xref: /linux/mm/memory.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (task->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, task->rss_stat.count[i]);
135 			task->rss_stat.count[i] = 0;
136 		}
137 	}
138 	task->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		__sync_task_rss_stat(task, task->mm);
161 }
162 
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165 	long val = 0;
166 
167 	/*
168 	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 	 * The caller must guarantee task->mm is not invalid.
170 	 */
171 	val = atomic_long_read(&mm->rss_stat.count[member]);
172 	/*
173 	 * counter is updated in asynchronous manner and may go to minus.
174 	 * But it's never be expected number for users.
175 	 */
176 	if (val < 0)
177 		return 0;
178 	return (unsigned long)val;
179 }
180 
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183 	__sync_task_rss_stat(task, mm);
184 }
185 #else
186 
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189 
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193 
194 #endif
195 
196 /*
197  * If a p?d_bad entry is found while walking page tables, report
198  * the error, before resetting entry to p?d_none.  Usually (but
199  * very seldom) called out from the p?d_none_or_clear_bad macros.
200  */
201 
202 void pgd_clear_bad(pgd_t *pgd)
203 {
204 	pgd_ERROR(*pgd);
205 	pgd_clear(pgd);
206 }
207 
208 void pud_clear_bad(pud_t *pud)
209 {
210 	pud_ERROR(*pud);
211 	pud_clear(pud);
212 }
213 
214 void pmd_clear_bad(pmd_t *pmd)
215 {
216 	pmd_ERROR(*pmd);
217 	pmd_clear(pmd);
218 }
219 
220 /*
221  * Note: this doesn't free the actual pages themselves. That
222  * has been handled earlier when unmapping all the memory regions.
223  */
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 			   unsigned long addr)
226 {
227 	pgtable_t token = pmd_pgtable(*pmd);
228 	pmd_clear(pmd);
229 	pte_free_tlb(tlb, token, addr);
230 	tlb->mm->nr_ptes--;
231 }
232 
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 				unsigned long addr, unsigned long end,
235 				unsigned long floor, unsigned long ceiling)
236 {
237 	pmd_t *pmd;
238 	unsigned long next;
239 	unsigned long start;
240 
241 	start = addr;
242 	pmd = pmd_offset(pud, addr);
243 	do {
244 		next = pmd_addr_end(addr, end);
245 		if (pmd_none_or_clear_bad(pmd))
246 			continue;
247 		free_pte_range(tlb, pmd, addr);
248 	} while (pmd++, addr = next, addr != end);
249 
250 	start &= PUD_MASK;
251 	if (start < floor)
252 		return;
253 	if (ceiling) {
254 		ceiling &= PUD_MASK;
255 		if (!ceiling)
256 			return;
257 	}
258 	if (end - 1 > ceiling - 1)
259 		return;
260 
261 	pmd = pmd_offset(pud, start);
262 	pud_clear(pud);
263 	pmd_free_tlb(tlb, pmd, start);
264 }
265 
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	pud_t *pud;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	pud = pud_offset(pgd, addr);
276 	do {
277 		next = pud_addr_end(addr, end);
278 		if (pud_none_or_clear_bad(pud))
279 			continue;
280 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 	} while (pud++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	pud = pud_offset(pgd, start);
295 	pgd_clear(pgd);
296 	pud_free_tlb(tlb, pud, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  *
302  * Must be called with pagetable lock held.
303  */
304 void free_pgd_range(struct mmu_gather *tlb,
305 			unsigned long addr, unsigned long end,
306 			unsigned long floor, unsigned long ceiling)
307 {
308 	pgd_t *pgd;
309 	unsigned long next;
310 
311 	/*
312 	 * The next few lines have given us lots of grief...
313 	 *
314 	 * Why are we testing PMD* at this top level?  Because often
315 	 * there will be no work to do at all, and we'd prefer not to
316 	 * go all the way down to the bottom just to discover that.
317 	 *
318 	 * Why all these "- 1"s?  Because 0 represents both the bottom
319 	 * of the address space and the top of it (using -1 for the
320 	 * top wouldn't help much: the masks would do the wrong thing).
321 	 * The rule is that addr 0 and floor 0 refer to the bottom of
322 	 * the address space, but end 0 and ceiling 0 refer to the top
323 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 	 * that end 0 case should be mythical).
325 	 *
326 	 * Wherever addr is brought up or ceiling brought down, we must
327 	 * be careful to reject "the opposite 0" before it confuses the
328 	 * subsequent tests.  But what about where end is brought down
329 	 * by PMD_SIZE below? no, end can't go down to 0 there.
330 	 *
331 	 * Whereas we round start (addr) and ceiling down, by different
332 	 * masks at different levels, in order to test whether a table
333 	 * now has no other vmas using it, so can be freed, we don't
334 	 * bother to round floor or end up - the tests don't need that.
335 	 */
336 
337 	addr &= PMD_MASK;
338 	if (addr < floor) {
339 		addr += PMD_SIZE;
340 		if (!addr)
341 			return;
342 	}
343 	if (ceiling) {
344 		ceiling &= PMD_MASK;
345 		if (!ceiling)
346 			return;
347 	}
348 	if (end - 1 > ceiling - 1)
349 		end -= PMD_SIZE;
350 	if (addr > end - 1)
351 		return;
352 
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363 		unsigned long floor, unsigned long ceiling)
364 {
365 	while (vma) {
366 		struct vm_area_struct *next = vma->vm_next;
367 		unsigned long addr = vma->vm_start;
368 
369 		/*
370 		 * Hide vma from rmap and truncate_pagecache before freeing
371 		 * pgtables
372 		 */
373 		unlink_anon_vmas(vma);
374 		unlink_file_vma(vma);
375 
376 		if (is_vm_hugetlb_page(vma)) {
377 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378 				floor, next? next->vm_start: ceiling);
379 		} else {
380 			/*
381 			 * Optimization: gather nearby vmas into one call down
382 			 */
383 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384 			       && !is_vm_hugetlb_page(next)) {
385 				vma = next;
386 				next = vma->vm_next;
387 				unlink_anon_vmas(vma);
388 				unlink_file_vma(vma);
389 			}
390 			free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next? next->vm_start: ceiling);
392 		}
393 		vma = next;
394 	}
395 }
396 
397 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
398 {
399 	pgtable_t new = pte_alloc_one(mm, address);
400 	if (!new)
401 		return -ENOMEM;
402 
403 	/*
404 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
405 	 * visible before the pte is made visible to other CPUs by being
406 	 * put into page tables.
407 	 *
408 	 * The other side of the story is the pointer chasing in the page
409 	 * table walking code (when walking the page table without locking;
410 	 * ie. most of the time). Fortunately, these data accesses consist
411 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
412 	 * being the notable exception) will already guarantee loads are
413 	 * seen in-order. See the alpha page table accessors for the
414 	 * smp_read_barrier_depends() barriers in page table walking code.
415 	 */
416 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
417 
418 	spin_lock(&mm->page_table_lock);
419 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
420 		mm->nr_ptes++;
421 		pmd_populate(mm, pmd, new);
422 		new = NULL;
423 	}
424 	spin_unlock(&mm->page_table_lock);
425 	if (new)
426 		pte_free(mm, new);
427 	return 0;
428 }
429 
430 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
431 {
432 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
433 	if (!new)
434 		return -ENOMEM;
435 
436 	smp_wmb(); /* See comment in __pte_alloc */
437 
438 	spin_lock(&init_mm.page_table_lock);
439 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
440 		pmd_populate_kernel(&init_mm, pmd, new);
441 		new = NULL;
442 	}
443 	spin_unlock(&init_mm.page_table_lock);
444 	if (new)
445 		pte_free_kernel(&init_mm, new);
446 	return 0;
447 }
448 
449 static inline void init_rss_vec(int *rss)
450 {
451 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453 
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456 	int i;
457 
458 	if (current->mm == mm)
459 		sync_mm_rss(current, mm);
460 	for (i = 0; i < NR_MM_COUNTERS; i++)
461 		if (rss[i])
462 			add_mm_counter(mm, i, rss[i]);
463 }
464 
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 			  pte_t pte, struct page *page)
474 {
475 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 	pud_t *pud = pud_offset(pgd, addr);
477 	pmd_t *pmd = pmd_offset(pud, addr);
478 	struct address_space *mapping;
479 	pgoff_t index;
480 	static unsigned long resume;
481 	static unsigned long nr_shown;
482 	static unsigned long nr_unshown;
483 
484 	/*
485 	 * Allow a burst of 60 reports, then keep quiet for that minute;
486 	 * or allow a steady drip of one report per second.
487 	 */
488 	if (nr_shown == 60) {
489 		if (time_before(jiffies, resume)) {
490 			nr_unshown++;
491 			return;
492 		}
493 		if (nr_unshown) {
494 			printk(KERN_ALERT
495 				"BUG: Bad page map: %lu messages suppressed\n",
496 				nr_unshown);
497 			nr_unshown = 0;
498 		}
499 		nr_shown = 0;
500 	}
501 	if (nr_shown++ == 0)
502 		resume = jiffies + 60 * HZ;
503 
504 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 	index = linear_page_index(vma, addr);
506 
507 	printk(KERN_ALERT
508 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
509 		current->comm,
510 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
511 	if (page)
512 		dump_page(page);
513 	printk(KERN_ALERT
514 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
515 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
516 	/*
517 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
518 	 */
519 	if (vma->vm_ops)
520 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
521 				(unsigned long)vma->vm_ops->fault);
522 	if (vma->vm_file && vma->vm_file->f_op)
523 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
524 				(unsigned long)vma->vm_file->f_op->mmap);
525 	dump_stack();
526 	add_taint(TAINT_BAD_PAGE);
527 }
528 
529 static inline int is_cow_mapping(unsigned int flags)
530 {
531 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
532 }
533 
534 #ifndef is_zero_pfn
535 static inline int is_zero_pfn(unsigned long pfn)
536 {
537 	return pfn == zero_pfn;
538 }
539 #endif
540 
541 #ifndef my_zero_pfn
542 static inline unsigned long my_zero_pfn(unsigned long addr)
543 {
544 	return zero_pfn;
545 }
546 #endif
547 
548 /*
549  * vm_normal_page -- This function gets the "struct page" associated with a pte.
550  *
551  * "Special" mappings do not wish to be associated with a "struct page" (either
552  * it doesn't exist, or it exists but they don't want to touch it). In this
553  * case, NULL is returned here. "Normal" mappings do have a struct page.
554  *
555  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556  * pte bit, in which case this function is trivial. Secondly, an architecture
557  * may not have a spare pte bit, which requires a more complicated scheme,
558  * described below.
559  *
560  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561  * special mapping (even if there are underlying and valid "struct pages").
562  * COWed pages of a VM_PFNMAP are always normal.
563  *
564  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567  * mapping will always honor the rule
568  *
569  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570  *
571  * And for normal mappings this is false.
572  *
573  * This restricts such mappings to be a linear translation from virtual address
574  * to pfn. To get around this restriction, we allow arbitrary mappings so long
575  * as the vma is not a COW mapping; in that case, we know that all ptes are
576  * special (because none can have been COWed).
577  *
578  *
579  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580  *
581  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582  * page" backing, however the difference is that _all_ pages with a struct
583  * page (that is, those where pfn_valid is true) are refcounted and considered
584  * normal pages by the VM. The disadvantage is that pages are refcounted
585  * (which can be slower and simply not an option for some PFNMAP users). The
586  * advantage is that we don't have to follow the strict linearity rule of
587  * PFNMAP mappings in order to support COWable mappings.
588  *
589  */
590 #ifdef __HAVE_ARCH_PTE_SPECIAL
591 # define HAVE_PTE_SPECIAL 1
592 #else
593 # define HAVE_PTE_SPECIAL 0
594 #endif
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 				pte_t pte)
597 {
598 	unsigned long pfn = pte_pfn(pte);
599 
600 	if (HAVE_PTE_SPECIAL) {
601 		if (likely(!pte_special(pte)))
602 			goto check_pfn;
603 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 			return NULL;
605 		if (!is_zero_pfn(pfn))
606 			print_bad_pte(vma, addr, pte, NULL);
607 		return NULL;
608 	}
609 
610 	/* !HAVE_PTE_SPECIAL case follows: */
611 
612 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 		if (vma->vm_flags & VM_MIXEDMAP) {
614 			if (!pfn_valid(pfn))
615 				return NULL;
616 			goto out;
617 		} else {
618 			unsigned long off;
619 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
620 			if (pfn == vma->vm_pgoff + off)
621 				return NULL;
622 			if (!is_cow_mapping(vma->vm_flags))
623 				return NULL;
624 		}
625 	}
626 
627 	if (is_zero_pfn(pfn))
628 		return NULL;
629 check_pfn:
630 	if (unlikely(pfn > highest_memmap_pfn)) {
631 		print_bad_pte(vma, addr, pte, NULL);
632 		return NULL;
633 	}
634 
635 	/*
636 	 * NOTE! We still have PageReserved() pages in the page tables.
637 	 * eg. VDSO mappings can cause them to exist.
638 	 */
639 out:
640 	return pfn_to_page(pfn);
641 }
642 
643 /*
644  * copy one vm_area from one task to the other. Assumes the page tables
645  * already present in the new task to be cleared in the whole range
646  * covered by this vma.
647  */
648 
649 static inline unsigned long
650 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
651 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
652 		unsigned long addr, int *rss)
653 {
654 	unsigned long vm_flags = vma->vm_flags;
655 	pte_t pte = *src_pte;
656 	struct page *page;
657 
658 	/* pte contains position in swap or file, so copy. */
659 	if (unlikely(!pte_present(pte))) {
660 		if (!pte_file(pte)) {
661 			swp_entry_t entry = pte_to_swp_entry(pte);
662 
663 			if (swap_duplicate(entry) < 0)
664 				return entry.val;
665 
666 			/* make sure dst_mm is on swapoff's mmlist. */
667 			if (unlikely(list_empty(&dst_mm->mmlist))) {
668 				spin_lock(&mmlist_lock);
669 				if (list_empty(&dst_mm->mmlist))
670 					list_add(&dst_mm->mmlist,
671 						 &src_mm->mmlist);
672 				spin_unlock(&mmlist_lock);
673 			}
674 			if (likely(!non_swap_entry(entry)))
675 				rss[MM_SWAPENTS]++;
676 			else if (is_write_migration_entry(entry) &&
677 					is_cow_mapping(vm_flags)) {
678 				/*
679 				 * COW mappings require pages in both parent
680 				 * and child to be set to read.
