1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <trace/events/kmem.h> 76 77 #include <asm/io.h> 78 #include <asm/mmu_context.h> 79 #include <asm/pgalloc.h> 80 #include <linux/uaccess.h> 81 #include <asm/tlb.h> 82 #include <asm/tlbflush.h> 83 #include <asm/pgtable.h> 84 85 #include "internal.h" 86 87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 89 #endif 90 91 #ifndef CONFIG_NEED_MULTIPLE_NODES 92 /* use the per-pgdat data instead for discontigmem - mbligh */ 93 unsigned long max_mapnr; 94 EXPORT_SYMBOL(max_mapnr); 95 96 struct page *mem_map; 97 EXPORT_SYMBOL(mem_map); 98 #endif 99 100 /* 101 * A number of key systems in x86 including ioremap() rely on the assumption 102 * that high_memory defines the upper bound on direct map memory, then end 103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 105 * and ZONE_HIGHMEM. 106 */ 107 void *high_memory; 108 EXPORT_SYMBOL(high_memory); 109 110 /* 111 * Randomize the address space (stacks, mmaps, brk, etc.). 112 * 113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 114 * as ancient (libc5 based) binaries can segfault. ) 115 */ 116 int randomize_va_space __read_mostly = 117 #ifdef CONFIG_COMPAT_BRK 118 1; 119 #else 120 2; 121 #endif 122 123 #ifndef arch_faults_on_old_pte 124 static inline bool arch_faults_on_old_pte(void) 125 { 126 /* 127 * Those arches which don't have hw access flag feature need to 128 * implement their own helper. By default, "true" means pagefault 129 * will be hit on old pte. 130 */ 131 return true; 132 } 133 #endif 134 135 static int __init disable_randmaps(char *s) 136 { 137 randomize_va_space = 0; 138 return 1; 139 } 140 __setup("norandmaps", disable_randmaps); 141 142 unsigned long zero_pfn __read_mostly; 143 EXPORT_SYMBOL(zero_pfn); 144 145 unsigned long highest_memmap_pfn __read_mostly; 146 147 /* 148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 149 */ 150 static int __init init_zero_pfn(void) 151 { 152 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 153 return 0; 154 } 155 core_initcall(init_zero_pfn); 156 157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 158 { 159 trace_rss_stat(mm, member, count); 160 } 161 162 #if defined(SPLIT_RSS_COUNTING) 163 164 void sync_mm_rss(struct mm_struct *mm) 165 { 166 int i; 167 168 for (i = 0; i < NR_MM_COUNTERS; i++) { 169 if (current->rss_stat.count[i]) { 170 add_mm_counter(mm, i, current->rss_stat.count[i]); 171 current->rss_stat.count[i] = 0; 172 } 173 } 174 current->rss_stat.events = 0; 175 } 176 177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 178 { 179 struct task_struct *task = current; 180 181 if (likely(task->mm == mm)) 182 task->rss_stat.count[member] += val; 183 else 184 add_mm_counter(mm, member, val); 185 } 186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 188 189 /* sync counter once per 64 page faults */ 190 #define TASK_RSS_EVENTS_THRESH (64) 191 static void check_sync_rss_stat(struct task_struct *task) 192 { 193 if (unlikely(task != current)) 194 return; 195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 196 sync_mm_rss(task->mm); 197 } 198 #else /* SPLIT_RSS_COUNTING */ 199 200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 202 203 static void check_sync_rss_stat(struct task_struct *task) 204 { 205 } 206 207 #endif /* SPLIT_RSS_COUNTING */ 208 209 /* 210 * Note: this doesn't free the actual pages themselves. That 211 * has been handled earlier when unmapping all the memory regions. 212 */ 213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 214 unsigned long addr) 215 { 216 pgtable_t token = pmd_pgtable(*pmd); 217 pmd_clear(pmd); 218 pte_free_tlb(tlb, token, addr); 219 mm_dec_nr_ptes(tlb->mm); 220 } 221 222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 223 unsigned long addr, unsigned long end, 224 unsigned long floor, unsigned long ceiling) 225 { 226 pmd_t *pmd; 227 unsigned long next; 228 unsigned long start; 229 230 start = addr; 231 pmd = pmd_offset(pud, addr); 232 do { 233 next = pmd_addr_end(addr, end); 234 if (pmd_none_or_clear_bad(pmd)) 235 continue; 236 free_pte_range(tlb, pmd, addr); 237 } while (pmd++, addr = next, addr != end); 238 239 start &= PUD_MASK; 240 if (start < floor) 241 return; 242 if (ceiling) { 243 ceiling &= PUD_MASK; 244 if (!ceiling) 245 return; 246 } 247 if (end - 1 > ceiling - 1) 248 return; 249 250 pmd = pmd_offset(pud, start); 251 pud_clear(pud); 252 pmd_free_tlb(tlb, pmd, start); 253 mm_dec_nr_pmds(tlb->mm); 254 } 255 256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 257 unsigned long addr, unsigned long end, 258 unsigned long floor, unsigned long ceiling) 259 { 260 pud_t *pud; 261 unsigned long next; 262 unsigned long start; 263 264 start = addr; 265 pud = pud_offset(p4d, addr); 266 do { 267 next = pud_addr_end(addr, end); 268 if (pud_none_or_clear_bad(pud)) 269 continue; 270 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 271 } while (pud++, addr = next, addr != end); 272 273 start &= P4D_MASK; 274 if (start < floor) 275 return; 276 if (ceiling) { 277 ceiling &= P4D_MASK; 278 if (!ceiling) 279 return; 280 } 281 if (end - 1 > ceiling - 1) 282 return; 283 284 pud = pud_offset(p4d, start); 285 p4d_clear(p4d); 286 pud_free_tlb(tlb, pud, start); 287 mm_dec_nr_puds(tlb->mm); 288 } 289 290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 291 unsigned long addr, unsigned long end, 292 unsigned long floor, unsigned long ceiling) 293 { 294 p4d_t *p4d; 295 unsigned long next; 296 unsigned long start; 297 298 start = addr; 299 p4d = p4d_offset(pgd, addr); 300 do { 301 next = p4d_addr_end(addr, end); 302 if (p4d_none_or_clear_bad(p4d)) 303 continue; 304 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 305 } while (p4d++, addr = next, addr != end); 306 307 start &= PGDIR_MASK; 308 if (start < floor) 309 return; 310 if (ceiling) { 311 ceiling &= PGDIR_MASK; 312 if (!ceiling) 313 return; 314 } 315 if (end - 1 > ceiling - 1) 316 return; 317 318 p4d = p4d_offset(pgd, start); 319 pgd_clear(pgd); 320 p4d_free_tlb(tlb, p4d, start); 321 } 322 323 /* 324 * This function frees user-level page tables of a process. 325 */ 326 void free_pgd_range(struct mmu_gather *tlb, 327 unsigned long addr, unsigned long end, 328 unsigned long floor, unsigned long ceiling) 329 { 330 pgd_t *pgd; 331 unsigned long next; 332 333 /* 334 * The next few lines have given us lots of grief... 335 * 336 * Why are we testing PMD* at this top level? Because often 337 * there will be no work to do at all, and we'd prefer not to 338 * go all the way down to the bottom just to discover that. 339 * 340 * Why all these "- 1"s? Because 0 represents both the bottom 341 * of the address space and the top of it (using -1 for the 342 * top wouldn't help much: the masks would do the wrong thing). 343 * The rule is that addr 0 and floor 0 refer to the bottom of 344 * the address space, but end 0 and ceiling 0 refer to the top 345 * Comparisons need to use "end - 1" and "ceiling - 1" (though 346 * that end 0 case should be mythical). 347 * 348 * Wherever addr is brought up or ceiling brought down, we must 349 * be careful to reject "the opposite 0" before it confuses the 350 * subsequent tests. But what about where end is brought down 351 * by PMD_SIZE below? no, end can't go down to 0 there. 352 * 353 * Whereas we round start (addr) and ceiling down, by different 354 * masks at different levels, in order to test whether a table 355 * now has no other vmas using it, so can be freed, we don't 356 * bother to round floor or end up - the tests don't need that. 357 */ 358 359 addr &= PMD_MASK; 360 if (addr < floor) { 361 addr += PMD_SIZE; 362 if (!addr) 363 return; 364 } 365 if (ceiling) { 366 ceiling &= PMD_MASK; 367 if (!ceiling) 368 return; 369 } 370 if (end - 1 > ceiling - 1) 371 end -= PMD_SIZE; 372 if (addr > end - 1) 373 return; 374 /* 375 * We add page table cache pages with PAGE_SIZE, 376 * (see pte_free_tlb()), flush the tlb if we need 377 */ 378 tlb_change_page_size(tlb, PAGE_SIZE); 379 pgd = pgd_offset(tlb->mm, addr); 380 do { 381 next = pgd_addr_end(addr, end); 382 if (pgd_none_or_clear_bad(pgd)) 383 continue; 384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 385 } while (pgd++, addr = next, addr != end); 386 } 387 388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 389 unsigned long floor, unsigned long ceiling) 390 { 391 while (vma) { 392 struct vm_area_struct *next = vma->vm_next; 393 unsigned long addr = vma->vm_start; 394 395 /* 396 * Hide vma from rmap and truncate_pagecache before freeing 397 * pgtables 398 */ 399 unlink_anon_vmas(vma); 400 unlink_file_vma(vma); 401 402 if (is_vm_hugetlb_page(vma)) { 403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 404 floor, next ? next->vm_start : ceiling); 405 } else { 406 /* 407 * Optimization: gather nearby vmas into one call down 408 */ 409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 410 && !is_vm_hugetlb_page(next)) { 411 vma = next; 412 next = vma->vm_next; 413 unlink_anon_vmas(vma); 414 unlink_file_vma(vma); 415 } 416 free_pgd_range(tlb, addr, vma->vm_end, 417 floor, next ? next->vm_start : ceiling); 418 } 419 vma = next; 420 } 421 } 422 423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 424 { 425 spinlock_t *ptl; 426 pgtable_t new = pte_alloc_one(mm); 427 if (!new) 428 return -ENOMEM; 429 430 /* 431 * Ensure all pte setup (eg. pte page lock and page clearing) are 432 * visible before the pte is made visible to other CPUs by being 433 * put into page tables. 434 * 435 * The other side of the story is the pointer chasing in the page 436 * table walking code (when walking the page table without locking; 437 * ie. most of the time). Fortunately, these data accesses consist 438 * of a chain of data-dependent loads, meaning most CPUs (alpha 439 * being the notable exception) will already guarantee loads are 440 * seen in-order. See the alpha page table accessors for the 441 * smp_read_barrier_depends() barriers in page table walking code. 442 */ 443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 444 445 ptl = pmd_lock(mm, pmd); 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 447 mm_inc_nr_ptes(mm); 448 pmd_populate(mm, pmd, new); 449 new = NULL; 450 } 451 spin_unlock(ptl); 452 if (new) 453 pte_free(mm, new); 454 return 0; 455 } 456 457 int __pte_alloc_kernel(pmd_t *pmd) 458 { 459 pte_t *new = pte_alloc_one_kernel(&init_mm); 460 if (!new) 461 return -ENOMEM; 462 463 smp_wmb(); /* See comment in __pte_alloc */ 464 465 spin_lock(&init_mm.page_table_lock); 466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 467 pmd_populate_kernel(&init_mm, pmd, new); 468 new = NULL; 469 } 470 spin_unlock(&init_mm.page_table_lock); 471 if (new) 472 pte_free_kernel(&init_mm, new); 473 return 0; 474 } 475 476 static inline void init_rss_vec(int *rss) 477 { 478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 479 } 480 481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 482 { 483 int i; 484 485 if (current->mm == mm) 486 sync_mm_rss(mm); 487 for (i = 0; i < NR_MM_COUNTERS; i++) 488 if (rss[i]) 489 add_mm_counter(mm, i, rss[i]); 490 } 491 492 /* 493 * This function is called to print an error when a bad pte 494 * is found. For example, we might have a PFN-mapped pte in 495 * a region that doesn't allow it. 496 * 497 * The calling function must still handle the error. 498 */ 499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 500 pte_t pte, struct page *page) 501 { 502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 503 p4d_t *p4d = p4d_offset(pgd, addr); 504 pud_t *pud = pud_offset(p4d, addr); 505 pmd_t *pmd = pmd_offset(pud, addr); 506 struct address_space *mapping; 507 pgoff_t index; 508 static unsigned long resume; 509 static unsigned long nr_shown; 510 static unsigned long nr_unshown; 511 512 /* 513 * Allow a burst of 60 reports, then keep quiet for that minute; 514 * or allow a steady drip of one report per second. 515 */ 516 if (nr_shown == 60) { 517 if (time_before(jiffies, resume)) { 518 nr_unshown++; 519 return; 520 } 521 if (nr_unshown) { 522 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 523 nr_unshown); 524 nr_unshown = 0; 525 } 526 nr_shown = 0; 527 } 528 if (nr_shown++ == 0) 529 resume = jiffies + 60 * HZ; 530 531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 532 index = linear_page_index(vma, addr); 533 534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 535 current->comm, 536 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 537 if (page) 538 dump_page(page, "bad pte"); 539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 542 vma->vm_file, 543 vma->vm_ops ? vma->vm_ops->fault : NULL, 544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 545 mapping ? mapping->a_ops->readpage : NULL); 546 dump_stack(); 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 548 } 549 550 /* 551 * vm_normal_page -- This function gets the "struct page" associated with a pte. 552 * 553 * "Special" mappings do not wish to be associated with a "struct page" (either 554 * it doesn't exist, or it exists but they don't want to touch it). In this 555 * case, NULL is returned here. "Normal" mappings do have a struct page. 556 * 557 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 558 * pte bit, in which case this function is trivial. Secondly, an architecture 559 * may not have a spare pte bit, which requires a more complicated scheme, 560 * described below. 561 * 562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 563 * special mapping (even if there are underlying and valid "struct pages"). 564 * COWed pages of a VM_PFNMAP are always normal. 565 * 566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 569 * mapping will always honor the rule 570 * 571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 572 * 573 * And for normal mappings this is false. 574 * 575 * This restricts such mappings to be a linear translation from virtual address 576 * to pfn. To get around this restriction, we allow arbitrary mappings so long 577 * as the vma is not a COW mapping; in that case, we know that all ptes are 578 * special (because none can have been COWed). 579 * 580 * 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 582 * 583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 584 * page" backing, however the difference is that _all_ pages with a struct 585 * page (that is, those where pfn_valid is true) are refcounted and considered 586 * normal pages by the VM. The disadvantage is that pages are refcounted 587 * (which can be slower and simply not an option for some PFNMAP users). The 588 * advantage is that we don't have to follow the strict linearity rule of 589 * PFNMAP mappings in order to support COWable mappings. 590 * 591 */ 592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 593 pte_t pte) 594 { 595 unsigned long pfn = pte_pfn(pte); 596 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 598 if (likely(!pte_special(pte))) 599 goto check_pfn; 600 if (vma->vm_ops && vma->vm_ops->find_special_page) 601 return vma->vm_ops->find_special_page(vma, addr); 602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 603 return NULL; 604 if (is_zero_pfn(pfn)) 605 return NULL; 606 if (pte_devmap(pte)) 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 649 pmd_t pmd) 650 { 651 unsigned long pfn = pmd_pfn(pmd); 652 653 /* 654 * There is no pmd_special() but there may be special pmds, e.g. 655 * in a direct-access (dax) mapping, so let's just replicate the 656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 657 */ 658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 659 if (vma->vm_flags & VM_MIXEDMAP) { 660 if (!pfn_valid(pfn)) 661 return NULL; 662 goto out; 663 } else { 664 unsigned long off; 665 off = (addr - vma->vm_start) >> PAGE_SHIFT; 666 if (pfn == vma->vm_pgoff + off) 667 return NULL; 668 if (!is_cow_mapping(vma->vm_flags)) 669 return NULL; 670 } 671 } 672 673 if (pmd_devmap(pmd)) 674 return NULL; 675 if (is_huge_zero_pmd(pmd)) 676 return NULL; 677 if (unlikely(pfn > highest_memmap_pfn)) 678 return NULL; 679 680 /* 681 * NOTE! We still have PageReserved() pages in the page tables. 682 * eg. VDSO mappings can cause them to exist. 683 */ 684 out: 685 return pfn_to_page(pfn); 686 } 687 #endif 688 689 /* 690 * copy one vm_area from one task to the other. Assumes the page tables 691 * already present in the new task to be cleared in the whole range 692 * covered by this vma. 693 */ 694 695 static inline unsigned long 696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 698 unsigned long addr, int *rss) 699 { 700 unsigned long vm_flags = vma->vm_flags; 701 pte_t pte = *src_pte; 702 struct page *page; 703 704 /* pte contains position in swap or file, so copy. */ 705 if (unlikely(!pte_present(pte))) { 706 swp_entry_t entry = pte_to_swp_entry(pte); 707 708 if (likely(!non_swap_entry(entry))) { 709 if (swap_duplicate(entry) < 0) 710 return entry.val; 711 712 /* make sure dst_mm is on swapoff's mmlist. */ 713 if (unlikely(list_empty(&dst_mm->mmlist))) { 714 spin_lock(&mmlist_lock); 715 if (list_empty(&dst_mm->mmlist)) 716 list_add(&dst_mm->mmlist, 717 &src_mm->mmlist); 718 spin_unlock(&mmlist_lock); 719 } 720 rss[MM_SWAPENTS]++; 721 } else if (is_migration_entry(entry)) { 722 page = migration_entry_to_page(entry); 723 724 rss[mm_counter(page)]++; 725 726 if (is_write_migration_entry(entry) && 727 is_cow_mapping(vm_flags)) { 728 /* 729 * COW mappings require pages in both 730 * parent and child to be set to read. 731 */ 732 make_migration_entry_read(&entry); 733 pte = swp_entry_to_pte(entry); 734 if (pte_swp_soft_dirty(*src_pte)) 735 pte = pte_swp_mksoft_dirty(pte); 736 if (pte_swp_uffd_wp(*src_pte)) 737 pte = pte_swp_mkuffd_wp(pte); 738 set_pte_at(src_mm, addr, src_pte, pte); 739 } 740 } else if (is_device_private_entry(entry)) { 741 page = device_private_entry_to_page(entry); 742 743 /* 744 * Update rss count even for unaddressable pages, as 745 * they should treated just like normal pages in this 746 * respect. 747 * 748 * We will likely want to have some new rss counters 749 * for unaddressable pages, at some point. But for now 750 * keep things as they are. 751 */ 752 get_page(page); 753 rss[mm_counter(page)]++; 754 page_dup_rmap(page, false); 755 756 /* 757 * We do not preserve soft-dirty information, because so 758 * far, checkpoint/restore is the only feature that 759 * requires that. And checkpoint/restore does not work 760 * when a device driver is involved (you cannot easily 761 * save and restore device driver state). 