1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_marker_uffd_wp(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 #ifndef arch_wants_old_prefaulted_pte 129 static inline bool arch_wants_old_prefaulted_pte(void) 130 { 131 /* 132 * Transitioning a PTE from 'old' to 'young' can be expensive on 133 * some architectures, even if it's performed in hardware. By 134 * default, "false" means prefaulted entries will be 'young'. 135 */ 136 return false; 137 } 138 #endif 139 140 static int __init disable_randmaps(char *s) 141 { 142 randomize_va_space = 0; 143 return 1; 144 } 145 __setup("norandmaps", disable_randmaps); 146 147 unsigned long zero_pfn __read_mostly; 148 EXPORT_SYMBOL(zero_pfn); 149 150 unsigned long highest_memmap_pfn __read_mostly; 151 152 /* 153 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 154 */ 155 static int __init init_zero_pfn(void) 156 { 157 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 158 return 0; 159 } 160 early_initcall(init_zero_pfn); 161 162 void mm_trace_rss_stat(struct mm_struct *mm, int member) 163 { 164 trace_rss_stat(mm, member); 165 } 166 167 /* 168 * Note: this doesn't free the actual pages themselves. That 169 * has been handled earlier when unmapping all the memory regions. 170 */ 171 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 172 unsigned long addr) 173 { 174 pgtable_t token = pmd_pgtable(*pmd); 175 pmd_clear(pmd); 176 pte_free_tlb(tlb, token, addr); 177 mm_dec_nr_ptes(tlb->mm); 178 } 179 180 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 181 unsigned long addr, unsigned long end, 182 unsigned long floor, unsigned long ceiling) 183 { 184 pmd_t *pmd; 185 unsigned long next; 186 unsigned long start; 187 188 start = addr; 189 pmd = pmd_offset(pud, addr); 190 do { 191 next = pmd_addr_end(addr, end); 192 if (pmd_none_or_clear_bad(pmd)) 193 continue; 194 free_pte_range(tlb, pmd, addr); 195 } while (pmd++, addr = next, addr != end); 196 197 start &= PUD_MASK; 198 if (start < floor) 199 return; 200 if (ceiling) { 201 ceiling &= PUD_MASK; 202 if (!ceiling) 203 return; 204 } 205 if (end - 1 > ceiling - 1) 206 return; 207 208 pmd = pmd_offset(pud, start); 209 pud_clear(pud); 210 pmd_free_tlb(tlb, pmd, start); 211 mm_dec_nr_pmds(tlb->mm); 212 } 213 214 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 215 unsigned long addr, unsigned long end, 216 unsigned long floor, unsigned long ceiling) 217 { 218 pud_t *pud; 219 unsigned long next; 220 unsigned long start; 221 222 start = addr; 223 pud = pud_offset(p4d, addr); 224 do { 225 next = pud_addr_end(addr, end); 226 if (pud_none_or_clear_bad(pud)) 227 continue; 228 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 229 } while (pud++, addr = next, addr != end); 230 231 start &= P4D_MASK; 232 if (start < floor) 233 return; 234 if (ceiling) { 235 ceiling &= P4D_MASK; 236 if (!ceiling) 237 return; 238 } 239 if (end - 1 > ceiling - 1) 240 return; 241 242 pud = pud_offset(p4d, start); 243 p4d_clear(p4d); 244 pud_free_tlb(tlb, pud, start); 245 mm_dec_nr_puds(tlb->mm); 246 } 247 248 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 249 unsigned long addr, unsigned long end, 250 unsigned long floor, unsigned long ceiling) 251 { 252 p4d_t *p4d; 253 unsigned long next; 254 unsigned long start; 255 256 start = addr; 257 p4d = p4d_offset(pgd, addr); 258 do { 259 next = p4d_addr_end(addr, end); 260 if (p4d_none_or_clear_bad(p4d)) 261 continue; 262 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 263 } while (p4d++, addr = next, addr != end); 264 265 start &= PGDIR_MASK; 266 if (start < floor) 267 return; 268 if (ceiling) { 269 ceiling &= PGDIR_MASK; 270 if (!ceiling) 271 return; 272 } 273 if (end - 1 > ceiling - 1) 274 return; 275 276 p4d = p4d_offset(pgd, start); 277 pgd_clear(pgd); 278 p4d_free_tlb(tlb, p4d, start); 279 } 280 281 /** 282 * free_pgd_range - Unmap and free page tables in the range 283 * @tlb: the mmu_gather containing pending TLB flush info 284 * @addr: virtual address start 285 * @end: virtual address end 286 * @floor: lowest address boundary 287 * @ceiling: highest address boundary 288 * 289 * This function tears down all user-level page tables in the 290 * specified virtual address range [@addr..@end). It is part of 291 * the memory unmap flow. 292 */ 293 void free_pgd_range(struct mmu_gather *tlb, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 pgd_t *pgd; 298 unsigned long next; 299 300 /* 301 * The next few lines have given us lots of grief... 302 * 303 * Why are we testing PMD* at this top level? Because often 304 * there will be no work to do at all, and we'd prefer not to 305 * go all the way down to the bottom just to discover that. 306 * 307 * Why all these "- 1"s? Because 0 represents both the bottom 308 * of the address space and the top of it (using -1 for the 309 * top wouldn't help much: the masks would do the wrong thing). 310 * The rule is that addr 0 and floor 0 refer to the bottom of 311 * the address space, but end 0 and ceiling 0 refer to the top 312 * Comparisons need to use "end - 1" and "ceiling - 1" (though 313 * that end 0 case should be mythical). 314 * 315 * Wherever addr is brought up or ceiling brought down, we must 316 * be careful to reject "the opposite 0" before it confuses the 317 * subsequent tests. But what about where end is brought down 318 * by PMD_SIZE below? no, end can't go down to 0 there. 319 * 320 * Whereas we round start (addr) and ceiling down, by different 321 * masks at different levels, in order to test whether a table 322 * now has no other vmas using it, so can be freed, we don't 323 * bother to round floor or end up - the tests don't need that. 324 */ 325 326 addr &= PMD_MASK; 327 if (addr < floor) { 328 addr += PMD_SIZE; 329 if (!addr) 330 return; 331 } 332 if (ceiling) { 333 ceiling &= PMD_MASK; 334 if (!ceiling) 335 return; 336 } 337 if (end - 1 > ceiling - 1) 338 end -= PMD_SIZE; 339 if (addr > end - 1) 340 return; 341 /* 342 * We add page table cache pages with PAGE_SIZE, 343 * (see pte_free_tlb()), flush the tlb if we need 344 */ 345 tlb_change_page_size(tlb, PAGE_SIZE); 346 pgd = pgd_offset(tlb->mm, addr); 347 do { 348 next = pgd_addr_end(addr, end); 349 if (pgd_none_or_clear_bad(pgd)) 350 continue; 351 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 352 } while (pgd++, addr = next, addr != end); 353 } 354 355 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 356 struct vm_area_struct *vma, unsigned long floor, 357 unsigned long ceiling, bool mm_wr_locked) 358 { 359 struct unlink_vma_file_batch vb; 360 361 do { 362 unsigned long addr = vma->vm_start; 363 struct vm_area_struct *next; 364 365 /* 366 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 367 * be 0. This will underflow and is okay. 368 */ 369 next = mas_find(mas, ceiling - 1); 370 if (unlikely(xa_is_zero(next))) 371 next = NULL; 372 373 /* 374 * Hide vma from rmap and truncate_pagecache before freeing 375 * pgtables 376 */ 377 if (mm_wr_locked) 378 vma_start_write(vma); 379 unlink_anon_vmas(vma); 380 381 if (is_vm_hugetlb_page(vma)) { 382 unlink_file_vma(vma); 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 384 floor, next ? next->vm_start : ceiling); 385 } else { 386 unlink_file_vma_batch_init(&vb); 387 unlink_file_vma_batch_add(&vb, vma); 388 389 /* 390 * Optimization: gather nearby vmas into one call down 391 */ 392 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 393 && !is_vm_hugetlb_page(next)) { 394 vma = next; 395 next = mas_find(mas, ceiling - 1); 396 if (unlikely(xa_is_zero(next))) 397 next = NULL; 398 if (mm_wr_locked) 399 vma_start_write(vma); 400 unlink_anon_vmas(vma); 401 unlink_file_vma_batch_add(&vb, vma); 402 } 403 unlink_file_vma_batch_final(&vb); 404 free_pgd_range(tlb, addr, vma->vm_end, 405 floor, next ? next->vm_start : ceiling); 406 } 407 vma = next; 408 } while (vma); 409 } 410 411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 412 { 413 spinlock_t *ptl = pmd_lock(mm, pmd); 414 415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 416 mm_inc_nr_ptes(mm); 417 /* 418 * Ensure all pte setup (eg. pte page lock and page clearing) are 419 * visible before the pte is made visible to other CPUs by being 420 * put into page tables. 421 * 422 * The other side of the story is the pointer chasing in the page 423 * table walking code (when walking the page table without locking; 424 * ie. most of the time). Fortunately, these data accesses consist 425 * of a chain of data-dependent loads, meaning most CPUs (alpha 426 * being the notable exception) will already guarantee loads are 427 * seen in-order. See the alpha page table accessors for the 428 * smp_rmb() barriers in page table walking code. 429 */ 430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 431 pmd_populate(mm, pmd, *pte); 432 *pte = NULL; 433 } 434 spin_unlock(ptl); 435 } 436 437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 438 { 439 pgtable_t new = pte_alloc_one(mm); 440 if (!new) 441 return -ENOMEM; 442 443 pmd_install(mm, pmd, &new); 444 if (new) 445 pte_free(mm, new); 446 return 0; 447 } 448 449 int __pte_alloc_kernel(pmd_t *pmd) 450 { 451 pte_t *new = pte_alloc_one_kernel(&init_mm); 452 if (!new) 453 return -ENOMEM; 454 455 spin_lock(&init_mm.page_table_lock); 456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 457 smp_wmb(); /* See comment in pmd_install() */ 458 pmd_populate_kernel(&init_mm, pmd, new); 459 new = NULL; 460 } 461 spin_unlock(&init_mm.page_table_lock); 462 if (new) 463 pte_free_kernel(&init_mm, new); 464 return 0; 465 } 466 467 static inline void init_rss_vec(int *rss) 468 { 469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 470 } 471 472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 473 { 474 int i; 475 476 for (i = 0; i < NR_MM_COUNTERS; i++) 477 if (rss[i]) 478 add_mm_counter(mm, i, rss[i]); 479 } 480 481 /* 482 * This function is called to print an error when a bad pte 483 * is found. For example, we might have a PFN-mapped pte in 484 * a region that doesn't allow it. 485 * 486 * The calling function must still handle the error. 487 */ 488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 489 pte_t pte, struct page *page) 490 { 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 492 p4d_t *p4d = p4d_offset(pgd, addr); 493 pud_t *pud = pud_offset(p4d, addr); 494 pmd_t *pmd = pmd_offset(pud, addr); 495 struct address_space *mapping; 496 pgoff_t index; 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 521 index = linear_page_index(vma, addr); 522 523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 524 current->comm, 525 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 526 if (page) 527 dump_page(page, "bad pte"); 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 530 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 531 vma->vm_file, 532 vma->vm_ops ? vma->vm_ops->fault : NULL, 533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 534 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 535 mapping ? mapping->a_ops->read_folio : NULL); 536 dump_stack(); 537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 538 } 539 540 /* 541 * vm_normal_page -- This function gets the "struct page" associated with a pte. 542 * 543 * "Special" mappings do not wish to be associated with a "struct page" (either 544 * it doesn't exist, or it exists but they don't want to touch it). In this 545 * case, NULL is returned here. "Normal" mappings do have a struct page. 546 * 547 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 548 * pte bit, in which case this function is trivial. Secondly, an architecture 549 * may not have a spare pte bit, which requires a more complicated scheme, 550 * described below. 551 * 552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 553 * special mapping (even if there are underlying and valid "struct pages"). 554 * COWed pages of a VM_PFNMAP are always normal. 555 * 556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 559 * mapping will always honor the rule 560 * 561 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 562 * 563 * And for normal mappings this is false. 564 * 565 * This restricts such mappings to be a linear translation from virtual address 566 * to pfn. To get around this restriction, we allow arbitrary mappings so long 567 * as the vma is not a COW mapping; in that case, we know that all ptes are 568 * special (because none can have been COWed). 569 * 570 * 571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 572 * 573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 574 * page" backing, however the difference is that _all_ pages with a struct 575 * page (that is, those where pfn_valid is true) are refcounted and considered 576 * normal pages by the VM. The only exception are zeropages, which are 577 * *never* refcounted. 578 * 579 * The disadvantage is that pages are refcounted (which can be slower and 580 * simply not an option for some PFNMAP users). The advantage is that we 581 * don't have to follow the strict linearity rule of PFNMAP mappings in 582 * order to support COWable mappings. 583 * 584 */ 585 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 586 pte_t pte) 587 { 588 unsigned long pfn = pte_pfn(pte); 589 590 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 591 if (likely(!pte_special(pte))) 592 goto check_pfn; 593 if (vma->vm_ops && vma->vm_ops->find_special_page) 594 return vma->vm_ops->find_special_page(vma, addr); 595 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 596 return NULL; 597 if (is_zero_pfn(pfn)) 598 return NULL; 599 if (pte_devmap(pte)) 600 /* 601 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 602 * and will have refcounts incremented on their struct pages 603 * when they are inserted into PTEs, thus they are safe to 604 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 605 * do not have refcounts. Example of legacy ZONE_DEVICE is 606 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 607 */ 608 return NULL; 609 610 print_bad_pte(vma, addr, pte, NULL); 611 return NULL; 612 } 613 614 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 615 616 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 617 if (vma->vm_flags & VM_MIXEDMAP) { 618 if (!pfn_valid(pfn)) 619 return NULL; 620 if (is_zero_pfn(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 648 return pfn_to_page(pfn); 649 } 650 651 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 652 pte_t pte) 653 { 654 struct page *page = vm_normal_page(vma, addr, pte); 655 656 if (page) 657 return page_folio(page); 658 return NULL; 659 } 660 661 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 663 pmd_t pmd) 664 { 665 unsigned long pfn = pmd_pfn(pmd); 666 667 /* Currently it's only used for huge pfnmaps */ 668 if (unlikely(pmd_special(pmd))) 669 return NULL; 670 671 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 672 if (vma->vm_flags & VM_MIXEDMAP) { 673 if (!pfn_valid(pfn)) 674 return NULL; 675 goto out; 676 } else { 677 unsigned long off; 678 off = (addr - vma->vm_start) >> PAGE_SHIFT; 679 if (pfn == vma->vm_pgoff + off) 680 return NULL; 681 if (!is_cow_mapping(vma->vm_flags)) 682 return NULL; 683 } 684 } 685 686 if (pmd_devmap(pmd)) 687 return NULL; 688 if (is_huge_zero_pmd(pmd)) 689 return NULL; 690 if (unlikely(pfn > highest_memmap_pfn)) 691 return NULL; 692 693 /* 694 * NOTE! We still have PageReserved() pages in the page tables. 695 * eg. VDSO mappings can cause them to exist. 696 */ 697 out: 698 return pfn_to_page(pfn); 699 } 700 701 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 702 unsigned long addr, pmd_t pmd) 703 { 704 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 705 706 if (page) 707 return page_folio(page); 708 return NULL; 709 } 710 #endif 711 712 /** 713 * restore_exclusive_pte - Restore a device-exclusive entry 714 * @vma: VMA covering @address 715 * @folio: the mapped folio 716 * @page: the mapped folio page 717 * @address: the virtual address 718 * @ptep: pte pointer into the locked page table mapping the folio page 719 * @orig_pte: pte value at @ptep 720 * 721 * Restore a device-exclusive non-swap entry to an ordinary present pte. 722 * 723 * The folio and the page table must be locked, and MMU notifiers must have 724 * been called to invalidate any (exclusive) device mappings. 725 * 726 * Locking the folio makes sure that anybody who just converted the pte to 727 * a device-exclusive entry can map it into the device to make forward 728 * progress without others converting it back until the folio was unlocked. 729 * 730 * If the folio lock ever becomes an issue, we can stop relying on the folio 731 * lock; it might make some scenarios with heavy thrashing less likely to 732 * make forward progress, but these scenarios might not be valid use cases. 733 * 734 * Note that the folio lock does not protect against all cases of concurrent 735 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 736 * must use MMU notifiers to sync against any concurrent changes. 737 */ 738 static void restore_exclusive_pte(struct vm_area_struct *vma, 739 struct folio *folio, struct page *page, unsigned long address, 740 pte_t *ptep, pte_t orig_pte) 741 { 742 pte_t pte; 743 744 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 745 746 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 747 if (pte_swp_soft_dirty(orig_pte)) 748 pte = pte_mksoft_dirty(pte); 749 750 if (pte_swp_uffd_wp(orig_pte)) 751 pte = pte_mkuffd_wp(pte); 752 753 if ((vma->vm_flags & VM_WRITE) && 754 can_change_pte_writable(vma, address, pte)) { 755 if (folio_test_dirty(folio)) 756 pte = pte_mkdirty(pte); 757 pte = pte_mkwrite(pte, vma); 758 } 759 set_pte_at(vma->vm_mm, address, ptep, pte); 760 761 /* 762 * No need to invalidate - it was non-present before. However 763 * secondary CPUs may have mappings that need invalidating. 764 */ 765 update_mmu_cache(vma, address, ptep); 766 } 767 768 /* 769 * Tries to restore an exclusive pte if the page lock can be acquired without 770 * sleeping. 771 */ 772 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 773 unsigned long addr, pte_t *ptep, pte_t orig_pte) 774 { 775 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 776 struct folio *folio = page_folio(page); 777 778 if (folio_trylock(folio)) { 779 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 780 folio_unlock(folio); 781 return 0; 782 } 783 784 return -EBUSY; 785 } 786 787 /* 788 * copy one vm_area from one task to the other. Assumes the page tables 789 * already present in the new task to be cleared in the whole range 790 * covered by this vma. 791 */ 792 793 static unsigned long 794 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 795 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 796 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 797 { 798 unsigned long vm_flags = dst_vma->vm_flags; 799 pte_t orig_pte = ptep_get(src_pte); 800 pte_t pte = orig_pte; 801 struct folio *folio; 802 struct page *page; 803 swp_entry_t entry = pte_to_swp_entry(orig_pte); 804 805 if (likely(!non_swap_entry(entry))) { 806 if (swap_duplicate(entry) < 0) 807 return -EIO; 808 809 /* make sure dst_mm is on swapoff's mmlist. */ 810 if (unlikely(list_empty(&dst_mm->mmlist))) { 811 spin_lock(&mmlist_lock); 812 if (list_empty(&dst_mm->mmlist)) 813 list_add(&dst_mm->mmlist, 814 &src_mm->mmlist); 815 spin_unlock(&mmlist_lock); 816 } 817 /* Mark the swap entry as shared. */ 818 if (pte_swp_exclusive(orig_pte)) { 819 pte = pte_swp_clear_exclusive(orig_pte); 820 set_pte_at(src_mm, addr, src_pte, pte); 821 } 822 rss[MM_SWAPENTS]++; 823 } else if (is_migration_entry(entry)) { 824 folio = pfn_swap_entry_folio(entry); 825 826 rss[mm_counter(folio)]++; 827 828 if (!is_readable_migration_entry(entry) && 829 is_cow_mapping(vm_flags)) { 830 /* 831 * COW mappings require pages in both parent and child 832 * to be set to read. A previously exclusive entry is 833 * now shared. 834 */ 835 entry = make_readable_migration_entry( 836 swp_offset(entry)); 837 pte = swp_entry_to_pte(entry); 838 if (pte_swp_soft_dirty(orig_pte)) 839 pte = pte_swp_mksoft_dirty(pte); 840 if (pte_swp_uffd_wp(orig_pte)) 841 pte = pte_swp_mkuffd_wp(pte); 842 set_pte_at(src_mm, addr, src_pte, pte); 843 } 844 } else if (is_device_private_entry(entry)) { 845 page = pfn_swap_entry_to_page(entry); 846 folio = page_folio(page); 847 848 /* 849 * Update rss count even for unaddressable pages, as 850 * they should treated just like normal pages in this 851 * respect. 852 * 853 * We will likely want to have some new rss counters 854 * for unaddressable pages, at some point. But for now 855 * keep things as they are. 856 */ 857 folio_get(folio); 858 rss[mm_counter(folio)]++; 859 /* Cannot fail as these pages cannot get pinned. */ 860 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 861 862 /* 863 * We do not preserve soft-dirty information, because so 864 * far, checkpoint/restore is the only feature that 865 * requires that. And checkpoint/restore does not work 866 * when a device driver is involved (you cannot easily 867 * save and restore device driver state). 868 */ 869 if (is_writable_device_private_entry(entry) && 870 is_cow_mapping(vm_flags)) { 871 entry = make_readable_device_private_entry( 872 swp_offset(entry)); 873 pte = swp_entry_to_pte(entry); 874 if (pte_swp_uffd_wp(orig_pte)) 875 pte = pte_swp_mkuffd_wp(pte); 876 set_pte_at(src_mm, addr, src_pte, pte); 877 } 878 } else if (is_device_exclusive_entry(entry)) { 879 /* 880 * Make device exclusive entries present by restoring the 881 * original entry then copying as for a present pte. Device 882 * exclusive entries currently only support private writable 883 * (ie. COW) mappings. 884 */ 885 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 886 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 887 return -EBUSY; 888 return -ENOENT; 889 } else if (is_pte_marker_entry(entry)) { 890 pte_marker marker = copy_pte_marker(entry, dst_vma); 891 892 if (marker) 893 set_pte_at(dst_mm, addr, dst_pte, 894 make_pte_marker(marker)); 895 return 0; 896 } 897 if (!userfaultfd_wp(dst_vma)) 898 pte = pte_swp_clear_uffd_wp(pte); 899 set_pte_at(dst_mm, addr, dst_pte, pte); 900 return 0; 901 } 902 903 /* 904 * Copy a present and normal page. 905 * 906 * NOTE! The usual case is that this isn't required; 907 * instead, the caller can just increase the page refcount 908 * and re-use the pte the traditional way. 909 * 910 * And if we need a pre-allocated page but don't yet have 911 * one, return a negative error to let the preallocation 912 * code know so that it can do so outside the page table 913 * lock. 914 */ 915 static inline int 916 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 917 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 918 struct folio **prealloc, struct page *page) 919 { 920 struct folio *new_folio; 921 pte_t pte; 922 923 new_folio = *prealloc; 924 if (!new_folio) 925 return -EAGAIN; 926 927 /* 928 * We have a prealloc page, all good! Take it 929 * over and copy the page & arm it. 930 */ 931 932 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 933 return -EHWPOISON; 934 935 *prealloc = NULL; 936 __folio_mark_uptodate(new_folio); 937 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 938 folio_add_lru_vma(new_folio, dst_vma); 939 rss[MM_ANONPAGES]++; 940 941 /* All done, just insert the new page copy in the child */ 942 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 943 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 944 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 945 /* Uffd-wp needs to be delivered to dest pte as well */ 946 pte = pte_mkuffd_wp(pte); 947 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 948 return 0; 949 } 950 951 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 952 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 953 pte_t pte, unsigned long addr, int nr) 954 { 955 struct mm_struct *src_mm = src_vma->vm_mm; 956 957 /* If it's a COW mapping, write protect it both processes. */ 958 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 959 wrprotect_ptes(src_mm, addr, src_pte, nr); 960 pte = pte_wrprotect(pte); 961 } 962 963 /* If it's a shared mapping, mark it clean in the child. */ 964 if (src_vma->vm_flags & VM_SHARED) 965 pte = pte_mkclean(pte); 966 pte = pte_mkold(pte); 967 968 if (!userfaultfd_wp(dst_vma)) 969 pte = pte_clear_uffd_wp(pte); 970 971 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 972 } 973 974 /* 975 * Copy one present PTE, trying to batch-process subsequent PTEs that map 976 * consecutive pages of the same folio by copying them as well. 977 * 978 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 979 * Otherwise, returns the number of copied PTEs (at least 1). 980 */ 981 static inline int 982 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 983 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 984 int max_nr, int *rss, struct folio **prealloc) 985 { 986 struct page *page; 987 struct folio *folio; 988 bool any_writable; 989 fpb_t flags = 0; 990 int err, nr; 991 992 page = vm_normal_page(src_vma, addr, pte); 993 if (unlikely(!page)) 994 goto copy_pte; 995 996 folio = page_folio(page); 997 998 /* 999 * If we likely have to copy, just don't bother with batching. Make 1000 * sure that the common "small folio" case is as fast as possible 1001 * by keeping the batching logic separate. 1002 */ 1003 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1004 if (src_vma->vm_flags & VM_SHARED) 1005 flags |= FPB_IGNORE_DIRTY; 1006 if (!vma_soft_dirty_enabled(src_vma)) 1007 flags |= FPB_IGNORE_SOFT_DIRTY; 1008 1009 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1010 &any_writable, NULL, NULL); 1011 folio_ref_add(folio, nr); 1012 if (folio_test_anon(folio)) { 1013 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1014 nr, dst_vma, src_vma))) { 1015 folio_ref_sub(folio, nr); 1016 return -EAGAIN; 1017 } 1018 rss[MM_ANONPAGES] += nr; 1019 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1020 } else { 1021 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1022 rss[mm_counter_file(folio)] += nr; 1023 } 1024 if (any_writable) 1025 pte = pte_mkwrite(pte, src_vma); 1026 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1027 addr, nr); 1028 return nr; 1029 } 1030 1031 folio_get(folio); 1032 if (folio_test_anon(folio)) { 1033 /* 1034 * If this page may have been pinned by the parent process, 1035 * copy the page immediately for the child so that we'll always 1036 * guarantee the pinned page won't be randomly replaced in the 1037 * future. 