681 				 */
682 				make_migration_entry_read(&entry);
683 				pte = swp_entry_to_pte(entry);
684 				set_pte_at(src_mm, addr, src_pte, pte);
685 			}
686 		}
687 		goto out_set_pte;
688 	}
689 
690 	/*
691 	 * If it's a COW mapping, write protect it both
692 	 * in the parent and the child
693 	 */
694 	if (is_cow_mapping(vm_flags)) {
695 		ptep_set_wrprotect(src_mm, addr, src_pte);
696 		pte = pte_wrprotect(pte);
697 	}
698 
699 	/*
700 	 * If it's a shared mapping, mark it clean in
701 	 * the child
702 	 */
703 	if (vm_flags & VM_SHARED)
704 		pte = pte_mkclean(pte);
705 	pte = pte_mkold(pte);
706 
707 	page = vm_normal_page(vma, addr, pte);
708 	if (page) {
709 		get_page(page);
710 		page_dup_rmap(page);
711 		if (PageAnon(page))
712 			rss[MM_ANONPAGES]++;
713 		else
714 			rss[MM_FILEPAGES]++;
715 	}
716 
717 out_set_pte:
718 	set_pte_at(dst_mm, addr, dst_pte, pte);
719 	return 0;
720 }
721 
722 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
723 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
724 		unsigned long addr, unsigned long end)
725 {
726 	pte_t *orig_src_pte, *orig_dst_pte;
727 	pte_t *src_pte, *dst_pte;
728 	spinlock_t *src_ptl, *dst_ptl;
729 	int progress = 0;
730 	int rss[NR_MM_COUNTERS];
731 	swp_entry_t entry = (swp_entry_t){0};
732 
733 again:
734 	init_rss_vec(rss);
735 
736 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
737 	if (!dst_pte)
738 		return -ENOMEM;
739 	src_pte = pte_offset_map(src_pmd, addr);
740 	src_ptl = pte_lockptr(src_mm, src_pmd);
741 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
742 	orig_src_pte = src_pte;
743 	orig_dst_pte = dst_pte;
744 	arch_enter_lazy_mmu_mode();
745 
746 	do {
747 		/*
748 		 * We are holding two locks at this point - either of them
749 		 * could generate latencies in another task on another CPU.
750 		 */
751 		if (progress >= 32) {
752 			progress = 0;
753 			if (need_resched() ||
754 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
755 				break;
756 		}
757 		if (pte_none(*src_pte)) {
758 			progress++;
759 			continue;
760 		}
761 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
762 							vma, addr, rss);
763 		if (entry.val)
764 			break;
765 		progress += 8;
766 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
767 
768 	arch_leave_lazy_mmu_mode();
769 	spin_unlock(src_ptl);
770 	pte_unmap(orig_src_pte);
771 	add_mm_rss_vec(dst_mm, rss);
772 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
773 	cond_resched();
774 
775 	if (entry.val) {
776 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
777 			return -ENOMEM;
778 		progress = 0;
779 	}
780 	if (addr != end)
781 		goto again;
782 	return 0;
783 }
784 
785 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
787 		unsigned long addr, unsigned long end)
788 {
789 	pmd_t *src_pmd, *dst_pmd;
790 	unsigned long next;
791 
792 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
793 	if (!dst_pmd)
794 		return -ENOMEM;
795 	src_pmd = pmd_offset(src_pud, addr);
796 	do {
797 		next = pmd_addr_end(addr, end);
798 		if (pmd_none_or_clear_bad(src_pmd))
799 			continue;
800 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
801 						vma, addr, next))
802 			return -ENOMEM;
803 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
804 	return 0;
805 }
806 
807 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
809 		unsigned long addr, unsigned long end)
810 {
811 	pud_t *src_pud, *dst_pud;
812 	unsigned long next;
813 
814 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
815 	if (!dst_pud)
816 		return -ENOMEM;
817 	src_pud = pud_offset(src_pgd, addr);
818 	do {
819 		next = pud_addr_end(addr, end);
820 		if (pud_none_or_clear_bad(src_pud))
821 			continue;
822 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
823 						vma, addr, next))
824 			return -ENOMEM;
825 	} while (dst_pud++, src_pud++, addr = next, addr != end);
826 	return 0;
827 }
828 
829 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830 		struct vm_area_struct *vma)
831 {
832 	pgd_t *src_pgd, *dst_pgd;
833 	unsigned long next;
834 	unsigned long addr = vma->vm_start;
835 	unsigned long end = vma->vm_end;
836 	int ret;
837 
838 	/*
839 	 * Don't copy ptes where a page fault will fill them correctly.
840 	 * Fork becomes much lighter when there are big shared or private
841 	 * readonly mappings. The tradeoff is that copy_page_range is more
842 	 * efficient than faulting.
843 	 */
844 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
845 		if (!vma->anon_vma)
846 			return 0;
847 	}
848 
849 	if (is_vm_hugetlb_page(vma))
850 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
851 
852 	if (unlikely(is_pfn_mapping(vma))) {
853 		/*
854 		 * We do not free on error cases below as remove_vma
855 		 * gets called on error from higher level routine
856 		 */
857 		ret = track_pfn_vma_copy(vma);
858 		if (ret)
859 			return ret;
860 	}
861 
862 	/*
863 	 * We need to invalidate the secondary MMU mappings only when
864 	 * there could be a permission downgrade on the ptes of the
865 	 * parent mm. And a permission downgrade will only happen if
866 	 * is_cow_mapping() returns true.
867 	 */
868 	if (is_cow_mapping(vma->vm_flags))
869 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
870 
871 	ret = 0;
872 	dst_pgd = pgd_offset(dst_mm, addr);
873 	src_pgd = pgd_offset(src_mm, addr);
874 	do {
875 		next = pgd_addr_end(addr, end);
876 		if (pgd_none_or_clear_bad(src_pgd))
877 			continue;
878 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
879 					    vma, addr, next))) {
880 			ret = -ENOMEM;
881 			break;
882 		}
883 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
884 
885 	if (is_cow_mapping(vma->vm_flags))
886 		mmu_notifier_invalidate_range_end(src_mm,
887 						  vma->vm_start, end);
888 	return ret;
889 }
890 
891 static unsigned long zap_pte_range(struct mmu_gather *tlb,
892 				struct vm_area_struct *vma, pmd_t *pmd,
893 				unsigned long addr, unsigned long end,
894 				long *zap_work, struct zap_details *details)
895 {
896 	struct mm_struct *mm = tlb->mm;
897 	pte_t *pte;
898 	spinlock_t *ptl;
899 	int rss[NR_MM_COUNTERS];
900 
901 	init_rss_vec(rss);
902 
903 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
904 	arch_enter_lazy_mmu_mode();
905 	do {
906 		pte_t ptent = *pte;
907 		if (pte_none(ptent)) {
908 			(*zap_work)--;
909 			continue;
910 		}
911 
912 		(*zap_work) -= PAGE_SIZE;
913 
914 		if (pte_present(ptent)) {
915 			struct page *page;
916 
917 			page = vm_normal_page(vma, addr, ptent);
918 			if (unlikely(details) && page) {
919 				/*
920 				 * unmap_shared_mapping_pages() wants to
921 				 * invalidate cache without truncating:
922 				 * unmap shared but keep private pages.
923 				 */
924 				if (details->check_mapping &&
925 				    details->check_mapping != page->mapping)
926 					continue;
927 				/*
928 				 * Each page->index must be checked when
929 				 * invalidating or truncating nonlinear.
930 				 */
931 				if (details->nonlinear_vma &&
932 				    (page->index < details->first_index ||
933 				     page->index > details->last_index))
934 					continue;
935 			}
936 			ptent = ptep_get_and_clear_full(mm, addr, pte,
937 							tlb->fullmm);
938 			tlb_remove_tlb_entry(tlb, pte, addr);
939 			if (unlikely(!page))
940 				continue;
941 			if (unlikely(details) && details->nonlinear_vma
942 			    && linear_page_index(details->nonlinear_vma,
943 						addr) != page->index)
944 				set_pte_at(mm, addr, pte,
945 					   pgoff_to_pte(page->index));
946 			if (PageAnon(page))
947 				rss[MM_ANONPAGES]--;
948 			else {
949 				if (pte_dirty(ptent))
950 					set_page_dirty(page);
951 				if (pte_young(ptent) &&
952 				    likely(!VM_SequentialReadHint(vma)))
953 					mark_page_accessed(page);
954 				rss[MM_FILEPAGES]--;
955 			}
956 			page_remove_rmap(page);
957 			if (unlikely(page_mapcount(page) < 0))
958 				print_bad_pte(vma, addr, ptent, page);
959 			tlb_remove_page(tlb, page);
960 			continue;
961 		}
962 		/*
963 		 * If details->check_mapping, we leave swap entries;
964 		 * if details->nonlinear_vma, we leave file entries.
965 		 */
966 		if (unlikely(details))
967 			continue;
968 		if (pte_file(ptent)) {
969 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
970 				print_bad_pte(vma, addr, ptent, NULL);
971 		} else {
972 			swp_entry_t entry = pte_to_swp_entry(ptent);
973 
974 			if (!non_swap_entry(entry))
975 				rss[MM_SWAPENTS]--;
976 			if (unlikely(!free_swap_and_cache(entry)))
977 				print_bad_pte(vma, addr, ptent, NULL);
978 		}
979 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
980 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
981 
982 	add_mm_rss_vec(mm, rss);
983 	arch_leave_lazy_mmu_mode();
984 	pte_unmap_unlock(pte - 1, ptl);
985 
986 	return addr;
987 }
988 
989 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
990 				struct vm_area_struct *vma, pud_t *pud,
991 				unsigned long addr, unsigned long end,
992 				long *zap_work, struct zap_details *details)
993 {
994 	pmd_t *pmd;
995 	unsigned long next;
996 
997 	pmd = pmd_offset(pud, addr);
998 	do {
999 		next = pmd_addr_end(addr, end);
1000 		if (pmd_none_or_clear_bad(pmd)) {
1001 			(*zap_work)--;
1002 			continue;
1003 		}
1004 		next = zap_pte_range(tlb, vma, pmd, addr, next,
1005 						zap_work, details);
1006 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
1007 
1008 	return addr;
1009 }
1010 
1011 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1012 				struct vm_area_struct *vma, pgd_t *pgd,
1013 				unsigned long addr, unsigned long end,
1014 				long *zap_work, struct zap_details *details)
1015 {
1016 	pud_t *pud;
1017 	unsigned long next;
1018 
1019 	pud = pud_offset(pgd, addr);
1020 	do {
1021 		next = pud_addr_end(addr, end);
1022 		if (pud_none_or_clear_bad(pud)) {
1023 			(*zap_work)--;
1024 			continue;
1025 		}
1026 		next = zap_pmd_range(tlb, vma, pud, addr, next,
1027 						zap_work, details);
1028 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
1029 
1030 	return addr;
1031 }
1032 
1033 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1034 				struct vm_area_struct *vma,
1035 				unsigned long addr, unsigned long end,
1036 				long *zap_work, struct zap_details *details)
1037 {
1038 	pgd_t *pgd;
1039 	unsigned long next;
1040 
1041 	if (details && !details->check_mapping && !details->nonlinear_vma)
1042 		details = NULL;
1043 
1044 	BUG_ON(addr >= end);
1045 	mem_cgroup_uncharge_start();
1046 	tlb_start_vma(tlb, vma);
1047 	pgd = pgd_offset(vma->vm_mm, addr);
1048 	do {
1049 		next = pgd_addr_end(addr, end);
1050 		if (pgd_none_or_clear_bad(pgd)) {
1051 			(*zap_work)--;
1052 			continue;
1053 		}
1054 		next = zap_pud_range(tlb, vma, pgd, addr, next,
1055 						zap_work, details);
1056 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
1057 	tlb_end_vma(tlb, vma);
1058 	mem_cgroup_uncharge_end();
1059 
1060 	return addr;
1061 }
1062 
1063 #ifdef CONFIG_PREEMPT
1064 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1065 #else
1066 /* No preempt: go for improved straight-line efficiency */
1067 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1068 #endif
1069 
1070 /**
1071  * unmap_vmas - unmap a range of memory covered by a list of vma's
1072  * @tlbp: address of the caller's struct mmu_gather
1073  * @vma: the starting vma
1074  * @start_addr: virtual address at which to start unmapping
1075  * @end_addr: virtual address at which to end unmapping
1076  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1077  * @details: details of nonlinear truncation or shared cache invalidation
1078  *
1079  * Returns the end address of the unmapping (restart addr if interrupted).
1080  *
1081  * Unmap all pages in the vma list.
1082  *
1083  * We aim to not hold locks for too long (for scheduling latency reasons).
1084  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1085  * return the ending mmu_gather to the caller.
1086  *
1087  * Only addresses between `start' and `end' will be unmapped.
1088  *
1089  * The VMA list must be sorted in ascending virtual address order.
1090  *
1091  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1092  * range after unmap_vmas() returns.  So the only responsibility here is to
1093  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1094  * drops the lock and schedules.