762 */ 763 if (is_write_device_private_entry(entry) && 764 is_cow_mapping(vm_flags)) { 765 make_device_private_entry_read(&entry); 766 pte = swp_entry_to_pte(entry); 767 if (pte_swp_uffd_wp(*src_pte)) 768 pte = pte_swp_mkuffd_wp(pte); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 goto out_set_pte; 773 } 774 775 /* 776 * If it's a COW mapping, write protect it both 777 * in the parent and the child 778 */ 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 780 ptep_set_wrprotect(src_mm, addr, src_pte); 781 pte = pte_wrprotect(pte); 782 } 783 784 /* 785 * If it's a shared mapping, mark it clean in 786 * the child 787 */ 788 if (vm_flags & VM_SHARED) 789 pte = pte_mkclean(pte); 790 pte = pte_mkold(pte); 791 792 /* 793 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 794 * does not have the VM_UFFD_WP, which means that the uffd 795 * fork event is not enabled. 796 */ 797 if (!(vm_flags & VM_UFFD_WP)) 798 pte = pte_clear_uffd_wp(pte); 799 800 page = vm_normal_page(vma, addr, pte); 801 if (page) { 802 get_page(page); 803 page_dup_rmap(page, false); 804 rss[mm_counter(page)]++; 805 } else if (pte_devmap(pte)) { 806 page = pte_page(pte); 807 } 808 809 out_set_pte: 810 set_pte_at(dst_mm, addr, dst_pte, pte); 811 return 0; 812 } 813 814 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 815 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 816 unsigned long addr, unsigned long end) 817 { 818 pte_t *orig_src_pte, *orig_dst_pte; 819 pte_t *src_pte, *dst_pte; 820 spinlock_t *src_ptl, *dst_ptl; 821 int progress = 0; 822 int rss[NR_MM_COUNTERS]; 823 swp_entry_t entry = (swp_entry_t){0}; 824 825 again: 826 init_rss_vec(rss); 827 828 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 829 if (!dst_pte) 830 return -ENOMEM; 831 src_pte = pte_offset_map(src_pmd, addr); 832 src_ptl = pte_lockptr(src_mm, src_pmd); 833 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 834 orig_src_pte = src_pte; 835 orig_dst_pte = dst_pte; 836 arch_enter_lazy_mmu_mode(); 837 838 do { 839 /* 840 * We are holding two locks at this point - either of them 841 * could generate latencies in another task on another CPU. 842 */ 843 if (progress >= 32) { 844 progress = 0; 845 if (need_resched() || 846 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 847 break; 848 } 849 if (pte_none(*src_pte)) { 850 progress++; 851 continue; 852 } 853 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 854 vma, addr, rss); 855 if (entry.val) 856 break; 857 progress += 8; 858 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 859 860 arch_leave_lazy_mmu_mode(); 861 spin_unlock(src_ptl); 862 pte_unmap(orig_src_pte); 863 add_mm_rss_vec(dst_mm, rss); 864 pte_unmap_unlock(orig_dst_pte, dst_ptl); 865 cond_resched(); 866 867 if (entry.val) { 868 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 869 return -ENOMEM; 870 progress = 0; 871 } 872 if (addr != end) 873 goto again; 874 return 0; 875 } 876 877 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 878 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 879 unsigned long addr, unsigned long end) 880 { 881 pmd_t *src_pmd, *dst_pmd; 882 unsigned long next; 883 884 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 885 if (!dst_pmd) 886 return -ENOMEM; 887 src_pmd = pmd_offset(src_pud, addr); 888 do { 889 next = pmd_addr_end(addr, end); 890 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 891 || pmd_devmap(*src_pmd)) { 892 int err; 893 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 894 err = copy_huge_pmd(dst_mm, src_mm, 895 dst_pmd, src_pmd, addr, vma); 896 if (err == -ENOMEM) 897 return -ENOMEM; 898 if (!err) 899 continue; 900 /* fall through */ 901 } 902 if (pmd_none_or_clear_bad(src_pmd)) 903 continue; 904 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 905 vma, addr, next)) 906 return -ENOMEM; 907 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 908 return 0; 909 } 910 911 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 912 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 913 unsigned long addr, unsigned long end) 914 { 915 pud_t *src_pud, *dst_pud; 916 unsigned long next; 917 918 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 919 if (!dst_pud) 920 return -ENOMEM; 921 src_pud = pud_offset(src_p4d, addr); 922 do { 923 next = pud_addr_end(addr, end); 924 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 925 int err; 926 927 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 928 err = copy_huge_pud(dst_mm, src_mm, 929 dst_pud, src_pud, addr, vma); 930 if (err == -ENOMEM) 931 return -ENOMEM; 932 if (!err) 933 continue; 934 /* fall through */ 935 } 936 if (pud_none_or_clear_bad(src_pud)) 937 continue; 938 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 939 vma, addr, next)) 940 return -ENOMEM; 941 } while (dst_pud++, src_pud++, addr = next, addr != end); 942 return 0; 943 } 944 945 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 946 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 947 unsigned long addr, unsigned long end) 948 { 949 p4d_t *src_p4d, *dst_p4d; 950 unsigned long next; 951 952 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 953 if (!dst_p4d) 954 return -ENOMEM; 955 src_p4d = p4d_offset(src_pgd, addr); 956 do { 957 next = p4d_addr_end(addr, end); 958 if (p4d_none_or_clear_bad(src_p4d)) 959 continue; 960 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 961 vma, addr, next)) 962 return -ENOMEM; 963 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 964 return 0; 965 } 966 967 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 968 struct vm_area_struct *vma) 969 { 970 pgd_t *src_pgd, *dst_pgd; 971 unsigned long next; 972 unsigned long addr = vma->vm_start; 973 unsigned long end = vma->vm_end; 974 struct mmu_notifier_range range; 975 bool is_cow; 976 int ret; 977 978 /* 979 * Don't copy ptes where a page fault will fill them correctly. 980 * Fork becomes much lighter when there are big shared or private 981 * readonly mappings. The tradeoff is that copy_page_range is more 982 * efficient than faulting. 983 */ 984 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 985 !vma->anon_vma) 986 return 0; 987 988 if (is_vm_hugetlb_page(vma)) 989 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 990 991 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 992 /* 993 * We do not free on error cases below as remove_vma 994 * gets called on error from higher level routine 995 */ 996 ret = track_pfn_copy(vma); 997 if (ret) 998 return ret; 999 } 1000 1001 /* 1002 * We need to invalidate the secondary MMU mappings only when 1003 * there could be a permission downgrade on the ptes of the 1004 * parent mm. And a permission downgrade will only happen if 1005 * is_cow_mapping() returns true. 1006 */ 1007 is_cow = is_cow_mapping(vma->vm_flags); 1008 1009 if (is_cow) { 1010 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1011 0, vma, src_mm, addr, end); 1012 mmu_notifier_invalidate_range_start(&range); 1013 } 1014 1015 ret = 0; 1016 dst_pgd = pgd_offset(dst_mm, addr); 1017 src_pgd = pgd_offset(src_mm, addr); 1018 do { 1019 next = pgd_addr_end(addr, end); 1020 if (pgd_none_or_clear_bad(src_pgd)) 1021 continue; 1022 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1023 vma, addr, next))) { 1024 ret = -ENOMEM; 1025 break; 1026 } 1027 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1028 1029 if (is_cow) 1030 mmu_notifier_invalidate_range_end(&range); 1031 return ret; 1032 } 1033 1034 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1035 struct vm_area_struct *vma, pmd_t *pmd, 1036 unsigned long addr, unsigned long end, 1037 struct zap_details *details) 1038 { 1039 struct mm_struct *mm = tlb->mm; 1040 int force_flush = 0; 1041 int rss[NR_MM_COUNTERS]; 1042 spinlock_t *ptl; 1043 pte_t *start_pte; 1044 pte_t *pte; 1045 swp_entry_t entry; 1046 1047 tlb_change_page_size(tlb, PAGE_SIZE); 1048 again: 1049 init_rss_vec(rss); 1050 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1051 pte = start_pte; 1052 flush_tlb_batched_pending(mm); 1053 arch_enter_lazy_mmu_mode(); 1054 do { 1055 pte_t ptent = *pte; 1056 if (pte_none(ptent)) 1057 continue; 1058 1059 if (need_resched()) 1060 break; 1061 1062 if (pte_present(ptent)) { 1063 struct page *page; 1064 1065 page = vm_normal_page(vma, addr, ptent); 1066 if (unlikely(details) && page) { 1067 /* 1068 * unmap_shared_mapping_pages() wants to 1069 * invalidate cache without truncating: 1070 * unmap shared but keep private pages. 1071 */ 1072 if (details->check_mapping && 1073 details->check_mapping != page_rmapping(page)) 1074 continue; 1075 } 1076 ptent = ptep_get_and_clear_full(mm, addr, pte, 1077 tlb->fullmm); 1078 tlb_remove_tlb_entry(tlb, pte, addr); 1079 if (unlikely(!page)) 1080 continue; 1081 1082 if (!PageAnon(page)) { 1083 if (pte_dirty(ptent)) { 1084 force_flush = 1; 1085 set_page_dirty(page); 1086 } 1087 if (pte_young(ptent) && 1088 likely(!(vma->vm_flags & VM_SEQ_READ))) 1089 mark_page_accessed(page); 1090 } 1091 rss[mm_counter(page)]--; 1092 page_remove_rmap(page, false); 1093 if (unlikely(page_mapcount(page) < 0)) 1094 print_bad_pte(vma, addr, ptent, page); 1095 if (unlikely(__tlb_remove_page(tlb, page))) { 1096 force_flush = 1; 1097 addr += PAGE_SIZE; 1098 break; 1099 } 1100 continue; 1101 } 1102 1103 entry = pte_to_swp_entry(ptent); 1104 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1105 struct page *page = device_private_entry_to_page(entry); 1106 1107 if (unlikely(details && details->check_mapping)) { 1108 /* 1109 * unmap_shared_mapping_pages() wants to 1110 * invalidate cache without truncating: 1111 * unmap shared but keep private pages. 1112 */ 1113 if (details->check_mapping != 1114 page_rmapping(page)) 1115 continue; 1116 } 1117 1118 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1119 rss[mm_counter(page)]--; 1120 page_remove_rmap(page, false); 1121 put_page(page); 1122 continue; 1123 } 1124 1125 /* If details->check_mapping, we leave swap entries. */ 1126 if (unlikely(details)) 1127 continue; 1128 1129 if (!non_swap_entry(entry)) 1130 rss[MM_SWAPENTS]--; 1131 else if (is_migration_entry(entry)) { 1132 struct page *page; 1133 1134 page = migration_entry_to_page(entry); 1135 rss[mm_counter(page)]--; 1136 } 1137 if (unlikely(!free_swap_and_cache(entry))) 1138 print_bad_pte(vma, addr, ptent, NULL); 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1140 } while (pte++, addr += PAGE_SIZE, addr != end); 1141 1142 add_mm_rss_vec(mm, rss); 1143 arch_leave_lazy_mmu_mode(); 1144 1145 /* Do the actual TLB flush before dropping ptl */ 1146 if (force_flush) 1147 tlb_flush_mmu_tlbonly(tlb); 1148 pte_unmap_unlock(start_pte, ptl); 1149 1150 /* 1151 * If we forced a TLB flush (either due to running out of 1152 * batch buffers or because we needed to flush dirty TLB 1153 * entries before releasing the ptl), free the batched 1154 * memory too. Restart if we didn't do everything. 1155 */ 1156 if (force_flush) { 1157 force_flush = 0; 1158 tlb_flush_mmu(tlb); 1159 } 1160 1161 if (addr != end) { 1162 cond_resched(); 1163 goto again; 1164 } 1165 1166 return addr; 1167 } 1168 1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1170 struct vm_area_struct *vma, pud_t *pud, 1171 unsigned long addr, unsigned long end, 1172 struct zap_details *details) 1173 { 1174 pmd_t *pmd; 1175 unsigned long next; 1176 1177 pmd = pmd_offset(pud, addr); 1178 do { 1179 next = pmd_addr_end(addr, end); 1180 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1181 if (next - addr != HPAGE_PMD_SIZE) 1182 __split_huge_pmd(vma, pmd, addr, false, NULL); 1183 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1184 goto next; 1185 /* fall through */ 1186 } 1187 /* 1188 * Here there can be other concurrent MADV_DONTNEED or 1189 * trans huge page faults running, and if the pmd is 1190 * none or trans huge it can change under us. This is 1191 * because MADV_DONTNEED holds the mmap_sem in read 1192 * mode. 1193 */ 1194 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1195 goto next; 1196 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1197 next: 1198 cond_resched(); 1199 } while (pmd++, addr = next, addr != end); 1200 1201 return addr; 1202 } 1203 1204 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1205 struct vm_area_struct *vma, p4d_t *p4d, 1206 unsigned long addr, unsigned long end, 1207 struct zap_details *details) 1208 { 1209 pud_t *pud; 1210 unsigned long next; 1211 1212 pud = pud_offset(p4d, addr); 1213 do { 1214 next = pud_addr_end(addr, end); 1215 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1216 if (next - addr != HPAGE_PUD_SIZE) { 1217 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1218 split_huge_pud(vma, pud, addr); 1219 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1220 goto next; 1221 /* fall through */ 1222 } 1223 if (pud_none_or_clear_bad(pud)) 1224 continue; 1225 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1226 next: 1227 cond_resched(); 1228 } while (pud++, addr = next, addr != end); 1229 1230 return addr; 1231 } 1232 1233 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1234 struct vm_area_struct *vma, pgd_t *pgd, 1235 unsigned long addr, unsigned long end, 1236 struct zap_details *details) 1237 { 1238 p4d_t *p4d; 1239 unsigned long next; 1240 1241 p4d = p4d_offset(pgd, addr); 1242 do { 1243 next = p4d_addr_end(addr, end); 1244 if (p4d_none_or_clear_bad(p4d)) 1245 continue; 1246 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1247 } while (p4d++, addr = next, addr != end); 1248 1249 return addr; 1250 } 1251 1252 void unmap_page_range(struct mmu_gather *tlb, 1253 struct vm_area_struct *vma, 1254 unsigned long addr, unsigned long end, 1255 struct zap_details *details) 1256 { 1257 pgd_t *pgd; 1258 unsigned long next; 1259 1260 BUG_ON(addr >= end); 1261 tlb_start_vma(tlb, vma); 1262 pgd = pgd_offset(vma->vm_mm, addr); 1263 do { 1264 next = pgd_addr_end(addr, end); 1265 if (pgd_none_or_clear_bad(pgd)) 1266 continue; 1267 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1268 } while (pgd++, addr = next, addr != end); 1269 tlb_end_vma(tlb, vma); 1270 } 1271 1272 1273 static void unmap_single_vma(struct mmu_gather *tlb, 1274 struct vm_area_struct *vma, unsigned long start_addr, 1275 unsigned long end_addr, 1276 struct zap_details *details) 1277 { 1278 unsigned long start = max(vma->vm_start, start_addr); 1279 unsigned long end; 1280 1281 if (start >= vma->vm_end) 1282 return; 1283 end = min(vma->vm_end, end_addr); 1284 if (end <= vma->vm_start) 1285 return; 1286 1287 if (vma->vm_file) 1288 uprobe_munmap(vma, start, end); 1289 1290 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1291 untrack_pfn(vma, 0, 0); 1292 1293 if (start != end) { 1294 if (unlikely(is_vm_hugetlb_page(vma))) { 1295 /* 1296 * It is undesirable to test vma->vm_file as it 1297 * should be non-null for valid hugetlb area. 1298 * However, vm_file will be NULL in the error 1299 * cleanup path of mmap_region. When 1300 * hugetlbfs ->mmap method fails, 1301 * mmap_region() nullifies vma->vm_file 1302 * before calling this function to clean up. 1303 * Since no pte has actually been setup, it is 1304 * safe to do nothing in this case. 1305 */ 1306 if (vma->vm_file) { 1307 i_mmap_lock_write(vma->vm_file->f_mapping); 1308 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1309 i_mmap_unlock_write(vma->vm_file->f_mapping); 1310 } 1311 } else 1312 unmap_page_range(tlb, vma, start, end, details); 1313 } 1314 } 1315 1316 /** 1317 * unmap_vmas - unmap a range of memory covered by a list of vma's 1318 * @tlb: address of the caller's struct mmu_gather 1319 * @vma: the starting vma 1320 * @start_addr: virtual address at which to start unmapping 1321 * @end_addr: virtual address at which to end unmapping 1322 * 1323 * Unmap all pages in the vma list. 1324 * 1325 * Only addresses between `start' and `end' will be unmapped. 1326 * 1327 * The VMA list must be sorted in ascending virtual address order. 1328 * 1329 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1330 * range after unmap_vmas() returns. So the only responsibility here is to 1331 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1332 * drops the lock and schedules. 1333 */ 1334 void unmap_vmas(struct mmu_gather *tlb, 1335 struct vm_area_struct *vma, unsigned long start_addr, 1336 unsigned long end_addr) 1337 { 1338 struct mmu_notifier_range range; 1339 1340 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1341 start_addr, end_addr); 1342 mmu_notifier_invalidate_range_start(&range); 1343 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1344 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1345 mmu_notifier_invalidate_range_end(&range); 1346 } 1347 1348 /** 1349 * zap_page_range - remove user pages in a given range 1350 * @vma: vm_area_struct holding the applicable pages 1351 * @start: starting address of pages to zap 1352 * @size: number of bytes to zap 1353 * 1354 * Caller must protect the VMA list 1355 */ 1356 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1357 unsigned long size) 1358 { 1359 struct mmu_notifier_range range; 1360 struct mmu_gather tlb; 1361 1362 lru_add_drain(); 1363 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1364 start, start + size); 1365 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1366 update_hiwater_rss(vma->vm_mm); 1367 mmu_notifier_invalidate_range_start(&range); 1368 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1369 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1370 mmu_notifier_invalidate_range_end(&range); 1371 tlb_finish_mmu(&tlb, start, range.end); 1372 } 1373 1374 /** 1375 * zap_page_range_single - remove user pages in a given range 1376 * @vma: vm_area_struct holding the applicable pages 1377 * @address: starting address of pages to zap 1378 * @size: number of bytes to zap 1379 * @details: details of shared cache invalidation 1380 * 1381 * The range must fit into one VMA. 1382 */ 1383 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1384 unsigned long size, struct zap_details *details) 1385 { 1386 struct mmu_notifier_range range; 1387 struct mmu_gather tlb; 1388 1389 lru_add_drain(); 1390 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1391 address, address + size); 1392 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1393 update_hiwater_rss(vma->vm_mm); 1394 mmu_notifier_invalidate_range_start(&range); 1395 unmap_single_vma(&tlb, vma, address, range.end, details); 1396 mmu_notifier_invalidate_range_end(&range); 1397 tlb_finish_mmu(&tlb, address, range.end); 1398 } 1399 1400 /** 1401 * zap_vma_ptes - remove ptes mapping the vma 1402 * @vma: vm_area_struct holding ptes to be zapped 1403 * @address: starting address of pages to zap 1404 * @size: number of bytes to zap 1405 * 1406 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1407 * 1408 * The entire address range must be fully contained within the vma. 1409 * 1410 */ 1411 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1412 unsigned long size) 1413 { 1414 if (address < vma->vm_start || address + size > vma->vm_end || 1415 !