1038 */ 1039 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1040 /* Page may be pinned, we have to copy. */ 1041 folio_put(folio); 1042 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1043 addr, rss, prealloc, page); 1044 return err ? err : 1; 1045 } 1046 rss[MM_ANONPAGES]++; 1047 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1048 } else { 1049 folio_dup_file_rmap_pte(folio, page, dst_vma); 1050 rss[mm_counter_file(folio)]++; 1051 } 1052 1053 copy_pte: 1054 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1055 return 1; 1056 } 1057 1058 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1059 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1060 { 1061 struct folio *new_folio; 1062 1063 if (need_zero) 1064 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1065 else 1066 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1067 1068 if (!new_folio) 1069 return NULL; 1070 1071 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1072 folio_put(new_folio); 1073 return NULL; 1074 } 1075 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1076 1077 return new_folio; 1078 } 1079 1080 static int 1081 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1082 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1083 unsigned long end) 1084 { 1085 struct mm_struct *dst_mm = dst_vma->vm_mm; 1086 struct mm_struct *src_mm = src_vma->vm_mm; 1087 pte_t *orig_src_pte, *orig_dst_pte; 1088 pte_t *src_pte, *dst_pte; 1089 pmd_t dummy_pmdval; 1090 pte_t ptent; 1091 spinlock_t *src_ptl, *dst_ptl; 1092 int progress, max_nr, ret = 0; 1093 int rss[NR_MM_COUNTERS]; 1094 swp_entry_t entry = (swp_entry_t){0}; 1095 struct folio *prealloc = NULL; 1096 int nr; 1097 1098 again: 1099 progress = 0; 1100 init_rss_vec(rss); 1101 1102 /* 1103 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1104 * error handling here, assume that exclusive mmap_lock on dst and src 1105 * protects anon from unexpected THP transitions; with shmem and file 1106 * protected by mmap_lock-less collapse skipping areas with anon_vma 1107 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1108 * can remove such assumptions later, but this is good enough for now. 1109 */ 1110 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1111 if (!dst_pte) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 1116 /* 1117 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1118 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1119 * the PTE page is stable, and there is no need to get pmdval and do 1120 * pmd_same() check. 1121 */ 1122 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1123 &src_ptl); 1124 if (!src_pte) { 1125 pte_unmap_unlock(dst_pte, dst_ptl); 1126 /* ret == 0 */ 1127 goto out; 1128 } 1129 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1130 orig_src_pte = src_pte; 1131 orig_dst_pte = dst_pte; 1132 arch_enter_lazy_mmu_mode(); 1133 1134 do { 1135 nr = 1; 1136 1137 /* 1138 * We are holding two locks at this point - either of them 1139 * could generate latencies in another task on another CPU. 1140 */ 1141 if (progress >= 32) { 1142 progress = 0; 1143 if (need_resched() || 1144 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1145 break; 1146 } 1147 ptent = ptep_get(src_pte); 1148 if (pte_none(ptent)) { 1149 progress++; 1150 continue; 1151 } 1152 if (unlikely(!pte_present(ptent))) { 1153 ret = copy_nonpresent_pte(dst_mm, src_mm, 1154 dst_pte, src_pte, 1155 dst_vma, src_vma, 1156 addr, rss); 1157 if (ret == -EIO) { 1158 entry = pte_to_swp_entry(ptep_get(src_pte)); 1159 break; 1160 } else if (ret == -EBUSY) { 1161 break; 1162 } else if (!ret) { 1163 progress += 8; 1164 continue; 1165 } 1166 ptent = ptep_get(src_pte); 1167 VM_WARN_ON_ONCE(!pte_present(ptent)); 1168 1169 /* 1170 * Device exclusive entry restored, continue by copying 1171 * the now present pte. 1172 */ 1173 WARN_ON_ONCE(ret != -ENOENT); 1174 } 1175 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1176 max_nr = (end - addr) / PAGE_SIZE; 1177 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1178 ptent, addr, max_nr, rss, &prealloc); 1179 /* 1180 * If we need a pre-allocated page for this pte, drop the 1181 * locks, allocate, and try again. 1182 * If copy failed due to hwpoison in source page, break out. 1183 */ 1184 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1185 break; 1186 if (unlikely(prealloc)) { 1187 /* 1188 * pre-alloc page cannot be reused by next time so as 1189 * to strictly follow mempolicy (e.g., alloc_page_vma() 1190 * will allocate page according to address). This 1191 * could only happen if one pinned pte changed. 1192 */ 1193 folio_put(prealloc); 1194 prealloc = NULL; 1195 } 1196 nr = ret; 1197 progress += 8 * nr; 1198 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1199 addr != end); 1200 1201 arch_leave_lazy_mmu_mode(); 1202 pte_unmap_unlock(orig_src_pte, src_ptl); 1203 add_mm_rss_vec(dst_mm, rss); 1204 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1205 cond_resched(); 1206 1207 if (ret == -EIO) { 1208 VM_WARN_ON_ONCE(!entry.val); 1209 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1210 ret = -ENOMEM; 1211 goto out; 1212 } 1213 entry.val = 0; 1214 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1215 goto out; 1216 } else if (ret == -EAGAIN) { 1217 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1218 if (!prealloc) 1219 return -ENOMEM; 1220 } else if (ret < 0) { 1221 VM_WARN_ON_ONCE(1); 1222 } 1223 1224 /* We've captured and resolved the error. Reset, try again. */ 1225 ret = 0; 1226 1227 if (addr != end) 1228 goto again; 1229 out: 1230 if (unlikely(prealloc)) 1231 folio_put(prealloc); 1232 return ret; 1233 } 1234 1235 static inline int 1236 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1237 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1238 unsigned long end) 1239 { 1240 struct mm_struct *dst_mm = dst_vma->vm_mm; 1241 struct mm_struct *src_mm = src_vma->vm_mm; 1242 pmd_t *src_pmd, *dst_pmd; 1243 unsigned long next; 1244 1245 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1246 if (!dst_pmd) 1247 return -ENOMEM; 1248 src_pmd = pmd_offset(src_pud, addr); 1249 do { 1250 next = pmd_addr_end(addr, end); 1251 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1252 || pmd_devmap(*src_pmd)) { 1253 int err; 1254 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1255 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1256 addr, dst_vma, src_vma); 1257 if (err == -ENOMEM) 1258 return -ENOMEM; 1259 if (!err) 1260 continue; 1261 /* fall through */ 1262 } 1263 if (pmd_none_or_clear_bad(src_pmd)) 1264 continue; 1265 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1266 addr, next)) 1267 return -ENOMEM; 1268 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1269 return 0; 1270 } 1271 1272 static inline int 1273 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1274 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1275 unsigned long end) 1276 { 1277 struct mm_struct *dst_mm = dst_vma->vm_mm; 1278 struct mm_struct *src_mm = src_vma->vm_mm; 1279 pud_t *src_pud, *dst_pud; 1280 unsigned long next; 1281 1282 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1283 if (!dst_pud) 1284 return -ENOMEM; 1285 src_pud = pud_offset(src_p4d, addr); 1286 do { 1287 next = pud_addr_end(addr, end); 1288 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1289 int err; 1290 1291 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1292 err = copy_huge_pud(dst_mm, src_mm, 1293 dst_pud, src_pud, addr, src_vma); 1294 if (err == -ENOMEM) 1295 return -ENOMEM; 1296 if (!err) 1297 continue; 1298 /* fall through */ 1299 } 1300 if (pud_none_or_clear_bad(src_pud)) 1301 continue; 1302 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1303 addr, next)) 1304 return -ENOMEM; 1305 } while (dst_pud++, src_pud++, addr = next, addr != end); 1306 return 0; 1307 } 1308 1309 static inline int 1310 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1311 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1312 unsigned long end) 1313 { 1314 struct mm_struct *dst_mm = dst_vma->vm_mm; 1315 p4d_t *src_p4d, *dst_p4d; 1316 unsigned long next; 1317 1318 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1319 if (!dst_p4d) 1320 return -ENOMEM; 1321 src_p4d = p4d_offset(src_pgd, addr); 1322 do { 1323 next = p4d_addr_end(addr, end); 1324 if (p4d_none_or_clear_bad(src_p4d)) 1325 continue; 1326 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1327 addr, next)) 1328 return -ENOMEM; 1329 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1330 return 0; 1331 } 1332 1333 /* 1334 * Return true if the vma needs to copy the pgtable during this fork(). Return 1335 * false when we can speed up fork() by allowing lazy page faults later until 1336 * when the child accesses the memory range. 1337 */ 1338 static bool 1339 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1340 { 1341 /* 1342 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1343 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1344 * contains uffd-wp protection information, that's something we can't 1345 * retrieve from page cache, and skip copying will lose those info. 1346 */ 1347 if (userfaultfd_wp(dst_vma)) 1348 return true; 1349 1350 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1351 return true; 1352 1353 if (src_vma->anon_vma) 1354 return true; 1355 1356 /* 1357 * Don't copy ptes where a page fault will fill them correctly. Fork 1358 * becomes much lighter when there are big shared or private readonly 1359 * mappings. The tradeoff is that copy_page_range is more efficient 1360 * than faulting. 1361 */ 1362 return false; 1363 } 1364 1365 int 1366 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1367 { 1368 pgd_t *src_pgd, *dst_pgd; 1369 unsigned long addr = src_vma->vm_start; 1370 unsigned long end = src_vma->vm_end; 1371 struct mm_struct *dst_mm = dst_vma->vm_mm; 1372 struct mm_struct *src_mm = src_vma->vm_mm; 1373 struct mmu_notifier_range range; 1374 unsigned long next; 1375 bool is_cow; 1376 int ret; 1377 1378 if (!vma_needs_copy(dst_vma, src_vma)) 1379 return 0; 1380 1381 if (is_vm_hugetlb_page(src_vma)) 1382 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1383 1384 /* 1385 * We need to invalidate the secondary MMU mappings only when 1386 * there could be a permission downgrade on the ptes of the 1387 * parent mm. And a permission downgrade will only happen if 1388 * is_cow_mapping() returns true. 1389 */ 1390 is_cow = is_cow_mapping(src_vma->vm_flags); 1391 1392 if (is_cow) { 1393 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1394 0, src_mm, addr, end); 1395 mmu_notifier_invalidate_range_start(&range); 1396 /* 1397 * Disabling preemption is not needed for the write side, as 1398 * the read side doesn't spin, but goes to the mmap_lock. 1399 * 1400 * Use the raw variant of the seqcount_t write API to avoid 1401 * lockdep complaining about preemptibility. 1402 */ 1403 vma_assert_write_locked(src_vma); 1404 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1405 } 1406 1407 ret = 0; 1408 dst_pgd = pgd_offset(dst_mm, addr); 1409 src_pgd = pgd_offset(src_mm, addr); 1410 do { 1411 next = pgd_addr_end(addr, end); 1412 if (pgd_none_or_clear_bad(src_pgd)) 1413 continue; 1414 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1415 addr, next))) { 1416 ret = -ENOMEM; 1417 break; 1418 } 1419 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1420 1421 if (is_cow) { 1422 raw_write_seqcount_end(&src_mm->write_protect_seq); 1423 mmu_notifier_invalidate_range_end(&range); 1424 } 1425 return ret; 1426 } 1427 1428 /* Whether we should zap all COWed (private) pages too */ 1429 static inline bool should_zap_cows(struct zap_details *details) 1430 { 1431 /* By default, zap all pages */ 1432 if (!details || details->reclaim_pt) 1433 return true; 1434 1435 /* Or, we zap COWed pages only if the caller wants to */ 1436 return details->even_cows; 1437 } 1438 1439 /* Decides whether we should zap this folio with the folio pointer specified */ 1440 static inline bool should_zap_folio(struct zap_details *details, 1441 struct folio *folio) 1442 { 1443 /* If we can make a decision without *folio.. */ 1444 if (should_zap_cows(details)) 1445 return true; 1446 1447 /* Otherwise we should only zap non-anon folios */ 1448 return !folio_test_anon(folio); 1449 } 1450 1451 static inline bool zap_drop_markers(struct zap_details *details) 1452 { 1453 if (!details) 1454 return false; 1455 1456 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1457 } 1458 1459 /* 1460 * This function makes sure that we'll replace the none pte with an uffd-wp 1461 * swap special pte marker when necessary. Must be with the pgtable lock held. 1462 * 1463 * Returns true if uffd-wp ptes was installed, false otherwise. 1464 */ 1465 static inline bool 1466 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1467 unsigned long addr, pte_t *pte, int nr, 1468 struct zap_details *details, pte_t pteval) 1469 { 1470 bool was_installed = false; 1471 1472 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1473 /* Zap on anonymous always means dropping everything */ 1474 if (vma_is_anonymous(vma)) 1475 return false; 1476 1477 if (zap_drop_markers(details)) 1478 return false; 1479 1480 for (;;) { 1481 /* the PFN in the PTE is irrelevant. */ 1482 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1483 was_installed = true; 1484 if (--nr == 0) 1485 break; 1486 pte++; 1487 addr += PAGE_SIZE; 1488 } 1489 #endif 1490 return was_installed; 1491 } 1492 1493 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1494 struct vm_area_struct *vma, struct folio *folio, 1495 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1496 unsigned long addr, struct zap_details *details, int *rss, 1497 bool *force_flush, bool *force_break, bool *any_skipped) 1498 { 1499 struct mm_struct *mm = tlb->mm; 1500 bool delay_rmap = false; 1501 1502 if (!folio_test_anon(folio)) { 1503 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1504 if (pte_dirty(ptent)) { 1505 folio_mark_dirty(folio); 1506 if (tlb_delay_rmap(tlb)) { 1507 delay_rmap = true; 1508 *force_flush = true; 1509 } 1510 } 1511 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1512 folio_mark_accessed(folio); 1513 rss[mm_counter(folio)] -= nr; 1514 } else { 1515 /* We don't need up-to-date accessed/dirty bits. */ 1516 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1517 rss[MM_ANONPAGES] -= nr; 1518 } 1519 /* Checking a single PTE in a batch is sufficient. */ 1520 arch_check_zapped_pte(vma, ptent); 1521 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1522 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1523 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1524 nr, details, ptent); 1525 1526 if (!delay_rmap) { 1527 folio_remove_rmap_ptes(folio, page, nr, vma); 1528 1529 if (unlikely(folio_mapcount(folio) < 0)) 1530 print_bad_pte(vma, addr, ptent, page); 1531 } 1532 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1533 *force_flush = true; 1534 *force_break = true; 1535 } 1536 } 1537 1538 /* 1539 * Zap or skip at least one present PTE, trying to batch-process subsequent 1540 * PTEs that map consecutive pages of the same folio. 1541 * 1542 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1543 */ 1544 static inline int zap_present_ptes(struct mmu_gather *tlb, 1545 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1546 unsigned int max_nr, unsigned long addr, 1547 struct zap_details *details, int *rss, bool *force_flush, 1548 bool *force_break, bool *any_skipped) 1549 { 1550 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1551 struct mm_struct *mm = tlb->mm; 1552 struct folio *folio; 1553 struct page *page; 1554 int nr; 1555 1556 page = vm_normal_page(vma, addr, ptent); 1557 if (!page) { 1558 /* We don't need up-to-date accessed/dirty bits. */ 1559 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1560 arch_check_zapped_pte(vma, ptent); 1561 tlb_remove_tlb_entry(tlb, pte, addr); 1562 if (userfaultfd_pte_wp(vma, ptent)) 1563 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1564 pte, 1, details, ptent); 1565 ksm_might_unmap_zero_page(mm, ptent); 1566 return 1; 1567 } 1568 1569 folio = page_folio(page); 1570 if (unlikely(!should_zap_folio(details, folio))) { 1571 *any_skipped = true; 1572 return 1; 1573 } 1574 1575 /* 1576 * Make sure that the common "small folio" case is as fast as possible 1577 * by keeping the batching logic separate. 1578 */ 1579 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1580 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1581 NULL, NULL, NULL); 1582 1583 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1584 addr, details, rss, force_flush, 1585 force_break, any_skipped); 1586 return nr; 1587 } 1588 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1589 details, rss, force_flush, force_break, any_skipped); 1590 return 1; 1591 } 1592 1593 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1594 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1595 unsigned int max_nr, unsigned long addr, 1596 struct zap_details *details, int *rss, bool *any_skipped) 1597 { 1598 swp_entry_t entry; 1599 int nr = 1; 1600 1601 *any_skipped = true; 1602 entry = pte_to_swp_entry(ptent); 1603 if (is_device_private_entry(entry) || 1604 is_device_exclusive_entry(entry)) { 1605 struct page *page = pfn_swap_entry_to_page(entry); 1606 struct folio *folio = page_folio(page); 1607 1608 if (unlikely(!should_zap_folio(details, folio))) 1609 return 1; 1610 /* 1611 * Both device private/exclusive mappings should only 1612 * work with anonymous page so far, so we don't need to 1613 * consider uffd-wp bit when zap. For more information, 1614 * see zap_install_uffd_wp_if_needed(). 1615 */ 1616 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1617 rss[mm_counter(folio)]--; 1618 folio_remove_rmap_pte(folio, page, vma); 1619 folio_put(folio); 1620 } else if (!non_swap_entry(entry)) { 1621 /* Genuine swap entries, hence a private anon pages */ 1622 if (!should_zap_cows(details)) 1623 return 1; 1624 1625 nr = swap_pte_batch(pte, max_nr, ptent); 1626 rss[MM_SWAPENTS] -= nr; 1627 free_swap_and_cache_nr(entry, nr); 1628 } else if (is_migration_entry(entry)) { 1629 struct folio *folio = pfn_swap_entry_folio(entry); 1630 1631 if (!should_zap_folio(details, folio)) 1632 return 1; 1633 rss[mm_counter(folio)]--; 1634 } else if (pte_marker_entry_uffd_wp(entry)) { 1635 /* 1636 * For anon: always drop the marker; for file: only 1637 * drop the marker if explicitly requested. 1638 */ 1639 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1640 return 1; 1641 } else if (is_guard_swp_entry(entry)) { 1642 /* 1643 * Ordinary zapping should not remove guard PTE 1644 * markers. Only do so if we should remove PTE markers 1645 * in general. 1646 */ 1647 if (!zap_drop_markers(details)) 1648 return 1; 1649 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1650 if (!should_zap_cows(details)) 1651 return 1; 1652 } else { 1653 /* We should have covered all the swap entry types */ 1654 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1655 WARN_ON_ONCE(1); 1656 } 1657 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1658 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1659 1660 return nr; 1661 } 1662 1663 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1664 struct vm_area_struct *vma, pte_t *pte, 1665 unsigned long addr, unsigned long end, 1666 struct zap_details *details, int *rss, 1667 bool *force_flush, bool *force_break, 1668 bool *any_skipped) 1669 { 1670 pte_t ptent = ptep_get(pte); 1671 int max_nr = (end - addr) / PAGE_SIZE; 1672 int nr = 0; 1673 1674 /* Skip all consecutive none ptes */ 1675 if (pte_none(ptent)) { 1676 for (nr = 1; nr < max_nr; nr++) { 1677 ptent = ptep_get(pte + nr); 1678 if (!pte_none(ptent)) 1679 break; 1680 } 1681 max_nr -= nr; 1682 if (!max_nr) 1683 return nr; 1684 pte += nr; 1685 addr += nr * PAGE_SIZE; 1686 } 1687 1688 if (pte_present(ptent)) 1689 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1690 details, rss, force_flush, force_break, 1691 any_skipped); 1692 else 1693 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1694 details, rss, any_skipped); 1695 1696 return nr; 1697 } 1698 1699 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1700 struct vm_area_struct *vma, pmd_t *pmd, 1701 unsigned long addr, unsigned long end, 1702 struct zap_details *details) 1703 { 1704 bool force_flush = false, force_break = false; 1705 struct mm_struct *mm = tlb->mm; 1706 int rss[NR_MM_COUNTERS]; 1707 spinlock_t *ptl; 1708 pte_t *start_pte; 1709 pte_t *pte; 1710 pmd_t pmdval; 1711 unsigned long start = addr; 1712 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1713 bool direct_reclaim = true; 1714 int nr; 1715 1716 retry: 1717 tlb_change_page_size(tlb, PAGE_SIZE); 1718 init_rss_vec(rss); 1719 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1720 if (!pte) 1721 return addr; 1722 1723 flush_tlb_batched_pending(mm); 1724 arch_enter_lazy_mmu_mode(); 1725 do { 1726 bool any_skipped = false; 1727 1728 if (need_resched()) { 1729 direct_reclaim = false; 1730 break; 1731 } 1732 1733 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1734 &force_flush, &force_break, &any_skipped); 1735 if (any_skipped) 1736 can_reclaim_pt = false; 1737 if (unlikely(force_break)) { 1738 addr += nr * PAGE_SIZE; 1739 direct_reclaim = false; 1740 break; 1741 } 1742 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1743 1744 /* 1745 * Fast path: try to hold the pmd lock and unmap the PTE page. 1746 * 1747 * If the pte lock was released midway (retry case), or if the attempt 1748 * to hold the pmd lock failed, then we need to recheck all pte entries 1749 * to ensure they are still none, thereby preventing the pte entries 1750 * from being repopulated by another thread. 1751 */ 1752 if (can_reclaim_pt && direct_reclaim && addr == end) 1753 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1754 1755 add_mm_rss_vec(mm, rss); 1756 arch_leave_lazy_mmu_mode(); 1757 1758 /* Do the actual TLB flush before dropping ptl */ 1759 if (force_flush) { 1760 tlb_flush_mmu_tlbonly(tlb); 1761 tlb_flush_rmaps(tlb, vma); 1762 } 1763 pte_unmap_unlock(start_pte, ptl); 1764 1765 /* 1766 * If we forced a TLB flush (either due to running out of 1767 * batch buffers or because we needed to flush dirty TLB 1768 * entries before releasing the ptl), free the batched 1769 * memory too. Come back again if we didn't do everything. 1770 */ 1771 if (force_flush) 1772 tlb_flush_mmu(tlb); 1773 1774 if (addr != end) { 1775 cond_resched(); 1776 force_flush = false; 1777 force_break = false; 1778 goto retry; 1779 } 1780 1781 if (can_reclaim_pt) { 1782 if (direct_reclaim) 1783 free_pte(mm, start, tlb, pmdval); 1784 else 1785 try_to_free_pte(mm, pmd, start, tlb); 1786 } 1787 1788 return addr; 1789 } 1790 1791 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1792 struct vm_area_struct *vma, pud_t *pud, 1793 unsigned long addr, unsigned long end, 1794 struct zap_details *details) 1795 { 1796 pmd_t *pmd; 1797 unsigned long next; 1798 1799 pmd = pmd_offset(pud, addr); 1800 do { 1801 next = pmd_addr_end(addr, end); 1802 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1803 if (next - addr != HPAGE_PMD_SIZE) 1804 __split_huge_pmd(vma, pmd, addr, false); 1805 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1806 addr = next; 1807 continue; 1808 } 1809 /* fall through */ 1810 } else if (details && details->single_folio && 1811 folio_test_pmd_mappable(details->single_folio) && 1812 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1813 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1814 /* 1815 * Take and drop THP pmd lock so that we cannot return 1816 * prematurely, while zap_huge_pmd() has cleared *pmd, 1817 * but not yet decremented compound_mapcount(). 1818 */ 1819 spin_unlock(ptl); 1820 } 1821 if (pmd_none(*pmd)) { 1822 addr = next; 1823 continue; 1824 } 1825 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1826 if (addr != next) 1827 pmd--; 1828 } while (pmd++, cond_resched(), addr != end); 1829 1830 return addr; 1831 } 1832 1833 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1834 struct vm_area_struct *vma, p4d_t *p4d, 1835 unsigned long addr, unsigned long end, 1836 struct zap_details *details) 1837 { 1838 pud_t *pud; 1839 unsigned long next; 1840 1841 pud = pud_offset(p4d, addr); 1842 do { 1843 next = pud_addr_end(addr, end); 1844 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1845 if (next - addr != HPAGE_PUD_SIZE) { 1846 mmap_assert_locked(tlb->mm); 1847 split_huge_pud(vma, pud, addr); 1848 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1849 goto next; 1850 /* fall through */ 1851 } 1852 if (pud_none_or_clear_bad(pud)) 1853 continue; 1854 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1855 next: 1856 cond_resched(); 1857 } while (pud++, addr = next, addr != end); 1858 1859 return addr; 1860 } 1861 1862 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1863 struct vm_area_struct *vma, pgd_t *pgd, 1864 unsigned long addr, unsigned long end, 1865 struct zap_details *details) 1866 { 1867 p4d_t *p4d; 1868 unsigned long next; 1869 1870 p4d = p4d_offset(pgd, addr); 1871 do { 1872 next = p4d_addr_end(addr, end); 1873 if (p4d_none_or_clear_bad(p4d)) 1874 continue; 1875 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1876 } while (p4d++, addr = next, addr != end); 1877 1878 return addr; 1879 } 1880 1881 void unmap_page_range(struct mmu_gather *tlb, 1882 struct vm_area_struct *vma, 1883 unsigned long addr, unsigned long end, 1884 struct zap_details *details) 1885 { 1886 pgd_t *pgd; 1887 unsigned long next; 1888 1889 BUG_ON(addr >= end); 1890 tlb_start_vma(tlb, vma); 1891 pgd = pgd_offset(vma->vm_mm, addr); 1892 do { 1893 next = pgd_addr_end(addr, end); 1894 if (pgd_none_or_clear_bad(pgd)) 1895 continue; 1896 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1897 } while (pgd++, addr = next, addr != end); 1898 tlb_end_vma(tlb, vma); 1899 } 1900 1901 1902 static void unmap_single_vma(struct mmu_gather *tlb, 1903 struct vm_area_struct *vma, unsigned long start_addr, 1904 unsigned long end_addr, 1905 struct zap_details *details, bool mm_wr_locked) 1906 { 1907 unsigned long start = max(vma->vm_start, start_addr); 1908 unsigned long end; 1909 1910 if (start >= vma->vm_end) 1911 return; 1912 end = min(vma->vm_end, end_addr); 1913 if (end <= vma->vm_start) 1914 return; 1915 1916 if (vma->vm_file) 1917 uprobe_munmap(vma, start, end); 1918 1919 if (start != end) { 1920 if (unlikely(is_vm_hugetlb_page(vma))) { 1921 /* 1922 * It is undesirable to test vma->vm_file as it 1923 * should be non-null for valid hugetlb area. 1924 * However, vm_file will be NULL in the error 1925 * cleanup path of mmap_region. When 1926 * hugetlbfs ->mmap method fails, 1927 * mmap_region() nullifies vma->vm_file 1928 * before calling this function to clean up. 1929 * Since no pte has actually been setup, it is 1930 * safe to do nothing in this case. 1931 */ 1932 if (vma->vm_file) { 1933 zap_flags_t zap_flags = details ? 1934 details->zap_flags : 0; 1935 __unmap_hugepage_range(tlb, vma, start, end, 1936 NULL, zap_flags); 1937 } 1938 } else 1939 unmap_page_range(tlb, vma, start, end, details); 1940 } 1941 } 1942 1943 /** 1944 * unmap_vmas - unmap a range of memory covered by a list of vma's 1945 * @tlb: address of the caller's struct mmu_gather 1946 * @mas: the maple state 1947 * @vma: the starting vma 1948 * @start_addr: virtual address at which to start unmapping 1949 * @end_addr: virtual address at which to end unmapping 1950 * @tree_end: The maximum index to check 1951 * @mm_wr_locked: lock flag 1952 * 1953 * Unmap all pages in the vma list. 1954 * 1955 * Only addresses between `start' and `end' will be unmapped. 1956 * 1957 * The VMA list must be sorted in ascending virtual address order. 1958 * 1959 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1960 * range after unmap_vmas() returns. So the only responsibility here is to 1961 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1962 * drops the lock and schedules. 