1095  */
1096 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1097 		struct vm_area_struct *vma, unsigned long start_addr,
1098 		unsigned long end_addr, unsigned long *nr_accounted,
1099 		struct zap_details *details)
1100 {
1101 	long zap_work = ZAP_BLOCK_SIZE;
1102 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1103 	int tlb_start_valid = 0;
1104 	unsigned long start = start_addr;
1105 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1106 	int fullmm = (*tlbp)->fullmm;
1107 	struct mm_struct *mm = vma->vm_mm;
1108 
1109 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1110 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1111 		unsigned long end;
1112 
1113 		start = max(vma->vm_start, start_addr);
1114 		if (start >= vma->vm_end)
1115 			continue;
1116 		end = min(vma->vm_end, end_addr);
1117 		if (end <= vma->vm_start)
1118 			continue;
1119 
1120 		if (vma->vm_flags & VM_ACCOUNT)
1121 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1122 
1123 		if (unlikely(is_pfn_mapping(vma)))
1124 			untrack_pfn_vma(vma, 0, 0);
1125 
1126 		while (start != end) {
1127 			if (!tlb_start_valid) {
1128 				tlb_start = start;
1129 				tlb_start_valid = 1;
1130 			}
1131 
1132 			if (unlikely(is_vm_hugetlb_page(vma))) {
1133 				/*
1134 				 * It is undesirable to test vma->vm_file as it
1135 				 * should be non-null for valid hugetlb area.
1136 				 * However, vm_file will be NULL in the error
1137 				 * cleanup path of do_mmap_pgoff. When
1138 				 * hugetlbfs ->mmap method fails,
1139 				 * do_mmap_pgoff() nullifies vma->vm_file
1140 				 * before calling this function to clean up.
1141 				 * Since no pte has actually been setup, it is
1142 				 * safe to do nothing in this case.
1143 				 */
1144 				if (vma->vm_file) {
1145 					unmap_hugepage_range(vma, start, end, NULL);
1146 					zap_work -= (end - start) /
1147 					pages_per_huge_page(hstate_vma(vma));
1148 				}
1149 
1150 				start = end;
1151 			} else
1152 				start = unmap_page_range(*tlbp, vma,
1153 						start, end, &zap_work, details);
1154 
1155 			if (zap_work > 0) {
1156 				BUG_ON(start != end);
1157 				break;
1158 			}
1159 
1160 			tlb_finish_mmu(*tlbp, tlb_start, start);
1161 
1162 			if (need_resched() ||
1163 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1164 				if (i_mmap_lock) {
1165 					*tlbp = NULL;
1166 					goto out;
1167 				}
1168 				cond_resched();
1169 			}
1170 
1171 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1172 			tlb_start_valid = 0;
1173 			zap_work = ZAP_BLOCK_SIZE;
1174 		}
1175 	}
1176 out:
1177 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1178 	return start;	/* which is now the end (or restart) address */
1179 }
1180 
1181 /**
1182  * zap_page_range - remove user pages in a given range
1183  * @vma: vm_area_struct holding the applicable pages
1184  * @address: starting address of pages to zap
1185  * @size: number of bytes to zap
1186  * @details: details of nonlinear truncation or shared cache invalidation
1187  */
1188 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1189 		unsigned long size, struct zap_details *details)
1190 {
1191 	struct mm_struct *mm = vma->vm_mm;
1192 	struct mmu_gather *tlb;
1193 	unsigned long end = address + size;
1194 	unsigned long nr_accounted = 0;
1195 
1196 	lru_add_drain();
1197 	tlb = tlb_gather_mmu(mm, 0);
1198 	update_hiwater_rss(mm);
1199 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1200 	if (tlb)
1201 		tlb_finish_mmu(tlb, address, end);
1202 	return end;
1203 }
1204 
1205 /**
1206  * zap_vma_ptes - remove ptes mapping the vma
1207  * @vma: vm_area_struct holding ptes to be zapped
1208  * @address: starting address of pages to zap
1209  * @size: number of bytes to zap
1210  *
1211  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1212  *
1213  * The entire address range must be fully contained within the vma.
1214  *
1215  * Returns 0 if successful.
1216  */
1217 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1218 		unsigned long size)
1219 {
1220 	if (address < vma->vm_start || address + size > vma->vm_end ||
1221 	    		!(vma->vm_flags & VM_PFNMAP))
1222 		return -1;
1223 	zap_page_range(vma, address, size, NULL);
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1227 
1228 /**
1229  * follow_page - look up a page descriptor from a user-virtual address
1230  * @vma: vm_area_struct mapping @address
1231  * @address: virtual address to look up
1232  * @flags: flags modifying lookup behaviour
1233  *
1234  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1235  *
1236  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1237  * an error pointer if there is a mapping to something not represented
1238  * by a page descriptor (see also vm_normal_page()).
1239  */
1240 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1241 			unsigned int flags)
1242 {
1243 	pgd_t *pgd;
1244 	pud_t *pud;
1245 	pmd_t *pmd;
1246 	pte_t *ptep, pte;
1247 	spinlock_t *ptl;
1248 	struct page *page;
1249 	struct mm_struct *mm = vma->vm_mm;
1250 
1251 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1252 	if (!IS_ERR(page)) {
1253 		BUG_ON(flags & FOLL_GET);
1254 		goto out;
1255 	}
1256 
1257 	page = NULL;
1258 	pgd = pgd_offset(mm, address);
1259 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1260 		goto no_page_table;
1261 
1262 	pud = pud_offset(pgd, address);
1263 	if (pud_none(*pud))
1264 		goto no_page_table;
1265 	if (pud_huge(*pud)) {
1266 		BUG_ON(flags & FOLL_GET);
1267 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1268 		goto out;
1269 	}
1270 	if (unlikely(pud_bad(*pud)))
1271 		goto no_page_table;
1272 
1273 	pmd = pmd_offset(pud, address);
1274 	if (pmd_none(*pmd))
1275 		goto no_page_table;
1276 	if (pmd_huge(*pmd)) {
1277 		BUG_ON(flags & FOLL_GET);
1278 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1279 		goto out;
1280 	}
1281 	if (unlikely(pmd_bad(*pmd)))
1282 		goto no_page_table;
1283 
1284 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1285 
1286 	pte = *ptep;
1287 	if (!pte_present(pte))
1288 		goto no_page;
1289 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1290 		goto unlock;
1291 
1292 	page = vm_normal_page(vma, address, pte);
1293 	if (unlikely(!page)) {
1294 		if ((flags & FOLL_DUMP) ||
1295 		    !is_zero_pfn(pte_pfn(pte)))
1296 			goto bad_page;
1297 		page = pte_page(pte);
1298 	}
1299 
1300 	if (flags & FOLL_GET)
1301 		get_page(page);
1302 	if (flags & FOLL_TOUCH) {
1303 		if ((flags & FOLL_WRITE) &&
1304 		    !pte_dirty(pte) && !PageDirty(page))
1305 			set_page_dirty(page);
1306 		/*
1307 		 * pte_mkyoung() would be more correct here, but atomic care
1308 		 * is needed to avoid losing the dirty bit: it is easier to use
1309 		 * mark_page_accessed().
1310 		 */
1311 		mark_page_accessed(page);
1312 	}
1313 unlock:
1314 	pte_unmap_unlock(ptep, ptl);
1315 out:
1316 	return page;
1317 
1318 bad_page:
1319 	pte_unmap_unlock(ptep, ptl);
1320 	return ERR_PTR(-EFAULT);
1321 
1322 no_page:
1323 	pte_unmap_unlock(ptep, ptl);
1324 	if (!pte_none(pte))
1325 		return page;
1326 
1327 no_page_table:
1328 	/*
1329 	 * When core dumping an enormous anonymous area that nobody
1330 	 * has touched so far, we don't want to allocate unnecessary pages or
1331 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1332 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1333 	 * But we can only make this optimization where a hole would surely
1334 	 * be zero-filled if handle_mm_fault() actually did handle it.
1335 	 */
1336 	if ((flags & FOLL_DUMP) &&
1337 	    (!vma->vm_ops || !vma->vm_ops->fault))
1338 		return ERR_PTR(-EFAULT);
1339 	return page;
1340 }
1341 
1342 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1343 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1344 		     struct page **pages, struct vm_area_struct **vmas)
1345 {
1346 	int i;
1347 	unsigned long vm_flags;
1348 
1349 	if (nr_pages <= 0)
1350 		return 0;
1351 
1352 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1353 
1354 	/*
1355 	 * Require read or write permissions.
1356 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1357 	 */
1358 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1359 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1360 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1361 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1362 	i = 0;
1363 
1364 	do {
1365 		struct vm_area_struct *vma;
1366 
1367 		vma = find_extend_vma(mm, start);
1368 		if (!vma && in_gate_area(tsk, start)) {
1369 			unsigned long pg = start & PAGE_MASK;
1370 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1371 			pgd_t *pgd;
1372 			pud_t *pud;
1373 			pmd_t *pmd;
1374 			pte_t *pte;
1375 
1376 			/* user gate pages are read-only */
1377 			if (gup_flags & FOLL_WRITE)
1378 				return i ? : -EFAULT;
1379 			if (pg > TASK_SIZE)
1380 				pgd = pgd_offset_k(pg);
1381 			else
1382 				pgd = pgd_offset_gate(mm, pg);
1383 			BUG_ON(pgd_none(*pgd));
1384 			pud = pud_offset(pgd, pg);
1385 			BUG_ON(pud_none(*pud));
1386 			pmd = pmd_offset(pud, pg);
1387 			if (pmd_none(*pmd))
1388 				return i ? : -EFAULT;
1389 			pte = pte_offset_map(pmd, pg);
1390 			if (pte_none(*pte)) {
1391 				pte_unmap(pte);
1392 				return i ? : -EFAULT;
1393 			}
1394 			if (pages) {
1395 				struct page *page;
1396 
1397 				page = vm_normal_page(gate_vma, start, *pte);
1398 				if (!page) {
1399 					if (!(gup_flags & FOLL_DUMP) &&
1400 					     is_zero_pfn(pte_pfn(*pte)))
1401 						page = pte_page(*pte);
1402 					else {
1403 						pte_unmap(pte);
1404 						return i ? : -EFAULT;
1405 					}
1406 				}
1407 				pages[i] = page;
1408 				get_page(page);
1409 			}
1410 			pte_unmap(pte);
1411 			if (vmas)
1412 				vmas[i] = gate_vma;
1413 			i++;
1414 			start += PAGE_SIZE;
1415 			nr_pages--;
1416 			continue;
1417 		}
1418 
1419 		if (!vma ||
1420 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1421 		    !(vm_flags & vma->vm_flags))
1422 			return i ? : -EFAULT;
1423 
1424 		if (is_vm_hugetlb_page(vma)) {
1425 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1426 					&start, &nr_pages, i, gup_flags);
1427 			continue;
1428 		}
1429 
1430 		do {
1431 			struct page *page;
1432 			unsigned int foll_flags = gup_flags;
1433 
1434 			/*
1435 			 * If we have a pending SIGKILL, don't keep faulting
1436 			 * pages and potentially allocating memory.
1437 			 */
1438 			if (unlikely(fatal_signal_pending(current)))
1439 				return i ? i : -ERESTARTSYS;
1440 
1441 			cond_resched();
1442 			while (!(page = follow_page(vma, start, foll_flags))) {
1443 				int ret;
1444 
1445 				ret = handle_mm_fault(mm, vma, start,
1446 					(foll_flags & FOLL_WRITE) ?
1447 					FAULT_FLAG_WRITE : 0);
1448 
1449 				if (ret & VM_FAULT_ERROR) {
1450 					if (ret & VM_FAULT_OOM)
1451 						return i ? i : -ENOMEM;
1452 					if (ret &
1453 					    (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
1454 					     VM_FAULT_SIGBUS))
1455 						return i ? i : -EFAULT;
1456 					BUG();
1457 				}
1458 				if (ret & VM_FAULT_MAJOR)
1459 					tsk->maj_flt++;
1460 				else
1461 					tsk->min_flt++;
1462 
1463 				/*
1464 				 * The VM_FAULT_WRITE bit tells us that
1465 				 * do_wp_page has broken COW when necessary,
1466 				 * even if maybe_mkwrite decided not to set
1467 				 * pte_write. We can thus safely do subsequent
1468 				 * page lookups as if they were reads. But only
1469 				 * do so when looping for pte_write is futile:
1470 				 * in some cases userspace may also be wanting
1471 				 * to write to the gotten user page, which a
1472 				 * read fault here might prevent (a readonly
1473 				 * page might get reCOWed by userspace write).
1474 				 */
1475 				if ((ret & VM_FAULT_WRITE) &&
1476 				    !(vma->vm_flags & VM_WRITE))
1477 					foll_flags &= ~FOLL_WRITE;
1478 
1479 				cond_resched();
1480 			}
1481 			if (IS_ERR(page))
1482 				return i ? i : PTR_ERR(page);
1483 			if (pages) {
1484 				pages[i] = page;
1485 
1486 				flush_anon_page(vma, page, start);
1487 				flush_dcache_page(page);
1488 			}
1489 			if (vmas)
1490 				vmas[i] = vma;
1491 			i++;
1492 			start += PAGE_SIZE;
1493 			nr_pages--;
1494 		} while (nr_pages && start < vma->vm_end);
1495 	} while (nr_pages);
1496 	return i;
1497 }
1498 
1499 /**
1500  * get_user_pages() - pin user pages in memory
1501  * @tsk:	task_struct of target task
1502  * @mm:		mm_struct of target mm
1503  * @start:	starting user address
1504  * @nr_pages:	number of pages from start to pin
1505  * @write:	whether pages will be written to by the caller
1506  * @force:	whether to force write access even if user mapping is
1507  *		readonly. This will result in the page being COWed even
1508  *		in MAP_SHARED mappings. You do not want this.
1509  * @pages:	array that receives pointers to the pages pinned.
1510  *		Should be at least nr_pages long. Or NULL, if caller
1511  *		only intends to ensure the pages are faulted in.
1512  * @vmas:	array of pointers to vmas corresponding to each page.
1513  *		Or NULL if the caller does not require them.
