xref: /linux/mm/memory.c (revision b81a677400755cf24c971d1342c4c53d81744d82)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117 
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126 					1;
127 #else
128 					2;
129 #endif
130 
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134 	/*
135 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 	 * some architectures, even if it's performed in hardware. By
137 	 * default, "false" means prefaulted entries will be 'young'.
138 	 */
139 	return false;
140 }
141 #endif
142 
143 static int __init disable_randmaps(char *s)
144 {
145 	randomize_va_space = 0;
146 	return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149 
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152 
153 unsigned long highest_memmap_pfn __read_mostly;
154 
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 	return 0;
162 }
163 early_initcall(init_zero_pfn);
164 
165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
166 {
167 	trace_rss_stat(mm, member, count);
168 }
169 
170 #if defined(SPLIT_RSS_COUNTING)
171 
172 void sync_mm_rss(struct mm_struct *mm)
173 {
174 	int i;
175 
176 	for (i = 0; i < NR_MM_COUNTERS; i++) {
177 		if (current->rss_stat.count[i]) {
178 			add_mm_counter(mm, i, current->rss_stat.count[i]);
179 			current->rss_stat.count[i] = 0;
180 		}
181 	}
182 	current->rss_stat.events = 0;
183 }
184 
185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186 {
187 	struct task_struct *task = current;
188 
189 	if (likely(task->mm == mm))
190 		task->rss_stat.count[member] += val;
191 	else
192 		add_mm_counter(mm, member, val);
193 }
194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196 
197 /* sync counter once per 64 page faults */
198 #define TASK_RSS_EVENTS_THRESH	(64)
199 static void check_sync_rss_stat(struct task_struct *task)
200 {
201 	if (unlikely(task != current))
202 		return;
203 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
204 		sync_mm_rss(task->mm);
205 }
206 #else /* SPLIT_RSS_COUNTING */
207 
208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210 
211 static void check_sync_rss_stat(struct task_struct *task)
212 {
213 }
214 
215 #endif /* SPLIT_RSS_COUNTING */
216 
217 /*
218  * Note: this doesn't free the actual pages themselves. That
219  * has been handled earlier when unmapping all the memory regions.
220  */
221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
222 			   unsigned long addr)
223 {
224 	pgtable_t token = pmd_pgtable(*pmd);
225 	pmd_clear(pmd);
226 	pte_free_tlb(tlb, token, addr);
227 	mm_dec_nr_ptes(tlb->mm);
228 }
229 
230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pmd_t *pmd;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pmd = pmd_offset(pud, addr);
240 	do {
241 		next = pmd_addr_end(addr, end);
242 		if (pmd_none_or_clear_bad(pmd))
243 			continue;
244 		free_pte_range(tlb, pmd, addr);
245 	} while (pmd++, addr = next, addr != end);
246 
247 	start &= PUD_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= PUD_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pmd = pmd_offset(pud, start);
259 	pud_clear(pud);
260 	pmd_free_tlb(tlb, pmd, start);
261 	mm_dec_nr_pmds(tlb->mm);
262 }
263 
264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	pud_t *pud;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	pud = pud_offset(p4d, addr);
274 	do {
275 		next = pud_addr_end(addr, end);
276 		if (pud_none_or_clear_bad(pud))
277 			continue;
278 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
279 	} while (pud++, addr = next, addr != end);
280 
281 	start &= P4D_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= P4D_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	pud = pud_offset(p4d, start);
293 	p4d_clear(p4d);
294 	pud_free_tlb(tlb, pud, start);
295 	mm_dec_nr_puds(tlb->mm);
296 }
297 
298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299 				unsigned long addr, unsigned long end,
300 				unsigned long floor, unsigned long ceiling)
301 {
302 	p4d_t *p4d;
303 	unsigned long next;
304 	unsigned long start;
305 
306 	start = addr;
307 	p4d = p4d_offset(pgd, addr);
308 	do {
309 		next = p4d_addr_end(addr, end);
310 		if (p4d_none_or_clear_bad(p4d))
311 			continue;
312 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313 	} while (p4d++, addr = next, addr != end);
314 
315 	start &= PGDIR_MASK;
316 	if (start < floor)
317 		return;
318 	if (ceiling) {
319 		ceiling &= PGDIR_MASK;
320 		if (!ceiling)
321 			return;
322 	}
323 	if (end - 1 > ceiling - 1)
324 		return;
325 
326 	p4d = p4d_offset(pgd, start);
327 	pgd_clear(pgd);
328 	p4d_free_tlb(tlb, p4d, start);
329 }
330 
331 /*
332  * This function frees user-level page tables of a process.
333  */
334 void free_pgd_range(struct mmu_gather *tlb,
335 			unsigned long addr, unsigned long end,
336 			unsigned long floor, unsigned long ceiling)
337 {
338 	pgd_t *pgd;
339 	unsigned long next;
340 
341 	/*
342 	 * The next few lines have given us lots of grief...
343 	 *
344 	 * Why are we testing PMD* at this top level?  Because often
345 	 * there will be no work to do at all, and we'd prefer not to
346 	 * go all the way down to the bottom just to discover that.
347 	 *
348 	 * Why all these "- 1"s?  Because 0 represents both the bottom
349 	 * of the address space and the top of it (using -1 for the
350 	 * top wouldn't help much: the masks would do the wrong thing).
351 	 * The rule is that addr 0 and floor 0 refer to the bottom of
352 	 * the address space, but end 0 and ceiling 0 refer to the top
353 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
354 	 * that end 0 case should be mythical).
355 	 *
356 	 * Wherever addr is brought up or ceiling brought down, we must
357 	 * be careful to reject "the opposite 0" before it confuses the
358 	 * subsequent tests.  But what about where end is brought down
359 	 * by PMD_SIZE below? no, end can't go down to 0 there.
360 	 *
361 	 * Whereas we round start (addr) and ceiling down, by different
362 	 * masks at different levels, in order to test whether a table
363 	 * now has no other vmas using it, so can be freed, we don't
364 	 * bother to round floor or end up - the tests don't need that.
365 	 */
366 
367 	addr &= PMD_MASK;
368 	if (addr < floor) {
369 		addr += PMD_SIZE;
370 		if (!addr)
371 			return;
372 	}
373 	if (ceiling) {
374 		ceiling &= PMD_MASK;
375 		if (!ceiling)
376 			return;
377 	}
378 	if (end - 1 > ceiling - 1)
379 		end -= PMD_SIZE;
380 	if (addr > end - 1)
381 		return;
382 	/*
383 	 * We add page table cache pages with PAGE_SIZE,
384 	 * (see pte_free_tlb()), flush the tlb if we need
385 	 */
386 	tlb_change_page_size(tlb, PAGE_SIZE);
387 	pgd = pgd_offset(tlb->mm, addr);
388 	do {
389 		next = pgd_addr_end(addr, end);
390 		if (pgd_none_or_clear_bad(pgd))
391 			continue;
392 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
393 	} while (pgd++, addr = next, addr != end);
394 }
395 
396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397 		   struct vm_area_struct *vma, unsigned long floor,
398 		   unsigned long ceiling)
399 {
400 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
401 
402 	do {
403 		unsigned long addr = vma->vm_start;
404 		struct vm_area_struct *next;
405 
406 		/*
407 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408 		 * be 0.  This will underflow and is okay.
409 		 */
410 		next = mas_find(&mas, ceiling - 1);
411 
412 		/*
413 		 * Hide vma from rmap and truncate_pagecache before freeing
414 		 * pgtables
415 		 */
416 		unlink_anon_vmas(vma);
417 		unlink_file_vma(vma);
418 
419 		if (is_vm_hugetlb_page(vma)) {
420 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 				floor, next ? next->vm_start : ceiling);
422 		} else {
423 			/*
424 			 * Optimization: gather nearby vmas into one call down
425 			 */
426 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 			       && !is_vm_hugetlb_page(next)) {
428 				vma = next;
429 				next = mas_find(&mas, ceiling - 1);
430 				unlink_anon_vmas(vma);
431 				unlink_file_vma(vma);
432 			}
433 			free_pgd_range(tlb, addr, vma->vm_end,
434 				floor, next ? next->vm_start : ceiling);
435 		}
436 		vma = next;
437 	} while (vma);
438 }
439 
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442 	spinlock_t *ptl = pmd_lock(mm, pmd);
443 
444 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
445 		mm_inc_nr_ptes(mm);
446 		/*
447 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 		 * visible before the pte is made visible to other CPUs by being
449 		 * put into page tables.
450 		 *
451 		 * The other side of the story is the pointer chasing in the page
452 		 * table walking code (when walking the page table without locking;
453 		 * ie. most of the time). Fortunately, these data accesses consist
454 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 		 * being the notable exception) will already guarantee loads are
456 		 * seen in-order. See the alpha page table accessors for the
457 		 * smp_rmb() barriers in page table walking code.
458 		 */
459 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 		pmd_populate(mm, pmd, *pte);
461 		*pte = NULL;
462 	}
463 	spin_unlock(ptl);
464 }
465 
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468 	pgtable_t new = pte_alloc_one(mm);
469 	if (!new)
470 		return -ENOMEM;
471 
472 	pmd_install(mm, pmd, &new);
473 	if (new)
474 		pte_free(mm, new);
475 	return 0;
476 }
477 
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480 	pte_t *new = pte_alloc_one_kernel(&init_mm);
481 	if (!new)
482 		return -ENOMEM;
483 
484 	spin_lock(&init_mm.page_table_lock);
485 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
486 		smp_wmb(); /* See comment in pmd_install() */
487 		pmd_populate_kernel(&init_mm, pmd, new);
488 		new = NULL;
489 	}
490 	spin_unlock(&init_mm.page_table_lock);
491 	if (new)
492 		pte_free_kernel(&init_mm, new);
493 	return 0;
494 }
495 
496 static inline void init_rss_vec(int *rss)
497 {
498 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500 
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503 	int i;
504 
505 	if (current->mm == mm)
506 		sync_mm_rss(mm);
507 	for (i = 0; i < NR_MM_COUNTERS; i++)
508 		if (rss[i])
509 			add_mm_counter(mm, i, rss[i]);
510 }
511 
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 			  pte_t pte, struct page *page)
521 {
522 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 	p4d_t *p4d = p4d_offset(pgd, addr);
524 	pud_t *pud = pud_offset(p4d, addr);
525 	pmd_t *pmd = pmd_offset(pud, addr);
526 	struct address_space *mapping;
527 	pgoff_t index;
528 	static unsigned long resume;
529 	static unsigned long nr_shown;
530 	static unsigned long nr_unshown;
531 
532 	/*
533 	 * Allow a burst of 60 reports, then keep quiet for that minute;
534 	 * or allow a steady drip of one report per second.
535 	 */
536 	if (nr_shown == 60) {
537 		if (time_before(jiffies, resume)) {
538 			nr_unshown++;
539 			return;
540 		}
541 		if (nr_unshown) {
542 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 				 nr_unshown);
544 			nr_unshown = 0;
545 		}
546 		nr_shown = 0;
547 	}
548 	if (nr_shown++ == 0)
549 		resume = jiffies + 60 * HZ;
550 
551 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 	index = linear_page_index(vma, addr);
553 
554 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555 		 current->comm,
556 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 	if (page)
558 		dump_page(page, "bad pte");
559 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562 		 vma->vm_file,
563 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 		 mapping ? mapping->a_ops->read_folio : NULL);
566 	dump_stack();
567 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569 
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 			    pte_t pte)
614 {
615 	unsigned long pfn = pte_pfn(pte);
616 
617 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 		if (likely(!pte_special(pte)))
619 			goto check_pfn;
620 		if (vma->vm_ops && vma->vm_ops->find_special_page)
621 			return vma->vm_ops->find_special_page(vma, addr);
622 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 			return NULL;
624 		if (is_zero_pfn(pfn))
625 			return NULL;
626 		if (pte_devmap(pte))
627 		/*
628 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 		 * and will have refcounts incremented on their struct pages
630 		 * when they are inserted into PTEs, thus they are safe to
631 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634 		 */
635 			return NULL;
636 
637 		print_bad_pte(vma, addr, pte, NULL);
638 		return NULL;
639 	}
640 
641 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642 
643 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 		if (vma->vm_flags & VM_MIXEDMAP) {
645 			if (!pfn_valid(pfn))
646 				return NULL;
647 			goto out;
648 		} else {
649 			unsigned long off;
650 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
651 			if (pfn == vma->vm_pgoff + off)
652 				return NULL;
653 			if (!is_cow_mapping(vma->vm_flags))
654 				return NULL;
655 		}
656 	}
657 
658 	if (is_zero_pfn(pfn))
659 		return NULL;
660 
661 check_pfn:
662 	if (unlikely(pfn > highest_memmap_pfn)) {
663 		print_bad_pte(vma, addr, pte, NULL);
664 		return NULL;
665 	}
666 
667 	/*
668 	 * NOTE! We still have PageReserved() pages in the page tables.
669 	 * eg. VDSO mappings can cause them to exist.
670 	 */
671 out:
672 	return pfn_to_page(pfn);
673 }
674 
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677 				pmd_t pmd)
678 {
679 	unsigned long pfn = pmd_pfn(pmd);
680 
681 	/*
682 	 * There is no pmd_special() but there may be special pmds, e.g.
683 	 * in a direct-access (dax) mapping, so let's just replicate the
684 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685 	 */
686 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 		if (vma->vm_flags & VM_MIXEDMAP) {
688 			if (!pfn_valid(pfn))
689 				return NULL;
690 			goto out;
691 		} else {
692 			unsigned long off;
693 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 			if (pfn == vma->vm_pgoff + off)
695 				return NULL;
696 			if (!is_cow_mapping(vma->vm_flags))
697 				return NULL;
698 		}
699 	}
700 
701 	if (pmd_devmap(pmd))
702 		return NULL;
703 	if (is_huge_zero_pmd(pmd))
704 		return NULL;
705 	if (unlikely(pfn > highest_memmap_pfn))
706 		return NULL;
707 
708 	/*
709 	 * NOTE! We still have PageReserved() pages in the page tables.
710 	 * eg. VDSO mappings can cause them to exist.
711 	 */
712 out:
713 	return pfn_to_page(pfn);
714 }
715 #endif
716 
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718 				  struct page *page, unsigned long address,
719 				  pte_t *ptep)
720 {
721 	pte_t pte;
722 	swp_entry_t entry;
723 
724 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 	if (pte_swp_soft_dirty(*ptep))
726 		pte = pte_mksoft_dirty(pte);
727 
728 	entry = pte_to_swp_entry(*ptep);
729 	if (pte_swp_uffd_wp(*ptep))
730 		pte = pte_mkuffd_wp(pte);
731 	else if (is_writable_device_exclusive_entry(entry))
732 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733 
734 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735 
736 	/*
737 	 * No need to take a page reference as one was already
738 	 * created when the swap entry was made.
739 	 */
740 	if (PageAnon(page))
741 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
742 	else
743 		/*
744 		 * Currently device exclusive access only supports anonymous
745 		 * memory so the entry shouldn't point to a filebacked page.
746 		 */
747 		WARN_ON_ONCE(1);
748 
749 	set_pte_at(vma->vm_mm, address, ptep, pte);
750 
751 	/*
752 	 * No need to invalidate - it was non-present before. However
753 	 * secondary CPUs may have mappings that need invalidating.
754 	 */
755 	update_mmu_cache(vma, address, ptep);
756 }
757 
758 /*
759  * Tries to restore an exclusive pte if the page lock can be acquired without
760  * sleeping.
761  */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764 			unsigned long addr)
765 {
766 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 	struct page *page = pfn_swap_entry_to_page(entry);
768 
769 	if (trylock_page(page)) {
770 		restore_exclusive_pte(vma, page, addr, src_pte);
771 		unlock_page(page);
772 		return 0;
773 	}
774 
775 	return -EBUSY;
776 }
777 
778 /*
779  * copy one vm_area from one task to the other. Assumes the page tables
780  * already present in the new task to be cleared in the whole range
781  * covered by this vma.
782  */
783 
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789 	unsigned long vm_flags = dst_vma->vm_flags;
790 	pte_t pte = *src_pte;
791 	struct page *page;
792 	swp_entry_t entry = pte_to_swp_entry(pte);
793 
794 	if (likely(!non_swap_entry(entry))) {
795 		if (swap_duplicate(entry) < 0)
796 			return -EIO;
797 
798 		/* make sure dst_mm is on swapoff's mmlist. */
799 		if (unlikely(list_empty(&dst_mm->mmlist))) {
800 			spin_lock(&mmlist_lock);
801 			if (list_empty(&dst_mm->mmlist))
802 				list_add(&dst_mm->mmlist,
803 						&src_mm->mmlist);
804 			spin_unlock(&mmlist_lock);
805 		}
806 		/* Mark the swap entry as shared. */
807 		if (pte_swp_exclusive(*src_pte)) {
808 			pte = pte_swp_clear_exclusive(*src_pte);
809 			set_pte_at(src_mm, addr, src_pte, pte);
810 		}
811 		rss[MM_SWAPENTS]++;
812 	} else if (is_migration_entry(entry)) {
813 		page = pfn_swap_entry_to_page(entry);
814 
815 		rss[mm_counter(page)]++;
816 
817 		if (!is_readable_migration_entry(entry) &&
818 				is_cow_mapping(vm_flags)) {
819 			/*
820 			 * COW mappings require pages in both parent and child
821 			 * to be set to read. A previously exclusive entry is
822 			 * now shared.
823 			 */
824 			entry = make_readable_migration_entry(
825 							swp_offset(entry));
826 			pte = swp_entry_to_pte(entry);
827 			if (pte_swp_soft_dirty(*src_pte))
828 				pte = pte_swp_mksoft_dirty(pte);
829 			if (pte_swp_uffd_wp(*src_pte))
830 				pte = pte_swp_mkuffd_wp(pte);
831 			set_pte_at(src_mm, addr, src_pte, pte);
832 		}
833 	} else if (is_device_private_entry(entry)) {
834 		page = pfn_swap_entry_to_page(entry);
835 
836 		/*
837 		 * Update rss count even for unaddressable pages, as
838 		 * they should treated just like normal pages in this
839 		 * respect.
840 		 *
841 		 * We will likely want to have some new rss counters
842 		 * for unaddressable pages, at some point. But for now
843 		 * keep things as they are.
844 		 */
845 		get_page(page);
846 		rss[mm_counter(page)]++;
847 		/* Cannot fail as these pages cannot get pinned. */
848 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849 
850 		/*
851 		 * We do not preserve soft-dirty information, because so
852 		 * far, checkpoint/restore is the only feature that
853 		 * requires that. And checkpoint/restore does not work
854 		 * when a device driver is involved (you cannot easily
855 		 * save and restore device driver state).
856 		 */
857 		if (is_writable_device_private_entry(entry) &&
858 		    is_cow_mapping(vm_flags)) {
859 			entry = make_readable_device_private_entry(
860 							swp_offset(entry));
861 			pte = swp_entry_to_pte(entry);
862 			if (pte_swp_uffd_wp(*src_pte))
863 				pte = pte_swp_mkuffd_wp(pte);
864 			set_pte_at(src_mm, addr, src_pte, pte);
865 		}
866 	} else if (is_device_exclusive_entry(entry)) {
867 		/*
868 		 * Make device exclusive entries present by restoring the
869 		 * original entry then copying as for a present pte. Device
870 		 * exclusive entries currently only support private writable
871 		 * (ie. COW) mappings.
872 		 */
873 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875 			return -EBUSY;
876 		return -ENOENT;
877 	} else if (is_pte_marker_entry(entry)) {
878 		/*
879 		 * We're copying the pgtable should only because dst_vma has
880 		 * uffd-wp enabled, do sanity check.
881 		 */
882 		WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883 		set_pte_at(dst_mm, addr, dst_pte, pte);
884 		return 0;
885 	}
886 	if (!userfaultfd_wp(dst_vma))
887 		pte = pte_swp_clear_uffd_wp(pte);
888 	set_pte_at(dst_mm, addr, dst_pte, pte);
889 	return 0;
890 }
891 
892 /*
893  * Copy a present and normal page.
894  *
895  * NOTE! The usual case is that this isn't required;
896  * instead, the caller can just increase the page refcount
897  * and re-use the pte the traditional way.
898  *
899  * And if we need a pre-allocated page but don't yet have
900  * one, return a negative error to let the preallocation
901  * code know so that it can do so outside the page table
902  * lock.
903  */
904 static inline int
905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
907 		  struct page **prealloc, struct page *page)
908 {
909 	struct page *new_page;
910 	pte_t pte;
911 
912 	new_page = *prealloc;
913 	if (!new_page)
914 		return -EAGAIN;
915 
916 	/*
917 	 * We have a prealloc page, all good!  Take it
918 	 * over and copy the page & arm it.
919 	 */
920 	*prealloc = NULL;
921 	copy_user_highpage(new_page, page, addr, src_vma);
922 	__SetPageUptodate(new_page);
923 	page_add_new_anon_rmap(new_page, dst_vma, addr);
924 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
925 	rss[mm_counter(new_page)]++;
926 
927 	/* All done, just insert the new page copy in the child */
928 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
929 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
931 		/* Uffd-wp needs to be delivered to dest pte as well */
932 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
933 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 	return 0;
935 }
936 
937 /*
938  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
939  * is required to copy this pte.
940  */
941 static inline int
942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944 		 struct page **prealloc)
945 {
946 	struct mm_struct *src_mm = src_vma->vm_mm;
947 	unsigned long vm_flags = src_vma->vm_flags;
948 	pte_t pte = *src_pte;
949 	struct page *page;
950 
951 	page = vm_normal_page(src_vma, addr, pte);
952 	if (page && PageAnon(page)) {
953 		/*
954 		 * If this page may have been pinned by the parent process,
955 		 * copy the page immediately for the child so that we'll always
956 		 * guarantee the pinned page won't be randomly replaced in the
957 		 * future.
