1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 108 /* 109 * A number of key systems in x86 including ioremap() rely on the assumption 110 * that high_memory defines the upper bound on direct map memory, then end 111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 113 * and ZONE_HIGHMEM. 114 */ 115 void *high_memory; 116 EXPORT_SYMBOL(high_memory); 117 118 /* 119 * Randomize the address space (stacks, mmaps, brk, etc.). 120 * 121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 122 * as ancient (libc5 based) binaries can segfault. ) 123 */ 124 int randomize_va_space __read_mostly = 125 #ifdef CONFIG_COMPAT_BRK 126 1; 127 #else 128 2; 129 #endif 130 131 #ifndef arch_wants_old_prefaulted_pte 132 static inline bool arch_wants_old_prefaulted_pte(void) 133 { 134 /* 135 * Transitioning a PTE from 'old' to 'young' can be expensive on 136 * some architectures, even if it's performed in hardware. By 137 * default, "false" means prefaulted entries will be 'young'. 138 */ 139 return false; 140 } 141 #endif 142 143 static int __init disable_randmaps(char *s) 144 { 145 randomize_va_space = 0; 146 return 1; 147 } 148 __setup("norandmaps", disable_randmaps); 149 150 unsigned long zero_pfn __read_mostly; 151 EXPORT_SYMBOL(zero_pfn); 152 153 unsigned long highest_memmap_pfn __read_mostly; 154 155 /* 156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 157 */ 158 static int __init init_zero_pfn(void) 159 { 160 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 161 return 0; 162 } 163 early_initcall(init_zero_pfn); 164 165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 166 { 167 trace_rss_stat(mm, member, count); 168 } 169 170 #if defined(SPLIT_RSS_COUNTING) 171 172 void sync_mm_rss(struct mm_struct *mm) 173 { 174 int i; 175 176 for (i = 0; i < NR_MM_COUNTERS; i++) { 177 if (current->rss_stat.count[i]) { 178 add_mm_counter(mm, i, current->rss_stat.count[i]); 179 current->rss_stat.count[i] = 0; 180 } 181 } 182 current->rss_stat.events = 0; 183 } 184 185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 186 { 187 struct task_struct *task = current; 188 189 if (likely(task->mm == mm)) 190 task->rss_stat.count[member] += val; 191 else 192 add_mm_counter(mm, member, val); 193 } 194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 196 197 /* sync counter once per 64 page faults */ 198 #define TASK_RSS_EVENTS_THRESH (64) 199 static void check_sync_rss_stat(struct task_struct *task) 200 { 201 if (unlikely(task != current)) 202 return; 203 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 204 sync_mm_rss(task->mm); 205 } 206 #else /* SPLIT_RSS_COUNTING */ 207 208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 210 211 static void check_sync_rss_stat(struct task_struct *task) 212 { 213 } 214 215 #endif /* SPLIT_RSS_COUNTING */ 216 217 /* 218 * Note: this doesn't free the actual pages themselves. That 219 * has been handled earlier when unmapping all the memory regions. 220 */ 221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 222 unsigned long addr) 223 { 224 pgtable_t token = pmd_pgtable(*pmd); 225 pmd_clear(pmd); 226 pte_free_tlb(tlb, token, addr); 227 mm_dec_nr_ptes(tlb->mm); 228 } 229 230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 231 unsigned long addr, unsigned long end, 232 unsigned long floor, unsigned long ceiling) 233 { 234 pmd_t *pmd; 235 unsigned long next; 236 unsigned long start; 237 238 start = addr; 239 pmd = pmd_offset(pud, addr); 240 do { 241 next = pmd_addr_end(addr, end); 242 if (pmd_none_or_clear_bad(pmd)) 243 continue; 244 free_pte_range(tlb, pmd, addr); 245 } while (pmd++, addr = next, addr != end); 246 247 start &= PUD_MASK; 248 if (start < floor) 249 return; 250 if (ceiling) { 251 ceiling &= PUD_MASK; 252 if (!ceiling) 253 return; 254 } 255 if (end - 1 > ceiling - 1) 256 return; 257 258 pmd = pmd_offset(pud, start); 259 pud_clear(pud); 260 pmd_free_tlb(tlb, pmd, start); 261 mm_dec_nr_pmds(tlb->mm); 262 } 263 264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 265 unsigned long addr, unsigned long end, 266 unsigned long floor, unsigned long ceiling) 267 { 268 pud_t *pud; 269 unsigned long next; 270 unsigned long start; 271 272 start = addr; 273 pud = pud_offset(p4d, addr); 274 do { 275 next = pud_addr_end(addr, end); 276 if (pud_none_or_clear_bad(pud)) 277 continue; 278 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 279 } while (pud++, addr = next, addr != end); 280 281 start &= P4D_MASK; 282 if (start < floor) 283 return; 284 if (ceiling) { 285 ceiling &= P4D_MASK; 286 if (!ceiling) 287 return; 288 } 289 if (end - 1 > ceiling - 1) 290 return; 291 292 pud = pud_offset(p4d, start); 293 p4d_clear(p4d); 294 pud_free_tlb(tlb, pud, start); 295 mm_dec_nr_puds(tlb->mm); 296 } 297 298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 299 unsigned long addr, unsigned long end, 300 unsigned long floor, unsigned long ceiling) 301 { 302 p4d_t *p4d; 303 unsigned long next; 304 unsigned long start; 305 306 start = addr; 307 p4d = p4d_offset(pgd, addr); 308 do { 309 next = p4d_addr_end(addr, end); 310 if (p4d_none_or_clear_bad(p4d)) 311 continue; 312 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 313 } while (p4d++, addr = next, addr != end); 314 315 start &= PGDIR_MASK; 316 if (start < floor) 317 return; 318 if (ceiling) { 319 ceiling &= PGDIR_MASK; 320 if (!ceiling) 321 return; 322 } 323 if (end - 1 > ceiling - 1) 324 return; 325 326 p4d = p4d_offset(pgd, start); 327 pgd_clear(pgd); 328 p4d_free_tlb(tlb, p4d, start); 329 } 330 331 /* 332 * This function frees user-level page tables of a process. 333 */ 334 void free_pgd_range(struct mmu_gather *tlb, 335 unsigned long addr, unsigned long end, 336 unsigned long floor, unsigned long ceiling) 337 { 338 pgd_t *pgd; 339 unsigned long next; 340 341 /* 342 * The next few lines have given us lots of grief... 343 * 344 * Why are we testing PMD* at this top level? Because often 345 * there will be no work to do at all, and we'd prefer not to 346 * go all the way down to the bottom just to discover that. 347 * 348 * Why all these "- 1"s? Because 0 represents both the bottom 349 * of the address space and the top of it (using -1 for the 350 * top wouldn't help much: the masks would do the wrong thing). 351 * The rule is that addr 0 and floor 0 refer to the bottom of 352 * the address space, but end 0 and ceiling 0 refer to the top 353 * Comparisons need to use "end - 1" and "ceiling - 1" (though 354 * that end 0 case should be mythical). 355 * 356 * Wherever addr is brought up or ceiling brought down, we must 357 * be careful to reject "the opposite 0" before it confuses the 358 * subsequent tests. But what about where end is brought down 359 * by PMD_SIZE below? no, end can't go down to 0 there. 360 * 361 * Whereas we round start (addr) and ceiling down, by different 362 * masks at different levels, in order to test whether a table 363 * now has no other vmas using it, so can be freed, we don't 364 * bother to round floor or end up - the tests don't need that. 365 */ 366 367 addr &= PMD_MASK; 368 if (addr < floor) { 369 addr += PMD_SIZE; 370 if (!addr) 371 return; 372 } 373 if (ceiling) { 374 ceiling &= PMD_MASK; 375 if (!ceiling) 376 return; 377 } 378 if (end - 1 > ceiling - 1) 379 end -= PMD_SIZE; 380 if (addr > end - 1) 381 return; 382 /* 383 * We add page table cache pages with PAGE_SIZE, 384 * (see pte_free_tlb()), flush the tlb if we need 385 */ 386 tlb_change_page_size(tlb, PAGE_SIZE); 387 pgd = pgd_offset(tlb->mm, addr); 388 do { 389 next = pgd_addr_end(addr, end); 390 if (pgd_none_or_clear_bad(pgd)) 391 continue; 392 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 393 } while (pgd++, addr = next, addr != end); 394 } 395 396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 397 struct vm_area_struct *vma, unsigned long floor, 398 unsigned long ceiling) 399 { 400 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 401 402 do { 403 unsigned long addr = vma->vm_start; 404 struct vm_area_struct *next; 405 406 /* 407 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 408 * be 0. This will underflow and is okay. 409 */ 410 next = mas_find(&mas, ceiling - 1); 411 412 /* 413 * Hide vma from rmap and truncate_pagecache before freeing 414 * pgtables 415 */ 416 unlink_anon_vmas(vma); 417 unlink_file_vma(vma); 418 419 if (is_vm_hugetlb_page(vma)) { 420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 421 floor, next ? next->vm_start : ceiling); 422 } else { 423 /* 424 * Optimization: gather nearby vmas into one call down 425 */ 426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 427 && !is_vm_hugetlb_page(next)) { 428 vma = next; 429 next = mas_find(&mas, ceiling - 1); 430 unlink_anon_vmas(vma); 431 unlink_file_vma(vma); 432 } 433 free_pgd_range(tlb, addr, vma->vm_end, 434 floor, next ? next->vm_start : ceiling); 435 } 436 vma = next; 437 } while (vma); 438 } 439 440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 441 { 442 spinlock_t *ptl = pmd_lock(mm, pmd); 443 444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 445 mm_inc_nr_ptes(mm); 446 /* 447 * Ensure all pte setup (eg. pte page lock and page clearing) are 448 * visible before the pte is made visible to other CPUs by being 449 * put into page tables. 450 * 451 * The other side of the story is the pointer chasing in the page 452 * table walking code (when walking the page table without locking; 453 * ie. most of the time). Fortunately, these data accesses consist 454 * of a chain of data-dependent loads, meaning most CPUs (alpha 455 * being the notable exception) will already guarantee loads are 456 * seen in-order. See the alpha page table accessors for the 457 * smp_rmb() barriers in page table walking code. 458 */ 459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 460 pmd_populate(mm, pmd, *pte); 461 *pte = NULL; 462 } 463 spin_unlock(ptl); 464 } 465 466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 467 { 468 pgtable_t new = pte_alloc_one(mm); 469 if (!new) 470 return -ENOMEM; 471 472 pmd_install(mm, pmd, &new); 473 if (new) 474 pte_free(mm, new); 475 return 0; 476 } 477 478 int __pte_alloc_kernel(pmd_t *pmd) 479 { 480 pte_t *new = pte_alloc_one_kernel(&init_mm); 481 if (!new) 482 return -ENOMEM; 483 484 spin_lock(&init_mm.page_table_lock); 485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 486 smp_wmb(); /* See comment in pmd_install() */ 487 pmd_populate_kernel(&init_mm, pmd, new); 488 new = NULL; 489 } 490 spin_unlock(&init_mm.page_table_lock); 491 if (new) 492 pte_free_kernel(&init_mm, new); 493 return 0; 494 } 495 496 static inline void init_rss_vec(int *rss) 497 { 498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 499 } 500 501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 502 { 503 int i; 504 505 if (current->mm == mm) 506 sync_mm_rss(mm); 507 for (i = 0; i < NR_MM_COUNTERS; i++) 508 if (rss[i]) 509 add_mm_counter(mm, i, rss[i]); 510 } 511 512 /* 513 * This function is called to print an error when a bad pte 514 * is found. For example, we might have a PFN-mapped pte in 515 * a region that doesn't allow it. 516 * 517 * The calling function must still handle the error. 518 */ 519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 520 pte_t pte, struct page *page) 521 { 522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 523 p4d_t *p4d = p4d_offset(pgd, addr); 524 pud_t *pud = pud_offset(p4d, addr); 525 pmd_t *pmd = pmd_offset(pud, addr); 526 struct address_space *mapping; 527 pgoff_t index; 528 static unsigned long resume; 529 static unsigned long nr_shown; 530 static unsigned long nr_unshown; 531 532 /* 533 * Allow a burst of 60 reports, then keep quiet for that minute; 534 * or allow a steady drip of one report per second. 535 */ 536 if (nr_shown == 60) { 537 if (time_before(jiffies, resume)) { 538 nr_unshown++; 539 return; 540 } 541 if (nr_unshown) { 542 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 543 nr_unshown); 544 nr_unshown = 0; 545 } 546 nr_shown = 0; 547 } 548 if (nr_shown++ == 0) 549 resume = jiffies + 60 * HZ; 550 551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 552 index = linear_page_index(vma, addr); 553 554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 555 current->comm, 556 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 557 if (page) 558 dump_page(page, "bad pte"); 559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 562 vma->vm_file, 563 vma->vm_ops ? vma->vm_ops->fault : NULL, 564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 565 mapping ? mapping->a_ops->read_folio : NULL); 566 dump_stack(); 567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 568 } 569 570 /* 571 * vm_normal_page -- This function gets the "struct page" associated with a pte. 572 * 573 * "Special" mappings do not wish to be associated with a "struct page" (either 574 * it doesn't exist, or it exists but they don't want to touch it). In this 575 * case, NULL is returned here. "Normal" mappings do have a struct page. 576 * 577 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 578 * pte bit, in which case this function is trivial. Secondly, an architecture 579 * may not have a spare pte bit, which requires a more complicated scheme, 580 * described below. 581 * 582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 583 * special mapping (even if there are underlying and valid "struct pages"). 584 * COWed pages of a VM_PFNMAP are always normal. 585 * 586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 589 * mapping will always honor the rule 590 * 591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 592 * 593 * And for normal mappings this is false. 594 * 595 * This restricts such mappings to be a linear translation from virtual address 596 * to pfn. To get around this restriction, we allow arbitrary mappings so long 597 * as the vma is not a COW mapping; in that case, we know that all ptes are 598 * special (because none can have been COWed). 599 * 600 * 601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 602 * 603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 604 * page" backing, however the difference is that _all_ pages with a struct 605 * page (that is, those where pfn_valid is true) are refcounted and considered 606 * normal pages by the VM. The disadvantage is that pages are refcounted 607 * (which can be slower and simply not an option for some PFNMAP users). The 608 * advantage is that we don't have to follow the strict linearity rule of 609 * PFNMAP mappings in order to support COWable mappings. 610 * 611 */ 612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 613 pte_t pte) 614 { 615 unsigned long pfn = pte_pfn(pte); 616 617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 618 if (likely(!pte_special(pte))) 619 goto check_pfn; 620 if (vma->vm_ops && vma->vm_ops->find_special_page) 621 return vma->vm_ops->find_special_page(vma, addr); 622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 623 return NULL; 624 if (is_zero_pfn(pfn)) 625 return NULL; 626 if (pte_devmap(pte)) 627 /* 628 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 629 * and will have refcounts incremented on their struct pages 630 * when they are inserted into PTEs, thus they are safe to 631 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 632 * do not have refcounts. Example of legacy ZONE_DEVICE is 633 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 634 */ 635 return NULL; 636 637 print_bad_pte(vma, addr, pte, NULL); 638 return NULL; 639 } 640 641 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 642 643 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 644 if (vma->vm_flags & VM_MIXEDMAP) { 645 if (!pfn_valid(pfn)) 646 return NULL; 647 goto out; 648 } else { 649 unsigned long off; 650 off = (addr - vma->vm_start) >> PAGE_SHIFT; 651 if (pfn == vma->vm_pgoff + off) 652 return NULL; 653 if (!is_cow_mapping(vma->vm_flags)) 654 return NULL; 655 } 656 } 657 658 if (is_zero_pfn(pfn)) 659 return NULL; 660 661 check_pfn: 662 if (unlikely(pfn > highest_memmap_pfn)) { 663 print_bad_pte(vma, addr, pte, NULL); 664 return NULL; 665 } 666 667 /* 668 * NOTE! We still have PageReserved() pages in the page tables. 669 * eg. VDSO mappings can cause them to exist. 670 */ 671 out: 672 return pfn_to_page(pfn); 673 } 674 675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 677 pmd_t pmd) 678 { 679 unsigned long pfn = pmd_pfn(pmd); 680 681 /* 682 * There is no pmd_special() but there may be special pmds, e.g. 683 * in a direct-access (dax) mapping, so let's just replicate the 684 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 685 */ 686 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 687 if (vma->vm_flags & VM_MIXEDMAP) { 688 if (!pfn_valid(pfn)) 689 return NULL; 690 goto out; 691 } else { 692 unsigned long off; 693 off = (addr - vma->vm_start) >> PAGE_SHIFT; 694 if (pfn == vma->vm_pgoff + off) 695 return NULL; 696 if (!is_cow_mapping(vma->vm_flags)) 697 return NULL; 698 } 699 } 700 701 if (pmd_devmap(pmd)) 702 return NULL; 703 if (is_huge_zero_pmd(pmd)) 704 return NULL; 705 if (unlikely(pfn > highest_memmap_pfn)) 706 return NULL; 707 708 /* 709 * NOTE! We still have PageReserved() pages in the page tables. 710 * eg. VDSO mappings can cause them to exist. 711 */ 712 out: 713 return pfn_to_page(pfn); 714 } 715 #endif 716 717 static void restore_exclusive_pte(struct vm_area_struct *vma, 718 struct page *page, unsigned long address, 719 pte_t *ptep) 720 { 721 pte_t pte; 722 swp_entry_t entry; 723 724 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 725 if (pte_swp_soft_dirty(*ptep)) 726 pte = pte_mksoft_dirty(pte); 727 728 entry = pte_to_swp_entry(*ptep); 729 if (pte_swp_uffd_wp(*ptep)) 730 pte = pte_mkuffd_wp(pte); 731 else if (is_writable_device_exclusive_entry(entry)) 732 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 733 734 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 735 736 /* 737 * No need to take a page reference as one was already 738 * created when the swap entry was made. 739 */ 740 if (PageAnon(page)) 741 page_add_anon_rmap(page, vma, address, RMAP_NONE); 742 else 743 /* 744 * Currently device exclusive access only supports anonymous 745 * memory so the entry shouldn't point to a filebacked page. 746 */ 747 WARN_ON_ONCE(1); 748 749 set_pte_at(vma->vm_mm, address, ptep, pte); 750 751 /* 752 * No need to invalidate - it was non-present before. However 753 * secondary CPUs may have mappings that need invalidating. 754 */ 755 update_mmu_cache(vma, address, ptep); 756 } 757 758 /* 759 * Tries to restore an exclusive pte if the page lock can be acquired without 760 * sleeping. 761 */ 762 static int 763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 764 unsigned long addr) 765 { 766 swp_entry_t entry = pte_to_swp_entry(*src_pte); 767 struct page *page = pfn_swap_entry_to_page(entry); 768 769 if (trylock_page(page)) { 770 restore_exclusive_pte(vma, page, addr, src_pte); 771 unlock_page(page); 772 return 0; 773 } 774 775 return -EBUSY; 776 } 777 778 /* 779 * copy one vm_area from one task to the other. Assumes the page tables 780 * already present in the new task to be cleared in the whole range 781 * covered by this vma. 782 */ 783 784 static unsigned long 785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 786 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 787 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 788 { 789 unsigned long vm_flags = dst_vma->vm_flags; 790 pte_t pte = *src_pte; 791 struct page *page; 792 swp_entry_t entry = pte_to_swp_entry(pte); 793 794 if (likely(!non_swap_entry(entry))) { 795 if (swap_duplicate(entry) < 0) 796 return -EIO; 797 798 /* make sure dst_mm is on swapoff's mmlist. */ 799 if (unlikely(list_empty(&dst_mm->mmlist))) { 800 spin_lock(&mmlist_lock); 801 if (list_empty(&dst_mm->mmlist)) 802 list_add(&dst_mm->mmlist, 803 &src_mm->mmlist); 804 spin_unlock(&mmlist_lock); 805 } 806 /* Mark the swap entry as shared. */ 807 if (pte_swp_exclusive(*src_pte)) { 808 pte = pte_swp_clear_exclusive(*src_pte); 809 set_pte_at(src_mm, addr, src_pte, pte); 810 } 811 rss[MM_SWAPENTS]++; 812 } else if (is_migration_entry(entry)) { 813 page = pfn_swap_entry_to_page(entry); 814 815 rss[mm_counter(page)]++; 816 817 if (!is_readable_migration_entry(entry) && 818 is_cow_mapping(vm_flags)) { 819 /* 820 * COW mappings require pages in both parent and child 821 * to be set to read. A previously exclusive entry is 822 * now shared. 823 */ 824 entry = make_readable_migration_entry( 825 swp_offset(entry)); 826 pte = swp_entry_to_pte(entry); 827 if (pte_swp_soft_dirty(*src_pte)) 828 pte = pte_swp_mksoft_dirty(pte); 829 if (pte_swp_uffd_wp(*src_pte)) 830 pte = pte_swp_mkuffd_wp(pte); 831 set_pte_at(src_mm, addr, src_pte, pte); 832 } 833 } else if (is_device_private_entry(entry)) { 834 page = pfn_swap_entry_to_page(entry); 835 836 /* 837 * Update rss count even for unaddressable pages, as 838 * they should treated just like normal pages in this 839 * respect. 840 * 841 * We will likely want to have some new rss counters 842 * for unaddressable pages, at some point. But for now 843 * keep things as they are. 844 */ 845 get_page(page); 846 rss[mm_counter(page)]++; 847 /* Cannot fail as these pages cannot get pinned. */ 848 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 849 850 /* 851 * We do not preserve soft-dirty information, because so 852 * far, checkpoint/restore is the only feature that 853 * requires that. And checkpoint/restore does not work 854 * when a device driver is involved (you cannot easily 855 * save and restore device driver state). 856 */ 857 if (is_writable_device_private_entry(entry) && 858 is_cow_mapping(vm_flags)) { 859 entry = make_readable_device_private_entry( 860 swp_offset(entry)); 861 pte = swp_entry_to_pte(entry); 862 if (pte_swp_uffd_wp(*src_pte)) 863 pte = pte_swp_mkuffd_wp(pte); 864 set_pte_at(src_mm, addr, src_pte, pte); 865 } 866 } else if (is_device_exclusive_entry(entry)) { 867 /* 868 * Make device exclusive entries present by restoring the 869 * original entry then copying as for a present pte. Device 870 * exclusive entries currently only support private writable 871 * (ie. COW) mappings. 