(vma->vm_flags & VM_PFNMAP)) 1416 return; 1417 1418 zap_page_range_single(vma, address, size, NULL); 1419 } 1420 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1421 1422 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1423 { 1424 pgd_t *pgd; 1425 p4d_t *p4d; 1426 pud_t *pud; 1427 pmd_t *pmd; 1428 1429 pgd = pgd_offset(mm, addr); 1430 p4d = p4d_alloc(mm, pgd, addr); 1431 if (!p4d) 1432 return NULL; 1433 pud = pud_alloc(mm, p4d, addr); 1434 if (!pud) 1435 return NULL; 1436 pmd = pmd_alloc(mm, pud, addr); 1437 if (!pmd) 1438 return NULL; 1439 1440 VM_BUG_ON(pmd_trans_huge(*pmd)); 1441 return pmd; 1442 } 1443 1444 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1445 spinlock_t **ptl) 1446 { 1447 pmd_t *pmd = walk_to_pmd(mm, addr); 1448 1449 if (!pmd) 1450 return NULL; 1451 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1452 } 1453 1454 static int validate_page_before_insert(struct page *page) 1455 { 1456 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1457 return -EINVAL; 1458 flush_dcache_page(page); 1459 return 0; 1460 } 1461 1462 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1463 unsigned long addr, struct page *page, pgprot_t prot) 1464 { 1465 if (!pte_none(*pte)) 1466 return -EBUSY; 1467 /* Ok, finally just insert the thing.. */ 1468 get_page(page); 1469 inc_mm_counter_fast(mm, mm_counter_file(page)); 1470 page_add_file_rmap(page, false); 1471 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1472 return 0; 1473 } 1474 1475 /* 1476 * This is the old fallback for page remapping. 1477 * 1478 * For historical reasons, it only allows reserved pages. Only 1479 * old drivers should use this, and they needed to mark their 1480 * pages reserved for the old functions anyway. 1481 */ 1482 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1483 struct page *page, pgprot_t prot) 1484 { 1485 struct mm_struct *mm = vma->vm_mm; 1486 int retval; 1487 pte_t *pte; 1488 spinlock_t *ptl; 1489 1490 retval = validate_page_before_insert(page); 1491 if (retval) 1492 goto out; 1493 retval = -ENOMEM; 1494 pte = get_locked_pte(mm, addr, &ptl); 1495 if (!pte) 1496 goto out; 1497 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1498 pte_unmap_unlock(pte, ptl); 1499 out: 1500 return retval; 1501 } 1502 1503 #ifdef pte_index 1504 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd, 1505 unsigned long addr, struct page *page, pgprot_t prot) 1506 { 1507 int err; 1508 1509 if (!page_count(page)) 1510 return -EINVAL; 1511 err = validate_page_before_insert(page); 1512 return err ? err : insert_page_into_pte_locked( 1513 mm, pte_offset_map(pmd, addr), addr, page, prot); 1514 } 1515 1516 /* insert_pages() amortizes the cost of spinlock operations 1517 * when inserting pages in a loop. Arch *must* define pte_index. 1518 */ 1519 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1520 struct page **pages, unsigned long *num, pgprot_t prot) 1521 { 1522 pmd_t *pmd = NULL; 1523 spinlock_t *pte_lock = NULL; 1524 struct mm_struct *const mm = vma->vm_mm; 1525 unsigned long curr_page_idx = 0; 1526 unsigned long remaining_pages_total = *num; 1527 unsigned long pages_to_write_in_pmd; 1528 int ret; 1529 more: 1530 ret = -EFAULT; 1531 pmd = walk_to_pmd(mm, addr); 1532 if (!pmd) 1533 goto out; 1534 1535 pages_to_write_in_pmd = min_t(unsigned long, 1536 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1537 1538 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1539 ret = -ENOMEM; 1540 if (pte_alloc(mm, pmd)) 1541 goto out; 1542 pte_lock = pte_lockptr(mm, pmd); 1543 1544 while (pages_to_write_in_pmd) { 1545 int pte_idx = 0; 1546 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1547 1548 spin_lock(pte_lock); 1549 for (; pte_idx < batch_size; ++pte_idx) { 1550 int err = insert_page_in_batch_locked(mm, pmd, 1551 addr, pages[curr_page_idx], prot); 1552 if (unlikely(err)) { 1553 spin_unlock(pte_lock); 1554 ret = err; 1555 remaining_pages_total -= pte_idx; 1556 goto out; 1557 } 1558 addr += PAGE_SIZE; 1559 ++curr_page_idx; 1560 } 1561 spin_unlock(pte_lock); 1562 pages_to_write_in_pmd -= batch_size; 1563 remaining_pages_total -= batch_size; 1564 } 1565 if (remaining_pages_total) 1566 goto more; 1567 ret = 0; 1568 out: 1569 *num = remaining_pages_total; 1570 return ret; 1571 } 1572 #endif /* ifdef pte_index */ 1573 1574 /** 1575 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1576 * @vma: user vma to map to 1577 * @addr: target start user address of these pages 1578 * @pages: source kernel pages 1579 * @num: in: number of pages to map. out: number of pages that were *not* 1580 * mapped. (0 means all pages were successfully mapped). 1581 * 1582 * Preferred over vm_insert_page() when inserting multiple pages. 1583 * 1584 * In case of error, we may have mapped a subset of the provided 1585 * pages. It is the caller's responsibility to account for this case. 1586 * 1587 * The same restrictions apply as in vm_insert_page(). 1588 */ 1589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1590 struct page **pages, unsigned long *num) 1591 { 1592 #ifdef pte_index 1593 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1594 1595 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1596 return -EFAULT; 1597 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1598 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1599 BUG_ON(vma->vm_flags & VM_PFNMAP); 1600 vma->vm_flags |= VM_MIXEDMAP; 1601 } 1602 /* Defer page refcount checking till we're about to map that page. */ 1603 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1604 #else 1605 unsigned long idx = 0, pgcount = *num; 1606 int err; 1607 1608 for (; idx < pgcount; ++idx) { 1609 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1610 if (err) 1611 break; 1612 } 1613 *num = pgcount - idx; 1614 return err; 1615 #endif /* ifdef pte_index */ 1616 } 1617 EXPORT_SYMBOL(vm_insert_pages); 1618 1619 /** 1620 * vm_insert_page - insert single page into user vma 1621 * @vma: user vma to map to 1622 * @addr: target user address of this page 1623 * @page: source kernel page 1624 * 1625 * This allows drivers to insert individual pages they've allocated 1626 * into a user vma. 1627 * 1628 * The page has to be a nice clean _individual_ kernel allocation. 1629 * If you allocate a compound page, you need to have marked it as 1630 * such (__GFP_COMP), or manually just split the page up yourself 1631 * (see split_page()). 1632 * 1633 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1634 * took an arbitrary page protection parameter. This doesn't allow 1635 * that. Your vma protection will have to be set up correctly, which 1636 * means that if you want a shared writable mapping, you'd better 1637 * ask for a shared writable mapping! 1638 * 1639 * The page does not need to be reserved. 1640 * 1641 * Usually this function is called from f_op->mmap() handler 1642 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1643 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1644 * function from other places, for example from page-fault handler. 1645 * 1646 * Return: %0 on success, negative error code otherwise. 1647 */ 1648 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1649 struct page *page) 1650 { 1651 if (addr < vma->vm_start || addr >= vma->vm_end) 1652 return -EFAULT; 1653 if (!page_count(page)) 1654 return -EINVAL; 1655 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1656 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1657 BUG_ON(vma->vm_flags & VM_PFNMAP); 1658 vma->vm_flags |= VM_MIXEDMAP; 1659 } 1660 return insert_page(vma, addr, page, vma->vm_page_prot); 1661 } 1662 EXPORT_SYMBOL(vm_insert_page); 1663 1664 /* 1665 * __vm_map_pages - maps range of kernel pages into user vma 1666 * @vma: user vma to map to 1667 * @pages: pointer to array of source kernel pages 1668 * @num: number of pages in page array 1669 * @offset: user's requested vm_pgoff 1670 * 1671 * This allows drivers to map range of kernel pages into a user vma. 1672 * 1673 * Return: 0 on success and error code otherwise. 1674 */ 1675 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1676 unsigned long num, unsigned long offset) 1677 { 1678 unsigned long count = vma_pages(vma); 1679 unsigned long uaddr = vma->vm_start; 1680 int ret, i; 1681 1682 /* Fail if the user requested offset is beyond the end of the object */ 1683 if (offset >= num) 1684 return -ENXIO; 1685 1686 /* Fail if the user requested size exceeds available object size */ 1687 if (count > num - offset) 1688 return -ENXIO; 1689 1690 for (i = 0; i < count; i++) { 1691 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1692 if (ret < 0) 1693 return ret; 1694 uaddr += PAGE_SIZE; 1695 } 1696 1697 return 0; 1698 } 1699 1700 /** 1701 * vm_map_pages - maps range of kernel pages starts with non zero offset 1702 * @vma: user vma to map to 1703 * @pages: pointer to array of source kernel pages 1704 * @num: number of pages in page array 1705 * 1706 * Maps an object consisting of @num pages, catering for the user's 1707 * requested vm_pgoff 1708 * 1709 * If we fail to insert any page into the vma, the function will return 1710 * immediately leaving any previously inserted pages present. Callers 1711 * from the mmap handler may immediately return the error as their caller 1712 * will destroy the vma, removing any successfully inserted pages. Other 1713 * callers should make their own arrangements for calling unmap_region(). 1714 * 1715 * Context: Process context. Called by mmap handlers. 1716 * Return: 0 on success and error code otherwise. 1717 */ 1718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1719 unsigned long num) 1720 { 1721 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1722 } 1723 EXPORT_SYMBOL(vm_map_pages); 1724 1725 /** 1726 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1727 * @vma: user vma to map to 1728 * @pages: pointer to array of source kernel pages 1729 * @num: number of pages in page array 1730 * 1731 * Similar to vm_map_pages(), except that it explicitly sets the offset 1732 * to 0. This function is intended for the drivers that did not consider 1733 * vm_pgoff. 1734 * 1735 * Context: Process context. Called by mmap handlers. 1736 * Return: 0 on success and error code otherwise. 1737 */ 1738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1739 unsigned long num) 1740 { 1741 return __vm_map_pages(vma, pages, num, 0); 1742 } 1743 EXPORT_SYMBOL(vm_map_pages_zero); 1744 1745 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1746 pfn_t pfn, pgprot_t prot, bool mkwrite) 1747 { 1748 struct mm_struct *mm = vma->vm_mm; 1749 pte_t *pte, entry; 1750 spinlock_t *ptl; 1751 1752 pte = get_locked_pte(mm, addr, &ptl); 1753 if (!pte) 1754 return VM_FAULT_OOM; 1755 if (!pte_none(*pte)) { 1756 if (mkwrite) { 1757 /* 1758 * For read faults on private mappings the PFN passed 1759 * in may not match the PFN we have mapped if the 1760 * mapped PFN is a writeable COW page. In the mkwrite 1761 * case we are creating a writable PTE for a shared 1762 * mapping and we expect the PFNs to match. If they 1763 * don't match, we are likely racing with block 1764 * allocation and mapping invalidation so just skip the 1765 * update. 1766 */ 1767 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1768 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1769 goto out_unlock; 1770 } 1771 entry = pte_mkyoung(*pte); 1772 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1773 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1774 update_mmu_cache(vma, addr, pte); 1775 } 1776 goto out_unlock; 1777 } 1778 1779 /* Ok, finally just insert the thing.. */ 1780 if (pfn_t_devmap(pfn)) 1781 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1782 else 1783 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1784 1785 if (mkwrite) { 1786 entry = pte_mkyoung(entry); 1787 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1788 } 1789 1790 set_pte_at(mm, addr, pte, entry); 1791 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1792 1793 out_unlock: 1794 pte_unmap_unlock(pte, ptl); 1795 return VM_FAULT_NOPAGE; 1796 } 1797 1798 /** 1799 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1800 * @vma: user vma to map to 1801 * @addr: target user address of this page 1802 * @pfn: source kernel pfn 1803 * @pgprot: pgprot flags for the inserted page 1804 * 1805 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1806 * to override pgprot on a per-page basis. 1807 * 1808 * This only makes sense for IO mappings, and it makes no sense for 1809 * COW mappings. In general, using multiple vmas is preferable; 1810 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1811 * impractical. 1812 * 1813 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1814 * a value of @pgprot different from that of @vma->vm_page_prot. 1815 * 1816 * Context: Process context. May allocate using %GFP_KERNEL. 1817 * Return: vm_fault_t value. 1818 */ 1819 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1820 unsigned long pfn, pgprot_t pgprot) 1821 { 1822 /* 1823 * Technically, architectures with pte_special can avoid all these 1824 * restrictions (same for remap_pfn_range). However we would like 1825 * consistency in testing and feature parity among all, so we should 1826 * try to keep these invariants in place for everybody. 1827 */ 1828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1829 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1830 (VM_PFNMAP|VM_MIXEDMAP)); 1831 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1832 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1833 1834 if (addr < vma->vm_start || addr >= vma->vm_end) 1835 return VM_FAULT_SIGBUS; 1836 1837 if (!pfn_modify_allowed(pfn, pgprot)) 1838 return VM_FAULT_SIGBUS; 1839 1840 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1841 1842 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1843 false); 1844 } 1845 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1846 1847 /** 1848 * vmf_insert_pfn - insert single pfn into user vma 1849 * @vma: user vma to map to 1850 * @addr: target user address of this page 1851 * @pfn: source kernel pfn 1852 * 1853 * Similar to vm_insert_page, this allows drivers to insert individual pages 1854 * they've allocated into a user vma. Same comments apply. 1855 * 1856 * This function should only be called from a vm_ops->fault handler, and 1857 * in that case the handler should return the result of this function. 1858 * 1859 * vma cannot be a COW mapping. 1860 * 1861 * As this is called only for pages that do not currently exist, we 1862 * do not need to flush old virtual caches or the TLB. 1863 * 1864 * Context: Process context. May allocate using %GFP_KERNEL. 1865 * Return: vm_fault_t value. 1866 */ 1867 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1868 unsigned long pfn) 1869 { 1870 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1871 } 1872 EXPORT_SYMBOL(vmf_insert_pfn); 1873 1874 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1875 { 1876 /* these checks mirror the abort conditions in vm_normal_page */ 1877 if (vma->vm_flags & VM_MIXEDMAP) 1878 return true; 1879 if (pfn_t_devmap(pfn)) 1880 return true; 1881 if (pfn_t_special(pfn)) 1882 return true; 1883 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1884 return true; 1885 return false; 1886 } 1887 1888 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1889 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 1890 bool mkwrite) 1891 { 1892 int err; 1893 1894 BUG_ON(!vm_mixed_ok(vma, pfn)); 1895 1896 if (addr < vma->vm_start || addr >= vma->vm_end) 1897 return VM_FAULT_SIGBUS; 1898 1899 track_pfn_insert(vma, &pgprot, pfn); 1900 1901 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1902 return VM_FAULT_SIGBUS; 1903 1904 /* 1905 * If we don't have pte special, then we have to use the pfn_valid() 1906 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1907 * refcount the page if pfn_valid is true (hence insert_page rather 1908 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1909 * without pte special, it would there be refcounted as a normal page. 1910 */ 1911 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1912 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1913 struct page *page; 1914 1915 /* 1916 * At this point we are committed to insert_page() 1917 * regardless of whether the caller specified flags that 1918 * result in pfn_t_has_page() == false. 1919 */ 1920 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1921 err = insert_page(vma, addr, page, pgprot); 1922 } else { 1923 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1924 } 1925 1926 if (err == -ENOMEM) 1927 return VM_FAULT_OOM; 1928 if (err < 0 && err != -EBUSY) 1929 return VM_FAULT_SIGBUS; 1930 1931 return VM_FAULT_NOPAGE; 1932 } 1933 1934 /** 1935 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 1936 * @vma: user vma to map to 1937 * @addr: target user address of this page 1938 * @pfn: source kernel pfn 1939 * @pgprot: pgprot flags for the inserted page 1940 * 1941 * This is exactly like vmf_insert_mixed(), except that it allows drivers to 1942 * to override pgprot on a per-page basis. 1943 * 1944 * Typically this function should be used by drivers to set caching- and 1945 * encryption bits different than those of @vma->vm_page_prot, because 1946 * the caching- or encryption mode may not be known at mmap() time. 1947 * This is ok as long as @vma->vm_page_prot is not used by the core vm 1948 * to set caching and encryption bits for those vmas (except for COW pages). 1949 * This is ensured by core vm only modifying these page table entries using 1950 * functions that don't touch caching- or encryption bits, using pte_modify() 1951 * if needed. (See for example mprotect()). 1952 * Also when new page-table entries are created, this is only done using the 1953 * fault() callback, and never using the value of vma->vm_page_prot, 1954 * except for page-table entries that point to anonymous pages as the result 1955 * of COW. 1956 * 1957 * Context: Process context. May allocate using %GFP_KERNEL. 