xref: /linux/mm/memory.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58 
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 			  pte_t pte, struct page *page)
380 {
381 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 	pud_t *pud = pud_offset(pgd, addr);
383 	pmd_t *pmd = pmd_offset(pud, addr);
384 	struct address_space *mapping;
385 	pgoff_t index;
386 	static unsigned long resume;
387 	static unsigned long nr_shown;
388 	static unsigned long nr_unshown;
389 
390 	/*
391 	 * Allow a burst of 60 reports, then keep quiet for that minute;
392 	 * or allow a steady drip of one report per second.
393 	 */
394 	if (nr_shown == 60) {
395 		if (time_before(jiffies, resume)) {
396 			nr_unshown++;
397 			return;
398 		}
399 		if (nr_unshown) {
400 			printk(KERN_ALERT
401 				"BUG: Bad page map: %lu messages suppressed\n",
402 				nr_unshown);
403 			nr_unshown = 0;
404 		}
405 		nr_shown = 0;
406 	}
407 	if (nr_shown++ == 0)
408 		resume = jiffies + 60 * HZ;
409 
410 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411 	index = linear_page_index(vma, addr);
412 
413 	printk(KERN_ALERT
414 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
415 		current->comm,
416 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
417 	if (page) {
418 		printk(KERN_ALERT
419 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
420 		page, (void *)page->flags, page_count(page),
421 		page_mapcount(page), page->mapping, page->index);
422 	}
423 	printk(KERN_ALERT
424 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
425 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
426 	/*
427 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
428 	 */
429 	if (vma->vm_ops)
430 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
431 				(unsigned long)vma->vm_ops->fault);
432 	if (vma->vm_file && vma->vm_file->f_op)
433 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
434 				(unsigned long)vma->vm_file->f_op->mmap);
435 	dump_stack();
436 	add_taint(TAINT_BAD_PAGE);
437 }
438 
439 static inline int is_cow_mapping(unsigned int flags)
440 {
441 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
442 }
443 
444 /*
445  * vm_normal_page -- This function gets the "struct page" associated with a pte.
446  *
447  * "Special" mappings do not wish to be associated with a "struct page" (either
448  * it doesn't exist, or it exists but they don't want to touch it). In this
449  * case, NULL is returned here. "Normal" mappings do have a struct page.
450  *
451  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
452  * pte bit, in which case this function is trivial. Secondly, an architecture
453  * may not have a spare pte bit, which requires a more complicated scheme,
454  * described below.
455  *
456  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
457  * special mapping (even if there are underlying and valid "struct pages").
458  * COWed pages of a VM_PFNMAP are always normal.
459  *
460  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
461  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
462  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
463  * mapping will always honor the rule
464  *
465  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
466  *
467  * And for normal mappings this is false.
468  *
469  * This restricts such mappings to be a linear translation from virtual address
470  * to pfn. To get around this restriction, we allow arbitrary mappings so long
471  * as the vma is not a COW mapping; in that case, we know that all ptes are
472  * special (because none can have been COWed).
473  *
474  *
475  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
476  *
477  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
478  * page" backing, however the difference is that _all_ pages with a struct
479  * page (that is, those where pfn_valid is true) are refcounted and considered
480  * normal pages by the VM. The disadvantage is that pages are refcounted
481  * (which can be slower and simply not an option for some PFNMAP users). The
482  * advantage is that we don't have to follow the strict linearity rule of
483  * PFNMAP mappings in order to support COWable mappings.
484  *
485  */
486 #ifdef __HAVE_ARCH_PTE_SPECIAL
487 # define HAVE_PTE_SPECIAL 1
488 #else
489 # define HAVE_PTE_SPECIAL 0
490 #endif
491 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
492 				pte_t pte)
493 {
494 	unsigned long pfn = pte_pfn(pte);
495 
496 	if (HAVE_PTE_SPECIAL) {
497 		if (likely(!pte_special(pte)))
498 			goto check_pfn;
499 		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
500 			print_bad_pte(vma, addr, pte, NULL);
501 		return NULL;
502 	}
503 
504 	/* !HAVE_PTE_SPECIAL case follows: */
505 
506 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
507 		if (vma->vm_flags & VM_MIXEDMAP) {
508 			if (!pfn_valid(pfn))
509 				return NULL;
510 			goto out;
511 		} else {
512 			unsigned long off;
513 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
514 			if (pfn == vma->vm_pgoff + off)
515 				return NULL;
516 			if (!is_cow_mapping(vma->vm_flags))
517 				return NULL;
518 		}
519 	}
520 
521 check_pfn:
522 	if (unlikely(pfn > highest_memmap_pfn)) {
523 		print_bad_pte(vma, addr, pte, NULL);
524 		return NULL;
525 	}
526 
527 	/*
528 	 * NOTE! We still have PageReserved() pages in the page tables.
529 	 * eg. VDSO mappings can cause them to exist.
530 	 */
531 out:
532 	return pfn_to_page(pfn);
533 }
534 
535 /*
536  * copy one vm_area from one task to the other. Assumes the page tables
537  * already present in the new task to be cleared in the whole range
538  * covered by this vma.
539  */
540 
541 static inline void
542 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
544 		unsigned long addr, int *rss)
545 {
546 	unsigned long vm_flags = vma->vm_flags;
547 	pte_t pte = *src_pte;
548 	struct page *page;
549 
550 	/* pte contains position in swap or file, so copy. */
551 	if (unlikely(!pte_present(pte))) {
552 		if (!pte_file(pte)) {
553 			swp_entry_t entry = pte_to_swp_entry(pte);
554 
555 			swap_duplicate(entry);
556 			/* make sure dst_mm is on swapoff's mmlist. */
557 			if (unlikely(list_empty(&dst_mm->mmlist))) {
558 				spin_lock(&mmlist_lock);
559 				if (list_empty(&dst_mm->mmlist))
560 					list_add(&dst_mm->mmlist,
561 						 &src_mm->mmlist);
562 				spin_unlock(&mmlist_lock);
563 			}
564 			if (is_write_migration_entry(entry) &&
565 					is_cow_mapping(vm_flags)) {
566 				/*
567 				 * COW mappings require pages in both parent
568 				 * and child to be set to read.
569 				 */
570 				make_migration_entry_read(&entry);
571 				pte = swp_entry_to_pte(entry);
572 				set_pte_at(src_mm, addr, src_pte, pte);
573 			}
574 		}
575 		goto out_set_pte;
576 	}
577 
578 	/*
579 	 * If it's a COW mapping, write protect it both
580 	 * in the parent and the child
581 	 */
582 	if (is_cow_mapping(vm_flags)) {
583 		ptep_set_wrprotect(src_mm, addr, src_pte);
584 		pte = pte_wrprotect(pte);
585 	}
586 
587 	/*
588 	 * If it's a shared mapping, mark it clean in
589 	 * the child
590 	 */
591 	if (vm_flags & VM_SHARED)
592 		pte = pte_mkclean(pte);
593 	pte = pte_mkold(pte);
594 
595 	page = vm_normal_page(vma, addr, pte);
596 	if (page) {
597 		get_page(page);
598 		page_dup_rmap(page, vma, addr);
599 		rss[!!PageAnon(page)]++;
600 	}
601 
602 out_set_pte:
603 	set_pte_at(dst_mm, addr, dst_pte, pte);
604 }
605 
606 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
608 		unsigned long addr, unsigned long end)
609 {
610 	pte_t *src_pte, *dst_pte;
611 	spinlock_t *src_ptl, *dst_ptl;
612 	int progress = 0;
613 	int rss[2];
614 
615 again:
616 	rss[1] = rss[0] = 0;
617 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
618 	if (!dst_pte)
619 		return -ENOMEM;
620 	src_pte = pte_offset_map_nested(src_pmd, addr);
621 	src_ptl = pte_lockptr(src_mm, src_pmd);
622 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
623 	arch_enter_lazy_mmu_mode();
624 
625 	do {
626 		/*
627 		 * We are holding two locks at this point - either of them
628 		 * could generate latencies in another task on another CPU.
629 		 */
630 		if (progress >= 32) {
631 			progress = 0;
632 			if (need_resched() ||
633 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
634 				break;
635 		}
636 		if (pte_none(*src_pte)) {
637 			progress++;
638 			continue;
639 		}
640 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
641 		progress += 8;
642 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
643 
644 	arch_leave_lazy_mmu_mode();
645 	spin_unlock(src_ptl);
646 	pte_unmap_nested(src_pte - 1);
647 	add_mm_rss(dst_mm, rss[0], rss[1]);
648 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
649 	cond_resched();
650 	if (addr != end)
651 		goto again;
652 	return 0;
653 }
654 
655 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
656 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
657 		unsigned long addr, unsigned long end)
658 {
659 	pmd_t *src_pmd, *dst_pmd;
660 	unsigned long next;
661 
662 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
663 	if (!dst_pmd)
664 		return -ENOMEM;
665 	src_pmd = pmd_offset(src_pud, addr);
666 	do {
667 		next = pmd_addr_end(addr, end);
668 		if (pmd_none_or_clear_bad(src_pmd))
669 			continue;
670 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
671 						vma, addr, next))
672 			return -ENOMEM;
673 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
674 	return 0;
675 }
676 
677 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
678 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
679 		unsigned long addr, unsigned long end)
680 {
681 	pud_t *src_pud, *dst_pud;
682 	unsigned long next;
683 
684 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
685 	if (!dst_pud)
686 		return -ENOMEM;
687 	src_pud = pud_offset(src_pgd, addr);
688 	do {
689 		next = pud_addr_end(addr, end);
690 		if (pud_none_or_clear_bad(src_pud))
691 			continue;
692 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
693 						vma, addr, next))
694 			return -ENOMEM;
695 	} while (dst_pud++, src_pud++, addr = next, addr != end);
696 	return 0;
697 }
698 
699 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 		struct vm_area_struct *vma)
701 {
702 	pgd_t *src_pgd, *dst_pgd;
703 	unsigned long next;
704 	unsigned long addr = vma->vm_start;
705 	unsigned long end = vma->vm_end;
706 	int ret;
707 
708 	/*
709 	 * Don't copy ptes where a page fault will fill them correctly.
710 	 * Fork becomes much lighter when there are big shared or private
711 	 * readonly mappings. The tradeoff is that copy_page_range is more
712 	 * efficient than faulting.
713 	 */
714 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
715 		if (!vma->anon_vma)
716 			return 0;
717 	}
718 
719 	if (is_vm_hugetlb_page(vma))
720 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
721 
722 	if (unlikely(is_pfn_mapping(vma))) {
723 		/*
724 		 * We do not free on error cases below as remove_vma
725 		 * gets called on error from higher level routine
726 		 */
727 		ret = track_pfn_vma_copy(vma);
728 		if (ret)
729 			return ret;
730 	}
731 
732 	/*
733 	 * We need to invalidate the secondary MMU mappings only when
734 	 * there could be a permission downgrade on the ptes of the
735 	 * parent mm. And a permission downgrade will only happen if
736 	 * is_cow_mapping() returns true.