872 */ 873 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 874 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 875 return -EBUSY; 876 return -ENOENT; 877 } else if (is_pte_marker_entry(entry)) { 878 /* 879 * We're copying the pgtable should only because dst_vma has 880 * uffd-wp enabled, do sanity check. 881 */ 882 WARN_ON_ONCE(!userfaultfd_wp(dst_vma)); 883 set_pte_at(dst_mm, addr, dst_pte, pte); 884 return 0; 885 } 886 if (!userfaultfd_wp(dst_vma)) 887 pte = pte_swp_clear_uffd_wp(pte); 888 set_pte_at(dst_mm, addr, dst_pte, pte); 889 return 0; 890 } 891 892 /* 893 * Copy a present and normal page. 894 * 895 * NOTE! The usual case is that this isn't required; 896 * instead, the caller can just increase the page refcount 897 * and re-use the pte the traditional way. 898 * 899 * And if we need a pre-allocated page but don't yet have 900 * one, return a negative error to let the preallocation 901 * code know so that it can do so outside the page table 902 * lock. 903 */ 904 static inline int 905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 906 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 907 struct page **prealloc, struct page *page) 908 { 909 struct page *new_page; 910 pte_t pte; 911 912 new_page = *prealloc; 913 if (!new_page) 914 return -EAGAIN; 915 916 /* 917 * We have a prealloc page, all good! Take it 918 * over and copy the page & arm it. 919 */ 920 *prealloc = NULL; 921 copy_user_highpage(new_page, page, addr, src_vma); 922 __SetPageUptodate(new_page); 923 page_add_new_anon_rmap(new_page, dst_vma, addr); 924 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 925 rss[mm_counter(new_page)]++; 926 927 /* All done, just insert the new page copy in the child */ 928 pte = mk_pte(new_page, dst_vma->vm_page_prot); 929 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 930 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 931 /* Uffd-wp needs to be delivered to dest pte as well */ 932 pte = pte_wrprotect(pte_mkuffd_wp(pte)); 933 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 934 return 0; 935 } 936 937 /* 938 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 939 * is required to copy this pte. 940 */ 941 static inline int 942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 943 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 944 struct page **prealloc) 945 { 946 struct mm_struct *src_mm = src_vma->vm_mm; 947 unsigned long vm_flags = src_vma->vm_flags; 948 pte_t pte = *src_pte; 949 struct page *page; 950 951 page = vm_normal_page(src_vma, addr, pte); 952 if (page && PageAnon(page)) { 953 /* 954 * If this page may have been pinned by the parent process, 955 * copy the page immediately for the child so that we'll always 956 * guarantee the pinned page won't be randomly replaced in the 957 * future. 958 */ 959 get_page(page); 960 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 961 /* Page maybe pinned, we have to copy. */ 962 put_page(page); 963 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 964 addr, rss, prealloc, page); 965 } 966 rss[mm_counter(page)]++; 967 } else if (page) { 968 get_page(page); 969 page_dup_file_rmap(page, false); 970 rss[mm_counter(page)]++; 971 } 972 973 /* 974 * If it's a COW mapping, write protect it both 975 * in the parent and the child 976 */ 977 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 978 ptep_set_wrprotect(src_mm, addr, src_pte); 979 pte = pte_wrprotect(pte); 980 } 981 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page)); 982 983 /* 984 * If it's a shared mapping, mark it clean in 985 * the child 986 */ 987 if (vm_flags & VM_SHARED) 988 pte = pte_mkclean(pte); 989 pte = pte_mkold(pte); 990 991 if (!userfaultfd_wp(dst_vma)) 992 pte = pte_clear_uffd_wp(pte); 993 994 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 995 return 0; 996 } 997 998 static inline struct page * 999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 1000 unsigned long addr) 1001 { 1002 struct page *new_page; 1003 1004 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 1005 if (!new_page) 1006 return NULL; 1007 1008 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { 1009 put_page(new_page); 1010 return NULL; 1011 } 1012 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 1013 1014 return new_page; 1015 } 1016 1017 static int 1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1019 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1020 unsigned long end) 1021 { 1022 struct mm_struct *dst_mm = dst_vma->vm_mm; 1023 struct mm_struct *src_mm = src_vma->vm_mm; 1024 pte_t *orig_src_pte, *orig_dst_pte; 1025 pte_t *src_pte, *dst_pte; 1026 spinlock_t *src_ptl, *dst_ptl; 1027 int progress, ret = 0; 1028 int rss[NR_MM_COUNTERS]; 1029 swp_entry_t entry = (swp_entry_t){0}; 1030 struct page *prealloc = NULL; 1031 1032 again: 1033 progress = 0; 1034 init_rss_vec(rss); 1035 1036 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1037 if (!dst_pte) { 1038 ret = -ENOMEM; 1039 goto out; 1040 } 1041 src_pte = pte_offset_map(src_pmd, addr); 1042 src_ptl = pte_lockptr(src_mm, src_pmd); 1043 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1044 orig_src_pte = src_pte; 1045 orig_dst_pte = dst_pte; 1046 arch_enter_lazy_mmu_mode(); 1047 1048 do { 1049 /* 1050 * We are holding two locks at this point - either of them 1051 * could generate latencies in another task on another CPU. 1052 */ 1053 if (progress >= 32) { 1054 progress = 0; 1055 if (need_resched() || 1056 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1057 break; 1058 } 1059 if (pte_none(*src_pte)) { 1060 progress++; 1061 continue; 1062 } 1063 if (unlikely(!pte_present(*src_pte))) { 1064 ret = copy_nonpresent_pte(dst_mm, src_mm, 1065 dst_pte, src_pte, 1066 dst_vma, src_vma, 1067 addr, rss); 1068 if (ret == -EIO) { 1069 entry = pte_to_swp_entry(*src_pte); 1070 break; 1071 } else if (ret == -EBUSY) { 1072 break; 1073 } else if (!ret) { 1074 progress += 8; 1075 continue; 1076 } 1077 1078 /* 1079 * Device exclusive entry restored, continue by copying 1080 * the now present pte. 1081 */ 1082 WARN_ON_ONCE(ret != -ENOENT); 1083 } 1084 /* copy_present_pte() will clear `*prealloc' if consumed */ 1085 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1086 addr, rss, &prealloc); 1087 /* 1088 * If we need a pre-allocated page for this pte, drop the 1089 * locks, allocate, and try again. 1090 */ 1091 if (unlikely(ret == -EAGAIN)) 1092 break; 1093 if (unlikely(prealloc)) { 1094 /* 1095 * pre-alloc page cannot be reused by next time so as 1096 * to strictly follow mempolicy (e.g., alloc_page_vma() 1097 * will allocate page according to address). This 1098 * could only happen if one pinned pte changed. 1099 */ 1100 put_page(prealloc); 1101 prealloc = NULL; 1102 } 1103 progress += 8; 1104 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1105 1106 arch_leave_lazy_mmu_mode(); 1107 spin_unlock(src_ptl); 1108 pte_unmap(orig_src_pte); 1109 add_mm_rss_vec(dst_mm, rss); 1110 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1111 cond_resched(); 1112 1113 if (ret == -EIO) { 1114 VM_WARN_ON_ONCE(!entry.val); 1115 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1116 ret = -ENOMEM; 1117 goto out; 1118 } 1119 entry.val = 0; 1120 } else if (ret == -EBUSY) { 1121 goto out; 1122 } else if (ret == -EAGAIN) { 1123 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1124 if (!prealloc) 1125 return -ENOMEM; 1126 } else if (ret) { 1127 VM_WARN_ON_ONCE(1); 1128 } 1129 1130 /* We've captured and resolved the error. Reset, try again. */ 1131 ret = 0; 1132 1133 if (addr != end) 1134 goto again; 1135 out: 1136 if (unlikely(prealloc)) 1137 put_page(prealloc); 1138 return ret; 1139 } 1140 1141 static inline int 1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1143 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1144 unsigned long end) 1145 { 1146 struct mm_struct *dst_mm = dst_vma->vm_mm; 1147 struct mm_struct *src_mm = src_vma->vm_mm; 1148 pmd_t *src_pmd, *dst_pmd; 1149 unsigned long next; 1150 1151 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1152 if (!dst_pmd) 1153 return -ENOMEM; 1154 src_pmd = pmd_offset(src_pud, addr); 1155 do { 1156 next = pmd_addr_end(addr, end); 1157 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1158 || pmd_devmap(*src_pmd)) { 1159 int err; 1160 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1161 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1162 addr, dst_vma, src_vma); 1163 if (err == -ENOMEM) 1164 return -ENOMEM; 1165 if (!err) 1166 continue; 1167 /* fall through */ 1168 } 1169 if (pmd_none_or_clear_bad(src_pmd)) 1170 continue; 1171 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1172 addr, next)) 1173 return -ENOMEM; 1174 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1175 return 0; 1176 } 1177 1178 static inline int 1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1180 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1181 unsigned long end) 1182 { 1183 struct mm_struct *dst_mm = dst_vma->vm_mm; 1184 struct mm_struct *src_mm = src_vma->vm_mm; 1185 pud_t *src_pud, *dst_pud; 1186 unsigned long next; 1187 1188 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1189 if (!dst_pud) 1190 return -ENOMEM; 1191 src_pud = pud_offset(src_p4d, addr); 1192 do { 1193 next = pud_addr_end(addr, end); 1194 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1195 int err; 1196 1197 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1198 err = copy_huge_pud(dst_mm, src_mm, 1199 dst_pud, src_pud, addr, src_vma); 1200 if (err == -ENOMEM) 1201 return -ENOMEM; 1202 if (!err) 1203 continue; 1204 /* fall through */ 1205 } 1206 if (pud_none_or_clear_bad(src_pud)) 1207 continue; 1208 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1209 addr, next)) 1210 return -ENOMEM; 1211 } while (dst_pud++, src_pud++, addr = next, addr != end); 1212 return 0; 1213 } 1214 1215 static inline int 1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1217 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1218 unsigned long end) 1219 { 1220 struct mm_struct *dst_mm = dst_vma->vm_mm; 1221 p4d_t *src_p4d, *dst_p4d; 1222 unsigned long next; 1223 1224 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1225 if (!dst_p4d) 1226 return -ENOMEM; 1227 src_p4d = p4d_offset(src_pgd, addr); 1228 do { 1229 next = p4d_addr_end(addr, end); 1230 if (p4d_none_or_clear_bad(src_p4d)) 1231 continue; 1232 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1233 addr, next)) 1234 return -ENOMEM; 1235 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1236 return 0; 1237 } 1238 1239 /* 1240 * Return true if the vma needs to copy the pgtable during this fork(). Return 1241 * false when we can speed up fork() by allowing lazy page faults later until 1242 * when the child accesses the memory range. 1243 */ 1244 static bool 1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1246 { 1247 /* 1248 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1249 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1250 * contains uffd-wp protection information, that's something we can't 1251 * retrieve from page cache, and skip copying will lose those info. 1252 */ 1253 if (userfaultfd_wp(dst_vma)) 1254 return true; 1255 1256 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1257 return true; 1258 1259 if (src_vma->anon_vma) 1260 return true; 1261 1262 /* 1263 * Don't copy ptes where a page fault will fill them correctly. Fork 1264 * becomes much lighter when there are big shared or private readonly 1265 * mappings. The tradeoff is that copy_page_range is more efficient 1266 * than faulting. 1267 */ 1268 return false; 1269 } 1270 1271 int 1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1273 { 1274 pgd_t *src_pgd, *dst_pgd; 1275 unsigned long next; 1276 unsigned long addr = src_vma->vm_start; 1277 unsigned long end = src_vma->vm_end; 1278 struct mm_struct *dst_mm = dst_vma->vm_mm; 1279 struct mm_struct *src_mm = src_vma->vm_mm; 1280 struct mmu_notifier_range range; 1281 bool is_cow; 1282 int ret; 1283 1284 if (!vma_needs_copy(dst_vma, src_vma)) 1285 return 0; 1286 1287 if (is_vm_hugetlb_page(src_vma)) 1288 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1289 1290 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1291 /* 1292 * We do not free on error cases below as remove_vma 1293 * gets called on error from higher level routine 1294 */ 1295 ret = track_pfn_copy(src_vma); 1296 if (ret) 1297 return ret; 1298 } 1299 1300 /* 1301 * We need to invalidate the secondary MMU mappings only when 1302 * there could be a permission downgrade on the ptes of the 1303 * parent mm. And a permission downgrade will only happen if 1304 * is_cow_mapping() returns true. 1305 */ 1306 is_cow = is_cow_mapping(src_vma->vm_flags); 1307 1308 if (is_cow) { 1309 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1310 0, src_vma, src_mm, addr, end); 1311 mmu_notifier_invalidate_range_start(&range); 1312 /* 1313 * Disabling preemption is not needed for the write side, as 1314 * the read side doesn't spin, but goes to the mmap_lock. 1315 * 1316 * Use the raw variant of the seqcount_t write API to avoid 1317 * lockdep complaining about preemptibility. 1318 */ 1319 mmap_assert_write_locked(src_mm); 1320 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1321 } 1322 1323 ret = 0; 1324 dst_pgd = pgd_offset(dst_mm, addr); 1325 src_pgd = pgd_offset(src_mm, addr); 1326 do { 1327 next = pgd_addr_end(addr, end); 1328 if (pgd_none_or_clear_bad(src_pgd)) 1329 continue; 1330 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1331 addr, next))) { 1332 ret = -ENOMEM; 1333 break; 1334 } 1335 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1336 1337 if (is_cow) { 1338 raw_write_seqcount_end(&src_mm->write_protect_seq); 1339 mmu_notifier_invalidate_range_end(&range); 1340 } 1341 return ret; 1342 } 1343 1344 /* 1345 * Parameter block passed down to zap_pte_range in exceptional cases. 1346 */ 1347 struct zap_details { 1348 struct folio *single_folio; /* Locked folio to be unmapped */ 1349 bool even_cows; /* Zap COWed private pages too? */ 1350 zap_flags_t zap_flags; /* Extra flags for zapping */ 1351 }; 1352 1353 /* Whether we should zap all COWed (private) pages too */ 1354 static inline bool should_zap_cows(struct zap_details *details) 1355 { 1356 /* By default, zap all pages */ 1357 if (!details) 1358 return true; 1359 1360 /* Or, we zap COWed pages only if the caller wants to */ 1361 return details->even_cows; 1362 } 1363 1364 /* Decides whether we should zap this page with the page pointer specified */ 1365 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1366 { 1367 /* If we can make a decision without *page.. */ 1368 if (should_zap_cows(details)) 1369 return true; 1370 1371 /* E.g. the caller passes NULL for the case of a zero page */ 1372 if (!page) 1373 return true; 1374 1375 /* Otherwise we should only zap non-anon pages */ 1376 return !PageAnon(page); 1377 } 1378 1379 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1380 { 1381 if (!details) 1382 return false; 1383 1384 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1385 } 1386 1387 /* 1388 * This function makes sure that we'll replace the none pte with an uffd-wp 1389 * swap special pte marker when necessary. Must be with the pgtable lock held. 1390 */ 1391 static inline void 1392 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1393 unsigned long addr, pte_t *pte, 1394 struct zap_details *details, pte_t pteval) 1395 { 1396 if (zap_drop_file_uffd_wp(details)) 1397 return; 1398 1399 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1400 } 1401 1402 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1403 struct vm_area_struct *vma, pmd_t *pmd, 1404 unsigned long addr, unsigned long end, 1405 struct zap_details *details) 1406 { 1407 struct mm_struct *mm = tlb->mm; 1408 int force_flush = 0; 1409 int rss[NR_MM_COUNTERS]; 1410 spinlock_t *ptl; 1411 pte_t *start_pte; 1412 pte_t *pte; 1413 swp_entry_t entry; 1414 1415 tlb_change_page_size(tlb, PAGE_SIZE); 1416 again: 1417 init_rss_vec(rss); 1418 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1419 pte = start_pte; 1420 flush_tlb_batched_pending(mm); 1421 arch_enter_lazy_mmu_mode(); 1422 do { 1423 pte_t ptent = *pte; 1424 struct page *page; 1425 1426 if (pte_none(ptent)) 1427 continue; 1428 1429 if (need_resched()) 1430 break; 1431 1432 if (pte_present(ptent)) { 1433 page = vm_normal_page(vma, addr, ptent); 1434 if (unlikely(!should_zap_page(details, page))) 1435 continue; 1436 ptent = ptep_get_and_clear_full(mm, addr, pte, 1437 tlb->fullmm); 1438 tlb_remove_tlb_entry(tlb, pte, addr); 1439 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1440 ptent); 1441 if (unlikely(!page)) 1442 continue; 1443 1444 if (!PageAnon(page)) { 1445 if (pte_dirty(ptent)) { 1446 force_flush = 1; 1447 set_page_dirty(page); 1448 } 1449 if (pte_young(ptent) && 1450 likely(!(vma->vm_flags & VM_SEQ_READ))) 1451 mark_page_accessed(page); 1452 } 1453 rss[mm_counter(page)]--; 1454 page_remove_rmap(page, vma, false); 1455 if (unlikely(page_mapcount(page) < 0)) 1456 print_bad_pte(vma, addr, ptent, page); 1457 if (unlikely(__tlb_remove_page(tlb, page))) { 1458 force_flush = 1; 1459 addr += PAGE_SIZE; 1460 break; 1461 } 1462 continue; 1463 } 1464 1465 entry = pte_to_swp_entry(ptent); 1466 if (is_device_private_entry(entry) || 1467 is_device_exclusive_entry(entry)) { 1468 page = pfn_swap_entry_to_page(entry); 1469 if (unlikely(!should_zap_page(details, page))) 1470 continue; 1471 /* 1472 * Both device private/exclusive mappings should only 1473 * work with anonymous page so far, so we don't need to 1474 * consider uffd-wp bit when zap. For more information, 1475 * see zap_install_uffd_wp_if_needed(). 1476 */ 1477 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1478 rss[mm_counter(page)]--; 1479 if (is_device_private_entry(entry)) 1480 page_remove_rmap(page, vma, false); 1481 put_page(page); 1482 } else if (!non_swap_entry(entry)) { 1483 /* Genuine swap entry, hence a private anon page */ 1484 if (!should_zap_cows(details)) 1485 continue; 1486 rss[MM_SWAPENTS]--; 1487 if (unlikely(!free_swap_and_cache(entry))) 1488 print_bad_pte(vma, addr, ptent, NULL); 1489 } else if (is_migration_entry(entry)) { 1490 page = pfn_swap_entry_to_page(entry); 1491 if (!should_zap_page(details, page)) 1492 continue; 1493 rss[mm_counter(page)]--; 1494 } else if (pte_marker_entry_uffd_wp(entry)) { 1495 /* Only drop the uffd-wp marker if explicitly requested */ 1496 if (!zap_drop_file_uffd_wp(details)) 1497 continue; 1498 } else if (is_hwpoison_entry(entry) || 1499 is_swapin_error_entry(entry)) { 1500 if (!should_zap_cows(details)) 1501 continue; 1502 } else { 1503 /* We should have covered all the swap entry types */ 1504 WARN_ON_ONCE(1); 1505 } 1506 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1507 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1508 } while (pte++, addr += PAGE_SIZE, addr != end); 1509 1510 add_mm_rss_vec(mm, rss); 1511 arch_leave_lazy_mmu_mode(); 1512 1513 /* Do the actual TLB flush before dropping ptl */ 1514 if (force_flush) 1515 tlb_flush_mmu_tlbonly(tlb); 1516 pte_unmap_unlock(start_pte, ptl); 1517 1518 /* 1519 * If we forced a TLB flush (either due to running out of 1520 * batch buffers or because we needed to flush dirty TLB 1521 * entries before releasing the ptl), free the batched 1522 * memory too. Restart if we didn't do everything. 1523 */ 1524 if (force_flush) { 1525 force_flush = 0; 1526 tlb_flush_mmu(tlb); 1527 } 1528 1529 if (addr != end) { 1530 cond_resched(); 1531 goto again; 1532 } 1533 1534 return addr; 1535 } 1536 1537 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1538 struct vm_area_struct *vma, pud_t *pud, 1539 unsigned long addr, unsigned long end, 1540 struct zap_details *details) 1541 { 1542 pmd_t *pmd; 1543 unsigned long next; 1544 1545 pmd = pmd_offset(pud, addr); 1546 do { 1547 next = pmd_addr_end(addr, end); 1548 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1549 if (next - addr != HPAGE_PMD_SIZE) 1550 __split_huge_pmd(vma, pmd, addr, false, NULL); 1551 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1552 goto next; 1553 /* fall through */ 1554 } else if (details && details->single_folio && 1555 folio_test_pmd_mappable(details->single_folio) && 1556 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1557 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1558 /* 1559 * Take and drop THP pmd lock so that we cannot return 1560 * prematurely, while zap_huge_pmd() has cleared *pmd, 1561 * but not yet decremented compound_mapcount(). 