1958 * Return: vm_fault_t value. 1959 */ 1960 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 1961 pfn_t pfn, pgprot_t pgprot) 1962 { 1963 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 1964 } 1965 EXPORT_SYMBOL(vmf_insert_mixed_prot); 1966 1967 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1968 pfn_t pfn) 1969 { 1970 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 1971 } 1972 EXPORT_SYMBOL(vmf_insert_mixed); 1973 1974 /* 1975 * If the insertion of PTE failed because someone else already added a 1976 * different entry in the mean time, we treat that as success as we assume 1977 * the same entry was actually inserted. 1978 */ 1979 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1980 unsigned long addr, pfn_t pfn) 1981 { 1982 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 1983 } 1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1985 1986 /* 1987 * maps a range of physical memory into the requested pages. the old 1988 * mappings are removed. any references to nonexistent pages results 1989 * in null mappings (currently treated as "copy-on-access") 1990 */ 1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1992 unsigned long addr, unsigned long end, 1993 unsigned long pfn, pgprot_t prot) 1994 { 1995 pte_t *pte; 1996 spinlock_t *ptl; 1997 int err = 0; 1998 1999 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2000 if (!pte) 2001 return -ENOMEM; 2002 arch_enter_lazy_mmu_mode(); 2003 do { 2004 BUG_ON(!pte_none(*pte)); 2005 if (!pfn_modify_allowed(pfn, prot)) { 2006 err = -EACCES; 2007 break; 2008 } 2009 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2010 pfn++; 2011 } while (pte++, addr += PAGE_SIZE, addr != end); 2012 arch_leave_lazy_mmu_mode(); 2013 pte_unmap_unlock(pte - 1, ptl); 2014 return err; 2015 } 2016 2017 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2018 unsigned long addr, unsigned long end, 2019 unsigned long pfn, pgprot_t prot) 2020 { 2021 pmd_t *pmd; 2022 unsigned long next; 2023 int err; 2024 2025 pfn -= addr >> PAGE_SHIFT; 2026 pmd = pmd_alloc(mm, pud, addr); 2027 if (!pmd) 2028 return -ENOMEM; 2029 VM_BUG_ON(pmd_trans_huge(*pmd)); 2030 do { 2031 next = pmd_addr_end(addr, end); 2032 err = remap_pte_range(mm, pmd, addr, next, 2033 pfn + (addr >> PAGE_SHIFT), prot); 2034 if (err) 2035 return err; 2036 } while (pmd++, addr = next, addr != end); 2037 return 0; 2038 } 2039 2040 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2041 unsigned long addr, unsigned long end, 2042 unsigned long pfn, pgprot_t prot) 2043 { 2044 pud_t *pud; 2045 unsigned long next; 2046 int err; 2047 2048 pfn -= addr >> PAGE_SHIFT; 2049 pud = pud_alloc(mm, p4d, addr); 2050 if (!pud) 2051 return -ENOMEM; 2052 do { 2053 next = pud_addr_end(addr, end); 2054 err = remap_pmd_range(mm, pud, addr, next, 2055 pfn + (addr >> PAGE_SHIFT), prot); 2056 if (err) 2057 return err; 2058 } while (pud++, addr = next, addr != end); 2059 return 0; 2060 } 2061 2062 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2063 unsigned long addr, unsigned long end, 2064 unsigned long pfn, pgprot_t prot) 2065 { 2066 p4d_t *p4d; 2067 unsigned long next; 2068 int err; 2069 2070 pfn -= addr >> PAGE_SHIFT; 2071 p4d = p4d_alloc(mm, pgd, addr); 2072 if (!p4d) 2073 return -ENOMEM; 2074 do { 2075 next = p4d_addr_end(addr, end); 2076 err = remap_pud_range(mm, p4d, addr, next, 2077 pfn + (addr >> PAGE_SHIFT), prot); 2078 if (err) 2079 return err; 2080 } while (p4d++, addr = next, addr != end); 2081 return 0; 2082 } 2083 2084 /** 2085 * remap_pfn_range - remap kernel memory to userspace 2086 * @vma: user vma to map to 2087 * @addr: target user address to start at 2088 * @pfn: page frame number of kernel physical memory address 2089 * @size: size of mapping area 2090 * @prot: page protection flags for this mapping 2091 * 2092 * Note: this is only safe if the mm semaphore is held when called. 2093 * 2094 * Return: %0 on success, negative error code otherwise. 2095 */ 2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2097 unsigned long pfn, unsigned long size, pgprot_t prot) 2098 { 2099 pgd_t *pgd; 2100 unsigned long next; 2101 unsigned long end = addr + PAGE_ALIGN(size); 2102 struct mm_struct *mm = vma->vm_mm; 2103 unsigned long remap_pfn = pfn; 2104 int err; 2105 2106 /* 2107 * Physically remapped pages are special. Tell the 2108 * rest of the world about it: 2109 * VM_IO tells people not to look at these pages 2110 * (accesses can have side effects). 2111 * VM_PFNMAP tells the core MM that the base pages are just 2112 * raw PFN mappings, and do not have a "struct page" associated 2113 * with them. 2114 * VM_DONTEXPAND 2115 * Disable vma merging and expanding with mremap(). 2116 * VM_DONTDUMP 2117 * Omit vma from core dump, even when VM_IO turned off. 2118 * 2119 * There's a horrible special case to handle copy-on-write 2120 * behaviour that some programs depend on. We mark the "original" 2121 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2122 * See vm_normal_page() for details. 2123 */ 2124 if (is_cow_mapping(vma->vm_flags)) { 2125 if (addr != vma->vm_start || end != vma->vm_end) 2126 return -EINVAL; 2127 vma->vm_pgoff = pfn; 2128 } 2129 2130 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2131 if (err) 2132 return -EINVAL; 2133 2134 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2135 2136 BUG_ON(addr >= end); 2137 pfn -= addr >> PAGE_SHIFT; 2138 pgd = pgd_offset(mm, addr); 2139 flush_cache_range(vma, addr, end); 2140 do { 2141 next = pgd_addr_end(addr, end); 2142 err = remap_p4d_range(mm, pgd, addr, next, 2143 pfn + (addr >> PAGE_SHIFT), prot); 2144 if (err) 2145 break; 2146 } while (pgd++, addr = next, addr != end); 2147 2148 if (err) 2149 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2150 2151 return err; 2152 } 2153 EXPORT_SYMBOL(remap_pfn_range); 2154 2155 /** 2156 * vm_iomap_memory - remap memory to userspace 2157 * @vma: user vma to map to 2158 * @start: start of the physical memory to be mapped 2159 * @len: size of area 2160 * 2161 * This is a simplified io_remap_pfn_range() for common driver use. The 2162 * driver just needs to give us the physical memory range to be mapped, 2163 * we'll figure out the rest from the vma information. 2164 * 2165 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2166 * whatever write-combining details or similar. 2167 * 2168 * Return: %0 on success, negative error code otherwise. 2169 */ 2170 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2171 { 2172 unsigned long vm_len, pfn, pages; 2173 2174 /* Check that the physical memory area passed in looks valid */ 2175 if (start + len < start) 2176 return -EINVAL; 2177 /* 2178 * You *really* shouldn't map things that aren't page-aligned, 2179 * but we've historically allowed it because IO memory might 2180 * just have smaller alignment. 2181 */ 2182 len += start & ~PAGE_MASK; 2183 pfn = start >> PAGE_SHIFT; 2184 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2185 if (pfn + pages < pfn) 2186 return -EINVAL; 2187 2188 /* We start the mapping 'vm_pgoff' pages into the area */ 2189 if (vma->vm_pgoff > pages) 2190 return -EINVAL; 2191 pfn += vma->vm_pgoff; 2192 pages -= vma->vm_pgoff; 2193 2194 /* Can we fit all of the mapping? */ 2195 vm_len = vma->vm_end - vma->vm_start; 2196 if (vm_len >> PAGE_SHIFT > pages) 2197 return -EINVAL; 2198 2199 /* Ok, let it rip */ 2200 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2201 } 2202 EXPORT_SYMBOL(vm_iomap_memory); 2203 2204 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2205 unsigned long addr, unsigned long end, 2206 pte_fn_t fn, void *data, bool create) 2207 { 2208 pte_t *pte; 2209 int err = 0; 2210 spinlock_t *uninitialized_var(ptl); 2211 2212 if (create) { 2213 pte = (mm == &init_mm) ? 2214 pte_alloc_kernel(pmd, addr) : 2215 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2216 if (!pte) 2217 return -ENOMEM; 2218 } else { 2219 pte = (mm == &init_mm) ? 2220 pte_offset_kernel(pmd, addr) : 2221 pte_offset_map_lock(mm, pmd, addr, &ptl); 2222 } 2223 2224 BUG_ON(pmd_huge(*pmd)); 2225 2226 arch_enter_lazy_mmu_mode(); 2227 2228 do { 2229 if (create || !pte_none(*pte)) { 2230 err = fn(pte++, addr, data); 2231 if (err) 2232 break; 2233 } 2234 } while (addr += PAGE_SIZE, addr != end); 2235 2236 arch_leave_lazy_mmu_mode(); 2237 2238 if (mm != &init_mm) 2239 pte_unmap_unlock(pte-1, ptl); 2240 return err; 2241 } 2242 2243 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2244 unsigned long addr, unsigned long end, 2245 pte_fn_t fn, void *data, bool create) 2246 { 2247 pmd_t *pmd; 2248 unsigned long next; 2249 int err = 0; 2250 2251 BUG_ON(pud_huge(*pud)); 2252 2253 if (create) { 2254 pmd = pmd_alloc(mm, pud, addr); 2255 if (!pmd) 2256 return -ENOMEM; 2257 } else { 2258 pmd = pmd_offset(pud, addr); 2259 } 2260 do { 2261 next = pmd_addr_end(addr, end); 2262 if (create || !pmd_none_or_clear_bad(pmd)) { 2263 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2264 create); 2265 if (err) 2266 break; 2267 } 2268 } while (pmd++, addr = next, addr != end); 2269 return err; 2270 } 2271 2272 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2273 unsigned long addr, unsigned long end, 2274 pte_fn_t fn, void *data, bool create) 2275 { 2276 pud_t *pud; 2277 unsigned long next; 2278 int err = 0; 2279 2280 if (create) { 2281 pud = pud_alloc(mm, p4d, addr); 2282 if (!pud) 2283 return -ENOMEM; 2284 } else { 2285 pud = pud_offset(p4d, addr); 2286 } 2287 do { 2288 next = pud_addr_end(addr, end); 2289 if (create || !pud_none_or_clear_bad(pud)) { 2290 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2291 create); 2292 if (err) 2293 break; 2294 } 2295 } while (pud++, addr = next, addr != end); 2296 return err; 2297 } 2298 2299 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2300 unsigned long addr, unsigned long end, 2301 pte_fn_t fn, void *data, bool create) 2302 { 2303 p4d_t *p4d; 2304 unsigned long next; 2305 int err = 0; 2306 2307 if (create) { 2308 p4d = p4d_alloc(mm, pgd, addr); 2309 if (!p4d) 2310 return -ENOMEM; 2311 } else { 2312 p4d = p4d_offset(pgd, addr); 2313 } 2314 do { 2315 next = p4d_addr_end(addr, end); 2316 if (create || !p4d_none_or_clear_bad(p4d)) { 2317 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2318 create); 2319 if (err) 2320 break; 2321 } 2322 } while (p4d++, addr = next, addr != end); 2323 return err; 2324 } 2325 2326 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2327 unsigned long size, pte_fn_t fn, 2328 void *data, bool create) 2329 { 2330 pgd_t *pgd; 2331 unsigned long next; 2332 unsigned long end = addr + size; 2333 int err = 0; 2334 2335 if (WARN_ON(addr >= end)) 2336 return -EINVAL; 2337 2338 pgd = pgd_offset(mm, addr); 2339 do { 2340 next = pgd_addr_end(addr, end); 2341 if (!create && pgd_none_or_clear_bad(pgd)) 2342 continue; 2343 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create); 2344 if (err) 2345 break; 2346 } while (pgd++, addr = next, addr != end); 2347 2348 return err; 2349 } 2350 2351 /* 2352 * Scan a region of virtual memory, filling in page tables as necessary 2353 * and calling a provided function on each leaf page table. 2354 */ 2355 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2356 unsigned long size, pte_fn_t fn, void *data) 2357 { 2358 return __apply_to_page_range(mm, addr, size, fn, data, true); 2359 } 2360 EXPORT_SYMBOL_GPL(apply_to_page_range); 2361 2362 /* 2363 * Scan a region of virtual memory, calling a provided function on 2364 * each leaf page table where it exists. 2365 * 2366 * Unlike apply_to_page_range, this does _not_ fill in page tables 2367 * where they are absent. 2368 */ 2369 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2370 unsigned long size, pte_fn_t fn, void *data) 2371 { 2372 return __apply_to_page_range(mm, addr, size, fn, data, false); 2373 } 2374 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2375 2376 /* 2377 * handle_pte_fault chooses page fault handler according to an entry which was 2378 * read non-atomically. Before making any commitment, on those architectures 2379 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2380 * parts, do_swap_page must check under lock before unmapping the pte and 2381 * proceeding (but do_wp_page is only called after already making such a check; 2382 * and do_anonymous_page can safely check later on). 2383 */ 2384 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2385 pte_t *page_table, pte_t orig_pte) 2386 { 2387 int same = 1; 2388 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2389 if (sizeof(pte_t) > sizeof(unsigned long)) { 2390 spinlock_t *ptl = pte_lockptr(mm, pmd); 2391 spin_lock(ptl); 2392 same = pte_same(*page_table, orig_pte); 2393 spin_unlock(ptl); 2394 } 2395 #endif 2396 pte_unmap(page_table); 2397 return same; 2398 } 2399 2400 static inline bool cow_user_page(struct page *dst, struct page *src, 2401 struct vm_fault *vmf) 2402 { 2403 bool ret; 2404 void *kaddr; 2405 void __user *uaddr; 2406 bool locked = false; 2407 struct vm_area_struct *vma = vmf->vma; 2408 struct mm_struct *mm = vma->vm_mm; 2409 unsigned long addr = vmf->address; 2410 2411 debug_dma_assert_idle(src); 2412 2413 if (likely(src)) { 2414 copy_user_highpage(dst, src, addr, vma); 2415 return true; 2416 } 2417 2418 /* 2419 * If the source page was a PFN mapping, we don't have 2420 * a "struct page" for it. We do a best-effort copy by 2421 * just copying from the original user address. If that 2422 * fails, we just zero-fill it. Live with it. 2423 */ 2424 kaddr = kmap_atomic(dst); 2425 uaddr = (void __user *)(addr & PAGE_MASK); 2426 2427 /* 2428 * On architectures with software "accessed" bits, we would 2429 * take a double page fault, so mark it accessed here. 2430 */ 2431 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2432 pte_t entry; 2433 2434 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2435 locked = true; 2436 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2437 /* 2438 * Other thread has already handled the fault 2439 * and we don't need to do anything. If it's 2440 * not the case, the fault will be triggered 2441 * again on the same address. 2442 */ 2443 ret = false; 2444 goto pte_unlock; 2445 } 2446 2447 entry = pte_mkyoung(vmf->orig_pte); 2448 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2449 update_mmu_cache(vma, addr, vmf->pte); 2450 } 2451 2452 /* 2453 * This really shouldn't fail, because the page is there 2454 * in the page tables. But it might just be unreadable, 2455 * in which case we just give up and fill the result with 2456 * zeroes. 2457 */ 2458 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2459 if (locked) 2460 goto warn; 2461 2462 /* Re-validate under PTL if the page is still mapped */ 2463 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2464 locked = true; 2465 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2466 /* The PTE changed under us. Retry page fault. */ 2467 ret = false; 2468 goto pte_unlock; 2469 } 2470 2471 /* 2472 * The same page can be mapped back since last copy attampt. 2473 * Try to copy again under PTL. 2474 */ 2475 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2476 /* 2477 * Give a warn in case there can be some obscure 2478 * use-case 2479 */ 2480 warn: 2481 WARN_ON_ONCE(1); 2482 clear_page(kaddr); 2483 } 2484 } 2485 2486 ret = true; 2487 2488 pte_unlock: 2489 if (locked) 2490 pte_unmap_unlock(vmf->pte, vmf->ptl); 2491 kunmap_atomic(kaddr); 2492 flush_dcache_page(dst); 2493 2494 return ret; 2495 } 2496 2497 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2498 { 2499 struct file *vm_file = vma->vm_file; 2500 2501 if (vm_file) 2502 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2503 2504 /* 2505 * Special mappings (e.g. VDSO) do not have any file so fake 2506 * a default GFP_KERNEL for them. 2507 */ 2508 return GFP_KERNEL; 2509 } 2510 2511 /* 2512 * Notify the address space that the page is about to become writable so that 2513 * it can prohibit this or wait for the page to get into an appropriate state. 2514 * 2515 * We do this without the lock held, so that it can sleep if it needs to. 2516 */ 2517 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2518 { 2519 vm_fault_t ret; 2520 struct page *page = vmf->page; 2521 unsigned int old_flags = vmf->flags; 2522 2523 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2524 2525 if (vmf->vma->vm_file && 2526 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2527 return VM_FAULT_SIGBUS; 2528 2529 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2530 /* Restore original flags so that caller is not surprised */ 2531 vmf->flags = old_flags; 2532 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2533 return ret; 2534 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2535 lock_page(page); 2536 if (!page->mapping) { 2537 unlock_page(page); 2538 return 0; /* retry */ 2539 } 2540 ret |= VM_FAULT_LOCKED; 2541 } else 2542 VM_BUG_ON_PAGE(!PageLocked(page), page); 2543 return ret; 2544 } 2545 2546 /* 2547 * Handle dirtying of a page in shared file mapping on a write fault. 2548 * 2549 * The function expects the page to be locked and unlocks it. 2550 */ 2551 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2552 { 2553 struct vm_area_struct *vma = vmf->vma; 2554 struct address_space *mapping; 2555 struct page *page = vmf->page; 2556 bool dirtied; 2557 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2558 2559 dirtied = set_page_dirty(page); 2560 VM_BUG_ON_PAGE(PageAnon(page), page); 2561 /* 2562 * Take a local copy of the address_space - page.mapping may be zeroed 2563 * by truncate after unlock_page(). The address_space itself remains 2564 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2565 * release semantics to prevent the compiler from undoing this copying. 2566 */ 2567 mapping = page_rmapping(page); 2568 unlock_page(page); 2569 2570 if (!page_mkwrite) 2571 file_update_time(vma->vm_file); 2572 2573 /* 2574 * Throttle page dirtying rate down to writeback speed. 2575 * 2576 * mapping may be NULL here because some device drivers do not 2577 * set page.mapping but still dirty their pages 2578 * 2579 * Drop the mmap_sem before waiting on IO, if we can. The file 2580 * is pinning the mapping, as per above. 