xref: /linux/mm/memory.c (revision bfb921b2a9d5d1123d1d10b196a39db629ddef87)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!userfaultfd_wp(vmf->vma))
118 		return false;
119 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 		return false;
121 
122 	return pte_marker_uffd_wp(vmf->orig_pte);
123 }
124 
125 /*
126  * A number of key systems in x86 including ioremap() rely on the assumption
127  * that high_memory defines the upper bound on direct map memory, then end
128  * of ZONE_NORMAL.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 		if (unlikely(xa_is_zero(next)))
378 			next = NULL;
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 		unlink_file_vma(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			/*
394 			 * Optimization: gather nearby vmas into one call down
395 			 */
396 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 			       && !is_vm_hugetlb_page(next)) {
398 				vma = next;
399 				next = mas_find(mas, ceiling - 1);
400 				if (unlikely(xa_is_zero(next)))
401 					next = NULL;
402 				if (mm_wr_locked)
403 					vma_start_write(vma);
404 				unlink_anon_vmas(vma);
405 				unlink_file_vma(vma);
406 			}
407 			free_pgd_range(tlb, addr, vma->vm_end,
408 				floor, next ? next->vm_start : ceiling);
409 		}
410 		vma = next;
411 	} while (vma);
412 }
413 
414 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
415 {
416 	spinlock_t *ptl = pmd_lock(mm, pmd);
417 
418 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
419 		mm_inc_nr_ptes(mm);
420 		/*
421 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
422 		 * visible before the pte is made visible to other CPUs by being
423 		 * put into page tables.
424 		 *
425 		 * The other side of the story is the pointer chasing in the page
426 		 * table walking code (when walking the page table without locking;
427 		 * ie. most of the time). Fortunately, these data accesses consist
428 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
429 		 * being the notable exception) will already guarantee loads are
430 		 * seen in-order. See the alpha page table accessors for the
431 		 * smp_rmb() barriers in page table walking code.
432 		 */
433 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
434 		pmd_populate(mm, pmd, *pte);
435 		*pte = NULL;
436 	}
437 	spin_unlock(ptl);
438 }
439 
440 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
441 {
442 	pgtable_t new = pte_alloc_one(mm);
443 	if (!new)
444 		return -ENOMEM;
445 
446 	pmd_install(mm, pmd, &new);
447 	if (new)
448 		pte_free(mm, new);
449 	return 0;
450 }
451 
452 int __pte_alloc_kernel(pmd_t *pmd)
453 {
454 	pte_t *new = pte_alloc_one_kernel(&init_mm);
455 	if (!new)
456 		return -ENOMEM;
457 
458 	spin_lock(&init_mm.page_table_lock);
459 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
460 		smp_wmb(); /* See comment in pmd_install() */
461 		pmd_populate_kernel(&init_mm, pmd, new);
462 		new = NULL;
463 	}
464 	spin_unlock(&init_mm.page_table_lock);
465 	if (new)
466 		pte_free_kernel(&init_mm, new);
467 	return 0;
468 }
469 
470 static inline void init_rss_vec(int *rss)
471 {
472 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 }
474 
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 {
477 	int i;
478 
479 	for (i = 0; i < NR_MM_COUNTERS; i++)
480 		if (rss[i])
481 			add_mm_counter(mm, i, rss[i]);
482 }
483 
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 			  pte_t pte, struct page *page)
493 {
494 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 	p4d_t *p4d = p4d_offset(pgd, addr);
496 	pud_t *pud = pud_offset(p4d, addr);
497 	pmd_t *pmd = pmd_offset(pud, addr);
498 	struct address_space *mapping;
499 	pgoff_t index;
500 	static unsigned long resume;
501 	static unsigned long nr_shown;
502 	static unsigned long nr_unshown;
503 
504 	/*
505 	 * Allow a burst of 60 reports, then keep quiet for that minute;
506 	 * or allow a steady drip of one report per second.
507 	 */
508 	if (nr_shown == 60) {
509 		if (time_before(jiffies, resume)) {
510 			nr_unshown++;
511 			return;
512 		}
513 		if (nr_unshown) {
514 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 				 nr_unshown);
516 			nr_unshown = 0;
517 		}
518 		nr_shown = 0;
519 	}
520 	if (nr_shown++ == 0)
521 		resume = jiffies + 60 * HZ;
522 
523 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 	index = linear_page_index(vma, addr);
525 
526 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527 		 current->comm,
528 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 	if (page)
530 		dump_page(page, "bad pte");
531 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 		 vma->vm_file,
535 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 		 mapping ? mapping->a_ops->read_folio : NULL);
538 	dump_stack();
539 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541 
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 			    pte_t pte)
586 {
587 	unsigned long pfn = pte_pfn(pte);
588 
589 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 		if (likely(!pte_special(pte)))
591 			goto check_pfn;
592 		if (vma->vm_ops && vma->vm_ops->find_special_page)
593 			return vma->vm_ops->find_special_page(vma, addr);
594 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 			return NULL;
596 		if (is_zero_pfn(pfn))
597 			return NULL;
598 		if (pte_devmap(pte))
599 		/*
600 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 		 * and will have refcounts incremented on their struct pages
602 		 * when they are inserted into PTEs, thus they are safe to
603 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 		 */
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 			    pte_t pte)
649 {
650 	struct page *page = vm_normal_page(vma, addr, pte);
651 
652 	if (page)
653 		return page_folio(page);
654 	return NULL;
655 }
656 
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 				pmd_t pmd)
660 {
661 	unsigned long pfn = pmd_pfn(pmd);
662 
663 	/*
664 	 * There is no pmd_special() but there may be special pmds, e.g.
665 	 * in a direct-access (dax) mapping, so let's just replicate the
666 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 	 */
668 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 		if (vma->vm_flags & VM_MIXEDMAP) {
670 			if (!pfn_valid(pfn))
671 				return NULL;
672 			goto out;
673 		} else {
674 			unsigned long off;
675 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 			if (pfn == vma->vm_pgoff + off)
677 				return NULL;
678 			if (!is_cow_mapping(vma->vm_flags))
679 				return NULL;
680 		}
681 	}
682 
683 	if (pmd_devmap(pmd))
684 		return NULL;
685 	if (is_huge_zero_pmd(pmd))
686 		return NULL;
687 	if (unlikely(pfn > highest_memmap_pfn))
688 		return NULL;
689 
690 	/*
691 	 * NOTE! We still have PageReserved() pages in the page tables.
692 	 * eg. VDSO mappings can cause them to exist.
693 	 */
694 out:
695 	return pfn_to_page(pfn);
696 }
697 
698 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
699 				  unsigned long addr, pmd_t pmd)
700 {
701 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
702 
703 	if (page)
704 		return page_folio(page);
705 	return NULL;
706 }
707 #endif
708 
709 static void restore_exclusive_pte(struct vm_area_struct *vma,
710 				  struct page *page, unsigned long address,
711 				  pte_t *ptep)
712 {
713 	struct folio *folio = page_folio(page);
714 	pte_t orig_pte;
715 	pte_t pte;
716 	swp_entry_t entry;
717 
718 	orig_pte = ptep_get(ptep);
719 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
720 	if (pte_swp_soft_dirty(orig_pte))
721 		pte = pte_mksoft_dirty(pte);
722 
723 	entry = pte_to_swp_entry(orig_pte);
724 	if (pte_swp_uffd_wp(orig_pte))
725 		pte = pte_mkuffd_wp(pte);
726 	else if (is_writable_device_exclusive_entry(entry))
727 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
728 
729 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
730 					   PageAnonExclusive(page)), folio);
731 
732 	/*
733 	 * No need to take a page reference as one was already
734 	 * created when the swap entry was made.
735 	 */
736 	if (folio_test_anon(folio))
737 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
738 	else
739 		/*
740 		 * Currently device exclusive access only supports anonymous
741 		 * memory so the entry shouldn't point to a filebacked page.
742 		 */
743 		WARN_ON_ONCE(1);
744 
745 	set_pte_at(vma->vm_mm, address, ptep, pte);
746 
747 	/*
748 	 * No need to invalidate - it was non-present before. However
749 	 * secondary CPUs may have mappings that need invalidating.
750 	 */
751 	update_mmu_cache(vma, address, ptep);
752 }
753 
754 /*
755  * Tries to restore an exclusive pte if the page lock can be acquired without
756  * sleeping.
757  */
758 static int
759 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
760 			unsigned long addr)
761 {
762 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
763 	struct page *page = pfn_swap_entry_to_page(entry);
764 
765 	if (trylock_page(page)) {
766 		restore_exclusive_pte(vma, page, addr, src_pte);
767 		unlock_page(page);
768 		return 0;
769 	}
770 
771 	return -EBUSY;
772 }
773 
774 /*
775  * copy one vm_area from one task to the other. Assumes the page tables
776  * already present in the new task to be cleared in the whole range
777  * covered by this vma.
778  */
779 
780 static unsigned long
781 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
782 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
783 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
784 {
785 	unsigned long vm_flags = dst_vma->vm_flags;
786 	pte_t orig_pte = ptep_get(src_pte);
787 	pte_t pte = orig_pte;
788 	struct folio *folio;
789 	struct page *page;
790 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
791 
792 	if (likely(!non_swap_entry(entry))) {
793 		if (swap_duplicate(entry) < 0)
794 			return -EIO;
795 
796 		/* make sure dst_mm is on swapoff's mmlist. */
797 		if (unlikely(list_empty(&dst_mm->mmlist))) {
798 			spin_lock(&mmlist_lock);
799 			if (list_empty(&dst_mm->mmlist))
800 				list_add(&dst_mm->mmlist,
801 						&src_mm->mmlist);
802 			spin_unlock(&mmlist_lock);
803 		}
804 		/* Mark the swap entry as shared. */
805 		if (pte_swp_exclusive(orig_pte)) {
806 			pte = pte_swp_clear_exclusive(orig_pte);
807 			set_pte_at(src_mm, addr, src_pte, pte);
808 		}
809 		rss[MM_SWAPENTS]++;
810 	} else if (is_migration_entry(entry)) {
811 		folio = pfn_swap_entry_folio(entry);
812 
813 		rss[mm_counter(folio)]++;
814 
815 		if (!is_readable_migration_entry(entry) &&
816 				is_cow_mapping(vm_flags)) {
817 			/*
818 			 * COW mappings require pages in both parent and child
819 			 * to be set to read. A previously exclusive entry is
820 			 * now shared.
821 			 */
822 			entry = make_readable_migration_entry(
823 							swp_offset(entry));
824 			pte = swp_entry_to_pte(entry);
825 			if (pte_swp_soft_dirty(orig_pte))
826 				pte = pte_swp_mksoft_dirty(pte);
827 			if (pte_swp_uffd_wp(orig_pte))
828 				pte = pte_swp_mkuffd_wp(pte);
829 			set_pte_at(src_mm, addr, src_pte, pte);
830 		}
831 	} else if (is_device_private_entry(entry)) {
832 		page = pfn_swap_entry_to_page(entry);
833 		folio = page_folio(page);
834 
835 		/*
836 		 * Update rss count even for unaddressable pages, as
837 		 * they should treated just like normal pages in this
838 		 * respect.
839 		 *
840 		 * We will likely want to have some new rss counters
841 		 * for unaddressable pages, at some point. But for now
842 		 * keep things as they are.
843 		 */
844 		folio_get(folio);
845 		rss[mm_counter(folio)]++;
846 		/* Cannot fail as these pages cannot get pinned. */
847 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
848 
849 		/*
850 		 * We do not preserve soft-dirty information, because so
851 		 * far, checkpoint/restore is the only feature that
852 		 * requires that. And checkpoint/restore does not work
853 		 * when a device driver is involved (you cannot easily
854 		 * save and restore device driver state).
855 		 */
856 		if (is_writable_device_private_entry(entry) &&
857 		    is_cow_mapping(vm_flags)) {
858 			entry = make_readable_device_private_entry(
859 							swp_offset(entry));
860 			pte = swp_entry_to_pte(entry);
861 			if (pte_swp_uffd_wp(orig_pte))
862 				pte = pte_swp_mkuffd_wp(pte);
863 			set_pte_at(src_mm, addr, src_pte, pte);
864 		}
865 	} else if (is_device_exclusive_entry(entry)) {
866 		/*
867 		 * Make device exclusive entries present by restoring the
868 		 * original entry then copying as for a present pte. Device
869 		 * exclusive entries currently only support private writable
870 		 * (ie. COW) mappings.
871 		 */
872 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
873 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
874 			return -EBUSY;
875 		return -ENOENT;
876 	} else if (is_pte_marker_entry(entry)) {
877 		pte_marker marker = copy_pte_marker(entry, dst_vma);
878 
879 		if (marker)
880 			set_pte_at(dst_mm, addr, dst_pte,
881 				   make_pte_marker(marker));
882 		return 0;
883 	}
884 	if (!userfaultfd_wp(dst_vma))
885 		pte = pte_swp_clear_uffd_wp(pte);
886 	set_pte_at(dst_mm, addr, dst_pte, pte);
887 	return 0;
888 }
889 
890 /*
891  * Copy a present and normal page.
892  *
893  * NOTE! The usual case is that this isn't required;
894  * instead, the caller can just increase the page refcount
895  * and re-use the pte the traditional way.
896  *
897  * And if we need a pre-allocated page but don't yet have
898  * one, return a negative error to let the preallocation
899  * code know so that it can do so outside the page table
900  * lock.
901  */
902 static inline int
903 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
904 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
905 		  struct folio **prealloc, struct page *page)
906 {
907 	struct folio *new_folio;
908 	pte_t pte;
909 
910 	new_folio = *prealloc;
911 	if (!new_folio)
912 		return -EAGAIN;
913 
914 	/*
915 	 * We have a prealloc page, all good!  Take it
916 	 * over and copy the page & arm it.
917 	 */
918 	*prealloc = NULL;
919 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
920 	__folio_mark_uptodate(new_folio);
921 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
922 	folio_add_lru_vma(new_folio, dst_vma);
923 	rss[MM_ANONPAGES]++;
924 
925 	/* All done, just insert the new page copy in the child */
926 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
927 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
929 		/* Uffd-wp needs to be delivered to dest pte as well */
930 		pte = pte_mkuffd_wp(pte);
931 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
932 	return 0;
933 }
934 
935 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
936 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
937 		pte_t pte, unsigned long addr, int nr)
938 {
939 	struct mm_struct *src_mm = src_vma->vm_mm;
940 
941 	/* If it's a COW mapping, write protect it both processes. */
942 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
943 		wrprotect_ptes(src_mm, addr, src_pte, nr);
944 		pte = pte_wrprotect(pte);
945 	}
946 
947 	/* If it's a shared mapping, mark it clean in the child. */
948 	if (src_vma->vm_flags & VM_SHARED)
949 		pte = pte_mkclean(pte);
950 	pte = pte_mkold(pte);
951 
952 	if (!userfaultfd_wp(dst_vma))
953 		pte = pte_clear_uffd_wp(pte);
954 
955 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
956 }
957 
958 /*
959  * Copy one present PTE, trying to batch-process subsequent PTEs that map
960  * consecutive pages of the same folio by copying them as well.
961  *
962  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
963  * Otherwise, returns the number of copied PTEs (at least 1).
964  */
965 static inline int
966 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
967 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
968 		 int max_nr, int *rss, struct folio **prealloc)
969 {
970 	struct page *page;
971 	struct folio *folio;
972 	bool any_writable;
973 	fpb_t flags = 0;
974 	int err, nr;
975 
976 	page = vm_normal_page(src_vma, addr, pte);
977 	if (unlikely(!page))
978 		goto copy_pte;
979 
980 	folio = page_folio(page);
981 
982 	/*
983 	 * If we likely have to copy, just don't bother with batching. Make
984 	 * sure that the common "small folio" case is as fast as possible
985 	 * by keeping the batching logic separate.
986 	 */
987 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
988 		if (src_vma->vm_flags & VM_SHARED)
989 			flags |= FPB_IGNORE_DIRTY;
990 		if (!vma_soft_dirty_enabled(src_vma))
991 			flags |= FPB_IGNORE_SOFT_DIRTY;
992 
993 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
994 				     &any_writable, NULL, NULL);
995 		folio_ref_add(folio, nr);
996 		if (folio_test_anon(folio)) {
997 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
998 								  nr, src_vma))) {
999 				folio_ref_sub(folio, nr);
1000 				return -EAGAIN;
1001 			}
1002 			rss[MM_ANONPAGES] += nr;
1003 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1004 		} else {
1005 			folio_dup_file_rmap_ptes(folio, page, nr);
1006 			rss[mm_counter_file(folio)] += nr;
1007 		}
1008 		if (any_writable)
1009 			pte = pte_mkwrite(pte, src_vma);
1010 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1011 				    addr, nr);
1012 		return nr;
1013 	}
1014 
1015 	folio_get(folio);
1016 	if (folio_test_anon(folio)) {
1017 		/*
1018 		 * If this page may have been pinned by the parent process,
1019 		 * copy the page immediately for the child so that we'll always
1020 		 * guarantee the pinned page won't be randomly replaced in the
1021 		 * future.
1022 		 */
1023 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1024 			/* Page may be pinned, we have to copy. */
1025 			folio_put(folio);
1026 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1027 						addr, rss, prealloc, page);
1028 			return err ? err : 1;
1029 		}
1030 		rss[MM_ANONPAGES]++;
1031 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1032 	} else {
1033 		folio_dup_file_rmap_pte(folio, page);
1034 		rss[mm_counter_file(folio)]++;
1035 	}
1036 
1037 copy_pte:
1038 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1039 	return 1;
1040 }
1041 
1042 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1043 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1044 {
1045 	struct folio *new_folio;
1046 
1047 	if (need_zero)
1048 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1049 	else
1050 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1051 					    addr, false);
1052 
1053 	if (!new_folio)
1054 		return NULL;
1055 
1056 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1057 		folio_put(new_folio);
1058 		return NULL;
1059 	}
1060 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1061 
1062 	return new_folio;
1063 }
1064 
1065 static int
1066 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1068 	       unsigned long end)
1069 {
1070 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 	struct mm_struct *src_mm = src_vma->vm_mm;
1072 	pte_t *orig_src_pte, *orig_dst_pte;
1073 	pte_t *src_pte, *dst_pte;
1074 	pte_t ptent;
1075 	spinlock_t *src_ptl, *dst_ptl;
1076 	int progress, max_nr, ret = 0;
1077 	int rss[NR_MM_COUNTERS];
1078 	swp_entry_t entry = (swp_entry_t){0};
1079 	struct folio *prealloc = NULL;
1080 	int nr;
1081 
1082 again:
1083 	progress = 0;
1084 	init_rss_vec(rss);
1085 
1086 	/*
1087 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1088 	 * error handling here, assume that exclusive mmap_lock on dst and src
1089 	 * protects anon from unexpected THP transitions; with shmem and file
1090 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1091 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1092 	 * can remove such assumptions later, but this is good enough for now.
1093 	 */
1094 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1095 	if (!dst_pte) {
1096 		ret = -ENOMEM;
1097 		goto out;
1098 	}
1099 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1100 	if (!src_pte) {
1101 		pte_unmap_unlock(dst_pte, dst_ptl);
1102 		/* ret == 0 */
1103 		goto out;
1104 	}
1105 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1106 	orig_src_pte = src_pte;
1107 	orig_dst_pte = dst_pte;
1108 	arch_enter_lazy_mmu_mode();
1109 
1110 	do {
1111 		nr = 1;
1112 
1113 		/*
1114 		 * We are holding two locks at this point - either of them
1115 		 * could generate latencies in another task on another CPU.
1116 		 */
1117 		if (progress >= 32) {
1118 			progress = 0;
1119 			if (need_resched() ||
1120 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1121 				break;
1122 		}
1123 		ptent = ptep_get(src_pte);
1124 		if (pte_none(ptent)) {
1125 			progress++;
1126 			continue;
1127 		}
1128 		if (unlikely(!pte_present(ptent))) {
1129 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1130 						  dst_pte, src_pte,
1131 						  dst_vma, src_vma,
1132 						  addr, rss);
1133 			if (ret == -EIO) {
1134 				entry = pte_to_swp_entry(ptep_get(src_pte));
1135 				break;
1136 			} else if (ret == -EBUSY) {
1137 				break;
1138 			} else if (!ret) {
1139 				progress += 8;
1140 				continue;
1141 			}
1142 			ptent = ptep_get(src_pte);
1143 			VM_WARN_ON_ONCE(!pte_present(ptent));
1144 
1145 			/*
1146 			 * Device exclusive entry restored, continue by copying
1147 			 * the now present pte.
1148 			 */
1149 			WARN_ON_ONCE(ret != -ENOENT);
1150 		}
1151 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1152 		max_nr = (end - addr) / PAGE_SIZE;
1153 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1154 					ptent, addr, max_nr, rss, &prealloc);
1155 		/*
1156 		 * If we need a pre-allocated page for this pte, drop the
1157 		 * locks, allocate, and try again.
1158 		 */
1159 		if (unlikely(ret == -EAGAIN))
1160 			break;
1161 		if (unlikely(prealloc)) {
1162 			/*
1163 			 * pre-alloc page cannot be reused by next time so as
1164 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1165 			 * will allocate page according to address).  This
1166 			 * could only happen if one pinned pte changed.
1167 			 */
1168 			folio_put(prealloc);
1169 			prealloc = NULL;
1170 		}
1171 		nr = ret;
1172 		progress += 8 * nr;
1173 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1174 		 addr != end);
1175 
1176 	arch_leave_lazy_mmu_mode();
1177 	pte_unmap_unlock(orig_src_pte, src_ptl);
1178 	add_mm_rss_vec(dst_mm, rss);
1179 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1180 	cond_resched();
1181 
1182 	if (ret == -EIO) {
1183 		VM_WARN_ON_ONCE(!entry.val);
1184 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1185 			ret = -ENOMEM;
1186 			goto out;
1187 		}
1188 		entry.val = 0;
1189 	} else if (ret == -EBUSY) {
1190 		goto out;
1191 	} else if (ret ==  -EAGAIN) {
1192 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1193 		if (!prealloc)
1194 			return -ENOMEM;
1195 	} else if (ret < 0) {
1196 		VM_WARN_ON_ONCE(1);
1197 	}
1198 
1199 	/* We've captured and resolved the error. Reset, try again. */
1200 	ret = 0;
1201 
1202 	if (addr != end)
1203 		goto again;
1204 out:
1205 	if (unlikely(prealloc))
1206 		folio_put(prealloc);
1207 	return ret;
1208 }
1209 
1210 static inline int
1211 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1212 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1213 	       unsigned long end)
1214 {
1215 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1216 	struct mm_struct *src_mm = src_vma->vm_mm;
1217 	pmd_t *src_pmd, *dst_pmd;
1218 	unsigned long next;
1219 
1220 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1221 	if (!dst_pmd)
1222 		return -ENOMEM;
1223 	src_pmd = pmd_offset(src_pud, addr);
1224 	do {
1225 		next = pmd_addr_end(addr, end);
1226 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1227 			|| pmd_devmap(*src_pmd)) {
1228 			int err;
1229 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1230 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1231 					    addr, dst_vma, src_vma);
1232 			if (err == -ENOMEM)
1233 				return -ENOMEM;
1234 			if (!err)
1235 				continue;
1236 			/* fall through */
1237 		}
1238 		if (pmd_none_or_clear_bad(src_pmd))
1239 			continue;
1240 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1241 				   addr, next))
1242 			return -ENOMEM;
1243 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1244 	return 0;
1245 }
1246 
1247 static inline int
1248 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1249 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1250 	       unsigned long end)
1251 {
1252 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1253 	struct mm_struct *src_mm = src_vma->vm_mm;
1254 	pud_t *src_pud, *dst_pud;
1255 	unsigned long next;
1256 
1257 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1258 	if (!dst_pud)
1259 		return -ENOMEM;
1260 	src_pud = pud_offset(src_p4d, addr);
1261 	do {
1262 		next = pud_addr_end(addr, end);
1263 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1264 			int err;
1265 
1266 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1267 			err = copy_huge_pud(dst_mm, src_mm,
1268 					    dst_pud, src_pud, addr, src_vma);
1269 			if (err == -ENOMEM)
1270 				return -ENOMEM;
1271 			if (!err)
1272 				continue;
1273 			/* fall through */
1274 		}
1275 		if (pud_none_or_clear_bad(src_pud))
1276 			continue;
1277 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1278 				   addr, next))
1279 			return -ENOMEM;
1280 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1281 	return 0;
1282 }
1283 
1284 static inline int
1285 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1286 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1287 	       unsigned long end)
1288 {
1289 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1290 	p4d_t *src_p4d, *dst_p4d;
1291 	unsigned long next;
1292 
1293 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1294 	if (!dst_p4d)
1295 		return -ENOMEM;
1296 	src_p4d = p4d_offset(src_pgd, addr);
1297 	do {
1298 		next = p4d_addr_end(addr, end);
1299 		if (p4d_none_or_clear_bad(src_p4d))
1300 			continue;
1301 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1302 				   addr, next))
1303 			return -ENOMEM;
1304 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Return true if the vma needs to copy the pgtable during this fork().  Return
1310  * false when we can speed up fork() by allowing lazy page faults later until
1311  * when the child accesses the memory range.