1514  *
1515  * Returns number of pages pinned. This may be fewer than the number
1516  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1517  * were pinned, returns -errno. Each page returned must be released
1518  * with a put_page() call when it is finished with. vmas will only
1519  * remain valid while mmap_sem is held.
1520  *
1521  * Must be called with mmap_sem held for read or write.
1522  *
1523  * get_user_pages walks a process's page tables and takes a reference to
1524  * each struct page that each user address corresponds to at a given
1525  * instant. That is, it takes the page that would be accessed if a user
1526  * thread accesses the given user virtual address at that instant.
1527  *
1528  * This does not guarantee that the page exists in the user mappings when
1529  * get_user_pages returns, and there may even be a completely different
1530  * page there in some cases (eg. if mmapped pagecache has been invalidated
1531  * and subsequently re faulted). However it does guarantee that the page
1532  * won't be freed completely. And mostly callers simply care that the page
1533  * contains data that was valid *at some point in time*. Typically, an IO
1534  * or similar operation cannot guarantee anything stronger anyway because
1535  * locks can't be held over the syscall boundary.
1536  *
1537  * If write=0, the page must not be written to. If the page is written to,
1538  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1539  * after the page is finished with, and before put_page is called.
1540  *
1541  * get_user_pages is typically used for fewer-copy IO operations, to get a
1542  * handle on the memory by some means other than accesses via the user virtual
1543  * addresses. The pages may be submitted for DMA to devices or accessed via
1544  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1545  * use the correct cache flushing APIs.
1546  *
1547  * See also get_user_pages_fast, for performance critical applications.
1548  */
1549 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1550 		unsigned long start, int nr_pages, int write, int force,
1551 		struct page **pages, struct vm_area_struct **vmas)
1552 {
1553 	int flags = FOLL_TOUCH;
1554 
1555 	if (pages)
1556 		flags |= FOLL_GET;
1557 	if (write)
1558 		flags |= FOLL_WRITE;
1559 	if (force)
1560 		flags |= FOLL_FORCE;
1561 
1562 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1563 }
1564 EXPORT_SYMBOL(get_user_pages);
1565 
1566 /**
1567  * get_dump_page() - pin user page in memory while writing it to core dump
1568  * @addr: user address
1569  *
1570  * Returns struct page pointer of user page pinned for dump,
1571  * to be freed afterwards by page_cache_release() or put_page().
1572  *
1573  * Returns NULL on any kind of failure - a hole must then be inserted into
1574  * the corefile, to preserve alignment with its headers; and also returns
1575  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1576  * allowing a hole to be left in the corefile to save diskspace.
1577  *
1578  * Called without mmap_sem, but after all other threads have been killed.
1579  */
1580 #ifdef CONFIG_ELF_CORE
1581 struct page *get_dump_page(unsigned long addr)
1582 {
1583 	struct vm_area_struct *vma;
1584 	struct page *page;
1585 
1586 	if (__get_user_pages(current, current->mm, addr, 1,
1587 			FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1588 		return NULL;
1589 	flush_cache_page(vma, addr, page_to_pfn(page));
1590 	return page;
1591 }
1592 #endif /* CONFIG_ELF_CORE */
1593 
1594 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1595 			spinlock_t **ptl)
1596 {
1597 	pgd_t * pgd = pgd_offset(mm, addr);
1598 	pud_t * pud = pud_alloc(mm, pgd, addr);
1599 	if (pud) {
1600 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1601 		if (pmd)
1602 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1603 	}
1604 	return NULL;
1605 }
1606 
1607 /*
1608  * This is the old fallback for page remapping.
1609  *
1610  * For historical reasons, it only allows reserved pages. Only
1611  * old drivers should use this, and they needed to mark their
1612  * pages reserved for the old functions anyway.
1613  */
1614 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1615 			struct page *page, pgprot_t prot)
1616 {
1617 	struct mm_struct *mm = vma->vm_mm;
1618 	int retval;
1619 	pte_t *pte;
1620 	spinlock_t *ptl;
1621 
1622 	retval = -EINVAL;
1623 	if (PageAnon(page))
1624 		goto out;
1625 	retval = -ENOMEM;
1626 	flush_dcache_page(page);
1627 	pte = get_locked_pte(mm, addr, &ptl);
1628 	if (!pte)
1629 		goto out;
1630 	retval = -EBUSY;
1631 	if (!pte_none(*pte))
1632 		goto out_unlock;
1633 
1634 	/* Ok, finally just insert the thing.. */
1635 	get_page(page);
1636 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1637 	page_add_file_rmap(page);
1638 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1639 
1640 	retval = 0;
1641 	pte_unmap_unlock(pte, ptl);
1642 	return retval;
1643 out_unlock:
1644 	pte_unmap_unlock(pte, ptl);
1645 out:
1646 	return retval;
1647 }
1648 
1649 /**
1650  * vm_insert_page - insert single page into user vma
1651  * @vma: user vma to map to
1652  * @addr: target user address of this page
1653  * @page: source kernel page
1654  *
1655  * This allows drivers to insert individual pages they've allocated
1656  * into a user vma.
1657  *
1658  * The page has to be a nice clean _individual_ kernel allocation.
1659  * If you allocate a compound page, you need to have marked it as
1660  * such (__GFP_COMP), or manually just split the page up yourself
1661  * (see split_page()).
1662  *
1663  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1664  * took an arbitrary page protection parameter. This doesn't allow
1665  * that. Your vma protection will have to be set up correctly, which
1666  * means that if you want a shared writable mapping, you'd better
1667  * ask for a shared writable mapping!
1668  *
1669  * The page does not need to be reserved.
1670  */
1671 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1672 			struct page *page)
1673 {
1674 	if (addr < vma->vm_start || addr >= vma->vm_end)
1675 		return -EFAULT;
1676 	if (!page_count(page))
1677 		return -EINVAL;
1678 	vma->vm_flags |= VM_INSERTPAGE;
1679 	return insert_page(vma, addr, page, vma->vm_page_prot);
1680 }
1681 EXPORT_SYMBOL(vm_insert_page);
1682 
1683 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1684 			unsigned long pfn, pgprot_t prot)
1685 {
1686 	struct mm_struct *mm = vma->vm_mm;
1687 	int retval;
1688 	pte_t *pte, entry;
1689 	spinlock_t *ptl;
1690 
1691 	retval = -ENOMEM;
1692 	pte = get_locked_pte(mm, addr, &ptl);
1693 	if (!pte)
1694 		goto out;
1695 	retval = -EBUSY;
1696 	if (!pte_none(*pte))
1697 		goto out_unlock;
1698 
1699 	/* Ok, finally just insert the thing.. */
1700 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1701 	set_pte_at(mm, addr, pte, entry);
1702 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1703 
1704 	retval = 0;
1705 out_unlock:
1706 	pte_unmap_unlock(pte, ptl);
1707 out:
1708 	return retval;
1709 }
1710 
1711 /**
1712  * vm_insert_pfn - insert single pfn into user vma
1713  * @vma: user vma to map to
1714  * @addr: target user address of this page
1715  * @pfn: source kernel pfn
1716  *
1717  * Similar to vm_inert_page, this allows drivers to insert individual pages
1718  * they've allocated into a user vma. Same comments apply.
1719  *
1720  * This function should only be called from a vm_ops->fault handler, and
1721  * in that case the handler should return NULL.
1722  *
1723  * vma cannot be a COW mapping.
1724  *
1725  * As this is called only for pages that do not currently exist, we
1726  * do not need to flush old virtual caches or the TLB.
1727  */
1728 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1729 			unsigned long pfn)
1730 {
1731 	int ret;
1732 	pgprot_t pgprot = vma->vm_page_prot;
1733 	/*
1734 	 * Technically, architectures with pte_special can avoid all these
1735 	 * restrictions (same for remap_pfn_range).  However we would like
1736 	 * consistency in testing and feature parity among all, so we should
1737 	 * try to keep these invariants in place for everybody.
1738 	 */
1739 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1740 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1741 						(VM_PFNMAP|VM_MIXEDMAP));
1742 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1743 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1744 
1745 	if (addr < vma->vm_start || addr >= vma->vm_end)
1746 		return -EFAULT;
1747 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1748 		return -EINVAL;
1749 
1750 	ret = insert_pfn(vma, addr, pfn, pgprot);
1751 
1752 	if (ret)
1753 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1754 
1755 	return ret;
1756 }
1757 EXPORT_SYMBOL(vm_insert_pfn);
1758 
1759 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1760 			unsigned long pfn)
1761 {
1762 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1763 
1764 	if (addr < vma->vm_start || addr >= vma->vm_end)
1765 		return -EFAULT;
1766 
1767 	/*
1768 	 * If we don't have pte special, then we have to use the pfn_valid()
1769 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1770 	 * refcount the page if pfn_valid is true (hence insert_page rather
1771 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1772 	 * without pte special, it would there be refcounted as a normal page.
1773 	 */
1774 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1775 		struct page *page;
1776 
1777 		page = pfn_to_page(pfn);
1778 		return insert_page(vma, addr, page, vma->vm_page_prot);
1779 	}
1780 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1781 }
1782 EXPORT_SYMBOL(vm_insert_mixed);
1783 
1784 /*
1785  * maps a range of physical memory into the requested pages. the old
1786  * mappings are removed. any references to nonexistent pages results
1787  * in null mappings (currently treated as "copy-on-access")
1788  */
1789 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1790 			unsigned long addr, unsigned long end,
1791 			unsigned long pfn, pgprot_t prot)
1792 {
1793 	pte_t *pte;
1794 	spinlock_t *ptl;
1795 
1796 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1797 	if (!pte)
1798 		return -ENOMEM;
1799 	arch_enter_lazy_mmu_mode();
1800 	do {
1801 		BUG_ON(!pte_none(*pte));
1802 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1803 		pfn++;
1804 	} while (pte++, addr += PAGE_SIZE, addr != end);
1805 	arch_leave_lazy_mmu_mode();
1806 	pte_unmap_unlock(pte - 1, ptl);
1807 	return 0;
1808 }
1809 
1810 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1811 			unsigned long addr, unsigned long end,
1812 			unsigned long pfn, pgprot_t prot)
1813 {
1814 	pmd_t *pmd;
1815 	unsigned long next;
1816 
1817 	pfn -= addr >> PAGE_SHIFT;
1818 	pmd = pmd_alloc(mm, pud, addr);
1819 	if (!pmd)
1820 		return -ENOMEM;
1821 	do {
1822 		next = pmd_addr_end(addr, end);
1823 		if (remap_pte_range(mm, pmd, addr, next,
1824 				pfn + (addr >> PAGE_SHIFT), prot))
1825 			return -ENOMEM;
1826 	} while (pmd++, addr = next, addr != end);
1827 	return 0;
1828 }
1829 
1830 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1831 			unsigned long addr, unsigned long end,
1832 			unsigned long pfn, pgprot_t prot)
1833 {
1834 	pud_t *pud;
1835 	unsigned long next;
1836 
1837 	pfn -= addr >> PAGE_SHIFT;
1838 	pud = pud_alloc(mm, pgd, addr);
1839 	if (!pud)
1840 		return -ENOMEM;
1841 	do {
1842 		next = pud_addr_end(addr, end);
1843 		if (remap_pmd_range(mm, pud, addr, next,
1844 				pfn + (addr >> PAGE_SHIFT), prot))
1845 			return -ENOMEM;
1846 	} while (pud++, addr = next, addr != end);
1847 	return 0;
1848 }
1849 
1850 /**
1851  * remap_pfn_range - remap kernel memory to userspace
1852  * @vma: user vma to map to
1853  * @addr: target user address to start at
1854  * @pfn: physical address of kernel memory
1855  * @size: size of map area
1856  * @prot: page protection flags for this mapping
1857  *
1858  *  Note: this is only safe if the mm semaphore is held when called.
1859  */
1860 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1861 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1862 {
1863 	pgd_t *pgd;
1864 	unsigned long next;
1865 	unsigned long end = addr + PAGE_ALIGN(size);
1866 	struct mm_struct *mm = vma->vm_mm;
1867 	int err;
1868 
1869 	/*
1870 	 * Physically remapped pages are special. Tell the
1871 	 * rest of the world about it:
1872 	 *   VM_IO tells people not to look at these pages
1873 	 *	(accesses can have side effects).
1874 	 *   VM_RESERVED is specified all over the place, because
1875 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1876 	 *	in 2.6 the LRU scan won't even find its pages, so this
1877 	 *	flag means no more than count its pages in reserved_vm,
1878 	 * 	and omit it from core dump, even when VM_IO turned off.
1879 	 *   VM_PFNMAP tells the core MM that the base pages are just
1880 	 *	raw PFN mappings, and do not have a "struct page" associated
1881 	 *	with them.
1882 	 *
1883 	 * There's a horrible special case to handle copy-on-write
1884 	 * behaviour that some programs depend on. We mark the "original"
1885 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1886 	 */
1887 	if (addr == vma->vm_start && end == vma->vm_end) {
1888 		vma->vm_pgoff = pfn;
1889 		vma->vm_flags |= VM_PFN_AT_MMAP;
1890 	} else if (is_cow_mapping(vma->vm_flags))
1891 		return -EINVAL;
1892 
1893 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1894 
1895 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1896 	if (err) {
1897 		/*
1898 		 * To indicate that track_pfn related cleanup is not
1899 		 * needed from higher level routine calling unmap_vmas
1900 		 */
1901 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1902 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1903 		return -EINVAL;
1904 	}
1905 
1906 	BUG_ON(addr >= end);
1907 	pfn -= addr >> PAGE_SHIFT;
1908 	pgd = pgd_offset(mm, addr);
1909 	flush_cache_range(vma, addr, end);
1910 	do {
1911 		next = pgd_addr_end(addr, end);
1912 		err = remap_pud_range(mm, pgd, addr, next,
1913 				pfn + (addr >> PAGE_SHIFT), prot);
1914 		if (err)
1915 			break;
1916 	} while (pgd++, addr = next, addr != end);
1917 
1918 	if (err)
1919 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1920 
1921 	return err;
1922 }
1923 EXPORT_SYMBOL(remap_pfn_range);
1924 
1925 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1926 				     unsigned long addr, unsigned long end,
1927 				     pte_fn_t fn, void *data)
1928 {
1929 	pte_t *pte;
1930 	int err;
1931 	pgtable_t token;
1932 	spinlock_t *uninitialized_var(ptl);
1933 
1934 	pte = (mm == &init_mm) ?