1562 */ 1563 spin_unlock(ptl); 1564 } 1565 1566 /* 1567 * Here there can be other concurrent MADV_DONTNEED or 1568 * trans huge page faults running, and if the pmd is 1569 * none or trans huge it can change under us. This is 1570 * because MADV_DONTNEED holds the mmap_lock in read 1571 * mode. 1572 */ 1573 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1574 goto next; 1575 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1576 next: 1577 cond_resched(); 1578 } while (pmd++, addr = next, addr != end); 1579 1580 return addr; 1581 } 1582 1583 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1584 struct vm_area_struct *vma, p4d_t *p4d, 1585 unsigned long addr, unsigned long end, 1586 struct zap_details *details) 1587 { 1588 pud_t *pud; 1589 unsigned long next; 1590 1591 pud = pud_offset(p4d, addr); 1592 do { 1593 next = pud_addr_end(addr, end); 1594 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1595 if (next - addr != HPAGE_PUD_SIZE) { 1596 mmap_assert_locked(tlb->mm); 1597 split_huge_pud(vma, pud, addr); 1598 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1599 goto next; 1600 /* fall through */ 1601 } 1602 if (pud_none_or_clear_bad(pud)) 1603 continue; 1604 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1605 next: 1606 cond_resched(); 1607 } while (pud++, addr = next, addr != end); 1608 1609 return addr; 1610 } 1611 1612 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1613 struct vm_area_struct *vma, pgd_t *pgd, 1614 unsigned long addr, unsigned long end, 1615 struct zap_details *details) 1616 { 1617 p4d_t *p4d; 1618 unsigned long next; 1619 1620 p4d = p4d_offset(pgd, addr); 1621 do { 1622 next = p4d_addr_end(addr, end); 1623 if (p4d_none_or_clear_bad(p4d)) 1624 continue; 1625 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1626 } while (p4d++, addr = next, addr != end); 1627 1628 return addr; 1629 } 1630 1631 void unmap_page_range(struct mmu_gather *tlb, 1632 struct vm_area_struct *vma, 1633 unsigned long addr, unsigned long end, 1634 struct zap_details *details) 1635 { 1636 pgd_t *pgd; 1637 unsigned long next; 1638 1639 BUG_ON(addr >= end); 1640 tlb_start_vma(tlb, vma); 1641 pgd = pgd_offset(vma->vm_mm, addr); 1642 do { 1643 next = pgd_addr_end(addr, end); 1644 if (pgd_none_or_clear_bad(pgd)) 1645 continue; 1646 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1647 } while (pgd++, addr = next, addr != end); 1648 tlb_end_vma(tlb, vma); 1649 } 1650 1651 1652 static void unmap_single_vma(struct mmu_gather *tlb, 1653 struct vm_area_struct *vma, unsigned long start_addr, 1654 unsigned long end_addr, 1655 struct zap_details *details) 1656 { 1657 unsigned long start = max(vma->vm_start, start_addr); 1658 unsigned long end; 1659 1660 if (start >= vma->vm_end) 1661 return; 1662 end = min(vma->vm_end, end_addr); 1663 if (end <= vma->vm_start) 1664 return; 1665 1666 if (vma->vm_file) 1667 uprobe_munmap(vma, start, end); 1668 1669 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1670 untrack_pfn(vma, 0, 0); 1671 1672 if (start != end) { 1673 if (unlikely(is_vm_hugetlb_page(vma))) { 1674 /* 1675 * It is undesirable to test vma->vm_file as it 1676 * should be non-null for valid hugetlb area. 1677 * However, vm_file will be NULL in the error 1678 * cleanup path of mmap_region. When 1679 * hugetlbfs ->mmap method fails, 1680 * mmap_region() nullifies vma->vm_file 1681 * before calling this function to clean up. 1682 * Since no pte has actually been setup, it is 1683 * safe to do nothing in this case. 1684 */ 1685 if (vma->vm_file) { 1686 zap_flags_t zap_flags = details ? 1687 details->zap_flags : 0; 1688 __unmap_hugepage_range_final(tlb, vma, start, end, 1689 NULL, zap_flags); 1690 } 1691 } else 1692 unmap_page_range(tlb, vma, start, end, details); 1693 } 1694 } 1695 1696 /** 1697 * unmap_vmas - unmap a range of memory covered by a list of vma's 1698 * @tlb: address of the caller's struct mmu_gather 1699 * @mt: the maple tree 1700 * @vma: the starting vma 1701 * @start_addr: virtual address at which to start unmapping 1702 * @end_addr: virtual address at which to end unmapping 1703 * 1704 * Unmap all pages in the vma list. 1705 * 1706 * Only addresses between `start' and `end' will be unmapped. 1707 * 1708 * The VMA list must be sorted in ascending virtual address order. 1709 * 1710 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1711 * range after unmap_vmas() returns. So the only responsibility here is to 1712 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1713 * drops the lock and schedules. 1714 */ 1715 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1716 struct vm_area_struct *vma, unsigned long start_addr, 1717 unsigned long end_addr) 1718 { 1719 struct mmu_notifier_range range; 1720 struct zap_details details = { 1721 .zap_flags = ZAP_FLAG_DROP_MARKER, 1722 /* Careful - we need to zap private pages too! */ 1723 .even_cows = true, 1724 }; 1725 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1726 1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1728 start_addr, end_addr); 1729 mmu_notifier_invalidate_range_start(&range); 1730 do { 1731 unmap_single_vma(tlb, vma, start_addr, end_addr, &details); 1732 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1733 mmu_notifier_invalidate_range_end(&range); 1734 } 1735 1736 /** 1737 * zap_page_range - remove user pages in a given range 1738 * @vma: vm_area_struct holding the applicable pages 1739 * @start: starting address of pages to zap 1740 * @size: number of bytes to zap 1741 * 1742 * Caller must protect the VMA list 1743 */ 1744 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1745 unsigned long size) 1746 { 1747 struct maple_tree *mt = &vma->vm_mm->mm_mt; 1748 unsigned long end = start + size; 1749 struct mmu_notifier_range range; 1750 struct mmu_gather tlb; 1751 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1752 1753 lru_add_drain(); 1754 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1755 start, start + size); 1756 tlb_gather_mmu(&tlb, vma->vm_mm); 1757 update_hiwater_rss(vma->vm_mm); 1758 mmu_notifier_invalidate_range_start(&range); 1759 do { 1760 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1761 } while ((vma = mas_find(&mas, end - 1)) != NULL); 1762 mmu_notifier_invalidate_range_end(&range); 1763 tlb_finish_mmu(&tlb); 1764 } 1765 1766 /** 1767 * zap_page_range_single - remove user pages in a given range 1768 * @vma: vm_area_struct holding the applicable pages 1769 * @address: starting address of pages to zap 1770 * @size: number of bytes to zap 1771 * @details: details of shared cache invalidation 1772 * 1773 * The range must fit into one VMA. 1774 */ 1775 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1776 unsigned long size, struct zap_details *details) 1777 { 1778 struct mmu_notifier_range range; 1779 struct mmu_gather tlb; 1780 1781 lru_add_drain(); 1782 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1783 address, address + size); 1784 tlb_gather_mmu(&tlb, vma->vm_mm); 1785 update_hiwater_rss(vma->vm_mm); 1786 mmu_notifier_invalidate_range_start(&range); 1787 unmap_single_vma(&tlb, vma, address, range.end, details); 1788 mmu_notifier_invalidate_range_end(&range); 1789 tlb_finish_mmu(&tlb); 1790 } 1791 1792 /** 1793 * zap_vma_ptes - remove ptes mapping the vma 1794 * @vma: vm_area_struct holding ptes to be zapped 1795 * @address: starting address of pages to zap 1796 * @size: number of bytes to zap 1797 * 1798 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1799 * 1800 * The entire address range must be fully contained within the vma. 1801 * 1802 */ 1803 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1804 unsigned long size) 1805 { 1806 if (!range_in_vma(vma, address, address + size) || 1807 !(vma->vm_flags & VM_PFNMAP)) 1808 return; 1809 1810 zap_page_range_single(vma, address, size, NULL); 1811 } 1812 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1813 1814 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1815 { 1816 pgd_t *pgd; 1817 p4d_t *p4d; 1818 pud_t *pud; 1819 pmd_t *pmd; 1820 1821 pgd = pgd_offset(mm, addr); 1822 p4d = p4d_alloc(mm, pgd, addr); 1823 if (!p4d) 1824 return NULL; 1825 pud = pud_alloc(mm, p4d, addr); 1826 if (!pud) 1827 return NULL; 1828 pmd = pmd_alloc(mm, pud, addr); 1829 if (!pmd) 1830 return NULL; 1831 1832 VM_BUG_ON(pmd_trans_huge(*pmd)); 1833 return pmd; 1834 } 1835 1836 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1837 spinlock_t **ptl) 1838 { 1839 pmd_t *pmd = walk_to_pmd(mm, addr); 1840 1841 if (!pmd) 1842 return NULL; 1843 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1844 } 1845 1846 static int validate_page_before_insert(struct page *page) 1847 { 1848 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1849 return -EINVAL; 1850 flush_dcache_page(page); 1851 return 0; 1852 } 1853 1854 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1855 unsigned long addr, struct page *page, pgprot_t prot) 1856 { 1857 if (!pte_none(*pte)) 1858 return -EBUSY; 1859 /* Ok, finally just insert the thing.. */ 1860 get_page(page); 1861 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 1862 page_add_file_rmap(page, vma, false); 1863 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1864 return 0; 1865 } 1866 1867 /* 1868 * This is the old fallback for page remapping. 1869 * 1870 * For historical reasons, it only allows reserved pages. Only 1871 * old drivers should use this, and they needed to mark their 1872 * pages reserved for the old functions anyway. 1873 */ 1874 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1875 struct page *page, pgprot_t prot) 1876 { 1877 int retval; 1878 pte_t *pte; 1879 spinlock_t *ptl; 1880 1881 retval = validate_page_before_insert(page); 1882 if (retval) 1883 goto out; 1884 retval = -ENOMEM; 1885 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1886 if (!pte) 1887 goto out; 1888 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1889 pte_unmap_unlock(pte, ptl); 1890 out: 1891 return retval; 1892 } 1893 1894 #ifdef pte_index 1895 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1896 unsigned long addr, struct page *page, pgprot_t prot) 1897 { 1898 int err; 1899 1900 if (!page_count(page)) 1901 return -EINVAL; 1902 err = validate_page_before_insert(page); 1903 if (err) 1904 return err; 1905 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1906 } 1907 1908 /* insert_pages() amortizes the cost of spinlock operations 1909 * when inserting pages in a loop. Arch *must* define pte_index. 1910 */ 1911 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1912 struct page **pages, unsigned long *num, pgprot_t prot) 1913 { 1914 pmd_t *pmd = NULL; 1915 pte_t *start_pte, *pte; 1916 spinlock_t *pte_lock; 1917 struct mm_struct *const mm = vma->vm_mm; 1918 unsigned long curr_page_idx = 0; 1919 unsigned long remaining_pages_total = *num; 1920 unsigned long pages_to_write_in_pmd; 1921 int ret; 1922 more: 1923 ret = -EFAULT; 1924 pmd = walk_to_pmd(mm, addr); 1925 if (!pmd) 1926 goto out; 1927 1928 pages_to_write_in_pmd = min_t(unsigned long, 1929 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1930 1931 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1932 ret = -ENOMEM; 1933 if (pte_alloc(mm, pmd)) 1934 goto out; 1935 1936 while (pages_to_write_in_pmd) { 1937 int pte_idx = 0; 1938 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1939 1940 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1941 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1942 int err = insert_page_in_batch_locked(vma, pte, 1943 addr, pages[curr_page_idx], prot); 1944 if (unlikely(err)) { 1945 pte_unmap_unlock(start_pte, pte_lock); 1946 ret = err; 1947 remaining_pages_total -= pte_idx; 1948 goto out; 1949 } 1950 addr += PAGE_SIZE; 1951 ++curr_page_idx; 1952 } 1953 pte_unmap_unlock(start_pte, pte_lock); 1954 pages_to_write_in_pmd -= batch_size; 1955 remaining_pages_total -= batch_size; 1956 } 1957 if (remaining_pages_total) 1958 goto more; 1959 ret = 0; 1960 out: 1961 *num = remaining_pages_total; 1962 return ret; 1963 } 1964 #endif /* ifdef pte_index */ 1965 1966 /** 1967 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1968 * @vma: user vma to map to 1969 * @addr: target start user address of these pages 1970 * @pages: source kernel pages 1971 * @num: in: number of pages to map. out: number of pages that were *not* 1972 * mapped. (0 means all pages were successfully mapped). 1973 * 1974 * Preferred over vm_insert_page() when inserting multiple pages. 1975 * 1976 * In case of error, we may have mapped a subset of the provided 1977 * pages. It is the caller's responsibility to account for this case. 1978 * 1979 * The same restrictions apply as in vm_insert_page(). 1980 */ 1981 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1982 struct page **pages, unsigned long *num) 1983 { 1984 #ifdef pte_index 1985 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1986 1987 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1988 return -EFAULT; 1989 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1990 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1991 BUG_ON(vma->vm_flags & VM_PFNMAP); 1992 vma->vm_flags |= VM_MIXEDMAP; 1993 } 1994 /* Defer page refcount checking till we're about to map that page. */ 1995 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1996 #else 1997 unsigned long idx = 0, pgcount = *num; 1998 int err = -EINVAL; 1999 2000 for (; idx < pgcount; ++idx) { 2001 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 2002 if (err) 2003 break; 2004 } 2005 *num = pgcount - idx; 2006 return err; 2007 #endif /* ifdef pte_index */ 2008 } 2009 EXPORT_SYMBOL(vm_insert_pages); 2010 2011 /** 2012 * vm_insert_page - insert single page into user vma 2013 * @vma: user vma to map to 2014 * @addr: target user address of this page 2015 * @page: source kernel page 2016 * 2017 * This allows drivers to insert individual pages they've allocated 2018 * into a user vma. 2019 * 2020 * The page has to be a nice clean _individual_ kernel allocation. 2021 * If you allocate a compound page, you need to have marked it as 2022 * such (__GFP_COMP), or manually just split the page up yourself 2023 * (see split_page()). 2024 * 2025 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2026 * took an arbitrary page protection parameter. This doesn't allow 2027 * that. Your vma protection will have to be set up correctly, which 2028 * means that if you want a shared writable mapping, you'd better 2029 * ask for a shared writable mapping! 2030 * 2031 * The page does not need to be reserved. 2032 * 2033 * Usually this function is called from f_op->mmap() handler 2034 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2035 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2036 * function from other places, for example from page-fault handler. 2037 * 2038 * Return: %0 on success, negative error code otherwise. 2039 */ 2040 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2041 struct page *page) 2042 { 2043 if (addr < vma->vm_start || addr >= vma->vm_end) 2044 return -EFAULT; 2045 if (!page_count(page)) 2046 return -EINVAL; 2047 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2048 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2049 BUG_ON(vma->vm_flags & VM_PFNMAP); 2050 vma->vm_flags |= VM_MIXEDMAP; 2051 } 2052 return insert_page(vma, addr, page, vma->vm_page_prot); 2053 } 2054 EXPORT_SYMBOL(vm_insert_page); 2055 2056 /* 2057 * __vm_map_pages - maps range of kernel pages into user vma 2058 * @vma: user vma to map to 2059 * @pages: pointer to array of source kernel pages 2060 * @num: number of pages in page array 2061 * @offset: user's requested vm_pgoff 2062 * 2063 * This allows drivers to map range of kernel pages into a user vma. 2064 * 2065 * Return: 0 on success and error code otherwise. 2066 */ 2067 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2068 unsigned long num, unsigned long offset) 2069 { 2070 unsigned long count = vma_pages(vma); 2071 unsigned long uaddr = vma->vm_start; 2072 int ret, i; 2073 2074 /* Fail if the user requested offset is beyond the end of the object */ 2075 if (offset >= num) 2076 return -ENXIO; 2077 2078 /* Fail if the user requested size exceeds available object size */ 2079 if (count > num - offset) 2080 return -ENXIO; 2081 2082 for (i = 0; i < count; i++) { 2083 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2084 if (ret < 0) 2085 return ret; 2086 uaddr += PAGE_SIZE; 2087 } 2088 2089 return 0; 2090 } 2091 2092 /** 2093 * vm_map_pages - maps range of kernel pages starts with non zero offset 2094 * @vma: user vma to map to 2095 * @pages: pointer to array of source kernel pages 2096 * @num: number of pages in page array 2097 * 2098 * Maps an object consisting of @num pages, catering for the user's 2099 * requested vm_pgoff 2100 * 2101 * If we fail to insert any page into the vma, the function will return 2102 * immediately leaving any previously inserted pages present. Callers 2103 * from the mmap handler may immediately return the error as their caller 2104 * will destroy the vma, removing any successfully inserted pages. Other 2105 * callers should make their own arrangements for calling unmap_region(). 2106 * 2107 * Context: Process context. Called by mmap handlers. 2108 * Return: 0 on success and error code otherwise. 2109 */ 2110 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2111 unsigned long num) 2112 { 2113 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2114 } 2115 EXPORT_SYMBOL(vm_map_pages); 2116 2117 /** 2118 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2119 * @vma: user vma to map to 2120 * @pages: pointer to array of source kernel pages 2121 * @num: number of pages in page array 2122 * 2123 * Similar to vm_map_pages(), except that it explicitly sets the offset 2124 * to 0. This function is intended for the drivers that did not consider 2125 * vm_pgoff. 2126 * 2127 * Context: Process context. Called by mmap handlers. 2128 * Return: 0 on success and error code otherwise. 2129 */ 2130 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2131 unsigned long num) 2132 { 2133 return __vm_map_pages(vma, pages, num, 0); 2134 } 2135 EXPORT_SYMBOL(vm_map_pages_zero); 2136 2137 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2138 pfn_t pfn, pgprot_t prot, bool mkwrite) 2139 { 2140 struct mm_struct *mm = vma->vm_mm; 2141 pte_t *pte, entry; 2142 spinlock_t *ptl; 2143 2144 pte = get_locked_pte(mm, addr, &ptl); 2145 if (!pte) 2146 return VM_FAULT_OOM; 2147 if (!pte_none(*pte)) { 2148 if (mkwrite) { 2149 /* 2150 * For read faults on private mappings the PFN passed 2151 * in may not match the PFN we have mapped if the 2152 * mapped PFN is a writeable COW page. In the mkwrite 2153 * case we are creating a writable PTE for a shared 2154 * mapping and we expect the PFNs to match. If they 2155 * don't match, we are likely racing with block 2156 * allocation and mapping invalidation so just skip the 2157 * update. 2158 */ 2159 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2160 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2161 goto out_unlock; 2162 } 2163 entry = pte_mkyoung(*pte); 2164 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2165 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2166 update_mmu_cache(vma, addr, pte); 2167 } 2168 goto out_unlock; 2169 } 2170 2171 /* Ok, finally just insert the thing.. */ 2172 if (pfn_t_devmap(pfn)) 2173 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2174 else 2175 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2176 2177 if (mkwrite) { 2178 entry = pte_mkyoung(entry); 2179 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2180 } 2181 2182 set_pte_at(mm, addr, pte, entry); 2183 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2184 2185 out_unlock: 2186 pte_unmap_unlock(pte, ptl); 2187 return VM_FAULT_NOPAGE; 2188 } 2189 2190 /** 2191 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2192 * @vma: user vma to map to 2193 * @addr: target user address of this page 2194 * @pfn: source kernel pfn 2195 * @pgprot: pgprot flags for the inserted page 2196 * 2197 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2198 * to override pgprot on a per-page basis. 2199 * 2200 * This only makes sense for IO mappings, and it makes no sense for 2201 * COW mappings. In general, using multiple vmas is preferable; 2202 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2203 * impractical. 2204 * 2205 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2206 * a value of @pgprot different from that of @vma->vm_page_prot. 2207 * 2208 * Context: Process context. May allocate using %GFP_KERNEL. 2209 * Return: vm_fault_t value. 2210 */ 2211 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2212 unsigned long pfn, pgprot_t pgprot) 2213 { 2214 /* 2215 * Technically, architectures with pte_special can avoid all these 2216 * restrictions (same for remap_pfn_range). However we would like 2217 * consistency in testing and feature parity among all, so we should 2218 * try to keep these invariants in place for everybody. 2219 */ 2220 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2221 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2222 (VM_PFNMAP|VM_MIXEDMAP)); 2223 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2224 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2225 2226 if (addr < vma->vm_start || addr >= vma->vm_end) 2227 return VM_FAULT_SIGBUS; 2228 2229 if (!pfn_modify_allowed(pfn, pgprot)) 2230 return VM_FAULT_SIGBUS; 2231 2232 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2233 2234 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2235 false); 2236 } 2237 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2238 2239 /** 2240 * vmf_insert_pfn - insert single pfn into user vma 2241 * @vma: user vma to map to 2242 * @addr: target user address of this page 2243 * @pfn: source kernel pfn 2244 * 2245 * Similar to vm_insert_page, this allows drivers to insert individual pages 2246 * they've allocated into a user vma. Same comments apply. 2247 * 2248 * This function should only be called from a vm_ops->fault handler, and 2249 * in that case the handler should return the result of this function. 2250 * 2251 * vma cannot be a COW mapping. 2252 * 2253 * As this is called only for pages that do not currently exist, we 2254 * do not need to flush old virtual caches or the TLB. 2255 * 2256 * Context: Process context. May allocate using %GFP_KERNEL. 2257 * Return: vm_fault_t value. 