xref: /linux/mm/memory.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82 
83 #include "internal.h"
84 
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88 
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93 
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97 
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107 
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 					1;
117 #else
118 					2;
119 #endif
120 
121 static int __init disable_randmaps(char *s)
122 {
123 	randomize_va_space = 0;
124 	return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127 
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130 
131 unsigned long highest_memmap_pfn __read_mostly;
132 
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 	return 0;
140 }
141 core_initcall(init_zero_pfn);
142 
143 
144 #if defined(SPLIT_RSS_COUNTING)
145 
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148 	int i;
149 
150 	for (i = 0; i < NR_MM_COUNTERS; i++) {
151 		if (current->rss_stat.count[i]) {
152 			add_mm_counter(mm, i, current->rss_stat.count[i]);
153 			current->rss_stat.count[i] = 0;
154 		}
155 	}
156 	current->rss_stat.events = 0;
157 }
158 
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161 	struct task_struct *task = current;
162 
163 	if (likely(task->mm == mm))
164 		task->rss_stat.count[member] += val;
165 	else
166 		add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH	(64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 	if (unlikely(task != current))
176 		return;
177 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 		sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181 
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188 
189 #endif /* SPLIT_RSS_COUNTING */
190 
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 			   unsigned long addr)
197 {
198 	pgtable_t token = pmd_pgtable(*pmd);
199 	pmd_clear(pmd);
200 	pte_free_tlb(tlb, token, addr);
201 	mm_dec_nr_ptes(tlb->mm);
202 }
203 
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 				unsigned long addr, unsigned long end,
206 				unsigned long floor, unsigned long ceiling)
207 {
208 	pmd_t *pmd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	start = addr;
213 	pmd = pmd_offset(pud, addr);
214 	do {
215 		next = pmd_addr_end(addr, end);
216 		if (pmd_none_or_clear_bad(pmd))
217 			continue;
218 		free_pte_range(tlb, pmd, addr);
219 	} while (pmd++, addr = next, addr != end);
220 
221 	start &= PUD_MASK;
222 	if (start < floor)
223 		return;
224 	if (ceiling) {
225 		ceiling &= PUD_MASK;
226 		if (!ceiling)
227 			return;
228 	}
229 	if (end - 1 > ceiling - 1)
230 		return;
231 
232 	pmd = pmd_offset(pud, start);
233 	pud_clear(pud);
234 	pmd_free_tlb(tlb, pmd, start);
235 	mm_dec_nr_pmds(tlb->mm);
236 }
237 
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 				unsigned long addr, unsigned long end,
240 				unsigned long floor, unsigned long ceiling)
241 {
242 	pud_t *pud;
243 	unsigned long next;
244 	unsigned long start;
245 
246 	start = addr;
247 	pud = pud_offset(p4d, addr);
248 	do {
249 		next = pud_addr_end(addr, end);
250 		if (pud_none_or_clear_bad(pud))
251 			continue;
252 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 	} while (pud++, addr = next, addr != end);
254 
255 	start &= P4D_MASK;
256 	if (start < floor)
257 		return;
258 	if (ceiling) {
259 		ceiling &= P4D_MASK;
260 		if (!ceiling)
261 			return;
262 	}
263 	if (end - 1 > ceiling - 1)
264 		return;
265 
266 	pud = pud_offset(p4d, start);
267 	p4d_clear(p4d);
268 	pud_free_tlb(tlb, pud, start);
269 	mm_dec_nr_puds(tlb->mm);
270 }
271 
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 				unsigned long addr, unsigned long end,
274 				unsigned long floor, unsigned long ceiling)
275 {
276 	p4d_t *p4d;
277 	unsigned long next;
278 	unsigned long start;
279 
280 	start = addr;
281 	p4d = p4d_offset(pgd, addr);
282 	do {
283 		next = p4d_addr_end(addr, end);
284 		if (p4d_none_or_clear_bad(p4d))
285 			continue;
286 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 	} while (p4d++, addr = next, addr != end);
288 
289 	start &= PGDIR_MASK;
290 	if (start < floor)
291 		return;
292 	if (ceiling) {
293 		ceiling &= PGDIR_MASK;
294 		if (!ceiling)
295 			return;
296 	}
297 	if (end - 1 > ceiling - 1)
298 		return;
299 
300 	p4d = p4d_offset(pgd, start);
301 	pgd_clear(pgd);
302 	p4d_free_tlb(tlb, p4d, start);
303 }
304 
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309 			unsigned long addr, unsigned long end,
310 			unsigned long floor, unsigned long ceiling)
311 {
312 	pgd_t *pgd;
313 	unsigned long next;
314 
315 	/*
316 	 * The next few lines have given us lots of grief...
317 	 *
318 	 * Why are we testing PMD* at this top level?  Because often
319 	 * there will be no work to do at all, and we'd prefer not to
320 	 * go all the way down to the bottom just to discover that.
321 	 *
322 	 * Why all these "- 1"s?  Because 0 represents both the bottom
323 	 * of the address space and the top of it (using -1 for the
324 	 * top wouldn't help much: the masks would do the wrong thing).
325 	 * The rule is that addr 0 and floor 0 refer to the bottom of
326 	 * the address space, but end 0 and ceiling 0 refer to the top
327 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 	 * that end 0 case should be mythical).
329 	 *
330 	 * Wherever addr is brought up or ceiling brought down, we must
331 	 * be careful to reject "the opposite 0" before it confuses the
332 	 * subsequent tests.  But what about where end is brought down
333 	 * by PMD_SIZE below? no, end can't go down to 0 there.
334 	 *
335 	 * Whereas we round start (addr) and ceiling down, by different
336 	 * masks at different levels, in order to test whether a table
337 	 * now has no other vmas using it, so can be freed, we don't
338 	 * bother to round floor or end up - the tests don't need that.
339 	 */
340 
341 	addr &= PMD_MASK;
342 	if (addr < floor) {
343 		addr += PMD_SIZE;
344 		if (!addr)
345 			return;
346 	}
347 	if (ceiling) {
348 		ceiling &= PMD_MASK;
349 		if (!ceiling)
350 			return;
351 	}
352 	if (end - 1 > ceiling - 1)
353 		end -= PMD_SIZE;
354 	if (addr > end - 1)
355 		return;
356 	/*
357 	 * We add page table cache pages with PAGE_SIZE,
358 	 * (see pte_free_tlb()), flush the tlb if we need
359 	 */
360 	tlb_change_page_size(tlb, PAGE_SIZE);
361 	pgd = pgd_offset(tlb->mm, addr);
362 	do {
363 		next = pgd_addr_end(addr, end);
364 		if (pgd_none_or_clear_bad(pgd))
365 			continue;
366 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 	} while (pgd++, addr = next, addr != end);
368 }
369 
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 		unsigned long floor, unsigned long ceiling)
372 {
373 	while (vma) {
374 		struct vm_area_struct *next = vma->vm_next;
375 		unsigned long addr = vma->vm_start;
376 
377 		/*
378 		 * Hide vma from rmap and truncate_pagecache before freeing
379 		 * pgtables
380 		 */
381 		unlink_anon_vmas(vma);
382 		unlink_file_vma(vma);
383 
384 		if (is_vm_hugetlb_page(vma)) {
385 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 				floor, next ? next->vm_start : ceiling);
387 		} else {
388 			/*
389 			 * Optimization: gather nearby vmas into one call down
390 			 */
391 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 			       && !is_vm_hugetlb_page(next)) {
393 				vma = next;
394 				next = vma->vm_next;
395 				unlink_anon_vmas(vma);
396 				unlink_file_vma(vma);
397 			}
398 			free_pgd_range(tlb, addr, vma->vm_end,
399 				floor, next ? next->vm_start : ceiling);
400 		}
401 		vma = next;
402 	}
403 }
404 
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407 	spinlock_t *ptl;
408 	pgtable_t new = pte_alloc_one(mm);
409 	if (!new)
410 		return -ENOMEM;
411 
412 	/*
413 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 	 * visible before the pte is made visible to other CPUs by being
415 	 * put into page tables.
416 	 *
417 	 * The other side of the story is the pointer chasing in the page
418 	 * table walking code (when walking the page table without locking;
419 	 * ie. most of the time). Fortunately, these data accesses consist
420 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 	 * being the notable exception) will already guarantee loads are
422 	 * seen in-order. See the alpha page table accessors for the
423 	 * smp_read_barrier_depends() barriers in page table walking code.
424 	 */
425 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426 
427 	ptl = pmd_lock(mm, pmd);
428 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
429 		mm_inc_nr_ptes(mm);
430 		pmd_populate(mm, pmd, new);
431 		new = NULL;
432 	}
433 	spin_unlock(ptl);
434 	if (new)
435 		pte_free(mm, new);
436 	return 0;
437 }
438 
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441 	pte_t *new = pte_alloc_one_kernel(&init_mm);
442 	if (!new)
443 		return -ENOMEM;
444 
445 	smp_wmb(); /* See comment in __pte_alloc */
446 
447 	spin_lock(&init_mm.page_table_lock);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		pmd_populate_kernel(&init_mm, pmd, new);
450 		new = NULL;
451 	}
452 	spin_unlock(&init_mm.page_table_lock);
453 	if (new)
454 		pte_free_kernel(&init_mm, new);
455 	return 0;
456 }
457 
458 static inline void init_rss_vec(int *rss)
459 {
460 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462 
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465 	int i;
466 
467 	if (current->mm == mm)
468 		sync_mm_rss(mm);
469 	for (i = 0; i < NR_MM_COUNTERS; i++)
470 		if (rss[i])
471 			add_mm_counter(mm, i, rss[i]);
472 }
473 
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 			  pte_t pte, struct page *page)
483 {
484 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 	p4d_t *p4d = p4d_offset(pgd, addr);
486 	pud_t *pud = pud_offset(p4d, addr);
487 	pmd_t *pmd = pmd_offset(pud, addr);
488 	struct address_space *mapping;
489 	pgoff_t index;
490 	static unsigned long resume;
491 	static unsigned long nr_shown;
492 	static unsigned long nr_unshown;
493 
494 	/*
495 	 * Allow a burst of 60 reports, then keep quiet for that minute;
496 	 * or allow a steady drip of one report per second.
497 	 */
498 	if (nr_shown == 60) {
499 		if (time_before(jiffies, resume)) {
500 			nr_unshown++;
501 			return;
502 		}
503 		if (nr_unshown) {
504 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 				 nr_unshown);
506 			nr_unshown = 0;
507 		}
508 		nr_shown = 0;
509 	}
510 	if (nr_shown++ == 0)
511 		resume = jiffies + 60 * HZ;
512 
513 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 	index = linear_page_index(vma, addr);
515 
516 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517 		 current->comm,
518 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 	if (page)
520 		dump_page(page, "bad pte");
521 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 		 vma->vm_file,
525 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 		 mapping ? mapping->a_ops->readpage : NULL);
528 	dump_stack();
529 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531 
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 			    pte_t pte)
576 {
577 	unsigned long pfn = pte_pfn(pte);
578 
579 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 		if (likely(!pte_special(pte)))
581 			goto check_pfn;
582 		if (vma->vm_ops && vma->vm_ops->find_special_page)
583 			return vma->vm_ops->find_special_page(vma, addr);
584 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 			return NULL;
586 		if (is_zero_pfn(pfn))
587 			return NULL;
588 		if (pte_devmap(pte))
589 			return NULL;
590 
591 		print_bad_pte(vma, addr, pte, NULL);
592 		return NULL;
593 	}
594 
595 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596 
597 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 		if (vma->vm_flags & VM_MIXEDMAP) {
599 			if (!pfn_valid(pfn))
600 				return NULL;
601 			goto out;
602 		} else {
603 			unsigned long off;
604 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
605 			if (pfn == vma->vm_pgoff + off)
606 				return NULL;
607 			if (!is_cow_mapping(vma->vm_flags))
608 				return NULL;
609 		}
610 	}
611 
612 	if (is_zero_pfn(pfn))
613 		return NULL;
614 
615 check_pfn:
616 	if (unlikely(pfn > highest_memmap_pfn)) {
617 		print_bad_pte(vma, addr, pte, NULL);
618 		return NULL;
619 	}
620 
621 	/*
622 	 * NOTE! We still have PageReserved() pages in the page tables.
623 	 * eg. VDSO mappings can cause them to exist.
624 	 */
625 out:
626 	return pfn_to_page(pfn);
627 }
628 
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 				pmd_t pmd)
632 {
633 	unsigned long pfn = pmd_pfn(pmd);
634 
635 	/*
636 	 * There is no pmd_special() but there may be special pmds, e.g.
637 	 * in a direct-access (dax) mapping, so let's just replicate the
638 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639 	 */
640 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 		if (vma->vm_flags & VM_MIXEDMAP) {
642 			if (!pfn_valid(pfn))
643 				return NULL;
644 			goto out;
645 		} else {
646 			unsigned long off;
647 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 			if (pfn == vma->vm_pgoff + off)
649 				return NULL;
650 			if (!is_cow_mapping(vma->vm_flags))
651 				return NULL;
652 		}
653 	}
654 
655 	if (pmd_devmap(pmd))
656 		return NULL;
657 	if (is_zero_pfn(pfn))
658 		return NULL;
659 	if (unlikely(pfn > highest_memmap_pfn))
660 		return NULL;
661 
662 	/*
663 	 * NOTE! We still have PageReserved() pages in the page tables.
664 	 * eg. VDSO mappings can cause them to exist.
665 	 */
666 out:
667 	return pfn_to_page(pfn);
668 }
669 #endif
670 
671 /*
672  * copy one vm_area from one task to the other. Assumes the page tables
673  * already present in the new task to be cleared in the whole range
674  * covered by this vma.
675  */
676 
677 static inline unsigned long
678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680 		unsigned long addr, int *rss)
681 {
682 	unsigned long vm_flags = vma->vm_flags;
683 	pte_t pte = *src_pte;
684 	struct page *page;
685 
686 	/* pte contains position in swap or file, so copy. */
687 	if (unlikely(!pte_present(pte))) {
688 		swp_entry_t entry = pte_to_swp_entry(pte);
689 
690 		if (likely(!non_swap_entry(entry))) {
691 			if (swap_duplicate(entry) < 0)
692 				return entry.val;
693 
694 			/* make sure dst_mm is on swapoff's mmlist. */
695 			if (unlikely(list_empty(&dst_mm->mmlist))) {
696 				spin_lock(&mmlist_lock);
697 				if (list_empty(&dst_mm->mmlist))
698 					list_add(&dst_mm->mmlist,
699 							&src_mm->mmlist);
700 				spin_unlock(&mmlist_lock);
701 			}
702 			rss[MM_SWAPENTS]++;
703 		} else if (is_migration_entry(entry)) {
704 			page = migration_entry_to_page(entry);
705 
706 			rss[mm_counter(page)]++;
707 
708 			if (is_write_migration_entry(entry) &&
709 					is_cow_mapping(vm_flags)) {
710 				/*
711 				 * COW mappings require pages in both
712 				 * parent and child to be set to read.
