xref: /linux/mm/memory.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
73 
74 #include "internal.h"
75 
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
79 
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
84 
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
88 
89 /*
90  * A number of key systems in x86 including ioremap() rely on the assumption
91  * that high_memory defines the upper bound on direct map memory, then end
92  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
93  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94  * and ZONE_HIGHMEM.
95  */
96 void * high_memory;
97 
98 EXPORT_SYMBOL(high_memory);
99 
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108 					1;
109 #else
110 					2;
111 #endif
112 
113 static int __init disable_randmaps(char *s)
114 {
115 	randomize_va_space = 0;
116 	return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119 
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122 
123 EXPORT_SYMBOL(zero_pfn);
124 
125 /*
126  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127  */
128 static int __init init_zero_pfn(void)
129 {
130 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
131 	return 0;
132 }
133 core_initcall(init_zero_pfn);
134 
135 
136 #if defined(SPLIT_RSS_COUNTING)
137 
138 void sync_mm_rss(struct mm_struct *mm)
139 {
140 	int i;
141 
142 	for (i = 0; i < NR_MM_COUNTERS; i++) {
143 		if (current->rss_stat.count[i]) {
144 			add_mm_counter(mm, i, current->rss_stat.count[i]);
145 			current->rss_stat.count[i] = 0;
146 		}
147 	}
148 	current->rss_stat.events = 0;
149 }
150 
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 {
153 	struct task_struct *task = current;
154 
155 	if (likely(task->mm == mm))
156 		task->rss_stat.count[member] += val;
157 	else
158 		add_mm_counter(mm, member, val);
159 }
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162 
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH	(64)
165 static void check_sync_rss_stat(struct task_struct *task)
166 {
167 	if (unlikely(task != current))
168 		return;
169 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170 		sync_mm_rss(task->mm);
171 }
172 #else /* SPLIT_RSS_COUNTING */
173 
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176 
177 static void check_sync_rss_stat(struct task_struct *task)
178 {
179 }
180 
181 #endif /* SPLIT_RSS_COUNTING */
182 
183 #ifdef HAVE_GENERIC_MMU_GATHER
184 
185 static bool tlb_next_batch(struct mmu_gather *tlb)
186 {
187 	struct mmu_gather_batch *batch;
188 
189 	batch = tlb->active;
190 	if (batch->next) {
191 		tlb->active = batch->next;
192 		return true;
193 	}
194 
195 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196 		return false;
197 
198 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199 	if (!batch)
200 		return false;
201 
202 	tlb->batch_count++;
203 	batch->next = NULL;
204 	batch->nr   = 0;
205 	batch->max  = MAX_GATHER_BATCH;
206 
207 	tlb->active->next = batch;
208 	tlb->active = batch;
209 
210 	return true;
211 }
212 
213 /* tlb_gather_mmu
214  *	Called to initialize an (on-stack) mmu_gather structure for page-table
215  *	tear-down from @mm. The @fullmm argument is used when @mm is without
216  *	users and we're going to destroy the full address space (exit/execve).
217  */
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 {
220 	tlb->mm = mm;
221 
222 	/* Is it from 0 to ~0? */
223 	tlb->fullmm     = !(start | (end+1));
224 	tlb->need_flush_all = 0;
225 	tlb->local.next = NULL;
226 	tlb->local.nr   = 0;
227 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
228 	tlb->active     = &tlb->local;
229 	tlb->batch_count = 0;
230 
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 	tlb->batch = NULL;
233 #endif
234 
235 	__tlb_reset_range(tlb);
236 }
237 
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 {
240 	if (!tlb->end)
241 		return;
242 
243 	tlb_flush(tlb);
244 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 	tlb_table_flush(tlb);
247 #endif
248 	__tlb_reset_range(tlb);
249 }
250 
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253 	struct mmu_gather_batch *batch;
254 
255 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256 		free_pages_and_swap_cache(batch->pages, batch->nr);
257 		batch->nr = 0;
258 	}
259 	tlb->active = &tlb->local;
260 }
261 
262 void tlb_flush_mmu(struct mmu_gather *tlb)
263 {
264 	tlb_flush_mmu_tlbonly(tlb);
265 	tlb_flush_mmu_free(tlb);
266 }
267 
268 /* tlb_finish_mmu
269  *	Called at the end of the shootdown operation to free up any resources
270  *	that were required.
271  */
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 {
274 	struct mmu_gather_batch *batch, *next;
275 
276 	tlb_flush_mmu(tlb);
277 
278 	/* keep the page table cache within bounds */
279 	check_pgt_cache();
280 
281 	for (batch = tlb->local.next; batch; batch = next) {
282 		next = batch->next;
283 		free_pages((unsigned long)batch, 0);
284 	}
285 	tlb->local.next = NULL;
286 }
287 
288 /* __tlb_remove_page
289  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290  *	handling the additional races in SMP caused by other CPUs caching valid
291  *	mappings in their TLBs. Returns the number of free page slots left.
292  *	When out of page slots we must call tlb_flush_mmu().
293  */
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 {
296 	struct mmu_gather_batch *batch;
297 
298 	VM_BUG_ON(!tlb->end);
299 
300 	batch = tlb->active;
301 	batch->pages[batch->nr++] = page;
302 	if (batch->nr == batch->max) {
303 		if (!tlb_next_batch(tlb))
304 			return 0;
305 		batch = tlb->active;
306 	}
307 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308 
309 	return batch->max - batch->nr;
310 }
311 
312 #endif /* HAVE_GENERIC_MMU_GATHER */
313 
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315 
316 /*
317  * See the comment near struct mmu_table_batch.
318  */
319 
320 static void tlb_remove_table_smp_sync(void *arg)
321 {
322 	/* Simply deliver the interrupt */
323 }
324 
325 static void tlb_remove_table_one(void *table)
326 {
327 	/*
328 	 * This isn't an RCU grace period and hence the page-tables cannot be
329 	 * assumed to be actually RCU-freed.
330 	 *
331 	 * It is however sufficient for software page-table walkers that rely on
332 	 * IRQ disabling. See the comment near struct mmu_table_batch.
333 	 */
334 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335 	__tlb_remove_table(table);
336 }
337 
338 static void tlb_remove_table_rcu(struct rcu_head *head)
339 {
340 	struct mmu_table_batch *batch;
341 	int i;
342 
343 	batch = container_of(head, struct mmu_table_batch, rcu);
344 
345 	for (i = 0; i < batch->nr; i++)
346 		__tlb_remove_table(batch->tables[i]);
347 
348 	free_page((unsigned long)batch);
349 }
350 
351 void tlb_table_flush(struct mmu_gather *tlb)
352 {
353 	struct mmu_table_batch **batch = &tlb->batch;
354 
355 	if (*batch) {
356 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357 		*batch = NULL;
358 	}
359 }
360 
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 {
363 	struct mmu_table_batch **batch = &tlb->batch;
364 
365 	/*
366 	 * When there's less then two users of this mm there cannot be a
367 	 * concurrent page-table walk.
368 	 */
369 	if (atomic_read(&tlb->mm->mm_users) < 2) {
370 		__tlb_remove_table(table);
371 		return;
372 	}
373 
374 	if (*batch == NULL) {
375 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376 		if (*batch == NULL) {
377 			tlb_remove_table_one(table);
378 			return;
379 		}
380 		(*batch)->nr = 0;
381 	}
382 	(*batch)->tables[(*batch)->nr++] = table;
383 	if ((*batch)->nr == MAX_TABLE_BATCH)
384 		tlb_table_flush(tlb);
385 }
386 
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394 			   unsigned long addr)
395 {
396 	pgtable_t token = pmd_pgtable(*pmd);
397 	pmd_clear(pmd);
398 	pte_free_tlb(tlb, token, addr);
399 	atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401 
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403 				unsigned long addr, unsigned long end,
404 				unsigned long floor, unsigned long ceiling)
405 {
406 	pmd_t *pmd;
407 	unsigned long next;
408 	unsigned long start;
409 
410 	start = addr;
411 	pmd = pmd_offset(pud, addr);
412 	do {
413 		next = pmd_addr_end(addr, end);
414 		if (pmd_none_or_clear_bad(pmd))
415 			continue;
416 		free_pte_range(tlb, pmd, addr);
417 	} while (pmd++, addr = next, addr != end);
418 
419 	start &= PUD_MASK;
420 	if (start < floor)
421 		return;
422 	if (ceiling) {
423 		ceiling &= PUD_MASK;
424 		if (!ceiling)
425 			return;
426 	}
427 	if (end - 1 > ceiling - 1)
428 		return;
429 
430 	pmd = pmd_offset(pud, start);
431 	pud_clear(pud);
432 	pmd_free_tlb(tlb, pmd, start);
433 	mm_dec_nr_pmds(tlb->mm);
434 }
435 
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437 				unsigned long addr, unsigned long end,
438 				unsigned long floor, unsigned long ceiling)
439 {
440 	pud_t *pud;
441 	unsigned long next;
442 	unsigned long start;
443 
444 	start = addr;
445 	pud = pud_offset(pgd, addr);
446 	do {
447 		next = pud_addr_end(addr, end);
448 		if (pud_none_or_clear_bad(pud))
449 			continue;
450 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451 	} while (pud++, addr = next, addr != end);
452 
453 	start &= PGDIR_MASK;
454 	if (start < floor)
455 		return;
456 	if (ceiling) {
457 		ceiling &= PGDIR_MASK;
458 		if (!ceiling)
459 			return;
460 	}
461 	if (end - 1 > ceiling - 1)
462 		return;
463 
464 	pud = pud_offset(pgd, start);
465 	pgd_clear(pgd);
466 	pud_free_tlb(tlb, pud, start);
467 }
468 
469 /*
470  * This function frees user-level page tables of a process.
471  */
472 void free_pgd_range(struct mmu_gather *tlb,
473 			unsigned long addr, unsigned long end,
474 			unsigned long floor, unsigned long ceiling)
475 {
476 	pgd_t *pgd;
477 	unsigned long next;
478 
479 	/*
480 	 * The next few lines have given us lots of grief...
481 	 *
482 	 * Why are we testing PMD* at this top level?  Because often
483 	 * there will be no work to do at all, and we'd prefer not to
484 	 * go all the way down to the bottom just to discover that.
485 	 *
486 	 * Why all these "- 1"s?  Because 0 represents both the bottom
487 	 * of the address space and the top of it (using -1 for the
488 	 * top wouldn't help much: the masks would do the wrong thing).
489 	 * The rule is that addr 0 and floor 0 refer to the bottom of
490 	 * the address space, but end 0 and ceiling 0 refer to the top
491 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
492 	 * that end 0 case should be mythical).
493 	 *
494 	 * Wherever addr is brought up or ceiling brought down, we must
495 	 * be careful to reject "the opposite 0" before it confuses the
496 	 * subsequent tests.  But what about where end is brought down
497 	 * by PMD_SIZE below? no, end can't go down to 0 there.
498 	 *
499 	 * Whereas we round start (addr) and ceiling down, by different
500 	 * masks at different levels, in order to test whether a table
501 	 * now has no other vmas using it, so can be freed, we don't
502 	 * bother to round floor or end up - the tests don't need that.
503 	 */
504 
505 	addr &= PMD_MASK;
506 	if (addr < floor) {
507 		addr += PMD_SIZE;
508 		if (!addr)
509 			return;
510 	}
511 	if (ceiling) {
512 		ceiling &= PMD_MASK;
513 		if (!ceiling)
514 			return;
515 	}
516 	if (end - 1 > ceiling - 1)
517 		end -= PMD_SIZE;
518 	if (addr > end - 1)
519 		return;
520 
521 	pgd = pgd_offset(tlb->mm, addr);
522 	do {
523 		next = pgd_addr_end(addr, end);
524 		if (pgd_none_or_clear_bad(pgd))
525 			continue;
526 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527 	} while (pgd++, addr = next, addr != end);
528 }
529 
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531 		unsigned long floor, unsigned long ceiling)
532 {
533 	while (vma) {
534 		struct vm_area_struct *next = vma->vm_next;
535 		unsigned long addr = vma->vm_start;
536 
537 		/*
538 		 * Hide vma from rmap and truncate_pagecache before freeing
539 		 * pgtables
540 		 */
541 		unlink_anon_vmas(vma);
542 		unlink_file_vma(vma);
543 
544 		if (is_vm_hugetlb_page(vma)) {
545 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546 				floor, next? next->vm_start: ceiling);
547 		} else {
548 			/*
549 			 * Optimization: gather nearby vmas into one call down
550 			 */
551 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552 			       && !is_vm_hugetlb_page(next)) {
553 				vma = next;
554 				next = vma->vm_next;
555 				unlink_anon_vmas(vma);
556 				unlink_file_vma(vma);
557 			}
558 			free_pgd_range(tlb, addr, vma->vm_end,
559 				floor, next? next->vm_start: ceiling);
560 		}
561 		vma = next;
562 	}
563 }
564 
565 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
566 		pmd_t *pmd, unsigned long address)
567 {
568 	spinlock_t *ptl;
569 	pgtable_t new = pte_alloc_one(mm, address);
570 	if (!new)
571 		return -ENOMEM;
572 
573 	/*
574 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 	 * visible before the pte is made visible to other CPUs by being
576 	 * put into page tables.
577 	 *
578 	 * The other side of the story is the pointer chasing in the page
579 	 * table walking code (when walking the page table without locking;
580 	 * ie. most of the time). Fortunately, these data accesses consist
581 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 	 * being the notable exception) will already guarantee loads are
583 	 * seen in-order. See the alpha page table accessors for the
584 	 * smp_read_barrier_depends() barriers in page table walking code.
585 	 */
586 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587 
588 	ptl = pmd_lock(mm, pmd);
589 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590 		atomic_long_inc(&mm->nr_ptes);
591 		pmd_populate(mm, pmd, new);
592 		new = NULL;
593 	}
594 	spin_unlock(ptl);
595 	if (new)
596 		pte_free(mm, new);
597 	return 0;
598 }
599 
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 	if (!new)
604 		return -ENOMEM;
605 
606 	smp_wmb(); /* See comment in __pte_alloc */
607 
608 	spin_lock(&init_mm.page_table_lock);
609 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
610 		pmd_populate_kernel(&init_mm, pmd, new);
611 		new = NULL;
612 	}
613 	spin_unlock(&init_mm.page_table_lock);
614 	if (new)
615 		pte_free_kernel(&init_mm, new);
616 	return 0;
617 }
618 
619 static inline void init_rss_vec(int *rss)
620 {
621 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623 
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626 	int i;
627 
628 	if (current->mm == mm)
629 		sync_mm_rss(mm);
630 	for (i = 0; i < NR_MM_COUNTERS; i++)
631 		if (rss[i])
632 			add_mm_counter(mm, i, rss[i]);
633 }
634 
635 /*
636  * This function is called to print an error when a bad pte
637  * is found. For example, we might have a PFN-mapped pte in
638  * a region that doesn't allow it.
639  *
640  * The calling function must still handle the error.