2581 */ 2582 if ((dirtied || page_mkwrite) && mapping) { 2583 struct file *fpin; 2584 2585 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2586 balance_dirty_pages_ratelimited(mapping); 2587 if (fpin) { 2588 fput(fpin); 2589 return VM_FAULT_RETRY; 2590 } 2591 } 2592 2593 return 0; 2594 } 2595 2596 /* 2597 * Handle write page faults for pages that can be reused in the current vma 2598 * 2599 * This can happen either due to the mapping being with the VM_SHARED flag, 2600 * or due to us being the last reference standing to the page. In either 2601 * case, all we need to do here is to mark the page as writable and update 2602 * any related book-keeping. 2603 */ 2604 static inline void wp_page_reuse(struct vm_fault *vmf) 2605 __releases(vmf->ptl) 2606 { 2607 struct vm_area_struct *vma = vmf->vma; 2608 struct page *page = vmf->page; 2609 pte_t entry; 2610 /* 2611 * Clear the pages cpupid information as the existing 2612 * information potentially belongs to a now completely 2613 * unrelated process. 2614 */ 2615 if (page) 2616 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2617 2618 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2619 entry = pte_mkyoung(vmf->orig_pte); 2620 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2621 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2622 update_mmu_cache(vma, vmf->address, vmf->pte); 2623 pte_unmap_unlock(vmf->pte, vmf->ptl); 2624 } 2625 2626 /* 2627 * Handle the case of a page which we actually need to copy to a new page. 2628 * 2629 * Called with mmap_sem locked and the old page referenced, but 2630 * without the ptl held. 2631 * 2632 * High level logic flow: 2633 * 2634 * - Allocate a page, copy the content of the old page to the new one. 2635 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2636 * - Take the PTL. If the pte changed, bail out and release the allocated page 2637 * - If the pte is still the way we remember it, update the page table and all 2638 * relevant references. This includes dropping the reference the page-table 2639 * held to the old page, as well as updating the rmap. 2640 * - In any case, unlock the PTL and drop the reference we took to the old page. 2641 */ 2642 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2643 { 2644 struct vm_area_struct *vma = vmf->vma; 2645 struct mm_struct *mm = vma->vm_mm; 2646 struct page *old_page = vmf->page; 2647 struct page *new_page = NULL; 2648 pte_t entry; 2649 int page_copied = 0; 2650 struct mem_cgroup *memcg; 2651 struct mmu_notifier_range range; 2652 2653 if (unlikely(anon_vma_prepare(vma))) 2654 goto oom; 2655 2656 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2657 new_page = alloc_zeroed_user_highpage_movable(vma, 2658 vmf->address); 2659 if (!new_page) 2660 goto oom; 2661 } else { 2662 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2663 vmf->address); 2664 if (!new_page) 2665 goto oom; 2666 2667 if (!cow_user_page(new_page, old_page, vmf)) { 2668 /* 2669 * COW failed, if the fault was solved by other, 2670 * it's fine. If not, userspace would re-fault on 2671 * the same address and we will handle the fault 2672 * from the second attempt. 2673 */ 2674 put_page(new_page); 2675 if (old_page) 2676 put_page(old_page); 2677 return 0; 2678 } 2679 } 2680 2681 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2682 goto oom_free_new; 2683 2684 __SetPageUptodate(new_page); 2685 2686 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2687 vmf->address & PAGE_MASK, 2688 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2689 mmu_notifier_invalidate_range_start(&range); 2690 2691 /* 2692 * Re-check the pte - we dropped the lock 2693 */ 2694 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2695 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2696 if (old_page) { 2697 if (!PageAnon(old_page)) { 2698 dec_mm_counter_fast(mm, 2699 mm_counter_file(old_page)); 2700 inc_mm_counter_fast(mm, MM_ANONPAGES); 2701 } 2702 } else { 2703 inc_mm_counter_fast(mm, MM_ANONPAGES); 2704 } 2705 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2706 entry = mk_pte(new_page, vma->vm_page_prot); 2707 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2708 /* 2709 * Clear the pte entry and flush it first, before updating the 2710 * pte with the new entry. This will avoid a race condition 2711 * seen in the presence of one thread doing SMC and another 2712 * thread doing COW. 2713 */ 2714 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2715 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2716 mem_cgroup_commit_charge(new_page, memcg, false, false); 2717 lru_cache_add_active_or_unevictable(new_page, vma); 2718 /* 2719 * We call the notify macro here because, when using secondary 2720 * mmu page tables (such as kvm shadow page tables), we want the 2721 * new page to be mapped directly into the secondary page table. 2722 */ 2723 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2724 update_mmu_cache(vma, vmf->address, vmf->pte); 2725 if (old_page) { 2726 /* 2727 * Only after switching the pte to the new page may 2728 * we remove the mapcount here. Otherwise another 2729 * process may come and find the rmap count decremented 2730 * before the pte is switched to the new page, and 2731 * "reuse" the old page writing into it while our pte 2732 * here still points into it and can be read by other 2733 * threads. 2734 * 2735 * The critical issue is to order this 2736 * page_remove_rmap with the ptp_clear_flush above. 2737 * Those stores are ordered by (if nothing else,) 2738 * the barrier present in the atomic_add_negative 2739 * in page_remove_rmap. 2740 * 2741 * Then the TLB flush in ptep_clear_flush ensures that 2742 * no process can access the old page before the 2743 * decremented mapcount is visible. And the old page 2744 * cannot be reused until after the decremented 2745 * mapcount is visible. So transitively, TLBs to 2746 * old page will be flushed before it can be reused. 2747 */ 2748 page_remove_rmap(old_page, false); 2749 } 2750 2751 /* Free the old page.. */ 2752 new_page = old_page; 2753 page_copied = 1; 2754 } else { 2755 mem_cgroup_cancel_charge(new_page, memcg, false); 2756 } 2757 2758 if (new_page) 2759 put_page(new_page); 2760 2761 pte_unmap_unlock(vmf->pte, vmf->ptl); 2762 /* 2763 * No need to double call mmu_notifier->invalidate_range() callback as 2764 * the above ptep_clear_flush_notify() did already call it. 2765 */ 2766 mmu_notifier_invalidate_range_only_end(&range); 2767 if (old_page) { 2768 /* 2769 * Don't let another task, with possibly unlocked vma, 2770 * keep the mlocked page. 2771 */ 2772 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2773 lock_page(old_page); /* LRU manipulation */ 2774 if (PageMlocked(old_page)) 2775 munlock_vma_page(old_page); 2776 unlock_page(old_page); 2777 } 2778 put_page(old_page); 2779 } 2780 return page_copied ? VM_FAULT_WRITE : 0; 2781 oom_free_new: 2782 put_page(new_page); 2783 oom: 2784 if (old_page) 2785 put_page(old_page); 2786 return VM_FAULT_OOM; 2787 } 2788 2789 /** 2790 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2791 * writeable once the page is prepared 2792 * 2793 * @vmf: structure describing the fault 2794 * 2795 * This function handles all that is needed to finish a write page fault in a 2796 * shared mapping due to PTE being read-only once the mapped page is prepared. 2797 * It handles locking of PTE and modifying it. 2798 * 2799 * The function expects the page to be locked or other protection against 2800 * concurrent faults / writeback (such as DAX radix tree locks). 2801 * 2802 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2803 * we acquired PTE lock. 2804 */ 2805 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2806 { 2807 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2808 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2809 &vmf->ptl); 2810 /* 2811 * We might have raced with another page fault while we released the 2812 * pte_offset_map_lock. 2813 */ 2814 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2815 pte_unmap_unlock(vmf->pte, vmf->ptl); 2816 return VM_FAULT_NOPAGE; 2817 } 2818 wp_page_reuse(vmf); 2819 return 0; 2820 } 2821 2822 /* 2823 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2824 * mapping 2825 */ 2826 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2827 { 2828 struct vm_area_struct *vma = vmf->vma; 2829 2830 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2831 vm_fault_t ret; 2832 2833 pte_unmap_unlock(vmf->pte, vmf->ptl); 2834 vmf->flags |= FAULT_FLAG_MKWRITE; 2835 ret = vma->vm_ops->pfn_mkwrite(vmf); 2836 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2837 return ret; 2838 return finish_mkwrite_fault(vmf); 2839 } 2840 wp_page_reuse(vmf); 2841 return VM_FAULT_WRITE; 2842 } 2843 2844 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2845 __releases(vmf->ptl) 2846 { 2847 struct vm_area_struct *vma = vmf->vma; 2848 vm_fault_t ret = VM_FAULT_WRITE; 2849 2850 get_page(vmf->page); 2851 2852 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2853 vm_fault_t tmp; 2854 2855 pte_unmap_unlock(vmf->pte, vmf->ptl); 2856 tmp = do_page_mkwrite(vmf); 2857 if (unlikely(!tmp || (tmp & 2858 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2859 put_page(vmf->page); 2860 return tmp; 2861 } 2862 tmp = finish_mkwrite_fault(vmf); 2863 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2864 unlock_page(vmf->page); 2865 put_page(vmf->page); 2866 return tmp; 2867 } 2868 } else { 2869 wp_page_reuse(vmf); 2870 lock_page(vmf->page); 2871 } 2872 ret |= fault_dirty_shared_page(vmf); 2873 put_page(vmf->page); 2874 2875 return ret; 2876 } 2877 2878 /* 2879 * This routine handles present pages, when users try to write 2880 * to a shared page. It is done by copying the page to a new address 2881 * and decrementing the shared-page counter for the old page. 2882 * 2883 * Note that this routine assumes that the protection checks have been 2884 * done by the caller (the low-level page fault routine in most cases). 2885 * Thus we can safely just mark it writable once we've done any necessary 2886 * COW. 2887 * 2888 * We also mark the page dirty at this point even though the page will 2889 * change only once the write actually happens. This avoids a few races, 2890 * and potentially makes it more efficient. 2891 * 2892 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2893 * but allow concurrent faults), with pte both mapped and locked. 2894 * We return with mmap_sem still held, but pte unmapped and unlocked. 2895 */ 2896 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2897 __releases(vmf->ptl) 2898 { 2899 struct vm_area_struct *vma = vmf->vma; 2900 2901 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 2902 pte_unmap_unlock(vmf->pte, vmf->ptl); 2903 return handle_userfault(vmf, VM_UFFD_WP); 2904 } 2905 2906 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2907 if (!vmf->page) { 2908 /* 2909 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2910 * VM_PFNMAP VMA. 2911 * 2912 * We should not cow pages in a shared writeable mapping. 2913 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2914 */ 2915 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2916 (VM_WRITE|VM_SHARED)) 2917 return wp_pfn_shared(vmf); 2918 2919 pte_unmap_unlock(vmf->pte, vmf->ptl); 2920 return wp_page_copy(vmf); 2921 } 2922 2923 /* 2924 * Take out anonymous pages first, anonymous shared vmas are 2925 * not dirty accountable. 2926 */ 2927 if (PageAnon(vmf->page)) { 2928 int total_map_swapcount; 2929 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2930 page_count(vmf->page) != 1)) 2931 goto copy; 2932 if (!trylock_page(vmf->page)) { 2933 get_page(vmf->page); 2934 pte_unmap_unlock(vmf->pte, vmf->ptl); 2935 lock_page(vmf->page); 2936 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2937 vmf->address, &vmf->ptl); 2938 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2939 unlock_page(vmf->page); 2940 pte_unmap_unlock(vmf->pte, vmf->ptl); 2941 put_page(vmf->page); 2942 return 0; 2943 } 2944 put_page(vmf->page); 2945 } 2946 if (PageKsm(vmf->page)) { 2947 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2948 vmf->address); 2949 unlock_page(vmf->page); 2950 if (!reused) 2951 goto copy; 2952 wp_page_reuse(vmf); 2953 return VM_FAULT_WRITE; 2954 } 2955 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2956 if (total_map_swapcount == 1) { 2957 /* 2958 * The page is all ours. Move it to 2959 * our anon_vma so the rmap code will 2960 * not search our parent or siblings. 2961 * Protected against the rmap code by 2962 * the page lock. 2963 */ 2964 page_move_anon_rmap(vmf->page, vma); 2965 } 2966 unlock_page(vmf->page); 2967 wp_page_reuse(vmf); 2968 return VM_FAULT_WRITE; 2969 } 2970 unlock_page(vmf->page); 2971 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2972 (VM_WRITE|VM_SHARED))) { 2973 return wp_page_shared(vmf); 2974 } 2975 copy: 2976 /* 2977 * Ok, we need to copy. Oh, well.. 2978 */ 2979 get_page(vmf->page); 2980 2981 pte_unmap_unlock(vmf->pte, vmf->ptl); 2982 return wp_page_copy(vmf); 2983 } 2984 2985 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2986 unsigned long start_addr, unsigned long end_addr, 2987 struct zap_details *details) 2988 { 2989 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2990 } 2991 2992 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2993 struct zap_details *details) 2994 { 2995 struct vm_area_struct *vma; 2996 pgoff_t vba, vea, zba, zea; 2997 2998 vma_interval_tree_foreach(vma, root, 2999 details->first_index, details->last_index) { 3000 3001 vba = vma->vm_pgoff; 3002 vea = vba + vma_pages(vma) - 1; 3003 zba = details->first_index; 3004 if (zba < vba) 3005 zba = vba; 3006 zea = details->last_index; 3007 if (zea > vea) 3008 zea = vea; 3009 3010 unmap_mapping_range_vma(vma, 3011 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3012 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3013 details); 3014 } 3015 } 3016 3017 /** 3018 * unmap_mapping_pages() - Unmap pages from processes. 3019 * @mapping: The address space containing pages to be unmapped. 3020 * @start: Index of first page to be unmapped. 3021 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3022 * @even_cows: Whether to unmap even private COWed pages. 3023 * 3024 * Unmap the pages in this address space from any userspace process which 3025 * has them mmaped. Generally, you want to remove COWed pages as well when 3026 * a file is being truncated, but not when invalidating pages from the page 3027 * cache. 3028 */ 3029 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3030 pgoff_t nr, bool even_cows) 3031 { 3032 struct zap_details details = { }; 3033 3034 details.check_mapping = even_cows ? NULL : mapping; 3035 details.first_index = start; 3036 details.last_index = start + nr - 1; 3037 if (details.last_index < details.first_index) 3038 details.last_index = ULONG_MAX; 3039 3040 i_mmap_lock_write(mapping); 3041 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3042 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3043 i_mmap_unlock_write(mapping); 3044 } 3045 3046 /** 3047 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3048 * address_space corresponding to the specified byte range in the underlying 3049 * file. 3050 * 3051 * @mapping: the address space containing mmaps to be unmapped. 3052 * @holebegin: byte in first page to unmap, relative to the start of 3053 * the underlying file. This will be rounded down to a PAGE_SIZE 3054 * boundary. Note that this is different from truncate_pagecache(), which 3055 * must keep the partial page. In contrast, we must get rid of 3056 * partial pages. 3057 * @holelen: size of prospective hole in bytes. This will be rounded 3058 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3059 * end of the file. 3060 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3061 * but 0 when invalidating pagecache, don't throw away private data. 3062 */ 3063 void unmap_mapping_range(struct address_space *mapping, 3064 loff_t const holebegin, loff_t const holelen, int even_cows) 3065 { 3066 pgoff_t hba = holebegin >> PAGE_SHIFT; 3067 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3068 3069 /* Check for overflow. */ 3070 if (sizeof(holelen) > sizeof(hlen)) { 3071 long long holeend = 3072 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3073 if (holeend & ~(long long)ULONG_MAX) 3074 hlen = ULONG_MAX - hba + 1; 3075 } 3076 3077 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3078 } 3079 EXPORT_SYMBOL(unmap_mapping_range); 3080 3081 /* 3082 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3083 * but allow concurrent faults), and pte mapped but not yet locked. 3084 * We return with pte unmapped and unlocked. 3085 * 3086 * We return with the mmap_sem locked or unlocked in the same cases 3087 * as does filemap_fault(). 3088 */ 3089 vm_fault_t do_swap_page(struct vm_fault *vmf) 3090 { 3091 struct vm_area_struct *vma = vmf->vma; 3092 struct page *page = NULL, *swapcache; 3093 struct mem_cgroup *memcg; 3094 swp_entry_t entry; 3095 pte_t pte; 3096 int locked; 3097 int exclusive = 0; 3098 vm_fault_t ret = 0; 3099 3100 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3101 goto out; 3102 3103 entry = pte_to_swp_entry(vmf->orig_pte); 3104 if (unlikely(non_swap_entry(entry))) { 3105 if (is_migration_entry(entry)) { 3106 migration_entry_wait(vma->vm_mm, vmf->pmd, 3107 vmf->address); 3108 } else if (is_device_private_entry(entry)) { 3109 vmf->page = device_private_entry_to_page(entry); 3110 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3111 } else if (is_hwpoison_entry(entry)) { 3112 ret = VM_FAULT_HWPOISON; 3113 } else { 3114 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3115 ret = VM_FAULT_SIGBUS; 3116 } 3117 goto out; 3118 } 3119 3120 3121 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3122 page = lookup_swap_cache(entry, vma, vmf->address); 3123 swapcache = page; 3124 3125 if (!page) { 3126 struct swap_info_struct *si = swp_swap_info(entry); 3127 3128 if (si->flags & SWP_SYNCHRONOUS_IO && 3129 __swap_count(entry) == 1) { 3130 /* skip swapcache */ 3131 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3132 vmf->address); 3133 if (page) { 3134 __SetPageLocked(page); 3135 __SetPageSwapBacked(page); 3136 set_page_private(page, entry.val); 3137 lru_cache_add_anon(page); 3138 swap_readpage(page, true); 3139 } 3140 } else { 3141 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3142 vmf); 3143 swapcache = page; 3144 } 3145 3146 if (!page) { 3147 /* 3148 * Back out if somebody else faulted in this pte 3149 * while we released the pte lock. 3150 */ 3151 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3152 vmf->address, &vmf->ptl); 3153 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3154 ret = VM_FAULT_OOM; 3155 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3156 goto unlock; 3157 } 3158 3159 /* Had to read the page from swap area: Major fault */ 3160 ret = VM_FAULT_MAJOR; 3161 count_vm_event(PGMAJFAULT); 3162 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3163 } else if (PageHWPoison(page)) { 3164 /* 3165 * hwpoisoned dirty swapcache pages are kept for killing 3166 * owner processes (which may be unknown at hwpoison time) 3167 */ 3168 ret = VM_FAULT_HWPOISON; 3169 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3170 goto out_release; 3171 } 3172 3173 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3174 3175 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3176 if (!locked) { 3177 ret |= VM_FAULT_RETRY; 3178 goto out_release; 3179 } 3180 3181 /* 3182 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3183 * release the swapcache from under us. The page pin, and pte_same 3184 * test below, are not enough to exclude that. Even if it is still 3185 * swapcache, we need to check that the page's swap has not changed. 