713 				 */
714 				make_migration_entry_read(&entry);
715 				pte = swp_entry_to_pte(entry);
716 				if (pte_swp_soft_dirty(*src_pte))
717 					pte = pte_swp_mksoft_dirty(pte);
718 				set_pte_at(src_mm, addr, src_pte, pte);
719 			}
720 		} else if (is_device_private_entry(entry)) {
721 			page = device_private_entry_to_page(entry);
722 
723 			/*
724 			 * Update rss count even for unaddressable pages, as
725 			 * they should treated just like normal pages in this
726 			 * respect.
727 			 *
728 			 * We will likely want to have some new rss counters
729 			 * for unaddressable pages, at some point. But for now
730 			 * keep things as they are.
731 			 */
732 			get_page(page);
733 			rss[mm_counter(page)]++;
734 			page_dup_rmap(page, false);
735 
736 			/*
737 			 * We do not preserve soft-dirty information, because so
738 			 * far, checkpoint/restore is the only feature that
739 			 * requires that. And checkpoint/restore does not work
740 			 * when a device driver is involved (you cannot easily
741 			 * save and restore device driver state).
742 			 */
743 			if (is_write_device_private_entry(entry) &&
744 			    is_cow_mapping(vm_flags)) {
745 				make_device_private_entry_read(&entry);
746 				pte = swp_entry_to_pte(entry);
747 				set_pte_at(src_mm, addr, src_pte, pte);
748 			}
749 		}
750 		goto out_set_pte;
751 	}
752 
753 	/*
754 	 * If it's a COW mapping, write protect it both
755 	 * in the parent and the child
756 	 */
757 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758 		ptep_set_wrprotect(src_mm, addr, src_pte);
759 		pte = pte_wrprotect(pte);
760 	}
761 
762 	/*
763 	 * If it's a shared mapping, mark it clean in
764 	 * the child
765 	 */
766 	if (vm_flags & VM_SHARED)
767 		pte = pte_mkclean(pte);
768 	pte = pte_mkold(pte);
769 
770 	page = vm_normal_page(vma, addr, pte);
771 	if (page) {
772 		get_page(page);
773 		page_dup_rmap(page, false);
774 		rss[mm_counter(page)]++;
775 	} else if (pte_devmap(pte)) {
776 		page = pte_page(pte);
777 	}
778 
779 out_set_pte:
780 	set_pte_at(dst_mm, addr, dst_pte, pte);
781 	return 0;
782 }
783 
784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 		   unsigned long addr, unsigned long end)
787 {
788 	pte_t *orig_src_pte, *orig_dst_pte;
789 	pte_t *src_pte, *dst_pte;
790 	spinlock_t *src_ptl, *dst_ptl;
791 	int progress = 0;
792 	int rss[NR_MM_COUNTERS];
793 	swp_entry_t entry = (swp_entry_t){0};
794 
795 again:
796 	init_rss_vec(rss);
797 
798 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799 	if (!dst_pte)
800 		return -ENOMEM;
801 	src_pte = pte_offset_map(src_pmd, addr);
802 	src_ptl = pte_lockptr(src_mm, src_pmd);
803 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804 	orig_src_pte = src_pte;
805 	orig_dst_pte = dst_pte;
806 	arch_enter_lazy_mmu_mode();
807 
808 	do {
809 		/*
810 		 * We are holding two locks at this point - either of them
811 		 * could generate latencies in another task on another CPU.
812 		 */
813 		if (progress >= 32) {
814 			progress = 0;
815 			if (need_resched() ||
816 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817 				break;
818 		}
819 		if (pte_none(*src_pte)) {
820 			progress++;
821 			continue;
822 		}
823 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 							vma, addr, rss);
825 		if (entry.val)
826 			break;
827 		progress += 8;
828 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
829 
830 	arch_leave_lazy_mmu_mode();
831 	spin_unlock(src_ptl);
832 	pte_unmap(orig_src_pte);
833 	add_mm_rss_vec(dst_mm, rss);
834 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
835 	cond_resched();
836 
837 	if (entry.val) {
838 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 			return -ENOMEM;
840 		progress = 0;
841 	}
842 	if (addr != end)
843 		goto again;
844 	return 0;
845 }
846 
847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 		unsigned long addr, unsigned long end)
850 {
851 	pmd_t *src_pmd, *dst_pmd;
852 	unsigned long next;
853 
854 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 	if (!dst_pmd)
856 		return -ENOMEM;
857 	src_pmd = pmd_offset(src_pud, addr);
858 	do {
859 		next = pmd_addr_end(addr, end);
860 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 			|| pmd_devmap(*src_pmd)) {
862 			int err;
863 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864 			err = copy_huge_pmd(dst_mm, src_mm,
865 					    dst_pmd, src_pmd, addr, vma);
866 			if (err == -ENOMEM)
867 				return -ENOMEM;
868 			if (!err)
869 				continue;
870 			/* fall through */
871 		}
872 		if (pmd_none_or_clear_bad(src_pmd))
873 			continue;
874 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 						vma, addr, next))
876 			return -ENOMEM;
877 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 	return 0;
879 }
880 
881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883 		unsigned long addr, unsigned long end)
884 {
885 	pud_t *src_pud, *dst_pud;
886 	unsigned long next;
887 
888 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889 	if (!dst_pud)
890 		return -ENOMEM;
891 	src_pud = pud_offset(src_p4d, addr);
892 	do {
893 		next = pud_addr_end(addr, end);
894 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 			int err;
896 
897 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 			err = copy_huge_pud(dst_mm, src_mm,
899 					    dst_pud, src_pud, addr, vma);
900 			if (err == -ENOMEM)
901 				return -ENOMEM;
902 			if (!err)
903 				continue;
904 			/* fall through */
905 		}
906 		if (pud_none_or_clear_bad(src_pud))
907 			continue;
908 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 						vma, addr, next))
910 			return -ENOMEM;
911 	} while (dst_pud++, src_pud++, addr = next, addr != end);
912 	return 0;
913 }
914 
915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 		unsigned long addr, unsigned long end)
918 {
919 	p4d_t *src_p4d, *dst_p4d;
920 	unsigned long next;
921 
922 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 	if (!dst_p4d)
924 		return -ENOMEM;
925 	src_p4d = p4d_offset(src_pgd, addr);
926 	do {
927 		next = p4d_addr_end(addr, end);
928 		if (p4d_none_or_clear_bad(src_p4d))
929 			continue;
930 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 						vma, addr, next))
932 			return -ENOMEM;
933 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 	return 0;
935 }
936 
937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 		struct vm_area_struct *vma)
939 {
940 	pgd_t *src_pgd, *dst_pgd;
941 	unsigned long next;
942 	unsigned long addr = vma->vm_start;
943 	unsigned long end = vma->vm_end;
944 	struct mmu_notifier_range range;
945 	bool is_cow;
946 	int ret;
947 
948 	/*
949 	 * Don't copy ptes where a page fault will fill them correctly.
950 	 * Fork becomes much lighter when there are big shared or private
951 	 * readonly mappings. The tradeoff is that copy_page_range is more
952 	 * efficient than faulting.
953 	 */
954 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 			!vma->anon_vma)
956 		return 0;
957 
958 	if (is_vm_hugetlb_page(vma))
959 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960 
961 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
962 		/*
963 		 * We do not free on error cases below as remove_vma
964 		 * gets called on error from higher level routine
965 		 */
966 		ret = track_pfn_copy(vma);
967 		if (ret)
968 			return ret;
969 	}
970 
971 	/*
972 	 * We need to invalidate the secondary MMU mappings only when
973 	 * there could be a permission downgrade on the ptes of the
974 	 * parent mm. And a permission downgrade will only happen if
975 	 * is_cow_mapping() returns true.
976 	 */
977 	is_cow = is_cow_mapping(vma->vm_flags);
978 
979 	if (is_cow) {
980 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 					0, vma, src_mm, addr, end);
982 		mmu_notifier_invalidate_range_start(&range);
983 	}
984 
985 	ret = 0;
986 	dst_pgd = pgd_offset(dst_mm, addr);
987 	src_pgd = pgd_offset(src_mm, addr);
988 	do {
989 		next = pgd_addr_end(addr, end);
990 		if (pgd_none_or_clear_bad(src_pgd))
991 			continue;
992 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993 					    vma, addr, next))) {
994 			ret = -ENOMEM;
995 			break;
996 		}
997 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
998 
999 	if (is_cow)
1000 		mmu_notifier_invalidate_range_end(&range);
1001 	return ret;
1002 }
1003 
1004 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005 				struct vm_area_struct *vma, pmd_t *pmd,
1006 				unsigned long addr, unsigned long end,
1007 				struct zap_details *details)
1008 {
1009 	struct mm_struct *mm = tlb->mm;
1010 	int force_flush = 0;
1011 	int rss[NR_MM_COUNTERS];
1012 	spinlock_t *ptl;
1013 	pte_t *start_pte;
1014 	pte_t *pte;
1015 	swp_entry_t entry;
1016 
1017 	tlb_change_page_size(tlb, PAGE_SIZE);
1018 again:
1019 	init_rss_vec(rss);
1020 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 	pte = start_pte;
1022 	flush_tlb_batched_pending(mm);
1023 	arch_enter_lazy_mmu_mode();
1024 	do {
1025 		pte_t ptent = *pte;
1026 		if (pte_none(ptent))
1027 			continue;
1028 
1029 		if (pte_present(ptent)) {
1030 			struct page *page;
1031 
1032 			page = vm_normal_page(vma, addr, ptent);
1033 			if (unlikely(details) && page) {
1034 				/*
1035 				 * unmap_shared_mapping_pages() wants to
1036 				 * invalidate cache without truncating:
1037 				 * unmap shared but keep private pages.
1038 				 */
1039 				if (details->check_mapping &&
1040 				    details->check_mapping != page_rmapping(page))
1041 					continue;
1042 			}
1043 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1044 							tlb->fullmm);
1045 			tlb_remove_tlb_entry(tlb, pte, addr);
1046 			if (unlikely(!page))
1047 				continue;
1048 
1049 			if (!PageAnon(page)) {
1050 				if (pte_dirty(ptent)) {
1051 					force_flush = 1;
1052 					set_page_dirty(page);
1053 				}
1054 				if (pte_young(ptent) &&
1055 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1056 					mark_page_accessed(page);
1057 			}
1058 			rss[mm_counter(page)]--;
1059 			page_remove_rmap(page, false);
1060 			if (unlikely(page_mapcount(page) < 0))
1061 				print_bad_pte(vma, addr, ptent, page);
1062 			if (unlikely(__tlb_remove_page(tlb, page))) {
1063 				force_flush = 1;
1064 				addr += PAGE_SIZE;
1065 				break;
1066 			}
1067 			continue;
1068 		}
1069 
1070 		entry = pte_to_swp_entry(ptent);
1071 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1072 			struct page *page = device_private_entry_to_page(entry);
1073 
1074 			if (unlikely(details && details->check_mapping)) {
1075 				/*
1076 				 * unmap_shared_mapping_pages() wants to
1077 				 * invalidate cache without truncating:
1078 				 * unmap shared but keep private pages.
1079 				 */
1080 				if (details->check_mapping !=
1081 				    page_rmapping(page))
1082 					continue;
1083 			}
1084 
1085 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1086 			rss[mm_counter(page)]--;
1087 			page_remove_rmap(page, false);
1088 			put_page(page);
1089 			continue;
1090 		}
1091 
1092 		/* If details->check_mapping, we leave swap entries. */
1093 		if (unlikely(details))
1094 			continue;
1095 
1096 		entry = pte_to_swp_entry(ptent);
1097 		if (!non_swap_entry(entry))
1098 			rss[MM_SWAPENTS]--;
1099 		else if (is_migration_entry(entry)) {
1100 			struct page *page;
1101 
1102 			page = migration_entry_to_page(entry);
1103 			rss[mm_counter(page)]--;
1104 		}
1105 		if (unlikely(!free_swap_and_cache(entry)))
1106 			print_bad_pte(vma, addr, ptent, NULL);
1107 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1108 	} while (pte++, addr += PAGE_SIZE, addr != end);
1109 
1110 	add_mm_rss_vec(mm, rss);
1111 	arch_leave_lazy_mmu_mode();
1112 
1113 	/* Do the actual TLB flush before dropping ptl */
1114 	if (force_flush)
1115 		tlb_flush_mmu_tlbonly(tlb);
1116 	pte_unmap_unlock(start_pte, ptl);
1117 
1118 	/*
1119 	 * If we forced a TLB flush (either due to running out of
1120 	 * batch buffers or because we needed to flush dirty TLB
1121 	 * entries before releasing the ptl), free the batched
1122 	 * memory too. Restart if we didn't do everything.
1123 	 */
1124 	if (force_flush) {
1125 		force_flush = 0;
1126 		tlb_flush_mmu(tlb);
1127 		if (addr != end)
1128 			goto again;
1129 	}
1130 
1131 	return addr;
1132 }
1133 
1134 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1135 				struct vm_area_struct *vma, pud_t *pud,
1136 				unsigned long addr, unsigned long end,
1137 				struct zap_details *details)
1138 {
1139 	pmd_t *pmd;
1140 	unsigned long next;
1141 
1142 	pmd = pmd_offset(pud, addr);
1143 	do {
1144 		next = pmd_addr_end(addr, end);
1145 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1146 			if (next - addr != HPAGE_PMD_SIZE)
1147 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1148 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1149 				goto next;
1150 			/* fall through */
1151 		}
1152 		/*
1153 		 * Here there can be other concurrent MADV_DONTNEED or
1154 		 * trans huge page faults running, and if the pmd is
1155 		 * none or trans huge it can change under us. This is
1156 		 * because MADV_DONTNEED holds the mmap_sem in read
1157 		 * mode.