1963 */ 1964 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1965 struct vm_area_struct *vma, unsigned long start_addr, 1966 unsigned long end_addr, unsigned long tree_end, 1967 bool mm_wr_locked) 1968 { 1969 struct mmu_notifier_range range; 1970 struct zap_details details = { 1971 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1972 /* Careful - we need to zap private pages too! */ 1973 .even_cows = true, 1974 }; 1975 1976 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1977 start_addr, end_addr); 1978 mmu_notifier_invalidate_range_start(&range); 1979 do { 1980 unsigned long start = start_addr; 1981 unsigned long end = end_addr; 1982 hugetlb_zap_begin(vma, &start, &end); 1983 unmap_single_vma(tlb, vma, start, end, &details, 1984 mm_wr_locked); 1985 hugetlb_zap_end(vma, &details); 1986 vma = mas_find(mas, tree_end - 1); 1987 } while (vma && likely(!xa_is_zero(vma))); 1988 mmu_notifier_invalidate_range_end(&range); 1989 } 1990 1991 /** 1992 * zap_page_range_single_batched - remove user pages in a given range 1993 * @tlb: pointer to the caller's struct mmu_gather 1994 * @vma: vm_area_struct holding the applicable pages 1995 * @address: starting address of pages to remove 1996 * @size: number of bytes to remove 1997 * @details: details of shared cache invalidation 1998 * 1999 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2000 * hugetlb, @tlb is flushed and re-initialized by this function. 2001 */ 2002 void zap_page_range_single_batched(struct mmu_gather *tlb, 2003 struct vm_area_struct *vma, unsigned long address, 2004 unsigned long size, struct zap_details *details) 2005 { 2006 const unsigned long end = address + size; 2007 struct mmu_notifier_range range; 2008 2009 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2010 2011 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2012 address, end); 2013 hugetlb_zap_begin(vma, &range.start, &range.end); 2014 update_hiwater_rss(vma->vm_mm); 2015 mmu_notifier_invalidate_range_start(&range); 2016 /* 2017 * unmap 'address-end' not 'range.start-range.end' as range 2018 * could have been expanded for hugetlb pmd sharing. 2019 */ 2020 unmap_single_vma(tlb, vma, address, end, details, false); 2021 mmu_notifier_invalidate_range_end(&range); 2022 if (is_vm_hugetlb_page(vma)) { 2023 /* 2024 * flush tlb and free resources before hugetlb_zap_end(), to 2025 * avoid concurrent page faults' allocation failure. 2026 */ 2027 tlb_finish_mmu(tlb); 2028 hugetlb_zap_end(vma, details); 2029 tlb_gather_mmu(tlb, vma->vm_mm); 2030 } 2031 } 2032 2033 /** 2034 * zap_page_range_single - remove user pages in a given range 2035 * @vma: vm_area_struct holding the applicable pages 2036 * @address: starting address of pages to zap 2037 * @size: number of bytes to zap 2038 * @details: details of shared cache invalidation 2039 * 2040 * The range must fit into one VMA. 2041 */ 2042 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2043 unsigned long size, struct zap_details *details) 2044 { 2045 struct mmu_gather tlb; 2046 2047 tlb_gather_mmu(&tlb, vma->vm_mm); 2048 zap_page_range_single_batched(&tlb, vma, address, size, details); 2049 tlb_finish_mmu(&tlb); 2050 } 2051 2052 /** 2053 * zap_vma_ptes - remove ptes mapping the vma 2054 * @vma: vm_area_struct holding ptes to be zapped 2055 * @address: starting address of pages to zap 2056 * @size: number of bytes to zap 2057 * 2058 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2059 * 2060 * The entire address range must be fully contained within the vma. 2061 * 2062 */ 2063 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2064 unsigned long size) 2065 { 2066 if (!range_in_vma(vma, address, address + size) || 2067 !(vma->vm_flags & VM_PFNMAP)) 2068 return; 2069 2070 zap_page_range_single(vma, address, size, NULL); 2071 } 2072 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2073 2074 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2075 { 2076 pgd_t *pgd; 2077 p4d_t *p4d; 2078 pud_t *pud; 2079 pmd_t *pmd; 2080 2081 pgd = pgd_offset(mm, addr); 2082 p4d = p4d_alloc(mm, pgd, addr); 2083 if (!p4d) 2084 return NULL; 2085 pud = pud_alloc(mm, p4d, addr); 2086 if (!pud) 2087 return NULL; 2088 pmd = pmd_alloc(mm, pud, addr); 2089 if (!pmd) 2090 return NULL; 2091 2092 VM_BUG_ON(pmd_trans_huge(*pmd)); 2093 return pmd; 2094 } 2095 2096 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2097 spinlock_t **ptl) 2098 { 2099 pmd_t *pmd = walk_to_pmd(mm, addr); 2100 2101 if (!pmd) 2102 return NULL; 2103 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2104 } 2105 2106 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2107 { 2108 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2109 /* 2110 * Whoever wants to forbid the zeropage after some zeropages 2111 * might already have been mapped has to scan the page tables and 2112 * bail out on any zeropages. Zeropages in COW mappings can 2113 * be unshared using FAULT_FLAG_UNSHARE faults. 2114 */ 2115 if (mm_forbids_zeropage(vma->vm_mm)) 2116 return false; 2117 /* zeropages in COW mappings are common and unproblematic. */ 2118 if (is_cow_mapping(vma->vm_flags)) 2119 return true; 2120 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2121 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2122 return true; 2123 /* 2124 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2125 * find the shared zeropage and longterm-pin it, which would 2126 * be problematic as soon as the zeropage gets replaced by a different 2127 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2128 * now differ to what GUP looked up. FSDAX is incompatible to 2129 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2130 * check_vma_flags). 2131 */ 2132 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2133 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2134 } 2135 2136 static int validate_page_before_insert(struct vm_area_struct *vma, 2137 struct page *page) 2138 { 2139 struct folio *folio = page_folio(page); 2140 2141 if (!folio_ref_count(folio)) 2142 return -EINVAL; 2143 if (unlikely(is_zero_folio(folio))) { 2144 if (!vm_mixed_zeropage_allowed(vma)) 2145 return -EINVAL; 2146 return 0; 2147 } 2148 if (folio_test_anon(folio) || folio_test_slab(folio) || 2149 page_has_type(page)) 2150 return -EINVAL; 2151 flush_dcache_folio(folio); 2152 return 0; 2153 } 2154 2155 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2156 unsigned long addr, struct page *page, 2157 pgprot_t prot, bool mkwrite) 2158 { 2159 struct folio *folio = page_folio(page); 2160 pte_t pteval = ptep_get(pte); 2161 2162 if (!pte_none(pteval)) { 2163 if (!mkwrite) 2164 return -EBUSY; 2165 2166 /* see insert_pfn(). */ 2167 if (pte_pfn(pteval) != page_to_pfn(page)) { 2168 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2169 return -EFAULT; 2170 } 2171 pteval = maybe_mkwrite(pteval, vma); 2172 pteval = pte_mkyoung(pteval); 2173 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2174 update_mmu_cache(vma, addr, pte); 2175 return 0; 2176 } 2177 2178 /* Ok, finally just insert the thing.. */ 2179 pteval = mk_pte(page, prot); 2180 if (unlikely(is_zero_folio(folio))) { 2181 pteval = pte_mkspecial(pteval); 2182 } else { 2183 folio_get(folio); 2184 pteval = mk_pte(page, prot); 2185 if (mkwrite) { 2186 pteval = pte_mkyoung(pteval); 2187 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2188 } 2189 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2190 folio_add_file_rmap_pte(folio, page, vma); 2191 } 2192 set_pte_at(vma->vm_mm, addr, pte, pteval); 2193 return 0; 2194 } 2195 2196 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2197 struct page *page, pgprot_t prot, bool mkwrite) 2198 { 2199 int retval; 2200 pte_t *pte; 2201 spinlock_t *ptl; 2202 2203 retval = validate_page_before_insert(vma, page); 2204 if (retval) 2205 goto out; 2206 retval = -ENOMEM; 2207 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2208 if (!pte) 2209 goto out; 2210 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2211 mkwrite); 2212 pte_unmap_unlock(pte, ptl); 2213 out: 2214 return retval; 2215 } 2216 2217 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2218 unsigned long addr, struct page *page, pgprot_t prot) 2219 { 2220 int err; 2221 2222 err = validate_page_before_insert(vma, page); 2223 if (err) 2224 return err; 2225 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2226 } 2227 2228 /* insert_pages() amortizes the cost of spinlock operations 2229 * when inserting pages in a loop. 2230 */ 2231 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2232 struct page **pages, unsigned long *num, pgprot_t prot) 2233 { 2234 pmd_t *pmd = NULL; 2235 pte_t *start_pte, *pte; 2236 spinlock_t *pte_lock; 2237 struct mm_struct *const mm = vma->vm_mm; 2238 unsigned long curr_page_idx = 0; 2239 unsigned long remaining_pages_total = *num; 2240 unsigned long pages_to_write_in_pmd; 2241 int ret; 2242 more: 2243 ret = -EFAULT; 2244 pmd = walk_to_pmd(mm, addr); 2245 if (!pmd) 2246 goto out; 2247 2248 pages_to_write_in_pmd = min_t(unsigned long, 2249 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2250 2251 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2252 ret = -ENOMEM; 2253 if (pte_alloc(mm, pmd)) 2254 goto out; 2255 2256 while (pages_to_write_in_pmd) { 2257 int pte_idx = 0; 2258 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2259 2260 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2261 if (!start_pte) { 2262 ret = -EFAULT; 2263 goto out; 2264 } 2265 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2266 int err = insert_page_in_batch_locked(vma, pte, 2267 addr, pages[curr_page_idx], prot); 2268 if (unlikely(err)) { 2269 pte_unmap_unlock(start_pte, pte_lock); 2270 ret = err; 2271 remaining_pages_total -= pte_idx; 2272 goto out; 2273 } 2274 addr += PAGE_SIZE; 2275 ++curr_page_idx; 2276 } 2277 pte_unmap_unlock(start_pte, pte_lock); 2278 pages_to_write_in_pmd -= batch_size; 2279 remaining_pages_total -= batch_size; 2280 } 2281 if (remaining_pages_total) 2282 goto more; 2283 ret = 0; 2284 out: 2285 *num = remaining_pages_total; 2286 return ret; 2287 } 2288 2289 /** 2290 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2291 * @vma: user vma to map to 2292 * @addr: target start user address of these pages 2293 * @pages: source kernel pages 2294 * @num: in: number of pages to map. out: number of pages that were *not* 2295 * mapped. (0 means all pages were successfully mapped). 2296 * 2297 * Preferred over vm_insert_page() when inserting multiple pages. 2298 * 2299 * In case of error, we may have mapped a subset of the provided 2300 * pages. It is the caller's responsibility to account for this case. 2301 * 2302 * The same restrictions apply as in vm_insert_page(). 2303 */ 2304 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2305 struct page **pages, unsigned long *num) 2306 { 2307 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2308 2309 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2310 return -EFAULT; 2311 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2312 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2313 BUG_ON(vma->vm_flags & VM_PFNMAP); 2314 vm_flags_set(vma, VM_MIXEDMAP); 2315 } 2316 /* Defer page refcount checking till we're about to map that page. */ 2317 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2318 } 2319 EXPORT_SYMBOL(vm_insert_pages); 2320 2321 /** 2322 * vm_insert_page - insert single page into user vma 2323 * @vma: user vma to map to 2324 * @addr: target user address of this page 2325 * @page: source kernel page 2326 * 2327 * This allows drivers to insert individual pages they've allocated 2328 * into a user vma. The zeropage is supported in some VMAs, 2329 * see vm_mixed_zeropage_allowed(). 2330 * 2331 * The page has to be a nice clean _individual_ kernel allocation. 2332 * If you allocate a compound page, you need to have marked it as 2333 * such (__GFP_COMP), or manually just split the page up yourself 2334 * (see split_page()). 2335 * 2336 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2337 * took an arbitrary page protection parameter. This doesn't allow 2338 * that. Your vma protection will have to be set up correctly, which 2339 * means that if you want a shared writable mapping, you'd better 2340 * ask for a shared writable mapping! 2341 * 2342 * The page does not need to be reserved. 2343 * 2344 * Usually this function is called from f_op->mmap() handler 2345 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2346 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2347 * function from other places, for example from page-fault handler. 2348 * 2349 * Return: %0 on success, negative error code otherwise. 2350 */ 2351 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2352 struct page *page) 2353 { 2354 if (addr < vma->vm_start || addr >= vma->vm_end) 2355 return -EFAULT; 2356 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2357 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2358 BUG_ON(vma->vm_flags & VM_PFNMAP); 2359 vm_flags_set(vma, VM_MIXEDMAP); 2360 } 2361 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2362 } 2363 EXPORT_SYMBOL(vm_insert_page); 2364 2365 /* 2366 * __vm_map_pages - maps range of kernel pages into user vma 2367 * @vma: user vma to map to 2368 * @pages: pointer to array of source kernel pages 2369 * @num: number of pages in page array 2370 * @offset: user's requested vm_pgoff 2371 * 2372 * This allows drivers to map range of kernel pages into a user vma. 2373 * The zeropage is supported in some VMAs, see 2374 * vm_mixed_zeropage_allowed(). 2375 * 2376 * Return: 0 on success and error code otherwise. 2377 */ 2378 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2379 unsigned long num, unsigned long offset) 2380 { 2381 unsigned long count = vma_pages(vma); 2382 unsigned long uaddr = vma->vm_start; 2383 int ret, i; 2384 2385 /* Fail if the user requested offset is beyond the end of the object */ 2386 if (offset >= num) 2387 return -ENXIO; 2388 2389 /* Fail if the user requested size exceeds available object size */ 2390 if (count > num - offset) 2391 return -ENXIO; 2392 2393 for (i = 0; i < count; i++) { 2394 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2395 if (ret < 0) 2396 return ret; 2397 uaddr += PAGE_SIZE; 2398 } 2399 2400 return 0; 2401 } 2402 2403 /** 2404 * vm_map_pages - maps range of kernel pages starts with non zero offset 2405 * @vma: user vma to map to 2406 * @pages: pointer to array of source kernel pages 2407 * @num: number of pages in page array 2408 * 2409 * Maps an object consisting of @num pages, catering for the user's 2410 * requested vm_pgoff 2411 * 2412 * If we fail to insert any page into the vma, the function will return 2413 * immediately leaving any previously inserted pages present. Callers 2414 * from the mmap handler may immediately return the error as their caller 2415 * will destroy the vma, removing any successfully inserted pages. Other 2416 * callers should make their own arrangements for calling unmap_region(). 2417 * 2418 * Context: Process context. Called by mmap handlers. 2419 * Return: 0 on success and error code otherwise. 2420 */ 2421 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2422 unsigned long num) 2423 { 2424 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2425 } 2426 EXPORT_SYMBOL(vm_map_pages); 2427 2428 /** 2429 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2430 * @vma: user vma to map to 2431 * @pages: pointer to array of source kernel pages 2432 * @num: number of pages in page array 2433 * 2434 * Similar to vm_map_pages(), except that it explicitly sets the offset 2435 * to 0. This function is intended for the drivers that did not consider 2436 * vm_pgoff. 2437 * 2438 * Context: Process context. Called by mmap handlers. 2439 * Return: 0 on success and error code otherwise. 2440 */ 2441 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2442 unsigned long num) 2443 { 2444 return __vm_map_pages(vma, pages, num, 0); 2445 } 2446 EXPORT_SYMBOL(vm_map_pages_zero); 2447 2448 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2449 pfn_t pfn, pgprot_t prot, bool mkwrite) 2450 { 2451 struct mm_struct *mm = vma->vm_mm; 2452 pte_t *pte, entry; 2453 spinlock_t *ptl; 2454 2455 pte = get_locked_pte(mm, addr, &ptl); 2456 if (!pte) 2457 return VM_FAULT_OOM; 2458 entry = ptep_get(pte); 2459 if (!pte_none(entry)) { 2460 if (mkwrite) { 2461 /* 2462 * For read faults on private mappings the PFN passed 2463 * in may not match the PFN we have mapped if the 2464 * mapped PFN is a writeable COW page. In the mkwrite 2465 * case we are creating a writable PTE for a shared 2466 * mapping and we expect the PFNs to match. If they 2467 * don't match, we are likely racing with block 2468 * allocation and mapping invalidation so just skip the 2469 * update. 2470 */ 2471 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2472 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2473 goto out_unlock; 2474 } 2475 entry = pte_mkyoung(entry); 2476 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2477 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2478 update_mmu_cache(vma, addr, pte); 2479 } 2480 goto out_unlock; 2481 } 2482 2483 /* Ok, finally just insert the thing.. */ 2484 if (pfn_t_devmap(pfn)) 2485 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2486 else 2487 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2488 2489 if (mkwrite) { 2490 entry = pte_mkyoung(entry); 2491 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2492 } 2493 2494 set_pte_at(mm, addr, pte, entry); 2495 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2496 2497 out_unlock: 2498 pte_unmap_unlock(pte, ptl); 2499 return VM_FAULT_NOPAGE; 2500 } 2501 2502 /** 2503 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2504 * @vma: user vma to map to 2505 * @addr: target user address of this page 2506 * @pfn: source kernel pfn 2507 * @pgprot: pgprot flags for the inserted page 2508 * 2509 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2510 * to override pgprot on a per-page basis. 2511 * 2512 * This only makes sense for IO mappings, and it makes no sense for 2513 * COW mappings. In general, using multiple vmas is preferable; 2514 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2515 * impractical. 2516 * 2517 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2518 * caching- and encryption bits different than those of @vma->vm_page_prot, 2519 * because the caching- or encryption mode may not be known at mmap() time. 2520 * 2521 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2522 * to set caching and encryption bits for those vmas (except for COW pages). 2523 * This is ensured by core vm only modifying these page table entries using 2524 * functions that don't touch caching- or encryption bits, using pte_modify() 2525 * if needed. (See for example mprotect()). 2526 * 2527 * Also when new page-table entries are created, this is only done using the 2528 * fault() callback, and never using the value of vma->vm_page_prot, 2529 * except for page-table entries that point to anonymous pages as the result 2530 * of COW. 2531 * 2532 * Context: Process context. May allocate using %GFP_KERNEL. 2533 * Return: vm_fault_t value. 2534 */ 2535 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2536 unsigned long pfn, pgprot_t pgprot) 2537 { 2538 /* 2539 * Technically, architectures with pte_special can avoid all these 2540 * restrictions (same for remap_pfn_range). However we would like 2541 * consistency in testing and feature parity among all, so we should 2542 * try to keep these invariants in place for everybody. 2543 */ 2544 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2545 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2546 (VM_PFNMAP|VM_MIXEDMAP)); 2547 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2548 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2549 2550 if (addr < vma->vm_start || addr >= vma->vm_end) 2551 return VM_FAULT_SIGBUS; 2552 2553 if (!pfn_modify_allowed(pfn, pgprot)) 2554 return VM_FAULT_SIGBUS; 2555 2556 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2557 2558 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2559 false); 2560 } 2561 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2562 2563 /** 2564 * vmf_insert_pfn - insert single pfn into user vma 2565 * @vma: user vma to map to 2566 * @addr: target user address of this page 2567 * @pfn: source kernel pfn 2568 * 2569 * Similar to vm_insert_page, this allows drivers to insert individual pages 2570 * they've allocated into a user vma. Same comments apply. 2571 * 2572 * This function should only be called from a vm_ops->fault handler, and 2573 * in that case the handler should return the result of this function. 2574 * 2575 * vma cannot be a COW mapping. 2576 * 2577 * As this is called only for pages that do not currently exist, we 2578 * do not need to flush old virtual caches or the TLB. 2579 * 2580 * Context: Process context. May allocate using %GFP_KERNEL. 2581 * Return: vm_fault_t value. 2582 */ 2583 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2584 unsigned long pfn) 2585 { 2586 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2587 } 2588 EXPORT_SYMBOL(vmf_insert_pfn); 2589 2590 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2591 { 2592 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2593 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2594 return false; 2595 /* these checks mirror the abort conditions in vm_normal_page */ 2596 if (vma->vm_flags & VM_MIXEDMAP) 2597 return true; 2598 if (pfn_t_devmap(pfn)) 2599 return true; 2600 if (pfn_t_special(pfn)) 2601 return true; 2602 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2603 return true; 2604 return false; 2605 } 2606 2607 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2608 unsigned long addr, pfn_t pfn, bool mkwrite) 2609 { 2610 pgprot_t pgprot = vma->vm_page_prot; 2611 int err; 2612 2613 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2614 return VM_FAULT_SIGBUS; 2615 2616 if (addr < vma->vm_start || addr >= vma->vm_end) 2617 return VM_FAULT_SIGBUS; 2618 2619 pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot); 2620 2621 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2622 return VM_FAULT_SIGBUS; 2623 2624 /* 2625 * If we don't have pte special, then we have to use the pfn_valid() 2626 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2627 * refcount the page if pfn_valid is true (hence insert_page rather 2628 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2629 * without pte special, it would there be refcounted as a normal page. 2630 */ 2631 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2632 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2633 struct page *page; 2634 2635 /* 2636 * At this point we are committed to insert_page() 2637 * regardless of whether the caller specified flags that 2638 * result in pfn_t_has_page() == false. 2639 */ 2640 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2641 err = insert_page(vma, addr, page, pgprot, mkwrite); 2642 } else { 2643 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2644 } 2645 2646 if (err == -ENOMEM) 2647 return VM_FAULT_OOM; 2648 if (err < 0 && err != -EBUSY) 2649 return VM_FAULT_SIGBUS; 2650 2651 return VM_FAULT_NOPAGE; 2652 } 2653 2654 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2655 bool write) 2656 { 2657 pgprot_t pgprot = vmf->vma->vm_page_prot; 2658 unsigned long addr = vmf->address; 2659 int err; 2660 2661 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2662 return VM_FAULT_SIGBUS; 2663 2664 err = insert_page(vmf->vma, addr, page, pgprot, write); 2665 if (err == -ENOMEM) 2666 return VM_FAULT_OOM; 2667 if (err < 0 && err != -EBUSY) 2668 return VM_FAULT_SIGBUS; 2669 2670 return VM_FAULT_NOPAGE; 2671 } 2672 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2673 2674 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2675 pfn_t pfn) 2676 { 2677 return __vm_insert_mixed(vma, addr, pfn, false); 2678 } 2679 EXPORT_SYMBOL(vmf_insert_mixed); 2680 2681 /* 2682 * If the insertion of PTE failed because someone else already added a 2683 * different entry in the mean time, we treat that as success as we assume 2684 * the same entry was actually inserted. 2685 */ 2686 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2687 unsigned long addr, pfn_t pfn) 2688 { 2689 return __vm_insert_mixed(vma, addr, pfn, true); 2690 } 2691 2692 /* 2693 * maps a range of physical memory into the requested pages. the old 2694 * mappings are removed. any references to nonexistent pages results 2695 * in null mappings (currently treated as "copy-on-access") 2696 */ 2697 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2698 unsigned long addr, unsigned long end, 2699 unsigned long pfn, pgprot_t prot) 2700 { 2701 pte_t *pte, *mapped_pte; 2702 spinlock_t *ptl; 2703 int err = 0; 2704 2705 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2706 if (!pte) 2707 return -ENOMEM; 2708 arch_enter_lazy_mmu_mode(); 2709 do { 2710 BUG_ON(!pte_none(ptep_get(pte))); 2711 if (!pfn_modify_allowed(pfn, prot)) { 2712 err = -EACCES; 2713 break; 2714 } 2715 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2716 pfn++; 2717 } while (pte++, addr += PAGE_SIZE, addr != end); 2718 arch_leave_lazy_mmu_mode(); 2719 pte_unmap_unlock(mapped_pte, ptl); 2720 return err; 2721 } 2722 2723 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2724 unsigned long addr, unsigned long end, 2725 unsigned long pfn, pgprot_t prot) 2726 { 2727 pmd_t *pmd; 2728 unsigned long next; 2729 int err; 2730 2731 pfn -= addr >> PAGE_SHIFT; 2732 pmd = pmd_alloc(mm, pud, addr); 2733 if (!pmd) 2734 return -ENOMEM; 2735 VM_BUG_ON(pmd_trans_huge(*pmd)); 2736 do { 2737 next = pmd_addr_end(addr, end); 2738 err = remap_pte_range(mm, pmd, addr, next, 2739 pfn + (addr >> PAGE_SHIFT), prot); 2740 if (err) 2741 return err; 2742 } while (pmd++, addr = next, addr != end); 2743 return 0; 2744 } 2745 2746 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2747 unsigned long addr, unsigned long end, 2748 unsigned long pfn, pgprot_t prot) 2749 { 2750 pud_t *pud; 2751 unsigned long next; 2752 int err; 2753 2754 pfn -= addr >> PAGE_SHIFT; 2755 pud = pud_alloc(mm, p4d, addr); 2756 if (!pud) 2757 return -ENOMEM; 2758 do { 2759 next = pud_addr_end(addr, end); 2760 err = remap_pmd_range(mm, pud, addr, next, 2761 pfn + (addr >> PAGE_SHIFT), prot); 2762 if (err) 2763 return err; 2764 } while (pud++, addr = next, addr != end); 2765 return 0; 2766 } 2767 2768 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2769 unsigned long addr, unsigned long end, 2770 unsigned long pfn, pgprot_t prot) 2771 { 2772 p4d_t *p4d; 2773 unsigned long next; 2774 int err; 2775 2776 pfn -= addr >> PAGE_SHIFT; 2777 p4d = p4d_alloc(mm, pgd, addr); 2778 if (!p4d) 2779 return -ENOMEM; 2780 do { 2781 next = p4d_addr_end(addr, end); 2782 err = remap_pud_range(mm, p4d, addr, next, 2783 pfn + (addr >> PAGE_SHIFT), prot); 2784 if (err) 2785 return err; 2786 } while (p4d++, addr = next, addr != end); 2787 return 0; 2788 } 2789 2790 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2791 unsigned long pfn, unsigned long size, pgprot_t prot) 2792 { 2793 pgd_t *pgd; 2794 unsigned long next; 2795 unsigned long end = addr + PAGE_ALIGN(size); 2796 struct mm_struct *mm = vma->vm_mm; 2797 int err; 2798 2799 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2800 return -EINVAL; 2801 2802 /* 2803 * Physically remapped pages are special. Tell the 2804 * rest of the world about it: 2805 * VM_IO tells people not to look at these pages 2806 * (accesses can have side effects). 