958 		 */
959 		get_page(page);
960 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961 			/* Page maybe pinned, we have to copy. */
962 			put_page(page);
963 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964 						 addr, rss, prealloc, page);
965 		}
966 		rss[mm_counter(page)]++;
967 	} else if (page) {
968 		get_page(page);
969 		page_dup_file_rmap(page, false);
970 		rss[mm_counter(page)]++;
971 	}
972 
973 	/*
974 	 * If it's a COW mapping, write protect it both
975 	 * in the parent and the child
976 	 */
977 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
978 		ptep_set_wrprotect(src_mm, addr, src_pte);
979 		pte = pte_wrprotect(pte);
980 	}
981 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
982 
983 	/*
984 	 * If it's a shared mapping, mark it clean in
985 	 * the child
986 	 */
987 	if (vm_flags & VM_SHARED)
988 		pte = pte_mkclean(pte);
989 	pte = pte_mkold(pte);
990 
991 	if (!userfaultfd_wp(dst_vma))
992 		pte = pte_clear_uffd_wp(pte);
993 
994 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
995 	return 0;
996 }
997 
998 static inline struct page *
999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000 		   unsigned long addr)
1001 {
1002 	struct page *new_page;
1003 
1004 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005 	if (!new_page)
1006 		return NULL;
1007 
1008 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1009 		put_page(new_page);
1010 		return NULL;
1011 	}
1012 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1013 
1014 	return new_page;
1015 }
1016 
1017 static int
1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 	       unsigned long end)
1021 {
1022 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1023 	struct mm_struct *src_mm = src_vma->vm_mm;
1024 	pte_t *orig_src_pte, *orig_dst_pte;
1025 	pte_t *src_pte, *dst_pte;
1026 	spinlock_t *src_ptl, *dst_ptl;
1027 	int progress, ret = 0;
1028 	int rss[NR_MM_COUNTERS];
1029 	swp_entry_t entry = (swp_entry_t){0};
1030 	struct page *prealloc = NULL;
1031 
1032 again:
1033 	progress = 0;
1034 	init_rss_vec(rss);
1035 
1036 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037 	if (!dst_pte) {
1038 		ret = -ENOMEM;
1039 		goto out;
1040 	}
1041 	src_pte = pte_offset_map(src_pmd, addr);
1042 	src_ptl = pte_lockptr(src_mm, src_pmd);
1043 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044 	orig_src_pte = src_pte;
1045 	orig_dst_pte = dst_pte;
1046 	arch_enter_lazy_mmu_mode();
1047 
1048 	do {
1049 		/*
1050 		 * We are holding two locks at this point - either of them
1051 		 * could generate latencies in another task on another CPU.
1052 		 */
1053 		if (progress >= 32) {
1054 			progress = 0;
1055 			if (need_resched() ||
1056 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1057 				break;
1058 		}
1059 		if (pte_none(*src_pte)) {
1060 			progress++;
1061 			continue;
1062 		}
1063 		if (unlikely(!pte_present(*src_pte))) {
1064 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 						  dst_pte, src_pte,
1066 						  dst_vma, src_vma,
1067 						  addr, rss);
1068 			if (ret == -EIO) {
1069 				entry = pte_to_swp_entry(*src_pte);
1070 				break;
1071 			} else if (ret == -EBUSY) {
1072 				break;
1073 			} else if (!ret) {
1074 				progress += 8;
1075 				continue;
1076 			}
1077 
1078 			/*
1079 			 * Device exclusive entry restored, continue by copying
1080 			 * the now present pte.
1081 			 */
1082 			WARN_ON_ONCE(ret != -ENOENT);
1083 		}
1084 		/* copy_present_pte() will clear `*prealloc' if consumed */
1085 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 				       addr, rss, &prealloc);
1087 		/*
1088 		 * If we need a pre-allocated page for this pte, drop the
1089 		 * locks, allocate, and try again.
1090 		 */
1091 		if (unlikely(ret == -EAGAIN))
1092 			break;
1093 		if (unlikely(prealloc)) {
1094 			/*
1095 			 * pre-alloc page cannot be reused by next time so as
1096 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 			 * will allocate page according to address).  This
1098 			 * could only happen if one pinned pte changed.
1099 			 */
1100 			put_page(prealloc);
1101 			prealloc = NULL;
1102 		}
1103 		progress += 8;
1104 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105 
1106 	arch_leave_lazy_mmu_mode();
1107 	spin_unlock(src_ptl);
1108 	pte_unmap(orig_src_pte);
1109 	add_mm_rss_vec(dst_mm, rss);
1110 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1111 	cond_resched();
1112 
1113 	if (ret == -EIO) {
1114 		VM_WARN_ON_ONCE(!entry.val);
1115 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 			ret = -ENOMEM;
1117 			goto out;
1118 		}
1119 		entry.val = 0;
1120 	} else if (ret == -EBUSY) {
1121 		goto out;
1122 	} else if (ret ==  -EAGAIN) {
1123 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1124 		if (!prealloc)
1125 			return -ENOMEM;
1126 	} else if (ret) {
1127 		VM_WARN_ON_ONCE(1);
1128 	}
1129 
1130 	/* We've captured and resolved the error. Reset, try again. */
1131 	ret = 0;
1132 
1133 	if (addr != end)
1134 		goto again;
1135 out:
1136 	if (unlikely(prealloc))
1137 		put_page(prealloc);
1138 	return ret;
1139 }
1140 
1141 static inline int
1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144 	       unsigned long end)
1145 {
1146 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1147 	struct mm_struct *src_mm = src_vma->vm_mm;
1148 	pmd_t *src_pmd, *dst_pmd;
1149 	unsigned long next;
1150 
1151 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152 	if (!dst_pmd)
1153 		return -ENOMEM;
1154 	src_pmd = pmd_offset(src_pud, addr);
1155 	do {
1156 		next = pmd_addr_end(addr, end);
1157 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158 			|| pmd_devmap(*src_pmd)) {
1159 			int err;
1160 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1161 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162 					    addr, dst_vma, src_vma);
1163 			if (err == -ENOMEM)
1164 				return -ENOMEM;
1165 			if (!err)
1166 				continue;
1167 			/* fall through */
1168 		}
1169 		if (pmd_none_or_clear_bad(src_pmd))
1170 			continue;
1171 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172 				   addr, next))
1173 			return -ENOMEM;
1174 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 	return 0;
1176 }
1177 
1178 static inline int
1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181 	       unsigned long end)
1182 {
1183 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1184 	struct mm_struct *src_mm = src_vma->vm_mm;
1185 	pud_t *src_pud, *dst_pud;
1186 	unsigned long next;
1187 
1188 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189 	if (!dst_pud)
1190 		return -ENOMEM;
1191 	src_pud = pud_offset(src_p4d, addr);
1192 	do {
1193 		next = pud_addr_end(addr, end);
1194 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 			int err;
1196 
1197 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1198 			err = copy_huge_pud(dst_mm, src_mm,
1199 					    dst_pud, src_pud, addr, src_vma);
1200 			if (err == -ENOMEM)
1201 				return -ENOMEM;
1202 			if (!err)
1203 				continue;
1204 			/* fall through */
1205 		}
1206 		if (pud_none_or_clear_bad(src_pud))
1207 			continue;
1208 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209 				   addr, next))
1210 			return -ENOMEM;
1211 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1212 	return 0;
1213 }
1214 
1215 static inline int
1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218 	       unsigned long end)
1219 {
1220 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1221 	p4d_t *src_p4d, *dst_p4d;
1222 	unsigned long next;
1223 
1224 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225 	if (!dst_p4d)
1226 		return -ENOMEM;
1227 	src_p4d = p4d_offset(src_pgd, addr);
1228 	do {
1229 		next = p4d_addr_end(addr, end);
1230 		if (p4d_none_or_clear_bad(src_p4d))
1231 			continue;
1232 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233 				   addr, next))
1234 			return -ENOMEM;
1235 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Return true if the vma needs to copy the pgtable during this fork().  Return
1241  * false when we can speed up fork() by allowing lazy page faults later until
1242  * when the child accesses the memory range.
1243  */
1244 static bool
1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246 {
1247 	/*
1248 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250 	 * contains uffd-wp protection information, that's something we can't
1251 	 * retrieve from page cache, and skip copying will lose those info.
1252 	 */
1253 	if (userfaultfd_wp(dst_vma))
1254 		return true;
1255 
1256 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1257 		return true;
1258 
1259 	if (src_vma->anon_vma)
1260 		return true;
1261 
1262 	/*
1263 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1264 	 * becomes much lighter when there are big shared or private readonly
1265 	 * mappings. The tradeoff is that copy_page_range is more efficient
1266 	 * than faulting.
1267 	 */
1268 	return false;
1269 }
1270 
1271 int
1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 {
1274 	pgd_t *src_pgd, *dst_pgd;
1275 	unsigned long next;
1276 	unsigned long addr = src_vma->vm_start;
1277 	unsigned long end = src_vma->vm_end;
1278 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1279 	struct mm_struct *src_mm = src_vma->vm_mm;
1280 	struct mmu_notifier_range range;
1281 	bool is_cow;
1282 	int ret;
1283 
1284 	if (!vma_needs_copy(dst_vma, src_vma))
1285 		return 0;
1286 
1287 	if (is_vm_hugetlb_page(src_vma))
1288 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289 
1290 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291 		/*
1292 		 * We do not free on error cases below as remove_vma
1293 		 * gets called on error from higher level routine
1294 		 */
1295 		ret = track_pfn_copy(src_vma);
1296 		if (ret)
1297 			return ret;
1298 	}
1299 
1300 	/*
1301 	 * We need to invalidate the secondary MMU mappings only when
1302 	 * there could be a permission downgrade on the ptes of the
1303 	 * parent mm. And a permission downgrade will only happen if
1304 	 * is_cow_mapping() returns true.
1305 	 */
1306 	is_cow = is_cow_mapping(src_vma->vm_flags);
1307 
1308 	if (is_cow) {
1309 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1310 					0, src_vma, src_mm, addr, end);
1311 		mmu_notifier_invalidate_range_start(&range);
1312 		/*
1313 		 * Disabling preemption is not needed for the write side, as
1314 		 * the read side doesn't spin, but goes to the mmap_lock.
1315 		 *
1316 		 * Use the raw variant of the seqcount_t write API to avoid
1317 		 * lockdep complaining about preemptibility.
1318 		 */
1319 		mmap_assert_write_locked(src_mm);
1320 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1321 	}
1322 
1323 	ret = 0;
1324 	dst_pgd = pgd_offset(dst_mm, addr);
1325 	src_pgd = pgd_offset(src_mm, addr);
1326 	do {
1327 		next = pgd_addr_end(addr, end);
1328 		if (pgd_none_or_clear_bad(src_pgd))
1329 			continue;
1330 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 					    addr, next))) {
1332 			ret = -ENOMEM;
1333 			break;
1334 		}
1335 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336 
1337 	if (is_cow) {
1338 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1339 		mmu_notifier_invalidate_range_end(&range);
1340 	}
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Parameter block passed down to zap_pte_range in exceptional cases.
1346  */
1347 struct zap_details {
1348 	struct folio *single_folio;	/* Locked folio to be unmapped */
1349 	bool even_cows;			/* Zap COWed private pages too? */
1350 	zap_flags_t zap_flags;		/* Extra flags for zapping */
1351 };
1352 
1353 /* Whether we should zap all COWed (private) pages too */
1354 static inline bool should_zap_cows(struct zap_details *details)
1355 {
1356 	/* By default, zap all pages */
1357 	if (!details)
1358 		return true;
1359 
1360 	/* Or, we zap COWed pages only if the caller wants to */
1361 	return details->even_cows;
1362 }
1363 
1364 /* Decides whether we should zap this page with the page pointer specified */
1365 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1366 {
1367 	/* If we can make a decision without *page.. */
1368 	if (should_zap_cows(details))
1369 		return true;
1370 
1371 	/* E.g. the caller passes NULL for the case of a zero page */
1372 	if (!page)
1373 		return true;
1374 
1375 	/* Otherwise we should only zap non-anon pages */
1376 	return !PageAnon(page);
1377 }
1378 
1379 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1380 {
1381 	if (!details)
1382 		return false;
1383 
1384 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385 }
1386 
1387 /*
1388  * This function makes sure that we'll replace the none pte with an uffd-wp
1389  * swap special pte marker when necessary. Must be with the pgtable lock held.
1390  */
1391 static inline void
1392 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1393 			      unsigned long addr, pte_t *pte,
1394 			      struct zap_details *details, pte_t pteval)
1395 {
1396 	if (zap_drop_file_uffd_wp(details))
1397 		return;
1398 
1399 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1400 }
1401 
1402 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1403 				struct vm_area_struct *vma, pmd_t *pmd,
1404 				unsigned long addr, unsigned long end,
1405 				struct zap_details *details)
1406 {
1407 	struct mm_struct *mm = tlb->mm;
1408 	int force_flush = 0;
1409 	int rss[NR_MM_COUNTERS];
1410 	spinlock_t *ptl;
1411 	pte_t *start_pte;
1412 	pte_t *pte;
1413 	swp_entry_t entry;
1414 
1415 	tlb_change_page_size(tlb, PAGE_SIZE);
1416 again:
1417 	init_rss_vec(rss);
1418 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419 	pte = start_pte;
1420 	flush_tlb_batched_pending(mm);
1421 	arch_enter_lazy_mmu_mode();
1422 	do {
1423 		pte_t ptent = *pte;
1424 		struct page *page;
1425 
1426 		if (pte_none(ptent))
1427 			continue;
1428 
1429 		if (need_resched())
1430 			break;
1431 
1432 		if (pte_present(ptent)) {
1433 			page = vm_normal_page(vma, addr, ptent);
1434 			if (unlikely(!should_zap_page(details, page)))
1435 				continue;
1436 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1437 							tlb->fullmm);
1438 			tlb_remove_tlb_entry(tlb, pte, addr);
1439 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1440 						      ptent);
1441 			if (unlikely(!page))
1442 				continue;
1443 
1444 			if (!PageAnon(page)) {
1445 				if (pte_dirty(ptent)) {
1446 					force_flush = 1;
1447 					set_page_dirty(page);
1448 				}
1449 				if (pte_young(ptent) &&
1450 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1451 					mark_page_accessed(page);
1452 			}
1453 			rss[mm_counter(page)]--;
1454 			page_remove_rmap(page, vma, false);
1455 			if (unlikely(page_mapcount(page) < 0))
1456 				print_bad_pte(vma, addr, ptent, page);
1457 			if (unlikely(__tlb_remove_page(tlb, page))) {
1458 				force_flush = 1;
1459 				addr += PAGE_SIZE;
1460 				break;
1461 			}
1462 			continue;
1463 		}
1464 
1465 		entry = pte_to_swp_entry(ptent);
1466 		if (is_device_private_entry(entry) ||
1467 		    is_device_exclusive_entry(entry)) {
1468 			page = pfn_swap_entry_to_page(entry);
1469 			if (unlikely(!should_zap_page(details, page)))
1470 				continue;
1471 			/*
1472 			 * Both device private/exclusive mappings should only
1473 			 * work with anonymous page so far, so we don't need to
1474 			 * consider uffd-wp bit when zap. For more information,
1475 			 * see zap_install_uffd_wp_if_needed().
1476 			 */
1477 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 			rss[mm_counter(page)]--;
1479 			if (is_device_private_entry(entry))
1480 				page_remove_rmap(page, vma, false);
1481 			put_page(page);
1482 		} else if (!non_swap_entry(entry)) {
1483 			/* Genuine swap entry, hence a private anon page */
1484 			if (!should_zap_cows(details))
1485 				continue;
1486 			rss[MM_SWAPENTS]--;
1487 			if (unlikely(!free_swap_and_cache(entry)))
1488 				print_bad_pte(vma, addr, ptent, NULL);
1489 		} else if (is_migration_entry(entry)) {
1490 			page = pfn_swap_entry_to_page(entry);
1491 			if (!should_zap_page(details, page))
1492 				continue;
1493 			rss[mm_counter(page)]--;
1494 		} else if (pte_marker_entry_uffd_wp(entry)) {
1495 			/* Only drop the uffd-wp marker if explicitly requested */
1496 			if (!zap_drop_file_uffd_wp(details))
1497 				continue;
1498 		} else if (is_hwpoison_entry(entry) ||
1499 			   is_swapin_error_entry(entry)) {
1500 			if (!should_zap_cows(details))
1501 				continue;
1502 		} else {
1503 			/* We should have covered all the swap entry types */
1504 			WARN_ON_ONCE(1);
1505 		}
1506 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1507 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1508 	} while (pte++, addr += PAGE_SIZE, addr != end);
1509 
1510 	add_mm_rss_vec(mm, rss);
1511 	arch_leave_lazy_mmu_mode();
1512 
1513 	/* Do the actual TLB flush before dropping ptl */
1514 	if (force_flush)
1515 		tlb_flush_mmu_tlbonly(tlb);
1516 	pte_unmap_unlock(start_pte, ptl);
1517 
1518 	/*
1519 	 * If we forced a TLB flush (either due to running out of
1520 	 * batch buffers or because we needed to flush dirty TLB
1521 	 * entries before releasing the ptl), free the batched
1522 	 * memory too. Restart if we didn't do everything.
1523 	 */
1524 	if (force_flush) {
1525 		force_flush = 0;
1526 		tlb_flush_mmu(tlb);
1527 	}
1528 
1529 	if (addr != end) {
1530 		cond_resched();
1531 		goto again;
1532 	}
1533 
1534 	return addr;
1535 }
1536 
1537 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1538 				struct vm_area_struct *vma, pud_t *pud,
1539 				unsigned long addr, unsigned long end,
1540 				struct zap_details *details)
1541 {
1542 	pmd_t *pmd;
1543 	unsigned long next;
1544 
1545 	pmd = pmd_offset(pud, addr);
1546 	do {
1547 		next = pmd_addr_end(addr, end);
1548 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1549 			if (next - addr != HPAGE_PMD_SIZE)
1550 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1551 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1552 				goto next;
1553 			/* fall through */
1554 		} else if (details && details->single_folio &&
1555 			   folio_test_pmd_mappable(details->single_folio) &&
1556 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1557 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1558 			/*
1559 			 * Take and drop THP pmd lock so that we cannot return
1560 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1561 			 * but not yet decremented compound_mapcount().
1562 			 */
1563 			spin_unlock(ptl);
1564 		}
1565 
1566 		/*
1567 		 * Here there can be other concurrent MADV_DONTNEED or
1568 		 * trans huge page faults running, and if the pmd is
1569 		 * none or trans huge it can change under us. This is
1570 		 * because MADV_DONTNEED holds the mmap_lock in read
1571 		 * mode.
1572 		 */
1573 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1574 			goto next;
1575 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1576 next:
1577 		cond_resched();
1578 	} while (pmd++, addr = next, addr != end);
1579 
1580 	return addr;
1581 }
1582 
1583 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1584 				struct vm_area_struct *vma, p4d_t *p4d,
1585 				unsigned long addr, unsigned long end,
1586 				struct zap_details *details)
1587 {
1588 	pud_t *pud;
1589 	unsigned long next;
1590 
1591 	pud = pud_offset(p4d, addr);
1592 	do {
1593 		next = pud_addr_end(addr, end);
1594 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1595 			if (next - addr != HPAGE_PUD_SIZE) {
1596 				mmap_assert_locked(tlb->mm);
1597 				split_huge_pud(vma, pud, addr);
1598 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1599 				goto next;
1600 			/* fall through */
1601 		}
1602 		if (pud_none_or_clear_bad(pud))
1603 			continue;
1604 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1605 next:
1606 		cond_resched();
1607 	} while (pud++, addr = next, addr != end);
1608 
1609 	return addr;
1610 }
1611 
1612 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1613 				struct vm_area_struct *vma, pgd_t *pgd,
1614 				unsigned long addr, unsigned long end,
1615 				struct zap_details *details)
1616 {
1617 	p4d_t *p4d;
1618 	unsigned long next;
1619 
1620 	p4d = p4d_offset(pgd, addr);
1621 	do {
1622 		next = p4d_addr_end(addr, end);
1623 		if (p4d_none_or_clear_bad(p4d))
1624 			continue;
1625 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1626 	} while (p4d++, addr = next, addr != end);
1627 
1628 	return addr;
1629 }
1630 
1631 void unmap_page_range(struct mmu_gather *tlb,
1632 			     struct vm_area_struct *vma,
1633 			     unsigned long addr, unsigned long end,
1634 			     struct zap_details *details)
1635 {
1636 	pgd_t *pgd;
1637 	unsigned long next;
1638 
1639 	BUG_ON(addr >= end);
1640 	tlb_start_vma(tlb, vma);
1641 	pgd = pgd_offset(vma->vm_mm, addr);
1642 	do {
1643 		next = pgd_addr_end(addr, end);
1644 		if (pgd_none_or_clear_bad(pgd))
1645 			continue;
1646 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1647 	} while (pgd++, addr = next, addr != end);
1648 	tlb_end_vma(tlb, vma);
1649 }
1650 
1651 
1652 static void unmap_single_vma(struct mmu_gather *tlb,
1653 		struct vm_area_struct *vma, unsigned long start_addr,
1654 		unsigned long end_addr,
1655 		struct zap_details *details)
1656 {
1657 	unsigned long start = max(vma->vm_start, start_addr);
1658 	unsigned long end;
1659 
1660 	if (start >= vma->vm_end)
1661 		return;
1662 	end = min(vma->vm_end, end_addr);
1663 	if (end <= vma->vm_start)
1664 		return;
1665 
1666 	if (vma->vm_file)
1667 		uprobe_munmap(vma, start, end);
1668 
1669 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1670 		untrack_pfn(vma, 0, 0);
1671 
1672 	if (start != end) {
1673 		if (unlikely(is_vm_hugetlb_page(vma))) {
1674 			/*
1675 			 * It is undesirable to test vma->vm_file as it
1676 			 * should be non-null for valid hugetlb area.
