1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/memory-tiers.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 #include <linux/sched/sysctl.h> 78 79 #include <trace/events/kmem.h> 80 81 #include <asm/io.h> 82 #include <asm/mmu_context.h> 83 #include <asm/pgalloc.h> 84 #include <linux/uaccess.h> 85 #include <asm/tlb.h> 86 #include <asm/tlbflush.h> 87 88 #include "pgalloc-track.h" 89 #include "internal.h" 90 #include "swap.h" 91 92 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 93 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 94 #endif 95 96 static vm_fault_t do_fault(struct vm_fault *vmf); 97 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 98 static bool vmf_pte_changed(struct vm_fault *vmf); 99 100 /* 101 * Return true if the original pte was a uffd-wp pte marker (so the pte was 102 * wr-protected). 103 */ 104 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 105 { 106 if (!userfaultfd_wp(vmf->vma)) 107 return false; 108 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 109 return false; 110 111 return pte_marker_uffd_wp(vmf->orig_pte); 112 } 113 114 /* 115 * Randomize the address space (stacks, mmaps, brk, etc.). 116 * 117 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 118 * as ancient (libc5 based) binaries can segfault. ) 119 */ 120 int randomize_va_space __read_mostly = 121 #ifdef CONFIG_COMPAT_BRK 122 1; 123 #else 124 2; 125 #endif 126 127 #ifndef arch_wants_old_prefaulted_pte 128 static inline bool arch_wants_old_prefaulted_pte(void) 129 { 130 /* 131 * Transitioning a PTE from 'old' to 'young' can be expensive on 132 * some architectures, even if it's performed in hardware. By 133 * default, "false" means prefaulted entries will be 'young'. 134 */ 135 return false; 136 } 137 #endif 138 139 static int __init disable_randmaps(char *s) 140 { 141 randomize_va_space = 0; 142 return 1; 143 } 144 __setup("norandmaps", disable_randmaps); 145 146 unsigned long zero_pfn __read_mostly; 147 EXPORT_SYMBOL(zero_pfn); 148 149 unsigned long highest_memmap_pfn __read_mostly; 150 151 /* 152 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 153 */ 154 static int __init init_zero_pfn(void) 155 { 156 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 157 return 0; 158 } 159 early_initcall(init_zero_pfn); 160 161 void mm_trace_rss_stat(struct mm_struct *mm, int member) 162 { 163 trace_rss_stat(mm, member); 164 } 165 166 /* 167 * Note: this doesn't free the actual pages themselves. That 168 * has been handled earlier when unmapping all the memory regions. 169 */ 170 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 171 unsigned long addr) 172 { 173 pgtable_t token = pmd_pgtable(*pmd); 174 pmd_clear(pmd); 175 pte_free_tlb(tlb, token, addr); 176 mm_dec_nr_ptes(tlb->mm); 177 } 178 179 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 180 unsigned long addr, unsigned long end, 181 unsigned long floor, unsigned long ceiling) 182 { 183 pmd_t *pmd; 184 unsigned long next; 185 unsigned long start; 186 187 start = addr; 188 pmd = pmd_offset(pud, addr); 189 do { 190 next = pmd_addr_end(addr, end); 191 if (pmd_none_or_clear_bad(pmd)) 192 continue; 193 free_pte_range(tlb, pmd, addr); 194 } while (pmd++, addr = next, addr != end); 195 196 start &= PUD_MASK; 197 if (start < floor) 198 return; 199 if (ceiling) { 200 ceiling &= PUD_MASK; 201 if (!ceiling) 202 return; 203 } 204 if (end - 1 > ceiling - 1) 205 return; 206 207 pmd = pmd_offset(pud, start); 208 pud_clear(pud); 209 pmd_free_tlb(tlb, pmd, start); 210 mm_dec_nr_pmds(tlb->mm); 211 } 212 213 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 214 unsigned long addr, unsigned long end, 215 unsigned long floor, unsigned long ceiling) 216 { 217 pud_t *pud; 218 unsigned long next; 219 unsigned long start; 220 221 start = addr; 222 pud = pud_offset(p4d, addr); 223 do { 224 next = pud_addr_end(addr, end); 225 if (pud_none_or_clear_bad(pud)) 226 continue; 227 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 228 } while (pud++, addr = next, addr != end); 229 230 start &= P4D_MASK; 231 if (start < floor) 232 return; 233 if (ceiling) { 234 ceiling &= P4D_MASK; 235 if (!ceiling) 236 return; 237 } 238 if (end - 1 > ceiling - 1) 239 return; 240 241 pud = pud_offset(p4d, start); 242 p4d_clear(p4d); 243 pud_free_tlb(tlb, pud, start); 244 mm_dec_nr_puds(tlb->mm); 245 } 246 247 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 248 unsigned long addr, unsigned long end, 249 unsigned long floor, unsigned long ceiling) 250 { 251 p4d_t *p4d; 252 unsigned long next; 253 unsigned long start; 254 255 start = addr; 256 p4d = p4d_offset(pgd, addr); 257 do { 258 next = p4d_addr_end(addr, end); 259 if (p4d_none_or_clear_bad(p4d)) 260 continue; 261 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 262 } while (p4d++, addr = next, addr != end); 263 264 start &= PGDIR_MASK; 265 if (start < floor) 266 return; 267 if (ceiling) { 268 ceiling &= PGDIR_MASK; 269 if (!ceiling) 270 return; 271 } 272 if (end - 1 > ceiling - 1) 273 return; 274 275 p4d = p4d_offset(pgd, start); 276 pgd_clear(pgd); 277 p4d_free_tlb(tlb, p4d, start); 278 } 279 280 /** 281 * free_pgd_range - Unmap and free page tables in the range 282 * @tlb: the mmu_gather containing pending TLB flush info 283 * @addr: virtual address start 284 * @end: virtual address end 285 * @floor: lowest address boundary 286 * @ceiling: highest address boundary 287 * 288 * This function tears down all user-level page tables in the 289 * specified virtual address range [@addr..@end). It is part of 290 * the memory unmap flow. 291 */ 292 void free_pgd_range(struct mmu_gather *tlb, 293 unsigned long addr, unsigned long end, 294 unsigned long floor, unsigned long ceiling) 295 { 296 pgd_t *pgd; 297 unsigned long next; 298 299 /* 300 * The next few lines have given us lots of grief... 301 * 302 * Why are we testing PMD* at this top level? Because often 303 * there will be no work to do at all, and we'd prefer not to 304 * go all the way down to the bottom just to discover that. 305 * 306 * Why all these "- 1"s? Because 0 represents both the bottom 307 * of the address space and the top of it (using -1 for the 308 * top wouldn't help much: the masks would do the wrong thing). 309 * The rule is that addr 0 and floor 0 refer to the bottom of 310 * the address space, but end 0 and ceiling 0 refer to the top 311 * Comparisons need to use "end - 1" and "ceiling - 1" (though 312 * that end 0 case should be mythical). 313 * 314 * Wherever addr is brought up or ceiling brought down, we must 315 * be careful to reject "the opposite 0" before it confuses the 316 * subsequent tests. But what about where end is brought down 317 * by PMD_SIZE below? no, end can't go down to 0 there. 318 * 319 * Whereas we round start (addr) and ceiling down, by different 320 * masks at different levels, in order to test whether a table 321 * now has no other vmas using it, so can be freed, we don't 322 * bother to round floor or end up - the tests don't need that. 323 */ 324 325 addr &= PMD_MASK; 326 if (addr < floor) { 327 addr += PMD_SIZE; 328 if (!addr) 329 return; 330 } 331 if (ceiling) { 332 ceiling &= PMD_MASK; 333 if (!ceiling) 334 return; 335 } 336 if (end - 1 > ceiling - 1) 337 end -= PMD_SIZE; 338 if (addr > end - 1) 339 return; 340 /* 341 * We add page table cache pages with PAGE_SIZE, 342 * (see pte_free_tlb()), flush the tlb if we need 343 */ 344 tlb_change_page_size(tlb, PAGE_SIZE); 345 pgd = pgd_offset(tlb->mm, addr); 346 do { 347 next = pgd_addr_end(addr, end); 348 if (pgd_none_or_clear_bad(pgd)) 349 continue; 350 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 351 } while (pgd++, addr = next, addr != end); 352 } 353 354 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 355 struct vm_area_struct *vma, unsigned long floor, 356 unsigned long ceiling, bool mm_wr_locked) 357 { 358 struct unlink_vma_file_batch vb; 359 360 tlb_free_vmas(tlb); 361 362 do { 363 unsigned long addr = vma->vm_start; 364 struct vm_area_struct *next; 365 366 /* 367 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 368 * be 0. This will underflow and is okay. 369 */ 370 next = mas_find(mas, ceiling - 1); 371 if (unlikely(xa_is_zero(next))) 372 next = NULL; 373 374 /* 375 * Hide vma from rmap and truncate_pagecache before freeing 376 * pgtables 377 */ 378 if (mm_wr_locked) 379 vma_start_write(vma); 380 unlink_anon_vmas(vma); 381 382 if (is_vm_hugetlb_page(vma)) { 383 unlink_file_vma(vma); 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 385 floor, next ? next->vm_start : ceiling); 386 } else { 387 unlink_file_vma_batch_init(&vb); 388 unlink_file_vma_batch_add(&vb, vma); 389 390 /* 391 * Optimization: gather nearby vmas into one call down 392 */ 393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 394 && !is_vm_hugetlb_page(next)) { 395 vma = next; 396 next = mas_find(mas, ceiling - 1); 397 if (unlikely(xa_is_zero(next))) 398 next = NULL; 399 if (mm_wr_locked) 400 vma_start_write(vma); 401 unlink_anon_vmas(vma); 402 unlink_file_vma_batch_add(&vb, vma); 403 } 404 unlink_file_vma_batch_final(&vb); 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 for (i = 0; i < NR_MM_COUNTERS; i++) 478 if (rss[i]) 479 add_mm_counter(mm, i, rss[i]); 480 } 481 482 /* 483 * This function is called to print an error when a bad pte 484 * is found. For example, we might have a PFN-mapped pte in 485 * a region that doesn't allow it. 486 * 487 * The calling function must still handle the error. 488 */ 489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 490 pte_t pte, struct page *page) 491 { 492 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 493 p4d_t *p4d = p4d_offset(pgd, addr); 494 pud_t *pud = pud_offset(p4d, addr); 495 pmd_t *pmd = pmd_offset(pud, addr); 496 struct address_space *mapping; 497 pgoff_t index; 498 static unsigned long resume; 499 static unsigned long nr_shown; 500 static unsigned long nr_unshown; 501 502 /* 503 * Allow a burst of 60 reports, then keep quiet for that minute; 504 * or allow a steady drip of one report per second. 505 */ 506 if (nr_shown == 60) { 507 if (time_before(jiffies, resume)) { 508 nr_unshown++; 509 return; 510 } 511 if (nr_unshown) { 512 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 513 nr_unshown); 514 nr_unshown = 0; 515 } 516 nr_shown = 0; 517 } 518 if (nr_shown++ == 0) 519 resume = jiffies + 60 * HZ; 520 521 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 522 index = linear_page_index(vma, addr); 523 524 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 525 current->comm, 526 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 527 if (page) 528 dump_page(page, "bad pte"); 529 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 530 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 531 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 532 vma->vm_file, 533 vma->vm_ops ? vma->vm_ops->fault : NULL, 534 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 535 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 536 mapping ? mapping->a_ops->read_folio : NULL); 537 dump_stack(); 538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 539 } 540 541 /* 542 * vm_normal_page -- This function gets the "struct page" associated with a pte. 543 * 544 * "Special" mappings do not wish to be associated with a "struct page" (either 545 * it doesn't exist, or it exists but they don't want to touch it). In this 546 * case, NULL is returned here. "Normal" mappings do have a struct page. 547 * 548 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 549 * pte bit, in which case this function is trivial. Secondly, an architecture 550 * may not have a spare pte bit, which requires a more complicated scheme, 551 * described below. 552 * 553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 554 * special mapping (even if there are underlying and valid "struct pages"). 555 * COWed pages of a VM_PFNMAP are always normal. 556 * 557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 560 * mapping will always honor the rule 561 * 562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 563 * 564 * And for normal mappings this is false. 565 * 566 * This restricts such mappings to be a linear translation from virtual address 567 * to pfn. To get around this restriction, we allow arbitrary mappings so long 568 * as the vma is not a COW mapping; in that case, we know that all ptes are 569 * special (because none can have been COWed). 570 * 571 * 572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 573 * 574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 575 * page" backing, however the difference is that _all_ pages with a struct 576 * page (that is, those where pfn_valid is true) are refcounted and considered 577 * normal pages by the VM. The only exception are zeropages, which are 578 * *never* refcounted. 579 * 580 * The disadvantage is that pages are refcounted (which can be slower and 581 * simply not an option for some PFNMAP users). The advantage is that we 582 * don't have to follow the strict linearity rule of PFNMAP mappings in 583 * order to support COWable mappings. 584 * 585 */ 586 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 587 pte_t pte) 588 { 589 unsigned long pfn = pte_pfn(pte); 590 591 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 592 if (likely(!pte_special(pte))) 593 goto check_pfn; 594 if (vma->vm_ops && vma->vm_ops->find_special_page) 595 return vma->vm_ops->find_special_page(vma, addr); 596 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 597 return NULL; 598 if (is_zero_pfn(pfn)) 599 return NULL; 600 601 print_bad_pte(vma, addr, pte, NULL); 602 return NULL; 603 } 604 605 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 606 607 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 608 if (vma->vm_flags & VM_MIXEDMAP) { 609 if (!pfn_valid(pfn)) 610 return NULL; 611 if (is_zero_pfn(pfn)) 612 return NULL; 613 goto out; 614 } else { 615 unsigned long off; 616 off = (addr - vma->vm_start) >> PAGE_SHIFT; 617 if (pfn == vma->vm_pgoff + off) 618 return NULL; 619 if (!is_cow_mapping(vma->vm_flags)) 620 return NULL; 621 } 622 } 623 624 if (is_zero_pfn(pfn)) 625 return NULL; 626 627 check_pfn: 628 if (unlikely(pfn > highest_memmap_pfn)) { 629 print_bad_pte(vma, addr, pte, NULL); 630 return NULL; 631 } 632 633 /* 634 * NOTE! We still have PageReserved() pages in the page tables. 635 * eg. VDSO mappings can cause them to exist. 636 */ 637 out: 638 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 639 return pfn_to_page(pfn); 640 } 641 642 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 643 pte_t pte) 644 { 645 struct page *page = vm_normal_page(vma, addr, pte); 646 647 if (page) 648 return page_folio(page); 649 return NULL; 650 } 651 652 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 654 pmd_t pmd) 655 { 656 unsigned long pfn = pmd_pfn(pmd); 657 658 /* Currently it's only used for huge pfnmaps */ 659 if (unlikely(pmd_special(pmd))) 660 return NULL; 661 662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 663 if (vma->vm_flags & VM_MIXEDMAP) { 664 if (!pfn_valid(pfn)) 665 return NULL; 666 goto out; 667 } else { 668 unsigned long off; 669 off = (addr - vma->vm_start) >> PAGE_SHIFT; 670 if (pfn == vma->vm_pgoff + off) 671 return NULL; 672 if (!is_cow_mapping(vma->vm_flags)) 673 return NULL; 674 } 675 } 676 677 if (is_huge_zero_pmd(pmd)) 678 return NULL; 679 if (unlikely(pfn > highest_memmap_pfn)) 680 return NULL; 681 682 /* 683 * NOTE! We still have PageReserved() pages in the page tables. 684 * eg. VDSO mappings can cause them to exist. 685 */ 686 out: 687 return pfn_to_page(pfn); 688 } 689 690 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 691 unsigned long addr, pmd_t pmd) 692 { 693 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 694 695 if (page) 696 return page_folio(page); 697 return NULL; 698 } 699 #endif 700 701 /** 702 * restore_exclusive_pte - Restore a device-exclusive entry 703 * @vma: VMA covering @address 704 * @folio: the mapped folio 705 * @page: the mapped folio page 706 * @address: the virtual address 707 * @ptep: pte pointer into the locked page table mapping the folio page 708 * @orig_pte: pte value at @ptep 709 * 710 * Restore a device-exclusive non-swap entry to an ordinary present pte. 711 * 712 * The folio and the page table must be locked, and MMU notifiers must have 713 * been called to invalidate any (exclusive) device mappings. 714 * 715 * Locking the folio makes sure that anybody who just converted the pte to 716 * a device-exclusive entry can map it into the device to make forward 717 * progress without others converting it back until the folio was unlocked. 718 * 719 * If the folio lock ever becomes an issue, we can stop relying on the folio 720 * lock; it might make some scenarios with heavy thrashing less likely to 721 * make forward progress, but these scenarios might not be valid use cases. 722 * 723 * Note that the folio lock does not protect against all cases of concurrent 724 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 725 * must use MMU notifiers to sync against any concurrent changes. 726 */ 727 static void restore_exclusive_pte(struct vm_area_struct *vma, 728 struct folio *folio, struct page *page, unsigned long address, 729 pte_t *ptep, pte_t orig_pte) 730 { 731 pte_t pte; 732 733 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 734 735 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 736 if (pte_swp_soft_dirty(orig_pte)) 737 pte = pte_mksoft_dirty(pte); 738 739 if (pte_swp_uffd_wp(orig_pte)) 740 pte = pte_mkuffd_wp(pte); 741 742 if ((vma->vm_flags & VM_WRITE) && 743 can_change_pte_writable(vma, address, pte)) { 744 if (folio_test_dirty(folio)) 745 pte = pte_mkdirty(pte); 746 pte = pte_mkwrite(pte, vma); 747 } 748 set_pte_at(vma->vm_mm, address, ptep, pte); 749 750 /* 751 * No need to invalidate - it was non-present before. However 752 * secondary CPUs may have mappings that need invalidating. 753 */ 754 update_mmu_cache(vma, address, ptep); 755 } 756 757 /* 758 * Tries to restore an exclusive pte if the page lock can be acquired without 759 * sleeping. 760 */ 761 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 762 unsigned long addr, pte_t *ptep, pte_t orig_pte) 763 { 764 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 765 struct folio *folio = page_folio(page); 766 767 if (folio_trylock(folio)) { 768 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 769 folio_unlock(folio); 770 return 0; 771 } 772 773 return -EBUSY; 774 } 775 776 /* 777 * copy one vm_area from one task to the other. Assumes the page tables 778 * already present in the new task to be cleared in the whole range 779 * covered by this vma. 780 */ 781 782 static unsigned long 783 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 784 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 785 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 786 { 787 vm_flags_t vm_flags = dst_vma->vm_flags; 788 pte_t orig_pte = ptep_get(src_pte); 789 pte_t pte = orig_pte; 790 struct folio *folio; 791 struct page *page; 792 swp_entry_t entry = pte_to_swp_entry(orig_pte); 793 794 if (likely(!non_swap_entry(entry))) { 795 if (swap_duplicate(entry) < 0) 796 return -EIO; 797 798 /* make sure dst_mm is on swapoff's mmlist. */ 799 if (unlikely(list_empty(&dst_mm->mmlist))) { 800 spin_lock(&mmlist_lock); 801 if (list_empty(&dst_mm->mmlist)) 802 list_add(&dst_mm->mmlist, 803 &src_mm->mmlist); 804 spin_unlock(&mmlist_lock); 805 } 806 /* Mark the swap entry as shared. */ 807 if (pte_swp_exclusive(orig_pte)) { 808 pte = pte_swp_clear_exclusive(orig_pte); 809 set_pte_at(src_mm, addr, src_pte, pte); 810 } 811 rss[MM_SWAPENTS]++; 812 } else if (is_migration_entry(entry)) { 813 folio = pfn_swap_entry_folio(entry); 814 815 rss[mm_counter(folio)]++; 816 817 if (!is_readable_migration_entry(entry) && 818 is_cow_mapping(vm_flags)) { 819 /* 820 * COW mappings require pages in both parent and child 821 * to be set to read. A previously exclusive entry is 822 * now shared. 823 */ 824 entry = make_readable_migration_entry( 825 swp_offset(entry)); 826 pte = swp_entry_to_pte(entry); 827 if (pte_swp_soft_dirty(orig_pte)) 828 pte = pte_swp_mksoft_dirty(pte); 829 if (pte_swp_uffd_wp(orig_pte)) 830 pte = pte_swp_mkuffd_wp(pte); 831 set_pte_at(src_mm, addr, src_pte, pte); 832 } 833 } else if (is_device_private_entry(entry)) { 834 page = pfn_swap_entry_to_page(entry); 835 folio = page_folio(page); 836 837 /* 838 * Update rss count even for unaddressable pages, as 839 * they should treated just like normal pages in this 840 * respect. 841 * 842 * We will likely want to have some new rss counters 843 * for unaddressable pages, at some point. But for now 844 * keep things as they are. 845 */ 846 folio_get(folio); 847 rss[mm_counter(folio)]++; 848 /* Cannot fail as these pages cannot get pinned. */ 849 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 850 851 /* 852 * We do not preserve soft-dirty information, because so 853 * far, checkpoint/restore is the only feature that 854 * requires that. And checkpoint/restore does not work 855 * when a device driver is involved (you cannot easily 856 * save and restore device driver state). 857 */ 858 if (is_writable_device_private_entry(entry) && 859 is_cow_mapping(vm_flags)) { 860 entry = make_readable_device_private_entry( 861 swp_offset(entry)); 862 pte = swp_entry_to_pte(entry); 863 if (pte_swp_uffd_wp(orig_pte)) 864 pte = pte_swp_mkuffd_wp(pte); 865 set_pte_at(src_mm, addr, src_pte, pte); 866 } 867 } else if (is_device_exclusive_entry(entry)) { 868 /* 869 * Make device exclusive entries present by restoring the 870 * original entry then copying as for a present pte. Device 871 * exclusive entries currently only support private writable 872 * (ie. COW) mappings. 873 */ 874 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 875 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 876 return -EBUSY; 877 return -ENOENT; 878 } else if (is_pte_marker_entry(entry)) { 879 pte_marker marker = copy_pte_marker(entry, dst_vma); 880 881 if (marker) 882 set_pte_at(dst_mm, addr, dst_pte, 883 make_pte_marker(marker)); 884 return 0; 885 } 886 if (!userfaultfd_wp(dst_vma)) 887 pte = pte_swp_clear_uffd_wp(pte); 888 set_pte_at(dst_mm, addr, dst_pte, pte); 889 return 0; 890 } 891 892 /* 893 * Copy a present and normal page. 894 * 895 * NOTE! The usual case is that this isn't required; 896 * instead, the caller can just increase the page refcount 897 * and re-use the pte the traditional way. 898 * 899 * And if we need a pre-allocated page but don't yet have 900 * one, return a negative error to let the preallocation 901 * code know so that it can do so outside the page table 902 * lock. 903 */ 904 static inline int 905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 906 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 907 struct folio **prealloc, struct page *page) 908 { 909 struct folio *new_folio; 910 pte_t pte; 911 912 new_folio = *prealloc; 913 if (!new_folio) 914 return -EAGAIN; 915 916 /* 917 * We have a prealloc page, all good! Take it 918 * over and copy the page & arm it. 919 */ 920 921 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 922 return -EHWPOISON; 923 924 *prealloc = NULL; 925 __folio_mark_uptodate(new_folio); 926 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 927 folio_add_lru_vma(new_folio, dst_vma); 928 rss[MM_ANONPAGES]++; 929 930 /* All done, just insert the new page copy in the child */ 931 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 932 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 933 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 934 /* Uffd-wp needs to be delivered to dest pte as well */ 935 pte = pte_mkuffd_wp(pte); 936 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 937 return 0; 938 } 939 940 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 941 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 942 pte_t pte, unsigned long addr, int nr) 943 { 944 struct mm_struct *src_mm = src_vma->vm_mm; 945 946 /* If it's a COW mapping, write protect it both processes. */ 947 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 948 wrprotect_ptes(src_mm, addr, src_pte, nr); 949 pte = pte_wrprotect(pte); 950 } 951 952 /* If it's a shared mapping, mark it clean in the child. */ 953 if (src_vma->vm_flags & VM_SHARED) 954 pte = pte_mkclean(pte); 955 pte = pte_mkold(pte); 956 957 if (!userfaultfd_wp(dst_vma)) 958 pte = pte_clear_uffd_wp(pte); 959 960 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 961 } 962 963 /* 964 * Copy one present PTE, trying to batch-process subsequent PTEs that map 965 * consecutive pages of the same folio by copying them as well. 966 * 967 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 968 * Otherwise, returns the number of copied PTEs (at least 1). 969 */ 970 static inline int 971 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 972 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 973 int max_nr, int *rss, struct folio **prealloc) 974 { 975 struct page *page; 976 struct folio *folio; 977 bool any_writable; 978 fpb_t flags = 0; 979 int err, nr; 980 981 page = vm_normal_page(src_vma, addr, pte); 982 if (unlikely(!page)) 983 goto copy_pte; 984 985 folio = page_folio(page); 986 987 /* 988 * If we likely have to copy, just don't bother with batching. Make 989 * sure that the common "small folio" case is as fast as possible 990 * by keeping the batching logic separate. 991 */ 992 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 993 if (src_vma->vm_flags & VM_SHARED) 994 flags |= FPB_IGNORE_DIRTY; 995 if (!vma_soft_dirty_enabled(src_vma)) 996 flags |= FPB_IGNORE_SOFT_DIRTY; 997 998 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 999 &any_writable, NULL, NULL); 1000 folio_ref_add(folio, nr); 1001 if (folio_test_anon(folio)) { 1002 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1003 nr, dst_vma, src_vma))) { 1004 folio_ref_sub(folio, nr); 1005 return -EAGAIN; 1006 } 1007 rss[MM_ANONPAGES] += nr; 1008 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1009 } else { 1010 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1011 rss[mm_counter_file(folio)] += nr; 1012 } 1013 if (any_writable) 1014 pte = pte_mkwrite(pte, src_vma); 1015 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1016 addr, nr); 1017 return nr; 1018 } 1019 1020 folio_get(folio); 1021 if (folio_test_anon(folio)) { 1022 /* 1023 * If this page may have been pinned by the parent process, 1024 * copy the page immediately for the child so that we'll always 1025 * guarantee the pinned page won't be randomly replaced in the 1026 * future. 