2807 * VM_PFNMAP tells the core MM that the base pages are just 2808 * raw PFN mappings, and do not have a "struct page" associated 2809 * with them. 2810 * VM_DONTEXPAND 2811 * Disable vma merging and expanding with mremap(). 2812 * VM_DONTDUMP 2813 * Omit vma from core dump, even when VM_IO turned off. 2814 * 2815 * There's a horrible special case to handle copy-on-write 2816 * behaviour that some programs depend on. We mark the "original" 2817 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2818 * See vm_normal_page() for details. 2819 */ 2820 if (is_cow_mapping(vma->vm_flags)) { 2821 if (addr != vma->vm_start || end != vma->vm_end) 2822 return -EINVAL; 2823 vma->vm_pgoff = pfn; 2824 } 2825 2826 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2827 2828 BUG_ON(addr >= end); 2829 pfn -= addr >> PAGE_SHIFT; 2830 pgd = pgd_offset(mm, addr); 2831 flush_cache_range(vma, addr, end); 2832 do { 2833 next = pgd_addr_end(addr, end); 2834 err = remap_p4d_range(mm, pgd, addr, next, 2835 pfn + (addr >> PAGE_SHIFT), prot); 2836 if (err) 2837 return err; 2838 } while (pgd++, addr = next, addr != end); 2839 2840 return 0; 2841 } 2842 2843 /* 2844 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2845 * must have pre-validated the caching bits of the pgprot_t. 2846 */ 2847 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2848 unsigned long pfn, unsigned long size, pgprot_t prot) 2849 { 2850 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2851 2852 if (!error) 2853 return 0; 2854 2855 /* 2856 * A partial pfn range mapping is dangerous: it does not 2857 * maintain page reference counts, and callers may free 2858 * pages due to the error. So zap it early. 2859 */ 2860 zap_page_range_single(vma, addr, size, NULL); 2861 return error; 2862 } 2863 2864 #ifdef __HAVE_PFNMAP_TRACKING 2865 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2866 unsigned long size, pgprot_t *prot) 2867 { 2868 struct pfnmap_track_ctx *ctx; 2869 2870 if (pfnmap_track(pfn, size, prot)) 2871 return ERR_PTR(-EINVAL); 2872 2873 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2874 if (unlikely(!ctx)) { 2875 pfnmap_untrack(pfn, size); 2876 return ERR_PTR(-ENOMEM); 2877 } 2878 2879 ctx->pfn = pfn; 2880 ctx->size = size; 2881 kref_init(&ctx->kref); 2882 return ctx; 2883 } 2884 2885 void pfnmap_track_ctx_release(struct kref *ref) 2886 { 2887 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 2888 2889 pfnmap_untrack(ctx->pfn, ctx->size); 2890 kfree(ctx); 2891 } 2892 #endif /* __HAVE_PFNMAP_TRACKING */ 2893 2894 /** 2895 * remap_pfn_range - remap kernel memory to userspace 2896 * @vma: user vma to map to 2897 * @addr: target page aligned user address to start at 2898 * @pfn: page frame number of kernel physical memory address 2899 * @size: size of mapping area 2900 * @prot: page protection flags for this mapping 2901 * 2902 * Note: this is only safe if the mm semaphore is held when called. 2903 * 2904 * Return: %0 on success, negative error code otherwise. 2905 */ 2906 #ifdef __HAVE_PFNMAP_TRACKING 2907 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2908 unsigned long pfn, unsigned long size, pgprot_t prot) 2909 { 2910 struct pfnmap_track_ctx *ctx = NULL; 2911 int err; 2912 2913 size = PAGE_ALIGN(size); 2914 2915 /* 2916 * If we cover the full VMA, we'll perform actual tracking, and 2917 * remember to untrack when the last reference to our tracking 2918 * context from a VMA goes away. We'll keep tracking the whole pfn 2919 * range even during VMA splits and partial unmapping. 2920 * 2921 * If we only cover parts of the VMA, we'll only setup the cachemode 2922 * in the pgprot for the pfn range. 2923 */ 2924 if (addr == vma->vm_start && addr + size == vma->vm_end) { 2925 if (vma->pfnmap_track_ctx) 2926 return -EINVAL; 2927 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 2928 if (IS_ERR(ctx)) 2929 return PTR_ERR(ctx); 2930 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 2931 return -EINVAL; 2932 } 2933 2934 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2935 if (ctx) { 2936 if (err) 2937 kref_put(&ctx->kref, pfnmap_track_ctx_release); 2938 else 2939 vma->pfnmap_track_ctx = ctx; 2940 } 2941 return err; 2942 } 2943 2944 #else 2945 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2946 unsigned long pfn, unsigned long size, pgprot_t prot) 2947 { 2948 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2949 } 2950 #endif 2951 EXPORT_SYMBOL(remap_pfn_range); 2952 2953 /** 2954 * vm_iomap_memory - remap memory to userspace 2955 * @vma: user vma to map to 2956 * @start: start of the physical memory to be mapped 2957 * @len: size of area 2958 * 2959 * This is a simplified io_remap_pfn_range() for common driver use. The 2960 * driver just needs to give us the physical memory range to be mapped, 2961 * we'll figure out the rest from the vma information. 2962 * 2963 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2964 * whatever write-combining details or similar. 2965 * 2966 * Return: %0 on success, negative error code otherwise. 2967 */ 2968 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2969 { 2970 unsigned long vm_len, pfn, pages; 2971 2972 /* Check that the physical memory area passed in looks valid */ 2973 if (start + len < start) 2974 return -EINVAL; 2975 /* 2976 * You *really* shouldn't map things that aren't page-aligned, 2977 * but we've historically allowed it because IO memory might 2978 * just have smaller alignment. 2979 */ 2980 len += start & ~PAGE_MASK; 2981 pfn = start >> PAGE_SHIFT; 2982 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2983 if (pfn + pages < pfn) 2984 return -EINVAL; 2985 2986 /* We start the mapping 'vm_pgoff' pages into the area */ 2987 if (vma->vm_pgoff > pages) 2988 return -EINVAL; 2989 pfn += vma->vm_pgoff; 2990 pages -= vma->vm_pgoff; 2991 2992 /* Can we fit all of the mapping? */ 2993 vm_len = vma->vm_end - vma->vm_start; 2994 if (vm_len >> PAGE_SHIFT > pages) 2995 return -EINVAL; 2996 2997 /* Ok, let it rip */ 2998 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2999 } 3000 EXPORT_SYMBOL(vm_iomap_memory); 3001 3002 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3003 unsigned long addr, unsigned long end, 3004 pte_fn_t fn, void *data, bool create, 3005 pgtbl_mod_mask *mask) 3006 { 3007 pte_t *pte, *mapped_pte; 3008 int err = 0; 3009 spinlock_t *ptl; 3010 3011 if (create) { 3012 mapped_pte = pte = (mm == &init_mm) ? 3013 pte_alloc_kernel_track(pmd, addr, mask) : 3014 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3015 if (!pte) 3016 return -ENOMEM; 3017 } else { 3018 mapped_pte = pte = (mm == &init_mm) ? 3019 pte_offset_kernel(pmd, addr) : 3020 pte_offset_map_lock(mm, pmd, addr, &ptl); 3021 if (!pte) 3022 return -EINVAL; 3023 } 3024 3025 arch_enter_lazy_mmu_mode(); 3026 3027 if (fn) { 3028 do { 3029 if (create || !pte_none(ptep_get(pte))) { 3030 err = fn(pte, addr, data); 3031 if (err) 3032 break; 3033 } 3034 } while (pte++, addr += PAGE_SIZE, addr != end); 3035 } 3036 *mask |= PGTBL_PTE_MODIFIED; 3037 3038 arch_leave_lazy_mmu_mode(); 3039 3040 if (mm != &init_mm) 3041 pte_unmap_unlock(mapped_pte, ptl); 3042 return err; 3043 } 3044 3045 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3046 unsigned long addr, unsigned long end, 3047 pte_fn_t fn, void *data, bool create, 3048 pgtbl_mod_mask *mask) 3049 { 3050 pmd_t *pmd; 3051 unsigned long next; 3052 int err = 0; 3053 3054 BUG_ON(pud_leaf(*pud)); 3055 3056 if (create) { 3057 pmd = pmd_alloc_track(mm, pud, addr, mask); 3058 if (!pmd) 3059 return -ENOMEM; 3060 } else { 3061 pmd = pmd_offset(pud, addr); 3062 } 3063 do { 3064 next = pmd_addr_end(addr, end); 3065 if (pmd_none(*pmd) && !create) 3066 continue; 3067 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3068 return -EINVAL; 3069 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3070 if (!create) 3071 continue; 3072 pmd_clear_bad(pmd); 3073 } 3074 err = apply_to_pte_range(mm, pmd, addr, next, 3075 fn, data, create, mask); 3076 if (err) 3077 break; 3078 } while (pmd++, addr = next, addr != end); 3079 3080 return err; 3081 } 3082 3083 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3084 unsigned long addr, unsigned long end, 3085 pte_fn_t fn, void *data, bool create, 3086 pgtbl_mod_mask *mask) 3087 { 3088 pud_t *pud; 3089 unsigned long next; 3090 int err = 0; 3091 3092 if (create) { 3093 pud = pud_alloc_track(mm, p4d, addr, mask); 3094 if (!pud) 3095 return -ENOMEM; 3096 } else { 3097 pud = pud_offset(p4d, addr); 3098 } 3099 do { 3100 next = pud_addr_end(addr, end); 3101 if (pud_none(*pud) && !create) 3102 continue; 3103 if (WARN_ON_ONCE(pud_leaf(*pud))) 3104 return -EINVAL; 3105 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3106 if (!create) 3107 continue; 3108 pud_clear_bad(pud); 3109 } 3110 err = apply_to_pmd_range(mm, pud, addr, next, 3111 fn, data, create, mask); 3112 if (err) 3113 break; 3114 } while (pud++, addr = next, addr != end); 3115 3116 return err; 3117 } 3118 3119 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3120 unsigned long addr, unsigned long end, 3121 pte_fn_t fn, void *data, bool create, 3122 pgtbl_mod_mask *mask) 3123 { 3124 p4d_t *p4d; 3125 unsigned long next; 3126 int err = 0; 3127 3128 if (create) { 3129 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3130 if (!p4d) 3131 return -ENOMEM; 3132 } else { 3133 p4d = p4d_offset(pgd, addr); 3134 } 3135 do { 3136 next = p4d_addr_end(addr, end); 3137 if (p4d_none(*p4d) && !create) 3138 continue; 3139 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3140 return -EINVAL; 3141 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3142 if (!create) 3143 continue; 3144 p4d_clear_bad(p4d); 3145 } 3146 err = apply_to_pud_range(mm, p4d, addr, next, 3147 fn, data, create, mask); 3148 if (err) 3149 break; 3150 } while (p4d++, addr = next, addr != end); 3151 3152 return err; 3153 } 3154 3155 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3156 unsigned long size, pte_fn_t fn, 3157 void *data, bool create) 3158 { 3159 pgd_t *pgd; 3160 unsigned long start = addr, next; 3161 unsigned long end = addr + size; 3162 pgtbl_mod_mask mask = 0; 3163 int err = 0; 3164 3165 if (WARN_ON(addr >= end)) 3166 return -EINVAL; 3167 3168 pgd = pgd_offset(mm, addr); 3169 do { 3170 next = pgd_addr_end(addr, end); 3171 if (pgd_none(*pgd) && !create) 3172 continue; 3173 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3174 err = -EINVAL; 3175 break; 3176 } 3177 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3178 if (!create) 3179 continue; 3180 pgd_clear_bad(pgd); 3181 } 3182 err = apply_to_p4d_range(mm, pgd, addr, next, 3183 fn, data, create, &mask); 3184 if (err) 3185 break; 3186 } while (pgd++, addr = next, addr != end); 3187 3188 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3189 arch_sync_kernel_mappings(start, start + size); 3190 3191 return err; 3192 } 3193 3194 /* 3195 * Scan a region of virtual memory, filling in page tables as necessary 3196 * and calling a provided function on each leaf page table. 3197 */ 3198 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3199 unsigned long size, pte_fn_t fn, void *data) 3200 { 3201 return __apply_to_page_range(mm, addr, size, fn, data, true); 3202 } 3203 EXPORT_SYMBOL_GPL(apply_to_page_range); 3204 3205 /* 3206 * Scan a region of virtual memory, calling a provided function on 3207 * each leaf page table where it exists. 3208 * 3209 * Unlike apply_to_page_range, this does _not_ fill in page tables 3210 * where they are absent. 3211 */ 3212 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3213 unsigned long size, pte_fn_t fn, void *data) 3214 { 3215 return __apply_to_page_range(mm, addr, size, fn, data, false); 3216 } 3217 3218 /* 3219 * handle_pte_fault chooses page fault handler according to an entry which was 3220 * read non-atomically. Before making any commitment, on those architectures 3221 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3222 * parts, do_swap_page must check under lock before unmapping the pte and 3223 * proceeding (but do_wp_page is only called after already making such a check; 3224 * and do_anonymous_page can safely check later on). 3225 */ 3226 static inline int pte_unmap_same(struct vm_fault *vmf) 3227 { 3228 int same = 1; 3229 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3230 if (sizeof(pte_t) > sizeof(unsigned long)) { 3231 spin_lock(vmf->ptl); 3232 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3233 spin_unlock(vmf->ptl); 3234 } 3235 #endif 3236 pte_unmap(vmf->pte); 3237 vmf->pte = NULL; 3238 return same; 3239 } 3240 3241 /* 3242 * Return: 3243 * 0: copied succeeded 3244 * -EHWPOISON: copy failed due to hwpoison in source page 3245 * -EAGAIN: copied failed (some other reason) 3246 */ 3247 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3248 struct vm_fault *vmf) 3249 { 3250 int ret; 3251 void *kaddr; 3252 void __user *uaddr; 3253 struct vm_area_struct *vma = vmf->vma; 3254 struct mm_struct *mm = vma->vm_mm; 3255 unsigned long addr = vmf->address; 3256 3257 if (likely(src)) { 3258 if (copy_mc_user_highpage(dst, src, addr, vma)) 3259 return -EHWPOISON; 3260 return 0; 3261 } 3262 3263 /* 3264 * If the source page was a PFN mapping, we don't have 3265 * a "struct page" for it. We do a best-effort copy by 3266 * just copying from the original user address. If that 3267 * fails, we just zero-fill it. Live with it. 3268 */ 3269 kaddr = kmap_local_page(dst); 3270 pagefault_disable(); 3271 uaddr = (void __user *)(addr & PAGE_MASK); 3272 3273 /* 3274 * On architectures with software "accessed" bits, we would 3275 * take a double page fault, so mark it accessed here. 3276 */ 3277 vmf->pte = NULL; 3278 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3279 pte_t entry; 3280 3281 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3282 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3283 /* 3284 * Other thread has already handled the fault 3285 * and update local tlb only 3286 */ 3287 if (vmf->pte) 3288 update_mmu_tlb(vma, addr, vmf->pte); 3289 ret = -EAGAIN; 3290 goto pte_unlock; 3291 } 3292 3293 entry = pte_mkyoung(vmf->orig_pte); 3294 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3295 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3296 } 3297 3298 /* 3299 * This really shouldn't fail, because the page is there 3300 * in the page tables. But it might just be unreadable, 3301 * in which case we just give up and fill the result with 3302 * zeroes. 3303 */ 3304 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3305 if (vmf->pte) 3306 goto warn; 3307 3308 /* Re-validate under PTL if the page is still mapped */ 3309 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3310 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3311 /* The PTE changed under us, update local tlb */ 3312 if (vmf->pte) 3313 update_mmu_tlb(vma, addr, vmf->pte); 3314 ret = -EAGAIN; 3315 goto pte_unlock; 3316 } 3317 3318 /* 3319 * The same page can be mapped back since last copy attempt. 3320 * Try to copy again under PTL. 3321 */ 3322 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3323 /* 3324 * Give a warn in case there can be some obscure 3325 * use-case 3326 */ 3327 warn: 3328 WARN_ON_ONCE(1); 3329 clear_page(kaddr); 3330 } 3331 } 3332 3333 ret = 0; 3334 3335 pte_unlock: 3336 if (vmf->pte) 3337 pte_unmap_unlock(vmf->pte, vmf->ptl); 3338 pagefault_enable(); 3339 kunmap_local(kaddr); 3340 flush_dcache_page(dst); 3341 3342 return ret; 3343 } 3344 3345 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3346 { 3347 struct file *vm_file = vma->vm_file; 3348 3349 if (vm_file) 3350 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3351 3352 /* 3353 * Special mappings (e.g. VDSO) do not have any file so fake 3354 * a default GFP_KERNEL for them. 3355 */ 3356 return GFP_KERNEL; 3357 } 3358 3359 /* 3360 * Notify the address space that the page is about to become writable so that 3361 * it can prohibit this or wait for the page to get into an appropriate state. 3362 * 3363 * We do this without the lock held, so that it can sleep if it needs to. 3364 */ 3365 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3366 { 3367 vm_fault_t ret; 3368 unsigned int old_flags = vmf->flags; 3369 3370 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3371 3372 if (vmf->vma->vm_file && 3373 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3374 return VM_FAULT_SIGBUS; 3375 3376 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3377 /* Restore original flags so that caller is not surprised */ 3378 vmf->flags = old_flags; 3379 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3380 return ret; 3381 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3382 folio_lock(folio); 3383 if (!folio->mapping) { 3384 folio_unlock(folio); 3385 return 0; /* retry */ 3386 } 3387 ret |= VM_FAULT_LOCKED; 3388 } else 3389 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3390 return ret; 3391 } 3392 3393 /* 3394 * Handle dirtying of a page in shared file mapping on a write fault. 3395 * 3396 * The function expects the page to be locked and unlocks it. 3397 */ 3398 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3399 { 3400 struct vm_area_struct *vma = vmf->vma; 3401 struct address_space *mapping; 3402 struct folio *folio = page_folio(vmf->page); 3403 bool dirtied; 3404 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3405 3406 dirtied = folio_mark_dirty(folio); 3407 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3408 /* 3409 * Take a local copy of the address_space - folio.mapping may be zeroed 3410 * by truncate after folio_unlock(). The address_space itself remains 3411 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3412 * release semantics to prevent the compiler from undoing this copying. 3413 */ 3414 mapping = folio_raw_mapping(folio); 3415 folio_unlock(folio); 3416 3417 if (!page_mkwrite) 3418 file_update_time(vma->vm_file); 3419 3420 /* 3421 * Throttle page dirtying rate down to writeback speed. 3422 * 3423 * mapping may be NULL here because some device drivers do not 3424 * set page.mapping but still dirty their pages 3425 * 3426 * Drop the mmap_lock before waiting on IO, if we can. The file 3427 * is pinning the mapping, as per above. 3428 */ 3429 if ((dirtied || page_mkwrite) && mapping) { 3430 struct file *fpin; 3431 3432 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3433 balance_dirty_pages_ratelimited(mapping); 3434 if (fpin) { 3435 fput(fpin); 3436 return VM_FAULT_COMPLETED; 3437 } 3438 } 3439 3440 return 0; 3441 } 3442 3443 /* 3444 * Handle write page faults for pages that can be reused in the current vma 3445 * 3446 * This can happen either due to the mapping being with the VM_SHARED flag, 3447 * or due to us being the last reference standing to the page. In either 3448 * case, all we need to do here is to mark the page as writable and update 3449 * any related book-keeping. 3450 */ 3451 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3452 __releases(vmf->ptl) 3453 { 3454 struct vm_area_struct *vma = vmf->vma; 3455 pte_t entry; 3456 3457 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3458 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3459 3460 if (folio) { 3461 VM_BUG_ON(folio_test_anon(folio) && 3462 !PageAnonExclusive(vmf->page)); 3463 /* 3464 * Clear the folio's cpupid information as the existing 3465 * information potentially belongs to a now completely 3466 * unrelated process. 3467 */ 3468 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3469 } 3470 3471 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3472 entry = pte_mkyoung(vmf->orig_pte); 3473 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3474 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3475 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3476 pte_unmap_unlock(vmf->pte, vmf->ptl); 3477 count_vm_event(PGREUSE); 3478 } 3479 3480 /* 3481 * We could add a bitflag somewhere, but for now, we know that all 3482 * vm_ops that have a ->map_pages have been audited and don't need 3483 * the mmap_lock to be held. 3484 */ 3485 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3486 { 3487 struct vm_area_struct *vma = vmf->vma; 3488 3489 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3490 return 0; 3491 vma_end_read(vma); 3492 return VM_FAULT_RETRY; 3493 } 3494 3495 /** 3496 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3497 * @vmf: The vm_fault descriptor passed from the fault handler. 3498 * 3499 * When preparing to insert an anonymous page into a VMA from a 3500 * fault handler, call this function rather than anon_vma_prepare(). 3501 * If this vma does not already have an associated anon_vma and we are 3502 * only protected by the per-VMA lock, the caller must retry with the 3503 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3504 * determine if this VMA can share its anon_vma, and that's not safe to 3505 * do with only the per-VMA lock held for this VMA. 3506 * 3507 * Return: 0 if fault handling can proceed. Any other value should be 3508 * returned to the caller. 3509 */ 3510 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3511 { 3512 struct vm_area_struct *vma = vmf->vma; 3513 vm_fault_t ret = 0; 3514 3515 if (likely(vma->anon_vma)) 3516 return 0; 3517 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3518 if (!mmap_read_trylock(vma->vm_mm)) 3519 return VM_FAULT_RETRY; 3520 } 3521 if (__anon_vma_prepare(vma)) 3522 ret = VM_FAULT_OOM; 3523 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3524 mmap_read_unlock(vma->vm_mm); 3525 return ret; 3526 } 3527 3528 /* 3529 * Handle the case of a page which we actually need to copy to a new page, 3530 * either due to COW or unsharing. 3531 * 3532 * Called with mmap_lock locked and the old page referenced, but 3533 * without the ptl held. 3534 * 3535 * High level logic flow: 3536 * 3537 * - Allocate a page, copy the content of the old page to the new one. 3538 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3539 * - Take the PTL. If the pte changed, bail out and release the allocated page 3540 * - If the pte is still the way we remember it, update the page table and all 3541 * relevant references. This includes dropping the reference the page-table 3542 * held to the old page, as well as updating the rmap. 3543 * - In any case, unlock the PTL and drop the reference we took to the old page. 3544 */ 3545 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3546 { 3547 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3548 struct vm_area_struct *vma = vmf->vma; 3549 struct mm_struct *mm = vma->vm_mm; 3550 struct folio *old_folio = NULL; 3551 struct folio *new_folio = NULL; 3552 pte_t entry; 3553 int page_copied = 0; 3554 struct mmu_notifier_range range; 3555 vm_fault_t ret; 3556 bool pfn_is_zero; 3557 3558 delayacct_wpcopy_start(); 3559 3560 if (vmf->page) 3561 old_folio = page_folio(vmf->page); 3562 ret = vmf_anon_prepare(vmf); 3563 if (unlikely(ret)) 3564 goto out; 3565 3566 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3567 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3568 if (!new_folio) 3569 goto oom; 3570 3571 if (!pfn_is_zero) { 3572 int err; 3573 3574 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3575 if (err) { 3576 /* 3577 * COW failed, if the fault was solved by other, 3578 * it's fine. If not, userspace would re-fault on 3579 * the same address and we will handle the fault 3580 * from the second attempt. 3581 * The -EHWPOISON case will not be retried. 3582 */ 3583 folio_put(new_folio); 3584 if (old_folio) 3585 folio_put(old_folio); 3586 3587 delayacct_wpcopy_end(); 3588 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3589 } 3590 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3591 } 3592 3593 __folio_mark_uptodate(new_folio); 3594 3595 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3596 vmf->address & PAGE_MASK, 3597 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3598 mmu_notifier_invalidate_range_start(&range); 3599 3600 /* 3601 * Re-check the pte - we dropped the lock 3602 */ 3603 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3604 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3605 if (old_folio) { 3606 if (!folio_test_anon(old_folio)) { 3607 dec_mm_counter(mm, mm_counter_file(old_folio)); 3608 inc_mm_counter(mm, MM_ANONPAGES); 3609 } 3610 } else { 3611 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3612 inc_mm_counter(mm, MM_ANONPAGES); 3613 } 3614 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3615 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3616 entry = pte_sw_mkyoung(entry); 3617 if (unlikely(unshare)) { 3618 if (pte_soft_dirty(vmf->orig_pte)) 3619 entry = pte_mksoft_dirty(entry); 3620 if (pte_uffd_wp(vmf->orig_pte)) 3621 entry = pte_mkuffd_wp(entry); 3622 } else { 3623 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3624 } 3625 3626 /* 3627 * Clear the pte entry and flush it first, before updating the 3628 * pte with the new entry, to keep TLBs on different CPUs in 3629 * sync. This code used to set the new PTE then flush TLBs, but 3630 * that left a window where the new PTE could be loaded into 3631 * some TLBs while the old PTE remains in others. 3632 */ 3633 ptep_clear_flush(vma, vmf->address, vmf->pte); 3634 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3635 folio_add_lru_vma(new_folio, vma); 3636 BUG_ON(unshare && pte_write(entry)); 3637 set_pte_at(mm, vmf->address, vmf->pte, entry); 3638 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3639 if (old_folio) { 3640 /* 3641 * Only after switching the pte to the new page may 3642 * we remove the mapcount here. Otherwise another 3643 * process may come and find the rmap count decremented 3644 * before the pte is switched to the new page, and 3645 * "reuse" the old page writing into it while our pte 3646 * here still points into it and can be read by other 3647 * threads. 3648 * 3649 * The critical issue is to order this 3650 * folio_remove_rmap_pte() with the ptp_clear_flush 3651 * above. Those stores are ordered by (if nothing else,) 3652 * the barrier present in the atomic_add_negative 3653 * in folio_remove_rmap_pte(); 3654 * 3655 * Then the TLB flush in ptep_clear_flush ensures that 3656 * no process can access the old page before the 3657 * decremented mapcount is visible. And the old page 3658 * cannot be reused until after the decremented 3659 * mapcount is visible. So transitively, TLBs to 3660 * old page will be flushed before it can be reused. 