2258 */ 2259 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2260 unsigned long pfn) 2261 { 2262 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2263 } 2264 EXPORT_SYMBOL(vmf_insert_pfn); 2265 2266 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2267 { 2268 /* these checks mirror the abort conditions in vm_normal_page */ 2269 if (vma->vm_flags & VM_MIXEDMAP) 2270 return true; 2271 if (pfn_t_devmap(pfn)) 2272 return true; 2273 if (pfn_t_special(pfn)) 2274 return true; 2275 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2276 return true; 2277 return false; 2278 } 2279 2280 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2281 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2282 bool mkwrite) 2283 { 2284 int err; 2285 2286 BUG_ON(!vm_mixed_ok(vma, pfn)); 2287 2288 if (addr < vma->vm_start || addr >= vma->vm_end) 2289 return VM_FAULT_SIGBUS; 2290 2291 track_pfn_insert(vma, &pgprot, pfn); 2292 2293 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2294 return VM_FAULT_SIGBUS; 2295 2296 /* 2297 * If we don't have pte special, then we have to use the pfn_valid() 2298 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2299 * refcount the page if pfn_valid is true (hence insert_page rather 2300 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2301 * without pte special, it would there be refcounted as a normal page. 2302 */ 2303 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2304 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2305 struct page *page; 2306 2307 /* 2308 * At this point we are committed to insert_page() 2309 * regardless of whether the caller specified flags that 2310 * result in pfn_t_has_page() == false. 2311 */ 2312 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2313 err = insert_page(vma, addr, page, pgprot); 2314 } else { 2315 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2316 } 2317 2318 if (err == -ENOMEM) 2319 return VM_FAULT_OOM; 2320 if (err < 0 && err != -EBUSY) 2321 return VM_FAULT_SIGBUS; 2322 2323 return VM_FAULT_NOPAGE; 2324 } 2325 2326 /** 2327 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2328 * @vma: user vma to map to 2329 * @addr: target user address of this page 2330 * @pfn: source kernel pfn 2331 * @pgprot: pgprot flags for the inserted page 2332 * 2333 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2334 * to override pgprot on a per-page basis. 2335 * 2336 * Typically this function should be used by drivers to set caching- and 2337 * encryption bits different than those of @vma->vm_page_prot, because 2338 * the caching- or encryption mode may not be known at mmap() time. 2339 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2340 * to set caching and encryption bits for those vmas (except for COW pages). 2341 * This is ensured by core vm only modifying these page table entries using 2342 * functions that don't touch caching- or encryption bits, using pte_modify() 2343 * if needed. (See for example mprotect()). 2344 * Also when new page-table entries are created, this is only done using the 2345 * fault() callback, and never using the value of vma->vm_page_prot, 2346 * except for page-table entries that point to anonymous pages as the result 2347 * of COW. 2348 * 2349 * Context: Process context. May allocate using %GFP_KERNEL. 2350 * Return: vm_fault_t value. 2351 */ 2352 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2353 pfn_t pfn, pgprot_t pgprot) 2354 { 2355 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2356 } 2357 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2358 2359 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2360 pfn_t pfn) 2361 { 2362 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2363 } 2364 EXPORT_SYMBOL(vmf_insert_mixed); 2365 2366 /* 2367 * If the insertion of PTE failed because someone else already added a 2368 * different entry in the mean time, we treat that as success as we assume 2369 * the same entry was actually inserted. 2370 */ 2371 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2372 unsigned long addr, pfn_t pfn) 2373 { 2374 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2375 } 2376 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2377 2378 /* 2379 * maps a range of physical memory into the requested pages. the old 2380 * mappings are removed. any references to nonexistent pages results 2381 * in null mappings (currently treated as "copy-on-access") 2382 */ 2383 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2384 unsigned long addr, unsigned long end, 2385 unsigned long pfn, pgprot_t prot) 2386 { 2387 pte_t *pte, *mapped_pte; 2388 spinlock_t *ptl; 2389 int err = 0; 2390 2391 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2392 if (!pte) 2393 return -ENOMEM; 2394 arch_enter_lazy_mmu_mode(); 2395 do { 2396 BUG_ON(!pte_none(*pte)); 2397 if (!pfn_modify_allowed(pfn, prot)) { 2398 err = -EACCES; 2399 break; 2400 } 2401 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2402 pfn++; 2403 } while (pte++, addr += PAGE_SIZE, addr != end); 2404 arch_leave_lazy_mmu_mode(); 2405 pte_unmap_unlock(mapped_pte, ptl); 2406 return err; 2407 } 2408 2409 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2410 unsigned long addr, unsigned long end, 2411 unsigned long pfn, pgprot_t prot) 2412 { 2413 pmd_t *pmd; 2414 unsigned long next; 2415 int err; 2416 2417 pfn -= addr >> PAGE_SHIFT; 2418 pmd = pmd_alloc(mm, pud, addr); 2419 if (!pmd) 2420 return -ENOMEM; 2421 VM_BUG_ON(pmd_trans_huge(*pmd)); 2422 do { 2423 next = pmd_addr_end(addr, end); 2424 err = remap_pte_range(mm, pmd, addr, next, 2425 pfn + (addr >> PAGE_SHIFT), prot); 2426 if (err) 2427 return err; 2428 } while (pmd++, addr = next, addr != end); 2429 return 0; 2430 } 2431 2432 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2433 unsigned long addr, unsigned long end, 2434 unsigned long pfn, pgprot_t prot) 2435 { 2436 pud_t *pud; 2437 unsigned long next; 2438 int err; 2439 2440 pfn -= addr >> PAGE_SHIFT; 2441 pud = pud_alloc(mm, p4d, addr); 2442 if (!pud) 2443 return -ENOMEM; 2444 do { 2445 next = pud_addr_end(addr, end); 2446 err = remap_pmd_range(mm, pud, addr, next, 2447 pfn + (addr >> PAGE_SHIFT), prot); 2448 if (err) 2449 return err; 2450 } while (pud++, addr = next, addr != end); 2451 return 0; 2452 } 2453 2454 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2455 unsigned long addr, unsigned long end, 2456 unsigned long pfn, pgprot_t prot) 2457 { 2458 p4d_t *p4d; 2459 unsigned long next; 2460 int err; 2461 2462 pfn -= addr >> PAGE_SHIFT; 2463 p4d = p4d_alloc(mm, pgd, addr); 2464 if (!p4d) 2465 return -ENOMEM; 2466 do { 2467 next = p4d_addr_end(addr, end); 2468 err = remap_pud_range(mm, p4d, addr, next, 2469 pfn + (addr >> PAGE_SHIFT), prot); 2470 if (err) 2471 return err; 2472 } while (p4d++, addr = next, addr != end); 2473 return 0; 2474 } 2475 2476 /* 2477 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2478 * must have pre-validated the caching bits of the pgprot_t. 2479 */ 2480 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2481 unsigned long pfn, unsigned long size, pgprot_t prot) 2482 { 2483 pgd_t *pgd; 2484 unsigned long next; 2485 unsigned long end = addr + PAGE_ALIGN(size); 2486 struct mm_struct *mm = vma->vm_mm; 2487 int err; 2488 2489 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2490 return -EINVAL; 2491 2492 /* 2493 * Physically remapped pages are special. Tell the 2494 * rest of the world about it: 2495 * VM_IO tells people not to look at these pages 2496 * (accesses can have side effects). 2497 * VM_PFNMAP tells the core MM that the base pages are just 2498 * raw PFN mappings, and do not have a "struct page" associated 2499 * with them. 2500 * VM_DONTEXPAND 2501 * Disable vma merging and expanding with mremap(). 2502 * VM_DONTDUMP 2503 * Omit vma from core dump, even when VM_IO turned off. 2504 * 2505 * There's a horrible special case to handle copy-on-write 2506 * behaviour that some programs depend on. We mark the "original" 2507 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2508 * See vm_normal_page() for details. 2509 */ 2510 if (is_cow_mapping(vma->vm_flags)) { 2511 if (addr != vma->vm_start || end != vma->vm_end) 2512 return -EINVAL; 2513 vma->vm_pgoff = pfn; 2514 } 2515 2516 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2517 2518 BUG_ON(addr >= end); 2519 pfn -= addr >> PAGE_SHIFT; 2520 pgd = pgd_offset(mm, addr); 2521 flush_cache_range(vma, addr, end); 2522 do { 2523 next = pgd_addr_end(addr, end); 2524 err = remap_p4d_range(mm, pgd, addr, next, 2525 pfn + (addr >> PAGE_SHIFT), prot); 2526 if (err) 2527 return err; 2528 } while (pgd++, addr = next, addr != end); 2529 2530 return 0; 2531 } 2532 2533 /** 2534 * remap_pfn_range - remap kernel memory to userspace 2535 * @vma: user vma to map to 2536 * @addr: target page aligned user address to start at 2537 * @pfn: page frame number of kernel physical memory address 2538 * @size: size of mapping area 2539 * @prot: page protection flags for this mapping 2540 * 2541 * Note: this is only safe if the mm semaphore is held when called. 2542 * 2543 * Return: %0 on success, negative error code otherwise. 2544 */ 2545 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2546 unsigned long pfn, unsigned long size, pgprot_t prot) 2547 { 2548 int err; 2549 2550 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2551 if (err) 2552 return -EINVAL; 2553 2554 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2555 if (err) 2556 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2557 return err; 2558 } 2559 EXPORT_SYMBOL(remap_pfn_range); 2560 2561 /** 2562 * vm_iomap_memory - remap memory to userspace 2563 * @vma: user vma to map to 2564 * @start: start of the physical memory to be mapped 2565 * @len: size of area 2566 * 2567 * This is a simplified io_remap_pfn_range() for common driver use. The 2568 * driver just needs to give us the physical memory range to be mapped, 2569 * we'll figure out the rest from the vma information. 2570 * 2571 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2572 * whatever write-combining details or similar. 2573 * 2574 * Return: %0 on success, negative error code otherwise. 2575 */ 2576 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2577 { 2578 unsigned long vm_len, pfn, pages; 2579 2580 /* Check that the physical memory area passed in looks valid */ 2581 if (start + len < start) 2582 return -EINVAL; 2583 /* 2584 * You *really* shouldn't map things that aren't page-aligned, 2585 * but we've historically allowed it because IO memory might 2586 * just have smaller alignment. 2587 */ 2588 len += start & ~PAGE_MASK; 2589 pfn = start >> PAGE_SHIFT; 2590 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2591 if (pfn + pages < pfn) 2592 return -EINVAL; 2593 2594 /* We start the mapping 'vm_pgoff' pages into the area */ 2595 if (vma->vm_pgoff > pages) 2596 return -EINVAL; 2597 pfn += vma->vm_pgoff; 2598 pages -= vma->vm_pgoff; 2599 2600 /* Can we fit all of the mapping? */ 2601 vm_len = vma->vm_end - vma->vm_start; 2602 if (vm_len >> PAGE_SHIFT > pages) 2603 return -EINVAL; 2604 2605 /* Ok, let it rip */ 2606 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2607 } 2608 EXPORT_SYMBOL(vm_iomap_memory); 2609 2610 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2611 unsigned long addr, unsigned long end, 2612 pte_fn_t fn, void *data, bool create, 2613 pgtbl_mod_mask *mask) 2614 { 2615 pte_t *pte, *mapped_pte; 2616 int err = 0; 2617 spinlock_t *ptl; 2618 2619 if (create) { 2620 mapped_pte = pte = (mm == &init_mm) ? 2621 pte_alloc_kernel_track(pmd, addr, mask) : 2622 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2623 if (!pte) 2624 return -ENOMEM; 2625 } else { 2626 mapped_pte = pte = (mm == &init_mm) ? 2627 pte_offset_kernel(pmd, addr) : 2628 pte_offset_map_lock(mm, pmd, addr, &ptl); 2629 } 2630 2631 BUG_ON(pmd_huge(*pmd)); 2632 2633 arch_enter_lazy_mmu_mode(); 2634 2635 if (fn) { 2636 do { 2637 if (create || !pte_none(*pte)) { 2638 err = fn(pte++, addr, data); 2639 if (err) 2640 break; 2641 } 2642 } while (addr += PAGE_SIZE, addr != end); 2643 } 2644 *mask |= PGTBL_PTE_MODIFIED; 2645 2646 arch_leave_lazy_mmu_mode(); 2647 2648 if (mm != &init_mm) 2649 pte_unmap_unlock(mapped_pte, ptl); 2650 return err; 2651 } 2652 2653 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2654 unsigned long addr, unsigned long end, 2655 pte_fn_t fn, void *data, bool create, 2656 pgtbl_mod_mask *mask) 2657 { 2658 pmd_t *pmd; 2659 unsigned long next; 2660 int err = 0; 2661 2662 BUG_ON(pud_huge(*pud)); 2663 2664 if (create) { 2665 pmd = pmd_alloc_track(mm, pud, addr, mask); 2666 if (!pmd) 2667 return -ENOMEM; 2668 } else { 2669 pmd = pmd_offset(pud, addr); 2670 } 2671 do { 2672 next = pmd_addr_end(addr, end); 2673 if (pmd_none(*pmd) && !create) 2674 continue; 2675 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2676 return -EINVAL; 2677 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2678 if (!create) 2679 continue; 2680 pmd_clear_bad(pmd); 2681 } 2682 err = apply_to_pte_range(mm, pmd, addr, next, 2683 fn, data, create, mask); 2684 if (err) 2685 break; 2686 } while (pmd++, addr = next, addr != end); 2687 2688 return err; 2689 } 2690 2691 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2692 unsigned long addr, unsigned long end, 2693 pte_fn_t fn, void *data, bool create, 2694 pgtbl_mod_mask *mask) 2695 { 2696 pud_t *pud; 2697 unsigned long next; 2698 int err = 0; 2699 2700 if (create) { 2701 pud = pud_alloc_track(mm, p4d, addr, mask); 2702 if (!pud) 2703 return -ENOMEM; 2704 } else { 2705 pud = pud_offset(p4d, addr); 2706 } 2707 do { 2708 next = pud_addr_end(addr, end); 2709 if (pud_none(*pud) && !create) 2710 continue; 2711 if (WARN_ON_ONCE(pud_leaf(*pud))) 2712 return -EINVAL; 2713 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2714 if (!create) 2715 continue; 2716 pud_clear_bad(pud); 2717 } 2718 err = apply_to_pmd_range(mm, pud, addr, next, 2719 fn, data, create, mask); 2720 if (err) 2721 break; 2722 } while (pud++, addr = next, addr != end); 2723 2724 return err; 2725 } 2726 2727 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2728 unsigned long addr, unsigned long end, 2729 pte_fn_t fn, void *data, bool create, 2730 pgtbl_mod_mask *mask) 2731 { 2732 p4d_t *p4d; 2733 unsigned long next; 2734 int err = 0; 2735 2736 if (create) { 2737 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2738 if (!p4d) 2739 return -ENOMEM; 2740 } else { 2741 p4d = p4d_offset(pgd, addr); 2742 } 2743 do { 2744 next = p4d_addr_end(addr, end); 2745 if (p4d_none(*p4d) && !create) 2746 continue; 2747 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2748 return -EINVAL; 2749 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2750 if (!create) 2751 continue; 2752 p4d_clear_bad(p4d); 2753 } 2754 err = apply_to_pud_range(mm, p4d, addr, next, 2755 fn, data, create, mask); 2756 if (err) 2757 break; 2758 } while (p4d++, addr = next, addr != end); 2759 2760 return err; 2761 } 2762 2763 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2764 unsigned long size, pte_fn_t fn, 2765 void *data, bool create) 2766 { 2767 pgd_t *pgd; 2768 unsigned long start = addr, next; 2769 unsigned long end = addr + size; 2770 pgtbl_mod_mask mask = 0; 2771 int err = 0; 2772 2773 if (WARN_ON(addr >= end)) 2774 return -EINVAL; 2775 2776 pgd = pgd_offset(mm, addr); 2777 do { 2778 next = pgd_addr_end(addr, end); 2779 if (pgd_none(*pgd) && !create) 2780 continue; 2781 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2782 return -EINVAL; 2783 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2784 if (!create) 2785 continue; 2786 pgd_clear_bad(pgd); 2787 } 2788 err = apply_to_p4d_range(mm, pgd, addr, next, 2789 fn, data, create, &mask); 2790 if (err) 2791 break; 2792 } while (pgd++, addr = next, addr != end); 2793 2794 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2795 arch_sync_kernel_mappings(start, start + size); 2796 2797 return err; 2798 } 2799 2800 /* 2801 * Scan a region of virtual memory, filling in page tables as necessary 2802 * and calling a provided function on each leaf page table. 2803 */ 2804 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2805 unsigned long size, pte_fn_t fn, void *data) 2806 { 2807 return __apply_to_page_range(mm, addr, size, fn, data, true); 2808 } 2809 EXPORT_SYMBOL_GPL(apply_to_page_range); 2810 2811 /* 2812 * Scan a region of virtual memory, calling a provided function on 2813 * each leaf page table where it exists. 2814 * 2815 * Unlike apply_to_page_range, this does _not_ fill in page tables 2816 * where they are absent. 2817 */ 2818 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2819 unsigned long size, pte_fn_t fn, void *data) 2820 { 2821 return __apply_to_page_range(mm, addr, size, fn, data, false); 2822 } 2823 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2824 2825 /* 2826 * handle_pte_fault chooses page fault handler according to an entry which was 2827 * read non-atomically. Before making any commitment, on those architectures 2828 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2829 * parts, do_swap_page must check under lock before unmapping the pte and 2830 * proceeding (but do_wp_page is only called after already making such a check; 2831 * and do_anonymous_page can safely check later on). 2832 */ 2833 static inline int pte_unmap_same(struct vm_fault *vmf) 2834 { 2835 int same = 1; 2836 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2837 if (sizeof(pte_t) > sizeof(unsigned long)) { 2838 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2839 spin_lock(ptl); 2840 same = pte_same(*vmf->pte, vmf->orig_pte); 2841 spin_unlock(ptl); 2842 } 2843 #endif 2844 pte_unmap(vmf->pte); 2845 vmf->pte = NULL; 2846 return same; 2847 } 2848 2849 static inline bool __wp_page_copy_user(struct page *dst, struct page *src, 2850 struct vm_fault *vmf) 2851 { 2852 bool ret; 2853 void *kaddr; 2854 void __user *uaddr; 2855 bool locked = false; 2856 struct vm_area_struct *vma = vmf->vma; 2857 struct mm_struct *mm = vma->vm_mm; 2858 unsigned long addr = vmf->address; 2859 2860 if (likely(src)) { 2861 copy_user_highpage(dst, src, addr, vma); 2862 return true; 2863 } 2864 2865 /* 2866 * If the source page was a PFN mapping, we don't have 2867 * a "struct page" for it. We do a best-effort copy by 2868 * just copying from the original user address. If that 2869 * fails, we just zero-fill it. Live with it. 2870 */ 2871 kaddr = kmap_atomic(dst); 2872 uaddr = (void __user *)(addr & PAGE_MASK); 2873 2874 /* 2875 * On architectures with software "accessed" bits, we would 2876 * take a double page fault, so mark it accessed here. 2877 */ 2878 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2879 pte_t entry; 2880 2881 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2882 locked = true; 2883 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2884 /* 2885 * Other thread has already handled the fault 2886 * and update local tlb only 2887 */ 2888 update_mmu_tlb(vma, addr, vmf->pte); 2889 ret = false; 2890 goto pte_unlock; 2891 } 2892 2893 entry = pte_mkyoung(vmf->orig_pte); 2894 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2895 update_mmu_cache(vma, addr, vmf->pte); 2896 } 2897 2898 /* 2899 * This really shouldn't fail, because the page is there 2900 * in the page tables. But it might just be unreadable, 2901 * in which case we just give up and fill the result with 2902 * zeroes. 2903 */ 2904 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2905 if (locked) 2906 goto warn; 2907 2908 /* Re-validate under PTL if the page is still mapped */ 2909 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2910 locked = true; 2911 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2912 /* The PTE changed under us, update local tlb */ 2913 update_mmu_tlb(vma, addr, vmf->pte); 2914 ret = false; 2915 goto pte_unlock; 2916 } 2917 2918 /* 2919 * The same page can be mapped back since last copy attempt. 2920 * Try to copy again under PTL. 2921 */ 2922 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2923 /* 2924 * Give a warn in case there can be some obscure 2925 * use-case 2926 */ 2927 warn: 2928 WARN_ON_ONCE(1); 2929 clear_page(kaddr); 2930 } 2931 } 2932 2933 ret = true; 2934 2935 pte_unlock: 2936 if (locked) 2937 pte_unmap_unlock(vmf->pte, vmf->ptl); 2938 kunmap_atomic(kaddr); 2939 flush_dcache_page(dst); 2940 2941 return ret; 2942 } 2943 2944 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2945 { 2946 struct file *vm_file = vma->vm_file; 2947 2948 if (vm_file) 2949 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2950 2951 /* 2952 * Special mappings (e.g. VDSO) do not have any file so fake 2953 * a default GFP_KERNEL for them. 2954 */ 2955 return GFP_KERNEL; 2956 } 2957 2958 /* 2959 * Notify the address space that the page is about to become writable so that 2960 * it can prohibit this or wait for the page to get into an appropriate state. 2961 * 2962 * We do this without the lock held, so that it can sleep if it needs to. 2963 */ 2964 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2965 { 2966 vm_fault_t ret; 2967 struct page *page = vmf->page; 2968 unsigned int old_flags = vmf->flags; 2969 2970 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2971 2972 if (vmf->vma->vm_file && 2973 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2974 return VM_FAULT_SIGBUS; 2975 2976 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2977 /* Restore original flags so that caller is not surprised */ 2978 vmf->flags = old_flags; 2979 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2980 return ret; 2981 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2982 lock_page(page); 2983 if (!page->mapping) { 2984 unlock_page(page); 2985 return 0; /* retry */ 2986 } 2987 ret |= VM_FAULT_LOCKED; 2988 } else 2989 VM_BUG_ON_PAGE(!PageLocked(page), page); 2990 return ret; 2991 } 2992 2993 /* 2994 * Handle dirtying of a page in shared file mapping on a write fault. 2995 * 2996 * The function expects the page to be locked and unlocks it. 2997 */ 2998 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2999 { 3000 struct vm_area_struct *vma = vmf->vma; 3001 struct address_space *mapping; 3002 struct page *page = vmf->page; 3003 bool dirtied; 3004 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3005 3006 dirtied = set_page_dirty(page); 3007 VM_BUG_ON_PAGE(PageAnon(page), page); 3008 /* 3009 * Take a local copy of the address_space - page.mapping may be zeroed 3010 * by truncate after unlock_page(). The address_space itself remains 3011 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3012 * release semantics to prevent the compiler from undoing this copying. 