1935 		pte_alloc_kernel(pmd, addr) :
1936 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1937 	if (!pte)
1938 		return -ENOMEM;
1939 
1940 	BUG_ON(pmd_huge(*pmd));
1941 
1942 	arch_enter_lazy_mmu_mode();
1943 
1944 	token = pmd_pgtable(*pmd);
1945 
1946 	do {
1947 		err = fn(pte++, token, addr, data);
1948 		if (err)
1949 			break;
1950 	} while (addr += PAGE_SIZE, addr != end);
1951 
1952 	arch_leave_lazy_mmu_mode();
1953 
1954 	if (mm != &init_mm)
1955 		pte_unmap_unlock(pte-1, ptl);
1956 	return err;
1957 }
1958 
1959 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1960 				     unsigned long addr, unsigned long end,
1961 				     pte_fn_t fn, void *data)
1962 {
1963 	pmd_t *pmd;
1964 	unsigned long next;
1965 	int err;
1966 
1967 	BUG_ON(pud_huge(*pud));
1968 
1969 	pmd = pmd_alloc(mm, pud, addr);
1970 	if (!pmd)
1971 		return -ENOMEM;
1972 	do {
1973 		next = pmd_addr_end(addr, end);
1974 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1975 		if (err)
1976 			break;
1977 	} while (pmd++, addr = next, addr != end);
1978 	return err;
1979 }
1980 
1981 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1982 				     unsigned long addr, unsigned long end,
1983 				     pte_fn_t fn, void *data)
1984 {
1985 	pud_t *pud;
1986 	unsigned long next;
1987 	int err;
1988 
1989 	pud = pud_alloc(mm, pgd, addr);
1990 	if (!pud)
1991 		return -ENOMEM;
1992 	do {
1993 		next = pud_addr_end(addr, end);
1994 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1995 		if (err)
1996 			break;
1997 	} while (pud++, addr = next, addr != end);
1998 	return err;
1999 }
2000 
2001 /*
2002  * Scan a region of virtual memory, filling in page tables as necessary
2003  * and calling a provided function on each leaf page table.
2004  */
2005 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2006 			unsigned long size, pte_fn_t fn, void *data)
2007 {
2008 	pgd_t *pgd;
2009 	unsigned long next;
2010 	unsigned long end = addr + size;
2011 	int err;
2012 
2013 	BUG_ON(addr >= end);
2014 	pgd = pgd_offset(mm, addr);
2015 	do {
2016 		next = pgd_addr_end(addr, end);
2017 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2018 		if (err)
2019 			break;
2020 	} while (pgd++, addr = next, addr != end);
2021 
2022 	return err;
2023 }
2024 EXPORT_SYMBOL_GPL(apply_to_page_range);
2025 
2026 /*
2027  * handle_pte_fault chooses page fault handler according to an entry
2028  * which was read non-atomically.  Before making any commitment, on
2029  * those architectures or configurations (e.g. i386 with PAE) which
2030  * might give a mix of unmatched parts, do_swap_page and do_file_page
2031  * must check under lock before unmapping the pte and proceeding
2032  * (but do_wp_page is only called after already making such a check;
2033  * and do_anonymous_page and do_no_page can safely check later on).
2034  */
2035 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2036 				pte_t *page_table, pte_t orig_pte)
2037 {
2038 	int same = 1;
2039 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2040 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2041 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2042 		spin_lock(ptl);
2043 		same = pte_same(*page_table, orig_pte);
2044 		spin_unlock(ptl);
2045 	}
2046 #endif
2047 	pte_unmap(page_table);
2048 	return same;
2049 }
2050 
2051 /*
2052  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
2053  * servicing faults for write access.  In the normal case, do always want
2054  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
2055  * that do not have writing enabled, when used by access_process_vm.
2056  */
2057 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2058 {
2059 	if (likely(vma->vm_flags & VM_WRITE))
2060 		pte = pte_mkwrite(pte);
2061 	return pte;
2062 }
2063 
2064 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2065 {
2066 	/*
2067 	 * If the source page was a PFN mapping, we don't have
2068 	 * a "struct page" for it. We do a best-effort copy by
2069 	 * just copying from the original user address. If that
2070 	 * fails, we just zero-fill it. Live with it.
2071 	 */
2072 	if (unlikely(!src)) {
2073 		void *kaddr = kmap_atomic(dst, KM_USER0);
2074 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2075 
2076 		/*
2077 		 * This really shouldn't fail, because the page is there
2078 		 * in the page tables. But it might just be unreadable,
2079 		 * in which case we just give up and fill the result with
2080 		 * zeroes.
2081 		 */
2082 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2083 			clear_page(kaddr);
2084 		kunmap_atomic(kaddr, KM_USER0);
2085 		flush_dcache_page(dst);
2086 	} else
2087 		copy_user_highpage(dst, src, va, vma);
2088 }
2089 
2090 /*
2091  * This routine handles present pages, when users try to write
2092  * to a shared page. It is done by copying the page to a new address
2093  * and decrementing the shared-page counter for the old page.
2094  *
2095  * Note that this routine assumes that the protection checks have been
2096  * done by the caller (the low-level page fault routine in most cases).
2097  * Thus we can safely just mark it writable once we've done any necessary
2098  * COW.
2099  *
2100  * We also mark the page dirty at this point even though the page will
2101  * change only once the write actually happens. This avoids a few races,
2102  * and potentially makes it more efficient.
2103  *
2104  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2105  * but allow concurrent faults), with pte both mapped and locked.
2106  * We return with mmap_sem still held, but pte unmapped and unlocked.
2107  */
2108 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2109 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2110 		spinlock_t *ptl, pte_t orig_pte)
2111 	__releases(ptl)
2112 {
2113 	struct page *old_page, *new_page;
2114 	pte_t entry;
2115 	int reuse = 0, ret = 0;
2116 	int page_mkwrite = 0;
2117 	struct page *dirty_page = NULL;
2118 
2119 	old_page = vm_normal_page(vma, address, orig_pte);
2120 	if (!old_page) {
2121 		/*
2122 		 * VM_MIXEDMAP !pfn_valid() case
2123 		 *
2124 		 * We should not cow pages in a shared writeable mapping.
2125 		 * Just mark the pages writable as we can't do any dirty
2126 		 * accounting on raw pfn maps.
2127 		 */
2128 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2129 				     (VM_WRITE|VM_SHARED))
2130 			goto reuse;
2131 		goto gotten;
2132 	}
2133 
2134 	/*
2135 	 * Take out anonymous pages first, anonymous shared vmas are
2136 	 * not dirty accountable.
2137 	 */
2138 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2139 		if (!trylock_page(old_page)) {
2140 			page_cache_get(old_page);
2141 			pte_unmap_unlock(page_table, ptl);
2142 			lock_page(old_page);
2143 			page_table = pte_offset_map_lock(mm, pmd, address,
2144 							 &ptl);
2145 			if (!pte_same(*page_table, orig_pte)) {
2146 				unlock_page(old_page);
2147 				page_cache_release(old_page);
2148 				goto unlock;
2149 			}
2150 			page_cache_release(old_page);
2151 		}
2152 		reuse = reuse_swap_page(old_page);
2153 		if (reuse)
2154 			/*
2155 			 * The page is all ours.  Move it to our anon_vma so
2156 			 * the rmap code will not search our parent or siblings.
2157 			 * Protected against the rmap code by the page lock.
2158 			 */
2159 			page_move_anon_rmap(old_page, vma, address);
2160 		unlock_page(old_page);
2161 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2162 					(VM_WRITE|VM_SHARED))) {
2163 		/*
2164 		 * Only catch write-faults on shared writable pages,
2165 		 * read-only shared pages can get COWed by
2166 		 * get_user_pages(.write=1, .force=1).
2167 		 */
2168 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2169 			struct vm_fault vmf;
2170 			int tmp;
2171 
2172 			vmf.virtual_address = (void __user *)(address &
2173 								PAGE_MASK);
2174 			vmf.pgoff = old_page->index;
2175 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2176 			vmf.page = old_page;
2177 
2178 			/*
2179 			 * Notify the address space that the page is about to
2180 			 * become writable so that it can prohibit this or wait
2181 			 * for the page to get into an appropriate state.
2182 			 *
2183 			 * We do this without the lock held, so that it can
2184 			 * sleep if it needs to.
2185 			 */
2186 			page_cache_get(old_page);
2187 			pte_unmap_unlock(page_table, ptl);
2188 
2189 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2190 			if (unlikely(tmp &
2191 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2192 				ret = tmp;
2193 				goto unwritable_page;
2194 			}
2195 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2196 				lock_page(old_page);
2197 				if (!old_page->mapping) {
2198 					ret = 0; /* retry the fault */
2199 					unlock_page(old_page);
2200 					goto unwritable_page;
2201 				}
2202 			} else
2203 				VM_BUG_ON(!PageLocked(old_page));
2204 
2205 			/*
2206 			 * Since we dropped the lock we need to revalidate
2207 			 * the PTE as someone else may have changed it.  If
2208 			 * they did, we just return, as we can count on the
2209 			 * MMU to tell us if they didn't also make it writable.
2210 			 */
2211 			page_table = pte_offset_map_lock(mm, pmd, address,
2212 							 &ptl);
2213 			if (!pte_same(*page_table, orig_pte)) {
2214 				unlock_page(old_page);
2215 				page_cache_release(old_page);
2216 				goto unlock;
2217 			}
2218 
2219 			page_mkwrite = 1;
2220 		}
2221 		dirty_page = old_page;
2222 		get_page(dirty_page);
2223 		reuse = 1;
2224 	}
2225 
2226 	if (reuse) {
2227 reuse:
2228 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2229 		entry = pte_mkyoung(orig_pte);
2230 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2231 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2232 			update_mmu_cache(vma, address, page_table);
2233 		ret |= VM_FAULT_WRITE;
2234 		goto unlock;
2235 	}
2236 
2237 	/*
2238 	 * Ok, we need to copy. Oh, well..
2239 	 */
2240 	page_cache_get(old_page);
2241 gotten:
2242 	pte_unmap_unlock(page_table, ptl);
2243 
2244 	if (unlikely(anon_vma_prepare(vma)))
2245 		goto oom;
2246 
2247 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2248 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2249 		if (!new_page)
2250 			goto oom;
2251 	} else {
2252 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2253 		if (!new_page)
2254 			goto oom;
2255 		cow_user_page(new_page, old_page, address, vma);
2256 	}
2257 	__SetPageUptodate(new_page);
2258 
2259 	/*
2260 	 * Don't let another task, with possibly unlocked vma,
2261 	 * keep the mlocked page.
2262 	 */
2263 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2264 		lock_page(old_page);	/* for LRU manipulation */
2265 		clear_page_mlock(old_page);
2266 		unlock_page(old_page);
2267 	}
2268 
2269 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2270 		goto oom_free_new;
2271 
2272 	/*
2273 	 * Re-check the pte - we dropped the lock
2274 	 */
2275 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2276 	if (likely(pte_same(*page_table, orig_pte))) {
2277 		if (old_page) {
2278 			if (!PageAnon(old_page)) {
2279 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2280 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2281 			}
2282 		} else
2283 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2284 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2285 		entry = mk_pte(new_page, vma->vm_page_prot);
2286 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2287 		/*
2288 		 * Clear the pte entry and flush it first, before updating the
2289 		 * pte with the new entry. This will avoid a race condition
2290 		 * seen in the presence of one thread doing SMC and another
2291 		 * thread doing COW.
2292 		 */
2293 		ptep_clear_flush(vma, address, page_table);
2294 		page_add_new_anon_rmap(new_page, vma, address);
2295 		/*
2296 		 * We call the notify macro here because, when using secondary
2297 		 * mmu page tables (such as kvm shadow page tables), we want the
2298 		 * new page to be mapped directly into the secondary page table.
2299 		 */
2300 		set_pte_at_notify(mm, address, page_table, entry);
2301 		update_mmu_cache(vma, address, page_table);
2302 		if (old_page) {
2303 			/*
2304 			 * Only after switching the pte to the new page may
2305 			 * we remove the mapcount here. Otherwise another
2306 			 * process may come and find the rmap count decremented
2307 			 * before the pte is switched to the new page, and
2308 			 * "reuse" the old page writing into it while our pte
2309 			 * here still points into it and can be read by other
2310 			 * threads.
2311 			 *
2312 			 * The critical issue is to order this
2313 			 * page_remove_rmap with the ptp_clear_flush above.
2314 			 * Those stores are ordered by (if nothing else,)
2315 			 * the barrier present in the atomic_add_negative
2316 			 * in page_remove_rmap.
2317 			 *
2318 			 * Then the TLB flush in ptep_clear_flush ensures that
2319 			 * no process can access the old page before the
2320 			 * decremented mapcount is visible. And the old page
2321 			 * cannot be reused until after the decremented
2322 			 * mapcount is visible. So transitively, TLBs to
2323 			 * old page will be flushed before it can be reused.
2324 			 */
2325 			page_remove_rmap(old_page);
2326 		}
2327 
2328 		/* Free the old page.. */
2329 		new_page = old_page;
2330 		ret |= VM_FAULT_WRITE;
2331 	} else
2332 		mem_cgroup_uncharge_page(new_page);
2333 
2334 	if (new_page)
2335 		page_cache_release(new_page);
2336 	if (old_page)
2337 		page_cache_release(old_page);
2338 unlock:
2339 	pte_unmap_unlock(page_table, ptl);
2340 	if (dirty_page) {
2341 		/*
2342 		 * Yes, Virginia, this is actually required to prevent a race
2343 		 * with clear_page_dirty_for_io() from clearing the page dirty
2344 		 * bit after it clear all dirty ptes, but before a racing
2345 		 * do_wp_page installs a dirty pte.