1677 			 * However, vm_file will be NULL in the error
1678 			 * cleanup path of mmap_region. When
1679 			 * hugetlbfs ->mmap method fails,
1680 			 * mmap_region() nullifies vma->vm_file
1681 			 * before calling this function to clean up.
1682 			 * Since no pte has actually been setup, it is
1683 			 * safe to do nothing in this case.
1684 			 */
1685 			if (vma->vm_file) {
1686 				zap_flags_t zap_flags = details ?
1687 				    details->zap_flags : 0;
1688 				__unmap_hugepage_range_final(tlb, vma, start, end,
1689 							     NULL, zap_flags);
1690 			}
1691 		} else
1692 			unmap_page_range(tlb, vma, start, end, details);
1693 	}
1694 }
1695 
1696 /**
1697  * unmap_vmas - unmap a range of memory covered by a list of vma's
1698  * @tlb: address of the caller's struct mmu_gather
1699  * @mt: the maple tree
1700  * @vma: the starting vma
1701  * @start_addr: virtual address at which to start unmapping
1702  * @end_addr: virtual address at which to end unmapping
1703  *
1704  * Unmap all pages in the vma list.
1705  *
1706  * Only addresses between `start' and `end' will be unmapped.
1707  *
1708  * The VMA list must be sorted in ascending virtual address order.
1709  *
1710  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1711  * range after unmap_vmas() returns.  So the only responsibility here is to
1712  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1713  * drops the lock and schedules.
1714  */
1715 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1716 		struct vm_area_struct *vma, unsigned long start_addr,
1717 		unsigned long end_addr)
1718 {
1719 	struct mmu_notifier_range range;
1720 	struct zap_details details = {
1721 		.zap_flags = ZAP_FLAG_DROP_MARKER,
1722 		/* Careful - we need to zap private pages too! */
1723 		.even_cows = true,
1724 	};
1725 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1726 
1727 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1728 				start_addr, end_addr);
1729 	mmu_notifier_invalidate_range_start(&range);
1730 	do {
1731 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1732 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1733 	mmu_notifier_invalidate_range_end(&range);
1734 }
1735 
1736 /**
1737  * zap_page_range - remove user pages in a given range
1738  * @vma: vm_area_struct holding the applicable pages
1739  * @start: starting address of pages to zap
1740  * @size: number of bytes to zap
1741  *
1742  * Caller must protect the VMA list
1743  */
1744 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1745 		unsigned long size)
1746 {
1747 	struct maple_tree *mt = &vma->vm_mm->mm_mt;
1748 	unsigned long end = start + size;
1749 	struct mmu_notifier_range range;
1750 	struct mmu_gather tlb;
1751 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1752 
1753 	lru_add_drain();
1754 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1755 				start, start + size);
1756 	tlb_gather_mmu(&tlb, vma->vm_mm);
1757 	update_hiwater_rss(vma->vm_mm);
1758 	mmu_notifier_invalidate_range_start(&range);
1759 	do {
1760 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1761 	} while ((vma = mas_find(&mas, end - 1)) != NULL);
1762 	mmu_notifier_invalidate_range_end(&range);
1763 	tlb_finish_mmu(&tlb);
1764 }
1765 
1766 /**
1767  * zap_page_range_single - remove user pages in a given range
1768  * @vma: vm_area_struct holding the applicable pages
1769  * @address: starting address of pages to zap
1770  * @size: number of bytes to zap
1771  * @details: details of shared cache invalidation
1772  *
1773  * The range must fit into one VMA.
1774  */
1775 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1776 		unsigned long size, struct zap_details *details)
1777 {
1778 	struct mmu_notifier_range range;
1779 	struct mmu_gather tlb;
1780 
1781 	lru_add_drain();
1782 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1783 				address, address + size);
1784 	tlb_gather_mmu(&tlb, vma->vm_mm);
1785 	update_hiwater_rss(vma->vm_mm);
1786 	mmu_notifier_invalidate_range_start(&range);
1787 	unmap_single_vma(&tlb, vma, address, range.end, details);
1788 	mmu_notifier_invalidate_range_end(&range);
1789 	tlb_finish_mmu(&tlb);
1790 }
1791 
1792 /**
1793  * zap_vma_ptes - remove ptes mapping the vma
1794  * @vma: vm_area_struct holding ptes to be zapped
1795  * @address: starting address of pages to zap
1796  * @size: number of bytes to zap
1797  *
1798  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1799  *
1800  * The entire address range must be fully contained within the vma.
1801  *
1802  */
1803 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1804 		unsigned long size)
1805 {
1806 	if (!range_in_vma(vma, address, address + size) ||
1807 	    		!(vma->vm_flags & VM_PFNMAP))
1808 		return;
1809 
1810 	zap_page_range_single(vma, address, size, NULL);
1811 }
1812 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1813 
1814 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1815 {
1816 	pgd_t *pgd;
1817 	p4d_t *p4d;
1818 	pud_t *pud;
1819 	pmd_t *pmd;
1820 
1821 	pgd = pgd_offset(mm, addr);
1822 	p4d = p4d_alloc(mm, pgd, addr);
1823 	if (!p4d)
1824 		return NULL;
1825 	pud = pud_alloc(mm, p4d, addr);
1826 	if (!pud)
1827 		return NULL;
1828 	pmd = pmd_alloc(mm, pud, addr);
1829 	if (!pmd)
1830 		return NULL;
1831 
1832 	VM_BUG_ON(pmd_trans_huge(*pmd));
1833 	return pmd;
1834 }
1835 
1836 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1837 			spinlock_t **ptl)
1838 {
1839 	pmd_t *pmd = walk_to_pmd(mm, addr);
1840 
1841 	if (!pmd)
1842 		return NULL;
1843 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1844 }
1845 
1846 static int validate_page_before_insert(struct page *page)
1847 {
1848 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1849 		return -EINVAL;
1850 	flush_dcache_page(page);
1851 	return 0;
1852 }
1853 
1854 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1855 			unsigned long addr, struct page *page, pgprot_t prot)
1856 {
1857 	if (!pte_none(*pte))
1858 		return -EBUSY;
1859 	/* Ok, finally just insert the thing.. */
1860 	get_page(page);
1861 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1862 	page_add_file_rmap(page, vma, false);
1863 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1864 	return 0;
1865 }
1866 
1867 /*
1868  * This is the old fallback for page remapping.
1869  *
1870  * For historical reasons, it only allows reserved pages. Only
1871  * old drivers should use this, and they needed to mark their
1872  * pages reserved for the old functions anyway.
1873  */
1874 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1875 			struct page *page, pgprot_t prot)
1876 {
1877 	int retval;
1878 	pte_t *pte;
1879 	spinlock_t *ptl;
1880 
1881 	retval = validate_page_before_insert(page);
1882 	if (retval)
1883 		goto out;
1884 	retval = -ENOMEM;
1885 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1886 	if (!pte)
1887 		goto out;
1888 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1889 	pte_unmap_unlock(pte, ptl);
1890 out:
1891 	return retval;
1892 }
1893 
1894 #ifdef pte_index
1895 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1896 			unsigned long addr, struct page *page, pgprot_t prot)
1897 {
1898 	int err;
1899 
1900 	if (!page_count(page))
1901 		return -EINVAL;
1902 	err = validate_page_before_insert(page);
1903 	if (err)
1904 		return err;
1905 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1906 }
1907 
1908 /* insert_pages() amortizes the cost of spinlock operations
1909  * when inserting pages in a loop. Arch *must* define pte_index.
1910  */
1911 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1912 			struct page **pages, unsigned long *num, pgprot_t prot)
1913 {
1914 	pmd_t *pmd = NULL;
1915 	pte_t *start_pte, *pte;
1916 	spinlock_t *pte_lock;
1917 	struct mm_struct *const mm = vma->vm_mm;
1918 	unsigned long curr_page_idx = 0;
1919 	unsigned long remaining_pages_total = *num;
1920 	unsigned long pages_to_write_in_pmd;
1921 	int ret;
1922 more:
1923 	ret = -EFAULT;
1924 	pmd = walk_to_pmd(mm, addr);
1925 	if (!pmd)
1926 		goto out;
1927 
1928 	pages_to_write_in_pmd = min_t(unsigned long,
1929 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1930 
1931 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1932 	ret = -ENOMEM;
1933 	if (pte_alloc(mm, pmd))
1934 		goto out;
1935 
1936 	while (pages_to_write_in_pmd) {
1937 		int pte_idx = 0;
1938 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1939 
1940 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1941 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1942 			int err = insert_page_in_batch_locked(vma, pte,
1943 				addr, pages[curr_page_idx], prot);
1944 			if (unlikely(err)) {
1945 				pte_unmap_unlock(start_pte, pte_lock);
1946 				ret = err;
1947 				remaining_pages_total -= pte_idx;
1948 				goto out;
1949 			}
1950 			addr += PAGE_SIZE;
1951 			++curr_page_idx;
1952 		}
1953 		pte_unmap_unlock(start_pte, pte_lock);
1954 		pages_to_write_in_pmd -= batch_size;
1955 		remaining_pages_total -= batch_size;
1956 	}
1957 	if (remaining_pages_total)
1958 		goto more;
1959 	ret = 0;
1960 out:
1961 	*num = remaining_pages_total;
1962 	return ret;
1963 }
1964 #endif  /* ifdef pte_index */
1965 
1966 /**
1967  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1968  * @vma: user vma to map to
1969  * @addr: target start user address of these pages
1970  * @pages: source kernel pages
1971  * @num: in: number of pages to map. out: number of pages that were *not*
1972  * mapped. (0 means all pages were successfully mapped).
1973  *
1974  * Preferred over vm_insert_page() when inserting multiple pages.
1975  *
1976  * In case of error, we may have mapped a subset of the provided
1977  * pages. It is the caller's responsibility to account for this case.
1978  *
1979  * The same restrictions apply as in vm_insert_page().
1980  */
1981 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1982 			struct page **pages, unsigned long *num)
1983 {
1984 #ifdef pte_index
1985 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1986 
1987 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1988 		return -EFAULT;
1989 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1990 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1991 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1992 		vma->vm_flags |= VM_MIXEDMAP;
1993 	}
1994 	/* Defer page refcount checking till we're about to map that page. */
1995 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1996 #else
1997 	unsigned long idx = 0, pgcount = *num;
1998 	int err = -EINVAL;
1999 
2000 	for (; idx < pgcount; ++idx) {
2001 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
2002 		if (err)
2003 			break;
2004 	}
2005 	*num = pgcount - idx;
2006 	return err;
2007 #endif  /* ifdef pte_index */
2008 }
2009 EXPORT_SYMBOL(vm_insert_pages);
2010 
2011 /**
2012  * vm_insert_page - insert single page into user vma
2013  * @vma: user vma to map to
2014  * @addr: target user address of this page
2015  * @page: source kernel page
2016  *
2017  * This allows drivers to insert individual pages they've allocated
2018  * into a user vma.
2019  *
2020  * The page has to be a nice clean _individual_ kernel allocation.
2021  * If you allocate a compound page, you need to have marked it as
2022  * such (__GFP_COMP), or manually just split the page up yourself
2023  * (see split_page()).
2024  *
2025  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2026  * took an arbitrary page protection parameter. This doesn't allow
2027  * that. Your vma protection will have to be set up correctly, which
2028  * means that if you want a shared writable mapping, you'd better
2029  * ask for a shared writable mapping!
2030  *
2031  * The page does not need to be reserved.
2032  *
2033  * Usually this function is called from f_op->mmap() handler
2034  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2035  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2036  * function from other places, for example from page-fault handler.
2037  *
2038  * Return: %0 on success, negative error code otherwise.
2039  */
2040 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2041 			struct page *page)
2042 {
2043 	if (addr < vma->vm_start || addr >= vma->vm_end)
2044 		return -EFAULT;
2045 	if (!page_count(page))
2046 		return -EINVAL;
2047 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2048 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2049 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2050 		vma->vm_flags |= VM_MIXEDMAP;
2051 	}
2052 	return insert_page(vma, addr, page, vma->vm_page_prot);
2053 }
2054 EXPORT_SYMBOL(vm_insert_page);
2055 
2056 /*
2057  * __vm_map_pages - maps range of kernel pages into user vma
2058  * @vma: user vma to map to
2059  * @pages: pointer to array of source kernel pages
2060  * @num: number of pages in page array
2061  * @offset: user's requested vm_pgoff
2062  *
2063  * This allows drivers to map range of kernel pages into a user vma.
2064  *
2065  * Return: 0 on success and error code otherwise.
2066  */
2067 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2068 				unsigned long num, unsigned long offset)
2069 {
2070 	unsigned long count = vma_pages(vma);
2071 	unsigned long uaddr = vma->vm_start;
2072 	int ret, i;
2073 
2074 	/* Fail if the user requested offset is beyond the end of the object */
2075 	if (offset >= num)
2076 		return -ENXIO;
2077 
2078 	/* Fail if the user requested size exceeds available object size */
2079 	if (count > num - offset)
2080 		return -ENXIO;
2081 
2082 	for (i = 0; i < count; i++) {
2083 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2084 		if (ret < 0)
2085 			return ret;
2086 		uaddr += PAGE_SIZE;
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 /**
2093  * vm_map_pages - maps range of kernel pages starts with non zero offset
2094  * @vma: user vma to map to
2095  * @pages: pointer to array of source kernel pages
2096  * @num: number of pages in page array
2097  *
2098  * Maps an object consisting of @num pages, catering for the user's
2099  * requested vm_pgoff
2100  *
2101  * If we fail to insert any page into the vma, the function will return
2102  * immediately leaving any previously inserted pages present.  Callers
2103  * from the mmap handler may immediately return the error as their caller
2104  * will destroy the vma, removing any successfully inserted pages. Other
2105  * callers should make their own arrangements for calling unmap_region().
2106  *
2107  * Context: Process context. Called by mmap handlers.
2108  * Return: 0 on success and error code otherwise.
2109  */
2110 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2111 				unsigned long num)
2112 {
2113 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2114 }
2115 EXPORT_SYMBOL(vm_map_pages);
2116 
2117 /**
2118  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2119  * @vma: user vma to map to
2120  * @pages: pointer to array of source kernel pages
2121  * @num: number of pages in page array
2122  *
2123  * Similar to vm_map_pages(), except that it explicitly sets the offset
2124  * to 0. This function is intended for the drivers that did not consider
2125  * vm_pgoff.
2126  *
2127  * Context: Process context. Called by mmap handlers.
2128  * Return: 0 on success and error code otherwise.
2129  */
2130 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2131 				unsigned long num)
2132 {
2133 	return __vm_map_pages(vma, pages, num, 0);
2134 }
2135 EXPORT_SYMBOL(vm_map_pages_zero);
2136 
2137 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2138 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2139 {
2140 	struct mm_struct *mm = vma->vm_mm;
2141 	pte_t *pte, entry;
2142 	spinlock_t *ptl;
2143 
2144 	pte = get_locked_pte(mm, addr, &ptl);
2145 	if (!pte)
2146 		return VM_FAULT_OOM;
2147 	if (!pte_none(*pte)) {
2148 		if (mkwrite) {
2149 			/*
2150 			 * For read faults on private mappings the PFN passed
2151 			 * in may not match the PFN we have mapped if the
2152 			 * mapped PFN is a writeable COW page.  In the mkwrite
2153 			 * case we are creating a writable PTE for a shared
2154 			 * mapping and we expect the PFNs to match. If they
2155 			 * don't match, we are likely racing with block
2156 			 * allocation and mapping invalidation so just skip the
2157 			 * update.
2158 			 */
2159 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2160 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2161 				goto out_unlock;
2162 			}
2163 			entry = pte_mkyoung(*pte);
2164 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2165 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2166 				update_mmu_cache(vma, addr, pte);
2167 		}
2168 		goto out_unlock;
2169 	}
2170 
2171 	/* Ok, finally just insert the thing.. */
2172 	if (pfn_t_devmap(pfn))
2173 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2174 	else
2175 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2176 
2177 	if (mkwrite) {
2178 		entry = pte_mkyoung(entry);
2179 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2180 	}
2181 
2182 	set_pte_at(mm, addr, pte, entry);
2183 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2184 
2185 out_unlock:
2186 	pte_unmap_unlock(pte, ptl);
2187 	return VM_FAULT_NOPAGE;
2188 }
2189 
2190 /**
2191  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2192  * @vma: user vma to map to
2193  * @addr: target user address of this page
2194  * @pfn: source kernel pfn
2195  * @pgprot: pgprot flags for the inserted page
2196  *
2197  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2198  * to override pgprot on a per-page basis.
2199  *
2200  * This only makes sense for IO mappings, and it makes no sense for
2201  * COW mappings.  In general, using multiple vmas is preferable;
2202  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2203  * impractical.
2204  *
2205  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2206  * a value of @pgprot different from that of @vma->vm_page_prot.
2207  *
2208  * Context: Process context.  May allocate using %GFP_KERNEL.
2209  * Return: vm_fault_t value.
2210  */
2211 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2212 			unsigned long pfn, pgprot_t pgprot)
2213 {
2214 	/*
2215 	 * Technically, architectures with pte_special can avoid all these
2216 	 * restrictions (same for remap_pfn_range).  However we would like
2217 	 * consistency in testing and feature parity among all, so we should
2218 	 * try to keep these invariants in place for everybody.
2219 	 */
2220 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2221 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2222 						(VM_PFNMAP|VM_MIXEDMAP));
2223 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2224 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2225 
2226 	if (addr < vma->vm_start || addr >= vma->vm_end)
2227 		return VM_FAULT_SIGBUS;
2228 
2229 	if (!pfn_modify_allowed(pfn, pgprot))
2230 		return VM_FAULT_SIGBUS;
2231 
2232 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2233 
2234 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2235 			false);
2236 }
2237 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2238 
2239 /**
2240  * vmf_insert_pfn - insert single pfn into user vma
2241  * @vma: user vma to map to
2242  * @addr: target user address of this page
2243  * @pfn: source kernel pfn
2244  *
2245  * Similar to vm_insert_page, this allows drivers to insert individual pages
2246  * they've allocated into a user vma. Same comments apply.
2247  *
2248  * This function should only be called from a vm_ops->fault handler, and
2249  * in that case the handler should return the result of this function.
2250  *
2251  * vma cannot be a COW mapping.
2252  *
2253  * As this is called only for pages that do not currently exist, we
2254  * do not need to flush old virtual caches or the TLB.
2255  *
2256  * Context: Process context.  May allocate using %GFP_KERNEL.
2257  * Return: vm_fault_t value.
2258  */
2259 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2260 			unsigned long pfn)
2261 {
2262 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2263 }
2264 EXPORT_SYMBOL(vmf_insert_pfn);
2265 
2266 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2267 {
2268 	/* these checks mirror the abort conditions in vm_normal_page */
2269 	if (vma->vm_flags & VM_MIXEDMAP)
2270 		return true;
2271 	if (pfn_t_devmap(pfn))
2272 		return true;
2273 	if (pfn_t_special(pfn))
2274 		return true;
2275 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2276 		return true;
2277 	return false;
2278 }
2279 
2280 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2281 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2282 		bool mkwrite)
2283 {
2284 	int err;
2285 
2286 	BUG_ON(!vm_mixed_ok(vma, pfn));
2287 
2288 	if (addr < vma->vm_start || addr >= vma->vm_end)
2289 		return VM_FAULT_SIGBUS;
2290 
2291 	track_pfn_insert(vma, &pgprot, pfn);
2292 
2293 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2294 		return VM_FAULT_SIGBUS;
2295 
2296 	/*
2297 	 * If we don't have pte special, then we have to use the pfn_valid()
2298 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2299 	 * refcount the page if pfn_valid is true (hence insert_page rather
2300 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2301 	 * without pte special, it would there be refcounted as a normal page.
2302 	 */
2303 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2304 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2305 		struct page *page;
2306 
2307 		/*
2308 		 * At this point we are committed to insert_page()
2309 		 * regardless of whether the caller specified flags that
2310 		 * result in pfn_t_has_page() == false.
2311 		 */
2312 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2313 		err = insert_page(vma, addr, page, pgprot);
2314 	} else {
2315 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2316 	}
2317 
2318 	if (err == -ENOMEM)
2319 		return VM_FAULT_OOM;
2320 	if (err < 0 && err != -EBUSY)
2321 		return VM_FAULT_SIGBUS;
2322 
2323 	return VM_FAULT_NOPAGE;
2324 }
2325 
2326 /**
2327  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2328  * @vma: user vma to map to
2329  * @addr: target user address of this page
2330  * @pfn: source kernel pfn
2331  * @pgprot: pgprot flags for the inserted page
2332  *
2333  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2334  * to override pgprot on a per-page basis.
2335  *
2336  * Typically this function should be used by drivers to set caching- and
2337  * encryption bits different than those of @vma->vm_page_prot, because
2338  * the caching- or encryption mode may not be known at mmap() time.
2339  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2340  * to set caching and encryption bits for those vmas (except for COW pages).
2341  * This is ensured by core vm only modifying these page table entries using
2342  * functions that don't touch caching- or encryption bits, using pte_modify()
2343  * if needed. (See for example mprotect()).
2344  * Also when new page-table entries are created, this is only done using the
2345  * fault() callback, and never using the value of vma->vm_page_prot,
2346  * except for page-table entries that point to anonymous pages as the result
2347  * of COW.
2348  *
2349  * Context: Process context.  May allocate using %GFP_KERNEL.