3013 */ 3014 mapping = page_rmapping(page); 3015 unlock_page(page); 3016 3017 if (!page_mkwrite) 3018 file_update_time(vma->vm_file); 3019 3020 /* 3021 * Throttle page dirtying rate down to writeback speed. 3022 * 3023 * mapping may be NULL here because some device drivers do not 3024 * set page.mapping but still dirty their pages 3025 * 3026 * Drop the mmap_lock before waiting on IO, if we can. The file 3027 * is pinning the mapping, as per above. 3028 */ 3029 if ((dirtied || page_mkwrite) && mapping) { 3030 struct file *fpin; 3031 3032 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3033 balance_dirty_pages_ratelimited(mapping); 3034 if (fpin) { 3035 fput(fpin); 3036 return VM_FAULT_COMPLETED; 3037 } 3038 } 3039 3040 return 0; 3041 } 3042 3043 /* 3044 * Handle write page faults for pages that can be reused in the current vma 3045 * 3046 * This can happen either due to the mapping being with the VM_SHARED flag, 3047 * or due to us being the last reference standing to the page. In either 3048 * case, all we need to do here is to mark the page as writable and update 3049 * any related book-keeping. 3050 */ 3051 static inline void wp_page_reuse(struct vm_fault *vmf) 3052 __releases(vmf->ptl) 3053 { 3054 struct vm_area_struct *vma = vmf->vma; 3055 struct page *page = vmf->page; 3056 pte_t entry; 3057 3058 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3059 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3060 3061 /* 3062 * Clear the pages cpupid information as the existing 3063 * information potentially belongs to a now completely 3064 * unrelated process. 3065 */ 3066 if (page) 3067 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3068 3069 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3070 entry = pte_mkyoung(vmf->orig_pte); 3071 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3072 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3073 update_mmu_cache(vma, vmf->address, vmf->pte); 3074 pte_unmap_unlock(vmf->pte, vmf->ptl); 3075 count_vm_event(PGREUSE); 3076 } 3077 3078 /* 3079 * Handle the case of a page which we actually need to copy to a new page, 3080 * either due to COW or unsharing. 3081 * 3082 * Called with mmap_lock locked and the old page referenced, but 3083 * without the ptl held. 3084 * 3085 * High level logic flow: 3086 * 3087 * - Allocate a page, copy the content of the old page to the new one. 3088 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3089 * - Take the PTL. If the pte changed, bail out and release the allocated page 3090 * - If the pte is still the way we remember it, update the page table and all 3091 * relevant references. This includes dropping the reference the page-table 3092 * held to the old page, as well as updating the rmap. 3093 * - In any case, unlock the PTL and drop the reference we took to the old page. 3094 */ 3095 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3096 { 3097 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3098 struct vm_area_struct *vma = vmf->vma; 3099 struct mm_struct *mm = vma->vm_mm; 3100 struct page *old_page = vmf->page; 3101 struct page *new_page = NULL; 3102 pte_t entry; 3103 int page_copied = 0; 3104 struct mmu_notifier_range range; 3105 3106 delayacct_wpcopy_start(); 3107 3108 if (unlikely(anon_vma_prepare(vma))) 3109 goto oom; 3110 3111 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3112 new_page = alloc_zeroed_user_highpage_movable(vma, 3113 vmf->address); 3114 if (!new_page) 3115 goto oom; 3116 } else { 3117 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3118 vmf->address); 3119 if (!new_page) 3120 goto oom; 3121 3122 if (!__wp_page_copy_user(new_page, old_page, vmf)) { 3123 /* 3124 * COW failed, if the fault was solved by other, 3125 * it's fine. If not, userspace would re-fault on 3126 * the same address and we will handle the fault 3127 * from the second attempt. 3128 */ 3129 put_page(new_page); 3130 if (old_page) 3131 put_page(old_page); 3132 3133 delayacct_wpcopy_end(); 3134 return 0; 3135 } 3136 kmsan_copy_page_meta(new_page, old_page); 3137 } 3138 3139 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) 3140 goto oom_free_new; 3141 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3142 3143 __SetPageUptodate(new_page); 3144 3145 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3146 vmf->address & PAGE_MASK, 3147 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3148 mmu_notifier_invalidate_range_start(&range); 3149 3150 /* 3151 * Re-check the pte - we dropped the lock 3152 */ 3153 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3154 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3155 if (old_page) { 3156 if (!PageAnon(old_page)) { 3157 dec_mm_counter_fast(mm, 3158 mm_counter_file(old_page)); 3159 inc_mm_counter_fast(mm, MM_ANONPAGES); 3160 } 3161 } else { 3162 inc_mm_counter_fast(mm, MM_ANONPAGES); 3163 } 3164 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3165 entry = mk_pte(new_page, vma->vm_page_prot); 3166 entry = pte_sw_mkyoung(entry); 3167 if (unlikely(unshare)) { 3168 if (pte_soft_dirty(vmf->orig_pte)) 3169 entry = pte_mksoft_dirty(entry); 3170 if (pte_uffd_wp(vmf->orig_pte)) 3171 entry = pte_mkuffd_wp(entry); 3172 } else { 3173 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3174 } 3175 3176 /* 3177 * Clear the pte entry and flush it first, before updating the 3178 * pte with the new entry, to keep TLBs on different CPUs in 3179 * sync. This code used to set the new PTE then flush TLBs, but 3180 * that left a window where the new PTE could be loaded into 3181 * some TLBs while the old PTE remains in others. 3182 */ 3183 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3184 page_add_new_anon_rmap(new_page, vma, vmf->address); 3185 lru_cache_add_inactive_or_unevictable(new_page, vma); 3186 /* 3187 * We call the notify macro here because, when using secondary 3188 * mmu page tables (such as kvm shadow page tables), we want the 3189 * new page to be mapped directly into the secondary page table. 3190 */ 3191 BUG_ON(unshare && pte_write(entry)); 3192 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3193 update_mmu_cache(vma, vmf->address, vmf->pte); 3194 if (old_page) { 3195 /* 3196 * Only after switching the pte to the new page may 3197 * we remove the mapcount here. Otherwise another 3198 * process may come and find the rmap count decremented 3199 * before the pte is switched to the new page, and 3200 * "reuse" the old page writing into it while our pte 3201 * here still points into it and can be read by other 3202 * threads. 3203 * 3204 * The critical issue is to order this 3205 * page_remove_rmap with the ptp_clear_flush above. 3206 * Those stores are ordered by (if nothing else,) 3207 * the barrier present in the atomic_add_negative 3208 * in page_remove_rmap. 3209 * 3210 * Then the TLB flush in ptep_clear_flush ensures that 3211 * no process can access the old page before the 3212 * decremented mapcount is visible. And the old page 3213 * cannot be reused until after the decremented 3214 * mapcount is visible. So transitively, TLBs to 3215 * old page will be flushed before it can be reused. 3216 */ 3217 page_remove_rmap(old_page, vma, false); 3218 } 3219 3220 /* Free the old page.. */ 3221 new_page = old_page; 3222 page_copied = 1; 3223 } else { 3224 update_mmu_tlb(vma, vmf->address, vmf->pte); 3225 } 3226 3227 if (new_page) 3228 put_page(new_page); 3229 3230 pte_unmap_unlock(vmf->pte, vmf->ptl); 3231 /* 3232 * No need to double call mmu_notifier->invalidate_range() callback as 3233 * the above ptep_clear_flush_notify() did already call it. 3234 */ 3235 mmu_notifier_invalidate_range_only_end(&range); 3236 if (old_page) { 3237 if (page_copied) 3238 free_swap_cache(old_page); 3239 put_page(old_page); 3240 } 3241 3242 delayacct_wpcopy_end(); 3243 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0; 3244 oom_free_new: 3245 put_page(new_page); 3246 oom: 3247 if (old_page) 3248 put_page(old_page); 3249 3250 delayacct_wpcopy_end(); 3251 return VM_FAULT_OOM; 3252 } 3253 3254 /** 3255 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3256 * writeable once the page is prepared 3257 * 3258 * @vmf: structure describing the fault 3259 * 3260 * This function handles all that is needed to finish a write page fault in a 3261 * shared mapping due to PTE being read-only once the mapped page is prepared. 3262 * It handles locking of PTE and modifying it. 3263 * 3264 * The function expects the page to be locked or other protection against 3265 * concurrent faults / writeback (such as DAX radix tree locks). 3266 * 3267 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3268 * we acquired PTE lock. 3269 */ 3270 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3271 { 3272 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3273 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3274 &vmf->ptl); 3275 /* 3276 * We might have raced with another page fault while we released the 3277 * pte_offset_map_lock. 3278 */ 3279 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3280 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3281 pte_unmap_unlock(vmf->pte, vmf->ptl); 3282 return VM_FAULT_NOPAGE; 3283 } 3284 wp_page_reuse(vmf); 3285 return 0; 3286 } 3287 3288 /* 3289 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3290 * mapping 3291 */ 3292 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3293 { 3294 struct vm_area_struct *vma = vmf->vma; 3295 3296 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3297 vm_fault_t ret; 3298 3299 pte_unmap_unlock(vmf->pte, vmf->ptl); 3300 vmf->flags |= FAULT_FLAG_MKWRITE; 3301 ret = vma->vm_ops->pfn_mkwrite(vmf); 3302 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3303 return ret; 3304 return finish_mkwrite_fault(vmf); 3305 } 3306 wp_page_reuse(vmf); 3307 return VM_FAULT_WRITE; 3308 } 3309 3310 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3311 __releases(vmf->ptl) 3312 { 3313 struct vm_area_struct *vma = vmf->vma; 3314 vm_fault_t ret = VM_FAULT_WRITE; 3315 3316 get_page(vmf->page); 3317 3318 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3319 vm_fault_t tmp; 3320 3321 pte_unmap_unlock(vmf->pte, vmf->ptl); 3322 tmp = do_page_mkwrite(vmf); 3323 if (unlikely(!tmp || (tmp & 3324 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3325 put_page(vmf->page); 3326 return tmp; 3327 } 3328 tmp = finish_mkwrite_fault(vmf); 3329 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3330 unlock_page(vmf->page); 3331 put_page(vmf->page); 3332 return tmp; 3333 } 3334 } else { 3335 wp_page_reuse(vmf); 3336 lock_page(vmf->page); 3337 } 3338 ret |= fault_dirty_shared_page(vmf); 3339 put_page(vmf->page); 3340 3341 return ret; 3342 } 3343 3344 /* 3345 * This routine handles present pages, when 3346 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3347 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3348 * (FAULT_FLAG_UNSHARE) 3349 * 3350 * It is done by copying the page to a new address and decrementing the 3351 * shared-page counter for the old page. 3352 * 3353 * Note that this routine assumes that the protection checks have been 3354 * done by the caller (the low-level page fault routine in most cases). 3355 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3356 * done any necessary COW. 3357 * 3358 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3359 * though the page will change only once the write actually happens. This 3360 * avoids a few races, and potentially makes it more efficient. 3361 * 3362 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3363 * but allow concurrent faults), with pte both mapped and locked. 3364 * We return with mmap_lock still held, but pte unmapped and unlocked. 3365 */ 3366 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3367 __releases(vmf->ptl) 3368 { 3369 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3370 struct vm_area_struct *vma = vmf->vma; 3371 struct folio *folio; 3372 3373 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE)); 3374 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE)); 3375 3376 if (likely(!unshare)) { 3377 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3378 pte_unmap_unlock(vmf->pte, vmf->ptl); 3379 return handle_userfault(vmf, VM_UFFD_WP); 3380 } 3381 3382 /* 3383 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3384 * is flushed in this case before copying. 3385 */ 3386 if (unlikely(userfaultfd_wp(vmf->vma) && 3387 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3388 flush_tlb_page(vmf->vma, vmf->address); 3389 } 3390 3391 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3392 if (!vmf->page) { 3393 if (unlikely(unshare)) { 3394 /* No anonymous page -> nothing to do. */ 3395 pte_unmap_unlock(vmf->pte, vmf->ptl); 3396 return 0; 3397 } 3398 3399 /* 3400 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3401 * VM_PFNMAP VMA. 3402 * 3403 * We should not cow pages in a shared writeable mapping. 3404 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3405 */ 3406 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3407 (VM_WRITE|VM_SHARED)) 3408 return wp_pfn_shared(vmf); 3409 3410 pte_unmap_unlock(vmf->pte, vmf->ptl); 3411 return wp_page_copy(vmf); 3412 } 3413 3414 /* 3415 * Take out anonymous pages first, anonymous shared vmas are 3416 * not dirty accountable. 3417 */ 3418 folio = page_folio(vmf->page); 3419 if (folio_test_anon(folio)) { 3420 /* 3421 * If the page is exclusive to this process we must reuse the 3422 * page without further checks. 3423 */ 3424 if (PageAnonExclusive(vmf->page)) 3425 goto reuse; 3426 3427 /* 3428 * We have to verify under folio lock: these early checks are 3429 * just an optimization to avoid locking the folio and freeing 3430 * the swapcache if there is little hope that we can reuse. 3431 * 3432 * KSM doesn't necessarily raise the folio refcount. 3433 */ 3434 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3435 goto copy; 3436 if (!folio_test_lru(folio)) 3437 /* 3438 * Note: We cannot easily detect+handle references from 3439 * remote LRU pagevecs or references to LRU folios. 3440 */ 3441 lru_add_drain(); 3442 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3443 goto copy; 3444 if (!folio_trylock(folio)) 3445 goto copy; 3446 if (folio_test_swapcache(folio)) 3447 folio_free_swap(folio); 3448 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3449 folio_unlock(folio); 3450 goto copy; 3451 } 3452 /* 3453 * Ok, we've got the only folio reference from our mapping 3454 * and the folio is locked, it's dark out, and we're wearing 3455 * sunglasses. Hit it. 3456 */ 3457 page_move_anon_rmap(vmf->page, vma); 3458 folio_unlock(folio); 3459 reuse: 3460 if (unlikely(unshare)) { 3461 pte_unmap_unlock(vmf->pte, vmf->ptl); 3462 return 0; 3463 } 3464 wp_page_reuse(vmf); 3465 return VM_FAULT_WRITE; 3466 } else if (unshare) { 3467 /* No anonymous page -> nothing to do. */ 3468 pte_unmap_unlock(vmf->pte, vmf->ptl); 3469 return 0; 3470 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3471 (VM_WRITE|VM_SHARED))) { 3472 return wp_page_shared(vmf); 3473 } 3474 copy: 3475 /* 3476 * Ok, we need to copy. Oh, well.. 3477 */ 3478 get_page(vmf->page); 3479 3480 pte_unmap_unlock(vmf->pte, vmf->ptl); 3481 #ifdef CONFIG_KSM 3482 if (PageKsm(vmf->page)) 3483 count_vm_event(COW_KSM); 3484 #endif 3485 return wp_page_copy(vmf); 3486 } 3487 3488 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3489 unsigned long start_addr, unsigned long end_addr, 3490 struct zap_details *details) 3491 { 3492 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3493 } 3494 3495 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3496 pgoff_t first_index, 3497 pgoff_t last_index, 3498 struct zap_details *details) 3499 { 3500 struct vm_area_struct *vma; 3501 pgoff_t vba, vea, zba, zea; 3502 3503 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3504 vba = vma->vm_pgoff; 3505 vea = vba + vma_pages(vma) - 1; 3506 zba = max(first_index, vba); 3507 zea = min(last_index, vea); 3508 3509 unmap_mapping_range_vma(vma, 3510 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3511 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3512 details); 3513 } 3514 } 3515 3516 /** 3517 * unmap_mapping_folio() - Unmap single folio from processes. 3518 * @folio: The locked folio to be unmapped. 3519 * 3520 * Unmap this folio from any userspace process which still has it mmaped. 3521 * Typically, for efficiency, the range of nearby pages has already been 3522 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3523 * truncation or invalidation holds the lock on a folio, it may find that 3524 * the page has been remapped again: and then uses unmap_mapping_folio() 3525 * to unmap it finally. 3526 */ 3527 void unmap_mapping_folio(struct folio *folio) 3528 { 3529 struct address_space *mapping = folio->mapping; 3530 struct zap_details details = { }; 3531 pgoff_t first_index; 3532 pgoff_t last_index; 3533 3534 VM_BUG_ON(!folio_test_locked(folio)); 3535 3536 first_index = folio->index; 3537 last_index = folio->index + folio_nr_pages(folio) - 1; 3538 3539 details.even_cows = false; 3540 details.single_folio = folio; 3541 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3542 3543 i_mmap_lock_read(mapping); 3544 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3545 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3546 last_index, &details); 3547 i_mmap_unlock_read(mapping); 3548 } 3549 3550 /** 3551 * unmap_mapping_pages() - Unmap pages from processes. 3552 * @mapping: The address space containing pages to be unmapped. 3553 * @start: Index of first page to be unmapped. 3554 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3555 * @even_cows: Whether to unmap even private COWed pages. 3556 * 3557 * Unmap the pages in this address space from any userspace process which 3558 * has them mmaped. Generally, you want to remove COWed pages as well when 3559 * a file is being truncated, but not when invalidating pages from the page 3560 * cache. 3561 */ 3562 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3563 pgoff_t nr, bool even_cows) 3564 { 3565 struct zap_details details = { }; 3566 pgoff_t first_index = start; 3567 pgoff_t last_index = start + nr - 1; 3568 3569 details.even_cows = even_cows; 3570 if (last_index < first_index) 3571 last_index = ULONG_MAX; 3572 3573 i_mmap_lock_read(mapping); 3574 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3575 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3576 last_index, &details); 3577 i_mmap_unlock_read(mapping); 3578 } 3579 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3580 3581 /** 3582 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3583 * address_space corresponding to the specified byte range in the underlying 3584 * file. 3585 * 3586 * @mapping: the address space containing mmaps to be unmapped. 3587 * @holebegin: byte in first page to unmap, relative to the start of 3588 * the underlying file. This will be rounded down to a PAGE_SIZE 3589 * boundary. Note that this is different from truncate_pagecache(), which 3590 * must keep the partial page. In contrast, we must get rid of 3591 * partial pages. 3592 * @holelen: size of prospective hole in bytes. This will be rounded 3593 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3594 * end of the file. 3595 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3596 * but 0 when invalidating pagecache, don't throw away private data. 3597 */ 3598 void unmap_mapping_range(struct address_space *mapping, 3599 loff_t const holebegin, loff_t const holelen, int even_cows) 3600 { 3601 pgoff_t hba = holebegin >> PAGE_SHIFT; 3602 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3603 3604 /* Check for overflow. */ 3605 if (sizeof(holelen) > sizeof(hlen)) { 3606 long long holeend = 3607 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3608 if (holeend & ~(long long)ULONG_MAX) 3609 hlen = ULONG_MAX - hba + 1; 3610 } 3611 3612 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3613 } 3614 EXPORT_SYMBOL(unmap_mapping_range); 3615 3616 /* 3617 * Restore a potential device exclusive pte to a working pte entry 3618 */ 3619 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3620 { 3621 struct folio *folio = page_folio(vmf->page); 3622 struct vm_area_struct *vma = vmf->vma; 3623 struct mmu_notifier_range range; 3624 3625 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) 3626 return VM_FAULT_RETRY; 3627 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 3628 vma->vm_mm, vmf->address & PAGE_MASK, 3629 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3630 mmu_notifier_invalidate_range_start(&range); 3631 3632 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3633 &vmf->ptl); 3634 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3635 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3636 3637 pte_unmap_unlock(vmf->pte, vmf->ptl); 3638 folio_unlock(folio); 3639 3640 mmu_notifier_invalidate_range_end(&range); 3641 return 0; 3642 } 3643 3644 static inline bool should_try_to_free_swap(struct folio *folio, 3645 struct vm_area_struct *vma, 3646 unsigned int fault_flags) 3647 { 3648 if (!folio_test_swapcache(folio)) 3649 return false; 3650 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3651 folio_test_mlocked(folio)) 3652 return true; 3653 /* 3654 * If we want to map a page that's in the swapcache writable, we 3655 * have to detect via the refcount if we're really the exclusive 3656 * user. Try freeing the swapcache to get rid of the swapcache 3657 * reference only in case it's likely that we'll be the exlusive user. 3658 */ 3659 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3660 folio_ref_count(folio) == 2; 3661 } 3662 3663 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3664 { 3665 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3666 vmf->address, &vmf->ptl); 3667 /* 3668 * Be careful so that we will only recover a special uffd-wp pte into a 3669 * none pte. Otherwise it means the pte could have changed, so retry. 