1027 */ 1028 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1029 /* Page may be pinned, we have to copy. */ 1030 folio_put(folio); 1031 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1032 addr, rss, prealloc, page); 1033 return err ? err : 1; 1034 } 1035 rss[MM_ANONPAGES]++; 1036 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1037 } else { 1038 folio_dup_file_rmap_pte(folio, page, dst_vma); 1039 rss[mm_counter_file(folio)]++; 1040 } 1041 1042 copy_pte: 1043 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1044 return 1; 1045 } 1046 1047 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1048 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1049 { 1050 struct folio *new_folio; 1051 1052 if (need_zero) 1053 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1054 else 1055 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1056 1057 if (!new_folio) 1058 return NULL; 1059 1060 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1061 folio_put(new_folio); 1062 return NULL; 1063 } 1064 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1065 1066 return new_folio; 1067 } 1068 1069 static int 1070 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1071 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1072 unsigned long end) 1073 { 1074 struct mm_struct *dst_mm = dst_vma->vm_mm; 1075 struct mm_struct *src_mm = src_vma->vm_mm; 1076 pte_t *orig_src_pte, *orig_dst_pte; 1077 pte_t *src_pte, *dst_pte; 1078 pmd_t dummy_pmdval; 1079 pte_t ptent; 1080 spinlock_t *src_ptl, *dst_ptl; 1081 int progress, max_nr, ret = 0; 1082 int rss[NR_MM_COUNTERS]; 1083 swp_entry_t entry = (swp_entry_t){0}; 1084 struct folio *prealloc = NULL; 1085 int nr; 1086 1087 again: 1088 progress = 0; 1089 init_rss_vec(rss); 1090 1091 /* 1092 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1093 * error handling here, assume that exclusive mmap_lock on dst and src 1094 * protects anon from unexpected THP transitions; with shmem and file 1095 * protected by mmap_lock-less collapse skipping areas with anon_vma 1096 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1097 * can remove such assumptions later, but this is good enough for now. 1098 */ 1099 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1100 if (!dst_pte) { 1101 ret = -ENOMEM; 1102 goto out; 1103 } 1104 1105 /* 1106 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1107 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1108 * the PTE page is stable, and there is no need to get pmdval and do 1109 * pmd_same() check. 1110 */ 1111 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1112 &src_ptl); 1113 if (!src_pte) { 1114 pte_unmap_unlock(dst_pte, dst_ptl); 1115 /* ret == 0 */ 1116 goto out; 1117 } 1118 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1119 orig_src_pte = src_pte; 1120 orig_dst_pte = dst_pte; 1121 arch_enter_lazy_mmu_mode(); 1122 1123 do { 1124 nr = 1; 1125 1126 /* 1127 * We are holding two locks at this point - either of them 1128 * could generate latencies in another task on another CPU. 1129 */ 1130 if (progress >= 32) { 1131 progress = 0; 1132 if (need_resched() || 1133 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1134 break; 1135 } 1136 ptent = ptep_get(src_pte); 1137 if (pte_none(ptent)) { 1138 progress++; 1139 continue; 1140 } 1141 if (unlikely(!pte_present(ptent))) { 1142 ret = copy_nonpresent_pte(dst_mm, src_mm, 1143 dst_pte, src_pte, 1144 dst_vma, src_vma, 1145 addr, rss); 1146 if (ret == -EIO) { 1147 entry = pte_to_swp_entry(ptep_get(src_pte)); 1148 break; 1149 } else if (ret == -EBUSY) { 1150 break; 1151 } else if (!ret) { 1152 progress += 8; 1153 continue; 1154 } 1155 ptent = ptep_get(src_pte); 1156 VM_WARN_ON_ONCE(!pte_present(ptent)); 1157 1158 /* 1159 * Device exclusive entry restored, continue by copying 1160 * the now present pte. 1161 */ 1162 WARN_ON_ONCE(ret != -ENOENT); 1163 } 1164 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1165 max_nr = (end - addr) / PAGE_SIZE; 1166 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1167 ptent, addr, max_nr, rss, &prealloc); 1168 /* 1169 * If we need a pre-allocated page for this pte, drop the 1170 * locks, allocate, and try again. 1171 * If copy failed due to hwpoison in source page, break out. 1172 */ 1173 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1174 break; 1175 if (unlikely(prealloc)) { 1176 /* 1177 * pre-alloc page cannot be reused by next time so as 1178 * to strictly follow mempolicy (e.g., alloc_page_vma() 1179 * will allocate page according to address). This 1180 * could only happen if one pinned pte changed. 1181 */ 1182 folio_put(prealloc); 1183 prealloc = NULL; 1184 } 1185 nr = ret; 1186 progress += 8 * nr; 1187 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1188 addr != end); 1189 1190 arch_leave_lazy_mmu_mode(); 1191 pte_unmap_unlock(orig_src_pte, src_ptl); 1192 add_mm_rss_vec(dst_mm, rss); 1193 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1194 cond_resched(); 1195 1196 if (ret == -EIO) { 1197 VM_WARN_ON_ONCE(!entry.val); 1198 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1199 ret = -ENOMEM; 1200 goto out; 1201 } 1202 entry.val = 0; 1203 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1204 goto out; 1205 } else if (ret == -EAGAIN) { 1206 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1207 if (!prealloc) 1208 return -ENOMEM; 1209 } else if (ret < 0) { 1210 VM_WARN_ON_ONCE(1); 1211 } 1212 1213 /* We've captured and resolved the error. Reset, try again. */ 1214 ret = 0; 1215 1216 if (addr != end) 1217 goto again; 1218 out: 1219 if (unlikely(prealloc)) 1220 folio_put(prealloc); 1221 return ret; 1222 } 1223 1224 static inline int 1225 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1226 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1227 unsigned long end) 1228 { 1229 struct mm_struct *dst_mm = dst_vma->vm_mm; 1230 struct mm_struct *src_mm = src_vma->vm_mm; 1231 pmd_t *src_pmd, *dst_pmd; 1232 unsigned long next; 1233 1234 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1235 if (!dst_pmd) 1236 return -ENOMEM; 1237 src_pmd = pmd_offset(src_pud, addr); 1238 do { 1239 next = pmd_addr_end(addr, end); 1240 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)) { 1241 int err; 1242 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1243 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1244 addr, dst_vma, src_vma); 1245 if (err == -ENOMEM) 1246 return -ENOMEM; 1247 if (!err) 1248 continue; 1249 /* fall through */ 1250 } 1251 if (pmd_none_or_clear_bad(src_pmd)) 1252 continue; 1253 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1254 addr, next)) 1255 return -ENOMEM; 1256 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1257 return 0; 1258 } 1259 1260 static inline int 1261 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1262 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1263 unsigned long end) 1264 { 1265 struct mm_struct *dst_mm = dst_vma->vm_mm; 1266 struct mm_struct *src_mm = src_vma->vm_mm; 1267 pud_t *src_pud, *dst_pud; 1268 unsigned long next; 1269 1270 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1271 if (!dst_pud) 1272 return -ENOMEM; 1273 src_pud = pud_offset(src_p4d, addr); 1274 do { 1275 next = pud_addr_end(addr, end); 1276 if (pud_trans_huge(*src_pud)) { 1277 int err; 1278 1279 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1280 err = copy_huge_pud(dst_mm, src_mm, 1281 dst_pud, src_pud, addr, src_vma); 1282 if (err == -ENOMEM) 1283 return -ENOMEM; 1284 if (!err) 1285 continue; 1286 /* fall through */ 1287 } 1288 if (pud_none_or_clear_bad(src_pud)) 1289 continue; 1290 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1291 addr, next)) 1292 return -ENOMEM; 1293 } while (dst_pud++, src_pud++, addr = next, addr != end); 1294 return 0; 1295 } 1296 1297 static inline int 1298 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1299 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1300 unsigned long end) 1301 { 1302 struct mm_struct *dst_mm = dst_vma->vm_mm; 1303 p4d_t *src_p4d, *dst_p4d; 1304 unsigned long next; 1305 1306 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1307 if (!dst_p4d) 1308 return -ENOMEM; 1309 src_p4d = p4d_offset(src_pgd, addr); 1310 do { 1311 next = p4d_addr_end(addr, end); 1312 if (p4d_none_or_clear_bad(src_p4d)) 1313 continue; 1314 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1315 addr, next)) 1316 return -ENOMEM; 1317 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1318 return 0; 1319 } 1320 1321 /* 1322 * Return true if the vma needs to copy the pgtable during this fork(). Return 1323 * false when we can speed up fork() by allowing lazy page faults later until 1324 * when the child accesses the memory range. 1325 */ 1326 static bool 1327 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1328 { 1329 /* 1330 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1331 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1332 * contains uffd-wp protection information, that's something we can't 1333 * retrieve from page cache, and skip copying will lose those info. 1334 */ 1335 if (userfaultfd_wp(dst_vma)) 1336 return true; 1337 1338 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1339 return true; 1340 1341 if (src_vma->anon_vma) 1342 return true; 1343 1344 /* 1345 * Don't copy ptes where a page fault will fill them correctly. Fork 1346 * becomes much lighter when there are big shared or private readonly 1347 * mappings. The tradeoff is that copy_page_range is more efficient 1348 * than faulting. 1349 */ 1350 return false; 1351 } 1352 1353 int 1354 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1355 { 1356 pgd_t *src_pgd, *dst_pgd; 1357 unsigned long addr = src_vma->vm_start; 1358 unsigned long end = src_vma->vm_end; 1359 struct mm_struct *dst_mm = dst_vma->vm_mm; 1360 struct mm_struct *src_mm = src_vma->vm_mm; 1361 struct mmu_notifier_range range; 1362 unsigned long next; 1363 bool is_cow; 1364 int ret; 1365 1366 if (!vma_needs_copy(dst_vma, src_vma)) 1367 return 0; 1368 1369 if (is_vm_hugetlb_page(src_vma)) 1370 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1371 1372 /* 1373 * We need to invalidate the secondary MMU mappings only when 1374 * there could be a permission downgrade on the ptes of the 1375 * parent mm. And a permission downgrade will only happen if 1376 * is_cow_mapping() returns true. 1377 */ 1378 is_cow = is_cow_mapping(src_vma->vm_flags); 1379 1380 if (is_cow) { 1381 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1382 0, src_mm, addr, end); 1383 mmu_notifier_invalidate_range_start(&range); 1384 /* 1385 * Disabling preemption is not needed for the write side, as 1386 * the read side doesn't spin, but goes to the mmap_lock. 1387 * 1388 * Use the raw variant of the seqcount_t write API to avoid 1389 * lockdep complaining about preemptibility. 1390 */ 1391 vma_assert_write_locked(src_vma); 1392 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1393 } 1394 1395 ret = 0; 1396 dst_pgd = pgd_offset(dst_mm, addr); 1397 src_pgd = pgd_offset(src_mm, addr); 1398 do { 1399 next = pgd_addr_end(addr, end); 1400 if (pgd_none_or_clear_bad(src_pgd)) 1401 continue; 1402 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1403 addr, next))) { 1404 ret = -ENOMEM; 1405 break; 1406 } 1407 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1408 1409 if (is_cow) { 1410 raw_write_seqcount_end(&src_mm->write_protect_seq); 1411 mmu_notifier_invalidate_range_end(&range); 1412 } 1413 return ret; 1414 } 1415 1416 /* Whether we should zap all COWed (private) pages too */ 1417 static inline bool should_zap_cows(struct zap_details *details) 1418 { 1419 /* By default, zap all pages */ 1420 if (!details || details->reclaim_pt) 1421 return true; 1422 1423 /* Or, we zap COWed pages only if the caller wants to */ 1424 return details->even_cows; 1425 } 1426 1427 /* Decides whether we should zap this folio with the folio pointer specified */ 1428 static inline bool should_zap_folio(struct zap_details *details, 1429 struct folio *folio) 1430 { 1431 /* If we can make a decision without *folio.. */ 1432 if (should_zap_cows(details)) 1433 return true; 1434 1435 /* Otherwise we should only zap non-anon folios */ 1436 return !folio_test_anon(folio); 1437 } 1438 1439 static inline bool zap_drop_markers(struct zap_details *details) 1440 { 1441 if (!details) 1442 return false; 1443 1444 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1445 } 1446 1447 /* 1448 * This function makes sure that we'll replace the none pte with an uffd-wp 1449 * swap special pte marker when necessary. Must be with the pgtable lock held. 1450 * 1451 * Returns true if uffd-wp ptes was installed, false otherwise. 1452 */ 1453 static inline bool 1454 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1455 unsigned long addr, pte_t *pte, int nr, 1456 struct zap_details *details, pte_t pteval) 1457 { 1458 bool was_installed = false; 1459 1460 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1461 /* Zap on anonymous always means dropping everything */ 1462 if (vma_is_anonymous(vma)) 1463 return false; 1464 1465 if (zap_drop_markers(details)) 1466 return false; 1467 1468 for (;;) { 1469 /* the PFN in the PTE is irrelevant. */ 1470 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1471 was_installed = true; 1472 if (--nr == 0) 1473 break; 1474 pte++; 1475 addr += PAGE_SIZE; 1476 } 1477 #endif 1478 return was_installed; 1479 } 1480 1481 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1482 struct vm_area_struct *vma, struct folio *folio, 1483 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1484 unsigned long addr, struct zap_details *details, int *rss, 1485 bool *force_flush, bool *force_break, bool *any_skipped) 1486 { 1487 struct mm_struct *mm = tlb->mm; 1488 bool delay_rmap = false; 1489 1490 if (!folio_test_anon(folio)) { 1491 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1492 if (pte_dirty(ptent)) { 1493 folio_mark_dirty(folio); 1494 if (tlb_delay_rmap(tlb)) { 1495 delay_rmap = true; 1496 *force_flush = true; 1497 } 1498 } 1499 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1500 folio_mark_accessed(folio); 1501 rss[mm_counter(folio)] -= nr; 1502 } else { 1503 /* We don't need up-to-date accessed/dirty bits. */ 1504 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1505 rss[MM_ANONPAGES] -= nr; 1506 } 1507 /* Checking a single PTE in a batch is sufficient. */ 1508 arch_check_zapped_pte(vma, ptent); 1509 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1510 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1511 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1512 nr, details, ptent); 1513 1514 if (!delay_rmap) { 1515 folio_remove_rmap_ptes(folio, page, nr, vma); 1516 1517 if (unlikely(folio_mapcount(folio) < 0)) 1518 print_bad_pte(vma, addr, ptent, page); 1519 } 1520 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1521 *force_flush = true; 1522 *force_break = true; 1523 } 1524 } 1525 1526 /* 1527 * Zap or skip at least one present PTE, trying to batch-process subsequent 1528 * PTEs that map consecutive pages of the same folio. 1529 * 1530 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1531 */ 1532 static inline int zap_present_ptes(struct mmu_gather *tlb, 1533 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1534 unsigned int max_nr, unsigned long addr, 1535 struct zap_details *details, int *rss, bool *force_flush, 1536 bool *force_break, bool *any_skipped) 1537 { 1538 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1539 struct mm_struct *mm = tlb->mm; 1540 struct folio *folio; 1541 struct page *page; 1542 int nr; 1543 1544 page = vm_normal_page(vma, addr, ptent); 1545 if (!page) { 1546 /* We don't need up-to-date accessed/dirty bits. */ 1547 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1548 arch_check_zapped_pte(vma, ptent); 1549 tlb_remove_tlb_entry(tlb, pte, addr); 1550 if (userfaultfd_pte_wp(vma, ptent)) 1551 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1552 pte, 1, details, ptent); 1553 ksm_might_unmap_zero_page(mm, ptent); 1554 return 1; 1555 } 1556 1557 folio = page_folio(page); 1558 if (unlikely(!should_zap_folio(details, folio))) { 1559 *any_skipped = true; 1560 return 1; 1561 } 1562 1563 /* 1564 * Make sure that the common "small folio" case is as fast as possible 1565 * by keeping the batching logic separate. 1566 */ 1567 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1568 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1569 NULL, NULL, NULL); 1570 1571 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1572 addr, details, rss, force_flush, 1573 force_break, any_skipped); 1574 return nr; 1575 } 1576 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1577 details, rss, force_flush, force_break, any_skipped); 1578 return 1; 1579 } 1580 1581 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1582 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1583 unsigned int max_nr, unsigned long addr, 1584 struct zap_details *details, int *rss, bool *any_skipped) 1585 { 1586 swp_entry_t entry; 1587 int nr = 1; 1588 1589 *any_skipped = true; 1590 entry = pte_to_swp_entry(ptent); 1591 if (is_device_private_entry(entry) || 1592 is_device_exclusive_entry(entry)) { 1593 struct page *page = pfn_swap_entry_to_page(entry); 1594 struct folio *folio = page_folio(page); 1595 1596 if (unlikely(!should_zap_folio(details, folio))) 1597 return 1; 1598 /* 1599 * Both device private/exclusive mappings should only 1600 * work with anonymous page so far, so we don't need to 1601 * consider uffd-wp bit when zap. For more information, 1602 * see zap_install_uffd_wp_if_needed(). 1603 */ 1604 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1605 rss[mm_counter(folio)]--; 1606 folio_remove_rmap_pte(folio, page, vma); 1607 folio_put(folio); 1608 } else if (!non_swap_entry(entry)) { 1609 /* Genuine swap entries, hence a private anon pages */ 1610 if (!should_zap_cows(details)) 1611 return 1; 1612 1613 nr = swap_pte_batch(pte, max_nr, ptent); 1614 rss[MM_SWAPENTS] -= nr; 1615 free_swap_and_cache_nr(entry, nr); 1616 } else if (is_migration_entry(entry)) { 1617 struct folio *folio = pfn_swap_entry_folio(entry); 1618 1619 if (!should_zap_folio(details, folio)) 1620 return 1; 1621 rss[mm_counter(folio)]--; 1622 } else if (pte_marker_entry_uffd_wp(entry)) { 1623 /* 1624 * For anon: always drop the marker; for file: only 1625 * drop the marker if explicitly requested. 1626 */ 1627 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1628 return 1; 1629 } else if (is_guard_swp_entry(entry)) { 1630 /* 1631 * Ordinary zapping should not remove guard PTE 1632 * markers. Only do so if we should remove PTE markers 1633 * in general. 1634 */ 1635 if (!zap_drop_markers(details)) 1636 return 1; 1637 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1638 if (!should_zap_cows(details)) 1639 return 1; 1640 } else { 1641 /* We should have covered all the swap entry types */ 1642 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1643 WARN_ON_ONCE(1); 1644 } 1645 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1646 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1647 1648 return nr; 1649 } 1650 1651 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1652 struct vm_area_struct *vma, pte_t *pte, 1653 unsigned long addr, unsigned long end, 1654 struct zap_details *details, int *rss, 1655 bool *force_flush, bool *force_break, 1656 bool *any_skipped) 1657 { 1658 pte_t ptent = ptep_get(pte); 1659 int max_nr = (end - addr) / PAGE_SIZE; 1660 int nr = 0; 1661 1662 /* Skip all consecutive none ptes */ 1663 if (pte_none(ptent)) { 1664 for (nr = 1; nr < max_nr; nr++) { 1665 ptent = ptep_get(pte + nr); 1666 if (!pte_none(ptent)) 1667 break; 1668 } 1669 max_nr -= nr; 1670 if (!max_nr) 1671 return nr; 1672 pte += nr; 1673 addr += nr * PAGE_SIZE; 1674 } 1675 1676 if (pte_present(ptent)) 1677 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1678 details, rss, force_flush, force_break, 1679 any_skipped); 1680 else 1681 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1682 details, rss, any_skipped); 1683 1684 return nr; 1685 } 1686 1687 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1688 struct vm_area_struct *vma, pmd_t *pmd, 1689 unsigned long addr, unsigned long end, 1690 struct zap_details *details) 1691 { 1692 bool force_flush = false, force_break = false; 1693 struct mm_struct *mm = tlb->mm; 1694 int rss[NR_MM_COUNTERS]; 1695 spinlock_t *ptl; 1696 pte_t *start_pte; 1697 pte_t *pte; 1698 pmd_t pmdval; 1699 unsigned long start = addr; 1700 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1701 bool direct_reclaim = true; 1702 int nr; 1703 1704 retry: 1705 tlb_change_page_size(tlb, PAGE_SIZE); 1706 init_rss_vec(rss); 1707 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1708 if (!pte) 1709 return addr; 1710 1711 flush_tlb_batched_pending(mm); 1712 arch_enter_lazy_mmu_mode(); 1713 do { 1714 bool any_skipped = false; 1715 1716 if (need_resched()) { 1717 direct_reclaim = false; 1718 break; 1719 } 1720 1721 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1722 &force_flush, &force_break, &any_skipped); 1723 if (any_skipped) 1724 can_reclaim_pt = false; 1725 if (unlikely(force_break)) { 1726 addr += nr * PAGE_SIZE; 1727 direct_reclaim = false; 1728 break; 1729 } 1730 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1731 1732 /* 1733 * Fast path: try to hold the pmd lock and unmap the PTE page. 1734 * 1735 * If the pte lock was released midway (retry case), or if the attempt 1736 * to hold the pmd lock failed, then we need to recheck all pte entries 1737 * to ensure they are still none, thereby preventing the pte entries 1738 * from being repopulated by another thread. 1739 */ 1740 if (can_reclaim_pt && direct_reclaim && addr == end) 1741 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1742 1743 add_mm_rss_vec(mm, rss); 1744 arch_leave_lazy_mmu_mode(); 1745 1746 /* Do the actual TLB flush before dropping ptl */ 1747 if (force_flush) { 1748 tlb_flush_mmu_tlbonly(tlb); 1749 tlb_flush_rmaps(tlb, vma); 1750 } 1751 pte_unmap_unlock(start_pte, ptl); 1752 1753 /* 1754 * If we forced a TLB flush (either due to running out of 1755 * batch buffers or because we needed to flush dirty TLB 1756 * entries before releasing the ptl), free the batched 1757 * memory too. Come back again if we didn't do everything. 1758 */ 1759 if (force_flush) 1760 tlb_flush_mmu(tlb); 1761 1762 if (addr != end) { 1763 cond_resched(); 1764 force_flush = false; 1765 force_break = false; 1766 goto retry; 1767 } 1768 1769 if (can_reclaim_pt) { 1770 if (direct_reclaim) 1771 free_pte(mm, start, tlb, pmdval); 1772 else 1773 try_to_free_pte(mm, pmd, start, tlb); 1774 } 1775 1776 return addr; 1777 } 1778 1779 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1780 struct vm_area_struct *vma, pud_t *pud, 1781 unsigned long addr, unsigned long end, 1782 struct zap_details *details) 1783 { 1784 pmd_t *pmd; 1785 unsigned long next; 1786 1787 pmd = pmd_offset(pud, addr); 1788 do { 1789 next = pmd_addr_end(addr, end); 1790 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) { 1791 if (next - addr != HPAGE_PMD_SIZE) 1792 __split_huge_pmd(vma, pmd, addr, false); 1793 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1794 addr = next; 1795 continue; 1796 } 1797 /* fall through */ 1798 } else if (details && details->single_folio && 1799 folio_test_pmd_mappable(details->single_folio) && 1800 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1801 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1802 /* 1803 * Take and drop THP pmd lock so that we cannot return 1804 * prematurely, while zap_huge_pmd() has cleared *pmd, 1805 * but not yet decremented compound_mapcount(). 1806 */ 1807 spin_unlock(ptl); 1808 } 1809 if (pmd_none(*pmd)) { 1810 addr = next; 1811 continue; 1812 } 1813 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1814 if (addr != next) 1815 pmd--; 1816 } while (pmd++, cond_resched(), addr != end); 1817 1818 return addr; 1819 } 1820 1821 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1822 struct vm_area_struct *vma, p4d_t *p4d, 1823 unsigned long addr, unsigned long end, 1824 struct zap_details *details) 1825 { 1826 pud_t *pud; 1827 unsigned long next; 1828 1829 pud = pud_offset(p4d, addr); 1830 do { 1831 next = pud_addr_end(addr, end); 1832 if (pud_trans_huge(*pud)) { 1833 if (next - addr != HPAGE_PUD_SIZE) { 1834 mmap_assert_locked(tlb->mm); 1835 split_huge_pud(vma, pud, addr); 1836 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1837 goto next; 1838 /* fall through */ 1839 } 1840 if (pud_none_or_clear_bad(pud)) 1841 continue; 1842 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1843 next: 1844 cond_resched(); 1845 } while (pud++, addr = next, addr != end); 1846 1847 return addr; 1848 } 1849 1850 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1851 struct vm_area_struct *vma, pgd_t *pgd, 1852 unsigned long addr, unsigned long end, 1853 struct zap_details *details) 1854 { 1855 p4d_t *p4d; 1856 unsigned long next; 1857 1858 p4d = p4d_offset(pgd, addr); 1859 do { 1860 next = p4d_addr_end(addr, end); 1861 if (p4d_none_or_clear_bad(p4d)) 1862 continue; 1863 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1864 } while (p4d++, addr = next, addr != end); 1865 1866 return addr; 1867 } 1868 1869 void unmap_page_range(struct mmu_gather *tlb, 1870 struct vm_area_struct *vma, 1871 unsigned long addr, unsigned long end, 1872 struct zap_details *details) 1873 { 1874 pgd_t *pgd; 1875 unsigned long next; 1876 1877 BUG_ON(addr >= end); 1878 tlb_start_vma(tlb, vma); 1879 pgd = pgd_offset(vma->vm_mm, addr); 1880 do { 1881 next = pgd_addr_end(addr, end); 1882 if (pgd_none_or_clear_bad(pgd)) 1883 continue; 1884 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1885 } while (pgd++, addr = next, addr != end); 1886 tlb_end_vma(tlb, vma); 1887 } 1888 1889 1890 static void unmap_single_vma(struct mmu_gather *tlb, 1891 struct vm_area_struct *vma, unsigned long start_addr, 1892 unsigned long end_addr, 1893 struct zap_details *details, bool mm_wr_locked) 1894 { 1895 unsigned long start = max(vma->vm_start, start_addr); 1896 unsigned long end; 1897 1898 if (start >= vma->vm_end) 1899 return; 1900 end = min(vma->vm_end, end_addr); 1901 if (end <= vma->vm_start) 1902 return; 1903 1904 if (vma->vm_file) 1905 uprobe_munmap(vma, start, end); 1906 1907 if (start != end) { 1908 if (unlikely(is_vm_hugetlb_page(vma))) { 1909 /* 1910 * It is undesirable to test vma->vm_file as it 1911 * should be non-null for valid hugetlb area. 1912 * However, vm_file will be NULL in the error 1913 * cleanup path of mmap_region. When 1914 * hugetlbfs ->mmap method fails, 1915 * mmap_region() nullifies vma->vm_file 1916 * before calling this function to clean up. 1917 * Since no pte has actually been setup, it is 1918 * safe to do nothing in this case. 1919 */ 1920 if (vma->vm_file) { 1921 zap_flags_t zap_flags = details ? 1922 details->zap_flags : 0; 1923 __unmap_hugepage_range(tlb, vma, start, end, 1924 NULL, zap_flags); 1925 } 1926 } else 1927 unmap_page_range(tlb, vma, start, end, details); 1928 } 1929 } 1930 1931 /** 1932 * unmap_vmas - unmap a range of memory covered by a list of vma's 1933 * @tlb: address of the caller's struct mmu_gather 1934 * @mas: the maple state 1935 * @vma: the starting vma 1936 * @start_addr: virtual address at which to start unmapping 1937 * @end_addr: virtual address at which to end unmapping 1938 * @tree_end: The maximum index to check 1939 * @mm_wr_locked: lock flag 1940 * 1941 * Unmap all pages in the vma list. 1942 * 1943 * Only addresses between `start' and `end' will be unmapped. 