3661 */ 3662 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3663 } 3664 3665 /* Free the old page.. */ 3666 new_folio = old_folio; 3667 page_copied = 1; 3668 pte_unmap_unlock(vmf->pte, vmf->ptl); 3669 } else if (vmf->pte) { 3670 update_mmu_tlb(vma, vmf->address, vmf->pte); 3671 pte_unmap_unlock(vmf->pte, vmf->ptl); 3672 } 3673 3674 mmu_notifier_invalidate_range_end(&range); 3675 3676 if (new_folio) 3677 folio_put(new_folio); 3678 if (old_folio) { 3679 if (page_copied) 3680 free_swap_cache(old_folio); 3681 folio_put(old_folio); 3682 } 3683 3684 delayacct_wpcopy_end(); 3685 return 0; 3686 oom: 3687 ret = VM_FAULT_OOM; 3688 out: 3689 if (old_folio) 3690 folio_put(old_folio); 3691 3692 delayacct_wpcopy_end(); 3693 return ret; 3694 } 3695 3696 /** 3697 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3698 * writeable once the page is prepared 3699 * 3700 * @vmf: structure describing the fault 3701 * @folio: the folio of vmf->page 3702 * 3703 * This function handles all that is needed to finish a write page fault in a 3704 * shared mapping due to PTE being read-only once the mapped page is prepared. 3705 * It handles locking of PTE and modifying it. 3706 * 3707 * The function expects the page to be locked or other protection against 3708 * concurrent faults / writeback (such as DAX radix tree locks). 3709 * 3710 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3711 * we acquired PTE lock. 3712 */ 3713 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3714 { 3715 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3716 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3717 &vmf->ptl); 3718 if (!vmf->pte) 3719 return VM_FAULT_NOPAGE; 3720 /* 3721 * We might have raced with another page fault while we released the 3722 * pte_offset_map_lock. 3723 */ 3724 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3725 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3726 pte_unmap_unlock(vmf->pte, vmf->ptl); 3727 return VM_FAULT_NOPAGE; 3728 } 3729 wp_page_reuse(vmf, folio); 3730 return 0; 3731 } 3732 3733 /* 3734 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3735 * mapping 3736 */ 3737 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3738 { 3739 struct vm_area_struct *vma = vmf->vma; 3740 3741 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3742 vm_fault_t ret; 3743 3744 pte_unmap_unlock(vmf->pte, vmf->ptl); 3745 ret = vmf_can_call_fault(vmf); 3746 if (ret) 3747 return ret; 3748 3749 vmf->flags |= FAULT_FLAG_MKWRITE; 3750 ret = vma->vm_ops->pfn_mkwrite(vmf); 3751 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3752 return ret; 3753 return finish_mkwrite_fault(vmf, NULL); 3754 } 3755 wp_page_reuse(vmf, NULL); 3756 return 0; 3757 } 3758 3759 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3760 __releases(vmf->ptl) 3761 { 3762 struct vm_area_struct *vma = vmf->vma; 3763 vm_fault_t ret = 0; 3764 3765 folio_get(folio); 3766 3767 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3768 vm_fault_t tmp; 3769 3770 pte_unmap_unlock(vmf->pte, vmf->ptl); 3771 tmp = vmf_can_call_fault(vmf); 3772 if (tmp) { 3773 folio_put(folio); 3774 return tmp; 3775 } 3776 3777 tmp = do_page_mkwrite(vmf, folio); 3778 if (unlikely(!tmp || (tmp & 3779 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3780 folio_put(folio); 3781 return tmp; 3782 } 3783 tmp = finish_mkwrite_fault(vmf, folio); 3784 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3785 folio_unlock(folio); 3786 folio_put(folio); 3787 return tmp; 3788 } 3789 } else { 3790 wp_page_reuse(vmf, folio); 3791 folio_lock(folio); 3792 } 3793 ret |= fault_dirty_shared_page(vmf); 3794 folio_put(folio); 3795 3796 return ret; 3797 } 3798 3799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3800 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3801 struct vm_area_struct *vma) 3802 { 3803 bool exclusive = false; 3804 3805 /* Let's just free up a large folio if only a single page is mapped. */ 3806 if (folio_large_mapcount(folio) <= 1) 3807 return false; 3808 3809 /* 3810 * The assumption for anonymous folios is that each page can only get 3811 * mapped once into each MM. The only exception are KSM folios, which 3812 * are always small. 3813 * 3814 * Each taken mapcount must be paired with exactly one taken reference, 3815 * whereby the refcount must be incremented before the mapcount when 3816 * mapping a page, and the refcount must be decremented after the 3817 * mapcount when unmapping a page. 3818 * 3819 * If all folio references are from mappings, and all mappings are in 3820 * the page tables of this MM, then this folio is exclusive to this MM. 3821 */ 3822 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3823 return false; 3824 3825 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3826 3827 if (unlikely(folio_test_swapcache(folio))) { 3828 /* 3829 * Note: freeing up the swapcache will fail if some PTEs are 3830 * still swap entries. 3831 */ 3832 if (!folio_trylock(folio)) 3833 return false; 3834 folio_free_swap(folio); 3835 folio_unlock(folio); 3836 } 3837 3838 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3839 return false; 3840 3841 /* Stabilize the mapcount vs. refcount and recheck. */ 3842 folio_lock_large_mapcount(folio); 3843 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3844 3845 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3846 goto unlock; 3847 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3848 goto unlock; 3849 3850 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3851 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3852 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3853 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3854 3855 /* 3856 * Do we need the folio lock? Likely not. If there would have been 3857 * references from page migration/swapout, we would have detected 3858 * an additional folio reference and never ended up here. 3859 */ 3860 exclusive = true; 3861 unlock: 3862 folio_unlock_large_mapcount(folio); 3863 return exclusive; 3864 } 3865 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3866 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3867 struct vm_area_struct *vma) 3868 { 3869 BUILD_BUG(); 3870 } 3871 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3872 3873 static bool wp_can_reuse_anon_folio(struct folio *folio, 3874 struct vm_area_struct *vma) 3875 { 3876 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3877 return __wp_can_reuse_large_anon_folio(folio, vma); 3878 3879 /* 3880 * We have to verify under folio lock: these early checks are 3881 * just an optimization to avoid locking the folio and freeing 3882 * the swapcache if there is little hope that we can reuse. 3883 * 3884 * KSM doesn't necessarily raise the folio refcount. 3885 */ 3886 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3887 return false; 3888 if (!folio_test_lru(folio)) 3889 /* 3890 * We cannot easily detect+handle references from 3891 * remote LRU caches or references to LRU folios. 3892 */ 3893 lru_add_drain(); 3894 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3895 return false; 3896 if (!folio_trylock(folio)) 3897 return false; 3898 if (folio_test_swapcache(folio)) 3899 folio_free_swap(folio); 3900 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3901 folio_unlock(folio); 3902 return false; 3903 } 3904 /* 3905 * Ok, we've got the only folio reference from our mapping 3906 * and the folio is locked, it's dark out, and we're wearing 3907 * sunglasses. Hit it. 3908 */ 3909 folio_move_anon_rmap(folio, vma); 3910 folio_unlock(folio); 3911 return true; 3912 } 3913 3914 /* 3915 * This routine handles present pages, when 3916 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3917 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3918 * (FAULT_FLAG_UNSHARE) 3919 * 3920 * It is done by copying the page to a new address and decrementing the 3921 * shared-page counter for the old page. 3922 * 3923 * Note that this routine assumes that the protection checks have been 3924 * done by the caller (the low-level page fault routine in most cases). 3925 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3926 * done any necessary COW. 3927 * 3928 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3929 * though the page will change only once the write actually happens. This 3930 * avoids a few races, and potentially makes it more efficient. 3931 * 3932 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3933 * but allow concurrent faults), with pte both mapped and locked. 3934 * We return with mmap_lock still held, but pte unmapped and unlocked. 3935 */ 3936 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3937 __releases(vmf->ptl) 3938 { 3939 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3940 struct vm_area_struct *vma = vmf->vma; 3941 struct folio *folio = NULL; 3942 pte_t pte; 3943 3944 if (likely(!unshare)) { 3945 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3946 if (!userfaultfd_wp_async(vma)) { 3947 pte_unmap_unlock(vmf->pte, vmf->ptl); 3948 return handle_userfault(vmf, VM_UFFD_WP); 3949 } 3950 3951 /* 3952 * Nothing needed (cache flush, TLB invalidations, 3953 * etc.) because we're only removing the uffd-wp bit, 3954 * which is completely invisible to the user. 3955 */ 3956 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3957 3958 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3959 /* 3960 * Update this to be prepared for following up CoW 3961 * handling 3962 */ 3963 vmf->orig_pte = pte; 3964 } 3965 3966 /* 3967 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3968 * is flushed in this case before copying. 3969 */ 3970 if (unlikely(userfaultfd_wp(vmf->vma) && 3971 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3972 flush_tlb_page(vmf->vma, vmf->address); 3973 } 3974 3975 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3976 3977 if (vmf->page) 3978 folio = page_folio(vmf->page); 3979 3980 /* 3981 * Shared mapping: we are guaranteed to have VM_WRITE and 3982 * FAULT_FLAG_WRITE set at this point. 3983 */ 3984 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3985 /* 3986 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3987 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 3988 * 3989 * We should not cow pages in a shared writeable mapping. 3990 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3991 */ 3992 if (!vmf->page || is_fsdax_page(vmf->page)) { 3993 vmf->page = NULL; 3994 return wp_pfn_shared(vmf); 3995 } 3996 return wp_page_shared(vmf, folio); 3997 } 3998 3999 /* 4000 * Private mapping: create an exclusive anonymous page copy if reuse 4001 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4002 * 4003 * If we encounter a page that is marked exclusive, we must reuse 4004 * the page without further checks. 4005 */ 4006 if (folio && folio_test_anon(folio) && 4007 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4008 if (!PageAnonExclusive(vmf->page)) 4009 SetPageAnonExclusive(vmf->page); 4010 if (unlikely(unshare)) { 4011 pte_unmap_unlock(vmf->pte, vmf->ptl); 4012 return 0; 4013 } 4014 wp_page_reuse(vmf, folio); 4015 return 0; 4016 } 4017 /* 4018 * Ok, we need to copy. Oh, well.. 4019 */ 4020 if (folio) 4021 folio_get(folio); 4022 4023 pte_unmap_unlock(vmf->pte, vmf->ptl); 4024 #ifdef CONFIG_KSM 4025 if (folio && folio_test_ksm(folio)) 4026 count_vm_event(COW_KSM); 4027 #endif 4028 return wp_page_copy(vmf); 4029 } 4030 4031 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4032 unsigned long start_addr, unsigned long end_addr, 4033 struct zap_details *details) 4034 { 4035 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4036 } 4037 4038 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4039 pgoff_t first_index, 4040 pgoff_t last_index, 4041 struct zap_details *details) 4042 { 4043 struct vm_area_struct *vma; 4044 pgoff_t vba, vea, zba, zea; 4045 4046 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4047 vba = vma->vm_pgoff; 4048 vea = vba + vma_pages(vma) - 1; 4049 zba = max(first_index, vba); 4050 zea = min(last_index, vea); 4051 4052 unmap_mapping_range_vma(vma, 4053 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4054 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4055 details); 4056 } 4057 } 4058 4059 /** 4060 * unmap_mapping_folio() - Unmap single folio from processes. 4061 * @folio: The locked folio to be unmapped. 4062 * 4063 * Unmap this folio from any userspace process which still has it mmaped. 4064 * Typically, for efficiency, the range of nearby pages has already been 4065 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4066 * truncation or invalidation holds the lock on a folio, it may find that 4067 * the page has been remapped again: and then uses unmap_mapping_folio() 4068 * to unmap it finally. 4069 */ 4070 void unmap_mapping_folio(struct folio *folio) 4071 { 4072 struct address_space *mapping = folio->mapping; 4073 struct zap_details details = { }; 4074 pgoff_t first_index; 4075 pgoff_t last_index; 4076 4077 VM_BUG_ON(!folio_test_locked(folio)); 4078 4079 first_index = folio->index; 4080 last_index = folio_next_index(folio) - 1; 4081 4082 details.even_cows = false; 4083 details.single_folio = folio; 4084 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4085 4086 i_mmap_lock_read(mapping); 4087 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4088 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4089 last_index, &details); 4090 i_mmap_unlock_read(mapping); 4091 } 4092 4093 /** 4094 * unmap_mapping_pages() - Unmap pages from processes. 4095 * @mapping: The address space containing pages to be unmapped. 4096 * @start: Index of first page to be unmapped. 4097 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4098 * @even_cows: Whether to unmap even private COWed pages. 4099 * 4100 * Unmap the pages in this address space from any userspace process which 4101 * has them mmaped. Generally, you want to remove COWed pages as well when 4102 * a file is being truncated, but not when invalidating pages from the page 4103 * cache. 4104 */ 4105 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4106 pgoff_t nr, bool even_cows) 4107 { 4108 struct zap_details details = { }; 4109 pgoff_t first_index = start; 4110 pgoff_t last_index = start + nr - 1; 4111 4112 details.even_cows = even_cows; 4113 if (last_index < first_index) 4114 last_index = ULONG_MAX; 4115 4116 i_mmap_lock_read(mapping); 4117 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4118 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4119 last_index, &details); 4120 i_mmap_unlock_read(mapping); 4121 } 4122 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4123 4124 /** 4125 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4126 * address_space corresponding to the specified byte range in the underlying 4127 * file. 4128 * 4129 * @mapping: the address space containing mmaps to be unmapped. 4130 * @holebegin: byte in first page to unmap, relative to the start of 4131 * the underlying file. This will be rounded down to a PAGE_SIZE 4132 * boundary. Note that this is different from truncate_pagecache(), which 4133 * must keep the partial page. In contrast, we must get rid of 4134 * partial pages. 4135 * @holelen: size of prospective hole in bytes. This will be rounded 4136 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4137 * end of the file. 4138 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4139 * but 0 when invalidating pagecache, don't throw away private data. 4140 */ 4141 void unmap_mapping_range(struct address_space *mapping, 4142 loff_t const holebegin, loff_t const holelen, int even_cows) 4143 { 4144 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4145 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4146 4147 /* Check for overflow. */ 4148 if (sizeof(holelen) > sizeof(hlen)) { 4149 long long holeend = 4150 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4151 if (holeend & ~(long long)ULONG_MAX) 4152 hlen = ULONG_MAX - hba + 1; 4153 } 4154 4155 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4156 } 4157 EXPORT_SYMBOL(unmap_mapping_range); 4158 4159 /* 4160 * Restore a potential device exclusive pte to a working pte entry 4161 */ 4162 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4163 { 4164 struct folio *folio = page_folio(vmf->page); 4165 struct vm_area_struct *vma = vmf->vma; 4166 struct mmu_notifier_range range; 4167 vm_fault_t ret; 4168 4169 /* 4170 * We need a reference to lock the folio because we don't hold 4171 * the PTL so a racing thread can remove the device-exclusive 4172 * entry and unmap it. If the folio is free the entry must 4173 * have been removed already. If it happens to have already 4174 * been re-allocated after being freed all we do is lock and 4175 * unlock it. 4176 */ 4177 if (!folio_try_get(folio)) 4178 return 0; 4179 4180 ret = folio_lock_or_retry(folio, vmf); 4181 if (ret) { 4182 folio_put(folio); 4183 return ret; 4184 } 4185 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4186 vma->vm_mm, vmf->address & PAGE_MASK, 4187 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4188 mmu_notifier_invalidate_range_start(&range); 4189 4190 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4191 &vmf->ptl); 4192 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4193 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4194 vmf->pte, vmf->orig_pte); 4195 4196 if (vmf->pte) 4197 pte_unmap_unlock(vmf->pte, vmf->ptl); 4198 folio_unlock(folio); 4199 folio_put(folio); 4200 4201 mmu_notifier_invalidate_range_end(&range); 4202 return 0; 4203 } 4204 4205 static inline bool should_try_to_free_swap(struct folio *folio, 4206 struct vm_area_struct *vma, 4207 unsigned int fault_flags) 4208 { 4209 if (!folio_test_swapcache(folio)) 4210 return false; 4211 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4212 folio_test_mlocked(folio)) 4213 return true; 4214 /* 4215 * If we want to map a page that's in the swapcache writable, we 4216 * have to detect via the refcount if we're really the exclusive 4217 * user. Try freeing the swapcache to get rid of the swapcache 4218 * reference only in case it's likely that we'll be the exlusive user. 4219 */ 4220 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4221 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4222 } 4223 4224 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4225 { 4226 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4227 vmf->address, &vmf->ptl); 4228 if (!vmf->pte) 4229 return 0; 4230 /* 4231 * Be careful so that we will only recover a special uffd-wp pte into a 4232 * none pte. Otherwise it means the pte could have changed, so retry. 4233 * 4234 * This should also cover the case where e.g. the pte changed 4235 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4236 * So is_pte_marker() check is not enough to safely drop the pte. 4237 */ 4238 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4239 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4240 pte_unmap_unlock(vmf->pte, vmf->ptl); 4241 return 0; 4242 } 4243 4244 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4245 { 4246 if (vma_is_anonymous(vmf->vma)) 4247 return do_anonymous_page(vmf); 4248 else 4249 return do_fault(vmf); 4250 } 4251 4252 /* 4253 * This is actually a page-missing access, but with uffd-wp special pte 4254 * installed. It means this pte was wr-protected before being unmapped. 4255 */ 4256 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4257 { 4258 /* 4259 * Just in case there're leftover special ptes even after the region 4260 * got unregistered - we can simply clear them. 4261 */ 4262 if (unlikely(!userfaultfd_wp(vmf->vma))) 4263 return pte_marker_clear(vmf); 4264 4265 return do_pte_missing(vmf); 4266 } 4267 4268 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4269 { 4270 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4271 unsigned long marker = pte_marker_get(entry); 4272 4273 /* 4274 * PTE markers should never be empty. If anything weird happened, 4275 * the best thing to do is to kill the process along with its mm. 4276 */ 4277 if (WARN_ON_ONCE(!marker)) 4278 return VM_FAULT_SIGBUS; 4279 4280 /* Higher priority than uffd-wp when data corrupted */ 4281 if (marker & PTE_MARKER_POISONED) 4282 return VM_FAULT_HWPOISON; 4283 4284 /* Hitting a guard page is always a fatal condition. */ 4285 if (marker & PTE_MARKER_GUARD) 4286 return VM_FAULT_SIGSEGV; 4287 4288 if (pte_marker_entry_uffd_wp(entry)) 4289 return pte_marker_handle_uffd_wp(vmf); 4290 4291 /* This is an unknown pte marker */ 4292 return VM_FAULT_SIGBUS; 4293 } 4294 4295 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4296 { 4297 struct vm_area_struct *vma = vmf->vma; 4298 struct folio *folio; 4299 swp_entry_t entry; 4300 4301 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4302 if (!folio) 4303 return NULL; 4304 4305 entry = pte_to_swp_entry(vmf->orig_pte); 4306 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4307 GFP_KERNEL, entry)) { 4308 folio_put(folio); 4309 return NULL; 4310 } 4311 4312 return folio; 4313 } 4314 4315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4316 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4317 { 4318 struct swap_info_struct *si = swp_swap_info(entry); 4319 pgoff_t offset = swp_offset(entry); 4320 int i; 4321 4322 /* 4323 * While allocating a large folio and doing swap_read_folio, which is 4324 * the case the being faulted pte doesn't have swapcache. We need to 4325 * ensure all PTEs have no cache as well, otherwise, we might go to 4326 * swap devices while the content is in swapcache. 4327 */ 4328 for (i = 0; i < max_nr; i++) { 4329 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4330 return i; 4331 } 4332 4333 return i; 4334 } 4335 4336 /* 4337 * Check if the PTEs within a range are contiguous swap entries 4338 * and have consistent swapcache, zeromap. 4339 */ 4340 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4341 { 4342 unsigned long addr; 4343 swp_entry_t entry; 4344 int idx; 4345 pte_t pte; 4346 4347 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4348 idx = (vmf->address - addr) / PAGE_SIZE; 4349 pte = ptep_get(ptep); 4350 4351 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4352 return false; 4353 entry = pte_to_swp_entry(pte); 4354 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4355 return false; 4356 4357 /* 4358 * swap_read_folio() can't handle the case a large folio is hybridly 4359 * from different backends. And they are likely corner cases. Similar 4360 * things might be added once zswap support large folios. 4361 */ 4362 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4363 return false; 4364 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4365 return false; 4366 4367 return true; 4368 } 4369 4370 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4371 unsigned long addr, 4372 unsigned long orders) 4373 { 4374 int order, nr; 4375 4376 order = highest_order(orders); 4377 4378 /* 4379 * To swap in a THP with nr pages, we require that its first swap_offset 4380 * is aligned with that number, as it was when the THP was swapped out. 4381 * This helps filter out most invalid entries. 4382 */ 4383 while (orders) { 4384 nr = 1 << order; 4385 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4386 break; 4387 order = next_order(&orders, order); 4388 } 4389 4390 return orders; 4391 } 4392 4393 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4394 { 4395 struct vm_area_struct *vma = vmf->vma; 4396 unsigned long orders; 4397 struct folio *folio; 4398 unsigned long addr; 4399 swp_entry_t entry; 4400 spinlock_t *ptl; 4401 pte_t *pte; 4402 gfp_t gfp; 4403 int order; 4404 4405 /* 4406 * If uffd is active for the vma we need per-page fault fidelity to 4407 * maintain the uffd semantics. 4408 */ 4409 if (unlikely(userfaultfd_armed(vma))) 4410 goto fallback; 4411 4412 /* 4413 * A large swapped out folio could be partially or fully in zswap. We 4414 * lack handling for such cases, so fallback to swapping in order-0 4415 * folio. 4416 */ 4417 if (!zswap_never_enabled()) 4418 goto fallback; 4419 4420 entry = pte_to_swp_entry(vmf->orig_pte); 4421 /* 4422 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4423 * and suitable for swapping THP. 4424 */ 4425 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4426 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4427 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4428 orders = thp_swap_suitable_orders(swp_offset(entry), 4429 vmf->address, orders); 4430 4431 if (!orders) 4432 goto fallback; 4433 4434 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4435 vmf->address & PMD_MASK, &ptl); 4436 if (unlikely(!pte)) 4437 goto fallback; 4438 4439 /* 4440 * For do_swap_page, find the highest order where the aligned range is 4441 * completely swap entries with contiguous swap offsets. 4442 */ 4443 order = highest_order(orders); 4444 while (orders) { 4445 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4446 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4447 break; 4448 order = next_order(&orders, order); 4449 } 4450 4451 pte_unmap_unlock(pte, ptl); 4452 4453 /* Try allocating the highest of the remaining orders. */ 4454 gfp = vma_thp_gfp_mask(vma); 4455 while (orders) { 4456 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4457 folio = vma_alloc_folio(gfp, order, vma, addr); 4458 if (folio) { 4459 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4460 gfp, entry)) 4461 return folio; 4462 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4463 folio_put(folio); 4464 } 4465 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4466 order = next_order(&orders, order); 4467 } 4468 4469 fallback: 4470 return __alloc_swap_folio(vmf); 4471 } 4472 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4473 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4474 { 4475 return __alloc_swap_folio(vmf); 4476 } 4477 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4478 4479 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4480 4481 /* 4482 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4483 * but allow concurrent faults), and pte mapped but not yet locked. 4484 * We return with pte unmapped and unlocked. 4485 * 4486 * We return with the mmap_lock locked or unlocked in the same cases 4487 * as does filemap_fault(). 4488 */ 4489 vm_fault_t do_swap_page(struct vm_fault *vmf) 4490 { 4491 struct vm_area_struct *vma = vmf->vma; 4492 struct folio *swapcache, *folio = NULL; 4493 DECLARE_WAITQUEUE(wait, current); 4494 struct page *page; 4495 struct swap_info_struct *si = NULL; 4496 rmap_t rmap_flags = RMAP_NONE; 4497 bool need_clear_cache = false; 4498 bool exclusive = false; 4499 swp_entry_t entry; 4500 pte_t pte; 4501 vm_fault_t ret = 0; 4502 void *shadow = NULL; 4503 int nr_pages; 4504 unsigned long page_idx; 4505 unsigned long address; 4506 pte_t *ptep; 4507 4508 if (!pte_unmap_same(vmf)) 4509 goto out; 4510 4511 entry = pte_to_swp_entry(vmf->orig_pte); 4512 if (unlikely(non_swap_entry(entry))) { 4513 if (is_migration_entry(entry)) { 4514 migration_entry_wait(vma->vm_mm, vmf->pmd, 4515 vmf->address); 4516 } else if (is_device_exclusive_entry(entry)) { 4517 vmf->page = pfn_swap_entry_to_page(entry); 4518 ret = remove_device_exclusive_entry(vmf); 4519 } else if (is_device_private_entry(entry)) { 4520 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4521 /* 4522 * migrate_to_ram is not yet ready to operate 4523 * under VMA lock. 4524 */ 4525 vma_end_read(vma); 4526 ret = VM_FAULT_RETRY; 4527 goto out; 4528 } 4529 4530 vmf->page = pfn_swap_entry_to_page(entry); 4531 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4532 vmf->address, &vmf->ptl); 4533 if (unlikely(!vmf->pte || 4534 !pte_same(ptep_get(vmf->pte), 4535 vmf->orig_pte))) 4536 goto unlock; 4537 4538 /* 4539 * Get a page reference while we know the page can't be 4540 * freed. 