start, int nr_pages, int write, int force, 1551 struct page **pages, struct vm_area_struct **vmas) 1552 { 1553 int flags = FOLL_TOUCH; 1554 1555 if (pages) 1556 flags |= FOLL_GET; 1557 if (write) 1558 flags |= FOLL_WRITE; 1559 if (force) 1560 flags |= FOLL_FORCE; 1561 1562 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 1563 } 1564 EXPORT_SYMBOL(get_user_pages); 1565 1566 /** 1567 * get_dump_page() - pin user page in memory while writing it to core dump 1568 * @addr: user address 1569 * 1570 * Returns struct page pointer of user page pinned for dump, 1571 * to be freed afterwards by page_cache_release() or put_page(). 1572 * 1573 * Returns NULL on any kind of failure - a hole must then be inserted into 1574 * the corefile, to preserve alignment with its headers; and also returns 1575 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1576 * allowing a hole to be left in the corefile to save diskspace. 1577 * 1578 * Called without mmap_sem, but after all other threads have been killed. 1579 */ 1580 #ifdef CONFIG_ELF_CORE 1581 struct page *get_dump_page(unsigned long addr) 1582 { 1583 struct vm_area_struct *vma; 1584 struct page *page; 1585 1586 if (__get_user_pages(current, current->mm, addr, 1, 1587 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) 1588 return NULL; 1589 flush_cache_page(vma, addr, page_to_pfn(page)); 1590 return page; 1591 } 1592 #endif /* CONFIG_ELF_CORE */ 1593 1594 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1595 spinlock_t **ptl) 1596 { 1597 pgd_t * pgd = pgd_offset(mm, addr); 1598 pud_t * pud = pud_alloc(mm, pgd, addr); 1599 if (pud) { 1600 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1601 if (pmd) 1602 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1603 } 1604 return NULL; 1605 } 1606 1607 /* 1608 * This is the old fallback for page remapping. 1609 * 1610 * For historical reasons, it only allows reserved pages. Only 1611 * old drivers should use this, and they needed to mark their 1612 * pages reserved for the old functions anyway. 1613 */ 1614 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1615 struct page *page, pgprot_t prot) 1616 { 1617 struct mm_struct *mm = vma->vm_mm; 1618 int retval; 1619 pte_t *pte; 1620 spinlock_t *ptl; 1621 1622 retval = -EINVAL; 1623 if (PageAnon(page)) 1624 goto out; 1625 retval = -ENOMEM; 1626 flush_dcache_page(page); 1627 pte = get_locked_pte(mm, addr, &ptl); 1628 if (!pte) 1629 goto out; 1630 retval = -EBUSY; 1631 if (!pte_none(*pte)) 1632 goto out_unlock; 1633 1634 /* Ok, finally just insert the thing.. */ 1635 get_page(page); 1636 inc_mm_counter_fast(mm, MM_FILEPAGES); 1637 page_add_file_rmap(page); 1638 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1639 1640 retval = 0; 1641 pte_unmap_unlock(pte, ptl); 1642 return retval; 1643 out_unlock: 1644 pte_unmap_unlock(pte, ptl); 1645 out: 1646 return retval; 1647 } 1648 1649 /** 1650 * vm_insert_page - insert single page into user vma 1651 * @vma: user vma to map to 1652 * @addr: target user address of this page 1653 * @page: source kernel page 1654 * 1655 * This allows drivers to insert individual pages they've allocated 1656 * into a user vma. 1657 * 1658 * The page has to be a nice clean _individual_ kernel allocation. 1659 * If you allocate a compound page, you need to have marked it as 1660 * such (__GFP_COMP), or manually just split the page up yourself 1661 * (see split_page()). 1662 * 1663 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1664 * took an arbitrary page protection parameter. This doesn't allow 1665 * that. Your vma protection will have to be set up correctly, which 1666 * means that if you want a shared writable mapping, you'd better 1667 * ask for a shared writable mapping! 1668 * 1669 * The page does not need to be reserved. 1670 */ 1671 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1672 struct page *page) 1673 { 1674 if (addr < vma->vm_start || addr >= vma->vm_end) 1675 return -EFAULT; 1676 if (!page_count(page)) 1677 return -EINVAL; 1678 vma->vm_flags |= VM_INSERTPAGE; 1679 return insert_page(vma, addr, page, vma->vm_page_prot); 1680 } 1681 EXPORT_SYMBOL(vm_insert_page); 1682 1683 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1684 unsigned long pfn, pgprot_t prot) 1685 { 1686 struct mm_struct *mm = vma->vm_mm; 1687 int retval; 1688 pte_t *pte, entry; 1689 spinlock_t *ptl; 1690 1691 retval = -ENOMEM; 1692 pte = get_locked_pte(mm, addr, &ptl); 1693 if (!pte) 1694 goto out; 1695 retval = -EBUSY; 1696 if (!pte_none(*pte)) 1697 goto out_unlock; 1698 1699 /* Ok, finally just insert the thing.. */ 1700 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1701 set_pte_at(mm, addr, pte, entry); 1702 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1703 1704 retval = 0; 1705 out_unlock: 1706 pte_unmap_unlock(pte, ptl); 1707 out: 1708 return retval; 1709 } 1710 1711 /** 1712 * vm_insert_pfn - insert single pfn into user vma 1713 * @vma: user vma to map to 1714 * @addr: target user address of this page 1715 * @pfn: source kernel pfn 1716 * 1717 * Similar to vm_inert_page, this allows drivers to insert individual pages 1718 * they've allocated into a user vma. Same comments apply. 1719 * 1720 * This function should only be called from a vm_ops->fault handler, and 1721 * in that case the handler should return NULL. 1722 * 1723 * vma cannot be a COW mapping. 1724 * 1725 * As this is called only for pages that do not currently exist, we 1726 * do not need to flush old virtual caches or the TLB. 1727 */ 1728 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1729 unsigned long pfn) 1730 { 1731 int ret; 1732 pgprot_t pgprot = vma->vm_page_prot; 1733 /* 1734 * Technically, architectures with pte_special can avoid all these 1735 * restrictions (same for remap_pfn_range). However we would like 1736 * consistency in testing and feature parity among all, so we should 1737 * try to keep these invariants in place for everybody. 1738 */ 1739 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1740 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1741 (VM_PFNMAP|VM_MIXEDMAP)); 1742 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1743 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1744 1745 if (addr < vma->vm_start || addr >= vma->vm_end) 1746 return -EFAULT; 1747 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1748 return -EINVAL; 1749 1750 ret = insert_pfn(vma, addr, pfn, pgprot); 1751 1752 if (ret) 1753 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1754 1755 return ret; 1756 } 1757 EXPORT_SYMBOL(vm_insert_pfn); 1758 1759 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1760 unsigned long pfn) 1761 { 1762 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1763 1764 if (addr < vma->vm_start || addr >= vma->vm_end) 1765 return -EFAULT; 1766 1767 /* 1768 * If we don't have pte special, then we have to use the pfn_valid() 1769 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1770 * refcount the page if pfn_valid is true (hence insert_page rather 1771 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1772 * without pte special, it would there be refcounted as a normal page. 1773 */ 1774 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1775 struct page *page; 1776 1777 page = pfn_to_page(pfn); 1778 return insert_page(vma, addr, page, vma->vm_page_prot); 1779 } 1780 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1781 } 1782 EXPORT_SYMBOL(vm_insert_mixed); 1783 1784 /* 1785 * maps a range of physical memory into the requested pages. the old 1786 * mappings are removed. any references to nonexistent pages results 1787 * in null mappings (currently treated as "copy-on-access") 1788 */ 1789 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1790 unsigned long addr, unsigned long end, 1791 unsigned long pfn, pgprot_t prot) 1792 { 1793 pte_t *pte; 1794 spinlock_t *ptl; 1795 1796 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1797 if (!pte) 