2350  * Return: vm_fault_t value.
2351  */
2352 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2353 				 pfn_t pfn, pgprot_t pgprot)
2354 {
2355 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2356 }
2357 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2358 
2359 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2360 		pfn_t pfn)
2361 {
2362 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2363 }
2364 EXPORT_SYMBOL(vmf_insert_mixed);
2365 
2366 /*
2367  *  If the insertion of PTE failed because someone else already added a
2368  *  different entry in the mean time, we treat that as success as we assume
2369  *  the same entry was actually inserted.
2370  */
2371 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2372 		unsigned long addr, pfn_t pfn)
2373 {
2374 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2375 }
2376 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2377 
2378 /*
2379  * maps a range of physical memory into the requested pages. the old
2380  * mappings are removed. any references to nonexistent pages results
2381  * in null mappings (currently treated as "copy-on-access")
2382  */
2383 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2384 			unsigned long addr, unsigned long end,
2385 			unsigned long pfn, pgprot_t prot)
2386 {
2387 	pte_t *pte, *mapped_pte;
2388 	spinlock_t *ptl;
2389 	int err = 0;
2390 
2391 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2392 	if (!pte)
2393 		return -ENOMEM;
2394 	arch_enter_lazy_mmu_mode();
2395 	do {
2396 		BUG_ON(!pte_none(*pte));
2397 		if (!pfn_modify_allowed(pfn, prot)) {
2398 			err = -EACCES;
2399 			break;
2400 		}
2401 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2402 		pfn++;
2403 	} while (pte++, addr += PAGE_SIZE, addr != end);
2404 	arch_leave_lazy_mmu_mode();
2405 	pte_unmap_unlock(mapped_pte, ptl);
2406 	return err;
2407 }
2408 
2409 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2410 			unsigned long addr, unsigned long end,
2411 			unsigned long pfn, pgprot_t prot)
2412 {
2413 	pmd_t *pmd;
2414 	unsigned long next;
2415 	int err;
2416 
2417 	pfn -= addr >> PAGE_SHIFT;
2418 	pmd = pmd_alloc(mm, pud, addr);
2419 	if (!pmd)
2420 		return -ENOMEM;
2421 	VM_BUG_ON(pmd_trans_huge(*pmd));
2422 	do {
2423 		next = pmd_addr_end(addr, end);
2424 		err = remap_pte_range(mm, pmd, addr, next,
2425 				pfn + (addr >> PAGE_SHIFT), prot);
2426 		if (err)
2427 			return err;
2428 	} while (pmd++, addr = next, addr != end);
2429 	return 0;
2430 }
2431 
2432 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2433 			unsigned long addr, unsigned long end,
2434 			unsigned long pfn, pgprot_t prot)
2435 {
2436 	pud_t *pud;
2437 	unsigned long next;
2438 	int err;
2439 
2440 	pfn -= addr >> PAGE_SHIFT;
2441 	pud = pud_alloc(mm, p4d, addr);
2442 	if (!pud)
2443 		return -ENOMEM;
2444 	do {
2445 		next = pud_addr_end(addr, end);
2446 		err = remap_pmd_range(mm, pud, addr, next,
2447 				pfn + (addr >> PAGE_SHIFT), prot);
2448 		if (err)
2449 			return err;
2450 	} while (pud++, addr = next, addr != end);
2451 	return 0;
2452 }
2453 
2454 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2455 			unsigned long addr, unsigned long end,
2456 			unsigned long pfn, pgprot_t prot)
2457 {
2458 	p4d_t *p4d;
2459 	unsigned long next;
2460 	int err;
2461 
2462 	pfn -= addr >> PAGE_SHIFT;
2463 	p4d = p4d_alloc(mm, pgd, addr);
2464 	if (!p4d)
2465 		return -ENOMEM;
2466 	do {
2467 		next = p4d_addr_end(addr, end);
2468 		err = remap_pud_range(mm, p4d, addr, next,
2469 				pfn + (addr >> PAGE_SHIFT), prot);
2470 		if (err)
2471 			return err;
2472 	} while (p4d++, addr = next, addr != end);
2473 	return 0;
2474 }
2475 
2476 /*
2477  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2478  * must have pre-validated the caching bits of the pgprot_t.
2479  */
2480 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2481 		unsigned long pfn, unsigned long size, pgprot_t prot)
2482 {
2483 	pgd_t *pgd;
2484 	unsigned long next;
2485 	unsigned long end = addr + PAGE_ALIGN(size);
2486 	struct mm_struct *mm = vma->vm_mm;
2487 	int err;
2488 
2489 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2490 		return -EINVAL;
2491 
2492 	/*
2493 	 * Physically remapped pages are special. Tell the
2494 	 * rest of the world about it:
2495 	 *   VM_IO tells people not to look at these pages
2496 	 *	(accesses can have side effects).
2497 	 *   VM_PFNMAP tells the core MM that the base pages are just
2498 	 *	raw PFN mappings, and do not have a "struct page" associated
2499 	 *	with them.
2500 	 *   VM_DONTEXPAND
2501 	 *      Disable vma merging and expanding with mremap().
2502 	 *   VM_DONTDUMP
2503 	 *      Omit vma from core dump, even when VM_IO turned off.
2504 	 *
2505 	 * There's a horrible special case to handle copy-on-write
2506 	 * behaviour that some programs depend on. We mark the "original"
2507 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2508 	 * See vm_normal_page() for details.
2509 	 */
2510 	if (is_cow_mapping(vma->vm_flags)) {
2511 		if (addr != vma->vm_start || end != vma->vm_end)
2512 			return -EINVAL;
2513 		vma->vm_pgoff = pfn;
2514 	}
2515 
2516 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2517 
2518 	BUG_ON(addr >= end);
2519 	pfn -= addr >> PAGE_SHIFT;
2520 	pgd = pgd_offset(mm, addr);
2521 	flush_cache_range(vma, addr, end);
2522 	do {
2523 		next = pgd_addr_end(addr, end);
2524 		err = remap_p4d_range(mm, pgd, addr, next,
2525 				pfn + (addr >> PAGE_SHIFT), prot);
2526 		if (err)
2527 			return err;
2528 	} while (pgd++, addr = next, addr != end);
2529 
2530 	return 0;
2531 }
2532 
2533 /**
2534  * remap_pfn_range - remap kernel memory to userspace
2535  * @vma: user vma to map to
2536  * @addr: target page aligned user address to start at
2537  * @pfn: page frame number of kernel physical memory address
2538  * @size: size of mapping area
2539  * @prot: page protection flags for this mapping
2540  *
2541  * Note: this is only safe if the mm semaphore is held when called.
2542  *
2543  * Return: %0 on success, negative error code otherwise.
2544  */
2545 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2546 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2547 {
2548 	int err;
2549 
2550 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2551 	if (err)
2552 		return -EINVAL;
2553 
2554 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2555 	if (err)
2556 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2557 	return err;
2558 }
2559 EXPORT_SYMBOL(remap_pfn_range);
2560 
2561 /**
2562  * vm_iomap_memory - remap memory to userspace
2563  * @vma: user vma to map to
2564  * @start: start of the physical memory to be mapped
2565  * @len: size of area
2566  *
2567  * This is a simplified io_remap_pfn_range() for common driver use. The
2568  * driver just needs to give us the physical memory range to be mapped,
2569  * we'll figure out the rest from the vma information.
2570  *
2571  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2572  * whatever write-combining details or similar.
2573  *
2574  * Return: %0 on success, negative error code otherwise.
2575  */
2576 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2577 {
2578 	unsigned long vm_len, pfn, pages;
2579 
2580 	/* Check that the physical memory area passed in looks valid */
2581 	if (start + len < start)
2582 		return -EINVAL;
2583 	/*
2584 	 * You *really* shouldn't map things that aren't page-aligned,
2585 	 * but we've historically allowed it because IO memory might
2586 	 * just have smaller alignment.
2587 	 */
2588 	len += start & ~PAGE_MASK;
2589 	pfn = start >> PAGE_SHIFT;
2590 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2591 	if (pfn + pages < pfn)
2592 		return -EINVAL;
2593 
2594 	/* We start the mapping 'vm_pgoff' pages into the area */
2595 	if (vma->vm_pgoff > pages)
2596 		return -EINVAL;
2597 	pfn += vma->vm_pgoff;
2598 	pages -= vma->vm_pgoff;
2599 
2600 	/* Can we fit all of the mapping? */
2601 	vm_len = vma->vm_end - vma->vm_start;
2602 	if (vm_len >> PAGE_SHIFT > pages)
2603 		return -EINVAL;
2604 
2605 	/* Ok, let it rip */
2606 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2607 }
2608 EXPORT_SYMBOL(vm_iomap_memory);
2609 
2610 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2611 				     unsigned long addr, unsigned long end,
2612 				     pte_fn_t fn, void *data, bool create,
2613 				     pgtbl_mod_mask *mask)
2614 {
2615 	pte_t *pte, *mapped_pte;
2616 	int err = 0;
2617 	spinlock_t *ptl;
2618 
2619 	if (create) {
2620 		mapped_pte = pte = (mm == &init_mm) ?
2621 			pte_alloc_kernel_track(pmd, addr, mask) :
2622 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2623 		if (!pte)
2624 			return -ENOMEM;
2625 	} else {
2626 		mapped_pte = pte = (mm == &init_mm) ?
2627 			pte_offset_kernel(pmd, addr) :
2628 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2629 	}
2630 
2631 	BUG_ON(pmd_huge(*pmd));
2632 
2633 	arch_enter_lazy_mmu_mode();
2634 
2635 	if (fn) {
2636 		do {
2637 			if (create || !pte_none(*pte)) {
2638 				err = fn(pte++, addr, data);
2639 				if (err)
2640 					break;
2641 			}
2642 		} while (addr += PAGE_SIZE, addr != end);
2643 	}
2644 	*mask |= PGTBL_PTE_MODIFIED;
2645 
2646 	arch_leave_lazy_mmu_mode();
2647 
2648 	if (mm != &init_mm)
2649 		pte_unmap_unlock(mapped_pte, ptl);
2650 	return err;
2651 }
2652 
2653 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2654 				     unsigned long addr, unsigned long end,
2655 				     pte_fn_t fn, void *data, bool create,
2656 				     pgtbl_mod_mask *mask)
2657 {
2658 	pmd_t *pmd;
2659 	unsigned long next;
2660 	int err = 0;
2661 
2662 	BUG_ON(pud_huge(*pud));
2663 
2664 	if (create) {
2665 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2666 		if (!pmd)
2667 			return -ENOMEM;
2668 	} else {
2669 		pmd = pmd_offset(pud, addr);
2670 	}
2671 	do {
2672 		next = pmd_addr_end(addr, end);
2673 		if (pmd_none(*pmd) && !create)
2674 			continue;
2675 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2676 			return -EINVAL;
2677 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2678 			if (!create)
2679 				continue;
2680 			pmd_clear_bad(pmd);
2681 		}
2682 		err = apply_to_pte_range(mm, pmd, addr, next,
2683 					 fn, data, create, mask);
2684 		if (err)
2685 			break;
2686 	} while (pmd++, addr = next, addr != end);
2687 
2688 	return err;
2689 }
2690 
2691 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2692 				     unsigned long addr, unsigned long end,
2693 				     pte_fn_t fn, void *data, bool create,
2694 				     pgtbl_mod_mask *mask)
2695 {
2696 	pud_t *pud;
2697 	unsigned long next;
2698 	int err = 0;
2699 
2700 	if (create) {
2701 		pud = pud_alloc_track(mm, p4d, addr, mask);
2702 		if (!pud)
2703 			return -ENOMEM;
2704 	} else {
2705 		pud = pud_offset(p4d, addr);
2706 	}
2707 	do {
2708 		next = pud_addr_end(addr, end);
2709 		if (pud_none(*pud) && !create)
2710 			continue;
2711 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2712 			return -EINVAL;
2713 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2714 			if (!create)
2715 				continue;
2716 			pud_clear_bad(pud);
2717 		}
2718 		err = apply_to_pmd_range(mm, pud, addr, next,
2719 					 fn, data, create, mask);
2720 		if (err)
2721 			break;
2722 	} while (pud++, addr = next, addr != end);
2723 
2724 	return err;
2725 }
2726 
2727 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2728 				     unsigned long addr, unsigned long end,
2729 				     pte_fn_t fn, void *data, bool create,
2730 				     pgtbl_mod_mask *mask)
2731 {
2732 	p4d_t *p4d;
2733 	unsigned long next;
2734 	int err = 0;
2735 
2736 	if (create) {
2737 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2738 		if (!p4d)
2739 			return -ENOMEM;
2740 	} else {
2741 		p4d = p4d_offset(pgd, addr);
2742 	}
2743 	do {
2744 		next = p4d_addr_end(addr, end);
2745 		if (p4d_none(*p4d) && !create)
2746 			continue;
2747 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2748 			return -EINVAL;
2749 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2750 			if (!create)
2751 				continue;
2752 			p4d_clear_bad(p4d);
2753 		}
2754 		err = apply_to_pud_range(mm, p4d, addr, next,
2755 					 fn, data, create, mask);
2756 		if (err)
2757 			break;
2758 	} while (p4d++, addr = next, addr != end);
2759 
2760 	return err;
2761 }
2762 
2763 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2764 				 unsigned long size, pte_fn_t fn,
2765 				 void *data, bool create)
2766 {
2767 	pgd_t *pgd;
2768 	unsigned long start = addr, next;
2769 	unsigned long end = addr + size;
2770 	pgtbl_mod_mask mask = 0;
2771 	int err = 0;
2772 
2773 	if (WARN_ON(addr >= end))
2774 		return -EINVAL;
2775 
2776 	pgd = pgd_offset(mm, addr);
2777 	do {
2778 		next = pgd_addr_end(addr, end);
2779 		if (pgd_none(*pgd) && !create)
2780 			continue;
2781 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2782 			return -EINVAL;
2783 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2784 			if (!create)
2785 				continue;
2786 			pgd_clear_bad(pgd);
2787 		}
2788 		err = apply_to_p4d_range(mm, pgd, addr, next,
2789 					 fn, data, create, &mask);
2790 		if (err)
2791 			break;
2792 	} while (pgd++, addr = next, addr != end);
2793 
2794 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2795 		arch_sync_kernel_mappings(start, start + size);
2796 
2797 	return err;
2798 }
2799 
2800 /*
2801  * Scan a region of virtual memory, filling in page tables as necessary
2802  * and calling a provided function on each leaf page table.
2803  */
2804 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2805 			unsigned long size, pte_fn_t fn, void *data)
2806 {
2807 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2808 }
2809 EXPORT_SYMBOL_GPL(apply_to_page_range);
2810 
2811 /*
2812  * Scan a region of virtual memory, calling a provided function on
2813  * each leaf page table where it exists.
2814  *
2815  * Unlike apply_to_page_range, this does _not_ fill in page tables
2816  * where they are absent.
2817  */
2818 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2819 				 unsigned long size, pte_fn_t fn, void *data)
2820 {
2821 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2822 }
2823 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2824 
2825 /*
2826  * handle_pte_fault chooses page fault handler according to an entry which was
2827  * read non-atomically.  Before making any commitment, on those architectures
2828  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2829  * parts, do_swap_page must check under lock before unmapping the pte and
2830  * proceeding (but do_wp_page is only called after already making such a check;
2831  * and do_anonymous_page can safely check later on).
2832  */
2833 static inline int pte_unmap_same(struct vm_fault *vmf)
2834 {
2835 	int same = 1;
2836 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2837 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2838 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2839 		spin_lock(ptl);
2840 		same = pte_same(*vmf->pte, vmf->orig_pte);
2841 		spin_unlock(ptl);
2842 	}
2843 #endif
2844 	pte_unmap(vmf->pte);
2845 	vmf->pte = NULL;
2846 	return same;
2847 }
2848 
2849 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2850 				       struct vm_fault *vmf)
2851 {
2852 	bool ret;
2853 	void *kaddr;
2854 	void __user *uaddr;
2855 	bool locked = false;
2856 	struct vm_area_struct *vma = vmf->vma;
2857 	struct mm_struct *mm = vma->vm_mm;
2858 	unsigned long addr = vmf->address;
2859 
2860 	if (likely(src)) {
2861 		copy_user_highpage(dst, src, addr, vma);
2862 		return true;
2863 	}
2864 
2865 	/*
2866 	 * If the source page was a PFN mapping, we don't have
2867 	 * a "struct page" for it. We do a best-effort copy by
2868 	 * just copying from the original user address. If that
2869 	 * fails, we just zero-fill it. Live with it.
2870 	 */
2871 	kaddr = kmap_atomic(dst);
2872 	uaddr = (void __user *)(addr & PAGE_MASK);
2873 
2874 	/*
2875 	 * On architectures with software "accessed" bits, we would
2876 	 * take a double page fault, so mark it accessed here.
2877 	 */
2878 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2879 		pte_t entry;
2880 
2881 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2882 		locked = true;
2883 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2884 			/*
2885 			 * Other thread has already handled the fault
2886 			 * and update local tlb only
2887 			 */
2888 			update_mmu_tlb(vma, addr, vmf->pte);
2889 			ret = false;
2890 			goto pte_unlock;
2891 		}
2892 
2893 		entry = pte_mkyoung(vmf->orig_pte);
2894 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2895 			update_mmu_cache(vma, addr, vmf->pte);
2896 	}
2897 
2898 	/*
2899 	 * This really shouldn't fail, because the page is there
2900 	 * in the page tables. But it might just be unreadable,
2901 	 * in which case we just give up and fill the result with
2902 	 * zeroes.
2903 	 */
2904 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2905 		if (locked)
2906 			goto warn;
2907 
2908 		/* Re-validate under PTL if the page is still mapped */
2909 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2910 		locked = true;
2911 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2912 			/* The PTE changed under us, update local tlb */
2913 			update_mmu_tlb(vma, addr, vmf->pte);
2914 			ret = false;
2915 			goto pte_unlock;
2916 		}
2917 
2918 		/*
2919 		 * The same page can be mapped back since last copy attempt.
2920 		 * Try to copy again under PTL.
2921 		 */
2922 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2923 			/*
2924 			 * Give a warn in case there can be some obscure
2925 			 * use-case
2926 			 */
2927 warn:
2928 			WARN_ON_ONCE(1);
2929 			clear_page(kaddr);
2930 		}
2931 	}
2932 
2933 	ret = true;
2934 
2935 pte_unlock:
2936 	if (locked)
2937 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2938 	kunmap_atomic(kaddr);
2939 	flush_dcache_page(dst);
2940 
2941 	return ret;
2942 }
2943 
2944 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2945 {
2946 	struct file *vm_file = vma->vm_file;
2947 
2948 	if (vm_file)
2949 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2950 
2951 	/*
2952 	 * Special mappings (e.g. VDSO) do not have any file so fake
2953 	 * a default GFP_KERNEL for them.
2954 	 */
2955 	return GFP_KERNEL;
2956 }
2957 
2958 /*
2959  * Notify the address space that the page is about to become writable so that
2960  * it can prohibit this or wait for the page to get into an appropriate state.
2961  *
2962  * We do this without the lock held, so that it can sleep if it needs to.
2963  */
2964 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2965 {
2966 	vm_fault_t ret;
2967 	struct page *page = vmf->page;
2968 	unsigned int old_flags = vmf->flags;
2969 
2970 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2971 
2972 	if (vmf->vma->vm_file &&
2973 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2974 		return VM_FAULT_SIGBUS;
2975 
2976 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2977 	/* Restore original flags so that caller is not surprised */
2978 	vmf->flags = old_flags;
2979 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2980 		return ret;
2981 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2982 		lock_page(page);
2983 		if (!page->mapping) {
2984 			unlock_page(page);
2985 			return 0; /* retry */
2986 		}
2987 		ret |= VM_FAULT_LOCKED;
2988 	} else
2989 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2990 	return ret;
2991 }
2992 
2993 /*
2994  * Handle dirtying of a page in shared file mapping on a write fault.
2995  *
2996  * The function expects the page to be locked and unlocks it.
2997  */
2998 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2999 {
3000 	struct vm_area_struct *vma = vmf->vma;
3001 	struct address_space *mapping;
3002 	struct page *page = vmf->page;
3003 	bool dirtied;
3004 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3005 
3006 	dirtied = set_page_dirty(page);
3007 	VM_BUG_ON_PAGE(PageAnon(page), page);
3008 	/*
3009 	 * Take a local copy of the address_space - page.mapping may be zeroed
3010 	 * by truncate after unlock_page().   The address_space itself remains
3011 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3012 	 * release semantics to prevent the compiler from undoing this copying.
3013 	 */
3014 	mapping = page_rmapping(page);
3015 	unlock_page(page);
3016 
3017 	if (!page_mkwrite)
3018 		file_update_time(vma->vm_file);
3019 
3020 	/*
3021 	 * Throttle page dirtying rate down to writeback speed.
3022 	 *
3023 	 * mapping may be NULL here because some device drivers do not
3024 	 * set page.mapping but still dirty their pages
3025 	 *
3026 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3027 	 * is pinning the mapping, as per above.
3028 	 */
3029 	if ((dirtied || page_mkwrite) && mapping) {
3030 		struct file *fpin;
3031 
3032 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3033 		balance_dirty_pages_ratelimited(mapping);
3034 		if (fpin) {
3035 			fput(fpin);
3036 			return VM_FAULT_COMPLETED;
3037 		}
3038 	}
3039 
3040 	return 0;
3041 }
3042 
3043 /*
3044  * Handle write page faults for pages that can be reused in the current vma
3045  *
3046  * This can happen either due to the mapping being with the VM_SHARED flag,
3047  * or due to us being the last reference standing to the page. In either
3048  * case, all we need to do here is to mark the page as writable and update
3049  * any related book-keeping.