4541 */ 4542 if (trylock_page(vmf->page)) { 4543 struct dev_pagemap *pgmap; 4544 4545 get_page(vmf->page); 4546 pte_unmap_unlock(vmf->pte, vmf->ptl); 4547 pgmap = page_pgmap(vmf->page); 4548 ret = pgmap->ops->migrate_to_ram(vmf); 4549 unlock_page(vmf->page); 4550 put_page(vmf->page); 4551 } else { 4552 pte_unmap_unlock(vmf->pte, vmf->ptl); 4553 } 4554 } else if (is_hwpoison_entry(entry)) { 4555 ret = VM_FAULT_HWPOISON; 4556 } else if (is_pte_marker_entry(entry)) { 4557 ret = handle_pte_marker(vmf); 4558 } else { 4559 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4560 ret = VM_FAULT_SIGBUS; 4561 } 4562 goto out; 4563 } 4564 4565 /* Prevent swapoff from happening to us. */ 4566 si = get_swap_device(entry); 4567 if (unlikely(!si)) 4568 goto out; 4569 4570 folio = swap_cache_get_folio(entry, vma, vmf->address); 4571 if (folio) 4572 page = folio_file_page(folio, swp_offset(entry)); 4573 swapcache = folio; 4574 4575 if (!folio) { 4576 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4577 __swap_count(entry) == 1) { 4578 /* skip swapcache */ 4579 folio = alloc_swap_folio(vmf); 4580 if (folio) { 4581 __folio_set_locked(folio); 4582 __folio_set_swapbacked(folio); 4583 4584 nr_pages = folio_nr_pages(folio); 4585 if (folio_test_large(folio)) 4586 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4587 /* 4588 * Prevent parallel swapin from proceeding with 4589 * the cache flag. Otherwise, another thread 4590 * may finish swapin first, free the entry, and 4591 * swapout reusing the same entry. It's 4592 * undetectable as pte_same() returns true due 4593 * to entry reuse. 4594 */ 4595 if (swapcache_prepare(entry, nr_pages)) { 4596 /* 4597 * Relax a bit to prevent rapid 4598 * repeated page faults. 4599 */ 4600 add_wait_queue(&swapcache_wq, &wait); 4601 schedule_timeout_uninterruptible(1); 4602 remove_wait_queue(&swapcache_wq, &wait); 4603 goto out_page; 4604 } 4605 need_clear_cache = true; 4606 4607 memcg1_swapin(entry, nr_pages); 4608 4609 shadow = get_shadow_from_swap_cache(entry); 4610 if (shadow) 4611 workingset_refault(folio, shadow); 4612 4613 folio_add_lru(folio); 4614 4615 /* To provide entry to swap_read_folio() */ 4616 folio->swap = entry; 4617 swap_read_folio(folio, NULL); 4618 folio->private = NULL; 4619 } 4620 } else { 4621 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4622 vmf); 4623 swapcache = folio; 4624 } 4625 4626 if (!folio) { 4627 /* 4628 * Back out if somebody else faulted in this pte 4629 * while we released the pte lock. 4630 */ 4631 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4632 vmf->address, &vmf->ptl); 4633 if (likely(vmf->pte && 4634 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4635 ret = VM_FAULT_OOM; 4636 goto unlock; 4637 } 4638 4639 /* Had to read the page from swap area: Major fault */ 4640 ret = VM_FAULT_MAJOR; 4641 count_vm_event(PGMAJFAULT); 4642 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4643 page = folio_file_page(folio, swp_offset(entry)); 4644 } else if (PageHWPoison(page)) { 4645 /* 4646 * hwpoisoned dirty swapcache pages are kept for killing 4647 * owner processes (which may be unknown at hwpoison time) 4648 */ 4649 ret = VM_FAULT_HWPOISON; 4650 goto out_release; 4651 } 4652 4653 ret |= folio_lock_or_retry(folio, vmf); 4654 if (ret & VM_FAULT_RETRY) 4655 goto out_release; 4656 4657 if (swapcache) { 4658 /* 4659 * Make sure folio_free_swap() or swapoff did not release the 4660 * swapcache from under us. The page pin, and pte_same test 4661 * below, are not enough to exclude that. Even if it is still 4662 * swapcache, we need to check that the page's swap has not 4663 * changed. 4664 */ 4665 if (unlikely(!folio_test_swapcache(folio) || 4666 page_swap_entry(page).val != entry.val)) 4667 goto out_page; 4668 4669 /* 4670 * KSM sometimes has to copy on read faults, for example, if 4671 * page->index of !PageKSM() pages would be nonlinear inside the 4672 * anon VMA -- PageKSM() is lost on actual swapout. 4673 */ 4674 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4675 if (unlikely(!folio)) { 4676 ret = VM_FAULT_OOM; 4677 folio = swapcache; 4678 goto out_page; 4679 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4680 ret = VM_FAULT_HWPOISON; 4681 folio = swapcache; 4682 goto out_page; 4683 } 4684 if (folio != swapcache) 4685 page = folio_page(folio, 0); 4686 4687 /* 4688 * If we want to map a page that's in the swapcache writable, we 4689 * have to detect via the refcount if we're really the exclusive 4690 * owner. Try removing the extra reference from the local LRU 4691 * caches if required. 4692 */ 4693 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4694 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4695 lru_add_drain(); 4696 } 4697 4698 folio_throttle_swaprate(folio, GFP_KERNEL); 4699 4700 /* 4701 * Back out if somebody else already faulted in this pte. 4702 */ 4703 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4704 &vmf->ptl); 4705 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4706 goto out_nomap; 4707 4708 if (unlikely(!folio_test_uptodate(folio))) { 4709 ret = VM_FAULT_SIGBUS; 4710 goto out_nomap; 4711 } 4712 4713 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4714 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4715 unsigned long nr = folio_nr_pages(folio); 4716 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4717 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4718 pte_t *folio_ptep = vmf->pte - idx; 4719 pte_t folio_pte = ptep_get(folio_ptep); 4720 4721 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4722 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4723 goto out_nomap; 4724 4725 page_idx = idx; 4726 address = folio_start; 4727 ptep = folio_ptep; 4728 goto check_folio; 4729 } 4730 4731 nr_pages = 1; 4732 page_idx = 0; 4733 address = vmf->address; 4734 ptep = vmf->pte; 4735 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4736 int nr = folio_nr_pages(folio); 4737 unsigned long idx = folio_page_idx(folio, page); 4738 unsigned long folio_start = address - idx * PAGE_SIZE; 4739 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4740 pte_t *folio_ptep; 4741 pte_t folio_pte; 4742 4743 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4744 goto check_folio; 4745 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4746 goto check_folio; 4747 4748 folio_ptep = vmf->pte - idx; 4749 folio_pte = ptep_get(folio_ptep); 4750 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4751 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4752 goto check_folio; 4753 4754 page_idx = idx; 4755 address = folio_start; 4756 ptep = folio_ptep; 4757 nr_pages = nr; 4758 entry = folio->swap; 4759 page = &folio->page; 4760 } 4761 4762 check_folio: 4763 /* 4764 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4765 * must never point at an anonymous page in the swapcache that is 4766 * PG_anon_exclusive. Sanity check that this holds and especially, that 4767 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4768 * check after taking the PT lock and making sure that nobody 4769 * concurrently faulted in this page and set PG_anon_exclusive. 4770 */ 4771 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4772 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4773 4774 /* 4775 * Check under PT lock (to protect against concurrent fork() sharing 4776 * the swap entry concurrently) for certainly exclusive pages. 4777 */ 4778 if (!folio_test_ksm(folio)) { 4779 exclusive = pte_swp_exclusive(vmf->orig_pte); 4780 if (folio != swapcache) { 4781 /* 4782 * We have a fresh page that is not exposed to the 4783 * swapcache -> certainly exclusive. 4784 */ 4785 exclusive = true; 4786 } else if (exclusive && folio_test_writeback(folio) && 4787 data_race(si->flags & SWP_STABLE_WRITES)) { 4788 /* 4789 * This is tricky: not all swap backends support 4790 * concurrent page modifications while under writeback. 4791 * 4792 * So if we stumble over such a page in the swapcache 4793 * we must not set the page exclusive, otherwise we can 4794 * map it writable without further checks and modify it 4795 * while still under writeback. 4796 * 4797 * For these problematic swap backends, simply drop the 4798 * exclusive marker: this is perfectly fine as we start 4799 * writeback only if we fully unmapped the page and 4800 * there are no unexpected references on the page after 4801 * unmapping succeeded. After fully unmapped, no 4802 * further GUP references (FOLL_GET and FOLL_PIN) can 4803 * appear, so dropping the exclusive marker and mapping 4804 * it only R/O is fine. 4805 */ 4806 exclusive = false; 4807 } 4808 } 4809 4810 /* 4811 * Some architectures may have to restore extra metadata to the page 4812 * when reading from swap. This metadata may be indexed by swap entry 4813 * so this must be called before swap_free(). 4814 */ 4815 arch_swap_restore(folio_swap(entry, folio), folio); 4816 4817 /* 4818 * Remove the swap entry and conditionally try to free up the swapcache. 4819 * We're already holding a reference on the page but haven't mapped it 4820 * yet. 4821 */ 4822 swap_free_nr(entry, nr_pages); 4823 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4824 folio_free_swap(folio); 4825 4826 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4827 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4828 pte = mk_pte(page, vma->vm_page_prot); 4829 if (pte_swp_soft_dirty(vmf->orig_pte)) 4830 pte = pte_mksoft_dirty(pte); 4831 if (pte_swp_uffd_wp(vmf->orig_pte)) 4832 pte = pte_mkuffd_wp(pte); 4833 4834 /* 4835 * Same logic as in do_wp_page(); however, optimize for pages that are 4836 * certainly not shared either because we just allocated them without 4837 * exposing them to the swapcache or because the swap entry indicates 4838 * exclusivity. 4839 */ 4840 if (!folio_test_ksm(folio) && 4841 (exclusive || folio_ref_count(folio) == 1)) { 4842 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4843 !pte_needs_soft_dirty_wp(vma, pte)) { 4844 pte = pte_mkwrite(pte, vma); 4845 if (vmf->flags & FAULT_FLAG_WRITE) { 4846 pte = pte_mkdirty(pte); 4847 vmf->flags &= ~FAULT_FLAG_WRITE; 4848 } 4849 } 4850 rmap_flags |= RMAP_EXCLUSIVE; 4851 } 4852 folio_ref_add(folio, nr_pages - 1); 4853 flush_icache_pages(vma, page, nr_pages); 4854 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4855 4856 /* ksm created a completely new copy */ 4857 if (unlikely(folio != swapcache && swapcache)) { 4858 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4859 folio_add_lru_vma(folio, vma); 4860 } else if (!folio_test_anon(folio)) { 4861 /* 4862 * We currently only expect small !anon folios which are either 4863 * fully exclusive or fully shared, or new allocated large 4864 * folios which are fully exclusive. If we ever get large 4865 * folios within swapcache here, we have to be careful. 4866 */ 4867 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4868 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4869 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4870 } else { 4871 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4872 rmap_flags); 4873 } 4874 4875 VM_BUG_ON(!folio_test_anon(folio) || 4876 (pte_write(pte) && !PageAnonExclusive(page))); 4877 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4878 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4879 pte, pte, nr_pages); 4880 4881 folio_unlock(folio); 4882 if (folio != swapcache && swapcache) { 4883 /* 4884 * Hold the lock to avoid the swap entry to be reused 4885 * until we take the PT lock for the pte_same() check 4886 * (to avoid false positives from pte_same). For 4887 * further safety release the lock after the swap_free 4888 * so that the swap count won't change under a 4889 * parallel locked swapcache. 4890 */ 4891 folio_unlock(swapcache); 4892 folio_put(swapcache); 4893 } 4894 4895 if (vmf->flags & FAULT_FLAG_WRITE) { 4896 ret |= do_wp_page(vmf); 4897 if (ret & VM_FAULT_ERROR) 4898 ret &= VM_FAULT_ERROR; 4899 goto out; 4900 } 4901 4902 /* No need to invalidate - it was non-present before */ 4903 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4904 unlock: 4905 if (vmf->pte) 4906 pte_unmap_unlock(vmf->pte, vmf->ptl); 4907 out: 4908 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4909 if (need_clear_cache) { 4910 swapcache_clear(si, entry, nr_pages); 4911 if (waitqueue_active(&swapcache_wq)) 4912 wake_up(&swapcache_wq); 4913 } 4914 if (si) 4915 put_swap_device(si); 4916 return ret; 4917 out_nomap: 4918 if (vmf->pte) 4919 pte_unmap_unlock(vmf->pte, vmf->ptl); 4920 out_page: 4921 folio_unlock(folio); 4922 out_release: 4923 folio_put(folio); 4924 if (folio != swapcache && swapcache) { 4925 folio_unlock(swapcache); 4926 folio_put(swapcache); 4927 } 4928 if (need_clear_cache) { 4929 swapcache_clear(si, entry, nr_pages); 4930 if (waitqueue_active(&swapcache_wq)) 4931 wake_up(&swapcache_wq); 4932 } 4933 if (si) 4934 put_swap_device(si); 4935 return ret; 4936 } 4937 4938 static bool pte_range_none(pte_t *pte, int nr_pages) 4939 { 4940 int i; 4941 4942 for (i = 0; i < nr_pages; i++) { 4943 if (!pte_none(ptep_get_lockless(pte + i))) 4944 return false; 4945 } 4946 4947 return true; 4948 } 4949 4950 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4951 { 4952 struct vm_area_struct *vma = vmf->vma; 4953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4954 unsigned long orders; 4955 struct folio *folio; 4956 unsigned long addr; 4957 pte_t *pte; 4958 gfp_t gfp; 4959 int order; 4960 4961 /* 4962 * If uffd is active for the vma we need per-page fault fidelity to 4963 * maintain the uffd semantics. 4964 */ 4965 if (unlikely(userfaultfd_armed(vma))) 4966 goto fallback; 4967 4968 /* 4969 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4970 * for this vma. Then filter out the orders that can't be allocated over 4971 * the faulting address and still be fully contained in the vma. 4972 */ 4973 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4974 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4975 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4976 4977 if (!orders) 4978 goto fallback; 4979 4980 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4981 if (!pte) 4982 return ERR_PTR(-EAGAIN); 4983 4984 /* 4985 * Find the highest order where the aligned range is completely 4986 * pte_none(). Note that all remaining orders will be completely 4987 * pte_none(). 4988 */ 4989 order = highest_order(orders); 4990 while (orders) { 4991 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4992 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4993 break; 4994 order = next_order(&orders, order); 4995 } 4996 4997 pte_unmap(pte); 4998 4999 if (!orders) 5000 goto fallback; 5001 5002 /* Try allocating the highest of the remaining orders. */ 5003 gfp = vma_thp_gfp_mask(vma); 5004 while (orders) { 5005 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5006 folio = vma_alloc_folio(gfp, order, vma, addr); 5007 if (folio) { 5008 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5009 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5010 folio_put(folio); 5011 goto next; 5012 } 5013 folio_throttle_swaprate(folio, gfp); 5014 /* 5015 * When a folio is not zeroed during allocation 5016 * (__GFP_ZERO not used) or user folios require special 5017 * handling, folio_zero_user() is used to make sure 5018 * that the page corresponding to the faulting address 5019 * will be hot in the cache after zeroing. 5020 */ 5021 if (user_alloc_needs_zeroing()) 5022 folio_zero_user(folio, vmf->address); 5023 return folio; 5024 } 5025 next: 5026 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5027 order = next_order(&orders, order); 5028 } 5029 5030 fallback: 5031 #endif 5032 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5033 } 5034 5035 /* 5036 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5037 * but allow concurrent faults), and pte mapped but not yet locked. 5038 * We return with mmap_lock still held, but pte unmapped and unlocked. 5039 */ 5040 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5041 { 5042 struct vm_area_struct *vma = vmf->vma; 5043 unsigned long addr = vmf->address; 5044 struct folio *folio; 5045 vm_fault_t ret = 0; 5046 int nr_pages = 1; 5047 pte_t entry; 5048 5049 /* File mapping without ->vm_ops ? */ 5050 if (vma->vm_flags & VM_SHARED) 5051 return VM_FAULT_SIGBUS; 5052 5053 /* 5054 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5055 * be distinguished from a transient failure of pte_offset_map(). 5056 */ 5057 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5058 return VM_FAULT_OOM; 5059 5060 /* Use the zero-page for reads */ 5061 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5062 !mm_forbids_zeropage(vma->vm_mm)) { 5063 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5064 vma->vm_page_prot)); 5065 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5066 vmf->address, &vmf->ptl); 5067 if (!vmf->pte) 5068 goto unlock; 5069 if (vmf_pte_changed(vmf)) { 5070 update_mmu_tlb(vma, vmf->address, vmf->pte); 5071 goto unlock; 5072 } 5073 ret = check_stable_address_space(vma->vm_mm); 5074 if (ret) 5075 goto unlock; 5076 /* Deliver the page fault to userland, check inside PT lock */ 5077 if (userfaultfd_missing(vma)) { 5078 pte_unmap_unlock(vmf->pte, vmf->ptl); 5079 return handle_userfault(vmf, VM_UFFD_MISSING); 5080 } 5081 goto setpte; 5082 } 5083 5084 /* Allocate our own private page. */ 5085 ret = vmf_anon_prepare(vmf); 5086 if (ret) 5087 return ret; 5088 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5089 folio = alloc_anon_folio(vmf); 5090 if (IS_ERR(folio)) 5091 return 0; 5092 if (!folio) 5093 goto oom; 5094 5095 nr_pages = folio_nr_pages(folio); 5096 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5097 5098 /* 5099 * The memory barrier inside __folio_mark_uptodate makes sure that 5100 * preceding stores to the page contents become visible before 5101 * the set_pte_at() write. 5102 */ 5103 __folio_mark_uptodate(folio); 5104 5105 entry = folio_mk_pte(folio, vma->vm_page_prot); 5106 entry = pte_sw_mkyoung(entry); 5107 if (vma->vm_flags & VM_WRITE) 5108 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5109 5110 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5111 if (!vmf->pte) 5112 goto release; 5113 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5114 update_mmu_tlb(vma, addr, vmf->pte); 5115 goto release; 5116 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5117 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5118 goto release; 5119 } 5120 5121 ret = check_stable_address_space(vma->vm_mm); 5122 if (ret) 5123 goto release; 5124 5125 /* Deliver the page fault to userland, check inside PT lock */ 5126 if (userfaultfd_missing(vma)) { 5127 pte_unmap_unlock(vmf->pte, vmf->ptl); 5128 folio_put(folio); 5129 return handle_userfault(vmf, VM_UFFD_MISSING); 5130 } 5131 5132 folio_ref_add(folio, nr_pages - 1); 5133 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5134 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5135 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5136 folio_add_lru_vma(folio, vma); 5137 setpte: 5138 if (vmf_orig_pte_uffd_wp(vmf)) 5139 entry = pte_mkuffd_wp(entry); 5140 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5141 5142 /* No need to invalidate - it was non-present before */ 5143 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5144 unlock: 5145 if (vmf->pte) 5146 pte_unmap_unlock(vmf->pte, vmf->ptl); 5147 return ret; 5148 release: 5149 folio_put(folio); 5150 goto unlock; 5151 oom: 5152 return VM_FAULT_OOM; 5153 } 5154 5155 /* 5156 * The mmap_lock must have been held on entry, and may have been 5157 * released depending on flags and vma->vm_ops->fault() return value. 5158 * See filemap_fault() and __lock_page_retry(). 5159 */ 5160 static vm_fault_t __do_fault(struct vm_fault *vmf) 5161 { 5162 struct vm_area_struct *vma = vmf->vma; 5163 struct folio *folio; 5164 vm_fault_t ret; 5165 5166 /* 5167 * Preallocate pte before we take page_lock because this might lead to 5168 * deadlocks for memcg reclaim which waits for pages under writeback: 5169 * lock_page(A) 5170 * SetPageWriteback(A) 5171 * unlock_page(A) 5172 * lock_page(B) 5173 * lock_page(B) 5174 * pte_alloc_one 5175 * shrink_folio_list 5176 * wait_on_page_writeback(A) 5177 * SetPageWriteback(B) 5178 * unlock_page(B) 5179 * # flush A, B to clear the writeback 5180 */ 5181 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5182 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5183 if (!vmf->prealloc_pte) 5184 return VM_FAULT_OOM; 5185 } 5186 5187 ret = vma->vm_ops->fault(vmf); 5188 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5189 VM_FAULT_DONE_COW))) 5190 return ret; 5191 5192 folio = page_folio(vmf->page); 5193 if (unlikely(PageHWPoison(vmf->page))) { 5194 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5195 if (ret & VM_FAULT_LOCKED) { 5196 if (page_mapped(vmf->page)) 5197 unmap_mapping_folio(folio); 5198 /* Retry if a clean folio was removed from the cache. */ 5199 if (mapping_evict_folio(folio->mapping, folio)) 5200 poisonret = VM_FAULT_NOPAGE; 5201 folio_unlock(folio); 5202 } 5203 folio_put(folio); 5204 vmf->page = NULL; 5205 return poisonret; 5206 } 5207 5208 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5209 folio_lock(folio); 5210 else 5211 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5212 5213 return ret; 5214 } 5215 5216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5217 static void deposit_prealloc_pte(struct vm_fault *vmf) 5218 { 5219 struct vm_area_struct *vma = vmf->vma; 5220 5221 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5222 /* 5223 * We are going to consume the prealloc table, 5224 * count that as nr_ptes. 5225 */ 5226 mm_inc_nr_ptes(vma->vm_mm); 5227 vmf->prealloc_pte = NULL; 5228 } 5229 5230 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5231 { 5232 struct vm_area_struct *vma = vmf->vma; 5233 bool write = vmf->flags & FAULT_FLAG_WRITE; 5234 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5235 pmd_t entry; 5236 vm_fault_t ret = VM_FAULT_FALLBACK; 5237 5238 /* 5239 * It is too late to allocate a small folio, we already have a large 5240 * folio in the pagecache: especially s390 KVM cannot tolerate any 5241 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5242 * PMD mappings if THPs are disabled. 5243 */ 5244 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5245 return ret; 5246 5247 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5248 return ret; 5249 5250 if (folio_order(folio) != HPAGE_PMD_ORDER) 5251 return ret; 5252 page = &folio->page; 5253 5254 /* 5255 * Just backoff if any subpage of a THP is corrupted otherwise 5256 * the corrupted page may mapped by PMD silently to escape the 5257 * check. This kind of THP just can be PTE mapped. Access to 5258 * the corrupted subpage should trigger SIGBUS as expected. 5259 */ 5260 if (unlikely(folio_test_has_hwpoisoned(folio))) 5261 return ret; 5262 5263 /* 5264 * Archs like ppc64 need additional space to store information 5265 * related to pte entry. Use the preallocated table for that. 5266 */ 5267 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5268 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5269 if (!vmf->prealloc_pte) 5270 return VM_FAULT_OOM; 5271 } 5272 5273 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5274 if (unlikely(!pmd_none(*vmf->pmd))) 5275 goto out; 5276 5277 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5278 5279 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5280 if (write) 5281 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5282 5283 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5284 folio_add_file_rmap_pmd(folio, page, vma); 5285 5286 /* 5287 * deposit and withdraw with pmd lock held 5288 */ 5289 if (arch_needs_pgtable_deposit()) 5290 deposit_prealloc_pte(vmf); 5291 5292 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5293 5294 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5295 5296 /* fault is handled */ 5297 ret = 0; 5298 count_vm_event(THP_FILE_MAPPED); 5299 out: 5300 spin_unlock(vmf->ptl); 5301 return ret; 5302 } 5303 #else 5304 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5305 { 5306 return VM_FAULT_FALLBACK; 5307 } 5308 #endif 5309 5310 /** 5311 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5312 * @vmf: Fault decription. 5313 * @folio: The folio that contains @page. 5314 * @page: The first page to create a PTE for. 5315 * @nr: The number of PTEs to create. 5316 * @addr: The first address to create a PTE for. 5317 */ 5318 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5319 struct page *page, unsigned int nr, unsigned long addr) 5320 { 5321 struct vm_area_struct *vma = vmf->vma; 5322 bool write = vmf->flags & FAULT_FLAG_WRITE; 5323 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5324 pte_t entry; 5325 5326 flush_icache_pages(vma, page, nr); 5327 entry = mk_pte(page, vma->vm_page_prot); 5328 5329 if (prefault && arch_wants_old_prefaulted_pte()) 5330 entry = pte_mkold(entry); 5331 else 5332 entry = pte_sw_mkyoung(entry); 5333 5334 if (write) 5335 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5336 else if (pte_write(entry) && folio_test_dirty(folio)) 5337 entry = pte_mkdirty(entry); 5338 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5339 entry = pte_mkuffd_wp(entry); 5340 /* copy-on-write page */ 5341 if (write && !(vma->vm_flags & VM_SHARED)) { 5342 VM_BUG_ON_FOLIO(nr != 1, folio); 5343 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5344 folio_add_lru_vma(folio, vma); 5345 } else { 5346 folio_add_file_rmap_ptes(folio, page, nr, vma); 5347 } 5348 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5349 5350 /* no need to invalidate: a not-present page won't be cached */ 5351 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5352 } 5353 5354 static bool vmf_pte_changed(struct vm_fault *vmf) 5355 { 5356 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5357 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5358 5359 return !pte_none(ptep_get(vmf->pte)); 5360 } 5361 5362 /** 5363 * finish_fault - finish page fault once we have prepared the page to fault 5364 * 5365 * @vmf: structure describing the fault 5366 * 5367 * This function handles all that is needed to finish a page fault once the 5368 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5369 * given page, adds reverse page mapping, handles memcg charges and LRU 5370 * addition. 5371 * 5372 * The function expects the page to be locked and on success it consumes a 5373 * reference of a page being mapped (for the PTE which maps it). 5374 * 5375 * Return: %0 on success, %VM_FAULT_ code in case of error. 5376 */ 5377 vm_fault_t finish_fault(struct vm_fault *vmf) 5378 { 5379 struct vm_area_struct *vma = vmf->vma; 5380 struct page *page; 5381 struct folio *folio; 5382 vm_fault_t ret; 5383 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5384 !(vma->vm_flags & VM_SHARED); 5385 int type, nr_pages; 5386 unsigned long addr; 5387 bool needs_fallback = false; 5388 5389 fallback: 5390 addr = vmf->address; 5391 5392 /* Did we COW the page? */ 5393 if (is_cow) 5394 page = vmf->cow_page; 5395 else 5396 page = vmf->page; 5397 5398 folio = page_folio(page); 5399 /* 5400 * check even for read faults because we might have lost our CoWed 5401 * page 5402 */ 5403 if (!