1158 		 */
1159 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1160 			goto next;
1161 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1162 next:
1163 		cond_resched();
1164 	} while (pmd++, addr = next, addr != end);
1165 
1166 	return addr;
1167 }
1168 
1169 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1170 				struct vm_area_struct *vma, p4d_t *p4d,
1171 				unsigned long addr, unsigned long end,
1172 				struct zap_details *details)
1173 {
1174 	pud_t *pud;
1175 	unsigned long next;
1176 
1177 	pud = pud_offset(p4d, addr);
1178 	do {
1179 		next = pud_addr_end(addr, end);
1180 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1181 			if (next - addr != HPAGE_PUD_SIZE) {
1182 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1183 				split_huge_pud(vma, pud, addr);
1184 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1185 				goto next;
1186 			/* fall through */
1187 		}
1188 		if (pud_none_or_clear_bad(pud))
1189 			continue;
1190 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1191 next:
1192 		cond_resched();
1193 	} while (pud++, addr = next, addr != end);
1194 
1195 	return addr;
1196 }
1197 
1198 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1199 				struct vm_area_struct *vma, pgd_t *pgd,
1200 				unsigned long addr, unsigned long end,
1201 				struct zap_details *details)
1202 {
1203 	p4d_t *p4d;
1204 	unsigned long next;
1205 
1206 	p4d = p4d_offset(pgd, addr);
1207 	do {
1208 		next = p4d_addr_end(addr, end);
1209 		if (p4d_none_or_clear_bad(p4d))
1210 			continue;
1211 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1212 	} while (p4d++, addr = next, addr != end);
1213 
1214 	return addr;
1215 }
1216 
1217 void unmap_page_range(struct mmu_gather *tlb,
1218 			     struct vm_area_struct *vma,
1219 			     unsigned long addr, unsigned long end,
1220 			     struct zap_details *details)
1221 {
1222 	pgd_t *pgd;
1223 	unsigned long next;
1224 
1225 	BUG_ON(addr >= end);
1226 	tlb_start_vma(tlb, vma);
1227 	pgd = pgd_offset(vma->vm_mm, addr);
1228 	do {
1229 		next = pgd_addr_end(addr, end);
1230 		if (pgd_none_or_clear_bad(pgd))
1231 			continue;
1232 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1233 	} while (pgd++, addr = next, addr != end);
1234 	tlb_end_vma(tlb, vma);
1235 }
1236 
1237 
1238 static void unmap_single_vma(struct mmu_gather *tlb,
1239 		struct vm_area_struct *vma, unsigned long start_addr,
1240 		unsigned long end_addr,
1241 		struct zap_details *details)
1242 {
1243 	unsigned long start = max(vma->vm_start, start_addr);
1244 	unsigned long end;
1245 
1246 	if (start >= vma->vm_end)
1247 		return;
1248 	end = min(vma->vm_end, end_addr);
1249 	if (end <= vma->vm_start)
1250 		return;
1251 
1252 	if (vma->vm_file)
1253 		uprobe_munmap(vma, start, end);
1254 
1255 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1256 		untrack_pfn(vma, 0, 0);
1257 
1258 	if (start != end) {
1259 		if (unlikely(is_vm_hugetlb_page(vma))) {
1260 			/*
1261 			 * It is undesirable to test vma->vm_file as it
1262 			 * should be non-null for valid hugetlb area.
1263 			 * However, vm_file will be NULL in the error
1264 			 * cleanup path of mmap_region. When
1265 			 * hugetlbfs ->mmap method fails,
1266 			 * mmap_region() nullifies vma->vm_file
1267 			 * before calling this function to clean up.
1268 			 * Since no pte has actually been setup, it is
1269 			 * safe to do nothing in this case.
1270 			 */
1271 			if (vma->vm_file) {
1272 				i_mmap_lock_write(vma->vm_file->f_mapping);
1273 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1274 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1275 			}
1276 		} else
1277 			unmap_page_range(tlb, vma, start, end, details);
1278 	}
1279 }
1280 
1281 /**
1282  * unmap_vmas - unmap a range of memory covered by a list of vma's
1283  * @tlb: address of the caller's struct mmu_gather
1284  * @vma: the starting vma
1285  * @start_addr: virtual address at which to start unmapping
1286  * @end_addr: virtual address at which to end unmapping
1287  *
1288  * Unmap all pages in the vma list.
1289  *
1290  * Only addresses between `start' and `end' will be unmapped.
1291  *
1292  * The VMA list must be sorted in ascending virtual address order.
1293  *
1294  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1295  * range after unmap_vmas() returns.  So the only responsibility here is to
1296  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1297  * drops the lock and schedules.
1298  */
1299 void unmap_vmas(struct mmu_gather *tlb,
1300 		struct vm_area_struct *vma, unsigned long start_addr,
1301 		unsigned long end_addr)
1302 {
1303 	struct mmu_notifier_range range;
1304 
1305 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1306 				start_addr, end_addr);
1307 	mmu_notifier_invalidate_range_start(&range);
1308 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1309 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1310 	mmu_notifier_invalidate_range_end(&range);
1311 }
1312 
1313 /**
1314  * zap_page_range - remove user pages in a given range
1315  * @vma: vm_area_struct holding the applicable pages
1316  * @start: starting address of pages to zap
1317  * @size: number of bytes to zap
1318  *
1319  * Caller must protect the VMA list
1320  */
1321 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1322 		unsigned long size)
1323 {
1324 	struct mmu_notifier_range range;
1325 	struct mmu_gather tlb;
1326 
1327 	lru_add_drain();
1328 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1329 				start, start + size);
1330 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1331 	update_hiwater_rss(vma->vm_mm);
1332 	mmu_notifier_invalidate_range_start(&range);
1333 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1334 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1335 	mmu_notifier_invalidate_range_end(&range);
1336 	tlb_finish_mmu(&tlb, start, range.end);
1337 }
1338 
1339 /**
1340  * zap_page_range_single - remove user pages in a given range
1341  * @vma: vm_area_struct holding the applicable pages
1342  * @address: starting address of pages to zap
1343  * @size: number of bytes to zap
1344  * @details: details of shared cache invalidation
1345  *
1346  * The range must fit into one VMA.
1347  */
1348 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1349 		unsigned long size, struct zap_details *details)
1350 {
1351 	struct mmu_notifier_range range;
1352 	struct mmu_gather tlb;
1353 
1354 	lru_add_drain();
1355 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1356 				address, address + size);
1357 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1358 	update_hiwater_rss(vma->vm_mm);
1359 	mmu_notifier_invalidate_range_start(&range);
1360 	unmap_single_vma(&tlb, vma, address, range.end, details);
1361 	mmu_notifier_invalidate_range_end(&range);
1362 	tlb_finish_mmu(&tlb, address, range.end);
1363 }
1364 
1365 /**
1366  * zap_vma_ptes - remove ptes mapping the vma
1367  * @vma: vm_area_struct holding ptes to be zapped
1368  * @address: starting address of pages to zap
1369  * @size: number of bytes to zap
1370  *
1371  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1372  *
1373  * The entire address range must be fully contained within the vma.
1374  *
1375  */
1376 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1377 		unsigned long size)
1378 {
1379 	if (address < vma->vm_start || address + size > vma->vm_end ||
1380 	    		!(vma->vm_flags & VM_PFNMAP))
1381 		return;
1382 
1383 	zap_page_range_single(vma, address, size, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1386 
1387 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1388 			spinlock_t **ptl)
1389 {
1390 	pgd_t *pgd;
1391 	p4d_t *p4d;
1392 	pud_t *pud;
1393 	pmd_t *pmd;
1394 
1395 	pgd = pgd_offset(mm, addr);
1396 	p4d = p4d_alloc(mm, pgd, addr);
1397 	if (!p4d)
1398 		return NULL;
1399 	pud = pud_alloc(mm, p4d, addr);
1400 	if (!pud)
1401 		return NULL;
1402 	pmd = pmd_alloc(mm, pud, addr);
1403 	if (!pmd)
1404 		return NULL;
1405 
1406 	VM_BUG_ON(pmd_trans_huge(*pmd));
1407 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1408 }
1409 
1410 /*
1411  * This is the old fallback for page remapping.
1412  *
1413  * For historical reasons, it only allows reserved pages. Only
1414  * old drivers should use this, and they needed to mark their
1415  * pages reserved for the old functions anyway.
1416  */
1417 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1418 			struct page *page, pgprot_t prot)
1419 {
1420 	struct mm_struct *mm = vma->vm_mm;
1421 	int retval;
1422 	pte_t *pte;
1423 	spinlock_t *ptl;
1424 
1425 	retval = -EINVAL;
1426 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1427 		goto out;
1428 	retval = -ENOMEM;
1429 	flush_dcache_page(page);
1430 	pte = get_locked_pte(mm, addr, &ptl);
1431 	if (!pte)
1432 		goto out;
1433 	retval = -EBUSY;
1434 	if (!pte_none(*pte))
1435 		goto out_unlock;
1436 
1437 	/* Ok, finally just insert the thing.. */
1438 	get_page(page);
1439 	inc_mm_counter_fast(mm, mm_counter_file(page));
1440 	page_add_file_rmap(page, false);
1441 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1442 
1443 	retval = 0;
1444 out_unlock:
1445 	pte_unmap_unlock(pte, ptl);
1446 out:
1447 	return retval;
1448 }
1449 
1450 /**
1451  * vm_insert_page - insert single page into user vma
1452  * @vma: user vma to map to
1453  * @addr: target user address of this page
1454  * @page: source kernel page
1455  *
1456  * This allows drivers to insert individual pages they've allocated
1457  * into a user vma.
1458  *
1459  * The page has to be a nice clean _individual_ kernel allocation.
1460  * If you allocate a compound page, you need to have marked it as
1461  * such (__GFP_COMP), or manually just split the page up yourself
1462  * (see split_page()).
1463  *
1464  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1465  * took an arbitrary page protection parameter. This doesn't allow
1466  * that. Your vma protection will have to be set up correctly, which
1467  * means that if you want a shared writable mapping, you'd better
1468  * ask for a shared writable mapping!
1469  *
1470  * The page does not need to be reserved.
1471  *
1472  * Usually this function is called from f_op->mmap() handler
1473  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1474  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1475  * function from other places, for example from page-fault handler.
1476  *
1477  * Return: %0 on success, negative error code otherwise.
1478  */
1479 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1480 			struct page *page)
1481 {
1482 	if (addr < vma->vm_start || addr >= vma->vm_end)
1483 		return -EFAULT;
1484 	if (!page_count(page))
1485 		return -EINVAL;
1486 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1487 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1488 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1489 		vma->vm_flags |= VM_MIXEDMAP;
1490 	}
1491 	return insert_page(vma, addr, page, vma->vm_page_prot);
1492 }
1493 EXPORT_SYMBOL(vm_insert_page);
1494 
1495 /*
1496  * __vm_map_pages - maps range of kernel pages into user vma
1497  * @vma: user vma to map to
1498  * @pages: pointer to array of source kernel pages
1499  * @num: number of pages in page array
1500  * @offset: user's requested vm_pgoff
1501  *
1502  * This allows drivers to map range of kernel pages into a user vma.
1503  *
1504  * Return: 0 on success and error code otherwise.
1505  */
1506 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1507 				unsigned long num, unsigned long offset)
1508 {
1509 	unsigned long count = vma_pages(vma);
1510 	unsigned long uaddr = vma->vm_start;
1511 	int ret, i;
1512 
1513 	/* Fail if the user requested offset is beyond the end of the object */
1514 	if (offset >= num)
1515 		return -ENXIO;
1516 
1517 	/* Fail if the user requested size exceeds available object size */
1518 	if (count > num - offset)
1519 		return -ENXIO;
1520 
1521 	for (i = 0; i < count; i++) {
1522 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1523 		if (ret < 0)
1524 			return ret;
1525 		uaddr += PAGE_SIZE;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 /**
1532  * vm_map_pages - maps range of kernel pages starts with non zero offset
1533  * @vma: user vma to map to
1534  * @pages: pointer to array of source kernel pages
1535  * @num: number of pages in page array
1536  *
1537  * Maps an object consisting of @num pages, catering for the user's
1538  * requested vm_pgoff
1539  *
1540  * If we fail to insert any page into the vma, the function will return
1541  * immediately leaving any previously inserted pages present.  Callers
1542  * from the mmap handler may immediately return the error as their caller
1543  * will destroy the vma, removing any successfully inserted pages. Other
1544  * callers should make their own arrangements for calling unmap_region().
1545  *
1546  * Context: Process context. Called by mmap handlers.
1547  * Return: 0 on success and error code otherwise.
1548  */
1549 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1550 				unsigned long num)
1551 {
1552 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1553 }
1554 EXPORT_SYMBOL(vm_map_pages);
1555 
1556 /**
1557  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1558  * @vma: user vma to map to
1559  * @pages: pointer to array of source kernel pages
1560  * @num: number of pages in page array
1561  *
1562  * Similar to vm_map_pages(), except that it explicitly sets the offset
1563  * to 0. This function is intended for the drivers that did not consider
1564  * vm_pgoff.
1565  *
1566  * Context: Process context. Called by mmap handlers.
1567  * Return: 0 on success and error code otherwise.
1568  */
1569 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1570 				unsigned long num)
1571 {
1572 	return __vm_map_pages(vma, pages, num, 0);
1573 }
1574 EXPORT_SYMBOL(vm_map_pages_zero);
1575 
1576 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1577 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1578 {
1579 	struct mm_struct *mm = vma->vm_mm;
1580 	pte_t *pte, entry;
1581 	spinlock_t *ptl;
1582 
1583 	pte = get_locked_pte(mm, addr, &ptl);
1584 	if (!pte)
1585 		return VM_FAULT_OOM;
1586 	if (!pte_none(*pte)) {
1587 		if (mkwrite) {
1588 			/*
1589 			 * For read faults on private mappings the PFN passed
1590 			 * in may not match the PFN we have mapped if the
1591 			 * mapped PFN is a writeable COW page.  In the mkwrite
1592 			 * case we are creating a writable PTE for a shared
1593 			 * mapping and we expect the PFNs to match. If they
1594 			 * don't match, we are likely racing with block
1595 			 * allocation and mapping invalidation so just skip the
1596 			 * update.
1597 			 */
1598 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1599 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1600 				goto out_unlock;
1601 			}
1602 			entry = pte_mkyoung(*pte);
1603 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1604 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1605 				update_mmu_cache(vma, addr, pte);
1606 		}
1607 		goto out_unlock;
1608 	}
1609 
1610 	/* Ok, finally just insert the thing.. */
1611 	if (pfn_t_devmap(pfn))
1612 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1613 	else
1614 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1615 
1616 	if (mkwrite) {
1617 		entry = pte_mkyoung(entry);
1618 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1619 	}
1620 
1621 	set_pte_at(mm, addr, pte, entry);
1622 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1623 
1624 out_unlock:
1625 	pte_unmap_unlock(pte, ptl);
1626 	return VM_FAULT_NOPAGE;
1627 }
1628 
1629 /**
1630  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1631  * @vma: user vma to map to
1632  * @addr: target user address of this page
1633  * @pfn: source kernel pfn
1634  * @pgprot: pgprot flags for the inserted page
1635  *
1636  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1637  * to override pgprot on a per-page basis.