1312  */
1313 static bool
1314 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1315 {
1316 	/*
1317 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1318 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1319 	 * contains uffd-wp protection information, that's something we can't
1320 	 * retrieve from page cache, and skip copying will lose those info.
1321 	 */
1322 	if (userfaultfd_wp(dst_vma))
1323 		return true;
1324 
1325 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1326 		return true;
1327 
1328 	if (src_vma->anon_vma)
1329 		return true;
1330 
1331 	/*
1332 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1333 	 * becomes much lighter when there are big shared or private readonly
1334 	 * mappings. The tradeoff is that copy_page_range is more efficient
1335 	 * than faulting.
1336 	 */
1337 	return false;
1338 }
1339 
1340 int
1341 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1342 {
1343 	pgd_t *src_pgd, *dst_pgd;
1344 	unsigned long next;
1345 	unsigned long addr = src_vma->vm_start;
1346 	unsigned long end = src_vma->vm_end;
1347 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1348 	struct mm_struct *src_mm = src_vma->vm_mm;
1349 	struct mmu_notifier_range range;
1350 	bool is_cow;
1351 	int ret;
1352 
1353 	if (!vma_needs_copy(dst_vma, src_vma))
1354 		return 0;
1355 
1356 	if (is_vm_hugetlb_page(src_vma))
1357 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1358 
1359 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1360 		/*
1361 		 * We do not free on error cases below as remove_vma
1362 		 * gets called on error from higher level routine
1363 		 */
1364 		ret = track_pfn_copy(src_vma);
1365 		if (ret)
1366 			return ret;
1367 	}
1368 
1369 	/*
1370 	 * We need to invalidate the secondary MMU mappings only when
1371 	 * there could be a permission downgrade on the ptes of the
1372 	 * parent mm. And a permission downgrade will only happen if
1373 	 * is_cow_mapping() returns true.
1374 	 */
1375 	is_cow = is_cow_mapping(src_vma->vm_flags);
1376 
1377 	if (is_cow) {
1378 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1379 					0, src_mm, addr, end);
1380 		mmu_notifier_invalidate_range_start(&range);
1381 		/*
1382 		 * Disabling preemption is not needed for the write side, as
1383 		 * the read side doesn't spin, but goes to the mmap_lock.
1384 		 *
1385 		 * Use the raw variant of the seqcount_t write API to avoid
1386 		 * lockdep complaining about preemptibility.
1387 		 */
1388 		vma_assert_write_locked(src_vma);
1389 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1390 	}
1391 
1392 	ret = 0;
1393 	dst_pgd = pgd_offset(dst_mm, addr);
1394 	src_pgd = pgd_offset(src_mm, addr);
1395 	do {
1396 		next = pgd_addr_end(addr, end);
1397 		if (pgd_none_or_clear_bad(src_pgd))
1398 			continue;
1399 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1400 					    addr, next))) {
1401 			untrack_pfn_clear(dst_vma);
1402 			ret = -ENOMEM;
1403 			break;
1404 		}
1405 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1406 
1407 	if (is_cow) {
1408 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1409 		mmu_notifier_invalidate_range_end(&range);
1410 	}
1411 	return ret;
1412 }
1413 
1414 /* Whether we should zap all COWed (private) pages too */
1415 static inline bool should_zap_cows(struct zap_details *details)
1416 {
1417 	/* By default, zap all pages */
1418 	if (!details)
1419 		return true;
1420 
1421 	/* Or, we zap COWed pages only if the caller wants to */
1422 	return details->even_cows;
1423 }
1424 
1425 /* Decides whether we should zap this folio with the folio pointer specified */
1426 static inline bool should_zap_folio(struct zap_details *details,
1427 				    struct folio *folio)
1428 {
1429 	/* If we can make a decision without *folio.. */
1430 	if (should_zap_cows(details))
1431 		return true;
1432 
1433 	/* Otherwise we should only zap non-anon folios */
1434 	return !folio_test_anon(folio);
1435 }
1436 
1437 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1438 {
1439 	if (!details)
1440 		return false;
1441 
1442 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1443 }
1444 
1445 /*
1446  * This function makes sure that we'll replace the none pte with an uffd-wp
1447  * swap special pte marker when necessary. Must be with the pgtable lock held.
1448  */
1449 static inline void
1450 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1451 			      unsigned long addr, pte_t *pte, int nr,
1452 			      struct zap_details *details, pte_t pteval)
1453 {
1454 	/* Zap on anonymous always means dropping everything */
1455 	if (vma_is_anonymous(vma))
1456 		return;
1457 
1458 	if (zap_drop_file_uffd_wp(details))
1459 		return;
1460 
1461 	for (;;) {
1462 		/* the PFN in the PTE is irrelevant. */
1463 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1464 		if (--nr == 0)
1465 			break;
1466 		pte++;
1467 		addr += PAGE_SIZE;
1468 	}
1469 }
1470 
1471 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1472 		struct vm_area_struct *vma, struct folio *folio,
1473 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1474 		unsigned long addr, struct zap_details *details, int *rss,
1475 		bool *force_flush, bool *force_break)
1476 {
1477 	struct mm_struct *mm = tlb->mm;
1478 	bool delay_rmap = false;
1479 
1480 	if (!folio_test_anon(folio)) {
1481 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1482 		if (pte_dirty(ptent)) {
1483 			folio_mark_dirty(folio);
1484 			if (tlb_delay_rmap(tlb)) {
1485 				delay_rmap = true;
1486 				*force_flush = true;
1487 			}
1488 		}
1489 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1490 			folio_mark_accessed(folio);
1491 		rss[mm_counter(folio)] -= nr;
1492 	} else {
1493 		/* We don't need up-to-date accessed/dirty bits. */
1494 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1495 		rss[MM_ANONPAGES] -= nr;
1496 	}
1497 	/* Checking a single PTE in a batch is sufficient. */
1498 	arch_check_zapped_pte(vma, ptent);
1499 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1500 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1501 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1502 					      ptent);
1503 
1504 	if (!delay_rmap) {
1505 		folio_remove_rmap_ptes(folio, page, nr, vma);
1506 
1507 		if (unlikely(folio_mapcount(folio) < 0))
1508 			print_bad_pte(vma, addr, ptent, page);
1509 	}
1510 
1511 	if (want_init_mlocked_on_free() && folio_test_mlocked(folio) &&
1512 	    !delay_rmap && folio_test_anon(folio)) {
1513 		kernel_init_pages(page, folio_nr_pages(folio));
1514 	}
1515 
1516 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1517 		*force_flush = true;
1518 		*force_break = true;
1519 	}
1520 }
1521 
1522 /*
1523  * Zap or skip at least one present PTE, trying to batch-process subsequent
1524  * PTEs that map consecutive pages of the same folio.
1525  *
1526  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1527  */
1528 static inline int zap_present_ptes(struct mmu_gather *tlb,
1529 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1530 		unsigned int max_nr, unsigned long addr,
1531 		struct zap_details *details, int *rss, bool *force_flush,
1532 		bool *force_break)
1533 {
1534 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1535 	struct mm_struct *mm = tlb->mm;
1536 	struct folio *folio;
1537 	struct page *page;
1538 	int nr;
1539 
1540 	page = vm_normal_page(vma, addr, ptent);
1541 	if (!page) {
1542 		/* We don't need up-to-date accessed/dirty bits. */
1543 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1544 		arch_check_zapped_pte(vma, ptent);
1545 		tlb_remove_tlb_entry(tlb, pte, addr);
1546 		if (userfaultfd_pte_wp(vma, ptent))
1547 			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1548 						      details, ptent);
1549 		ksm_might_unmap_zero_page(mm, ptent);
1550 		return 1;
1551 	}
1552 
1553 	folio = page_folio(page);
1554 	if (unlikely(!should_zap_folio(details, folio)))
1555 		return 1;
1556 
1557 	/*
1558 	 * Make sure that the common "small folio" case is as fast as possible
1559 	 * by keeping the batching logic separate.
1560 	 */
1561 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1562 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1563 				     NULL, NULL, NULL);
1564 
1565 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1566 				       addr, details, rss, force_flush,
1567 				       force_break);
1568 		return nr;
1569 	}
1570 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1571 			       details, rss, force_flush, force_break);
1572 	return 1;
1573 }
1574 
1575 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1576 				struct vm_area_struct *vma, pmd_t *pmd,
1577 				unsigned long addr, unsigned long end,
1578 				struct zap_details *details)
1579 {
1580 	bool force_flush = false, force_break = false;
1581 	struct mm_struct *mm = tlb->mm;
1582 	int rss[NR_MM_COUNTERS];
1583 	spinlock_t *ptl;
1584 	pte_t *start_pte;
1585 	pte_t *pte;
1586 	swp_entry_t entry;
1587 	int nr;
1588 
1589 	tlb_change_page_size(tlb, PAGE_SIZE);
1590 	init_rss_vec(rss);
1591 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1592 	if (!pte)
1593 		return addr;
1594 
1595 	flush_tlb_batched_pending(mm);
1596 	arch_enter_lazy_mmu_mode();
1597 	do {
1598 		pte_t ptent = ptep_get(pte);
1599 		struct folio *folio;
1600 		struct page *page;
1601 		int max_nr;
1602 
1603 		nr = 1;
1604 		if (pte_none(ptent))
1605 			continue;
1606 
1607 		if (need_resched())
1608 			break;
1609 
1610 		if (pte_present(ptent)) {
1611 			max_nr = (end - addr) / PAGE_SIZE;
1612 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1613 					      addr, details, rss, &force_flush,
1614 					      &force_break);
1615 			if (unlikely(force_break)) {
1616 				addr += nr * PAGE_SIZE;
1617 				break;
1618 			}
1619 			continue;
1620 		}
1621 
1622 		entry = pte_to_swp_entry(ptent);
1623 		if (is_device_private_entry(entry) ||
1624 		    is_device_exclusive_entry(entry)) {
1625 			page = pfn_swap_entry_to_page(entry);
1626 			folio = page_folio(page);
1627 			if (unlikely(!should_zap_folio(details, folio)))
1628 				continue;
1629 			/*
1630 			 * Both device private/exclusive mappings should only
1631 			 * work with anonymous page so far, so we don't need to
1632 			 * consider uffd-wp bit when zap. For more information,
1633 			 * see zap_install_uffd_wp_if_needed().
1634 			 */
1635 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1636 			rss[mm_counter(folio)]--;
1637 			if (is_device_private_entry(entry))
1638 				folio_remove_rmap_pte(folio, page, vma);
1639 			folio_put(folio);
1640 		} else if (!non_swap_entry(entry)) {
1641 			max_nr = (end - addr) / PAGE_SIZE;
1642 			nr = swap_pte_batch(pte, max_nr, ptent);
1643 			/* Genuine swap entries, hence a private anon pages */
1644 			if (!should_zap_cows(details))
1645 				continue;
1646 			rss[MM_SWAPENTS] -= nr;
1647 			free_swap_and_cache_nr(entry, nr);
1648 		} else if (is_migration_entry(entry)) {
1649 			folio = pfn_swap_entry_folio(entry);
1650 			if (!should_zap_folio(details, folio))
1651 				continue;
1652 			rss[mm_counter(folio)]--;
1653 		} else if (pte_marker_entry_uffd_wp(entry)) {
1654 			/*
1655 			 * For anon: always drop the marker; for file: only
1656 			 * drop the marker if explicitly requested.
1657 			 */
1658 			if (!vma_is_anonymous(vma) &&
1659 			    !zap_drop_file_uffd_wp(details))
1660 				continue;
1661 		} else if (is_hwpoison_entry(entry) ||
1662 			   is_poisoned_swp_entry(entry)) {
1663 			if (!should_zap_cows(details))
1664 				continue;
1665 		} else {
1666 			/* We should have covered all the swap entry types */
1667 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1668 			WARN_ON_ONCE(1);
1669 		}
1670 		clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1671 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1672 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1673 
1674 	add_mm_rss_vec(mm, rss);
1675 	arch_leave_lazy_mmu_mode();
1676 
1677 	/* Do the actual TLB flush before dropping ptl */
1678 	if (force_flush) {
1679 		tlb_flush_mmu_tlbonly(tlb);
1680 		tlb_flush_rmaps(tlb, vma);
1681 	}
1682 	pte_unmap_unlock(start_pte, ptl);
1683 
1684 	/*
1685 	 * If we forced a TLB flush (either due to running out of
1686 	 * batch buffers or because we needed to flush dirty TLB
1687 	 * entries before releasing the ptl), free the batched
1688 	 * memory too. Come back again if we didn't do everything.
1689 	 */
1690 	if (force_flush)
1691 		tlb_flush_mmu(tlb);
1692 
1693 	return addr;
1694 }
1695 
1696 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1697 				struct vm_area_struct *vma, pud_t *pud,
1698 				unsigned long addr, unsigned long end,
1699 				struct zap_details *details)
1700 {
1701 	pmd_t *pmd;
1702 	unsigned long next;
1703 
1704 	pmd = pmd_offset(pud, addr);
1705 	do {
1706 		next = pmd_addr_end(addr, end);
1707 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1708 			if (next - addr != HPAGE_PMD_SIZE)
1709 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1710 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1711 				addr = next;
1712 				continue;
1713 			}
1714 			/* fall through */
1715 		} else if (details && details->single_folio &&
1716 			   folio_test_pmd_mappable(details->single_folio) &&
1717 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1718 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1719 			/*
1720 			 * Take and drop THP pmd lock so that we cannot return
1721 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1722 			 * but not yet decremented compound_mapcount().
1723 			 */
1724 			spin_unlock(ptl);
1725 		}
1726 		if (pmd_none(*pmd)) {
1727 			addr = next;
1728 			continue;
1729 		}
1730 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1731 		if (addr != next)
1732 			pmd--;
1733 	} while (pmd++, cond_resched(), addr != end);
1734 
1735 	return addr;
1736 }
1737 
1738 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1739 				struct vm_area_struct *vma, p4d_t *p4d,
1740 				unsigned long addr, unsigned long end,
1741 				struct zap_details *details)
1742 {
1743 	pud_t *pud;
1744 	unsigned long next;
1745 
1746 	pud = pud_offset(p4d, addr);
1747 	do {
1748 		next = pud_addr_end(addr, end);
1749 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1750 			if (next - addr != HPAGE_PUD_SIZE) {
1751 				mmap_assert_locked(tlb->mm);
1752 				split_huge_pud(vma, pud, addr);
1753 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1754 				goto next;
1755 			/* fall through */
1756 		}
1757 		if (pud_none_or_clear_bad(pud))
1758 			continue;
1759 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1760 next:
1761 		cond_resched();
1762 	} while (pud++, addr = next, addr != end);
1763 
1764 	return addr;
1765 }
1766 
1767 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1768 				struct vm_area_struct *vma, pgd_t *pgd,
1769 				unsigned long addr, unsigned long end,
1770 				struct zap_details *details)
1771 {
1772 	p4d_t *p4d;
1773 	unsigned long next;
1774 
1775 	p4d = p4d_offset(pgd, addr);
1776 	do {
1777 		next = p4d_addr_end(addr, end);
1778 		if (p4d_none_or_clear_bad(p4d))
1779 			continue;
1780 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1781 	} while (p4d++, addr = next, addr != end);
1782 
1783 	return addr;
1784 }
1785 
1786 void unmap_page_range(struct mmu_gather *tlb,
1787 			     struct vm_area_struct *vma,
1788 			     unsigned long addr, unsigned long end,
1789 			     struct zap_details *details)
1790 {
1791 	pgd_t *pgd;
1792 	unsigned long next;
1793 
1794 	BUG_ON(addr >= end);
1795 	tlb_start_vma(tlb, vma);
1796 	pgd = pgd_offset(vma->vm_mm, addr);
1797 	do {
1798 		next = pgd_addr_end(addr, end);
1799 		if (pgd_none_or_clear_bad(pgd))
1800 			continue;
1801 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1802 	} while (pgd++, addr = next, addr != end);
1803 	tlb_end_vma(tlb, vma);
1804 }
1805 
1806 
1807 static void unmap_single_vma(struct mmu_gather *tlb,
1808 		struct vm_area_struct *vma, unsigned long start_addr,
1809 		unsigned long end_addr,
1810 		struct zap_details *details, bool mm_wr_locked)
1811 {
1812 	unsigned long start = max(vma->vm_start, start_addr);
1813 	unsigned long end;
1814 
1815 	if (start >= vma->vm_end)
1816 		return;
1817 	end = min(vma->vm_end, end_addr);
1818 	if (end <= vma->vm_start)
1819 		return;
1820 
1821 	if (vma->vm_file)
1822 		uprobe_munmap(vma, start, end);
1823 
1824 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1825 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1826 
1827 	if (start != end) {
1828 		if (unlikely(is_vm_hugetlb_page(vma))) {
1829 			/*
1830 			 * It is undesirable to test vma->vm_file as it
1831 			 * should be non-null for valid hugetlb area.
1832 			 * However, vm_file will be NULL in the error
1833 			 * cleanup path of mmap_region. When
1834 			 * hugetlbfs ->mmap method fails,
1835 			 * mmap_region() nullifies vma->vm_file
1836 			 * before calling this function to clean up.
1837 			 * Since no pte has actually been setup, it is
1838 			 * safe to do nothing in this case.
1839 			 */
1840 			if (vma->vm_file) {
1841 				zap_flags_t zap_flags = details ?
1842 				    details->zap_flags : 0;
1843 				__unmap_hugepage_range(tlb, vma, start, end,
1844 							     NULL, zap_flags);
1845 			}
1846 		} else
1847 			unmap_page_range(tlb, vma, start, end, details);
1848 	}
1849 }
1850 
1851 /**
1852  * unmap_vmas - unmap a range of memory covered by a list of vma's
1853  * @tlb: address of the caller's struct mmu_gather
1854  * @mas: the maple state
1855  * @vma: the starting vma
1856  * @start_addr: virtual address at which to start unmapping
1857  * @end_addr: virtual address at which to end unmapping
1858  * @tree_end: The maximum index to check
1859  * @mm_wr_locked: lock flag
1860  *
1861  * Unmap all pages in the vma list.
1862  *
1863  * Only addresses between `start' and `end' will be unmapped.
1864  *
1865  * The VMA list must be sorted in ascending virtual address order.
1866  *
1867  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1868  * range after unmap_vmas() returns.  So the only responsibility here is to
1869  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1870  * drops the lock and schedules.
1871  */
1872 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1873 		struct vm_area_struct *vma, unsigned long start_addr,
1874 		unsigned long end_addr, unsigned long tree_end,
1875 		bool mm_wr_locked)
1876 {
1877 	struct mmu_notifier_range range;
1878 	struct zap_details details = {
1879 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1880 		/* Careful - we need to zap private pages too! */
1881 		.even_cows = true,
1882 	};
1883 
1884 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1885 				start_addr, end_addr);
1886 	mmu_notifier_invalidate_range_start(&range);
1887 	do {
1888 		unsigned long start = start_addr;
1889 		unsigned long end = end_addr;
1890 		hugetlb_zap_begin(vma, &start, &end);
1891 		unmap_single_vma(tlb, vma, start, end, &details,
1892 				 mm_wr_locked);
1893 		hugetlb_zap_end(vma, &details);
1894 		vma = mas_find(mas, tree_end - 1);
1895 	} while (vma && likely(!xa_is_zero(vma)));
1896 	mmu_notifier_invalidate_range_end(&range);
1897 }
1898 
1899 /**
1900  * zap_page_range_single - remove user pages in a given range
1901  * @vma: vm_area_struct holding the applicable pages
1902  * @address: starting address of pages to zap
1903  * @size: number of bytes to zap
1904  * @details: details of shared cache invalidation
1905  *
1906  * The range must fit into one VMA.
1907  */
1908 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1909 		unsigned long size, struct zap_details *details)
1910 {
1911 	const unsigned long end = address + size;
1912 	struct mmu_notifier_range range;
1913 	struct mmu_gather tlb;
1914 
1915 	lru_add_drain();
1916 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1917 				address, end);
1918 	hugetlb_zap_begin(vma, &range.start, &range.end);
1919 	tlb_gather_mmu(&tlb, vma->vm_mm);
1920 	update_hiwater_rss(vma->vm_mm);
1921 	mmu_notifier_invalidate_range_start(&range);
1922 	/*
1923 	 * unmap 'address-end' not 'range.start-range.end' as range
1924 	 * could have been expanded for hugetlb pmd sharing.
1925 	 */
1926 	unmap_single_vma(&tlb, vma, address, end, details, false);
1927 	mmu_notifier_invalidate_range_end(&range);
1928 	tlb_finish_mmu(&tlb);
1929 	hugetlb_zap_end(vma, details);
1930 }
1931 
1932 /**
1933  * zap_vma_ptes - remove ptes mapping the vma
1934  * @vma: vm_area_struct holding ptes to be zapped
1935  * @address: starting address of pages to zap
1936  * @size: number of bytes to zap
1937  *
1938  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1939  *
1940  * The entire address range must be fully contained within the vma.