3050  */
3051 static inline void wp_page_reuse(struct vm_fault *vmf)
3052 	__releases(vmf->ptl)
3053 {
3054 	struct vm_area_struct *vma = vmf->vma;
3055 	struct page *page = vmf->page;
3056 	pte_t entry;
3057 
3058 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3059 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3060 
3061 	/*
3062 	 * Clear the pages cpupid information as the existing
3063 	 * information potentially belongs to a now completely
3064 	 * unrelated process.
3065 	 */
3066 	if (page)
3067 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3068 
3069 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3070 	entry = pte_mkyoung(vmf->orig_pte);
3071 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3072 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3073 		update_mmu_cache(vma, vmf->address, vmf->pte);
3074 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3075 	count_vm_event(PGREUSE);
3076 }
3077 
3078 /*
3079  * Handle the case of a page which we actually need to copy to a new page,
3080  * either due to COW or unsharing.
3081  *
3082  * Called with mmap_lock locked and the old page referenced, but
3083  * without the ptl held.
3084  *
3085  * High level logic flow:
3086  *
3087  * - Allocate a page, copy the content of the old page to the new one.
3088  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3089  * - Take the PTL. If the pte changed, bail out and release the allocated page
3090  * - If the pte is still the way we remember it, update the page table and all
3091  *   relevant references. This includes dropping the reference the page-table
3092  *   held to the old page, as well as updating the rmap.
3093  * - In any case, unlock the PTL and drop the reference we took to the old page.
3094  */
3095 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3096 {
3097 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3098 	struct vm_area_struct *vma = vmf->vma;
3099 	struct mm_struct *mm = vma->vm_mm;
3100 	struct page *old_page = vmf->page;
3101 	struct page *new_page = NULL;
3102 	pte_t entry;
3103 	int page_copied = 0;
3104 	struct mmu_notifier_range range;
3105 
3106 	delayacct_wpcopy_start();
3107 
3108 	if (unlikely(anon_vma_prepare(vma)))
3109 		goto oom;
3110 
3111 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3112 		new_page = alloc_zeroed_user_highpage_movable(vma,
3113 							      vmf->address);
3114 		if (!new_page)
3115 			goto oom;
3116 	} else {
3117 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3118 				vmf->address);
3119 		if (!new_page)
3120 			goto oom;
3121 
3122 		if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3123 			/*
3124 			 * COW failed, if the fault was solved by other,
3125 			 * it's fine. If not, userspace would re-fault on
3126 			 * the same address and we will handle the fault
3127 			 * from the second attempt.
3128 			 */
3129 			put_page(new_page);
3130 			if (old_page)
3131 				put_page(old_page);
3132 
3133 			delayacct_wpcopy_end();
3134 			return 0;
3135 		}
3136 		kmsan_copy_page_meta(new_page, old_page);
3137 	}
3138 
3139 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3140 		goto oom_free_new;
3141 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3142 
3143 	__SetPageUptodate(new_page);
3144 
3145 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3146 				vmf->address & PAGE_MASK,
3147 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3148 	mmu_notifier_invalidate_range_start(&range);
3149 
3150 	/*
3151 	 * Re-check the pte - we dropped the lock
3152 	 */
3153 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3154 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3155 		if (old_page) {
3156 			if (!PageAnon(old_page)) {
3157 				dec_mm_counter_fast(mm,
3158 						mm_counter_file(old_page));
3159 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3160 			}
3161 		} else {
3162 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3163 		}
3164 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3165 		entry = mk_pte(new_page, vma->vm_page_prot);
3166 		entry = pte_sw_mkyoung(entry);
3167 		if (unlikely(unshare)) {
3168 			if (pte_soft_dirty(vmf->orig_pte))
3169 				entry = pte_mksoft_dirty(entry);
3170 			if (pte_uffd_wp(vmf->orig_pte))
3171 				entry = pte_mkuffd_wp(entry);
3172 		} else {
3173 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3174 		}
3175 
3176 		/*
3177 		 * Clear the pte entry and flush it first, before updating the
3178 		 * pte with the new entry, to keep TLBs on different CPUs in
3179 		 * sync. This code used to set the new PTE then flush TLBs, but
3180 		 * that left a window where the new PTE could be loaded into
3181 		 * some TLBs while the old PTE remains in others.
3182 		 */
3183 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3184 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3185 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3186 		/*
3187 		 * We call the notify macro here because, when using secondary
3188 		 * mmu page tables (such as kvm shadow page tables), we want the
3189 		 * new page to be mapped directly into the secondary page table.
3190 		 */
3191 		BUG_ON(unshare && pte_write(entry));
3192 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3193 		update_mmu_cache(vma, vmf->address, vmf->pte);
3194 		if (old_page) {
3195 			/*
3196 			 * Only after switching the pte to the new page may
3197 			 * we remove the mapcount here. Otherwise another
3198 			 * process may come and find the rmap count decremented
3199 			 * before the pte is switched to the new page, and
3200 			 * "reuse" the old page writing into it while our pte
3201 			 * here still points into it and can be read by other
3202 			 * threads.
3203 			 *
3204 			 * The critical issue is to order this
3205 			 * page_remove_rmap with the ptp_clear_flush above.
3206 			 * Those stores are ordered by (if nothing else,)
3207 			 * the barrier present in the atomic_add_negative
3208 			 * in page_remove_rmap.
3209 			 *
3210 			 * Then the TLB flush in ptep_clear_flush ensures that
3211 			 * no process can access the old page before the
3212 			 * decremented mapcount is visible. And the old page
3213 			 * cannot be reused until after the decremented
3214 			 * mapcount is visible. So transitively, TLBs to
3215 			 * old page will be flushed before it can be reused.
3216 			 */
3217 			page_remove_rmap(old_page, vma, false);
3218 		}
3219 
3220 		/* Free the old page.. */
3221 		new_page = old_page;
3222 		page_copied = 1;
3223 	} else {
3224 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3225 	}
3226 
3227 	if (new_page)
3228 		put_page(new_page);
3229 
3230 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3231 	/*
3232 	 * No need to double call mmu_notifier->invalidate_range() callback as
3233 	 * the above ptep_clear_flush_notify() did already call it.
3234 	 */
3235 	mmu_notifier_invalidate_range_only_end(&range);
3236 	if (old_page) {
3237 		if (page_copied)
3238 			free_swap_cache(old_page);
3239 		put_page(old_page);
3240 	}
3241 
3242 	delayacct_wpcopy_end();
3243 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3244 oom_free_new:
3245 	put_page(new_page);
3246 oom:
3247 	if (old_page)
3248 		put_page(old_page);
3249 
3250 	delayacct_wpcopy_end();
3251 	return VM_FAULT_OOM;
3252 }
3253 
3254 /**
3255  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3256  *			  writeable once the page is prepared
3257  *
3258  * @vmf: structure describing the fault
3259  *
3260  * This function handles all that is needed to finish a write page fault in a
3261  * shared mapping due to PTE being read-only once the mapped page is prepared.
3262  * It handles locking of PTE and modifying it.
3263  *
3264  * The function expects the page to be locked or other protection against
3265  * concurrent faults / writeback (such as DAX radix tree locks).
3266  *
3267  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3268  * we acquired PTE lock.
3269  */
3270 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3271 {
3272 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3273 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3274 				       &vmf->ptl);
3275 	/*
3276 	 * We might have raced with another page fault while we released the
3277 	 * pte_offset_map_lock.
3278 	 */
3279 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3280 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3281 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3282 		return VM_FAULT_NOPAGE;
3283 	}
3284 	wp_page_reuse(vmf);
3285 	return 0;
3286 }
3287 
3288 /*
3289  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3290  * mapping
3291  */
3292 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3293 {
3294 	struct vm_area_struct *vma = vmf->vma;
3295 
3296 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3297 		vm_fault_t ret;
3298 
3299 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3300 		vmf->flags |= FAULT_FLAG_MKWRITE;
3301 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3302 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3303 			return ret;
3304 		return finish_mkwrite_fault(vmf);
3305 	}
3306 	wp_page_reuse(vmf);
3307 	return VM_FAULT_WRITE;
3308 }
3309 
3310 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3311 	__releases(vmf->ptl)
3312 {
3313 	struct vm_area_struct *vma = vmf->vma;
3314 	vm_fault_t ret = VM_FAULT_WRITE;
3315 
3316 	get_page(vmf->page);
3317 
3318 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3319 		vm_fault_t tmp;
3320 
3321 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3322 		tmp = do_page_mkwrite(vmf);
3323 		if (unlikely(!tmp || (tmp &
3324 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3325 			put_page(vmf->page);
3326 			return tmp;
3327 		}
3328 		tmp = finish_mkwrite_fault(vmf);
3329 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3330 			unlock_page(vmf->page);
3331 			put_page(vmf->page);
3332 			return tmp;
3333 		}
3334 	} else {
3335 		wp_page_reuse(vmf);
3336 		lock_page(vmf->page);
3337 	}
3338 	ret |= fault_dirty_shared_page(vmf);
3339 	put_page(vmf->page);
3340 
3341 	return ret;
3342 }
3343 
3344 /*
3345  * This routine handles present pages, when
3346  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3347  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3348  *   (FAULT_FLAG_UNSHARE)
3349  *
3350  * It is done by copying the page to a new address and decrementing the
3351  * shared-page counter for the old page.
3352  *
3353  * Note that this routine assumes that the protection checks have been
3354  * done by the caller (the low-level page fault routine in most cases).
3355  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3356  * done any necessary COW.
3357  *
3358  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3359  * though the page will change only once the write actually happens. This
3360  * avoids a few races, and potentially makes it more efficient.
3361  *
3362  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3363  * but allow concurrent faults), with pte both mapped and locked.
3364  * We return with mmap_lock still held, but pte unmapped and unlocked.
3365  */
3366 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3367 	__releases(vmf->ptl)
3368 {
3369 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3370 	struct vm_area_struct *vma = vmf->vma;
3371 	struct folio *folio;
3372 
3373 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3374 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3375 
3376 	if (likely(!unshare)) {
3377 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3378 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3379 			return handle_userfault(vmf, VM_UFFD_WP);
3380 		}
3381 
3382 		/*
3383 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3384 		 * is flushed in this case before copying.
3385 		 */
3386 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3387 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3388 			flush_tlb_page(vmf->vma, vmf->address);
3389 	}
3390 
3391 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3392 	if (!vmf->page) {
3393 		if (unlikely(unshare)) {
3394 			/* No anonymous page -> nothing to do. */
3395 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3396 			return 0;
3397 		}
3398 
3399 		/*
3400 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3401 		 * VM_PFNMAP VMA.
3402 		 *
3403 		 * We should not cow pages in a shared writeable mapping.
3404 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3405 		 */
3406 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3407 				     (VM_WRITE|VM_SHARED))
3408 			return wp_pfn_shared(vmf);
3409 
3410 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3411 		return wp_page_copy(vmf);
3412 	}
3413 
3414 	/*
3415 	 * Take out anonymous pages first, anonymous shared vmas are
3416 	 * not dirty accountable.
3417 	 */
3418 	folio = page_folio(vmf->page);
3419 	if (folio_test_anon(folio)) {
3420 		/*
3421 		 * If the page is exclusive to this process we must reuse the
3422 		 * page without further checks.
3423 		 */
3424 		if (PageAnonExclusive(vmf->page))
3425 			goto reuse;
3426 
3427 		/*
3428 		 * We have to verify under folio lock: these early checks are
3429 		 * just an optimization to avoid locking the folio and freeing
3430 		 * the swapcache if there is little hope that we can reuse.
3431 		 *
3432 		 * KSM doesn't necessarily raise the folio refcount.
3433 		 */
3434 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3435 			goto copy;
3436 		if (!folio_test_lru(folio))
3437 			/*
3438 			 * Note: We cannot easily detect+handle references from
3439 			 * remote LRU pagevecs or references to LRU folios.
3440 			 */
3441 			lru_add_drain();
3442 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3443 			goto copy;
3444 		if (!folio_trylock(folio))
3445 			goto copy;
3446 		if (folio_test_swapcache(folio))
3447 			folio_free_swap(folio);
3448 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3449 			folio_unlock(folio);
3450 			goto copy;
3451 		}
3452 		/*
3453 		 * Ok, we've got the only folio reference from our mapping
3454 		 * and the folio is locked, it's dark out, and we're wearing
3455 		 * sunglasses. Hit it.
3456 		 */
3457 		page_move_anon_rmap(vmf->page, vma);
3458 		folio_unlock(folio);
3459 reuse:
3460 		if (unlikely(unshare)) {
3461 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3462 			return 0;
3463 		}
3464 		wp_page_reuse(vmf);
3465 		return VM_FAULT_WRITE;
3466 	} else if (unshare) {
3467 		/* No anonymous page -> nothing to do. */
3468 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3469 		return 0;
3470 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3471 					(VM_WRITE|VM_SHARED))) {
3472 		return wp_page_shared(vmf);
3473 	}
3474 copy:
3475 	/*
3476 	 * Ok, we need to copy. Oh, well..
3477 	 */
3478 	get_page(vmf->page);
3479 
3480 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3481 #ifdef CONFIG_KSM
3482 	if (PageKsm(vmf->page))
3483 		count_vm_event(COW_KSM);
3484 #endif
3485 	return wp_page_copy(vmf);
3486 }
3487 
3488 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3489 		unsigned long start_addr, unsigned long end_addr,
3490 		struct zap_details *details)
3491 {
3492 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3493 }
3494 
3495 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3496 					    pgoff_t first_index,
3497 					    pgoff_t last_index,
3498 					    struct zap_details *details)
3499 {
3500 	struct vm_area_struct *vma;
3501 	pgoff_t vba, vea, zba, zea;
3502 
3503 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3504 		vba = vma->vm_pgoff;
3505 		vea = vba + vma_pages(vma) - 1;
3506 		zba = max(first_index, vba);
3507 		zea = min(last_index, vea);
3508 
3509 		unmap_mapping_range_vma(vma,
3510 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3511 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3512 				details);
3513 	}
3514 }
3515 
3516 /**
3517  * unmap_mapping_folio() - Unmap single folio from processes.
3518  * @folio: The locked folio to be unmapped.
3519  *
3520  * Unmap this folio from any userspace process which still has it mmaped.
3521  * Typically, for efficiency, the range of nearby pages has already been
3522  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3523  * truncation or invalidation holds the lock on a folio, it may find that
3524  * the page has been remapped again: and then uses unmap_mapping_folio()
3525  * to unmap it finally.
3526  */
3527 void unmap_mapping_folio(struct folio *folio)
3528 {
3529 	struct address_space *mapping = folio->mapping;
3530 	struct zap_details details = { };
3531 	pgoff_t	first_index;
3532 	pgoff_t	last_index;
3533 
3534 	VM_BUG_ON(!folio_test_locked(folio));
3535 
3536 	first_index = folio->index;
3537 	last_index = folio->index + folio_nr_pages(folio) - 1;
3538 
3539 	details.even_cows = false;
3540 	details.single_folio = folio;
3541 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3542 
3543 	i_mmap_lock_read(mapping);
3544 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3545 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3546 					 last_index, &details);
3547 	i_mmap_unlock_read(mapping);
3548 }
3549 
3550 /**
3551  * unmap_mapping_pages() - Unmap pages from processes.
3552  * @mapping: The address space containing pages to be unmapped.
3553  * @start: Index of first page to be unmapped.
3554  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3555  * @even_cows: Whether to unmap even private COWed pages.
3556  *
3557  * Unmap the pages in this address space from any userspace process which
3558  * has them mmaped.  Generally, you want to remove COWed pages as well when
3559  * a file is being truncated, but not when invalidating pages from the page
3560  * cache.
3561  */
3562 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3563 		pgoff_t nr, bool even_cows)
3564 {
3565 	struct zap_details details = { };
3566 	pgoff_t	first_index = start;
3567 	pgoff_t	last_index = start + nr - 1;
3568 
3569 	details.even_cows = even_cows;
3570 	if (last_index < first_index)
3571 		last_index = ULONG_MAX;
3572 
3573 	i_mmap_lock_read(mapping);
3574 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3575 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3576 					 last_index, &details);
3577 	i_mmap_unlock_read(mapping);
3578 }
3579 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3580 
3581 /**
3582  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3583  * address_space corresponding to the specified byte range in the underlying
3584  * file.
3585  *
3586  * @mapping: the address space containing mmaps to be unmapped.
3587  * @holebegin: byte in first page to unmap, relative to the start of
3588  * the underlying file.  This will be rounded down to a PAGE_SIZE
3589  * boundary.  Note that this is different from truncate_pagecache(), which
3590  * must keep the partial page.  In contrast, we must get rid of
3591  * partial pages.
3592  * @holelen: size of prospective hole in bytes.  This will be rounded
3593  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3594  * end of the file.
3595  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3596  * but 0 when invalidating pagecache, don't throw away private data.
3597  */
3598 void unmap_mapping_range(struct address_space *mapping,
3599 		loff_t const holebegin, loff_t const holelen, int even_cows)
3600 {
3601 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3602 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3603 
3604 	/* Check for overflow. */
3605 	if (sizeof(holelen) > sizeof(hlen)) {
3606 		long long holeend =
3607 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3608 		if (holeend & ~(long long)ULONG_MAX)
3609 			hlen = ULONG_MAX - hba + 1;
3610 	}
3611 
3612 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3613 }
3614 EXPORT_SYMBOL(unmap_mapping_range);
3615 
3616 /*
3617  * Restore a potential device exclusive pte to a working pte entry
3618  */
3619 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3620 {
3621 	struct folio *folio = page_folio(vmf->page);
3622 	struct vm_area_struct *vma = vmf->vma;
3623 	struct mmu_notifier_range range;
3624 
3625 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3626 		return VM_FAULT_RETRY;
3627 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3628 				vma->vm_mm, vmf->address & PAGE_MASK,
3629 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3630 	mmu_notifier_invalidate_range_start(&range);
3631 
3632 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3633 				&vmf->ptl);
3634 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3635 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3636 
3637 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3638 	folio_unlock(folio);
3639 
3640 	mmu_notifier_invalidate_range_end(&range);
3641 	return 0;
3642 }
3643 
3644 static inline bool should_try_to_free_swap(struct folio *folio,
3645 					   struct vm_area_struct *vma,
3646 					   unsigned int fault_flags)
3647 {
3648 	if (!folio_test_swapcache(folio))
3649 		return false;
3650 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3651 	    folio_test_mlocked(folio))
3652 		return true;
3653 	/*
3654 	 * If we want to map a page that's in the swapcache writable, we
3655 	 * have to detect via the refcount if we're really the exclusive
3656 	 * user. Try freeing the swapcache to get rid of the swapcache
3657 	 * reference only in case it's likely that we'll be the exlusive user.
3658 	 */
3659 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3660 		folio_ref_count(folio) == 2;
3661 }
3662 
3663 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3664 {
3665 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3666 				       vmf->address, &vmf->ptl);
3667 	/*
3668 	 * Be careful so that we will only recover a special uffd-wp pte into a
3669 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3670 	 */
3671 	if (is_pte_marker(*vmf->pte))
3672 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3673 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3674 	return 0;
3675 }
3676 
3677 /*
3678  * This is actually a page-missing access, but with uffd-wp special pte
3679  * installed.  It means this pte was wr-protected before being unmapped.
3680  */
3681 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3682 {
3683 	/*
3684 	 * Just in case there're leftover special ptes even after the region
3685 	 * got unregistered - we can simply clear them.  We can also do that
3686 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3687 	 * ranges, but it should be more efficient to be done lazily here.
3688 	 */
3689 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3690 		return pte_marker_clear(vmf);
3691 
3692 	/* do_fault() can handle pte markers too like none pte */
3693 	return do_fault(vmf);
3694 }
3695 
3696 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3697 {
3698 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3699 	unsigned long marker = pte_marker_get(entry);
3700 
3701 	/*
3702 	 * PTE markers should always be with file-backed memories, and the
3703 	 * marker should never be empty.  If anything weird happened, the best
3704 	 * thing to do is to kill the process along with its mm.
3705 	 */
3706 	if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3707 		return VM_FAULT_SIGBUS;
3708 
3709 	if (pte_marker_entry_uffd_wp(entry))
3710 		return pte_marker_handle_uffd_wp(vmf);
3711 
3712 	/* This is an unknown pte marker */
3713 	return VM_FAULT_SIGBUS;
3714 }
3715 
3716 /*
3717  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3718  * but allow concurrent faults), and pte mapped but not yet locked.
3719  * We return with pte unmapped and unlocked.
3720  *
3721  * We return with the mmap_lock locked or unlocked in the same cases
3722  * as does filemap_fault().