641  */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 			  pte_t pte, struct page *page)
644 {
645 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 	pud_t *pud = pud_offset(pgd, addr);
647 	pmd_t *pmd = pmd_offset(pud, addr);
648 	struct address_space *mapping;
649 	pgoff_t index;
650 	static unsigned long resume;
651 	static unsigned long nr_shown;
652 	static unsigned long nr_unshown;
653 
654 	/*
655 	 * Allow a burst of 60 reports, then keep quiet for that minute;
656 	 * or allow a steady drip of one report per second.
657 	 */
658 	if (nr_shown == 60) {
659 		if (time_before(jiffies, resume)) {
660 			nr_unshown++;
661 			return;
662 		}
663 		if (nr_unshown) {
664 			printk(KERN_ALERT
665 				"BUG: Bad page map: %lu messages suppressed\n",
666 				nr_unshown);
667 			nr_unshown = 0;
668 		}
669 		nr_shown = 0;
670 	}
671 	if (nr_shown++ == 0)
672 		resume = jiffies + 60 * HZ;
673 
674 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675 	index = linear_page_index(vma, addr);
676 
677 	printk(KERN_ALERT
678 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
679 		current->comm,
680 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
681 	if (page)
682 		dump_page(page, "bad pte");
683 	printk(KERN_ALERT
684 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
685 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
686 	/*
687 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
688 	 */
689 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
690 		 vma->vm_file,
691 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
692 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
693 		 mapping ? mapping->a_ops->readpage : NULL);
694 	dump_stack();
695 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
696 }
697 
698 /*
699  * vm_normal_page -- This function gets the "struct page" associated with a pte.
700  *
701  * "Special" mappings do not wish to be associated with a "struct page" (either
702  * it doesn't exist, or it exists but they don't want to touch it). In this
703  * case, NULL is returned here. "Normal" mappings do have a struct page.
704  *
705  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
706  * pte bit, in which case this function is trivial. Secondly, an architecture
707  * may not have a spare pte bit, which requires a more complicated scheme,
708  * described below.
709  *
710  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
711  * special mapping (even if there are underlying and valid "struct pages").
712  * COWed pages of a VM_PFNMAP are always normal.
713  *
714  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
715  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
716  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
717  * mapping will always honor the rule
718  *
719  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
720  *
721  * And for normal mappings this is false.
722  *
723  * This restricts such mappings to be a linear translation from virtual address
724  * to pfn. To get around this restriction, we allow arbitrary mappings so long
725  * as the vma is not a COW mapping; in that case, we know that all ptes are
726  * special (because none can have been COWed).
727  *
728  *
729  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
730  *
731  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
732  * page" backing, however the difference is that _all_ pages with a struct
733  * page (that is, those where pfn_valid is true) are refcounted and considered
734  * normal pages by the VM. The disadvantage is that pages are refcounted
735  * (which can be slower and simply not an option for some PFNMAP users). The
736  * advantage is that we don't have to follow the strict linearity rule of
737  * PFNMAP mappings in order to support COWable mappings.
738  *
739  */
740 #ifdef __HAVE_ARCH_PTE_SPECIAL
741 # define HAVE_PTE_SPECIAL 1
742 #else
743 # define HAVE_PTE_SPECIAL 0
744 #endif
745 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
746 				pte_t pte)
747 {
748 	unsigned long pfn = pte_pfn(pte);
749 
750 	if (HAVE_PTE_SPECIAL) {
751 		if (likely(!pte_special(pte)))
752 			goto check_pfn;
753 		if (vma->vm_ops && vma->vm_ops->find_special_page)
754 			return vma->vm_ops->find_special_page(vma, addr);
755 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
756 			return NULL;
757 		if (!is_zero_pfn(pfn))
758 			print_bad_pte(vma, addr, pte, NULL);
759 		return NULL;
760 	}
761 
762 	/* !HAVE_PTE_SPECIAL case follows: */
763 
764 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
765 		if (vma->vm_flags & VM_MIXEDMAP) {
766 			if (!pfn_valid(pfn))
767 				return NULL;
768 			goto out;
769 		} else {
770 			unsigned long off;
771 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
772 			if (pfn == vma->vm_pgoff + off)
773 				return NULL;
774 			if (!is_cow_mapping(vma->vm_flags))
775 				return NULL;
776 		}
777 	}
778 
779 	if (is_zero_pfn(pfn))
780 		return NULL;
781 check_pfn:
782 	if (unlikely(pfn > highest_memmap_pfn)) {
783 		print_bad_pte(vma, addr, pte, NULL);
784 		return NULL;
785 	}
786 
787 	/*
788 	 * NOTE! We still have PageReserved() pages in the page tables.
789 	 * eg. VDSO mappings can cause them to exist.
790 	 */
791 out:
792 	return pfn_to_page(pfn);
793 }
794 
795 /*
796  * copy one vm_area from one task to the other. Assumes the page tables
797  * already present in the new task to be cleared in the whole range
798  * covered by this vma.
799  */
800 
801 static inline unsigned long
802 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
804 		unsigned long addr, int *rss)
805 {
806 	unsigned long vm_flags = vma->vm_flags;
807 	pte_t pte = *src_pte;
808 	struct page *page;
809 
810 	/* pte contains position in swap or file, so copy. */
811 	if (unlikely(!pte_present(pte))) {
812 		swp_entry_t entry = pte_to_swp_entry(pte);
813 
814 		if (likely(!non_swap_entry(entry))) {
815 			if (swap_duplicate(entry) < 0)
816 				return entry.val;
817 
818 			/* make sure dst_mm is on swapoff's mmlist. */
819 			if (unlikely(list_empty(&dst_mm->mmlist))) {
820 				spin_lock(&mmlist_lock);
821 				if (list_empty(&dst_mm->mmlist))
822 					list_add(&dst_mm->mmlist,
823 							&src_mm->mmlist);
824 				spin_unlock(&mmlist_lock);
825 			}
826 			rss[MM_SWAPENTS]++;
827 		} else if (is_migration_entry(entry)) {
828 			page = migration_entry_to_page(entry);
829 
830 			rss[mm_counter(page)]++;
831 
832 			if (is_write_migration_entry(entry) &&
833 					is_cow_mapping(vm_flags)) {
834 				/*
835 				 * COW mappings require pages in both
836 				 * parent and child to be set to read.
837 				 */
838 				make_migration_entry_read(&entry);
839 				pte = swp_entry_to_pte(entry);
840 				if (pte_swp_soft_dirty(*src_pte))
841 					pte = pte_swp_mksoft_dirty(pte);
842 				set_pte_at(src_mm, addr, src_pte, pte);
843 			}
844 		}
845 		goto out_set_pte;
846 	}
847 
848 	/*
849 	 * If it's a COW mapping, write protect it both
850 	 * in the parent and the child
851 	 */
852 	if (is_cow_mapping(vm_flags)) {
853 		ptep_set_wrprotect(src_mm, addr, src_pte);
854 		pte = pte_wrprotect(pte);
855 	}
856 
857 	/*
858 	 * If it's a shared mapping, mark it clean in
859 	 * the child
860 	 */
861 	if (vm_flags & VM_SHARED)
862 		pte = pte_mkclean(pte);
863 	pte = pte_mkold(pte);
864 
865 	page = vm_normal_page(vma, addr, pte);
866 	if (page) {
867 		get_page(page);
868 		page_dup_rmap(page, false);
869 		rss[mm_counter(page)]++;
870 	}
871 
872 out_set_pte:
873 	set_pte_at(dst_mm, addr, dst_pte, pte);
874 	return 0;
875 }
876 
877 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
879 		   unsigned long addr, unsigned long end)
880 {
881 	pte_t *orig_src_pte, *orig_dst_pte;
882 	pte_t *src_pte, *dst_pte;
883 	spinlock_t *src_ptl, *dst_ptl;
884 	int progress = 0;
885 	int rss[NR_MM_COUNTERS];
886 	swp_entry_t entry = (swp_entry_t){0};
887 
888 again:
889 	init_rss_vec(rss);
890 
891 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
892 	if (!dst_pte)
893 		return -ENOMEM;
894 	src_pte = pte_offset_map(src_pmd, addr);
895 	src_ptl = pte_lockptr(src_mm, src_pmd);
896 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
897 	orig_src_pte = src_pte;
898 	orig_dst_pte = dst_pte;
899 	arch_enter_lazy_mmu_mode();
900 
901 	do {
902 		/*
903 		 * We are holding two locks at this point - either of them
904 		 * could generate latencies in another task on another CPU.
905 		 */
906 		if (progress >= 32) {
907 			progress = 0;
908 			if (need_resched() ||
909 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
910 				break;
911 		}
912 		if (pte_none(*src_pte)) {
913 			progress++;
914 			continue;
915 		}
916 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
917 							vma, addr, rss);
918 		if (entry.val)
919 			break;
920 		progress += 8;
921 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
922 
923 	arch_leave_lazy_mmu_mode();
924 	spin_unlock(src_ptl);
925 	pte_unmap(orig_src_pte);
926 	add_mm_rss_vec(dst_mm, rss);
927 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
928 	cond_resched();
929 
930 	if (entry.val) {
931 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
932 			return -ENOMEM;
933 		progress = 0;
934 	}
935 	if (addr != end)
936 		goto again;
937 	return 0;
938 }
939 
940 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
941 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
942 		unsigned long addr, unsigned long end)
943 {
944 	pmd_t *src_pmd, *dst_pmd;
945 	unsigned long next;
946 
947 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
948 	if (!dst_pmd)
949 		return -ENOMEM;
950 	src_pmd = pmd_offset(src_pud, addr);
951 	do {
952 		next = pmd_addr_end(addr, end);
953 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
954 			int err;
955 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
956 			err = copy_huge_pmd(dst_mm, src_mm,
957 					    dst_pmd, src_pmd, addr, vma);
958 			if (err == -ENOMEM)
959 				return -ENOMEM;
960 			if (!err)
961 				continue;
962 			/* fall through */
963 		}
964 		if (pmd_none_or_clear_bad(src_pmd))
965 			continue;
966 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
967 						vma, addr, next))
968 			return -ENOMEM;
969 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
970 	return 0;
971 }
972 
973 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
975 		unsigned long addr, unsigned long end)
976 {
977 	pud_t *src_pud, *dst_pud;
978 	unsigned long next;
979 
980 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
981 	if (!dst_pud)
982 		return -ENOMEM;
983 	src_pud = pud_offset(src_pgd, addr);
984 	do {
985 		next = pud_addr_end(addr, end);
986 		if (pud_none_or_clear_bad(src_pud))
987 			continue;
988 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
989 						vma, addr, next))
990 			return -ENOMEM;
991 	} while (dst_pud++, src_pud++, addr = next, addr != end);
992 	return 0;
993 }
994 
995 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996 		struct vm_area_struct *vma)
997 {
998 	pgd_t *src_pgd, *dst_pgd;
999 	unsigned long next;
1000 	unsigned long addr = vma->vm_start;
1001 	unsigned long end = vma->vm_end;
1002 	unsigned long mmun_start;	/* For mmu_notifiers */
1003 	unsigned long mmun_end;		/* For mmu_notifiers */
1004 	bool is_cow;
1005 	int ret;
1006 
1007 	/*
1008 	 * Don't copy ptes where a page fault will fill them correctly.
1009 	 * Fork becomes much lighter when there are big shared or private
1010 	 * readonly mappings. The tradeoff is that copy_page_range is more
1011 	 * efficient than faulting.
1012 	 */
1013 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1014 			!vma->anon_vma)
1015 		return 0;
1016 
1017 	if (is_vm_hugetlb_page(vma))
1018 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1019 
1020 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1021 		/*
1022 		 * We do not free on error cases below as remove_vma
1023 		 * gets called on error from higher level routine
1024 		 */
1025 		ret = track_pfn_copy(vma);
1026 		if (ret)
1027 			return ret;
1028 	}
1029 
1030 	/*
1031 	 * We need to invalidate the secondary MMU mappings only when
1032 	 * there could be a permission downgrade on the ptes of the
1033 	 * parent mm. And a permission downgrade will only happen if
1034 	 * is_cow_mapping() returns true.
1035 	 */
1036 	is_cow = is_cow_mapping(vma->vm_flags);
1037 	mmun_start = addr;
1038 	mmun_end   = end;
1039 	if (is_cow)
1040 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1041 						    mmun_end);
1042 
1043 	ret = 0;
1044 	dst_pgd = pgd_offset(dst_mm, addr);
1045 	src_pgd = pgd_offset(src_mm, addr);
1046 	do {
1047 		next = pgd_addr_end(addr, end);
1048 		if (pgd_none_or_clear_bad(src_pgd))
1049 			continue;
1050 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1051 					    vma, addr, next))) {
1052 			ret = -ENOMEM;
1053 			break;
1054 		}
1055 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1056 
1057 	if (is_cow)
1058 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1059 	return ret;
1060 }
1061 
1062 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1063 				struct vm_area_struct *vma, pmd_t *pmd,
1064 				unsigned long addr, unsigned long end,
1065 				struct zap_details *details)
1066 {
1067 	struct mm_struct *mm = tlb->mm;
1068 	int force_flush = 0;
1069 	int rss[NR_MM_COUNTERS];
1070 	spinlock_t *ptl;
1071 	pte_t *start_pte;
1072 	pte_t *pte;
1073 	swp_entry_t entry;
1074 
1075 again:
1076 	init_rss_vec(rss);
1077 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1078 	pte = start_pte;
1079 	arch_enter_lazy_mmu_mode();
1080 	do {
1081 		pte_t ptent = *pte;
1082 		if (pte_none(ptent)) {
1083 			continue;
1084 		}
1085 
1086 		if (pte_present(ptent)) {
1087 			struct page *page;
1088 
1089 			page = vm_normal_page(vma, addr, ptent);
1090 			if (unlikely(details) && page) {
1091 				/*
1092 				 * unmap_shared_mapping_pages() wants to
1093 				 * invalidate cache without truncating:
1094 				 * unmap shared but keep private pages.