1944 * 1945 * The VMA list must be sorted in ascending virtual address order. 1946 * 1947 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1948 * range after unmap_vmas() returns. So the only responsibility here is to 1949 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1950 * drops the lock and schedules. 1951 */ 1952 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1953 struct vm_area_struct *vma, unsigned long start_addr, 1954 unsigned long end_addr, unsigned long tree_end, 1955 bool mm_wr_locked) 1956 { 1957 struct mmu_notifier_range range; 1958 struct zap_details details = { 1959 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1960 /* Careful - we need to zap private pages too! */ 1961 .even_cows = true, 1962 }; 1963 1964 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1965 start_addr, end_addr); 1966 mmu_notifier_invalidate_range_start(&range); 1967 do { 1968 unsigned long start = start_addr; 1969 unsigned long end = end_addr; 1970 hugetlb_zap_begin(vma, &start, &end); 1971 unmap_single_vma(tlb, vma, start, end, &details, 1972 mm_wr_locked); 1973 hugetlb_zap_end(vma, &details); 1974 vma = mas_find(mas, tree_end - 1); 1975 } while (vma && likely(!xa_is_zero(vma))); 1976 mmu_notifier_invalidate_range_end(&range); 1977 } 1978 1979 /** 1980 * zap_page_range_single_batched - remove user pages in a given range 1981 * @tlb: pointer to the caller's struct mmu_gather 1982 * @vma: vm_area_struct holding the applicable pages 1983 * @address: starting address of pages to remove 1984 * @size: number of bytes to remove 1985 * @details: details of shared cache invalidation 1986 * 1987 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 1988 * hugetlb, @tlb is flushed and re-initialized by this function. 1989 */ 1990 void zap_page_range_single_batched(struct mmu_gather *tlb, 1991 struct vm_area_struct *vma, unsigned long address, 1992 unsigned long size, struct zap_details *details) 1993 { 1994 const unsigned long end = address + size; 1995 struct mmu_notifier_range range; 1996 1997 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 1998 1999 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2000 address, end); 2001 hugetlb_zap_begin(vma, &range.start, &range.end); 2002 update_hiwater_rss(vma->vm_mm); 2003 mmu_notifier_invalidate_range_start(&range); 2004 /* 2005 * unmap 'address-end' not 'range.start-range.end' as range 2006 * could have been expanded for hugetlb pmd sharing. 2007 */ 2008 unmap_single_vma(tlb, vma, address, end, details, false); 2009 mmu_notifier_invalidate_range_end(&range); 2010 if (is_vm_hugetlb_page(vma)) { 2011 /* 2012 * flush tlb and free resources before hugetlb_zap_end(), to 2013 * avoid concurrent page faults' allocation failure. 2014 */ 2015 tlb_finish_mmu(tlb); 2016 hugetlb_zap_end(vma, details); 2017 tlb_gather_mmu(tlb, vma->vm_mm); 2018 } 2019 } 2020 2021 /** 2022 * zap_page_range_single - remove user pages in a given range 2023 * @vma: vm_area_struct holding the applicable pages 2024 * @address: starting address of pages to zap 2025 * @size: number of bytes to zap 2026 * @details: details of shared cache invalidation 2027 * 2028 * The range must fit into one VMA. 2029 */ 2030 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2031 unsigned long size, struct zap_details *details) 2032 { 2033 struct mmu_gather tlb; 2034 2035 tlb_gather_mmu(&tlb, vma->vm_mm); 2036 zap_page_range_single_batched(&tlb, vma, address, size, details); 2037 tlb_finish_mmu(&tlb); 2038 } 2039 2040 /** 2041 * zap_vma_ptes - remove ptes mapping the vma 2042 * @vma: vm_area_struct holding ptes to be zapped 2043 * @address: starting address of pages to zap 2044 * @size: number of bytes to zap 2045 * 2046 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2047 * 2048 * The entire address range must be fully contained within the vma. 2049 * 2050 */ 2051 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2052 unsigned long size) 2053 { 2054 if (!range_in_vma(vma, address, address + size) || 2055 !(vma->vm_flags & VM_PFNMAP)) 2056 return; 2057 2058 zap_page_range_single(vma, address, size, NULL); 2059 } 2060 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2061 2062 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2063 { 2064 pgd_t *pgd; 2065 p4d_t *p4d; 2066 pud_t *pud; 2067 pmd_t *pmd; 2068 2069 pgd = pgd_offset(mm, addr); 2070 p4d = p4d_alloc(mm, pgd, addr); 2071 if (!p4d) 2072 return NULL; 2073 pud = pud_alloc(mm, p4d, addr); 2074 if (!pud) 2075 return NULL; 2076 pmd = pmd_alloc(mm, pud, addr); 2077 if (!pmd) 2078 return NULL; 2079 2080 VM_BUG_ON(pmd_trans_huge(*pmd)); 2081 return pmd; 2082 } 2083 2084 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2085 spinlock_t **ptl) 2086 { 2087 pmd_t *pmd = walk_to_pmd(mm, addr); 2088 2089 if (!pmd) 2090 return NULL; 2091 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2092 } 2093 2094 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2095 { 2096 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2097 /* 2098 * Whoever wants to forbid the zeropage after some zeropages 2099 * might already have been mapped has to scan the page tables and 2100 * bail out on any zeropages. Zeropages in COW mappings can 2101 * be unshared using FAULT_FLAG_UNSHARE faults. 2102 */ 2103 if (mm_forbids_zeropage(vma->vm_mm)) 2104 return false; 2105 /* zeropages in COW mappings are common and unproblematic. */ 2106 if (is_cow_mapping(vma->vm_flags)) 2107 return true; 2108 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2109 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2110 return true; 2111 /* 2112 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2113 * find the shared zeropage and longterm-pin it, which would 2114 * be problematic as soon as the zeropage gets replaced by a different 2115 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2116 * now differ to what GUP looked up. FSDAX is incompatible to 2117 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2118 * check_vma_flags). 2119 */ 2120 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2121 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2122 } 2123 2124 static int validate_page_before_insert(struct vm_area_struct *vma, 2125 struct page *page) 2126 { 2127 struct folio *folio = page_folio(page); 2128 2129 if (!folio_ref_count(folio)) 2130 return -EINVAL; 2131 if (unlikely(is_zero_folio(folio))) { 2132 if (!vm_mixed_zeropage_allowed(vma)) 2133 return -EINVAL; 2134 return 0; 2135 } 2136 if (folio_test_anon(folio) || folio_test_slab(folio) || 2137 page_has_type(page)) 2138 return -EINVAL; 2139 flush_dcache_folio(folio); 2140 return 0; 2141 } 2142 2143 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2144 unsigned long addr, struct page *page, 2145 pgprot_t prot, bool mkwrite) 2146 { 2147 struct folio *folio = page_folio(page); 2148 pte_t pteval = ptep_get(pte); 2149 2150 if (!pte_none(pteval)) { 2151 if (!mkwrite) 2152 return -EBUSY; 2153 2154 /* see insert_pfn(). */ 2155 if (pte_pfn(pteval) != page_to_pfn(page)) { 2156 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2157 return -EFAULT; 2158 } 2159 pteval = maybe_mkwrite(pteval, vma); 2160 pteval = pte_mkyoung(pteval); 2161 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2162 update_mmu_cache(vma, addr, pte); 2163 return 0; 2164 } 2165 2166 /* Ok, finally just insert the thing.. */ 2167 pteval = mk_pte(page, prot); 2168 if (unlikely(is_zero_folio(folio))) { 2169 pteval = pte_mkspecial(pteval); 2170 } else { 2171 folio_get(folio); 2172 pteval = mk_pte(page, prot); 2173 if (mkwrite) { 2174 pteval = pte_mkyoung(pteval); 2175 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2176 } 2177 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2178 folio_add_file_rmap_pte(folio, page, vma); 2179 } 2180 set_pte_at(vma->vm_mm, addr, pte, pteval); 2181 return 0; 2182 } 2183 2184 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2185 struct page *page, pgprot_t prot, bool mkwrite) 2186 { 2187 int retval; 2188 pte_t *pte; 2189 spinlock_t *ptl; 2190 2191 retval = validate_page_before_insert(vma, page); 2192 if (retval) 2193 goto out; 2194 retval = -ENOMEM; 2195 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2196 if (!pte) 2197 goto out; 2198 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2199 mkwrite); 2200 pte_unmap_unlock(pte, ptl); 2201 out: 2202 return retval; 2203 } 2204 2205 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2206 unsigned long addr, struct page *page, pgprot_t prot) 2207 { 2208 int err; 2209 2210 err = validate_page_before_insert(vma, page); 2211 if (err) 2212 return err; 2213 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2214 } 2215 2216 /* insert_pages() amortizes the cost of spinlock operations 2217 * when inserting pages in a loop. 2218 */ 2219 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2220 struct page **pages, unsigned long *num, pgprot_t prot) 2221 { 2222 pmd_t *pmd = NULL; 2223 pte_t *start_pte, *pte; 2224 spinlock_t *pte_lock; 2225 struct mm_struct *const mm = vma->vm_mm; 2226 unsigned long curr_page_idx = 0; 2227 unsigned long remaining_pages_total = *num; 2228 unsigned long pages_to_write_in_pmd; 2229 int ret; 2230 more: 2231 ret = -EFAULT; 2232 pmd = walk_to_pmd(mm, addr); 2233 if (!pmd) 2234 goto out; 2235 2236 pages_to_write_in_pmd = min_t(unsigned long, 2237 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2238 2239 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2240 ret = -ENOMEM; 2241 if (pte_alloc(mm, pmd)) 2242 goto out; 2243 2244 while (pages_to_write_in_pmd) { 2245 int pte_idx = 0; 2246 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2247 2248 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2249 if (!start_pte) { 2250 ret = -EFAULT; 2251 goto out; 2252 } 2253 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2254 int err = insert_page_in_batch_locked(vma, pte, 2255 addr, pages[curr_page_idx], prot); 2256 if (unlikely(err)) { 2257 pte_unmap_unlock(start_pte, pte_lock); 2258 ret = err; 2259 remaining_pages_total -= pte_idx; 2260 goto out; 2261 } 2262 addr += PAGE_SIZE; 2263 ++curr_page_idx; 2264 } 2265 pte_unmap_unlock(start_pte, pte_lock); 2266 pages_to_write_in_pmd -= batch_size; 2267 remaining_pages_total -= batch_size; 2268 } 2269 if (remaining_pages_total) 2270 goto more; 2271 ret = 0; 2272 out: 2273 *num = remaining_pages_total; 2274 return ret; 2275 } 2276 2277 /** 2278 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2279 * @vma: user vma to map to 2280 * @addr: target start user address of these pages 2281 * @pages: source kernel pages 2282 * @num: in: number of pages to map. out: number of pages that were *not* 2283 * mapped. (0 means all pages were successfully mapped). 2284 * 2285 * Preferred over vm_insert_page() when inserting multiple pages. 2286 * 2287 * In case of error, we may have mapped a subset of the provided 2288 * pages. It is the caller's responsibility to account for this case. 2289 * 2290 * The same restrictions apply as in vm_insert_page(). 2291 */ 2292 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2293 struct page **pages, unsigned long *num) 2294 { 2295 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2296 2297 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2298 return -EFAULT; 2299 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2300 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2301 BUG_ON(vma->vm_flags & VM_PFNMAP); 2302 vm_flags_set(vma, VM_MIXEDMAP); 2303 } 2304 /* Defer page refcount checking till we're about to map that page. */ 2305 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2306 } 2307 EXPORT_SYMBOL(vm_insert_pages); 2308 2309 /** 2310 * vm_insert_page - insert single page into user vma 2311 * @vma: user vma to map to 2312 * @addr: target user address of this page 2313 * @page: source kernel page 2314 * 2315 * This allows drivers to insert individual pages they've allocated 2316 * into a user vma. The zeropage is supported in some VMAs, 2317 * see vm_mixed_zeropage_allowed(). 2318 * 2319 * The page has to be a nice clean _individual_ kernel allocation. 2320 * If you allocate a compound page, you need to have marked it as 2321 * such (__GFP_COMP), or manually just split the page up yourself 2322 * (see split_page()). 2323 * 2324 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2325 * took an arbitrary page protection parameter. This doesn't allow 2326 * that. Your vma protection will have to be set up correctly, which 2327 * means that if you want a shared writable mapping, you'd better 2328 * ask for a shared writable mapping! 2329 * 2330 * The page does not need to be reserved. 2331 * 2332 * Usually this function is called from f_op->mmap() handler 2333 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2334 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2335 * function from other places, for example from page-fault handler. 2336 * 2337 * Return: %0 on success, negative error code otherwise. 2338 */ 2339 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2340 struct page *page) 2341 { 2342 if (addr < vma->vm_start || addr >= vma->vm_end) 2343 return -EFAULT; 2344 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2345 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2346 BUG_ON(vma->vm_flags & VM_PFNMAP); 2347 vm_flags_set(vma, VM_MIXEDMAP); 2348 } 2349 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2350 } 2351 EXPORT_SYMBOL(vm_insert_page); 2352 2353 /* 2354 * __vm_map_pages - maps range of kernel pages into user vma 2355 * @vma: user vma to map to 2356 * @pages: pointer to array of source kernel pages 2357 * @num: number of pages in page array 2358 * @offset: user's requested vm_pgoff 2359 * 2360 * This allows drivers to map range of kernel pages into a user vma. 2361 * The zeropage is supported in some VMAs, see 2362 * vm_mixed_zeropage_allowed(). 2363 * 2364 * Return: 0 on success and error code otherwise. 2365 */ 2366 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2367 unsigned long num, unsigned long offset) 2368 { 2369 unsigned long count = vma_pages(vma); 2370 unsigned long uaddr = vma->vm_start; 2371 int ret, i; 2372 2373 /* Fail if the user requested offset is beyond the end of the object */ 2374 if (offset >= num) 2375 return -ENXIO; 2376 2377 /* Fail if the user requested size exceeds available object size */ 2378 if (count > num - offset) 2379 return -ENXIO; 2380 2381 for (i = 0; i < count; i++) { 2382 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2383 if (ret < 0) 2384 return ret; 2385 uaddr += PAGE_SIZE; 2386 } 2387 2388 return 0; 2389 } 2390 2391 /** 2392 * vm_map_pages - maps range of kernel pages starts with non zero offset 2393 * @vma: user vma to map to 2394 * @pages: pointer to array of source kernel pages 2395 * @num: number of pages in page array 2396 * 2397 * Maps an object consisting of @num pages, catering for the user's 2398 * requested vm_pgoff 2399 * 2400 * If we fail to insert any page into the vma, the function will return 2401 * immediately leaving any previously inserted pages present. Callers 2402 * from the mmap handler may immediately return the error as their caller 2403 * will destroy the vma, removing any successfully inserted pages. Other 2404 * callers should make their own arrangements for calling unmap_region(). 2405 * 2406 * Context: Process context. Called by mmap handlers. 2407 * Return: 0 on success and error code otherwise. 2408 */ 2409 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2410 unsigned long num) 2411 { 2412 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2413 } 2414 EXPORT_SYMBOL(vm_map_pages); 2415 2416 /** 2417 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2418 * @vma: user vma to map to 2419 * @pages: pointer to array of source kernel pages 2420 * @num: number of pages in page array 2421 * 2422 * Similar to vm_map_pages(), except that it explicitly sets the offset 2423 * to 0. This function is intended for the drivers that did not consider 2424 * vm_pgoff. 2425 * 2426 * Context: Process context. Called by mmap handlers. 2427 * Return: 0 on success and error code otherwise. 2428 */ 2429 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2430 unsigned long num) 2431 { 2432 return __vm_map_pages(vma, pages, num, 0); 2433 } 2434 EXPORT_SYMBOL(vm_map_pages_zero); 2435 2436 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2437 unsigned long pfn, pgprot_t prot, bool mkwrite) 2438 { 2439 struct mm_struct *mm = vma->vm_mm; 2440 pte_t *pte, entry; 2441 spinlock_t *ptl; 2442 2443 pte = get_locked_pte(mm, addr, &ptl); 2444 if (!pte) 2445 return VM_FAULT_OOM; 2446 entry = ptep_get(pte); 2447 if (!pte_none(entry)) { 2448 if (mkwrite) { 2449 /* 2450 * For read faults on private mappings the PFN passed 2451 * in may not match the PFN we have mapped if the 2452 * mapped PFN is a writeable COW page. In the mkwrite 2453 * case we are creating a writable PTE for a shared 2454 * mapping and we expect the PFNs to match. If they 2455 * don't match, we are likely racing with block 2456 * allocation and mapping invalidation so just skip the 2457 * update. 2458 */ 2459 if (pte_pfn(entry) != pfn) { 2460 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2461 goto out_unlock; 2462 } 2463 entry = pte_mkyoung(entry); 2464 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2465 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2466 update_mmu_cache(vma, addr, pte); 2467 } 2468 goto out_unlock; 2469 } 2470 2471 /* Ok, finally just insert the thing.. */ 2472 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2473 2474 if (mkwrite) { 2475 entry = pte_mkyoung(entry); 2476 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2477 } 2478 2479 set_pte_at(mm, addr, pte, entry); 2480 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2481 2482 out_unlock: 2483 pte_unmap_unlock(pte, ptl); 2484 return VM_FAULT_NOPAGE; 2485 } 2486 2487 /** 2488 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2489 * @vma: user vma to map to 2490 * @addr: target user address of this page 2491 * @pfn: source kernel pfn 2492 * @pgprot: pgprot flags for the inserted page 2493 * 2494 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2495 * to override pgprot on a per-page basis. 2496 * 2497 * This only makes sense for IO mappings, and it makes no sense for 2498 * COW mappings. In general, using multiple vmas is preferable; 2499 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2500 * impractical. 2501 * 2502 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2503 * caching- and encryption bits different than those of @vma->vm_page_prot, 2504 * because the caching- or encryption mode may not be known at mmap() time. 2505 * 2506 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2507 * to set caching and encryption bits for those vmas (except for COW pages). 2508 * This is ensured by core vm only modifying these page table entries using 2509 * functions that don't touch caching- or encryption bits, using pte_modify() 2510 * if needed. (See for example mprotect()). 2511 * 2512 * Also when new page-table entries are created, this is only done using the 2513 * fault() callback, and never using the value of vma->vm_page_prot, 2514 * except for page-table entries that point to anonymous pages as the result 2515 * of COW. 2516 * 2517 * Context: Process context. May allocate using %GFP_KERNEL. 2518 * Return: vm_fault_t value. 2519 */ 2520 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2521 unsigned long pfn, pgprot_t pgprot) 2522 { 2523 /* 2524 * Technically, architectures with pte_special can avoid all these 2525 * restrictions (same for remap_pfn_range). However we would like 2526 * consistency in testing and feature parity among all, so we should 2527 * try to keep these invariants in place for everybody. 2528 */ 2529 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2530 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2531 (VM_PFNMAP|VM_MIXEDMAP)); 2532 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2533 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2534 2535 if (addr < vma->vm_start || addr >= vma->vm_end) 2536 return VM_FAULT_SIGBUS; 2537 2538 if (!pfn_modify_allowed(pfn, pgprot)) 2539 return VM_FAULT_SIGBUS; 2540 2541 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2542 2543 return insert_pfn(vma, addr, pfn, pgprot, false); 2544 } 2545 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2546 2547 /** 2548 * vmf_insert_pfn - insert single pfn into user vma 2549 * @vma: user vma to map to 2550 * @addr: target user address of this page 2551 * @pfn: source kernel pfn 2552 * 2553 * Similar to vm_insert_page, this allows drivers to insert individual pages 2554 * they've allocated into a user vma. Same comments apply. 2555 * 2556 * This function should only be called from a vm_ops->fault handler, and 2557 * in that case the handler should return the result of this function. 2558 * 2559 * vma cannot be a COW mapping. 2560 * 2561 * As this is called only for pages that do not currently exist, we 2562 * do not need to flush old virtual caches or the TLB. 2563 * 2564 * Context: Process context. May allocate using %GFP_KERNEL. 2565 * Return: vm_fault_t value. 2566 */ 2567 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2568 unsigned long pfn) 2569 { 2570 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2571 } 2572 EXPORT_SYMBOL(vmf_insert_pfn); 2573 2574 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2575 bool mkwrite) 2576 { 2577 if (unlikely(is_zero_pfn(pfn)) && 2578 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2579 return false; 2580 /* these checks mirror the abort conditions in vm_normal_page */ 2581 if (vma->vm_flags & VM_MIXEDMAP) 2582 return true; 2583 if (is_zero_pfn(pfn)) 2584 return true; 2585 return false; 2586 } 2587 2588 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2589 unsigned long addr, unsigned long pfn, bool mkwrite) 2590 { 2591 pgprot_t pgprot = vma->vm_page_prot; 2592 int err; 2593 2594 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2595 return VM_FAULT_SIGBUS; 2596 2597 if (addr < vma->vm_start || addr >= vma->vm_end) 2598 return VM_FAULT_SIGBUS; 2599 2600 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2601 2602 if (!pfn_modify_allowed(pfn, pgprot)) 2603 return VM_FAULT_SIGBUS; 2604 2605 /* 2606 * If we don't have pte special, then we have to use the pfn_valid() 2607 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2608 * refcount the page if pfn_valid is true (hence insert_page rather 2609 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2610 * without pte special, it would there be refcounted as a normal page. 2611 */ 2612 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2613 struct page *page; 2614 2615 /* 2616 * At this point we are committed to insert_page() 2617 * regardless of whether the caller specified flags that 2618 * result in pfn_t_has_page() == false. 2619 */ 2620 page = pfn_to_page(pfn); 2621 err = insert_page(vma, addr, page, pgprot, mkwrite); 2622 } else { 2623 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2624 } 2625 2626 if (err == -ENOMEM) 2627 return VM_FAULT_OOM; 2628 if (err < 0 && err != -EBUSY) 2629 return VM_FAULT_SIGBUS; 2630 2631 return VM_FAULT_NOPAGE; 2632 } 2633 2634 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2635 bool write) 2636 { 2637 pgprot_t pgprot = vmf->vma->vm_page_prot; 2638 unsigned long addr = vmf->address; 2639 int err; 2640 2641 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2642 return VM_FAULT_SIGBUS; 2643 2644 err = insert_page(vmf->vma, addr, page, pgprot, write); 2645 if (err == -ENOMEM) 2646 return VM_FAULT_OOM; 2647 if (err < 0 && err != -EBUSY) 2648 return VM_FAULT_SIGBUS; 2649 2650 return VM_FAULT_NOPAGE; 2651 } 2652 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2653 2654 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2655 unsigned long pfn) 2656 { 2657 return __vm_insert_mixed(vma, addr, pfn, false); 2658 } 2659 EXPORT_SYMBOL(vmf_insert_mixed); 2660 2661 /* 2662 * If the insertion of PTE failed because someone else already added a 2663 * different entry in the mean time, we treat that as success as we assume 2664 * the same entry was actually inserted. 2665 */ 2666 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2667 unsigned long addr, unsigned long pfn) 2668 { 2669 return __vm_insert_mixed(vma, addr, pfn, true); 2670 } 2671 2672 /* 2673 * maps a range of physical memory into the requested pages. the old 2674 * mappings are removed. any references to nonexistent pages results 2675 * in null mappings (currently treated as "copy-on-access") 2676 */ 2677 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2678 unsigned long addr, unsigned long end, 2679 unsigned long pfn, pgprot_t prot) 2680 { 2681 pte_t *pte, *mapped_pte; 2682 spinlock_t *ptl; 2683 int err = 0; 2684 2685 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2686 if (!pte) 2687 return -ENOMEM; 2688 arch_enter_lazy_mmu_mode(); 2689 do { 2690 BUG_ON(!pte_none(ptep_get(pte))); 2691 if (!pfn_modify_allowed(pfn, prot)) { 2692 err = -EACCES; 2693 break; 2694 } 2695 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2696 pfn++; 2697 } while (pte++, addr += PAGE_SIZE, addr != end); 2698 arch_leave_lazy_mmu_mode(); 2699 pte_unmap_unlock(mapped_pte, ptl); 2700 return err; 2701 } 2702 2703 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2704 unsigned long addr, unsigned long end, 2705 unsigned long pfn, pgprot_t prot) 2706 { 2707 pmd_t *pmd; 2708 unsigned long next; 2709 int err; 2710 2711 pfn -= addr >> PAGE_SHIFT; 2712 pmd = pmd_alloc(mm, pud, addr); 2713 if (!pmd) 2714 return -ENOMEM; 2715 VM_BUG_ON(pmd_trans_huge(*pmd)); 2716 do { 2717 next = pmd_addr_end(addr, end); 2718 err = remap_pte_range(mm, pmd, addr, next, 2719 pfn + (addr >> PAGE_SHIFT), prot); 2720 if (err) 2721 return err; 2722 } while (pmd++, addr = next, addr != end); 2723 return 0; 2724 } 2725 2726 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2727 unsigned long addr, unsigned long end, 2728 unsigned long pfn, pgprot_t prot) 2729 { 2730 pud_t *pud; 2731 unsigned long next; 2732 int err; 2733 2734 pfn -= addr >> PAGE_SHIFT; 2735 pud = pud_alloc(mm, p4d, addr); 2736 if (!pud) 2737 return -ENOMEM; 2738 do { 2739 next = pud_addr_end(addr, end); 2740 err = remap_pmd_range(mm, pud, addr, next, 2741 pfn + (addr >> PAGE_SHIFT), prot); 2742 if (err) 2743 return err; 2744 } while (pud++, addr = next, addr != end); 2745 return 0; 2746 } 2747 2748 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2749 unsigned long addr, unsigned long end, 2750 unsigned long pfn, pgprot_t prot) 2751 { 2752 p4d_t *p4d; 2753 unsigned long next; 2754 int err; 2755 2756 pfn -= addr >> PAGE_SHIFT; 2757 p4d = p4d_alloc(mm, pgd, addr); 2758 if (!p4d) 2759 return -ENOMEM; 2760 do { 2761 next = p4d_addr_end(addr, end); 2762 err = remap_pud_range(mm, p4d, addr, next, 2763 pfn + (addr >> PAGE_SHIFT), prot); 2764 if (err) 2765 return err; 2766 } while (p4d++, addr = next, addr != end); 2767 return 0; 2768 } 2769 2770 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2771 unsigned long pfn, unsigned long size, pgprot_t prot) 2772 { 2773 pgd_t *pgd; 2774 unsigned long next; 2775 unsigned long end = addr + PAGE_ALIGN(size); 2776 struct mm_struct *mm = vma->vm_mm; 2777 int err; 2778 2779 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2780 return -EINVAL; 2781 2782 /* 2783 * Physically remapped pages are special. Tell the 2784 * rest of the world about it: 2785 * VM_IO tells people not to look at these pages 2786 * (accesses can have side effects). 