1638  *
1639  * This only makes sense for IO mappings, and it makes no sense for
1640  * COW mappings.  In general, using multiple vmas is preferable;
1641  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1642  * impractical.
1643  *
1644  * Context: Process context.  May allocate using %GFP_KERNEL.
1645  * Return: vm_fault_t value.
1646  */
1647 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1648 			unsigned long pfn, pgprot_t pgprot)
1649 {
1650 	/*
1651 	 * Technically, architectures with pte_special can avoid all these
1652 	 * restrictions (same for remap_pfn_range).  However we would like
1653 	 * consistency in testing and feature parity among all, so we should
1654 	 * try to keep these invariants in place for everybody.
1655 	 */
1656 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1657 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1658 						(VM_PFNMAP|VM_MIXEDMAP));
1659 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1660 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1661 
1662 	if (addr < vma->vm_start || addr >= vma->vm_end)
1663 		return VM_FAULT_SIGBUS;
1664 
1665 	if (!pfn_modify_allowed(pfn, pgprot))
1666 		return VM_FAULT_SIGBUS;
1667 
1668 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1669 
1670 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1671 			false);
1672 }
1673 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1674 
1675 /**
1676  * vmf_insert_pfn - insert single pfn into user vma
1677  * @vma: user vma to map to
1678  * @addr: target user address of this page
1679  * @pfn: source kernel pfn
1680  *
1681  * Similar to vm_insert_page, this allows drivers to insert individual pages
1682  * they've allocated into a user vma. Same comments apply.
1683  *
1684  * This function should only be called from a vm_ops->fault handler, and
1685  * in that case the handler should return the result of this function.
1686  *
1687  * vma cannot be a COW mapping.
1688  *
1689  * As this is called only for pages that do not currently exist, we
1690  * do not need to flush old virtual caches or the TLB.
1691  *
1692  * Context: Process context.  May allocate using %GFP_KERNEL.
1693  * Return: vm_fault_t value.
1694  */
1695 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1696 			unsigned long pfn)
1697 {
1698 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1699 }
1700 EXPORT_SYMBOL(vmf_insert_pfn);
1701 
1702 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1703 {
1704 	/* these checks mirror the abort conditions in vm_normal_page */
1705 	if (vma->vm_flags & VM_MIXEDMAP)
1706 		return true;
1707 	if (pfn_t_devmap(pfn))
1708 		return true;
1709 	if (pfn_t_special(pfn))
1710 		return true;
1711 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1712 		return true;
1713 	return false;
1714 }
1715 
1716 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1717 		unsigned long addr, pfn_t pfn, bool mkwrite)
1718 {
1719 	pgprot_t pgprot = vma->vm_page_prot;
1720 	int err;
1721 
1722 	BUG_ON(!vm_mixed_ok(vma, pfn));
1723 
1724 	if (addr < vma->vm_start || addr >= vma->vm_end)
1725 		return VM_FAULT_SIGBUS;
1726 
1727 	track_pfn_insert(vma, &pgprot, pfn);
1728 
1729 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1730 		return VM_FAULT_SIGBUS;
1731 
1732 	/*
1733 	 * If we don't have pte special, then we have to use the pfn_valid()
1734 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1735 	 * refcount the page if pfn_valid is true (hence insert_page rather
1736 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1737 	 * without pte special, it would there be refcounted as a normal page.
1738 	 */
1739 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1740 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1741 		struct page *page;
1742 
1743 		/*
1744 		 * At this point we are committed to insert_page()
1745 		 * regardless of whether the caller specified flags that
1746 		 * result in pfn_t_has_page() == false.
1747 		 */
1748 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1749 		err = insert_page(vma, addr, page, pgprot);
1750 	} else {
1751 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1752 	}
1753 
1754 	if (err == -ENOMEM)
1755 		return VM_FAULT_OOM;
1756 	if (err < 0 && err != -EBUSY)
1757 		return VM_FAULT_SIGBUS;
1758 
1759 	return VM_FAULT_NOPAGE;
1760 }
1761 
1762 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1763 		pfn_t pfn)
1764 {
1765 	return __vm_insert_mixed(vma, addr, pfn, false);
1766 }
1767 EXPORT_SYMBOL(vmf_insert_mixed);
1768 
1769 /*
1770  *  If the insertion of PTE failed because someone else already added a
1771  *  different entry in the mean time, we treat that as success as we assume
1772  *  the same entry was actually inserted.
1773  */
1774 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1775 		unsigned long addr, pfn_t pfn)
1776 {
1777 	return __vm_insert_mixed(vma, addr, pfn, true);
1778 }
1779 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1780 
1781 /*
1782  * maps a range of physical memory into the requested pages. the old
1783  * mappings are removed. any references to nonexistent pages results
1784  * in null mappings (currently treated as "copy-on-access")
1785  */
1786 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1787 			unsigned long addr, unsigned long end,
1788 			unsigned long pfn, pgprot_t prot)
1789 {
1790 	pte_t *pte;
1791 	spinlock_t *ptl;
1792 	int err = 0;
1793 
1794 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1795 	if (!pte)
1796 		return -ENOMEM;
1797 	arch_enter_lazy_mmu_mode();
1798 	do {
1799 		BUG_ON(!pte_none(*pte));
1800 		if (!pfn_modify_allowed(pfn, prot)) {
1801 			err = -EACCES;
1802 			break;
1803 		}
1804 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1805 		pfn++;
1806 	} while (pte++, addr += PAGE_SIZE, addr != end);
1807 	arch_leave_lazy_mmu_mode();
1808 	pte_unmap_unlock(pte - 1, ptl);
1809 	return err;
1810 }
1811 
1812 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1813 			unsigned long addr, unsigned long end,
1814 			unsigned long pfn, pgprot_t prot)
1815 {
1816 	pmd_t *pmd;
1817 	unsigned long next;
1818 	int err;
1819 
1820 	pfn -= addr >> PAGE_SHIFT;
1821 	pmd = pmd_alloc(mm, pud, addr);
1822 	if (!pmd)
1823 		return -ENOMEM;
1824 	VM_BUG_ON(pmd_trans_huge(*pmd));
1825 	do {
1826 		next = pmd_addr_end(addr, end);
1827 		err = remap_pte_range(mm, pmd, addr, next,
1828 				pfn + (addr >> PAGE_SHIFT), prot);
1829 		if (err)
1830 			return err;
1831 	} while (pmd++, addr = next, addr != end);
1832 	return 0;
1833 }
1834 
1835 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1836 			unsigned long addr, unsigned long end,
1837 			unsigned long pfn, pgprot_t prot)
1838 {
1839 	pud_t *pud;
1840 	unsigned long next;
1841 	int err;
1842 
1843 	pfn -= addr >> PAGE_SHIFT;
1844 	pud = pud_alloc(mm, p4d, addr);
1845 	if (!pud)
1846 		return -ENOMEM;
1847 	do {
1848 		next = pud_addr_end(addr, end);
1849 		err = remap_pmd_range(mm, pud, addr, next,
1850 				pfn + (addr >> PAGE_SHIFT), prot);
1851 		if (err)
1852 			return err;
1853 	} while (pud++, addr = next, addr != end);
1854 	return 0;
1855 }
1856 
1857 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1858 			unsigned long addr, unsigned long end,
1859 			unsigned long pfn, pgprot_t prot)
1860 {
1861 	p4d_t *p4d;
1862 	unsigned long next;
1863 	int err;
1864 
1865 	pfn -= addr >> PAGE_SHIFT;
1866 	p4d = p4d_alloc(mm, pgd, addr);
1867 	if (!p4d)
1868 		return -ENOMEM;
1869 	do {
1870 		next = p4d_addr_end(addr, end);
1871 		err = remap_pud_range(mm, p4d, addr, next,
1872 				pfn + (addr >> PAGE_SHIFT), prot);
1873 		if (err)
1874 			return err;
1875 	} while (p4d++, addr = next, addr != end);
1876 	return 0;
1877 }
1878 
1879 /**
1880  * remap_pfn_range - remap kernel memory to userspace
1881  * @vma: user vma to map to
1882  * @addr: target user address to start at
1883  * @pfn: physical address of kernel memory
1884  * @size: size of map area
1885  * @prot: page protection flags for this mapping
1886  *
1887  * Note: this is only safe if the mm semaphore is held when called.
1888  *
1889  * Return: %0 on success, negative error code otherwise.
1890  */
1891 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1892 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1893 {
1894 	pgd_t *pgd;
1895 	unsigned long next;
1896 	unsigned long end = addr + PAGE_ALIGN(size);
1897 	struct mm_struct *mm = vma->vm_mm;
1898 	unsigned long remap_pfn = pfn;
1899 	int err;
1900 
1901 	/*
1902 	 * Physically remapped pages are special. Tell the
1903 	 * rest of the world about it:
1904 	 *   VM_IO tells people not to look at these pages
1905 	 *	(accesses can have side effects).
1906 	 *   VM_PFNMAP tells the core MM that the base pages are just
1907 	 *	raw PFN mappings, and do not have a "struct page" associated
1908 	 *	with them.
1909 	 *   VM_DONTEXPAND
1910 	 *      Disable vma merging and expanding with mremap().
1911 	 *   VM_DONTDUMP
1912 	 *      Omit vma from core dump, even when VM_IO turned off.
1913 	 *
1914 	 * There's a horrible special case to handle copy-on-write
1915 	 * behaviour that some programs depend on. We mark the "original"
1916 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1917 	 * See vm_normal_page() for details.
1918 	 */
1919 	if (is_cow_mapping(vma->vm_flags)) {
1920 		if (addr != vma->vm_start || end != vma->vm_end)
1921 			return -EINVAL;
1922 		vma->vm_pgoff = pfn;
1923 	}
1924 
1925 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1926 	if (err)
1927 		return -EINVAL;
1928 
1929 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1930 
1931 	BUG_ON(addr >= end);
1932 	pfn -= addr >> PAGE_SHIFT;
1933 	pgd = pgd_offset(mm, addr);
1934 	flush_cache_range(vma, addr, end);
1935 	do {
1936 		next = pgd_addr_end(addr, end);
1937 		err = remap_p4d_range(mm, pgd, addr, next,
1938 				pfn + (addr >> PAGE_SHIFT), prot);
1939 		if (err)
1940 			break;
1941 	} while (pgd++, addr = next, addr != end);
1942 
1943 	if (err)
1944 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1945 
1946 	return err;
1947 }
1948 EXPORT_SYMBOL(remap_pfn_range);
1949 
1950 /**
1951  * vm_iomap_memory - remap memory to userspace
1952  * @vma: user vma to map to
1953  * @start: start of area
1954  * @len: size of area
1955  *
1956  * This is a simplified io_remap_pfn_range() for common driver use. The
1957  * driver just needs to give us the physical memory range to be mapped,
1958  * we'll figure out the rest from the vma information.
1959  *
1960  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1961  * whatever write-combining details or similar.
1962  *
1963  * Return: %0 on success, negative error code otherwise.
1964  */
1965 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1966 {
1967 	unsigned long vm_len, pfn, pages;
1968 
1969 	/* Check that the physical memory area passed in looks valid */
1970 	if (start + len < start)
1971 		return -EINVAL;
1972 	/*
1973 	 * You *really* shouldn't map things that aren't page-aligned,
1974 	 * but we've historically allowed it because IO memory might
1975 	 * just have smaller alignment.
1976 	 */
1977 	len += start & ~PAGE_MASK;
1978 	pfn = start >> PAGE_SHIFT;
1979 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1980 	if (pfn + pages < pfn)
1981 		return -EINVAL;
1982 
1983 	/* We start the mapping 'vm_pgoff' pages into the area */
1984 	if (vma->vm_pgoff > pages)
1985 		return -EINVAL;
1986 	pfn += vma->vm_pgoff;
1987 	pages -= vma->vm_pgoff;
1988 
1989 	/* Can we fit all of the mapping? */
1990 	vm_len = vma->vm_end - vma->vm_start;
1991 	if (vm_len >> PAGE_SHIFT > pages)
1992 		return -EINVAL;
1993 
1994 	/* Ok, let it rip */
1995 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1996 }
1997 EXPORT_SYMBOL(vm_iomap_memory);
1998 
1999 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2000 				     unsigned long addr, unsigned long end,
2001 				     pte_fn_t fn, void *data)
2002 {
2003 	pte_t *pte;
2004 	int err;
2005 	spinlock_t *uninitialized_var(ptl);
2006 
2007 	pte = (mm == &init_mm) ?
2008 		pte_alloc_kernel(pmd, addr) :
2009 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2010 	if (!pte)
2011 		return -ENOMEM;
2012 
2013 	BUG_ON(pmd_huge(*pmd));
2014 
2015 	arch_enter_lazy_mmu_mode();
2016 
2017 	do {
2018 		err = fn(pte++, addr, data);
2019 		if (err)
2020 			break;
2021 	} while (addr += PAGE_SIZE, addr != end);
2022 
2023 	arch_leave_lazy_mmu_mode();
2024 
2025 	if (mm != &init_mm)
2026 		pte_unmap_unlock(pte-1, ptl);
2027 	return err;
2028 }
2029 
2030 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2031 				     unsigned long addr, unsigned long end,
2032 				     pte_fn_t fn, void *data)
2033 {
2034 	pmd_t *pmd;
2035 	unsigned long next;
2036 	int err;
2037 
2038 	BUG_ON(pud_huge(*pud));
2039 
2040 	pmd = pmd_alloc(mm, pud, addr);
2041 	if (!pmd)
2042 		return -ENOMEM;
2043 	do {
2044 		next = pmd_addr_end(addr, end);
2045 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2046 		if (err)
2047 			break;
2048 	} while (pmd++, addr = next, addr != end);
2049 	return err;
2050 }
2051 
2052 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2053 				     unsigned long addr, unsigned long end,
2054 				     pte_fn_t fn, void *data)
2055 {
2056 	pud_t *pud;
2057 	unsigned long next;
2058 	int err;
2059 
2060 	pud = pud_alloc(mm, p4d, addr);
2061 	if (!pud)
2062 		return -ENOMEM;
2063 	do {
2064 		next = pud_addr_end(addr, end);
2065 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2066 		if (err)
2067 			break;
2068 	} while (pud++, addr = next, addr != end);
2069 	return err;
2070 }
2071 
2072 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2073 				     unsigned long addr, unsigned long end,
2074 				     pte_fn_t fn, void *data)
2075 {
2076 	p4d_t *p4d;
2077 	unsigned long next;
2078 	int err;
2079 
2080 	p4d = p4d_alloc(mm, pgd, addr);
2081 	if (!p4d)
2082 		return -ENOMEM;
2083 	do {
2084 		next = p4d_addr_end(addr, end);
2085 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2086 		if (err)
2087 			break;
2088 	} while (p4d++, addr = next, addr != end);
2089 	return err;
2090 }
2091 
2092 /*
2093  * Scan a region of virtual memory, filling in page tables as necessary
2094  * and calling a provided function on each leaf page table.