1095 				 */
1096 				if (details->check_mapping &&
1097 				    details->check_mapping != page->mapping)
1098 					continue;
1099 			}
1100 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1101 							tlb->fullmm);
1102 			tlb_remove_tlb_entry(tlb, pte, addr);
1103 			if (unlikely(!page))
1104 				continue;
1105 
1106 			if (!PageAnon(page)) {
1107 				if (pte_dirty(ptent)) {
1108 					force_flush = 1;
1109 					set_page_dirty(page);
1110 				}
1111 				if (pte_young(ptent) &&
1112 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1113 					mark_page_accessed(page);
1114 			}
1115 			rss[mm_counter(page)]--;
1116 			page_remove_rmap(page, false);
1117 			if (unlikely(page_mapcount(page) < 0))
1118 				print_bad_pte(vma, addr, ptent, page);
1119 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1120 				force_flush = 1;
1121 				addr += PAGE_SIZE;
1122 				break;
1123 			}
1124 			continue;
1125 		}
1126 		/* If details->check_mapping, we leave swap entries. */
1127 		if (unlikely(details))
1128 			continue;
1129 
1130 		entry = pte_to_swp_entry(ptent);
1131 		if (!non_swap_entry(entry))
1132 			rss[MM_SWAPENTS]--;
1133 		else if (is_migration_entry(entry)) {
1134 			struct page *page;
1135 
1136 			page = migration_entry_to_page(entry);
1137 			rss[mm_counter(page)]--;
1138 		}
1139 		if (unlikely(!free_swap_and_cache(entry)))
1140 			print_bad_pte(vma, addr, ptent, NULL);
1141 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142 	} while (pte++, addr += PAGE_SIZE, addr != end);
1143 
1144 	add_mm_rss_vec(mm, rss);
1145 	arch_leave_lazy_mmu_mode();
1146 
1147 	/* Do the actual TLB flush before dropping ptl */
1148 	if (force_flush)
1149 		tlb_flush_mmu_tlbonly(tlb);
1150 	pte_unmap_unlock(start_pte, ptl);
1151 
1152 	/*
1153 	 * If we forced a TLB flush (either due to running out of
1154 	 * batch buffers or because we needed to flush dirty TLB
1155 	 * entries before releasing the ptl), free the batched
1156 	 * memory too. Restart if we didn't do everything.
1157 	 */
1158 	if (force_flush) {
1159 		force_flush = 0;
1160 		tlb_flush_mmu_free(tlb);
1161 
1162 		if (addr != end)
1163 			goto again;
1164 	}
1165 
1166 	return addr;
1167 }
1168 
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170 				struct vm_area_struct *vma, pud_t *pud,
1171 				unsigned long addr, unsigned long end,
1172 				struct zap_details *details)
1173 {
1174 	pmd_t *pmd;
1175 	unsigned long next;
1176 
1177 	pmd = pmd_offset(pud, addr);
1178 	do {
1179 		next = pmd_addr_end(addr, end);
1180 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181 			if (next - addr != HPAGE_PMD_SIZE) {
1182 #ifdef CONFIG_DEBUG_VM
1183 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1184 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1185 						__func__, addr, end,
1186 						vma->vm_start,
1187 						vma->vm_end);
1188 					BUG();
1189 				}
1190 #endif
1191 				split_huge_pmd(vma, pmd, addr);
1192 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1193 				goto next;
1194 			/* fall through */
1195 		}
1196 		/*
1197 		 * Here there can be other concurrent MADV_DONTNEED or
1198 		 * trans huge page faults running, and if the pmd is
1199 		 * none or trans huge it can change under us. This is
1200 		 * because MADV_DONTNEED holds the mmap_sem in read
1201 		 * mode.
1202 		 */
1203 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1204 			goto next;
1205 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1206 next:
1207 		cond_resched();
1208 	} while (pmd++, addr = next, addr != end);
1209 
1210 	return addr;
1211 }
1212 
1213 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1214 				struct vm_area_struct *vma, pgd_t *pgd,
1215 				unsigned long addr, unsigned long end,
1216 				struct zap_details *details)
1217 {
1218 	pud_t *pud;
1219 	unsigned long next;
1220 
1221 	pud = pud_offset(pgd, addr);
1222 	do {
1223 		next = pud_addr_end(addr, end);
1224 		if (pud_none_or_clear_bad(pud))
1225 			continue;
1226 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1227 	} while (pud++, addr = next, addr != end);
1228 
1229 	return addr;
1230 }
1231 
1232 static void unmap_page_range(struct mmu_gather *tlb,
1233 			     struct vm_area_struct *vma,
1234 			     unsigned long addr, unsigned long end,
1235 			     struct zap_details *details)
1236 {
1237 	pgd_t *pgd;
1238 	unsigned long next;
1239 
1240 	if (details && !details->check_mapping)
1241 		details = NULL;
1242 
1243 	BUG_ON(addr >= end);
1244 	tlb_start_vma(tlb, vma);
1245 	pgd = pgd_offset(vma->vm_mm, addr);
1246 	do {
1247 		next = pgd_addr_end(addr, end);
1248 		if (pgd_none_or_clear_bad(pgd))
1249 			continue;
1250 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1251 	} while (pgd++, addr = next, addr != end);
1252 	tlb_end_vma(tlb, vma);
1253 }
1254 
1255 
1256 static void unmap_single_vma(struct mmu_gather *tlb,
1257 		struct vm_area_struct *vma, unsigned long start_addr,
1258 		unsigned long end_addr,
1259 		struct zap_details *details)
1260 {
1261 	unsigned long start = max(vma->vm_start, start_addr);
1262 	unsigned long end;
1263 
1264 	if (start >= vma->vm_end)
1265 		return;
1266 	end = min(vma->vm_end, end_addr);
1267 	if (end <= vma->vm_start)
1268 		return;
1269 
1270 	if (vma->vm_file)
1271 		uprobe_munmap(vma, start, end);
1272 
1273 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1274 		untrack_pfn(vma, 0, 0);
1275 
1276 	if (start != end) {
1277 		if (unlikely(is_vm_hugetlb_page(vma))) {
1278 			/*
1279 			 * It is undesirable to test vma->vm_file as it
1280 			 * should be non-null for valid hugetlb area.
1281 			 * However, vm_file will be NULL in the error
1282 			 * cleanup path of mmap_region. When
1283 			 * hugetlbfs ->mmap method fails,
1284 			 * mmap_region() nullifies vma->vm_file
1285 			 * before calling this function to clean up.
1286 			 * Since no pte has actually been setup, it is
1287 			 * safe to do nothing in this case.
1288 			 */
1289 			if (vma->vm_file) {
1290 				i_mmap_lock_write(vma->vm_file->f_mapping);
1291 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1292 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1293 			}
1294 		} else
1295 			unmap_page_range(tlb, vma, start, end, details);
1296 	}
1297 }
1298 
1299 /**
1300  * unmap_vmas - unmap a range of memory covered by a list of vma's
1301  * @tlb: address of the caller's struct mmu_gather
1302  * @vma: the starting vma
1303  * @start_addr: virtual address at which to start unmapping
1304  * @end_addr: virtual address at which to end unmapping
1305  *
1306  * Unmap all pages in the vma list.
1307  *
1308  * Only addresses between `start' and `end' will be unmapped.
1309  *
1310  * The VMA list must be sorted in ascending virtual address order.
1311  *
1312  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1313  * range after unmap_vmas() returns.  So the only responsibility here is to
1314  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1315  * drops the lock and schedules.
1316  */
1317 void unmap_vmas(struct mmu_gather *tlb,
1318 		struct vm_area_struct *vma, unsigned long start_addr,
1319 		unsigned long end_addr)
1320 {
1321 	struct mm_struct *mm = vma->vm_mm;
1322 
1323 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1325 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1326 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1327 }
1328 
1329 /**
1330  * zap_page_range - remove user pages in a given range
1331  * @vma: vm_area_struct holding the applicable pages
1332  * @start: starting address of pages to zap
1333  * @size: number of bytes to zap
1334  * @details: details of shared cache invalidation
1335  *
1336  * Caller must protect the VMA list
1337  */
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339 		unsigned long size, struct zap_details *details)
1340 {
1341 	struct mm_struct *mm = vma->vm_mm;
1342 	struct mmu_gather tlb;
1343 	unsigned long end = start + size;
1344 
1345 	lru_add_drain();
1346 	tlb_gather_mmu(&tlb, mm, start, end);
1347 	update_hiwater_rss(mm);
1348 	mmu_notifier_invalidate_range_start(mm, start, end);
1349 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1350 		unmap_single_vma(&tlb, vma, start, end, details);
1351 	mmu_notifier_invalidate_range_end(mm, start, end);
1352 	tlb_finish_mmu(&tlb, start, end);
1353 }
1354 
1355 /**
1356  * zap_page_range_single - remove user pages in a given range
1357  * @vma: vm_area_struct holding the applicable pages
1358  * @address: starting address of pages to zap
1359  * @size: number of bytes to zap
1360  * @details: details of shared cache invalidation
1361  *
1362  * The range must fit into one VMA.
1363  */
1364 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1365 		unsigned long size, struct zap_details *details)
1366 {
1367 	struct mm_struct *mm = vma->vm_mm;
1368 	struct mmu_gather tlb;
1369 	unsigned long end = address + size;
1370 
1371 	lru_add_drain();
1372 	tlb_gather_mmu(&tlb, mm, address, end);
1373 	update_hiwater_rss(mm);
1374 	mmu_notifier_invalidate_range_start(mm, address, end);
1375 	unmap_single_vma(&tlb, vma, address, end, details);
1376 	mmu_notifier_invalidate_range_end(mm, address, end);
1377 	tlb_finish_mmu(&tlb, address, end);
1378 }
1379 
1380 /**
1381  * zap_vma_ptes - remove ptes mapping the vma
1382  * @vma: vm_area_struct holding ptes to be zapped
1383  * @address: starting address of pages to zap
1384  * @size: number of bytes to zap
1385  *
1386  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1387  *
1388  * The entire address range must be fully contained within the vma.
1389  *
1390  * Returns 0 if successful.
1391  */
1392 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1393 		unsigned long size)
1394 {
1395 	if (address < vma->vm_start || address + size > vma->vm_end ||
1396 	    		!(vma->vm_flags & VM_PFNMAP))
1397 		return -1;
1398 	zap_page_range_single(vma, address, size, NULL);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1402 
1403 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1404 			spinlock_t **ptl)
1405 {
1406 	pgd_t * pgd = pgd_offset(mm, addr);
1407 	pud_t * pud = pud_alloc(mm, pgd, addr);
1408 	if (pud) {
1409 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1410 		if (pmd) {
1411 			VM_BUG_ON(pmd_trans_huge(*pmd));
1412 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413 		}
1414 	}
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * This is the old fallback for page remapping.
1420  *
1421  * For historical reasons, it only allows reserved pages. Only
1422  * old drivers should use this, and they needed to mark their
1423  * pages reserved for the old functions anyway.
1424  */
1425 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 			struct page *page, pgprot_t prot)
1427 {
1428 	struct mm_struct *mm = vma->vm_mm;
1429 	int retval;
1430 	pte_t *pte;
1431 	spinlock_t *ptl;
1432 
1433 	retval = -EINVAL;
1434 	if (PageAnon(page))
1435 		goto out;
1436 	retval = -ENOMEM;
1437 	flush_dcache_page(page);
1438 	pte = get_locked_pte(mm, addr, &ptl);
1439 	if (!pte)
1440 		goto out;
1441 	retval = -EBUSY;
1442 	if (!pte_none(*pte))
1443 		goto out_unlock;
1444 
1445 	/* Ok, finally just insert the thing.. */
1446 	get_page(page);
1447 	inc_mm_counter_fast(mm, mm_counter_file(page));
1448 	page_add_file_rmap(page);
1449 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1450 
1451 	retval = 0;
1452 	pte_unmap_unlock(pte, ptl);
1453 	return retval;
1454 out_unlock:
1455 	pte_unmap_unlock(pte, ptl);
1456 out:
1457 	return retval;
1458 }
1459 
1460 /**
1461  * vm_insert_page - insert single page into user vma
1462  * @vma: user vma to map to
1463  * @addr: target user address of this page
1464  * @page: source kernel page
1465  *
1466  * This allows drivers to insert individual pages they've allocated
1467  * into a user vma.
1468  *
1469  * The page has to be a nice clean _individual_ kernel allocation.
1470  * If you allocate a compound page, you need to have marked it as
1471  * such (__GFP_COMP), or manually just split the page up yourself
1472  * (see split_page()).
1473  *
1474  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1475  * took an arbitrary page protection parameter. This doesn't allow
1476  * that. Your vma protection will have to be set up correctly, which
1477  * means that if you want a shared writable mapping, you'd better
1478  * ask for a shared writable mapping!
1479  *
1480  * The page does not need to be reserved.
1481  *
1482  * Usually this function is called from f_op->mmap() handler
1483  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1484  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1485  * function from other places, for example from page-fault handler.
1486  */
1487 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1488 			struct page *page)
1489 {
1490 	if (addr < vma->vm_start || addr >= vma->vm_end)
1491 		return -EFAULT;
1492 	if (!page_count(page))
1493 		return -EINVAL;
1494 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1495 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1496 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1497 		vma->vm_flags |= VM_MIXEDMAP;
1498 	}
1499 	return insert_page(vma, addr, page, vma->vm_page_prot);
1500 }
1501 EXPORT_SYMBOL(vm_insert_page);
1502 
1503 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1504 			pfn_t pfn, pgprot_t prot)
1505 {
1506 	struct mm_struct *mm = vma->vm_mm;
1507 	int retval;
1508 	pte_t *pte, entry;
1509 	spinlock_t *ptl;
1510 
1511 	retval = -ENOMEM;
1512 	pte = get_locked_pte(mm, addr, &ptl);
1513 	if (!pte)
1514 		goto out;
1515 	retval = -EBUSY;
1516 	if (!pte_none(*pte))
1517 		goto out_unlock;
1518 
1519 	/* Ok, finally just insert the thing.. */
1520 	if (pfn_t_devmap(pfn))
1521 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1522 	else
1523 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1524 	set_pte_at(mm, addr, pte, entry);
1525 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1526 
1527 	retval = 0;
1528 out_unlock:
1529 	pte_unmap_unlock(pte, ptl);
1530 out:
1531 	return retval;
1532 }
1533 
1534 /**
1535  * vm_insert_pfn - insert single pfn into user vma
1536  * @vma: user vma to map to
1537  * @addr: target user address of this page
1538  * @pfn: source kernel pfn
1539  *
1540  * Similar to vm_insert_page, this allows drivers to insert individual pages
1541  * they've allocated into a user vma. Same comments apply.
1542  *
1543  * This function should only be called from a vm_ops->fault handler, and
1544  * in that case the handler should return NULL.
1545  *
1546  * vma cannot be a COW mapping.
1547  *
1548  * As this is called only for pages that do not currently exist, we
1549  * do not need to flush old virtual caches or the TLB.
1550  */
1551 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552 			unsigned long pfn)
1553 {
1554 	int ret;
1555 	pgprot_t pgprot = vma->vm_page_prot;
1556 	/*
1557 	 * Technically, architectures with pte_special can avoid all these
1558 	 * restrictions (same for remap_pfn_range).  However we would like
1559 	 * consistency in testing and feature parity among all, so we should
1560 	 * try to keep these invariants in place for everybody.
1561 	 */
1562 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1563 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1564 						(VM_PFNMAP|VM_MIXEDMAP));
1565 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1566 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1567 
1568 	if (addr < vma->vm_start || addr >= vma->vm_end)
1569 		return -EFAULT;
1570 	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1571 		return -EINVAL;
1572 
1573 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1574 
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL(vm_insert_pfn);
1578 
1579 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1580 			pfn_t pfn)
1581 {
1582 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1583 
1584 	if (addr < vma->vm_start || addr >= vma->vm_end)
1585 		return -EFAULT;
1586 
1587 	/*
1588 	 * If we don't have pte special, then we have to use the pfn_valid()
1589 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1590 	 * refcount the page if pfn_valid is true (hence insert_page rather
1591 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1592 	 * without pte special, it would there be refcounted as a normal page.