1798 return -ENOMEM; 1799 arch_enter_lazy_mmu_mode(); 1800 do { 1801 BUG_ON(!pte_none(*pte)); 1802 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1803 pfn++; 1804 } while (pte++, addr += PAGE_SIZE, addr != end); 1805 arch_leave_lazy_mmu_mode(); 1806 pte_unmap_unlock(pte - 1, ptl); 1807 return 0; 1808 } 1809 1810 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1811 unsigned long addr, unsigned long end, 1812 unsigned long pfn, pgprot_t prot) 1813 { 1814 pmd_t *pmd; 1815 unsigned long next; 1816 1817 pfn -= addr >> PAGE_SHIFT; 1818 pmd = pmd_alloc(mm, pud, addr); 1819 if (!pmd) 1820 return -ENOMEM; 1821 do { 1822 next = pmd_addr_end(addr, end); 1823 if (remap_pte_range(mm, pmd, addr, next, 1824 pfn + (addr >> PAGE_SHIFT), prot)) 1825 return -ENOMEM; 1826 } while (pmd++, addr = next, addr != end); 1827 return 0; 1828 } 1829 1830 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1831 unsigned long addr, unsigned long end, 1832 unsigned long pfn, pgprot_t prot) 1833 { 1834 pud_t *pud; 1835 unsigned long next; 1836 1837 pfn -= addr >> PAGE_SHIFT; 1838 pud = pud_alloc(mm, pgd, addr); 1839 if (!pud) 1840 return -ENOMEM; 1841 do { 1842 next = pud_addr_end(addr, end); 1843 if (remap_pmd_range(mm, pud, addr, next, 1844 pfn + (addr >> PAGE_SHIFT), prot)) 1845 return -ENOMEM; 1846 } while (pud++, addr = next, addr != end); 1847 return 0; 1848 } 1849 1850 /** 1851 * remap_pfn_range - remap kernel memory to userspace 1852 * @vma: user vma to map to 1853 * @addr: target user address to start at 1854 * @pfn: physical address of kernel memory 1855 * @size: size of map area 1856 * @prot: page protection flags for this mapping 1857 * 1858 * Note: this is only safe if the mm semaphore is held when called. 1859 */ 1860 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1861 unsigned long pfn, unsigned long size, pgprot_t prot) 1862 { 1863 pgd_t *pgd; 1864 unsigned long next; 1865 unsigned long end = addr + PAGE_ALIGN(size); 1866 struct mm_struct *mm = vma->vm_mm; 1867 int err; 1868 1869 /* 1870 * Physically remapped pages are special. Tell the 1871 * rest of the world about it: 1872 * VM_IO tells people not to look at these pages 1873 * (accesses can have side effects). 1874 * VM_RESERVED is specified all over the place, because 1875 * in 2.4 it kept swapout's vma scan off this vma; but 1876 * in 2.6 the LRU scan won't even find its pages, so this 1877 * flag means no more than count its pages in reserved_vm, 1878 * and omit it from core dump, even when VM_IO turned off. 1879 * VM_PFNMAP tells the core MM that the base pages are just 1880 * raw PFN mappings, and do not have a "struct page" associated 1881 * with them. 1882 * 1883 * There's a horrible special case to handle copy-on-write 1884 * behaviour that some programs depend on. We mark the "original" 1885 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1886 */ 1887 if (addr == vma->vm_start && end == vma->vm_end) { 1888 vma->vm_pgoff = pfn; 1889 vma->vm_flags |= VM_PFN_AT_MMAP; 1890 } else if (is_cow_mapping(vma->vm_flags)) 1891 return -EINVAL; 1892 1893 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1894 1895 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1896 if (err) { 1897 /* 1898 * To indicate that track_pfn related cleanup is not 1899 * needed from higher level routine calling unmap_vmas 1900 */ 1901 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1902 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1903 return -EINVAL; 1904 } 1905 1906 BUG_ON(addr >= end); 1907 pfn -= addr >> PAGE_SHIFT; 1908 pgd = pgd_offset(mm, addr); 1909 flush_cache_range(vma, addr, end); 1910 do { 1911 next = pgd_addr_end(addr, end); 1912 err = remap_pud_range(mm, pgd, addr, next, 1913 pfn + (addr >> PAGE_SHIFT), prot); 1914 if (err) 1915 break; 1916 } while (pgd++, addr = next, addr != end); 1917 1918 if (err) 1919 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1920 1921 return err; 1922 } 1923 EXPORT_SYMBOL(remap_pfn_range); 1924 1925 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1926 unsigned long addr, unsigned long end, 1927 pte_fn_t fn, void *data) 1928 { 1929 pte_t *pte; 1930 int err; 1931 pgtable_t token; 1932 spinlock_t *uninitialized_var(ptl); 1933 1934 pte = (mm == &init_mm) ? 1935 pte_alloc_kernel(pmd, addr) : 1936 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1937 if (!pte) 1938 return -ENOMEM; 1939 1940 BUG_ON(pmd_huge(*pmd)); 1941 1942 arch_enter_lazy_mmu_mode(); 1943 1944 token = pmd_pgtable(*pmd); 1945 1946 do { 1947 err = fn(pte++, token, addr, data); 1948 if (err) 1949 break; 1950 } while (addr += PAGE_SIZE, addr != end); 1951 1952 arch_leave_lazy_mmu_mode(); 1953 1954 if (mm != &init_mm) 1955 pte_unmap_unlock(pte-1, ptl); 1956 return err; 1957 } 1958 1959 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1960 unsigned long addr, unsigned long end, 1961 pte_fn_t fn, void *data) 1962 { 1963 pmd_t *pmd; 1964 unsigned long next; 1965 int err; 1966 1967 BUG_ON(pud_huge(*pud)); 1968 1969 pmd = pmd_alloc(mm, pud, addr); 1970 if (!pmd) 1971 return -ENOMEM; 1972 do { 1973 next = pmd_addr_end(addr, end); 1974 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1975 if (err) 1976 break; 1977 } while (pmd++, addr = next, addr != end); 1978 return err; 1979 } 1980 1981 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1982 unsigned long addr, unsigned long end, 1983 pte_fn_t fn, void *data) 1984 { 1985 pud_t *pud; 1986 unsigned long next; 1987 int err; 1988 1989 pud = pud_alloc(mm, pgd, addr); 1990 if (!pud) 1991 return -ENOMEM; 1992 do { 1993 next = pud_addr_end(addr, end); 1994 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1995 if (err) 1996 break; 1997 } while (pud++, addr = next, addr != end); 1998 return err; 1999 } 2000 2001 /* 2002 * Scan a region of virtual memory, filling in page tables as necessary 2003 * and calling a provided function on each leaf page table. 2004 */ 2005 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2006 unsigned long size, pte_fn_t fn, void *data) 2007 { 2008 pgd_t *pgd; 2009 unsigned long next; 2010 unsigned long end = addr + size; 2011 int err; 2012 2013 BUG_ON(addr >= end); 2014 pgd = pgd_offset(mm, addr); 2015 do { 2016 next = pgd_addr_end(addr, end); 2017 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2018 if (err) 2019 break; 2020 } while (pgd++, addr = next, addr != end); 2021 2022 return err; 2023 } 2024 EXPORT_SYMBOL_GPL(apply_to_page_range); 2025 2026 /* 2027 * handle_pte_fault chooses page fault handler according to an entry 2028 * which was read non-atomically. Before making any commitment, on 2029 * those architectures or configurations (e.g. i386 with PAE) which 2030 * might give a mix of unmatched parts, do_swap_page and do_file_page 2031 * must check under lock before unmapping the pte and proceeding 2032 * (but do_wp_page is only called after already making such a check; 2033 * and do_anonymous_page and do_no_page can safely check later on). 2034 */ 2035 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2036 pte_t *page_table, pte_t orig_pte) 2037 { 2038 int same = 1; 2039 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2040 if (sizeof(pte_t) > sizeof(unsigned long)) { 2041 spinlock_t *ptl = pte_lockptr(mm, pmd); 2042 spin_lock(ptl); 2043 same = pte_same(*page_table, orig_pte); 2044 spin_unlock(ptl); 2045 } 2046 #endif 2047 pte_unmap(page_table); 2048 return same; 2049 } 2050 2051 /* 2052 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 2053 * servicing faults for write access. In the normal case, do always want 2054 * pte_mkwrite. But get_user_pages can cause write faults for mappings 2055 * that do not have writing enabled, when used by access_process_vm. 2056 */ 2057 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 2058 { 2059 if (likely(vma->vm_flags & VM_WRITE)) 2060 pte = pte_mkwrite(pte); 2061 return pte; 2062 } 2063 2064 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2065 { 2066 /* 2067 * If the source page was a PFN mapping, we don't have 2068 * a "struct page" for it. We do a best-effort copy by 2069 * just copying from the original user address. If that 2070 * fails, we just zero-fill it. Live with it. 2071 */ 2072 if (unlikely(!src)) { 2073 void *kaddr = kmap_atomic(dst, KM_USER0); 2074 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2075 2076 /* 2077 * This really shouldn't fail, because the page is there 2078 * in the page tables. But it might just be unreadable, 2079 * in which case we just give up and fill the result with 2080 * zeroes. 