737 	 */
738 	if (is_cow_mapping(vma->vm_flags))
739 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
740 
741 	ret = 0;
742 	dst_pgd = pgd_offset(dst_mm, addr);
743 	src_pgd = pgd_offset(src_mm, addr);
744 	do {
745 		next = pgd_addr_end(addr, end);
746 		if (pgd_none_or_clear_bad(src_pgd))
747 			continue;
748 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
749 					    vma, addr, next))) {
750 			ret = -ENOMEM;
751 			break;
752 		}
753 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
754 
755 	if (is_cow_mapping(vma->vm_flags))
756 		mmu_notifier_invalidate_range_end(src_mm,
757 						  vma->vm_start, end);
758 	return ret;
759 }
760 
761 static unsigned long zap_pte_range(struct mmu_gather *tlb,
762 				struct vm_area_struct *vma, pmd_t *pmd,
763 				unsigned long addr, unsigned long end,
764 				long *zap_work, struct zap_details *details)
765 {
766 	struct mm_struct *mm = tlb->mm;
767 	pte_t *pte;
768 	spinlock_t *ptl;
769 	int file_rss = 0;
770 	int anon_rss = 0;
771 
772 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
773 	arch_enter_lazy_mmu_mode();
774 	do {
775 		pte_t ptent = *pte;
776 		if (pte_none(ptent)) {
777 			(*zap_work)--;
778 			continue;
779 		}
780 
781 		(*zap_work) -= PAGE_SIZE;
782 
783 		if (pte_present(ptent)) {
784 			struct page *page;
785 
786 			page = vm_normal_page(vma, addr, ptent);
787 			if (unlikely(details) && page) {
788 				/*
789 				 * unmap_shared_mapping_pages() wants to
790 				 * invalidate cache without truncating:
791 				 * unmap shared but keep private pages.
792 				 */
793 				if (details->check_mapping &&
794 				    details->check_mapping != page->mapping)
795 					continue;
796 				/*
797 				 * Each page->index must be checked when
798 				 * invalidating or truncating nonlinear.
799 				 */
800 				if (details->nonlinear_vma &&
801 				    (page->index < details->first_index ||
802 				     page->index > details->last_index))
803 					continue;
804 			}
805 			ptent = ptep_get_and_clear_full(mm, addr, pte,
806 							tlb->fullmm);
807 			tlb_remove_tlb_entry(tlb, pte, addr);
808 			if (unlikely(!page))
809 				continue;
810 			if (unlikely(details) && details->nonlinear_vma
811 			    && linear_page_index(details->nonlinear_vma,
812 						addr) != page->index)
813 				set_pte_at(mm, addr, pte,
814 					   pgoff_to_pte(page->index));
815 			if (PageAnon(page))
816 				anon_rss--;
817 			else {
818 				if (pte_dirty(ptent))
819 					set_page_dirty(page);
820 				if (pte_young(ptent) &&
821 				    likely(!VM_SequentialReadHint(vma)))
822 					mark_page_accessed(page);
823 				file_rss--;
824 			}
825 			page_remove_rmap(page);
826 			if (unlikely(page_mapcount(page) < 0))
827 				print_bad_pte(vma, addr, ptent, page);
828 			tlb_remove_page(tlb, page);
829 			continue;
830 		}
831 		/*
832 		 * If details->check_mapping, we leave swap entries;
833 		 * if details->nonlinear_vma, we leave file entries.
834 		 */
835 		if (unlikely(details))
836 			continue;
837 		if (pte_file(ptent)) {
838 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
839 				print_bad_pte(vma, addr, ptent, NULL);
840 		} else if
841 		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
842 			print_bad_pte(vma, addr, ptent, NULL);
843 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
844 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
845 
846 	add_mm_rss(mm, file_rss, anon_rss);
847 	arch_leave_lazy_mmu_mode();
848 	pte_unmap_unlock(pte - 1, ptl);
849 
850 	return addr;
851 }
852 
853 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
854 				struct vm_area_struct *vma, pud_t *pud,
855 				unsigned long addr, unsigned long end,
856 				long *zap_work, struct zap_details *details)
857 {
858 	pmd_t *pmd;
859 	unsigned long next;
860 
861 	pmd = pmd_offset(pud, addr);
862 	do {
863 		next = pmd_addr_end(addr, end);
864 		if (pmd_none_or_clear_bad(pmd)) {
865 			(*zap_work)--;
866 			continue;
867 		}
868 		next = zap_pte_range(tlb, vma, pmd, addr, next,
869 						zap_work, details);
870 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
871 
872 	return addr;
873 }
874 
875 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
876 				struct vm_area_struct *vma, pgd_t *pgd,
877 				unsigned long addr, unsigned long end,
878 				long *zap_work, struct zap_details *details)
879 {
880 	pud_t *pud;
881 	unsigned long next;
882 
883 	pud = pud_offset(pgd, addr);
884 	do {
885 		next = pud_addr_end(addr, end);
886 		if (pud_none_or_clear_bad(pud)) {
887 			(*zap_work)--;
888 			continue;
889 		}
890 		next = zap_pmd_range(tlb, vma, pud, addr, next,
891 						zap_work, details);
892 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
893 
894 	return addr;
895 }
896 
897 static unsigned long unmap_page_range(struct mmu_gather *tlb,
898 				struct vm_area_struct *vma,
899 				unsigned long addr, unsigned long end,
900 				long *zap_work, struct zap_details *details)
901 {
902 	pgd_t *pgd;
903 	unsigned long next;
904 
905 	if (details && !details->check_mapping && !details->nonlinear_vma)
906 		details = NULL;
907 
908 	BUG_ON(addr >= end);
909 	tlb_start_vma(tlb, vma);
910 	pgd = pgd_offset(vma->vm_mm, addr);
911 	do {
912 		next = pgd_addr_end(addr, end);
913 		if (pgd_none_or_clear_bad(pgd)) {
914 			(*zap_work)--;
915 			continue;
916 		}
917 		next = zap_pud_range(tlb, vma, pgd, addr, next,
918 						zap_work, details);
919 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
920 	tlb_end_vma(tlb, vma);
921 
922 	return addr;
923 }
924 
925 #ifdef CONFIG_PREEMPT
926 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
927 #else
928 /* No preempt: go for improved straight-line efficiency */
929 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
930 #endif
931 
932 /**
933  * unmap_vmas - unmap a range of memory covered by a list of vma's
934  * @tlbp: address of the caller's struct mmu_gather
935  * @vma: the starting vma
936  * @start_addr: virtual address at which to start unmapping
937  * @end_addr: virtual address at which to end unmapping
938  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
939  * @details: details of nonlinear truncation or shared cache invalidation
940  *
941  * Returns the end address of the unmapping (restart addr if interrupted).
942  *
943  * Unmap all pages in the vma list.
944  *
945  * We aim to not hold locks for too long (for scheduling latency reasons).
946  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
947  * return the ending mmu_gather to the caller.
948  *
949  * Only addresses between `start' and `end' will be unmapped.
950  *
951  * The VMA list must be sorted in ascending virtual address order.
952  *
953  * unmap_vmas() assumes that the caller will flush the whole unmapped address
954  * range after unmap_vmas() returns.  So the only responsibility here is to
955  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
956  * drops the lock and schedules.
957  */
958 unsigned long unmap_vmas(struct mmu_gather **tlbp,
959 		struct vm_area_struct *vma, unsigned long start_addr,
960 		unsigned long end_addr, unsigned long *nr_accounted,
961 		struct zap_details *details)
962 {
963 	long zap_work = ZAP_BLOCK_SIZE;
964 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
965 	int tlb_start_valid = 0;
966 	unsigned long start = start_addr;
967 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
968 	int fullmm = (*tlbp)->fullmm;
969 	struct mm_struct *mm = vma->vm_mm;
970 
971 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
972 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
973 		unsigned long end;
974 
975 		start = max(vma->vm_start, start_addr);
976 		if (start >= vma->vm_end)
977 			continue;
978 		end = min(vma->vm_end, end_addr);
979 		if (end <= vma->vm_start)
980 			continue;
981 
982 		if (vma->vm_flags & VM_ACCOUNT)
983 			*nr_accounted += (end - start) >> PAGE_SHIFT;
984 
985 		if (unlikely(is_pfn_mapping(vma)))
986 			untrack_pfn_vma(vma, 0, 0);
987 
988 		while (start != end) {
989 			if (!tlb_start_valid) {
990 				tlb_start = start;
991 				tlb_start_valid = 1;
992 			}
993 
994 			if (unlikely(is_vm_hugetlb_page(vma))) {
995 				/*
996 				 * It is undesirable to test vma->vm_file as it
997 				 * should be non-null for valid hugetlb area.
998 				 * However, vm_file will be NULL in the error
999 				 * cleanup path of do_mmap_pgoff. When
1000 				 * hugetlbfs ->mmap method fails,
1001 				 * do_mmap_pgoff() nullifies vma->vm_file
1002 				 * before calling this function to clean up.
1003 				 * Since no pte has actually been setup, it is
1004 				 * safe to do nothing in this case.
1005 				 */
1006 				if (vma->vm_file) {
1007 					unmap_hugepage_range(vma, start, end, NULL);
1008 					zap_work -= (end - start) /
1009 					pages_per_huge_page(hstate_vma(vma));
1010 				}
1011 
1012 				start = end;
1013 			} else
1014 				start = unmap_page_range(*tlbp, vma,
1015 						start, end, &zap_work, details);
1016 
1017 			if (zap_work > 0) {
1018 				BUG_ON(start != end);
1019 				break;
1020 			}
1021 
1022 			tlb_finish_mmu(*tlbp, tlb_start, start);
1023 
1024 			if (need_resched() ||
1025 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1026 				if (i_mmap_lock) {
1027 					*tlbp = NULL;
1028 					goto out;
1029 				}
1030 				cond_resched();
1031 			}
1032 
1033 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1034 			tlb_start_valid = 0;
1035 			zap_work = ZAP_BLOCK_SIZE;
1036 		}
1037 	}
1038 out:
1039 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1040 	return start;	/* which is now the end (or restart) address */
1041 }
1042 
1043 /**
1044  * zap_page_range - remove user pages in a given range
1045  * @vma: vm_area_struct holding the applicable pages
1046  * @address: starting address of pages to zap
1047  * @size: number of bytes to zap
1048  * @details: details of nonlinear truncation or shared cache invalidation
1049  */
1050 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1051 		unsigned long size, struct zap_details *details)
1052 {
1053 	struct mm_struct *mm = vma->vm_mm;
1054 	struct mmu_gather *tlb;
1055 	unsigned long end = address + size;
1056 	unsigned long nr_accounted = 0;
1057 
1058 	lru_add_drain();
1059 	tlb = tlb_gather_mmu(mm, 0);
1060 	update_hiwater_rss(mm);
1061 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1062 	if (tlb)
1063 		tlb_finish_mmu(tlb, address, end);
1064 	return end;
1065 }
1066 
1067 /**
1068  * zap_vma_ptes - remove ptes mapping the vma
1069  * @vma: vm_area_struct holding ptes to be zapped
1070  * @address: starting address of pages to zap
1071  * @size: number of bytes to zap
1072  *
1073  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1074  *
1075  * The entire address range must be fully contained within the vma.
1076  *
1077  * Returns 0 if successful.
1078  */
1079 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1080 		unsigned long size)
1081 {
1082 	if (address < vma->vm_start || address + size > vma->vm_end ||
1083 	    		!(vma->vm_flags & VM_PFNMAP))
1084 		return -1;
1085 	zap_page_range(vma, address, size, NULL);
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1089 
1090 /*
1091  * Do a quick page-table lookup for a single page.