1593 	 */
1594 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1595 		struct page *page;
1596 
1597 		/*
1598 		 * At this point we are committed to insert_page()
1599 		 * regardless of whether the caller specified flags that
1600 		 * result in pfn_t_has_page() == false.
1601 		 */
1602 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1603 		return insert_page(vma, addr, page, vma->vm_page_prot);
1604 	}
1605 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1606 }
1607 EXPORT_SYMBOL(vm_insert_mixed);
1608 
1609 /*
1610  * maps a range of physical memory into the requested pages. the old
1611  * mappings are removed. any references to nonexistent pages results
1612  * in null mappings (currently treated as "copy-on-access")
1613  */
1614 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1615 			unsigned long addr, unsigned long end,
1616 			unsigned long pfn, pgprot_t prot)
1617 {
1618 	pte_t *pte;
1619 	spinlock_t *ptl;
1620 
1621 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1622 	if (!pte)
1623 		return -ENOMEM;
1624 	arch_enter_lazy_mmu_mode();
1625 	do {
1626 		BUG_ON(!pte_none(*pte));
1627 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1628 		pfn++;
1629 	} while (pte++, addr += PAGE_SIZE, addr != end);
1630 	arch_leave_lazy_mmu_mode();
1631 	pte_unmap_unlock(pte - 1, ptl);
1632 	return 0;
1633 }
1634 
1635 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1636 			unsigned long addr, unsigned long end,
1637 			unsigned long pfn, pgprot_t prot)
1638 {
1639 	pmd_t *pmd;
1640 	unsigned long next;
1641 
1642 	pfn -= addr >> PAGE_SHIFT;
1643 	pmd = pmd_alloc(mm, pud, addr);
1644 	if (!pmd)
1645 		return -ENOMEM;
1646 	VM_BUG_ON(pmd_trans_huge(*pmd));
1647 	do {
1648 		next = pmd_addr_end(addr, end);
1649 		if (remap_pte_range(mm, pmd, addr, next,
1650 				pfn + (addr >> PAGE_SHIFT), prot))
1651 			return -ENOMEM;
1652 	} while (pmd++, addr = next, addr != end);
1653 	return 0;
1654 }
1655 
1656 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1657 			unsigned long addr, unsigned long end,
1658 			unsigned long pfn, pgprot_t prot)
1659 {
1660 	pud_t *pud;
1661 	unsigned long next;
1662 
1663 	pfn -= addr >> PAGE_SHIFT;
1664 	pud = pud_alloc(mm, pgd, addr);
1665 	if (!pud)
1666 		return -ENOMEM;
1667 	do {
1668 		next = pud_addr_end(addr, end);
1669 		if (remap_pmd_range(mm, pud, addr, next,
1670 				pfn + (addr >> PAGE_SHIFT), prot))
1671 			return -ENOMEM;
1672 	} while (pud++, addr = next, addr != end);
1673 	return 0;
1674 }
1675 
1676 /**
1677  * remap_pfn_range - remap kernel memory to userspace
1678  * @vma: user vma to map to
1679  * @addr: target user address to start at
1680  * @pfn: physical address of kernel memory
1681  * @size: size of map area
1682  * @prot: page protection flags for this mapping
1683  *
1684  *  Note: this is only safe if the mm semaphore is held when called.
1685  */
1686 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1687 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1688 {
1689 	pgd_t *pgd;
1690 	unsigned long next;
1691 	unsigned long end = addr + PAGE_ALIGN(size);
1692 	struct mm_struct *mm = vma->vm_mm;
1693 	int err;
1694 
1695 	/*
1696 	 * Physically remapped pages are special. Tell the
1697 	 * rest of the world about it:
1698 	 *   VM_IO tells people not to look at these pages
1699 	 *	(accesses can have side effects).
1700 	 *   VM_PFNMAP tells the core MM that the base pages are just
1701 	 *	raw PFN mappings, and do not have a "struct page" associated
1702 	 *	with them.
1703 	 *   VM_DONTEXPAND
1704 	 *      Disable vma merging and expanding with mremap().
1705 	 *   VM_DONTDUMP
1706 	 *      Omit vma from core dump, even when VM_IO turned off.
1707 	 *
1708 	 * There's a horrible special case to handle copy-on-write
1709 	 * behaviour that some programs depend on. We mark the "original"
1710 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1711 	 * See vm_normal_page() for details.
1712 	 */
1713 	if (is_cow_mapping(vma->vm_flags)) {
1714 		if (addr != vma->vm_start || end != vma->vm_end)
1715 			return -EINVAL;
1716 		vma->vm_pgoff = pfn;
1717 	}
1718 
1719 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1720 	if (err)
1721 		return -EINVAL;
1722 
1723 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1724 
1725 	BUG_ON(addr >= end);
1726 	pfn -= addr >> PAGE_SHIFT;
1727 	pgd = pgd_offset(mm, addr);
1728 	flush_cache_range(vma, addr, end);
1729 	do {
1730 		next = pgd_addr_end(addr, end);
1731 		err = remap_pud_range(mm, pgd, addr, next,
1732 				pfn + (addr >> PAGE_SHIFT), prot);
1733 		if (err)
1734 			break;
1735 	} while (pgd++, addr = next, addr != end);
1736 
1737 	if (err)
1738 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1739 
1740 	return err;
1741 }
1742 EXPORT_SYMBOL(remap_pfn_range);
1743 
1744 /**
1745  * vm_iomap_memory - remap memory to userspace
1746  * @vma: user vma to map to
1747  * @start: start of area
1748  * @len: size of area
1749  *
1750  * This is a simplified io_remap_pfn_range() for common driver use. The
1751  * driver just needs to give us the physical memory range to be mapped,
1752  * we'll figure out the rest from the vma information.
1753  *
1754  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1755  * whatever write-combining details or similar.
1756  */
1757 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1758 {
1759 	unsigned long vm_len, pfn, pages;
1760 
1761 	/* Check that the physical memory area passed in looks valid */
1762 	if (start + len < start)
1763 		return -EINVAL;
1764 	/*
1765 	 * You *really* shouldn't map things that aren't page-aligned,
1766 	 * but we've historically allowed it because IO memory might
1767 	 * just have smaller alignment.
1768 	 */
1769 	len += start & ~PAGE_MASK;
1770 	pfn = start >> PAGE_SHIFT;
1771 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1772 	if (pfn + pages < pfn)
1773 		return -EINVAL;
1774 
1775 	/* We start the mapping 'vm_pgoff' pages into the area */
1776 	if (vma->vm_pgoff > pages)
1777 		return -EINVAL;
1778 	pfn += vma->vm_pgoff;
1779 	pages -= vma->vm_pgoff;
1780 
1781 	/* Can we fit all of the mapping? */
1782 	vm_len = vma->vm_end - vma->vm_start;
1783 	if (vm_len >> PAGE_SHIFT > pages)
1784 		return -EINVAL;
1785 
1786 	/* Ok, let it rip */
1787 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1788 }
1789 EXPORT_SYMBOL(vm_iomap_memory);
1790 
1791 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792 				     unsigned long addr, unsigned long end,
1793 				     pte_fn_t fn, void *data)
1794 {
1795 	pte_t *pte;
1796 	int err;
1797 	pgtable_t token;
1798 	spinlock_t *uninitialized_var(ptl);
1799 
1800 	pte = (mm == &init_mm) ?
1801 		pte_alloc_kernel(pmd, addr) :
1802 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1803 	if (!pte)
1804 		return -ENOMEM;
1805 
1806 	BUG_ON(pmd_huge(*pmd));
1807 
1808 	arch_enter_lazy_mmu_mode();
1809 
1810 	token = pmd_pgtable(*pmd);
1811 
1812 	do {
1813 		err = fn(pte++, token, addr, data);
1814 		if (err)
1815 			break;
1816 	} while (addr += PAGE_SIZE, addr != end);
1817 
1818 	arch_leave_lazy_mmu_mode();
1819 
1820 	if (mm != &init_mm)
1821 		pte_unmap_unlock(pte-1, ptl);
1822 	return err;
1823 }
1824 
1825 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1826 				     unsigned long addr, unsigned long end,
1827 				     pte_fn_t fn, void *data)
1828 {
1829 	pmd_t *pmd;
1830 	unsigned long next;
1831 	int err;
1832 
1833 	BUG_ON(pud_huge(*pud));
1834 
1835 	pmd = pmd_alloc(mm, pud, addr);
1836 	if (!pmd)
1837 		return -ENOMEM;
1838 	do {
1839 		next = pmd_addr_end(addr, end);
1840 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1841 		if (err)
1842 			break;
1843 	} while (pmd++, addr = next, addr != end);
1844 	return err;
1845 }
1846 
1847 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1848 				     unsigned long addr, unsigned long end,
1849 				     pte_fn_t fn, void *data)
1850 {
1851 	pud_t *pud;
1852 	unsigned long next;
1853 	int err;
1854 
1855 	pud = pud_alloc(mm, pgd, addr);
1856 	if (!pud)
1857 		return -ENOMEM;
1858 	do {
1859 		next = pud_addr_end(addr, end);
1860 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1861 		if (err)
1862 			break;
1863 	} while (pud++, addr = next, addr != end);
1864 	return err;
1865 }
1866 
1867 /*
1868  * Scan a region of virtual memory, filling in page tables as necessary
1869  * and calling a provided function on each leaf page table.
1870  */
1871 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1872 			unsigned long size, pte_fn_t fn, void *data)
1873 {
1874 	pgd_t *pgd;
1875 	unsigned long next;
1876 	unsigned long end = addr + size;
1877 	int err;
1878 
1879 	BUG_ON(addr >= end);
1880 	pgd = pgd_offset(mm, addr);
1881 	do {
1882 		next = pgd_addr_end(addr, end);
1883 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1884 		if (err)
1885 			break;
1886 	} while (pgd++, addr = next, addr != end);
1887 
1888 	return err;
1889 }
1890 EXPORT_SYMBOL_GPL(apply_to_page_range);
1891 
1892 /*
1893  * handle_pte_fault chooses page fault handler according to an entry which was
1894  * read non-atomically.  Before making any commitment, on those architectures
1895  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1896  * parts, do_swap_page must check under lock before unmapping the pte and
1897  * proceeding (but do_wp_page is only called after already making such a check;
1898  * and do_anonymous_page can safely check later on).
1899  */
1900 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1901 				pte_t *page_table, pte_t orig_pte)
1902 {
1903 	int same = 1;
1904 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1905 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1906 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1907 		spin_lock(ptl);
1908 		same = pte_same(*page_table, orig_pte);
1909 		spin_unlock(ptl);
1910 	}
1911 #endif
1912 	pte_unmap(page_table);
1913 	return same;
1914 }
1915 
1916 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1917 {
1918 	debug_dma_assert_idle(src);
1919 
1920 	/*
1921 	 * If the source page was a PFN mapping, we don't have
1922 	 * a "struct page" for it. We do a best-effort copy by
1923 	 * just copying from the original user address. If that
1924 	 * fails, we just zero-fill it. Live with it.
1925 	 */
1926 	if (unlikely(!src)) {
1927 		void *kaddr = kmap_atomic(dst);
1928 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1929 
1930 		/*
1931 		 * This really shouldn't fail, because the page is there
1932 		 * in the page tables. But it might just be unreadable,
1933 		 * in which case we just give up and fill the result with
1934 		 * zeroes.
1935 		 */
1936 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1937 			clear_page(kaddr);
1938 		kunmap_atomic(kaddr);
1939 		flush_dcache_page(dst);
1940 	} else
1941 		copy_user_highpage(dst, src, va, vma);
1942 }
1943 
1944 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1945 {
1946 	struct file *vm_file = vma->vm_file;
1947 
1948 	if (vm_file)
1949 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1950 
1951 	/*
1952 	 * Special mappings (e.g. VDSO) do not have any file so fake
1953 	 * a default GFP_KERNEL for them.
1954 	 */
1955 	return GFP_KERNEL;
1956 }
1957 
1958 /*
1959  * Notify the address space that the page is about to become writable so that
1960  * it can prohibit this or wait for the page to get into an appropriate state.
1961  *
1962  * We do this without the lock held, so that it can sleep if it needs to.
1963  */
1964 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1965 	       unsigned long address)
1966 {
1967 	struct vm_fault vmf;
1968 	int ret;
1969 
1970 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1971 	vmf.pgoff = page->index;
1972 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1973 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
1974 	vmf.page = page;
1975 	vmf.cow_page = NULL;
1976 
1977 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1978 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1979 		return ret;
1980 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1981 		lock_page(page);
1982 		if (!page->mapping) {
1983 			unlock_page(page);
1984 			return 0; /* retry */
1985 		}
1986 		ret |= VM_FAULT_LOCKED;
1987 	} else
1988 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1989 	return ret;
1990 }
1991 
1992 /*
1993  * Handle write page faults for pages that can be reused in the current vma
1994  *
1995  * This can happen either due to the mapping being with the VM_SHARED flag,
1996  * or due to us being the last reference standing to the page. In either
1997  * case, all we need to do here is to mark the page as writable and update
1998  * any related book-keeping.
1999  */
2000 static inline int wp_page_reuse(struct mm_struct *mm,
2001 			struct vm_area_struct *vma, unsigned long address,
2002 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2003 			struct page *page, int page_mkwrite,
2004 			int dirty_shared)
2005 	__releases(ptl)
2006 {
2007 	pte_t entry;
2008 	/*
2009 	 * Clear the pages cpupid information as the existing
2010 	 * information potentially belongs to a now completely
2011 	 * unrelated process.
2012 	 */
2013 	if (page)
2014 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2015 
2016 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2017 	entry = pte_mkyoung(orig_pte);
2018 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2019 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2020 		update_mmu_cache(vma, address, page_table);
2021 	pte_unmap_unlock(page_table, ptl);
2022 
2023 	if (dirty_shared) {
2024 		struct address_space *mapping;
2025 		int dirtied;
2026 
2027 		if (!page_mkwrite)
2028 			lock_page(page);
2029 
2030 		dirtied = set_page_dirty(page);
2031 		VM_BUG_ON_PAGE(PageAnon(page), page);
2032 		mapping = page->mapping;
2033 		unlock_page(page);
2034 		page_cache_release(page);
2035 
2036 		if ((dirtied || page_mkwrite) && mapping) {
2037 			/*
2038 			 * Some device drivers do not set page.mapping
2039 			 * but still dirty their pages
2040 			 */
2041 			balance_dirty_pages_ratelimited(mapping);
2042 		}
2043 
2044 		if (!page_mkwrite)
2045 			file_update_time(vma->vm_file);
2046 	}
2047 
2048 	return VM_FAULT_WRITE;
2049 }
2050 
2051 /*
2052  * Handle the case of a page which we actually need to copy to a new page.
2053  *
2054  * Called with mmap_sem locked and the old page referenced, but
2055  * without the ptl held.