2081 */ 2082 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2083 clear_page(kaddr); 2084 kunmap_atomic(kaddr, KM_USER0); 2085 flush_dcache_page(dst); 2086 } else 2087 copy_user_highpage(dst, src, va, vma); 2088 } 2089 2090 /* 2091 * This routine handles present pages, when users try to write 2092 * to a shared page. It is done by copying the page to a new address 2093 * and decrementing the shared-page counter for the old page. 2094 * 2095 * Note that this routine assumes that the protection checks have been 2096 * done by the caller (the low-level page fault routine in most cases). 2097 * Thus we can safely just mark it writable once we've done any necessary 2098 * COW. 2099 * 2100 * We also mark the page dirty at this point even though the page will 2101 * change only once the write actually happens. This avoids a few races, 2102 * and potentially makes it more efficient. 2103 * 2104 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2105 * but allow concurrent faults), with pte both mapped and locked. 2106 * We return with mmap_sem still held, but pte unmapped and unlocked. 2107 */ 2108 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2109 unsigned long address, pte_t *page_table, pmd_t *pmd, 2110 spinlock_t *ptl, pte_t orig_pte) 2111 __releases(ptl) 2112 { 2113 struct page *old_page, *new_page; 2114 pte_t entry; 2115 int reuse = 0, ret = 0; 2116 int page_mkwrite = 0; 2117 struct page *dirty_page = NULL; 2118 2119 old_page = vm_normal_page(vma, address, orig_pte); 2120 if (!old_page) { 2121 /* 2122 * VM_MIXEDMAP !pfn_valid() case 2123 * 2124 * We should not cow pages in a shared writeable mapping. 2125 * Just mark the pages writable as we can't do any dirty 2126 * accounting on raw pfn maps. 2127 */ 2128 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2129 (VM_WRITE|VM_SHARED)) 2130 goto reuse; 2131 goto gotten; 2132 } 2133 2134 /* 2135 * Take out anonymous pages first, anonymous shared vmas are 2136 * not dirty accountable. 2137 */ 2138 if (PageAnon(old_page) && !PageKsm(old_page)) { 2139 if (!trylock_page(old_page)) { 2140 page_cache_get(old_page); 2141 pte_unmap_unlock(page_table, ptl); 2142 lock_page(old_page); 2143 page_table = pte_offset_map_lock(mm, pmd, address, 2144 &ptl); 2145 if (!pte_same(*page_table, orig_pte)) { 2146 unlock_page(old_page); 2147 page_cache_release(old_page); 2148 goto unlock; 2149 } 2150 page_cache_release(old_page); 2151 } 2152 reuse = reuse_swap_page(old_page); 2153 if (reuse) 2154 /* 2155 * The page is all ours. Move it to our anon_vma so 2156 * the rmap code will not search our parent or siblings. 2157 * Protected against the rmap code by the page lock. 2158 */ 2159 page_move_anon_rmap(old_page, vma, address); 2160 unlock_page(old_page); 2161 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2162 (VM_WRITE|VM_SHARED))) { 2163 /* 2164 * Only catch write-faults on shared writable pages, 2165 * read-only shared pages can get COWed by 2166 * get_user_pages(.write=1, .force=1). 2167 */ 2168 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2169 struct vm_fault vmf; 2170 int tmp; 2171 2172 vmf.virtual_address = (void __user *)(address & 2173 PAGE_MASK); 2174 vmf.pgoff = old_page->index; 2175 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2176 vmf.page = old_page; 2177 2178 /* 2179 * Notify the address space that the page is about to 2180 * become writable so that it can prohibit this or wait 2181 * for the page to get into an appropriate state. 2182 * 2183 * We do this without the lock held, so that it can 2184 * sleep if it needs to. 2185 */ 2186 page_cache_get(old_page); 2187 pte_unmap_unlock(page_table, ptl); 2188 2189 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2190 if (unlikely(tmp & 2191 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2192 ret = tmp; 2193 goto unwritable_page; 2194 } 2195 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2196 lock_page(old_page); 2197 if (!old_page->mapping) { 2198 ret = 0; /* retry the fault */ 2199 unlock_page(old_page); 2200 goto unwritable_page; 2201 } 2202 } else 2203 VM_BUG_ON(!PageLocked(old_page)); 2204 2205 /* 2206 * Since we dropped the lock we need to revalidate 2207 * the PTE as someone else may have changed it. If 2208 * they did, we just return, as we can count on the 2209 * MMU to tell us if they didn't also make it writable. 2210 */ 2211 page_table = pte_offset_map_lock(mm, pmd, address, 2212 &ptl); 2213 if (!pte_same(*page_table, orig_pte)) { 2214 unlock_page(old_page); 2215 page_cache_release(old_page); 2216 goto unlock; 2217 } 2218 2219 page_mkwrite = 1; 2220 } 2221 dirty_page = old_page; 2222 get_page(dirty_page); 2223 reuse = 1; 2224 } 2225 2226 if (reuse) { 2227 reuse: 2228 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2229 entry = pte_mkyoung(orig_pte); 2230 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2231 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2232 update_mmu_cache(vma, address, page_table); 2233 ret |= VM_FAULT_WRITE; 2234 goto unlock; 2235 } 2236 2237 /* 2238 * Ok, we need to copy. Oh, well.. 2239 */ 2240 page_cache_get(old_page); 2241 gotten: 2242 pte_unmap_unlock(page_table, ptl); 2243 2244 if (unlikely(anon_vma_prepare(vma))) 2245 goto oom; 2246 2247 if (is_zero_pfn(pte_pfn(orig_pte))) { 2248 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2249 if (!new_page) 2250 goto oom; 2251 } else { 2252 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2253 if (!new_page) 2254 goto oom; 2255 cow_user_page(new_page, old_page, address, vma); 2256 } 2257 __SetPageUptodate(new_page); 2258 2259 /* 2260 * Don't let another task, with possibly unlocked vma, 2261 * keep the mlocked page. 2262 */ 2263 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2264 lock_page(old_page); /* for LRU manipulation */ 2265 clear_page_mlock(old_page); 2266 unlock_page(old_page); 2267 } 2268 2269 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2270 goto oom_free_new; 2271 2272 /* 2273 * Re-check the pte - we dropped the lock 2274 */ 2275 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2276 if (likely(pte_same(*page_table, orig_pte))) { 2277 if (old_page) { 2278 if (!PageAnon(old_page)) { 2279 dec_mm_counter_fast(mm, MM_FILEPAGES); 2280 inc_mm_counter_fast(mm, MM_ANONPAGES); 2281 } 2282 } else 2283 inc_mm_counter_fast(mm, MM_ANONPAGES); 2284 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2285 entry = mk_pte(new_page, vma->vm_page_prot); 2286 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2287 /* 2288 * Clear the pte entry and flush it first, before updating the 2289 * pte with the new entry. This will avoid a race condition 2290 * seen in the presence of one thread doing SMC and another 2291 * thread doing COW. 2292 */ 2293 ptep_clear_flush(vma, address, page_table); 2294 page_add_new_anon_rmap(new_page, vma, address); 2295 /* 2296 * We call the notify macro here because, when using secondary 2297 * mmu page tables (such as kvm shadow page tables), we want the 2298 * new page to be mapped directly into the secondary page table. 2299 */ 2300 set_pte_at_notify(mm, address, page_table, entry); 2301 update_mmu_cache(vma, address, page_table); 2302 if (old_page) { 2303 /* 2304 * Only after switching the pte to the new page may 2305 * we remove the mapcount here. Otherwise another 2306 * process may come and find the rmap count decremented 2307 * before the pte is switched to the new page, and 2308 * "reuse" the old page writing into it while our pte 2309 * here still points into it and can be read by other 2310 * threads. 