1941  *
1942  */
1943 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1944 		unsigned long size)
1945 {
1946 	if (!range_in_vma(vma, address, address + size) ||
1947 	    		!(vma->vm_flags & VM_PFNMAP))
1948 		return;
1949 
1950 	zap_page_range_single(vma, address, size, NULL);
1951 }
1952 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1953 
1954 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1955 {
1956 	pgd_t *pgd;
1957 	p4d_t *p4d;
1958 	pud_t *pud;
1959 	pmd_t *pmd;
1960 
1961 	pgd = pgd_offset(mm, addr);
1962 	p4d = p4d_alloc(mm, pgd, addr);
1963 	if (!p4d)
1964 		return NULL;
1965 	pud = pud_alloc(mm, p4d, addr);
1966 	if (!pud)
1967 		return NULL;
1968 	pmd = pmd_alloc(mm, pud, addr);
1969 	if (!pmd)
1970 		return NULL;
1971 
1972 	VM_BUG_ON(pmd_trans_huge(*pmd));
1973 	return pmd;
1974 }
1975 
1976 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1977 			spinlock_t **ptl)
1978 {
1979 	pmd_t *pmd = walk_to_pmd(mm, addr);
1980 
1981 	if (!pmd)
1982 		return NULL;
1983 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1984 }
1985 
1986 static int validate_page_before_insert(struct page *page)
1987 {
1988 	struct folio *folio = page_folio(page);
1989 
1990 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
1991 	    page_has_type(page))
1992 		return -EINVAL;
1993 	flush_dcache_folio(folio);
1994 	return 0;
1995 }
1996 
1997 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1998 			unsigned long addr, struct page *page, pgprot_t prot)
1999 {
2000 	struct folio *folio = page_folio(page);
2001 
2002 	if (!pte_none(ptep_get(pte)))
2003 		return -EBUSY;
2004 	/* Ok, finally just insert the thing.. */
2005 	folio_get(folio);
2006 	inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2007 	folio_add_file_rmap_pte(folio, page, vma);
2008 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
2009 	return 0;
2010 }
2011 
2012 /*
2013  * This is the old fallback for page remapping.
2014  *
2015  * For historical reasons, it only allows reserved pages. Only
2016  * old drivers should use this, and they needed to mark their
2017  * pages reserved for the old functions anyway.
2018  */
2019 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2020 			struct page *page, pgprot_t prot)
2021 {
2022 	int retval;
2023 	pte_t *pte;
2024 	spinlock_t *ptl;
2025 
2026 	retval = validate_page_before_insert(page);
2027 	if (retval)
2028 		goto out;
2029 	retval = -ENOMEM;
2030 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2031 	if (!pte)
2032 		goto out;
2033 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2034 	pte_unmap_unlock(pte, ptl);
2035 out:
2036 	return retval;
2037 }
2038 
2039 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2040 			unsigned long addr, struct page *page, pgprot_t prot)
2041 {
2042 	int err;
2043 
2044 	if (!page_count(page))
2045 		return -EINVAL;
2046 	err = validate_page_before_insert(page);
2047 	if (err)
2048 		return err;
2049 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2050 }
2051 
2052 /* insert_pages() amortizes the cost of spinlock operations
2053  * when inserting pages in a loop.
2054  */
2055 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2056 			struct page **pages, unsigned long *num, pgprot_t prot)
2057 {
2058 	pmd_t *pmd = NULL;
2059 	pte_t *start_pte, *pte;
2060 	spinlock_t *pte_lock;
2061 	struct mm_struct *const mm = vma->vm_mm;
2062 	unsigned long curr_page_idx = 0;
2063 	unsigned long remaining_pages_total = *num;
2064 	unsigned long pages_to_write_in_pmd;
2065 	int ret;
2066 more:
2067 	ret = -EFAULT;
2068 	pmd = walk_to_pmd(mm, addr);
2069 	if (!pmd)
2070 		goto out;
2071 
2072 	pages_to_write_in_pmd = min_t(unsigned long,
2073 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2074 
2075 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2076 	ret = -ENOMEM;
2077 	if (pte_alloc(mm, pmd))
2078 		goto out;
2079 
2080 	while (pages_to_write_in_pmd) {
2081 		int pte_idx = 0;
2082 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2083 
2084 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2085 		if (!start_pte) {
2086 			ret = -EFAULT;
2087 			goto out;
2088 		}
2089 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2090 			int err = insert_page_in_batch_locked(vma, pte,
2091 				addr, pages[curr_page_idx], prot);
2092 			if (unlikely(err)) {
2093 				pte_unmap_unlock(start_pte, pte_lock);
2094 				ret = err;
2095 				remaining_pages_total -= pte_idx;
2096 				goto out;
2097 			}
2098 			addr += PAGE_SIZE;
2099 			++curr_page_idx;
2100 		}
2101 		pte_unmap_unlock(start_pte, pte_lock);
2102 		pages_to_write_in_pmd -= batch_size;
2103 		remaining_pages_total -= batch_size;
2104 	}
2105 	if (remaining_pages_total)
2106 		goto more;
2107 	ret = 0;
2108 out:
2109 	*num = remaining_pages_total;
2110 	return ret;
2111 }
2112 
2113 /**
2114  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2115  * @vma: user vma to map to
2116  * @addr: target start user address of these pages
2117  * @pages: source kernel pages
2118  * @num: in: number of pages to map. out: number of pages that were *not*
2119  * mapped. (0 means all pages were successfully mapped).
2120  *
2121  * Preferred over vm_insert_page() when inserting multiple pages.
2122  *
2123  * In case of error, we may have mapped a subset of the provided
2124  * pages. It is the caller's responsibility to account for this case.
2125  *
2126  * The same restrictions apply as in vm_insert_page().
2127  */
2128 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2129 			struct page **pages, unsigned long *num)
2130 {
2131 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2132 
2133 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2134 		return -EFAULT;
2135 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2136 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2137 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2138 		vm_flags_set(vma, VM_MIXEDMAP);
2139 	}
2140 	/* Defer page refcount checking till we're about to map that page. */
2141 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2142 }
2143 EXPORT_SYMBOL(vm_insert_pages);
2144 
2145 /**
2146  * vm_insert_page - insert single page into user vma
2147  * @vma: user vma to map to
2148  * @addr: target user address of this page
2149  * @page: source kernel page
2150  *
2151  * This allows drivers to insert individual pages they've allocated
2152  * into a user vma.
2153  *
2154  * The page has to be a nice clean _individual_ kernel allocation.
2155  * If you allocate a compound page, you need to have marked it as
2156  * such (__GFP_COMP), or manually just split the page up yourself
2157  * (see split_page()).
2158  *
2159  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2160  * took an arbitrary page protection parameter. This doesn't allow
2161  * that. Your vma protection will have to be set up correctly, which
2162  * means that if you want a shared writable mapping, you'd better
2163  * ask for a shared writable mapping!
2164  *
2165  * The page does not need to be reserved.
2166  *
2167  * Usually this function is called from f_op->mmap() handler
2168  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2169  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2170  * function from other places, for example from page-fault handler.
2171  *
2172  * Return: %0 on success, negative error code otherwise.
2173  */
2174 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2175 			struct page *page)
2176 {
2177 	if (addr < vma->vm_start || addr >= vma->vm_end)
2178 		return -EFAULT;
2179 	if (!page_count(page))
2180 		return -EINVAL;
2181 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2182 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2183 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2184 		vm_flags_set(vma, VM_MIXEDMAP);
2185 	}
2186 	return insert_page(vma, addr, page, vma->vm_page_prot);
2187 }
2188 EXPORT_SYMBOL(vm_insert_page);
2189 
2190 /*
2191  * __vm_map_pages - maps range of kernel pages into user vma
2192  * @vma: user vma to map to
2193  * @pages: pointer to array of source kernel pages
2194  * @num: number of pages in page array
2195  * @offset: user's requested vm_pgoff
2196  *
2197  * This allows drivers to map range of kernel pages into a user vma.
2198  *
2199  * Return: 0 on success and error code otherwise.
2200  */
2201 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2202 				unsigned long num, unsigned long offset)
2203 {
2204 	unsigned long count = vma_pages(vma);
2205 	unsigned long uaddr = vma->vm_start;
2206 	int ret, i;
2207 
2208 	/* Fail if the user requested offset is beyond the end of the object */
2209 	if (offset >= num)
2210 		return -ENXIO;
2211 
2212 	/* Fail if the user requested size exceeds available object size */
2213 	if (count > num - offset)
2214 		return -ENXIO;
2215 
2216 	for (i = 0; i < count; i++) {
2217 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2218 		if (ret < 0)
2219 			return ret;
2220 		uaddr += PAGE_SIZE;
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 /**
2227  * vm_map_pages - maps range of kernel pages starts with non zero offset
2228  * @vma: user vma to map to
2229  * @pages: pointer to array of source kernel pages
2230  * @num: number of pages in page array
2231  *
2232  * Maps an object consisting of @num pages, catering for the user's
2233  * requested vm_pgoff
2234  *
2235  * If we fail to insert any page into the vma, the function will return
2236  * immediately leaving any previously inserted pages present.  Callers
2237  * from the mmap handler may immediately return the error as their caller
2238  * will destroy the vma, removing any successfully inserted pages. Other
2239  * callers should make their own arrangements for calling unmap_region().
2240  *
2241  * Context: Process context. Called by mmap handlers.
2242  * Return: 0 on success and error code otherwise.
2243  */
2244 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2245 				unsigned long num)
2246 {
2247 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2248 }
2249 EXPORT_SYMBOL(vm_map_pages);
2250 
2251 /**
2252  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2253  * @vma: user vma to map to
2254  * @pages: pointer to array of source kernel pages
2255  * @num: number of pages in page array
2256  *
2257  * Similar to vm_map_pages(), except that it explicitly sets the offset
2258  * to 0. This function is intended for the drivers that did not consider
2259  * vm_pgoff.
2260  *
2261  * Context: Process context. Called by mmap handlers.
2262  * Return: 0 on success and error code otherwise.
2263  */
2264 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2265 				unsigned long num)
2266 {
2267 	return __vm_map_pages(vma, pages, num, 0);
2268 }
2269 EXPORT_SYMBOL(vm_map_pages_zero);
2270 
2271 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2272 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2273 {
2274 	struct mm_struct *mm = vma->vm_mm;
2275 	pte_t *pte, entry;
2276 	spinlock_t *ptl;
2277 
2278 	pte = get_locked_pte(mm, addr, &ptl);
2279 	if (!pte)
2280 		return VM_FAULT_OOM;
2281 	entry = ptep_get(pte);
2282 	if (!pte_none(entry)) {
2283 		if (mkwrite) {
2284 			/*
2285 			 * For read faults on private mappings the PFN passed
2286 			 * in may not match the PFN we have mapped if the
2287 			 * mapped PFN is a writeable COW page.  In the mkwrite
2288 			 * case we are creating a writable PTE for a shared
2289 			 * mapping and we expect the PFNs to match. If they
2290 			 * don't match, we are likely racing with block
2291 			 * allocation and mapping invalidation so just skip the
2292 			 * update.
2293 			 */
2294 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2295 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2296 				goto out_unlock;
2297 			}
2298 			entry = pte_mkyoung(entry);
2299 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2300 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2301 				update_mmu_cache(vma, addr, pte);
2302 		}
2303 		goto out_unlock;
2304 	}
2305 
2306 	/* Ok, finally just insert the thing.. */
2307 	if (pfn_t_devmap(pfn))
2308 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2309 	else
2310 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2311 
2312 	if (mkwrite) {
2313 		entry = pte_mkyoung(entry);
2314 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2315 	}
2316 
2317 	set_pte_at(mm, addr, pte, entry);
2318 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2319 
2320 out_unlock:
2321 	pte_unmap_unlock(pte, ptl);
2322 	return VM_FAULT_NOPAGE;
2323 }
2324 
2325 /**
2326  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2327  * @vma: user vma to map to
2328  * @addr: target user address of this page
2329  * @pfn: source kernel pfn
2330  * @pgprot: pgprot flags for the inserted page
2331  *
2332  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2333  * to override pgprot on a per-page basis.
2334  *
2335  * This only makes sense for IO mappings, and it makes no sense for
2336  * COW mappings.  In general, using multiple vmas is preferable;
2337  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2338  * impractical.
2339  *
2340  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2341  * caching- and encryption bits different than those of @vma->vm_page_prot,
2342  * because the caching- or encryption mode may not be known at mmap() time.
2343  *
2344  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2345  * to set caching and encryption bits for those vmas (except for COW pages).
2346  * This is ensured by core vm only modifying these page table entries using
2347  * functions that don't touch caching- or encryption bits, using pte_modify()
2348  * if needed. (See for example mprotect()).
2349  *
2350  * Also when new page-table entries are created, this is only done using the
2351  * fault() callback, and never using the value of vma->vm_page_prot,
2352  * except for page-table entries that point to anonymous pages as the result
2353  * of COW.
2354  *
2355  * Context: Process context.  May allocate using %GFP_KERNEL.
2356  * Return: vm_fault_t value.
2357  */
2358 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2359 			unsigned long pfn, pgprot_t pgprot)
2360 {
2361 	/*
2362 	 * Technically, architectures with pte_special can avoid all these
2363 	 * restrictions (same for remap_pfn_range).  However we would like
2364 	 * consistency in testing and feature parity among all, so we should
2365 	 * try to keep these invariants in place for everybody.
2366 	 */
2367 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2368 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2369 						(VM_PFNMAP|VM_MIXEDMAP));
2370 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2371 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2372 
2373 	if (addr < vma->vm_start || addr >= vma->vm_end)
2374 		return VM_FAULT_SIGBUS;
2375 
2376 	if (!pfn_modify_allowed(pfn, pgprot))
2377 		return VM_FAULT_SIGBUS;
2378 
2379 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2380 
2381 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2382 			false);
2383 }
2384 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2385 
2386 /**
2387  * vmf_insert_pfn - insert single pfn into user vma
2388  * @vma: user vma to map to
2389  * @addr: target user address of this page
2390  * @pfn: source kernel pfn
2391  *
2392  * Similar to vm_insert_page, this allows drivers to insert individual pages
2393  * they've allocated into a user vma. Same comments apply.
2394  *
2395  * This function should only be called from a vm_ops->fault handler, and
2396  * in that case the handler should return the result of this function.
2397  *
2398  * vma cannot be a COW mapping.
2399  *
2400  * As this is called only for pages that do not currently exist, we
2401  * do not need to flush old virtual caches or the TLB.
2402  *
2403  * Context: Process context.  May allocate using %GFP_KERNEL.
2404  * Return: vm_fault_t value.
2405  */
2406 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2407 			unsigned long pfn)
2408 {
2409 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2410 }
2411 EXPORT_SYMBOL(vmf_insert_pfn);
2412 
2413 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2414 {
2415 	/* these checks mirror the abort conditions in vm_normal_page */
2416 	if (vma->vm_flags & VM_MIXEDMAP)
2417 		return true;
2418 	if (pfn_t_devmap(pfn))
2419 		return true;
2420 	if (pfn_t_special(pfn))
2421 		return true;
2422 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2423 		return true;
2424 	return false;
2425 }
2426 
2427 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2428 		unsigned long addr, pfn_t pfn, bool mkwrite)
2429 {
2430 	pgprot_t pgprot = vma->vm_page_prot;
2431 	int err;
2432 
2433 	BUG_ON(!vm_mixed_ok(vma, pfn));
2434 
2435 	if (addr < vma->vm_start || addr >= vma->vm_end)
2436 		return VM_FAULT_SIGBUS;
2437 
2438 	track_pfn_insert(vma, &pgprot, pfn);
2439 
2440 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2441 		return VM_FAULT_SIGBUS;
2442 
2443 	/*
2444 	 * If we don't have pte special, then we have to use the pfn_valid()
2445 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2446 	 * refcount the page if pfn_valid is true (hence insert_page rather
2447 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2448 	 * without pte special, it would there be refcounted as a normal page.
2449 	 */
2450 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2451 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2452 		struct page *page;
2453 
2454 		/*
2455 		 * At this point we are committed to insert_page()
2456 		 * regardless of whether the caller specified flags that
2457 		 * result in pfn_t_has_page() == false.
2458 		 */
2459 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2460 		err = insert_page(vma, addr, page, pgprot);
2461 	} else {
2462 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2463 	}
2464 
2465 	if (err == -ENOMEM)
2466 		return VM_FAULT_OOM;
2467 	if (err < 0 && err != -EBUSY)
2468 		return VM_FAULT_SIGBUS;
2469 
2470 	return VM_FAULT_NOPAGE;
2471 }
2472 
2473 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2474 		pfn_t pfn)
2475 {
2476 	return __vm_insert_mixed(vma, addr, pfn, false);
2477 }
2478 EXPORT_SYMBOL(vmf_insert_mixed);
2479 
2480 /*
2481  *  If the insertion of PTE failed because someone else already added a
2482  *  different entry in the mean time, we treat that as success as we assume
2483  *  the same entry was actually inserted.
2484  */
2485 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2486 		unsigned long addr, pfn_t pfn)
2487 {
2488 	return __vm_insert_mixed(vma, addr, pfn, true);
2489 }
2490 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2491 
2492 /*
2493  * maps a range of physical memory into the requested pages. the old
2494  * mappings are removed. any references to nonexistent pages results
2495  * in null mappings (currently treated as "copy-on-access")
2496  */
2497 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2498 			unsigned long addr, unsigned long end,
2499 			unsigned long pfn, pgprot_t prot)
2500 {
2501 	pte_t *pte, *mapped_pte;
2502 	spinlock_t *ptl;
2503 	int err = 0;
2504 
2505 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2506 	if (!pte)
2507 		return -ENOMEM;
2508 	arch_enter_lazy_mmu_mode();
2509 	do {
2510 		BUG_ON(!pte_none(ptep_get(pte)));
2511 		if (!pfn_modify_allowed(pfn, prot)) {
2512 			err = -EACCES;
2513 			break;
2514 		}
2515 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2516 		pfn++;
2517 	} while (pte++, addr += PAGE_SIZE, addr != end);
2518 	arch_leave_lazy_mmu_mode();
2519 	pte_unmap_unlock(mapped_pte, ptl);
2520 	return err;
2521 }
2522 
2523 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2524 			unsigned long addr, unsigned long end,
2525 			unsigned long pfn, pgprot_t prot)
2526 {
2527 	pmd_t *pmd;
2528 	unsigned long next;
2529 	int err;
2530 
2531 	pfn -= addr >> PAGE_SHIFT;
2532 	pmd = pmd_alloc(mm, pud, addr);
2533 	if (!pmd)
2534 		return -ENOMEM;
2535 	VM_BUG_ON(pmd_trans_huge(*pmd));
2536 	do {
2537 		next = pmd_addr_end(addr, end);
2538 		err = remap_pte_range(mm, pmd, addr, next,
2539 				pfn + (addr >> PAGE_SHIFT), prot);
2540 		if (err)
2541 			return err;
2542 	} while (pmd++, addr = next, addr != end);
2543 	return 0;
2544 }
2545 
2546 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2547 			unsigned long addr, unsigned long end,
2548 			unsigned long pfn, pgprot_t prot)
2549 {
2550 	pud_t *pud;
2551 	unsigned long next;
2552 	int err;
2553 
2554 	pfn -= addr >> PAGE_SHIFT;
2555 	pud = pud_alloc(mm, p4d, addr);
2556 	if (!pud)
2557 		return -ENOMEM;
2558 	do {
2559 		next = pud_addr_end(addr, end);
2560 		err = remap_pmd_range(mm, pud, addr, next,
2561 				pfn + (addr >> PAGE_SHIFT), prot);
2562 		if (err)
2563 			return err;
2564 	} while (pud++, addr = next, addr != end);
2565 	return 0;
2566 }
2567 
2568 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2569 			unsigned long addr, unsigned long end,
2570 			unsigned long pfn, pgprot_t prot)
2571 {
2572 	p4d_t *p4d;
2573 	unsigned long next;
2574 	int err;
2575 
2576 	pfn -= addr >> PAGE_SHIFT;
2577 	p4d = p4d_alloc(mm, pgd, addr);
2578 	if (!p4d)
2579 		return -ENOMEM;
2580 	do {
2581 		next = p4d_addr_end(addr, end);
2582 		err = remap_pud_range(mm, p4d, addr, next,
2583 				pfn + (addr >> PAGE_SHIFT), prot);
2584 		if (err)
2585 			return err;
2586 	} while (p4d++, addr = next, addr != end);
2587 	return 0;
2588 }
2589 
2590 /*
2591  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2592  * must have pre-validated the caching bits of the pgprot_t.
2593  */
2594 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2595 		unsigned long pfn, unsigned long size, pgprot_t prot)
2596 {
2597 	pgd_t *pgd;
2598 	unsigned long next;
2599 	unsigned long end = addr + PAGE_ALIGN(size);
2600 	struct mm_struct *mm = vma->vm_mm;
2601 	int err;
2602 
2603 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2604 		return -EINVAL;
2605 
2606 	/*
2607 	 * Physically remapped pages are special. Tell the
2608 	 * rest of the world about it:
2609 	 *   VM_IO tells people not to look at these pages
2610 	 *	(accesses can have side effects).
2611 	 *   VM_PFNMAP tells the core MM that the base pages are just
2612 	 *	raw PFN mappings, and do not have a "struct page" associated
2613 	 *	with them.
2614 	 *   VM_DONTEXPAND
2615 	 *      Disable vma merging and expanding with mremap().
2616 	 *   VM_DONTDUMP
2617 	 *      Omit vma from core dump, even when VM_IO turned off.
2618 	 *
2619 	 * There's a horrible special case to handle copy-on-write
2620 	 * behaviour that some programs depend on. We mark the "original"
2621 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2622 	 * See vm_normal_page() for details.
2623 	 */
2624 	if (is_cow_mapping(vma->vm_flags)) {
2625 		if (addr != vma->vm_start || end != vma->vm_end)
2626 			return -EINVAL;
2627 		vma->vm_pgoff = pfn;
2628 	}
2629 
2630 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2631 
2632 	BUG_ON(addr >= end);
2633 	pfn -= addr >> PAGE_SHIFT;
2634 	pgd = pgd_offset(mm, addr);
2635 	flush_cache_range(vma, addr, end);
2636 	do {
2637 		next = pgd_addr_end(addr, end);
2638 		err = remap_p4d_range(mm, pgd, addr, next,
2639 				pfn + (addr >> PAGE_SHIFT), prot);
2640 		if (err)
2641 			return err;
2642 	} while (pgd++, addr = next, addr != end);
2643 
2644 	return 0;
2645 }
2646 
2647 /**
2648  * remap_pfn_range - remap kernel memory to userspace
2649  * @vma: user vma to map to
2650  * @addr: target page aligned user address to start at
2651  * @pfn: page frame number of kernel physical memory address
2652  * @size: size of mapping area
2653  * @prot: page protection flags for this mapping
2654  *
2655  * Note: this is only safe if the mm semaphore is held when called.
2656  *
2657  * Return: %0 on success, negative error code otherwise.
2658  */
2659 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2660 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2661 {
2662 	int err;
2663 
2664 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2665 	if (err)
2666 		return -EINVAL;
2667 
2668 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2669 	if (err)
2670 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2671 	return err;
2672 }
2673 EXPORT_SYMBOL(remap_pfn_range);
2674 
2675 /**
2676  * vm_iomap_memory - remap memory to userspace
2677  * @vma: user vma to map to
2678  * @start: start of the physical memory to be mapped
2679  * @len: size of area
2680  *
2681  * This is a simplified io_remap_pfn_range() for common driver use. The
2682  * driver just needs to give us the physical memory range to be mapped,
2683  * we'll figure out the rest from the vma information.
2684  *
2685  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2686  * whatever write-combining details or similar.
2687  *
2688  * Return: %0 on success, negative error code otherwise.
2689  */
2690 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2691 {
2692 	unsigned long vm_len, pfn, pages;
2693 
2694 	/* Check that the physical memory area passed in looks valid */
2695 	if (start + len < start)
2696 		return -EINVAL;
2697 	/*
2698 	 * You *really* shouldn't map things that aren't page-aligned,
2699 	 * but we've historically allowed it because IO memory might
2700 	 * just have smaller alignment.