2056  *
2057  * High level logic flow:
2058  *
2059  * - Allocate a page, copy the content of the old page to the new one.
2060  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2061  * - Take the PTL. If the pte changed, bail out and release the allocated page
2062  * - If the pte is still the way we remember it, update the page table and all
2063  *   relevant references. This includes dropping the reference the page-table
2064  *   held to the old page, as well as updating the rmap.
2065  * - In any case, unlock the PTL and drop the reference we took to the old page.
2066  */
2067 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2068 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2069 			pte_t orig_pte, struct page *old_page)
2070 {
2071 	struct page *new_page = NULL;
2072 	spinlock_t *ptl = NULL;
2073 	pte_t entry;
2074 	int page_copied = 0;
2075 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2076 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2077 	struct mem_cgroup *memcg;
2078 
2079 	if (unlikely(anon_vma_prepare(vma)))
2080 		goto oom;
2081 
2082 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2083 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2084 		if (!new_page)
2085 			goto oom;
2086 	} else {
2087 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2088 		if (!new_page)
2089 			goto oom;
2090 		cow_user_page(new_page, old_page, address, vma);
2091 	}
2092 
2093 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2094 		goto oom_free_new;
2095 
2096 	__SetPageUptodate(new_page);
2097 
2098 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2099 
2100 	/*
2101 	 * Re-check the pte - we dropped the lock
2102 	 */
2103 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2104 	if (likely(pte_same(*page_table, orig_pte))) {
2105 		if (old_page) {
2106 			if (!PageAnon(old_page)) {
2107 				dec_mm_counter_fast(mm,
2108 						mm_counter_file(old_page));
2109 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2110 			}
2111 		} else {
2112 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2113 		}
2114 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2115 		entry = mk_pte(new_page, vma->vm_page_prot);
2116 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2117 		/*
2118 		 * Clear the pte entry and flush it first, before updating the
2119 		 * pte with the new entry. This will avoid a race condition
2120 		 * seen in the presence of one thread doing SMC and another
2121 		 * thread doing COW.
2122 		 */
2123 		ptep_clear_flush_notify(vma, address, page_table);
2124 		page_add_new_anon_rmap(new_page, vma, address, false);
2125 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2126 		lru_cache_add_active_or_unevictable(new_page, vma);
2127 		/*
2128 		 * We call the notify macro here because, when using secondary
2129 		 * mmu page tables (such as kvm shadow page tables), we want the
2130 		 * new page to be mapped directly into the secondary page table.
2131 		 */
2132 		set_pte_at_notify(mm, address, page_table, entry);
2133 		update_mmu_cache(vma, address, page_table);
2134 		if (old_page) {
2135 			/*
2136 			 * Only after switching the pte to the new page may
2137 			 * we remove the mapcount here. Otherwise another
2138 			 * process may come and find the rmap count decremented
2139 			 * before the pte is switched to the new page, and
2140 			 * "reuse" the old page writing into it while our pte
2141 			 * here still points into it and can be read by other
2142 			 * threads.
2143 			 *
2144 			 * The critical issue is to order this
2145 			 * page_remove_rmap with the ptp_clear_flush above.
2146 			 * Those stores are ordered by (if nothing else,)
2147 			 * the barrier present in the atomic_add_negative
2148 			 * in page_remove_rmap.
2149 			 *
2150 			 * Then the TLB flush in ptep_clear_flush ensures that
2151 			 * no process can access the old page before the
2152 			 * decremented mapcount is visible. And the old page
2153 			 * cannot be reused until after the decremented
2154 			 * mapcount is visible. So transitively, TLBs to
2155 			 * old page will be flushed before it can be reused.
2156 			 */
2157 			page_remove_rmap(old_page, false);
2158 		}
2159 
2160 		/* Free the old page.. */
2161 		new_page = old_page;
2162 		page_copied = 1;
2163 	} else {
2164 		mem_cgroup_cancel_charge(new_page, memcg, false);
2165 	}
2166 
2167 	if (new_page)
2168 		page_cache_release(new_page);
2169 
2170 	pte_unmap_unlock(page_table, ptl);
2171 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2172 	if (old_page) {
2173 		/*
2174 		 * Don't let another task, with possibly unlocked vma,
2175 		 * keep the mlocked page.
2176 		 */
2177 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2178 			lock_page(old_page);	/* LRU manipulation */
2179 			if (PageMlocked(old_page))
2180 				munlock_vma_page(old_page);
2181 			unlock_page(old_page);
2182 		}
2183 		page_cache_release(old_page);
2184 	}
2185 	return page_copied ? VM_FAULT_WRITE : 0;
2186 oom_free_new:
2187 	page_cache_release(new_page);
2188 oom:
2189 	if (old_page)
2190 		page_cache_release(old_page);
2191 	return VM_FAULT_OOM;
2192 }
2193 
2194 /*
2195  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2196  * mapping
2197  */
2198 static int wp_pfn_shared(struct mm_struct *mm,
2199 			struct vm_area_struct *vma, unsigned long address,
2200 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2201 			pmd_t *pmd)
2202 {
2203 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2204 		struct vm_fault vmf = {
2205 			.page = NULL,
2206 			.pgoff = linear_page_index(vma, address),
2207 			.virtual_address = (void __user *)(address & PAGE_MASK),
2208 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2209 		};
2210 		int ret;
2211 
2212 		pte_unmap_unlock(page_table, ptl);
2213 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2214 		if (ret & VM_FAULT_ERROR)
2215 			return ret;
2216 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2217 		/*
2218 		 * We might have raced with another page fault while we
2219 		 * released the pte_offset_map_lock.
2220 		 */
2221 		if (!pte_same(*page_table, orig_pte)) {
2222 			pte_unmap_unlock(page_table, ptl);
2223 			return 0;
2224 		}
2225 	}
2226 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2227 			     NULL, 0, 0);
2228 }
2229 
2230 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2231 			  unsigned long address, pte_t *page_table,
2232 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2233 			  struct page *old_page)
2234 	__releases(ptl)
2235 {
2236 	int page_mkwrite = 0;
2237 
2238 	page_cache_get(old_page);
2239 
2240 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2241 		int tmp;
2242 
2243 		pte_unmap_unlock(page_table, ptl);
2244 		tmp = do_page_mkwrite(vma, old_page, address);
2245 		if (unlikely(!tmp || (tmp &
2246 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2247 			page_cache_release(old_page);
2248 			return tmp;
2249 		}
2250 		/*
2251 		 * Since we dropped the lock we need to revalidate
2252 		 * the PTE as someone else may have changed it.  If
2253 		 * they did, we just return, as we can count on the
2254 		 * MMU to tell us if they didn't also make it writable.
2255 		 */
2256 		page_table = pte_offset_map_lock(mm, pmd, address,
2257 						 &ptl);
2258 		if (!pte_same(*page_table, orig_pte)) {
2259 			unlock_page(old_page);
2260 			pte_unmap_unlock(page_table, ptl);
2261 			page_cache_release(old_page);
2262 			return 0;
2263 		}
2264 		page_mkwrite = 1;
2265 	}
2266 
2267 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2268 			     orig_pte, old_page, page_mkwrite, 1);
2269 }
2270 
2271 /*
2272  * This routine handles present pages, when users try to write
2273  * to a shared page. It is done by copying the page to a new address
2274  * and decrementing the shared-page counter for the old page.
2275  *
2276  * Note that this routine assumes that the protection checks have been
2277  * done by the caller (the low-level page fault routine in most cases).
2278  * Thus we can safely just mark it writable once we've done any necessary
2279  * COW.
2280  *
2281  * We also mark the page dirty at this point even though the page will
2282  * change only once the write actually happens. This avoids a few races,
2283  * and potentially makes it more efficient.
2284  *
2285  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2286  * but allow concurrent faults), with pte both mapped and locked.
2287  * We return with mmap_sem still held, but pte unmapped and unlocked.
2288  */
2289 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2290 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2291 		spinlock_t *ptl, pte_t orig_pte)
2292 	__releases(ptl)
2293 {
2294 	struct page *old_page;
2295 
2296 	old_page = vm_normal_page(vma, address, orig_pte);
2297 	if (!old_page) {
2298 		/*
2299 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2300 		 * VM_PFNMAP VMA.
2301 		 *
2302 		 * We should not cow pages in a shared writeable mapping.
2303 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2304 		 */
2305 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2306 				     (VM_WRITE|VM_SHARED))
2307 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2308 					     orig_pte, pmd);
2309 
2310 		pte_unmap_unlock(page_table, ptl);
2311 		return wp_page_copy(mm, vma, address, page_table, pmd,
2312 				    orig_pte, old_page);
2313 	}
2314 
2315 	/*
2316 	 * Take out anonymous pages first, anonymous shared vmas are
2317 	 * not dirty accountable.
2318 	 */
2319 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2320 		if (!trylock_page(old_page)) {
2321 			page_cache_get(old_page);
2322 			pte_unmap_unlock(page_table, ptl);
2323 			lock_page(old_page);
2324 			page_table = pte_offset_map_lock(mm, pmd, address,
2325 							 &ptl);
2326 			if (!pte_same(*page_table, orig_pte)) {
2327 				unlock_page(old_page);
2328 				pte_unmap_unlock(page_table, ptl);
2329 				page_cache_release(old_page);
2330 				return 0;
2331 			}
2332 			page_cache_release(old_page);
2333 		}
2334 		if (reuse_swap_page(old_page)) {
2335 			/*
2336 			 * The page is all ours.  Move it to our anon_vma so
2337 			 * the rmap code will not search our parent or siblings.
2338 			 * Protected against the rmap code by the page lock.
2339 			 */
2340 			page_move_anon_rmap(old_page, vma, address);
2341 			unlock_page(old_page);
2342 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2343 					     orig_pte, old_page, 0, 0);
2344 		}
2345 		unlock_page(old_page);
2346 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2347 					(VM_WRITE|VM_SHARED))) {
2348 		return wp_page_shared(mm, vma, address, page_table, pmd,
2349 				      ptl, orig_pte, old_page);
2350 	}
2351 
2352 	/*
2353 	 * Ok, we need to copy. Oh, well..
2354 	 */
2355 	page_cache_get(old_page);
2356 
2357 	pte_unmap_unlock(page_table, ptl);
2358 	return wp_page_copy(mm, vma, address, page_table, pmd,
2359 			    orig_pte, old_page);
2360 }
2361 
2362 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2363 		unsigned long start_addr, unsigned long end_addr,
2364 		struct zap_details *details)
2365 {
2366 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2367 }
2368 
2369 static inline void unmap_mapping_range_tree(struct rb_root *root,
2370 					    struct zap_details *details)
2371 {
2372 	struct vm_area_struct *vma;
2373 	pgoff_t vba, vea, zba, zea;
2374 
2375 	vma_interval_tree_foreach(vma, root,
2376 			details->first_index, details->last_index) {
2377 
2378 		vba = vma->vm_pgoff;
2379 		vea = vba + vma_pages(vma) - 1;
2380 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2381 		zba = details->first_index;
2382 		if (zba < vba)
2383 			zba = vba;
2384 		zea = details->last_index;
2385 		if (zea > vea)
2386 			zea = vea;
2387 
2388 		unmap_mapping_range_vma(vma,
2389 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2390 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2391 				details);
2392 	}
2393 }
2394 
2395 /**
2396  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2397  * address_space corresponding to the specified page range in the underlying
2398  * file.
2399  *
2400  * @mapping: the address space containing mmaps to be unmapped.
2401  * @holebegin: byte in first page to unmap, relative to the start of
2402  * the underlying file.  This will be rounded down to a PAGE_SIZE
2403  * boundary.  Note that this is different from truncate_pagecache(), which
2404  * must keep the partial page.  In contrast, we must get rid of
2405  * partial pages.
2406  * @holelen: size of prospective hole in bytes.  This will be rounded
2407  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2408  * end of the file.
2409  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2410  * but 0 when invalidating pagecache, don't throw away private data.
2411  */
2412 void unmap_mapping_range(struct address_space *mapping,
2413 		loff_t const holebegin, loff_t const holelen, int even_cows)
2414 {
2415 	struct zap_details details;
2416 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2417 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2418 
2419 	/* Check for overflow. */
2420 	if (sizeof(holelen) > sizeof(hlen)) {
2421 		long long holeend =
2422 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2423 		if (holeend & ~(long long)ULONG_MAX)
2424 			hlen = ULONG_MAX - hba + 1;
2425 	}
2426 
2427 	details.check_mapping = even_cows? NULL: mapping;
2428 	details.first_index = hba;
2429 	details.last_index = hba + hlen - 1;
2430 	if (details.last_index < details.first_index)
2431 		details.last_index = ULONG_MAX;
2432 
2433 
2434 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2435 	i_mmap_lock_write(mapping);
2436 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2437 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2438 	i_mmap_unlock_write(mapping);
2439 }
2440 EXPORT_SYMBOL(unmap_mapping_range);
2441 
2442 /*
2443  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2444  * but allow concurrent faults), and pte mapped but not yet locked.
2445  * We return with pte unmapped and unlocked.
2446  *
2447  * We return with the mmap_sem locked or unlocked in the same cases
2448  * as does filemap_fault().
2449  */
2450 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2451 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2452 		unsigned int flags, pte_t orig_pte)
2453 {
2454 	spinlock_t *ptl;
2455 	struct page *page, *swapcache;
2456 	struct mem_cgroup *memcg;
2457 	swp_entry_t entry;
2458 	pte_t pte;
2459 	int locked;
2460 	int exclusive = 0;
2461 	int ret = 0;
2462 
2463 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2464 		goto out;
2465 
2466 	entry = pte_to_swp_entry(orig_pte);
2467 	if (unlikely(non_swap_entry(entry))) {
2468 		if (is_migration_entry(entry)) {
2469 			migration_entry_wait(mm, pmd, address);
2470 		} else if (is_hwpoison_entry(entry)) {
2471 			ret = VM_FAULT_HWPOISON;
2472 		} else {
2473 			print_bad_pte(vma, address, orig_pte, NULL);
2474 			ret = VM_FAULT_SIGBUS;
2475 		}
2476 		goto out;
2477 	}
2478 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2479 	page = lookup_swap_cache(entry);
2480 	if (!page) {
2481 		page = swapin_readahead(entry,
2482 					GFP_HIGHUSER_MOVABLE, vma, address);
2483 		if (!page) {
2484 			/*
2485 			 * Back out if somebody else faulted in this pte
2486 			 * while we released the pte lock.
2487 			 */
2488 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2489 			if (likely(pte_same(*page_table, orig_pte)))
2490 				ret = VM_FAULT_OOM;
2491 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2492 			goto unlock;
2493 		}
2494 
2495 		/* Had to read the page from swap area: Major fault */
2496 		ret = VM_FAULT_MAJOR;
2497 		count_vm_event(PGMAJFAULT);
2498 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2499 	} else if (PageHWPoison(page)) {
2500 		/*
2501 		 * hwpoisoned dirty swapcache pages are kept for killing
2502 		 * owner processes (which may be unknown at hwpoison time)
2503 		 */
2504 		ret = VM_FAULT_HWPOISON;
2505 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2506 		swapcache = page;
2507 		goto out_release;
2508 	}
2509 
2510 	swapcache = page;
2511 	locked = lock_page_or_retry(page, mm, flags);
2512 
2513 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2514 	if (!locked) {
2515 		ret |= VM_FAULT_RETRY;
2516 		goto out_release;
2517 	}
2518 
2519 	/*
2520 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2521 	 * release the swapcache from under us.  The page pin, and pte_same
2522 	 * test below, are not enough to exclude that.  Even if it is still
2523 	 * swapcache, we need to check that the page's swap has not changed.