2311 * 2312 * The critical issue is to order this 2313 * page_remove_rmap with the ptp_clear_flush above. 2314 * Those stores are ordered by (if nothing else,) 2315 * the barrier present in the atomic_add_negative 2316 * in page_remove_rmap. 2317 * 2318 * Then the TLB flush in ptep_clear_flush ensures that 2319 * no process can access the old page before the 2320 * decremented mapcount is visible. And the old page 2321 * cannot be reused until after the decremented 2322 * mapcount is visible. So transitively, TLBs to 2323 * old page will be flushed before it can be reused. 2324 */ 2325 page_remove_rmap(old_page); 2326 } 2327 2328 /* Free the old page.. */ 2329 new_page = old_page; 2330 ret |= VM_FAULT_WRITE; 2331 } else 2332 mem_cgroup_uncharge_page(new_page); 2333 2334 if (new_page) 2335 page_cache_release(new_page); 2336 if (old_page) 2337 page_cache_release(old_page); 2338 unlock: 2339 pte_unmap_unlock(page_table, ptl); 2340 if (dirty_page) { 2341 /* 2342 * Yes, Virginia, this is actually required to prevent a race 2343 * with clear_page_dirty_for_io() from clearing the page dirty 2344 * bit after it clear all dirty ptes, but before a racing 2345 * do_wp_page installs a dirty pte. 2346 * 2347 * do_no_page is protected similarly. 2348 */ 2349 if (!page_mkwrite) { 2350 wait_on_page_locked(dirty_page); 2351 set_page_dirty_balance(dirty_page, page_mkwrite); 2352 } 2353 put_page(dirty_page); 2354 if (page_mkwrite) { 2355 struct address_space *mapping = dirty_page->mapping; 2356 2357 set_page_dirty(dirty_page); 2358 unlock_page(dirty_page); 2359 page_cache_release(dirty_page); 2360 if (mapping) { 2361 /* 2362 * Some device drivers do not set page.mapping 2363 * but still dirty their pages 2364 */ 2365 balance_dirty_pages_ratelimited(mapping); 2366 } 2367 } 2368 2369 /* file_update_time outside page_lock */ 2370 if (vma->vm_file) 2371 file_update_time(vma->vm_file); 2372 } 2373 return ret; 2374 oom_free_new: 2375 page_cache_release(new_page); 2376 oom: 2377 if (old_page) { 2378 if (page_mkwrite) { 2379 unlock_page(old_page); 2380 page_cache_release(old_page); 2381 } 2382 page_cache_release(old_page); 2383 } 2384 return VM_FAULT_OOM; 2385 2386 unwritable_page: 2387 page_cache_release(old_page); 2388 return ret; 2389 } 2390 2391 /* 2392 * Helper functions for unmap_mapping_range(). 2393 * 2394 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2395 * 2396 * We have to restart searching the prio_tree whenever we drop the lock, 2397 * since the iterator is only valid while the lock is held, and anyway 2398 * a later vma might be split and reinserted earlier while lock dropped. 2399 * 2400 * The list of nonlinear vmas could be handled more efficiently, using 2401 * a placeholder, but handle it in the same way until a need is shown. 2402 * It is important to search the prio_tree before nonlinear list: a vma 2403 * may become nonlinear and be shifted from prio_tree to nonlinear list 2404 * while the lock is dropped; but never shifted from list to prio_tree. 2405 * 2406 * In order to make forward progress despite restarting the search, 2407 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2408 * quickly skip it next time around. Since the prio_tree search only 2409 * shows us those vmas affected by unmapping the range in question, we 2410 * can't efficiently keep all vmas in step with mapping->truncate_count: 2411 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2412 * mapping->truncate_count and vma->vm_truncate_count are protected by 2413 * i_mmap_lock. 2414 * 2415 * In order to make forward progress despite repeatedly restarting some 2416 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2417 * and restart from that address when we reach that vma again. It might 2418 * have been split or merged, shrunk or extended, but never shifted: so 2419 * restart_addr remains valid so long as it remains in the vma's range. 2420 * unmap_mapping_range forces truncate_count to leap over page-aligned 2421 * values so we can save vma's restart_addr in its truncate_count field. 2422 */ 2423 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2424 2425 static void reset_vma_truncate_counts(struct address_space *mapping) 2426 { 2427 struct vm_area_struct *vma; 2428 struct prio_tree_iter iter; 2429 2430 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2431 vma->vm_truncate_count = 0; 2432 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2433 vma->vm_truncate_count = 0; 2434 } 2435 2436 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2437 unsigned long start_addr, unsigned long end_addr, 2438 struct zap_details *details) 2439 { 2440 unsigned long restart_addr; 2441 int need_break; 2442 2443 /* 2444 * files that support invalidating or truncating portions of the 2445 * file from under mmaped areas must have their ->fault function 2446 * return a locked page (and set VM_FAULT_LOCKED in the return). 2447 * This provides synchronisation against concurrent unmapping here. 2448 */ 2449 2450 again: 2451 restart_addr = vma->vm_truncate_count; 2452 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2453 start_addr = restart_addr; 2454 if (start_addr >= end_addr) { 2455 /* Top of vma has been split off since last time */ 2456 vma->vm_truncate_count = details->truncate_count; 2457 return 0; 2458 } 2459 } 2460 2461 restart_addr = zap_page_range(vma, start_addr, 2462 end_addr - start_addr, details); 2463 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2464 2465 if (restart_addr >= end_addr) { 2466 /* We have now completed this vma: mark it so */ 2467 vma->vm_truncate_count = details->truncate_count; 2468 if (!need_break) 2469 return 0; 2470 } else { 2471 /* Note restart_addr in vma's truncate_count field */ 2472 vma->vm_truncate_count = restart_addr; 2473 if (!need_break) 2474 goto again; 2475 } 2476 2477 spin_unlock(details->i_mmap_lock); 2478 cond_resched(); 2479 spin_lock(details->i_mmap_lock); 2480 return -EINTR; 2481 } 2482 2483 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2484 struct zap_details *details) 2485 { 2486 struct vm_area_struct *vma; 2487 struct prio_tree_iter iter; 2488 pgoff_t vba, vea, zba, zea; 2489 2490 restart: 2491 vma_prio_tree_foreach(vma, &iter, root, 2492 details->first_index, details->last_index) { 2493 /* Skip quickly over those we have already dealt with */ 2494 if (vma->vm_truncate_count == details->truncate_count) 2495 continue; 2496 2497 vba = vma->vm_pgoff; 2498 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2499 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2500 zba = details->first_index; 2501 if (zba < vba) 2502 zba = vba; 2503 zea = details->last_index; 2504 if (zea > vea) 2505 zea = vea; 2506 2507 if (unmap_mapping_range_vma(vma, 2508 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2509 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2510 details) < 0) 2511 goto restart; 2512 } 2513 } 2514 2515 static inline void unmap_mapping_range_list(struct list_head *head, 2516 struct zap_details *details) 2517 { 2518 struct vm_area_struct *vma; 2519 2520 /* 2521 * In nonlinear VMAs there is no correspondence between virtual address 2522 * offset and file offset. So we must perform an exhaustive search 2523 * across *all* the pages in each nonlinear VMA, not just the pages 2524 * whose virtual address lies outside the file truncation point. 2525 */ 2526 restart: 2527 list_for_each_entry(vma, head, shared.vm_set.list) { 2528 /* Skip quickly over those we have already dealt with */ 2529 if (vma->vm_truncate_count == details->truncate_count) 2530 continue; 2531 details->nonlinear_vma = vma; 2532 if (unmap_mapping_range_vma(vma, vma->vm_start, 2533 vma->vm_end, details) < 0) 2534 goto restart; 2535 } 2536 } 2537 2538 /** 2539 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2540 * @mapping: the address space containing mmaps to be unmapped. 