3186 */ 3187 if (unlikely((!PageSwapCache(page) || 3188 page_private(page) != entry.val)) && swapcache) 3189 goto out_page; 3190 3191 page = ksm_might_need_to_copy(page, vma, vmf->address); 3192 if (unlikely(!page)) { 3193 ret = VM_FAULT_OOM; 3194 page = swapcache; 3195 goto out_page; 3196 } 3197 3198 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 3199 &memcg, false)) { 3200 ret = VM_FAULT_OOM; 3201 goto out_page; 3202 } 3203 3204 /* 3205 * Back out if somebody else already faulted in this pte. 3206 */ 3207 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3208 &vmf->ptl); 3209 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3210 goto out_nomap; 3211 3212 if (unlikely(!PageUptodate(page))) { 3213 ret = VM_FAULT_SIGBUS; 3214 goto out_nomap; 3215 } 3216 3217 /* 3218 * The page isn't present yet, go ahead with the fault. 3219 * 3220 * Be careful about the sequence of operations here. 3221 * To get its accounting right, reuse_swap_page() must be called 3222 * while the page is counted on swap but not yet in mapcount i.e. 3223 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3224 * must be called after the swap_free(), or it will never succeed. 3225 */ 3226 3227 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3228 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3229 pte = mk_pte(page, vma->vm_page_prot); 3230 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3231 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3232 vmf->flags &= ~FAULT_FLAG_WRITE; 3233 ret |= VM_FAULT_WRITE; 3234 exclusive = RMAP_EXCLUSIVE; 3235 } 3236 flush_icache_page(vma, page); 3237 if (pte_swp_soft_dirty(vmf->orig_pte)) 3238 pte = pte_mksoft_dirty(pte); 3239 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3240 pte = pte_mkuffd_wp(pte); 3241 pte = pte_wrprotect(pte); 3242 } 3243 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3244 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3245 vmf->orig_pte = pte; 3246 3247 /* ksm created a completely new copy */ 3248 if (unlikely(page != swapcache && swapcache)) { 3249 page_add_new_anon_rmap(page, vma, vmf->address, false); 3250 mem_cgroup_commit_charge(page, memcg, false, false); 3251 lru_cache_add_active_or_unevictable(page, vma); 3252 } else { 3253 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3254 mem_cgroup_commit_charge(page, memcg, true, false); 3255 activate_page(page); 3256 } 3257 3258 swap_free(entry); 3259 if (mem_cgroup_swap_full(page) || 3260 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3261 try_to_free_swap(page); 3262 unlock_page(page); 3263 if (page != swapcache && swapcache) { 3264 /* 3265 * Hold the lock to avoid the swap entry to be reused 3266 * until we take the PT lock for the pte_same() check 3267 * (to avoid false positives from pte_same). For 3268 * further safety release the lock after the swap_free 3269 * so that the swap count won't change under a 3270 * parallel locked swapcache. 3271 */ 3272 unlock_page(swapcache); 3273 put_page(swapcache); 3274 } 3275 3276 if (vmf->flags & FAULT_FLAG_WRITE) { 3277 ret |= do_wp_page(vmf); 3278 if (ret & VM_FAULT_ERROR) 3279 ret &= VM_FAULT_ERROR; 3280 goto out; 3281 } 3282 3283 /* No need to invalidate - it was non-present before */ 3284 update_mmu_cache(vma, vmf->address, vmf->pte); 3285 unlock: 3286 pte_unmap_unlock(vmf->pte, vmf->ptl); 3287 out: 3288 return ret; 3289 out_nomap: 3290 mem_cgroup_cancel_charge(page, memcg, false); 3291 pte_unmap_unlock(vmf->pte, vmf->ptl); 3292 out_page: 3293 unlock_page(page); 3294 out_release: 3295 put_page(page); 3296 if (page != swapcache && swapcache) { 3297 unlock_page(swapcache); 3298 put_page(swapcache); 3299 } 3300 return ret; 3301 } 3302 3303 /* 3304 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3305 * but allow concurrent faults), and pte mapped but not yet locked. 3306 * We return with mmap_sem still held, but pte unmapped and unlocked. 3307 */ 3308 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3309 { 3310 struct vm_area_struct *vma = vmf->vma; 3311 struct mem_cgroup *memcg; 3312 struct page *page; 3313 vm_fault_t ret = 0; 3314 pte_t entry; 3315 3316 /* File mapping without ->vm_ops ? */ 3317 if (vma->vm_flags & VM_SHARED) 3318 return VM_FAULT_SIGBUS; 3319 3320 /* 3321 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3322 * pte_offset_map() on pmds where a huge pmd might be created 3323 * from a different thread. 3324 * 3325 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3326 * parallel threads are excluded by other means. 3327 * 3328 * Here we only have down_read(mmap_sem). 3329 */ 3330 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3331 return VM_FAULT_OOM; 3332 3333 /* See the comment in pte_alloc_one_map() */ 3334 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3335 return 0; 3336 3337 /* Use the zero-page for reads */ 3338 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3339 !mm_forbids_zeropage(vma->vm_mm)) { 3340 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3341 vma->vm_page_prot)); 3342 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3343 vmf->address, &vmf->ptl); 3344 if (!pte_none(*vmf->pte)) 3345 goto unlock; 3346 ret = check_stable_address_space(vma->vm_mm); 3347 if (ret) 3348 goto unlock; 3349 /* Deliver the page fault to userland, check inside PT lock */ 3350 if (userfaultfd_missing(vma)) { 3351 pte_unmap_unlock(vmf->pte, vmf->ptl); 3352 return handle_userfault(vmf, VM_UFFD_MISSING); 3353 } 3354 goto setpte; 3355 } 3356 3357 /* Allocate our own private page. */ 3358 if (unlikely(anon_vma_prepare(vma))) 3359 goto oom; 3360 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3361 if (!page) 3362 goto oom; 3363 3364 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3365 false)) 3366 goto oom_free_page; 3367 3368 /* 3369 * The memory barrier inside __SetPageUptodate makes sure that 3370 * preceding stores to the page contents become visible before 3371 * the set_pte_at() write. 3372 */ 3373 __SetPageUptodate(page); 3374 3375 entry = mk_pte(page, vma->vm_page_prot); 3376 if (vma->vm_flags & VM_WRITE) 3377 entry = pte_mkwrite(pte_mkdirty(entry)); 3378 3379 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3380 &vmf->ptl); 3381 if (!pte_none(*vmf->pte)) 3382 goto release; 3383 3384 ret = check_stable_address_space(vma->vm_mm); 3385 if (ret) 3386 goto release; 3387 3388 /* Deliver the page fault to userland, check inside PT lock */ 3389 if (userfaultfd_missing(vma)) { 3390 pte_unmap_unlock(vmf->pte, vmf->ptl); 3391 mem_cgroup_cancel_charge(page, memcg, false); 3392 put_page(page); 3393 return handle_userfault(vmf, VM_UFFD_MISSING); 3394 } 3395 3396 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3397 page_add_new_anon_rmap(page, vma, vmf->address, false); 3398 mem_cgroup_commit_charge(page, memcg, false, false); 3399 lru_cache_add_active_or_unevictable(page, vma); 3400 setpte: 3401 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3402 3403 /* No need to invalidate - it was non-present before */ 3404 update_mmu_cache(vma, vmf->address, vmf->pte); 3405 unlock: 3406 pte_unmap_unlock(vmf->pte, vmf->ptl); 3407 return ret; 3408 release: 3409 mem_cgroup_cancel_charge(page, memcg, false); 3410 put_page(page); 3411 goto unlock; 3412 oom_free_page: 3413 put_page(page); 3414 oom: 3415 return VM_FAULT_OOM; 3416 } 3417 3418 /* 3419 * The mmap_sem must have been held on entry, and may have been 3420 * released depending on flags and vma->vm_ops->fault() return value. 3421 * See filemap_fault() and __lock_page_retry(). 3422 */ 3423 static vm_fault_t __do_fault(struct vm_fault *vmf) 3424 { 3425 struct vm_area_struct *vma = vmf->vma; 3426 vm_fault_t ret; 3427 3428 /* 3429 * Preallocate pte before we take page_lock because this might lead to 3430 * deadlocks for memcg reclaim which waits for pages under writeback: 3431 * lock_page(A) 3432 * SetPageWriteback(A) 3433 * unlock_page(A) 3434 * lock_page(B) 3435 * lock_page(B) 3436 * pte_alloc_pne 3437 * shrink_page_list 3438 * wait_on_page_writeback(A) 3439 * SetPageWriteback(B) 3440 * unlock_page(B) 3441 * # flush A, B to clear the writeback 3442 */ 3443 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3444 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3445 if (!vmf->prealloc_pte) 3446 return VM_FAULT_OOM; 3447 smp_wmb(); /* See comment in __pte_alloc() */ 3448 } 3449 3450 ret = vma->vm_ops->fault(vmf); 3451 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3452 VM_FAULT_DONE_COW))) 3453 return ret; 3454 3455 if (unlikely(PageHWPoison(vmf->page))) { 3456 if (ret & VM_FAULT_LOCKED) 3457 unlock_page(vmf->page); 3458 put_page(vmf->page); 3459 vmf->page = NULL; 3460 return VM_FAULT_HWPOISON; 3461 } 3462 3463 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3464 lock_page(vmf->page); 3465 else 3466 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3467 3468 return ret; 3469 } 3470 3471 /* 3472 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3473 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3474 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3475 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3476 */ 3477 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3478 { 3479 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3480 } 3481 3482 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3483 { 3484 struct vm_area_struct *vma = vmf->vma; 3485 3486 if (!pmd_none(*vmf->pmd)) 3487 goto map_pte; 3488 if (vmf->prealloc_pte) { 3489 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3490 if (unlikely(!pmd_none(*vmf->pmd))) { 3491 spin_unlock(vmf->ptl); 3492 goto map_pte; 3493 } 3494 3495 mm_inc_nr_ptes(vma->vm_mm); 3496 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3497 spin_unlock(vmf->ptl); 3498 vmf->prealloc_pte = NULL; 3499 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3500 return VM_FAULT_OOM; 3501 } 3502 map_pte: 3503 /* 3504 * If a huge pmd materialized under us just retry later. Use 3505 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3506 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3507 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3508 * running immediately after a huge pmd fault in a different thread of 3509 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3510 * All we have to ensure is that it is a regular pmd that we can walk 3511 * with pte_offset_map() and we can do that through an atomic read in 3512 * C, which is what pmd_trans_unstable() provides. 3513 */ 3514 if (pmd_devmap_trans_unstable(vmf->pmd)) 3515 return VM_FAULT_NOPAGE; 3516 3517 /* 3518 * At this point we know that our vmf->pmd points to a page of ptes 3519 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3520 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3521 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3522 * be valid and we will re-check to make sure the vmf->pte isn't 3523 * pte_none() under vmf->ptl protection when we return to 3524 * alloc_set_pte(). 3525 */ 3526 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3527 &vmf->ptl); 3528 return 0; 3529 } 3530 3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3532 static void deposit_prealloc_pte(struct vm_fault *vmf) 3533 { 3534 struct vm_area_struct *vma = vmf->vma; 3535 3536 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3537 /* 3538 * We are going to consume the prealloc table, 3539 * count that as nr_ptes. 3540 */ 3541 mm_inc_nr_ptes(vma->vm_mm); 3542 vmf->prealloc_pte = NULL; 3543 } 3544 3545 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3546 { 3547 struct vm_area_struct *vma = vmf->vma; 3548 bool write = vmf->flags & FAULT_FLAG_WRITE; 3549 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3550 pmd_t entry; 3551 int i; 3552 vm_fault_t ret; 3553 3554 if (!transhuge_vma_suitable(vma, haddr)) 3555 return VM_FAULT_FALLBACK; 3556 3557 ret = VM_FAULT_FALLBACK; 3558 page = compound_head(page); 3559 3560 /* 3561 * Archs like ppc64 need additonal space to store information 3562 * related to pte entry. Use the preallocated table for that. 3563 */ 3564 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3565 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3566 if (!vmf->prealloc_pte) 3567 return VM_FAULT_OOM; 3568 smp_wmb(); /* See comment in __pte_alloc() */ 3569 } 3570 3571 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3572 if (unlikely(!pmd_none(*vmf->pmd))) 3573 goto out; 3574 3575 for (i = 0; i < HPAGE_PMD_NR; i++) 3576 flush_icache_page(vma, page + i); 3577 3578 entry = mk_huge_pmd(page, vma->vm_page_prot); 3579 if (write) 3580 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3581 3582 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3583 page_add_file_rmap(page, true); 3584 /* 3585 * deposit and withdraw with pmd lock held 3586 */ 3587 if (arch_needs_pgtable_deposit()) 3588 deposit_prealloc_pte(vmf); 3589 3590 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3591 3592 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3593 3594 /* fault is handled */ 3595 ret = 0; 3596 count_vm_event(THP_FILE_MAPPED); 3597 out: 3598 spin_unlock(vmf->ptl); 3599 return ret; 3600 } 3601 #else 3602 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3603 { 3604 BUILD_BUG(); 3605 return 0; 3606 } 3607 #endif 3608 3609 /** 3610 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3611 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3612 * 3613 * @vmf: fault environment 3614 * @memcg: memcg to charge page (only for private mappings) 3615 * @page: page to map 3616 * 3617 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3618 * return. 3619 * 3620 * Target users are page handler itself and implementations of 3621 * vm_ops->map_pages. 3622 * 3623 * Return: %0 on success, %VM_FAULT_ code in case of error. 3624 */ 3625 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3626 struct page *page) 3627 { 3628 struct vm_area_struct *vma = vmf->vma; 3629 bool write = vmf->flags & FAULT_FLAG_WRITE; 3630 pte_t entry; 3631 vm_fault_t ret; 3632 3633 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3634 /* THP on COW? */ 3635 VM_BUG_ON_PAGE(memcg, page); 3636 3637 ret = do_set_pmd(vmf, page); 3638 if (ret != VM_FAULT_FALLBACK) 3639 return ret; 3640 } 3641 3642 if (!vmf->pte) { 3643 ret = pte_alloc_one_map(vmf); 3644 if (ret) 3645 return ret; 3646 } 3647 3648 /* Re-check under ptl */ 3649 if (unlikely(!pte_none(*vmf->pte))) 3650 return VM_FAULT_NOPAGE; 3651 3652 flush_icache_page(vma, page); 3653 entry = mk_pte(page, vma->vm_page_prot); 3654 if (write) 3655 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3656 /* copy-on-write page */ 3657 if (write && !(vma->vm_flags & VM_SHARED)) { 3658 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3659 page_add_new_anon_rmap(page, vma, vmf->address, false); 3660 mem_cgroup_commit_charge(page, memcg, false, false); 3661 lru_cache_add_active_or_unevictable(page, vma); 3662 } else { 3663 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3664 page_add_file_rmap(page, false); 3665 } 3666 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3667 3668 /* no need to invalidate: a not-present page won't be cached */ 3669 update_mmu_cache(vma, vmf->address, vmf->pte); 3670 3671 return 0; 3672 } 3673 3674 3675 /** 3676 * finish_fault - finish page fault once we have prepared the page to fault 3677 * 3678 * @vmf: structure describing the fault 3679 * 3680 * This function handles all that is needed to finish a page fault once the 3681 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3682 * given page, adds reverse page mapping, handles memcg charges and LRU 3683 * addition. 3684 * 3685 * The function expects the page to be locked and on success it consumes a 3686 * reference of a page being mapped (for the PTE which maps it). 3687 * 3688 * Return: %0 on success, %VM_FAULT_ code in case of error. 3689 */ 3690 vm_fault_t finish_fault(struct vm_fault *vmf) 3691 { 3692 struct page *page; 3693 vm_fault_t ret = 0; 3694 3695 /* Did we COW the page? */ 3696 if ((vmf->flags & FAULT_FLAG_WRITE) && 3697 !(vmf->vma->vm_flags & VM_SHARED)) 3698 page = vmf->cow_page; 3699 else 3700 page = vmf->page; 3701 3702 /* 3703 * check even for read faults because we might have lost our CoWed 3704 * page 3705 */ 3706 if (!(vmf->vma->vm_flags & VM_SHARED)) 3707 ret = check_stable_address_space(vmf->vma->vm_mm); 3708 if (!ret) 3709 ret = alloc_set_pte(vmf, vmf->memcg, page); 3710 if (vmf->pte) 3711 pte_unmap_unlock(vmf->pte, vmf->ptl); 3712 return ret; 3713 } 3714 3715 static unsigned long fault_around_bytes __read_mostly = 3716 rounddown_pow_of_two(65536); 3717 3718 #ifdef CONFIG_DEBUG_FS 3719 static int fault_around_bytes_get(void *data, u64 *val) 3720 { 3721 *val = fault_around_bytes; 3722 return 0; 3723 } 3724 3725 /* 3726 * fault_around_bytes must be rounded down to the nearest page order as it's 3727 * what do_fault_around() expects to see. 3728 */ 3729 static int fault_around_bytes_set(void *data, u64 val) 3730 { 3731 if (val / PAGE_SIZE > PTRS_PER_PTE) 3732 return -EINVAL; 3733 if (val > PAGE_SIZE) 3734 fault_around_bytes = rounddown_pow_of_two(val); 3735 else 3736 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3737 return 0; 3738 } 3739 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3740 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3741 3742 static int __init fault_around_debugfs(void) 3743 { 3744 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3745 &fault_around_bytes_fops); 3746 return 0; 3747 } 3748 late_initcall(fault_around_debugfs); 3749 #endif 3750 3751 /* 3752 * do_fault_around() tries to map few pages around the fault address. The hope 3753 * is that the pages will be needed soon and this will lower the number of 3754 * faults to handle. 