3670 */ 3671 if (is_pte_marker(*vmf->pte)) 3672 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3673 pte_unmap_unlock(vmf->pte, vmf->ptl); 3674 return 0; 3675 } 3676 3677 /* 3678 * This is actually a page-missing access, but with uffd-wp special pte 3679 * installed. It means this pte was wr-protected before being unmapped. 3680 */ 3681 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3682 { 3683 /* 3684 * Just in case there're leftover special ptes even after the region 3685 * got unregistered - we can simply clear them. We can also do that 3686 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp 3687 * ranges, but it should be more efficient to be done lazily here. 3688 */ 3689 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) 3690 return pte_marker_clear(vmf); 3691 3692 /* do_fault() can handle pte markers too like none pte */ 3693 return do_fault(vmf); 3694 } 3695 3696 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3697 { 3698 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3699 unsigned long marker = pte_marker_get(entry); 3700 3701 /* 3702 * PTE markers should always be with file-backed memories, and the 3703 * marker should never be empty. If anything weird happened, the best 3704 * thing to do is to kill the process along with its mm. 3705 */ 3706 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker)) 3707 return VM_FAULT_SIGBUS; 3708 3709 if (pte_marker_entry_uffd_wp(entry)) 3710 return pte_marker_handle_uffd_wp(vmf); 3711 3712 /* This is an unknown pte marker */ 3713 return VM_FAULT_SIGBUS; 3714 } 3715 3716 /* 3717 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3718 * but allow concurrent faults), and pte mapped but not yet locked. 3719 * We return with pte unmapped and unlocked. 3720 * 3721 * We return with the mmap_lock locked or unlocked in the same cases 3722 * as does filemap_fault(). 3723 */ 3724 vm_fault_t do_swap_page(struct vm_fault *vmf) 3725 { 3726 struct vm_area_struct *vma = vmf->vma; 3727 struct folio *swapcache, *folio = NULL; 3728 struct page *page; 3729 struct swap_info_struct *si = NULL; 3730 rmap_t rmap_flags = RMAP_NONE; 3731 bool exclusive = false; 3732 swp_entry_t entry; 3733 pte_t pte; 3734 int locked; 3735 vm_fault_t ret = 0; 3736 void *shadow = NULL; 3737 3738 if (!pte_unmap_same(vmf)) 3739 goto out; 3740 3741 entry = pte_to_swp_entry(vmf->orig_pte); 3742 if (unlikely(non_swap_entry(entry))) { 3743 if (is_migration_entry(entry)) { 3744 migration_entry_wait(vma->vm_mm, vmf->pmd, 3745 vmf->address); 3746 } else if (is_device_exclusive_entry(entry)) { 3747 vmf->page = pfn_swap_entry_to_page(entry); 3748 ret = remove_device_exclusive_entry(vmf); 3749 } else if (is_device_private_entry(entry)) { 3750 vmf->page = pfn_swap_entry_to_page(entry); 3751 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3752 } else if (is_hwpoison_entry(entry)) { 3753 ret = VM_FAULT_HWPOISON; 3754 } else if (is_swapin_error_entry(entry)) { 3755 ret = VM_FAULT_SIGBUS; 3756 } else if (is_pte_marker_entry(entry)) { 3757 ret = handle_pte_marker(vmf); 3758 } else { 3759 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3760 ret = VM_FAULT_SIGBUS; 3761 } 3762 goto out; 3763 } 3764 3765 /* Prevent swapoff from happening to us. */ 3766 si = get_swap_device(entry); 3767 if (unlikely(!si)) 3768 goto out; 3769 3770 folio = swap_cache_get_folio(entry, vma, vmf->address); 3771 if (folio) 3772 page = folio_file_page(folio, swp_offset(entry)); 3773 swapcache = folio; 3774 3775 if (!folio) { 3776 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3777 __swap_count(entry) == 1) { 3778 /* skip swapcache */ 3779 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3780 vma, vmf->address, false); 3781 page = &folio->page; 3782 if (folio) { 3783 __folio_set_locked(folio); 3784 __folio_set_swapbacked(folio); 3785 3786 if (mem_cgroup_swapin_charge_folio(folio, 3787 vma->vm_mm, GFP_KERNEL, 3788 entry)) { 3789 ret = VM_FAULT_OOM; 3790 goto out_page; 3791 } 3792 mem_cgroup_swapin_uncharge_swap(entry); 3793 3794 shadow = get_shadow_from_swap_cache(entry); 3795 if (shadow) 3796 workingset_refault(folio, shadow); 3797 3798 folio_add_lru(folio); 3799 3800 /* To provide entry to swap_readpage() */ 3801 folio_set_swap_entry(folio, entry); 3802 swap_readpage(page, true, NULL); 3803 folio->private = NULL; 3804 } 3805 } else { 3806 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3807 vmf); 3808 if (page) 3809 folio = page_folio(page); 3810 swapcache = folio; 3811 } 3812 3813 if (!folio) { 3814 /* 3815 * Back out if somebody else faulted in this pte 3816 * while we released the pte lock. 3817 */ 3818 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3819 vmf->address, &vmf->ptl); 3820 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3821 ret = VM_FAULT_OOM; 3822 goto unlock; 3823 } 3824 3825 /* Had to read the page from swap area: Major fault */ 3826 ret = VM_FAULT_MAJOR; 3827 count_vm_event(PGMAJFAULT); 3828 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3829 } else if (PageHWPoison(page)) { 3830 /* 3831 * hwpoisoned dirty swapcache pages are kept for killing 3832 * owner processes (which may be unknown at hwpoison time) 3833 */ 3834 ret = VM_FAULT_HWPOISON; 3835 goto out_release; 3836 } 3837 3838 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3839 3840 if (!locked) { 3841 ret |= VM_FAULT_RETRY; 3842 goto out_release; 3843 } 3844 3845 if (swapcache) { 3846 /* 3847 * Make sure folio_free_swap() or swapoff did not release the 3848 * swapcache from under us. The page pin, and pte_same test 3849 * below, are not enough to exclude that. Even if it is still 3850 * swapcache, we need to check that the page's swap has not 3851 * changed. 3852 */ 3853 if (unlikely(!folio_test_swapcache(folio) || 3854 page_private(page) != entry.val)) 3855 goto out_page; 3856 3857 /* 3858 * KSM sometimes has to copy on read faults, for example, if 3859 * page->index of !PageKSM() pages would be nonlinear inside the 3860 * anon VMA -- PageKSM() is lost on actual swapout. 3861 */ 3862 page = ksm_might_need_to_copy(page, vma, vmf->address); 3863 if (unlikely(!page)) { 3864 ret = VM_FAULT_OOM; 3865 goto out_page; 3866 } 3867 folio = page_folio(page); 3868 3869 /* 3870 * If we want to map a page that's in the swapcache writable, we 3871 * have to detect via the refcount if we're really the exclusive 3872 * owner. Try removing the extra reference from the local LRU 3873 * pagevecs if required. 3874 */ 3875 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3876 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3877 lru_add_drain(); 3878 } 3879 3880 cgroup_throttle_swaprate(page, GFP_KERNEL); 3881 3882 /* 3883 * Back out if somebody else already faulted in this pte. 3884 */ 3885 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3886 &vmf->ptl); 3887 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3888 goto out_nomap; 3889 3890 if (unlikely(!folio_test_uptodate(folio))) { 3891 ret = VM_FAULT_SIGBUS; 3892 goto out_nomap; 3893 } 3894 3895 /* 3896 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3897 * must never point at an anonymous page in the swapcache that is 3898 * PG_anon_exclusive. Sanity check that this holds and especially, that 3899 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3900 * check after taking the PT lock and making sure that nobody 3901 * concurrently faulted in this page and set PG_anon_exclusive. 3902 */ 3903 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3904 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3905 3906 /* 3907 * Check under PT lock (to protect against concurrent fork() sharing 3908 * the swap entry concurrently) for certainly exclusive pages. 3909 */ 3910 if (!folio_test_ksm(folio)) { 3911 /* 3912 * Note that pte_swp_exclusive() == false for architectures 3913 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE. 3914 */ 3915 exclusive = pte_swp_exclusive(vmf->orig_pte); 3916 if (folio != swapcache) { 3917 /* 3918 * We have a fresh page that is not exposed to the 3919 * swapcache -> certainly exclusive. 3920 */ 3921 exclusive = true; 3922 } else if (exclusive && folio_test_writeback(folio) && 3923 data_race(si->flags & SWP_STABLE_WRITES)) { 3924 /* 3925 * This is tricky: not all swap backends support 3926 * concurrent page modifications while under writeback. 3927 * 3928 * So if we stumble over such a page in the swapcache 3929 * we must not set the page exclusive, otherwise we can 3930 * map it writable without further checks and modify it 3931 * while still under writeback. 3932 * 3933 * For these problematic swap backends, simply drop the 3934 * exclusive marker: this is perfectly fine as we start 3935 * writeback only if we fully unmapped the page and 3936 * there are no unexpected references on the page after 3937 * unmapping succeeded. After fully unmapped, no 3938 * further GUP references (FOLL_GET and FOLL_PIN) can 3939 * appear, so dropping the exclusive marker and mapping 3940 * it only R/O is fine. 3941 */ 3942 exclusive = false; 3943 } 3944 } 3945 3946 /* 3947 * Remove the swap entry and conditionally try to free up the swapcache. 3948 * We're already holding a reference on the page but haven't mapped it 3949 * yet. 3950 */ 3951 swap_free(entry); 3952 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3953 folio_free_swap(folio); 3954 3955 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3956 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3957 pte = mk_pte(page, vma->vm_page_prot); 3958 3959 /* 3960 * Same logic as in do_wp_page(); however, optimize for pages that are 3961 * certainly not shared either because we just allocated them without 3962 * exposing them to the swapcache or because the swap entry indicates 3963 * exclusivity. 3964 */ 3965 if (!folio_test_ksm(folio) && 3966 (exclusive || folio_ref_count(folio) == 1)) { 3967 if (vmf->flags & FAULT_FLAG_WRITE) { 3968 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3969 vmf->flags &= ~FAULT_FLAG_WRITE; 3970 ret |= VM_FAULT_WRITE; 3971 } 3972 rmap_flags |= RMAP_EXCLUSIVE; 3973 } 3974 flush_icache_page(vma, page); 3975 if (pte_swp_soft_dirty(vmf->orig_pte)) 3976 pte = pte_mksoft_dirty(pte); 3977 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3978 pte = pte_mkuffd_wp(pte); 3979 pte = pte_wrprotect(pte); 3980 } 3981 vmf->orig_pte = pte; 3982 3983 /* ksm created a completely new copy */ 3984 if (unlikely(folio != swapcache && swapcache)) { 3985 page_add_new_anon_rmap(page, vma, vmf->address); 3986 folio_add_lru_vma(folio, vma); 3987 } else { 3988 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3989 } 3990 3991 VM_BUG_ON(!folio_test_anon(folio) || 3992 (pte_write(pte) && !PageAnonExclusive(page))); 3993 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3994 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3995 3996 folio_unlock(folio); 3997 if (folio != swapcache && swapcache) { 3998 /* 3999 * Hold the lock to avoid the swap entry to be reused 4000 * until we take the PT lock for the pte_same() check 4001 * (to avoid false positives from pte_same). For 4002 * further safety release the lock after the swap_free 4003 * so that the swap count won't change under a 4004 * parallel locked swapcache. 4005 */ 4006 folio_unlock(swapcache); 4007 folio_put(swapcache); 4008 } 4009 4010 if (vmf->flags & FAULT_FLAG_WRITE) { 4011 ret |= do_wp_page(vmf); 4012 if (ret & VM_FAULT_ERROR) 4013 ret &= VM_FAULT_ERROR; 4014 goto out; 4015 } 4016 4017 /* No need to invalidate - it was non-present before */ 4018 update_mmu_cache(vma, vmf->address, vmf->pte); 4019 unlock: 4020 pte_unmap_unlock(vmf->pte, vmf->ptl); 4021 out: 4022 if (si) 4023 put_swap_device(si); 4024 return ret; 4025 out_nomap: 4026 pte_unmap_unlock(vmf->pte, vmf->ptl); 4027 out_page: 4028 folio_unlock(folio); 4029 out_release: 4030 folio_put(folio); 4031 if (folio != swapcache && swapcache) { 4032 folio_unlock(swapcache); 4033 folio_put(swapcache); 4034 } 4035 if (si) 4036 put_swap_device(si); 4037 return ret; 4038 } 4039 4040 /* 4041 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4042 * but allow concurrent faults), and pte mapped but not yet locked. 4043 * We return with mmap_lock still held, but pte unmapped and unlocked. 4044 */ 4045 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4046 { 4047 struct vm_area_struct *vma = vmf->vma; 4048 struct page *page; 4049 vm_fault_t ret = 0; 4050 pte_t entry; 4051 4052 /* File mapping without ->vm_ops ? */ 4053 if (vma->vm_flags & VM_SHARED) 4054 return VM_FAULT_SIGBUS; 4055 4056 /* 4057 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4058 * pte_offset_map() on pmds where a huge pmd might be created 4059 * from a different thread. 4060 * 4061 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 4062 * parallel threads are excluded by other means. 4063 * 4064 * Here we only have mmap_read_lock(mm). 4065 */ 4066 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4067 return VM_FAULT_OOM; 4068 4069 /* See comment in handle_pte_fault() */ 4070 if (unlikely(pmd_trans_unstable(vmf->pmd))) 4071 return 0; 4072 4073 /* Use the zero-page for reads */ 4074 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4075 !mm_forbids_zeropage(vma->vm_mm)) { 4076 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4077 vma->vm_page_prot)); 4078 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4079 vmf->address, &vmf->ptl); 4080 if (!pte_none(*vmf->pte)) { 4081 update_mmu_tlb(vma, vmf->address, vmf->pte); 4082 goto unlock; 4083 } 4084 ret = check_stable_address_space(vma->vm_mm); 4085 if (ret) 4086 goto unlock; 4087 /* Deliver the page fault to userland, check inside PT lock */ 4088 if (userfaultfd_missing(vma)) { 4089 pte_unmap_unlock(vmf->pte, vmf->ptl); 4090 return handle_userfault(vmf, VM_UFFD_MISSING); 4091 } 4092 goto setpte; 4093 } 4094 4095 /* Allocate our own private page. */ 4096 if (unlikely(anon_vma_prepare(vma))) 4097 goto oom; 4098 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 4099 if (!page) 4100 goto oom; 4101 4102 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 4103 goto oom_free_page; 4104 cgroup_throttle_swaprate(page, GFP_KERNEL); 4105 4106 /* 4107 * The memory barrier inside __SetPageUptodate makes sure that 4108 * preceding stores to the page contents become visible before 4109 * the set_pte_at() write. 4110 */ 4111 __SetPageUptodate(page); 4112 4113 entry = mk_pte(page, vma->vm_page_prot); 4114 entry = pte_sw_mkyoung(entry); 4115 if (vma->vm_flags & VM_WRITE) 4116 entry = pte_mkwrite(pte_mkdirty(entry)); 4117 4118 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4119 &vmf->ptl); 4120 if (!pte_none(*vmf->pte)) { 4121 update_mmu_cache(vma, vmf->address, vmf->pte); 4122 goto release; 4123 } 4124 4125 ret = check_stable_address_space(vma->vm_mm); 4126 if (ret) 4127 goto release; 4128 4129 /* Deliver the page fault to userland, check inside PT lock */ 4130 if (userfaultfd_missing(vma)) { 4131 pte_unmap_unlock(vmf->pte, vmf->ptl); 4132 put_page(page); 4133 return handle_userfault(vmf, VM_UFFD_MISSING); 4134 } 4135 4136 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4137 page_add_new_anon_rmap(page, vma, vmf->address); 4138 lru_cache_add_inactive_or_unevictable(page, vma); 4139 setpte: 4140 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4141 4142 /* No need to invalidate - it was non-present before */ 4143 update_mmu_cache(vma, vmf->address, vmf->pte); 4144 unlock: 4145 pte_unmap_unlock(vmf->pte, vmf->ptl); 4146 return ret; 4147 release: 4148 put_page(page); 4149 goto unlock; 4150 oom_free_page: 4151 put_page(page); 4152 oom: 4153 return VM_FAULT_OOM; 4154 } 4155 4156 /* 4157 * The mmap_lock must have been held on entry, and may have been 4158 * released depending on flags and vma->vm_ops->fault() return value. 4159 * See filemap_fault() and __lock_page_retry(). 4160 */ 4161 static vm_fault_t __do_fault(struct vm_fault *vmf) 4162 { 4163 struct vm_area_struct *vma = vmf->vma; 4164 vm_fault_t ret; 4165 4166 /* 4167 * Preallocate pte before we take page_lock because this might lead to 4168 * deadlocks for memcg reclaim which waits for pages under writeback: 4169 * lock_page(A) 4170 * SetPageWriteback(A) 4171 * unlock_page(A) 4172 * lock_page(B) 4173 * lock_page(B) 4174 * pte_alloc_one 4175 * shrink_page_list 4176 * wait_on_page_writeback(A) 4177 * SetPageWriteback(B) 4178 * unlock_page(B) 4179 * # flush A, B to clear the writeback 4180 */ 4181 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4182 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4183 if (!vmf->prealloc_pte) 4184 return VM_FAULT_OOM; 4185 } 4186 4187 ret = vma->vm_ops->fault(vmf); 4188 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4189 VM_FAULT_DONE_COW))) 4190 return ret; 4191 4192 if (unlikely(PageHWPoison(vmf->page))) { 4193 struct page *page = vmf->page; 4194 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4195 if (ret & VM_FAULT_LOCKED) { 4196 if (page_mapped(page)) 4197 unmap_mapping_pages(page_mapping(page), 4198 page->index, 1, false); 4199 /* Retry if a clean page was removed from the cache. */ 4200 if (invalidate_inode_page(page)) 4201 poisonret = VM_FAULT_NOPAGE; 4202 unlock_page(page); 4203 } 4204 put_page(page); 4205 vmf->page = NULL; 4206 return poisonret; 4207 } 4208 4209 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4210 lock_page(vmf->page); 4211 else 4212 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4213 4214 return ret; 4215 } 4216 4217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4218 static void deposit_prealloc_pte(struct vm_fault *vmf) 4219 { 4220 struct vm_area_struct *vma = vmf->vma; 4221 4222 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4223 /* 4224 * We are going to consume the prealloc table, 4225 * count that as nr_ptes. 4226 */ 4227 mm_inc_nr_ptes(vma->vm_mm); 4228 vmf->prealloc_pte = NULL; 4229 } 4230 4231 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4232 { 4233 struct vm_area_struct *vma = vmf->vma; 4234 bool write = vmf->flags & FAULT_FLAG_WRITE; 4235 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4236 pmd_t entry; 4237 int i; 4238 vm_fault_t ret = VM_FAULT_FALLBACK; 4239 4240 if (!transhuge_vma_suitable(vma, haddr)) 4241 return ret; 4242 4243 page = compound_head(page); 4244 if (compound_order(page) != HPAGE_PMD_ORDER) 4245 return ret; 4246 4247 /* 4248 * Just backoff if any subpage of a THP is corrupted otherwise 4249 * the corrupted page may mapped by PMD silently to escape the 4250 * check. This kind of THP just can be PTE mapped. Access to 4251 * the corrupted subpage should trigger SIGBUS as expected. 4252 */ 4253 if (unlikely(PageHasHWPoisoned(page))) 4254 return ret; 4255 4256 /* 4257 * Archs like ppc64 need additional space to store information 4258 * related to pte entry. Use the preallocated table for that. 4259 */ 4260 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4261 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4262 if (!vmf->prealloc_pte) 4263 return VM_FAULT_OOM; 4264 } 4265 4266 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4267 if (unlikely(!pmd_none(*vmf->pmd))) 4268 goto out; 4269 4270 for (i = 0; i < HPAGE_PMD_NR; i++) 4271 flush_icache_page(vma, page + i); 4272 4273 entry = mk_huge_pmd(page, vma->vm_page_prot); 4274 if (write) 4275 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4276 4277 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4278 page_add_file_rmap(page, vma, true); 4279 4280 /* 4281 * deposit and withdraw with pmd lock held 4282 */ 4283 if (arch_needs_pgtable_deposit()) 4284 deposit_prealloc_pte(vmf); 4285 4286 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4287 4288 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4289 4290 /* fault is handled */ 4291 ret = 0; 4292 count_vm_event(THP_FILE_MAPPED); 4293 out: 4294 spin_unlock(vmf->ptl); 4295 return ret; 4296 } 4297 #else 4298 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4299 { 4300 return VM_FAULT_FALLBACK; 4301 } 4302 #endif 4303 4304 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4305 { 4306 struct vm_area_struct *vma = vmf->vma; 4307 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); 4308 bool write = vmf->flags & FAULT_FLAG_WRITE; 4309 bool prefault = vmf->address != addr; 4310 pte_t entry; 4311 4312 flush_icache_page(vma, page); 4313 entry = mk_pte(page, vma->vm_page_prot); 4314 4315 if (prefault && arch_wants_old_prefaulted_pte()) 4316 entry = pte_mkold(entry); 4317 else 4318 entry = pte_sw_mkyoung(entry); 4319 4320 if (write) 4321 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4322 if (unlikely(uffd_wp)) 4323 entry = pte_mkuffd_wp(pte_wrprotect(entry)); 4324 /* copy-on-write page */ 4325 if (write && !(vma->vm_flags & VM_SHARED)) { 4326 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4327 page_add_new_anon_rmap(page, vma, addr); 4328 lru_cache_add_inactive_or_unevictable(page, vma); 4329 } else { 4330 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 4331 page_add_file_rmap(page, vma, false); 4332 } 4333 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4334 } 4335 4336 static bool vmf_pte_changed(struct vm_fault *vmf) 4337 { 4338 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4339 return !pte_same(*vmf->pte, vmf->orig_pte); 4340 4341 return !pte_none(*vmf->pte); 4342 } 4343 4344 /** 4345 * finish_fault - finish page fault once we have prepared the page to fault 4346 * 4347 * @vmf: structure describing the fault 4348 * 4349 * This function handles all that is needed to finish a page fault once the 4350 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4351 * given page, adds reverse page mapping, handles memcg charges and LRU 4352 * addition. 4353 * 4354 * The function expects the page to be locked and on success it consumes a 4355 * reference of a page being mapped (for the PTE which maps it). 