(vma->vm_flags & VM_SHARED)) { 5404 ret = check_stable_address_space(vma->vm_mm); 5405 if (ret) 5406 return ret; 5407 } 5408 5409 if (pmd_none(*vmf->pmd)) { 5410 if (folio_test_pmd_mappable(folio)) { 5411 ret = do_set_pmd(vmf, folio, page); 5412 if (ret != VM_FAULT_FALLBACK) 5413 return ret; 5414 } 5415 5416 if (vmf->prealloc_pte) 5417 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5418 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5419 return VM_FAULT_OOM; 5420 } 5421 5422 nr_pages = folio_nr_pages(folio); 5423 5424 /* 5425 * Using per-page fault to maintain the uffd semantics, and same 5426 * approach also applies to non-anonymous-shmem faults to avoid 5427 * inflating the RSS of the process. 5428 */ 5429 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5430 unlikely(needs_fallback)) { 5431 nr_pages = 1; 5432 } else if (nr_pages > 1) { 5433 pgoff_t idx = folio_page_idx(folio, page); 5434 /* The page offset of vmf->address within the VMA. */ 5435 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5436 /* The index of the entry in the pagetable for fault page. */ 5437 pgoff_t pte_off = pte_index(vmf->address); 5438 5439 /* 5440 * Fallback to per-page fault in case the folio size in page 5441 * cache beyond the VMA limits and PMD pagetable limits. 5442 */ 5443 if (unlikely(vma_off < idx || 5444 vma_off + (nr_pages - idx) > vma_pages(vma) || 5445 pte_off < idx || 5446 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5447 nr_pages = 1; 5448 } else { 5449 /* Now we can set mappings for the whole large folio. */ 5450 addr = vmf->address - idx * PAGE_SIZE; 5451 page = &folio->page; 5452 } 5453 } 5454 5455 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5456 addr, &vmf->ptl); 5457 if (!vmf->pte) 5458 return VM_FAULT_NOPAGE; 5459 5460 /* Re-check under ptl */ 5461 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5462 update_mmu_tlb(vma, addr, vmf->pte); 5463 ret = VM_FAULT_NOPAGE; 5464 goto unlock; 5465 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5466 needs_fallback = true; 5467 pte_unmap_unlock(vmf->pte, vmf->ptl); 5468 goto fallback; 5469 } 5470 5471 folio_ref_add(folio, nr_pages - 1); 5472 set_pte_range(vmf, folio, page, nr_pages, addr); 5473 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5474 add_mm_counter(vma->vm_mm, type, nr_pages); 5475 ret = 0; 5476 5477 unlock: 5478 pte_unmap_unlock(vmf->pte, vmf->ptl); 5479 return ret; 5480 } 5481 5482 static unsigned long fault_around_pages __read_mostly = 5483 65536 >> PAGE_SHIFT; 5484 5485 #ifdef CONFIG_DEBUG_FS 5486 static int fault_around_bytes_get(void *data, u64 *val) 5487 { 5488 *val = fault_around_pages << PAGE_SHIFT; 5489 return 0; 5490 } 5491 5492 /* 5493 * fault_around_bytes must be rounded down to the nearest page order as it's 5494 * what do_fault_around() expects to see. 5495 */ 5496 static int fault_around_bytes_set(void *data, u64 val) 5497 { 5498 if (val / PAGE_SIZE > PTRS_PER_PTE) 5499 return -EINVAL; 5500 5501 /* 5502 * The minimum value is 1 page, however this results in no fault-around 5503 * at all. See should_fault_around(). 5504 */ 5505 val = max(val, PAGE_SIZE); 5506 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5507 5508 return 0; 5509 } 5510 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5511 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5512 5513 static int __init fault_around_debugfs(void) 5514 { 5515 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5516 &fault_around_bytes_fops); 5517 return 0; 5518 } 5519 late_initcall(fault_around_debugfs); 5520 #endif 5521 5522 /* 5523 * do_fault_around() tries to map few pages around the fault address. The hope 5524 * is that the pages will be needed soon and this will lower the number of 5525 * faults to handle. 5526 * 5527 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5528 * not ready to be mapped: not up-to-date, locked, etc. 5529 * 5530 * This function doesn't cross VMA or page table boundaries, in order to call 5531 * map_pages() and acquire a PTE lock only once. 5532 * 5533 * fault_around_pages defines how many pages we'll try to map. 5534 * do_fault_around() expects it to be set to a power of two less than or equal 5535 * to PTRS_PER_PTE. 5536 * 5537 * The virtual address of the area that we map is naturally aligned to 5538 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5539 * (and therefore to page order). This way it's easier to guarantee 5540 * that we don't cross page table boundaries. 5541 */ 5542 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5543 { 5544 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5545 pgoff_t pte_off = pte_index(vmf->address); 5546 /* The page offset of vmf->address within the VMA. */ 5547 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5548 pgoff_t from_pte, to_pte; 5549 vm_fault_t ret; 5550 5551 /* The PTE offset of the start address, clamped to the VMA. */ 5552 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5553 pte_off - min(pte_off, vma_off)); 5554 5555 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5556 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5557 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5558 5559 if (pmd_none(*vmf->pmd)) { 5560 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5561 if (!vmf->prealloc_pte) 5562 return VM_FAULT_OOM; 5563 } 5564 5565 rcu_read_lock(); 5566 ret = vmf->vma->vm_ops->map_pages(vmf, 5567 vmf->pgoff + from_pte - pte_off, 5568 vmf->pgoff + to_pte - pte_off); 5569 rcu_read_unlock(); 5570 5571 return ret; 5572 } 5573 5574 /* Return true if we should do read fault-around, false otherwise */ 5575 static inline bool should_fault_around(struct vm_fault *vmf) 5576 { 5577 /* No ->map_pages? No way to fault around... */ 5578 if (!vmf->vma->vm_ops->map_pages) 5579 return false; 5580 5581 if (uffd_disable_fault_around(vmf->vma)) 5582 return false; 5583 5584 /* A single page implies no faulting 'around' at all. */ 5585 return fault_around_pages > 1; 5586 } 5587 5588 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5589 { 5590 vm_fault_t ret = 0; 5591 struct folio *folio; 5592 5593 /* 5594 * Let's call ->map_pages() first and use ->fault() as fallback 5595 * if page by the offset is not ready to be mapped (cold cache or 5596 * something). 5597 */ 5598 if (should_fault_around(vmf)) { 5599 ret = do_fault_around(vmf); 5600 if (ret) 5601 return ret; 5602 } 5603 5604 ret = vmf_can_call_fault(vmf); 5605 if (ret) 5606 return ret; 5607 5608 ret = __do_fault(vmf); 5609 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5610 return ret; 5611 5612 ret |= finish_fault(vmf); 5613 folio = page_folio(vmf->page); 5614 folio_unlock(folio); 5615 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5616 folio_put(folio); 5617 return ret; 5618 } 5619 5620 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5621 { 5622 struct vm_area_struct *vma = vmf->vma; 5623 struct folio *folio; 5624 vm_fault_t ret; 5625 5626 ret = vmf_can_call_fault(vmf); 5627 if (!ret) 5628 ret = vmf_anon_prepare(vmf); 5629 if (ret) 5630 return ret; 5631 5632 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5633 if (!folio) 5634 return VM_FAULT_OOM; 5635 5636 vmf->cow_page = &folio->page; 5637 5638 ret = __do_fault(vmf); 5639 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5640 goto uncharge_out; 5641 if (ret & VM_FAULT_DONE_COW) 5642 return ret; 5643 5644 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5645 ret = VM_FAULT_HWPOISON; 5646 goto unlock; 5647 } 5648 __folio_mark_uptodate(folio); 5649 5650 ret |= finish_fault(vmf); 5651 unlock: 5652 unlock_page(vmf->page); 5653 put_page(vmf->page); 5654 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5655 goto uncharge_out; 5656 return ret; 5657 uncharge_out: 5658 folio_put(folio); 5659 return ret; 5660 } 5661 5662 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5663 { 5664 struct vm_area_struct *vma = vmf->vma; 5665 vm_fault_t ret, tmp; 5666 struct folio *folio; 5667 5668 ret = vmf_can_call_fault(vmf); 5669 if (ret) 5670 return ret; 5671 5672 ret = __do_fault(vmf); 5673 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5674 return ret; 5675 5676 folio = page_folio(vmf->page); 5677 5678 /* 5679 * Check if the backing address space wants to know that the page is 5680 * about to become writable 5681 */ 5682 if (vma->vm_ops->page_mkwrite) { 5683 folio_unlock(folio); 5684 tmp = do_page_mkwrite(vmf, folio); 5685 if (unlikely(!tmp || 5686 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5687 folio_put(folio); 5688 return tmp; 5689 } 5690 } 5691 5692 ret |= finish_fault(vmf); 5693 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5694 VM_FAULT_RETRY))) { 5695 folio_unlock(folio); 5696 folio_put(folio); 5697 return ret; 5698 } 5699 5700 ret |= fault_dirty_shared_page(vmf); 5701 return ret; 5702 } 5703 5704 /* 5705 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5706 * but allow concurrent faults). 5707 * The mmap_lock may have been released depending on flags and our 5708 * return value. See filemap_fault() and __folio_lock_or_retry(). 5709 * If mmap_lock is released, vma may become invalid (for example 5710 * by other thread calling munmap()). 5711 */ 5712 static vm_fault_t do_fault(struct vm_fault *vmf) 5713 { 5714 struct vm_area_struct *vma = vmf->vma; 5715 struct mm_struct *vm_mm = vma->vm_mm; 5716 vm_fault_t ret; 5717 5718 /* 5719 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5720 */ 5721 if (!vma->vm_ops->fault) { 5722 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5723 vmf->address, &vmf->ptl); 5724 if (unlikely(!vmf->pte)) 5725 ret = VM_FAULT_SIGBUS; 5726 else { 5727 /* 5728 * Make sure this is not a temporary clearing of pte 5729 * by holding ptl and checking again. A R/M/W update 5730 * of pte involves: take ptl, clearing the pte so that 5731 * we don't have concurrent modification by hardware 5732 * followed by an update. 5733 */ 5734 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5735 ret = VM_FAULT_SIGBUS; 5736 else 5737 ret = VM_FAULT_NOPAGE; 5738 5739 pte_unmap_unlock(vmf->pte, vmf->ptl); 5740 } 5741 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5742 ret = do_read_fault(vmf); 5743 else if (!(vma->vm_flags & VM_SHARED)) 5744 ret = do_cow_fault(vmf); 5745 else 5746 ret = do_shared_fault(vmf); 5747 5748 /* preallocated pagetable is unused: free it */ 5749 if (vmf->prealloc_pte) { 5750 pte_free(vm_mm, vmf->prealloc_pte); 5751 vmf->prealloc_pte = NULL; 5752 } 5753 return ret; 5754 } 5755 5756 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5757 unsigned long addr, int *flags, 5758 bool writable, int *last_cpupid) 5759 { 5760 struct vm_area_struct *vma = vmf->vma; 5761 5762 /* 5763 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5764 * much anyway since they can be in shared cache state. This misses 5765 * the case where a mapping is writable but the process never writes 5766 * to it but pte_write gets cleared during protection updates and 5767 * pte_dirty has unpredictable behaviour between PTE scan updates, 5768 * background writeback, dirty balancing and application behaviour. 5769 */ 5770 if (!writable) 5771 *flags |= TNF_NO_GROUP; 5772 5773 /* 5774 * Flag if the folio is shared between multiple address spaces. This 5775 * is later used when determining whether to group tasks together 5776 */ 5777 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5778 *flags |= TNF_SHARED; 5779 /* 5780 * For memory tiering mode, cpupid of slow memory page is used 5781 * to record page access time. So use default value. 5782 */ 5783 if (folio_use_access_time(folio)) 5784 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5785 else 5786 *last_cpupid = folio_last_cpupid(folio); 5787 5788 /* Record the current PID acceesing VMA */ 5789 vma_set_access_pid_bit(vma); 5790 5791 count_vm_numa_event(NUMA_HINT_FAULTS); 5792 #ifdef CONFIG_NUMA_BALANCING 5793 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5794 #endif 5795 if (folio_nid(folio) == numa_node_id()) { 5796 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5797 *flags |= TNF_FAULT_LOCAL; 5798 } 5799 5800 return mpol_misplaced(folio, vmf, addr); 5801 } 5802 5803 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5804 unsigned long fault_addr, pte_t *fault_pte, 5805 bool writable) 5806 { 5807 pte_t pte, old_pte; 5808 5809 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5810 pte = pte_modify(old_pte, vma->vm_page_prot); 5811 pte = pte_mkyoung(pte); 5812 if (writable) 5813 pte = pte_mkwrite(pte, vma); 5814 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5815 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5816 } 5817 5818 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5819 struct folio *folio, pte_t fault_pte, 5820 bool ignore_writable, bool pte_write_upgrade) 5821 { 5822 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5823 unsigned long start, end, addr = vmf->address; 5824 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5825 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5826 pte_t *start_ptep; 5827 5828 /* Stay within the VMA and within the page table. */ 5829 start = max3(addr_start, pt_start, vma->vm_start); 5830 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5831 vma->vm_end); 5832 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5833 5834 /* Restore all PTEs' mapping of the large folio */ 5835 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5836 pte_t ptent = ptep_get(start_ptep); 5837 bool writable = false; 5838 5839 if (!pte_present(ptent) || !pte_protnone(ptent)) 5840 continue; 5841 5842 if (pfn_folio(pte_pfn(ptent)) != folio) 5843 continue; 5844 5845 if (!ignore_writable) { 5846 ptent = pte_modify(ptent, vma->vm_page_prot); 5847 writable = pte_write(ptent); 5848 if (!writable && pte_write_upgrade && 5849 can_change_pte_writable(vma, addr, ptent)) 5850 writable = true; 5851 } 5852 5853 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5854 } 5855 } 5856 5857 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5858 { 5859 struct vm_area_struct *vma = vmf->vma; 5860 struct folio *folio = NULL; 5861 int nid = NUMA_NO_NODE; 5862 bool writable = false, ignore_writable = false; 5863 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5864 int last_cpupid; 5865 int target_nid; 5866 pte_t pte, old_pte; 5867 int flags = 0, nr_pages; 5868 5869 /* 5870 * The pte cannot be used safely until we verify, while holding the page 5871 * table lock, that its contents have not changed during fault handling. 5872 */ 5873 spin_lock(vmf->ptl); 5874 /* Read the live PTE from the page tables: */ 5875 old_pte = ptep_get(vmf->pte); 5876 5877 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5878 pte_unmap_unlock(vmf->pte, vmf->ptl); 5879 return 0; 5880 } 5881 5882 pte = pte_modify(old_pte, vma->vm_page_prot); 5883 5884 /* 5885 * Detect now whether the PTE could be writable; this information 5886 * is only valid while holding the PT lock. 5887 */ 5888 writable = pte_write(pte); 5889 if (!writable && pte_write_upgrade && 5890 can_change_pte_writable(vma, vmf->address, pte)) 5891 writable = true; 5892 5893 folio = vm_normal_folio(vma, vmf->address, pte); 5894 if (!folio || folio_is_zone_device(folio)) 5895 goto out_map; 5896 5897 nid = folio_nid(folio); 5898 nr_pages = folio_nr_pages(folio); 5899 5900 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5901 writable, &last_cpupid); 5902 if (target_nid == NUMA_NO_NODE) 5903 goto out_map; 5904 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5905 flags |= TNF_MIGRATE_FAIL; 5906 goto out_map; 5907 } 5908 /* The folio is isolated and isolation code holds a folio reference. */ 5909 pte_unmap_unlock(vmf->pte, vmf->ptl); 5910 writable = false; 5911 ignore_writable = true; 5912 5913 /* Migrate to the requested node */ 5914 if (!migrate_misplaced_folio(folio, target_nid)) { 5915 nid = target_nid; 5916 flags |= TNF_MIGRATED; 5917 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5918 return 0; 5919 } 5920 5921 flags |= TNF_MIGRATE_FAIL; 5922 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5923 vmf->address, &vmf->ptl); 5924 if (unlikely(!vmf->pte)) 5925 return 0; 5926 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5927 pte_unmap_unlock(vmf->pte, vmf->ptl); 5928 return 0; 5929 } 5930 out_map: 5931 /* 5932 * Make it present again, depending on how arch implements 5933 * non-accessible ptes, some can allow access by kernel mode. 5934 */ 5935 if (folio && folio_test_large(folio)) 5936 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5937 pte_write_upgrade); 5938 else 5939 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5940 writable); 5941 pte_unmap_unlock(vmf->pte, vmf->ptl); 5942 5943 if (nid != NUMA_NO_NODE) 5944 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5945 return 0; 5946 } 5947 5948 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5949 { 5950 struct vm_area_struct *vma = vmf->vma; 5951 if (vma_is_anonymous(vma)) 5952 return do_huge_pmd_anonymous_page(vmf); 5953 if (vma->vm_ops->huge_fault) 5954 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5955 return VM_FAULT_FALLBACK; 5956 } 5957 5958 /* `inline' is required to avoid gcc 4.1.2 build error */ 5959 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5960 { 5961 struct vm_area_struct *vma = vmf->vma; 5962 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5963 vm_fault_t ret; 5964 5965 if (vma_is_anonymous(vma)) { 5966 if (likely(!unshare) && 5967 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5968 if (userfaultfd_wp_async(vmf->vma)) 5969 goto split; 5970 return handle_userfault(vmf, VM_UFFD_WP); 5971 } 5972 return do_huge_pmd_wp_page(vmf); 5973 } 5974 5975 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5976 if (vma->vm_ops->huge_fault) { 5977 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5978 if (!(ret & VM_FAULT_FALLBACK)) 5979 return ret; 5980 } 5981 } 5982 5983 split: 5984 /* COW or write-notify handled on pte level: split pmd. */ 5985 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 5986 5987 return VM_FAULT_FALLBACK; 5988 } 5989 5990 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5991 { 5992 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5993 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5994 struct vm_area_struct *vma = vmf->vma; 5995 /* No support for anonymous transparent PUD pages yet */ 5996 if (vma_is_anonymous(vma)) 5997 return VM_FAULT_FALLBACK; 5998 if (vma->vm_ops->huge_fault) 5999 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6000 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6001 return VM_FAULT_FALLBACK; 6002 } 6003 6004 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6005 { 6006 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6007 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6008 struct vm_area_struct *vma = vmf->vma; 6009 vm_fault_t ret; 6010 6011 /* No support for anonymous transparent PUD pages yet */ 6012 if (vma_is_anonymous(vma)) 6013 goto split; 6014 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6015 if (vma->vm_ops->huge_fault) { 6016 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6017 if (!(ret & VM_FAULT_FALLBACK)) 6018 return ret; 6019 } 6020 } 6021 split: 6022 /* COW or write-notify not handled on PUD level: split pud.*/ 6023 __split_huge_pud(vma, vmf->pud, vmf->address); 6024 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6025 return VM_FAULT_FALLBACK; 6026 } 6027 6028 /* 6029 * These routines also need to handle stuff like marking pages dirty 6030 * and/or accessed for architectures that don't do it in hardware (most 6031 * RISC architectures). The early dirtying is also good on the i386. 6032 * 6033 * There is also a hook called "update_mmu_cache()" that architectures 6034 * with external mmu caches can use to update those (ie the Sparc or 6035 * PowerPC hashed page tables that act as extended TLBs). 6036 * 6037 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6038 * concurrent faults). 6039 * 6040 * The mmap_lock may have been released depending on flags and our return value. 6041 * See filemap_fault() and __folio_lock_or_retry(). 6042 */ 6043 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6044 { 6045 pte_t entry; 6046 6047 if (unlikely(pmd_none(*vmf->pmd))) { 6048 /* 6049 * Leave __pte_alloc() until later: because vm_ops->fault may 6050 * want to allocate huge page, and if we expose page table 6051 * for an instant, it will be difficult to retract from 6052 * concurrent faults and from rmap lookups. 6053 */ 6054 vmf->pte = NULL; 6055 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6056 } else { 6057 pmd_t dummy_pmdval; 6058 6059 /* 6060 * A regular pmd is established and it can't morph into a huge 6061 * pmd by anon khugepaged, since that takes mmap_lock in write 6062 * mode; but shmem or file collapse to THP could still morph 6063 * it into a huge pmd: just retry later if so. 6064 * 6065 * Use the maywrite version to indicate that vmf->pte may be 6066 * modified, but since we will use pte_same() to detect the 6067 * change of the !pte_none() entry, there is no need to recheck 6068 * the pmdval. Here we chooes to pass a dummy variable instead 6069 * of NULL, which helps new user think about why this place is 6070 * special. 6071 */ 6072 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6073 vmf->address, &dummy_pmdval, 6074 &vmf->ptl); 6075 if (unlikely(!vmf->pte)) 6076 return 0; 6077 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6078 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6079 6080 if (pte_none(vmf->orig_pte)) { 6081 pte_unmap(vmf->pte); 6082 vmf->pte = NULL; 6083 } 6084 } 6085 6086 if (!vmf->pte) 6087 return do_pte_missing(vmf); 6088 6089 if (!pte_present(vmf->orig_pte)) 6090 return do_swap_page(vmf); 6091 6092 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6093 return do_numa_page(vmf); 6094 6095 spin_lock(vmf->ptl); 6096 entry = vmf->orig_pte; 6097 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6098 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6099 goto unlock; 6100 } 6101 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6102 if (!pte_write(entry)) 6103 return do_wp_page(vmf); 6104 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6105 entry = pte_mkdirty(entry); 6106 } 6107 entry = pte_mkyoung(entry); 6108 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6109 vmf->flags & FAULT_FLAG_WRITE)) { 6110 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6111 vmf->pte, 1); 6112 } else { 6113 /* Skip spurious TLB flush for retried page fault */ 6114 if (vmf->flags & FAULT_FLAG_TRIED) 6115 goto unlock; 6116 /* 6117 * This is needed only for protection faults but the arch code 6118 * is not yet telling us if this is a protection fault or not. 6119 * This still avoids useless tlb flushes for .text page faults 6120 * with threads. 6121 */ 6122 if (vmf->flags & FAULT_FLAG_WRITE) 6123 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6124 vmf->pte); 6125 } 6126 unlock: 6127 pte_unmap_unlock(vmf->pte, vmf->ptl); 6128 return 0; 6129 } 6130 6131 /* 6132 * On entry, we hold either the VMA lock or the mmap_lock 6133 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6134 * the result, the mmap_lock is not held on exit. See filemap_fault() 6135 * and __folio_lock_or_retry(). 6136 */ 6137 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6138 unsigned long address, unsigned int flags) 6139 { 6140 struct vm_fault vmf = { 6141 .vma = vma, 6142 .address = address & PAGE_MASK, 6143 .real_address = address, 6144 .flags = flags, 6145 .pgoff = linear_page_index(vma, address), 6146 .gfp_mask = __get_fault_gfp_mask(vma), 6147 }; 6148 struct mm_struct *mm = vma->vm_mm; 6149 unsigned long vm_flags = vma->vm_flags; 6150 pgd_t *pgd; 6151 p4d_t *p4d; 6152 vm_fault_t ret; 6153 6154 pgd = pgd_offset(mm, address); 6155 p4d = p4d_alloc(mm, pgd, address); 6156 if (!p4d) 6157 return VM_FAULT_OOM; 6158 6159 vmf.pud = pud_alloc(mm, p4d, address); 6160 if (!vmf.pud) 6161 return VM_FAULT_OOM; 6162 retry_pud: 6163 if (pud_none(*vmf.pud) && 6164 thp_vma_allowable_order(vma, vm_flags, 6165 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 6166 ret = create_huge_pud(&vmf); 6167 if (!(ret & VM_FAULT_FALLBACK)) 6168 return ret; 6169 } else { 6170 pud_t orig_pud = *vmf.pud; 6171 6172 barrier(); 6173 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 6174 6175 /* 6176 * TODO once we support anonymous PUDs: NUMA case and 6177 * FAULT_FLAG_UNSHARE handling. 6178 */ 6179 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6180 ret = wp_huge_pud(&vmf, orig_pud); 6181 if (!(ret & VM_FAULT_FALLBACK)) 6182 return ret; 6183 } else { 6184 huge_pud_set_accessed(&vmf, orig_pud); 6185 return 0; 6186 } 6187 } 6188 } 6189 6190 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6191 if (!vmf.pmd) 6192 return VM_FAULT_OOM; 6193 6194 /* Huge pud page fault raced with pmd_alloc? */ 6195 if (pud_trans_unstable(vmf.pud)) 6196 goto retry_pud; 6197 6198 if (pmd_none(*vmf.pmd) && 6199 thp_vma_allowable_order(vma, vm_flags, 6200 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6201 ret = create_huge_pmd(&vmf); 6202 if (!(ret & VM_FAULT_FALLBACK)) 6203 return ret; 6204 } else { 6205 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6206 6207 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6208 VM_BUG_ON(thp_migration_supported() && 6209 !is_pmd_migration_entry(vmf.orig_pmd)); 6210 if (is_pmd_migration_entry(vmf.orig_pmd)) 6211 pmd_migration_entry_wait(mm, vmf.pmd); 6212 return 0; 6213 } 6214 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 6215 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6216 return do_huge_pmd_numa_page(&vmf); 6217 6218 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6219 !pmd_write(vmf.orig_pmd)) { 6220 ret = wp_huge_pmd(&vmf); 6221 if (!(ret & VM_FAULT_FALLBACK)) 6222 return ret; 6223 } else { 6224 huge_pmd_set_accessed(&vmf); 6225 return 0; 6226 } 6227 } 6228 } 6229 6230 return handle_pte_fault(&vmf); 6231 } 6232 6233 /** 6234 * mm_account_fault - Do page fault accounting 6235 * @mm: mm from which memcg should be extracted. It can be NULL. 6236 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6237 * of perf event counters, but we'll still do the per-task accounting to 6238 * the task who triggered this page fault. 6239 * @address: the faulted address. 6240 * @flags: the fault flags. 6241 * @ret: the fault retcode. 6242 * 6243 * This will take care of most of the page fault accounting. Meanwhile, it 6244 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6245 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6246 * still be in per-arch page fault handlers at the entry of page fault. 6247 */ 6248 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6249 unsigned long address, unsigned int flags, 6250 vm_fault_t ret) 6251 { 6252 bool major; 6253 6254 /* Incomplete faults will be accounted upon completion. */ 6255 if (ret & VM_FAULT_RETRY) 6256 return; 6257 6258 /* 6259 * To preserve the behavior of older kernels, PGFAULT counters record 6260 * both successful and failed faults, as opposed to perf counters, 6261 * which ignore failed cases. 