3755 * 3756 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3757 * not ready to be mapped: not up-to-date, locked, etc. 3758 * 3759 * This function is called with the page table lock taken. In the split ptlock 3760 * case the page table lock only protects only those entries which belong to 3761 * the page table corresponding to the fault address. 3762 * 3763 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3764 * only once. 3765 * 3766 * fault_around_bytes defines how many bytes we'll try to map. 3767 * do_fault_around() expects it to be set to a power of two less than or equal 3768 * to PTRS_PER_PTE. 3769 * 3770 * The virtual address of the area that we map is naturally aligned to 3771 * fault_around_bytes rounded down to the machine page size 3772 * (and therefore to page order). This way it's easier to guarantee 3773 * that we don't cross page table boundaries. 3774 */ 3775 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3776 { 3777 unsigned long address = vmf->address, nr_pages, mask; 3778 pgoff_t start_pgoff = vmf->pgoff; 3779 pgoff_t end_pgoff; 3780 int off; 3781 vm_fault_t ret = 0; 3782 3783 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3784 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3785 3786 vmf->address = max(address & mask, vmf->vma->vm_start); 3787 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3788 start_pgoff -= off; 3789 3790 /* 3791 * end_pgoff is either the end of the page table, the end of 3792 * the vma or nr_pages from start_pgoff, depending what is nearest. 3793 */ 3794 end_pgoff = start_pgoff - 3795 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3796 PTRS_PER_PTE - 1; 3797 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3798 start_pgoff + nr_pages - 1); 3799 3800 if (pmd_none(*vmf->pmd)) { 3801 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3802 if (!vmf->prealloc_pte) 3803 goto out; 3804 smp_wmb(); /* See comment in __pte_alloc() */ 3805 } 3806 3807 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3808 3809 /* Huge page is mapped? Page fault is solved */ 3810 if (pmd_trans_huge(*vmf->pmd)) { 3811 ret = VM_FAULT_NOPAGE; 3812 goto out; 3813 } 3814 3815 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3816 if (!vmf->pte) 3817 goto out; 3818 3819 /* check if the page fault is solved */ 3820 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3821 if (!pte_none(*vmf->pte)) 3822 ret = VM_FAULT_NOPAGE; 3823 pte_unmap_unlock(vmf->pte, vmf->ptl); 3824 out: 3825 vmf->address = address; 3826 vmf->pte = NULL; 3827 return ret; 3828 } 3829 3830 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3831 { 3832 struct vm_area_struct *vma = vmf->vma; 3833 vm_fault_t ret = 0; 3834 3835 /* 3836 * Let's call ->map_pages() first and use ->fault() as fallback 3837 * if page by the offset is not ready to be mapped (cold cache or 3838 * something). 3839 */ 3840 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3841 ret = do_fault_around(vmf); 3842 if (ret) 3843 return ret; 3844 } 3845 3846 ret = __do_fault(vmf); 3847 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3848 return ret; 3849 3850 ret |= finish_fault(vmf); 3851 unlock_page(vmf->page); 3852 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3853 put_page(vmf->page); 3854 return ret; 3855 } 3856 3857 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3858 { 3859 struct vm_area_struct *vma = vmf->vma; 3860 vm_fault_t ret; 3861 3862 if (unlikely(anon_vma_prepare(vma))) 3863 return VM_FAULT_OOM; 3864 3865 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3866 if (!vmf->cow_page) 3867 return VM_FAULT_OOM; 3868 3869 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3870 &vmf->memcg, false)) { 3871 put_page(vmf->cow_page); 3872 return VM_FAULT_OOM; 3873 } 3874 3875 ret = __do_fault(vmf); 3876 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3877 goto uncharge_out; 3878 if (ret & VM_FAULT_DONE_COW) 3879 return ret; 3880 3881 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3882 __SetPageUptodate(vmf->cow_page); 3883 3884 ret |= finish_fault(vmf); 3885 unlock_page(vmf->page); 3886 put_page(vmf->page); 3887 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3888 goto uncharge_out; 3889 return ret; 3890 uncharge_out: 3891 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3892 put_page(vmf->cow_page); 3893 return ret; 3894 } 3895 3896 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3897 { 3898 struct vm_area_struct *vma = vmf->vma; 3899 vm_fault_t ret, tmp; 3900 3901 ret = __do_fault(vmf); 3902 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3903 return ret; 3904 3905 /* 3906 * Check if the backing address space wants to know that the page is 3907 * about to become writable 3908 */ 3909 if (vma->vm_ops->page_mkwrite) { 3910 unlock_page(vmf->page); 3911 tmp = do_page_mkwrite(vmf); 3912 if (unlikely(!tmp || 3913 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3914 put_page(vmf->page); 3915 return tmp; 3916 } 3917 } 3918 3919 ret |= finish_fault(vmf); 3920 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3921 VM_FAULT_RETRY))) { 3922 unlock_page(vmf->page); 3923 put_page(vmf->page); 3924 return ret; 3925 } 3926 3927 ret |= fault_dirty_shared_page(vmf); 3928 return ret; 3929 } 3930 3931 /* 3932 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3933 * but allow concurrent faults). 3934 * The mmap_sem may have been released depending on flags and our 3935 * return value. See filemap_fault() and __lock_page_or_retry(). 3936 * If mmap_sem is released, vma may become invalid (for example 3937 * by other thread calling munmap()). 3938 */ 3939 static vm_fault_t do_fault(struct vm_fault *vmf) 3940 { 3941 struct vm_area_struct *vma = vmf->vma; 3942 struct mm_struct *vm_mm = vma->vm_mm; 3943 vm_fault_t ret; 3944 3945 /* 3946 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3947 */ 3948 if (!vma->vm_ops->fault) { 3949 /* 3950 * If we find a migration pmd entry or a none pmd entry, which 3951 * should never happen, return SIGBUS 3952 */ 3953 if (unlikely(!pmd_present(*vmf->pmd))) 3954 ret = VM_FAULT_SIGBUS; 3955 else { 3956 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3957 vmf->pmd, 3958 vmf->address, 3959 &vmf->ptl); 3960 /* 3961 * Make sure this is not a temporary clearing of pte 3962 * by holding ptl and checking again. A R/M/W update 3963 * of pte involves: take ptl, clearing the pte so that 3964 * we don't have concurrent modification by hardware 3965 * followed by an update. 3966 */ 3967 if (unlikely(pte_none(*vmf->pte))) 3968 ret = VM_FAULT_SIGBUS; 3969 else 3970 ret = VM_FAULT_NOPAGE; 3971 3972 pte_unmap_unlock(vmf->pte, vmf->ptl); 3973 } 3974 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3975 ret = do_read_fault(vmf); 3976 else if (!(vma->vm_flags & VM_SHARED)) 3977 ret = do_cow_fault(vmf); 3978 else 3979 ret = do_shared_fault(vmf); 3980 3981 /* preallocated pagetable is unused: free it */ 3982 if (vmf->prealloc_pte) { 3983 pte_free(vm_mm, vmf->prealloc_pte); 3984 vmf->prealloc_pte = NULL; 3985 } 3986 return ret; 3987 } 3988 3989 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3990 unsigned long addr, int page_nid, 3991 int *flags) 3992 { 3993 get_page(page); 3994 3995 count_vm_numa_event(NUMA_HINT_FAULTS); 3996 if (page_nid == numa_node_id()) { 3997 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3998 *flags |= TNF_FAULT_LOCAL; 3999 } 4000 4001 return mpol_misplaced(page, vma, addr); 4002 } 4003 4004 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4005 { 4006 struct vm_area_struct *vma = vmf->vma; 4007 struct page *page = NULL; 4008 int page_nid = NUMA_NO_NODE; 4009 int last_cpupid; 4010 int target_nid; 4011 bool migrated = false; 4012 pte_t pte, old_pte; 4013 bool was_writable = pte_savedwrite(vmf->orig_pte); 4014 int flags = 0; 4015 4016 /* 4017 * The "pte" at this point cannot be used safely without 4018 * validation through pte_unmap_same(). It's of NUMA type but 4019 * the pfn may be screwed if the read is non atomic. 4020 */ 4021 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4022 spin_lock(vmf->ptl); 4023 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4024 pte_unmap_unlock(vmf->pte, vmf->ptl); 4025 goto out; 4026 } 4027 4028 /* 4029 * Make it present again, Depending on how arch implementes non 4030 * accessible ptes, some can allow access by kernel mode. 4031 */ 4032 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4033 pte = pte_modify(old_pte, vma->vm_page_prot); 4034 pte = pte_mkyoung(pte); 4035 if (was_writable) 4036 pte = pte_mkwrite(pte); 4037 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4038 update_mmu_cache(vma, vmf->address, vmf->pte); 4039 4040 page = vm_normal_page(vma, vmf->address, pte); 4041 if (!page) { 4042 pte_unmap_unlock(vmf->pte, vmf->ptl); 4043 return 0; 4044 } 4045 4046 /* TODO: handle PTE-mapped THP */ 4047 if (PageCompound(page)) { 4048 pte_unmap_unlock(vmf->pte, vmf->ptl); 4049 return 0; 4050 } 4051 4052 /* 4053 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4054 * much anyway since they can be in shared cache state. This misses 4055 * the case where a mapping is writable but the process never writes 4056 * to it but pte_write gets cleared during protection updates and 4057 * pte_dirty has unpredictable behaviour between PTE scan updates, 4058 * background writeback, dirty balancing and application behaviour. 4059 */ 4060 if (!pte_write(pte)) 4061 flags |= TNF_NO_GROUP; 4062 4063 /* 4064 * Flag if the page is shared between multiple address spaces. This 4065 * is later used when determining whether to group tasks together 4066 */ 4067 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4068 flags |= TNF_SHARED; 4069 4070 last_cpupid = page_cpupid_last(page); 4071 page_nid = page_to_nid(page); 4072 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4073 &flags); 4074 pte_unmap_unlock(vmf->pte, vmf->ptl); 4075 if (target_nid == NUMA_NO_NODE) { 4076 put_page(page); 4077 goto out; 4078 } 4079 4080 /* Migrate to the requested node */ 4081 migrated = migrate_misplaced_page(page, vma, target_nid); 4082 if (migrated) { 4083 page_nid = target_nid; 4084 flags |= TNF_MIGRATED; 4085 } else 4086 flags |= TNF_MIGRATE_FAIL; 4087 4088 out: 4089 if (page_nid != NUMA_NO_NODE) 4090 task_numa_fault(last_cpupid, page_nid, 1, flags); 4091 return 0; 4092 } 4093 4094 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4095 { 4096 if (vma_is_anonymous(vmf->vma)) 4097 return do_huge_pmd_anonymous_page(vmf); 4098 if (vmf->vma->vm_ops->huge_fault) 4099 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4100 return VM_FAULT_FALLBACK; 4101 } 4102 4103 /* `inline' is required to avoid gcc 4.1.2 build error */ 4104 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4105 { 4106 if (vma_is_anonymous(vmf->vma)) { 4107 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4108 return handle_userfault(vmf, VM_UFFD_WP); 4109 return do_huge_pmd_wp_page(vmf, orig_pmd); 4110 } 4111 if (vmf->vma->vm_ops->huge_fault) { 4112 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4113 4114 if (!(ret & VM_FAULT_FALLBACK)) 4115 return ret; 4116 } 4117 4118 /* COW or write-notify handled on pte level: split pmd. */ 4119 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4120 4121 return VM_FAULT_FALLBACK; 4122 } 4123 4124 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4125 { 4126 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4127 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4128 /* No support for anonymous transparent PUD pages yet */ 4129 if (vma_is_anonymous(vmf->vma)) 4130 goto split; 4131 if (vmf->vma->vm_ops->huge_fault) { 4132 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4133 4134 if (!(ret & VM_FAULT_FALLBACK)) 4135 return ret; 4136 } 4137 split: 4138 /* COW or write-notify not handled on PUD level: split pud.*/ 4139 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4140 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4141 return VM_FAULT_FALLBACK; 4142 } 4143 4144 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4145 { 4146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4147 /* No support for anonymous transparent PUD pages yet */ 4148 if (vma_is_anonymous(vmf->vma)) 4149 return VM_FAULT_FALLBACK; 4150 if (vmf->vma->vm_ops->huge_fault) 4151 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4152 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4153 return VM_FAULT_FALLBACK; 4154 } 4155 4156 /* 4157 * These routines also need to handle stuff like marking pages dirty 4158 * and/or accessed for architectures that don't do it in hardware (most 4159 * RISC architectures). The early dirtying is also good on the i386. 4160 * 4161 * There is also a hook called "update_mmu_cache()" that architectures 4162 * with external mmu caches can use to update those (ie the Sparc or 4163 * PowerPC hashed page tables that act as extended TLBs). 4164 * 4165 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 4166 * concurrent faults). 4167 * 4168 * The mmap_sem may have been released depending on flags and our return value. 4169 * See filemap_fault() and __lock_page_or_retry(). 4170 */ 4171 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4172 { 4173 pte_t entry; 4174 4175 if (unlikely(pmd_none(*vmf->pmd))) { 4176 /* 4177 * Leave __pte_alloc() until later: because vm_ops->fault may 4178 * want to allocate huge page, and if we expose page table 4179 * for an instant, it will be difficult to retract from 4180 * concurrent faults and from rmap lookups. 4181 */ 4182 vmf->pte = NULL; 4183 } else { 4184 /* See comment in pte_alloc_one_map() */ 4185 if (pmd_devmap_trans_unstable(vmf->pmd)) 4186 return 0; 4187 /* 4188 * A regular pmd is established and it can't morph into a huge 4189 * pmd from under us anymore at this point because we hold the 4190 * mmap_sem read mode and khugepaged takes it in write mode. 4191 * So now it's safe to run pte_offset_map(). 4192 */ 4193 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4194 vmf->orig_pte = *vmf->pte; 4195 4196 /* 4197 * some architectures can have larger ptes than wordsize, 4198 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4199 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4200 * accesses. The code below just needs a consistent view 4201 * for the ifs and we later double check anyway with the 4202 * ptl lock held. So here a barrier will do. 4203 */ 4204 barrier(); 4205 if (pte_none(vmf->orig_pte)) { 4206 pte_unmap(vmf->pte); 4207 vmf->pte = NULL; 4208 } 4209 } 4210 4211 if (!vmf->pte) { 4212 if (vma_is_anonymous(vmf->vma)) 4213 return do_anonymous_page(vmf); 4214 else 4215 return do_fault(vmf); 4216 } 4217 4218 if (!pte_present(vmf->orig_pte)) 4219 return do_swap_page(vmf); 4220 4221 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4222 return do_numa_page(vmf); 4223 4224 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4225 spin_lock(vmf->ptl); 4226 entry = vmf->orig_pte; 4227 if (unlikely(!pte_same(*vmf->pte, entry))) 4228 goto unlock; 4229 if (vmf->flags & FAULT_FLAG_WRITE) { 4230 if (!pte_write(entry)) 4231 return do_wp_page(vmf); 4232 entry = pte_mkdirty(entry); 4233 } 4234 entry = pte_mkyoung(entry); 4235 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4236 vmf->flags & FAULT_FLAG_WRITE)) { 4237 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4238 } else { 4239 /* 4240 * This is needed only for protection faults but the arch code 4241 * is not yet telling us if this is a protection fault or not. 4242 * This still avoids useless tlb flushes for .text page faults 4243 * with threads. 4244 */ 4245 if (vmf->flags & FAULT_FLAG_WRITE) 4246 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4247 } 4248 unlock: 4249 pte_unmap_unlock(vmf->pte, vmf->ptl); 4250 return 0; 4251 } 4252 4253 /* 4254 * By the time we get here, we already hold the mm semaphore 4255 * 4256 * The mmap_sem may have been released depending on flags and our 4257 * return value. See filemap_fault() and __lock_page_or_retry(). 4258 */ 4259 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4260 unsigned long address, unsigned int flags) 4261 { 4262 struct vm_fault vmf = { 4263 .vma = vma, 4264 .address = address & PAGE_MASK, 4265 .flags = flags, 4266 .pgoff = linear_page_index(vma, address), 4267 .gfp_mask = __get_fault_gfp_mask(vma), 4268 }; 4269 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4270 struct mm_struct *mm = vma->vm_mm; 4271 pgd_t *pgd; 4272 p4d_t *p4d; 4273 vm_fault_t ret; 4274 4275 pgd = pgd_offset(mm, address); 4276 p4d = p4d_alloc(mm, pgd, address); 4277 if (!p4d) 4278 return VM_FAULT_OOM; 4279 4280 vmf.pud = pud_alloc(mm, p4d, address); 4281 if (!vmf.pud) 4282 return VM_FAULT_OOM; 4283 retry_pud: 4284 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4285 ret = create_huge_pud(&vmf); 4286 if (!(ret & VM_FAULT_FALLBACK)) 4287 return ret; 4288 } else { 4289 pud_t orig_pud = *vmf.pud; 4290 4291 barrier(); 4292 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4293 4294 /* NUMA case for anonymous PUDs would go here */ 4295 4296 if (dirty && !pud_write(orig_pud)) { 4297 ret = wp_huge_pud(&vmf, orig_pud); 4298 if (!(ret & VM_FAULT_FALLBACK)) 4299 return ret; 4300 } else { 4301 huge_pud_set_accessed(&vmf, orig_pud); 4302 return 0; 4303 } 4304 } 4305 } 4306 4307 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4308 if (!vmf.pmd) 4309 return VM_FAULT_OOM; 4310 4311 /* Huge pud page fault raced with pmd_alloc? */ 4312 if (pud_trans_unstable(vmf.pud)) 4313 goto retry_pud; 4314 4315 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4316 ret = create_huge_pmd(&vmf); 4317 if (!(ret & VM_FAULT_FALLBACK)) 4318 return ret; 4319 } else { 4320 pmd_t orig_pmd = *vmf.pmd; 4321 4322 barrier(); 4323 if (unlikely(is_swap_pmd(orig_pmd))) { 4324 VM_BUG_ON(thp_migration_supported() && 4325 !is_pmd_migration_entry(orig_pmd)); 4326 if (is_pmd_migration_entry(orig_pmd)) 4327 pmd_migration_entry_wait(mm, vmf.pmd); 4328 return 0; 4329 } 4330 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4331 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4332 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4333 4334 if (dirty && !pmd_write(orig_pmd)) { 4335 ret = wp_huge_pmd(&vmf, orig_pmd); 4336 if (!