1092  */
1093 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1094 			unsigned int flags)
1095 {
1096 	pgd_t *pgd;
1097 	pud_t *pud;
1098 	pmd_t *pmd;
1099 	pte_t *ptep, pte;
1100 	spinlock_t *ptl;
1101 	struct page *page;
1102 	struct mm_struct *mm = vma->vm_mm;
1103 
1104 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1105 	if (!IS_ERR(page)) {
1106 		BUG_ON(flags & FOLL_GET);
1107 		goto out;
1108 	}
1109 
1110 	page = NULL;
1111 	pgd = pgd_offset(mm, address);
1112 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1113 		goto no_page_table;
1114 
1115 	pud = pud_offset(pgd, address);
1116 	if (pud_none(*pud))
1117 		goto no_page_table;
1118 	if (pud_huge(*pud)) {
1119 		BUG_ON(flags & FOLL_GET);
1120 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1121 		goto out;
1122 	}
1123 	if (unlikely(pud_bad(*pud)))
1124 		goto no_page_table;
1125 
1126 	pmd = pmd_offset(pud, address);
1127 	if (pmd_none(*pmd))
1128 		goto no_page_table;
1129 	if (pmd_huge(*pmd)) {
1130 		BUG_ON(flags & FOLL_GET);
1131 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1132 		goto out;
1133 	}
1134 	if (unlikely(pmd_bad(*pmd)))
1135 		goto no_page_table;
1136 
1137 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1138 
1139 	pte = *ptep;
1140 	if (!pte_present(pte))
1141 		goto no_page;
1142 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1143 		goto unlock;
1144 	page = vm_normal_page(vma, address, pte);
1145 	if (unlikely(!page))
1146 		goto bad_page;
1147 
1148 	if (flags & FOLL_GET)
1149 		get_page(page);
1150 	if (flags & FOLL_TOUCH) {
1151 		if ((flags & FOLL_WRITE) &&
1152 		    !pte_dirty(pte) && !PageDirty(page))
1153 			set_page_dirty(page);
1154 		/*
1155 		 * pte_mkyoung() would be more correct here, but atomic care
1156 		 * is needed to avoid losing the dirty bit: it is easier to use
1157 		 * mark_page_accessed().
1158 		 */
1159 		mark_page_accessed(page);
1160 	}
1161 unlock:
1162 	pte_unmap_unlock(ptep, ptl);
1163 out:
1164 	return page;
1165 
1166 bad_page:
1167 	pte_unmap_unlock(ptep, ptl);
1168 	return ERR_PTR(-EFAULT);
1169 
1170 no_page:
1171 	pte_unmap_unlock(ptep, ptl);
1172 	if (!pte_none(pte))
1173 		return page;
1174 	/* Fall through to ZERO_PAGE handling */
1175 no_page_table:
1176 	/*
1177 	 * When core dumping an enormous anonymous area that nobody
1178 	 * has touched so far, we don't want to allocate page tables.
1179 	 */
1180 	if (flags & FOLL_ANON) {
1181 		page = ZERO_PAGE(0);
1182 		if (flags & FOLL_GET)
1183 			get_page(page);
1184 		BUG_ON(flags & FOLL_WRITE);
1185 	}
1186 	return page;
1187 }
1188 
1189 /* Can we do the FOLL_ANON optimization? */
1190 static inline int use_zero_page(struct vm_area_struct *vma)
1191 {
1192 	/*
1193 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1194 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1195 	 * we want to get the page from the page tables to make sure
1196 	 * that we serialize and update with any other user of that
1197 	 * mapping.
1198 	 */
1199 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1200 		return 0;
1201 	/*
1202 	 * And if we have a fault routine, it's not an anonymous region.
1203 	 */
1204 	return !vma->vm_ops || !vma->vm_ops->fault;
1205 }
1206 
1207 
1208 
1209 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1210 		     unsigned long start, int len, int flags,
1211 		struct page **pages, struct vm_area_struct **vmas)
1212 {
1213 	int i;
1214 	unsigned int vm_flags = 0;
1215 	int write = !!(flags & GUP_FLAGS_WRITE);
1216 	int force = !!(flags & GUP_FLAGS_FORCE);
1217 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1218 	int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1219 
1220 	if (len <= 0)
1221 		return 0;
1222 	/*
1223 	 * Require read or write permissions.
1224 	 * If 'force' is set, we only require the "MAY" flags.
1225 	 */
1226 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1227 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1228 	i = 0;
1229 
1230 	do {
1231 		struct vm_area_struct *vma;
1232 		unsigned int foll_flags;
1233 
1234 		vma = find_extend_vma(mm, start);
1235 		if (!vma && in_gate_area(tsk, start)) {
1236 			unsigned long pg = start & PAGE_MASK;
1237 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1238 			pgd_t *pgd;
1239 			pud_t *pud;
1240 			pmd_t *pmd;
1241 			pte_t *pte;
1242 
1243 			/* user gate pages are read-only */
1244 			if (!ignore && write)
1245 				return i ? : -EFAULT;
1246 			if (pg > TASK_SIZE)
1247 				pgd = pgd_offset_k(pg);
1248 			else
1249 				pgd = pgd_offset_gate(mm, pg);
1250 			BUG_ON(pgd_none(*pgd));
1251 			pud = pud_offset(pgd, pg);
1252 			BUG_ON(pud_none(*pud));
1253 			pmd = pmd_offset(pud, pg);
1254 			if (pmd_none(*pmd))
1255 				return i ? : -EFAULT;
1256 			pte = pte_offset_map(pmd, pg);
1257 			if (pte_none(*pte)) {
1258 				pte_unmap(pte);
1259 				return i ? : -EFAULT;
1260 			}
1261 			if (pages) {
1262 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1263 				pages[i] = page;
1264 				if (page)
1265 					get_page(page);
1266 			}
1267 			pte_unmap(pte);
1268 			if (vmas)
1269 				vmas[i] = gate_vma;
1270 			i++;
1271 			start += PAGE_SIZE;
1272 			len--;
1273 			continue;
1274 		}
1275 
1276 		if (!vma ||
1277 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1278 		    (!ignore && !(vm_flags & vma->vm_flags)))
1279 			return i ? : -EFAULT;
1280 
1281 		if (is_vm_hugetlb_page(vma)) {
1282 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1283 						&start, &len, i, write);
1284 			continue;
1285 		}
1286 
1287 		foll_flags = FOLL_TOUCH;
1288 		if (pages)
1289 			foll_flags |= FOLL_GET;
1290 		if (!write && use_zero_page(vma))
1291 			foll_flags |= FOLL_ANON;
1292 
1293 		do {
1294 			struct page *page;
1295 
1296 			/*
1297 			 * If we have a pending SIGKILL, don't keep faulting
1298 			 * pages and potentially allocating memory, unless
1299 			 * current is handling munlock--e.g., on exit. In
1300 			 * that case, we are not allocating memory.  Rather,
1301 			 * we're only unlocking already resident/mapped pages.
1302 			 */
1303 			if (unlikely(!ignore_sigkill &&
1304 					fatal_signal_pending(current)))
1305 				return i ? i : -ERESTARTSYS;
1306 
1307 			if (write)
1308 				foll_flags |= FOLL_WRITE;
1309 
1310 			cond_resched();
1311 			while (!(page = follow_page(vma, start, foll_flags))) {
1312 				int ret;
1313 				ret = handle_mm_fault(mm, vma, start,
1314 						foll_flags & FOLL_WRITE);
1315 				if (ret & VM_FAULT_ERROR) {
1316 					if (ret & VM_FAULT_OOM)
1317 						return i ? i : -ENOMEM;
1318 					else if (ret & VM_FAULT_SIGBUS)
1319 						return i ? i : -EFAULT;
1320 					BUG();
1321 				}
1322 				if (ret & VM_FAULT_MAJOR)
1323 					tsk->maj_flt++;
1324 				else
1325 					tsk->min_flt++;
1326 
1327 				/*
1328 				 * The VM_FAULT_WRITE bit tells us that
1329 				 * do_wp_page has broken COW when necessary,
1330 				 * even if maybe_mkwrite decided not to set
1331 				 * pte_write. We can thus safely do subsequent
1332 				 * page lookups as if they were reads. But only
1333 				 * do so when looping for pte_write is futile:
1334 				 * in some cases userspace may also be wanting
1335 				 * to write to the gotten user page, which a
1336 				 * read fault here might prevent (a readonly
1337 				 * page might get reCOWed by userspace write).
1338 				 */
1339 				if ((ret & VM_FAULT_WRITE) &&
1340 				    !(vma->vm_flags & VM_WRITE))
1341 					foll_flags &= ~FOLL_WRITE;
1342 
1343 				cond_resched();
1344 			}
1345 			if (IS_ERR(page))
1346 				return i ? i : PTR_ERR(page);
1347 			if (pages) {
1348 				pages[i] = page;
1349 
1350 				flush_anon_page(vma, page, start);
1351 				flush_dcache_page(page);
1352 			}
1353 			if (vmas)
1354 				vmas[i] = vma;
1355 			i++;
1356 			start += PAGE_SIZE;
1357 			len--;
1358 		} while (len && start < vma->vm_end);
1359 	} while (len);
1360 	return i;
1361 }
1362 
1363 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1364 		unsigned long start, int len, int write, int force,
1365 		struct page **pages, struct vm_area_struct **vmas)
1366 {
1367 	int flags = 0;
1368 
1369 	if (write)
1370 		flags |= GUP_FLAGS_WRITE;
1371 	if (force)
1372 		flags |= GUP_FLAGS_FORCE;
1373 
1374 	return __get_user_pages(tsk, mm,
1375 				start, len, flags,
1376 				pages, vmas);
1377 }
1378 
1379 EXPORT_SYMBOL(get_user_pages);
1380 
1381 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1382 			spinlock_t **ptl)
1383 {
1384 	pgd_t * pgd = pgd_offset(mm, addr);
1385 	pud_t * pud = pud_alloc(mm, pgd, addr);
1386 	if (pud) {
1387 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1388 		if (pmd)
1389 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1390 	}
1391 	return NULL;
1392 }
1393 
1394 /*
1395  * This is the old fallback for page remapping.
1396  *
1397  * For historical reasons, it only allows reserved pages. Only
1398  * old drivers should use this, and they needed to mark their
1399  * pages reserved for the old functions anyway.
1400  */
1401 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1402 			struct page *page, pgprot_t prot)
1403 {
1404 	struct mm_struct *mm = vma->vm_mm;
1405 	int retval;
1406 	pte_t *pte;
1407 	spinlock_t *ptl;
1408 
1409 	retval = -EINVAL;
1410 	if (PageAnon(page))
1411 		goto out;
1412 	retval = -ENOMEM;
1413 	flush_dcache_page(page);
1414 	pte = get_locked_pte(mm, addr, &ptl);
1415 	if (!pte)
1416 		goto out;
1417 	retval = -EBUSY;
1418 	if (!pte_none(*pte))
1419 		goto out_unlock;
1420 
1421 	/* Ok, finally just insert the thing.. */
1422 	get_page(page);
1423 	inc_mm_counter(mm, file_rss);
1424 	page_add_file_rmap(page);
1425 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1426 
1427 	retval = 0;
1428 	pte_unmap_unlock(pte, ptl);
1429 	return retval;
1430 out_unlock:
1431 	pte_unmap_unlock(pte, ptl);
1432 out:
1433 	return retval;
1434 }
1435 
1436 /**
1437  * vm_insert_page - insert single page into user vma
1438  * @vma: user vma to map to
1439  * @addr: target user address of this page
1440  * @page: source kernel page
1441  *
1442  * This allows drivers to insert individual pages they've allocated
1443  * into a user vma.
1444  *
1445  * The page has to be a nice clean _individual_ kernel allocation.
1446  * If you allocate a compound page, you need to have marked it as
1447  * such (__GFP_COMP), or manually just split the page up yourself
1448  * (see split_page()).
1449  *
1450  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1451  * took an arbitrary page protection parameter. This doesn't allow
1452  * that. Your vma protection will have to be set up correctly, which
1453  * means that if you want a shared writable mapping, you'd better
1454  * ask for a shared writable mapping!
1455  *
1456  * The page does not need to be reserved.