2701 	 */
2702 	len += start & ~PAGE_MASK;
2703 	pfn = start >> PAGE_SHIFT;
2704 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2705 	if (pfn + pages < pfn)
2706 		return -EINVAL;
2707 
2708 	/* We start the mapping 'vm_pgoff' pages into the area */
2709 	if (vma->vm_pgoff > pages)
2710 		return -EINVAL;
2711 	pfn += vma->vm_pgoff;
2712 	pages -= vma->vm_pgoff;
2713 
2714 	/* Can we fit all of the mapping? */
2715 	vm_len = vma->vm_end - vma->vm_start;
2716 	if (vm_len >> PAGE_SHIFT > pages)
2717 		return -EINVAL;
2718 
2719 	/* Ok, let it rip */
2720 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2721 }
2722 EXPORT_SYMBOL(vm_iomap_memory);
2723 
2724 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2725 				     unsigned long addr, unsigned long end,
2726 				     pte_fn_t fn, void *data, bool create,
2727 				     pgtbl_mod_mask *mask)
2728 {
2729 	pte_t *pte, *mapped_pte;
2730 	int err = 0;
2731 	spinlock_t *ptl;
2732 
2733 	if (create) {
2734 		mapped_pte = pte = (mm == &init_mm) ?
2735 			pte_alloc_kernel_track(pmd, addr, mask) :
2736 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2737 		if (!pte)
2738 			return -ENOMEM;
2739 	} else {
2740 		mapped_pte = pte = (mm == &init_mm) ?
2741 			pte_offset_kernel(pmd, addr) :
2742 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2743 		if (!pte)
2744 			return -EINVAL;
2745 	}
2746 
2747 	arch_enter_lazy_mmu_mode();
2748 
2749 	if (fn) {
2750 		do {
2751 			if (create || !pte_none(ptep_get(pte))) {
2752 				err = fn(pte++, addr, data);
2753 				if (err)
2754 					break;
2755 			}
2756 		} while (addr += PAGE_SIZE, addr != end);
2757 	}
2758 	*mask |= PGTBL_PTE_MODIFIED;
2759 
2760 	arch_leave_lazy_mmu_mode();
2761 
2762 	if (mm != &init_mm)
2763 		pte_unmap_unlock(mapped_pte, ptl);
2764 	return err;
2765 }
2766 
2767 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2768 				     unsigned long addr, unsigned long end,
2769 				     pte_fn_t fn, void *data, bool create,
2770 				     pgtbl_mod_mask *mask)
2771 {
2772 	pmd_t *pmd;
2773 	unsigned long next;
2774 	int err = 0;
2775 
2776 	BUG_ON(pud_leaf(*pud));
2777 
2778 	if (create) {
2779 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2780 		if (!pmd)
2781 			return -ENOMEM;
2782 	} else {
2783 		pmd = pmd_offset(pud, addr);
2784 	}
2785 	do {
2786 		next = pmd_addr_end(addr, end);
2787 		if (pmd_none(*pmd) && !create)
2788 			continue;
2789 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2790 			return -EINVAL;
2791 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2792 			if (!create)
2793 				continue;
2794 			pmd_clear_bad(pmd);
2795 		}
2796 		err = apply_to_pte_range(mm, pmd, addr, next,
2797 					 fn, data, create, mask);
2798 		if (err)
2799 			break;
2800 	} while (pmd++, addr = next, addr != end);
2801 
2802 	return err;
2803 }
2804 
2805 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2806 				     unsigned long addr, unsigned long end,
2807 				     pte_fn_t fn, void *data, bool create,
2808 				     pgtbl_mod_mask *mask)
2809 {
2810 	pud_t *pud;
2811 	unsigned long next;
2812 	int err = 0;
2813 
2814 	if (create) {
2815 		pud = pud_alloc_track(mm, p4d, addr, mask);
2816 		if (!pud)
2817 			return -ENOMEM;
2818 	} else {
2819 		pud = pud_offset(p4d, addr);
2820 	}
2821 	do {
2822 		next = pud_addr_end(addr, end);
2823 		if (pud_none(*pud) && !create)
2824 			continue;
2825 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2826 			return -EINVAL;
2827 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2828 			if (!create)
2829 				continue;
2830 			pud_clear_bad(pud);
2831 		}
2832 		err = apply_to_pmd_range(mm, pud, addr, next,
2833 					 fn, data, create, mask);
2834 		if (err)
2835 			break;
2836 	} while (pud++, addr = next, addr != end);
2837 
2838 	return err;
2839 }
2840 
2841 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2842 				     unsigned long addr, unsigned long end,
2843 				     pte_fn_t fn, void *data, bool create,
2844 				     pgtbl_mod_mask *mask)
2845 {
2846 	p4d_t *p4d;
2847 	unsigned long next;
2848 	int err = 0;
2849 
2850 	if (create) {
2851 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2852 		if (!p4d)
2853 			return -ENOMEM;
2854 	} else {
2855 		p4d = p4d_offset(pgd, addr);
2856 	}
2857 	do {
2858 		next = p4d_addr_end(addr, end);
2859 		if (p4d_none(*p4d) && !create)
2860 			continue;
2861 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2862 			return -EINVAL;
2863 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2864 			if (!create)
2865 				continue;
2866 			p4d_clear_bad(p4d);
2867 		}
2868 		err = apply_to_pud_range(mm, p4d, addr, next,
2869 					 fn, data, create, mask);
2870 		if (err)
2871 			break;
2872 	} while (p4d++, addr = next, addr != end);
2873 
2874 	return err;
2875 }
2876 
2877 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2878 				 unsigned long size, pte_fn_t fn,
2879 				 void *data, bool create)
2880 {
2881 	pgd_t *pgd;
2882 	unsigned long start = addr, next;
2883 	unsigned long end = addr + size;
2884 	pgtbl_mod_mask mask = 0;
2885 	int err = 0;
2886 
2887 	if (WARN_ON(addr >= end))
2888 		return -EINVAL;
2889 
2890 	pgd = pgd_offset(mm, addr);
2891 	do {
2892 		next = pgd_addr_end(addr, end);
2893 		if (pgd_none(*pgd) && !create)
2894 			continue;
2895 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2896 			return -EINVAL;
2897 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2898 			if (!create)
2899 				continue;
2900 			pgd_clear_bad(pgd);
2901 		}
2902 		err = apply_to_p4d_range(mm, pgd, addr, next,
2903 					 fn, data, create, &mask);
2904 		if (err)
2905 			break;
2906 	} while (pgd++, addr = next, addr != end);
2907 
2908 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2909 		arch_sync_kernel_mappings(start, start + size);
2910 
2911 	return err;
2912 }
2913 
2914 /*
2915  * Scan a region of virtual memory, filling in page tables as necessary
2916  * and calling a provided function on each leaf page table.
2917  */
2918 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2919 			unsigned long size, pte_fn_t fn, void *data)
2920 {
2921 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2922 }
2923 EXPORT_SYMBOL_GPL(apply_to_page_range);
2924 
2925 /*
2926  * Scan a region of virtual memory, calling a provided function on
2927  * each leaf page table where it exists.
2928  *
2929  * Unlike apply_to_page_range, this does _not_ fill in page tables
2930  * where they are absent.
2931  */
2932 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2933 				 unsigned long size, pte_fn_t fn, void *data)
2934 {
2935 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2936 }
2937 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2938 
2939 /*
2940  * handle_pte_fault chooses page fault handler according to an entry which was
2941  * read non-atomically.  Before making any commitment, on those architectures
2942  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2943  * parts, do_swap_page must check under lock before unmapping the pte and
2944  * proceeding (but do_wp_page is only called after already making such a check;
2945  * and do_anonymous_page can safely check later on).
2946  */
2947 static inline int pte_unmap_same(struct vm_fault *vmf)
2948 {
2949 	int same = 1;
2950 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2951 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2952 		spin_lock(vmf->ptl);
2953 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2954 		spin_unlock(vmf->ptl);
2955 	}
2956 #endif
2957 	pte_unmap(vmf->pte);
2958 	vmf->pte = NULL;
2959 	return same;
2960 }
2961 
2962 /*
2963  * Return:
2964  *	0:		copied succeeded
2965  *	-EHWPOISON:	copy failed due to hwpoison in source page
2966  *	-EAGAIN:	copied failed (some other reason)
2967  */
2968 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2969 				      struct vm_fault *vmf)
2970 {
2971 	int ret;
2972 	void *kaddr;
2973 	void __user *uaddr;
2974 	struct vm_area_struct *vma = vmf->vma;
2975 	struct mm_struct *mm = vma->vm_mm;
2976 	unsigned long addr = vmf->address;
2977 
2978 	if (likely(src)) {
2979 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2980 			memory_failure_queue(page_to_pfn(src), 0);
2981 			return -EHWPOISON;
2982 		}
2983 		return 0;
2984 	}
2985 
2986 	/*
2987 	 * If the source page was a PFN mapping, we don't have
2988 	 * a "struct page" for it. We do a best-effort copy by
2989 	 * just copying from the original user address. If that
2990 	 * fails, we just zero-fill it. Live with it.
2991 	 */
2992 	kaddr = kmap_local_page(dst);
2993 	pagefault_disable();
2994 	uaddr = (void __user *)(addr & PAGE_MASK);
2995 
2996 	/*
2997 	 * On architectures with software "accessed" bits, we would
2998 	 * take a double page fault, so mark it accessed here.
2999 	 */
3000 	vmf->pte = NULL;
3001 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3002 		pte_t entry;
3003 
3004 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3005 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3006 			/*
3007 			 * Other thread has already handled the fault
3008 			 * and update local tlb only
3009 			 */
3010 			if (vmf->pte)
3011 				update_mmu_tlb(vma, addr, vmf->pte);
3012 			ret = -EAGAIN;
3013 			goto pte_unlock;
3014 		}
3015 
3016 		entry = pte_mkyoung(vmf->orig_pte);
3017 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3018 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3019 	}
3020 
3021 	/*
3022 	 * This really shouldn't fail, because the page is there
3023 	 * in the page tables. But it might just be unreadable,
3024 	 * in which case we just give up and fill the result with
3025 	 * zeroes.
3026 	 */
3027 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3028 		if (vmf->pte)
3029 			goto warn;
3030 
3031 		/* Re-validate under PTL if the page is still mapped */
3032 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3033 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3034 			/* The PTE changed under us, update local tlb */
3035 			if (vmf->pte)
3036 				update_mmu_tlb(vma, addr, vmf->pte);
3037 			ret = -EAGAIN;
3038 			goto pte_unlock;
3039 		}
3040 
3041 		/*
3042 		 * The same page can be mapped back since last copy attempt.
3043 		 * Try to copy again under PTL.
3044 		 */
3045 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3046 			/*
3047 			 * Give a warn in case there can be some obscure
3048 			 * use-case
3049 			 */
3050 warn:
3051 			WARN_ON_ONCE(1);
3052 			clear_page(kaddr);
3053 		}
3054 	}
3055 
3056 	ret = 0;
3057 
3058 pte_unlock:
3059 	if (vmf->pte)
3060 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3061 	pagefault_enable();
3062 	kunmap_local(kaddr);
3063 	flush_dcache_page(dst);
3064 
3065 	return ret;
3066 }
3067 
3068 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3069 {
3070 	struct file *vm_file = vma->vm_file;
3071 
3072 	if (vm_file)
3073 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3074 
3075 	/*
3076 	 * Special mappings (e.g. VDSO) do not have any file so fake
3077 	 * a default GFP_KERNEL for them.
3078 	 */
3079 	return GFP_KERNEL;
3080 }
3081 
3082 /*
3083  * Notify the address space that the page is about to become writable so that
3084  * it can prohibit this or wait for the page to get into an appropriate state.
3085  *
3086  * We do this without the lock held, so that it can sleep if it needs to.
3087  */
3088 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3089 {
3090 	vm_fault_t ret;
3091 	unsigned int old_flags = vmf->flags;
3092 
3093 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3094 
3095 	if (vmf->vma->vm_file &&
3096 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3097 		return VM_FAULT_SIGBUS;
3098 
3099 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3100 	/* Restore original flags so that caller is not surprised */
3101 	vmf->flags = old_flags;
3102 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3103 		return ret;
3104 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3105 		folio_lock(folio);
3106 		if (!folio->mapping) {
3107 			folio_unlock(folio);
3108 			return 0; /* retry */
3109 		}
3110 		ret |= VM_FAULT_LOCKED;
3111 	} else
3112 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3113 	return ret;
3114 }
3115 
3116 /*
3117  * Handle dirtying of a page in shared file mapping on a write fault.
3118  *
3119  * The function expects the page to be locked and unlocks it.
3120  */
3121 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3122 {
3123 	struct vm_area_struct *vma = vmf->vma;
3124 	struct address_space *mapping;
3125 	struct folio *folio = page_folio(vmf->page);
3126 	bool dirtied;
3127 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3128 
3129 	dirtied = folio_mark_dirty(folio);
3130 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3131 	/*
3132 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3133 	 * by truncate after folio_unlock().   The address_space itself remains
3134 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3135 	 * release semantics to prevent the compiler from undoing this copying.
3136 	 */
3137 	mapping = folio_raw_mapping(folio);
3138 	folio_unlock(folio);
3139 
3140 	if (!page_mkwrite)
3141 		file_update_time(vma->vm_file);
3142 
3143 	/*
3144 	 * Throttle page dirtying rate down to writeback speed.
3145 	 *
3146 	 * mapping may be NULL here because some device drivers do not
3147 	 * set page.mapping but still dirty their pages
3148 	 *
3149 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3150 	 * is pinning the mapping, as per above.
3151 	 */
3152 	if ((dirtied || page_mkwrite) && mapping) {
3153 		struct file *fpin;
3154 
3155 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3156 		balance_dirty_pages_ratelimited(mapping);
3157 		if (fpin) {
3158 			fput(fpin);
3159 			return VM_FAULT_COMPLETED;
3160 		}
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 /*
3167  * Handle write page faults for pages that can be reused in the current vma
3168  *
3169  * This can happen either due to the mapping being with the VM_SHARED flag,
3170  * or due to us being the last reference standing to the page. In either
3171  * case, all we need to do here is to mark the page as writable and update
3172  * any related book-keeping.
3173  */
3174 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3175 	__releases(vmf->ptl)
3176 {
3177 	struct vm_area_struct *vma = vmf->vma;
3178 	pte_t entry;
3179 
3180 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3181 
3182 	if (folio) {
3183 		VM_BUG_ON(folio_test_anon(folio) &&
3184 			  !PageAnonExclusive(vmf->page));
3185 		/*
3186 		 * Clear the folio's cpupid information as the existing
3187 		 * information potentially belongs to a now completely
3188 		 * unrelated process.
3189 		 */
3190 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3191 	}
3192 
3193 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3194 	entry = pte_mkyoung(vmf->orig_pte);
3195 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3196 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3197 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3198 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3199 	count_vm_event(PGREUSE);
3200 }
3201 
3202 /*
3203  * We could add a bitflag somewhere, but for now, we know that all
3204  * vm_ops that have a ->map_pages have been audited and don't need
3205  * the mmap_lock to be held.
3206  */
3207 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3208 {
3209 	struct vm_area_struct *vma = vmf->vma;
3210 
3211 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3212 		return 0;
3213 	vma_end_read(vma);
3214 	return VM_FAULT_RETRY;
3215 }
3216 
3217 /**
3218  * vmf_anon_prepare - Prepare to handle an anonymous fault.
3219  * @vmf: The vm_fault descriptor passed from the fault handler.
3220  *
3221  * When preparing to insert an anonymous page into a VMA from a
3222  * fault handler, call this function rather than anon_vma_prepare().
3223  * If this vma does not already have an associated anon_vma and we are
3224  * only protected by the per-VMA lock, the caller must retry with the
3225  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3226  * determine if this VMA can share its anon_vma, and that's not safe to
3227  * do with only the per-VMA lock held for this VMA.
3228  *
3229  * Return: 0 if fault handling can proceed.  Any other value should be
3230  * returned to the caller.
3231  */
3232 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3233 {
3234 	struct vm_area_struct *vma = vmf->vma;
3235 	vm_fault_t ret = 0;
3236 
3237 	if (likely(vma->anon_vma))
3238 		return 0;
3239 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3240 		if (!mmap_read_trylock(vma->vm_mm)) {
3241 			vma_end_read(vma);
3242 			return VM_FAULT_RETRY;
3243 		}
3244 	}
3245 	if (__anon_vma_prepare(vma))
3246 		ret = VM_FAULT_OOM;
3247 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3248 		mmap_read_unlock(vma->vm_mm);
3249 	return ret;
3250 }
3251 
3252 /*
3253  * Handle the case of a page which we actually need to copy to a new page,
3254  * either due to COW or unsharing.
3255  *
3256  * Called with mmap_lock locked and the old page referenced, but
3257  * without the ptl held.
3258  *
3259  * High level logic flow:
3260  *
3261  * - Allocate a page, copy the content of the old page to the new one.
3262  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3263  * - Take the PTL. If the pte changed, bail out and release the allocated page
3264  * - If the pte is still the way we remember it, update the page table and all
3265  *   relevant references. This includes dropping the reference the page-table
3266  *   held to the old page, as well as updating the rmap.
3267  * - In any case, unlock the PTL and drop the reference we took to the old page.
3268  */
3269 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3270 {
3271 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3272 	struct vm_area_struct *vma = vmf->vma;
3273 	struct mm_struct *mm = vma->vm_mm;
3274 	struct folio *old_folio = NULL;
3275 	struct folio *new_folio = NULL;
3276 	pte_t entry;
3277 	int page_copied = 0;
3278 	struct mmu_notifier_range range;
3279 	vm_fault_t ret;
3280 	bool pfn_is_zero;
3281 
3282 	delayacct_wpcopy_start();
3283 
3284 	if (vmf->page)
3285 		old_folio = page_folio(vmf->page);
3286 	ret = vmf_anon_prepare(vmf);
3287 	if (unlikely(ret))
3288 		goto out;
3289 
3290 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3291 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3292 	if (!new_folio)
3293 		goto oom;
3294 
3295 	if (!pfn_is_zero) {
3296 		int err;
3297 
3298 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3299 		if (err) {
3300 			/*
3301 			 * COW failed, if the fault was solved by other,
3302 			 * it's fine. If not, userspace would re-fault on
3303 			 * the same address and we will handle the fault
3304 			 * from the second attempt.
3305 			 * The -EHWPOISON case will not be retried.
3306 			 */
3307 			folio_put(new_folio);
3308 			if (old_folio)
3309 				folio_put(old_folio);
3310 
3311 			delayacct_wpcopy_end();
3312 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3313 		}
3314 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3315 	}
3316 
3317 	__folio_mark_uptodate(new_folio);
3318 
3319 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3320 				vmf->address & PAGE_MASK,
3321 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3322 	mmu_notifier_invalidate_range_start(&range);
3323 
3324 	/*
3325 	 * Re-check the pte - we dropped the lock
3326 	 */
3327 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3328 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3329 		if (old_folio) {
3330 			if (!folio_test_anon(old_folio)) {
3331 				dec_mm_counter(mm, mm_counter_file(old_folio));
3332 				inc_mm_counter(mm, MM_ANONPAGES);
3333 			}
3334 		} else {
3335 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3336 			inc_mm_counter(mm, MM_ANONPAGES);
3337 		}
3338 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3339 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3340 		entry = pte_sw_mkyoung(entry);
3341 		if (unlikely(unshare)) {
3342 			if (pte_soft_dirty(vmf->orig_pte))
3343 				entry = pte_mksoft_dirty(entry);
3344 			if (pte_uffd_wp(vmf->orig_pte))
3345 				entry = pte_mkuffd_wp(entry);
3346 		} else {
3347 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3348 		}
3349 
3350 		/*
3351 		 * Clear the pte entry and flush it first, before updating the
3352 		 * pte with the new entry, to keep TLBs on different CPUs in
3353 		 * sync. This code used to set the new PTE then flush TLBs, but
3354 		 * that left a window where the new PTE could be loaded into
3355 		 * some TLBs while the old PTE remains in others.
3356 		 */
3357 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3358 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3359 		folio_add_lru_vma(new_folio, vma);
3360 		BUG_ON(unshare && pte_write(entry));
3361 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3362 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3363 		if (old_folio) {
3364 			/*
3365 			 * Only after switching the pte to the new page may
3366 			 * we remove the mapcount here. Otherwise another
3367 			 * process may come and find the rmap count decremented
3368 			 * before the pte is switched to the new page, and
3369 			 * "reuse" the old page writing into it while our pte
3370 			 * here still points into it and can be read by other
3371 			 * threads.
3372 			 *
3373 			 * The critical issue is to order this
3374 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3375 			 * above. Those stores are ordered by (if nothing else,)
3376 			 * the barrier present in the atomic_add_negative
3377 			 * in folio_remove_rmap_pte();
3378 			 *
3379 			 * Then the TLB flush in ptep_clear_flush ensures that
3380 			 * no process can access the old page before the
3381 			 * decremented mapcount is visible. And the old page
3382 			 * cannot be reused until after the decremented
3383 			 * mapcount is visible. So transitively, TLBs to
3384 			 * old page will be flushed before it can be reused.
3385 			 */
3386 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3387 		}
3388 
3389 		/* Free the old page.. */
3390 		new_folio = old_folio;
3391 		page_copied = 1;
3392 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3393 	} else if (vmf->pte) {
3394 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3395 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3396 	}
3397 
3398 	mmu_notifier_invalidate_range_end(&range);
3399 
3400 	if (new_folio)
3401 		folio_put(new_folio);
3402 	if (old_folio) {
3403 		if (page_copied)
3404 			free_swap_cache(old_folio);
3405 		folio_put(old_folio);
3406 	}
3407 
3408 	delayacct_wpcopy_end();
3409 	return 0;
3410 oom:
3411 	ret = VM_FAULT_OOM;
3412 out:
3413 	if (old_folio)
3414 		folio_put(old_folio);
3415 
3416 	delayacct_wpcopy_end();
3417 	return ret;
3418 }
3419 
3420 /**
3421  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3422  *			  writeable once the page is prepared
3423  *
3424  * @vmf: structure describing the fault
3425  * @folio: the folio of vmf->page
3426  *
3427  * This function handles all that is needed to finish a write page fault in a
3428  * shared mapping due to PTE being read-only once the mapped page is prepared.
3429  * It handles locking of PTE and modifying it.
3430  *
3431  * The function expects the page to be locked or other protection against
3432  * concurrent faults / writeback (such as DAX radix tree locks).
3433  *
3434  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3435  * we acquired PTE lock.
3436  */
3437 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3438 {
3439 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3440 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3441 				       &vmf->ptl);
3442 	if (!vmf->pte)
3443 		return VM_FAULT_NOPAGE;
3444 	/*
3445 	 * We might have raced with another page fault while we released the
3446 	 * pte_offset_map_lock.