4356 * 4357 * Return: %0 on success, %VM_FAULT_ code in case of error. 4358 */ 4359 vm_fault_t finish_fault(struct vm_fault *vmf) 4360 { 4361 struct vm_area_struct *vma = vmf->vma; 4362 struct page *page; 4363 vm_fault_t ret; 4364 4365 /* Did we COW the page? */ 4366 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4367 page = vmf->cow_page; 4368 else 4369 page = vmf->page; 4370 4371 /* 4372 * check even for read faults because we might have lost our CoWed 4373 * page 4374 */ 4375 if (!(vma->vm_flags & VM_SHARED)) { 4376 ret = check_stable_address_space(vma->vm_mm); 4377 if (ret) 4378 return ret; 4379 } 4380 4381 if (pmd_none(*vmf->pmd)) { 4382 if (PageTransCompound(page)) { 4383 ret = do_set_pmd(vmf, page); 4384 if (ret != VM_FAULT_FALLBACK) 4385 return ret; 4386 } 4387 4388 if (vmf->prealloc_pte) 4389 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4390 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4391 return VM_FAULT_OOM; 4392 } 4393 4394 /* 4395 * See comment in handle_pte_fault() for how this scenario happens, we 4396 * need to return NOPAGE so that we drop this page. 4397 */ 4398 if (pmd_devmap_trans_unstable(vmf->pmd)) 4399 return VM_FAULT_NOPAGE; 4400 4401 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4402 vmf->address, &vmf->ptl); 4403 4404 /* Re-check under ptl */ 4405 if (likely(!vmf_pte_changed(vmf))) { 4406 do_set_pte(vmf, page, vmf->address); 4407 4408 /* no need to invalidate: a not-present page won't be cached */ 4409 update_mmu_cache(vma, vmf->address, vmf->pte); 4410 4411 ret = 0; 4412 } else { 4413 update_mmu_tlb(vma, vmf->address, vmf->pte); 4414 ret = VM_FAULT_NOPAGE; 4415 } 4416 4417 pte_unmap_unlock(vmf->pte, vmf->ptl); 4418 return ret; 4419 } 4420 4421 static unsigned long fault_around_bytes __read_mostly = 4422 rounddown_pow_of_two(65536); 4423 4424 #ifdef CONFIG_DEBUG_FS 4425 static int fault_around_bytes_get(void *data, u64 *val) 4426 { 4427 *val = fault_around_bytes; 4428 return 0; 4429 } 4430 4431 /* 4432 * fault_around_bytes must be rounded down to the nearest page order as it's 4433 * what do_fault_around() expects to see. 4434 */ 4435 static int fault_around_bytes_set(void *data, u64 val) 4436 { 4437 if (val / PAGE_SIZE > PTRS_PER_PTE) 4438 return -EINVAL; 4439 if (val > PAGE_SIZE) 4440 fault_around_bytes = rounddown_pow_of_two(val); 4441 else 4442 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4443 return 0; 4444 } 4445 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4446 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4447 4448 static int __init fault_around_debugfs(void) 4449 { 4450 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4451 &fault_around_bytes_fops); 4452 return 0; 4453 } 4454 late_initcall(fault_around_debugfs); 4455 #endif 4456 4457 /* 4458 * do_fault_around() tries to map few pages around the fault address. The hope 4459 * is that the pages will be needed soon and this will lower the number of 4460 * faults to handle. 4461 * 4462 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4463 * not ready to be mapped: not up-to-date, locked, etc. 4464 * 4465 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4466 * only once. 4467 * 4468 * fault_around_bytes defines how many bytes we'll try to map. 4469 * do_fault_around() expects it to be set to a power of two less than or equal 4470 * to PTRS_PER_PTE. 4471 * 4472 * The virtual address of the area that we map is naturally aligned to 4473 * fault_around_bytes rounded down to the machine page size 4474 * (and therefore to page order). This way it's easier to guarantee 4475 * that we don't cross page table boundaries. 4476 */ 4477 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4478 { 4479 unsigned long address = vmf->address, nr_pages, mask; 4480 pgoff_t start_pgoff = vmf->pgoff; 4481 pgoff_t end_pgoff; 4482 int off; 4483 4484 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4485 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4486 4487 address = max(address & mask, vmf->vma->vm_start); 4488 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4489 start_pgoff -= off; 4490 4491 /* 4492 * end_pgoff is either the end of the page table, the end of 4493 * the vma or nr_pages from start_pgoff, depending what is nearest. 4494 */ 4495 end_pgoff = start_pgoff - 4496 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4497 PTRS_PER_PTE - 1; 4498 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4499 start_pgoff + nr_pages - 1); 4500 4501 if (pmd_none(*vmf->pmd)) { 4502 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4503 if (!vmf->prealloc_pte) 4504 return VM_FAULT_OOM; 4505 } 4506 4507 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4508 } 4509 4510 /* Return true if we should do read fault-around, false otherwise */ 4511 static inline bool should_fault_around(struct vm_fault *vmf) 4512 { 4513 /* No ->map_pages? No way to fault around... */ 4514 if (!vmf->vma->vm_ops->map_pages) 4515 return false; 4516 4517 if (uffd_disable_fault_around(vmf->vma)) 4518 return false; 4519 4520 return fault_around_bytes >> PAGE_SHIFT > 1; 4521 } 4522 4523 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4524 { 4525 vm_fault_t ret = 0; 4526 4527 /* 4528 * Let's call ->map_pages() first and use ->fault() as fallback 4529 * if page by the offset is not ready to be mapped (cold cache or 4530 * something). 4531 */ 4532 if (should_fault_around(vmf)) { 4533 ret = do_fault_around(vmf); 4534 if (ret) 4535 return ret; 4536 } 4537 4538 ret = __do_fault(vmf); 4539 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4540 return ret; 4541 4542 ret |= finish_fault(vmf); 4543 unlock_page(vmf->page); 4544 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4545 put_page(vmf->page); 4546 return ret; 4547 } 4548 4549 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4550 { 4551 struct vm_area_struct *vma = vmf->vma; 4552 vm_fault_t ret; 4553 4554 if (unlikely(anon_vma_prepare(vma))) 4555 return VM_FAULT_OOM; 4556 4557 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4558 if (!vmf->cow_page) 4559 return VM_FAULT_OOM; 4560 4561 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4562 GFP_KERNEL)) { 4563 put_page(vmf->cow_page); 4564 return VM_FAULT_OOM; 4565 } 4566 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4567 4568 ret = __do_fault(vmf); 4569 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4570 goto uncharge_out; 4571 if (ret & VM_FAULT_DONE_COW) 4572 return ret; 4573 4574 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4575 __SetPageUptodate(vmf->cow_page); 4576 4577 ret |= finish_fault(vmf); 4578 unlock_page(vmf->page); 4579 put_page(vmf->page); 4580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4581 goto uncharge_out; 4582 return ret; 4583 uncharge_out: 4584 put_page(vmf->cow_page); 4585 return ret; 4586 } 4587 4588 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4589 { 4590 struct vm_area_struct *vma = vmf->vma; 4591 vm_fault_t ret, tmp; 4592 4593 ret = __do_fault(vmf); 4594 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4595 return ret; 4596 4597 /* 4598 * Check if the backing address space wants to know that the page is 4599 * about to become writable 4600 */ 4601 if (vma->vm_ops->page_mkwrite) { 4602 unlock_page(vmf->page); 4603 tmp = do_page_mkwrite(vmf); 4604 if (unlikely(!tmp || 4605 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4606 put_page(vmf->page); 4607 return tmp; 4608 } 4609 } 4610 4611 ret |= finish_fault(vmf); 4612 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4613 VM_FAULT_RETRY))) { 4614 unlock_page(vmf->page); 4615 put_page(vmf->page); 4616 return ret; 4617 } 4618 4619 ret |= fault_dirty_shared_page(vmf); 4620 return ret; 4621 } 4622 4623 /* 4624 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4625 * but allow concurrent faults). 4626 * The mmap_lock may have been released depending on flags and our 4627 * return value. See filemap_fault() and __folio_lock_or_retry(). 4628 * If mmap_lock is released, vma may become invalid (for example 4629 * by other thread calling munmap()). 4630 */ 4631 static vm_fault_t do_fault(struct vm_fault *vmf) 4632 { 4633 struct vm_area_struct *vma = vmf->vma; 4634 struct mm_struct *vm_mm = vma->vm_mm; 4635 vm_fault_t ret; 4636 4637 /* 4638 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4639 */ 4640 if (!vma->vm_ops->fault) { 4641 /* 4642 * If we find a migration pmd entry or a none pmd entry, which 4643 * should never happen, return SIGBUS 4644 */ 4645 if (unlikely(!pmd_present(*vmf->pmd))) 4646 ret = VM_FAULT_SIGBUS; 4647 else { 4648 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4649 vmf->pmd, 4650 vmf->address, 4651 &vmf->ptl); 4652 /* 4653 * Make sure this is not a temporary clearing of pte 4654 * by holding ptl and checking again. A R/M/W update 4655 * of pte involves: take ptl, clearing the pte so that 4656 * we don't have concurrent modification by hardware 4657 * followed by an update. 4658 */ 4659 if (unlikely(pte_none(*vmf->pte))) 4660 ret = VM_FAULT_SIGBUS; 4661 else 4662 ret = VM_FAULT_NOPAGE; 4663 4664 pte_unmap_unlock(vmf->pte, vmf->ptl); 4665 } 4666 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4667 ret = do_read_fault(vmf); 4668 else if (!(vma->vm_flags & VM_SHARED)) 4669 ret = do_cow_fault(vmf); 4670 else 4671 ret = do_shared_fault(vmf); 4672 4673 /* preallocated pagetable is unused: free it */ 4674 if (vmf->prealloc_pte) { 4675 pte_free(vm_mm, vmf->prealloc_pte); 4676 vmf->prealloc_pte = NULL; 4677 } 4678 return ret; 4679 } 4680 4681 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4682 unsigned long addr, int page_nid, int *flags) 4683 { 4684 get_page(page); 4685 4686 count_vm_numa_event(NUMA_HINT_FAULTS); 4687 if (page_nid == numa_node_id()) { 4688 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4689 *flags |= TNF_FAULT_LOCAL; 4690 } 4691 4692 return mpol_misplaced(page, vma, addr); 4693 } 4694 4695 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4696 { 4697 struct vm_area_struct *vma = vmf->vma; 4698 struct page *page = NULL; 4699 int page_nid = NUMA_NO_NODE; 4700 int last_cpupid; 4701 int target_nid; 4702 pte_t pte, old_pte; 4703 bool was_writable = pte_savedwrite(vmf->orig_pte); 4704 int flags = 0; 4705 4706 /* 4707 * The "pte" at this point cannot be used safely without 4708 * validation through pte_unmap_same(). It's of NUMA type but 4709 * the pfn may be screwed if the read is non atomic. 4710 */ 4711 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4712 spin_lock(vmf->ptl); 4713 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4714 pte_unmap_unlock(vmf->pte, vmf->ptl); 4715 goto out; 4716 } 4717 4718 /* Get the normal PTE */ 4719 old_pte = ptep_get(vmf->pte); 4720 pte = pte_modify(old_pte, vma->vm_page_prot); 4721 4722 page = vm_normal_page(vma, vmf->address, pte); 4723 if (!page || is_zone_device_page(page)) 4724 goto out_map; 4725 4726 /* TODO: handle PTE-mapped THP */ 4727 if (PageCompound(page)) 4728 goto out_map; 4729 4730 /* 4731 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4732 * much anyway since they can be in shared cache state. This misses 4733 * the case where a mapping is writable but the process never writes 4734 * to it but pte_write gets cleared during protection updates and 4735 * pte_dirty has unpredictable behaviour between PTE scan updates, 4736 * background writeback, dirty balancing and application behaviour. 4737 */ 4738 if (!was_writable) 4739 flags |= TNF_NO_GROUP; 4740 4741 /* 4742 * Flag if the page is shared between multiple address spaces. This 4743 * is later used when determining whether to group tasks together 4744 */ 4745 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4746 flags |= TNF_SHARED; 4747 4748 page_nid = page_to_nid(page); 4749 /* 4750 * For memory tiering mode, cpupid of slow memory page is used 4751 * to record page access time. So use default value. 4752 */ 4753 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4754 !node_is_toptier(page_nid)) 4755 last_cpupid = (-1 & LAST_CPUPID_MASK); 4756 else 4757 last_cpupid = page_cpupid_last(page); 4758 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4759 &flags); 4760 if (target_nid == NUMA_NO_NODE) { 4761 put_page(page); 4762 goto out_map; 4763 } 4764 pte_unmap_unlock(vmf->pte, vmf->ptl); 4765 4766 /* Migrate to the requested node */ 4767 if (migrate_misplaced_page(page, vma, target_nid)) { 4768 page_nid = target_nid; 4769 flags |= TNF_MIGRATED; 4770 } else { 4771 flags |= TNF_MIGRATE_FAIL; 4772 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4773 spin_lock(vmf->ptl); 4774 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4775 pte_unmap_unlock(vmf->pte, vmf->ptl); 4776 goto out; 4777 } 4778 goto out_map; 4779 } 4780 4781 out: 4782 if (page_nid != NUMA_NO_NODE) 4783 task_numa_fault(last_cpupid, page_nid, 1, flags); 4784 return 0; 4785 out_map: 4786 /* 4787 * Make it present again, depending on how arch implements 4788 * non-accessible ptes, some can allow access by kernel mode. 4789 */ 4790 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4791 pte = pte_modify(old_pte, vma->vm_page_prot); 4792 pte = pte_mkyoung(pte); 4793 if (was_writable) 4794 pte = pte_mkwrite(pte); 4795 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4796 update_mmu_cache(vma, vmf->address, vmf->pte); 4797 pte_unmap_unlock(vmf->pte, vmf->ptl); 4798 goto out; 4799 } 4800 4801 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4802 { 4803 if (vma_is_anonymous(vmf->vma)) 4804 return do_huge_pmd_anonymous_page(vmf); 4805 if (vmf->vma->vm_ops->huge_fault) 4806 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4807 return VM_FAULT_FALLBACK; 4808 } 4809 4810 /* `inline' is required to avoid gcc 4.1.2 build error */ 4811 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4812 { 4813 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4814 4815 if (vma_is_anonymous(vmf->vma)) { 4816 if (likely(!unshare) && 4817 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4818 return handle_userfault(vmf, VM_UFFD_WP); 4819 return do_huge_pmd_wp_page(vmf); 4820 } 4821 if (vmf->vma->vm_ops->huge_fault) { 4822 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4823 4824 if (!(ret & VM_FAULT_FALLBACK)) 4825 return ret; 4826 } 4827 4828 /* COW or write-notify handled on pte level: split pmd. */ 4829 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4830 4831 return VM_FAULT_FALLBACK; 4832 } 4833 4834 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4835 { 4836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4837 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4838 /* No support for anonymous transparent PUD pages yet */ 4839 if (vma_is_anonymous(vmf->vma)) 4840 return VM_FAULT_FALLBACK; 4841 if (vmf->vma->vm_ops->huge_fault) 4842 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4843 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4844 return VM_FAULT_FALLBACK; 4845 } 4846 4847 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4848 { 4849 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4850 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4851 /* No support for anonymous transparent PUD pages yet */ 4852 if (vma_is_anonymous(vmf->vma)) 4853 goto split; 4854 if (vmf->vma->vm_ops->huge_fault) { 4855 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4856 4857 if (!(ret & VM_FAULT_FALLBACK)) 4858 return ret; 4859 } 4860 split: 4861 /* COW or write-notify not handled on PUD level: split pud.*/ 4862 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4863 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4864 return VM_FAULT_FALLBACK; 4865 } 4866 4867 /* 4868 * These routines also need to handle stuff like marking pages dirty 4869 * and/or accessed for architectures that don't do it in hardware (most 4870 * RISC architectures). The early dirtying is also good on the i386. 4871 * 4872 * There is also a hook called "update_mmu_cache()" that architectures 4873 * with external mmu caches can use to update those (ie the Sparc or 4874 * PowerPC hashed page tables that act as extended TLBs). 4875 * 4876 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4877 * concurrent faults). 4878 * 4879 * The mmap_lock may have been released depending on flags and our return value. 4880 * See filemap_fault() and __folio_lock_or_retry(). 4881 */ 4882 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4883 { 4884 pte_t entry; 4885 4886 if (unlikely(pmd_none(*vmf->pmd))) { 4887 /* 4888 * Leave __pte_alloc() until later: because vm_ops->fault may 4889 * want to allocate huge page, and if we expose page table 4890 * for an instant, it will be difficult to retract from 4891 * concurrent faults and from rmap lookups. 4892 */ 4893 vmf->pte = NULL; 4894 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4895 } else { 4896 /* 4897 * If a huge pmd materialized under us just retry later. Use 4898 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4899 * of pmd_trans_huge() to ensure the pmd didn't become 4900 * pmd_trans_huge under us and then back to pmd_none, as a 4901 * result of MADV_DONTNEED running immediately after a huge pmd 4902 * fault in a different thread of this mm, in turn leading to a 4903 * misleading pmd_trans_huge() retval. All we have to ensure is 4904 * that it is a regular pmd that we can walk with 4905 * pte_offset_map() and we can do that through an atomic read 4906 * in C, which is what pmd_trans_unstable() provides. 4907 */ 4908 if (pmd_devmap_trans_unstable(vmf->pmd)) 4909 return 0; 4910 /* 4911 * A regular pmd is established and it can't morph into a huge 4912 * pmd from under us anymore at this point because we hold the 4913 * mmap_lock read mode and khugepaged takes it in write mode. 4914 * So now it's safe to run pte_offset_map(). 4915 */ 4916 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4917 vmf->orig_pte = *vmf->pte; 4918 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4919 4920 /* 4921 * some architectures can have larger ptes than wordsize, 4922 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4923 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4924 * accesses. The code below just needs a consistent view 4925 * for the ifs and we later double check anyway with the 4926 * ptl lock held. So here a barrier will do. 4927 */ 4928 barrier(); 4929 if (pte_none(vmf->orig_pte)) { 4930 pte_unmap(vmf->pte); 4931 vmf->pte = NULL; 4932 } 4933 } 4934 4935 if (!vmf->pte) { 4936 if (vma_is_anonymous(vmf->vma)) 4937 return do_anonymous_page(vmf); 4938 else 4939 return do_fault(vmf); 4940 } 4941 4942 if (!pte_present(vmf->orig_pte)) 4943 return do_swap_page(vmf); 4944 4945 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4946 return do_numa_page(vmf); 4947 4948 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4949 spin_lock(vmf->ptl); 4950 entry = vmf->orig_pte; 4951 if (unlikely(!pte_same(*vmf->pte, entry))) { 4952 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4953 goto unlock; 4954 } 4955 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4956 if (!pte_write(entry)) 4957 return do_wp_page(vmf); 4958 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4959 entry = pte_mkdirty(entry); 4960 } 4961 entry = pte_mkyoung(entry); 4962 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4963 vmf->flags & FAULT_FLAG_WRITE)) { 4964 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4965 } else { 4966 /* Skip spurious TLB flush for retried page fault */ 4967 if (vmf->flags & FAULT_FLAG_TRIED) 4968 goto unlock; 4969 /* 4970 * This is needed only for protection faults but the arch code 4971 * is not yet telling us if this is a protection fault or not. 4972 * This still avoids useless tlb flushes for .text page faults 4973 * with threads. 4974 */ 4975 if (vmf->flags & FAULT_FLAG_WRITE) 4976 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4977 } 4978 unlock: 4979 pte_unmap_unlock(vmf->pte, vmf->ptl); 4980 return 0; 4981 } 4982 4983 /* 4984 * By the time we get here, we already hold the mm semaphore 4985 * 4986 * The mmap_lock may have been released depending on flags and our 4987 * return value. See filemap_fault() and __folio_lock_or_retry(). 4988 */ 4989 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4990 unsigned long address, unsigned int flags) 4991 { 4992 struct vm_fault vmf = { 4993 .vma = vma, 4994 .address = address & PAGE_MASK, 4995 .real_address = address, 4996 .flags = flags, 4997 .pgoff = linear_page_index(vma, address), 4998 .gfp_mask = __get_fault_gfp_mask(vma), 4999 }; 5000 struct mm_struct *mm = vma->vm_mm; 5001 unsigned long vm_flags = vma->vm_flags; 5002 pgd_t *pgd; 5003 p4d_t *p4d; 5004 vm_fault_t ret; 5005 5006 pgd = pgd_offset(mm, address); 5007 p4d = p4d_alloc(mm, pgd, address); 5008 if (!p4d) 5009 return VM_FAULT_OOM; 5010 5011 vmf.pud = pud_alloc(mm, p4d, address); 5012 if (!vmf.pud) 5013 return VM_FAULT_OOM; 5014 retry_pud: 5015 if (pud_none(*vmf.pud) && 5016 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5017 ret = create_huge_pud(&vmf); 5018 if (!(ret & VM_FAULT_FALLBACK)) 5019 return ret; 5020 } else { 5021 pud_t orig_pud = *vmf.pud; 5022 5023 barrier(); 5024 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5025 5026 /* 5027 * TODO once we support anonymous PUDs: NUMA case and 5028 * FAULT_FLAG_UNSHARE handling. 5029 */ 5030 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5031 ret = wp_huge_pud(&vmf, orig_pud); 5032 if (!(ret & VM_FAULT_FALLBACK)) 5033 return ret; 5034 } else { 5035 huge_pud_set_accessed(&vmf, orig_pud); 5036 return 0; 5037 } 5038 } 5039 } 5040 5041 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5042 if (!vmf.pmd) 5043 return VM_FAULT_OOM; 5044 5045 /* Huge pud page fault raced with pmd_alloc? */ 5046 if (pud_trans_unstable(vmf.pud)) 5047 goto retry_pud; 5048 5049 if (pmd_none(*vmf.pmd) && 5050 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5051 ret = create_huge_pmd(&vmf); 5052 if (!