2095  */
2096 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2097 			unsigned long size, pte_fn_t fn, void *data)
2098 {
2099 	pgd_t *pgd;
2100 	unsigned long next;
2101 	unsigned long end = addr + size;
2102 	int err;
2103 
2104 	if (WARN_ON(addr >= end))
2105 		return -EINVAL;
2106 
2107 	pgd = pgd_offset(mm, addr);
2108 	do {
2109 		next = pgd_addr_end(addr, end);
2110 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2111 		if (err)
2112 			break;
2113 	} while (pgd++, addr = next, addr != end);
2114 
2115 	return err;
2116 }
2117 EXPORT_SYMBOL_GPL(apply_to_page_range);
2118 
2119 /*
2120  * handle_pte_fault chooses page fault handler according to an entry which was
2121  * read non-atomically.  Before making any commitment, on those architectures
2122  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2123  * parts, do_swap_page must check under lock before unmapping the pte and
2124  * proceeding (but do_wp_page is only called after already making such a check;
2125  * and do_anonymous_page can safely check later on).
2126  */
2127 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2128 				pte_t *page_table, pte_t orig_pte)
2129 {
2130 	int same = 1;
2131 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2132 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2133 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2134 		spin_lock(ptl);
2135 		same = pte_same(*page_table, orig_pte);
2136 		spin_unlock(ptl);
2137 	}
2138 #endif
2139 	pte_unmap(page_table);
2140 	return same;
2141 }
2142 
2143 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2144 {
2145 	debug_dma_assert_idle(src);
2146 
2147 	/*
2148 	 * If the source page was a PFN mapping, we don't have
2149 	 * a "struct page" for it. We do a best-effort copy by
2150 	 * just copying from the original user address. If that
2151 	 * fails, we just zero-fill it. Live with it.
2152 	 */
2153 	if (unlikely(!src)) {
2154 		void *kaddr = kmap_atomic(dst);
2155 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2156 
2157 		/*
2158 		 * This really shouldn't fail, because the page is there
2159 		 * in the page tables. But it might just be unreadable,
2160 		 * in which case we just give up and fill the result with
2161 		 * zeroes.
2162 		 */
2163 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2164 			clear_page(kaddr);
2165 		kunmap_atomic(kaddr);
2166 		flush_dcache_page(dst);
2167 	} else
2168 		copy_user_highpage(dst, src, va, vma);
2169 }
2170 
2171 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2172 {
2173 	struct file *vm_file = vma->vm_file;
2174 
2175 	if (vm_file)
2176 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2177 
2178 	/*
2179 	 * Special mappings (e.g. VDSO) do not have any file so fake
2180 	 * a default GFP_KERNEL for them.
2181 	 */
2182 	return GFP_KERNEL;
2183 }
2184 
2185 /*
2186  * Notify the address space that the page is about to become writable so that
2187  * it can prohibit this or wait for the page to get into an appropriate state.
2188  *
2189  * We do this without the lock held, so that it can sleep if it needs to.
2190  */
2191 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2192 {
2193 	vm_fault_t ret;
2194 	struct page *page = vmf->page;
2195 	unsigned int old_flags = vmf->flags;
2196 
2197 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2198 
2199 	if (vmf->vma->vm_file &&
2200 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2201 		return VM_FAULT_SIGBUS;
2202 
2203 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2204 	/* Restore original flags so that caller is not surprised */
2205 	vmf->flags = old_flags;
2206 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2207 		return ret;
2208 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2209 		lock_page(page);
2210 		if (!page->mapping) {
2211 			unlock_page(page);
2212 			return 0; /* retry */
2213 		}
2214 		ret |= VM_FAULT_LOCKED;
2215 	} else
2216 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2217 	return ret;
2218 }
2219 
2220 /*
2221  * Handle dirtying of a page in shared file mapping on a write fault.
2222  *
2223  * The function expects the page to be locked and unlocks it.
2224  */
2225 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2226 				    struct page *page)
2227 {
2228 	struct address_space *mapping;
2229 	bool dirtied;
2230 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2231 
2232 	dirtied = set_page_dirty(page);
2233 	VM_BUG_ON_PAGE(PageAnon(page), page);
2234 	/*
2235 	 * Take a local copy of the address_space - page.mapping may be zeroed
2236 	 * by truncate after unlock_page().   The address_space itself remains
2237 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2238 	 * release semantics to prevent the compiler from undoing this copying.
2239 	 */
2240 	mapping = page_rmapping(page);
2241 	unlock_page(page);
2242 
2243 	if ((dirtied || page_mkwrite) && mapping) {
2244 		/*
2245 		 * Some device drivers do not set page.mapping
2246 		 * but still dirty their pages
2247 		 */
2248 		balance_dirty_pages_ratelimited(mapping);
2249 	}
2250 
2251 	if (!page_mkwrite)
2252 		file_update_time(vma->vm_file);
2253 }
2254 
2255 /*
2256  * Handle write page faults for pages that can be reused in the current vma
2257  *
2258  * This can happen either due to the mapping being with the VM_SHARED flag,
2259  * or due to us being the last reference standing to the page. In either
2260  * case, all we need to do here is to mark the page as writable and update
2261  * any related book-keeping.
2262  */
2263 static inline void wp_page_reuse(struct vm_fault *vmf)
2264 	__releases(vmf->ptl)
2265 {
2266 	struct vm_area_struct *vma = vmf->vma;
2267 	struct page *page = vmf->page;
2268 	pte_t entry;
2269 	/*
2270 	 * Clear the pages cpupid information as the existing
2271 	 * information potentially belongs to a now completely
2272 	 * unrelated process.
2273 	 */
2274 	if (page)
2275 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2276 
2277 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2278 	entry = pte_mkyoung(vmf->orig_pte);
2279 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2280 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2281 		update_mmu_cache(vma, vmf->address, vmf->pte);
2282 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2283 }
2284 
2285 /*
2286  * Handle the case of a page which we actually need to copy to a new page.
2287  *
2288  * Called with mmap_sem locked and the old page referenced, but
2289  * without the ptl held.
2290  *
2291  * High level logic flow:
2292  *
2293  * - Allocate a page, copy the content of the old page to the new one.
2294  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2295  * - Take the PTL. If the pte changed, bail out and release the allocated page
2296  * - If the pte is still the way we remember it, update the page table and all
2297  *   relevant references. This includes dropping the reference the page-table
2298  *   held to the old page, as well as updating the rmap.
2299  * - In any case, unlock the PTL and drop the reference we took to the old page.
2300  */
2301 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2302 {
2303 	struct vm_area_struct *vma = vmf->vma;
2304 	struct mm_struct *mm = vma->vm_mm;
2305 	struct page *old_page = vmf->page;
2306 	struct page *new_page = NULL;
2307 	pte_t entry;
2308 	int page_copied = 0;
2309 	struct mem_cgroup *memcg;
2310 	struct mmu_notifier_range range;
2311 
2312 	if (unlikely(anon_vma_prepare(vma)))
2313 		goto oom;
2314 
2315 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2316 		new_page = alloc_zeroed_user_highpage_movable(vma,
2317 							      vmf->address);
2318 		if (!new_page)
2319 			goto oom;
2320 	} else {
2321 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2322 				vmf->address);
2323 		if (!new_page)
2324 			goto oom;
2325 		cow_user_page(new_page, old_page, vmf->address, vma);
2326 	}
2327 
2328 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2329 		goto oom_free_new;
2330 
2331 	__SetPageUptodate(new_page);
2332 
2333 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2334 				vmf->address & PAGE_MASK,
2335 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2336 	mmu_notifier_invalidate_range_start(&range);
2337 
2338 	/*
2339 	 * Re-check the pte - we dropped the lock
2340 	 */
2341 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2342 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2343 		if (old_page) {
2344 			if (!PageAnon(old_page)) {
2345 				dec_mm_counter_fast(mm,
2346 						mm_counter_file(old_page));
2347 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2348 			}
2349 		} else {
2350 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2351 		}
2352 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2353 		entry = mk_pte(new_page, vma->vm_page_prot);
2354 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2355 		/*
2356 		 * Clear the pte entry and flush it first, before updating the
2357 		 * pte with the new entry. This will avoid a race condition
2358 		 * seen in the presence of one thread doing SMC and another
2359 		 * thread doing COW.
2360 		 */
2361 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2362 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2363 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2364 		lru_cache_add_active_or_unevictable(new_page, vma);
2365 		/*
2366 		 * We call the notify macro here because, when using secondary
2367 		 * mmu page tables (such as kvm shadow page tables), we want the
2368 		 * new page to be mapped directly into the secondary page table.
2369 		 */
2370 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2371 		update_mmu_cache(vma, vmf->address, vmf->pte);
2372 		if (old_page) {
2373 			/*
2374 			 * Only after switching the pte to the new page may
2375 			 * we remove the mapcount here. Otherwise another
2376 			 * process may come and find the rmap count decremented
2377 			 * before the pte is switched to the new page, and
2378 			 * "reuse" the old page writing into it while our pte
2379 			 * here still points into it and can be read by other
2380 			 * threads.
2381 			 *
2382 			 * The critical issue is to order this
2383 			 * page_remove_rmap with the ptp_clear_flush above.
2384 			 * Those stores are ordered by (if nothing else,)
2385 			 * the barrier present in the atomic_add_negative
2386 			 * in page_remove_rmap.
2387 			 *
2388 			 * Then the TLB flush in ptep_clear_flush ensures that
2389 			 * no process can access the old page before the
2390 			 * decremented mapcount is visible. And the old page
2391 			 * cannot be reused until after the decremented
2392 			 * mapcount is visible. So transitively, TLBs to
2393 			 * old page will be flushed before it can be reused.
2394 			 */
2395 			page_remove_rmap(old_page, false);
2396 		}
2397 
2398 		/* Free the old page.. */
2399 		new_page = old_page;
2400 		page_copied = 1;
2401 	} else {
2402 		mem_cgroup_cancel_charge(new_page, memcg, false);
2403 	}
2404 
2405 	if (new_page)
2406 		put_page(new_page);
2407 
2408 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2409 	/*
2410 	 * No need to double call mmu_notifier->invalidate_range() callback as
2411 	 * the above ptep_clear_flush_notify() did already call it.
2412 	 */
2413 	mmu_notifier_invalidate_range_only_end(&range);
2414 	if (old_page) {
2415 		/*
2416 		 * Don't let another task, with possibly unlocked vma,
2417 		 * keep the mlocked page.
2418 		 */
2419 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2420 			lock_page(old_page);	/* LRU manipulation */
2421 			if (PageMlocked(old_page))
2422 				munlock_vma_page(old_page);
2423 			unlock_page(old_page);
2424 		}
2425 		put_page(old_page);
2426 	}
2427 	return page_copied ? VM_FAULT_WRITE : 0;
2428 oom_free_new:
2429 	put_page(new_page);
2430 oom:
2431 	if (old_page)
2432 		put_page(old_page);
2433 	return VM_FAULT_OOM;
2434 }
2435 
2436 /**
2437  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2438  *			  writeable once the page is prepared
2439  *
2440  * @vmf: structure describing the fault
2441  *
2442  * This function handles all that is needed to finish a write page fault in a
2443  * shared mapping due to PTE being read-only once the mapped page is prepared.
2444  * It handles locking of PTE and modifying it.
2445  *
2446  * The function expects the page to be locked or other protection against
2447  * concurrent faults / writeback (such as DAX radix tree locks).
2448  *
2449  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2450  * we acquired PTE lock.
2451  */
2452 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2453 {
2454 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2455 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2456 				       &vmf->ptl);
2457 	/*
2458 	 * We might have raced with another page fault while we released the
2459 	 * pte_offset_map_lock.
2460 	 */
2461 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2462 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2463 		return VM_FAULT_NOPAGE;
2464 	}
2465 	wp_page_reuse(vmf);
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2471  * mapping
2472  */
2473 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2474 {
2475 	struct vm_area_struct *vma = vmf->vma;
2476 
2477 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2478 		vm_fault_t ret;
2479 
2480 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2481 		vmf->flags |= FAULT_FLAG_MKWRITE;
2482 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2483 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2484 			return ret;
2485 		return finish_mkwrite_fault(vmf);
2486 	}
2487 	wp_page_reuse(vmf);
2488 	return VM_FAULT_WRITE;
2489 }
2490 
2491 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2492 	__releases(vmf->ptl)
2493 {
2494 	struct vm_area_struct *vma = vmf->vma;
2495 
2496 	get_page(vmf->page);
2497 
2498 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2499 		vm_fault_t tmp;
2500 
2501 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2502 		tmp = do_page_mkwrite(vmf);
2503 		if (unlikely(!tmp || (tmp &
2504 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2505 			put_page(vmf->page);
2506 			return tmp;
2507 		}
2508 		tmp = finish_mkwrite_fault(vmf);
2509 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2510 			unlock_page(vmf->page);
2511 			put_page(vmf->page);
2512 			return tmp;
2513 		}
2514 	} else {
2515 		wp_page_reuse(vmf);
2516 		lock_page(vmf->page);
2517 	}
2518 	fault_dirty_shared_page(vma, vmf->page);
2519 	put_page(vmf->page);
2520 
2521 	return VM_FAULT_WRITE;
2522 }
2523 
2524 /*
2525  * This routine handles present pages, when users try to write
2526  * to a shared page. It is done by copying the page to a new address
2527  * and decrementing the shared-page counter for the old page.
2528  *
2529  * Note that this routine assumes that the protection checks have been
2530  * done by the caller (the low-level page fault routine in most cases).
2531  * Thus we can safely just mark it writable once we've done any necessary
2532  * COW.
2533  *
2534  * We also mark the page dirty at this point even though the page will
2535  * change only once the write actually happens. This avoids a few races,
2536  * and potentially makes it more efficient.
2537  *
2538  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2539  * but allow concurrent faults), with pte both mapped and locked.
2540  * We return with mmap_sem still held, but pte unmapped and unlocked.