2541 * @holebegin: byte in first page to unmap, relative to the start of 2542 * the underlying file. This will be rounded down to a PAGE_SIZE 2543 * boundary. Note that this is different from truncate_pagecache(), which 2544 * must keep the partial page. In contrast, we must get rid of 2545 * partial pages. 2546 * @holelen: size of prospective hole in bytes. This will be rounded 2547 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2548 * end of the file. 2549 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2550 * but 0 when invalidating pagecache, don't throw away private data. 2551 */ 2552 void unmap_mapping_range(struct address_space *mapping, 2553 loff_t const holebegin, loff_t const holelen, int even_cows) 2554 { 2555 struct zap_details details; 2556 pgoff_t hba = holebegin >> PAGE_SHIFT; 2557 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2558 2559 /* Check for overflow. */ 2560 if (sizeof(holelen) > sizeof(hlen)) { 2561 long long holeend = 2562 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2563 if (holeend & ~(long long)ULONG_MAX) 2564 hlen = ULONG_MAX - hba + 1; 2565 } 2566 2567 details.check_mapping = even_cows? NULL: mapping; 2568 details.nonlinear_vma = NULL; 2569 details.first_index = hba; 2570 details.last_index = hba + hlen - 1; 2571 if (details.last_index < details.first_index) 2572 details.last_index = ULONG_MAX; 2573 details.i_mmap_lock = &mapping->i_mmap_lock; 2574 2575 spin_lock(&mapping->i_mmap_lock); 2576 2577 /* Protect against endless unmapping loops */ 2578 mapping->truncate_count++; 2579 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2580 if (mapping->truncate_count == 0) 2581 reset_vma_truncate_counts(mapping); 2582 mapping->truncate_count++; 2583 } 2584 details.truncate_count = mapping->truncate_count; 2585 2586 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2587 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2588 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2589 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2590 spin_unlock(&mapping->i_mmap_lock); 2591 } 2592 EXPORT_SYMBOL(unmap_mapping_range); 2593 2594 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2595 { 2596 struct address_space *mapping = inode->i_mapping; 2597 2598 /* 2599 * If the underlying filesystem is not going to provide 2600 * a way to truncate a range of blocks (punch a hole) - 2601 * we should return failure right now. 2602 */ 2603 if (!inode->i_op->truncate_range) 2604 return -ENOSYS; 2605 2606 mutex_lock(&inode->i_mutex); 2607 down_write(&inode->i_alloc_sem); 2608 unmap_mapping_range(mapping, offset, (end - offset), 1); 2609 truncate_inode_pages_range(mapping, offset, end); 2610 unmap_mapping_range(mapping, offset, (end - offset), 1); 2611 inode->i_op->truncate_range(inode, offset, end); 2612 up_write(&inode->i_alloc_sem); 2613 mutex_unlock(&inode->i_mutex); 2614 2615 return 0; 2616 } 2617 2618 /* 2619 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2620 * but allow concurrent faults), and pte mapped but not yet locked. 2621 * We return with mmap_sem still held, but pte unmapped and unlocked. 2622 */ 2623 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2624 unsigned long address, pte_t *page_table, pmd_t *pmd, 2625 unsigned int flags, pte_t orig_pte) 2626 { 2627 spinlock_t *ptl; 2628 struct page *page, *swapcache = NULL; 2629 swp_entry_t entry; 2630 pte_t pte; 2631 int locked; 2632 struct mem_cgroup *ptr = NULL; 2633 int exclusive = 0; 2634 int ret = 0; 2635 2636 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2637 goto out; 2638 2639 entry = pte_to_swp_entry(orig_pte); 2640 if (unlikely(non_swap_entry(entry))) { 2641 if (is_migration_entry(entry)) { 2642 migration_entry_wait(mm, pmd, address); 2643 } else if (is_hwpoison_entry(entry)) { 2644 ret = VM_FAULT_HWPOISON; 2645 } else { 2646 print_bad_pte(vma, address, orig_pte, NULL); 2647 ret = VM_FAULT_SIGBUS; 2648 } 2649 goto out; 2650 } 2651 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2652 page = lookup_swap_cache(entry); 2653 if (!page) { 2654 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2655 page = swapin_readahead(entry, 2656 GFP_HIGHUSER_MOVABLE, vma, address); 2657 if (!page) { 2658 /* 2659 * Back out if somebody else faulted in this pte 2660 * while we released the pte lock. 2661 */ 2662 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2663 if (likely(pte_same(*page_table, orig_pte))) 2664 ret = VM_FAULT_OOM; 2665 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2666 goto unlock; 2667 } 2668 2669 /* Had to read the page from swap area: Major fault */ 2670 ret = VM_FAULT_MAJOR; 2671 count_vm_event(PGMAJFAULT); 2672 } else if (PageHWPoison(page)) { 2673 /* 2674 * hwpoisoned dirty swapcache pages are kept for killing 2675 * owner processes (which may be unknown at hwpoison time) 2676 */ 2677 ret = VM_FAULT_HWPOISON; 2678 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2679 goto out_release; 2680 } 2681 2682 locked = lock_page_or_retry(page, mm, flags); 2683 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2684 if (!locked) { 2685 ret |= VM_FAULT_RETRY; 2686 goto out_release; 2687 } 2688 2689 /* 2690 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2691 * release the swapcache from under us. The page pin, and pte_same 2692 * test below, are not enough to exclude that. Even if it is still 2693 * swapcache, we need to check that the page's swap has not changed. 2694 */ 2695 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2696 goto out_page; 2697 2698 if (ksm_might_need_to_copy(page, vma, address)) { 2699 swapcache = page; 2700 page = ksm_does_need_to_copy(page, vma, address); 2701 2702 if (unlikely(!page)) { 2703 ret = VM_FAULT_OOM; 2704 page = swapcache; 2705 swapcache = NULL; 2706 goto out_page; 2707 } 2708 } 2709 2710 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2711 ret = VM_FAULT_OOM; 2712 goto out_page; 2713 } 2714 2715 /* 2716 * Back out if somebody else already faulted in this pte. 2717 */ 2718 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2719 if (unlikely(!pte_same(*page_table, orig_pte))) 2720 goto out_nomap; 2721 2722 if (unlikely(!PageUptodate(page))) { 2723 ret = VM_FAULT_SIGBUS; 2724 goto out_nomap; 2725 } 2726 2727 /* 2728 * The page isn't present yet, go ahead with the fault. 2729 * 2730 * Be careful about the sequence of operations here. 2731 * To get its accounting right, reuse_swap_page() must be called 2732 * while the page is counted on swap but not yet in mapcount i.e. 2733 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2734 * must be called after the swap_free(), or it will never succeed. 2735 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2736 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2737 * in page->private. In this case, a record in swap_cgroup is silently 2738 * discarded at swap_free(). 2739 */ 2740 2741 inc_mm_counter_fast(mm, MM_ANONPAGES); 2742 dec_mm_counter_fast(mm, MM_SWAPENTS); 2743 pte = mk_pte(page, vma->vm_page_prot); 2744 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2745 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2746 flags &= ~FAULT_FLAG_WRITE; 2747 ret |= VM_FAULT_WRITE; 2748 exclusive = 1; 2749 } 2750 flush_icache_page(vma, page); 2751 set_pte_at(mm, address, page_table, pte); 2752 do_page_add_anon_rmap(page, vma, address, exclusive); 2753 /* It's better to call commit-charge after rmap is established */ 2754 mem_cgroup_commit_charge_swapin(page, ptr); 2755 2756 swap_free(entry); 2757 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2758 try_to_free_swap(page); 2759 unlock_page(page); 2760 if (swapcache) { 2761 /* 2762 * Hold the lock to avoid the swap entry to be reused 2763 * until we take the PT lock for the pte_same() check 2764 * (to avoid false positives from pte_same). For 2765 * further safety release the lock after the swap_free 2766 * so that the swap count won't change under a 2767 * parallel locked swapcache. 