3447 	 */
3448 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3449 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3450 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3451 		return VM_FAULT_NOPAGE;
3452 	}
3453 	wp_page_reuse(vmf, folio);
3454 	return 0;
3455 }
3456 
3457 /*
3458  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3459  * mapping
3460  */
3461 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3462 {
3463 	struct vm_area_struct *vma = vmf->vma;
3464 
3465 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3466 		vm_fault_t ret;
3467 
3468 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3469 		ret = vmf_can_call_fault(vmf);
3470 		if (ret)
3471 			return ret;
3472 
3473 		vmf->flags |= FAULT_FLAG_MKWRITE;
3474 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3475 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3476 			return ret;
3477 		return finish_mkwrite_fault(vmf, NULL);
3478 	}
3479 	wp_page_reuse(vmf, NULL);
3480 	return 0;
3481 }
3482 
3483 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3484 	__releases(vmf->ptl)
3485 {
3486 	struct vm_area_struct *vma = vmf->vma;
3487 	vm_fault_t ret = 0;
3488 
3489 	folio_get(folio);
3490 
3491 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3492 		vm_fault_t tmp;
3493 
3494 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3495 		tmp = vmf_can_call_fault(vmf);
3496 		if (tmp) {
3497 			folio_put(folio);
3498 			return tmp;
3499 		}
3500 
3501 		tmp = do_page_mkwrite(vmf, folio);
3502 		if (unlikely(!tmp || (tmp &
3503 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3504 			folio_put(folio);
3505 			return tmp;
3506 		}
3507 		tmp = finish_mkwrite_fault(vmf, folio);
3508 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3509 			folio_unlock(folio);
3510 			folio_put(folio);
3511 			return tmp;
3512 		}
3513 	} else {
3514 		wp_page_reuse(vmf, folio);
3515 		folio_lock(folio);
3516 	}
3517 	ret |= fault_dirty_shared_page(vmf);
3518 	folio_put(folio);
3519 
3520 	return ret;
3521 }
3522 
3523 static bool wp_can_reuse_anon_folio(struct folio *folio,
3524 				    struct vm_area_struct *vma)
3525 {
3526 	/*
3527 	 * We could currently only reuse a subpage of a large folio if no
3528 	 * other subpages of the large folios are still mapped. However,
3529 	 * let's just consistently not reuse subpages even if we could
3530 	 * reuse in that scenario, and give back a large folio a bit
3531 	 * sooner.
3532 	 */
3533 	if (folio_test_large(folio))
3534 		return false;
3535 
3536 	/*
3537 	 * We have to verify under folio lock: these early checks are
3538 	 * just an optimization to avoid locking the folio and freeing
3539 	 * the swapcache if there is little hope that we can reuse.
3540 	 *
3541 	 * KSM doesn't necessarily raise the folio refcount.
3542 	 */
3543 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3544 		return false;
3545 	if (!folio_test_lru(folio))
3546 		/*
3547 		 * We cannot easily detect+handle references from
3548 		 * remote LRU caches or references to LRU folios.
3549 		 */
3550 		lru_add_drain();
3551 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3552 		return false;
3553 	if (!folio_trylock(folio))
3554 		return false;
3555 	if (folio_test_swapcache(folio))
3556 		folio_free_swap(folio);
3557 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3558 		folio_unlock(folio);
3559 		return false;
3560 	}
3561 	/*
3562 	 * Ok, we've got the only folio reference from our mapping
3563 	 * and the folio is locked, it's dark out, and we're wearing
3564 	 * sunglasses. Hit it.
3565 	 */
3566 	folio_move_anon_rmap(folio, vma);
3567 	folio_unlock(folio);
3568 	return true;
3569 }
3570 
3571 /*
3572  * This routine handles present pages, when
3573  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3574  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3575  *   (FAULT_FLAG_UNSHARE)
3576  *
3577  * It is done by copying the page to a new address and decrementing the
3578  * shared-page counter for the old page.
3579  *
3580  * Note that this routine assumes that the protection checks have been
3581  * done by the caller (the low-level page fault routine in most cases).
3582  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3583  * done any necessary COW.
3584  *
3585  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3586  * though the page will change only once the write actually happens. This
3587  * avoids a few races, and potentially makes it more efficient.
3588  *
3589  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3590  * but allow concurrent faults), with pte both mapped and locked.
3591  * We return with mmap_lock still held, but pte unmapped and unlocked.
3592  */
3593 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3594 	__releases(vmf->ptl)
3595 {
3596 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3597 	struct vm_area_struct *vma = vmf->vma;
3598 	struct folio *folio = NULL;
3599 	pte_t pte;
3600 
3601 	if (likely(!unshare)) {
3602 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3603 			if (!userfaultfd_wp_async(vma)) {
3604 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3605 				return handle_userfault(vmf, VM_UFFD_WP);
3606 			}
3607 
3608 			/*
3609 			 * Nothing needed (cache flush, TLB invalidations,
3610 			 * etc.) because we're only removing the uffd-wp bit,
3611 			 * which is completely invisible to the user.
3612 			 */
3613 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3614 
3615 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3616 			/*
3617 			 * Update this to be prepared for following up CoW
3618 			 * handling
3619 			 */
3620 			vmf->orig_pte = pte;
3621 		}
3622 
3623 		/*
3624 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3625 		 * is flushed in this case before copying.
3626 		 */
3627 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3628 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3629 			flush_tlb_page(vmf->vma, vmf->address);
3630 	}
3631 
3632 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3633 
3634 	if (vmf->page)
3635 		folio = page_folio(vmf->page);
3636 
3637 	/*
3638 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3639 	 * FAULT_FLAG_WRITE set at this point.
3640 	 */
3641 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3642 		/*
3643 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3644 		 * VM_PFNMAP VMA.
3645 		 *
3646 		 * We should not cow pages in a shared writeable mapping.
3647 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3648 		 */
3649 		if (!vmf->page)
3650 			return wp_pfn_shared(vmf);
3651 		return wp_page_shared(vmf, folio);
3652 	}
3653 
3654 	/*
3655 	 * Private mapping: create an exclusive anonymous page copy if reuse
3656 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3657 	 *
3658 	 * If we encounter a page that is marked exclusive, we must reuse
3659 	 * the page without further checks.
3660 	 */
3661 	if (folio && folio_test_anon(folio) &&
3662 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3663 		if (!PageAnonExclusive(vmf->page))
3664 			SetPageAnonExclusive(vmf->page);
3665 		if (unlikely(unshare)) {
3666 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3667 			return 0;
3668 		}
3669 		wp_page_reuse(vmf, folio);
3670 		return 0;
3671 	}
3672 	/*
3673 	 * Ok, we need to copy. Oh, well..
3674 	 */
3675 	if (folio)
3676 		folio_get(folio);
3677 
3678 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3679 #ifdef CONFIG_KSM
3680 	if (folio && folio_test_ksm(folio))
3681 		count_vm_event(COW_KSM);
3682 #endif
3683 	return wp_page_copy(vmf);
3684 }
3685 
3686 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3687 		unsigned long start_addr, unsigned long end_addr,
3688 		struct zap_details *details)
3689 {
3690 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3691 }
3692 
3693 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3694 					    pgoff_t first_index,
3695 					    pgoff_t last_index,
3696 					    struct zap_details *details)
3697 {
3698 	struct vm_area_struct *vma;
3699 	pgoff_t vba, vea, zba, zea;
3700 
3701 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3702 		vba = vma->vm_pgoff;
3703 		vea = vba + vma_pages(vma) - 1;
3704 		zba = max(first_index, vba);
3705 		zea = min(last_index, vea);
3706 
3707 		unmap_mapping_range_vma(vma,
3708 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3709 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3710 				details);
3711 	}
3712 }
3713 
3714 /**
3715  * unmap_mapping_folio() - Unmap single folio from processes.
3716  * @folio: The locked folio to be unmapped.
3717  *
3718  * Unmap this folio from any userspace process which still has it mmaped.
3719  * Typically, for efficiency, the range of nearby pages has already been
3720  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3721  * truncation or invalidation holds the lock on a folio, it may find that
3722  * the page has been remapped again: and then uses unmap_mapping_folio()
3723  * to unmap it finally.
3724  */
3725 void unmap_mapping_folio(struct folio *folio)
3726 {
3727 	struct address_space *mapping = folio->mapping;
3728 	struct zap_details details = { };
3729 	pgoff_t	first_index;
3730 	pgoff_t	last_index;
3731 
3732 	VM_BUG_ON(!folio_test_locked(folio));
3733 
3734 	first_index = folio->index;
3735 	last_index = folio_next_index(folio) - 1;
3736 
3737 	details.even_cows = false;
3738 	details.single_folio = folio;
3739 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3740 
3741 	i_mmap_lock_read(mapping);
3742 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3743 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3744 					 last_index, &details);
3745 	i_mmap_unlock_read(mapping);
3746 }
3747 
3748 /**
3749  * unmap_mapping_pages() - Unmap pages from processes.
3750  * @mapping: The address space containing pages to be unmapped.
3751  * @start: Index of first page to be unmapped.
3752  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3753  * @even_cows: Whether to unmap even private COWed pages.
3754  *
3755  * Unmap the pages in this address space from any userspace process which
3756  * has them mmaped.  Generally, you want to remove COWed pages as well when
3757  * a file is being truncated, but not when invalidating pages from the page
3758  * cache.
3759  */
3760 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3761 		pgoff_t nr, bool even_cows)
3762 {
3763 	struct zap_details details = { };
3764 	pgoff_t	first_index = start;
3765 	pgoff_t	last_index = start + nr - 1;
3766 
3767 	details.even_cows = even_cows;
3768 	if (last_index < first_index)
3769 		last_index = ULONG_MAX;
3770 
3771 	i_mmap_lock_read(mapping);
3772 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3773 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3774 					 last_index, &details);
3775 	i_mmap_unlock_read(mapping);
3776 }
3777 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3778 
3779 /**
3780  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3781  * address_space corresponding to the specified byte range in the underlying
3782  * file.
3783  *
3784  * @mapping: the address space containing mmaps to be unmapped.
3785  * @holebegin: byte in first page to unmap, relative to the start of
3786  * the underlying file.  This will be rounded down to a PAGE_SIZE
3787  * boundary.  Note that this is different from truncate_pagecache(), which
3788  * must keep the partial page.  In contrast, we must get rid of
3789  * partial pages.
3790  * @holelen: size of prospective hole in bytes.  This will be rounded
3791  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3792  * end of the file.
3793  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3794  * but 0 when invalidating pagecache, don't throw away private data.
3795  */
3796 void unmap_mapping_range(struct address_space *mapping,
3797 		loff_t const holebegin, loff_t const holelen, int even_cows)
3798 {
3799 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3800 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3801 
3802 	/* Check for overflow. */
3803 	if (sizeof(holelen) > sizeof(hlen)) {
3804 		long long holeend =
3805 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3806 		if (holeend & ~(long long)ULONG_MAX)
3807 			hlen = ULONG_MAX - hba + 1;
3808 	}
3809 
3810 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3811 }
3812 EXPORT_SYMBOL(unmap_mapping_range);
3813 
3814 /*
3815  * Restore a potential device exclusive pte to a working pte entry
3816  */
3817 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3818 {
3819 	struct folio *folio = page_folio(vmf->page);
3820 	struct vm_area_struct *vma = vmf->vma;
3821 	struct mmu_notifier_range range;
3822 	vm_fault_t ret;
3823 
3824 	/*
3825 	 * We need a reference to lock the folio because we don't hold
3826 	 * the PTL so a racing thread can remove the device-exclusive
3827 	 * entry and unmap it. If the folio is free the entry must
3828 	 * have been removed already. If it happens to have already
3829 	 * been re-allocated after being freed all we do is lock and
3830 	 * unlock it.
3831 	 */
3832 	if (!folio_try_get(folio))
3833 		return 0;
3834 
3835 	ret = folio_lock_or_retry(folio, vmf);
3836 	if (ret) {
3837 		folio_put(folio);
3838 		return ret;
3839 	}
3840 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3841 				vma->vm_mm, vmf->address & PAGE_MASK,
3842 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3843 	mmu_notifier_invalidate_range_start(&range);
3844 
3845 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3846 				&vmf->ptl);
3847 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3848 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3849 
3850 	if (vmf->pte)
3851 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3852 	folio_unlock(folio);
3853 	folio_put(folio);
3854 
3855 	mmu_notifier_invalidate_range_end(&range);
3856 	return 0;
3857 }
3858 
3859 static inline bool should_try_to_free_swap(struct folio *folio,
3860 					   struct vm_area_struct *vma,
3861 					   unsigned int fault_flags)
3862 {
3863 	if (!folio_test_swapcache(folio))
3864 		return false;
3865 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3866 	    folio_test_mlocked(folio))
3867 		return true;
3868 	/*
3869 	 * If we want to map a page that's in the swapcache writable, we
3870 	 * have to detect via the refcount if we're really the exclusive
3871 	 * user. Try freeing the swapcache to get rid of the swapcache
3872 	 * reference only in case it's likely that we'll be the exlusive user.
3873 	 */
3874 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3875 		folio_ref_count(folio) == 2;
3876 }
3877 
3878 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3879 {
3880 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3881 				       vmf->address, &vmf->ptl);
3882 	if (!vmf->pte)
3883 		return 0;
3884 	/*
3885 	 * Be careful so that we will only recover a special uffd-wp pte into a
3886 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3887 	 *
3888 	 * This should also cover the case where e.g. the pte changed
3889 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3890 	 * So is_pte_marker() check is not enough to safely drop the pte.
3891 	 */
3892 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3893 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3894 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3895 	return 0;
3896 }
3897 
3898 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3899 {
3900 	if (vma_is_anonymous(vmf->vma))
3901 		return do_anonymous_page(vmf);
3902 	else
3903 		return do_fault(vmf);
3904 }
3905 
3906 /*
3907  * This is actually a page-missing access, but with uffd-wp special pte
3908  * installed.  It means this pte was wr-protected before being unmapped.
3909  */
3910 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3911 {
3912 	/*
3913 	 * Just in case there're leftover special ptes even after the region
3914 	 * got unregistered - we can simply clear them.
3915 	 */
3916 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3917 		return pte_marker_clear(vmf);
3918 
3919 	return do_pte_missing(vmf);
3920 }
3921 
3922 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3923 {
3924 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3925 	unsigned long marker = pte_marker_get(entry);
3926 
3927 	/*
3928 	 * PTE markers should never be empty.  If anything weird happened,
3929 	 * the best thing to do is to kill the process along with its mm.
3930 	 */
3931 	if (WARN_ON_ONCE(!marker))
3932 		return VM_FAULT_SIGBUS;
3933 
3934 	/* Higher priority than uffd-wp when data corrupted */
3935 	if (marker & PTE_MARKER_POISONED)
3936 		return VM_FAULT_HWPOISON;
3937 
3938 	if (pte_marker_entry_uffd_wp(entry))
3939 		return pte_marker_handle_uffd_wp(vmf);
3940 
3941 	/* This is an unknown pte marker */
3942 	return VM_FAULT_SIGBUS;
3943 }
3944 
3945 /*
3946  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3947  * but allow concurrent faults), and pte mapped but not yet locked.
3948  * We return with pte unmapped and unlocked.
3949  *
3950  * We return with the mmap_lock locked or unlocked in the same cases
3951  * as does filemap_fault().
3952  */
3953 vm_fault_t do_swap_page(struct vm_fault *vmf)
3954 {
3955 	struct vm_area_struct *vma = vmf->vma;
3956 	struct folio *swapcache, *folio = NULL;
3957 	struct page *page;
3958 	struct swap_info_struct *si = NULL;
3959 	rmap_t rmap_flags = RMAP_NONE;
3960 	bool need_clear_cache = false;
3961 	bool exclusive = false;
3962 	swp_entry_t entry;
3963 	pte_t pte;
3964 	vm_fault_t ret = 0;
3965 	void *shadow = NULL;
3966 
3967 	if (!pte_unmap_same(vmf))
3968 		goto out;
3969 
3970 	entry = pte_to_swp_entry(vmf->orig_pte);
3971 	if (unlikely(non_swap_entry(entry))) {
3972 		if (is_migration_entry(entry)) {
3973 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3974 					     vmf->address);
3975 		} else if (is_device_exclusive_entry(entry)) {
3976 			vmf->page = pfn_swap_entry_to_page(entry);
3977 			ret = remove_device_exclusive_entry(vmf);
3978 		} else if (is_device_private_entry(entry)) {
3979 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3980 				/*
3981 				 * migrate_to_ram is not yet ready to operate
3982 				 * under VMA lock.
3983 				 */
3984 				vma_end_read(vma);
3985 				ret = VM_FAULT_RETRY;
3986 				goto out;
3987 			}
3988 
3989 			vmf->page = pfn_swap_entry_to_page(entry);
3990 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3991 					vmf->address, &vmf->ptl);
3992 			if (unlikely(!vmf->pte ||
3993 				     !pte_same(ptep_get(vmf->pte),
3994 							vmf->orig_pte)))
3995 				goto unlock;
3996 
3997 			/*
3998 			 * Get a page reference while we know the page can't be
3999 			 * freed.
4000 			 */
4001 			get_page(vmf->page);
4002 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4003 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4004 			put_page(vmf->page);
4005 		} else if (is_hwpoison_entry(entry)) {
4006 			ret = VM_FAULT_HWPOISON;
4007 		} else if (is_pte_marker_entry(entry)) {
4008 			ret = handle_pte_marker(vmf);
4009 		} else {
4010 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4011 			ret = VM_FAULT_SIGBUS;
4012 		}
4013 		goto out;
4014 	}
4015 
4016 	/* Prevent swapoff from happening to us. */
4017 	si = get_swap_device(entry);
4018 	if (unlikely(!si))
4019 		goto out;
4020 
4021 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4022 	if (folio)
4023 		page = folio_file_page(folio, swp_offset(entry));
4024 	swapcache = folio;
4025 
4026 	if (!folio) {
4027 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4028 		    __swap_count(entry) == 1) {
4029 			/*
4030 			 * Prevent parallel swapin from proceeding with
4031 			 * the cache flag. Otherwise, another thread may
4032 			 * finish swapin first, free the entry, and swapout
4033 			 * reusing the same entry. It's undetectable as
4034 			 * pte_same() returns true due to entry reuse.
4035 			 */
4036 			if (swapcache_prepare(entry)) {
4037 				/* Relax a bit to prevent rapid repeated page faults */
4038 				schedule_timeout_uninterruptible(1);
4039 				goto out;
4040 			}
4041 			need_clear_cache = true;
4042 
4043 			/* skip swapcache */
4044 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4045 						vma, vmf->address, false);
4046 			page = &folio->page;
4047 			if (folio) {
4048 				__folio_set_locked(folio);
4049 				__folio_set_swapbacked(folio);
4050 
4051 				if (mem_cgroup_swapin_charge_folio(folio,
4052 							vma->vm_mm, GFP_KERNEL,
4053 							entry)) {
4054 					ret = VM_FAULT_OOM;
4055 					goto out_page;
4056 				}
4057 				mem_cgroup_swapin_uncharge_swap(entry);
4058 
4059 				shadow = get_shadow_from_swap_cache(entry);
4060 				if (shadow)
4061 					workingset_refault(folio, shadow);
4062 
4063 				folio_add_lru(folio);
4064 
4065 				/* To provide entry to swap_read_folio() */
4066 				folio->swap = entry;
4067 				swap_read_folio(folio, true, NULL);
4068 				folio->private = NULL;
4069 			}
4070 		} else {
4071 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4072 						vmf);
4073 			if (page)
4074 				folio = page_folio(page);
4075 			swapcache = folio;
4076 		}
4077 
4078 		if (!folio) {
4079 			/*
4080 			 * Back out if somebody else faulted in this pte
4081 			 * while we released the pte lock.
4082 			 */
4083 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4084 					vmf->address, &vmf->ptl);
4085 			if (likely(vmf->pte &&
4086 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4087 				ret = VM_FAULT_OOM;
4088 			goto unlock;
4089 		}
4090 
4091 		/* Had to read the page from swap area: Major fault */
4092 		ret = VM_FAULT_MAJOR;
4093 		count_vm_event(PGMAJFAULT);
4094 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4095 	} else if (PageHWPoison(page)) {
4096 		/*
4097 		 * hwpoisoned dirty swapcache pages are kept for killing
4098 		 * owner processes (which may be unknown at hwpoison time)
4099 		 */
4100 		ret = VM_FAULT_HWPOISON;
4101 		goto out_release;
4102 	}
4103 
4104 	ret |= folio_lock_or_retry(folio, vmf);
4105 	if (ret & VM_FAULT_RETRY)
4106 		goto out_release;
4107 
4108 	if (swapcache) {
4109 		/*
4110 		 * Make sure folio_free_swap() or swapoff did not release the
4111 		 * swapcache from under us.  The page pin, and pte_same test
4112 		 * below, are not enough to exclude that.  Even if it is still
4113 		 * swapcache, we need to check that the page's swap has not
4114 		 * changed.
4115 		 */
4116 		if (unlikely(!folio_test_swapcache(folio) ||
4117 			     page_swap_entry(page).val != entry.val))
4118 			goto out_page;
4119 
4120 		/*
4121 		 * KSM sometimes has to copy on read faults, for example, if
4122 		 * page->index of !PageKSM() pages would be nonlinear inside the
4123 		 * anon VMA -- PageKSM() is lost on actual swapout.
4124 		 */
4125 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4126 		if (unlikely(!folio)) {
4127 			ret = VM_FAULT_OOM;
4128 			folio = swapcache;
4129 			goto out_page;
4130 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4131 			ret = VM_FAULT_HWPOISON;
4132 			folio = swapcache;
4133 			goto out_page;
4134 		}
4135 		if (folio != swapcache)
4136 			page = folio_page(folio, 0);
4137 
4138 		/*
4139 		 * If we want to map a page that's in the swapcache writable, we
4140 		 * have to detect via the refcount if we're really the exclusive
4141 		 * owner. Try removing the extra reference from the local LRU
4142 		 * caches if required.
4143 		 */
4144 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4145 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4146 			lru_add_drain();
4147 	}
4148 
4149 	folio_throttle_swaprate(folio, GFP_KERNEL);
4150 
4151 	/*
4152 	 * Back out if somebody else already faulted in this pte.
4153 	 */
4154 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4155 			&vmf->ptl);
4156 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4157 		goto out_nomap;
4158 
4159 	if (unlikely(!folio_test_uptodate(folio))) {
4160 		ret = VM_FAULT_SIGBUS;
4161 		goto out_nomap;
4162 	}
4163 
4164 	/*
4165 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4166 	 * must never point at an anonymous page in the swapcache that is
4167 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4168 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4169 	 * check after taking the PT lock and making sure that nobody
4170 	 * concurrently faulted in this page and set PG_anon_exclusive.
4171 	 */
4172 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4173 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4174 
4175 	/*
4176 	 * Check under PT lock (to protect against concurrent fork() sharing
4177 	 * the swap entry concurrently) for certainly exclusive pages.
4178 	 */
4179 	if (!folio_test_ksm(folio)) {
4180 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4181 		if (folio != swapcache) {
4182 			/*
4183 			 * We have a fresh page that is not exposed to the
4184 			 * swapcache -> certainly exclusive.
4185 			 */
4186 			exclusive = true;
4187 		} else if (exclusive && folio_test_writeback(folio) &&
4188 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4189 			/*
4190 			 * This is tricky: not all swap backends support
4191 			 * concurrent page modifications while under writeback.
4192 			 *
4193 			 * So if we stumble over such a page in the swapcache
4194 			 * we must not set the page exclusive, otherwise we can
4195 			 * map it writable without further checks and modify it
4196 			 * while still under writeback.
4197 			 *
4198 			 * For these problematic swap backends, simply drop the
4199 			 * exclusive marker: this is perfectly fine as we start
4200 			 * writeback only if we fully unmapped the page and
4201 			 * there are no unexpected references on the page after
4202 			 * unmapping succeeded. After fully unmapped, no
4203 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4204 			 * appear, so dropping the exclusive marker and mapping
4205 			 * it only R/O is fine.