2346 		 *
2347 		 * do_no_page is protected similarly.
2348 		 */
2349 		if (!page_mkwrite) {
2350 			wait_on_page_locked(dirty_page);
2351 			set_page_dirty_balance(dirty_page, page_mkwrite);
2352 		}
2353 		put_page(dirty_page);
2354 		if (page_mkwrite) {
2355 			struct address_space *mapping = dirty_page->mapping;
2356 
2357 			set_page_dirty(dirty_page);
2358 			unlock_page(dirty_page);
2359 			page_cache_release(dirty_page);
2360 			if (mapping)	{
2361 				/*
2362 				 * Some device drivers do not set page.mapping
2363 				 * but still dirty their pages
2364 				 */
2365 				balance_dirty_pages_ratelimited(mapping);
2366 			}
2367 		}
2368 
2369 		/* file_update_time outside page_lock */
2370 		if (vma->vm_file)
2371 			file_update_time(vma->vm_file);
2372 	}
2373 	return ret;
2374 oom_free_new:
2375 	page_cache_release(new_page);
2376 oom:
2377 	if (old_page) {
2378 		if (page_mkwrite) {
2379 			unlock_page(old_page);
2380 			page_cache_release(old_page);
2381 		}
2382 		page_cache_release(old_page);
2383 	}
2384 	return VM_FAULT_OOM;
2385 
2386 unwritable_page:
2387 	page_cache_release(old_page);
2388 	return ret;
2389 }
2390 
2391 /*
2392  * Helper functions for unmap_mapping_range().
2393  *
2394  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2395  *
2396  * We have to restart searching the prio_tree whenever we drop the lock,
2397  * since the iterator is only valid while the lock is held, and anyway
2398  * a later vma might be split and reinserted earlier while lock dropped.
2399  *
2400  * The list of nonlinear vmas could be handled more efficiently, using
2401  * a placeholder, but handle it in the same way until a need is shown.
2402  * It is important to search the prio_tree before nonlinear list: a vma
2403  * may become nonlinear and be shifted from prio_tree to nonlinear list
2404  * while the lock is dropped; but never shifted from list to prio_tree.
2405  *
2406  * In order to make forward progress despite restarting the search,
2407  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2408  * quickly skip it next time around.  Since the prio_tree search only
2409  * shows us those vmas affected by unmapping the range in question, we
2410  * can't efficiently keep all vmas in step with mapping->truncate_count:
2411  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2412  * mapping->truncate_count and vma->vm_truncate_count are protected by
2413  * i_mmap_lock.
2414  *
2415  * In order to make forward progress despite repeatedly restarting some
2416  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2417  * and restart from that address when we reach that vma again.  It might
2418  * have been split or merged, shrunk or extended, but never shifted: so
2419  * restart_addr remains valid so long as it remains in the vma's range.
2420  * unmap_mapping_range forces truncate_count to leap over page-aligned
2421  * values so we can save vma's restart_addr in its truncate_count field.
2422  */
2423 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2424 
2425 static void reset_vma_truncate_counts(struct address_space *mapping)
2426 {
2427 	struct vm_area_struct *vma;
2428 	struct prio_tree_iter iter;
2429 
2430 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2431 		vma->vm_truncate_count = 0;
2432 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2433 		vma->vm_truncate_count = 0;
2434 }
2435 
2436 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2437 		unsigned long start_addr, unsigned long end_addr,
2438 		struct zap_details *details)
2439 {
2440 	unsigned long restart_addr;
2441 	int need_break;
2442 
2443 	/*
2444 	 * files that support invalidating or truncating portions of the
2445 	 * file from under mmaped areas must have their ->fault function
2446 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2447 	 * This provides synchronisation against concurrent unmapping here.
2448 	 */
2449 
2450 again:
2451 	restart_addr = vma->vm_truncate_count;
2452 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2453 		start_addr = restart_addr;
2454 		if (start_addr >= end_addr) {
2455 			/* Top of vma has been split off since last time */
2456 			vma->vm_truncate_count = details->truncate_count;
2457 			return 0;
2458 		}
2459 	}
2460 
2461 	restart_addr = zap_page_range(vma, start_addr,
2462 					end_addr - start_addr, details);
2463 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2464 
2465 	if (restart_addr >= end_addr) {
2466 		/* We have now completed this vma: mark it so */
2467 		vma->vm_truncate_count = details->truncate_count;
2468 		if (!need_break)
2469 			return 0;
2470 	} else {
2471 		/* Note restart_addr in vma's truncate_count field */
2472 		vma->vm_truncate_count = restart_addr;
2473 		if (!need_break)
2474 			goto again;
2475 	}
2476 
2477 	spin_unlock(details->i_mmap_lock);
2478 	cond_resched();
2479 	spin_lock(details->i_mmap_lock);
2480 	return -EINTR;
2481 }
2482 
2483 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2484 					    struct zap_details *details)
2485 {
2486 	struct vm_area_struct *vma;
2487 	struct prio_tree_iter iter;
2488 	pgoff_t vba, vea, zba, zea;
2489 
2490 restart:
2491 	vma_prio_tree_foreach(vma, &iter, root,
2492 			details->first_index, details->last_index) {
2493 		/* Skip quickly over those we have already dealt with */
2494 		if (vma->vm_truncate_count == details->truncate_count)
2495 			continue;
2496 
2497 		vba = vma->vm_pgoff;
2498 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2499 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2500 		zba = details->first_index;
2501 		if (zba < vba)
2502 			zba = vba;
2503 		zea = details->last_index;
2504 		if (zea > vea)
2505 			zea = vea;
2506 
2507 		if (unmap_mapping_range_vma(vma,
2508 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2509 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2510 				details) < 0)
2511 			goto restart;
2512 	}
2513 }
2514 
2515 static inline void unmap_mapping_range_list(struct list_head *head,
2516 					    struct zap_details *details)
2517 {
2518 	struct vm_area_struct *vma;
2519 
2520 	/*
2521 	 * In nonlinear VMAs there is no correspondence between virtual address
2522 	 * offset and file offset.  So we must perform an exhaustive search
2523 	 * across *all* the pages in each nonlinear VMA, not just the pages
2524 	 * whose virtual address lies outside the file truncation point.
2525 	 */
2526 restart:
2527 	list_for_each_entry(vma, head, shared.vm_set.list) {
2528 		/* Skip quickly over those we have already dealt with */
2529 		if (vma->vm_truncate_count == details->truncate_count)
2530 			continue;
2531 		details->nonlinear_vma = vma;
2532 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2533 					vma->vm_end, details) < 0)
2534 			goto restart;
2535 	}
2536 }
2537 
2538 /**
2539  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2540  * @mapping: the address space containing mmaps to be unmapped.
2541  * @holebegin: byte in first page to unmap, relative to the start of
2542  * the underlying file.  This will be rounded down to a PAGE_SIZE
2543  * boundary.  Note that this is different from truncate_pagecache(), which
2544  * must keep the partial page.  In contrast, we must get rid of
2545  * partial pages.
2546  * @holelen: size of prospective hole in bytes.  This will be rounded
2547  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2548  * end of the file.
2549  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2550  * but 0 when invalidating pagecache, don't throw away private data.
2551  */
2552 void unmap_mapping_range(struct address_space *mapping,
2553 		loff_t const holebegin, loff_t const holelen, int even_cows)
2554 {
2555 	struct zap_details details;
2556 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2557 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2558 
2559 	/* Check for overflow. */
2560 	if (sizeof(holelen) > sizeof(hlen)) {
2561 		long long holeend =
2562 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2563 		if (holeend & ~(long long)ULONG_MAX)
2564 			hlen = ULONG_MAX - hba + 1;
2565 	}
2566 
2567 	details.check_mapping = even_cows? NULL: mapping;
2568 	details.nonlinear_vma = NULL;
2569 	details.first_index = hba;
2570 	details.last_index = hba + hlen - 1;
2571 	if (details.last_index < details.first_index)
2572 		details.last_index = ULONG_MAX;
2573 	details.i_mmap_lock = &mapping->i_mmap_lock;
2574 
2575 	spin_lock(&mapping->i_mmap_lock);
2576 
2577 	/* Protect against endless unmapping loops */
2578 	mapping->truncate_count++;
2579 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2580 		if (mapping->truncate_count == 0)
2581 			reset_vma_truncate_counts(mapping);
2582 		mapping->truncate_count++;
2583 	}
2584 	details.truncate_count = mapping->truncate_count;
2585 
2586 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2587 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2588 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2589 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2590 	spin_unlock(&mapping->i_mmap_lock);
2591 }
2592 EXPORT_SYMBOL(unmap_mapping_range);
2593 
2594 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2595 {
2596 	struct address_space *mapping = inode->i_mapping;
2597 
2598 	/*
2599 	 * If the underlying filesystem is not going to provide
2600 	 * a way to truncate a range of blocks (punch a hole) -
2601 	 * we should return failure right now.
2602 	 */
2603 	if (!inode->i_op->truncate_range)
2604 		return -ENOSYS;
2605 
2606 	mutex_lock(&inode->i_mutex);
2607 	down_write(&inode->i_alloc_sem);
2608 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2609 	truncate_inode_pages_range(mapping, offset, end);
2610 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2611 	inode->i_op->truncate_range(inode, offset, end);
2612 	up_write(&inode->i_alloc_sem);
2613 	mutex_unlock(&inode->i_mutex);
2614 
2615 	return 0;
2616 }
2617 
2618 /*
2619  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2620  * but allow concurrent faults), and pte mapped but not yet locked.
2621  * We return with mmap_sem still held, but pte unmapped and unlocked.
2622  */
2623 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2624 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2625 		unsigned int flags, pte_t orig_pte)
2626 {
2627 	spinlock_t *ptl;
2628 	struct page *page, *swapcache = NULL;
2629 	swp_entry_t entry;
2630 	pte_t pte;
2631 	int locked;
2632 	struct mem_cgroup *ptr = NULL;
2633 	int exclusive = 0;
2634 	int ret = 0;
2635 
2636 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2637 		goto out;
2638 
2639 	entry = pte_to_swp_entry(orig_pte);
2640 	if (unlikely(non_swap_entry(entry))) {
2641 		if (is_migration_entry(entry)) {
2642 			migration_entry_wait(mm, pmd, address);
2643 		} else if (is_hwpoison_entry(entry)) {
2644 			ret = VM_FAULT_HWPOISON;
2645 		} else {
2646 			print_bad_pte(vma, address, orig_pte, NULL);
2647 			ret = VM_FAULT_SIGBUS;
2648 		}
2649 		goto out;
2650 	}
2651 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2652 	page = lookup_swap_cache(entry);
2653 	if (!page) {
2654 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2655 		page = swapin_readahead(entry,
2656 					GFP_HIGHUSER_MOVABLE, vma, address);
2657 		if (!page) {
2658 			/*
2659 			 * Back out if somebody else faulted in this pte
2660 			 * while we released the pte lock.
2661 			 */
2662 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2663 			if (likely(pte_same(*page_table, orig_pte)))
2664 				ret = VM_FAULT_OOM;
2665 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2666 			goto unlock;
2667 		}
2668 
2669 		/* Had to read the page from swap area: Major fault */
2670 		ret = VM_FAULT_MAJOR;
2671 		count_vm_event(PGMAJFAULT);
2672 	} else if (PageHWPoison(page)) {
2673 		/*
2674 		 * hwpoisoned dirty swapcache pages are kept for killing
2675 		 * owner processes (which may be unknown at hwpoison time)
2676 		 */
2677 		ret = VM_FAULT_HWPOISON;
2678 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2679 		goto out_release;
2680 	}
2681 
2682 	locked = lock_page_or_retry(page, mm, flags);
2683 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2684 	if (!locked) {
2685 		ret |= VM_FAULT_RETRY;
2686 		goto out_release;
2687 	}
2688 
2689 	/*
2690 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2691 	 * release the swapcache from under us.  The page pin, and pte_same
2692 	 * test below, are not enough to exclude that.  Even if it is still
2693 	 * swapcache, we need to check that the page's swap has not changed.
2694 	 */
2695 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2696 		goto out_page;
2697 
2698 	if (ksm_might_need_to_copy(page, vma, address)) {
2699 		swapcache = page;
2700 		page = ksm_does_need_to_copy(page, vma, address);
2701 
2702 		if (unlikely(!page)) {
2703 			ret = VM_FAULT_OOM;
2704 			page = swapcache;
2705 			swapcache = NULL;
2706 			goto out_page;
2707 		}
2708 	}
2709 
2710 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2711 		ret = VM_FAULT_OOM;
2712 		goto out_page;
2713 	}
2714 
2715 	/*
2716 	 * Back out if somebody else already faulted in this pte.
2717 	 */
2718 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2719 	if (unlikely(!pte_same(*page_table, orig_pte)))
2720 		goto out_nomap;
2721 
2722 	if (unlikely(!PageUptodate(page))) {
2723 		ret = VM_FAULT_SIGBUS;
2724 		goto out_nomap;
2725 	}
2726 
2727 	/*
2728 	 * The page isn't present yet, go ahead with the fault.
2729 	 *
2730 	 * Be careful about the sequence of operations here.
2731 	 * To get its accounting right, reuse_swap_page() must be called
2732 	 * while the page is counted on swap but not yet in mapcount i.e.
2733 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2734 	 * must be called after the swap_free(), or it will never succeed.
2735 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2736 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2737 	 * in page->private. In this case, a record in swap_cgroup  is silently
2738 	 * discarded at swap_free().