2787 * VM_PFNMAP tells the core MM that the base pages are just 2788 * raw PFN mappings, and do not have a "struct page" associated 2789 * with them. 2790 * VM_DONTEXPAND 2791 * Disable vma merging and expanding with mremap(). 2792 * VM_DONTDUMP 2793 * Omit vma from core dump, even when VM_IO turned off. 2794 * 2795 * There's a horrible special case to handle copy-on-write 2796 * behaviour that some programs depend on. We mark the "original" 2797 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2798 * See vm_normal_page() for details. 2799 */ 2800 if (is_cow_mapping(vma->vm_flags)) { 2801 if (addr != vma->vm_start || end != vma->vm_end) 2802 return -EINVAL; 2803 vma->vm_pgoff = pfn; 2804 } 2805 2806 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2807 2808 BUG_ON(addr >= end); 2809 pfn -= addr >> PAGE_SHIFT; 2810 pgd = pgd_offset(mm, addr); 2811 flush_cache_range(vma, addr, end); 2812 do { 2813 next = pgd_addr_end(addr, end); 2814 err = remap_p4d_range(mm, pgd, addr, next, 2815 pfn + (addr >> PAGE_SHIFT), prot); 2816 if (err) 2817 return err; 2818 } while (pgd++, addr = next, addr != end); 2819 2820 return 0; 2821 } 2822 2823 /* 2824 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2825 * must have pre-validated the caching bits of the pgprot_t. 2826 */ 2827 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2828 unsigned long pfn, unsigned long size, pgprot_t prot) 2829 { 2830 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2831 2832 if (!error) 2833 return 0; 2834 2835 /* 2836 * A partial pfn range mapping is dangerous: it does not 2837 * maintain page reference counts, and callers may free 2838 * pages due to the error. So zap it early. 2839 */ 2840 zap_page_range_single(vma, addr, size, NULL); 2841 return error; 2842 } 2843 2844 #ifdef __HAVE_PFNMAP_TRACKING 2845 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2846 unsigned long size, pgprot_t *prot) 2847 { 2848 struct pfnmap_track_ctx *ctx; 2849 2850 if (pfnmap_track(pfn, size, prot)) 2851 return ERR_PTR(-EINVAL); 2852 2853 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2854 if (unlikely(!ctx)) { 2855 pfnmap_untrack(pfn, size); 2856 return ERR_PTR(-ENOMEM); 2857 } 2858 2859 ctx->pfn = pfn; 2860 ctx->size = size; 2861 kref_init(&ctx->kref); 2862 return ctx; 2863 } 2864 2865 void pfnmap_track_ctx_release(struct kref *ref) 2866 { 2867 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 2868 2869 pfnmap_untrack(ctx->pfn, ctx->size); 2870 kfree(ctx); 2871 } 2872 #endif /* __HAVE_PFNMAP_TRACKING */ 2873 2874 /** 2875 * remap_pfn_range - remap kernel memory to userspace 2876 * @vma: user vma to map to 2877 * @addr: target page aligned user address to start at 2878 * @pfn: page frame number of kernel physical memory address 2879 * @size: size of mapping area 2880 * @prot: page protection flags for this mapping 2881 * 2882 * Note: this is only safe if the mm semaphore is held when called. 2883 * 2884 * Return: %0 on success, negative error code otherwise. 2885 */ 2886 #ifdef __HAVE_PFNMAP_TRACKING 2887 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2888 unsigned long pfn, unsigned long size, pgprot_t prot) 2889 { 2890 struct pfnmap_track_ctx *ctx = NULL; 2891 int err; 2892 2893 size = PAGE_ALIGN(size); 2894 2895 /* 2896 * If we cover the full VMA, we'll perform actual tracking, and 2897 * remember to untrack when the last reference to our tracking 2898 * context from a VMA goes away. We'll keep tracking the whole pfn 2899 * range even during VMA splits and partial unmapping. 2900 * 2901 * If we only cover parts of the VMA, we'll only setup the cachemode 2902 * in the pgprot for the pfn range. 2903 */ 2904 if (addr == vma->vm_start && addr + size == vma->vm_end) { 2905 if (vma->pfnmap_track_ctx) 2906 return -EINVAL; 2907 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 2908 if (IS_ERR(ctx)) 2909 return PTR_ERR(ctx); 2910 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 2911 return -EINVAL; 2912 } 2913 2914 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2915 if (ctx) { 2916 if (err) 2917 kref_put(&ctx->kref, pfnmap_track_ctx_release); 2918 else 2919 vma->pfnmap_track_ctx = ctx; 2920 } 2921 return err; 2922 } 2923 2924 #else 2925 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2926 unsigned long pfn, unsigned long size, pgprot_t prot) 2927 { 2928 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2929 } 2930 #endif 2931 EXPORT_SYMBOL(remap_pfn_range); 2932 2933 /** 2934 * vm_iomap_memory - remap memory to userspace 2935 * @vma: user vma to map to 2936 * @start: start of the physical memory to be mapped 2937 * @len: size of area 2938 * 2939 * This is a simplified io_remap_pfn_range() for common driver use. The 2940 * driver just needs to give us the physical memory range to be mapped, 2941 * we'll figure out the rest from the vma information. 2942 * 2943 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2944 * whatever write-combining details or similar. 2945 * 2946 * Return: %0 on success, negative error code otherwise. 2947 */ 2948 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2949 { 2950 unsigned long vm_len, pfn, pages; 2951 2952 /* Check that the physical memory area passed in looks valid */ 2953 if (start + len < start) 2954 return -EINVAL; 2955 /* 2956 * You *really* shouldn't map things that aren't page-aligned, 2957 * but we've historically allowed it because IO memory might 2958 * just have smaller alignment. 2959 */ 2960 len += start & ~PAGE_MASK; 2961 pfn = start >> PAGE_SHIFT; 2962 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2963 if (pfn + pages < pfn) 2964 return -EINVAL; 2965 2966 /* We start the mapping 'vm_pgoff' pages into the area */ 2967 if (vma->vm_pgoff > pages) 2968 return -EINVAL; 2969 pfn += vma->vm_pgoff; 2970 pages -= vma->vm_pgoff; 2971 2972 /* Can we fit all of the mapping? */ 2973 vm_len = vma->vm_end - vma->vm_start; 2974 if (vm_len >> PAGE_SHIFT > pages) 2975 return -EINVAL; 2976 2977 /* Ok, let it rip */ 2978 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2979 } 2980 EXPORT_SYMBOL(vm_iomap_memory); 2981 2982 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2983 unsigned long addr, unsigned long end, 2984 pte_fn_t fn, void *data, bool create, 2985 pgtbl_mod_mask *mask) 2986 { 2987 pte_t *pte, *mapped_pte; 2988 int err = 0; 2989 spinlock_t *ptl; 2990 2991 if (create) { 2992 mapped_pte = pte = (mm == &init_mm) ? 2993 pte_alloc_kernel_track(pmd, addr, mask) : 2994 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2995 if (!pte) 2996 return -ENOMEM; 2997 } else { 2998 mapped_pte = pte = (mm == &init_mm) ? 2999 pte_offset_kernel(pmd, addr) : 3000 pte_offset_map_lock(mm, pmd, addr, &ptl); 3001 if (!pte) 3002 return -EINVAL; 3003 } 3004 3005 arch_enter_lazy_mmu_mode(); 3006 3007 if (fn) { 3008 do { 3009 if (create || !pte_none(ptep_get(pte))) { 3010 err = fn(pte, addr, data); 3011 if (err) 3012 break; 3013 } 3014 } while (pte++, addr += PAGE_SIZE, addr != end); 3015 } 3016 *mask |= PGTBL_PTE_MODIFIED; 3017 3018 arch_leave_lazy_mmu_mode(); 3019 3020 if (mm != &init_mm) 3021 pte_unmap_unlock(mapped_pte, ptl); 3022 return err; 3023 } 3024 3025 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3026 unsigned long addr, unsigned long end, 3027 pte_fn_t fn, void *data, bool create, 3028 pgtbl_mod_mask *mask) 3029 { 3030 pmd_t *pmd; 3031 unsigned long next; 3032 int err = 0; 3033 3034 BUG_ON(pud_leaf(*pud)); 3035 3036 if (create) { 3037 pmd = pmd_alloc_track(mm, pud, addr, mask); 3038 if (!pmd) 3039 return -ENOMEM; 3040 } else { 3041 pmd = pmd_offset(pud, addr); 3042 } 3043 do { 3044 next = pmd_addr_end(addr, end); 3045 if (pmd_none(*pmd) && !create) 3046 continue; 3047 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3048 return -EINVAL; 3049 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3050 if (!create) 3051 continue; 3052 pmd_clear_bad(pmd); 3053 } 3054 err = apply_to_pte_range(mm, pmd, addr, next, 3055 fn, data, create, mask); 3056 if (err) 3057 break; 3058 } while (pmd++, addr = next, addr != end); 3059 3060 return err; 3061 } 3062 3063 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3064 unsigned long addr, unsigned long end, 3065 pte_fn_t fn, void *data, bool create, 3066 pgtbl_mod_mask *mask) 3067 { 3068 pud_t *pud; 3069 unsigned long next; 3070 int err = 0; 3071 3072 if (create) { 3073 pud = pud_alloc_track(mm, p4d, addr, mask); 3074 if (!pud) 3075 return -ENOMEM; 3076 } else { 3077 pud = pud_offset(p4d, addr); 3078 } 3079 do { 3080 next = pud_addr_end(addr, end); 3081 if (pud_none(*pud) && !create) 3082 continue; 3083 if (WARN_ON_ONCE(pud_leaf(*pud))) 3084 return -EINVAL; 3085 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3086 if (!create) 3087 continue; 3088 pud_clear_bad(pud); 3089 } 3090 err = apply_to_pmd_range(mm, pud, addr, next, 3091 fn, data, create, mask); 3092 if (err) 3093 break; 3094 } while (pud++, addr = next, addr != end); 3095 3096 return err; 3097 } 3098 3099 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3100 unsigned long addr, unsigned long end, 3101 pte_fn_t fn, void *data, bool create, 3102 pgtbl_mod_mask *mask) 3103 { 3104 p4d_t *p4d; 3105 unsigned long next; 3106 int err = 0; 3107 3108 if (create) { 3109 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3110 if (!p4d) 3111 return -ENOMEM; 3112 } else { 3113 p4d = p4d_offset(pgd, addr); 3114 } 3115 do { 3116 next = p4d_addr_end(addr, end); 3117 if (p4d_none(*p4d) && !create) 3118 continue; 3119 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3120 return -EINVAL; 3121 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3122 if (!create) 3123 continue; 3124 p4d_clear_bad(p4d); 3125 } 3126 err = apply_to_pud_range(mm, p4d, addr, next, 3127 fn, data, create, mask); 3128 if (err) 3129 break; 3130 } while (p4d++, addr = next, addr != end); 3131 3132 return err; 3133 } 3134 3135 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3136 unsigned long size, pte_fn_t fn, 3137 void *data, bool create) 3138 { 3139 pgd_t *pgd; 3140 unsigned long start = addr, next; 3141 unsigned long end = addr + size; 3142 pgtbl_mod_mask mask = 0; 3143 int err = 0; 3144 3145 if (WARN_ON(addr >= end)) 3146 return -EINVAL; 3147 3148 pgd = pgd_offset(mm, addr); 3149 do { 3150 next = pgd_addr_end(addr, end); 3151 if (pgd_none(*pgd) && !create) 3152 continue; 3153 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3154 err = -EINVAL; 3155 break; 3156 } 3157 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3158 if (!create) 3159 continue; 3160 pgd_clear_bad(pgd); 3161 } 3162 err = apply_to_p4d_range(mm, pgd, addr, next, 3163 fn, data, create, &mask); 3164 if (err) 3165 break; 3166 } while (pgd++, addr = next, addr != end); 3167 3168 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3169 arch_sync_kernel_mappings(start, start + size); 3170 3171 return err; 3172 } 3173 3174 /* 3175 * Scan a region of virtual memory, filling in page tables as necessary 3176 * and calling a provided function on each leaf page table. 3177 */ 3178 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3179 unsigned long size, pte_fn_t fn, void *data) 3180 { 3181 return __apply_to_page_range(mm, addr, size, fn, data, true); 3182 } 3183 EXPORT_SYMBOL_GPL(apply_to_page_range); 3184 3185 /* 3186 * Scan a region of virtual memory, calling a provided function on 3187 * each leaf page table where it exists. 3188 * 3189 * Unlike apply_to_page_range, this does _not_ fill in page tables 3190 * where they are absent. 3191 */ 3192 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3193 unsigned long size, pte_fn_t fn, void *data) 3194 { 3195 return __apply_to_page_range(mm, addr, size, fn, data, false); 3196 } 3197 3198 /* 3199 * handle_pte_fault chooses page fault handler according to an entry which was 3200 * read non-atomically. Before making any commitment, on those architectures 3201 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3202 * parts, do_swap_page must check under lock before unmapping the pte and 3203 * proceeding (but do_wp_page is only called after already making such a check; 3204 * and do_anonymous_page can safely check later on). 3205 */ 3206 static inline int pte_unmap_same(struct vm_fault *vmf) 3207 { 3208 int same = 1; 3209 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3210 if (sizeof(pte_t) > sizeof(unsigned long)) { 3211 spin_lock(vmf->ptl); 3212 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3213 spin_unlock(vmf->ptl); 3214 } 3215 #endif 3216 pte_unmap(vmf->pte); 3217 vmf->pte = NULL; 3218 return same; 3219 } 3220 3221 /* 3222 * Return: 3223 * 0: copied succeeded 3224 * -EHWPOISON: copy failed due to hwpoison in source page 3225 * -EAGAIN: copied failed (some other reason) 3226 */ 3227 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3228 struct vm_fault *vmf) 3229 { 3230 int ret; 3231 void *kaddr; 3232 void __user *uaddr; 3233 struct vm_area_struct *vma = vmf->vma; 3234 struct mm_struct *mm = vma->vm_mm; 3235 unsigned long addr = vmf->address; 3236 3237 if (likely(src)) { 3238 if (copy_mc_user_highpage(dst, src, addr, vma)) 3239 return -EHWPOISON; 3240 return 0; 3241 } 3242 3243 /* 3244 * If the source page was a PFN mapping, we don't have 3245 * a "struct page" for it. We do a best-effort copy by 3246 * just copying from the original user address. If that 3247 * fails, we just zero-fill it. Live with it. 3248 */ 3249 kaddr = kmap_local_page(dst); 3250 pagefault_disable(); 3251 uaddr = (void __user *)(addr & PAGE_MASK); 3252 3253 /* 3254 * On architectures with software "accessed" bits, we would 3255 * take a double page fault, so mark it accessed here. 3256 */ 3257 vmf->pte = NULL; 3258 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3259 pte_t entry; 3260 3261 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3262 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3263 /* 3264 * Other thread has already handled the fault 3265 * and update local tlb only 3266 */ 3267 if (vmf->pte) 3268 update_mmu_tlb(vma, addr, vmf->pte); 3269 ret = -EAGAIN; 3270 goto pte_unlock; 3271 } 3272 3273 entry = pte_mkyoung(vmf->orig_pte); 3274 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3275 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3276 } 3277 3278 /* 3279 * This really shouldn't fail, because the page is there 3280 * in the page tables. But it might just be unreadable, 3281 * in which case we just give up and fill the result with 3282 * zeroes. 3283 */ 3284 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3285 if (vmf->pte) 3286 goto warn; 3287 3288 /* Re-validate under PTL if the page is still mapped */ 3289 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3290 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3291 /* The PTE changed under us, update local tlb */ 3292 if (vmf->pte) 3293 update_mmu_tlb(vma, addr, vmf->pte); 3294 ret = -EAGAIN; 3295 goto pte_unlock; 3296 } 3297 3298 /* 3299 * The same page can be mapped back since last copy attempt. 3300 * Try to copy again under PTL. 3301 */ 3302 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3303 /* 3304 * Give a warn in case there can be some obscure 3305 * use-case 3306 */ 3307 warn: 3308 WARN_ON_ONCE(1); 3309 clear_page(kaddr); 3310 } 3311 } 3312 3313 ret = 0; 3314 3315 pte_unlock: 3316 if (vmf->pte) 3317 pte_unmap_unlock(vmf->pte, vmf->ptl); 3318 pagefault_enable(); 3319 kunmap_local(kaddr); 3320 flush_dcache_page(dst); 3321 3322 return ret; 3323 } 3324 3325 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3326 { 3327 struct file *vm_file = vma->vm_file; 3328 3329 if (vm_file) 3330 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3331 3332 /* 3333 * Special mappings (e.g. VDSO) do not have any file so fake 3334 * a default GFP_KERNEL for them. 3335 */ 3336 return GFP_KERNEL; 3337 } 3338 3339 /* 3340 * Notify the address space that the page is about to become writable so that 3341 * it can prohibit this or wait for the page to get into an appropriate state. 3342 * 3343 * We do this without the lock held, so that it can sleep if it needs to. 3344 */ 3345 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3346 { 3347 vm_fault_t ret; 3348 unsigned int old_flags = vmf->flags; 3349 3350 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3351 3352 if (vmf->vma->vm_file && 3353 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3354 return VM_FAULT_SIGBUS; 3355 3356 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3357 /* Restore original flags so that caller is not surprised */ 3358 vmf->flags = old_flags; 3359 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3360 return ret; 3361 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3362 folio_lock(folio); 3363 if (!folio->mapping) { 3364 folio_unlock(folio); 3365 return 0; /* retry */ 3366 } 3367 ret |= VM_FAULT_LOCKED; 3368 } else 3369 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3370 return ret; 3371 } 3372 3373 /* 3374 * Handle dirtying of a page in shared file mapping on a write fault. 3375 * 3376 * The function expects the page to be locked and unlocks it. 3377 */ 3378 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3379 { 3380 struct vm_area_struct *vma = vmf->vma; 3381 struct address_space *mapping; 3382 struct folio *folio = page_folio(vmf->page); 3383 bool dirtied; 3384 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3385 3386 dirtied = folio_mark_dirty(folio); 3387 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3388 /* 3389 * Take a local copy of the address_space - folio.mapping may be zeroed 3390 * by truncate after folio_unlock(). The address_space itself remains 3391 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3392 * release semantics to prevent the compiler from undoing this copying. 3393 */ 3394 mapping = folio_raw_mapping(folio); 3395 folio_unlock(folio); 3396 3397 if (!page_mkwrite) 3398 file_update_time(vma->vm_file); 3399 3400 /* 3401 * Throttle page dirtying rate down to writeback speed. 3402 * 3403 * mapping may be NULL here because some device drivers do not 3404 * set page.mapping but still dirty their pages 3405 * 3406 * Drop the mmap_lock before waiting on IO, if we can. The file 3407 * is pinning the mapping, as per above. 3408 */ 3409 if ((dirtied || page_mkwrite) && mapping) { 3410 struct file *fpin; 3411 3412 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3413 balance_dirty_pages_ratelimited(mapping); 3414 if (fpin) { 3415 fput(fpin); 3416 return VM_FAULT_COMPLETED; 3417 } 3418 } 3419 3420 return 0; 3421 } 3422 3423 /* 3424 * Handle write page faults for pages that can be reused in the current vma 3425 * 3426 * This can happen either due to the mapping being with the VM_SHARED flag, 3427 * or due to us being the last reference standing to the page. In either 3428 * case, all we need to do here is to mark the page as writable and update 3429 * any related book-keeping. 3430 */ 3431 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3432 __releases(vmf->ptl) 3433 { 3434 struct vm_area_struct *vma = vmf->vma; 3435 pte_t entry; 3436 3437 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3438 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3439 3440 if (folio) { 3441 VM_BUG_ON(folio_test_anon(folio) && 3442 !PageAnonExclusive(vmf->page)); 3443 /* 3444 * Clear the folio's cpupid information as the existing 3445 * information potentially belongs to a now completely 3446 * unrelated process. 3447 */ 3448 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3449 } 3450 3451 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3452 entry = pte_mkyoung(vmf->orig_pte); 3453 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3454 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3455 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3456 pte_unmap_unlock(vmf->pte, vmf->ptl); 3457 count_vm_event(PGREUSE); 3458 } 3459 3460 /* 3461 * We could add a bitflag somewhere, but for now, we know that all 3462 * vm_ops that have a ->map_pages have been audited and don't need 3463 * the mmap_lock to be held. 3464 */ 3465 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3466 { 3467 struct vm_area_struct *vma = vmf->vma; 3468 3469 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3470 return 0; 3471 vma_end_read(vma); 3472 return VM_FAULT_RETRY; 3473 } 3474 3475 /** 3476 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3477 * @vmf: The vm_fault descriptor passed from the fault handler. 3478 * 3479 * When preparing to insert an anonymous page into a VMA from a 3480 * fault handler, call this function rather than anon_vma_prepare(). 3481 * If this vma does not already have an associated anon_vma and we are 3482 * only protected by the per-VMA lock, the caller must retry with the 3483 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3484 * determine if this VMA can share its anon_vma, and that's not safe to 3485 * do with only the per-VMA lock held for this VMA. 3486 * 3487 * Return: 0 if fault handling can proceed. Any other value should be 3488 * returned to the caller. 3489 */ 3490 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3491 { 3492 struct vm_area_struct *vma = vmf->vma; 3493 vm_fault_t ret = 0; 3494 3495 if (likely(vma->anon_vma)) 3496 return 0; 3497 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3498 if (!mmap_read_trylock(vma->vm_mm)) 3499 return VM_FAULT_RETRY; 3500 } 3501 if (__anon_vma_prepare(vma)) 3502 ret = VM_FAULT_OOM; 3503 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3504 mmap_read_unlock(vma->vm_mm); 3505 return ret; 3506 } 3507 3508 /* 3509 * Handle the case of a page which we actually need to copy to a new page, 3510 * either due to COW or unsharing. 3511 * 3512 * Called with mmap_lock locked and the old page referenced, but 3513 * without the ptl held. 3514 * 3515 * High level logic flow: 3516 * 3517 * - Allocate a page, copy the content of the old page to the new one. 3518 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3519 * - Take the PTL. If the pte changed, bail out and release the allocated page 3520 * - If the pte is still the way we remember it, update the page table and all 3521 * relevant references. This includes dropping the reference the page-table 3522 * held to the old page, as well as updating the rmap. 3523 * - In any case, unlock the PTL and drop the reference we took to the old page. 3524 */ 3525 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3526 { 3527 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3528 struct vm_area_struct *vma = vmf->vma; 3529 struct mm_struct *mm = vma->vm_mm; 3530 struct folio *old_folio = NULL; 3531 struct folio *new_folio = NULL; 3532 pte_t entry; 3533 int page_copied = 0; 3534 struct mmu_notifier_range range; 3535 vm_fault_t ret; 3536 bool pfn_is_zero; 3537 3538 delayacct_wpcopy_start(); 3539 3540 if (vmf->page) 3541 old_folio = page_folio(vmf->page); 3542 ret = vmf_anon_prepare(vmf); 3543 if (unlikely(ret)) 3544 goto out; 3545 3546 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3547 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3548 if (!new_folio) 3549 goto oom; 3550 3551 if (!pfn_is_zero) { 3552 int err; 3553 3554 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3555 if (err) { 3556 /* 3557 * COW failed, if the fault was solved by other, 3558 * it's fine. If not, userspace would re-fault on 3559 * the same address and we will handle the fault 3560 * from the second attempt. 3561 * The -EHWPOISON case will not be retried. 3562 */ 3563 folio_put(new_folio); 3564 if (old_folio) 3565 folio_put(old_folio); 3566 3567 delayacct_wpcopy_end(); 3568 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3569 } 3570 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3571 } 3572 3573 __folio_mark_uptodate(new_folio); 3574 3575 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3576 vmf->address & PAGE_MASK, 3577 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3578 mmu_notifier_invalidate_range_start(&range); 3579 3580 /* 3581 * Re-check the pte - we dropped the lock 3582 */ 3583 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3584 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3585 if (old_folio) { 3586 if (!folio_test_anon(old_folio)) { 3587 dec_mm_counter(mm, mm_counter_file(old_folio)); 3588 inc_mm_counter(mm, MM_ANONPAGES); 3589 } 3590 } else { 3591 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3592 inc_mm_counter(mm, MM_ANONPAGES); 3593 } 3594 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3595 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3596 entry = pte_sw_mkyoung(entry); 3597 if (unlikely(unshare)) { 3598 if (pte_soft_dirty(vmf->orig_pte)) 3599 entry = pte_mksoft_dirty(entry); 3600 if (pte_uffd_wp(vmf->orig_pte)) 3601 entry = pte_mkuffd_wp(entry); 3602 } else { 3603 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3604 } 3605 3606 /* 3607 * Clear the pte entry and flush it first, before updating the 3608 * pte with the new entry, to keep TLBs on different CPUs in 3609 * sync. This code used to set the new PTE then flush TLBs, but 3610 * that left a window where the new PTE could be loaded into 3611 * some TLBs while the old PTE remains in others. 3612 */ 3613 ptep_clear_flush(vma, vmf->address, vmf->pte); 3614 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3615 folio_add_lru_vma(new_folio, vma); 3616 BUG_ON(unshare && pte_write(entry)); 3617 set_pte_at(mm, vmf->address, vmf->pte, entry); 3618 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3619 if (old_folio) { 3620 /* 3621 * Only after switching the pte to the new page may 3622 * we remove the mapcount here. Otherwise another 3623 * process may come and find the rmap count decremented 3624 * before the pte is switched to the new page, and 3625 * "reuse" the old page writing into it while our pte 3626 * here still points into it and can be read by other 3627 * threads. 3628 * 3629 * The critical issue is to order this 3630 * folio_remove_rmap_pte() with the ptp_clear_flush 3631 * above. Those stores are ordered by (if nothing else,) 3632 * the barrier present in the atomic_add_negative 3633 * in folio_remove_rmap_pte(); 3634 * 3635 * Then the TLB flush in ptep_clear_flush ensures that 3636 * no process can access the old page before the 3637 * decremented mapcount is visible. And the old page 3638 * cannot be reused until after the decremented 3639 * mapcount is visible. So transitively, TLBs to 3640 * old page will be flushed before it can be reused. 