2524 	 */
2525 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2526 		goto out_page;
2527 
2528 	page = ksm_might_need_to_copy(page, vma, address);
2529 	if (unlikely(!page)) {
2530 		ret = VM_FAULT_OOM;
2531 		page = swapcache;
2532 		goto out_page;
2533 	}
2534 
2535 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2536 		ret = VM_FAULT_OOM;
2537 		goto out_page;
2538 	}
2539 
2540 	/*
2541 	 * Back out if somebody else already faulted in this pte.
2542 	 */
2543 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2544 	if (unlikely(!pte_same(*page_table, orig_pte)))
2545 		goto out_nomap;
2546 
2547 	if (unlikely(!PageUptodate(page))) {
2548 		ret = VM_FAULT_SIGBUS;
2549 		goto out_nomap;
2550 	}
2551 
2552 	/*
2553 	 * The page isn't present yet, go ahead with the fault.
2554 	 *
2555 	 * Be careful about the sequence of operations here.
2556 	 * To get its accounting right, reuse_swap_page() must be called
2557 	 * while the page is counted on swap but not yet in mapcount i.e.
2558 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2559 	 * must be called after the swap_free(), or it will never succeed.
2560 	 */
2561 
2562 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2563 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2564 	pte = mk_pte(page, vma->vm_page_prot);
2565 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2566 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2567 		flags &= ~FAULT_FLAG_WRITE;
2568 		ret |= VM_FAULT_WRITE;
2569 		exclusive = RMAP_EXCLUSIVE;
2570 	}
2571 	flush_icache_page(vma, page);
2572 	if (pte_swp_soft_dirty(orig_pte))
2573 		pte = pte_mksoft_dirty(pte);
2574 	set_pte_at(mm, address, page_table, pte);
2575 	if (page == swapcache) {
2576 		do_page_add_anon_rmap(page, vma, address, exclusive);
2577 		mem_cgroup_commit_charge(page, memcg, true, false);
2578 	} else { /* ksm created a completely new copy */
2579 		page_add_new_anon_rmap(page, vma, address, false);
2580 		mem_cgroup_commit_charge(page, memcg, false, false);
2581 		lru_cache_add_active_or_unevictable(page, vma);
2582 	}
2583 
2584 	swap_free(entry);
2585 	if (mem_cgroup_swap_full(page) ||
2586 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2587 		try_to_free_swap(page);
2588 	unlock_page(page);
2589 	if (page != swapcache) {
2590 		/*
2591 		 * Hold the lock to avoid the swap entry to be reused
2592 		 * until we take the PT lock for the pte_same() check
2593 		 * (to avoid false positives from pte_same). For
2594 		 * further safety release the lock after the swap_free
2595 		 * so that the swap count won't change under a
2596 		 * parallel locked swapcache.
2597 		 */
2598 		unlock_page(swapcache);
2599 		page_cache_release(swapcache);
2600 	}
2601 
2602 	if (flags & FAULT_FLAG_WRITE) {
2603 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2604 		if (ret & VM_FAULT_ERROR)
2605 			ret &= VM_FAULT_ERROR;
2606 		goto out;
2607 	}
2608 
2609 	/* No need to invalidate - it was non-present before */
2610 	update_mmu_cache(vma, address, page_table);
2611 unlock:
2612 	pte_unmap_unlock(page_table, ptl);
2613 out:
2614 	return ret;
2615 out_nomap:
2616 	mem_cgroup_cancel_charge(page, memcg, false);
2617 	pte_unmap_unlock(page_table, ptl);
2618 out_page:
2619 	unlock_page(page);
2620 out_release:
2621 	page_cache_release(page);
2622 	if (page != swapcache) {
2623 		unlock_page(swapcache);
2624 		page_cache_release(swapcache);
2625 	}
2626 	return ret;
2627 }
2628 
2629 /*
2630  * This is like a special single-page "expand_{down|up}wards()",
2631  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2632  * doesn't hit another vma.
2633  */
2634 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2635 {
2636 	address &= PAGE_MASK;
2637 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2638 		struct vm_area_struct *prev = vma->vm_prev;
2639 
2640 		/*
2641 		 * Is there a mapping abutting this one below?
2642 		 *
2643 		 * That's only ok if it's the same stack mapping
2644 		 * that has gotten split..
2645 		 */
2646 		if (prev && prev->vm_end == address)
2647 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2648 
2649 		return expand_downwards(vma, address - PAGE_SIZE);
2650 	}
2651 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2652 		struct vm_area_struct *next = vma->vm_next;
2653 
2654 		/* As VM_GROWSDOWN but s/below/above/ */
2655 		if (next && next->vm_start == address + PAGE_SIZE)
2656 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2657 
2658 		return expand_upwards(vma, address + PAGE_SIZE);
2659 	}
2660 	return 0;
2661 }
2662 
2663 /*
2664  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2665  * but allow concurrent faults), and pte mapped but not yet locked.
2666  * We return with mmap_sem still held, but pte unmapped and unlocked.
2667  */
2668 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2669 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2670 		unsigned int flags)
2671 {
2672 	struct mem_cgroup *memcg;
2673 	struct page *page;
2674 	spinlock_t *ptl;
2675 	pte_t entry;
2676 
2677 	pte_unmap(page_table);
2678 
2679 	/* File mapping without ->vm_ops ? */
2680 	if (vma->vm_flags & VM_SHARED)
2681 		return VM_FAULT_SIGBUS;
2682 
2683 	/* Check if we need to add a guard page to the stack */
2684 	if (check_stack_guard_page(vma, address) < 0)
2685 		return VM_FAULT_SIGSEGV;
2686 
2687 	/* Use the zero-page for reads */
2688 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2689 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2690 						vma->vm_page_prot));
2691 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2692 		if (!pte_none(*page_table))
2693 			goto unlock;
2694 		/* Deliver the page fault to userland, check inside PT lock */
2695 		if (userfaultfd_missing(vma)) {
2696 			pte_unmap_unlock(page_table, ptl);
2697 			return handle_userfault(vma, address, flags,
2698 						VM_UFFD_MISSING);
2699 		}
2700 		goto setpte;
2701 	}
2702 
2703 	/* Allocate our own private page. */
2704 	if (unlikely(anon_vma_prepare(vma)))
2705 		goto oom;
2706 	page = alloc_zeroed_user_highpage_movable(vma, address);
2707 	if (!page)
2708 		goto oom;
2709 
2710 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2711 		goto oom_free_page;
2712 
2713 	/*
2714 	 * The memory barrier inside __SetPageUptodate makes sure that
2715 	 * preceeding stores to the page contents become visible before
2716 	 * the set_pte_at() write.
2717 	 */
2718 	__SetPageUptodate(page);
2719 
2720 	entry = mk_pte(page, vma->vm_page_prot);
2721 	if (vma->vm_flags & VM_WRITE)
2722 		entry = pte_mkwrite(pte_mkdirty(entry));
2723 
2724 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2725 	if (!pte_none(*page_table))
2726 		goto release;
2727 
2728 	/* Deliver the page fault to userland, check inside PT lock */
2729 	if (userfaultfd_missing(vma)) {
2730 		pte_unmap_unlock(page_table, ptl);
2731 		mem_cgroup_cancel_charge(page, memcg, false);
2732 		page_cache_release(page);
2733 		return handle_userfault(vma, address, flags,
2734 					VM_UFFD_MISSING);
2735 	}
2736 
2737 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2738 	page_add_new_anon_rmap(page, vma, address, false);
2739 	mem_cgroup_commit_charge(page, memcg, false, false);
2740 	lru_cache_add_active_or_unevictable(page, vma);
2741 setpte:
2742 	set_pte_at(mm, address, page_table, entry);
2743 
2744 	/* No need to invalidate - it was non-present before */
2745 	update_mmu_cache(vma, address, page_table);
2746 unlock:
2747 	pte_unmap_unlock(page_table, ptl);
2748 	return 0;
2749 release:
2750 	mem_cgroup_cancel_charge(page, memcg, false);
2751 	page_cache_release(page);
2752 	goto unlock;
2753 oom_free_page:
2754 	page_cache_release(page);
2755 oom:
2756 	return VM_FAULT_OOM;
2757 }
2758 
2759 /*
2760  * The mmap_sem must have been held on entry, and may have been
2761  * released depending on flags and vma->vm_ops->fault() return value.
2762  * See filemap_fault() and __lock_page_retry().
2763  */
2764 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2765 			pgoff_t pgoff, unsigned int flags,
2766 			struct page *cow_page, struct page **page)
2767 {
2768 	struct vm_fault vmf;
2769 	int ret;
2770 
2771 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2772 	vmf.pgoff = pgoff;
2773 	vmf.flags = flags;
2774 	vmf.page = NULL;
2775 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2776 	vmf.cow_page = cow_page;
2777 
2778 	ret = vma->vm_ops->fault(vma, &vmf);
2779 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2780 		return ret;
2781 	if (!vmf.page)
2782 		goto out;
2783 
2784 	if (unlikely(PageHWPoison(vmf.page))) {
2785 		if (ret & VM_FAULT_LOCKED)
2786 			unlock_page(vmf.page);
2787 		page_cache_release(vmf.page);
2788 		return VM_FAULT_HWPOISON;
2789 	}
2790 
2791 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2792 		lock_page(vmf.page);
2793 	else
2794 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2795 
2796  out:
2797 	*page = vmf.page;
2798 	return ret;
2799 }
2800 
2801 /**
2802  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2803  *
2804  * @vma: virtual memory area
2805  * @address: user virtual address
2806  * @page: page to map
2807  * @pte: pointer to target page table entry
2808  * @write: true, if new entry is writable
2809  * @anon: true, if it's anonymous page
2810  *
2811  * Caller must hold page table lock relevant for @pte.
2812  *
2813  * Target users are page handler itself and implementations of
2814  * vm_ops->map_pages.
2815  */
2816 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2817 		struct page *page, pte_t *pte, bool write, bool anon)
2818 {
2819 	pte_t entry;
2820 
2821 	flush_icache_page(vma, page);
2822 	entry = mk_pte(page, vma->vm_page_prot);
2823 	if (write)
2824 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2825 	if (anon) {
2826 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2827 		page_add_new_anon_rmap(page, vma, address, false);
2828 	} else {
2829 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2830 		page_add_file_rmap(page);
2831 	}
2832 	set_pte_at(vma->vm_mm, address, pte, entry);
2833 
2834 	/* no need to invalidate: a not-present page won't be cached */
2835 	update_mmu_cache(vma, address, pte);
2836 }
2837 
2838 static unsigned long fault_around_bytes __read_mostly =
2839 	rounddown_pow_of_two(65536);
2840 
2841 #ifdef CONFIG_DEBUG_FS
2842 static int fault_around_bytes_get(void *data, u64 *val)
2843 {
2844 	*val = fault_around_bytes;
2845 	return 0;
2846 }
2847 
2848 /*
2849  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2850  * rounded down to nearest page order. It's what do_fault_around() expects to
2851  * see.
2852  */
2853 static int fault_around_bytes_set(void *data, u64 val)
2854 {
2855 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2856 		return -EINVAL;
2857 	if (val > PAGE_SIZE)
2858 		fault_around_bytes = rounddown_pow_of_two(val);
2859 	else
2860 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2861 	return 0;
2862 }
2863 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2864 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2865 
2866 static int __init fault_around_debugfs(void)
2867 {
2868 	void *ret;
2869 
2870 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2871 			&fault_around_bytes_fops);
2872 	if (!ret)
2873 		pr_warn("Failed to create fault_around_bytes in debugfs");
2874 	return 0;
2875 }
2876 late_initcall(fault_around_debugfs);
2877 #endif
2878 
2879 /*
2880  * do_fault_around() tries to map few pages around the fault address. The hope
2881  * is that the pages will be needed soon and this will lower the number of
2882  * faults to handle.
2883  *
2884  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2885  * not ready to be mapped: not up-to-date, locked, etc.
2886  *
2887  * This function is called with the page table lock taken. In the split ptlock
2888  * case the page table lock only protects only those entries which belong to
2889  * the page table corresponding to the fault address.
2890  *
2891  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2892  * only once.
2893  *
2894  * fault_around_pages() defines how many pages we'll try to map.
2895  * do_fault_around() expects it to return a power of two less than or equal to
2896  * PTRS_PER_PTE.
2897  *
2898  * The virtual address of the area that we map is naturally aligned to the
2899  * fault_around_pages() value (and therefore to page order).  This way it's
2900  * easier to guarantee that we don't cross page table boundaries.
2901  */
2902 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2903 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2904 {
2905 	unsigned long start_addr, nr_pages, mask;
2906 	pgoff_t max_pgoff;
2907 	struct vm_fault vmf;
2908 	int off;
2909 
2910 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2911 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2912 
2913 	start_addr = max(address & mask, vma->vm_start);
2914 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2915 	pte -= off;
2916 	pgoff -= off;
2917 
2918 	/*
2919 	 *  max_pgoff is either end of page table or end of vma
2920 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2921 	 */
2922 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2923 		PTRS_PER_PTE - 1;
2924 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2925 			pgoff + nr_pages - 1);
2926 
2927 	/* Check if it makes any sense to call ->map_pages */
2928 	while (!pte_none(*pte)) {
2929 		if (++pgoff > max_pgoff)
2930 			return;
2931 		start_addr += PAGE_SIZE;
2932 		if (start_addr >= vma->vm_end)
2933 			return;
2934 		pte++;
2935 	}
2936 
2937 	vmf.virtual_address = (void __user *) start_addr;
2938 	vmf.pte = pte;
2939 	vmf.pgoff = pgoff;
2940 	vmf.max_pgoff = max_pgoff;
2941 	vmf.flags = flags;
2942 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2943 	vma->vm_ops->map_pages(vma, &vmf);
2944 }
2945 
2946 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2947 		unsigned long address, pmd_t *pmd,
2948 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2949 {
2950 	struct page *fault_page;
2951 	spinlock_t *ptl;
2952 	pte_t *pte;
2953 	int ret = 0;
2954 
2955 	/*
2956 	 * Let's call ->map_pages() first and use ->fault() as fallback
2957 	 * if page by the offset is not ready to be mapped (cold cache or
2958 	 * something).