2768 */ 2769 unlock_page(swapcache); 2770 page_cache_release(swapcache); 2771 } 2772 2773 if (flags & FAULT_FLAG_WRITE) { 2774 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2775 if (ret & VM_FAULT_ERROR) 2776 ret &= VM_FAULT_ERROR; 2777 goto out; 2778 } 2779 2780 /* No need to invalidate - it was non-present before */ 2781 update_mmu_cache(vma, address, page_table); 2782 unlock: 2783 pte_unmap_unlock(page_table, ptl); 2784 out: 2785 return ret; 2786 out_nomap: 2787 mem_cgroup_cancel_charge_swapin(ptr); 2788 pte_unmap_unlock(page_table, ptl); 2789 out_page: 2790 unlock_page(page); 2791 out_release: 2792 page_cache_release(page); 2793 if (swapcache) { 2794 unlock_page(swapcache); 2795 page_cache_release(swapcache); 2796 } 2797 return ret; 2798 } 2799 2800 /* 2801 * This is like a special single-page "expand_{down|up}wards()", 2802 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2803 * doesn't hit another vma. 2804 */ 2805 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2806 { 2807 address &= PAGE_MASK; 2808 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2809 struct vm_area_struct *prev = vma->vm_prev; 2810 2811 /* 2812 * Is there a mapping abutting this one below? 2813 * 2814 * That's only ok if it's the same stack mapping 2815 * that has gotten split.. 2816 */ 2817 if (prev && prev->vm_end == address) 2818 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2819 2820 expand_stack(vma, address - PAGE_SIZE); 2821 } 2822 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2823 struct vm_area_struct *next = vma->vm_next; 2824 2825 /* As VM_GROWSDOWN but s/below/above/ */ 2826 if (next && next->vm_start == address + PAGE_SIZE) 2827 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2828 2829 expand_upwards(vma, address + PAGE_SIZE); 2830 } 2831 return 0; 2832 } 2833 2834 /* 2835 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2836 * but allow concurrent faults), and pte mapped but not yet locked. 2837 * We return with mmap_sem still held, but pte unmapped and unlocked. 2838 */ 2839 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2840 unsigned long address, pte_t *page_table, pmd_t *pmd, 2841 unsigned int flags) 2842 { 2843 struct page *page; 2844 spinlock_t *ptl; 2845 pte_t entry; 2846 2847 pte_unmap(page_table); 2848 2849 /* Check if we need to add a guard page to the stack */ 2850 if (check_stack_guard_page(vma, address) < 0) 2851 return VM_FAULT_SIGBUS; 2852 2853 /* Use the zero-page for reads */ 2854 if (!(flags & FAULT_FLAG_WRITE)) { 2855 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2856 vma->vm_page_prot)); 2857 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2858 if (!pte_none(*page_table)) 2859 goto unlock; 2860 goto setpte; 2861 } 2862 2863 /* Allocate our own private page. */ 2864 if (unlikely(anon_vma_prepare(vma))) 2865 goto oom; 2866 page = alloc_zeroed_user_highpage_movable(vma, address); 2867 if (!page) 2868 goto oom; 2869 __SetPageUptodate(page); 2870 2871 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2872 goto oom_free_page; 2873 2874 entry = mk_pte(page, vma->vm_page_prot); 2875 if (vma->vm_flags & VM_WRITE) 2876 entry = pte_mkwrite(pte_mkdirty(entry)); 2877 2878 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2879 if (!pte_none(*page_table)) 2880 goto release; 2881 2882 inc_mm_counter_fast(mm, MM_ANONPAGES); 2883 page_add_new_anon_rmap(page, vma, address); 2884 setpte: 2885 set_pte_at(mm, address, page_table, entry); 2886 2887 /* No need to invalidate - it was non-present before */ 2888 update_mmu_cache(vma, address, page_table); 2889 unlock: 2890 pte_unmap_unlock(page_table, ptl); 2891 return 0; 2892 release: 2893 mem_cgroup_uncharge_page(page); 2894 page_cache_release(page); 2895 goto unlock; 2896 oom_free_page: 2897 page_cache_release(page); 2898 oom: 2899 return VM_FAULT_OOM; 2900 } 2901 2902 /* 2903 * __do_fault() tries to create a new page mapping. It aggressively 2904 * tries to share with existing pages, but makes a separate copy if 2905 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2906 * the next page fault. 2907 * 2908 * As this is called only for pages that do not currently exist, we 2909 * do not need to flush old virtual caches or the TLB. 2910 * 2911 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2912 * but allow concurrent faults), and pte neither mapped nor locked. 2913 * We return with mmap_sem still held, but pte unmapped and unlocked. 2914 */ 2915 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2916 unsigned long address, pmd_t *pmd, 2917 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2918 { 2919 pte_t *page_table; 2920 spinlock_t *ptl; 2921 struct page *page; 2922 pte_t entry; 2923 int anon = 0; 2924 int charged = 0; 2925 struct page *dirty_page = NULL; 2926 struct vm_fault vmf; 2927 int ret; 2928 int page_mkwrite = 0; 2929 2930 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2931 vmf.pgoff = pgoff; 2932 vmf.flags = flags; 2933 vmf.page = NULL; 2934 2935 ret = vma->vm_ops->fault(vma, &vmf); 2936 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 2937 VM_FAULT_RETRY))) 2938 return ret; 2939 2940 if (unlikely(PageHWPoison(vmf.page))) { 2941 if (ret & VM_FAULT_LOCKED) 2942 unlock_page(vmf.page); 2943 return VM_FAULT_HWPOISON; 2944 } 2945 2946 /* 2947 * For consistency in subsequent calls, make the faulted page always 2948 * locked. 2949 */ 2950 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2951 lock_page(vmf.page); 2952 else 2953 VM_BUG_ON(!PageLocked(vmf.page)); 2954 2955 /* 2956 * Should we do an early C-O-W break? 2957 */ 2958 page = vmf.page; 2959 if (flags & FAULT_FLAG_WRITE) { 2960 if (!(vma->vm_flags & VM_SHARED)) { 2961 anon = 1; 2962 if (unlikely(anon_vma_prepare(vma))) { 2963 ret = VM_FAULT_OOM; 2964 goto out; 2965 } 2966 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2967 vma, address); 2968 if (!page) { 2969 ret = VM_FAULT_OOM; 2970 goto out; 2971 } 2972 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2973 ret = VM_FAULT_OOM; 2974 page_cache_release(page); 2975 goto out; 2976 } 2977 charged = 1; 2978 /* 2979 * Don't let another task, with possibly unlocked vma, 2980 * keep the mlocked page. 2981 */ 2982 if (vma->vm_flags & VM_LOCKED) 2983 clear_page_mlock(vmf.page); 2984 copy_user_highpage(page, vmf.page, address, vma); 2985 __SetPageUptodate(page); 2986 } else { 2987 /* 2988 * If the page will be shareable, see if the backing 2989 * address space wants to know that the page is about 2990 * to become writable 2991 */ 2992 if (vma->vm_ops->page_mkwrite) { 2993 int tmp; 2994 2995 unlock_page(page); 2996 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2997 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2998 if (unlikely(tmp & 2999 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3000 ret = tmp; 3001 goto unwritable_page; 3002 } 3003 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3004 lock_page(page); 3005 if (!page->mapping) { 3006 ret = 0; /* retry the fault */ 3007 unlock_page(page); 3008 goto unwritable_page; 3009 } 3010 } else 3011 VM_BUG_ON(!PageLocked(page)); 3012 page_mkwrite = 1; 3013 } 3014 } 3015 3016 } 3017 3018 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3019 3020 /* 3021 * This silly early PAGE_DIRTY setting removes a race 3022 * due to the bad i386 page protection. But it's valid 3023 * for other architectures too. 3024 * 3025 * Note that if FAULT_FLAG_WRITE is set, we either now have 3026 * an exclusive copy of the page, or this is a shared mapping, 3027 * so we can make it writable and dirty to avoid having to 3028 * handle that later. 