6262 */ 6263 count_vm_event(PGFAULT); 6264 count_memcg_event_mm(mm, PGFAULT); 6265 6266 /* 6267 * Do not account for unsuccessful faults (e.g. when the address wasn't 6268 * valid). That includes arch_vma_access_permitted() failing before 6269 * reaching here. So this is not a "this many hardware page faults" 6270 * counter. We should use the hw profiling for that. 6271 */ 6272 if (ret & VM_FAULT_ERROR) 6273 return; 6274 6275 /* 6276 * We define the fault as a major fault when the final successful fault 6277 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6278 * handle it immediately previously). 6279 */ 6280 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6281 6282 if (major) 6283 current->maj_flt++; 6284 else 6285 current->min_flt++; 6286 6287 /* 6288 * If the fault is done for GUP, regs will be NULL. We only do the 6289 * accounting for the per thread fault counters who triggered the 6290 * fault, and we skip the perf event updates. 6291 */ 6292 if (!regs) 6293 return; 6294 6295 if (major) 6296 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6297 else 6298 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6299 } 6300 6301 #ifdef CONFIG_LRU_GEN 6302 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6303 { 6304 /* the LRU algorithm only applies to accesses with recency */ 6305 current->in_lru_fault = vma_has_recency(vma); 6306 } 6307 6308 static void lru_gen_exit_fault(void) 6309 { 6310 current->in_lru_fault = false; 6311 } 6312 #else 6313 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6314 { 6315 } 6316 6317 static void lru_gen_exit_fault(void) 6318 { 6319 } 6320 #endif /* CONFIG_LRU_GEN */ 6321 6322 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6323 unsigned int *flags) 6324 { 6325 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6326 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6327 return VM_FAULT_SIGSEGV; 6328 /* 6329 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6330 * just treat it like an ordinary read-fault otherwise. 6331 */ 6332 if (!is_cow_mapping(vma->vm_flags)) 6333 *flags &= ~FAULT_FLAG_UNSHARE; 6334 } else if (*flags & FAULT_FLAG_WRITE) { 6335 /* Write faults on read-only mappings are impossible ... */ 6336 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6337 return VM_FAULT_SIGSEGV; 6338 /* ... and FOLL_FORCE only applies to COW mappings. */ 6339 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6340 !is_cow_mapping(vma->vm_flags))) 6341 return VM_FAULT_SIGSEGV; 6342 } 6343 #ifdef CONFIG_PER_VMA_LOCK 6344 /* 6345 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6346 * the assumption that lock is dropped on VM_FAULT_RETRY. 6347 */ 6348 if (WARN_ON_ONCE((*flags & 6349 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6350 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6351 return VM_FAULT_SIGSEGV; 6352 #endif 6353 6354 return 0; 6355 } 6356 6357 /* 6358 * By the time we get here, we already hold either the VMA lock or the 6359 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6360 * 6361 * The mmap_lock may have been released depending on flags and our 6362 * return value. See filemap_fault() and __folio_lock_or_retry(). 6363 */ 6364 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6365 unsigned int flags, struct pt_regs *regs) 6366 { 6367 /* If the fault handler drops the mmap_lock, vma may be freed */ 6368 struct mm_struct *mm = vma->vm_mm; 6369 vm_fault_t ret; 6370 bool is_droppable; 6371 6372 __set_current_state(TASK_RUNNING); 6373 6374 ret = sanitize_fault_flags(vma, &flags); 6375 if (ret) 6376 goto out; 6377 6378 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6379 flags & FAULT_FLAG_INSTRUCTION, 6380 flags & FAULT_FLAG_REMOTE)) { 6381 ret = VM_FAULT_SIGSEGV; 6382 goto out; 6383 } 6384 6385 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6386 6387 /* 6388 * Enable the memcg OOM handling for faults triggered in user 6389 * space. Kernel faults are handled more gracefully. 6390 */ 6391 if (flags & FAULT_FLAG_USER) 6392 mem_cgroup_enter_user_fault(); 6393 6394 lru_gen_enter_fault(vma); 6395 6396 if (unlikely(is_vm_hugetlb_page(vma))) 6397 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6398 else 6399 ret = __handle_mm_fault(vma, address, flags); 6400 6401 /* 6402 * Warning: It is no longer safe to dereference vma-> after this point, 6403 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6404 * vma might be destroyed from underneath us. 6405 */ 6406 6407 lru_gen_exit_fault(); 6408 6409 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6410 if (is_droppable) 6411 ret &= ~VM_FAULT_OOM; 6412 6413 if (flags & FAULT_FLAG_USER) { 6414 mem_cgroup_exit_user_fault(); 6415 /* 6416 * The task may have entered a memcg OOM situation but 6417 * if the allocation error was handled gracefully (no 6418 * VM_FAULT_OOM), there is no need to kill anything. 6419 * Just clean up the OOM state peacefully. 6420 */ 6421 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6422 mem_cgroup_oom_synchronize(false); 6423 } 6424 out: 6425 mm_account_fault(mm, regs, address, flags, ret); 6426 6427 return ret; 6428 } 6429 EXPORT_SYMBOL_GPL(handle_mm_fault); 6430 6431 #ifndef __PAGETABLE_P4D_FOLDED 6432 /* 6433 * Allocate p4d page table. 6434 * We've already handled the fast-path in-line. 6435 */ 6436 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6437 { 6438 p4d_t *new = p4d_alloc_one(mm, address); 6439 if (!new) 6440 return -ENOMEM; 6441 6442 spin_lock(&mm->page_table_lock); 6443 if (pgd_present(*pgd)) { /* Another has populated it */ 6444 p4d_free(mm, new); 6445 } else { 6446 smp_wmb(); /* See comment in pmd_install() */ 6447 pgd_populate(mm, pgd, new); 6448 } 6449 spin_unlock(&mm->page_table_lock); 6450 return 0; 6451 } 6452 #endif /* __PAGETABLE_P4D_FOLDED */ 6453 6454 #ifndef __PAGETABLE_PUD_FOLDED 6455 /* 6456 * Allocate page upper directory. 6457 * We've already handled the fast-path in-line. 6458 */ 6459 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6460 { 6461 pud_t *new = pud_alloc_one(mm, address); 6462 if (!new) 6463 return -ENOMEM; 6464 6465 spin_lock(&mm->page_table_lock); 6466 if (!p4d_present(*p4d)) { 6467 mm_inc_nr_puds(mm); 6468 smp_wmb(); /* See comment in pmd_install() */ 6469 p4d_populate(mm, p4d, new); 6470 } else /* Another has populated it */ 6471 pud_free(mm, new); 6472 spin_unlock(&mm->page_table_lock); 6473 return 0; 6474 } 6475 #endif /* __PAGETABLE_PUD_FOLDED */ 6476 6477 #ifndef __PAGETABLE_PMD_FOLDED 6478 /* 6479 * Allocate page middle directory. 6480 * We've already handled the fast-path in-line. 6481 */ 6482 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6483 { 6484 spinlock_t *ptl; 6485 pmd_t *new = pmd_alloc_one(mm, address); 6486 if (!new) 6487 return -ENOMEM; 6488 6489 ptl = pud_lock(mm, pud); 6490 if (!pud_present(*pud)) { 6491 mm_inc_nr_pmds(mm); 6492 smp_wmb(); /* See comment in pmd_install() */ 6493 pud_populate(mm, pud, new); 6494 } else { /* Another has populated it */ 6495 pmd_free(mm, new); 6496 } 6497 spin_unlock(ptl); 6498 return 0; 6499 } 6500 #endif /* __PAGETABLE_PMD_FOLDED */ 6501 6502 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6503 spinlock_t *lock, pte_t *ptep, 6504 pgprot_t pgprot, unsigned long pfn_base, 6505 unsigned long addr_mask, bool writable, 6506 bool special) 6507 { 6508 args->lock = lock; 6509 args->ptep = ptep; 6510 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6511 args->addr_mask = addr_mask; 6512 args->pgprot = pgprot; 6513 args->writable = writable; 6514 args->special = special; 6515 } 6516 6517 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6518 { 6519 #ifdef CONFIG_LOCKDEP 6520 struct file *file = vma->vm_file; 6521 struct address_space *mapping = file ? file->f_mapping : NULL; 6522 6523 if (mapping) 6524 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6525 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6526 else 6527 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6528 #endif 6529 } 6530 6531 /** 6532 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6533 * @args: Pointer to struct @follow_pfnmap_args 6534 * 6535 * The caller needs to setup args->vma and args->address to point to the 6536 * virtual address as the target of such lookup. On a successful return, 6537 * the results will be put into other output fields. 6538 * 6539 * After the caller finished using the fields, the caller must invoke 6540 * another follow_pfnmap_end() to proper releases the locks and resources 6541 * of such look up request. 6542 * 6543 * During the start() and end() calls, the results in @args will be valid 6544 * as proper locks will be held. After the end() is called, all the fields 6545 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6546 * use of such information after end() may require proper synchronizations 6547 * by the caller with page table updates, otherwise it can create a 6548 * security bug. 6549 * 6550 * If the PTE maps a refcounted page, callers are responsible to protect 6551 * against invalidation with MMU notifiers; otherwise access to the PFN at 6552 * a later point in time can trigger use-after-free. 6553 * 6554 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6555 * should be taken for read, and the mmap semaphore cannot be released 6556 * before the end() is invoked. 6557 * 6558 * This function must not be used to modify PTE content. 6559 * 6560 * Return: zero on success, negative otherwise. 6561 */ 6562 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6563 { 6564 struct vm_area_struct *vma = args->vma; 6565 unsigned long address = args->address; 6566 struct mm_struct *mm = vma->vm_mm; 6567 spinlock_t *lock; 6568 pgd_t *pgdp; 6569 p4d_t *p4dp, p4d; 6570 pud_t *pudp, pud; 6571 pmd_t *pmdp, pmd; 6572 pte_t *ptep, pte; 6573 6574 pfnmap_lockdep_assert(vma); 6575 6576 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6577 goto out; 6578 6579 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6580 goto out; 6581 retry: 6582 pgdp = pgd_offset(mm, address); 6583 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6584 goto out; 6585 6586 p4dp = p4d_offset(pgdp, address); 6587 p4d = READ_ONCE(*p4dp); 6588 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6589 goto out; 6590 6591 pudp = pud_offset(p4dp, address); 6592 pud = READ_ONCE(*pudp); 6593 if (pud_none(pud)) 6594 goto out; 6595 if (pud_leaf(pud)) { 6596 lock = pud_lock(mm, pudp); 6597 if (!unlikely(pud_leaf(pud))) { 6598 spin_unlock(lock); 6599 goto retry; 6600 } 6601 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6602 pud_pfn(pud), PUD_MASK, pud_write(pud), 6603 pud_special(pud)); 6604 return 0; 6605 } 6606 6607 pmdp = pmd_offset(pudp, address); 6608 pmd = pmdp_get_lockless(pmdp); 6609 if (pmd_leaf(pmd)) { 6610 lock = pmd_lock(mm, pmdp); 6611 if (!unlikely(pmd_leaf(pmd))) { 6612 spin_unlock(lock); 6613 goto retry; 6614 } 6615 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6616 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6617 pmd_special(pmd)); 6618 return 0; 6619 } 6620 6621 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6622 if (!ptep) 6623 goto out; 6624 pte = ptep_get(ptep); 6625 if (!pte_present(pte)) 6626 goto unlock; 6627 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6628 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6629 pte_special(pte)); 6630 return 0; 6631 unlock: 6632 pte_unmap_unlock(ptep, lock); 6633 out: 6634 return -EINVAL; 6635 } 6636 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6637 6638 /** 6639 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6640 * @args: Pointer to struct @follow_pfnmap_args 6641 * 6642 * Must be used in pair of follow_pfnmap_start(). See the start() function 6643 * above for more information. 6644 */ 6645 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6646 { 6647 if (args->lock) 6648 spin_unlock(args->lock); 6649 if (args->ptep) 6650 pte_unmap(args->ptep); 6651 } 6652 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6653 6654 #ifdef CONFIG_HAVE_IOREMAP_PROT 6655 /** 6656 * generic_access_phys - generic implementation for iomem mmap access 6657 * @vma: the vma to access 6658 * @addr: userspace address, not relative offset within @vma 6659 * @buf: buffer to read/write 6660 * @len: length of transfer 6661 * @write: set to FOLL_WRITE when writing, otherwise reading 6662 * 6663 * This is a generic implementation for &vm_operations_struct.access for an 6664 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6665 * not page based. 6666 */ 6667 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6668 void *buf, int len, int write) 6669 { 6670 resource_size_t phys_addr; 6671 pgprot_t prot = __pgprot(0); 6672 void __iomem *maddr; 6673 int offset = offset_in_page(addr); 6674 int ret = -EINVAL; 6675 bool writable; 6676 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6677 6678 retry: 6679 if (follow_pfnmap_start(&args)) 6680 return -EINVAL; 6681 prot = args.pgprot; 6682 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6683 writable = args.writable; 6684 follow_pfnmap_end(&args); 6685 6686 if ((write & FOLL_WRITE) && !writable) 6687 return -EINVAL; 6688 6689 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6690 if (!maddr) 6691 return -ENOMEM; 6692 6693 if (follow_pfnmap_start(&args)) 6694 goto out_unmap; 6695 6696 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6697 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6698 (writable != args.writable)) { 6699 follow_pfnmap_end(&args); 6700 iounmap(maddr); 6701 goto retry; 6702 } 6703 6704 if (write) 6705 memcpy_toio(maddr + offset, buf, len); 6706 else 6707 memcpy_fromio(buf, maddr + offset, len); 6708 ret = len; 6709 follow_pfnmap_end(&args); 6710 out_unmap: 6711 iounmap(maddr); 6712 6713 return ret; 6714 } 6715 EXPORT_SYMBOL_GPL(generic_access_phys); 6716 #endif 6717 6718 /* 6719 * Access another process' address space as given in mm. 6720 */ 6721 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6722 void *buf, int len, unsigned int gup_flags) 6723 { 6724 void *old_buf = buf; 6725 int write = gup_flags & FOLL_WRITE; 6726 6727 if (mmap_read_lock_killable(mm)) 6728 return 0; 6729 6730 /* Untag the address before looking up the VMA */ 6731 addr = untagged_addr_remote(mm, addr); 6732 6733 /* Avoid triggering the temporary warning in __get_user_pages */ 6734 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6735 return 0; 6736 6737 /* ignore errors, just check how much was successfully transferred */ 6738 while (len) { 6739 int bytes, offset; 6740 void *maddr; 6741 struct vm_area_struct *vma = NULL; 6742 struct page *page = get_user_page_vma_remote(mm, addr, 6743 gup_flags, &vma); 6744 6745 if (IS_ERR(page)) { 6746 /* We might need to expand the stack to access it */ 6747 vma = vma_lookup(mm, addr); 6748 if (!vma) { 6749 vma = expand_stack(mm, addr); 6750 6751 /* mmap_lock was dropped on failure */ 6752 if (!vma) 6753 return buf - old_buf; 6754 6755 /* Try again if stack expansion worked */ 6756 continue; 6757 } 6758 6759 /* 6760 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6761 * we can access using slightly different code. 6762 */ 6763 bytes = 0; 6764 #ifdef CONFIG_HAVE_IOREMAP_PROT 6765 if (vma->vm_ops && vma->vm_ops->access) 6766 bytes = vma->vm_ops->access(vma, addr, buf, 6767 len, write); 6768 #endif 6769 if (bytes <= 0) 6770 break; 6771 } else { 6772 bytes = len; 6773 offset = addr & (PAGE_SIZE-1); 6774 if (bytes > PAGE_SIZE-offset) 6775 bytes = PAGE_SIZE-offset; 6776 6777 maddr = kmap_local_page(page); 6778 if (write) { 6779 copy_to_user_page(vma, page, addr, 6780 maddr + offset, buf, bytes); 6781 set_page_dirty_lock(page); 6782 } else { 6783 copy_from_user_page(vma, page, addr, 6784 buf, maddr + offset, bytes); 6785 } 6786 unmap_and_put_page(page, maddr); 6787 } 6788 len -= bytes; 6789 buf += bytes; 6790 addr += bytes; 6791 } 6792 mmap_read_unlock(mm); 6793 6794 return buf - old_buf; 6795 } 6796 6797 /** 6798 * access_remote_vm - access another process' address space 6799 * @mm: the mm_struct of the target address space 6800 * @addr: start address to access 6801 * @buf: source or destination buffer 6802 * @len: number of bytes to transfer 6803 * @gup_flags: flags modifying lookup behaviour 6804 * 6805 * The caller must hold a reference on @mm. 6806 * 6807 * Return: number of bytes copied from source to destination. 6808 */ 6809 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6810 void *buf, int len, unsigned int gup_flags) 6811 { 6812 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6813 } 6814 6815 /* 6816 * Access another process' address space. 6817 * Source/target buffer must be kernel space, 6818 * Do not walk the page table directly, use get_user_pages 6819 */ 6820 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6821 void *buf, int len, unsigned int gup_flags) 6822 { 6823 struct mm_struct *mm; 6824 int ret; 6825 6826 mm = get_task_mm(tsk); 6827 if (!mm) 6828 return 0; 6829 6830 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6831 6832 mmput(mm); 6833 6834 return ret; 6835 } 6836 EXPORT_SYMBOL_GPL(access_process_vm); 6837 6838 #ifdef CONFIG_BPF_SYSCALL 6839 /* 6840 * Copy a string from another process's address space as given in mm. 6841 * If there is any error return -EFAULT. 6842 */ 6843 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6844 void *buf, int len, unsigned int gup_flags) 6845 { 6846 void *old_buf = buf; 6847 int err = 0; 6848 6849 *(char *)buf = '\0'; 6850 6851 if (mmap_read_lock_killable(mm)) 6852 return -EFAULT; 6853 6854 addr = untagged_addr_remote(mm, addr); 6855 6856 /* Avoid triggering the temporary warning in __get_user_pages */ 6857 if (!vma_lookup(mm, addr)) { 6858 err = -EFAULT; 6859 goto out; 6860 } 6861 6862 while (len) { 6863 int bytes, offset, retval; 6864 void *maddr; 6865 struct page *page; 6866 struct vm_area_struct *vma = NULL; 6867 6868 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6869 if (IS_ERR(page)) { 6870 /* 6871 * Treat as a total failure for now until we decide how 6872 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6873 * stack expansion. 6874 */ 6875 *(char *)buf = '\0'; 6876 err = -EFAULT; 6877 goto out; 6878 } 6879 6880 bytes = len; 6881 offset = addr & (PAGE_SIZE - 1); 6882 if (bytes > PAGE_SIZE - offset) 6883 bytes = PAGE_SIZE - offset; 6884 6885 maddr = kmap_local_page(page); 6886 retval = strscpy(buf, maddr + offset, bytes); 6887 if (retval >= 0) { 6888 /* Found the end of the string */ 6889 buf += retval; 6890 unmap_and_put_page(page, maddr); 6891 break; 6892 } 6893 6894 buf += bytes - 1; 6895 /* 6896 * Because strscpy always NUL terminates we need to 6897 * copy the last byte in the page if we are going to 6898 * load more pages 6899 */ 6900 if (bytes != len) { 6901 addr += bytes - 1; 6902 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 6903 buf += 1; 6904 addr += 1; 6905 } 6906 len -= bytes; 6907 6908 unmap_and_put_page(page, maddr); 6909 } 6910 6911 out: 6912 mmap_read_unlock(mm); 6913 if (err) 6914 return err; 6915 return buf - old_buf; 6916 } 6917 6918 /** 6919 * copy_remote_vm_str - copy a string from another process's address space. 6920 * @tsk: the task of the target address space 6921 * @addr: start address to read from 6922 * @buf: destination buffer 6923 * @len: number of bytes to copy 6924 * @gup_flags: flags modifying lookup behaviour 6925 * 6926 * The caller must hold a reference on @mm. 6927 * 6928 * Return: number of bytes copied from @addr (source) to @buf (destination); 6929 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 6930 * buffer. On any error, return -EFAULT. 6931 */ 6932 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 6933 void *buf, int len, unsigned int gup_flags) 6934 { 6935 struct mm_struct *mm; 6936 int ret; 6937 6938 if (unlikely(len == 0)) 6939 return 0; 6940 6941 mm = get_task_mm(tsk); 6942 if (!mm) { 6943 *(char *)buf = '\0'; 6944 return -EFAULT; 6945 } 6946 6947 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 6948 6949 mmput(mm); 6950 6951 return ret; 6952 } 6953 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 6954 #endif /* CONFIG_BPF_SYSCALL */ 6955 6956 /* 6957 * Print the name of a VMA. 6958 */ 6959 void print_vma_addr(char *prefix, unsigned long ip) 6960 { 6961 struct mm_struct *mm = current->mm; 6962 struct vm_area_struct *vma; 6963 6964 /* 6965 * we might be running from an atomic context so we cannot sleep 6966 */ 6967 if (!mmap_read_trylock(mm)) 6968 return; 6969 6970 vma = vma_lookup(mm, ip); 6971 if (vma && vma->vm_file) { 6972 struct file *f = vma->vm_file; 6973 ip -= vma->vm_start; 6974 ip += vma->vm_pgoff << PAGE_SHIFT; 6975 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6976 vma->vm_start, 6977 vma->vm_end - vma->vm_start); 6978 } 6979 mmap_read_unlock(mm); 6980 } 6981 6982 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6983 void __might_fault(const char *file, int line) 6984 { 6985 if (pagefault_disabled()) 6986 return; 6987 __might_sleep(file, line); 6988 if (current->mm) 6989 might_lock_read(¤t->mm->mmap_lock); 6990 } 6991 EXPORT_SYMBOL(__might_fault); 6992 #endif 6993 6994 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6995 /* 6996 * Process all subpages of the specified huge page with the specified 6997 * operation. The target subpage will be processed last to keep its 6998 * cache lines hot. 6999 */ 7000 static inline int process_huge_page( 7001 unsigned long addr_hint, unsigned int nr_pages, 7002 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7003 void *arg) 7004 { 7005 int i, n, base, l, ret; 7006 unsigned long addr = addr_hint & 7007 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7008 7009 /* Process target subpage last to keep its cache lines hot */ 7010 might_sleep(); 7011 n = (addr_hint - addr) / PAGE_SIZE; 7012 if (2 * n <= nr_pages) { 7013 /* If target subpage in first half of huge page */ 7014 base = 0; 7015 l = n; 7016 /* Process subpages at the end of huge page */ 7017 for (i = nr_pages - 1; i >= 2 * n; i--) { 7018 cond_resched(); 7019 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7020 if (ret) 7021 return ret; 7022 } 7023 } else { 7024 /* If target subpage in second half of huge page */ 7025 base = nr_pages - 2 * (nr_pages - n); 7026 l = nr_pages - n; 7027 /* Process subpages at the begin of huge page */ 7028 for (i = 0; i < base; i++) { 7029 cond_resched(); 7030 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7031 if (ret) 7032 return ret; 7033 } 7034 } 7035 /* 7036 * Process remaining subpages in left-right-left-right pattern 7037 * towards the target subpage 7038 */ 7039 for (i = 0; i < l; i++) { 7040 int left_idx = base + i; 7041 int right_idx = base + 2 * l - 1 - i; 7042 7043 cond_resched(); 7044 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7045 if (ret) 7046 return ret; 7047 cond_resched(); 7048 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7049 if (ret) 7050 return ret; 7051 } 7052 return 0; 7053 } 7054 7055 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7056 unsigned int nr_pages) 7057 { 7058 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7059 int i; 7060 7061 might_sleep(); 7062 for (i = 0; i < nr_pages; i++) { 7063 cond_resched(); 7064 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7065 } 7066 } 7067 7068 static int clear_subpage(unsigned long addr, int idx, void *arg) 7069 { 7070 struct folio *folio = arg; 7071 7072 clear_user_highpage(folio_page(folio, idx), addr); 7073 return 0; 7074 } 7075 7076 /** 7077 * folio_zero_user - Zero a folio which will be mapped to userspace. 7078 * @folio: The folio to zero. 7079 * @addr_hint: The address will be accessed or the base address if uncelar. 7080 */ 7081 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7082 { 7083 unsigned int nr_pages = folio_nr_pages(folio); 7084 7085 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7086 clear_gigantic_page(folio, addr_hint, nr_pages); 7087 else 7088 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7089 } 7090 7091 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7092 unsigned long addr_hint, 7093 struct vm_area_struct *vma, 7094 unsigned int nr_pages) 7095 { 7096 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7097 struct page *dst_page; 7098 struct page *src_page; 7099 int i; 7100 7101 for (i = 0; i < nr_pages; i++) { 7102 dst_page = folio_page(dst, i); 7103 src_page = folio_page(src, i); 7104 7105 cond_resched(); 7106 if (copy_mc_user_highpage(dst_page, src_page, 7107 addr + i*PAGE_SIZE, vma)) 7108 return -EHWPOISON; 7109 } 7110 return 0; 7111 } 7112 7113 struct copy_subpage_arg { 7114 struct folio *dst; 7115 struct folio *src; 7116 struct vm_area_struct *vma; 7117 }; 7118 7119 static int copy_subpage(unsigned long addr, int idx, void *arg) 7120 { 7121 struct copy_subpage_arg *copy_arg = arg; 7122 struct page *dst = folio_page(copy_arg->dst, idx); 7123 struct page *src = folio_page(copy_arg->src, idx); 7124 7125 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7126 return -EHWPOISON; 7127 return 0; 7128 } 7129 7130 int copy_user_large_folio(struct folio *dst, struct folio *src, 7131 unsigned long addr_hint, struct vm_area_struct *vma) 7132 { 7133 unsigned int nr_pages = folio_nr_pages(dst); 7134 struct copy_subpage_arg arg = { 7135 .dst = dst, 7136 .src = src, 7137 .vma = vma, 7138 }; 7139 7140 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7141 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7142 7143 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7144 } 7145 7146 long copy_folio_from_user(struct folio *dst_folio, 7147 const void __user *usr_src, 7148 bool allow_pagefault) 7149 { 7150 void *kaddr; 7151 unsigned long i, rc = 0; 7152 unsigned int nr_pages = folio_nr_pages(dst_folio); 7153 unsigned long ret_val = nr_pages * PAGE_SIZE; 7154 struct page *subpage; 7155 7156 for (i = 0; i < nr_pages; i++) { 7157 subpage = folio_page(dst_folio, i); 7158 kaddr = kmap_local_page(subpage); 7159 if (!allow_pagefault) 7160 pagefault_disable(); 7161 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7162 if (!allow_pagefault) 7163 pagefault_enable(); 7164 kunmap_local(kaddr); 7165 7166 ret_val -= (PAGE_SIZE - rc); 7167 if (rc) 7168 break; 7169 7170 flush_dcache_page(subpage); 7171 7172 cond_resched(); 7173 } 7174 return ret_val; 7175 } 7176 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7177 7178 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7179 7180 static struct kmem_cache *page_ptl_cachep; 7181 7182 void __init ptlock_cache_init(void) 7183 { 7184 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7185 SLAB_PANIC, NULL); 7186 } 7187 7188 bool ptlock_alloc(struct ptdesc *ptdesc) 7189 { 7190 spinlock_t *ptl; 7191 7192 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7193 if (!ptl) 7194 return false; 7195 ptdesc->ptl = ptl; 7196 return true; 7197 } 7198 7199 void ptlock_free(struct ptdesc *ptdesc) 7200 { 7201 if (ptdesc->ptl) 7202 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7203 } 7204 #endif 7205 7206 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7207 { 7208 if (is_vm_hugetlb_page(vma)) 7209 hugetlb_vma_lock_read(vma); 7210 } 7211 7212 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7213 { 7214 if (is_vm_hugetlb_page(vma)) 7215 hugetlb_vma_unlock_read(vma); 7216 } 7217