2541  */
2542 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2543 	__releases(vmf->ptl)
2544 {
2545 	struct vm_area_struct *vma = vmf->vma;
2546 
2547 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2548 	if (!vmf->page) {
2549 		/*
2550 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2551 		 * VM_PFNMAP VMA.
2552 		 *
2553 		 * We should not cow pages in a shared writeable mapping.
2554 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2555 		 */
2556 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557 				     (VM_WRITE|VM_SHARED))
2558 			return wp_pfn_shared(vmf);
2559 
2560 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2561 		return wp_page_copy(vmf);
2562 	}
2563 
2564 	/*
2565 	 * Take out anonymous pages first, anonymous shared vmas are
2566 	 * not dirty accountable.
2567 	 */
2568 	if (PageAnon(vmf->page)) {
2569 		int total_map_swapcount;
2570 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2571 					   page_count(vmf->page) != 1))
2572 			goto copy;
2573 		if (!trylock_page(vmf->page)) {
2574 			get_page(vmf->page);
2575 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2576 			lock_page(vmf->page);
2577 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2578 					vmf->address, &vmf->ptl);
2579 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2580 				unlock_page(vmf->page);
2581 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2582 				put_page(vmf->page);
2583 				return 0;
2584 			}
2585 			put_page(vmf->page);
2586 		}
2587 		if (PageKsm(vmf->page)) {
2588 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2589 						     vmf->address);
2590 			unlock_page(vmf->page);
2591 			if (!reused)
2592 				goto copy;
2593 			wp_page_reuse(vmf);
2594 			return VM_FAULT_WRITE;
2595 		}
2596 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2597 			if (total_map_swapcount == 1) {
2598 				/*
2599 				 * The page is all ours. Move it to
2600 				 * our anon_vma so the rmap code will
2601 				 * not search our parent or siblings.
2602 				 * Protected against the rmap code by
2603 				 * the page lock.
2604 				 */
2605 				page_move_anon_rmap(vmf->page, vma);
2606 			}
2607 			unlock_page(vmf->page);
2608 			wp_page_reuse(vmf);
2609 			return VM_FAULT_WRITE;
2610 		}
2611 		unlock_page(vmf->page);
2612 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2613 					(VM_WRITE|VM_SHARED))) {
2614 		return wp_page_shared(vmf);
2615 	}
2616 copy:
2617 	/*
2618 	 * Ok, we need to copy. Oh, well..
2619 	 */
2620 	get_page(vmf->page);
2621 
2622 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2623 	return wp_page_copy(vmf);
2624 }
2625 
2626 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2627 		unsigned long start_addr, unsigned long end_addr,
2628 		struct zap_details *details)
2629 {
2630 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2631 }
2632 
2633 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2634 					    struct zap_details *details)
2635 {
2636 	struct vm_area_struct *vma;
2637 	pgoff_t vba, vea, zba, zea;
2638 
2639 	vma_interval_tree_foreach(vma, root,
2640 			details->first_index, details->last_index) {
2641 
2642 		vba = vma->vm_pgoff;
2643 		vea = vba + vma_pages(vma) - 1;
2644 		zba = details->first_index;
2645 		if (zba < vba)
2646 			zba = vba;
2647 		zea = details->last_index;
2648 		if (zea > vea)
2649 			zea = vea;
2650 
2651 		unmap_mapping_range_vma(vma,
2652 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2653 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2654 				details);
2655 	}
2656 }
2657 
2658 /**
2659  * unmap_mapping_pages() - Unmap pages from processes.
2660  * @mapping: The address space containing pages to be unmapped.
2661  * @start: Index of first page to be unmapped.
2662  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2663  * @even_cows: Whether to unmap even private COWed pages.
2664  *
2665  * Unmap the pages in this address space from any userspace process which
2666  * has them mmaped.  Generally, you want to remove COWed pages as well when
2667  * a file is being truncated, but not when invalidating pages from the page
2668  * cache.
2669  */
2670 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2671 		pgoff_t nr, bool even_cows)
2672 {
2673 	struct zap_details details = { };
2674 
2675 	details.check_mapping = even_cows ? NULL : mapping;
2676 	details.first_index = start;
2677 	details.last_index = start + nr - 1;
2678 	if (details.last_index < details.first_index)
2679 		details.last_index = ULONG_MAX;
2680 
2681 	i_mmap_lock_write(mapping);
2682 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2683 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2684 	i_mmap_unlock_write(mapping);
2685 }
2686 
2687 /**
2688  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2689  * address_space corresponding to the specified byte range in the underlying
2690  * file.
2691  *
2692  * @mapping: the address space containing mmaps to be unmapped.
2693  * @holebegin: byte in first page to unmap, relative to the start of
2694  * the underlying file.  This will be rounded down to a PAGE_SIZE
2695  * boundary.  Note that this is different from truncate_pagecache(), which
2696  * must keep the partial page.  In contrast, we must get rid of
2697  * partial pages.
2698  * @holelen: size of prospective hole in bytes.  This will be rounded
2699  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2700  * end of the file.
2701  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2702  * but 0 when invalidating pagecache, don't throw away private data.
2703  */
2704 void unmap_mapping_range(struct address_space *mapping,
2705 		loff_t const holebegin, loff_t const holelen, int even_cows)
2706 {
2707 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2708 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2709 
2710 	/* Check for overflow. */
2711 	if (sizeof(holelen) > sizeof(hlen)) {
2712 		long long holeend =
2713 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714 		if (holeend & ~(long long)ULONG_MAX)
2715 			hlen = ULONG_MAX - hba + 1;
2716 	}
2717 
2718 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2719 }
2720 EXPORT_SYMBOL(unmap_mapping_range);
2721 
2722 /*
2723  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2724  * but allow concurrent faults), and pte mapped but not yet locked.
2725  * We return with pte unmapped and unlocked.
2726  *
2727  * We return with the mmap_sem locked or unlocked in the same cases
2728  * as does filemap_fault().
2729  */
2730 vm_fault_t do_swap_page(struct vm_fault *vmf)
2731 {
2732 	struct vm_area_struct *vma = vmf->vma;
2733 	struct page *page = NULL, *swapcache;
2734 	struct mem_cgroup *memcg;
2735 	swp_entry_t entry;
2736 	pte_t pte;
2737 	int locked;
2738 	int exclusive = 0;
2739 	vm_fault_t ret = 0;
2740 
2741 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2742 		goto out;
2743 
2744 	entry = pte_to_swp_entry(vmf->orig_pte);
2745 	if (unlikely(non_swap_entry(entry))) {
2746 		if (is_migration_entry(entry)) {
2747 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2748 					     vmf->address);
2749 		} else if (is_device_private_entry(entry)) {
2750 			vmf->page = device_private_entry_to_page(entry);
2751 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2752 		} else if (is_hwpoison_entry(entry)) {
2753 			ret = VM_FAULT_HWPOISON;
2754 		} else {
2755 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2756 			ret = VM_FAULT_SIGBUS;
2757 		}
2758 		goto out;
2759 	}
2760 
2761 
2762 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2763 	page = lookup_swap_cache(entry, vma, vmf->address);
2764 	swapcache = page;
2765 
2766 	if (!page) {
2767 		struct swap_info_struct *si = swp_swap_info(entry);
2768 
2769 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2770 				__swap_count(entry) == 1) {
2771 			/* skip swapcache */
2772 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2773 							vmf->address);
2774 			if (page) {
2775 				__SetPageLocked(page);
2776 				__SetPageSwapBacked(page);
2777 				set_page_private(page, entry.val);
2778 				lru_cache_add_anon(page);
2779 				swap_readpage(page, true);
2780 			}
2781 		} else {
2782 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2783 						vmf);
2784 			swapcache = page;
2785 		}
2786 
2787 		if (!page) {
2788 			/*
2789 			 * Back out if somebody else faulted in this pte
2790 			 * while we released the pte lock.
2791 			 */
2792 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2793 					vmf->address, &vmf->ptl);
2794 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2795 				ret = VM_FAULT_OOM;
2796 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2797 			goto unlock;
2798 		}
2799 
2800 		/* Had to read the page from swap area: Major fault */
2801 		ret = VM_FAULT_MAJOR;
2802 		count_vm_event(PGMAJFAULT);
2803 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2804 	} else if (PageHWPoison(page)) {
2805 		/*
2806 		 * hwpoisoned dirty swapcache pages are kept for killing
2807 		 * owner processes (which may be unknown at hwpoison time)
2808 		 */
2809 		ret = VM_FAULT_HWPOISON;
2810 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2811 		goto out_release;
2812 	}
2813 
2814 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2815 
2816 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2817 	if (!locked) {
2818 		ret |= VM_FAULT_RETRY;
2819 		goto out_release;
2820 	}
2821 
2822 	/*
2823 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2824 	 * release the swapcache from under us.  The page pin, and pte_same
2825 	 * test below, are not enough to exclude that.  Even if it is still
2826 	 * swapcache, we need to check that the page's swap has not changed.
2827 	 */
2828 	if (unlikely((!PageSwapCache(page) ||
2829 			page_private(page) != entry.val)) && swapcache)
2830 		goto out_page;
2831 
2832 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2833 	if (unlikely(!page)) {
2834 		ret = VM_FAULT_OOM;
2835 		page = swapcache;
2836 		goto out_page;
2837 	}
2838 
2839 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2840 					&memcg, false)) {
2841 		ret = VM_FAULT_OOM;
2842 		goto out_page;
2843 	}
2844 
2845 	/*
2846 	 * Back out if somebody else already faulted in this pte.
2847 	 */
2848 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2849 			&vmf->ptl);
2850 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2851 		goto out_nomap;
2852 
2853 	if (unlikely(!PageUptodate(page))) {
2854 		ret = VM_FAULT_SIGBUS;
2855 		goto out_nomap;
2856 	}
2857 
2858 	/*
2859 	 * The page isn't present yet, go ahead with the fault.
2860 	 *
2861 	 * Be careful about the sequence of operations here.
2862 	 * To get its accounting right, reuse_swap_page() must be called
2863 	 * while the page is counted on swap but not yet in mapcount i.e.
2864 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2865 	 * must be called after the swap_free(), or it will never succeed.
2866 	 */
2867 
2868 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2869 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2870 	pte = mk_pte(page, vma->vm_page_prot);
2871 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2872 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2873 		vmf->flags &= ~FAULT_FLAG_WRITE;
2874 		ret |= VM_FAULT_WRITE;
2875 		exclusive = RMAP_EXCLUSIVE;
2876 	}
2877 	flush_icache_page(vma, page);
2878 	if (pte_swp_soft_dirty(vmf->orig_pte))
2879 		pte = pte_mksoft_dirty(pte);
2880 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2881 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2882 	vmf->orig_pte = pte;
2883 
2884 	/* ksm created a completely new copy */
2885 	if (unlikely(page != swapcache && swapcache)) {
2886 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2887 		mem_cgroup_commit_charge(page, memcg, false, false);
2888 		lru_cache_add_active_or_unevictable(page, vma);
2889 	} else {
2890 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2891 		mem_cgroup_commit_charge(page, memcg, true, false);
2892 		activate_page(page);
2893 	}
2894 
2895 	swap_free(entry);
2896 	if (mem_cgroup_swap_full(page) ||
2897 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2898 		try_to_free_swap(page);
2899 	unlock_page(page);
2900 	if (page != swapcache && swapcache) {
2901 		/*
2902 		 * Hold the lock to avoid the swap entry to be reused
2903 		 * until we take the PT lock for the pte_same() check
2904 		 * (to avoid false positives from pte_same). For
2905 		 * further safety release the lock after the swap_free
2906 		 * so that the swap count won't change under a
2907 		 * parallel locked swapcache.
2908 		 */
2909 		unlock_page(swapcache);
2910 		put_page(swapcache);
2911 	}
2912 
2913 	if (vmf->flags & FAULT_FLAG_WRITE) {
2914 		ret |= do_wp_page(vmf);
2915 		if (ret & VM_FAULT_ERROR)
2916 			ret &= VM_FAULT_ERROR;
2917 		goto out;
2918 	}
2919 
2920 	/* No need to invalidate - it was non-present before */
2921 	update_mmu_cache(vma, vmf->address, vmf->pte);
2922 unlock:
2923 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2924 out:
2925 	return ret;
2926 out_nomap:
2927 	mem_cgroup_cancel_charge(page, memcg, false);
2928 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2929 out_page:
2930 	unlock_page(page);
2931 out_release:
2932 	put_page(page);
2933 	if (page != swapcache && swapcache) {
2934 		unlock_page(swapcache);
2935 		put_page(swapcache);
2936 	}
2937 	return ret;
2938 }
2939 
2940 /*
2941  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2942  * but allow concurrent faults), and pte mapped but not yet locked.
2943  * We return with mmap_sem still held, but pte unmapped and unlocked.
2944  */
2945 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2946 {
2947 	struct vm_area_struct *vma = vmf->vma;
2948 	struct mem_cgroup *memcg;
2949 	struct page *page;
2950 	vm_fault_t ret = 0;
2951 	pte_t entry;
2952 
2953 	/* File mapping without ->vm_ops ? */
2954 	if (vma->vm_flags & VM_SHARED)
2955 		return VM_FAULT_SIGBUS;
2956 
2957 	/*
2958 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2959 	 * pte_offset_map() on pmds where a huge pmd might be created
2960 	 * from a different thread.
2961 	 *
2962 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2963 	 * parallel threads are excluded by other means.
2964 	 *
2965 	 * Here we only have down_read(mmap_sem).
2966 	 */
2967 	if (pte_alloc(vma->vm_mm, vmf->pmd))
2968 		return VM_FAULT_OOM;
2969 
2970 	/* See the comment in pte_alloc_one_map() */
2971 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2972 		return 0;
2973 
2974 	/* Use the zero-page for reads */
2975 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2976 			!mm_forbids_zeropage(vma->vm_mm)) {
2977 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2978 						vma->vm_page_prot));
2979 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2980 				vmf->address, &vmf->ptl);
2981 		if (!pte_none(*vmf->pte))
2982 			goto unlock;
2983 		ret = check_stable_address_space(vma->vm_mm);
2984 		if (ret)
2985 			goto unlock;
2986 		/* Deliver the page fault to userland, check inside PT lock */
2987 		if (userfaultfd_missing(vma)) {
2988 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2989 			return handle_userfault(vmf, VM_UFFD_MISSING);
2990 		}
2991 		goto setpte;
2992 	}
2993 
2994 	/* Allocate our own private page. */
2995 	if (unlikely(anon_vma_prepare(vma)))
2996 		goto oom;
2997 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2998 	if (!page)
2999 		goto oom;
3000 
3001 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3002 					false))
3003 		goto oom_free_page;
3004 
3005 	/*
3006 	 * The memory barrier inside __SetPageUptodate makes sure that
3007 	 * preceeding stores to the page contents become visible before
3008 	 * the set_pte_at() write.