(ret & VM_FAULT_FALLBACK)) 5053 return ret; 5054 } else { 5055 vmf.orig_pmd = *vmf.pmd; 5056 5057 barrier(); 5058 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5059 VM_BUG_ON(thp_migration_supported() && 5060 !is_pmd_migration_entry(vmf.orig_pmd)); 5061 if (is_pmd_migration_entry(vmf.orig_pmd)) 5062 pmd_migration_entry_wait(mm, vmf.pmd); 5063 return 0; 5064 } 5065 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5066 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5067 return do_huge_pmd_numa_page(&vmf); 5068 5069 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5070 !pmd_write(vmf.orig_pmd)) { 5071 ret = wp_huge_pmd(&vmf); 5072 if (!(ret & VM_FAULT_FALLBACK)) 5073 return ret; 5074 } else { 5075 huge_pmd_set_accessed(&vmf); 5076 return 0; 5077 } 5078 } 5079 } 5080 5081 return handle_pte_fault(&vmf); 5082 } 5083 5084 /** 5085 * mm_account_fault - Do page fault accounting 5086 * 5087 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5088 * of perf event counters, but we'll still do the per-task accounting to 5089 * the task who triggered this page fault. 5090 * @address: the faulted address. 5091 * @flags: the fault flags. 5092 * @ret: the fault retcode. 5093 * 5094 * This will take care of most of the page fault accounting. Meanwhile, it 5095 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5096 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5097 * still be in per-arch page fault handlers at the entry of page fault. 5098 */ 5099 static inline void mm_account_fault(struct pt_regs *regs, 5100 unsigned long address, unsigned int flags, 5101 vm_fault_t ret) 5102 { 5103 bool major; 5104 5105 /* 5106 * We don't do accounting for some specific faults: 5107 * 5108 * - Unsuccessful faults (e.g. when the address wasn't valid). That 5109 * includes arch_vma_access_permitted() failing before reaching here. 5110 * So this is not a "this many hardware page faults" counter. We 5111 * should use the hw profiling for that. 5112 * 5113 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 5114 * once they're completed. 5115 */ 5116 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 5117 return; 5118 5119 /* 5120 * We define the fault as a major fault when the final successful fault 5121 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5122 * handle it immediately previously). 5123 */ 5124 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5125 5126 if (major) 5127 current->maj_flt++; 5128 else 5129 current->min_flt++; 5130 5131 /* 5132 * If the fault is done for GUP, regs will be NULL. We only do the 5133 * accounting for the per thread fault counters who triggered the 5134 * fault, and we skip the perf event updates. 5135 */ 5136 if (!regs) 5137 return; 5138 5139 if (major) 5140 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5141 else 5142 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5143 } 5144 5145 #ifdef CONFIG_LRU_GEN 5146 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5147 { 5148 /* the LRU algorithm doesn't apply to sequential or random reads */ 5149 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ)); 5150 } 5151 5152 static void lru_gen_exit_fault(void) 5153 { 5154 current->in_lru_fault = false; 5155 } 5156 #else 5157 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5158 { 5159 } 5160 5161 static void lru_gen_exit_fault(void) 5162 { 5163 } 5164 #endif /* CONFIG_LRU_GEN */ 5165 5166 /* 5167 * By the time we get here, we already hold the mm semaphore 5168 * 5169 * The mmap_lock may have been released depending on flags and our 5170 * return value. See filemap_fault() and __folio_lock_or_retry(). 5171 */ 5172 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5173 unsigned int flags, struct pt_regs *regs) 5174 { 5175 vm_fault_t ret; 5176 5177 __set_current_state(TASK_RUNNING); 5178 5179 count_vm_event(PGFAULT); 5180 count_memcg_event_mm(vma->vm_mm, PGFAULT); 5181 5182 /* do counter updates before entering really critical section. */ 5183 check_sync_rss_stat(current); 5184 5185 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5186 flags & FAULT_FLAG_INSTRUCTION, 5187 flags & FAULT_FLAG_REMOTE)) 5188 return VM_FAULT_SIGSEGV; 5189 5190 /* 5191 * Enable the memcg OOM handling for faults triggered in user 5192 * space. Kernel faults are handled more gracefully. 5193 */ 5194 if (flags & FAULT_FLAG_USER) 5195 mem_cgroup_enter_user_fault(); 5196 5197 lru_gen_enter_fault(vma); 5198 5199 if (unlikely(is_vm_hugetlb_page(vma))) 5200 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5201 else 5202 ret = __handle_mm_fault(vma, address, flags); 5203 5204 lru_gen_exit_fault(); 5205 5206 if (flags & FAULT_FLAG_USER) { 5207 mem_cgroup_exit_user_fault(); 5208 /* 5209 * The task may have entered a memcg OOM situation but 5210 * if the allocation error was handled gracefully (no 5211 * VM_FAULT_OOM), there is no need to kill anything. 5212 * Just clean up the OOM state peacefully. 5213 */ 5214 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5215 mem_cgroup_oom_synchronize(false); 5216 } 5217 5218 mm_account_fault(regs, address, flags, ret); 5219 5220 return ret; 5221 } 5222 EXPORT_SYMBOL_GPL(handle_mm_fault); 5223 5224 #ifndef __PAGETABLE_P4D_FOLDED 5225 /* 5226 * Allocate p4d page table. 5227 * We've already handled the fast-path in-line. 5228 */ 5229 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5230 { 5231 p4d_t *new = p4d_alloc_one(mm, address); 5232 if (!new) 5233 return -ENOMEM; 5234 5235 spin_lock(&mm->page_table_lock); 5236 if (pgd_present(*pgd)) { /* Another has populated it */ 5237 p4d_free(mm, new); 5238 } else { 5239 smp_wmb(); /* See comment in pmd_install() */ 5240 pgd_populate(mm, pgd, new); 5241 } 5242 spin_unlock(&mm->page_table_lock); 5243 return 0; 5244 } 5245 #endif /* __PAGETABLE_P4D_FOLDED */ 5246 5247 #ifndef __PAGETABLE_PUD_FOLDED 5248 /* 5249 * Allocate page upper directory. 5250 * We've already handled the fast-path in-line. 5251 */ 5252 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5253 { 5254 pud_t *new = pud_alloc_one(mm, address); 5255 if (!new) 5256 return -ENOMEM; 5257 5258 spin_lock(&mm->page_table_lock); 5259 if (!p4d_present(*p4d)) { 5260 mm_inc_nr_puds(mm); 5261 smp_wmb(); /* See comment in pmd_install() */ 5262 p4d_populate(mm, p4d, new); 5263 } else /* Another has populated it */ 5264 pud_free(mm, new); 5265 spin_unlock(&mm->page_table_lock); 5266 return 0; 5267 } 5268 #endif /* __PAGETABLE_PUD_FOLDED */ 5269 5270 #ifndef __PAGETABLE_PMD_FOLDED 5271 /* 5272 * Allocate page middle directory. 5273 * We've already handled the fast-path in-line. 5274 */ 5275 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5276 { 5277 spinlock_t *ptl; 5278 pmd_t *new = pmd_alloc_one(mm, address); 5279 if (!new) 5280 return -ENOMEM; 5281 5282 ptl = pud_lock(mm, pud); 5283 if (!pud_present(*pud)) { 5284 mm_inc_nr_pmds(mm); 5285 smp_wmb(); /* See comment in pmd_install() */ 5286 pud_populate(mm, pud, new); 5287 } else { /* Another has populated it */ 5288 pmd_free(mm, new); 5289 } 5290 spin_unlock(ptl); 5291 return 0; 5292 } 5293 #endif /* __PAGETABLE_PMD_FOLDED */ 5294 5295 /** 5296 * follow_pte - look up PTE at a user virtual address 5297 * @mm: the mm_struct of the target address space 5298 * @address: user virtual address 5299 * @ptepp: location to store found PTE 5300 * @ptlp: location to store the lock for the PTE 5301 * 5302 * On a successful return, the pointer to the PTE is stored in @ptepp; 5303 * the corresponding lock is taken and its location is stored in @ptlp. 5304 * The contents of the PTE are only stable until @ptlp is released; 5305 * any further use, if any, must be protected against invalidation 5306 * with MMU notifiers. 5307 * 5308 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5309 * should be taken for read. 5310 * 5311 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5312 * it is not a good general-purpose API. 5313 * 5314 * Return: zero on success, -ve otherwise. 5315 */ 5316 int follow_pte(struct mm_struct *mm, unsigned long address, 5317 pte_t **ptepp, spinlock_t **ptlp) 5318 { 5319 pgd_t *pgd; 5320 p4d_t *p4d; 5321 pud_t *pud; 5322 pmd_t *pmd; 5323 pte_t *ptep; 5324 5325 pgd = pgd_offset(mm, address); 5326 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5327 goto out; 5328 5329 p4d = p4d_offset(pgd, address); 5330 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5331 goto out; 5332 5333 pud = pud_offset(p4d, address); 5334 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5335 goto out; 5336 5337 pmd = pmd_offset(pud, address); 5338 VM_BUG_ON(pmd_trans_huge(*pmd)); 5339 5340 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5341 goto out; 5342 5343 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5344 if (!pte_present(*ptep)) 5345 goto unlock; 5346 *ptepp = ptep; 5347 return 0; 5348 unlock: 5349 pte_unmap_unlock(ptep, *ptlp); 5350 out: 5351 return -EINVAL; 5352 } 5353 EXPORT_SYMBOL_GPL(follow_pte); 5354 5355 /** 5356 * follow_pfn - look up PFN at a user virtual address 5357 * @vma: memory mapping 5358 * @address: user virtual address 5359 * @pfn: location to store found PFN 5360 * 5361 * Only IO mappings and raw PFN mappings are allowed. 5362 * 5363 * This function does not allow the caller to read the permissions 5364 * of the PTE. Do not use it. 5365 * 5366 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5367 */ 5368 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5369 unsigned long *pfn) 5370 { 5371 int ret = -EINVAL; 5372 spinlock_t *ptl; 5373 pte_t *ptep; 5374 5375 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5376 return ret; 5377 5378 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5379 if (ret) 5380 return ret; 5381 *pfn = pte_pfn(*ptep); 5382 pte_unmap_unlock(ptep, ptl); 5383 return 0; 5384 } 5385 EXPORT_SYMBOL(follow_pfn); 5386 5387 #ifdef CONFIG_HAVE_IOREMAP_PROT 5388 int follow_phys(struct vm_area_struct *vma, 5389 unsigned long address, unsigned int flags, 5390 unsigned long *prot, resource_size_t *phys) 5391 { 5392 int ret = -EINVAL; 5393 pte_t *ptep, pte; 5394 spinlock_t *ptl; 5395 5396 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5397 goto out; 5398 5399 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5400 goto out; 5401 pte = *ptep; 5402 5403 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5404 goto unlock; 5405 5406 *prot = pgprot_val(pte_pgprot(pte)); 5407 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5408 5409 ret = 0; 5410 unlock: 5411 pte_unmap_unlock(ptep, ptl); 5412 out: 5413 return ret; 5414 } 5415 5416 /** 5417 * generic_access_phys - generic implementation for iomem mmap access 5418 * @vma: the vma to access 5419 * @addr: userspace address, not relative offset within @vma 5420 * @buf: buffer to read/write 5421 * @len: length of transfer 5422 * @write: set to FOLL_WRITE when writing, otherwise reading 5423 * 5424 * This is a generic implementation for &vm_operations_struct.access for an 5425 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5426 * not page based. 5427 */ 5428 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5429 void *buf, int len, int write) 5430 { 5431 resource_size_t phys_addr; 5432 unsigned long prot = 0; 5433 void __iomem *maddr; 5434 pte_t *ptep, pte; 5435 spinlock_t *ptl; 5436 int offset = offset_in_page(addr); 5437 int ret = -EINVAL; 5438 5439 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5440 return -EINVAL; 5441 5442 retry: 5443 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5444 return -EINVAL; 5445 pte = *ptep; 5446 pte_unmap_unlock(ptep, ptl); 5447 5448 prot = pgprot_val(pte_pgprot(pte)); 5449 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5450 5451 if ((write & FOLL_WRITE) && !pte_write(pte)) 5452 return -EINVAL; 5453 5454 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5455 if (!maddr) 5456 return -ENOMEM; 5457 5458 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5459 goto out_unmap; 5460 5461 if (!pte_same(pte, *ptep)) { 5462 pte_unmap_unlock(ptep, ptl); 5463 iounmap(maddr); 5464 5465 goto retry; 5466 } 5467 5468 if (write) 5469 memcpy_toio(maddr + offset, buf, len); 5470 else 5471 memcpy_fromio(buf, maddr + offset, len); 5472 ret = len; 5473 pte_unmap_unlock(ptep, ptl); 5474 out_unmap: 5475 iounmap(maddr); 5476 5477 return ret; 5478 } 5479 EXPORT_SYMBOL_GPL(generic_access_phys); 5480 #endif 5481 5482 /* 5483 * Access another process' address space as given in mm. 5484 */ 5485 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5486 int len, unsigned int gup_flags) 5487 { 5488 struct vm_area_struct *vma; 5489 void *old_buf = buf; 5490 int write = gup_flags & FOLL_WRITE; 5491 5492 if (mmap_read_lock_killable(mm)) 5493 return 0; 5494 5495 /* ignore errors, just check how much was successfully transferred */ 5496 while (len) { 5497 int bytes, ret, offset; 5498 void *maddr; 5499 struct page *page = NULL; 5500 5501 ret = get_user_pages_remote(mm, addr, 1, 5502 gup_flags, &page, &vma, NULL); 5503 if (ret <= 0) { 5504 #ifndef CONFIG_HAVE_IOREMAP_PROT 5505 break; 5506 #else 5507 /* 5508 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5509 * we can access using slightly different code. 5510 */ 5511 vma = vma_lookup(mm, addr); 5512 if (!vma) 5513 break; 5514 if (vma->vm_ops && vma->vm_ops->access) 5515 ret = vma->vm_ops->access(vma, addr, buf, 5516 len, write); 5517 if (ret <= 0) 5518 break; 5519 bytes = ret; 5520 #endif 5521 } else { 5522 bytes = len; 5523 offset = addr & (PAGE_SIZE-1); 5524 if (bytes > PAGE_SIZE-offset) 5525 bytes = PAGE_SIZE-offset; 5526 5527 maddr = kmap(page); 5528 if (write) { 5529 copy_to_user_page(vma, page, addr, 5530 maddr + offset, buf, bytes); 5531 set_page_dirty_lock(page); 5532 } else { 5533 copy_from_user_page(vma, page, addr, 5534 buf, maddr + offset, bytes); 5535 } 5536 kunmap(page); 5537 put_page(page); 5538 } 5539 len -= bytes; 5540 buf += bytes; 5541 addr += bytes; 5542 } 5543 mmap_read_unlock(mm); 5544 5545 return buf - old_buf; 5546 } 5547 5548 /** 5549 * access_remote_vm - access another process' address space 5550 * @mm: the mm_struct of the target address space 5551 * @addr: start address to access 5552 * @buf: source or destination buffer 5553 * @len: number of bytes to transfer 5554 * @gup_flags: flags modifying lookup behaviour 5555 * 5556 * The caller must hold a reference on @mm. 5557 * 5558 * Return: number of bytes copied from source to destination. 5559 */ 5560 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5561 void *buf, int len, unsigned int gup_flags) 5562 { 5563 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5564 } 5565 5566 /* 5567 * Access another process' address space. 5568 * Source/target buffer must be kernel space, 5569 * Do not walk the page table directly, use get_user_pages 5570 */ 5571 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5572 void *buf, int len, unsigned int gup_flags) 5573 { 5574 struct mm_struct *mm; 5575 int ret; 5576 5577 mm = get_task_mm(tsk); 5578 if (!mm) 5579 return 0; 5580 5581 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5582 5583 mmput(mm); 5584 5585 return ret; 5586 } 5587 EXPORT_SYMBOL_GPL(access_process_vm); 5588 5589 /* 5590 * Print the name of a VMA. 5591 */ 5592 void print_vma_addr(char *prefix, unsigned long ip) 5593 { 5594 struct mm_struct *mm = current->mm; 5595 struct vm_area_struct *vma; 5596 5597 /* 5598 * we might be running from an atomic context so we cannot sleep 5599 */ 5600 if (!mmap_read_trylock(mm)) 5601 return; 5602 5603 vma = find_vma(mm, ip); 5604 if (vma && vma->vm_file) { 5605 struct file *f = vma->vm_file; 5606 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5607 if (buf) { 5608 char *p; 5609 5610 p = file_path(f, buf, PAGE_SIZE); 5611 if (IS_ERR(p)) 5612 p = "?"; 5613 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5614 vma->vm_start, 5615 vma->vm_end - vma->vm_start); 5616 free_page((unsigned long)buf); 5617 } 5618 } 5619 mmap_read_unlock(mm); 5620 } 5621 5622 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5623 void __might_fault(const char *file, int line) 5624 { 5625 if (pagefault_disabled()) 5626 return; 5627 __might_sleep(file, line); 5628 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5629 if (current->mm) 5630 might_lock_read(¤t->mm->mmap_lock); 5631 #endif 5632 } 5633 EXPORT_SYMBOL(__might_fault); 5634 #endif 5635 5636 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5637 /* 5638 * Process all subpages of the specified huge page with the specified 5639 * operation. The target subpage will be processed last to keep its 5640 * cache lines hot. 5641 */ 5642 static inline void process_huge_page( 5643 unsigned long addr_hint, unsigned int pages_per_huge_page, 5644 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5645 void *arg) 5646 { 5647 int i, n, base, l; 5648 unsigned long addr = addr_hint & 5649 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5650 5651 /* Process target subpage last to keep its cache lines hot */ 5652 might_sleep(); 5653 n = (addr_hint - addr) / PAGE_SIZE; 5654 if (2 * n <= pages_per_huge_page) { 5655 /* If target subpage in first half of huge page */ 5656 base = 0; 5657 l = n; 5658 /* Process subpages at the end of huge page */ 5659 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5660 cond_resched(); 5661 process_subpage(addr + i * PAGE_SIZE, i, arg); 5662 } 5663 } else { 5664 /* If target subpage in second half of huge page */ 5665 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5666 l = pages_per_huge_page - n; 5667 /* Process subpages at the begin of huge page */ 5668 for (i = 0; i < base; i++) { 5669 cond_resched(); 5670 process_subpage(addr + i * PAGE_SIZE, i, arg); 5671 } 5672 } 5673 /* 5674 * Process remaining subpages in left-right-left-right pattern 5675 * towards the target subpage 5676 */ 5677 for (i = 0; i < l; i++) { 5678 int left_idx = base + i; 5679 int right_idx = base + 2 * l - 1 - i; 5680 5681 cond_resched(); 5682 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5683 cond_resched(); 5684 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5685 } 5686 } 5687 5688 static void clear_gigantic_page(struct page *page, 5689 unsigned long addr, 5690 unsigned int pages_per_huge_page) 5691 { 5692 int i; 5693 struct page *p; 5694 5695 might_sleep(); 5696 for (i = 0; i < pages_per_huge_page; i++) { 5697 p = nth_page(page, i); 5698 cond_resched(); 5699 clear_user_highpage(p, addr + i * PAGE_SIZE); 5700 } 5701 } 5702 5703 static void clear_subpage(unsigned long addr, int idx, void *arg) 5704 { 5705 struct page *page = arg; 5706 5707 clear_user_highpage(page + idx, addr); 5708 } 5709 5710 void clear_huge_page(struct page *page, 5711 unsigned long addr_hint, unsigned int pages_per_huge_page) 5712 { 5713 unsigned long addr = addr_hint & 5714 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5715 5716 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5717 clear_gigantic_page(page, addr, pages_per_huge_page); 5718 return; 5719 } 5720 5721 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5722 } 5723 5724 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5725 unsigned long addr, 5726 struct vm_area_struct *vma, 5727 unsigned int pages_per_huge_page) 5728 { 5729 int i; 5730 struct page *dst_base = dst; 5731 struct page *src_base = src; 5732 5733 for (i = 0; i < pages_per_huge_page; i++) { 5734 dst = nth_page(dst_base, i); 5735 src = nth_page(src_base, i); 5736 5737 cond_resched(); 5738 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5739 } 5740 } 5741 5742 struct copy_subpage_arg { 5743 struct page *dst; 5744 struct page *src; 5745 struct vm_area_struct *vma; 5746 }; 5747 5748 static void copy_subpage(unsigned long addr, int idx, void *arg) 5749 { 5750 struct copy_subpage_arg *copy_arg = arg; 5751 5752 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5753 addr, copy_arg->vma); 5754 } 5755 5756 void copy_user_huge_page(struct page *dst, struct page *src, 5757 unsigned long addr_hint, struct vm_area_struct *vma, 5758 unsigned int pages_per_huge_page) 5759 { 5760 unsigned long addr = addr_hint & 5761 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5762 struct copy_subpage_arg arg = { 5763 .dst = dst, 5764 .src = src, 5765 .vma = vma, 5766 }; 5767 5768 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5769 copy_user_gigantic_page(dst, src, addr, vma, 5770 pages_per_huge_page); 5771 return; 5772 } 5773 5774 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5775 } 5776 5777 long copy_huge_page_from_user(struct page *dst_page, 5778 const void __user *usr_src, 5779 unsigned int pages_per_huge_page, 5780 bool allow_pagefault) 5781 { 5782 void *page_kaddr; 5783 unsigned long i, rc = 0; 5784 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5785 struct page *subpage; 5786 5787 for (i = 0; i < pages_per_huge_page; i++) { 5788 subpage = nth_page(dst_page, i); 5789 if (allow_pagefault) 5790 page_kaddr = kmap(subpage); 5791 else 5792 page_kaddr = kmap_atomic(subpage); 5793 rc = copy_from_user(page_kaddr, 5794 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5795 if (allow_pagefault) 5796 kunmap(subpage); 5797 else 5798 kunmap_atomic(page_kaddr); 5799 5800 ret_val -= (PAGE_SIZE - rc); 5801 if (rc) 5802 break; 5803 5804 flush_dcache_page(subpage); 5805 5806 cond_resched(); 5807 } 5808 return ret_val; 5809 } 5810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5811 5812 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5813 5814 static struct kmem_cache *page_ptl_cachep; 5815 5816 void __init ptlock_cache_init(void) 5817 { 5818 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5819 SLAB_PANIC, NULL); 5820 } 5821 5822 bool ptlock_alloc(struct page *page) 5823 { 5824 spinlock_t *ptl; 5825 5826 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5827 if (!ptl) 5828 return false; 5829 page->ptl = ptl; 5830 return true; 5831 } 5832 5833 void ptlock_free(struct page *page) 5834 { 5835 kmem_cache_free(page_ptl_cachep, page->ptl); 5836 } 5837 #endif 5838