(ret & VM_FAULT_FALLBACK)) 4337 return ret; 4338 } else { 4339 huge_pmd_set_accessed(&vmf, orig_pmd); 4340 return 0; 4341 } 4342 } 4343 } 4344 4345 return handle_pte_fault(&vmf); 4346 } 4347 4348 /* 4349 * By the time we get here, we already hold the mm semaphore 4350 * 4351 * The mmap_sem may have been released depending on flags and our 4352 * return value. See filemap_fault() and __lock_page_or_retry(). 4353 */ 4354 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4355 unsigned int flags) 4356 { 4357 vm_fault_t ret; 4358 4359 __set_current_state(TASK_RUNNING); 4360 4361 count_vm_event(PGFAULT); 4362 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4363 4364 /* do counter updates before entering really critical section. */ 4365 check_sync_rss_stat(current); 4366 4367 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4368 flags & FAULT_FLAG_INSTRUCTION, 4369 flags & FAULT_FLAG_REMOTE)) 4370 return VM_FAULT_SIGSEGV; 4371 4372 /* 4373 * Enable the memcg OOM handling for faults triggered in user 4374 * space. Kernel faults are handled more gracefully. 4375 */ 4376 if (flags & FAULT_FLAG_USER) 4377 mem_cgroup_enter_user_fault(); 4378 4379 if (unlikely(is_vm_hugetlb_page(vma))) 4380 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4381 else 4382 ret = __handle_mm_fault(vma, address, flags); 4383 4384 if (flags & FAULT_FLAG_USER) { 4385 mem_cgroup_exit_user_fault(); 4386 /* 4387 * The task may have entered a memcg OOM situation but 4388 * if the allocation error was handled gracefully (no 4389 * VM_FAULT_OOM), there is no need to kill anything. 4390 * Just clean up the OOM state peacefully. 4391 */ 4392 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4393 mem_cgroup_oom_synchronize(false); 4394 } 4395 4396 return ret; 4397 } 4398 EXPORT_SYMBOL_GPL(handle_mm_fault); 4399 4400 #ifndef __PAGETABLE_P4D_FOLDED 4401 /* 4402 * Allocate p4d page table. 4403 * We've already handled the fast-path in-line. 4404 */ 4405 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4406 { 4407 p4d_t *new = p4d_alloc_one(mm, address); 4408 if (!new) 4409 return -ENOMEM; 4410 4411 smp_wmb(); /* See comment in __pte_alloc */ 4412 4413 spin_lock(&mm->page_table_lock); 4414 if (pgd_present(*pgd)) /* Another has populated it */ 4415 p4d_free(mm, new); 4416 else 4417 pgd_populate(mm, pgd, new); 4418 spin_unlock(&mm->page_table_lock); 4419 return 0; 4420 } 4421 #endif /* __PAGETABLE_P4D_FOLDED */ 4422 4423 #ifndef __PAGETABLE_PUD_FOLDED 4424 /* 4425 * Allocate page upper directory. 4426 * We've already handled the fast-path in-line. 4427 */ 4428 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4429 { 4430 pud_t *new = pud_alloc_one(mm, address); 4431 if (!new) 4432 return -ENOMEM; 4433 4434 smp_wmb(); /* See comment in __pte_alloc */ 4435 4436 spin_lock(&mm->page_table_lock); 4437 #ifndef __ARCH_HAS_5LEVEL_HACK 4438 if (!p4d_present(*p4d)) { 4439 mm_inc_nr_puds(mm); 4440 p4d_populate(mm, p4d, new); 4441 } else /* Another has populated it */ 4442 pud_free(mm, new); 4443 #else 4444 if (!pgd_present(*p4d)) { 4445 mm_inc_nr_puds(mm); 4446 pgd_populate(mm, p4d, new); 4447 } else /* Another has populated it */ 4448 pud_free(mm, new); 4449 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4450 spin_unlock(&mm->page_table_lock); 4451 return 0; 4452 } 4453 #endif /* __PAGETABLE_PUD_FOLDED */ 4454 4455 #ifndef __PAGETABLE_PMD_FOLDED 4456 /* 4457 * Allocate page middle directory. 4458 * We've already handled the fast-path in-line. 4459 */ 4460 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4461 { 4462 spinlock_t *ptl; 4463 pmd_t *new = pmd_alloc_one(mm, address); 4464 if (!new) 4465 return -ENOMEM; 4466 4467 smp_wmb(); /* See comment in __pte_alloc */ 4468 4469 ptl = pud_lock(mm, pud); 4470 if (!pud_present(*pud)) { 4471 mm_inc_nr_pmds(mm); 4472 pud_populate(mm, pud, new); 4473 } else /* Another has populated it */ 4474 pmd_free(mm, new); 4475 spin_unlock(ptl); 4476 return 0; 4477 } 4478 #endif /* __PAGETABLE_PMD_FOLDED */ 4479 4480 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4481 struct mmu_notifier_range *range, 4482 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4483 { 4484 pgd_t *pgd; 4485 p4d_t *p4d; 4486 pud_t *pud; 4487 pmd_t *pmd; 4488 pte_t *ptep; 4489 4490 pgd = pgd_offset(mm, address); 4491 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4492 goto out; 4493 4494 p4d = p4d_offset(pgd, address); 4495 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4496 goto out; 4497 4498 pud = pud_offset(p4d, address); 4499 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4500 goto out; 4501 4502 pmd = pmd_offset(pud, address); 4503 VM_BUG_ON(pmd_trans_huge(*pmd)); 4504 4505 if (pmd_huge(*pmd)) { 4506 if (!pmdpp) 4507 goto out; 4508 4509 if (range) { 4510 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4511 NULL, mm, address & PMD_MASK, 4512 (address & PMD_MASK) + PMD_SIZE); 4513 mmu_notifier_invalidate_range_start(range); 4514 } 4515 *ptlp = pmd_lock(mm, pmd); 4516 if (pmd_huge(*pmd)) { 4517 *pmdpp = pmd; 4518 return 0; 4519 } 4520 spin_unlock(*ptlp); 4521 if (range) 4522 mmu_notifier_invalidate_range_end(range); 4523 } 4524 4525 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4526 goto out; 4527 4528 if (range) { 4529 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4530 address & PAGE_MASK, 4531 (address & PAGE_MASK) + PAGE_SIZE); 4532 mmu_notifier_invalidate_range_start(range); 4533 } 4534 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4535 if (!pte_present(*ptep)) 4536 goto unlock; 4537 *ptepp = ptep; 4538 return 0; 4539 unlock: 4540 pte_unmap_unlock(ptep, *ptlp); 4541 if (range) 4542 mmu_notifier_invalidate_range_end(range); 4543 out: 4544 return -EINVAL; 4545 } 4546 4547 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4548 pte_t **ptepp, spinlock_t **ptlp) 4549 { 4550 int res; 4551 4552 /* (void) is needed to make gcc happy */ 4553 (void) __cond_lock(*ptlp, 4554 !(res = __follow_pte_pmd(mm, address, NULL, 4555 ptepp, NULL, ptlp))); 4556 return res; 4557 } 4558 4559 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4560 struct mmu_notifier_range *range, 4561 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4562 { 4563 int res; 4564 4565 /* (void) is needed to make gcc happy */ 4566 (void) __cond_lock(*ptlp, 4567 !(res = __follow_pte_pmd(mm, address, range, 4568 ptepp, pmdpp, ptlp))); 4569 return res; 4570 } 4571 EXPORT_SYMBOL(follow_pte_pmd); 4572 4573 /** 4574 * follow_pfn - look up PFN at a user virtual address 4575 * @vma: memory mapping 4576 * @address: user virtual address 4577 * @pfn: location to store found PFN 4578 * 4579 * Only IO mappings and raw PFN mappings are allowed. 4580 * 4581 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4582 */ 4583 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4584 unsigned long *pfn) 4585 { 4586 int ret = -EINVAL; 4587 spinlock_t *ptl; 4588 pte_t *ptep; 4589 4590 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4591 return ret; 4592 4593 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4594 if (ret) 4595 return ret; 4596 *pfn = pte_pfn(*ptep); 4597 pte_unmap_unlock(ptep, ptl); 4598 return 0; 4599 } 4600 EXPORT_SYMBOL(follow_pfn); 4601 4602 #ifdef CONFIG_HAVE_IOREMAP_PROT 4603 int follow_phys(struct vm_area_struct *vma, 4604 unsigned long address, unsigned int flags, 4605 unsigned long *prot, resource_size_t *phys) 4606 { 4607 int ret = -EINVAL; 4608 pte_t *ptep, pte; 4609 spinlock_t *ptl; 4610 4611 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4612 goto out; 4613 4614 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4615 goto out; 4616 pte = *ptep; 4617 4618 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4619 goto unlock; 4620 4621 *prot = pgprot_val(pte_pgprot(pte)); 4622 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4623 4624 ret = 0; 4625 unlock: 4626 pte_unmap_unlock(ptep, ptl); 4627 out: 4628 return ret; 4629 } 4630 4631 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4632 void *buf, int len, int write) 4633 { 4634 resource_size_t phys_addr; 4635 unsigned long prot = 0; 4636 void __iomem *maddr; 4637 int offset = addr & (PAGE_SIZE-1); 4638 4639 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4640 return -EINVAL; 4641 4642 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4643 if (!maddr) 4644 return -ENOMEM; 4645 4646 if (write) 4647 memcpy_toio(maddr + offset, buf, len); 4648 else 4649 memcpy_fromio(buf, maddr + offset, len); 4650 iounmap(maddr); 4651 4652 return len; 4653 } 4654 EXPORT_SYMBOL_GPL(generic_access_phys); 4655 #endif 4656 4657 /* 4658 * Access another process' address space as given in mm. If non-NULL, use the 4659 * given task for page fault accounting. 4660 */ 4661 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4662 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4663 { 4664 struct vm_area_struct *vma; 4665 void *old_buf = buf; 4666 int write = gup_flags & FOLL_WRITE; 4667 4668 if (down_read_killable(&mm->mmap_sem)) 4669 return 0; 4670 4671 /* ignore errors, just check how much was successfully transferred */ 4672 while (len) { 4673 int bytes, ret, offset; 4674 void *maddr; 4675 struct page *page = NULL; 4676 4677 ret = get_user_pages_remote(tsk, mm, addr, 1, 4678 gup_flags, &page, &vma, NULL); 4679 if (ret <= 0) { 4680 #ifndef CONFIG_HAVE_IOREMAP_PROT 4681 break; 4682 #else 4683 /* 4684 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4685 * we can access using slightly different code. 4686 */ 4687 vma = find_vma(mm, addr); 4688 if (!vma || vma->vm_start > addr) 4689 break; 4690 if (vma->vm_ops && vma->vm_ops->access) 4691 ret = vma->vm_ops->access(vma, addr, buf, 4692 len, write); 4693 if (ret <= 0) 4694 break; 4695 bytes = ret; 4696 #endif 4697 } else { 4698 bytes = len; 4699 offset = addr & (PAGE_SIZE-1); 4700 if (bytes > PAGE_SIZE-offset) 4701 bytes = PAGE_SIZE-offset; 4702 4703 maddr = kmap(page); 4704 if (write) { 4705 copy_to_user_page(vma, page, addr, 4706 maddr + offset, buf, bytes); 4707 set_page_dirty_lock(page); 4708 } else { 4709 copy_from_user_page(vma, page, addr, 4710 buf, maddr + offset, bytes); 4711 } 4712 kunmap(page); 4713 put_page(page); 4714 } 4715 len -= bytes; 4716 buf += bytes; 4717 addr += bytes; 4718 } 4719 up_read(&mm->mmap_sem); 4720 4721 return buf - old_buf; 4722 } 4723 4724 /** 4725 * access_remote_vm - access another process' address space 4726 * @mm: the mm_struct of the target address space 4727 * @addr: start address to access 4728 * @buf: source or destination buffer 4729 * @len: number of bytes to transfer 4730 * @gup_flags: flags modifying lookup behaviour 4731 * 4732 * The caller must hold a reference on @mm. 4733 * 4734 * Return: number of bytes copied from source to destination. 4735 */ 4736 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4737 void *buf, int len, unsigned int gup_flags) 4738 { 4739 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4740 } 4741 4742 /* 4743 * Access another process' address space. 4744 * Source/target buffer must be kernel space, 4745 * Do not walk the page table directly, use get_user_pages 4746 */ 4747 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4748 void *buf, int len, unsigned int gup_flags) 4749 { 4750 struct mm_struct *mm; 4751 int ret; 4752 4753 mm = get_task_mm(tsk); 4754 if (!mm) 4755 return 0; 4756 4757 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4758 4759 mmput(mm); 4760 4761 return ret; 4762 } 4763 EXPORT_SYMBOL_GPL(access_process_vm); 4764 4765 /* 4766 * Print the name of a VMA. 4767 */ 4768 void print_vma_addr(char *prefix, unsigned long ip) 4769 { 4770 struct mm_struct *mm = current->mm; 4771 struct vm_area_struct *vma; 4772 4773 /* 4774 * we might be running from an atomic context so we cannot sleep 4775 */ 4776 if (!down_read_trylock(&mm->mmap_sem)) 4777 return; 4778 4779 vma = find_vma(mm, ip); 4780 if (vma && vma->vm_file) { 4781 struct file *f = vma->vm_file; 4782 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4783 if (buf) { 4784 char *p; 4785 4786 p = file_path(f, buf, PAGE_SIZE); 4787 if (IS_ERR(p)) 4788 p = "?"; 4789 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4790 vma->vm_start, 4791 vma->vm_end - vma->vm_start); 4792 free_page((unsigned long)buf); 4793 } 4794 } 4795 up_read(&mm->mmap_sem); 4796 } 4797 4798 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4799 void __might_fault(const char *file, int line) 4800 { 4801 /* 4802 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4803 * holding the mmap_sem, this is safe because kernel memory doesn't 4804 * get paged out, therefore we'll never actually fault, and the 4805 * below annotations will generate false positives. 4806 */ 4807 if (uaccess_kernel()) 4808 return; 4809 if (pagefault_disabled()) 4810 return; 4811 __might_sleep(file, line, 0); 4812 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4813 if (current->mm) 4814 might_lock_read(¤t->mm->mmap_sem); 4815 #endif 4816 } 4817 EXPORT_SYMBOL(__might_fault); 4818 #endif 4819 4820 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4821 /* 4822 * Process all subpages of the specified huge page with the specified 4823 * operation. The target subpage will be processed last to keep its 4824 * cache lines hot. 4825 */ 4826 static inline void process_huge_page( 4827 unsigned long addr_hint, unsigned int pages_per_huge_page, 4828 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4829 void *arg) 4830 { 4831 int i, n, base, l; 4832 unsigned long addr = addr_hint & 4833 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4834 4835 /* Process target subpage last to keep its cache lines hot */ 4836 might_sleep(); 4837 n = (addr_hint - addr) / PAGE_SIZE; 4838 if (2 * n <= pages_per_huge_page) { 4839 /* If target subpage in first half of huge page */ 4840 base = 0; 4841 l = n; 4842 /* Process subpages at the end of huge page */ 4843 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4844 cond_resched(); 4845 process_subpage(addr + i * PAGE_SIZE, i, arg); 4846 } 4847 } else { 4848 /* If target subpage in second half of huge page */ 4849 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4850 l = pages_per_huge_page - n; 4851 /* Process subpages at the begin of huge page */ 4852 for (i = 0; i < base; i++) { 4853 cond_resched(); 4854 process_subpage(addr + i * PAGE_SIZE, i, arg); 4855 } 4856 } 4857 /* 4858 * Process remaining subpages in left-right-left-right pattern 4859 * towards the target subpage 4860 */ 4861 for (i = 0; i < l; i++) { 4862 int left_idx = base + i; 4863 int right_idx = base + 2 * l - 1 - i; 4864 4865 cond_resched(); 4866 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4867 cond_resched(); 4868 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4869 } 4870 } 4871 4872 static void clear_gigantic_page(struct page *page, 4873 unsigned long addr, 4874 unsigned int pages_per_huge_page) 4875 { 4876 int i; 4877 struct page *p = page; 4878 4879 might_sleep(); 4880 for (i = 0; i < pages_per_huge_page; 4881 i++, p = mem_map_next(p, page, i)) { 4882 cond_resched(); 4883 clear_user_highpage(p, addr + i * PAGE_SIZE); 4884 } 4885 } 4886 4887 static void clear_subpage(unsigned long addr, int idx, void *arg) 4888 { 4889 struct page *page = arg; 4890 4891 clear_user_highpage(page + idx, addr); 4892 } 4893 4894 void clear_huge_page(struct page *page, 4895 unsigned long addr_hint, unsigned int pages_per_huge_page) 4896 { 4897 unsigned long addr = addr_hint & 4898 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4899 4900 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4901 clear_gigantic_page(page, addr, pages_per_huge_page); 4902 return; 4903 } 4904 4905 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4906 } 4907 4908 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4909 unsigned long addr, 4910 struct vm_area_struct *vma, 4911 unsigned int pages_per_huge_page) 4912 { 4913 int i; 4914 struct page *dst_base = dst; 4915 struct page *src_base = src; 4916 4917 for (i = 0; i < pages_per_huge_page; ) { 4918 cond_resched(); 4919 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4920 4921 i++; 4922 dst = mem_map_next(dst, dst_base, i); 4923 src = mem_map_next(src, src_base, i); 4924 } 4925 } 4926 4927 struct copy_subpage_arg { 4928 struct page *dst; 4929 struct page *src; 4930 struct vm_area_struct *vma; 4931 }; 4932 4933 static void copy_subpage(unsigned long addr, int idx, void *arg) 4934 { 4935 struct copy_subpage_arg *copy_arg = arg; 4936 4937 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4938 addr, copy_arg->vma); 4939 } 4940 4941 void copy_user_huge_page(struct page *dst, struct page *src, 4942 unsigned long addr_hint, struct vm_area_struct *vma, 4943 unsigned int pages_per_huge_page) 4944 { 4945 unsigned long addr = addr_hint & 4946 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4947 struct copy_subpage_arg arg = { 4948 .dst = dst, 4949 .src = src, 4950 .vma = vma, 4951 }; 4952 4953 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4954 copy_user_gigantic_page(dst, src, addr, vma, 4955 pages_per_huge_page); 4956 return; 4957 } 4958 4959 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4960 } 4961 4962 long copy_huge_page_from_user(struct page *dst_page, 4963 const void __user *usr_src, 4964 unsigned int pages_per_huge_page, 4965 bool allow_pagefault) 4966 { 4967 void *src = (void *)usr_src; 4968 void *page_kaddr; 4969 unsigned long i, rc = 0; 4970 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4971 4972 for (i = 0; i < pages_per_huge_page; i++) { 4973 if (allow_pagefault) 4974 page_kaddr = kmap(dst_page + i); 4975 else 4976 page_kaddr = kmap_atomic(dst_page + i); 4977 rc = copy_from_user(page_kaddr, 4978 (const void __user *)(src + i * PAGE_SIZE), 4979 PAGE_SIZE); 4980 if (allow_pagefault) 4981 kunmap(dst_page + i); 4982 else 4983 kunmap_atomic(page_kaddr); 4984 4985 ret_val -= (PAGE_SIZE - rc); 4986 if (rc) 4987 break; 4988 4989 cond_resched(); 4990 } 4991 return ret_val; 4992 } 4993 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4994 4995 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4996 4997 static struct kmem_cache *page_ptl_cachep; 4998 4999 void __init ptlock_cache_init(void) 5000 { 5001 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5002 SLAB_PANIC, NULL); 5003 } 5004 5005 bool ptlock_alloc(struct page *page) 5006 { 5007 spinlock_t *ptl; 5008 5009 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5010 if (!ptl) 5011 return false; 5012 page->ptl = ptl; 5013 return true; 5014 } 5015 5016 void ptlock_free(struct page *page) 5017 { 5018 kmem_cache_free(page_ptl_cachep, page->ptl); 5019 } 5020 #endif 5021