3723  */
3724 vm_fault_t do_swap_page(struct vm_fault *vmf)
3725 {
3726 	struct vm_area_struct *vma = vmf->vma;
3727 	struct folio *swapcache, *folio = NULL;
3728 	struct page *page;
3729 	struct swap_info_struct *si = NULL;
3730 	rmap_t rmap_flags = RMAP_NONE;
3731 	bool exclusive = false;
3732 	swp_entry_t entry;
3733 	pte_t pte;
3734 	int locked;
3735 	vm_fault_t ret = 0;
3736 	void *shadow = NULL;
3737 
3738 	if (!pte_unmap_same(vmf))
3739 		goto out;
3740 
3741 	entry = pte_to_swp_entry(vmf->orig_pte);
3742 	if (unlikely(non_swap_entry(entry))) {
3743 		if (is_migration_entry(entry)) {
3744 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3745 					     vmf->address);
3746 		} else if (is_device_exclusive_entry(entry)) {
3747 			vmf->page = pfn_swap_entry_to_page(entry);
3748 			ret = remove_device_exclusive_entry(vmf);
3749 		} else if (is_device_private_entry(entry)) {
3750 			vmf->page = pfn_swap_entry_to_page(entry);
3751 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3752 		} else if (is_hwpoison_entry(entry)) {
3753 			ret = VM_FAULT_HWPOISON;
3754 		} else if (is_swapin_error_entry(entry)) {
3755 			ret = VM_FAULT_SIGBUS;
3756 		} else if (is_pte_marker_entry(entry)) {
3757 			ret = handle_pte_marker(vmf);
3758 		} else {
3759 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3760 			ret = VM_FAULT_SIGBUS;
3761 		}
3762 		goto out;
3763 	}
3764 
3765 	/* Prevent swapoff from happening to us. */
3766 	si = get_swap_device(entry);
3767 	if (unlikely(!si))
3768 		goto out;
3769 
3770 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3771 	if (folio)
3772 		page = folio_file_page(folio, swp_offset(entry));
3773 	swapcache = folio;
3774 
3775 	if (!folio) {
3776 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3777 		    __swap_count(entry) == 1) {
3778 			/* skip swapcache */
3779 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3780 						vma, vmf->address, false);
3781 			page = &folio->page;
3782 			if (folio) {
3783 				__folio_set_locked(folio);
3784 				__folio_set_swapbacked(folio);
3785 
3786 				if (mem_cgroup_swapin_charge_folio(folio,
3787 							vma->vm_mm, GFP_KERNEL,
3788 							entry)) {
3789 					ret = VM_FAULT_OOM;
3790 					goto out_page;
3791 				}
3792 				mem_cgroup_swapin_uncharge_swap(entry);
3793 
3794 				shadow = get_shadow_from_swap_cache(entry);
3795 				if (shadow)
3796 					workingset_refault(folio, shadow);
3797 
3798 				folio_add_lru(folio);
3799 
3800 				/* To provide entry to swap_readpage() */
3801 				folio_set_swap_entry(folio, entry);
3802 				swap_readpage(page, true, NULL);
3803 				folio->private = NULL;
3804 			}
3805 		} else {
3806 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3807 						vmf);
3808 			if (page)
3809 				folio = page_folio(page);
3810 			swapcache = folio;
3811 		}
3812 
3813 		if (!folio) {
3814 			/*
3815 			 * Back out if somebody else faulted in this pte
3816 			 * while we released the pte lock.
3817 			 */
3818 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3819 					vmf->address, &vmf->ptl);
3820 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3821 				ret = VM_FAULT_OOM;
3822 			goto unlock;
3823 		}
3824 
3825 		/* Had to read the page from swap area: Major fault */
3826 		ret = VM_FAULT_MAJOR;
3827 		count_vm_event(PGMAJFAULT);
3828 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3829 	} else if (PageHWPoison(page)) {
3830 		/*
3831 		 * hwpoisoned dirty swapcache pages are kept for killing
3832 		 * owner processes (which may be unknown at hwpoison time)
3833 		 */
3834 		ret = VM_FAULT_HWPOISON;
3835 		goto out_release;
3836 	}
3837 
3838 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3839 
3840 	if (!locked) {
3841 		ret |= VM_FAULT_RETRY;
3842 		goto out_release;
3843 	}
3844 
3845 	if (swapcache) {
3846 		/*
3847 		 * Make sure folio_free_swap() or swapoff did not release the
3848 		 * swapcache from under us.  The page pin, and pte_same test
3849 		 * below, are not enough to exclude that.  Even if it is still
3850 		 * swapcache, we need to check that the page's swap has not
3851 		 * changed.
3852 		 */
3853 		if (unlikely(!folio_test_swapcache(folio) ||
3854 			     page_private(page) != entry.val))
3855 			goto out_page;
3856 
3857 		/*
3858 		 * KSM sometimes has to copy on read faults, for example, if
3859 		 * page->index of !PageKSM() pages would be nonlinear inside the
3860 		 * anon VMA -- PageKSM() is lost on actual swapout.
3861 		 */
3862 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3863 		if (unlikely(!page)) {
3864 			ret = VM_FAULT_OOM;
3865 			goto out_page;
3866 		}
3867 		folio = page_folio(page);
3868 
3869 		/*
3870 		 * If we want to map a page that's in the swapcache writable, we
3871 		 * have to detect via the refcount if we're really the exclusive
3872 		 * owner. Try removing the extra reference from the local LRU
3873 		 * pagevecs if required.
3874 		 */
3875 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3876 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3877 			lru_add_drain();
3878 	}
3879 
3880 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3881 
3882 	/*
3883 	 * Back out if somebody else already faulted in this pte.
3884 	 */
3885 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3886 			&vmf->ptl);
3887 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3888 		goto out_nomap;
3889 
3890 	if (unlikely(!folio_test_uptodate(folio))) {
3891 		ret = VM_FAULT_SIGBUS;
3892 		goto out_nomap;
3893 	}
3894 
3895 	/*
3896 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3897 	 * must never point at an anonymous page in the swapcache that is
3898 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3899 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3900 	 * check after taking the PT lock and making sure that nobody
3901 	 * concurrently faulted in this page and set PG_anon_exclusive.
3902 	 */
3903 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3904 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3905 
3906 	/*
3907 	 * Check under PT lock (to protect against concurrent fork() sharing
3908 	 * the swap entry concurrently) for certainly exclusive pages.
3909 	 */
3910 	if (!folio_test_ksm(folio)) {
3911 		/*
3912 		 * Note that pte_swp_exclusive() == false for architectures
3913 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3914 		 */
3915 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3916 		if (folio != swapcache) {
3917 			/*
3918 			 * We have a fresh page that is not exposed to the
3919 			 * swapcache -> certainly exclusive.
3920 			 */
3921 			exclusive = true;
3922 		} else if (exclusive && folio_test_writeback(folio) &&
3923 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3924 			/*
3925 			 * This is tricky: not all swap backends support
3926 			 * concurrent page modifications while under writeback.
3927 			 *
3928 			 * So if we stumble over such a page in the swapcache
3929 			 * we must not set the page exclusive, otherwise we can
3930 			 * map it writable without further checks and modify it
3931 			 * while still under writeback.
3932 			 *
3933 			 * For these problematic swap backends, simply drop the
3934 			 * exclusive marker: this is perfectly fine as we start
3935 			 * writeback only if we fully unmapped the page and
3936 			 * there are no unexpected references on the page after
3937 			 * unmapping succeeded. After fully unmapped, no
3938 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3939 			 * appear, so dropping the exclusive marker and mapping
3940 			 * it only R/O is fine.
3941 			 */
3942 			exclusive = false;
3943 		}
3944 	}
3945 
3946 	/*
3947 	 * Remove the swap entry and conditionally try to free up the swapcache.
3948 	 * We're already holding a reference on the page but haven't mapped it
3949 	 * yet.
3950 	 */
3951 	swap_free(entry);
3952 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3953 		folio_free_swap(folio);
3954 
3955 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3956 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3957 	pte = mk_pte(page, vma->vm_page_prot);
3958 
3959 	/*
3960 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3961 	 * certainly not shared either because we just allocated them without
3962 	 * exposing them to the swapcache or because the swap entry indicates
3963 	 * exclusivity.
3964 	 */
3965 	if (!folio_test_ksm(folio) &&
3966 	    (exclusive || folio_ref_count(folio) == 1)) {
3967 		if (vmf->flags & FAULT_FLAG_WRITE) {
3968 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3969 			vmf->flags &= ~FAULT_FLAG_WRITE;
3970 			ret |= VM_FAULT_WRITE;
3971 		}
3972 		rmap_flags |= RMAP_EXCLUSIVE;
3973 	}
3974 	flush_icache_page(vma, page);
3975 	if (pte_swp_soft_dirty(vmf->orig_pte))
3976 		pte = pte_mksoft_dirty(pte);
3977 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3978 		pte = pte_mkuffd_wp(pte);
3979 		pte = pte_wrprotect(pte);
3980 	}
3981 	vmf->orig_pte = pte;
3982 
3983 	/* ksm created a completely new copy */
3984 	if (unlikely(folio != swapcache && swapcache)) {
3985 		page_add_new_anon_rmap(page, vma, vmf->address);
3986 		folio_add_lru_vma(folio, vma);
3987 	} else {
3988 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3989 	}
3990 
3991 	VM_BUG_ON(!folio_test_anon(folio) ||
3992 			(pte_write(pte) && !PageAnonExclusive(page)));
3993 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3994 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3995 
3996 	folio_unlock(folio);
3997 	if (folio != swapcache && swapcache) {
3998 		/*
3999 		 * Hold the lock to avoid the swap entry to be reused
4000 		 * until we take the PT lock for the pte_same() check
4001 		 * (to avoid false positives from pte_same). For
4002 		 * further safety release the lock after the swap_free
4003 		 * so that the swap count won't change under a
4004 		 * parallel locked swapcache.
4005 		 */
4006 		folio_unlock(swapcache);
4007 		folio_put(swapcache);
4008 	}
4009 
4010 	if (vmf->flags & FAULT_FLAG_WRITE) {
4011 		ret |= do_wp_page(vmf);
4012 		if (ret & VM_FAULT_ERROR)
4013 			ret &= VM_FAULT_ERROR;
4014 		goto out;
4015 	}
4016 
4017 	/* No need to invalidate - it was non-present before */
4018 	update_mmu_cache(vma, vmf->address, vmf->pte);
4019 unlock:
4020 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4021 out:
4022 	if (si)
4023 		put_swap_device(si);
4024 	return ret;
4025 out_nomap:
4026 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4027 out_page:
4028 	folio_unlock(folio);
4029 out_release:
4030 	folio_put(folio);
4031 	if (folio != swapcache && swapcache) {
4032 		folio_unlock(swapcache);
4033 		folio_put(swapcache);
4034 	}
4035 	if (si)
4036 		put_swap_device(si);
4037 	return ret;
4038 }
4039 
4040 /*
4041  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4042  * but allow concurrent faults), and pte mapped but not yet locked.
4043  * We return with mmap_lock still held, but pte unmapped and unlocked.
4044  */
4045 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4046 {
4047 	struct vm_area_struct *vma = vmf->vma;
4048 	struct page *page;
4049 	vm_fault_t ret = 0;
4050 	pte_t entry;
4051 
4052 	/* File mapping without ->vm_ops ? */
4053 	if (vma->vm_flags & VM_SHARED)
4054 		return VM_FAULT_SIGBUS;
4055 
4056 	/*
4057 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4058 	 * pte_offset_map() on pmds where a huge pmd might be created
4059 	 * from a different thread.
4060 	 *
4061 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4062 	 * parallel threads are excluded by other means.
4063 	 *
4064 	 * Here we only have mmap_read_lock(mm).
4065 	 */
4066 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4067 		return VM_FAULT_OOM;
4068 
4069 	/* See comment in handle_pte_fault() */
4070 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4071 		return 0;
4072 
4073 	/* Use the zero-page for reads */
4074 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4075 			!mm_forbids_zeropage(vma->vm_mm)) {
4076 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4077 						vma->vm_page_prot));
4078 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4079 				vmf->address, &vmf->ptl);
4080 		if (!pte_none(*vmf->pte)) {
4081 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4082 			goto unlock;
4083 		}
4084 		ret = check_stable_address_space(vma->vm_mm);
4085 		if (ret)
4086 			goto unlock;
4087 		/* Deliver the page fault to userland, check inside PT lock */
4088 		if (userfaultfd_missing(vma)) {
4089 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4090 			return handle_userfault(vmf, VM_UFFD_MISSING);
4091 		}
4092 		goto setpte;
4093 	}
4094 
4095 	/* Allocate our own private page. */
4096 	if (unlikely(anon_vma_prepare(vma)))
4097 		goto oom;
4098 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4099 	if (!page)
4100 		goto oom;
4101 
4102 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4103 		goto oom_free_page;
4104 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4105 
4106 	/*
4107 	 * The memory barrier inside __SetPageUptodate makes sure that
4108 	 * preceding stores to the page contents become visible before
4109 	 * the set_pte_at() write.
4110 	 */
4111 	__SetPageUptodate(page);
4112 
4113 	entry = mk_pte(page, vma->vm_page_prot);
4114 	entry = pte_sw_mkyoung(entry);
4115 	if (vma->vm_flags & VM_WRITE)
4116 		entry = pte_mkwrite(pte_mkdirty(entry));
4117 
4118 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4119 			&vmf->ptl);
4120 	if (!pte_none(*vmf->pte)) {
4121 		update_mmu_cache(vma, vmf->address, vmf->pte);
4122 		goto release;
4123 	}
4124 
4125 	ret = check_stable_address_space(vma->vm_mm);
4126 	if (ret)
4127 		goto release;
4128 
4129 	/* Deliver the page fault to userland, check inside PT lock */
4130 	if (userfaultfd_missing(vma)) {
4131 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4132 		put_page(page);
4133 		return handle_userfault(vmf, VM_UFFD_MISSING);
4134 	}
4135 
4136 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4137 	page_add_new_anon_rmap(page, vma, vmf->address);
4138 	lru_cache_add_inactive_or_unevictable(page, vma);
4139 setpte:
4140 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4141 
4142 	/* No need to invalidate - it was non-present before */
4143 	update_mmu_cache(vma, vmf->address, vmf->pte);
4144 unlock:
4145 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4146 	return ret;
4147 release:
4148 	put_page(page);
4149 	goto unlock;
4150 oom_free_page:
4151 	put_page(page);
4152 oom:
4153 	return VM_FAULT_OOM;
4154 }
4155 
4156 /*
4157  * The mmap_lock must have been held on entry, and may have been
4158  * released depending on flags and vma->vm_ops->fault() return value.
4159  * See filemap_fault() and __lock_page_retry().
4160  */
4161 static vm_fault_t __do_fault(struct vm_fault *vmf)
4162 {
4163 	struct vm_area_struct *vma = vmf->vma;
4164 	vm_fault_t ret;
4165 
4166 	/*
4167 	 * Preallocate pte before we take page_lock because this might lead to
4168 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4169 	 *				lock_page(A)
4170 	 *				SetPageWriteback(A)
4171 	 *				unlock_page(A)
4172 	 * lock_page(B)
4173 	 *				lock_page(B)
4174 	 * pte_alloc_one
4175 	 *   shrink_page_list
4176 	 *     wait_on_page_writeback(A)
4177 	 *				SetPageWriteback(B)
4178 	 *				unlock_page(B)
4179 	 *				# flush A, B to clear the writeback
4180 	 */
4181 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4182 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4183 		if (!vmf->prealloc_pte)
4184 			return VM_FAULT_OOM;
4185 	}
4186 
4187 	ret = vma->vm_ops->fault(vmf);
4188 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4189 			    VM_FAULT_DONE_COW)))
4190 		return ret;
4191 
4192 	if (unlikely(PageHWPoison(vmf->page))) {
4193 		struct page *page = vmf->page;
4194 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4195 		if (ret & VM_FAULT_LOCKED) {
4196 			if (page_mapped(page))
4197 				unmap_mapping_pages(page_mapping(page),
4198 						    page->index, 1, false);
4199 			/* Retry if a clean page was removed from the cache. */
4200 			if (invalidate_inode_page(page))
4201 				poisonret = VM_FAULT_NOPAGE;
4202 			unlock_page(page);
4203 		}
4204 		put_page(page);
4205 		vmf->page = NULL;
4206 		return poisonret;
4207 	}
4208 
4209 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4210 		lock_page(vmf->page);
4211 	else
4212 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4213 
4214 	return ret;
4215 }
4216 
4217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4218 static void deposit_prealloc_pte(struct vm_fault *vmf)
4219 {
4220 	struct vm_area_struct *vma = vmf->vma;
4221 
4222 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4223 	/*
4224 	 * We are going to consume the prealloc table,
4225 	 * count that as nr_ptes.
4226 	 */
4227 	mm_inc_nr_ptes(vma->vm_mm);
4228 	vmf->prealloc_pte = NULL;
4229 }
4230 
4231 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4232 {
4233 	struct vm_area_struct *vma = vmf->vma;
4234 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4235 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4236 	pmd_t entry;
4237 	int i;
4238 	vm_fault_t ret = VM_FAULT_FALLBACK;
4239 
4240 	if (!transhuge_vma_suitable(vma, haddr))
4241 		return ret;
4242 
4243 	page = compound_head(page);
4244 	if (compound_order(page) != HPAGE_PMD_ORDER)
4245 		return ret;
4246 
4247 	/*
4248 	 * Just backoff if any subpage of a THP is corrupted otherwise
4249 	 * the corrupted page may mapped by PMD silently to escape the
4250 	 * check.  This kind of THP just can be PTE mapped.  Access to
4251 	 * the corrupted subpage should trigger SIGBUS as expected.
4252 	 */
4253 	if (unlikely(PageHasHWPoisoned(page)))
4254 		return ret;
4255 
4256 	/*
4257 	 * Archs like ppc64 need additional space to store information
4258 	 * related to pte entry. Use the preallocated table for that.
4259 	 */
4260 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4261 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4262 		if (!vmf->prealloc_pte)
4263 			return VM_FAULT_OOM;
4264 	}
4265 
4266 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4267 	if (unlikely(!pmd_none(*vmf->pmd)))
4268 		goto out;
4269 
4270 	for (i = 0; i < HPAGE_PMD_NR; i++)
4271 		flush_icache_page(vma, page + i);
4272 
4273 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4274 	if (write)
4275 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4276 
4277 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4278 	page_add_file_rmap(page, vma, true);
4279 
4280 	/*
4281 	 * deposit and withdraw with pmd lock held
4282 	 */
4283 	if (arch_needs_pgtable_deposit())
4284 		deposit_prealloc_pte(vmf);
4285 
4286 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4287 
4288 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4289 
4290 	/* fault is handled */
4291 	ret = 0;
4292 	count_vm_event(THP_FILE_MAPPED);
4293 out:
4294 	spin_unlock(vmf->ptl);
4295 	return ret;
4296 }
4297 #else
4298 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4299 {
4300 	return VM_FAULT_FALLBACK;
4301 }
4302 #endif
4303 
4304 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4305 {
4306 	struct vm_area_struct *vma = vmf->vma;
4307 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4308 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4309 	bool prefault = vmf->address != addr;
4310 	pte_t entry;
4311 
4312 	flush_icache_page(vma, page);
4313 	entry = mk_pte(page, vma->vm_page_prot);
4314 
4315 	if (prefault && arch_wants_old_prefaulted_pte())
4316 		entry = pte_mkold(entry);
4317 	else
4318 		entry = pte_sw_mkyoung(entry);
4319 
4320 	if (write)
4321 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4322 	if (unlikely(uffd_wp))
4323 		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4324 	/* copy-on-write page */
4325 	if (write && !(vma->vm_flags & VM_SHARED)) {
4326 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4327 		page_add_new_anon_rmap(page, vma, addr);
4328 		lru_cache_add_inactive_or_unevictable(page, vma);
4329 	} else {
4330 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4331 		page_add_file_rmap(page, vma, false);
4332 	}
4333 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4334 }
4335 
4336 static bool vmf_pte_changed(struct vm_fault *vmf)
4337 {
4338 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4339 		return !pte_same(*vmf->pte, vmf->orig_pte);
4340 
4341 	return !pte_none(*vmf->pte);
4342 }
4343 
4344 /**
4345  * finish_fault - finish page fault once we have prepared the page to fault
4346  *
4347  * @vmf: structure describing the fault
4348  *
4349  * This function handles all that is needed to finish a page fault once the
4350  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4351  * given page, adds reverse page mapping, handles memcg charges and LRU
4352  * addition.
4353  *
4354  * The function expects the page to be locked and on success it consumes a
4355  * reference of a page being mapped (for the PTE which maps it).
4356  *
4357  * Return: %0 on success, %VM_FAULT_ code in case of error.
4358  */
4359 vm_fault_t finish_fault(struct vm_fault *vmf)
4360 {
4361 	struct vm_area_struct *vma = vmf->vma;
4362 	struct page *page;
4363 	vm_fault_t ret;
4364 
4365 	/* Did we COW the page? */
4366 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4367 		page = vmf->cow_page;
4368 	else
4369 		page = vmf->page;
4370 
4371 	/*
4372 	 * check even for read faults because we might have lost our CoWed
4373 	 * page
4374 	 */
4375 	if (!(vma->vm_flags & VM_SHARED)) {
4376 		ret = check_stable_address_space(vma->vm_mm);
4377 		if (ret)
4378 			return ret;
4379 	}
4380 
4381 	if (pmd_none(*vmf->pmd)) {
4382 		if (PageTransCompound(page)) {
4383 			ret = do_set_pmd(vmf, page);
4384 			if (ret != VM_FAULT_FALLBACK)
4385 				return ret;
4386 		}
4387 
4388 		if (vmf->prealloc_pte)
4389 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4390 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4391 			return VM_FAULT_OOM;
4392 	}
4393 
4394 	/*
4395 	 * See comment in handle_pte_fault() for how this scenario happens, we
4396 	 * need to return NOPAGE so that we drop this page.
4397 	 */
4398 	if (pmd_devmap_trans_unstable(vmf->pmd))
4399 		return VM_FAULT_NOPAGE;
4400 
4401 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4402 				      vmf->address, &vmf->ptl);
4403 
4404 	/* Re-check under ptl */
4405 	if (likely(!vmf_pte_changed(vmf))) {
4406 		do_set_pte(vmf, page, vmf->address);
4407 
4408 		/* no need to invalidate: a not-present page won't be cached */
4409 		update_mmu_cache(vma, vmf->address, vmf->pte);
4410 
4411 		ret = 0;
4412 	} else {
4413 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4414 		ret = VM_FAULT_NOPAGE;
4415 	}
4416 
4417 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4418 	return ret;
4419 }
4420 
4421 static unsigned long fault_around_bytes __read_mostly =
4422 	rounddown_pow_of_two(65536);
4423 
4424 #ifdef CONFIG_DEBUG_FS
4425 static int fault_around_bytes_get(void *data, u64 *val)
4426 {
4427 	*val = fault_around_bytes;
4428 	return 0;
4429 }
4430 
4431 /*
4432  * fault_around_bytes must be rounded down to the nearest page order as it's
4433  * what do_fault_around() expects to see.