3009 	 */
3010 	__SetPageUptodate(page);
3011 
3012 	entry = mk_pte(page, vma->vm_page_prot);
3013 	if (vma->vm_flags & VM_WRITE)
3014 		entry = pte_mkwrite(pte_mkdirty(entry));
3015 
3016 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3017 			&vmf->ptl);
3018 	if (!pte_none(*vmf->pte))
3019 		goto release;
3020 
3021 	ret = check_stable_address_space(vma->vm_mm);
3022 	if (ret)
3023 		goto release;
3024 
3025 	/* Deliver the page fault to userland, check inside PT lock */
3026 	if (userfaultfd_missing(vma)) {
3027 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3028 		mem_cgroup_cancel_charge(page, memcg, false);
3029 		put_page(page);
3030 		return handle_userfault(vmf, VM_UFFD_MISSING);
3031 	}
3032 
3033 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3034 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3035 	mem_cgroup_commit_charge(page, memcg, false, false);
3036 	lru_cache_add_active_or_unevictable(page, vma);
3037 setpte:
3038 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3039 
3040 	/* No need to invalidate - it was non-present before */
3041 	update_mmu_cache(vma, vmf->address, vmf->pte);
3042 unlock:
3043 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3044 	return ret;
3045 release:
3046 	mem_cgroup_cancel_charge(page, memcg, false);
3047 	put_page(page);
3048 	goto unlock;
3049 oom_free_page:
3050 	put_page(page);
3051 oom:
3052 	return VM_FAULT_OOM;
3053 }
3054 
3055 /*
3056  * The mmap_sem must have been held on entry, and may have been
3057  * released depending on flags and vma->vm_ops->fault() return value.
3058  * See filemap_fault() and __lock_page_retry().
3059  */
3060 static vm_fault_t __do_fault(struct vm_fault *vmf)
3061 {
3062 	struct vm_area_struct *vma = vmf->vma;
3063 	vm_fault_t ret;
3064 
3065 	/*
3066 	 * Preallocate pte before we take page_lock because this might lead to
3067 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3068 	 *				lock_page(A)
3069 	 *				SetPageWriteback(A)
3070 	 *				unlock_page(A)
3071 	 * lock_page(B)
3072 	 *				lock_page(B)
3073 	 * pte_alloc_pne
3074 	 *   shrink_page_list
3075 	 *     wait_on_page_writeback(A)
3076 	 *				SetPageWriteback(B)
3077 	 *				unlock_page(B)
3078 	 *				# flush A, B to clear the writeback
3079 	 */
3080 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3081 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3082 		if (!vmf->prealloc_pte)
3083 			return VM_FAULT_OOM;
3084 		smp_wmb(); /* See comment in __pte_alloc() */
3085 	}
3086 
3087 	ret = vma->vm_ops->fault(vmf);
3088 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3089 			    VM_FAULT_DONE_COW)))
3090 		return ret;
3091 
3092 	if (unlikely(PageHWPoison(vmf->page))) {
3093 		if (ret & VM_FAULT_LOCKED)
3094 			unlock_page(vmf->page);
3095 		put_page(vmf->page);
3096 		vmf->page = NULL;
3097 		return VM_FAULT_HWPOISON;
3098 	}
3099 
3100 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3101 		lock_page(vmf->page);
3102 	else
3103 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3104 
3105 	return ret;
3106 }
3107 
3108 /*
3109  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3110  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3111  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3112  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3113  */
3114 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3115 {
3116 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3117 }
3118 
3119 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3120 {
3121 	struct vm_area_struct *vma = vmf->vma;
3122 
3123 	if (!pmd_none(*vmf->pmd))
3124 		goto map_pte;
3125 	if (vmf->prealloc_pte) {
3126 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3127 		if (unlikely(!pmd_none(*vmf->pmd))) {
3128 			spin_unlock(vmf->ptl);
3129 			goto map_pte;
3130 		}
3131 
3132 		mm_inc_nr_ptes(vma->vm_mm);
3133 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3134 		spin_unlock(vmf->ptl);
3135 		vmf->prealloc_pte = NULL;
3136 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3137 		return VM_FAULT_OOM;
3138 	}
3139 map_pte:
3140 	/*
3141 	 * If a huge pmd materialized under us just retry later.  Use
3142 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3143 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3144 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3145 	 * running immediately after a huge pmd fault in a different thread of
3146 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3147 	 * All we have to ensure is that it is a regular pmd that we can walk
3148 	 * with pte_offset_map() and we can do that through an atomic read in
3149 	 * C, which is what pmd_trans_unstable() provides.
3150 	 */
3151 	if (pmd_devmap_trans_unstable(vmf->pmd))
3152 		return VM_FAULT_NOPAGE;
3153 
3154 	/*
3155 	 * At this point we know that our vmf->pmd points to a page of ptes
3156 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3157 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3158 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3159 	 * be valid and we will re-check to make sure the vmf->pte isn't
3160 	 * pte_none() under vmf->ptl protection when we return to
3161 	 * alloc_set_pte().
3162 	 */
3163 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3164 			&vmf->ptl);
3165 	return 0;
3166 }
3167 
3168 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3169 static void deposit_prealloc_pte(struct vm_fault *vmf)
3170 {
3171 	struct vm_area_struct *vma = vmf->vma;
3172 
3173 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3174 	/*
3175 	 * We are going to consume the prealloc table,
3176 	 * count that as nr_ptes.
3177 	 */
3178 	mm_inc_nr_ptes(vma->vm_mm);
3179 	vmf->prealloc_pte = NULL;
3180 }
3181 
3182 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3183 {
3184 	struct vm_area_struct *vma = vmf->vma;
3185 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3186 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3187 	pmd_t entry;
3188 	int i;
3189 	vm_fault_t ret;
3190 
3191 	if (!transhuge_vma_suitable(vma, haddr))
3192 		return VM_FAULT_FALLBACK;
3193 
3194 	ret = VM_FAULT_FALLBACK;
3195 	page = compound_head(page);
3196 
3197 	/*
3198 	 * Archs like ppc64 need additonal space to store information
3199 	 * related to pte entry. Use the preallocated table for that.
3200 	 */
3201 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3202 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3203 		if (!vmf->prealloc_pte)
3204 			return VM_FAULT_OOM;
3205 		smp_wmb(); /* See comment in __pte_alloc() */
3206 	}
3207 
3208 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3209 	if (unlikely(!pmd_none(*vmf->pmd)))
3210 		goto out;
3211 
3212 	for (i = 0; i < HPAGE_PMD_NR; i++)
3213 		flush_icache_page(vma, page + i);
3214 
3215 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3216 	if (write)
3217 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3218 
3219 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3220 	page_add_file_rmap(page, true);
3221 	/*
3222 	 * deposit and withdraw with pmd lock held
3223 	 */
3224 	if (arch_needs_pgtable_deposit())
3225 		deposit_prealloc_pte(vmf);
3226 
3227 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3228 
3229 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3230 
3231 	/* fault is handled */
3232 	ret = 0;
3233 	count_vm_event(THP_FILE_MAPPED);
3234 out:
3235 	spin_unlock(vmf->ptl);
3236 	return ret;
3237 }
3238 #else
3239 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3240 {
3241 	BUILD_BUG();
3242 	return 0;
3243 }
3244 #endif
3245 
3246 /**
3247  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3248  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3249  *
3250  * @vmf: fault environment
3251  * @memcg: memcg to charge page (only for private mappings)
3252  * @page: page to map
3253  *
3254  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3255  * return.
3256  *
3257  * Target users are page handler itself and implementations of
3258  * vm_ops->map_pages.
3259  *
3260  * Return: %0 on success, %VM_FAULT_ code in case of error.
3261  */
3262 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3263 		struct page *page)
3264 {
3265 	struct vm_area_struct *vma = vmf->vma;
3266 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3267 	pte_t entry;
3268 	vm_fault_t ret;
3269 
3270 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3271 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3272 		/* THP on COW? */
3273 		VM_BUG_ON_PAGE(memcg, page);
3274 
3275 		ret = do_set_pmd(vmf, page);
3276 		if (ret != VM_FAULT_FALLBACK)
3277 			return ret;
3278 	}
3279 
3280 	if (!vmf->pte) {
3281 		ret = pte_alloc_one_map(vmf);
3282 		if (ret)
3283 			return ret;
3284 	}
3285 
3286 	/* Re-check under ptl */
3287 	if (unlikely(!pte_none(*vmf->pte)))
3288 		return VM_FAULT_NOPAGE;
3289 
3290 	flush_icache_page(vma, page);
3291 	entry = mk_pte(page, vma->vm_page_prot);
3292 	if (write)
3293 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3294 	/* copy-on-write page */
3295 	if (write && !(vma->vm_flags & VM_SHARED)) {
3296 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3297 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3298 		mem_cgroup_commit_charge(page, memcg, false, false);
3299 		lru_cache_add_active_or_unevictable(page, vma);
3300 	} else {
3301 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3302 		page_add_file_rmap(page, false);
3303 	}
3304 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3305 
3306 	/* no need to invalidate: a not-present page won't be cached */
3307 	update_mmu_cache(vma, vmf->address, vmf->pte);
3308 
3309 	return 0;
3310 }
3311 
3312 
3313 /**
3314  * finish_fault - finish page fault once we have prepared the page to fault
3315  *
3316  * @vmf: structure describing the fault
3317  *
3318  * This function handles all that is needed to finish a page fault once the
3319  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3320  * given page, adds reverse page mapping, handles memcg charges and LRU
3321  * addition.
3322  *
3323  * The function expects the page to be locked and on success it consumes a
3324  * reference of a page being mapped (for the PTE which maps it).
3325  *
3326  * Return: %0 on success, %VM_FAULT_ code in case of error.
3327  */
3328 vm_fault_t finish_fault(struct vm_fault *vmf)
3329 {
3330 	struct page *page;
3331 	vm_fault_t ret = 0;
3332 
3333 	/* Did we COW the page? */
3334 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3335 	    !(vmf->vma->vm_flags & VM_SHARED))
3336 		page = vmf->cow_page;
3337 	else
3338 		page = vmf->page;
3339 
3340 	/*
3341 	 * check even for read faults because we might have lost our CoWed
3342 	 * page
3343 	 */
3344 	if (!(vmf->vma->vm_flags & VM_SHARED))
3345 		ret = check_stable_address_space(vmf->vma->vm_mm);
3346 	if (!ret)
3347 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3348 	if (vmf->pte)
3349 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3350 	return ret;
3351 }
3352 
3353 static unsigned long fault_around_bytes __read_mostly =
3354 	rounddown_pow_of_two(65536);
3355 
3356 #ifdef CONFIG_DEBUG_FS
3357 static int fault_around_bytes_get(void *data, u64 *val)
3358 {
3359 	*val = fault_around_bytes;
3360 	return 0;
3361 }
3362 
3363 /*
3364  * fault_around_bytes must be rounded down to the nearest page order as it's
3365  * what do_fault_around() expects to see.
3366  */
3367 static int fault_around_bytes_set(void *data, u64 val)
3368 {
3369 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3370 		return -EINVAL;
3371 	if (val > PAGE_SIZE)
3372 		fault_around_bytes = rounddown_pow_of_two(val);
3373 	else
3374 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3375 	return 0;
3376 }
3377 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3378 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3379 
3380 static int __init fault_around_debugfs(void)
3381 {
3382 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3383 				   &fault_around_bytes_fops);
3384 	return 0;
3385 }
3386 late_initcall(fault_around_debugfs);
3387 #endif
3388 
3389 /*
3390  * do_fault_around() tries to map few pages around the fault address. The hope
3391  * is that the pages will be needed soon and this will lower the number of
3392  * faults to handle.
3393  *
3394  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3395  * not ready to be mapped: not up-to-date, locked, etc.
3396  *
3397  * This function is called with the page table lock taken. In the split ptlock
3398  * case the page table lock only protects only those entries which belong to
3399  * the page table corresponding to the fault address.
3400  *
3401  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3402  * only once.
3403  *
3404  * fault_around_bytes defines how many bytes we'll try to map.
3405  * do_fault_around() expects it to be set to a power of two less than or equal
3406  * to PTRS_PER_PTE.
3407  *
3408  * The virtual address of the area that we map is naturally aligned to
3409  * fault_around_bytes rounded down to the machine page size
3410  * (and therefore to page order).  This way it's easier to guarantee
3411  * that we don't cross page table boundaries.
3412  */
3413 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3414 {
3415 	unsigned long address = vmf->address, nr_pages, mask;
3416 	pgoff_t start_pgoff = vmf->pgoff;
3417 	pgoff_t end_pgoff;
3418 	int off;
3419 	vm_fault_t ret = 0;
3420 
3421 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3422 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3423 
3424 	vmf->address = max(address & mask, vmf->vma->vm_start);
3425 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3426 	start_pgoff -= off;
3427 
3428 	/*
3429 	 *  end_pgoff is either the end of the page table, the end of
3430 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3431 	 */
3432 	end_pgoff = start_pgoff -
3433 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3434 		PTRS_PER_PTE - 1;
3435 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3436 			start_pgoff + nr_pages - 1);
3437 
3438 	if (pmd_none(*vmf->pmd)) {
3439 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3440 		if (!vmf->prealloc_pte)
3441 			goto out;
3442 		smp_wmb(); /* See comment in __pte_alloc() */
3443 	}
3444 
3445 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3446 
3447 	/* Huge page is mapped? Page fault is solved */
3448 	if (pmd_trans_huge(*vmf->pmd)) {
3449 		ret = VM_FAULT_NOPAGE;
3450 		goto out;
3451 	}
3452 
3453 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3454 	if (!vmf->pte)
3455 		goto out;
3456 
3457 	/* check if the page fault is solved */
3458 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3459 	if (!pte_none(*vmf->pte))
3460 		ret = VM_FAULT_NOPAGE;
3461 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3462 out:
3463 	vmf->address = address;
3464 	vmf->pte = NULL;
3465 	return ret;
3466 }
3467 
3468 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3469 {
3470 	struct vm_area_struct *vma = vmf->vma;
3471 	vm_fault_t ret = 0;
3472 
3473 	/*
3474 	 * Let's call ->map_pages() first and use ->fault() as fallback
3475 	 * if page by the offset is not ready to be mapped (cold cache or
3476 	 * something).