4206 			 */
4207 			exclusive = false;
4208 		}
4209 	}
4210 
4211 	/*
4212 	 * Some architectures may have to restore extra metadata to the page
4213 	 * when reading from swap. This metadata may be indexed by swap entry
4214 	 * so this must be called before swap_free().
4215 	 */
4216 	arch_swap_restore(folio_swap(entry, folio), folio);
4217 
4218 	/*
4219 	 * Remove the swap entry and conditionally try to free up the swapcache.
4220 	 * We're already holding a reference on the page but haven't mapped it
4221 	 * yet.
4222 	 */
4223 	swap_free(entry);
4224 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4225 		folio_free_swap(folio);
4226 
4227 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4228 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4229 	pte = mk_pte(page, vma->vm_page_prot);
4230 
4231 	/*
4232 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4233 	 * certainly not shared either because we just allocated them without
4234 	 * exposing them to the swapcache or because the swap entry indicates
4235 	 * exclusivity.
4236 	 */
4237 	if (!folio_test_ksm(folio) &&
4238 	    (exclusive || folio_ref_count(folio) == 1)) {
4239 		if (vmf->flags & FAULT_FLAG_WRITE) {
4240 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4241 			vmf->flags &= ~FAULT_FLAG_WRITE;
4242 		}
4243 		rmap_flags |= RMAP_EXCLUSIVE;
4244 	}
4245 	flush_icache_page(vma, page);
4246 	if (pte_swp_soft_dirty(vmf->orig_pte))
4247 		pte = pte_mksoft_dirty(pte);
4248 	if (pte_swp_uffd_wp(vmf->orig_pte))
4249 		pte = pte_mkuffd_wp(pte);
4250 	vmf->orig_pte = pte;
4251 
4252 	/* ksm created a completely new copy */
4253 	if (unlikely(folio != swapcache && swapcache)) {
4254 		folio_add_new_anon_rmap(folio, vma, vmf->address);
4255 		folio_add_lru_vma(folio, vma);
4256 	} else {
4257 		folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4258 					rmap_flags);
4259 	}
4260 
4261 	VM_BUG_ON(!folio_test_anon(folio) ||
4262 			(pte_write(pte) && !PageAnonExclusive(page)));
4263 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4264 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4265 
4266 	folio_unlock(folio);
4267 	if (folio != swapcache && swapcache) {
4268 		/*
4269 		 * Hold the lock to avoid the swap entry to be reused
4270 		 * until we take the PT lock for the pte_same() check
4271 		 * (to avoid false positives from pte_same). For
4272 		 * further safety release the lock after the swap_free
4273 		 * so that the swap count won't change under a
4274 		 * parallel locked swapcache.
4275 		 */
4276 		folio_unlock(swapcache);
4277 		folio_put(swapcache);
4278 	}
4279 
4280 	if (vmf->flags & FAULT_FLAG_WRITE) {
4281 		ret |= do_wp_page(vmf);
4282 		if (ret & VM_FAULT_ERROR)
4283 			ret &= VM_FAULT_ERROR;
4284 		goto out;
4285 	}
4286 
4287 	/* No need to invalidate - it was non-present before */
4288 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4289 unlock:
4290 	if (vmf->pte)
4291 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4292 out:
4293 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4294 	if (need_clear_cache)
4295 		swapcache_clear(si, entry);
4296 	if (si)
4297 		put_swap_device(si);
4298 	return ret;
4299 out_nomap:
4300 	if (vmf->pte)
4301 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4302 out_page:
4303 	folio_unlock(folio);
4304 out_release:
4305 	folio_put(folio);
4306 	if (folio != swapcache && swapcache) {
4307 		folio_unlock(swapcache);
4308 		folio_put(swapcache);
4309 	}
4310 	if (need_clear_cache)
4311 		swapcache_clear(si, entry);
4312 	if (si)
4313 		put_swap_device(si);
4314 	return ret;
4315 }
4316 
4317 static bool pte_range_none(pte_t *pte, int nr_pages)
4318 {
4319 	int i;
4320 
4321 	for (i = 0; i < nr_pages; i++) {
4322 		if (!pte_none(ptep_get_lockless(pte + i)))
4323 			return false;
4324 	}
4325 
4326 	return true;
4327 }
4328 
4329 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4330 {
4331 	struct vm_area_struct *vma = vmf->vma;
4332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4333 	unsigned long orders;
4334 	struct folio *folio;
4335 	unsigned long addr;
4336 	pte_t *pte;
4337 	gfp_t gfp;
4338 	int order;
4339 
4340 	/*
4341 	 * If uffd is active for the vma we need per-page fault fidelity to
4342 	 * maintain the uffd semantics.
4343 	 */
4344 	if (unlikely(userfaultfd_armed(vma)))
4345 		goto fallback;
4346 
4347 	/*
4348 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4349 	 * for this vma. Then filter out the orders that can't be allocated over
4350 	 * the faulting address and still be fully contained in the vma.
4351 	 */
4352 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4353 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4354 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4355 
4356 	if (!orders)
4357 		goto fallback;
4358 
4359 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4360 	if (!pte)
4361 		return ERR_PTR(-EAGAIN);
4362 
4363 	/*
4364 	 * Find the highest order where the aligned range is completely
4365 	 * pte_none(). Note that all remaining orders will be completely
4366 	 * pte_none().
4367 	 */
4368 	order = highest_order(orders);
4369 	while (orders) {
4370 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4371 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4372 			break;
4373 		order = next_order(&orders, order);
4374 	}
4375 
4376 	pte_unmap(pte);
4377 
4378 	if (!orders)
4379 		goto fallback;
4380 
4381 	/* Try allocating the highest of the remaining orders. */
4382 	gfp = vma_thp_gfp_mask(vma);
4383 	while (orders) {
4384 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4385 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4386 		if (folio) {
4387 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4388 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4389 				folio_put(folio);
4390 				goto next;
4391 			}
4392 			folio_throttle_swaprate(folio, gfp);
4393 			clear_huge_page(&folio->page, vmf->address, 1 << order);
4394 			return folio;
4395 		}
4396 next:
4397 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4398 		order = next_order(&orders, order);
4399 	}
4400 
4401 fallback:
4402 #endif
4403 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4404 }
4405 
4406 /*
4407  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4408  * but allow concurrent faults), and pte mapped but not yet locked.
4409  * We return with mmap_lock still held, but pte unmapped and unlocked.
4410  */
4411 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4412 {
4413 	struct vm_area_struct *vma = vmf->vma;
4414 	unsigned long addr = vmf->address;
4415 	struct folio *folio;
4416 	vm_fault_t ret = 0;
4417 	int nr_pages = 1;
4418 	pte_t entry;
4419 	int i;
4420 
4421 	/* File mapping without ->vm_ops ? */
4422 	if (vma->vm_flags & VM_SHARED)
4423 		return VM_FAULT_SIGBUS;
4424 
4425 	/*
4426 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4427 	 * be distinguished from a transient failure of pte_offset_map().
4428 	 */
4429 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4430 		return VM_FAULT_OOM;
4431 
4432 	/* Use the zero-page for reads */
4433 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4434 			!mm_forbids_zeropage(vma->vm_mm)) {
4435 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4436 						vma->vm_page_prot));
4437 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4438 				vmf->address, &vmf->ptl);
4439 		if (!vmf->pte)
4440 			goto unlock;
4441 		if (vmf_pte_changed(vmf)) {
4442 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4443 			goto unlock;
4444 		}
4445 		ret = check_stable_address_space(vma->vm_mm);
4446 		if (ret)
4447 			goto unlock;
4448 		/* Deliver the page fault to userland, check inside PT lock */
4449 		if (userfaultfd_missing(vma)) {
4450 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4451 			return handle_userfault(vmf, VM_UFFD_MISSING);
4452 		}
4453 		goto setpte;
4454 	}
4455 
4456 	/* Allocate our own private page. */
4457 	ret = vmf_anon_prepare(vmf);
4458 	if (ret)
4459 		return ret;
4460 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4461 	folio = alloc_anon_folio(vmf);
4462 	if (IS_ERR(folio))
4463 		return 0;
4464 	if (!folio)
4465 		goto oom;
4466 
4467 	nr_pages = folio_nr_pages(folio);
4468 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4469 
4470 	/*
4471 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4472 	 * preceding stores to the page contents become visible before
4473 	 * the set_pte_at() write.
4474 	 */
4475 	__folio_mark_uptodate(folio);
4476 
4477 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4478 	entry = pte_sw_mkyoung(entry);
4479 	if (vma->vm_flags & VM_WRITE)
4480 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4481 
4482 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4483 	if (!vmf->pte)
4484 		goto release;
4485 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4486 		update_mmu_tlb(vma, addr, vmf->pte);
4487 		goto release;
4488 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4489 		for (i = 0; i < nr_pages; i++)
4490 			update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4491 		goto release;
4492 	}
4493 
4494 	ret = check_stable_address_space(vma->vm_mm);
4495 	if (ret)
4496 		goto release;
4497 
4498 	/* Deliver the page fault to userland, check inside PT lock */
4499 	if (userfaultfd_missing(vma)) {
4500 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4501 		folio_put(folio);
4502 		return handle_userfault(vmf, VM_UFFD_MISSING);
4503 	}
4504 
4505 	folio_ref_add(folio, nr_pages - 1);
4506 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4508 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4509 #endif
4510 	folio_add_new_anon_rmap(folio, vma, addr);
4511 	folio_add_lru_vma(folio, vma);
4512 setpte:
4513 	if (vmf_orig_pte_uffd_wp(vmf))
4514 		entry = pte_mkuffd_wp(entry);
4515 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4516 
4517 	/* No need to invalidate - it was non-present before */
4518 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4519 unlock:
4520 	if (vmf->pte)
4521 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4522 	return ret;
4523 release:
4524 	folio_put(folio);
4525 	goto unlock;
4526 oom:
4527 	return VM_FAULT_OOM;
4528 }
4529 
4530 /*
4531  * The mmap_lock must have been held on entry, and may have been
4532  * released depending on flags and vma->vm_ops->fault() return value.
4533  * See filemap_fault() and __lock_page_retry().
4534  */
4535 static vm_fault_t __do_fault(struct vm_fault *vmf)
4536 {
4537 	struct vm_area_struct *vma = vmf->vma;
4538 	struct folio *folio;
4539 	vm_fault_t ret;
4540 
4541 	/*
4542 	 * Preallocate pte before we take page_lock because this might lead to
4543 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4544 	 *				lock_page(A)
4545 	 *				SetPageWriteback(A)
4546 	 *				unlock_page(A)
4547 	 * lock_page(B)
4548 	 *				lock_page(B)
4549 	 * pte_alloc_one
4550 	 *   shrink_page_list
4551 	 *     wait_on_page_writeback(A)
4552 	 *				SetPageWriteback(B)
4553 	 *				unlock_page(B)
4554 	 *				# flush A, B to clear the writeback
4555 	 */
4556 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4557 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4558 		if (!vmf->prealloc_pte)
4559 			return VM_FAULT_OOM;
4560 	}
4561 
4562 	ret = vma->vm_ops->fault(vmf);
4563 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4564 			    VM_FAULT_DONE_COW)))
4565 		return ret;
4566 
4567 	folio = page_folio(vmf->page);
4568 	if (unlikely(PageHWPoison(vmf->page))) {
4569 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4570 		if (ret & VM_FAULT_LOCKED) {
4571 			if (page_mapped(vmf->page))
4572 				unmap_mapping_folio(folio);
4573 			/* Retry if a clean folio was removed from the cache. */
4574 			if (mapping_evict_folio(folio->mapping, folio))
4575 				poisonret = VM_FAULT_NOPAGE;
4576 			folio_unlock(folio);
4577 		}
4578 		folio_put(folio);
4579 		vmf->page = NULL;
4580 		return poisonret;
4581 	}
4582 
4583 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4584 		folio_lock(folio);
4585 	else
4586 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4587 
4588 	return ret;
4589 }
4590 
4591 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4592 static void deposit_prealloc_pte(struct vm_fault *vmf)
4593 {
4594 	struct vm_area_struct *vma = vmf->vma;
4595 
4596 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4597 	/*
4598 	 * We are going to consume the prealloc table,
4599 	 * count that as nr_ptes.
4600 	 */
4601 	mm_inc_nr_ptes(vma->vm_mm);
4602 	vmf->prealloc_pte = NULL;
4603 }
4604 
4605 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4606 {
4607 	struct folio *folio = page_folio(page);
4608 	struct vm_area_struct *vma = vmf->vma;
4609 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4610 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4611 	pmd_t entry;
4612 	vm_fault_t ret = VM_FAULT_FALLBACK;
4613 
4614 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4615 		return ret;
4616 
4617 	if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4618 		return ret;
4619 
4620 	/*
4621 	 * Just backoff if any subpage of a THP is corrupted otherwise
4622 	 * the corrupted page may mapped by PMD silently to escape the
4623 	 * check.  This kind of THP just can be PTE mapped.  Access to
4624 	 * the corrupted subpage should trigger SIGBUS as expected.
4625 	 */
4626 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4627 		return ret;
4628 
4629 	/*
4630 	 * Archs like ppc64 need additional space to store information
4631 	 * related to pte entry. Use the preallocated table for that.
4632 	 */
4633 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4634 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4635 		if (!vmf->prealloc_pte)
4636 			return VM_FAULT_OOM;
4637 	}
4638 
4639 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4640 	if (unlikely(!pmd_none(*vmf->pmd)))
4641 		goto out;
4642 
4643 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4644 
4645 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4646 	if (write)
4647 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4648 
4649 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4650 	folio_add_file_rmap_pmd(folio, page, vma);
4651 
4652 	/*
4653 	 * deposit and withdraw with pmd lock held
4654 	 */
4655 	if (arch_needs_pgtable_deposit())
4656 		deposit_prealloc_pte(vmf);
4657 
4658 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4659 
4660 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4661 
4662 	/* fault is handled */
4663 	ret = 0;
4664 	count_vm_event(THP_FILE_MAPPED);
4665 out:
4666 	spin_unlock(vmf->ptl);
4667 	return ret;
4668 }
4669 #else
4670 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4671 {
4672 	return VM_FAULT_FALLBACK;
4673 }
4674 #endif
4675 
4676 /**
4677  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4678  * @vmf: Fault decription.
4679  * @folio: The folio that contains @page.
4680  * @page: The first page to create a PTE for.
4681  * @nr: The number of PTEs to create.
4682  * @addr: The first address to create a PTE for.
4683  */
4684 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4685 		struct page *page, unsigned int nr, unsigned long addr)
4686 {
4687 	struct vm_area_struct *vma = vmf->vma;
4688 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4689 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4690 	pte_t entry;
4691 
4692 	flush_icache_pages(vma, page, nr);
4693 	entry = mk_pte(page, vma->vm_page_prot);
4694 
4695 	if (prefault && arch_wants_old_prefaulted_pte())
4696 		entry = pte_mkold(entry);
4697 	else
4698 		entry = pte_sw_mkyoung(entry);
4699 
4700 	if (write)
4701 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4702 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
4703 		entry = pte_mkuffd_wp(entry);
4704 	/* copy-on-write page */
4705 	if (write && !(vma->vm_flags & VM_SHARED)) {
4706 		VM_BUG_ON_FOLIO(nr != 1, folio);
4707 		folio_add_new_anon_rmap(folio, vma, addr);
4708 		folio_add_lru_vma(folio, vma);
4709 	} else {
4710 		folio_add_file_rmap_ptes(folio, page, nr, vma);
4711 	}
4712 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4713 
4714 	/* no need to invalidate: a not-present page won't be cached */
4715 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4716 }
4717 
4718 static bool vmf_pte_changed(struct vm_fault *vmf)
4719 {
4720 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4721 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4722 
4723 	return !pte_none(ptep_get(vmf->pte));
4724 }
4725 
4726 /**
4727  * finish_fault - finish page fault once we have prepared the page to fault
4728  *
4729  * @vmf: structure describing the fault
4730  *
4731  * This function handles all that is needed to finish a page fault once the
4732  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4733  * given page, adds reverse page mapping, handles memcg charges and LRU
4734  * addition.
4735  *
4736  * The function expects the page to be locked and on success it consumes a
4737  * reference of a page being mapped (for the PTE which maps it).
4738  *
4739  * Return: %0 on success, %VM_FAULT_ code in case of error.
4740  */
4741 vm_fault_t finish_fault(struct vm_fault *vmf)
4742 {
4743 	struct vm_area_struct *vma = vmf->vma;
4744 	struct page *page;
4745 	vm_fault_t ret;
4746 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
4747 		      !(vma->vm_flags & VM_SHARED);
4748 
4749 	/* Did we COW the page? */
4750 	if (is_cow)
4751 		page = vmf->cow_page;
4752 	else
4753 		page = vmf->page;
4754 
4755 	/*
4756 	 * check even for read faults because we might have lost our CoWed
4757 	 * page
4758 	 */
4759 	if (!(vma->vm_flags & VM_SHARED)) {
4760 		ret = check_stable_address_space(vma->vm_mm);
4761 		if (ret)
4762 			return ret;
4763 	}
4764 
4765 	if (pmd_none(*vmf->pmd)) {
4766 		if (PageTransCompound(page)) {
4767 			ret = do_set_pmd(vmf, page);
4768 			if (ret != VM_FAULT_FALLBACK)
4769 				return ret;
4770 		}
4771 
4772 		if (vmf->prealloc_pte)
4773 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4774 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4775 			return VM_FAULT_OOM;
4776 	}
4777 
4778 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4779 				      vmf->address, &vmf->ptl);
4780 	if (!vmf->pte)
4781 		return VM_FAULT_NOPAGE;
4782 
4783 	/* Re-check under ptl */
4784 	if (likely(!vmf_pte_changed(vmf))) {
4785 		struct folio *folio = page_folio(page);
4786 		int type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
4787 
4788 		set_pte_range(vmf, folio, page, 1, vmf->address);
4789 		add_mm_counter(vma->vm_mm, type, 1);
4790 		ret = 0;
4791 	} else {
4792 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4793 		ret = VM_FAULT_NOPAGE;
4794 	}
4795 
4796 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4797 	return ret;
4798 }
4799 
4800 static unsigned long fault_around_pages __read_mostly =
4801 	65536 >> PAGE_SHIFT;
4802 
4803 #ifdef CONFIG_DEBUG_FS
4804 static int fault_around_bytes_get(void *data, u64 *val)
4805 {
4806 	*val = fault_around_pages << PAGE_SHIFT;
4807 	return 0;
4808 }
4809 
4810 /*
4811  * fault_around_bytes must be rounded down to the nearest page order as it's
4812  * what do_fault_around() expects to see.
4813  */
4814 static int fault_around_bytes_set(void *data, u64 val)
4815 {
4816 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4817 		return -EINVAL;
4818 
4819 	/*
4820 	 * The minimum value is 1 page, however this results in no fault-around
4821 	 * at all. See should_fault_around().
4822 	 */
4823 	val = max(val, PAGE_SIZE);
4824 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4825 
4826 	return 0;
4827 }
4828 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4829 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4830 
4831 static int __init fault_around_debugfs(void)
4832 {
4833 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4834 				   &fault_around_bytes_fops);
4835 	return 0;
4836 }
4837 late_initcall(fault_around_debugfs);
4838 #endif
4839 
4840 /*
4841  * do_fault_around() tries to map few pages around the fault address. The hope
4842  * is that the pages will be needed soon and this will lower the number of
4843  * faults to handle.
4844  *
4845  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4846  * not ready to be mapped: not up-to-date, locked, etc.
4847  *
4848  * This function doesn't cross VMA or page table boundaries, in order to call
4849  * map_pages() and acquire a PTE lock only once.
4850  *
4851  * fault_around_pages defines how many pages we'll try to map.
4852  * do_fault_around() expects it to be set to a power of two less than or equal
4853  * to PTRS_PER_PTE.
4854  *
4855  * The virtual address of the area that we map is naturally aligned to
4856  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4857  * (and therefore to page order).  This way it's easier to guarantee
4858  * that we don't cross page table boundaries.
4859  */
4860 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4861 {
4862 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4863 	pgoff_t pte_off = pte_index(vmf->address);
4864 	/* The page offset of vmf->address within the VMA. */
4865 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4866 	pgoff_t from_pte, to_pte;
4867 	vm_fault_t ret;
4868 
4869 	/* The PTE offset of the start address, clamped to the VMA. */
4870 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4871 		       pte_off - min(pte_off, vma_off));
4872 
4873 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4874 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4875 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4876 
4877 	if (pmd_none(*vmf->pmd)) {
4878 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4879 		if (!vmf->prealloc_pte)
4880 			return VM_FAULT_OOM;
4881 	}
4882 
4883 	rcu_read_lock();
4884 	ret = vmf->vma->vm_ops->map_pages(vmf,
4885 			vmf->pgoff + from_pte - pte_off,
4886 			vmf->pgoff + to_pte - pte_off);
4887 	rcu_read_unlock();
4888 
4889 	return ret;
4890 }
4891 
4892 /* Return true if we should do read fault-around, false otherwise */
4893 static inline bool should_fault_around(struct vm_fault *vmf)
4894 {
4895 	/* No ->map_pages?  No way to fault around... */
4896 	if (!vmf->vma->vm_ops->map_pages)
4897 		return false;
4898 
4899 	if (uffd_disable_fault_around(vmf->vma))
4900 		return false;
4901 
4902 	/* A single page implies no faulting 'around' at all. */
4903 	return fault_around_pages > 1;
4904 }
4905 
4906 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4907 {
4908 	vm_fault_t ret = 0;
4909 	struct folio *folio;
4910 
4911 	/*
4912 	 * Let's call ->map_pages() first and use ->fault() as fallback
4913 	 * if page by the offset is not ready to be mapped (cold cache or
4914 	 * something).
4915 	 */
4916 	if (should_fault_around(vmf)) {
4917 		ret = do_fault_around(vmf);
4918 		if (ret)
4919 			return ret;
4920 	}
4921 
4922 	ret = vmf_can_call_fault(vmf);
4923 	if (ret)
4924 		return ret;
4925 
4926 	ret = __do_fault(vmf);
4927 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4928 		return ret;
4929 
4930 	ret |= finish_fault(vmf);
4931 	folio = page_folio(vmf->page);
4932 	folio_unlock(folio);
4933 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4934 		folio_put(folio);
4935 	return ret;
4936 }
4937 
4938 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4939 {
4940 	struct vm_area_struct *vma = vmf->vma;
4941 	struct folio *folio;
4942 	vm_fault_t ret;
4943 
4944 	ret = vmf_can_call_fault(vmf);
4945 	if (!ret)
4946 		ret = vmf_anon_prepare(vmf);
4947 	if (ret)
4948 		return ret;
4949 
4950 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4951 	if (!folio)
4952 		return VM_FAULT_OOM;
4953 
4954 	vmf->cow_page = &folio->page;
4955 
4956 	ret = __do_fault(vmf);
4957 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4958 		goto uncharge_out;
4959 	if (ret & VM_FAULT_DONE_COW)
4960 		return ret;
4961 
4962 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4963 	__folio_mark_uptodate(folio);
4964 
4965 	ret |= finish_fault(vmf);
4966 	unlock_page(vmf->page);
4967 	put_page(vmf->page);
4968 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4969 		goto uncharge_out;
4970 	return ret;
4971 uncharge_out:
4972 	folio_put(folio);
4973 	return ret;
4974 }
4975 
4976 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4977 {
4978 	struct vm_area_struct *vma = vmf->vma;
4979 	vm_fault_t ret, tmp;
4980 	struct folio *folio;
4981 
4982 	ret = vmf_can_call_fault(vmf);
4983 	if (ret)
4984 		return ret;
4985 
4986 	ret = __do_fault(vmf);
4987 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4988 		return ret;
4989 
4990 	folio = page_folio(vmf->page);
4991 
4992 	/*
4993 	 * Check if the backing address space wants to know that the page is
4994 	 * about to become writable
4995 	 */
4996 	if (vma->vm_ops->page_mkwrite) {
4997 		folio_unlock(folio);
4998 		tmp = do_page_mkwrite(vmf, folio);
4999 		if (unlikely(!tmp ||
5000 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5001 			folio_put(folio);
5002 			return tmp;
5003 		}
5004 	}
5005 
5006 	ret |= finish_fault(vmf);
5007 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5008 					VM_FAULT_RETRY))) {
5009 		folio_unlock(folio);
5010 		folio_put(folio);
5011 		return ret;
5012 	}
5013 
5014 	ret |= fault_dirty_shared_page(vmf);
5015 	return ret;
5016 }
5017 
5018 /*
5019  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5020  * but allow concurrent faults).