1457  */
1458 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1459 			struct page *page)
1460 {
1461 	if (addr < vma->vm_start || addr >= vma->vm_end)
1462 		return -EFAULT;
1463 	if (!page_count(page))
1464 		return -EINVAL;
1465 	vma->vm_flags |= VM_INSERTPAGE;
1466 	return insert_page(vma, addr, page, vma->vm_page_prot);
1467 }
1468 EXPORT_SYMBOL(vm_insert_page);
1469 
1470 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1471 			unsigned long pfn, pgprot_t prot)
1472 {
1473 	struct mm_struct *mm = vma->vm_mm;
1474 	int retval;
1475 	pte_t *pte, entry;
1476 	spinlock_t *ptl;
1477 
1478 	retval = -ENOMEM;
1479 	pte = get_locked_pte(mm, addr, &ptl);
1480 	if (!pte)
1481 		goto out;
1482 	retval = -EBUSY;
1483 	if (!pte_none(*pte))
1484 		goto out_unlock;
1485 
1486 	/* Ok, finally just insert the thing.. */
1487 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1488 	set_pte_at(mm, addr, pte, entry);
1489 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1490 
1491 	retval = 0;
1492 out_unlock:
1493 	pte_unmap_unlock(pte, ptl);
1494 out:
1495 	return retval;
1496 }
1497 
1498 /**
1499  * vm_insert_pfn - insert single pfn into user vma
1500  * @vma: user vma to map to
1501  * @addr: target user address of this page
1502  * @pfn: source kernel pfn
1503  *
1504  * Similar to vm_inert_page, this allows drivers to insert individual pages
1505  * they've allocated into a user vma. Same comments apply.
1506  *
1507  * This function should only be called from a vm_ops->fault handler, and
1508  * in that case the handler should return NULL.
1509  *
1510  * vma cannot be a COW mapping.
1511  *
1512  * As this is called only for pages that do not currently exist, we
1513  * do not need to flush old virtual caches or the TLB.
1514  */
1515 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1516 			unsigned long pfn)
1517 {
1518 	int ret;
1519 	pgprot_t pgprot = vma->vm_page_prot;
1520 	/*
1521 	 * Technically, architectures with pte_special can avoid all these
1522 	 * restrictions (same for remap_pfn_range).  However we would like
1523 	 * consistency in testing and feature parity among all, so we should
1524 	 * try to keep these invariants in place for everybody.
1525 	 */
1526 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1527 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1528 						(VM_PFNMAP|VM_MIXEDMAP));
1529 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1530 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1531 
1532 	if (addr < vma->vm_start || addr >= vma->vm_end)
1533 		return -EFAULT;
1534 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1535 		return -EINVAL;
1536 
1537 	ret = insert_pfn(vma, addr, pfn, pgprot);
1538 
1539 	if (ret)
1540 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1541 
1542 	return ret;
1543 }
1544 EXPORT_SYMBOL(vm_insert_pfn);
1545 
1546 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1547 			unsigned long pfn)
1548 {
1549 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1550 
1551 	if (addr < vma->vm_start || addr >= vma->vm_end)
1552 		return -EFAULT;
1553 
1554 	/*
1555 	 * If we don't have pte special, then we have to use the pfn_valid()
1556 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1557 	 * refcount the page if pfn_valid is true (hence insert_page rather
1558 	 * than insert_pfn).
1559 	 */
1560 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1561 		struct page *page;
1562 
1563 		page = pfn_to_page(pfn);
1564 		return insert_page(vma, addr, page, vma->vm_page_prot);
1565 	}
1566 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1567 }
1568 EXPORT_SYMBOL(vm_insert_mixed);
1569 
1570 /*
1571  * maps a range of physical memory into the requested pages. the old
1572  * mappings are removed. any references to nonexistent pages results
1573  * in null mappings (currently treated as "copy-on-access")
1574  */
1575 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1576 			unsigned long addr, unsigned long end,
1577 			unsigned long pfn, pgprot_t prot)
1578 {
1579 	pte_t *pte;
1580 	spinlock_t *ptl;
1581 
1582 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1583 	if (!pte)
1584 		return -ENOMEM;
1585 	arch_enter_lazy_mmu_mode();
1586 	do {
1587 		BUG_ON(!pte_none(*pte));
1588 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1589 		pfn++;
1590 	} while (pte++, addr += PAGE_SIZE, addr != end);
1591 	arch_leave_lazy_mmu_mode();
1592 	pte_unmap_unlock(pte - 1, ptl);
1593 	return 0;
1594 }
1595 
1596 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1597 			unsigned long addr, unsigned long end,
1598 			unsigned long pfn, pgprot_t prot)
1599 {
1600 	pmd_t *pmd;
1601 	unsigned long next;
1602 
1603 	pfn -= addr >> PAGE_SHIFT;
1604 	pmd = pmd_alloc(mm, pud, addr);
1605 	if (!pmd)
1606 		return -ENOMEM;
1607 	do {
1608 		next = pmd_addr_end(addr, end);
1609 		if (remap_pte_range(mm, pmd, addr, next,
1610 				pfn + (addr >> PAGE_SHIFT), prot))
1611 			return -ENOMEM;
1612 	} while (pmd++, addr = next, addr != end);
1613 	return 0;
1614 }
1615 
1616 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1617 			unsigned long addr, unsigned long end,
1618 			unsigned long pfn, pgprot_t prot)
1619 {
1620 	pud_t *pud;
1621 	unsigned long next;
1622 
1623 	pfn -= addr >> PAGE_SHIFT;
1624 	pud = pud_alloc(mm, pgd, addr);
1625 	if (!pud)
1626 		return -ENOMEM;
1627 	do {
1628 		next = pud_addr_end(addr, end);
1629 		if (remap_pmd_range(mm, pud, addr, next,
1630 				pfn + (addr >> PAGE_SHIFT), prot))
1631 			return -ENOMEM;
1632 	} while (pud++, addr = next, addr != end);
1633 	return 0;
1634 }
1635 
1636 /**
1637  * remap_pfn_range - remap kernel memory to userspace
1638  * @vma: user vma to map to
1639  * @addr: target user address to start at
1640  * @pfn: physical address of kernel memory
1641  * @size: size of map area
1642  * @prot: page protection flags for this mapping
1643  *
1644  *  Note: this is only safe if the mm semaphore is held when called.
1645  */
1646 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1647 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1648 {
1649 	pgd_t *pgd;
1650 	unsigned long next;
1651 	unsigned long end = addr + PAGE_ALIGN(size);
1652 	struct mm_struct *mm = vma->vm_mm;
1653 	int err;
1654 
1655 	/*
1656 	 * Physically remapped pages are special. Tell the
1657 	 * rest of the world about it:
1658 	 *   VM_IO tells people not to look at these pages
1659 	 *	(accesses can have side effects).
1660 	 *   VM_RESERVED is specified all over the place, because
1661 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1662 	 *	in 2.6 the LRU scan won't even find its pages, so this
1663 	 *	flag means no more than count its pages in reserved_vm,
1664 	 * 	and omit it from core dump, even when VM_IO turned off.
1665 	 *   VM_PFNMAP tells the core MM that the base pages are just
1666 	 *	raw PFN mappings, and do not have a "struct page" associated
1667 	 *	with them.
1668 	 *
1669 	 * There's a horrible special case to handle copy-on-write
1670 	 * behaviour that some programs depend on. We mark the "original"
1671 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1672 	 */
1673 	if (addr == vma->vm_start && end == vma->vm_end) {
1674 		vma->vm_pgoff = pfn;
1675 		vma->vm_flags |= VM_PFN_AT_MMAP;
1676 	} else if (is_cow_mapping(vma->vm_flags))
1677 		return -EINVAL;
1678 
1679 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1680 
1681 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1682 	if (err) {
1683 		/*
1684 		 * To indicate that track_pfn related cleanup is not
1685 		 * needed from higher level routine calling unmap_vmas
1686 		 */
1687 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1688 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1689 		return -EINVAL;
1690 	}
1691 
1692 	BUG_ON(addr >= end);
1693 	pfn -= addr >> PAGE_SHIFT;
1694 	pgd = pgd_offset(mm, addr);
1695 	flush_cache_range(vma, addr, end);
1696 	do {
1697 		next = pgd_addr_end(addr, end);
1698 		err = remap_pud_range(mm, pgd, addr, next,
1699 				pfn + (addr >> PAGE_SHIFT), prot);
1700 		if (err)
1701 			break;
1702 	} while (pgd++, addr = next, addr != end);
1703 
1704 	if (err)
1705 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1706 
1707 	return err;
1708 }
1709 EXPORT_SYMBOL(remap_pfn_range);
1710 
1711 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1712 				     unsigned long addr, unsigned long end,
1713 				     pte_fn_t fn, void *data)
1714 {
1715 	pte_t *pte;
1716 	int err;
1717 	pgtable_t token;
1718 	spinlock_t *uninitialized_var(ptl);
1719 
1720 	pte = (mm == &init_mm) ?
1721 		pte_alloc_kernel(pmd, addr) :
1722 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1723 	if (!pte)
1724 		return -ENOMEM;
1725 
1726 	BUG_ON(pmd_huge(*pmd));
1727 
1728 	arch_enter_lazy_mmu_mode();
1729 
1730 	token = pmd_pgtable(*pmd);
1731 
1732 	do {
1733 		err = fn(pte, token, addr, data);
1734 		if (err)
1735 			break;
1736 	} while (pte++, addr += PAGE_SIZE, addr != end);
1737 
1738 	arch_leave_lazy_mmu_mode();
1739 
1740 	if (mm != &init_mm)
1741 		pte_unmap_unlock(pte-1, ptl);
1742 	return err;
1743 }
1744 
1745 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1746 				     unsigned long addr, unsigned long end,
1747 				     pte_fn_t fn, void *data)
1748 {
1749 	pmd_t *pmd;
1750 	unsigned long next;
1751 	int err;
1752 
1753 	BUG_ON(pud_huge(*pud));
1754 
1755 	pmd = pmd_alloc(mm, pud, addr);
1756 	if (!pmd)
1757 		return -ENOMEM;
1758 	do {
1759 		next = pmd_addr_end(addr, end);
1760 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1761 		if (err)
1762 			break;
1763 	} while (pmd++, addr = next, addr != end);
1764 	return err;
1765 }
1766 
1767 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1768 				     unsigned long addr, unsigned long end,
1769 				     pte_fn_t fn, void *data)
1770 {
1771 	pud_t *pud;
1772 	unsigned long next;
1773 	int err;
1774 
1775 	pud = pud_alloc(mm, pgd, addr);
1776 	if (!pud)
1777 		return -ENOMEM;
1778 	do {
1779 		next = pud_addr_end(addr, end);
1780 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1781 		if (err)
1782 			break;
1783 	} while (pud++, addr = next, addr != end);
1784 	return err;
1785 }
1786 
1787 /*
1788  * Scan a region of virtual memory, filling in page tables as necessary
1789  * and calling a provided function on each leaf page table.
1790  */
1791 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1792 			unsigned long size, pte_fn_t fn, void *data)
1793 {
1794 	pgd_t *pgd;
1795 	unsigned long next;
1796 	unsigned long start = addr, end = addr + size;
1797 	int err;
1798 
1799 	BUG_ON(addr >= end);
1800 	mmu_notifier_invalidate_range_start(mm, start, end);
1801 	pgd = pgd_offset(mm, addr);
1802 	do {
1803 		next = pgd_addr_end(addr, end);
1804 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1805 		if (err)
1806 			break;
1807 	} while (pgd++, addr = next, addr != end);
1808 	mmu_notifier_invalidate_range_end(mm, start, end);
1809 	return err;
1810 }
1811 EXPORT_SYMBOL_GPL(apply_to_page_range);
1812 
1813 /*
1814  * handle_pte_fault chooses page fault handler according to an entry
1815  * which was read non-atomically.  Before making any commitment, on
1816  * those architectures or configurations (e.g. i386 with PAE) which
1817  * might give a mix of unmatched parts, do_swap_page and do_file_page
1818  * must check under lock before unmapping the pte and proceeding
1819  * (but do_wp_page is only called after already making such a check;
1820  * and do_anonymous_page and do_no_page can safely check later on).