3641 */ 3642 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3643 } 3644 3645 /* Free the old page.. */ 3646 new_folio = old_folio; 3647 page_copied = 1; 3648 pte_unmap_unlock(vmf->pte, vmf->ptl); 3649 } else if (vmf->pte) { 3650 update_mmu_tlb(vma, vmf->address, vmf->pte); 3651 pte_unmap_unlock(vmf->pte, vmf->ptl); 3652 } 3653 3654 mmu_notifier_invalidate_range_end(&range); 3655 3656 if (new_folio) 3657 folio_put(new_folio); 3658 if (old_folio) { 3659 if (page_copied) 3660 free_swap_cache(old_folio); 3661 folio_put(old_folio); 3662 } 3663 3664 delayacct_wpcopy_end(); 3665 return 0; 3666 oom: 3667 ret = VM_FAULT_OOM; 3668 out: 3669 if (old_folio) 3670 folio_put(old_folio); 3671 3672 delayacct_wpcopy_end(); 3673 return ret; 3674 } 3675 3676 /** 3677 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3678 * writeable once the page is prepared 3679 * 3680 * @vmf: structure describing the fault 3681 * @folio: the folio of vmf->page 3682 * 3683 * This function handles all that is needed to finish a write page fault in a 3684 * shared mapping due to PTE being read-only once the mapped page is prepared. 3685 * It handles locking of PTE and modifying it. 3686 * 3687 * The function expects the page to be locked or other protection against 3688 * concurrent faults / writeback (such as DAX radix tree locks). 3689 * 3690 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3691 * we acquired PTE lock. 3692 */ 3693 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3694 { 3695 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3696 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3697 &vmf->ptl); 3698 if (!vmf->pte) 3699 return VM_FAULT_NOPAGE; 3700 /* 3701 * We might have raced with another page fault while we released the 3702 * pte_offset_map_lock. 3703 */ 3704 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3705 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3706 pte_unmap_unlock(vmf->pte, vmf->ptl); 3707 return VM_FAULT_NOPAGE; 3708 } 3709 wp_page_reuse(vmf, folio); 3710 return 0; 3711 } 3712 3713 /* 3714 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3715 * mapping 3716 */ 3717 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3718 { 3719 struct vm_area_struct *vma = vmf->vma; 3720 3721 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3722 vm_fault_t ret; 3723 3724 pte_unmap_unlock(vmf->pte, vmf->ptl); 3725 ret = vmf_can_call_fault(vmf); 3726 if (ret) 3727 return ret; 3728 3729 vmf->flags |= FAULT_FLAG_MKWRITE; 3730 ret = vma->vm_ops->pfn_mkwrite(vmf); 3731 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3732 return ret; 3733 return finish_mkwrite_fault(vmf, NULL); 3734 } 3735 wp_page_reuse(vmf, NULL); 3736 return 0; 3737 } 3738 3739 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3740 __releases(vmf->ptl) 3741 { 3742 struct vm_area_struct *vma = vmf->vma; 3743 vm_fault_t ret = 0; 3744 3745 folio_get(folio); 3746 3747 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3748 vm_fault_t tmp; 3749 3750 pte_unmap_unlock(vmf->pte, vmf->ptl); 3751 tmp = vmf_can_call_fault(vmf); 3752 if (tmp) { 3753 folio_put(folio); 3754 return tmp; 3755 } 3756 3757 tmp = do_page_mkwrite(vmf, folio); 3758 if (unlikely(!tmp || (tmp & 3759 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3760 folio_put(folio); 3761 return tmp; 3762 } 3763 tmp = finish_mkwrite_fault(vmf, folio); 3764 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3765 folio_unlock(folio); 3766 folio_put(folio); 3767 return tmp; 3768 } 3769 } else { 3770 wp_page_reuse(vmf, folio); 3771 folio_lock(folio); 3772 } 3773 ret |= fault_dirty_shared_page(vmf); 3774 folio_put(folio); 3775 3776 return ret; 3777 } 3778 3779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3780 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3781 struct vm_area_struct *vma) 3782 { 3783 bool exclusive = false; 3784 3785 /* Let's just free up a large folio if only a single page is mapped. */ 3786 if (folio_large_mapcount(folio) <= 1) 3787 return false; 3788 3789 /* 3790 * The assumption for anonymous folios is that each page can only get 3791 * mapped once into each MM. The only exception are KSM folios, which 3792 * are always small. 3793 * 3794 * Each taken mapcount must be paired with exactly one taken reference, 3795 * whereby the refcount must be incremented before the mapcount when 3796 * mapping a page, and the refcount must be decremented after the 3797 * mapcount when unmapping a page. 3798 * 3799 * If all folio references are from mappings, and all mappings are in 3800 * the page tables of this MM, then this folio is exclusive to this MM. 3801 */ 3802 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3803 return false; 3804 3805 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3806 3807 if (unlikely(folio_test_swapcache(folio))) { 3808 /* 3809 * Note: freeing up the swapcache will fail if some PTEs are 3810 * still swap entries. 3811 */ 3812 if (!folio_trylock(folio)) 3813 return false; 3814 folio_free_swap(folio); 3815 folio_unlock(folio); 3816 } 3817 3818 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3819 return false; 3820 3821 /* Stabilize the mapcount vs. refcount and recheck. */ 3822 folio_lock_large_mapcount(folio); 3823 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3824 3825 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3826 goto unlock; 3827 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3828 goto unlock; 3829 3830 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3831 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3832 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3833 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3834 3835 /* 3836 * Do we need the folio lock? Likely not. If there would have been 3837 * references from page migration/swapout, we would have detected 3838 * an additional folio reference and never ended up here. 3839 */ 3840 exclusive = true; 3841 unlock: 3842 folio_unlock_large_mapcount(folio); 3843 return exclusive; 3844 } 3845 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3846 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3847 struct vm_area_struct *vma) 3848 { 3849 BUILD_BUG(); 3850 } 3851 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3852 3853 static bool wp_can_reuse_anon_folio(struct folio *folio, 3854 struct vm_area_struct *vma) 3855 { 3856 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3857 return __wp_can_reuse_large_anon_folio(folio, vma); 3858 3859 /* 3860 * We have to verify under folio lock: these early checks are 3861 * just an optimization to avoid locking the folio and freeing 3862 * the swapcache if there is little hope that we can reuse. 3863 * 3864 * KSM doesn't necessarily raise the folio refcount. 3865 */ 3866 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3867 return false; 3868 if (!folio_test_lru(folio)) 3869 /* 3870 * We cannot easily detect+handle references from 3871 * remote LRU caches or references to LRU folios. 3872 */ 3873 lru_add_drain(); 3874 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3875 return false; 3876 if (!folio_trylock(folio)) 3877 return false; 3878 if (folio_test_swapcache(folio)) 3879 folio_free_swap(folio); 3880 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3881 folio_unlock(folio); 3882 return false; 3883 } 3884 /* 3885 * Ok, we've got the only folio reference from our mapping 3886 * and the folio is locked, it's dark out, and we're wearing 3887 * sunglasses. Hit it. 3888 */ 3889 folio_move_anon_rmap(folio, vma); 3890 folio_unlock(folio); 3891 return true; 3892 } 3893 3894 /* 3895 * This routine handles present pages, when 3896 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3897 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3898 * (FAULT_FLAG_UNSHARE) 3899 * 3900 * It is done by copying the page to a new address and decrementing the 3901 * shared-page counter for the old page. 3902 * 3903 * Note that this routine assumes that the protection checks have been 3904 * done by the caller (the low-level page fault routine in most cases). 3905 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3906 * done any necessary COW. 3907 * 3908 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3909 * though the page will change only once the write actually happens. This 3910 * avoids a few races, and potentially makes it more efficient. 3911 * 3912 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3913 * but allow concurrent faults), with pte both mapped and locked. 3914 * We return with mmap_lock still held, but pte unmapped and unlocked. 3915 */ 3916 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3917 __releases(vmf->ptl) 3918 { 3919 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3920 struct vm_area_struct *vma = vmf->vma; 3921 struct folio *folio = NULL; 3922 pte_t pte; 3923 3924 if (likely(!unshare)) { 3925 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3926 if (!userfaultfd_wp_async(vma)) { 3927 pte_unmap_unlock(vmf->pte, vmf->ptl); 3928 return handle_userfault(vmf, VM_UFFD_WP); 3929 } 3930 3931 /* 3932 * Nothing needed (cache flush, TLB invalidations, 3933 * etc.) because we're only removing the uffd-wp bit, 3934 * which is completely invisible to the user. 3935 */ 3936 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3937 3938 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3939 /* 3940 * Update this to be prepared for following up CoW 3941 * handling 3942 */ 3943 vmf->orig_pte = pte; 3944 } 3945 3946 /* 3947 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3948 * is flushed in this case before copying. 3949 */ 3950 if (unlikely(userfaultfd_wp(vmf->vma) && 3951 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3952 flush_tlb_page(vmf->vma, vmf->address); 3953 } 3954 3955 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3956 3957 if (vmf->page) 3958 folio = page_folio(vmf->page); 3959 3960 /* 3961 * Shared mapping: we are guaranteed to have VM_WRITE and 3962 * FAULT_FLAG_WRITE set at this point. 3963 */ 3964 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3965 /* 3966 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3967 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 3968 * 3969 * We should not cow pages in a shared writeable mapping. 3970 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3971 */ 3972 if (!vmf->page || is_fsdax_page(vmf->page)) { 3973 vmf->page = NULL; 3974 return wp_pfn_shared(vmf); 3975 } 3976 return wp_page_shared(vmf, folio); 3977 } 3978 3979 /* 3980 * Private mapping: create an exclusive anonymous page copy if reuse 3981 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3982 * 3983 * If we encounter a page that is marked exclusive, we must reuse 3984 * the page without further checks. 3985 */ 3986 if (folio && folio_test_anon(folio) && 3987 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3988 if (!PageAnonExclusive(vmf->page)) 3989 SetPageAnonExclusive(vmf->page); 3990 if (unlikely(unshare)) { 3991 pte_unmap_unlock(vmf->pte, vmf->ptl); 3992 return 0; 3993 } 3994 wp_page_reuse(vmf, folio); 3995 return 0; 3996 } 3997 /* 3998 * Ok, we need to copy. Oh, well.. 3999 */ 4000 if (folio) 4001 folio_get(folio); 4002 4003 pte_unmap_unlock(vmf->pte, vmf->ptl); 4004 #ifdef CONFIG_KSM 4005 if (folio && folio_test_ksm(folio)) 4006 count_vm_event(COW_KSM); 4007 #endif 4008 return wp_page_copy(vmf); 4009 } 4010 4011 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4012 unsigned long start_addr, unsigned long end_addr, 4013 struct zap_details *details) 4014 { 4015 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4016 } 4017 4018 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4019 pgoff_t first_index, 4020 pgoff_t last_index, 4021 struct zap_details *details) 4022 { 4023 struct vm_area_struct *vma; 4024 pgoff_t vba, vea, zba, zea; 4025 4026 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4027 vba = vma->vm_pgoff; 4028 vea = vba + vma_pages(vma) - 1; 4029 zba = max(first_index, vba); 4030 zea = min(last_index, vea); 4031 4032 unmap_mapping_range_vma(vma, 4033 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4034 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4035 details); 4036 } 4037 } 4038 4039 /** 4040 * unmap_mapping_folio() - Unmap single folio from processes. 4041 * @folio: The locked folio to be unmapped. 4042 * 4043 * Unmap this folio from any userspace process which still has it mmaped. 4044 * Typically, for efficiency, the range of nearby pages has already been 4045 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4046 * truncation or invalidation holds the lock on a folio, it may find that 4047 * the page has been remapped again: and then uses unmap_mapping_folio() 4048 * to unmap it finally. 4049 */ 4050 void unmap_mapping_folio(struct folio *folio) 4051 { 4052 struct address_space *mapping = folio->mapping; 4053 struct zap_details details = { }; 4054 pgoff_t first_index; 4055 pgoff_t last_index; 4056 4057 VM_BUG_ON(!folio_test_locked(folio)); 4058 4059 first_index = folio->index; 4060 last_index = folio_next_index(folio) - 1; 4061 4062 details.even_cows = false; 4063 details.single_folio = folio; 4064 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4065 4066 i_mmap_lock_read(mapping); 4067 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4068 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4069 last_index, &details); 4070 i_mmap_unlock_read(mapping); 4071 } 4072 4073 /** 4074 * unmap_mapping_pages() - Unmap pages from processes. 4075 * @mapping: The address space containing pages to be unmapped. 4076 * @start: Index of first page to be unmapped. 4077 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4078 * @even_cows: Whether to unmap even private COWed pages. 4079 * 4080 * Unmap the pages in this address space from any userspace process which 4081 * has them mmaped. Generally, you want to remove COWed pages as well when 4082 * a file is being truncated, but not when invalidating pages from the page 4083 * cache. 4084 */ 4085 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4086 pgoff_t nr, bool even_cows) 4087 { 4088 struct zap_details details = { }; 4089 pgoff_t first_index = start; 4090 pgoff_t last_index = start + nr - 1; 4091 4092 details.even_cows = even_cows; 4093 if (last_index < first_index) 4094 last_index = ULONG_MAX; 4095 4096 i_mmap_lock_read(mapping); 4097 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4098 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4099 last_index, &details); 4100 i_mmap_unlock_read(mapping); 4101 } 4102 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4103 4104 /** 4105 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4106 * address_space corresponding to the specified byte range in the underlying 4107 * file. 4108 * 4109 * @mapping: the address space containing mmaps to be unmapped. 4110 * @holebegin: byte in first page to unmap, relative to the start of 4111 * the underlying file. This will be rounded down to a PAGE_SIZE 4112 * boundary. Note that this is different from truncate_pagecache(), which 4113 * must keep the partial page. In contrast, we must get rid of 4114 * partial pages. 4115 * @holelen: size of prospective hole in bytes. This will be rounded 4116 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4117 * end of the file. 4118 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4119 * but 0 when invalidating pagecache, don't throw away private data. 4120 */ 4121 void unmap_mapping_range(struct address_space *mapping, 4122 loff_t const holebegin, loff_t const holelen, int even_cows) 4123 { 4124 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4125 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4126 4127 /* Check for overflow. */ 4128 if (sizeof(holelen) > sizeof(hlen)) { 4129 long long holeend = 4130 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4131 if (holeend & ~(long long)ULONG_MAX) 4132 hlen = ULONG_MAX - hba + 1; 4133 } 4134 4135 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4136 } 4137 EXPORT_SYMBOL(unmap_mapping_range); 4138 4139 /* 4140 * Restore a potential device exclusive pte to a working pte entry 4141 */ 4142 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4143 { 4144 struct folio *folio = page_folio(vmf->page); 4145 struct vm_area_struct *vma = vmf->vma; 4146 struct mmu_notifier_range range; 4147 vm_fault_t ret; 4148 4149 /* 4150 * We need a reference to lock the folio because we don't hold 4151 * the PTL so a racing thread can remove the device-exclusive 4152 * entry and unmap it. If the folio is free the entry must 4153 * have been removed already. If it happens to have already 4154 * been re-allocated after being freed all we do is lock and 4155 * unlock it. 4156 */ 4157 if (!folio_try_get(folio)) 4158 return 0; 4159 4160 ret = folio_lock_or_retry(folio, vmf); 4161 if (ret) { 4162 folio_put(folio); 4163 return ret; 4164 } 4165 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4166 vma->vm_mm, vmf->address & PAGE_MASK, 4167 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4168 mmu_notifier_invalidate_range_start(&range); 4169 4170 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4171 &vmf->ptl); 4172 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4173 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4174 vmf->pte, vmf->orig_pte); 4175 4176 if (vmf->pte) 4177 pte_unmap_unlock(vmf->pte, vmf->ptl); 4178 folio_unlock(folio); 4179 folio_put(folio); 4180 4181 mmu_notifier_invalidate_range_end(&range); 4182 return 0; 4183 } 4184 4185 static inline bool should_try_to_free_swap(struct folio *folio, 4186 struct vm_area_struct *vma, 4187 unsigned int fault_flags) 4188 { 4189 if (!folio_test_swapcache(folio)) 4190 return false; 4191 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4192 folio_test_mlocked(folio)) 4193 return true; 4194 /* 4195 * If we want to map a page that's in the swapcache writable, we 4196 * have to detect via the refcount if we're really the exclusive 4197 * user. Try freeing the swapcache to get rid of the swapcache 4198 * reference only in case it's likely that we'll be the exlusive user. 4199 */ 4200 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4201 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4202 } 4203 4204 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4205 { 4206 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4207 vmf->address, &vmf->ptl); 4208 if (!vmf->pte) 4209 return 0; 4210 /* 4211 * Be careful so that we will only recover a special uffd-wp pte into a 4212 * none pte. Otherwise it means the pte could have changed, so retry. 4213 * 4214 * This should also cover the case where e.g. the pte changed 4215 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4216 * So is_pte_marker() check is not enough to safely drop the pte. 4217 */ 4218 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4219 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4220 pte_unmap_unlock(vmf->pte, vmf->ptl); 4221 return 0; 4222 } 4223 4224 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4225 { 4226 if (vma_is_anonymous(vmf->vma)) 4227 return do_anonymous_page(vmf); 4228 else 4229 return do_fault(vmf); 4230 } 4231 4232 /* 4233 * This is actually a page-missing access, but with uffd-wp special pte 4234 * installed. It means this pte was wr-protected before being unmapped. 4235 */ 4236 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4237 { 4238 /* 4239 * Just in case there're leftover special ptes even after the region 4240 * got unregistered - we can simply clear them. 4241 */ 4242 if (unlikely(!userfaultfd_wp(vmf->vma))) 4243 return pte_marker_clear(vmf); 4244 4245 return do_pte_missing(vmf); 4246 } 4247 4248 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4249 { 4250 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4251 unsigned long marker = pte_marker_get(entry); 4252 4253 /* 4254 * PTE markers should never be empty. If anything weird happened, 4255 * the best thing to do is to kill the process along with its mm. 4256 */ 4257 if (WARN_ON_ONCE(!marker)) 4258 return VM_FAULT_SIGBUS; 4259 4260 /* Higher priority than uffd-wp when data corrupted */ 4261 if (marker & PTE_MARKER_POISONED) 4262 return VM_FAULT_HWPOISON; 4263 4264 /* Hitting a guard page is always a fatal condition. */ 4265 if (marker & PTE_MARKER_GUARD) 4266 return VM_FAULT_SIGSEGV; 4267 4268 if (pte_marker_entry_uffd_wp(entry)) 4269 return pte_marker_handle_uffd_wp(vmf); 4270 4271 /* This is an unknown pte marker */ 4272 return VM_FAULT_SIGBUS; 4273 } 4274 4275 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4276 { 4277 struct vm_area_struct *vma = vmf->vma; 4278 struct folio *folio; 4279 swp_entry_t entry; 4280 4281 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4282 if (!folio) 4283 return NULL; 4284 4285 entry = pte_to_swp_entry(vmf->orig_pte); 4286 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4287 GFP_KERNEL, entry)) { 4288 folio_put(folio); 4289 return NULL; 4290 } 4291 4292 return folio; 4293 } 4294 4295 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4296 /* 4297 * Check if the PTEs within a range are contiguous swap entries 4298 * and have consistent swapcache, zeromap. 4299 */ 4300 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4301 { 4302 unsigned long addr; 4303 swp_entry_t entry; 4304 int idx; 4305 pte_t pte; 4306 4307 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4308 idx = (vmf->address - addr) / PAGE_SIZE; 4309 pte = ptep_get(ptep); 4310 4311 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4312 return false; 4313 entry = pte_to_swp_entry(pte); 4314 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4315 return false; 4316 4317 /* 4318 * swap_read_folio() can't handle the case a large folio is hybridly 4319 * from different backends. And they are likely corner cases. Similar 4320 * things might be added once zswap support large folios. 4321 */ 4322 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4323 return false; 4324 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4325 return false; 4326 4327 return true; 4328 } 4329 4330 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4331 unsigned long addr, 4332 unsigned long orders) 4333 { 4334 int order, nr; 4335 4336 order = highest_order(orders); 4337 4338 /* 4339 * To swap in a THP with nr pages, we require that its first swap_offset 4340 * is aligned with that number, as it was when the THP was swapped out. 4341 * This helps filter out most invalid entries. 4342 */ 4343 while (orders) { 4344 nr = 1 << order; 4345 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4346 break; 4347 order = next_order(&orders, order); 4348 } 4349 4350 return orders; 4351 } 4352 4353 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4354 { 4355 struct vm_area_struct *vma = vmf->vma; 4356 unsigned long orders; 4357 struct folio *folio; 4358 unsigned long addr; 4359 swp_entry_t entry; 4360 spinlock_t *ptl; 4361 pte_t *pte; 4362 gfp_t gfp; 4363 int order; 4364 4365 /* 4366 * If uffd is active for the vma we need per-page fault fidelity to 4367 * maintain the uffd semantics. 4368 */ 4369 if (unlikely(userfaultfd_armed(vma))) 4370 goto fallback; 4371 4372 /* 4373 * A large swapped out folio could be partially or fully in zswap. We 4374 * lack handling for such cases, so fallback to swapping in order-0 4375 * folio. 4376 */ 4377 if (!zswap_never_enabled()) 4378 goto fallback; 4379 4380 entry = pte_to_swp_entry(vmf->orig_pte); 4381 /* 4382 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4383 * and suitable for swapping THP. 4384 */ 4385 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4386 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4387 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4388 orders = thp_swap_suitable_orders(swp_offset(entry), 4389 vmf->address, orders); 4390 4391 if (!orders) 4392 goto fallback; 4393 4394 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4395 vmf->address & PMD_MASK, &ptl); 4396 if (unlikely(!pte)) 4397 goto fallback; 4398 4399 /* 4400 * For do_swap_page, find the highest order where the aligned range is 4401 * completely swap entries with contiguous swap offsets. 4402 */ 4403 order = highest_order(orders); 4404 while (orders) { 4405 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4406 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4407 break; 4408 order = next_order(&orders, order); 4409 } 4410 4411 pte_unmap_unlock(pte, ptl); 4412 4413 /* Try allocating the highest of the remaining orders. */ 4414 gfp = vma_thp_gfp_mask(vma); 4415 while (orders) { 4416 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4417 folio = vma_alloc_folio(gfp, order, vma, addr); 4418 if (folio) { 4419 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4420 gfp, entry)) 4421 return folio; 4422 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4423 folio_put(folio); 4424 } 4425 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4426 order = next_order(&orders, order); 4427 } 4428 4429 fallback: 4430 return __alloc_swap_folio(vmf); 4431 } 4432 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4433 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4434 { 4435 return __alloc_swap_folio(vmf); 4436 } 4437 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4438 4439 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4440 4441 /* 4442 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4443 * but allow concurrent faults), and pte mapped but not yet locked. 4444 * We return with pte unmapped and unlocked. 4445 * 4446 * We return with the mmap_lock locked or unlocked in the same cases 4447 * as does filemap_fault(). 4448 */ 4449 vm_fault_t do_swap_page(struct vm_fault *vmf) 4450 { 4451 struct vm_area_struct *vma = vmf->vma; 4452 struct folio *swapcache, *folio = NULL; 4453 DECLARE_WAITQUEUE(wait, current); 4454 struct page *page; 4455 struct swap_info_struct *si = NULL; 4456 rmap_t rmap_flags = RMAP_NONE; 4457 bool need_clear_cache = false; 4458 bool exclusive = false; 4459 swp_entry_t entry; 4460 pte_t pte; 4461 vm_fault_t ret = 0; 4462 void *shadow = NULL; 4463 int nr_pages; 4464 unsigned long page_idx; 4465 unsigned long address; 4466 pte_t *ptep; 4467 4468 if (!pte_unmap_same(vmf)) 4469 goto out; 4470 4471 entry = pte_to_swp_entry(vmf->orig_pte); 4472 if (unlikely(non_swap_entry(entry))) { 4473 if (is_migration_entry(entry)) { 4474 migration_entry_wait(vma->vm_mm, vmf->pmd, 4475 vmf->address); 4476 } else if (is_device_exclusive_entry(entry)) { 4477 vmf->page = pfn_swap_entry_to_page(entry); 4478 ret = remove_device_exclusive_entry(vmf); 4479 } else if (is_device_private_entry(entry)) { 4480 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4481 /* 4482 * migrate_to_ram is not yet ready to operate 4483 * under VMA lock. 4484 */ 4485 vma_end_read(vma); 4486 ret = VM_FAULT_RETRY; 4487 goto out; 4488 } 4489 4490 vmf->page = pfn_swap_entry_to_page(entry); 4491 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4492 vmf->address, &vmf->ptl); 4493 if (unlikely(!vmf->pte || 4494 !pte_same(ptep_get(vmf->pte), 4495 vmf->orig_pte))) 4496 goto unlock; 4497 4498 /* 4499 * Get a page reference while we know the page can't be 4500 * freed. 