2739 	 */
2740 
2741 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2742 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2743 	pte = mk_pte(page, vma->vm_page_prot);
2744 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2745 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2746 		flags &= ~FAULT_FLAG_WRITE;
2747 		ret |= VM_FAULT_WRITE;
2748 		exclusive = 1;
2749 	}
2750 	flush_icache_page(vma, page);
2751 	set_pte_at(mm, address, page_table, pte);
2752 	do_page_add_anon_rmap(page, vma, address, exclusive);
2753 	/* It's better to call commit-charge after rmap is established */
2754 	mem_cgroup_commit_charge_swapin(page, ptr);
2755 
2756 	swap_free(entry);
2757 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2758 		try_to_free_swap(page);
2759 	unlock_page(page);
2760 	if (swapcache) {
2761 		/*
2762 		 * Hold the lock to avoid the swap entry to be reused
2763 		 * until we take the PT lock for the pte_same() check
2764 		 * (to avoid false positives from pte_same). For
2765 		 * further safety release the lock after the swap_free
2766 		 * so that the swap count won't change under a
2767 		 * parallel locked swapcache.
2768 		 */
2769 		unlock_page(swapcache);
2770 		page_cache_release(swapcache);
2771 	}
2772 
2773 	if (flags & FAULT_FLAG_WRITE) {
2774 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2775 		if (ret & VM_FAULT_ERROR)
2776 			ret &= VM_FAULT_ERROR;
2777 		goto out;
2778 	}
2779 
2780 	/* No need to invalidate - it was non-present before */
2781 	update_mmu_cache(vma, address, page_table);
2782 unlock:
2783 	pte_unmap_unlock(page_table, ptl);
2784 out:
2785 	return ret;
2786 out_nomap:
2787 	mem_cgroup_cancel_charge_swapin(ptr);
2788 	pte_unmap_unlock(page_table, ptl);
2789 out_page:
2790 	unlock_page(page);
2791 out_release:
2792 	page_cache_release(page);
2793 	if (swapcache) {
2794 		unlock_page(swapcache);
2795 		page_cache_release(swapcache);
2796 	}
2797 	return ret;
2798 }
2799 
2800 /*
2801  * This is like a special single-page "expand_{down|up}wards()",
2802  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2803  * doesn't hit another vma.
2804  */
2805 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2806 {
2807 	address &= PAGE_MASK;
2808 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2809 		struct vm_area_struct *prev = vma->vm_prev;
2810 
2811 		/*
2812 		 * Is there a mapping abutting this one below?
2813 		 *
2814 		 * That's only ok if it's the same stack mapping
2815 		 * that has gotten split..
2816 		 */
2817 		if (prev && prev->vm_end == address)
2818 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2819 
2820 		expand_stack(vma, address - PAGE_SIZE);
2821 	}
2822 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2823 		struct vm_area_struct *next = vma->vm_next;
2824 
2825 		/* As VM_GROWSDOWN but s/below/above/ */
2826 		if (next && next->vm_start == address + PAGE_SIZE)
2827 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2828 
2829 		expand_upwards(vma, address + PAGE_SIZE);
2830 	}
2831 	return 0;
2832 }
2833 
2834 /*
2835  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2836  * but allow concurrent faults), and pte mapped but not yet locked.
2837  * We return with mmap_sem still held, but pte unmapped and unlocked.
2838  */
2839 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2840 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2841 		unsigned int flags)
2842 {
2843 	struct page *page;
2844 	spinlock_t *ptl;
2845 	pte_t entry;
2846 
2847 	pte_unmap(page_table);
2848 
2849 	/* Check if we need to add a guard page to the stack */
2850 	if (check_stack_guard_page(vma, address) < 0)
2851 		return VM_FAULT_SIGBUS;
2852 
2853 	/* Use the zero-page for reads */
2854 	if (!(flags & FAULT_FLAG_WRITE)) {
2855 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2856 						vma->vm_page_prot));
2857 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2858 		if (!pte_none(*page_table))
2859 			goto unlock;
2860 		goto setpte;
2861 	}
2862 
2863 	/* Allocate our own private page. */
2864 	if (unlikely(anon_vma_prepare(vma)))
2865 		goto oom;
2866 	page = alloc_zeroed_user_highpage_movable(vma, address);
2867 	if (!page)
2868 		goto oom;
2869 	__SetPageUptodate(page);
2870 
2871 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2872 		goto oom_free_page;
2873 
2874 	entry = mk_pte(page, vma->vm_page_prot);
2875 	if (vma->vm_flags & VM_WRITE)
2876 		entry = pte_mkwrite(pte_mkdirty(entry));
2877 
2878 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2879 	if (!pte_none(*page_table))
2880 		goto release;
2881 
2882 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2883 	page_add_new_anon_rmap(page, vma, address);
2884 setpte:
2885 	set_pte_at(mm, address, page_table, entry);
2886 
2887 	/* No need to invalidate - it was non-present before */
2888 	update_mmu_cache(vma, address, page_table);
2889 unlock:
2890 	pte_unmap_unlock(page_table, ptl);
2891 	return 0;
2892 release:
2893 	mem_cgroup_uncharge_page(page);
2894 	page_cache_release(page);
2895 	goto unlock;
2896 oom_free_page:
2897 	page_cache_release(page);
2898 oom:
2899 	return VM_FAULT_OOM;
2900 }
2901 
2902 /*
2903  * __do_fault() tries to create a new page mapping. It aggressively
2904  * tries to share with existing pages, but makes a separate copy if
2905  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2906  * the next page fault.
2907  *
2908  * As this is called only for pages that do not currently exist, we
2909  * do not need to flush old virtual caches or the TLB.
2910  *
2911  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2912  * but allow concurrent faults), and pte neither mapped nor locked.
2913  * We return with mmap_sem still held, but pte unmapped and unlocked.
2914  */
2915 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2916 		unsigned long address, pmd_t *pmd,
2917 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2918 {
2919 	pte_t *page_table;
2920 	spinlock_t *ptl;
2921 	struct page *page;
2922 	pte_t entry;
2923 	int anon = 0;
2924 	int charged = 0;
2925 	struct page *dirty_page = NULL;
2926 	struct vm_fault vmf;
2927 	int ret;
2928 	int page_mkwrite = 0;
2929 
2930 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2931 	vmf.pgoff = pgoff;
2932 	vmf.flags = flags;
2933 	vmf.page = NULL;
2934 
2935 	ret = vma->vm_ops->fault(vma, &vmf);
2936 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
2937 			    VM_FAULT_RETRY)))
2938 		return ret;
2939 
2940 	if (unlikely(PageHWPoison(vmf.page))) {
2941 		if (ret & VM_FAULT_LOCKED)
2942 			unlock_page(vmf.page);
2943 		return VM_FAULT_HWPOISON;
2944 	}
2945 
2946 	/*
2947 	 * For consistency in subsequent calls, make the faulted page always
2948 	 * locked.
2949 	 */
2950 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2951 		lock_page(vmf.page);
2952 	else
2953 		VM_BUG_ON(!PageLocked(vmf.page));
2954 
2955 	/*
2956 	 * Should we do an early C-O-W break?
2957 	 */
2958 	page = vmf.page;
2959 	if (flags & FAULT_FLAG_WRITE) {
2960 		if (!(vma->vm_flags & VM_SHARED)) {
2961 			anon = 1;
2962 			if (unlikely(anon_vma_prepare(vma))) {
2963 				ret = VM_FAULT_OOM;
2964 				goto out;
2965 			}
2966 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2967 						vma, address);
2968 			if (!page) {
2969 				ret = VM_FAULT_OOM;
2970 				goto out;
2971 			}
2972 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2973 				ret = VM_FAULT_OOM;
2974 				page_cache_release(page);
2975 				goto out;
2976 			}
2977 			charged = 1;
2978 			/*
2979 			 * Don't let another task, with possibly unlocked vma,
2980 			 * keep the mlocked page.
2981 			 */
2982 			if (vma->vm_flags & VM_LOCKED)
2983 				clear_page_mlock(vmf.page);
2984 			copy_user_highpage(page, vmf.page, address, vma);
2985 			__SetPageUptodate(page);
2986 		} else {
2987 			/*
2988 			 * If the page will be shareable, see if the backing
2989 			 * address space wants to know that the page is about
2990 			 * to become writable
2991 			 */
2992 			if (vma->vm_ops->page_mkwrite) {
2993 				int tmp;
2994 
2995 				unlock_page(page);
2996 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2997 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2998 				if (unlikely(tmp &
2999 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3000 					ret = tmp;
3001 					goto unwritable_page;
3002 				}
3003 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3004 					lock_page(page);
3005 					if (!page->mapping) {
3006 						ret = 0; /* retry the fault */
3007 						unlock_page(page);
3008 						goto unwritable_page;
3009 					}
3010 				} else
3011 					VM_BUG_ON(!PageLocked(page));
3012 				page_mkwrite = 1;
3013 			}
3014 		}
3015 
3016 	}
3017 
3018 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3019 
3020 	/*
3021 	 * This silly early PAGE_DIRTY setting removes a race
3022 	 * due to the bad i386 page protection. But it's valid
3023 	 * for other architectures too.
3024 	 *
3025 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3026 	 * an exclusive copy of the page, or this is a shared mapping,
3027 	 * so we can make it writable and dirty to avoid having to
3028 	 * handle that later.
3029 	 */
3030 	/* Only go through if we didn't race with anybody else... */
3031 	if (likely(pte_same(*page_table, orig_pte))) {
3032 		flush_icache_page(vma, page);
3033 		entry = mk_pte(page, vma->vm_page_prot);
3034 		if (flags & FAULT_FLAG_WRITE)
3035 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3036 		if (anon) {
3037 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3038 			page_add_new_anon_rmap(page, vma, address);
3039 		} else {
3040 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3041 			page_add_file_rmap(page);
3042 			if (flags & FAULT_FLAG_WRITE) {
3043 				dirty_page = page;
3044 				get_page(dirty_page);
3045 			}
3046 		}
3047 		set_pte_at(mm, address, page_table, entry);
3048 
3049 		/* no need to invalidate: a not-present page won't be cached */
3050 		update_mmu_cache(vma, address, page_table);
3051 	} else {
3052 		if (charged)
3053 			mem_cgroup_uncharge_page(page);
3054 		if (anon)
3055 			page_cache_release(page);
3056 		else
3057 			anon = 1; /* no anon but release faulted_page */
3058 	}
3059 
3060 	pte_unmap_unlock(page_table, ptl);
3061 
3062 out:
3063 	if (dirty_page) {
3064 		struct address_space *mapping = page->mapping;
3065 
3066 		if (set_page_dirty(dirty_page))
3067 			page_mkwrite = 1;
3068 		unlock_page(dirty_page);
3069 		put_page(dirty_page);
3070 		if (page_mkwrite && mapping) {
3071 			/*
3072 			 * Some device drivers do not set page.mapping but still
3073 			 * dirty their pages
3074 			 */
3075 			balance_dirty_pages_ratelimited(mapping);
3076 		}
3077 
3078 		/* file_update_time outside page_lock */
3079 		if (vma->vm_file)
3080 			file_update_time(vma->vm_file);
3081 	} else {
3082 		unlock_page(vmf.page);
3083 		if (anon)
3084 			page_cache_release(vmf.page);
3085 	}
3086 
3087 	return ret;
3088 
3089 unwritable_page:
3090 	page_cache_release(page);
3091 	return ret;
3092 }
3093 
3094 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3095 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3096 		unsigned int flags, pte_t orig_pte)
3097 {
3098 	pgoff_t pgoff = (((address & PAGE_MASK)
3099 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3100 
3101 	pte_unmap(page_table);
3102 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3103 }
3104 
3105 /*
3106  * Fault of a previously existing named mapping. Repopulate the pte
3107  * from the encoded file_pte if possible. This enables swappable
3108  * nonlinear vmas.
3109  *
3110  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3111  * but allow concurrent faults), and pte mapped but not yet locked.
3112  * We return with mmap_sem still held, but pte unmapped and unlocked.
3113  */
3114 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3115 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3116 		unsigned int flags, pte_t orig_pte)
3117 {
3118 	pgoff_t pgoff;
3119 
3120 	flags |= FAULT_FLAG_NONLINEAR;
3121 
3122 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3123 		return 0;
3124 
3125 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3126 		/*
3127 		 * Page table corrupted: show pte and kill process.
3128 		 */
3129 		print_bad_pte(vma, address, orig_pte, NULL);
3130 		return VM_FAULT_SIGBUS;
3131 	}
3132 
3133 	pgoff = pte_to_pgoff(orig_pte);
3134 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3135 }
3136 
3137 /*
3138  * These routines also need to handle stuff like marking pages dirty
3139  * and/or accessed for architectures that don't do it in hardware (most
3140  * RISC architectures).  The early dirtying is also good on the i386.
3141  *
3142  * There is also a hook called "update_mmu_cache()" that architectures
3143  * with external mmu caches can use to update those (ie the Sparc or
3144  * PowerPC hashed page tables that act as extended TLBs).
3145  *
3146  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3147  * but allow concurrent faults), and pte mapped but not yet locked.
3148  * We return with mmap_sem still held, but pte unmapped and unlocked.
3149  */
3150 static inline int handle_pte_fault(struct mm_struct *mm,
3151 		struct vm_area_struct *vma, unsigned long address,
3152 		pte_t *pte, pmd_t *pmd, unsigned int flags)
3153 {
3154 	pte_t entry;
3155 	spinlock_t *ptl;
3156 
3157 	entry = *pte;
3158 	if (!pte_present(entry)) {
3159 		if (pte_none(entry)) {
3160 			if (vma->vm_ops) {
3161 				if (likely(vma->vm_ops->fault))
3162 					return do_linear_fault(mm, vma, address,
3163 						pte, pmd, flags, entry);
3164 			}
3165 			return do_anonymous_page(mm, vma, address,
3166 						 pte, pmd, flags);
3167 		}
3168 		if (pte_file(entry))
3169 			return do_nonlinear_fault(mm, vma, address,
3170 					pte, pmd, flags, entry);
3171 		return do_swap_page(mm, vma, address,
3172 					pte, pmd, flags, entry);
3173 	}
3174 
3175 	ptl = pte_lockptr(mm, pmd);
3176 	spin_lock(ptl);
3177 	if (unlikely(!pte_same(*pte, entry)))
3178 		goto unlock;
3179 	if (flags & FAULT_FLAG_WRITE) {
3180 		if (!pte_write(entry))
3181 			return do_wp_page(mm, vma, address,
3182 					pte, pmd, ptl, entry);
3183 		entry = pte_mkdirty(entry);
3184 	}
3185 	entry = pte_mkyoung(entry);
3186 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3187 		update_mmu_cache(vma, address, pte);
3188 	} else {
3189 		/*
3190 		 * This is needed only for protection faults but the arch code
3191 		 * is not yet telling us if this is a protection fault or not.