1821  */
1822 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1823 				pte_t *page_table, pte_t orig_pte)
1824 {
1825 	int same = 1;
1826 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1827 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1828 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1829 		spin_lock(ptl);
1830 		same = pte_same(*page_table, orig_pte);
1831 		spin_unlock(ptl);
1832 	}
1833 #endif
1834 	pte_unmap(page_table);
1835 	return same;
1836 }
1837 
1838 /*
1839  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1840  * servicing faults for write access.  In the normal case, do always want
1841  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1842  * that do not have writing enabled, when used by access_process_vm.
1843  */
1844 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1845 {
1846 	if (likely(vma->vm_flags & VM_WRITE))
1847 		pte = pte_mkwrite(pte);
1848 	return pte;
1849 }
1850 
1851 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1852 {
1853 	/*
1854 	 * If the source page was a PFN mapping, we don't have
1855 	 * a "struct page" for it. We do a best-effort copy by
1856 	 * just copying from the original user address. If that
1857 	 * fails, we just zero-fill it. Live with it.
1858 	 */
1859 	if (unlikely(!src)) {
1860 		void *kaddr = kmap_atomic(dst, KM_USER0);
1861 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1862 
1863 		/*
1864 		 * This really shouldn't fail, because the page is there
1865 		 * in the page tables. But it might just be unreadable,
1866 		 * in which case we just give up and fill the result with
1867 		 * zeroes.
1868 		 */
1869 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1870 			memset(kaddr, 0, PAGE_SIZE);
1871 		kunmap_atomic(kaddr, KM_USER0);
1872 		flush_dcache_page(dst);
1873 	} else
1874 		copy_user_highpage(dst, src, va, vma);
1875 }
1876 
1877 /*
1878  * This routine handles present pages, when users try to write
1879  * to a shared page. It is done by copying the page to a new address
1880  * and decrementing the shared-page counter for the old page.
1881  *
1882  * Note that this routine assumes that the protection checks have been
1883  * done by the caller (the low-level page fault routine in most cases).
1884  * Thus we can safely just mark it writable once we've done any necessary
1885  * COW.
1886  *
1887  * We also mark the page dirty at this point even though the page will
1888  * change only once the write actually happens. This avoids a few races,
1889  * and potentially makes it more efficient.
1890  *
1891  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1892  * but allow concurrent faults), with pte both mapped and locked.
1893  * We return with mmap_sem still held, but pte unmapped and unlocked.
1894  */
1895 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1896 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1897 		spinlock_t *ptl, pte_t orig_pte)
1898 {
1899 	struct page *old_page, *new_page;
1900 	pte_t entry;
1901 	int reuse = 0, ret = 0;
1902 	int page_mkwrite = 0;
1903 	struct page *dirty_page = NULL;
1904 
1905 	old_page = vm_normal_page(vma, address, orig_pte);
1906 	if (!old_page) {
1907 		/*
1908 		 * VM_MIXEDMAP !pfn_valid() case
1909 		 *
1910 		 * We should not cow pages in a shared writeable mapping.
1911 		 * Just mark the pages writable as we can't do any dirty
1912 		 * accounting on raw pfn maps.
1913 		 */
1914 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1915 				     (VM_WRITE|VM_SHARED))
1916 			goto reuse;
1917 		goto gotten;
1918 	}
1919 
1920 	/*
1921 	 * Take out anonymous pages first, anonymous shared vmas are
1922 	 * not dirty accountable.
1923 	 */
1924 	if (PageAnon(old_page)) {
1925 		if (!trylock_page(old_page)) {
1926 			page_cache_get(old_page);
1927 			pte_unmap_unlock(page_table, ptl);
1928 			lock_page(old_page);
1929 			page_table = pte_offset_map_lock(mm, pmd, address,
1930 							 &ptl);
1931 			if (!pte_same(*page_table, orig_pte)) {
1932 				unlock_page(old_page);
1933 				page_cache_release(old_page);
1934 				goto unlock;
1935 			}
1936 			page_cache_release(old_page);
1937 		}
1938 		reuse = reuse_swap_page(old_page);
1939 		unlock_page(old_page);
1940 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1941 					(VM_WRITE|VM_SHARED))) {
1942 		/*
1943 		 * Only catch write-faults on shared writable pages,
1944 		 * read-only shared pages can get COWed by
1945 		 * get_user_pages(.write=1, .force=1).
1946 		 */
1947 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1948 			struct vm_fault vmf;
1949 			int tmp;
1950 
1951 			vmf.virtual_address = (void __user *)(address &
1952 								PAGE_MASK);
1953 			vmf.pgoff = old_page->index;
1954 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1955 			vmf.page = old_page;
1956 
1957 			/*
1958 			 * Notify the address space that the page is about to
1959 			 * become writable so that it can prohibit this or wait
1960 			 * for the page to get into an appropriate state.
1961 			 *
1962 			 * We do this without the lock held, so that it can
1963 			 * sleep if it needs to.
1964 			 */
1965 			page_cache_get(old_page);
1966 			pte_unmap_unlock(page_table, ptl);
1967 
1968 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
1969 			if (unlikely(tmp &
1970 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
1971 				ret = tmp;
1972 				goto unwritable_page;
1973 			}
1974 
1975 			/*
1976 			 * Since we dropped the lock we need to revalidate
1977 			 * the PTE as someone else may have changed it.  If
1978 			 * they did, we just return, as we can count on the
1979 			 * MMU to tell us if they didn't also make it writable.
1980 			 */
1981 			page_table = pte_offset_map_lock(mm, pmd, address,
1982 							 &ptl);
1983 			page_cache_release(old_page);
1984 			if (!pte_same(*page_table, orig_pte))
1985 				goto unlock;
1986 
1987 			page_mkwrite = 1;
1988 		}
1989 		dirty_page = old_page;
1990 		get_page(dirty_page);
1991 		reuse = 1;
1992 	}
1993 
1994 	if (reuse) {
1995 reuse:
1996 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1997 		entry = pte_mkyoung(orig_pte);
1998 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1999 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2000 			update_mmu_cache(vma, address, entry);
2001 		ret |= VM_FAULT_WRITE;
2002 		goto unlock;
2003 	}
2004 
2005 	/*
2006 	 * Ok, we need to copy. Oh, well..
2007 	 */
2008 	page_cache_get(old_page);
2009 gotten:
2010 	pte_unmap_unlock(page_table, ptl);
2011 
2012 	if (unlikely(anon_vma_prepare(vma)))
2013 		goto oom;
2014 	VM_BUG_ON(old_page == ZERO_PAGE(0));
2015 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2016 	if (!new_page)
2017 		goto oom;
2018 	/*
2019 	 * Don't let another task, with possibly unlocked vma,
2020 	 * keep the mlocked page.
2021 	 */
2022 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2023 		lock_page(old_page);	/* for LRU manipulation */
2024 		clear_page_mlock(old_page);
2025 		unlock_page(old_page);
2026 	}
2027 	cow_user_page(new_page, old_page, address, vma);
2028 	__SetPageUptodate(new_page);
2029 
2030 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2031 		goto oom_free_new;
2032 
2033 	/*
2034 	 * Re-check the pte - we dropped the lock
2035 	 */
2036 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2037 	if (likely(pte_same(*page_table, orig_pte))) {
2038 		if (old_page) {
2039 			if (!PageAnon(old_page)) {
2040 				dec_mm_counter(mm, file_rss);
2041 				inc_mm_counter(mm, anon_rss);
2042 			}
2043 		} else
2044 			inc_mm_counter(mm, anon_rss);
2045 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2046 		entry = mk_pte(new_page, vma->vm_page_prot);
2047 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2048 		/*
2049 		 * Clear the pte entry and flush it first, before updating the
2050 		 * pte with the new entry. This will avoid a race condition
2051 		 * seen in the presence of one thread doing SMC and another
2052 		 * thread doing COW.
2053 		 */
2054 		ptep_clear_flush_notify(vma, address, page_table);
2055 		page_add_new_anon_rmap(new_page, vma, address);
2056 		set_pte_at(mm, address, page_table, entry);
2057 		update_mmu_cache(vma, address, entry);
2058 		if (old_page) {
2059 			/*
2060 			 * Only after switching the pte to the new page may
2061 			 * we remove the mapcount here. Otherwise another
2062 			 * process may come and find the rmap count decremented
2063 			 * before the pte is switched to the new page, and
2064 			 * "reuse" the old page writing into it while our pte
2065 			 * here still points into it and can be read by other
2066 			 * threads.
2067 			 *
2068 			 * The critical issue is to order this
2069 			 * page_remove_rmap with the ptp_clear_flush above.
2070 			 * Those stores are ordered by (if nothing else,)
2071 			 * the barrier present in the atomic_add_negative
2072 			 * in page_remove_rmap.
2073 			 *
2074 			 * Then the TLB flush in ptep_clear_flush ensures that
2075 			 * no process can access the old page before the
2076 			 * decremented mapcount is visible. And the old page
2077 			 * cannot be reused until after the decremented
2078 			 * mapcount is visible. So transitively, TLBs to
2079 			 * old page will be flushed before it can be reused.
2080 			 */
2081 			page_remove_rmap(old_page);
2082 		}
2083 
2084 		/* Free the old page.. */
2085 		new_page = old_page;
2086 		ret |= VM_FAULT_WRITE;
2087 	} else
2088 		mem_cgroup_uncharge_page(new_page);
2089 
2090 	if (new_page)
2091 		page_cache_release(new_page);
2092 	if (old_page)
2093 		page_cache_release(old_page);
2094 unlock:
2095 	pte_unmap_unlock(page_table, ptl);
2096 	if (dirty_page) {
2097 		if (vma->vm_file)
2098 			file_update_time(vma->vm_file);
2099 
2100 		/*
2101 		 * Yes, Virginia, this is actually required to prevent a race
2102 		 * with clear_page_dirty_for_io() from clearing the page dirty
2103 		 * bit after it clear all dirty ptes, but before a racing
2104 		 * do_wp_page installs a dirty pte.
2105 		 *
2106 		 * do_no_page is protected similarly.
2107 		 */
2108 		wait_on_page_locked(dirty_page);
2109 		set_page_dirty_balance(dirty_page, page_mkwrite);
2110 		put_page(dirty_page);
2111 	}
2112 	return ret;
2113 oom_free_new:
2114 	page_cache_release(new_page);
2115 oom:
2116 	if (old_page)
2117 		page_cache_release(old_page);
2118 	return VM_FAULT_OOM;
2119 
2120 unwritable_page:
2121 	page_cache_release(old_page);
2122 	return ret;
2123 }
2124 
2125 /*
2126  * Helper functions for unmap_mapping_range().
2127  *
2128  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2129  *
2130  * We have to restart searching the prio_tree whenever we drop the lock,
2131  * since the iterator is only valid while the lock is held, and anyway
2132  * a later vma might be split and reinserted earlier while lock dropped.
2133  *
2134  * The list of nonlinear vmas could be handled more efficiently, using
2135  * a placeholder, but handle it in the same way until a need is shown.
2136  * It is important to search the prio_tree before nonlinear list: a vma
2137  * may become nonlinear and be shifted from prio_tree to nonlinear list
2138  * while the lock is dropped; but never shifted from list to prio_tree.
2139  *
2140  * In order to make forward progress despite restarting the search,
2141  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2142  * quickly skip it next time around.  Since the prio_tree search only
2143  * shows us those vmas affected by unmapping the range in question, we
2144  * can't efficiently keep all vmas in step with mapping->truncate_count:
2145  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2146  * mapping->truncate_count and vma->vm_truncate_count are protected by
2147  * i_mmap_lock.
2148  *
2149  * In order to make forward progress despite repeatedly restarting some
2150  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2151  * and restart from that address when we reach that vma again.  It might
2152  * have been split or merged, shrunk or extended, but never shifted: so
2153  * restart_addr remains valid so long as it remains in the vma's range.