2959 	 */
2960 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2961 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2962 		do_fault_around(vma, address, pte, pgoff, flags);
2963 		if (!pte_same(*pte, orig_pte))
2964 			goto unlock_out;
2965 		pte_unmap_unlock(pte, ptl);
2966 	}
2967 
2968 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2969 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2970 		return ret;
2971 
2972 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2973 	if (unlikely(!pte_same(*pte, orig_pte))) {
2974 		pte_unmap_unlock(pte, ptl);
2975 		unlock_page(fault_page);
2976 		page_cache_release(fault_page);
2977 		return ret;
2978 	}
2979 	do_set_pte(vma, address, fault_page, pte, false, false);
2980 	unlock_page(fault_page);
2981 unlock_out:
2982 	pte_unmap_unlock(pte, ptl);
2983 	return ret;
2984 }
2985 
2986 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2987 		unsigned long address, pmd_t *pmd,
2988 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2989 {
2990 	struct page *fault_page, *new_page;
2991 	struct mem_cgroup *memcg;
2992 	spinlock_t *ptl;
2993 	pte_t *pte;
2994 	int ret;
2995 
2996 	if (unlikely(anon_vma_prepare(vma)))
2997 		return VM_FAULT_OOM;
2998 
2999 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3000 	if (!new_page)
3001 		return VM_FAULT_OOM;
3002 
3003 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3004 		page_cache_release(new_page);
3005 		return VM_FAULT_OOM;
3006 	}
3007 
3008 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3009 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3010 		goto uncharge_out;
3011 
3012 	if (fault_page)
3013 		copy_user_highpage(new_page, fault_page, address, vma);
3014 	__SetPageUptodate(new_page);
3015 
3016 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3017 	if (unlikely(!pte_same(*pte, orig_pte))) {
3018 		pte_unmap_unlock(pte, ptl);
3019 		if (fault_page) {
3020 			unlock_page(fault_page);
3021 			page_cache_release(fault_page);
3022 		} else {
3023 			/*
3024 			 * The fault handler has no page to lock, so it holds
3025 			 * i_mmap_lock for read to protect against truncate.
3026 			 */
3027 			i_mmap_unlock_read(vma->vm_file->f_mapping);
3028 		}
3029 		goto uncharge_out;
3030 	}
3031 	do_set_pte(vma, address, new_page, pte, true, true);
3032 	mem_cgroup_commit_charge(new_page, memcg, false, false);
3033 	lru_cache_add_active_or_unevictable(new_page, vma);
3034 	pte_unmap_unlock(pte, ptl);
3035 	if (fault_page) {
3036 		unlock_page(fault_page);
3037 		page_cache_release(fault_page);
3038 	} else {
3039 		/*
3040 		 * The fault handler has no page to lock, so it holds
3041 		 * i_mmap_lock for read to protect against truncate.
3042 		 */
3043 		i_mmap_unlock_read(vma->vm_file->f_mapping);
3044 	}
3045 	return ret;
3046 uncharge_out:
3047 	mem_cgroup_cancel_charge(new_page, memcg, false);
3048 	page_cache_release(new_page);
3049 	return ret;
3050 }
3051 
3052 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3053 		unsigned long address, pmd_t *pmd,
3054 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3055 {
3056 	struct page *fault_page;
3057 	struct address_space *mapping;
3058 	spinlock_t *ptl;
3059 	pte_t *pte;
3060 	int dirtied = 0;
3061 	int ret, tmp;
3062 
3063 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3064 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3065 		return ret;
3066 
3067 	/*
3068 	 * Check if the backing address space wants to know that the page is
3069 	 * about to become writable
3070 	 */
3071 	if (vma->vm_ops->page_mkwrite) {
3072 		unlock_page(fault_page);
3073 		tmp = do_page_mkwrite(vma, fault_page, address);
3074 		if (unlikely(!tmp ||
3075 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3076 			page_cache_release(fault_page);
3077 			return tmp;
3078 		}
3079 	}
3080 
3081 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3082 	if (unlikely(!pte_same(*pte, orig_pte))) {
3083 		pte_unmap_unlock(pte, ptl);
3084 		unlock_page(fault_page);
3085 		page_cache_release(fault_page);
3086 		return ret;
3087 	}
3088 	do_set_pte(vma, address, fault_page, pte, true, false);
3089 	pte_unmap_unlock(pte, ptl);
3090 
3091 	if (set_page_dirty(fault_page))
3092 		dirtied = 1;
3093 	/*
3094 	 * Take a local copy of the address_space - page.mapping may be zeroed
3095 	 * by truncate after unlock_page().   The address_space itself remains
3096 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3097 	 * release semantics to prevent the compiler from undoing this copying.
3098 	 */
3099 	mapping = page_rmapping(fault_page);
3100 	unlock_page(fault_page);
3101 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3102 		/*
3103 		 * Some device drivers do not set page.mapping but still
3104 		 * dirty their pages
3105 		 */
3106 		balance_dirty_pages_ratelimited(mapping);
3107 	}
3108 
3109 	if (!vma->vm_ops->page_mkwrite)
3110 		file_update_time(vma->vm_file);
3111 
3112 	return ret;
3113 }
3114 
3115 /*
3116  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117  * but allow concurrent faults).
3118  * The mmap_sem may have been released depending on flags and our
3119  * return value.  See filemap_fault() and __lock_page_or_retry().
3120  */
3121 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3122 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3123 		unsigned int flags, pte_t orig_pte)
3124 {
3125 	pgoff_t pgoff = (((address & PAGE_MASK)
3126 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3127 
3128 	pte_unmap(page_table);
3129 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3130 	if (!vma->vm_ops->fault)
3131 		return VM_FAULT_SIGBUS;
3132 	if (!(flags & FAULT_FLAG_WRITE))
3133 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3134 				orig_pte);
3135 	if (!(vma->vm_flags & VM_SHARED))
3136 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3137 				orig_pte);
3138 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3139 }
3140 
3141 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3142 				unsigned long addr, int page_nid,
3143 				int *flags)
3144 {
3145 	get_page(page);
3146 
3147 	count_vm_numa_event(NUMA_HINT_FAULTS);
3148 	if (page_nid == numa_node_id()) {
3149 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3150 		*flags |= TNF_FAULT_LOCAL;
3151 	}
3152 
3153 	return mpol_misplaced(page, vma, addr);
3154 }
3155 
3156 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3157 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3158 {
3159 	struct page *page = NULL;
3160 	spinlock_t *ptl;
3161 	int page_nid = -1;
3162 	int last_cpupid;
3163 	int target_nid;
3164 	bool migrated = false;
3165 	bool was_writable = pte_write(pte);
3166 	int flags = 0;
3167 
3168 	/* A PROT_NONE fault should not end up here */
3169 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3170 
3171 	/*
3172 	* The "pte" at this point cannot be used safely without
3173 	* validation through pte_unmap_same(). It's of NUMA type but
3174 	* the pfn may be screwed if the read is non atomic.
3175 	*
3176 	* We can safely just do a "set_pte_at()", because the old
3177 	* page table entry is not accessible, so there would be no
3178 	* concurrent hardware modifications to the PTE.
3179 	*/
3180 	ptl = pte_lockptr(mm, pmd);
3181 	spin_lock(ptl);
3182 	if (unlikely(!pte_same(*ptep, pte))) {
3183 		pte_unmap_unlock(ptep, ptl);
3184 		goto out;
3185 	}
3186 
3187 	/* Make it present again */
3188 	pte = pte_modify(pte, vma->vm_page_prot);
3189 	pte = pte_mkyoung(pte);
3190 	if (was_writable)
3191 		pte = pte_mkwrite(pte);
3192 	set_pte_at(mm, addr, ptep, pte);
3193 	update_mmu_cache(vma, addr, ptep);
3194 
3195 	page = vm_normal_page(vma, addr, pte);
3196 	if (!page) {
3197 		pte_unmap_unlock(ptep, ptl);
3198 		return 0;
3199 	}
3200 
3201 	/* TODO: handle PTE-mapped THP */
3202 	if (PageCompound(page)) {
3203 		pte_unmap_unlock(ptep, ptl);
3204 		return 0;
3205 	}
3206 
3207 	/*
3208 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3209 	 * much anyway since they can be in shared cache state. This misses
3210 	 * the case where a mapping is writable but the process never writes
3211 	 * to it but pte_write gets cleared during protection updates and
3212 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3213 	 * background writeback, dirty balancing and application behaviour.
3214 	 */
3215 	if (!(vma->vm_flags & VM_WRITE))
3216 		flags |= TNF_NO_GROUP;
3217 
3218 	/*
3219 	 * Flag if the page is shared between multiple address spaces. This
3220 	 * is later used when determining whether to group tasks together
3221 	 */
3222 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3223 		flags |= TNF_SHARED;
3224 
3225 	last_cpupid = page_cpupid_last(page);
3226 	page_nid = page_to_nid(page);
3227 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3228 	pte_unmap_unlock(ptep, ptl);
3229 	if (target_nid == -1) {
3230 		put_page(page);
3231 		goto out;
3232 	}
3233 
3234 	/* Migrate to the requested node */
3235 	migrated = migrate_misplaced_page(page, vma, target_nid);
3236 	if (migrated) {
3237 		page_nid = target_nid;
3238 		flags |= TNF_MIGRATED;
3239 	} else
3240 		flags |= TNF_MIGRATE_FAIL;
3241 
3242 out:
3243 	if (page_nid != -1)
3244 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3245 	return 0;
3246 }
3247 
3248 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3249 			unsigned long address, pmd_t *pmd, unsigned int flags)
3250 {
3251 	if (vma_is_anonymous(vma))
3252 		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3253 	if (vma->vm_ops->pmd_fault)
3254 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3255 	return VM_FAULT_FALLBACK;
3256 }
3257 
3258 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3259 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3260 			unsigned int flags)
3261 {
3262 	if (vma_is_anonymous(vma))
3263 		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3264 	if (vma->vm_ops->pmd_fault)
3265 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3266 	return VM_FAULT_FALLBACK;
3267 }
3268 
3269 /*
3270  * These routines also need to handle stuff like marking pages dirty
3271  * and/or accessed for architectures that don't do it in hardware (most
3272  * RISC architectures).  The early dirtying is also good on the i386.
3273  *
3274  * There is also a hook called "update_mmu_cache()" that architectures
3275  * with external mmu caches can use to update those (ie the Sparc or
3276  * PowerPC hashed page tables that act as extended TLBs).
3277  *
3278  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3279  * but allow concurrent faults), and pte mapped but not yet locked.
3280  * We return with pte unmapped and unlocked.
3281  *
3282  * The mmap_sem may have been released depending on flags and our
3283  * return value.  See filemap_fault() and __lock_page_or_retry().
3284  */
3285 static int handle_pte_fault(struct mm_struct *mm,
3286 		     struct vm_area_struct *vma, unsigned long address,
3287 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3288 {
3289 	pte_t entry;
3290 	spinlock_t *ptl;
3291 
3292 	/*
3293 	 * some architectures can have larger ptes than wordsize,
3294 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3295 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3296 	 * The code below just needs a consistent view for the ifs and
3297 	 * we later double check anyway with the ptl lock held. So here
3298 	 * a barrier will do.
3299 	 */
3300 	entry = *pte;
3301 	barrier();
3302 	if (!pte_present(entry)) {
3303 		if (pte_none(entry)) {
3304 			if (vma_is_anonymous(vma))
3305 				return do_anonymous_page(mm, vma, address,
3306 							 pte, pmd, flags);
3307 			else
3308 				return do_fault(mm, vma, address, pte, pmd,
3309 						flags, entry);
3310 		}
3311 		return do_swap_page(mm, vma, address,
3312 					pte, pmd, flags, entry);
3313 	}
3314 
3315 	if (pte_protnone(entry))
3316 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3317 
3318 	ptl = pte_lockptr(mm, pmd);
3319 	spin_lock(ptl);
3320 	if (unlikely(!pte_same(*pte, entry)))
3321 		goto unlock;
3322 	if (flags & FAULT_FLAG_WRITE) {
3323 		if (!pte_write(entry))
3324 			return do_wp_page(mm, vma, address,
3325 					pte, pmd, ptl, entry);
3326 		entry = pte_mkdirty(entry);
3327 	}
3328 	entry = pte_mkyoung(entry);
3329 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3330 		update_mmu_cache(vma, address, pte);
3331 	} else {
3332 		/*
3333 		 * This is needed only for protection faults but the arch code
3334 		 * is not yet telling us if this is a protection fault or not.
3335 		 * This still avoids useless tlb flushes for .text page faults
3336 		 * with threads.
3337 		 */
3338 		if (flags & FAULT_FLAG_WRITE)
3339 			flush_tlb_fix_spurious_fault(vma, address);
3340 	}
3341 unlock:
3342 	pte_unmap_unlock(pte, ptl);
3343 	return 0;
3344 }
3345 
3346 /*
3347  * By the time we get here, we already hold the mm semaphore
3348  *
3349  * The mmap_sem may have been released depending on flags and our
3350  * return value.  See filemap_fault() and __lock_page_or_retry().
3351  */
3352 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3353 			     unsigned long address, unsigned int flags)
3354 {
3355 	pgd_t *pgd;
3356 	pud_t *pud;
3357 	pmd_t *pmd;
3358 	pte_t *pte;
3359 
3360 	if (unlikely(is_vm_hugetlb_page(vma)))
3361 		return hugetlb_fault(mm, vma, address, flags);
3362 
3363 	pgd = pgd_offset(mm, address);
3364 	pud = pud_alloc(mm, pgd, address);
3365 	if (!pud)
3366 		return VM_FAULT_OOM;
3367 	pmd = pmd_alloc(mm, pud, address);
3368 	if (!pmd)
3369 		return VM_FAULT_OOM;
3370 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3371 		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3372 		if (!(ret & VM_FAULT_FALLBACK))
3373 			return ret;
3374 	} else {
3375 		pmd_t orig_pmd = *pmd;
3376 		int ret;
3377 
3378 		barrier();
3379 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3380 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3381 
3382 			if (pmd_protnone(orig_pmd))
3383 				return do_huge_pmd_numa_page(mm, vma, address,
3384 							     orig_pmd, pmd);
3385 
3386 			if (dirty && !pmd_write(orig_pmd)) {
3387 				ret = wp_huge_pmd(mm, vma, address, pmd,
3388 							orig_pmd, flags);
3389 				if (!(ret & VM_FAULT_FALLBACK))
3390 					return ret;
3391 			} else {
3392 				huge_pmd_set_accessed(mm, vma, address, pmd,
3393 						      orig_pmd, dirty);
3394 				return 0;
3395 			}
3396 		}
3397 	}
3398 
3399 	/*
3400 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3401 	 * run pte_offset_map on the pmd, if an huge pmd could
3402 	 * materialize from under us from a different thread.
3403 	 */
3404 	if (unlikely(pmd_none(*pmd)) &&
3405 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3406 		return VM_FAULT_OOM;
3407 	/*
3408 	 * If a huge pmd materialized under us just retry later.  Use
3409 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3410 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3411 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3412 	 * in a different thread of this mm, in turn leading to a misleading
3413 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3414 	 * regular pmd that we can walk with pte_offset_map() and we can do that
3415 	 * through an atomic read in C, which is what pmd_trans_unstable()
3416 	 * provides.