5021  * The mmap_lock may have been released depending on flags and our
5022  * return value.  See filemap_fault() and __folio_lock_or_retry().
5023  * If mmap_lock is released, vma may become invalid (for example
5024  * by other thread calling munmap()).
5025  */
5026 static vm_fault_t do_fault(struct vm_fault *vmf)
5027 {
5028 	struct vm_area_struct *vma = vmf->vma;
5029 	struct mm_struct *vm_mm = vma->vm_mm;
5030 	vm_fault_t ret;
5031 
5032 	/*
5033 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5034 	 */
5035 	if (!vma->vm_ops->fault) {
5036 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5037 					       vmf->address, &vmf->ptl);
5038 		if (unlikely(!vmf->pte))
5039 			ret = VM_FAULT_SIGBUS;
5040 		else {
5041 			/*
5042 			 * Make sure this is not a temporary clearing of pte
5043 			 * by holding ptl and checking again. A R/M/W update
5044 			 * of pte involves: take ptl, clearing the pte so that
5045 			 * we don't have concurrent modification by hardware
5046 			 * followed by an update.
5047 			 */
5048 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5049 				ret = VM_FAULT_SIGBUS;
5050 			else
5051 				ret = VM_FAULT_NOPAGE;
5052 
5053 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5054 		}
5055 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5056 		ret = do_read_fault(vmf);
5057 	else if (!(vma->vm_flags & VM_SHARED))
5058 		ret = do_cow_fault(vmf);
5059 	else
5060 		ret = do_shared_fault(vmf);
5061 
5062 	/* preallocated pagetable is unused: free it */
5063 	if (vmf->prealloc_pte) {
5064 		pte_free(vm_mm, vmf->prealloc_pte);
5065 		vmf->prealloc_pte = NULL;
5066 	}
5067 	return ret;
5068 }
5069 
5070 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
5071 		      unsigned long addr, int page_nid, int *flags)
5072 {
5073 	struct vm_area_struct *vma = vmf->vma;
5074 
5075 	folio_get(folio);
5076 
5077 	/* Record the current PID acceesing VMA */
5078 	vma_set_access_pid_bit(vma);
5079 
5080 	count_vm_numa_event(NUMA_HINT_FAULTS);
5081 	if (page_nid == numa_node_id()) {
5082 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5083 		*flags |= TNF_FAULT_LOCAL;
5084 	}
5085 
5086 	return mpol_misplaced(folio, vmf, addr);
5087 }
5088 
5089 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5090 					unsigned long fault_addr, pte_t *fault_pte,
5091 					bool writable)
5092 {
5093 	pte_t pte, old_pte;
5094 
5095 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5096 	pte = pte_modify(old_pte, vma->vm_page_prot);
5097 	pte = pte_mkyoung(pte);
5098 	if (writable)
5099 		pte = pte_mkwrite(pte, vma);
5100 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5101 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5102 }
5103 
5104 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5105 				       struct folio *folio, pte_t fault_pte,
5106 				       bool ignore_writable, bool pte_write_upgrade)
5107 {
5108 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5109 	unsigned long start = max(vmf->address - nr * PAGE_SIZE, vma->vm_start);
5110 	unsigned long end = min(vmf->address + (folio_nr_pages(folio) - nr) * PAGE_SIZE, vma->vm_end);
5111 	pte_t *start_ptep = vmf->pte - (vmf->address - start) / PAGE_SIZE;
5112 	unsigned long addr;
5113 
5114 	/* Restore all PTEs' mapping of the large folio */
5115 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5116 		pte_t ptent = ptep_get(start_ptep);
5117 		bool writable = false;
5118 
5119 		if (!pte_present(ptent) || !pte_protnone(ptent))
5120 			continue;
5121 
5122 		if (pfn_folio(pte_pfn(ptent)) != folio)
5123 			continue;
5124 
5125 		if (!ignore_writable) {
5126 			ptent = pte_modify(ptent, vma->vm_page_prot);
5127 			writable = pte_write(ptent);
5128 			if (!writable && pte_write_upgrade &&
5129 			    can_change_pte_writable(vma, addr, ptent))
5130 				writable = true;
5131 		}
5132 
5133 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5134 	}
5135 }
5136 
5137 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5138 {
5139 	struct vm_area_struct *vma = vmf->vma;
5140 	struct folio *folio = NULL;
5141 	int nid = NUMA_NO_NODE;
5142 	bool writable = false, ignore_writable = false;
5143 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5144 	int last_cpupid;
5145 	int target_nid;
5146 	pte_t pte, old_pte;
5147 	int flags = 0, nr_pages;
5148 
5149 	/*
5150 	 * The pte cannot be used safely until we verify, while holding the page
5151 	 * table lock, that its contents have not changed during fault handling.
5152 	 */
5153 	spin_lock(vmf->ptl);
5154 	/* Read the live PTE from the page tables: */
5155 	old_pte = ptep_get(vmf->pte);
5156 
5157 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5158 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5159 		goto out;
5160 	}
5161 
5162 	pte = pte_modify(old_pte, vma->vm_page_prot);
5163 
5164 	/*
5165 	 * Detect now whether the PTE could be writable; this information
5166 	 * is only valid while holding the PT lock.
5167 	 */
5168 	writable = pte_write(pte);
5169 	if (!writable && pte_write_upgrade &&
5170 	    can_change_pte_writable(vma, vmf->address, pte))
5171 		writable = true;
5172 
5173 	folio = vm_normal_folio(vma, vmf->address, pte);
5174 	if (!folio || folio_is_zone_device(folio))
5175 		goto out_map;
5176 
5177 	/*
5178 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5179 	 * much anyway since they can be in shared cache state. This misses
5180 	 * the case where a mapping is writable but the process never writes
5181 	 * to it but pte_write gets cleared during protection updates and
5182 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5183 	 * background writeback, dirty balancing and application behaviour.
5184 	 */
5185 	if (!writable)
5186 		flags |= TNF_NO_GROUP;
5187 
5188 	/*
5189 	 * Flag if the folio is shared between multiple address spaces. This
5190 	 * is later used when determining whether to group tasks together
5191 	 */
5192 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5193 		flags |= TNF_SHARED;
5194 
5195 	nid = folio_nid(folio);
5196 	nr_pages = folio_nr_pages(folio);
5197 	/*
5198 	 * For memory tiering mode, cpupid of slow memory page is used
5199 	 * to record page access time.  So use default value.
5200 	 */
5201 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5202 	    !node_is_toptier(nid))
5203 		last_cpupid = (-1 & LAST_CPUPID_MASK);
5204 	else
5205 		last_cpupid = folio_last_cpupid(folio);
5206 	target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
5207 	if (target_nid == NUMA_NO_NODE) {
5208 		folio_put(folio);
5209 		goto out_map;
5210 	}
5211 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5212 	writable = false;
5213 	ignore_writable = true;
5214 
5215 	/* Migrate to the requested node */
5216 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
5217 		nid = target_nid;
5218 		flags |= TNF_MIGRATED;
5219 	} else {
5220 		flags |= TNF_MIGRATE_FAIL;
5221 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5222 					       vmf->address, &vmf->ptl);
5223 		if (unlikely(!vmf->pte))
5224 			goto out;
5225 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5226 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5227 			goto out;
5228 		}
5229 		goto out_map;
5230 	}
5231 
5232 out:
5233 	if (nid != NUMA_NO_NODE)
5234 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5235 	return 0;
5236 out_map:
5237 	/*
5238 	 * Make it present again, depending on how arch implements
5239 	 * non-accessible ptes, some can allow access by kernel mode.
5240 	 */
5241 	if (folio && folio_test_large(folio))
5242 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5243 					   pte_write_upgrade);
5244 	else
5245 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5246 					    writable);
5247 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5248 	goto out;
5249 }
5250 
5251 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5252 {
5253 	struct vm_area_struct *vma = vmf->vma;
5254 	if (vma_is_anonymous(vma))
5255 		return do_huge_pmd_anonymous_page(vmf);
5256 	if (vma->vm_ops->huge_fault)
5257 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5258 	return VM_FAULT_FALLBACK;
5259 }
5260 
5261 /* `inline' is required to avoid gcc 4.1.2 build error */
5262 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5263 {
5264 	struct vm_area_struct *vma = vmf->vma;
5265 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5266 	vm_fault_t ret;
5267 
5268 	if (vma_is_anonymous(vma)) {
5269 		if (likely(!unshare) &&
5270 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5271 			if (userfaultfd_wp_async(vmf->vma))
5272 				goto split;
5273 			return handle_userfault(vmf, VM_UFFD_WP);
5274 		}
5275 		return do_huge_pmd_wp_page(vmf);
5276 	}
5277 
5278 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5279 		if (vma->vm_ops->huge_fault) {
5280 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5281 			if (!(ret & VM_FAULT_FALLBACK))
5282 				return ret;
5283 		}
5284 	}
5285 
5286 split:
5287 	/* COW or write-notify handled on pte level: split pmd. */
5288 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5289 
5290 	return VM_FAULT_FALLBACK;
5291 }
5292 
5293 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5294 {
5295 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5296 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5297 	struct vm_area_struct *vma = vmf->vma;
5298 	/* No support for anonymous transparent PUD pages yet */
5299 	if (vma_is_anonymous(vma))
5300 		return VM_FAULT_FALLBACK;
5301 	if (vma->vm_ops->huge_fault)
5302 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5303 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5304 	return VM_FAULT_FALLBACK;
5305 }
5306 
5307 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5308 {
5309 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5310 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5311 	struct vm_area_struct *vma = vmf->vma;
5312 	vm_fault_t ret;
5313 
5314 	/* No support for anonymous transparent PUD pages yet */
5315 	if (vma_is_anonymous(vma))
5316 		goto split;
5317 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5318 		if (vma->vm_ops->huge_fault) {
5319 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5320 			if (!(ret & VM_FAULT_FALLBACK))
5321 				return ret;
5322 		}
5323 	}
5324 split:
5325 	/* COW or write-notify not handled on PUD level: split pud.*/
5326 	__split_huge_pud(vma, vmf->pud, vmf->address);
5327 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5328 	return VM_FAULT_FALLBACK;
5329 }
5330 
5331 /*
5332  * These routines also need to handle stuff like marking pages dirty
5333  * and/or accessed for architectures that don't do it in hardware (most
5334  * RISC architectures).  The early dirtying is also good on the i386.
5335  *
5336  * There is also a hook called "update_mmu_cache()" that architectures
5337  * with external mmu caches can use to update those (ie the Sparc or
5338  * PowerPC hashed page tables that act as extended TLBs).
5339  *
5340  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5341  * concurrent faults).
5342  *
5343  * The mmap_lock may have been released depending on flags and our return value.
5344  * See filemap_fault() and __folio_lock_or_retry().
5345  */
5346 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5347 {
5348 	pte_t entry;
5349 
5350 	if (unlikely(pmd_none(*vmf->pmd))) {
5351 		/*
5352 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5353 		 * want to allocate huge page, and if we expose page table
5354 		 * for an instant, it will be difficult to retract from
5355 		 * concurrent faults and from rmap lookups.
5356 		 */
5357 		vmf->pte = NULL;
5358 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5359 	} else {
5360 		/*
5361 		 * A regular pmd is established and it can't morph into a huge
5362 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5363 		 * mode; but shmem or file collapse to THP could still morph
5364 		 * it into a huge pmd: just retry later if so.
5365 		 */
5366 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5367 						 vmf->address, &vmf->ptl);
5368 		if (unlikely(!vmf->pte))
5369 			return 0;
5370 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5371 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5372 
5373 		if (pte_none(vmf->orig_pte)) {
5374 			pte_unmap(vmf->pte);
5375 			vmf->pte = NULL;
5376 		}
5377 	}
5378 
5379 	if (!vmf->pte)
5380 		return do_pte_missing(vmf);
5381 
5382 	if (!pte_present(vmf->orig_pte))
5383 		return do_swap_page(vmf);
5384 
5385 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5386 		return do_numa_page(vmf);
5387 
5388 	spin_lock(vmf->ptl);
5389 	entry = vmf->orig_pte;
5390 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5391 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5392 		goto unlock;
5393 	}
5394 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5395 		if (!pte_write(entry))
5396 			return do_wp_page(vmf);
5397 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5398 			entry = pte_mkdirty(entry);
5399 	}
5400 	entry = pte_mkyoung(entry);
5401 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5402 				vmf->flags & FAULT_FLAG_WRITE)) {
5403 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5404 				vmf->pte, 1);
5405 	} else {
5406 		/* Skip spurious TLB flush for retried page fault */
5407 		if (vmf->flags & FAULT_FLAG_TRIED)
5408 			goto unlock;
5409 		/*
5410 		 * This is needed only for protection faults but the arch code
5411 		 * is not yet telling us if this is a protection fault or not.
5412 		 * This still avoids useless tlb flushes for .text page faults
5413 		 * with threads.
5414 		 */
5415 		if (vmf->flags & FAULT_FLAG_WRITE)
5416 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5417 						     vmf->pte);
5418 	}
5419 unlock:
5420 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5421 	return 0;
5422 }
5423 
5424 /*
5425  * On entry, we hold either the VMA lock or the mmap_lock
5426  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5427  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5428  * and __folio_lock_or_retry().
5429  */
5430 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5431 		unsigned long address, unsigned int flags)
5432 {
5433 	struct vm_fault vmf = {
5434 		.vma = vma,
5435 		.address = address & PAGE_MASK,
5436 		.real_address = address,
5437 		.flags = flags,
5438 		.pgoff = linear_page_index(vma, address),
5439 		.gfp_mask = __get_fault_gfp_mask(vma),
5440 	};
5441 	struct mm_struct *mm = vma->vm_mm;
5442 	unsigned long vm_flags = vma->vm_flags;
5443 	pgd_t *pgd;
5444 	p4d_t *p4d;
5445 	vm_fault_t ret;
5446 
5447 	pgd = pgd_offset(mm, address);
5448 	p4d = p4d_alloc(mm, pgd, address);
5449 	if (!p4d)
5450 		return VM_FAULT_OOM;
5451 
5452 	vmf.pud = pud_alloc(mm, p4d, address);
5453 	if (!vmf.pud)
5454 		return VM_FAULT_OOM;
5455 retry_pud:
5456 	if (pud_none(*vmf.pud) &&
5457 	    thp_vma_allowable_order(vma, vm_flags,
5458 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5459 		ret = create_huge_pud(&vmf);
5460 		if (!(ret & VM_FAULT_FALLBACK))
5461 			return ret;
5462 	} else {
5463 		pud_t orig_pud = *vmf.pud;
5464 
5465 		barrier();
5466 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5467 
5468 			/*
5469 			 * TODO once we support anonymous PUDs: NUMA case and
5470 			 * FAULT_FLAG_UNSHARE handling.
5471 			 */
5472 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5473 				ret = wp_huge_pud(&vmf, orig_pud);
5474 				if (!(ret & VM_FAULT_FALLBACK))
5475 					return ret;
5476 			} else {
5477 				huge_pud_set_accessed(&vmf, orig_pud);
5478 				return 0;
5479 			}
5480 		}
5481 	}
5482 
5483 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5484 	if (!vmf.pmd)
5485 		return VM_FAULT_OOM;
5486 
5487 	/* Huge pud page fault raced with pmd_alloc? */
5488 	if (pud_trans_unstable(vmf.pud))
5489 		goto retry_pud;
5490 
5491 	if (pmd_none(*vmf.pmd) &&
5492 	    thp_vma_allowable_order(vma, vm_flags,
5493 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5494 		ret = create_huge_pmd(&vmf);
5495 		if (!(ret & VM_FAULT_FALLBACK))
5496 			return ret;
5497 	} else {
5498 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5499 
5500 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5501 			VM_BUG_ON(thp_migration_supported() &&
5502 					  !is_pmd_migration_entry(vmf.orig_pmd));
5503 			if (is_pmd_migration_entry(vmf.orig_pmd))
5504 				pmd_migration_entry_wait(mm, vmf.pmd);
5505 			return 0;
5506 		}
5507 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5508 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5509 				return do_huge_pmd_numa_page(&vmf);
5510 
5511 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5512 			    !pmd_write(vmf.orig_pmd)) {
5513 				ret = wp_huge_pmd(&vmf);
5514 				if (!(ret & VM_FAULT_FALLBACK))
5515 					return ret;
5516 			} else {
5517 				huge_pmd_set_accessed(&vmf);
5518 				return 0;
5519 			}
5520 		}
5521 	}
5522 
5523 	return handle_pte_fault(&vmf);
5524 }
5525 
5526 /**
5527  * mm_account_fault - Do page fault accounting
5528  * @mm: mm from which memcg should be extracted. It can be NULL.
5529  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5530  *        of perf event counters, but we'll still do the per-task accounting to
5531  *        the task who triggered this page fault.
5532  * @address: the faulted address.
5533  * @flags: the fault flags.
5534  * @ret: the fault retcode.
5535  *
5536  * This will take care of most of the page fault accounting.  Meanwhile, it
5537  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5538  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5539  * still be in per-arch page fault handlers at the entry of page fault.
5540  */
5541 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5542 				    unsigned long address, unsigned int flags,
5543 				    vm_fault_t ret)
5544 {
5545 	bool major;
5546 
5547 	/* Incomplete faults will be accounted upon completion. */
5548 	if (ret & VM_FAULT_RETRY)
5549 		return;
5550 
5551 	/*
5552 	 * To preserve the behavior of older kernels, PGFAULT counters record
5553 	 * both successful and failed faults, as opposed to perf counters,
5554 	 * which ignore failed cases.
5555 	 */
5556 	count_vm_event(PGFAULT);
5557 	count_memcg_event_mm(mm, PGFAULT);
5558 
5559 	/*
5560 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5561 	 * valid).  That includes arch_vma_access_permitted() failing before
5562 	 * reaching here. So this is not a "this many hardware page faults"
5563 	 * counter.  We should use the hw profiling for that.
5564 	 */
5565 	if (ret & VM_FAULT_ERROR)
5566 		return;
5567 
5568 	/*
5569 	 * We define the fault as a major fault when the final successful fault
5570 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5571 	 * handle it immediately previously).
5572 	 */
5573 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5574 
5575 	if (major)
5576 		current->maj_flt++;
5577 	else
5578 		current->min_flt++;
5579 
5580 	/*
5581 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5582 	 * accounting for the per thread fault counters who triggered the
5583 	 * fault, and we skip the perf event updates.
5584 	 */
5585 	if (!regs)
5586 		return;
5587 
5588 	if (major)
5589 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5590 	else
5591 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5592 }
5593 
5594 #ifdef CONFIG_LRU_GEN
5595 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5596 {
5597 	/* the LRU algorithm only applies to accesses with recency */
5598 	current->in_lru_fault = vma_has_recency(vma);
5599 }
5600 
5601 static void lru_gen_exit_fault(void)
5602 {
5603 	current->in_lru_fault = false;
5604 }
5605 #else
5606 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5607 {
5608 }
5609 
5610 static void lru_gen_exit_fault(void)
5611 {
5612 }
5613 #endif /* CONFIG_LRU_GEN */
5614 
5615 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5616 				       unsigned int *flags)
5617 {
5618 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5619 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5620 			return VM_FAULT_SIGSEGV;
5621 		/*
5622 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5623 		 * just treat it like an ordinary read-fault otherwise.
5624 		 */
5625 		if (!is_cow_mapping(vma->vm_flags))
5626 			*flags &= ~FAULT_FLAG_UNSHARE;
5627 	} else if (*flags & FAULT_FLAG_WRITE) {
5628 		/* Write faults on read-only mappings are impossible ... */
5629 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5630 			return VM_FAULT_SIGSEGV;
5631 		/* ... and FOLL_FORCE only applies to COW mappings. */
5632 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5633 				 !is_cow_mapping(vma->vm_flags)))
5634 			return VM_FAULT_SIGSEGV;
5635 	}
5636 #ifdef CONFIG_PER_VMA_LOCK
5637 	/*
5638 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5639 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5640 	 */
5641 	if (WARN_ON_ONCE((*flags &
5642 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5643 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5644 		return VM_FAULT_SIGSEGV;
5645 #endif
5646 
5647 	return 0;
5648 }
5649 
5650 /*
5651  * By the time we get here, we already hold the mm semaphore
5652  *
5653  * The mmap_lock may have been released depending on flags and our
5654  * return value.  See filemap_fault() and __folio_lock_or_retry().
5655  */
5656 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5657 			   unsigned int flags, struct pt_regs *regs)
5658 {
5659 	/* If the fault handler drops the mmap_lock, vma may be freed */
5660 	struct mm_struct *mm = vma->vm_mm;
5661 	vm_fault_t ret;
5662 
5663 	__set_current_state(TASK_RUNNING);
5664 
5665 	ret = sanitize_fault_flags(vma, &flags);
5666 	if (ret)
5667 		goto out;
5668 
5669 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5670 					    flags & FAULT_FLAG_INSTRUCTION,
5671 					    flags & FAULT_FLAG_REMOTE)) {
5672 		ret = VM_FAULT_SIGSEGV;
5673 		goto out;
5674 	}
5675 
5676 	/*
5677 	 * Enable the memcg OOM handling for faults triggered in user
5678 	 * space.  Kernel faults are handled more gracefully.
5679 	 */
5680 	if (flags & FAULT_FLAG_USER)
5681 		mem_cgroup_enter_user_fault();
5682 
5683 	lru_gen_enter_fault(vma);
5684 
5685 	if (unlikely(is_vm_hugetlb_page(vma)))
5686 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5687 	else
5688 		ret = __handle_mm_fault(vma, address, flags);
5689 
5690 	lru_gen_exit_fault();
5691 
5692 	if (flags & FAULT_FLAG_USER) {
5693 		mem_cgroup_exit_user_fault();
5694 		/*
5695 		 * The task may have entered a memcg OOM situation but
5696 		 * if the allocation error was handled gracefully (no
5697 		 * VM_FAULT_OOM), there is no need to kill anything.
5698 		 * Just clean up the OOM state peacefully.