2154  * unmap_mapping_range forces truncate_count to leap over page-aligned
2155  * values so we can save vma's restart_addr in its truncate_count field.
2156  */
2157 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2158 
2159 static void reset_vma_truncate_counts(struct address_space *mapping)
2160 {
2161 	struct vm_area_struct *vma;
2162 	struct prio_tree_iter iter;
2163 
2164 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2165 		vma->vm_truncate_count = 0;
2166 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2167 		vma->vm_truncate_count = 0;
2168 }
2169 
2170 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2171 		unsigned long start_addr, unsigned long end_addr,
2172 		struct zap_details *details)
2173 {
2174 	unsigned long restart_addr;
2175 	int need_break;
2176 
2177 	/*
2178 	 * files that support invalidating or truncating portions of the
2179 	 * file from under mmaped areas must have their ->fault function
2180 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2181 	 * This provides synchronisation against concurrent unmapping here.
2182 	 */
2183 
2184 again:
2185 	restart_addr = vma->vm_truncate_count;
2186 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2187 		start_addr = restart_addr;
2188 		if (start_addr >= end_addr) {
2189 			/* Top of vma has been split off since last time */
2190 			vma->vm_truncate_count = details->truncate_count;
2191 			return 0;
2192 		}
2193 	}
2194 
2195 	restart_addr = zap_page_range(vma, start_addr,
2196 					end_addr - start_addr, details);
2197 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2198 
2199 	if (restart_addr >= end_addr) {
2200 		/* We have now completed this vma: mark it so */
2201 		vma->vm_truncate_count = details->truncate_count;
2202 		if (!need_break)
2203 			return 0;
2204 	} else {
2205 		/* Note restart_addr in vma's truncate_count field */
2206 		vma->vm_truncate_count = restart_addr;
2207 		if (!need_break)
2208 			goto again;
2209 	}
2210 
2211 	spin_unlock(details->i_mmap_lock);
2212 	cond_resched();
2213 	spin_lock(details->i_mmap_lock);
2214 	return -EINTR;
2215 }
2216 
2217 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2218 					    struct zap_details *details)
2219 {
2220 	struct vm_area_struct *vma;
2221 	struct prio_tree_iter iter;
2222 	pgoff_t vba, vea, zba, zea;
2223 
2224 restart:
2225 	vma_prio_tree_foreach(vma, &iter, root,
2226 			details->first_index, details->last_index) {
2227 		/* Skip quickly over those we have already dealt with */
2228 		if (vma->vm_truncate_count == details->truncate_count)
2229 			continue;
2230 
2231 		vba = vma->vm_pgoff;
2232 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2233 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2234 		zba = details->first_index;
2235 		if (zba < vba)
2236 			zba = vba;
2237 		zea = details->last_index;
2238 		if (zea > vea)
2239 			zea = vea;
2240 
2241 		if (unmap_mapping_range_vma(vma,
2242 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2243 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2244 				details) < 0)
2245 			goto restart;
2246 	}
2247 }
2248 
2249 static inline void unmap_mapping_range_list(struct list_head *head,
2250 					    struct zap_details *details)
2251 {
2252 	struct vm_area_struct *vma;
2253 
2254 	/*
2255 	 * In nonlinear VMAs there is no correspondence between virtual address
2256 	 * offset and file offset.  So we must perform an exhaustive search
2257 	 * across *all* the pages in each nonlinear VMA, not just the pages
2258 	 * whose virtual address lies outside the file truncation point.
2259 	 */
2260 restart:
2261 	list_for_each_entry(vma, head, shared.vm_set.list) {
2262 		/* Skip quickly over those we have already dealt with */
2263 		if (vma->vm_truncate_count == details->truncate_count)
2264 			continue;
2265 		details->nonlinear_vma = vma;
2266 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2267 					vma->vm_end, details) < 0)
2268 			goto restart;
2269 	}
2270 }
2271 
2272 /**
2273  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2274  * @mapping: the address space containing mmaps to be unmapped.
2275  * @holebegin: byte in first page to unmap, relative to the start of
2276  * the underlying file.  This will be rounded down to a PAGE_SIZE
2277  * boundary.  Note that this is different from vmtruncate(), which
2278  * must keep the partial page.  In contrast, we must get rid of
2279  * partial pages.
2280  * @holelen: size of prospective hole in bytes.  This will be rounded
2281  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2282  * end of the file.
2283  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2284  * but 0 when invalidating pagecache, don't throw away private data.
2285  */
2286 void unmap_mapping_range(struct address_space *mapping,
2287 		loff_t const holebegin, loff_t const holelen, int even_cows)
2288 {
2289 	struct zap_details details;
2290 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2291 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2292 
2293 	/* Check for overflow. */
2294 	if (sizeof(holelen) > sizeof(hlen)) {
2295 		long long holeend =
2296 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2297 		if (holeend & ~(long long)ULONG_MAX)
2298 			hlen = ULONG_MAX - hba + 1;
2299 	}
2300 
2301 	details.check_mapping = even_cows? NULL: mapping;
2302 	details.nonlinear_vma = NULL;
2303 	details.first_index = hba;
2304 	details.last_index = hba + hlen - 1;
2305 	if (details.last_index < details.first_index)
2306 		details.last_index = ULONG_MAX;
2307 	details.i_mmap_lock = &mapping->i_mmap_lock;
2308 
2309 	spin_lock(&mapping->i_mmap_lock);
2310 
2311 	/* Protect against endless unmapping loops */
2312 	mapping->truncate_count++;
2313 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2314 		if (mapping->truncate_count == 0)
2315 			reset_vma_truncate_counts(mapping);
2316 		mapping->truncate_count++;
2317 	}
2318 	details.truncate_count = mapping->truncate_count;
2319 
2320 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2321 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2322 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2323 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2324 	spin_unlock(&mapping->i_mmap_lock);
2325 }
2326 EXPORT_SYMBOL(unmap_mapping_range);
2327 
2328 /**
2329  * vmtruncate - unmap mappings "freed" by truncate() syscall
2330  * @inode: inode of the file used
2331  * @offset: file offset to start truncating
2332  *
2333  * NOTE! We have to be ready to update the memory sharing
2334  * between the file and the memory map for a potential last
2335  * incomplete page.  Ugly, but necessary.
2336  */
2337 int vmtruncate(struct inode * inode, loff_t offset)
2338 {
2339 	if (inode->i_size < offset) {
2340 		unsigned long limit;
2341 
2342 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2343 		if (limit != RLIM_INFINITY && offset > limit)
2344 			goto out_sig;
2345 		if (offset > inode->i_sb->s_maxbytes)
2346 			goto out_big;
2347 		i_size_write(inode, offset);
2348 	} else {
2349 		struct address_space *mapping = inode->i_mapping;
2350 
2351 		/*
2352 		 * truncation of in-use swapfiles is disallowed - it would
2353 		 * cause subsequent swapout to scribble on the now-freed
2354 		 * blocks.
2355 		 */
2356 		if (IS_SWAPFILE(inode))
2357 			return -ETXTBSY;
2358 		i_size_write(inode, offset);
2359 
2360 		/*
2361 		 * unmap_mapping_range is called twice, first simply for
2362 		 * efficiency so that truncate_inode_pages does fewer
2363 		 * single-page unmaps.  However after this first call, and
2364 		 * before truncate_inode_pages finishes, it is possible for
2365 		 * private pages to be COWed, which remain after
2366 		 * truncate_inode_pages finishes, hence the second
2367 		 * unmap_mapping_range call must be made for correctness.
2368 		 */
2369 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2370 		truncate_inode_pages(mapping, offset);
2371 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2372 	}
2373 
2374 	if (inode->i_op->truncate)
2375 		inode->i_op->truncate(inode);
2376 	return 0;
2377 
2378 out_sig:
2379 	send_sig(SIGXFSZ, current, 0);
2380 out_big:
2381 	return -EFBIG;
2382 }
2383 EXPORT_SYMBOL(vmtruncate);
2384 
2385 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2386 {
2387 	struct address_space *mapping = inode->i_mapping;
2388 
2389 	/*
2390 	 * If the underlying filesystem is not going to provide
2391 	 * a way to truncate a range of blocks (punch a hole) -
2392 	 * we should return failure right now.
2393 	 */
2394 	if (!inode->i_op->truncate_range)
2395 		return -ENOSYS;
2396 
2397 	mutex_lock(&inode->i_mutex);
2398 	down_write(&inode->i_alloc_sem);
2399 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2400 	truncate_inode_pages_range(mapping, offset, end);
2401 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2402 	inode->i_op->truncate_range(inode, offset, end);
2403 	up_write(&inode->i_alloc_sem);
2404 	mutex_unlock(&inode->i_mutex);
2405 
2406 	return 0;
2407 }
2408 
2409 /*
2410  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2411  * but allow concurrent faults), and pte mapped but not yet locked.
2412  * We return with mmap_sem still held, but pte unmapped and unlocked.
2413  */
2414 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2415 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2416 		int write_access, pte_t orig_pte)
2417 {
2418 	spinlock_t *ptl;
2419 	struct page *page;
2420 	swp_entry_t entry;
2421 	pte_t pte;
2422 	struct mem_cgroup *ptr = NULL;
2423 	int ret = 0;
2424 
2425 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2426 		goto out;
2427 
2428 	entry = pte_to_swp_entry(orig_pte);
2429 	if (is_migration_entry(entry)) {
2430 		migration_entry_wait(mm, pmd, address);
2431 		goto out;
2432 	}
2433 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2434 	page = lookup_swap_cache(entry);
2435 	if (!page) {
2436 		grab_swap_token(); /* Contend for token _before_ read-in */
2437 		page = swapin_readahead(entry,
2438 					GFP_HIGHUSER_MOVABLE, vma, address);
2439 		if (!page) {
2440 			/*
2441 			 * Back out if somebody else faulted in this pte
2442 			 * while we released the pte lock.
2443 			 */
2444 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2445 			if (likely(pte_same(*page_table, orig_pte)))
2446 				ret = VM_FAULT_OOM;
2447 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2448 			goto unlock;
2449 		}
2450 
2451 		/* Had to read the page from swap area: Major fault */
2452 		ret = VM_FAULT_MAJOR;
2453 		count_vm_event(PGMAJFAULT);
2454 	}
2455 
2456 	lock_page(page);
2457 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2458 
2459 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2460 		ret = VM_FAULT_OOM;
2461 		unlock_page(page);
2462 		goto out;
2463 	}
2464 
2465 	/*
2466 	 * Back out if somebody else already faulted in this pte.
2467 	 */
2468 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2469 	if (unlikely(!pte_same(*page_table, orig_pte)))
2470 		goto out_nomap;
2471 
2472 	if (unlikely(!PageUptodate(page))) {
2473 		ret = VM_FAULT_SIGBUS;
2474 		goto out_nomap;
2475 	}
2476 
2477 	/*
2478 	 * The page isn't present yet, go ahead with the fault.
2479 	 *
2480 	 * Be careful about the sequence of operations here.
2481 	 * To get its accounting right, reuse_swap_page() must be called
2482 	 * while the page is counted on swap but not yet in mapcount i.e.
2483 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2484 	 * must be called after the swap_free(), or it will never succeed.
2485 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2486 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2487 	 * in page->private. In this case, a record in swap_cgroup  is silently
2488 	 * discarded at swap_free().