3192 		 * This still avoids useless tlb flushes for .text page faults
3193 		 * with threads.
3194 		 */
3195 		if (flags & FAULT_FLAG_WRITE)
3196 			flush_tlb_fix_spurious_fault(vma, address);
3197 	}
3198 unlock:
3199 	pte_unmap_unlock(pte, ptl);
3200 	return 0;
3201 }
3202 
3203 /*
3204  * By the time we get here, we already hold the mm semaphore
3205  */
3206 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3207 		unsigned long address, unsigned int flags)
3208 {
3209 	pgd_t *pgd;
3210 	pud_t *pud;
3211 	pmd_t *pmd;
3212 	pte_t *pte;
3213 
3214 	__set_current_state(TASK_RUNNING);
3215 
3216 	count_vm_event(PGFAULT);
3217 
3218 	/* do counter updates before entering really critical section. */
3219 	check_sync_rss_stat(current);
3220 
3221 	if (unlikely(is_vm_hugetlb_page(vma)))
3222 		return hugetlb_fault(mm, vma, address, flags);
3223 
3224 	pgd = pgd_offset(mm, address);
3225 	pud = pud_alloc(mm, pgd, address);
3226 	if (!pud)
3227 		return VM_FAULT_OOM;
3228 	pmd = pmd_alloc(mm, pud, address);
3229 	if (!pmd)
3230 		return VM_FAULT_OOM;
3231 	pte = pte_alloc_map(mm, pmd, address);
3232 	if (!pte)
3233 		return VM_FAULT_OOM;
3234 
3235 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3236 }
3237 
3238 #ifndef __PAGETABLE_PUD_FOLDED
3239 /*
3240  * Allocate page upper directory.
3241  * We've already handled the fast-path in-line.
3242  */
3243 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3244 {
3245 	pud_t *new = pud_alloc_one(mm, address);
3246 	if (!new)
3247 		return -ENOMEM;
3248 
3249 	smp_wmb(); /* See comment in __pte_alloc */
3250 
3251 	spin_lock(&mm->page_table_lock);
3252 	if (pgd_present(*pgd))		/* Another has populated it */
3253 		pud_free(mm, new);
3254 	else
3255 		pgd_populate(mm, pgd, new);
3256 	spin_unlock(&mm->page_table_lock);
3257 	return 0;
3258 }
3259 #endif /* __PAGETABLE_PUD_FOLDED */
3260 
3261 #ifndef __PAGETABLE_PMD_FOLDED
3262 /*
3263  * Allocate page middle directory.
3264  * We've already handled the fast-path in-line.
3265  */
3266 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3267 {
3268 	pmd_t *new = pmd_alloc_one(mm, address);
3269 	if (!new)
3270 		return -ENOMEM;
3271 
3272 	smp_wmb(); /* See comment in __pte_alloc */
3273 
3274 	spin_lock(&mm->page_table_lock);
3275 #ifndef __ARCH_HAS_4LEVEL_HACK
3276 	if (pud_present(*pud))		/* Another has populated it */
3277 		pmd_free(mm, new);
3278 	else
3279 		pud_populate(mm, pud, new);
3280 #else
3281 	if (pgd_present(*pud))		/* Another has populated it */
3282 		pmd_free(mm, new);
3283 	else
3284 		pgd_populate(mm, pud, new);
3285 #endif /* __ARCH_HAS_4LEVEL_HACK */
3286 	spin_unlock(&mm->page_table_lock);
3287 	return 0;
3288 }
3289 #endif /* __PAGETABLE_PMD_FOLDED */
3290 
3291 int make_pages_present(unsigned long addr, unsigned long end)
3292 {
3293 	int ret, len, write;
3294 	struct vm_area_struct * vma;
3295 
3296 	vma = find_vma(current->mm, addr);
3297 	if (!vma)
3298 		return -ENOMEM;
3299 	write = (vma->vm_flags & VM_WRITE) != 0;
3300 	BUG_ON(addr >= end);
3301 	BUG_ON(end > vma->vm_end);
3302 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3303 	ret = get_user_pages(current, current->mm, addr,
3304 			len, write, 0, NULL, NULL);
3305 	if (ret < 0)
3306 		return ret;
3307 	return ret == len ? 0 : -EFAULT;
3308 }
3309 
3310 #if !defined(__HAVE_ARCH_GATE_AREA)
3311 
3312 #if defined(AT_SYSINFO_EHDR)
3313 static struct vm_area_struct gate_vma;
3314 
3315 static int __init gate_vma_init(void)
3316 {
3317 	gate_vma.vm_mm = NULL;
3318 	gate_vma.vm_start = FIXADDR_USER_START;
3319 	gate_vma.vm_end = FIXADDR_USER_END;
3320 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3321 	gate_vma.vm_page_prot = __P101;
3322 	/*
3323 	 * Make sure the vDSO gets into every core dump.
3324 	 * Dumping its contents makes post-mortem fully interpretable later
3325 	 * without matching up the same kernel and hardware config to see
3326 	 * what PC values meant.
3327 	 */
3328 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3329 	return 0;
3330 }
3331 __initcall(gate_vma_init);
3332 #endif
3333 
3334 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3335 {
3336 #ifdef AT_SYSINFO_EHDR
3337 	return &gate_vma;
3338 #else
3339 	return NULL;
3340 #endif
3341 }
3342 
3343 int in_gate_area_no_task(unsigned long addr)
3344 {
3345 #ifdef AT_SYSINFO_EHDR
3346 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3347 		return 1;
3348 #endif
3349 	return 0;
3350 }
3351 
3352 #endif	/* __HAVE_ARCH_GATE_AREA */
3353 
3354 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3355 		pte_t **ptepp, spinlock_t **ptlp)
3356 {
3357 	pgd_t *pgd;
3358 	pud_t *pud;
3359 	pmd_t *pmd;
3360 	pte_t *ptep;
3361 
3362 	pgd = pgd_offset(mm, address);
3363 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3364 		goto out;
3365 
3366 	pud = pud_offset(pgd, address);
3367 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3368 		goto out;
3369 
3370 	pmd = pmd_offset(pud, address);
3371 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3372 		goto out;
3373 
3374 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3375 	if (pmd_huge(*pmd))
3376 		goto out;
3377 
3378 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3379 	if (!ptep)
3380 		goto out;
3381 	if (!pte_present(*ptep))
3382 		goto unlock;
3383 	*ptepp = ptep;
3384 	return 0;
3385 unlock:
3386 	pte_unmap_unlock(ptep, *ptlp);
3387 out:
3388 	return -EINVAL;
3389 }
3390 
3391 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3392 			     pte_t **ptepp, spinlock_t **ptlp)
3393 {
3394 	int res;
3395 
3396 	/* (void) is needed to make gcc happy */
3397 	(void) __cond_lock(*ptlp,
3398 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3399 	return res;
3400 }
3401 
3402 /**
3403  * follow_pfn - look up PFN at a user virtual address
3404  * @vma: memory mapping
3405  * @address: user virtual address
3406  * @pfn: location to store found PFN
3407  *
3408  * Only IO mappings and raw PFN mappings are allowed.
3409  *
3410  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3411  */
3412 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3413 	unsigned long *pfn)
3414 {
3415 	int ret = -EINVAL;
3416 	spinlock_t *ptl;
3417 	pte_t *ptep;
3418 
3419 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3420 		return ret;
3421 
3422 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3423 	if (ret)
3424 		return ret;
3425 	*pfn = pte_pfn(*ptep);
3426 	pte_unmap_unlock(ptep, ptl);
3427 	return 0;
3428 }
3429 EXPORT_SYMBOL(follow_pfn);
3430 
3431 #ifdef CONFIG_HAVE_IOREMAP_PROT
3432 int follow_phys(struct vm_area_struct *vma,
3433 		unsigned long address, unsigned int flags,
3434 		unsigned long *prot, resource_size_t *phys)
3435 {
3436 	int ret = -EINVAL;
3437 	pte_t *ptep, pte;
3438 	spinlock_t *ptl;
3439 
3440 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3441 		goto out;
3442 
3443 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3444 		goto out;
3445 	pte = *ptep;
3446 
3447 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3448 		goto unlock;
3449 
3450 	*prot = pgprot_val(pte_pgprot(pte));
3451 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3452 
3453 	ret = 0;
3454 unlock:
3455 	pte_unmap_unlock(ptep, ptl);
3456 out:
3457 	return ret;
3458 }
3459 
3460 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3461 			void *buf, int len, int write)
3462 {
3463 	resource_size_t phys_addr;
3464 	unsigned long prot = 0;
3465 	void __iomem *maddr;
3466 	int offset = addr & (PAGE_SIZE-1);
3467 
3468 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3469 		return -EINVAL;
3470 
3471 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3472 	if (write)
3473 		memcpy_toio(maddr + offset, buf, len);
3474 	else
3475 		memcpy_fromio(buf, maddr + offset, len);
3476 	iounmap(maddr);
3477 
3478 	return len;
3479 }
3480 #endif
3481 
3482 /*
3483  * Access another process' address space.
3484  * Source/target buffer must be kernel space,
3485  * Do not walk the page table directly, use get_user_pages
3486  */
3487 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3488 {
3489 	struct mm_struct *mm;
3490 	struct vm_area_struct *vma;
3491 	void *old_buf = buf;
3492 
3493 	mm = get_task_mm(tsk);
3494 	if (!mm)
3495 		return 0;
3496 
3497 	down_read(&mm->mmap_sem);
3498 	/* ignore errors, just check how much was successfully transferred */
3499 	while (len) {
3500 		int bytes, ret, offset;
3501 		void *maddr;
3502 		struct page *page = NULL;
3503 
3504 		ret = get_user_pages(tsk, mm, addr, 1,
3505 				write, 1, &page, &vma);
3506 		if (ret <= 0) {
3507 			/*
3508 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3509 			 * we can access using slightly different code.
3510 			 */
3511 #ifdef CONFIG_HAVE_IOREMAP_PROT
3512 			vma = find_vma(mm, addr);
3513 			if (!vma)
3514 				break;
3515 			if (vma->vm_ops && vma->vm_ops->access)
3516 				ret = vma->vm_ops->access(vma, addr, buf,
3517 							  len, write);
3518 			if (ret <= 0)
3519 #endif
3520 				break;
3521 			bytes = ret;
3522 		} else {
3523 			bytes = len;
3524 			offset = addr & (PAGE_SIZE-1);
3525 			if (bytes > PAGE_SIZE-offset)
3526 				bytes = PAGE_SIZE-offset;
3527 
3528 			maddr = kmap(page);
3529 			if (write) {
3530 				copy_to_user_page(vma, page, addr,
3531 						  maddr + offset, buf, bytes);
3532 				set_page_dirty_lock(page);
3533 			} else {
3534 				copy_from_user_page(vma, page, addr,
3535 						    buf, maddr + offset, bytes);
3536 			}
3537 			kunmap(page);
3538 			page_cache_release(page);
3539 		}
3540 		len -= bytes;
3541 		buf += bytes;
3542 		addr += bytes;
3543 	}
3544 	up_read(&mm->mmap_sem);
3545 	mmput(mm);
3546 
3547 	return buf - old_buf;
3548 }
3549 
3550 /*
3551  * Print the name of a VMA.
3552  */
3553 void print_vma_addr(char *prefix, unsigned long ip)
3554 {
3555 	struct mm_struct *mm = current->mm;
3556 	struct vm_area_struct *vma;
3557 
3558 	/*
3559 	 * Do not print if we are in atomic
3560 	 * contexts (in exception stacks, etc.):
3561 	 */
3562 	if (preempt_count())
3563 		return;
3564 
3565 	down_read(&mm->mmap_sem);
3566 	vma = find_vma(mm, ip);
3567 	if (vma && vma->vm_file) {
3568 		struct file *f = vma->vm_file;
3569 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3570 		if (buf) {
3571 			char *p, *s;
3572 
3573 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3574 			if (IS_ERR(p))
3575 				p = "?";
3576 			s = strrchr(p, '/');
3577 			if (s)
3578 				p = s+1;
3579 			printk("%s%s[%lx+%lx]", prefix, p,
3580 					vma->vm_start,
3581 					vma->vm_end - vma->vm_start);
3582 			free_page((unsigned long)buf);
3583 		}
3584 	}
3585 	up_read(&current->mm->mmap_sem);
3586 }
3587 
3588 #ifdef CONFIG_PROVE_LOCKING
3589 void might_fault(void)
3590 {
3591 	/*
3592 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3593 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3594 	 * get paged out, therefore we'll never actually fault, and the
3595 	 * below annotations will generate false positives.
3596 	 */
3597 	if (segment_eq(get_fs(), KERNEL_DS))
3598 		return;
3599 
3600 	might_sleep();
3601 	/*
3602 	 * it would be nicer only to annotate paths which are not under
3603 	 * pagefault_disable, however that requires a larger audit and
3604 	 * providing helpers like get_user_atomic.
3605 	 */
3606 	if (!in_atomic() && current->mm)
3607 		might_lock_read(&current->mm->mmap_sem);
3608 }
3609 EXPORT_SYMBOL(might_fault);
3610 #endif
3611