4434  */
4435 static int fault_around_bytes_set(void *data, u64 val)
4436 {
4437 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4438 		return -EINVAL;
4439 	if (val > PAGE_SIZE)
4440 		fault_around_bytes = rounddown_pow_of_two(val);
4441 	else
4442 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4443 	return 0;
4444 }
4445 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4446 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4447 
4448 static int __init fault_around_debugfs(void)
4449 {
4450 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4451 				   &fault_around_bytes_fops);
4452 	return 0;
4453 }
4454 late_initcall(fault_around_debugfs);
4455 #endif
4456 
4457 /*
4458  * do_fault_around() tries to map few pages around the fault address. The hope
4459  * is that the pages will be needed soon and this will lower the number of
4460  * faults to handle.
4461  *
4462  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4463  * not ready to be mapped: not up-to-date, locked, etc.
4464  *
4465  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4466  * only once.
4467  *
4468  * fault_around_bytes defines how many bytes we'll try to map.
4469  * do_fault_around() expects it to be set to a power of two less than or equal
4470  * to PTRS_PER_PTE.
4471  *
4472  * The virtual address of the area that we map is naturally aligned to
4473  * fault_around_bytes rounded down to the machine page size
4474  * (and therefore to page order).  This way it's easier to guarantee
4475  * that we don't cross page table boundaries.
4476  */
4477 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4478 {
4479 	unsigned long address = vmf->address, nr_pages, mask;
4480 	pgoff_t start_pgoff = vmf->pgoff;
4481 	pgoff_t end_pgoff;
4482 	int off;
4483 
4484 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4485 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4486 
4487 	address = max(address & mask, vmf->vma->vm_start);
4488 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4489 	start_pgoff -= off;
4490 
4491 	/*
4492 	 *  end_pgoff is either the end of the page table, the end of
4493 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4494 	 */
4495 	end_pgoff = start_pgoff -
4496 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4497 		PTRS_PER_PTE - 1;
4498 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4499 			start_pgoff + nr_pages - 1);
4500 
4501 	if (pmd_none(*vmf->pmd)) {
4502 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4503 		if (!vmf->prealloc_pte)
4504 			return VM_FAULT_OOM;
4505 	}
4506 
4507 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4508 }
4509 
4510 /* Return true if we should do read fault-around, false otherwise */
4511 static inline bool should_fault_around(struct vm_fault *vmf)
4512 {
4513 	/* No ->map_pages?  No way to fault around... */
4514 	if (!vmf->vma->vm_ops->map_pages)
4515 		return false;
4516 
4517 	if (uffd_disable_fault_around(vmf->vma))
4518 		return false;
4519 
4520 	return fault_around_bytes >> PAGE_SHIFT > 1;
4521 }
4522 
4523 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4524 {
4525 	vm_fault_t ret = 0;
4526 
4527 	/*
4528 	 * Let's call ->map_pages() first and use ->fault() as fallback
4529 	 * if page by the offset is not ready to be mapped (cold cache or
4530 	 * something).
4531 	 */
4532 	if (should_fault_around(vmf)) {
4533 		ret = do_fault_around(vmf);
4534 		if (ret)
4535 			return ret;
4536 	}
4537 
4538 	ret = __do_fault(vmf);
4539 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4540 		return ret;
4541 
4542 	ret |= finish_fault(vmf);
4543 	unlock_page(vmf->page);
4544 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4545 		put_page(vmf->page);
4546 	return ret;
4547 }
4548 
4549 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4550 {
4551 	struct vm_area_struct *vma = vmf->vma;
4552 	vm_fault_t ret;
4553 
4554 	if (unlikely(anon_vma_prepare(vma)))
4555 		return VM_FAULT_OOM;
4556 
4557 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4558 	if (!vmf->cow_page)
4559 		return VM_FAULT_OOM;
4560 
4561 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4562 				GFP_KERNEL)) {
4563 		put_page(vmf->cow_page);
4564 		return VM_FAULT_OOM;
4565 	}
4566 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4567 
4568 	ret = __do_fault(vmf);
4569 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4570 		goto uncharge_out;
4571 	if (ret & VM_FAULT_DONE_COW)
4572 		return ret;
4573 
4574 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4575 	__SetPageUptodate(vmf->cow_page);
4576 
4577 	ret |= finish_fault(vmf);
4578 	unlock_page(vmf->page);
4579 	put_page(vmf->page);
4580 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4581 		goto uncharge_out;
4582 	return ret;
4583 uncharge_out:
4584 	put_page(vmf->cow_page);
4585 	return ret;
4586 }
4587 
4588 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4589 {
4590 	struct vm_area_struct *vma = vmf->vma;
4591 	vm_fault_t ret, tmp;
4592 
4593 	ret = __do_fault(vmf);
4594 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4595 		return ret;
4596 
4597 	/*
4598 	 * Check if the backing address space wants to know that the page is
4599 	 * about to become writable
4600 	 */
4601 	if (vma->vm_ops->page_mkwrite) {
4602 		unlock_page(vmf->page);
4603 		tmp = do_page_mkwrite(vmf);
4604 		if (unlikely(!tmp ||
4605 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4606 			put_page(vmf->page);
4607 			return tmp;
4608 		}
4609 	}
4610 
4611 	ret |= finish_fault(vmf);
4612 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4613 					VM_FAULT_RETRY))) {
4614 		unlock_page(vmf->page);
4615 		put_page(vmf->page);
4616 		return ret;
4617 	}
4618 
4619 	ret |= fault_dirty_shared_page(vmf);
4620 	return ret;
4621 }
4622 
4623 /*
4624  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4625  * but allow concurrent faults).
4626  * The mmap_lock may have been released depending on flags and our
4627  * return value.  See filemap_fault() and __folio_lock_or_retry().
4628  * If mmap_lock is released, vma may become invalid (for example
4629  * by other thread calling munmap()).
4630  */
4631 static vm_fault_t do_fault(struct vm_fault *vmf)
4632 {
4633 	struct vm_area_struct *vma = vmf->vma;
4634 	struct mm_struct *vm_mm = vma->vm_mm;
4635 	vm_fault_t ret;
4636 
4637 	/*
4638 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4639 	 */
4640 	if (!vma->vm_ops->fault) {
4641 		/*
4642 		 * If we find a migration pmd entry or a none pmd entry, which
4643 		 * should never happen, return SIGBUS
4644 		 */
4645 		if (unlikely(!pmd_present(*vmf->pmd)))
4646 			ret = VM_FAULT_SIGBUS;
4647 		else {
4648 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4649 						       vmf->pmd,
4650 						       vmf->address,
4651 						       &vmf->ptl);
4652 			/*
4653 			 * Make sure this is not a temporary clearing of pte
4654 			 * by holding ptl and checking again. A R/M/W update
4655 			 * of pte involves: take ptl, clearing the pte so that
4656 			 * we don't have concurrent modification by hardware
4657 			 * followed by an update.
4658 			 */
4659 			if (unlikely(pte_none(*vmf->pte)))
4660 				ret = VM_FAULT_SIGBUS;
4661 			else
4662 				ret = VM_FAULT_NOPAGE;
4663 
4664 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4665 		}
4666 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4667 		ret = do_read_fault(vmf);
4668 	else if (!(vma->vm_flags & VM_SHARED))
4669 		ret = do_cow_fault(vmf);
4670 	else
4671 		ret = do_shared_fault(vmf);
4672 
4673 	/* preallocated pagetable is unused: free it */
4674 	if (vmf->prealloc_pte) {
4675 		pte_free(vm_mm, vmf->prealloc_pte);
4676 		vmf->prealloc_pte = NULL;
4677 	}
4678 	return ret;
4679 }
4680 
4681 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4682 		      unsigned long addr, int page_nid, int *flags)
4683 {
4684 	get_page(page);
4685 
4686 	count_vm_numa_event(NUMA_HINT_FAULTS);
4687 	if (page_nid == numa_node_id()) {
4688 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4689 		*flags |= TNF_FAULT_LOCAL;
4690 	}
4691 
4692 	return mpol_misplaced(page, vma, addr);
4693 }
4694 
4695 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4696 {
4697 	struct vm_area_struct *vma = vmf->vma;
4698 	struct page *page = NULL;
4699 	int page_nid = NUMA_NO_NODE;
4700 	int last_cpupid;
4701 	int target_nid;
4702 	pte_t pte, old_pte;
4703 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4704 	int flags = 0;
4705 
4706 	/*
4707 	 * The "pte" at this point cannot be used safely without
4708 	 * validation through pte_unmap_same(). It's of NUMA type but
4709 	 * the pfn may be screwed if the read is non atomic.
4710 	 */
4711 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4712 	spin_lock(vmf->ptl);
4713 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4714 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4715 		goto out;
4716 	}
4717 
4718 	/* Get the normal PTE  */
4719 	old_pte = ptep_get(vmf->pte);
4720 	pte = pte_modify(old_pte, vma->vm_page_prot);
4721 
4722 	page = vm_normal_page(vma, vmf->address, pte);
4723 	if (!page || is_zone_device_page(page))
4724 		goto out_map;
4725 
4726 	/* TODO: handle PTE-mapped THP */
4727 	if (PageCompound(page))
4728 		goto out_map;
4729 
4730 	/*
4731 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4732 	 * much anyway since they can be in shared cache state. This misses
4733 	 * the case where a mapping is writable but the process never writes
4734 	 * to it but pte_write gets cleared during protection updates and
4735 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4736 	 * background writeback, dirty balancing and application behaviour.
4737 	 */
4738 	if (!was_writable)
4739 		flags |= TNF_NO_GROUP;
4740 
4741 	/*
4742 	 * Flag if the page is shared between multiple address spaces. This
4743 	 * is later used when determining whether to group tasks together
4744 	 */
4745 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4746 		flags |= TNF_SHARED;
4747 
4748 	page_nid = page_to_nid(page);
4749 	/*
4750 	 * For memory tiering mode, cpupid of slow memory page is used
4751 	 * to record page access time.  So use default value.
4752 	 */
4753 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4754 	    !node_is_toptier(page_nid))
4755 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4756 	else
4757 		last_cpupid = page_cpupid_last(page);
4758 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4759 			&flags);
4760 	if (target_nid == NUMA_NO_NODE) {
4761 		put_page(page);
4762 		goto out_map;
4763 	}
4764 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4765 
4766 	/* Migrate to the requested node */
4767 	if (migrate_misplaced_page(page, vma, target_nid)) {
4768 		page_nid = target_nid;
4769 		flags |= TNF_MIGRATED;
4770 	} else {
4771 		flags |= TNF_MIGRATE_FAIL;
4772 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4773 		spin_lock(vmf->ptl);
4774 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4775 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4776 			goto out;
4777 		}
4778 		goto out_map;
4779 	}
4780 
4781 out:
4782 	if (page_nid != NUMA_NO_NODE)
4783 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4784 	return 0;
4785 out_map:
4786 	/*
4787 	 * Make it present again, depending on how arch implements
4788 	 * non-accessible ptes, some can allow access by kernel mode.
4789 	 */
4790 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4791 	pte = pte_modify(old_pte, vma->vm_page_prot);
4792 	pte = pte_mkyoung(pte);
4793 	if (was_writable)
4794 		pte = pte_mkwrite(pte);
4795 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4796 	update_mmu_cache(vma, vmf->address, vmf->pte);
4797 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4798 	goto out;
4799 }
4800 
4801 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4802 {
4803 	if (vma_is_anonymous(vmf->vma))
4804 		return do_huge_pmd_anonymous_page(vmf);
4805 	if (vmf->vma->vm_ops->huge_fault)
4806 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4807 	return VM_FAULT_FALLBACK;
4808 }
4809 
4810 /* `inline' is required to avoid gcc 4.1.2 build error */
4811 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4812 {
4813 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4814 
4815 	if (vma_is_anonymous(vmf->vma)) {
4816 		if (likely(!unshare) &&
4817 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4818 			return handle_userfault(vmf, VM_UFFD_WP);
4819 		return do_huge_pmd_wp_page(vmf);
4820 	}
4821 	if (vmf->vma->vm_ops->huge_fault) {
4822 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4823 
4824 		if (!(ret & VM_FAULT_FALLBACK))
4825 			return ret;
4826 	}
4827 
4828 	/* COW or write-notify handled on pte level: split pmd. */
4829 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4830 
4831 	return VM_FAULT_FALLBACK;
4832 }
4833 
4834 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4835 {
4836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4837 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4838 	/* No support for anonymous transparent PUD pages yet */
4839 	if (vma_is_anonymous(vmf->vma))
4840 		return VM_FAULT_FALLBACK;
4841 	if (vmf->vma->vm_ops->huge_fault)
4842 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4843 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4844 	return VM_FAULT_FALLBACK;
4845 }
4846 
4847 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4848 {
4849 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4850 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4851 	/* No support for anonymous transparent PUD pages yet */
4852 	if (vma_is_anonymous(vmf->vma))
4853 		goto split;
4854 	if (vmf->vma->vm_ops->huge_fault) {
4855 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4856 
4857 		if (!(ret & VM_FAULT_FALLBACK))
4858 			return ret;
4859 	}
4860 split:
4861 	/* COW or write-notify not handled on PUD level: split pud.*/
4862 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4863 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4864 	return VM_FAULT_FALLBACK;
4865 }
4866 
4867 /*
4868  * These routines also need to handle stuff like marking pages dirty
4869  * and/or accessed for architectures that don't do it in hardware (most
4870  * RISC architectures).  The early dirtying is also good on the i386.
4871  *
4872  * There is also a hook called "update_mmu_cache()" that architectures
4873  * with external mmu caches can use to update those (ie the Sparc or
4874  * PowerPC hashed page tables that act as extended TLBs).
4875  *
4876  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4877  * concurrent faults).
4878  *
4879  * The mmap_lock may have been released depending on flags and our return value.
4880  * See filemap_fault() and __folio_lock_or_retry().
4881  */
4882 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4883 {
4884 	pte_t entry;
4885 
4886 	if (unlikely(pmd_none(*vmf->pmd))) {
4887 		/*
4888 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4889 		 * want to allocate huge page, and if we expose page table
4890 		 * for an instant, it will be difficult to retract from
4891 		 * concurrent faults and from rmap lookups.
4892 		 */
4893 		vmf->pte = NULL;
4894 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4895 	} else {
4896 		/*
4897 		 * If a huge pmd materialized under us just retry later.  Use
4898 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4899 		 * of pmd_trans_huge() to ensure the pmd didn't become
4900 		 * pmd_trans_huge under us and then back to pmd_none, as a
4901 		 * result of MADV_DONTNEED running immediately after a huge pmd
4902 		 * fault in a different thread of this mm, in turn leading to a
4903 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4904 		 * that it is a regular pmd that we can walk with
4905 		 * pte_offset_map() and we can do that through an atomic read
4906 		 * in C, which is what pmd_trans_unstable() provides.
4907 		 */
4908 		if (pmd_devmap_trans_unstable(vmf->pmd))
4909 			return 0;
4910 		/*
4911 		 * A regular pmd is established and it can't morph into a huge
4912 		 * pmd from under us anymore at this point because we hold the
4913 		 * mmap_lock read mode and khugepaged takes it in write mode.
4914 		 * So now it's safe to run pte_offset_map().
4915 		 */
4916 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4917 		vmf->orig_pte = *vmf->pte;
4918 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4919 
4920 		/*
4921 		 * some architectures can have larger ptes than wordsize,
4922 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4923 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4924 		 * accesses.  The code below just needs a consistent view
4925 		 * for the ifs and we later double check anyway with the
4926 		 * ptl lock held. So here a barrier will do.
4927 		 */
4928 		barrier();
4929 		if (pte_none(vmf->orig_pte)) {
4930 			pte_unmap(vmf->pte);
4931 			vmf->pte = NULL;
4932 		}
4933 	}
4934 
4935 	if (!vmf->pte) {
4936 		if (vma_is_anonymous(vmf->vma))
4937 			return do_anonymous_page(vmf);
4938 		else
4939 			return do_fault(vmf);
4940 	}
4941 
4942 	if (!pte_present(vmf->orig_pte))
4943 		return do_swap_page(vmf);
4944 
4945 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4946 		return do_numa_page(vmf);
4947 
4948 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4949 	spin_lock(vmf->ptl);
4950 	entry = vmf->orig_pte;
4951 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4952 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4953 		goto unlock;
4954 	}
4955 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4956 		if (!pte_write(entry))
4957 			return do_wp_page(vmf);
4958 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4959 			entry = pte_mkdirty(entry);
4960 	}
4961 	entry = pte_mkyoung(entry);
4962 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4963 				vmf->flags & FAULT_FLAG_WRITE)) {
4964 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4965 	} else {
4966 		/* Skip spurious TLB flush for retried page fault */
4967 		if (vmf->flags & FAULT_FLAG_TRIED)
4968 			goto unlock;
4969 		/*
4970 		 * This is needed only for protection faults but the arch code
4971 		 * is not yet telling us if this is a protection fault or not.
4972 		 * This still avoids useless tlb flushes for .text page faults
4973 		 * with threads.
4974 		 */
4975 		if (vmf->flags & FAULT_FLAG_WRITE)
4976 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4977 	}
4978 unlock:
4979 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4980 	return 0;
4981 }
4982 
4983 /*
4984  * By the time we get here, we already hold the mm semaphore
4985  *
4986  * The mmap_lock may have been released depending on flags and our
4987  * return value.  See filemap_fault() and __folio_lock_or_retry().
4988  */
4989 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4990 		unsigned long address, unsigned int flags)
4991 {
4992 	struct vm_fault vmf = {
4993 		.vma = vma,
4994 		.address = address & PAGE_MASK,
4995 		.real_address = address,
4996 		.flags = flags,
4997 		.pgoff = linear_page_index(vma, address),
4998 		.gfp_mask = __get_fault_gfp_mask(vma),
4999 	};
5000 	struct mm_struct *mm = vma->vm_mm;
5001 	unsigned long vm_flags = vma->vm_flags;
5002 	pgd_t *pgd;
5003 	p4d_t *p4d;
5004 	vm_fault_t ret;
5005 
5006 	pgd = pgd_offset(mm, address);
5007 	p4d = p4d_alloc(mm, pgd, address);
5008 	if (!p4d)
5009 		return VM_FAULT_OOM;
5010 
5011 	vmf.pud = pud_alloc(mm, p4d, address);
5012 	if (!vmf.pud)
5013 		return VM_FAULT_OOM;
5014 retry_pud:
5015 	if (pud_none(*vmf.pud) &&
5016 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5017 		ret = create_huge_pud(&vmf);
5018 		if (!(ret & VM_FAULT_FALLBACK))
5019 			return ret;
5020 	} else {
5021 		pud_t orig_pud = *vmf.pud;
5022 
5023 		barrier();
5024 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5025 
5026 			/*
5027 			 * TODO once we support anonymous PUDs: NUMA case and
5028 			 * FAULT_FLAG_UNSHARE handling.
5029 			 */
5030 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5031 				ret = wp_huge_pud(&vmf, orig_pud);
5032 				if (!(ret & VM_FAULT_FALLBACK))
5033 					return ret;
5034 			} else {
5035 				huge_pud_set_accessed(&vmf, orig_pud);
5036 				return 0;
5037 			}
5038 		}
5039 	}
5040 
5041 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5042 	if (!vmf.pmd)
5043 		return VM_FAULT_OOM;
5044 
5045 	/* Huge pud page fault raced with pmd_alloc? */
5046 	if (pud_trans_unstable(vmf.pud))
5047 		goto retry_pud;
5048 
5049 	if (pmd_none(*vmf.pmd) &&
5050 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5051 		ret = create_huge_pmd(&vmf);
5052 		if (!(ret & VM_FAULT_FALLBACK))
5053 			return ret;
5054 	} else {
5055 		vmf.orig_pmd = *vmf.pmd;
5056 
5057 		barrier();
5058 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5059 			VM_BUG_ON(thp_migration_supported() &&
5060 					  !is_pmd_migration_entry(vmf.orig_pmd));
5061 			if (is_pmd_migration_entry(vmf.orig_pmd))
5062 				pmd_migration_entry_wait(mm, vmf.pmd);
5063 			return 0;
5064 		}
5065 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5066 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5067 				return do_huge_pmd_numa_page(&vmf);
5068 
5069 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5070 			    !pmd_write(vmf.orig_pmd)) {
5071 				ret = wp_huge_pmd(&vmf);
5072 				if (!(ret & VM_FAULT_FALLBACK))
5073 					return ret;
5074 			} else {
5075 				huge_pmd_set_accessed(&vmf);
5076 				return 0;
5077 			}
5078 		}
5079 	}
5080 
5081 	return handle_pte_fault(&vmf);
5082 }
5083 
5084 /**
5085  * mm_account_fault - Do page fault accounting
5086  *
5087  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5088  *        of perf event counters, but we'll still do the per-task accounting to
5089  *        the task who triggered this page fault.
5090  * @address: the faulted address.
5091  * @flags: the fault flags.
5092  * @ret: the fault retcode.
5093  *
5094  * This will take care of most of the page fault accounting.  Meanwhile, it
5095  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5096  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5097  * still be in per-arch page fault handlers at the entry of page fault.
5098  */
5099 static inline void mm_account_fault(struct pt_regs *regs,
5100 				    unsigned long address, unsigned int flags,
5101 				    vm_fault_t ret)
5102 {
5103 	bool major;
5104 
5105 	/*
5106 	 * We don't do accounting for some specific faults:
5107 	 *
5108 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5109 	 *   includes arch_vma_access_permitted() failing before reaching here.