2489 	 */
2490 
2491 	inc_mm_counter(mm, anon_rss);
2492 	pte = mk_pte(page, vma->vm_page_prot);
2493 	if (write_access && reuse_swap_page(page)) {
2494 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2495 		write_access = 0;
2496 	}
2497 	flush_icache_page(vma, page);
2498 	set_pte_at(mm, address, page_table, pte);
2499 	page_add_anon_rmap(page, vma, address);
2500 	/* It's better to call commit-charge after rmap is established */
2501 	mem_cgroup_commit_charge_swapin(page, ptr);
2502 
2503 	swap_free(entry);
2504 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2505 		try_to_free_swap(page);
2506 	unlock_page(page);
2507 
2508 	if (write_access) {
2509 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2510 		if (ret & VM_FAULT_ERROR)
2511 			ret &= VM_FAULT_ERROR;
2512 		goto out;
2513 	}
2514 
2515 	/* No need to invalidate - it was non-present before */
2516 	update_mmu_cache(vma, address, pte);
2517 unlock:
2518 	pte_unmap_unlock(page_table, ptl);
2519 out:
2520 	return ret;
2521 out_nomap:
2522 	mem_cgroup_cancel_charge_swapin(ptr);
2523 	pte_unmap_unlock(page_table, ptl);
2524 	unlock_page(page);
2525 	page_cache_release(page);
2526 	return ret;
2527 }
2528 
2529 /*
2530  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2531  * but allow concurrent faults), and pte mapped but not yet locked.
2532  * We return with mmap_sem still held, but pte unmapped and unlocked.
2533  */
2534 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2535 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2536 		int write_access)
2537 {
2538 	struct page *page;
2539 	spinlock_t *ptl;
2540 	pte_t entry;
2541 
2542 	/* Allocate our own private page. */
2543 	pte_unmap(page_table);
2544 
2545 	if (unlikely(anon_vma_prepare(vma)))
2546 		goto oom;
2547 	page = alloc_zeroed_user_highpage_movable(vma, address);
2548 	if (!page)
2549 		goto oom;
2550 	__SetPageUptodate(page);
2551 
2552 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2553 		goto oom_free_page;
2554 
2555 	entry = mk_pte(page, vma->vm_page_prot);
2556 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2557 
2558 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2559 	if (!pte_none(*page_table))
2560 		goto release;
2561 	inc_mm_counter(mm, anon_rss);
2562 	page_add_new_anon_rmap(page, vma, address);
2563 	set_pte_at(mm, address, page_table, entry);
2564 
2565 	/* No need to invalidate - it was non-present before */
2566 	update_mmu_cache(vma, address, entry);
2567 unlock:
2568 	pte_unmap_unlock(page_table, ptl);
2569 	return 0;
2570 release:
2571 	mem_cgroup_uncharge_page(page);
2572 	page_cache_release(page);
2573 	goto unlock;
2574 oom_free_page:
2575 	page_cache_release(page);
2576 oom:
2577 	return VM_FAULT_OOM;
2578 }
2579 
2580 /*
2581  * __do_fault() tries to create a new page mapping. It aggressively
2582  * tries to share with existing pages, but makes a separate copy if
2583  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2584  * the next page fault.
2585  *
2586  * As this is called only for pages that do not currently exist, we
2587  * do not need to flush old virtual caches or the TLB.
2588  *
2589  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2590  * but allow concurrent faults), and pte neither mapped nor locked.
2591  * We return with mmap_sem still held, but pte unmapped and unlocked.
2592  */
2593 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2594 		unsigned long address, pmd_t *pmd,
2595 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2596 {
2597 	pte_t *page_table;
2598 	spinlock_t *ptl;
2599 	struct page *page;
2600 	pte_t entry;
2601 	int anon = 0;
2602 	int charged = 0;
2603 	struct page *dirty_page = NULL;
2604 	struct vm_fault vmf;
2605 	int ret;
2606 	int page_mkwrite = 0;
2607 
2608 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2609 	vmf.pgoff = pgoff;
2610 	vmf.flags = flags;
2611 	vmf.page = NULL;
2612 
2613 	ret = vma->vm_ops->fault(vma, &vmf);
2614 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2615 		return ret;
2616 
2617 	/*
2618 	 * For consistency in subsequent calls, make the faulted page always
2619 	 * locked.
2620 	 */
2621 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2622 		lock_page(vmf.page);
2623 	else
2624 		VM_BUG_ON(!PageLocked(vmf.page));
2625 
2626 	/*
2627 	 * Should we do an early C-O-W break?
2628 	 */
2629 	page = vmf.page;
2630 	if (flags & FAULT_FLAG_WRITE) {
2631 		if (!(vma->vm_flags & VM_SHARED)) {
2632 			anon = 1;
2633 			if (unlikely(anon_vma_prepare(vma))) {
2634 				ret = VM_FAULT_OOM;
2635 				goto out;
2636 			}
2637 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2638 						vma, address);
2639 			if (!page) {
2640 				ret = VM_FAULT_OOM;
2641 				goto out;
2642 			}
2643 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2644 				ret = VM_FAULT_OOM;
2645 				page_cache_release(page);
2646 				goto out;
2647 			}
2648 			charged = 1;
2649 			/*
2650 			 * Don't let another task, with possibly unlocked vma,
2651 			 * keep the mlocked page.
2652 			 */
2653 			if (vma->vm_flags & VM_LOCKED)
2654 				clear_page_mlock(vmf.page);
2655 			copy_user_highpage(page, vmf.page, address, vma);
2656 			__SetPageUptodate(page);
2657 		} else {
2658 			/*
2659 			 * If the page will be shareable, see if the backing
2660 			 * address space wants to know that the page is about
2661 			 * to become writable
2662 			 */
2663 			if (vma->vm_ops->page_mkwrite) {
2664 				int tmp;
2665 
2666 				unlock_page(page);
2667 				vmf.flags |= FAULT_FLAG_MKWRITE;
2668 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2669 				if (unlikely(tmp &
2670 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2671 					ret = tmp;
2672 					anon = 1; /* no anon but release vmf.page */
2673 					goto out_unlocked;
2674 				}
2675 				lock_page(page);
2676 				/*
2677 				 * XXX: this is not quite right (racy vs
2678 				 * invalidate) to unlock and relock the page
2679 				 * like this, however a better fix requires
2680 				 * reworking page_mkwrite locking API, which
2681 				 * is better done later.
2682 				 */
2683 				if (!page->mapping) {
2684 					ret = 0;
2685 					anon = 1; /* no anon but release vmf.page */
2686 					goto out;
2687 				}
2688 				page_mkwrite = 1;
2689 			}
2690 		}
2691 
2692 	}
2693 
2694 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2695 
2696 	/*
2697 	 * This silly early PAGE_DIRTY setting removes a race
2698 	 * due to the bad i386 page protection. But it's valid
2699 	 * for other architectures too.
2700 	 *
2701 	 * Note that if write_access is true, we either now have
2702 	 * an exclusive copy of the page, or this is a shared mapping,
2703 	 * so we can make it writable and dirty to avoid having to
2704 	 * handle that later.
2705 	 */
2706 	/* Only go through if we didn't race with anybody else... */
2707 	if (likely(pte_same(*page_table, orig_pte))) {
2708 		flush_icache_page(vma, page);
2709 		entry = mk_pte(page, vma->vm_page_prot);
2710 		if (flags & FAULT_FLAG_WRITE)
2711 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2712 		if (anon) {
2713 			inc_mm_counter(mm, anon_rss);
2714 			page_add_new_anon_rmap(page, vma, address);
2715 		} else {
2716 			inc_mm_counter(mm, file_rss);
2717 			page_add_file_rmap(page);
2718 			if (flags & FAULT_FLAG_WRITE) {
2719 				dirty_page = page;
2720 				get_page(dirty_page);
2721 			}
2722 		}
2723 		set_pte_at(mm, address, page_table, entry);
2724 
2725 		/* no need to invalidate: a not-present page won't be cached */
2726 		update_mmu_cache(vma, address, entry);
2727 	} else {
2728 		if (charged)
2729 			mem_cgroup_uncharge_page(page);
2730 		if (anon)
2731 			page_cache_release(page);
2732 		else
2733 			anon = 1; /* no anon but release faulted_page */
2734 	}
2735 
2736 	pte_unmap_unlock(page_table, ptl);
2737 
2738 out:
2739 	unlock_page(vmf.page);
2740 out_unlocked:
2741 	if (anon)
2742 		page_cache_release(vmf.page);
2743 	else if (dirty_page) {
2744 		if (vma->vm_file)
2745 			file_update_time(vma->vm_file);
2746 
2747 		set_page_dirty_balance(dirty_page, page_mkwrite);
2748 		put_page(dirty_page);
2749 	}
2750 
2751 	return ret;
2752 }
2753 
2754 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2755 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2756 		int write_access, pte_t orig_pte)
2757 {
2758 	pgoff_t pgoff = (((address & PAGE_MASK)
2759 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2760 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2761 
2762 	pte_unmap(page_table);
2763 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2764 }
2765 
2766 /*
2767  * Fault of a previously existing named mapping. Repopulate the pte
2768  * from the encoded file_pte if possible. This enables swappable
2769  * nonlinear vmas.
2770  *
2771  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2772  * but allow concurrent faults), and pte mapped but not yet locked.
2773  * We return with mmap_sem still held, but pte unmapped and unlocked.
2774  */
2775 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2776 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2777 		int write_access, pte_t orig_pte)
2778 {
2779 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2780 				(write_access ? FAULT_FLAG_WRITE : 0);
2781 	pgoff_t pgoff;
2782 
2783 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2784 		return 0;
2785 
2786 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2787 		/*
2788 		 * Page table corrupted: show pte and kill process.
2789 		 */
2790 		print_bad_pte(vma, address, orig_pte, NULL);
2791 		return VM_FAULT_OOM;
2792 	}
2793 
2794 	pgoff = pte_to_pgoff(orig_pte);
2795 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2796 }
2797 
2798 /*
2799  * These routines also need to handle stuff like marking pages dirty
2800  * and/or accessed for architectures that don't do it in hardware (most
2801  * RISC architectures).  The early dirtying is also good on the i386.
2802  *
2803  * There is also a hook called "update_mmu_cache()" that architectures
2804  * with external mmu caches can use to update those (ie the Sparc or
2805  * PowerPC hashed page tables that act as extended TLBs).
2806  *
2807  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2808  * but allow concurrent faults), and pte mapped but not yet locked.
2809  * We return with mmap_sem still held, but pte unmapped and unlocked.
2810  */
2811 static inline int handle_pte_fault(struct mm_struct *mm,
2812 		struct vm_area_struct *vma, unsigned long address,
2813 		pte_t *pte, pmd_t *pmd, int write_access)
2814 {
2815 	pte_t entry;
2816 	spinlock_t *ptl;
2817 
2818 	entry = *pte;
2819 	if (!pte_present(entry)) {
2820 		if (pte_none(entry)) {
2821 			if (vma->vm_ops) {
2822 				if (likely(vma->vm_ops->fault))
2823 					return do_linear_fault(mm, vma, address,
2824 						pte, pmd, write_access, entry);
2825 			}
2826 			return do_anonymous_page(mm, vma, address,
2827 						 pte, pmd, write_access);
2828 		}
2829 		if (pte_file(entry))
2830 			return do_nonlinear_fault(mm, vma, address,
2831 					pte, pmd, write_access, entry);
2832 		return do_swap_page(mm, vma, address,
2833 					pte, pmd, write_access, entry);
2834 	}
2835 
2836 	ptl = pte_lockptr(mm, pmd);
2837 	spin_lock(ptl);
2838 	if (unlikely(!pte_same(*pte, entry)))
2839 		goto unlock;
2840 	if (write_access) {
2841 		if (!pte_write(entry))
2842 			return do_wp_page(mm, vma, address,
2843 					pte, pmd, ptl, entry);
2844 		entry = pte_mkdirty(entry);
2845 	}
2846 	entry = pte_mkyoung(entry);
2847 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2848 		update_mmu_cache(vma, address, entry);
2849 	} else {
2850 		/*
2851 		 * This is needed only for protection faults but the arch code
2852 		 * is not yet telling us if this is a protection fault or not.