4501 */ 4502 if (trylock_page(vmf->page)) { 4503 struct dev_pagemap *pgmap; 4504 4505 get_page(vmf->page); 4506 pte_unmap_unlock(vmf->pte, vmf->ptl); 4507 pgmap = page_pgmap(vmf->page); 4508 ret = pgmap->ops->migrate_to_ram(vmf); 4509 unlock_page(vmf->page); 4510 put_page(vmf->page); 4511 } else { 4512 pte_unmap_unlock(vmf->pte, vmf->ptl); 4513 } 4514 } else if (is_hwpoison_entry(entry)) { 4515 ret = VM_FAULT_HWPOISON; 4516 } else if (is_pte_marker_entry(entry)) { 4517 ret = handle_pte_marker(vmf); 4518 } else { 4519 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4520 ret = VM_FAULT_SIGBUS; 4521 } 4522 goto out; 4523 } 4524 4525 /* Prevent swapoff from happening to us. */ 4526 si = get_swap_device(entry); 4527 if (unlikely(!si)) 4528 goto out; 4529 4530 folio = swap_cache_get_folio(entry, vma, vmf->address); 4531 if (folio) 4532 page = folio_file_page(folio, swp_offset(entry)); 4533 swapcache = folio; 4534 4535 if (!folio) { 4536 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4537 __swap_count(entry) == 1) { 4538 /* skip swapcache */ 4539 folio = alloc_swap_folio(vmf); 4540 if (folio) { 4541 __folio_set_locked(folio); 4542 __folio_set_swapbacked(folio); 4543 4544 nr_pages = folio_nr_pages(folio); 4545 if (folio_test_large(folio)) 4546 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4547 /* 4548 * Prevent parallel swapin from proceeding with 4549 * the cache flag. Otherwise, another thread 4550 * may finish swapin first, free the entry, and 4551 * swapout reusing the same entry. It's 4552 * undetectable as pte_same() returns true due 4553 * to entry reuse. 4554 */ 4555 if (swapcache_prepare(entry, nr_pages)) { 4556 /* 4557 * Relax a bit to prevent rapid 4558 * repeated page faults. 4559 */ 4560 add_wait_queue(&swapcache_wq, &wait); 4561 schedule_timeout_uninterruptible(1); 4562 remove_wait_queue(&swapcache_wq, &wait); 4563 goto out_page; 4564 } 4565 need_clear_cache = true; 4566 4567 memcg1_swapin(entry, nr_pages); 4568 4569 shadow = get_shadow_from_swap_cache(entry); 4570 if (shadow) 4571 workingset_refault(folio, shadow); 4572 4573 folio_add_lru(folio); 4574 4575 /* To provide entry to swap_read_folio() */ 4576 folio->swap = entry; 4577 swap_read_folio(folio, NULL); 4578 folio->private = NULL; 4579 } 4580 } else { 4581 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4582 vmf); 4583 swapcache = folio; 4584 } 4585 4586 if (!folio) { 4587 /* 4588 * Back out if somebody else faulted in this pte 4589 * while we released the pte lock. 4590 */ 4591 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4592 vmf->address, &vmf->ptl); 4593 if (likely(vmf->pte && 4594 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4595 ret = VM_FAULT_OOM; 4596 goto unlock; 4597 } 4598 4599 /* Had to read the page from swap area: Major fault */ 4600 ret = VM_FAULT_MAJOR; 4601 count_vm_event(PGMAJFAULT); 4602 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4603 page = folio_file_page(folio, swp_offset(entry)); 4604 } else if (PageHWPoison(page)) { 4605 /* 4606 * hwpoisoned dirty swapcache pages are kept for killing 4607 * owner processes (which may be unknown at hwpoison time) 4608 */ 4609 ret = VM_FAULT_HWPOISON; 4610 goto out_release; 4611 } 4612 4613 ret |= folio_lock_or_retry(folio, vmf); 4614 if (ret & VM_FAULT_RETRY) 4615 goto out_release; 4616 4617 if (swapcache) { 4618 /* 4619 * Make sure folio_free_swap() or swapoff did not release the 4620 * swapcache from under us. The page pin, and pte_same test 4621 * below, are not enough to exclude that. Even if it is still 4622 * swapcache, we need to check that the page's swap has not 4623 * changed. 4624 */ 4625 if (unlikely(!folio_test_swapcache(folio) || 4626 page_swap_entry(page).val != entry.val)) 4627 goto out_page; 4628 4629 /* 4630 * KSM sometimes has to copy on read faults, for example, if 4631 * folio->index of non-ksm folios would be nonlinear inside the 4632 * anon VMA -- the ksm flag is lost on actual swapout. 4633 */ 4634 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4635 if (unlikely(!folio)) { 4636 ret = VM_FAULT_OOM; 4637 folio = swapcache; 4638 goto out_page; 4639 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4640 ret = VM_FAULT_HWPOISON; 4641 folio = swapcache; 4642 goto out_page; 4643 } 4644 if (folio != swapcache) 4645 page = folio_page(folio, 0); 4646 4647 /* 4648 * If we want to map a page that's in the swapcache writable, we 4649 * have to detect via the refcount if we're really the exclusive 4650 * owner. Try removing the extra reference from the local LRU 4651 * caches if required. 4652 */ 4653 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4654 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4655 lru_add_drain(); 4656 } 4657 4658 folio_throttle_swaprate(folio, GFP_KERNEL); 4659 4660 /* 4661 * Back out if somebody else already faulted in this pte. 4662 */ 4663 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4664 &vmf->ptl); 4665 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4666 goto out_nomap; 4667 4668 if (unlikely(!folio_test_uptodate(folio))) { 4669 ret = VM_FAULT_SIGBUS; 4670 goto out_nomap; 4671 } 4672 4673 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4674 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4675 unsigned long nr = folio_nr_pages(folio); 4676 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4677 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4678 pte_t *folio_ptep = vmf->pte - idx; 4679 pte_t folio_pte = ptep_get(folio_ptep); 4680 4681 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4682 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4683 goto out_nomap; 4684 4685 page_idx = idx; 4686 address = folio_start; 4687 ptep = folio_ptep; 4688 goto check_folio; 4689 } 4690 4691 nr_pages = 1; 4692 page_idx = 0; 4693 address = vmf->address; 4694 ptep = vmf->pte; 4695 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4696 int nr = folio_nr_pages(folio); 4697 unsigned long idx = folio_page_idx(folio, page); 4698 unsigned long folio_start = address - idx * PAGE_SIZE; 4699 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4700 pte_t *folio_ptep; 4701 pte_t folio_pte; 4702 4703 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4704 goto check_folio; 4705 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4706 goto check_folio; 4707 4708 folio_ptep = vmf->pte - idx; 4709 folio_pte = ptep_get(folio_ptep); 4710 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4711 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4712 goto check_folio; 4713 4714 page_idx = idx; 4715 address = folio_start; 4716 ptep = folio_ptep; 4717 nr_pages = nr; 4718 entry = folio->swap; 4719 page = &folio->page; 4720 } 4721 4722 check_folio: 4723 /* 4724 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4725 * must never point at an anonymous page in the swapcache that is 4726 * PG_anon_exclusive. Sanity check that this holds and especially, that 4727 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4728 * check after taking the PT lock and making sure that nobody 4729 * concurrently faulted in this page and set PG_anon_exclusive. 4730 */ 4731 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4732 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4733 4734 /* 4735 * Check under PT lock (to protect against concurrent fork() sharing 4736 * the swap entry concurrently) for certainly exclusive pages. 4737 */ 4738 if (!folio_test_ksm(folio)) { 4739 exclusive = pte_swp_exclusive(vmf->orig_pte); 4740 if (folio != swapcache) { 4741 /* 4742 * We have a fresh page that is not exposed to the 4743 * swapcache -> certainly exclusive. 4744 */ 4745 exclusive = true; 4746 } else if (exclusive && folio_test_writeback(folio) && 4747 data_race(si->flags & SWP_STABLE_WRITES)) { 4748 /* 4749 * This is tricky: not all swap backends support 4750 * concurrent page modifications while under writeback. 4751 * 4752 * So if we stumble over such a page in the swapcache 4753 * we must not set the page exclusive, otherwise we can 4754 * map it writable without further checks and modify it 4755 * while still under writeback. 4756 * 4757 * For these problematic swap backends, simply drop the 4758 * exclusive marker: this is perfectly fine as we start 4759 * writeback only if we fully unmapped the page and 4760 * there are no unexpected references on the page after 4761 * unmapping succeeded. After fully unmapped, no 4762 * further GUP references (FOLL_GET and FOLL_PIN) can 4763 * appear, so dropping the exclusive marker and mapping 4764 * it only R/O is fine. 4765 */ 4766 exclusive = false; 4767 } 4768 } 4769 4770 /* 4771 * Some architectures may have to restore extra metadata to the page 4772 * when reading from swap. This metadata may be indexed by swap entry 4773 * so this must be called before swap_free(). 4774 */ 4775 arch_swap_restore(folio_swap(entry, folio), folio); 4776 4777 /* 4778 * Remove the swap entry and conditionally try to free up the swapcache. 4779 * We're already holding a reference on the page but haven't mapped it 4780 * yet. 4781 */ 4782 swap_free_nr(entry, nr_pages); 4783 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4784 folio_free_swap(folio); 4785 4786 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4787 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4788 pte = mk_pte(page, vma->vm_page_prot); 4789 if (pte_swp_soft_dirty(vmf->orig_pte)) 4790 pte = pte_mksoft_dirty(pte); 4791 if (pte_swp_uffd_wp(vmf->orig_pte)) 4792 pte = pte_mkuffd_wp(pte); 4793 4794 /* 4795 * Same logic as in do_wp_page(); however, optimize for pages that are 4796 * certainly not shared either because we just allocated them without 4797 * exposing them to the swapcache or because the swap entry indicates 4798 * exclusivity. 4799 */ 4800 if (!folio_test_ksm(folio) && 4801 (exclusive || folio_ref_count(folio) == 1)) { 4802 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4803 !pte_needs_soft_dirty_wp(vma, pte)) { 4804 pte = pte_mkwrite(pte, vma); 4805 if (vmf->flags & FAULT_FLAG_WRITE) { 4806 pte = pte_mkdirty(pte); 4807 vmf->flags &= ~FAULT_FLAG_WRITE; 4808 } 4809 } 4810 rmap_flags |= RMAP_EXCLUSIVE; 4811 } 4812 folio_ref_add(folio, nr_pages - 1); 4813 flush_icache_pages(vma, page, nr_pages); 4814 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4815 4816 /* ksm created a completely new copy */ 4817 if (unlikely(folio != swapcache && swapcache)) { 4818 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4819 folio_add_lru_vma(folio, vma); 4820 } else if (!folio_test_anon(folio)) { 4821 /* 4822 * We currently only expect small !anon folios which are either 4823 * fully exclusive or fully shared, or new allocated large 4824 * folios which are fully exclusive. If we ever get large 4825 * folios within swapcache here, we have to be careful. 4826 */ 4827 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4828 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4829 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4830 } else { 4831 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4832 rmap_flags); 4833 } 4834 4835 VM_BUG_ON(!folio_test_anon(folio) || 4836 (pte_write(pte) && !PageAnonExclusive(page))); 4837 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4838 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4839 pte, pte, nr_pages); 4840 4841 folio_unlock(folio); 4842 if (folio != swapcache && swapcache) { 4843 /* 4844 * Hold the lock to avoid the swap entry to be reused 4845 * until we take the PT lock for the pte_same() check 4846 * (to avoid false positives from pte_same). For 4847 * further safety release the lock after the swap_free 4848 * so that the swap count won't change under a 4849 * parallel locked swapcache. 4850 */ 4851 folio_unlock(swapcache); 4852 folio_put(swapcache); 4853 } 4854 4855 if (vmf->flags & FAULT_FLAG_WRITE) { 4856 ret |= do_wp_page(vmf); 4857 if (ret & VM_FAULT_ERROR) 4858 ret &= VM_FAULT_ERROR; 4859 goto out; 4860 } 4861 4862 /* No need to invalidate - it was non-present before */ 4863 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4864 unlock: 4865 if (vmf->pte) 4866 pte_unmap_unlock(vmf->pte, vmf->ptl); 4867 out: 4868 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4869 if (need_clear_cache) { 4870 swapcache_clear(si, entry, nr_pages); 4871 if (waitqueue_active(&swapcache_wq)) 4872 wake_up(&swapcache_wq); 4873 } 4874 if (si) 4875 put_swap_device(si); 4876 return ret; 4877 out_nomap: 4878 if (vmf->pte) 4879 pte_unmap_unlock(vmf->pte, vmf->ptl); 4880 out_page: 4881 folio_unlock(folio); 4882 out_release: 4883 folio_put(folio); 4884 if (folio != swapcache && swapcache) { 4885 folio_unlock(swapcache); 4886 folio_put(swapcache); 4887 } 4888 if (need_clear_cache) { 4889 swapcache_clear(si, entry, nr_pages); 4890 if (waitqueue_active(&swapcache_wq)) 4891 wake_up(&swapcache_wq); 4892 } 4893 if (si) 4894 put_swap_device(si); 4895 return ret; 4896 } 4897 4898 static bool pte_range_none(pte_t *pte, int nr_pages) 4899 { 4900 int i; 4901 4902 for (i = 0; i < nr_pages; i++) { 4903 if (!pte_none(ptep_get_lockless(pte + i))) 4904 return false; 4905 } 4906 4907 return true; 4908 } 4909 4910 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4911 { 4912 struct vm_area_struct *vma = vmf->vma; 4913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4914 unsigned long orders; 4915 struct folio *folio; 4916 unsigned long addr; 4917 pte_t *pte; 4918 gfp_t gfp; 4919 int order; 4920 4921 /* 4922 * If uffd is active for the vma we need per-page fault fidelity to 4923 * maintain the uffd semantics. 4924 */ 4925 if (unlikely(userfaultfd_armed(vma))) 4926 goto fallback; 4927 4928 /* 4929 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4930 * for this vma. Then filter out the orders that can't be allocated over 4931 * the faulting address and still be fully contained in the vma. 4932 */ 4933 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4934 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4935 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4936 4937 if (!orders) 4938 goto fallback; 4939 4940 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4941 if (!pte) 4942 return ERR_PTR(-EAGAIN); 4943 4944 /* 4945 * Find the highest order where the aligned range is completely 4946 * pte_none(). Note that all remaining orders will be completely 4947 * pte_none(). 4948 */ 4949 order = highest_order(orders); 4950 while (orders) { 4951 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4952 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4953 break; 4954 order = next_order(&orders, order); 4955 } 4956 4957 pte_unmap(pte); 4958 4959 if (!orders) 4960 goto fallback; 4961 4962 /* Try allocating the highest of the remaining orders. */ 4963 gfp = vma_thp_gfp_mask(vma); 4964 while (orders) { 4965 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4966 folio = vma_alloc_folio(gfp, order, vma, addr); 4967 if (folio) { 4968 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4969 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4970 folio_put(folio); 4971 goto next; 4972 } 4973 folio_throttle_swaprate(folio, gfp); 4974 /* 4975 * When a folio is not zeroed during allocation 4976 * (__GFP_ZERO not used) or user folios require special 4977 * handling, folio_zero_user() is used to make sure 4978 * that the page corresponding to the faulting address 4979 * will be hot in the cache after zeroing. 4980 */ 4981 if (user_alloc_needs_zeroing()) 4982 folio_zero_user(folio, vmf->address); 4983 return folio; 4984 } 4985 next: 4986 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4987 order = next_order(&orders, order); 4988 } 4989 4990 fallback: 4991 #endif 4992 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4993 } 4994 4995 /* 4996 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4997 * but allow concurrent faults), and pte mapped but not yet locked. 4998 * We return with mmap_lock still held, but pte unmapped and unlocked. 4999 */ 5000 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5001 { 5002 struct vm_area_struct *vma = vmf->vma; 5003 unsigned long addr = vmf->address; 5004 struct folio *folio; 5005 vm_fault_t ret = 0; 5006 int nr_pages = 1; 5007 pte_t entry; 5008 5009 /* File mapping without ->vm_ops ? */ 5010 if (vma->vm_flags & VM_SHARED) 5011 return VM_FAULT_SIGBUS; 5012 5013 /* 5014 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5015 * be distinguished from a transient failure of pte_offset_map(). 5016 */ 5017 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5018 return VM_FAULT_OOM; 5019 5020 /* Use the zero-page for reads */ 5021 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5022 !mm_forbids_zeropage(vma->vm_mm)) { 5023 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5024 vma->vm_page_prot)); 5025 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5026 vmf->address, &vmf->ptl); 5027 if (!vmf->pte) 5028 goto unlock; 5029 if (vmf_pte_changed(vmf)) { 5030 update_mmu_tlb(vma, vmf->address, vmf->pte); 5031 goto unlock; 5032 } 5033 ret = check_stable_address_space(vma->vm_mm); 5034 if (ret) 5035 goto unlock; 5036 /* Deliver the page fault to userland, check inside PT lock */ 5037 if (userfaultfd_missing(vma)) { 5038 pte_unmap_unlock(vmf->pte, vmf->ptl); 5039 return handle_userfault(vmf, VM_UFFD_MISSING); 5040 } 5041 goto setpte; 5042 } 5043 5044 /* Allocate our own private page. */ 5045 ret = vmf_anon_prepare(vmf); 5046 if (ret) 5047 return ret; 5048 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5049 folio = alloc_anon_folio(vmf); 5050 if (IS_ERR(folio)) 5051 return 0; 5052 if (!folio) 5053 goto oom; 5054 5055 nr_pages = folio_nr_pages(folio); 5056 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5057 5058 /* 5059 * The memory barrier inside __folio_mark_uptodate makes sure that 5060 * preceding stores to the page contents become visible before 5061 * the set_pte_at() write. 5062 */ 5063 __folio_mark_uptodate(folio); 5064 5065 entry = folio_mk_pte(folio, vma->vm_page_prot); 5066 entry = pte_sw_mkyoung(entry); 5067 if (vma->vm_flags & VM_WRITE) 5068 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5069 5070 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5071 if (!vmf->pte) 5072 goto release; 5073 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5074 update_mmu_tlb(vma, addr, vmf->pte); 5075 goto release; 5076 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5077 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5078 goto release; 5079 } 5080 5081 ret = check_stable_address_space(vma->vm_mm); 5082 if (ret) 5083 goto release; 5084 5085 /* Deliver the page fault to userland, check inside PT lock */ 5086 if (userfaultfd_missing(vma)) { 5087 pte_unmap_unlock(vmf->pte, vmf->ptl); 5088 folio_put(folio); 5089 return handle_userfault(vmf, VM_UFFD_MISSING); 5090 } 5091 5092 folio_ref_add(folio, nr_pages - 1); 5093 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5094 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5095 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5096 folio_add_lru_vma(folio, vma); 5097 setpte: 5098 if (vmf_orig_pte_uffd_wp(vmf)) 5099 entry = pte_mkuffd_wp(entry); 5100 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5101 5102 /* No need to invalidate - it was non-present before */ 5103 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5104 unlock: 5105 if (vmf->pte) 5106 pte_unmap_unlock(vmf->pte, vmf->ptl); 5107 return ret; 5108 release: 5109 folio_put(folio); 5110 goto unlock; 5111 oom: 5112 return VM_FAULT_OOM; 5113 } 5114 5115 /* 5116 * The mmap_lock must have been held on entry, and may have been 5117 * released depending on flags and vma->vm_ops->fault() return value. 5118 * See filemap_fault() and __lock_page_retry(). 5119 */ 5120 static vm_fault_t __do_fault(struct vm_fault *vmf) 5121 { 5122 struct vm_area_struct *vma = vmf->vma; 5123 struct folio *folio; 5124 vm_fault_t ret; 5125 5126 /* 5127 * Preallocate pte before we take page_lock because this might lead to 5128 * deadlocks for memcg reclaim which waits for pages under writeback: 5129 * lock_page(A) 5130 * SetPageWriteback(A) 5131 * unlock_page(A) 5132 * lock_page(B) 5133 * lock_page(B) 5134 * pte_alloc_one 5135 * shrink_folio_list 5136 * wait_on_page_writeback(A) 5137 * SetPageWriteback(B) 5138 * unlock_page(B) 5139 * # flush A, B to clear the writeback 5140 */ 5141 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5142 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5143 if (!vmf->prealloc_pte) 5144 return VM_FAULT_OOM; 5145 } 5146 5147 ret = vma->vm_ops->fault(vmf); 5148 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5149 VM_FAULT_DONE_COW))) 5150 return ret; 5151 5152 folio = page_folio(vmf->page); 5153 if (unlikely(PageHWPoison(vmf->page))) { 5154 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5155 if (ret & VM_FAULT_LOCKED) { 5156 if (page_mapped(vmf->page)) 5157 unmap_mapping_folio(folio); 5158 /* Retry if a clean folio was removed from the cache. */ 5159 if (mapping_evict_folio(folio->mapping, folio)) 5160 poisonret = VM_FAULT_NOPAGE; 5161 folio_unlock(folio); 5162 } 5163 folio_put(folio); 5164 vmf->page = NULL; 5165 return poisonret; 5166 } 5167 5168 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5169 folio_lock(folio); 5170 else 5171 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5172 5173 return ret; 5174 } 5175 5176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5177 static void deposit_prealloc_pte(struct vm_fault *vmf) 5178 { 5179 struct vm_area_struct *vma = vmf->vma; 5180 5181 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5182 /* 5183 * We are going to consume the prealloc table, 5184 * count that as nr_ptes. 5185 */ 5186 mm_inc_nr_ptes(vma->vm_mm); 5187 vmf->prealloc_pte = NULL; 5188 } 5189 5190 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5191 { 5192 struct vm_area_struct *vma = vmf->vma; 5193 bool write = vmf->flags & FAULT_FLAG_WRITE; 5194 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5195 pmd_t entry; 5196 vm_fault_t ret = VM_FAULT_FALLBACK; 5197 5198 /* 5199 * It is too late to allocate a small folio, we already have a large 5200 * folio in the pagecache: especially s390 KVM cannot tolerate any 5201 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5202 * PMD mappings if THPs are disabled. 5203 */ 5204 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5205 return ret; 5206 5207 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5208 return ret; 5209 5210 if (folio_order(folio) != HPAGE_PMD_ORDER) 5211 return ret; 5212 page = &folio->page; 5213 5214 /* 5215 * Just backoff if any subpage of a THP is corrupted otherwise 5216 * the corrupted page may mapped by PMD silently to escape the 5217 * check. This kind of THP just can be PTE mapped. Access to 5218 * the corrupted subpage should trigger SIGBUS as expected. 5219 */ 5220 if (unlikely(folio_test_has_hwpoisoned(folio))) 5221 return ret; 5222 5223 /* 5224 * Archs like ppc64 need additional space to store information 5225 * related to pte entry. Use the preallocated table for that. 5226 */ 5227 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5228 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5229 if (!vmf->prealloc_pte) 5230 return VM_FAULT_OOM; 5231 } 5232 5233 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5234 if (unlikely(!pmd_none(*vmf->pmd))) 5235 goto out; 5236 5237 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5238 5239 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5240 if (write) 5241 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5242 5243 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5244 folio_add_file_rmap_pmd(folio, page, vma); 5245 5246 /* 5247 * deposit and withdraw with pmd lock held 5248 */ 5249 if (arch_needs_pgtable_deposit()) 5250 deposit_prealloc_pte(vmf); 5251 5252 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5253 5254 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5255 5256 /* fault is handled */ 5257 ret = 0; 5258 count_vm_event(THP_FILE_MAPPED); 5259 out: 5260 spin_unlock(vmf->ptl); 5261 return ret; 5262 } 5263 #else 5264 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5265 { 5266 return VM_FAULT_FALLBACK; 5267 } 5268 #endif 5269 5270 /** 5271 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5272 * @vmf: Fault decription. 5273 * @folio: The folio that contains @page. 5274 * @page: The first page to create a PTE for. 5275 * @nr: The number of PTEs to create. 5276 * @addr: The first address to create a PTE for. 5277 */ 5278 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5279 struct page *page, unsigned int nr, unsigned long addr) 5280 { 5281 struct vm_area_struct *vma = vmf->vma; 5282 bool write = vmf->flags & FAULT_FLAG_WRITE; 5283 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5284 pte_t entry; 5285 5286 flush_icache_pages(vma, page, nr); 5287 entry = mk_pte(page, vma->vm_page_prot); 5288 5289 if (prefault && arch_wants_old_prefaulted_pte()) 5290 entry = pte_mkold(entry); 5291 else 5292 entry = pte_sw_mkyoung(entry); 5293 5294 if (write) 5295 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5296 else if (pte_write(entry) && folio_test_dirty(folio)) 5297 entry = pte_mkdirty(entry); 5298 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5299 entry = pte_mkuffd_wp(entry); 5300 /* copy-on-write page */ 5301 if (write && !(vma->vm_flags & VM_SHARED)) { 5302 VM_BUG_ON_FOLIO(nr != 1, folio); 5303 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5304 folio_add_lru_vma(folio, vma); 5305 } else { 5306 folio_add_file_rmap_ptes(folio, page, nr, vma); 5307 } 5308 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5309 5310 /* no need to invalidate: a not-present page won't be cached */ 5311 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5312 } 5313 5314 static bool vmf_pte_changed(struct vm_fault *vmf) 5315 { 5316 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5317 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5318 5319 return !pte_none(ptep_get(vmf->pte)); 5320 } 5321 5322 /** 5323 * finish_fault - finish page fault once we have prepared the page to fault 5324 * 5325 * @vmf: structure describing the fault 5326 * 5327 * This function handles all that is needed to finish a page fault once the 5328 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5329 * given page, adds reverse page mapping, handles memcg charges and LRU 5330 * addition. 5331 * 5332 * The function expects the page to be locked and on success it consumes a 5333 * reference of a page being mapped (for the PTE which maps it). 5334 * 5335 * Return: %0 on success, %VM_FAULT_ code in case of error. 5336 */ 5337 vm_fault_t finish_fault(struct vm_fault *vmf) 5338 { 5339 struct vm_area_struct *vma = vmf->vma; 5340 struct page *page; 5341 struct folio *folio; 5342 vm_fault_t ret; 5343 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5344 !(vma->vm_flags & VM_SHARED); 5345 int type, nr_pages; 5346 unsigned long addr; 5347 bool needs_fallback = false; 5348 5349 fallback: 5350 addr = vmf->address; 5351 5352 /* Did we COW the page? */ 5353 if (is_cow) 5354 page = vmf->cow_page; 5355 else 5356 page = vmf->page; 5357 5358 folio = page_folio(page); 5359 /* 5360 * check even for read faults because we might have lost our CoWed 5361 * page 5362 */ 5363 if (!