3029 */ 3030 /* Only go through if we didn't race with anybody else... */ 3031 if (likely(pte_same(*page_table, orig_pte))) { 3032 flush_icache_page(vma, page); 3033 entry = mk_pte(page, vma->vm_page_prot); 3034 if (flags & FAULT_FLAG_WRITE) 3035 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3036 if (anon) { 3037 inc_mm_counter_fast(mm, MM_ANONPAGES); 3038 page_add_new_anon_rmap(page, vma, address); 3039 } else { 3040 inc_mm_counter_fast(mm, MM_FILEPAGES); 3041 page_add_file_rmap(page); 3042 if (flags & FAULT_FLAG_WRITE) { 3043 dirty_page = page; 3044 get_page(dirty_page); 3045 } 3046 } 3047 set_pte_at(mm, address, page_table, entry); 3048 3049 /* no need to invalidate: a not-present page won't be cached */ 3050 update_mmu_cache(vma, address, page_table); 3051 } else { 3052 if (charged) 3053 mem_cgroup_uncharge_page(page); 3054 if (anon) 3055 page_cache_release(page); 3056 else 3057 anon = 1; /* no anon but release faulted_page */ 3058 } 3059 3060 pte_unmap_unlock(page_table, ptl); 3061 3062 out: 3063 if (dirty_page) { 3064 struct address_space *mapping = page->mapping; 3065 3066 if (set_page_dirty(dirty_page)) 3067 page_mkwrite = 1; 3068 unlock_page(dirty_page); 3069 put_page(dirty_page); 3070 if (page_mkwrite && mapping) { 3071 /* 3072 * Some device drivers do not set page.mapping but still 3073 * dirty their pages 3074 */ 3075 balance_dirty_pages_ratelimited(mapping); 3076 } 3077 3078 /* file_update_time outside page_lock */ 3079 if (vma->vm_file) 3080 file_update_time(vma->vm_file); 3081 } else { 3082 unlock_page(vmf.page); 3083 if (anon) 3084 page_cache_release(vmf.page); 3085 } 3086 3087 return ret; 3088 3089 unwritable_page: 3090 page_cache_release(page); 3091 return ret; 3092 } 3093 3094 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3095 unsigned long address, pte_t *page_table, pmd_t *pmd, 3096 unsigned int flags, pte_t orig_pte) 3097 { 3098 pgoff_t pgoff = (((address & PAGE_MASK) 3099 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3100 3101 pte_unmap(page_table); 3102 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3103 } 3104 3105 /* 3106 * Fault of a previously existing named mapping. Repopulate the pte 3107 * from the encoded file_pte if possible. This enables swappable 3108 * nonlinear vmas. 3109 * 3110 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3111 * but allow concurrent faults), and pte mapped but not yet locked. 3112 * We return with mmap_sem still held, but pte unmapped and unlocked. 3113 */ 3114 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3115 unsigned long address, pte_t *page_table, pmd_t *pmd, 3116 unsigned int flags, pte_t orig_pte) 3117 { 3118 pgoff_t pgoff; 3119 3120 flags |= FAULT_FLAG_NONLINEAR; 3121 3122 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3123 return 0; 3124 3125 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3126 /* 3127 * Page table corrupted: show pte and kill process. 3128 */ 3129 print_bad_pte(vma, address, orig_pte, NULL); 3130 return VM_FAULT_SIGBUS; 3131 } 3132 3133 pgoff = pte_to_pgoff(orig_pte); 3134 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3135 } 3136 3137 /* 3138 * These routines also need to handle stuff like marking pages dirty 3139 * and/or accessed for architectures that don't do it in hardware (most 3140 * RISC architectures). The early dirtying is also good on the i386. 3141 * 3142 * There is also a hook called "update_mmu_cache()" that architectures 3143 * with external mmu caches can use to update those (ie the Sparc or 3144 * PowerPC hashed page tables that act as extended TLBs). 3145 * 3146 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3147 * but allow concurrent faults), and pte mapped but not yet locked. 3148 * We return with mmap_sem still held, but pte unmapped and unlocked. 3149 */ 3150 static inline int handle_pte_fault(struct mm_struct *mm, 3151 struct vm_area_struct *vma, unsigned long address, 3152 pte_t *pte, pmd_t *pmd, unsigned int flags) 3153 { 3154 pte_t entry; 3155 spinlock_t *ptl; 3156 3157 entry = *pte; 3158 if (!pte_present(entry)) { 3159 if (pte_none(entry)) { 3160 if (vma->vm_ops) { 3161 if (likely(vma->vm_ops->fault)) 3162 return do_linear_fault(mm, vma, address, 3163 pte, pmd, flags, entry); 3164 } 3165 return do_anonymous_page(mm, vma, address, 3166 pte, pmd, flags); 3167 } 3168 if (pte_file(entry)) 3169 return do_nonlinear_fault(mm, vma, address, 3170 pte, pmd, flags, entry); 3171 return do_swap_page(mm, vma, address, 3172 pte, pmd, flags, entry); 3173 } 3174 3175 ptl = pte_lockptr(mm, pmd); 3176 spin_lock(ptl); 3177 if (unlikely(!pte_same(*pte, entry))) 3178 goto unlock; 3179 if (flags & FAULT_FLAG_WRITE) { 3180 if (!pte_write(entry)) 3181 return do_wp_page(mm, vma, address, 3182 pte, pmd, ptl, entry); 3183 entry = pte_mkdirty(entry); 3184 } 3185 entry = pte_mkyoung(entry); 3186 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3187 update_mmu_cache(vma, address, pte); 3188 } else { 3189 /* 3190 * This is needed only for protection faults but the arch code 3191 * is not yet telling us if this is a protection fault or not. 3192 * This still avoids useless tlb flushes for .text page faults 3193 * with threads. 3194 */ 3195 if (flags & FAULT_FLAG_WRITE) 3196 flush_tlb_fix_spurious_fault(vma, address); 3197 } 3198 unlock: 3199 pte_unmap_unlock(pte, ptl); 3200 return 0; 3201 } 3202 3203 /* 3204 * By the time we get here, we already hold the mm semaphore 3205 */ 3206 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3207 unsigned long address, unsigned int flags) 3208 { 3209 pgd_t *pgd; 3210 pud_t *pud; 3211 pmd_t *pmd; 3212 pte_t *pte; 3213 3214 __set_current_state(TASK_RUNNING); 3215 3216 count_vm_event(PGFAULT); 3217 3218 /* do counter updates before entering really critical section. */ 3219 check_sync_rss_stat(current); 3220 3221 if (unlikely(is_vm_hugetlb_page(vma))) 3222 return hugetlb_fault(mm, vma, address, flags); 3223 3224 pgd = pgd_offset(mm, address); 3225 pud = pud_alloc(mm, pgd, address); 3226 if (!pud) 3227 return VM_FAULT_OOM; 3228 pmd = pmd_alloc(mm, pud, address); 3229 if (!pmd) 3230 return VM_FAULT_OOM; 3231 pte = pte_alloc_map(mm, pmd, address); 3232 if (!pte) 3233 return VM_FAULT_OOM; 3234 3235 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3236 } 3237 3238 #ifndef __PAGETABLE_PUD_FOLDED 3239 /* 3240 * Allocate page upper directory. 3241 * We've already handled the fast-path in-line. 3242 */ 3243 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3244 { 3245 pud_t *new = pud_alloc_one(mm, address); 3246 if (!new) 3247 return -ENOMEM; 3248 3249 smp_wmb(); /* See comment in __pte_alloc */ 3250 3251 spin_lock(&mm->page_table_lock); 3252 if (pgd_present(*pgd)) /* Another has populated it */ 3253 pud_free(mm, new); 3254 else 3255 pgd_populate(mm, pgd, new); 3256 spin_unlock(&mm->page_table_lock); 3257 return 0; 3258 } 3259 #endif /* __PAGETABLE_PUD_FOLDED */ 3260 3261 #ifndef __PAGETABLE_PMD_FOLDED 3262 /* 3263 * Allocate page middle directory. 3264 * We've already handled the fast-path in-line. 3265 */ 3266 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3267 { 3268 pmd_t *new = pmd_alloc_one(mm, address); 3269 if (!new) 3270 return -ENOMEM; 3271 3272 smp_wmb(); /* See comment in __pte_alloc */ 3273 3274 spin_lock(&mm->page_table_lock); 3275 #ifndef __ARCH_HAS_4LEVEL_HACK 3276 if (pud_present(*pud)) /* Another has populated it */ 3277 pmd_free(mm, new); 3278 else 3279 pud_populate(mm, pud, new); 3280 #else 3281 if (pgd_present(*pud)) /* Another has populated it */ 3282 pmd_free(mm, new); 3283 else 3284 pgd_populate(mm, pud, new); 3285 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3286 spin_unlock(&mm->page_table_lock); 3287 return 0; 3288 } 3289 #endif /* __PAGETABLE_PMD_FOLDED */ 3290 3291 int make_pages_present(unsigned long addr, unsigned long end) 3292 { 3293 int ret, len, write; 3294 struct vm_area_struct * vma; 3295 3296 vma = find_vma(current->mm, addr); 3297 if (!vma) 3298 return -ENOMEM; 3299 write = (vma->vm_flags & VM_WRITE) != 0; 3300 BUG_ON(addr >= end); 3301 BUG_ON(end > vma->vm_end); 3302 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3303 ret = get_user_pages(current, current->mm, addr, 3304 len, write, 0, NULL, NULL); 3305 if (ret < 0) 3306 return ret; 3307 return ret == len ? 