5110 	 *   So this is not a "this many hardware page faults" counter.  We
5111 	 *   should use the hw profiling for that.
5112 	 *
5113 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5114 	 *   once they're completed.
5115 	 */
5116 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5117 		return;
5118 
5119 	/*
5120 	 * We define the fault as a major fault when the final successful fault
5121 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5122 	 * handle it immediately previously).
5123 	 */
5124 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5125 
5126 	if (major)
5127 		current->maj_flt++;
5128 	else
5129 		current->min_flt++;
5130 
5131 	/*
5132 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5133 	 * accounting for the per thread fault counters who triggered the
5134 	 * fault, and we skip the perf event updates.
5135 	 */
5136 	if (!regs)
5137 		return;
5138 
5139 	if (major)
5140 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5141 	else
5142 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5143 }
5144 
5145 #ifdef CONFIG_LRU_GEN
5146 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5147 {
5148 	/* the LRU algorithm doesn't apply to sequential or random reads */
5149 	current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5150 }
5151 
5152 static void lru_gen_exit_fault(void)
5153 {
5154 	current->in_lru_fault = false;
5155 }
5156 #else
5157 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5158 {
5159 }
5160 
5161 static void lru_gen_exit_fault(void)
5162 {
5163 }
5164 #endif /* CONFIG_LRU_GEN */
5165 
5166 /*
5167  * By the time we get here, we already hold the mm semaphore
5168  *
5169  * The mmap_lock may have been released depending on flags and our
5170  * return value.  See filemap_fault() and __folio_lock_or_retry().
5171  */
5172 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5173 			   unsigned int flags, struct pt_regs *regs)
5174 {
5175 	vm_fault_t ret;
5176 
5177 	__set_current_state(TASK_RUNNING);
5178 
5179 	count_vm_event(PGFAULT);
5180 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5181 
5182 	/* do counter updates before entering really critical section. */
5183 	check_sync_rss_stat(current);
5184 
5185 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5186 					    flags & FAULT_FLAG_INSTRUCTION,
5187 					    flags & FAULT_FLAG_REMOTE))
5188 		return VM_FAULT_SIGSEGV;
5189 
5190 	/*
5191 	 * Enable the memcg OOM handling for faults triggered in user
5192 	 * space.  Kernel faults are handled more gracefully.
5193 	 */
5194 	if (flags & FAULT_FLAG_USER)
5195 		mem_cgroup_enter_user_fault();
5196 
5197 	lru_gen_enter_fault(vma);
5198 
5199 	if (unlikely(is_vm_hugetlb_page(vma)))
5200 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5201 	else
5202 		ret = __handle_mm_fault(vma, address, flags);
5203 
5204 	lru_gen_exit_fault();
5205 
5206 	if (flags & FAULT_FLAG_USER) {
5207 		mem_cgroup_exit_user_fault();
5208 		/*
5209 		 * The task may have entered a memcg OOM situation but
5210 		 * if the allocation error was handled gracefully (no
5211 		 * VM_FAULT_OOM), there is no need to kill anything.
5212 		 * Just clean up the OOM state peacefully.
5213 		 */
5214 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5215 			mem_cgroup_oom_synchronize(false);
5216 	}
5217 
5218 	mm_account_fault(regs, address, flags, ret);
5219 
5220 	return ret;
5221 }
5222 EXPORT_SYMBOL_GPL(handle_mm_fault);
5223 
5224 #ifndef __PAGETABLE_P4D_FOLDED
5225 /*
5226  * Allocate p4d page table.
5227  * We've already handled the fast-path in-line.
5228  */
5229 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5230 {
5231 	p4d_t *new = p4d_alloc_one(mm, address);
5232 	if (!new)
5233 		return -ENOMEM;
5234 
5235 	spin_lock(&mm->page_table_lock);
5236 	if (pgd_present(*pgd)) {	/* Another has populated it */
5237 		p4d_free(mm, new);
5238 	} else {
5239 		smp_wmb(); /* See comment in pmd_install() */
5240 		pgd_populate(mm, pgd, new);
5241 	}
5242 	spin_unlock(&mm->page_table_lock);
5243 	return 0;
5244 }
5245 #endif /* __PAGETABLE_P4D_FOLDED */
5246 
5247 #ifndef __PAGETABLE_PUD_FOLDED
5248 /*
5249  * Allocate page upper directory.
5250  * We've already handled the fast-path in-line.
5251  */
5252 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5253 {
5254 	pud_t *new = pud_alloc_one(mm, address);
5255 	if (!new)
5256 		return -ENOMEM;
5257 
5258 	spin_lock(&mm->page_table_lock);
5259 	if (!p4d_present(*p4d)) {
5260 		mm_inc_nr_puds(mm);
5261 		smp_wmb(); /* See comment in pmd_install() */
5262 		p4d_populate(mm, p4d, new);
5263 	} else	/* Another has populated it */
5264 		pud_free(mm, new);
5265 	spin_unlock(&mm->page_table_lock);
5266 	return 0;
5267 }
5268 #endif /* __PAGETABLE_PUD_FOLDED */
5269 
5270 #ifndef __PAGETABLE_PMD_FOLDED
5271 /*
5272  * Allocate page middle directory.
5273  * We've already handled the fast-path in-line.
5274  */
5275 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5276 {
5277 	spinlock_t *ptl;
5278 	pmd_t *new = pmd_alloc_one(mm, address);
5279 	if (!new)
5280 		return -ENOMEM;
5281 
5282 	ptl = pud_lock(mm, pud);
5283 	if (!pud_present(*pud)) {
5284 		mm_inc_nr_pmds(mm);
5285 		smp_wmb(); /* See comment in pmd_install() */
5286 		pud_populate(mm, pud, new);
5287 	} else {	/* Another has populated it */
5288 		pmd_free(mm, new);
5289 	}
5290 	spin_unlock(ptl);
5291 	return 0;
5292 }
5293 #endif /* __PAGETABLE_PMD_FOLDED */
5294 
5295 /**
5296  * follow_pte - look up PTE at a user virtual address
5297  * @mm: the mm_struct of the target address space
5298  * @address: user virtual address
5299  * @ptepp: location to store found PTE
5300  * @ptlp: location to store the lock for the PTE
5301  *
5302  * On a successful return, the pointer to the PTE is stored in @ptepp;
5303  * the corresponding lock is taken and its location is stored in @ptlp.
5304  * The contents of the PTE are only stable until @ptlp is released;
5305  * any further use, if any, must be protected against invalidation
5306  * with MMU notifiers.
5307  *
5308  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5309  * should be taken for read.
5310  *
5311  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5312  * it is not a good general-purpose API.
5313  *
5314  * Return: zero on success, -ve otherwise.
5315  */
5316 int follow_pte(struct mm_struct *mm, unsigned long address,
5317 	       pte_t **ptepp, spinlock_t **ptlp)
5318 {
5319 	pgd_t *pgd;
5320 	p4d_t *p4d;
5321 	pud_t *pud;
5322 	pmd_t *pmd;
5323 	pte_t *ptep;
5324 
5325 	pgd = pgd_offset(mm, address);
5326 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5327 		goto out;
5328 
5329 	p4d = p4d_offset(pgd, address);
5330 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5331 		goto out;
5332 
5333 	pud = pud_offset(p4d, address);
5334 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5335 		goto out;
5336 
5337 	pmd = pmd_offset(pud, address);
5338 	VM_BUG_ON(pmd_trans_huge(*pmd));
5339 
5340 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5341 		goto out;
5342 
5343 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5344 	if (!pte_present(*ptep))
5345 		goto unlock;
5346 	*ptepp = ptep;
5347 	return 0;
5348 unlock:
5349 	pte_unmap_unlock(ptep, *ptlp);
5350 out:
5351 	return -EINVAL;
5352 }
5353 EXPORT_SYMBOL_GPL(follow_pte);
5354 
5355 /**
5356  * follow_pfn - look up PFN at a user virtual address
5357  * @vma: memory mapping
5358  * @address: user virtual address
5359  * @pfn: location to store found PFN
5360  *
5361  * Only IO mappings and raw PFN mappings are allowed.
5362  *
5363  * This function does not allow the caller to read the permissions
5364  * of the PTE.  Do not use it.
5365  *
5366  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5367  */
5368 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5369 	unsigned long *pfn)
5370 {
5371 	int ret = -EINVAL;
5372 	spinlock_t *ptl;
5373 	pte_t *ptep;
5374 
5375 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5376 		return ret;
5377 
5378 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5379 	if (ret)
5380 		return ret;
5381 	*pfn = pte_pfn(*ptep);
5382 	pte_unmap_unlock(ptep, ptl);
5383 	return 0;
5384 }
5385 EXPORT_SYMBOL(follow_pfn);
5386 
5387 #ifdef CONFIG_HAVE_IOREMAP_PROT
5388 int follow_phys(struct vm_area_struct *vma,
5389 		unsigned long address, unsigned int flags,
5390 		unsigned long *prot, resource_size_t *phys)
5391 {
5392 	int ret = -EINVAL;
5393 	pte_t *ptep, pte;
5394 	spinlock_t *ptl;
5395 
5396 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5397 		goto out;
5398 
5399 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5400 		goto out;
5401 	pte = *ptep;
5402 
5403 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5404 		goto unlock;
5405 
5406 	*prot = pgprot_val(pte_pgprot(pte));
5407 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5408 
5409 	ret = 0;
5410 unlock:
5411 	pte_unmap_unlock(ptep, ptl);
5412 out:
5413 	return ret;
5414 }
5415 
5416 /**
5417  * generic_access_phys - generic implementation for iomem mmap access
5418  * @vma: the vma to access
5419  * @addr: userspace address, not relative offset within @vma
5420  * @buf: buffer to read/write
5421  * @len: length of transfer
5422  * @write: set to FOLL_WRITE when writing, otherwise reading
5423  *
5424  * This is a generic implementation for &vm_operations_struct.access for an
5425  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5426  * not page based.
5427  */
5428 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5429 			void *buf, int len, int write)
5430 {
5431 	resource_size_t phys_addr;
5432 	unsigned long prot = 0;
5433 	void __iomem *maddr;
5434 	pte_t *ptep, pte;
5435 	spinlock_t *ptl;
5436 	int offset = offset_in_page(addr);
5437 	int ret = -EINVAL;
5438 
5439 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5440 		return -EINVAL;
5441 
5442 retry:
5443 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5444 		return -EINVAL;
5445 	pte = *ptep;
5446 	pte_unmap_unlock(ptep, ptl);
5447 
5448 	prot = pgprot_val(pte_pgprot(pte));
5449 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5450 
5451 	if ((write & FOLL_WRITE) && !pte_write(pte))
5452 		return -EINVAL;
5453 
5454 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5455 	if (!maddr)
5456 		return -ENOMEM;
5457 
5458 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5459 		goto out_unmap;
5460 
5461 	if (!pte_same(pte, *ptep)) {
5462 		pte_unmap_unlock(ptep, ptl);
5463 		iounmap(maddr);
5464 
5465 		goto retry;
5466 	}
5467 
5468 	if (write)
5469 		memcpy_toio(maddr + offset, buf, len);
5470 	else
5471 		memcpy_fromio(buf, maddr + offset, len);
5472 	ret = len;
5473 	pte_unmap_unlock(ptep, ptl);
5474 out_unmap:
5475 	iounmap(maddr);
5476 
5477 	return ret;
5478 }
5479 EXPORT_SYMBOL_GPL(generic_access_phys);
5480 #endif
5481 
5482 /*
5483  * Access another process' address space as given in mm.
5484  */
5485 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5486 		       int len, unsigned int gup_flags)
5487 {
5488 	struct vm_area_struct *vma;
5489 	void *old_buf = buf;
5490 	int write = gup_flags & FOLL_WRITE;
5491 
5492 	if (mmap_read_lock_killable(mm))
5493 		return 0;
5494 
5495 	/* ignore errors, just check how much was successfully transferred */
5496 	while (len) {
5497 		int bytes, ret, offset;
5498 		void *maddr;
5499 		struct page *page = NULL;
5500 
5501 		ret = get_user_pages_remote(mm, addr, 1,
5502 				gup_flags, &page, &vma, NULL);
5503 		if (ret <= 0) {
5504 #ifndef CONFIG_HAVE_IOREMAP_PROT
5505 			break;
5506 #else
5507 			/*
5508 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5509 			 * we can access using slightly different code.
5510 			 */
5511 			vma = vma_lookup(mm, addr);
5512 			if (!vma)
5513 				break;
5514 			if (vma->vm_ops && vma->vm_ops->access)
5515 				ret = vma->vm_ops->access(vma, addr, buf,
5516 							  len, write);
5517 			if (ret <= 0)
5518 				break;
5519 			bytes = ret;
5520 #endif
5521 		} else {
5522 			bytes = len;
5523 			offset = addr & (PAGE_SIZE-1);
5524 			if (bytes > PAGE_SIZE-offset)
5525 				bytes = PAGE_SIZE-offset;
5526 
5527 			maddr = kmap(page);
5528 			if (write) {
5529 				copy_to_user_page(vma, page, addr,
5530 						  maddr + offset, buf, bytes);
5531 				set_page_dirty_lock(page);
5532 			} else {
5533 				copy_from_user_page(vma, page, addr,
5534 						    buf, maddr + offset, bytes);
5535 			}
5536 			kunmap(page);
5537 			put_page(page);
5538 		}
5539 		len -= bytes;
5540 		buf += bytes;
5541 		addr += bytes;
5542 	}
5543 	mmap_read_unlock(mm);
5544 
5545 	return buf - old_buf;
5546 }
5547 
5548 /**
5549  * access_remote_vm - access another process' address space
5550  * @mm:		the mm_struct of the target address space
5551  * @addr:	start address to access
5552  * @buf:	source or destination buffer
5553  * @len:	number of bytes to transfer
5554  * @gup_flags:	flags modifying lookup behaviour
5555  *
5556  * The caller must hold a reference on @mm.
5557  *
5558  * Return: number of bytes copied from source to destination.
5559  */
5560 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5561 		void *buf, int len, unsigned int gup_flags)
5562 {
5563 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5564 }
5565 
5566 /*
5567  * Access another process' address space.
5568  * Source/target buffer must be kernel space,
5569  * Do not walk the page table directly, use get_user_pages
5570  */
5571 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5572 		void *buf, int len, unsigned int gup_flags)
5573 {
5574 	struct mm_struct *mm;
5575 	int ret;
5576 
5577 	mm = get_task_mm(tsk);
5578 	if (!mm)
5579 		return 0;
5580 
5581 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5582 
5583 	mmput(mm);
5584 
5585 	return ret;
5586 }
5587 EXPORT_SYMBOL_GPL(access_process_vm);
5588 
5589 /*
5590  * Print the name of a VMA.
5591  */
5592 void print_vma_addr(char *prefix, unsigned long ip)
5593 {
5594 	struct mm_struct *mm = current->mm;
5595 	struct vm_area_struct *vma;
5596 
5597 	/*
5598 	 * we might be running from an atomic context so we cannot sleep
5599 	 */
5600 	if (!mmap_read_trylock(mm))
5601 		return;
5602 
5603 	vma = find_vma(mm, ip);
5604 	if (vma && vma->vm_file) {
5605 		struct file *f = vma->vm_file;
5606 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5607 		if (buf) {
5608 			char *p;
5609 
5610 			p = file_path(f, buf, PAGE_SIZE);
5611 			if (IS_ERR(p))
5612 				p = "?";
5613 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5614 					vma->vm_start,
5615 					vma->vm_end - vma->vm_start);
5616 			free_page((unsigned long)buf);
5617 		}
5618 	}
5619 	mmap_read_unlock(mm);
5620 }
5621 
5622 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5623 void __might_fault(const char *file, int line)
5624 {
5625 	if (pagefault_disabled())
5626 		return;
5627 	__might_sleep(file, line);
5628 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5629 	if (current->mm)
5630 		might_lock_read(&current->mm->mmap_lock);
5631 #endif
5632 }
5633 EXPORT_SYMBOL(__might_fault);
5634 #endif
5635 
5636 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5637 /*
5638  * Process all subpages of the specified huge page with the specified
5639  * operation.  The target subpage will be processed last to keep its
5640  * cache lines hot.
5641  */
5642 static inline void process_huge_page(
5643 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5644 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5645 	void *arg)
5646 {
5647 	int i, n, base, l;
5648 	unsigned long addr = addr_hint &
5649 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5650 
5651 	/* Process target subpage last to keep its cache lines hot */
5652 	might_sleep();
5653 	n = (addr_hint - addr) / PAGE_SIZE;
5654 	if (2 * n <= pages_per_huge_page) {
5655 		/* If target subpage in first half of huge page */
5656 		base = 0;
5657 		l = n;
5658 		/* Process subpages at the end of huge page */
5659 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5660 			cond_resched();
5661 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5662 		}
5663 	} else {
5664 		/* If target subpage in second half of huge page */
5665 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5666 		l = pages_per_huge_page - n;
5667 		/* Process subpages at the begin of huge page */
5668 		for (i = 0; i < base; i++) {
5669 			cond_resched();
5670 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5671 		}
5672 	}
5673 	/*
5674 	 * Process remaining subpages in left-right-left-right pattern
5675 	 * towards the target subpage
5676 	 */
5677 	for (i = 0; i < l; i++) {
5678 		int left_idx = base + i;
5679 		int right_idx = base + 2 * l - 1 - i;
5680 
5681 		cond_resched();
5682 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5683 		cond_resched();
5684 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5685 	}
5686 }
5687 
5688 static void clear_gigantic_page(struct page *page,
5689 				unsigned long addr,
5690 				unsigned int pages_per_huge_page)
5691 {
5692 	int i;
5693 	struct page *p;
5694 
5695 	might_sleep();
5696 	for (i = 0; i < pages_per_huge_page; i++) {
5697 		p = nth_page(page, i);
5698 		cond_resched();
5699 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5700 	}
5701 }
5702 
5703 static void clear_subpage(unsigned long addr, int idx, void *arg)
5704 {
5705 	struct page *page = arg;
5706 
5707 	clear_user_highpage(page + idx, addr);
5708 }
5709 
5710 void clear_huge_page(struct page *page,
5711 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5712 {
5713 	unsigned long addr = addr_hint &
5714 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5715 
5716 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5717 		clear_gigantic_page(page, addr, pages_per_huge_page);
5718 		return;
5719 	}
5720 
5721 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5722 }
5723 
5724 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5725 				    unsigned long addr,
5726 				    struct vm_area_struct *vma,
5727 				    unsigned int pages_per_huge_page)
5728 {
5729 	int i;
5730 	struct page *dst_base = dst;
5731 	struct page *src_base = src;
5732 
5733 	for (i = 0; i < pages_per_huge_page; i++) {
5734 		dst = nth_page(dst_base, i);
5735 		src = nth_page(src_base, i);
5736 
5737 		cond_resched();
5738 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5739 	}
5740 }
5741 
5742 struct copy_subpage_arg {
5743 	struct page *dst;
5744 	struct page *src;
5745 	struct vm_area_struct *vma;
5746 };
5747 
5748 static void copy_subpage(unsigned long addr, int idx, void *arg)
5749 {
5750 	struct copy_subpage_arg *copy_arg = arg;
5751 
5752 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5753 			   addr, copy_arg->vma);
5754 }
5755 
5756 void copy_user_huge_page(struct page *dst, struct page *src,
5757 			 unsigned long addr_hint, struct vm_area_struct *vma,
5758 			 unsigned int pages_per_huge_page)
5759 {
5760 	unsigned long addr = addr_hint &
5761 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5762 	struct copy_subpage_arg arg = {
5763 		.dst = dst,
5764 		.src = src,
5765 		.vma = vma,
5766 	};
5767 
5768 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5769 		copy_user_gigantic_page(dst, src, addr, vma,
5770 					pages_per_huge_page);
5771 		return;
5772 	}
5773 
5774 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5775 }
5776 
5777 long copy_huge_page_from_user(struct page *dst_page,
5778 				const void __user *usr_src,
5779 				unsigned int pages_per_huge_page,
5780 				bool allow_pagefault)
5781 {
5782 	void *page_kaddr;
5783 	unsigned long i, rc = 0;
5784 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5785 	struct page *subpage;
5786 
5787 	for (i = 0; i < pages_per_huge_page; i++) {
5788 		subpage = nth_page(dst_page, i);
5789 		if (allow_pagefault)
5790 			page_kaddr = kmap(subpage);
5791 		else
5792 			page_kaddr = kmap_atomic(subpage);
5793 		rc = copy_from_user(page_kaddr,
5794 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5795 		if (allow_pagefault)
5796 			kunmap(subpage);
5797 		else
5798 			kunmap_atomic(page_kaddr);
5799 
5800 		ret_val -= (PAGE_SIZE - rc);
5801 		if (rc)
5802 			break;
5803 
5804 		flush_dcache_page(subpage);
5805 
5806 		cond_resched();
5807 	}
5808 	return ret_val;
5809 }
5810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5811 
5812 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5813 
5814 static struct kmem_cache *page_ptl_cachep;
5815 
5816 void __init ptlock_cache_init(void)
5817 {
5818 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5819 			SLAB_PANIC, NULL);
5820 }
5821 
5822 bool ptlock_alloc(struct page *page)
5823 {
5824 	spinlock_t *ptl;
5825 
5826 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5827 	if (!ptl)
5828 		return false;
5829 	page->ptl = ptl;
5830 	return true;
5831 }
5832 
5833 void ptlock_free(struct page *page)
5834 {
5835 	kmem_cache_free(page_ptl_cachep, page->ptl);
5836 }
5837 #endif
5838