(vma->vm_flags & VM_SHARED)) { 5364 ret = check_stable_address_space(vma->vm_mm); 5365 if (ret) 5366 return ret; 5367 } 5368 5369 if (pmd_none(*vmf->pmd)) { 5370 if (folio_test_pmd_mappable(folio)) { 5371 ret = do_set_pmd(vmf, folio, page); 5372 if (ret != VM_FAULT_FALLBACK) 5373 return ret; 5374 } 5375 5376 if (vmf->prealloc_pte) 5377 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5378 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5379 return VM_FAULT_OOM; 5380 } 5381 5382 nr_pages = folio_nr_pages(folio); 5383 5384 /* 5385 * Using per-page fault to maintain the uffd semantics, and same 5386 * approach also applies to non shmem/tmpfs faults to avoid 5387 * inflating the RSS of the process. 5388 */ 5389 if (!vma_is_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5390 unlikely(needs_fallback)) { 5391 nr_pages = 1; 5392 } else if (nr_pages > 1) { 5393 pgoff_t idx = folio_page_idx(folio, page); 5394 /* The page offset of vmf->address within the VMA. */ 5395 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5396 /* The index of the entry in the pagetable for fault page. */ 5397 pgoff_t pte_off = pte_index(vmf->address); 5398 5399 /* 5400 * Fallback to per-page fault in case the folio size in page 5401 * cache beyond the VMA limits and PMD pagetable limits. 5402 */ 5403 if (unlikely(vma_off < idx || 5404 vma_off + (nr_pages - idx) > vma_pages(vma) || 5405 pte_off < idx || 5406 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5407 nr_pages = 1; 5408 } else { 5409 /* Now we can set mappings for the whole large folio. */ 5410 addr = vmf->address - idx * PAGE_SIZE; 5411 page = &folio->page; 5412 } 5413 } 5414 5415 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5416 addr, &vmf->ptl); 5417 if (!vmf->pte) 5418 return VM_FAULT_NOPAGE; 5419 5420 /* Re-check under ptl */ 5421 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5422 update_mmu_tlb(vma, addr, vmf->pte); 5423 ret = VM_FAULT_NOPAGE; 5424 goto unlock; 5425 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5426 needs_fallback = true; 5427 pte_unmap_unlock(vmf->pte, vmf->ptl); 5428 goto fallback; 5429 } 5430 5431 folio_ref_add(folio, nr_pages - 1); 5432 set_pte_range(vmf, folio, page, nr_pages, addr); 5433 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5434 add_mm_counter(vma->vm_mm, type, nr_pages); 5435 ret = 0; 5436 5437 unlock: 5438 pte_unmap_unlock(vmf->pte, vmf->ptl); 5439 return ret; 5440 } 5441 5442 static unsigned long fault_around_pages __read_mostly = 5443 65536 >> PAGE_SHIFT; 5444 5445 #ifdef CONFIG_DEBUG_FS 5446 static int fault_around_bytes_get(void *data, u64 *val) 5447 { 5448 *val = fault_around_pages << PAGE_SHIFT; 5449 return 0; 5450 } 5451 5452 /* 5453 * fault_around_bytes must be rounded down to the nearest page order as it's 5454 * what do_fault_around() expects to see. 5455 */ 5456 static int fault_around_bytes_set(void *data, u64 val) 5457 { 5458 if (val / PAGE_SIZE > PTRS_PER_PTE) 5459 return -EINVAL; 5460 5461 /* 5462 * The minimum value is 1 page, however this results in no fault-around 5463 * at all. See should_fault_around(). 5464 */ 5465 val = max(val, PAGE_SIZE); 5466 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5467 5468 return 0; 5469 } 5470 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5471 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5472 5473 static int __init fault_around_debugfs(void) 5474 { 5475 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5476 &fault_around_bytes_fops); 5477 return 0; 5478 } 5479 late_initcall(fault_around_debugfs); 5480 #endif 5481 5482 /* 5483 * do_fault_around() tries to map few pages around the fault address. The hope 5484 * is that the pages will be needed soon and this will lower the number of 5485 * faults to handle. 5486 * 5487 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5488 * not ready to be mapped: not up-to-date, locked, etc. 5489 * 5490 * This function doesn't cross VMA or page table boundaries, in order to call 5491 * map_pages() and acquire a PTE lock only once. 5492 * 5493 * fault_around_pages defines how many pages we'll try to map. 5494 * do_fault_around() expects it to be set to a power of two less than or equal 5495 * to PTRS_PER_PTE. 5496 * 5497 * The virtual address of the area that we map is naturally aligned to 5498 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5499 * (and therefore to page order). This way it's easier to guarantee 5500 * that we don't cross page table boundaries. 5501 */ 5502 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5503 { 5504 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5505 pgoff_t pte_off = pte_index(vmf->address); 5506 /* The page offset of vmf->address within the VMA. */ 5507 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5508 pgoff_t from_pte, to_pte; 5509 vm_fault_t ret; 5510 5511 /* The PTE offset of the start address, clamped to the VMA. */ 5512 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5513 pte_off - min(pte_off, vma_off)); 5514 5515 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5516 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5517 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5518 5519 if (pmd_none(*vmf->pmd)) { 5520 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5521 if (!vmf->prealloc_pte) 5522 return VM_FAULT_OOM; 5523 } 5524 5525 rcu_read_lock(); 5526 ret = vmf->vma->vm_ops->map_pages(vmf, 5527 vmf->pgoff + from_pte - pte_off, 5528 vmf->pgoff + to_pte - pte_off); 5529 rcu_read_unlock(); 5530 5531 return ret; 5532 } 5533 5534 /* Return true if we should do read fault-around, false otherwise */ 5535 static inline bool should_fault_around(struct vm_fault *vmf) 5536 { 5537 /* No ->map_pages? No way to fault around... */ 5538 if (!vmf->vma->vm_ops->map_pages) 5539 return false; 5540 5541 if (uffd_disable_fault_around(vmf->vma)) 5542 return false; 5543 5544 /* A single page implies no faulting 'around' at all. */ 5545 return fault_around_pages > 1; 5546 } 5547 5548 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5549 { 5550 vm_fault_t ret = 0; 5551 struct folio *folio; 5552 5553 /* 5554 * Let's call ->map_pages() first and use ->fault() as fallback 5555 * if page by the offset is not ready to be mapped (cold cache or 5556 * something). 5557 */ 5558 if (should_fault_around(vmf)) { 5559 ret = do_fault_around(vmf); 5560 if (ret) 5561 return ret; 5562 } 5563 5564 ret = vmf_can_call_fault(vmf); 5565 if (ret) 5566 return ret; 5567 5568 ret = __do_fault(vmf); 5569 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5570 return ret; 5571 5572 ret |= finish_fault(vmf); 5573 folio = page_folio(vmf->page); 5574 folio_unlock(folio); 5575 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5576 folio_put(folio); 5577 return ret; 5578 } 5579 5580 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5581 { 5582 struct vm_area_struct *vma = vmf->vma; 5583 struct folio *folio; 5584 vm_fault_t ret; 5585 5586 ret = vmf_can_call_fault(vmf); 5587 if (!ret) 5588 ret = vmf_anon_prepare(vmf); 5589 if (ret) 5590 return ret; 5591 5592 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5593 if (!folio) 5594 return VM_FAULT_OOM; 5595 5596 vmf->cow_page = &folio->page; 5597 5598 ret = __do_fault(vmf); 5599 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5600 goto uncharge_out; 5601 if (ret & VM_FAULT_DONE_COW) 5602 return ret; 5603 5604 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5605 ret = VM_FAULT_HWPOISON; 5606 goto unlock; 5607 } 5608 __folio_mark_uptodate(folio); 5609 5610 ret |= finish_fault(vmf); 5611 unlock: 5612 unlock_page(vmf->page); 5613 put_page(vmf->page); 5614 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5615 goto uncharge_out; 5616 return ret; 5617 uncharge_out: 5618 folio_put(folio); 5619 return ret; 5620 } 5621 5622 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5623 { 5624 struct vm_area_struct *vma = vmf->vma; 5625 vm_fault_t ret, tmp; 5626 struct folio *folio; 5627 5628 ret = vmf_can_call_fault(vmf); 5629 if (ret) 5630 return ret; 5631 5632 ret = __do_fault(vmf); 5633 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5634 return ret; 5635 5636 folio = page_folio(vmf->page); 5637 5638 /* 5639 * Check if the backing address space wants to know that the page is 5640 * about to become writable 5641 */ 5642 if (vma->vm_ops->page_mkwrite) { 5643 folio_unlock(folio); 5644 tmp = do_page_mkwrite(vmf, folio); 5645 if (unlikely(!tmp || 5646 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5647 folio_put(folio); 5648 return tmp; 5649 } 5650 } 5651 5652 ret |= finish_fault(vmf); 5653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5654 VM_FAULT_RETRY))) { 5655 folio_unlock(folio); 5656 folio_put(folio); 5657 return ret; 5658 } 5659 5660 ret |= fault_dirty_shared_page(vmf); 5661 return ret; 5662 } 5663 5664 /* 5665 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5666 * but allow concurrent faults). 5667 * The mmap_lock may have been released depending on flags and our 5668 * return value. See filemap_fault() and __folio_lock_or_retry(). 5669 * If mmap_lock is released, vma may become invalid (for example 5670 * by other thread calling munmap()). 5671 */ 5672 static vm_fault_t do_fault(struct vm_fault *vmf) 5673 { 5674 struct vm_area_struct *vma = vmf->vma; 5675 struct mm_struct *vm_mm = vma->vm_mm; 5676 vm_fault_t ret; 5677 5678 /* 5679 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5680 */ 5681 if (!vma->vm_ops->fault) { 5682 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5683 vmf->address, &vmf->ptl); 5684 if (unlikely(!vmf->pte)) 5685 ret = VM_FAULT_SIGBUS; 5686 else { 5687 /* 5688 * Make sure this is not a temporary clearing of pte 5689 * by holding ptl and checking again. A R/M/W update 5690 * of pte involves: take ptl, clearing the pte so that 5691 * we don't have concurrent modification by hardware 5692 * followed by an update. 5693 */ 5694 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5695 ret = VM_FAULT_SIGBUS; 5696 else 5697 ret = VM_FAULT_NOPAGE; 5698 5699 pte_unmap_unlock(vmf->pte, vmf->ptl); 5700 } 5701 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5702 ret = do_read_fault(vmf); 5703 else if (!(vma->vm_flags & VM_SHARED)) 5704 ret = do_cow_fault(vmf); 5705 else 5706 ret = do_shared_fault(vmf); 5707 5708 /* preallocated pagetable is unused: free it */ 5709 if (vmf->prealloc_pte) { 5710 pte_free(vm_mm, vmf->prealloc_pte); 5711 vmf->prealloc_pte = NULL; 5712 } 5713 return ret; 5714 } 5715 5716 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5717 unsigned long addr, int *flags, 5718 bool writable, int *last_cpupid) 5719 { 5720 struct vm_area_struct *vma = vmf->vma; 5721 5722 /* 5723 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5724 * much anyway since they can be in shared cache state. This misses 5725 * the case where a mapping is writable but the process never writes 5726 * to it but pte_write gets cleared during protection updates and 5727 * pte_dirty has unpredictable behaviour between PTE scan updates, 5728 * background writeback, dirty balancing and application behaviour. 5729 */ 5730 if (!writable) 5731 *flags |= TNF_NO_GROUP; 5732 5733 /* 5734 * Flag if the folio is shared between multiple address spaces. This 5735 * is later used when determining whether to group tasks together 5736 */ 5737 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5738 *flags |= TNF_SHARED; 5739 /* 5740 * For memory tiering mode, cpupid of slow memory page is used 5741 * to record page access time. So use default value. 5742 */ 5743 if (folio_use_access_time(folio)) 5744 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5745 else 5746 *last_cpupid = folio_last_cpupid(folio); 5747 5748 /* Record the current PID acceesing VMA */ 5749 vma_set_access_pid_bit(vma); 5750 5751 count_vm_numa_event(NUMA_HINT_FAULTS); 5752 #ifdef CONFIG_NUMA_BALANCING 5753 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5754 #endif 5755 if (folio_nid(folio) == numa_node_id()) { 5756 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5757 *flags |= TNF_FAULT_LOCAL; 5758 } 5759 5760 return mpol_misplaced(folio, vmf, addr); 5761 } 5762 5763 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5764 unsigned long fault_addr, pte_t *fault_pte, 5765 bool writable) 5766 { 5767 pte_t pte, old_pte; 5768 5769 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5770 pte = pte_modify(old_pte, vma->vm_page_prot); 5771 pte = pte_mkyoung(pte); 5772 if (writable) 5773 pte = pte_mkwrite(pte, vma); 5774 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5775 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5776 } 5777 5778 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5779 struct folio *folio, pte_t fault_pte, 5780 bool ignore_writable, bool pte_write_upgrade) 5781 { 5782 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5783 unsigned long start, end, addr = vmf->address; 5784 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5785 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5786 pte_t *start_ptep; 5787 5788 /* Stay within the VMA and within the page table. */ 5789 start = max3(addr_start, pt_start, vma->vm_start); 5790 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5791 vma->vm_end); 5792 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5793 5794 /* Restore all PTEs' mapping of the large folio */ 5795 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5796 pte_t ptent = ptep_get(start_ptep); 5797 bool writable = false; 5798 5799 if (!pte_present(ptent) || !pte_protnone(ptent)) 5800 continue; 5801 5802 if (pfn_folio(pte_pfn(ptent)) != folio) 5803 continue; 5804 5805 if (!ignore_writable) { 5806 ptent = pte_modify(ptent, vma->vm_page_prot); 5807 writable = pte_write(ptent); 5808 if (!writable && pte_write_upgrade && 5809 can_change_pte_writable(vma, addr, ptent)) 5810 writable = true; 5811 } 5812 5813 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5814 } 5815 } 5816 5817 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5818 { 5819 struct vm_area_struct *vma = vmf->vma; 5820 struct folio *folio = NULL; 5821 int nid = NUMA_NO_NODE; 5822 bool writable = false, ignore_writable = false; 5823 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5824 int last_cpupid; 5825 int target_nid; 5826 pte_t pte, old_pte; 5827 int flags = 0, nr_pages; 5828 5829 /* 5830 * The pte cannot be used safely until we verify, while holding the page 5831 * table lock, that its contents have not changed during fault handling. 5832 */ 5833 spin_lock(vmf->ptl); 5834 /* Read the live PTE from the page tables: */ 5835 old_pte = ptep_get(vmf->pte); 5836 5837 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5838 pte_unmap_unlock(vmf->pte, vmf->ptl); 5839 return 0; 5840 } 5841 5842 pte = pte_modify(old_pte, vma->vm_page_prot); 5843 5844 /* 5845 * Detect now whether the PTE could be writable; this information 5846 * is only valid while holding the PT lock. 5847 */ 5848 writable = pte_write(pte); 5849 if (!writable && pte_write_upgrade && 5850 can_change_pte_writable(vma, vmf->address, pte)) 5851 writable = true; 5852 5853 folio = vm_normal_folio(vma, vmf->address, pte); 5854 if (!folio || folio_is_zone_device(folio)) 5855 goto out_map; 5856 5857 nid = folio_nid(folio); 5858 nr_pages = folio_nr_pages(folio); 5859 5860 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5861 writable, &last_cpupid); 5862 if (target_nid == NUMA_NO_NODE) 5863 goto out_map; 5864 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5865 flags |= TNF_MIGRATE_FAIL; 5866 goto out_map; 5867 } 5868 /* The folio is isolated and isolation code holds a folio reference. */ 5869 pte_unmap_unlock(vmf->pte, vmf->ptl); 5870 writable = false; 5871 ignore_writable = true; 5872 5873 /* Migrate to the requested node */ 5874 if (!migrate_misplaced_folio(folio, target_nid)) { 5875 nid = target_nid; 5876 flags |= TNF_MIGRATED; 5877 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5878 return 0; 5879 } 5880 5881 flags |= TNF_MIGRATE_FAIL; 5882 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5883 vmf->address, &vmf->ptl); 5884 if (unlikely(!vmf->pte)) 5885 return 0; 5886 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5887 pte_unmap_unlock(vmf->pte, vmf->ptl); 5888 return 0; 5889 } 5890 out_map: 5891 /* 5892 * Make it present again, depending on how arch implements 5893 * non-accessible ptes, some can allow access by kernel mode. 5894 */ 5895 if (folio && folio_test_large(folio)) 5896 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5897 pte_write_upgrade); 5898 else 5899 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5900 writable); 5901 pte_unmap_unlock(vmf->pte, vmf->ptl); 5902 5903 if (nid != NUMA_NO_NODE) 5904 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5905 return 0; 5906 } 5907 5908 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5909 { 5910 struct vm_area_struct *vma = vmf->vma; 5911 if (vma_is_anonymous(vma)) 5912 return do_huge_pmd_anonymous_page(vmf); 5913 if (vma->vm_ops->huge_fault) 5914 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5915 return VM_FAULT_FALLBACK; 5916 } 5917 5918 /* `inline' is required to avoid gcc 4.1.2 build error */ 5919 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5920 { 5921 struct vm_area_struct *vma = vmf->vma; 5922 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5923 vm_fault_t ret; 5924 5925 if (vma_is_anonymous(vma)) { 5926 if (likely(!unshare) && 5927 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5928 if (userfaultfd_wp_async(vmf->vma)) 5929 goto split; 5930 return handle_userfault(vmf, VM_UFFD_WP); 5931 } 5932 return do_huge_pmd_wp_page(vmf); 5933 } 5934 5935 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5936 if (vma->vm_ops->huge_fault) { 5937 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5938 if (!(ret & VM_FAULT_FALLBACK)) 5939 return ret; 5940 } 5941 } 5942 5943 split: 5944 /* COW or write-notify handled on pte level: split pmd. */ 5945 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 5946 5947 return VM_FAULT_FALLBACK; 5948 } 5949 5950 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5951 { 5952 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5953 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5954 struct vm_area_struct *vma = vmf->vma; 5955 /* No support for anonymous transparent PUD pages yet */ 5956 if (vma_is_anonymous(vma)) 5957 return VM_FAULT_FALLBACK; 5958 if (vma->vm_ops->huge_fault) 5959 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5960 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5961 return VM_FAULT_FALLBACK; 5962 } 5963 5964 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5965 { 5966 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5967 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5968 struct vm_area_struct *vma = vmf->vma; 5969 vm_fault_t ret; 5970 5971 /* No support for anonymous transparent PUD pages yet */ 5972 if (vma_is_anonymous(vma)) 5973 goto split; 5974 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5975 if (vma->vm_ops->huge_fault) { 5976 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5977 if (!(ret & VM_FAULT_FALLBACK)) 5978 return ret; 5979 } 5980 } 5981 split: 5982 /* COW or write-notify not handled on PUD level: split pud.*/ 5983 __split_huge_pud(vma, vmf->pud, vmf->address); 5984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5985 return VM_FAULT_FALLBACK; 5986 } 5987 5988 /* 5989 * These routines also need to handle stuff like marking pages dirty 5990 * and/or accessed for architectures that don't do it in hardware (most 5991 * RISC architectures). The early dirtying is also good on the i386. 5992 * 5993 * There is also a hook called "update_mmu_cache()" that architectures 5994 * with external mmu caches can use to update those (ie the Sparc or 5995 * PowerPC hashed page tables that act as extended TLBs). 5996 * 5997 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5998 * concurrent faults). 5999 * 6000 * The mmap_lock may have been released depending on flags and our return value. 6001 * See filemap_fault() and __folio_lock_or_retry(). 6002 */ 6003 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6004 { 6005 pte_t entry; 6006 6007 if (unlikely(pmd_none(*vmf->pmd))) { 6008 /* 6009 * Leave __pte_alloc() until later: because vm_ops->fault may 6010 * want to allocate huge page, and if we expose page table 6011 * for an instant, it will be difficult to retract from 6012 * concurrent faults and from rmap lookups. 6013 */ 6014 vmf->pte = NULL; 6015 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6016 } else { 6017 pmd_t dummy_pmdval; 6018 6019 /* 6020 * A regular pmd is established and it can't morph into a huge 6021 * pmd by anon khugepaged, since that takes mmap_lock in write 6022 * mode; but shmem or file collapse to THP could still morph 6023 * it into a huge pmd: just retry later if so. 6024 * 6025 * Use the maywrite version to indicate that vmf->pte may be 6026 * modified, but since we will use pte_same() to detect the 6027 * change of the !pte_none() entry, there is no need to recheck 6028 * the pmdval. Here we chooes to pass a dummy variable instead 6029 * of NULL, which helps new user think about why this place is 6030 * special. 6031 */ 6032 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6033 vmf->address, &dummy_pmdval, 6034 &vmf->ptl); 6035 if (unlikely(!vmf->pte)) 6036 return 0; 6037 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6038 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6039 6040 if (pte_none(vmf->orig_pte)) { 6041 pte_unmap(vmf->pte); 6042 vmf->pte = NULL; 6043 } 6044 } 6045 6046 if (!vmf->pte) 6047 return do_pte_missing(vmf); 6048 6049 if (!pte_present(vmf->orig_pte)) 6050 return do_swap_page(vmf); 6051 6052 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6053 return do_numa_page(vmf); 6054 6055 spin_lock(vmf->ptl); 6056 entry = vmf->orig_pte; 6057 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6058 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6059 goto unlock; 6060 } 6061 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6062 if (!pte_write(entry)) 6063 return do_wp_page(vmf); 6064 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6065 entry = pte_mkdirty(entry); 6066 } 6067 entry = pte_mkyoung(entry); 6068 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6069 vmf->flags & FAULT_FLAG_WRITE)) { 6070 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6071 vmf->pte, 1); 6072 } else { 6073 /* Skip spurious TLB flush for retried page fault */ 6074 if (vmf->flags & FAULT_FLAG_TRIED) 6075 goto unlock; 6076 /* 6077 * This is needed only for protection faults but the arch code 6078 * is not yet telling us if this is a protection fault or not. 6079 * This still avoids useless tlb flushes for .text page faults 6080 * with threads. 6081 */ 6082 if (vmf->flags & FAULT_FLAG_WRITE) 6083 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6084 vmf->pte); 6085 } 6086 unlock: 6087 pte_unmap_unlock(vmf->pte, vmf->ptl); 6088 return 0; 6089 } 6090 6091 /* 6092 * On entry, we hold either the VMA lock or the mmap_lock 6093 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6094 * the result, the mmap_lock is not held on exit. See filemap_fault() 6095 * and __folio_lock_or_retry(). 6096 */ 6097 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6098 unsigned long address, unsigned int flags) 6099 { 6100 struct vm_fault vmf = { 6101 .vma = vma, 6102 .address = address & PAGE_MASK, 6103 .real_address = address, 6104 .flags = flags, 6105 .pgoff = linear_page_index(vma, address), 6106 .gfp_mask = __get_fault_gfp_mask(vma), 6107 }; 6108 struct mm_struct *mm = vma->vm_mm; 6109 vm_flags_t vm_flags = vma->vm_flags; 6110 pgd_t *pgd; 6111 p4d_t *p4d; 6112 vm_fault_t ret; 6113 6114 pgd = pgd_offset(mm, address); 6115 p4d = p4d_alloc(mm, pgd, address); 6116 if (!p4d) 6117 return VM_FAULT_OOM; 6118 6119 vmf.pud = pud_alloc(mm, p4d, address); 6120 if (!vmf.pud) 6121 return VM_FAULT_OOM; 6122 retry_pud: 6123 if (pud_none(*vmf.pud) && 6124 thp_vma_allowable_order(vma, vm_flags, 6125 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 6126 ret = create_huge_pud(&vmf); 6127 if (!(ret & VM_FAULT_FALLBACK)) 6128 return ret; 6129 } else { 6130 pud_t orig_pud = *vmf.pud; 6131 6132 barrier(); 6133 if (pud_trans_huge(orig_pud)) { 6134 6135 /* 6136 * TODO once we support anonymous PUDs: NUMA case and 6137 * FAULT_FLAG_UNSHARE handling. 6138 */ 6139 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6140 ret = wp_huge_pud(&vmf, orig_pud); 6141 if (!(ret & VM_FAULT_FALLBACK)) 6142 return ret; 6143 } else { 6144 huge_pud_set_accessed(&vmf, orig_pud); 6145 return 0; 6146 } 6147 } 6148 } 6149 6150 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6151 if (!vmf.pmd) 6152 return VM_FAULT_OOM; 6153 6154 /* Huge pud page fault raced with pmd_alloc? */ 6155 if (pud_trans_unstable(vmf.pud)) 6156 goto retry_pud; 6157 6158 if (pmd_none(*vmf.pmd) && 6159 thp_vma_allowable_order(vma, vm_flags, 6160 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6161 ret = create_huge_pmd(&vmf); 6162 if (!(ret & VM_FAULT_FALLBACK)) 6163 return ret; 6164 } else { 6165 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6166 6167 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6168 VM_BUG_ON(thp_migration_supported() && 6169 !is_pmd_migration_entry(vmf.orig_pmd)); 6170 if (is_pmd_migration_entry(vmf.orig_pmd)) 6171 pmd_migration_entry_wait(mm, vmf.pmd); 6172 return 0; 6173 } 6174 if (pmd_trans_huge(vmf.orig_pmd)) { 6175 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6176 return do_huge_pmd_numa_page(&vmf); 6177 6178 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6179 !pmd_write(vmf.orig_pmd)) { 6180 ret = wp_huge_pmd(&vmf); 6181 if (!(ret & VM_FAULT_FALLBACK)) 6182 return ret; 6183 } else { 6184 huge_pmd_set_accessed(&vmf); 6185 return 0; 6186 } 6187 } 6188 } 6189 6190 return handle_pte_fault(&vmf); 6191 } 6192 6193 /** 6194 * mm_account_fault - Do page fault accounting 6195 * @mm: mm from which memcg should be extracted. It can be NULL. 6196 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6197 * of perf event counters, but we'll still do the per-task accounting to 6198 * the task who triggered this page fault. 6199 * @address: the faulted address. 6200 * @flags: the fault flags. 6201 * @ret: the fault retcode. 6202 * 6203 * This will take care of most of the page fault accounting. Meanwhile, it 6204 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6205 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6206 * still be in per-arch page fault handlers at the entry of page fault. 6207 */ 6208 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6209 unsigned long address, unsigned int flags, 6210 vm_fault_t ret) 6211 { 6212 bool major; 6213 6214 /* Incomplete faults will be accounted upon completion. */ 6215 if (ret & VM_FAULT_RETRY) 6216 return; 6217 6218 /* 6219 * To preserve the behavior of older kernels, PGFAULT counters record 6220 * both successful and failed faults, as opposed to perf counters, 6221 * which ignore failed cases. 