2853 		 * This still avoids useless tlb flushes for .text page faults
2854 		 * with threads.
2855 		 */
2856 		if (write_access)
2857 			flush_tlb_page(vma, address);
2858 	}
2859 unlock:
2860 	pte_unmap_unlock(pte, ptl);
2861 	return 0;
2862 }
2863 
2864 /*
2865  * By the time we get here, we already hold the mm semaphore
2866  */
2867 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2868 		unsigned long address, int write_access)
2869 {
2870 	pgd_t *pgd;
2871 	pud_t *pud;
2872 	pmd_t *pmd;
2873 	pte_t *pte;
2874 
2875 	__set_current_state(TASK_RUNNING);
2876 
2877 	count_vm_event(PGFAULT);
2878 
2879 	if (unlikely(is_vm_hugetlb_page(vma)))
2880 		return hugetlb_fault(mm, vma, address, write_access);
2881 
2882 	pgd = pgd_offset(mm, address);
2883 	pud = pud_alloc(mm, pgd, address);
2884 	if (!pud)
2885 		return VM_FAULT_OOM;
2886 	pmd = pmd_alloc(mm, pud, address);
2887 	if (!pmd)
2888 		return VM_FAULT_OOM;
2889 	pte = pte_alloc_map(mm, pmd, address);
2890 	if (!pte)
2891 		return VM_FAULT_OOM;
2892 
2893 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2894 }
2895 
2896 #ifndef __PAGETABLE_PUD_FOLDED
2897 /*
2898  * Allocate page upper directory.
2899  * We've already handled the fast-path in-line.
2900  */
2901 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2902 {
2903 	pud_t *new = pud_alloc_one(mm, address);
2904 	if (!new)
2905 		return -ENOMEM;
2906 
2907 	smp_wmb(); /* See comment in __pte_alloc */
2908 
2909 	spin_lock(&mm->page_table_lock);
2910 	if (pgd_present(*pgd))		/* Another has populated it */
2911 		pud_free(mm, new);
2912 	else
2913 		pgd_populate(mm, pgd, new);
2914 	spin_unlock(&mm->page_table_lock);
2915 	return 0;
2916 }
2917 #endif /* __PAGETABLE_PUD_FOLDED */
2918 
2919 #ifndef __PAGETABLE_PMD_FOLDED
2920 /*
2921  * Allocate page middle directory.
2922  * We've already handled the fast-path in-line.
2923  */
2924 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2925 {
2926 	pmd_t *new = pmd_alloc_one(mm, address);
2927 	if (!new)
2928 		return -ENOMEM;
2929 
2930 	smp_wmb(); /* See comment in __pte_alloc */
2931 
2932 	spin_lock(&mm->page_table_lock);
2933 #ifndef __ARCH_HAS_4LEVEL_HACK
2934 	if (pud_present(*pud))		/* Another has populated it */
2935 		pmd_free(mm, new);
2936 	else
2937 		pud_populate(mm, pud, new);
2938 #else
2939 	if (pgd_present(*pud))		/* Another has populated it */
2940 		pmd_free(mm, new);
2941 	else
2942 		pgd_populate(mm, pud, new);
2943 #endif /* __ARCH_HAS_4LEVEL_HACK */
2944 	spin_unlock(&mm->page_table_lock);
2945 	return 0;
2946 }
2947 #endif /* __PAGETABLE_PMD_FOLDED */
2948 
2949 int make_pages_present(unsigned long addr, unsigned long end)
2950 {
2951 	int ret, len, write;
2952 	struct vm_area_struct * vma;
2953 
2954 	vma = find_vma(current->mm, addr);
2955 	if (!vma)
2956 		return -ENOMEM;
2957 	write = (vma->vm_flags & VM_WRITE) != 0;
2958 	BUG_ON(addr >= end);
2959 	BUG_ON(end > vma->vm_end);
2960 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2961 	ret = get_user_pages(current, current->mm, addr,
2962 			len, write, 0, NULL, NULL);
2963 	if (ret < 0)
2964 		return ret;
2965 	return ret == len ? 0 : -EFAULT;
2966 }
2967 
2968 #if !defined(__HAVE_ARCH_GATE_AREA)
2969 
2970 #if defined(AT_SYSINFO_EHDR)
2971 static struct vm_area_struct gate_vma;
2972 
2973 static int __init gate_vma_init(void)
2974 {
2975 	gate_vma.vm_mm = NULL;
2976 	gate_vma.vm_start = FIXADDR_USER_START;
2977 	gate_vma.vm_end = FIXADDR_USER_END;
2978 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2979 	gate_vma.vm_page_prot = __P101;
2980 	/*
2981 	 * Make sure the vDSO gets into every core dump.
2982 	 * Dumping its contents makes post-mortem fully interpretable later
2983 	 * without matching up the same kernel and hardware config to see
2984 	 * what PC values meant.
2985 	 */
2986 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2987 	return 0;
2988 }
2989 __initcall(gate_vma_init);
2990 #endif
2991 
2992 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2993 {
2994 #ifdef AT_SYSINFO_EHDR
2995 	return &gate_vma;
2996 #else
2997 	return NULL;
2998 #endif
2999 }
3000 
3001 int in_gate_area_no_task(unsigned long addr)
3002 {
3003 #ifdef AT_SYSINFO_EHDR
3004 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3005 		return 1;
3006 #endif
3007 	return 0;
3008 }
3009 
3010 #endif	/* __HAVE_ARCH_GATE_AREA */
3011 
3012 #ifdef CONFIG_HAVE_IOREMAP_PROT
3013 int follow_phys(struct vm_area_struct *vma,
3014 		unsigned long address, unsigned int flags,
3015 		unsigned long *prot, resource_size_t *phys)
3016 {
3017 	pgd_t *pgd;
3018 	pud_t *pud;
3019 	pmd_t *pmd;
3020 	pte_t *ptep, pte;
3021 	spinlock_t *ptl;
3022 	resource_size_t phys_addr = 0;
3023 	struct mm_struct *mm = vma->vm_mm;
3024 	int ret = -EINVAL;
3025 
3026 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3027 		goto out;
3028 
3029 	pgd = pgd_offset(mm, address);
3030 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3031 		goto out;
3032 
3033 	pud = pud_offset(pgd, address);
3034 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3035 		goto out;
3036 
3037 	pmd = pmd_offset(pud, address);
3038 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3039 		goto out;
3040 
3041 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3042 	if (pmd_huge(*pmd))
3043 		goto out;
3044 
3045 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3046 	if (!ptep)
3047 		goto out;
3048 
3049 	pte = *ptep;
3050 	if (!pte_present(pte))
3051 		goto unlock;
3052 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3053 		goto unlock;
3054 	phys_addr = pte_pfn(pte);
3055 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3056 
3057 	*prot = pgprot_val(pte_pgprot(pte));
3058 	*phys = phys_addr;
3059 	ret = 0;
3060 
3061 unlock:
3062 	pte_unmap_unlock(ptep, ptl);
3063 out:
3064 	return ret;
3065 }
3066 
3067 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3068 			void *buf, int len, int write)
3069 {
3070 	resource_size_t phys_addr;
3071 	unsigned long prot = 0;
3072 	void __iomem *maddr;
3073 	int offset = addr & (PAGE_SIZE-1);
3074 
3075 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3076 		return -EINVAL;
3077 
3078 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3079 	if (write)
3080 		memcpy_toio(maddr + offset, buf, len);
3081 	else
3082 		memcpy_fromio(buf, maddr + offset, len);
3083 	iounmap(maddr);
3084 
3085 	return len;
3086 }
3087 #endif
3088 
3089 /*
3090  * Access another process' address space.
3091  * Source/target buffer must be kernel space,
3092  * Do not walk the page table directly, use get_user_pages
3093  */
3094 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3095 {
3096 	struct mm_struct *mm;
3097 	struct vm_area_struct *vma;
3098 	void *old_buf = buf;
3099 
3100 	mm = get_task_mm(tsk);
3101 	if (!mm)
3102 		return 0;
3103 
3104 	down_read(&mm->mmap_sem);
3105 	/* ignore errors, just check how much was successfully transferred */
3106 	while (len) {
3107 		int bytes, ret, offset;
3108 		void *maddr;
3109 		struct page *page = NULL;
3110 
3111 		ret = get_user_pages(tsk, mm, addr, 1,
3112 				write, 1, &page, &vma);
3113 		if (ret <= 0) {
3114 			/*
3115 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3116 			 * we can access using slightly different code.
3117 			 */
3118 #ifdef CONFIG_HAVE_IOREMAP_PROT
3119 			vma = find_vma(mm, addr);
3120 			if (!vma)
3121 				break;
3122 			if (vma->vm_ops && vma->vm_ops->access)
3123 				ret = vma->vm_ops->access(vma, addr, buf,
3124 							  len, write);
3125 			if (ret <= 0)
3126 #endif
3127 				break;
3128 			bytes = ret;
3129 		} else {
3130 			bytes = len;
3131 			offset = addr & (PAGE_SIZE-1);
3132 			if (bytes > PAGE_SIZE-offset)
3133 				bytes = PAGE_SIZE-offset;
3134 
3135 			maddr = kmap(page);
3136 			if (write) {
3137 				copy_to_user_page(vma, page, addr,
3138 						  maddr + offset, buf, bytes);
3139 				set_page_dirty_lock(page);
3140 			} else {
3141 				copy_from_user_page(vma, page, addr,
3142 						    buf, maddr + offset, bytes);
3143 			}
3144 			kunmap(page);
3145 			page_cache_release(page);
3146 		}
3147 		len -= bytes;
3148 		buf += bytes;
3149 		addr += bytes;
3150 	}
3151 	up_read(&mm->mmap_sem);
3152 	mmput(mm);
3153 
3154 	return buf - old_buf;
3155 }
3156 
3157 /*
3158  * Print the name of a VMA.
3159  */
3160 void print_vma_addr(char *prefix, unsigned long ip)
3161 {
3162 	struct mm_struct *mm = current->mm;
3163 	struct vm_area_struct *vma;
3164 
3165 	/*
3166 	 * Do not print if we are in atomic
3167 	 * contexts (in exception stacks, etc.):
3168 	 */
3169 	if (preempt_count())
3170 		return;
3171 
3172 	down_read(&mm->mmap_sem);
3173 	vma = find_vma(mm, ip);
3174 	if (vma && vma->vm_file) {
3175 		struct file *f = vma->vm_file;
3176 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3177 		if (buf) {
3178 			char *p, *s;
3179 
3180 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3181 			if (IS_ERR(p))
3182 				p = "?";
3183 			s = strrchr(p, '/');
3184 			if (s)
3185 				p = s+1;
3186 			printk("%s%s[%lx+%lx]", prefix, p,
3187 					vma->vm_start,
3188 					vma->vm_end - vma->vm_start);
3189 			free_page((unsigned long)buf);
3190 		}
3191 	}
3192 	up_read(&current->mm->mmap_sem);
3193 }
3194 
3195 #ifdef CONFIG_PROVE_LOCKING
3196 void might_fault(void)
3197 {
3198 	/*
3199 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3200 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3201 	 * get paged out, therefore we'll never actually fault, and the
3202 	 * below annotations will generate false positives.
3203 	 */
3204 	if (segment_eq(get_fs(), KERNEL_DS))
3205 		return;
3206 
3207 	might_sleep();
3208 	/*
3209 	 * it would be nicer only to annotate paths which are not under
3210 	 * pagefault_disable, however that requires a larger audit and
3211 	 * providing helpers like get_user_atomic.
3212 	 */
3213 	if (!in_atomic() && current->mm)
3214 		might_lock_read(&current->mm->mmap_sem);
3215 }
3216 EXPORT_SYMBOL(might_fault);
3217 #endif
3218