0 : -EFAULT; 3308 } 3309 3310 #if !defined(__HAVE_ARCH_GATE_AREA) 3311 3312 #if defined(AT_SYSINFO_EHDR) 3313 static struct vm_area_struct gate_vma; 3314 3315 static int __init gate_vma_init(void) 3316 { 3317 gate_vma.vm_mm = NULL; 3318 gate_vma.vm_start = FIXADDR_USER_START; 3319 gate_vma.vm_end = FIXADDR_USER_END; 3320 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3321 gate_vma.vm_page_prot = __P101; 3322 /* 3323 * Make sure the vDSO gets into every core dump. 3324 * Dumping its contents makes post-mortem fully interpretable later 3325 * without matching up the same kernel and hardware config to see 3326 * what PC values meant. 3327 */ 3328 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3329 return 0; 3330 } 3331 __initcall(gate_vma_init); 3332 #endif 3333 3334 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3335 { 3336 #ifdef AT_SYSINFO_EHDR 3337 return &gate_vma; 3338 #else 3339 return NULL; 3340 #endif 3341 } 3342 3343 int in_gate_area_no_task(unsigned long addr) 3344 { 3345 #ifdef AT_SYSINFO_EHDR 3346 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3347 return 1; 3348 #endif 3349 return 0; 3350 } 3351 3352 #endif /* __HAVE_ARCH_GATE_AREA */ 3353 3354 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3355 pte_t **ptepp, spinlock_t **ptlp) 3356 { 3357 pgd_t *pgd; 3358 pud_t *pud; 3359 pmd_t *pmd; 3360 pte_t *ptep; 3361 3362 pgd = pgd_offset(mm, address); 3363 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3364 goto out; 3365 3366 pud = pud_offset(pgd, address); 3367 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3368 goto out; 3369 3370 pmd = pmd_offset(pud, address); 3371 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3372 goto out; 3373 3374 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3375 if (pmd_huge(*pmd)) 3376 goto out; 3377 3378 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3379 if (!ptep) 3380 goto out; 3381 if (!pte_present(*ptep)) 3382 goto unlock; 3383 *ptepp = ptep; 3384 return 0; 3385 unlock: 3386 pte_unmap_unlock(ptep, *ptlp); 3387 out: 3388 return -EINVAL; 3389 } 3390 3391 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3392 pte_t **ptepp, spinlock_t **ptlp) 3393 { 3394 int res; 3395 3396 /* (void) is needed to make gcc happy */ 3397 (void) __cond_lock(*ptlp, 3398 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3399 return res; 3400 } 3401 3402 /** 3403 * follow_pfn - look up PFN at a user virtual address 3404 * @vma: memory mapping 3405 * @address: user virtual address 3406 * @pfn: location to store found PFN 3407 * 3408 * Only IO mappings and raw PFN mappings are allowed. 3409 * 3410 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3411 */ 3412 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3413 unsigned long *pfn) 3414 { 3415 int ret = -EINVAL; 3416 spinlock_t *ptl; 3417 pte_t *ptep; 3418 3419 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3420 return ret; 3421 3422 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3423 if (ret) 3424 return ret; 3425 *pfn = pte_pfn(*ptep); 3426 pte_unmap_unlock(ptep, ptl); 3427 return 0; 3428 } 3429 EXPORT_SYMBOL(follow_pfn); 3430 3431 #ifdef CONFIG_HAVE_IOREMAP_PROT 3432 int follow_phys(struct vm_area_struct *vma, 3433 unsigned long address, unsigned int flags, 3434 unsigned long *prot, resource_size_t *phys) 3435 { 3436 int ret = -EINVAL; 3437 pte_t *ptep, pte; 3438 spinlock_t *ptl; 3439 3440 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3441 goto out; 3442 3443 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3444 goto out; 3445 pte = *ptep; 3446 3447 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3448 goto unlock; 3449 3450 *prot = pgprot_val(pte_pgprot(pte)); 3451 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3452 3453 ret = 0; 3454 unlock: 3455 pte_unmap_unlock(ptep, ptl); 3456 out: 3457 return ret; 3458 } 3459 3460 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3461 void *buf, int len, int write) 3462 { 3463 resource_size_t phys_addr; 3464 unsigned long prot = 0; 3465 void __iomem *maddr; 3466 int offset = addr & (PAGE_SIZE-1); 3467 3468 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3469 return -EINVAL; 3470 3471 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3472 if (write) 3473 memcpy_toio(maddr + offset, buf, len); 3474 else 3475 memcpy_fromio(buf, maddr + offset, len); 3476 iounmap(maddr); 3477 3478 return len; 3479 } 3480 #endif 3481 3482 /* 3483 * Access another process' address space. 3484 * Source/target buffer must be kernel space, 3485 * Do not walk the page table directly, use get_user_pages 3486 */ 3487 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3488 { 3489 struct mm_struct *mm; 3490 struct vm_area_struct *vma; 3491 void *old_buf = buf; 3492 3493 mm = get_task_mm(tsk); 3494 if (!mm) 3495 return 0; 3496 3497 down_read(&mm->mmap_sem); 3498 /* ignore errors, just check how much was successfully transferred */ 3499 while (len) { 3500 int bytes, ret, offset; 3501 void *maddr; 3502 struct page *page = NULL; 3503 3504 ret = get_user_pages(tsk, mm, addr, 1, 3505 write, 1, &page, &vma); 3506 if (ret <= 0) { 3507 /* 3508 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3509 * we can access using slightly different code. 3510 */ 3511 #ifdef CONFIG_HAVE_IOREMAP_PROT 3512 vma = find_vma(mm, addr); 3513 if (!vma) 3514 break; 3515 if (vma->vm_ops && vma->vm_ops->access) 3516 ret = vma->vm_ops->access(vma, addr, buf, 3517 len, write); 3518 if (ret <= 0) 3519 #endif 3520 break; 3521 bytes = ret; 3522 } else { 3523 bytes = len; 3524 offset = addr & (PAGE_SIZE-1); 3525 if (bytes > PAGE_SIZE-offset) 3526 bytes = PAGE_SIZE-offset; 3527 3528 maddr = kmap(page); 3529 if (write) { 3530 copy_to_user_page(vma, page, addr, 3531 maddr + offset, buf, bytes); 3532 set_page_dirty_lock(page); 3533 } else { 3534 copy_from_user_page(vma, page, addr, 3535 buf, maddr + offset, bytes); 3536 } 3537 kunmap(page); 3538 page_cache_release(page); 3539 } 3540 len -= bytes; 3541 buf += bytes; 3542 addr += bytes; 3543 } 3544 up_read(&mm->mmap_sem); 3545 mmput(mm); 3546 3547 return buf - old_buf; 3548 } 3549 3550 /* 3551 * Print the name of a VMA. 3552 */ 3553 void print_vma_addr(char *prefix, unsigned long ip) 3554 { 3555 struct mm_struct *mm = current->mm; 3556 struct vm_area_struct *vma; 3557 3558 /* 3559 * Do not print if we are in atomic 3560 * contexts (in exception stacks, etc.): 3561 */ 3562 if (preempt_count()) 3563 return; 3564 3565 down_read(&mm->mmap_sem); 3566 vma = find_vma(mm, ip); 3567 if (vma && vma->vm_file) { 3568 struct file *f = vma->vm_file; 3569 char *buf = (char *)__get_free_page(GFP_KERNEL); 3570 if (buf) { 3571 char *p, *s; 3572 3573 p = d_path(&f->f_path, buf, PAGE_SIZE); 3574 if (IS_ERR(p)) 3575 p = "?"; 3576 s = strrchr(p, '/'); 3577 if (s) 3578 p = s+1; 3579 printk("%s%s[%lx+%lx]", prefix, p, 3580 vma->vm_start, 3581 vma->vm_end - vma->vm_start); 3582 free_page((unsigned long)buf); 3583 } 3584 } 3585 up_read(¤t->mm->mmap_sem); 3586 } 3587 3588 #ifdef CONFIG_PROVE_LOCKING 3589 void might_fault(void) 3590 { 3591 /* 3592 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3593 * holding the mmap_sem, this is safe because kernel memory doesn't 3594 * get paged out, therefore we'll never actually fault, and the 3595 * below annotations will generate false positives. 3596 */ 3597 if (segment_eq(get_fs(), KERNEL_DS)) 3598 return; 3599 3600 might_sleep(); 3601 /* 3602 * it would be nicer only to annotate paths which are not under 3603 * pagefault_disable, however that requires a larger audit and 3604 * providing helpers like get_user_atomic. 3605 */ 3606 if (!in_atomic() && current->mm) 3607 might_lock_read(¤t->mm->mmap_sem); 3608 } 3609 EXPORT_SYMBOL(might_fault); 3610 #endif 3611