6222 */ 6223 count_vm_event(PGFAULT); 6224 count_memcg_event_mm(mm, PGFAULT); 6225 6226 /* 6227 * Do not account for unsuccessful faults (e.g. when the address wasn't 6228 * valid). That includes arch_vma_access_permitted() failing before 6229 * reaching here. So this is not a "this many hardware page faults" 6230 * counter. We should use the hw profiling for that. 6231 */ 6232 if (ret & VM_FAULT_ERROR) 6233 return; 6234 6235 /* 6236 * We define the fault as a major fault when the final successful fault 6237 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6238 * handle it immediately previously). 6239 */ 6240 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6241 6242 if (major) 6243 current->maj_flt++; 6244 else 6245 current->min_flt++; 6246 6247 /* 6248 * If the fault is done for GUP, regs will be NULL. We only do the 6249 * accounting for the per thread fault counters who triggered the 6250 * fault, and we skip the perf event updates. 6251 */ 6252 if (!regs) 6253 return; 6254 6255 if (major) 6256 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6257 else 6258 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6259 } 6260 6261 #ifdef CONFIG_LRU_GEN 6262 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6263 { 6264 /* the LRU algorithm only applies to accesses with recency */ 6265 current->in_lru_fault = vma_has_recency(vma); 6266 } 6267 6268 static void lru_gen_exit_fault(void) 6269 { 6270 current->in_lru_fault = false; 6271 } 6272 #else 6273 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6274 { 6275 } 6276 6277 static void lru_gen_exit_fault(void) 6278 { 6279 } 6280 #endif /* CONFIG_LRU_GEN */ 6281 6282 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6283 unsigned int *flags) 6284 { 6285 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6286 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6287 return VM_FAULT_SIGSEGV; 6288 /* 6289 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6290 * just treat it like an ordinary read-fault otherwise. 6291 */ 6292 if (!is_cow_mapping(vma->vm_flags)) 6293 *flags &= ~FAULT_FLAG_UNSHARE; 6294 } else if (*flags & FAULT_FLAG_WRITE) { 6295 /* Write faults on read-only mappings are impossible ... */ 6296 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6297 return VM_FAULT_SIGSEGV; 6298 /* ... and FOLL_FORCE only applies to COW mappings. */ 6299 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6300 !is_cow_mapping(vma->vm_flags))) 6301 return VM_FAULT_SIGSEGV; 6302 } 6303 #ifdef CONFIG_PER_VMA_LOCK 6304 /* 6305 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6306 * the assumption that lock is dropped on VM_FAULT_RETRY. 6307 */ 6308 if (WARN_ON_ONCE((*flags & 6309 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6310 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6311 return VM_FAULT_SIGSEGV; 6312 #endif 6313 6314 return 0; 6315 } 6316 6317 /* 6318 * By the time we get here, we already hold either the VMA lock or the 6319 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6320 * 6321 * The mmap_lock may have been released depending on flags and our 6322 * return value. See filemap_fault() and __folio_lock_or_retry(). 6323 */ 6324 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6325 unsigned int flags, struct pt_regs *regs) 6326 { 6327 /* If the fault handler drops the mmap_lock, vma may be freed */ 6328 struct mm_struct *mm = vma->vm_mm; 6329 vm_fault_t ret; 6330 bool is_droppable; 6331 6332 __set_current_state(TASK_RUNNING); 6333 6334 ret = sanitize_fault_flags(vma, &flags); 6335 if (ret) 6336 goto out; 6337 6338 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6339 flags & FAULT_FLAG_INSTRUCTION, 6340 flags & FAULT_FLAG_REMOTE)) { 6341 ret = VM_FAULT_SIGSEGV; 6342 goto out; 6343 } 6344 6345 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6346 6347 /* 6348 * Enable the memcg OOM handling for faults triggered in user 6349 * space. Kernel faults are handled more gracefully. 6350 */ 6351 if (flags & FAULT_FLAG_USER) 6352 mem_cgroup_enter_user_fault(); 6353 6354 lru_gen_enter_fault(vma); 6355 6356 if (unlikely(is_vm_hugetlb_page(vma))) 6357 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6358 else 6359 ret = __handle_mm_fault(vma, address, flags); 6360 6361 /* 6362 * Warning: It is no longer safe to dereference vma-> after this point, 6363 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6364 * vma might be destroyed from underneath us. 6365 */ 6366 6367 lru_gen_exit_fault(); 6368 6369 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6370 if (is_droppable) 6371 ret &= ~VM_FAULT_OOM; 6372 6373 if (flags & FAULT_FLAG_USER) { 6374 mem_cgroup_exit_user_fault(); 6375 /* 6376 * The task may have entered a memcg OOM situation but 6377 * if the allocation error was handled gracefully (no 6378 * VM_FAULT_OOM), there is no need to kill anything. 6379 * Just clean up the OOM state peacefully. 6380 */ 6381 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6382 mem_cgroup_oom_synchronize(false); 6383 } 6384 out: 6385 mm_account_fault(mm, regs, address, flags, ret); 6386 6387 return ret; 6388 } 6389 EXPORT_SYMBOL_GPL(handle_mm_fault); 6390 6391 #ifndef __PAGETABLE_P4D_FOLDED 6392 /* 6393 * Allocate p4d page table. 6394 * We've already handled the fast-path in-line. 6395 */ 6396 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6397 { 6398 p4d_t *new = p4d_alloc_one(mm, address); 6399 if (!new) 6400 return -ENOMEM; 6401 6402 spin_lock(&mm->page_table_lock); 6403 if (pgd_present(*pgd)) { /* Another has populated it */ 6404 p4d_free(mm, new); 6405 } else { 6406 smp_wmb(); /* See comment in pmd_install() */ 6407 pgd_populate(mm, pgd, new); 6408 } 6409 spin_unlock(&mm->page_table_lock); 6410 return 0; 6411 } 6412 #endif /* __PAGETABLE_P4D_FOLDED */ 6413 6414 #ifndef __PAGETABLE_PUD_FOLDED 6415 /* 6416 * Allocate page upper directory. 6417 * We've already handled the fast-path in-line. 6418 */ 6419 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6420 { 6421 pud_t *new = pud_alloc_one(mm, address); 6422 if (!new) 6423 return -ENOMEM; 6424 6425 spin_lock(&mm->page_table_lock); 6426 if (!p4d_present(*p4d)) { 6427 mm_inc_nr_puds(mm); 6428 smp_wmb(); /* See comment in pmd_install() */ 6429 p4d_populate(mm, p4d, new); 6430 } else /* Another has populated it */ 6431 pud_free(mm, new); 6432 spin_unlock(&mm->page_table_lock); 6433 return 0; 6434 } 6435 #endif /* __PAGETABLE_PUD_FOLDED */ 6436 6437 #ifndef __PAGETABLE_PMD_FOLDED 6438 /* 6439 * Allocate page middle directory. 6440 * We've already handled the fast-path in-line. 6441 */ 6442 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6443 { 6444 spinlock_t *ptl; 6445 pmd_t *new = pmd_alloc_one(mm, address); 6446 if (!new) 6447 return -ENOMEM; 6448 6449 ptl = pud_lock(mm, pud); 6450 if (!pud_present(*pud)) { 6451 mm_inc_nr_pmds(mm); 6452 smp_wmb(); /* See comment in pmd_install() */ 6453 pud_populate(mm, pud, new); 6454 } else { /* Another has populated it */ 6455 pmd_free(mm, new); 6456 } 6457 spin_unlock(ptl); 6458 return 0; 6459 } 6460 #endif /* __PAGETABLE_PMD_FOLDED */ 6461 6462 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6463 spinlock_t *lock, pte_t *ptep, 6464 pgprot_t pgprot, unsigned long pfn_base, 6465 unsigned long addr_mask, bool writable, 6466 bool special) 6467 { 6468 args->lock = lock; 6469 args->ptep = ptep; 6470 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6471 args->addr_mask = addr_mask; 6472 args->pgprot = pgprot; 6473 args->writable = writable; 6474 args->special = special; 6475 } 6476 6477 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6478 { 6479 #ifdef CONFIG_LOCKDEP 6480 struct file *file = vma->vm_file; 6481 struct address_space *mapping = file ? file->f_mapping : NULL; 6482 6483 if (mapping) 6484 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6485 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6486 else 6487 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6488 #endif 6489 } 6490 6491 /** 6492 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6493 * @args: Pointer to struct @follow_pfnmap_args 6494 * 6495 * The caller needs to setup args->vma and args->address to point to the 6496 * virtual address as the target of such lookup. On a successful return, 6497 * the results will be put into other output fields. 6498 * 6499 * After the caller finished using the fields, the caller must invoke 6500 * another follow_pfnmap_end() to proper releases the locks and resources 6501 * of such look up request. 6502 * 6503 * During the start() and end() calls, the results in @args will be valid 6504 * as proper locks will be held. After the end() is called, all the fields 6505 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6506 * use of such information after end() may require proper synchronizations 6507 * by the caller with page table updates, otherwise it can create a 6508 * security bug. 6509 * 6510 * If the PTE maps a refcounted page, callers are responsible to protect 6511 * against invalidation with MMU notifiers; otherwise access to the PFN at 6512 * a later point in time can trigger use-after-free. 6513 * 6514 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6515 * should be taken for read, and the mmap semaphore cannot be released 6516 * before the end() is invoked. 6517 * 6518 * This function must not be used to modify PTE content. 6519 * 6520 * Return: zero on success, negative otherwise. 6521 */ 6522 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6523 { 6524 struct vm_area_struct *vma = args->vma; 6525 unsigned long address = args->address; 6526 struct mm_struct *mm = vma->vm_mm; 6527 spinlock_t *lock; 6528 pgd_t *pgdp; 6529 p4d_t *p4dp, p4d; 6530 pud_t *pudp, pud; 6531 pmd_t *pmdp, pmd; 6532 pte_t *ptep, pte; 6533 6534 pfnmap_lockdep_assert(vma); 6535 6536 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6537 goto out; 6538 6539 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6540 goto out; 6541 retry: 6542 pgdp = pgd_offset(mm, address); 6543 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6544 goto out; 6545 6546 p4dp = p4d_offset(pgdp, address); 6547 p4d = READ_ONCE(*p4dp); 6548 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6549 goto out; 6550 6551 pudp = pud_offset(p4dp, address); 6552 pud = READ_ONCE(*pudp); 6553 if (pud_none(pud)) 6554 goto out; 6555 if (pud_leaf(pud)) { 6556 lock = pud_lock(mm, pudp); 6557 if (!unlikely(pud_leaf(pud))) { 6558 spin_unlock(lock); 6559 goto retry; 6560 } 6561 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6562 pud_pfn(pud), PUD_MASK, pud_write(pud), 6563 pud_special(pud)); 6564 return 0; 6565 } 6566 6567 pmdp = pmd_offset(pudp, address); 6568 pmd = pmdp_get_lockless(pmdp); 6569 if (pmd_leaf(pmd)) { 6570 lock = pmd_lock(mm, pmdp); 6571 if (!unlikely(pmd_leaf(pmd))) { 6572 spin_unlock(lock); 6573 goto retry; 6574 } 6575 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6576 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6577 pmd_special(pmd)); 6578 return 0; 6579 } 6580 6581 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6582 if (!ptep) 6583 goto out; 6584 pte = ptep_get(ptep); 6585 if (!pte_present(pte)) 6586 goto unlock; 6587 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6588 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6589 pte_special(pte)); 6590 return 0; 6591 unlock: 6592 pte_unmap_unlock(ptep, lock); 6593 out: 6594 return -EINVAL; 6595 } 6596 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6597 6598 /** 6599 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6600 * @args: Pointer to struct @follow_pfnmap_args 6601 * 6602 * Must be used in pair of follow_pfnmap_start(). See the start() function 6603 * above for more information. 6604 */ 6605 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6606 { 6607 if (args->lock) 6608 spin_unlock(args->lock); 6609 if (args->ptep) 6610 pte_unmap(args->ptep); 6611 } 6612 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6613 6614 #ifdef CONFIG_HAVE_IOREMAP_PROT 6615 /** 6616 * generic_access_phys - generic implementation for iomem mmap access 6617 * @vma: the vma to access 6618 * @addr: userspace address, not relative offset within @vma 6619 * @buf: buffer to read/write 6620 * @len: length of transfer 6621 * @write: set to FOLL_WRITE when writing, otherwise reading 6622 * 6623 * This is a generic implementation for &vm_operations_struct.access for an 6624 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6625 * not page based. 6626 */ 6627 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6628 void *buf, int len, int write) 6629 { 6630 resource_size_t phys_addr; 6631 pgprot_t prot = __pgprot(0); 6632 void __iomem *maddr; 6633 int offset = offset_in_page(addr); 6634 int ret = -EINVAL; 6635 bool writable; 6636 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6637 6638 retry: 6639 if (follow_pfnmap_start(&args)) 6640 return -EINVAL; 6641 prot = args.pgprot; 6642 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6643 writable = args.writable; 6644 follow_pfnmap_end(&args); 6645 6646 if ((write & FOLL_WRITE) && !writable) 6647 return -EINVAL; 6648 6649 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6650 if (!maddr) 6651 return -ENOMEM; 6652 6653 if (follow_pfnmap_start(&args)) 6654 goto out_unmap; 6655 6656 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6657 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6658 (writable != args.writable)) { 6659 follow_pfnmap_end(&args); 6660 iounmap(maddr); 6661 goto retry; 6662 } 6663 6664 if (write) 6665 memcpy_toio(maddr + offset, buf, len); 6666 else 6667 memcpy_fromio(buf, maddr + offset, len); 6668 ret = len; 6669 follow_pfnmap_end(&args); 6670 out_unmap: 6671 iounmap(maddr); 6672 6673 return ret; 6674 } 6675 EXPORT_SYMBOL_GPL(generic_access_phys); 6676 #endif 6677 6678 /* 6679 * Access another process' address space as given in mm. 6680 */ 6681 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6682 void *buf, int len, unsigned int gup_flags) 6683 { 6684 void *old_buf = buf; 6685 int write = gup_flags & FOLL_WRITE; 6686 6687 if (mmap_read_lock_killable(mm)) 6688 return 0; 6689 6690 /* Untag the address before looking up the VMA */ 6691 addr = untagged_addr_remote(mm, addr); 6692 6693 /* Avoid triggering the temporary warning in __get_user_pages */ 6694 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6695 return 0; 6696 6697 /* ignore errors, just check how much was successfully transferred */ 6698 while (len) { 6699 int bytes, offset; 6700 void *maddr; 6701 struct vm_area_struct *vma = NULL; 6702 struct page *page = get_user_page_vma_remote(mm, addr, 6703 gup_flags, &vma); 6704 6705 if (IS_ERR(page)) { 6706 /* We might need to expand the stack to access it */ 6707 vma = vma_lookup(mm, addr); 6708 if (!vma) { 6709 vma = expand_stack(mm, addr); 6710 6711 /* mmap_lock was dropped on failure */ 6712 if (!vma) 6713 return buf - old_buf; 6714 6715 /* Try again if stack expansion worked */ 6716 continue; 6717 } 6718 6719 /* 6720 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6721 * we can access using slightly different code. 6722 */ 6723 bytes = 0; 6724 #ifdef CONFIG_HAVE_IOREMAP_PROT 6725 if (vma->vm_ops && vma->vm_ops->access) 6726 bytes = vma->vm_ops->access(vma, addr, buf, 6727 len, write); 6728 #endif 6729 if (bytes <= 0) 6730 break; 6731 } else { 6732 bytes = len; 6733 offset = addr & (PAGE_SIZE-1); 6734 if (bytes > PAGE_SIZE-offset) 6735 bytes = PAGE_SIZE-offset; 6736 6737 maddr = kmap_local_page(page); 6738 if (write) { 6739 copy_to_user_page(vma, page, addr, 6740 maddr + offset, buf, bytes); 6741 set_page_dirty_lock(page); 6742 } else { 6743 copy_from_user_page(vma, page, addr, 6744 buf, maddr + offset, bytes); 6745 } 6746 unmap_and_put_page(page, maddr); 6747 } 6748 len -= bytes; 6749 buf += bytes; 6750 addr += bytes; 6751 } 6752 mmap_read_unlock(mm); 6753 6754 return buf - old_buf; 6755 } 6756 6757 /** 6758 * access_remote_vm - access another process' address space 6759 * @mm: the mm_struct of the target address space 6760 * @addr: start address to access 6761 * @buf: source or destination buffer 6762 * @len: number of bytes to transfer 6763 * @gup_flags: flags modifying lookup behaviour 6764 * 6765 * The caller must hold a reference on @mm. 6766 * 6767 * Return: number of bytes copied from source to destination. 6768 */ 6769 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6770 void *buf, int len, unsigned int gup_flags) 6771 { 6772 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6773 } 6774 6775 /* 6776 * Access another process' address space. 6777 * Source/target buffer must be kernel space, 6778 * Do not walk the page table directly, use get_user_pages 6779 */ 6780 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6781 void *buf, int len, unsigned int gup_flags) 6782 { 6783 struct mm_struct *mm; 6784 int ret; 6785 6786 mm = get_task_mm(tsk); 6787 if (!mm) 6788 return 0; 6789 6790 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6791 6792 mmput(mm); 6793 6794 return ret; 6795 } 6796 EXPORT_SYMBOL_GPL(access_process_vm); 6797 6798 #ifdef CONFIG_BPF_SYSCALL 6799 /* 6800 * Copy a string from another process's address space as given in mm. 6801 * If there is any error return -EFAULT. 6802 */ 6803 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6804 void *buf, int len, unsigned int gup_flags) 6805 { 6806 void *old_buf = buf; 6807 int err = 0; 6808 6809 *(char *)buf = '\0'; 6810 6811 if (mmap_read_lock_killable(mm)) 6812 return -EFAULT; 6813 6814 addr = untagged_addr_remote(mm, addr); 6815 6816 /* Avoid triggering the temporary warning in __get_user_pages */ 6817 if (!vma_lookup(mm, addr)) { 6818 err = -EFAULT; 6819 goto out; 6820 } 6821 6822 while (len) { 6823 int bytes, offset, retval; 6824 void *maddr; 6825 struct page *page; 6826 struct vm_area_struct *vma = NULL; 6827 6828 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6829 if (IS_ERR(page)) { 6830 /* 6831 * Treat as a total failure for now until we decide how 6832 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6833 * stack expansion. 6834 */ 6835 *(char *)buf = '\0'; 6836 err = -EFAULT; 6837 goto out; 6838 } 6839 6840 bytes = len; 6841 offset = addr & (PAGE_SIZE - 1); 6842 if (bytes > PAGE_SIZE - offset) 6843 bytes = PAGE_SIZE - offset; 6844 6845 maddr = kmap_local_page(page); 6846 retval = strscpy(buf, maddr + offset, bytes); 6847 if (retval >= 0) { 6848 /* Found the end of the string */ 6849 buf += retval; 6850 unmap_and_put_page(page, maddr); 6851 break; 6852 } 6853 6854 buf += bytes - 1; 6855 /* 6856 * Because strscpy always NUL terminates we need to 6857 * copy the last byte in the page if we are going to 6858 * load more pages 6859 */ 6860 if (bytes != len) { 6861 addr += bytes - 1; 6862 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 6863 buf += 1; 6864 addr += 1; 6865 } 6866 len -= bytes; 6867 6868 unmap_and_put_page(page, maddr); 6869 } 6870 6871 out: 6872 mmap_read_unlock(mm); 6873 if (err) 6874 return err; 6875 return buf - old_buf; 6876 } 6877 6878 /** 6879 * copy_remote_vm_str - copy a string from another process's address space. 6880 * @tsk: the task of the target address space 6881 * @addr: start address to read from 6882 * @buf: destination buffer 6883 * @len: number of bytes to copy 6884 * @gup_flags: flags modifying lookup behaviour 6885 * 6886 * The caller must hold a reference on @mm. 6887 * 6888 * Return: number of bytes copied from @addr (source) to @buf (destination); 6889 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 6890 * buffer. On any error, return -EFAULT. 6891 */ 6892 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 6893 void *buf, int len, unsigned int gup_flags) 6894 { 6895 struct mm_struct *mm; 6896 int ret; 6897 6898 if (unlikely(len == 0)) 6899 return 0; 6900 6901 mm = get_task_mm(tsk); 6902 if (!mm) { 6903 *(char *)buf = '\0'; 6904 return -EFAULT; 6905 } 6906 6907 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 6908 6909 mmput(mm); 6910 6911 return ret; 6912 } 6913 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 6914 #endif /* CONFIG_BPF_SYSCALL */ 6915 6916 /* 6917 * Print the name of a VMA. 6918 */ 6919 void print_vma_addr(char *prefix, unsigned long ip) 6920 { 6921 struct mm_struct *mm = current->mm; 6922 struct vm_area_struct *vma; 6923 6924 /* 6925 * we might be running from an atomic context so we cannot sleep 6926 */ 6927 if (!mmap_read_trylock(mm)) 6928 return; 6929 6930 vma = vma_lookup(mm, ip); 6931 if (vma && vma->vm_file) { 6932 struct file *f = vma->vm_file; 6933 ip -= vma->vm_start; 6934 ip += vma->vm_pgoff << PAGE_SHIFT; 6935 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6936 vma->vm_start, 6937 vma->vm_end - vma->vm_start); 6938 } 6939 mmap_read_unlock(mm); 6940 } 6941 6942 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6943 void __might_fault(const char *file, int line) 6944 { 6945 if (pagefault_disabled()) 6946 return; 6947 __might_sleep(file, line); 6948 if (current->mm) 6949 might_lock_read(¤t->mm->mmap_lock); 6950 } 6951 EXPORT_SYMBOL(__might_fault); 6952 #endif 6953 6954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6955 /* 6956 * Process all subpages of the specified huge page with the specified 6957 * operation. The target subpage will be processed last to keep its 6958 * cache lines hot. 6959 */ 6960 static inline int process_huge_page( 6961 unsigned long addr_hint, unsigned int nr_pages, 6962 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6963 void *arg) 6964 { 6965 int i, n, base, l, ret; 6966 unsigned long addr = addr_hint & 6967 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6968 6969 /* Process target subpage last to keep its cache lines hot */ 6970 might_sleep(); 6971 n = (addr_hint - addr) / PAGE_SIZE; 6972 if (2 * n <= nr_pages) { 6973 /* If target subpage in first half of huge page */ 6974 base = 0; 6975 l = n; 6976 /* Process subpages at the end of huge page */ 6977 for (i = nr_pages - 1; i >= 2 * n; i--) { 6978 cond_resched(); 6979 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6980 if (ret) 6981 return ret; 6982 } 6983 } else { 6984 /* If target subpage in second half of huge page */ 6985 base = nr_pages - 2 * (nr_pages - n); 6986 l = nr_pages - n; 6987 /* Process subpages at the begin of huge page */ 6988 for (i = 0; i < base; i++) { 6989 cond_resched(); 6990 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6991 if (ret) 6992 return ret; 6993 } 6994 } 6995 /* 6996 * Process remaining subpages in left-right-left-right pattern 6997 * towards the target subpage 6998 */ 6999 for (i = 0; i < l; i++) { 7000 int left_idx = base + i; 7001 int right_idx = base + 2 * l - 1 - i; 7002 7003 cond_resched(); 7004 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7005 if (ret) 7006 return ret; 7007 cond_resched(); 7008 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7009 if (ret) 7010 return ret; 7011 } 7012 return 0; 7013 } 7014 7015 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7016 unsigned int nr_pages) 7017 { 7018 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7019 int i; 7020 7021 might_sleep(); 7022 for (i = 0; i < nr_pages; i++) { 7023 cond_resched(); 7024 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7025 } 7026 } 7027 7028 static int clear_subpage(unsigned long addr, int idx, void *arg) 7029 { 7030 struct folio *folio = arg; 7031 7032 clear_user_highpage(folio_page(folio, idx), addr); 7033 return 0; 7034 } 7035 7036 /** 7037 * folio_zero_user - Zero a folio which will be mapped to userspace. 7038 * @folio: The folio to zero. 7039 * @addr_hint: The address will be accessed or the base address if uncelar. 7040 */ 7041 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7042 { 7043 unsigned int nr_pages = folio_nr_pages(folio); 7044 7045 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7046 clear_gigantic_page(folio, addr_hint, nr_pages); 7047 else 7048 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7049 } 7050 7051 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7052 unsigned long addr_hint, 7053 struct vm_area_struct *vma, 7054 unsigned int nr_pages) 7055 { 7056 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7057 struct page *dst_page; 7058 struct page *src_page; 7059 int i; 7060 7061 for (i = 0; i < nr_pages; i++) { 7062 dst_page = folio_page(dst, i); 7063 src_page = folio_page(src, i); 7064 7065 cond_resched(); 7066 if (copy_mc_user_highpage(dst_page, src_page, 7067 addr + i*PAGE_SIZE, vma)) 7068 return -EHWPOISON; 7069 } 7070 return 0; 7071 } 7072 7073 struct copy_subpage_arg { 7074 struct folio *dst; 7075 struct folio *src; 7076 struct vm_area_struct *vma; 7077 }; 7078 7079 static int copy_subpage(unsigned long addr, int idx, void *arg) 7080 { 7081 struct copy_subpage_arg *copy_arg = arg; 7082 struct page *dst = folio_page(copy_arg->dst, idx); 7083 struct page *src = folio_page(copy_arg->src, idx); 7084 7085 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7086 return -EHWPOISON; 7087 return 0; 7088 } 7089 7090 int copy_user_large_folio(struct folio *dst, struct folio *src, 7091 unsigned long addr_hint, struct vm_area_struct *vma) 7092 { 7093 unsigned int nr_pages = folio_nr_pages(dst); 7094 struct copy_subpage_arg arg = { 7095 .dst = dst, 7096 .src = src, 7097 .vma = vma, 7098 }; 7099 7100 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7101 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7102 7103 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7104 } 7105 7106 long copy_folio_from_user(struct folio *dst_folio, 7107 const void __user *usr_src, 7108 bool allow_pagefault) 7109 { 7110 void *kaddr; 7111 unsigned long i, rc = 0; 7112 unsigned int nr_pages = folio_nr_pages(dst_folio); 7113 unsigned long ret_val = nr_pages * PAGE_SIZE; 7114 struct page *subpage; 7115 7116 for (i = 0; i < nr_pages; i++) { 7117 subpage = folio_page(dst_folio, i); 7118 kaddr = kmap_local_page(subpage); 7119 if (!allow_pagefault) 7120 pagefault_disable(); 7121 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7122 if (!allow_pagefault) 7123 pagefault_enable(); 7124 kunmap_local(kaddr); 7125 7126 ret_val -= (PAGE_SIZE - rc); 7127 if (rc) 7128 break; 7129 7130 flush_dcache_page(subpage); 7131 7132 cond_resched(); 7133 } 7134 return ret_val; 7135 } 7136 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7137 7138 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7139 7140 static struct kmem_cache *page_ptl_cachep; 7141 7142 void __init ptlock_cache_init(void) 7143 { 7144 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7145 SLAB_PANIC, NULL); 7146 } 7147 7148 bool ptlock_alloc(struct ptdesc *ptdesc) 7149 { 7150 spinlock_t *ptl; 7151 7152 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7153 if (!ptl) 7154 return false; 7155 ptdesc->ptl = ptl; 7156 return true; 7157 } 7158 7159 void ptlock_free(struct ptdesc *ptdesc) 7160 { 7161 if (ptdesc->ptl) 7162 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7163 } 7164 #endif 7165 7166 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7167 { 7168 if (is_vm_hugetlb_page(vma)) 7169 hugetlb_vma_lock_read(vma); 7170 } 7171 7172 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7173 { 7174 if (is_vm_hugetlb_page(vma)) 7175 hugetlb_vma_unlock_read(vma); 7176 } 7177