3417 	 */
3418 	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3419 		return 0;
3420 	/*
3421 	 * A regular pmd is established and it can't morph into a huge pmd
3422 	 * from under us anymore at this point because we hold the mmap_sem
3423 	 * read mode and khugepaged takes it in write mode. So now it's
3424 	 * safe to run pte_offset_map().
3425 	 */
3426 	pte = pte_offset_map(pmd, address);
3427 
3428 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3429 }
3430 
3431 /*
3432  * By the time we get here, we already hold the mm semaphore
3433  *
3434  * The mmap_sem may have been released depending on flags and our
3435  * return value.  See filemap_fault() and __lock_page_or_retry().
3436  */
3437 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3438 		    unsigned long address, unsigned int flags)
3439 {
3440 	int ret;
3441 
3442 	__set_current_state(TASK_RUNNING);
3443 
3444 	count_vm_event(PGFAULT);
3445 	mem_cgroup_count_vm_event(mm, PGFAULT);
3446 
3447 	/* do counter updates before entering really critical section. */
3448 	check_sync_rss_stat(current);
3449 
3450 	/*
3451 	 * Enable the memcg OOM handling for faults triggered in user
3452 	 * space.  Kernel faults are handled more gracefully.
3453 	 */
3454 	if (flags & FAULT_FLAG_USER)
3455 		mem_cgroup_oom_enable();
3456 
3457 	ret = __handle_mm_fault(mm, vma, address, flags);
3458 
3459 	if (flags & FAULT_FLAG_USER) {
3460 		mem_cgroup_oom_disable();
3461                 /*
3462                  * The task may have entered a memcg OOM situation but
3463                  * if the allocation error was handled gracefully (no
3464                  * VM_FAULT_OOM), there is no need to kill anything.
3465                  * Just clean up the OOM state peacefully.
3466                  */
3467                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3468                         mem_cgroup_oom_synchronize(false);
3469 	}
3470 
3471 	return ret;
3472 }
3473 EXPORT_SYMBOL_GPL(handle_mm_fault);
3474 
3475 #ifndef __PAGETABLE_PUD_FOLDED
3476 /*
3477  * Allocate page upper directory.
3478  * We've already handled the fast-path in-line.
3479  */
3480 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3481 {
3482 	pud_t *new = pud_alloc_one(mm, address);
3483 	if (!new)
3484 		return -ENOMEM;
3485 
3486 	smp_wmb(); /* See comment in __pte_alloc */
3487 
3488 	spin_lock(&mm->page_table_lock);
3489 	if (pgd_present(*pgd))		/* Another has populated it */
3490 		pud_free(mm, new);
3491 	else
3492 		pgd_populate(mm, pgd, new);
3493 	spin_unlock(&mm->page_table_lock);
3494 	return 0;
3495 }
3496 #endif /* __PAGETABLE_PUD_FOLDED */
3497 
3498 #ifndef __PAGETABLE_PMD_FOLDED
3499 /*
3500  * Allocate page middle directory.
3501  * We've already handled the fast-path in-line.
3502  */
3503 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3504 {
3505 	pmd_t *new = pmd_alloc_one(mm, address);
3506 	if (!new)
3507 		return -ENOMEM;
3508 
3509 	smp_wmb(); /* See comment in __pte_alloc */
3510 
3511 	spin_lock(&mm->page_table_lock);
3512 #ifndef __ARCH_HAS_4LEVEL_HACK
3513 	if (!pud_present(*pud)) {
3514 		mm_inc_nr_pmds(mm);
3515 		pud_populate(mm, pud, new);
3516 	} else	/* Another has populated it */
3517 		pmd_free(mm, new);
3518 #else
3519 	if (!pgd_present(*pud)) {
3520 		mm_inc_nr_pmds(mm);
3521 		pgd_populate(mm, pud, new);
3522 	} else /* Another has populated it */
3523 		pmd_free(mm, new);
3524 #endif /* __ARCH_HAS_4LEVEL_HACK */
3525 	spin_unlock(&mm->page_table_lock);
3526 	return 0;
3527 }
3528 #endif /* __PAGETABLE_PMD_FOLDED */
3529 
3530 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3531 		pte_t **ptepp, spinlock_t **ptlp)
3532 {
3533 	pgd_t *pgd;
3534 	pud_t *pud;
3535 	pmd_t *pmd;
3536 	pte_t *ptep;
3537 
3538 	pgd = pgd_offset(mm, address);
3539 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3540 		goto out;
3541 
3542 	pud = pud_offset(pgd, address);
3543 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3544 		goto out;
3545 
3546 	pmd = pmd_offset(pud, address);
3547 	VM_BUG_ON(pmd_trans_huge(*pmd));
3548 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3549 		goto out;
3550 
3551 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3552 	if (pmd_huge(*pmd))
3553 		goto out;
3554 
3555 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3556 	if (!ptep)
3557 		goto out;
3558 	if (!pte_present(*ptep))
3559 		goto unlock;
3560 	*ptepp = ptep;
3561 	return 0;
3562 unlock:
3563 	pte_unmap_unlock(ptep, *ptlp);
3564 out:
3565 	return -EINVAL;
3566 }
3567 
3568 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3569 			     pte_t **ptepp, spinlock_t **ptlp)
3570 {
3571 	int res;
3572 
3573 	/* (void) is needed to make gcc happy */
3574 	(void) __cond_lock(*ptlp,
3575 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3576 	return res;
3577 }
3578 
3579 /**
3580  * follow_pfn - look up PFN at a user virtual address
3581  * @vma: memory mapping
3582  * @address: user virtual address
3583  * @pfn: location to store found PFN
3584  *
3585  * Only IO mappings and raw PFN mappings are allowed.
3586  *
3587  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3588  */
3589 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3590 	unsigned long *pfn)
3591 {
3592 	int ret = -EINVAL;
3593 	spinlock_t *ptl;
3594 	pte_t *ptep;
3595 
3596 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3597 		return ret;
3598 
3599 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3600 	if (ret)
3601 		return ret;
3602 	*pfn = pte_pfn(*ptep);
3603 	pte_unmap_unlock(ptep, ptl);
3604 	return 0;
3605 }
3606 EXPORT_SYMBOL(follow_pfn);
3607 
3608 #ifdef CONFIG_HAVE_IOREMAP_PROT
3609 int follow_phys(struct vm_area_struct *vma,
3610 		unsigned long address, unsigned int flags,
3611 		unsigned long *prot, resource_size_t *phys)
3612 {
3613 	int ret = -EINVAL;
3614 	pte_t *ptep, pte;
3615 	spinlock_t *ptl;
3616 
3617 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3618 		goto out;
3619 
3620 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3621 		goto out;
3622 	pte = *ptep;
3623 
3624 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3625 		goto unlock;
3626 
3627 	*prot = pgprot_val(pte_pgprot(pte));
3628 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3629 
3630 	ret = 0;
3631 unlock:
3632 	pte_unmap_unlock(ptep, ptl);
3633 out:
3634 	return ret;
3635 }
3636 
3637 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3638 			void *buf, int len, int write)
3639 {
3640 	resource_size_t phys_addr;
3641 	unsigned long prot = 0;
3642 	void __iomem *maddr;
3643 	int offset = addr & (PAGE_SIZE-1);
3644 
3645 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3646 		return -EINVAL;
3647 
3648 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3649 	if (write)
3650 		memcpy_toio(maddr + offset, buf, len);
3651 	else
3652 		memcpy_fromio(buf, maddr + offset, len);
3653 	iounmap(maddr);
3654 
3655 	return len;
3656 }
3657 EXPORT_SYMBOL_GPL(generic_access_phys);
3658 #endif
3659 
3660 /*
3661  * Access another process' address space as given in mm.  If non-NULL, use the
3662  * given task for page fault accounting.
3663  */
3664 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3665 		unsigned long addr, void *buf, int len, int write)
3666 {
3667 	struct vm_area_struct *vma;
3668 	void *old_buf = buf;
3669 
3670 	down_read(&mm->mmap_sem);
3671 	/* ignore errors, just check how much was successfully transferred */
3672 	while (len) {
3673 		int bytes, ret, offset;
3674 		void *maddr;
3675 		struct page *page = NULL;
3676 
3677 		ret = get_user_pages(tsk, mm, addr, 1,
3678 				write, 1, &page, &vma);
3679 		if (ret <= 0) {
3680 #ifndef CONFIG_HAVE_IOREMAP_PROT
3681 			break;
3682 #else
3683 			/*
3684 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3685 			 * we can access using slightly different code.
3686 			 */
3687 			vma = find_vma(mm, addr);
3688 			if (!vma || vma->vm_start > addr)
3689 				break;
3690 			if (vma->vm_ops && vma->vm_ops->access)
3691 				ret = vma->vm_ops->access(vma, addr, buf,
3692 							  len, write);
3693 			if (ret <= 0)
3694 				break;
3695 			bytes = ret;
3696 #endif
3697 		} else {
3698 			bytes = len;
3699 			offset = addr & (PAGE_SIZE-1);
3700 			if (bytes > PAGE_SIZE-offset)
3701 				bytes = PAGE_SIZE-offset;
3702 
3703 			maddr = kmap(page);
3704 			if (write) {
3705 				copy_to_user_page(vma, page, addr,
3706 						  maddr + offset, buf, bytes);
3707 				set_page_dirty_lock(page);
3708 			} else {
3709 				copy_from_user_page(vma, page, addr,
3710 						    buf, maddr + offset, bytes);
3711 			}
3712 			kunmap(page);
3713 			page_cache_release(page);
3714 		}
3715 		len -= bytes;
3716 		buf += bytes;
3717 		addr += bytes;
3718 	}
3719 	up_read(&mm->mmap_sem);
3720 
3721 	return buf - old_buf;
3722 }
3723 
3724 /**
3725  * access_remote_vm - access another process' address space
3726  * @mm:		the mm_struct of the target address space
3727  * @addr:	start address to access
3728  * @buf:	source or destination buffer
3729  * @len:	number of bytes to transfer
3730  * @write:	whether the access is a write
3731  *
3732  * The caller must hold a reference on @mm.
3733  */
3734 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3735 		void *buf, int len, int write)
3736 {
3737 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3738 }
3739 
3740 /*
3741  * Access another process' address space.
3742  * Source/target buffer must be kernel space,
3743  * Do not walk the page table directly, use get_user_pages
3744  */
3745 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3746 		void *buf, int len, int write)
3747 {
3748 	struct mm_struct *mm;
3749 	int ret;
3750 
3751 	mm = get_task_mm(tsk);
3752 	if (!mm)
3753 		return 0;
3754 
3755 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3756 	mmput(mm);
3757 
3758 	return ret;
3759 }
3760 
3761 /*
3762  * Print the name of a VMA.
3763  */
3764 void print_vma_addr(char *prefix, unsigned long ip)
3765 {
3766 	struct mm_struct *mm = current->mm;
3767 	struct vm_area_struct *vma;
3768 
3769 	/*
3770 	 * Do not print if we are in atomic
3771 	 * contexts (in exception stacks, etc.):
3772 	 */
3773 	if (preempt_count())
3774 		return;
3775 
3776 	down_read(&mm->mmap_sem);
3777 	vma = find_vma(mm, ip);
3778 	if (vma && vma->vm_file) {
3779 		struct file *f = vma->vm_file;
3780 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3781 		if (buf) {
3782 			char *p;
3783 
3784 			p = file_path(f, buf, PAGE_SIZE);
3785 			if (IS_ERR(p))
3786 				p = "?";
3787 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3788 					vma->vm_start,
3789 					vma->vm_end - vma->vm_start);
3790 			free_page((unsigned long)buf);
3791 		}
3792 	}
3793 	up_read(&mm->mmap_sem);
3794 }
3795 
3796 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3797 void __might_fault(const char *file, int line)
3798 {
3799 	/*
3800 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3801 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3802 	 * get paged out, therefore we'll never actually fault, and the
3803 	 * below annotations will generate false positives.
3804 	 */
3805 	if (segment_eq(get_fs(), KERNEL_DS))
3806 		return;
3807 	if (pagefault_disabled())
3808 		return;
3809 	__might_sleep(file, line, 0);
3810 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3811 	if (current->mm)
3812 		might_lock_read(&current->mm->mmap_sem);
3813 #endif
3814 }
3815 EXPORT_SYMBOL(__might_fault);
3816 #endif
3817 
3818 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3819 static void clear_gigantic_page(struct page *page,
3820 				unsigned long addr,
3821 				unsigned int pages_per_huge_page)
3822 {
3823 	int i;
3824 	struct page *p = page;
3825 
3826 	might_sleep();
3827 	for (i = 0; i < pages_per_huge_page;
3828 	     i++, p = mem_map_next(p, page, i)) {
3829 		cond_resched();
3830 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3831 	}
3832 }
3833 void clear_huge_page(struct page *page,
3834 		     unsigned long addr, unsigned int pages_per_huge_page)
3835 {
3836 	int i;
3837 
3838 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3839 		clear_gigantic_page(page, addr, pages_per_huge_page);
3840 		return;
3841 	}
3842 
3843 	might_sleep();
3844 	for (i = 0; i < pages_per_huge_page; i++) {
3845 		cond_resched();
3846 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3847 	}
3848 }
3849 
3850 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3851 				    unsigned long addr,
3852 				    struct vm_area_struct *vma,
3853 				    unsigned int pages_per_huge_page)
3854 {
3855 	int i;
3856 	struct page *dst_base = dst;
3857 	struct page *src_base = src;
3858 
3859 	for (i = 0; i < pages_per_huge_page; ) {
3860 		cond_resched();
3861 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3862 
3863 		i++;
3864 		dst = mem_map_next(dst, dst_base, i);
3865 		src = mem_map_next(src, src_base, i);
3866 	}
3867 }
3868 
3869 void copy_user_huge_page(struct page *dst, struct page *src,
3870 			 unsigned long addr, struct vm_area_struct *vma,
3871 			 unsigned int pages_per_huge_page)
3872 {
3873 	int i;
3874 
3875 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3876 		copy_user_gigantic_page(dst, src, addr, vma,
3877 					pages_per_huge_page);
3878 		return;
3879 	}
3880 
3881 	might_sleep();
3882 	for (i = 0; i < pages_per_huge_page; i++) {
3883 		cond_resched();
3884 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3885 	}
3886 }
3887 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3888 
3889 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3890 
3891 static struct kmem_cache *page_ptl_cachep;
3892 
3893 void __init ptlock_cache_init(void)
3894 {
3895 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3896 			SLAB_PANIC, NULL);
3897 }
3898 
3899 bool ptlock_alloc(struct page *page)
3900 {
3901 	spinlock_t *ptl;
3902 
3903 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3904 	if (!ptl)
3905 		return false;
3906 	page->ptl = ptl;
3907 	return true;
3908 }
3909 
3910 void ptlock_free(struct page *page)
3911 {
3912 	kmem_cache_free(page_ptl_cachep, page->ptl);
3913 }
3914 #endif
3915