5699 		 */
5700 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5701 			mem_cgroup_oom_synchronize(false);
5702 	}
5703 out:
5704 	mm_account_fault(mm, regs, address, flags, ret);
5705 
5706 	return ret;
5707 }
5708 EXPORT_SYMBOL_GPL(handle_mm_fault);
5709 
5710 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5711 #include <linux/extable.h>
5712 
5713 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5714 {
5715 	if (likely(mmap_read_trylock(mm)))
5716 		return true;
5717 
5718 	if (regs && !user_mode(regs)) {
5719 		unsigned long ip = exception_ip(regs);
5720 		if (!search_exception_tables(ip))
5721 			return false;
5722 	}
5723 
5724 	return !mmap_read_lock_killable(mm);
5725 }
5726 
5727 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5728 {
5729 	/*
5730 	 * We don't have this operation yet.
5731 	 *
5732 	 * It should be easy enough to do: it's basically a
5733 	 *    atomic_long_try_cmpxchg_acquire()
5734 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5735 	 * it also needs the proper lockdep magic etc.
5736 	 */
5737 	return false;
5738 }
5739 
5740 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5741 {
5742 	mmap_read_unlock(mm);
5743 	if (regs && !user_mode(regs)) {
5744 		unsigned long ip = exception_ip(regs);
5745 		if (!search_exception_tables(ip))
5746 			return false;
5747 	}
5748 	return !mmap_write_lock_killable(mm);
5749 }
5750 
5751 /*
5752  * Helper for page fault handling.
5753  *
5754  * This is kind of equivalend to "mmap_read_lock()" followed
5755  * by "find_extend_vma()", except it's a lot more careful about
5756  * the locking (and will drop the lock on failure).
5757  *
5758  * For example, if we have a kernel bug that causes a page
5759  * fault, we don't want to just use mmap_read_lock() to get
5760  * the mm lock, because that would deadlock if the bug were
5761  * to happen while we're holding the mm lock for writing.
5762  *
5763  * So this checks the exception tables on kernel faults in
5764  * order to only do this all for instructions that are actually
5765  * expected to fault.
5766  *
5767  * We can also actually take the mm lock for writing if we
5768  * need to extend the vma, which helps the VM layer a lot.
5769  */
5770 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5771 			unsigned long addr, struct pt_regs *regs)
5772 {
5773 	struct vm_area_struct *vma;
5774 
5775 	if (!get_mmap_lock_carefully(mm, regs))
5776 		return NULL;
5777 
5778 	vma = find_vma(mm, addr);
5779 	if (likely(vma && (vma->vm_start <= addr)))
5780 		return vma;
5781 
5782 	/*
5783 	 * Well, dang. We might still be successful, but only
5784 	 * if we can extend a vma to do so.
5785 	 */
5786 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5787 		mmap_read_unlock(mm);
5788 		return NULL;
5789 	}
5790 
5791 	/*
5792 	 * We can try to upgrade the mmap lock atomically,
5793 	 * in which case we can continue to use the vma
5794 	 * we already looked up.
5795 	 *
5796 	 * Otherwise we'll have to drop the mmap lock and
5797 	 * re-take it, and also look up the vma again,
5798 	 * re-checking it.
5799 	 */
5800 	if (!mmap_upgrade_trylock(mm)) {
5801 		if (!upgrade_mmap_lock_carefully(mm, regs))
5802 			return NULL;
5803 
5804 		vma = find_vma(mm, addr);
5805 		if (!vma)
5806 			goto fail;
5807 		if (vma->vm_start <= addr)
5808 			goto success;
5809 		if (!(vma->vm_flags & VM_GROWSDOWN))
5810 			goto fail;
5811 	}
5812 
5813 	if (expand_stack_locked(vma, addr))
5814 		goto fail;
5815 
5816 success:
5817 	mmap_write_downgrade(mm);
5818 	return vma;
5819 
5820 fail:
5821 	mmap_write_unlock(mm);
5822 	return NULL;
5823 }
5824 #endif
5825 
5826 #ifdef CONFIG_PER_VMA_LOCK
5827 /*
5828  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5829  * stable and not isolated. If the VMA is not found or is being modified the
5830  * function returns NULL.
5831  */
5832 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5833 					  unsigned long address)
5834 {
5835 	MA_STATE(mas, &mm->mm_mt, address, address);
5836 	struct vm_area_struct *vma;
5837 
5838 	rcu_read_lock();
5839 retry:
5840 	vma = mas_walk(&mas);
5841 	if (!vma)
5842 		goto inval;
5843 
5844 	if (!vma_start_read(vma))
5845 		goto inval;
5846 
5847 	/* Check since vm_start/vm_end might change before we lock the VMA */
5848 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5849 		goto inval_end_read;
5850 
5851 	/* Check if the VMA got isolated after we found it */
5852 	if (vma->detached) {
5853 		vma_end_read(vma);
5854 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5855 		/* The area was replaced with another one */
5856 		goto retry;
5857 	}
5858 
5859 	rcu_read_unlock();
5860 	return vma;
5861 
5862 inval_end_read:
5863 	vma_end_read(vma);
5864 inval:
5865 	rcu_read_unlock();
5866 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5867 	return NULL;
5868 }
5869 #endif /* CONFIG_PER_VMA_LOCK */
5870 
5871 #ifndef __PAGETABLE_P4D_FOLDED
5872 /*
5873  * Allocate p4d page table.
5874  * We've already handled the fast-path in-line.
5875  */
5876 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5877 {
5878 	p4d_t *new = p4d_alloc_one(mm, address);
5879 	if (!new)
5880 		return -ENOMEM;
5881 
5882 	spin_lock(&mm->page_table_lock);
5883 	if (pgd_present(*pgd)) {	/* Another has populated it */
5884 		p4d_free(mm, new);
5885 	} else {
5886 		smp_wmb(); /* See comment in pmd_install() */
5887 		pgd_populate(mm, pgd, new);
5888 	}
5889 	spin_unlock(&mm->page_table_lock);
5890 	return 0;
5891 }
5892 #endif /* __PAGETABLE_P4D_FOLDED */
5893 
5894 #ifndef __PAGETABLE_PUD_FOLDED
5895 /*
5896  * Allocate page upper directory.
5897  * We've already handled the fast-path in-line.
5898  */
5899 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5900 {
5901 	pud_t *new = pud_alloc_one(mm, address);
5902 	if (!new)
5903 		return -ENOMEM;
5904 
5905 	spin_lock(&mm->page_table_lock);
5906 	if (!p4d_present(*p4d)) {
5907 		mm_inc_nr_puds(mm);
5908 		smp_wmb(); /* See comment in pmd_install() */
5909 		p4d_populate(mm, p4d, new);
5910 	} else	/* Another has populated it */
5911 		pud_free(mm, new);
5912 	spin_unlock(&mm->page_table_lock);
5913 	return 0;
5914 }
5915 #endif /* __PAGETABLE_PUD_FOLDED */
5916 
5917 #ifndef __PAGETABLE_PMD_FOLDED
5918 /*
5919  * Allocate page middle directory.
5920  * We've already handled the fast-path in-line.
5921  */
5922 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5923 {
5924 	spinlock_t *ptl;
5925 	pmd_t *new = pmd_alloc_one(mm, address);
5926 	if (!new)
5927 		return -ENOMEM;
5928 
5929 	ptl = pud_lock(mm, pud);
5930 	if (!pud_present(*pud)) {
5931 		mm_inc_nr_pmds(mm);
5932 		smp_wmb(); /* See comment in pmd_install() */
5933 		pud_populate(mm, pud, new);
5934 	} else {	/* Another has populated it */
5935 		pmd_free(mm, new);
5936 	}
5937 	spin_unlock(ptl);
5938 	return 0;
5939 }
5940 #endif /* __PAGETABLE_PMD_FOLDED */
5941 
5942 /**
5943  * follow_pte - look up PTE at a user virtual address
5944  * @vma: the memory mapping
5945  * @address: user virtual address
5946  * @ptepp: location to store found PTE
5947  * @ptlp: location to store the lock for the PTE
5948  *
5949  * On a successful return, the pointer to the PTE is stored in @ptepp;
5950  * the corresponding lock is taken and its location is stored in @ptlp.
5951  *
5952  * The contents of the PTE are only stable until @ptlp is released using
5953  * pte_unmap_unlock(). This function will fail if the PTE is non-present.
5954  * Present PTEs may include PTEs that map refcounted pages, such as
5955  * anonymous folios in COW mappings.
5956  *
5957  * Callers must be careful when relying on PTE content after
5958  * pte_unmap_unlock(). Especially if the PTE maps a refcounted page,
5959  * callers must protect against invalidation with MMU notifiers; otherwise
5960  * access to the PFN at a later point in time can trigger use-after-free.
5961  *
5962  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5963  * should be taken for read.
5964  *
5965  * This function must not be used to modify PTE content.
5966  *
5967  * Return: zero on success, -ve otherwise.
5968  */
5969 int follow_pte(struct vm_area_struct *vma, unsigned long address,
5970 	       pte_t **ptepp, spinlock_t **ptlp)
5971 {
5972 	struct mm_struct *mm = vma->vm_mm;
5973 	pgd_t *pgd;
5974 	p4d_t *p4d;
5975 	pud_t *pud;
5976 	pmd_t *pmd;
5977 	pte_t *ptep;
5978 
5979 	mmap_assert_locked(mm);
5980 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5981 		goto out;
5982 
5983 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5984 		goto out;
5985 
5986 	pgd = pgd_offset(mm, address);
5987 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5988 		goto out;
5989 
5990 	p4d = p4d_offset(pgd, address);
5991 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5992 		goto out;
5993 
5994 	pud = pud_offset(p4d, address);
5995 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5996 		goto out;
5997 
5998 	pmd = pmd_offset(pud, address);
5999 	VM_BUG_ON(pmd_trans_huge(*pmd));
6000 
6001 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
6002 	if (!ptep)
6003 		goto out;
6004 	if (!pte_present(ptep_get(ptep)))
6005 		goto unlock;
6006 	*ptepp = ptep;
6007 	return 0;
6008 unlock:
6009 	pte_unmap_unlock(ptep, *ptlp);
6010 out:
6011 	return -EINVAL;
6012 }
6013 EXPORT_SYMBOL_GPL(follow_pte);
6014 
6015 #ifdef CONFIG_HAVE_IOREMAP_PROT
6016 /**
6017  * generic_access_phys - generic implementation for iomem mmap access
6018  * @vma: the vma to access
6019  * @addr: userspace address, not relative offset within @vma
6020  * @buf: buffer to read/write
6021  * @len: length of transfer
6022  * @write: set to FOLL_WRITE when writing, otherwise reading
6023  *
6024  * This is a generic implementation for &vm_operations_struct.access for an
6025  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6026  * not page based.
6027  */
6028 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6029 			void *buf, int len, int write)
6030 {
6031 	resource_size_t phys_addr;
6032 	unsigned long prot = 0;
6033 	void __iomem *maddr;
6034 	pte_t *ptep, pte;
6035 	spinlock_t *ptl;
6036 	int offset = offset_in_page(addr);
6037 	int ret = -EINVAL;
6038 
6039 retry:
6040 	if (follow_pte(vma, addr, &ptep, &ptl))
6041 		return -EINVAL;
6042 	pte = ptep_get(ptep);
6043 	pte_unmap_unlock(ptep, ptl);
6044 
6045 	prot = pgprot_val(pte_pgprot(pte));
6046 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6047 
6048 	if ((write & FOLL_WRITE) && !pte_write(pte))
6049 		return -EINVAL;
6050 
6051 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6052 	if (!maddr)
6053 		return -ENOMEM;
6054 
6055 	if (follow_pte(vma, addr, &ptep, &ptl))
6056 		goto out_unmap;
6057 
6058 	if (!pte_same(pte, ptep_get(ptep))) {
6059 		pte_unmap_unlock(ptep, ptl);
6060 		iounmap(maddr);
6061 
6062 		goto retry;
6063 	}
6064 
6065 	if (write)
6066 		memcpy_toio(maddr + offset, buf, len);
6067 	else
6068 		memcpy_fromio(buf, maddr + offset, len);
6069 	ret = len;
6070 	pte_unmap_unlock(ptep, ptl);
6071 out_unmap:
6072 	iounmap(maddr);
6073 
6074 	return ret;
6075 }
6076 EXPORT_SYMBOL_GPL(generic_access_phys);
6077 #endif
6078 
6079 /*
6080  * Access another process' address space as given in mm.
6081  */
6082 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6083 			      void *buf, int len, unsigned int gup_flags)
6084 {
6085 	void *old_buf = buf;
6086 	int write = gup_flags & FOLL_WRITE;
6087 
6088 	if (mmap_read_lock_killable(mm))
6089 		return 0;
6090 
6091 	/* Untag the address before looking up the VMA */
6092 	addr = untagged_addr_remote(mm, addr);
6093 
6094 	/* Avoid triggering the temporary warning in __get_user_pages */
6095 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6096 		return 0;
6097 
6098 	/* ignore errors, just check how much was successfully transferred */
6099 	while (len) {
6100 		int bytes, offset;
6101 		void *maddr;
6102 		struct vm_area_struct *vma = NULL;
6103 		struct page *page = get_user_page_vma_remote(mm, addr,
6104 							     gup_flags, &vma);
6105 
6106 		if (IS_ERR(page)) {
6107 			/* We might need to expand the stack to access it */
6108 			vma = vma_lookup(mm, addr);
6109 			if (!vma) {
6110 				vma = expand_stack(mm, addr);
6111 
6112 				/* mmap_lock was dropped on failure */
6113 				if (!vma)
6114 					return buf - old_buf;
6115 
6116 				/* Try again if stack expansion worked */
6117 				continue;
6118 			}
6119 
6120 			/*
6121 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6122 			 * we can access using slightly different code.
6123 			 */
6124 			bytes = 0;
6125 #ifdef CONFIG_HAVE_IOREMAP_PROT
6126 			if (vma->vm_ops && vma->vm_ops->access)
6127 				bytes = vma->vm_ops->access(vma, addr, buf,
6128 							    len, write);
6129 #endif
6130 			if (bytes <= 0)
6131 				break;
6132 		} else {
6133 			bytes = len;
6134 			offset = addr & (PAGE_SIZE-1);
6135 			if (bytes > PAGE_SIZE-offset)
6136 				bytes = PAGE_SIZE-offset;
6137 
6138 			maddr = kmap_local_page(page);
6139 			if (write) {
6140 				copy_to_user_page(vma, page, addr,
6141 						  maddr + offset, buf, bytes);
6142 				set_page_dirty_lock(page);
6143 			} else {
6144 				copy_from_user_page(vma, page, addr,
6145 						    buf, maddr + offset, bytes);
6146 			}
6147 			unmap_and_put_page(page, maddr);
6148 		}
6149 		len -= bytes;
6150 		buf += bytes;
6151 		addr += bytes;
6152 	}
6153 	mmap_read_unlock(mm);
6154 
6155 	return buf - old_buf;
6156 }
6157 
6158 /**
6159  * access_remote_vm - access another process' address space
6160  * @mm:		the mm_struct of the target address space
6161  * @addr:	start address to access
6162  * @buf:	source or destination buffer
6163  * @len:	number of bytes to transfer
6164  * @gup_flags:	flags modifying lookup behaviour
6165  *
6166  * The caller must hold a reference on @mm.
6167  *
6168  * Return: number of bytes copied from source to destination.
6169  */
6170 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6171 		void *buf, int len, unsigned int gup_flags)
6172 {
6173 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6174 }
6175 
6176 /*
6177  * Access another process' address space.
6178  * Source/target buffer must be kernel space,
6179  * Do not walk the page table directly, use get_user_pages
6180  */
6181 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6182 		void *buf, int len, unsigned int gup_flags)
6183 {
6184 	struct mm_struct *mm;
6185 	int ret;
6186 
6187 	mm = get_task_mm(tsk);
6188 	if (!mm)
6189 		return 0;
6190 
6191 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6192 
6193 	mmput(mm);
6194 
6195 	return ret;
6196 }
6197 EXPORT_SYMBOL_GPL(access_process_vm);
6198 
6199 /*
6200  * Print the name of a VMA.
6201  */
6202 void print_vma_addr(char *prefix, unsigned long ip)
6203 {
6204 	struct mm_struct *mm = current->mm;
6205 	struct vm_area_struct *vma;
6206 
6207 	/*
6208 	 * we might be running from an atomic context so we cannot sleep
6209 	 */
6210 	if (!mmap_read_trylock(mm))
6211 		return;
6212 
6213 	vma = vma_lookup(mm, ip);
6214 	if (vma && vma->vm_file) {
6215 		struct file *f = vma->vm_file;
6216 		ip -= vma->vm_start;
6217 		ip += vma->vm_pgoff << PAGE_SHIFT;
6218 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6219 				vma->vm_start,
6220 				vma->vm_end - vma->vm_start);
6221 	}
6222 	mmap_read_unlock(mm);
6223 }
6224 
6225 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6226 void __might_fault(const char *file, int line)
6227 {
6228 	if (pagefault_disabled())
6229 		return;
6230 	__might_sleep(file, line);
6231 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6232 	if (current->mm)
6233 		might_lock_read(&current->mm->mmap_lock);
6234 #endif
6235 }
6236 EXPORT_SYMBOL(__might_fault);
6237 #endif
6238 
6239 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6240 /*
6241  * Process all subpages of the specified huge page with the specified
6242  * operation.  The target subpage will be processed last to keep its
6243  * cache lines hot.
6244  */
6245 static inline int process_huge_page(
6246 	unsigned long addr_hint, unsigned int pages_per_huge_page,
6247 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6248 	void *arg)
6249 {
6250 	int i, n, base, l, ret;
6251 	unsigned long addr = addr_hint &
6252 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6253 
6254 	/* Process target subpage last to keep its cache lines hot */
6255 	might_sleep();
6256 	n = (addr_hint - addr) / PAGE_SIZE;
6257 	if (2 * n <= pages_per_huge_page) {
6258 		/* If target subpage in first half of huge page */
6259 		base = 0;
6260 		l = n;
6261 		/* Process subpages at the end of huge page */
6262 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6263 			cond_resched();
6264 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6265 			if (ret)
6266 				return ret;
6267 		}
6268 	} else {
6269 		/* If target subpage in second half of huge page */
6270 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6271 		l = pages_per_huge_page - n;
6272 		/* Process subpages at the begin of huge page */
6273 		for (i = 0; i < base; i++) {
6274 			cond_resched();
6275 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6276 			if (ret)
6277 				return ret;
6278 		}
6279 	}
6280 	/*
6281 	 * Process remaining subpages in left-right-left-right pattern
6282 	 * towards the target subpage
6283 	 */
6284 	for (i = 0; i < l; i++) {
6285 		int left_idx = base + i;
6286 		int right_idx = base + 2 * l - 1 - i;
6287 
6288 		cond_resched();
6289 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6290 		if (ret)
6291 			return ret;
6292 		cond_resched();
6293 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6294 		if (ret)
6295 			return ret;
6296 	}
6297 	return 0;
6298 }
6299 
6300 static void clear_gigantic_page(struct page *page,
6301 				unsigned long addr,
6302 				unsigned int pages_per_huge_page)
6303 {
6304 	int i;
6305 	struct page *p;
6306 
6307 	might_sleep();
6308 	for (i = 0; i < pages_per_huge_page; i++) {
6309 		p = nth_page(page, i);
6310 		cond_resched();
6311 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6312 	}
6313 }
6314 
6315 static int clear_subpage(unsigned long addr, int idx, void *arg)
6316 {
6317 	struct page *page = arg;
6318 
6319 	clear_user_highpage(nth_page(page, idx), addr);
6320 	return 0;
6321 }
6322 
6323 void clear_huge_page(struct page *page,
6324 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6325 {
6326 	unsigned long addr = addr_hint &
6327 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6328 
6329 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6330 		clear_gigantic_page(page, addr, pages_per_huge_page);
6331 		return;
6332 	}
6333 
6334 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6335 }
6336 
6337 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6338 				     unsigned long addr,
6339 				     struct vm_area_struct *vma,
6340 				     unsigned int pages_per_huge_page)
6341 {
6342 	int i;
6343 	struct page *dst_page;
6344 	struct page *src_page;
6345 
6346 	for (i = 0; i < pages_per_huge_page; i++) {
6347 		dst_page = folio_page(dst, i);
6348 		src_page = folio_page(src, i);
6349 
6350 		cond_resched();
6351 		if (copy_mc_user_highpage(dst_page, src_page,
6352 					  addr + i*PAGE_SIZE, vma)) {
6353 			memory_failure_queue(page_to_pfn(src_page), 0);
6354 			return -EHWPOISON;
6355 		}
6356 	}
6357 	return 0;
6358 }
6359 
6360 struct copy_subpage_arg {
6361 	struct page *dst;
6362 	struct page *src;
6363 	struct vm_area_struct *vma;
6364 };
6365 
6366 static int copy_subpage(unsigned long addr, int idx, void *arg)
6367 {
6368 	struct copy_subpage_arg *copy_arg = arg;
6369 	struct page *dst = nth_page(copy_arg->dst, idx);
6370 	struct page *src = nth_page(copy_arg->src, idx);
6371 
6372 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6373 		memory_failure_queue(page_to_pfn(src), 0);
6374 		return -EHWPOISON;
6375 	}
6376 	return 0;
6377 }
6378 
6379 int copy_user_large_folio(struct folio *dst, struct folio *src,
6380 			  unsigned long addr_hint, struct vm_area_struct *vma)
6381 {
6382 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6383 	unsigned long addr = addr_hint &
6384 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6385 	struct copy_subpage_arg arg = {
6386 		.dst = &dst->page,
6387 		.src = &src->page,
6388 		.vma = vma,
6389 	};
6390 
6391 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6392 		return copy_user_gigantic_page(dst, src, addr, vma,
6393 					       pages_per_huge_page);
6394 
6395 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6396 }
6397 
6398 long copy_folio_from_user(struct folio *dst_folio,
6399 			   const void __user *usr_src,
6400 			   bool allow_pagefault)
6401 {
6402 	void *kaddr;
6403 	unsigned long i, rc = 0;
6404 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6405 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6406 	struct page *subpage;
6407 
6408 	for (i = 0; i < nr_pages; i++) {
6409 		subpage = folio_page(dst_folio, i);
6410 		kaddr = kmap_local_page(subpage);
6411 		if (!allow_pagefault)
6412 			pagefault_disable();
6413 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6414 		if (!allow_pagefault)
6415 			pagefault_enable();
6416 		kunmap_local(kaddr);
6417 
6418 		ret_val -= (PAGE_SIZE - rc);
6419 		if (rc)
6420 			break;
6421 
6422 		flush_dcache_page(subpage);
6423 
6424 		cond_resched();
6425 	}
6426 	return ret_val;
6427 }
6428 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6429 
6430 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6431 
6432 static struct kmem_cache *page_ptl_cachep;
6433 
6434 void __init ptlock_cache_init(void)
6435 {
6436 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6437 			SLAB_PANIC, NULL);
6438 }
6439 
6440 bool ptlock_alloc(struct ptdesc *ptdesc)
6441 {
6442 	spinlock_t *ptl;
6443 
6444 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6445 	if (!ptl)
6446 		return false;
6447 	ptdesc->ptl = ptl;
6448 	return true;
6449 }
6450 
6451 void ptlock_free(struct ptdesc *ptdesc)
6452 {
6453 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6454 }
6455 #endif
6456 
6457 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6458 {
6459 	if (is_vm_hugetlb_page(vma))
6460 		hugetlb_vma_lock_read(vma);
6461 }
6462 
6463 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6464 {
6465 	if (is_vm_hugetlb_page(vma))
6466 		hugetlb_vma_unlock_read(vma);
6467 }
6468