3477 	 */
3478 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3479 		ret = do_fault_around(vmf);
3480 		if (ret)
3481 			return ret;
3482 	}
3483 
3484 	ret = __do_fault(vmf);
3485 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3486 		return ret;
3487 
3488 	ret |= finish_fault(vmf);
3489 	unlock_page(vmf->page);
3490 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491 		put_page(vmf->page);
3492 	return ret;
3493 }
3494 
3495 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3496 {
3497 	struct vm_area_struct *vma = vmf->vma;
3498 	vm_fault_t ret;
3499 
3500 	if (unlikely(anon_vma_prepare(vma)))
3501 		return VM_FAULT_OOM;
3502 
3503 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3504 	if (!vmf->cow_page)
3505 		return VM_FAULT_OOM;
3506 
3507 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3508 				&vmf->memcg, false)) {
3509 		put_page(vmf->cow_page);
3510 		return VM_FAULT_OOM;
3511 	}
3512 
3513 	ret = __do_fault(vmf);
3514 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3515 		goto uncharge_out;
3516 	if (ret & VM_FAULT_DONE_COW)
3517 		return ret;
3518 
3519 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3520 	__SetPageUptodate(vmf->cow_page);
3521 
3522 	ret |= finish_fault(vmf);
3523 	unlock_page(vmf->page);
3524 	put_page(vmf->page);
3525 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3526 		goto uncharge_out;
3527 	return ret;
3528 uncharge_out:
3529 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3530 	put_page(vmf->cow_page);
3531 	return ret;
3532 }
3533 
3534 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3535 {
3536 	struct vm_area_struct *vma = vmf->vma;
3537 	vm_fault_t ret, tmp;
3538 
3539 	ret = __do_fault(vmf);
3540 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3541 		return ret;
3542 
3543 	/*
3544 	 * Check if the backing address space wants to know that the page is
3545 	 * about to become writable
3546 	 */
3547 	if (vma->vm_ops->page_mkwrite) {
3548 		unlock_page(vmf->page);
3549 		tmp = do_page_mkwrite(vmf);
3550 		if (unlikely(!tmp ||
3551 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3552 			put_page(vmf->page);
3553 			return tmp;
3554 		}
3555 	}
3556 
3557 	ret |= finish_fault(vmf);
3558 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3559 					VM_FAULT_RETRY))) {
3560 		unlock_page(vmf->page);
3561 		put_page(vmf->page);
3562 		return ret;
3563 	}
3564 
3565 	fault_dirty_shared_page(vma, vmf->page);
3566 	return ret;
3567 }
3568 
3569 /*
3570  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3571  * but allow concurrent faults).
3572  * The mmap_sem may have been released depending on flags and our
3573  * return value.  See filemap_fault() and __lock_page_or_retry().
3574  * If mmap_sem is released, vma may become invalid (for example
3575  * by other thread calling munmap()).
3576  */
3577 static vm_fault_t do_fault(struct vm_fault *vmf)
3578 {
3579 	struct vm_area_struct *vma = vmf->vma;
3580 	struct mm_struct *vm_mm = vma->vm_mm;
3581 	vm_fault_t ret;
3582 
3583 	/*
3584 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3585 	 */
3586 	if (!vma->vm_ops->fault) {
3587 		/*
3588 		 * If we find a migration pmd entry or a none pmd entry, which
3589 		 * should never happen, return SIGBUS
3590 		 */
3591 		if (unlikely(!pmd_present(*vmf->pmd)))
3592 			ret = VM_FAULT_SIGBUS;
3593 		else {
3594 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3595 						       vmf->pmd,
3596 						       vmf->address,
3597 						       &vmf->ptl);
3598 			/*
3599 			 * Make sure this is not a temporary clearing of pte
3600 			 * by holding ptl and checking again. A R/M/W update
3601 			 * of pte involves: take ptl, clearing the pte so that
3602 			 * we don't have concurrent modification by hardware
3603 			 * followed by an update.
3604 			 */
3605 			if (unlikely(pte_none(*vmf->pte)))
3606 				ret = VM_FAULT_SIGBUS;
3607 			else
3608 				ret = VM_FAULT_NOPAGE;
3609 
3610 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3611 		}
3612 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3613 		ret = do_read_fault(vmf);
3614 	else if (!(vma->vm_flags & VM_SHARED))
3615 		ret = do_cow_fault(vmf);
3616 	else
3617 		ret = do_shared_fault(vmf);
3618 
3619 	/* preallocated pagetable is unused: free it */
3620 	if (vmf->prealloc_pte) {
3621 		pte_free(vm_mm, vmf->prealloc_pte);
3622 		vmf->prealloc_pte = NULL;
3623 	}
3624 	return ret;
3625 }
3626 
3627 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3628 				unsigned long addr, int page_nid,
3629 				int *flags)
3630 {
3631 	get_page(page);
3632 
3633 	count_vm_numa_event(NUMA_HINT_FAULTS);
3634 	if (page_nid == numa_node_id()) {
3635 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3636 		*flags |= TNF_FAULT_LOCAL;
3637 	}
3638 
3639 	return mpol_misplaced(page, vma, addr);
3640 }
3641 
3642 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3643 {
3644 	struct vm_area_struct *vma = vmf->vma;
3645 	struct page *page = NULL;
3646 	int page_nid = NUMA_NO_NODE;
3647 	int last_cpupid;
3648 	int target_nid;
3649 	bool migrated = false;
3650 	pte_t pte, old_pte;
3651 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3652 	int flags = 0;
3653 
3654 	/*
3655 	 * The "pte" at this point cannot be used safely without
3656 	 * validation through pte_unmap_same(). It's of NUMA type but
3657 	 * the pfn may be screwed if the read is non atomic.
3658 	 */
3659 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3660 	spin_lock(vmf->ptl);
3661 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3662 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3663 		goto out;
3664 	}
3665 
3666 	/*
3667 	 * Make it present again, Depending on how arch implementes non
3668 	 * accessible ptes, some can allow access by kernel mode.
3669 	 */
3670 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3671 	pte = pte_modify(old_pte, vma->vm_page_prot);
3672 	pte = pte_mkyoung(pte);
3673 	if (was_writable)
3674 		pte = pte_mkwrite(pte);
3675 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3676 	update_mmu_cache(vma, vmf->address, vmf->pte);
3677 
3678 	page = vm_normal_page(vma, vmf->address, pte);
3679 	if (!page) {
3680 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3681 		return 0;
3682 	}
3683 
3684 	/* TODO: handle PTE-mapped THP */
3685 	if (PageCompound(page)) {
3686 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3687 		return 0;
3688 	}
3689 
3690 	/*
3691 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3692 	 * much anyway since they can be in shared cache state. This misses
3693 	 * the case where a mapping is writable but the process never writes
3694 	 * to it but pte_write gets cleared during protection updates and
3695 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3696 	 * background writeback, dirty balancing and application behaviour.
3697 	 */
3698 	if (!pte_write(pte))
3699 		flags |= TNF_NO_GROUP;
3700 
3701 	/*
3702 	 * Flag if the page is shared between multiple address spaces. This
3703 	 * is later used when determining whether to group tasks together
3704 	 */
3705 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3706 		flags |= TNF_SHARED;
3707 
3708 	last_cpupid = page_cpupid_last(page);
3709 	page_nid = page_to_nid(page);
3710 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3711 			&flags);
3712 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3713 	if (target_nid == NUMA_NO_NODE) {
3714 		put_page(page);
3715 		goto out;
3716 	}
3717 
3718 	/* Migrate to the requested node */
3719 	migrated = migrate_misplaced_page(page, vma, target_nid);
3720 	if (migrated) {
3721 		page_nid = target_nid;
3722 		flags |= TNF_MIGRATED;
3723 	} else
3724 		flags |= TNF_MIGRATE_FAIL;
3725 
3726 out:
3727 	if (page_nid != NUMA_NO_NODE)
3728 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3729 	return 0;
3730 }
3731 
3732 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3733 {
3734 	if (vma_is_anonymous(vmf->vma))
3735 		return do_huge_pmd_anonymous_page(vmf);
3736 	if (vmf->vma->vm_ops->huge_fault)
3737 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3738 	return VM_FAULT_FALLBACK;
3739 }
3740 
3741 /* `inline' is required to avoid gcc 4.1.2 build error */
3742 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3743 {
3744 	if (vma_is_anonymous(vmf->vma))
3745 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3746 	if (vmf->vma->vm_ops->huge_fault)
3747 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3748 
3749 	/* COW handled on pte level: split pmd */
3750 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3751 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3752 
3753 	return VM_FAULT_FALLBACK;
3754 }
3755 
3756 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3757 {
3758 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3759 }
3760 
3761 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3762 {
3763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3764 	/* No support for anonymous transparent PUD pages yet */
3765 	if (vma_is_anonymous(vmf->vma))
3766 		return VM_FAULT_FALLBACK;
3767 	if (vmf->vma->vm_ops->huge_fault)
3768 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3769 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3770 	return VM_FAULT_FALLBACK;
3771 }
3772 
3773 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3774 {
3775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3776 	/* No support for anonymous transparent PUD pages yet */
3777 	if (vma_is_anonymous(vmf->vma))
3778 		return VM_FAULT_FALLBACK;
3779 	if (vmf->vma->vm_ops->huge_fault)
3780 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3782 	return VM_FAULT_FALLBACK;
3783 }
3784 
3785 /*
3786  * These routines also need to handle stuff like marking pages dirty
3787  * and/or accessed for architectures that don't do it in hardware (most
3788  * RISC architectures).  The early dirtying is also good on the i386.
3789  *
3790  * There is also a hook called "update_mmu_cache()" that architectures
3791  * with external mmu caches can use to update those (ie the Sparc or
3792  * PowerPC hashed page tables that act as extended TLBs).
3793  *
3794  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3795  * concurrent faults).
3796  *
3797  * The mmap_sem may have been released depending on flags and our return value.
3798  * See filemap_fault() and __lock_page_or_retry().
3799  */
3800 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3801 {
3802 	pte_t entry;
3803 
3804 	if (unlikely(pmd_none(*vmf->pmd))) {
3805 		/*
3806 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3807 		 * want to allocate huge page, and if we expose page table
3808 		 * for an instant, it will be difficult to retract from
3809 		 * concurrent faults and from rmap lookups.
3810 		 */
3811 		vmf->pte = NULL;
3812 	} else {
3813 		/* See comment in pte_alloc_one_map() */
3814 		if (pmd_devmap_trans_unstable(vmf->pmd))
3815 			return 0;
3816 		/*
3817 		 * A regular pmd is established and it can't morph into a huge
3818 		 * pmd from under us anymore at this point because we hold the
3819 		 * mmap_sem read mode and khugepaged takes it in write mode.
3820 		 * So now it's safe to run pte_offset_map().
3821 		 */
3822 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3823 		vmf->orig_pte = *vmf->pte;
3824 
3825 		/*
3826 		 * some architectures can have larger ptes than wordsize,
3827 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3828 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3829 		 * accesses.  The code below just needs a consistent view
3830 		 * for the ifs and we later double check anyway with the
3831 		 * ptl lock held. So here a barrier will do.
3832 		 */
3833 		barrier();
3834 		if (pte_none(vmf->orig_pte)) {
3835 			pte_unmap(vmf->pte);
3836 			vmf->pte = NULL;
3837 		}
3838 	}
3839 
3840 	if (!vmf->pte) {
3841 		if (vma_is_anonymous(vmf->vma))
3842 			return do_anonymous_page(vmf);
3843 		else
3844 			return do_fault(vmf);
3845 	}
3846 
3847 	if (!pte_present(vmf->orig_pte))
3848 		return do_swap_page(vmf);
3849 
3850 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3851 		return do_numa_page(vmf);
3852 
3853 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3854 	spin_lock(vmf->ptl);
3855 	entry = vmf->orig_pte;
3856 	if (unlikely(!pte_same(*vmf->pte, entry)))
3857 		goto unlock;
3858 	if (vmf->flags & FAULT_FLAG_WRITE) {
3859 		if (!pte_write(entry))
3860 			return do_wp_page(vmf);
3861 		entry = pte_mkdirty(entry);
3862 	}
3863 	entry = pte_mkyoung(entry);
3864 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3865 				vmf->flags & FAULT_FLAG_WRITE)) {
3866 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3867 	} else {
3868 		/*
3869 		 * This is needed only for protection faults but the arch code
3870 		 * is not yet telling us if this is a protection fault or not.
3871 		 * This still avoids useless tlb flushes for .text page faults
3872 		 * with threads.
3873 		 */
3874 		if (vmf->flags & FAULT_FLAG_WRITE)
3875 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3876 	}
3877 unlock:
3878 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3879 	return 0;
3880 }
3881 
3882 /*
3883  * By the time we get here, we already hold the mm semaphore
3884  *
3885  * The mmap_sem may have been released depending on flags and our
3886  * return value.  See filemap_fault() and __lock_page_or_retry().
3887  */
3888 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3889 		unsigned long address, unsigned int flags)
3890 {
3891 	struct vm_fault vmf = {
3892 		.vma = vma,
3893 		.address = address & PAGE_MASK,
3894 		.flags = flags,
3895 		.pgoff = linear_page_index(vma, address),
3896 		.gfp_mask = __get_fault_gfp_mask(vma),
3897 	};
3898 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3899 	struct mm_struct *mm = vma->vm_mm;
3900 	pgd_t *pgd;
3901 	p4d_t *p4d;
3902 	vm_fault_t ret;
3903 
3904 	pgd = pgd_offset(mm, address);
3905 	p4d = p4d_alloc(mm, pgd, address);
3906 	if (!p4d)
3907 		return VM_FAULT_OOM;
3908 
3909 	vmf.pud = pud_alloc(mm, p4d, address);
3910 	if (!vmf.pud)
3911 		return VM_FAULT_OOM;
3912 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3913 		ret = create_huge_pud(&vmf);
3914 		if (!(ret & VM_FAULT_FALLBACK))
3915 			return ret;
3916 	} else {
3917 		pud_t orig_pud = *vmf.pud;
3918 
3919 		barrier();
3920 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3921 
3922 			/* NUMA case for anonymous PUDs would go here */
3923 
3924 			if (dirty && !pud_write(orig_pud)) {
3925 				ret = wp_huge_pud(&vmf, orig_pud);
3926 				if (!(ret & VM_FAULT_FALLBACK))
3927 					return ret;
3928 			} else {
3929 				huge_pud_set_accessed(&vmf, orig_pud);
3930 				return 0;
3931 			}
3932 		}
3933 	}
3934 
3935 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3936 	if (!vmf.pmd)
3937 		return VM_FAULT_OOM;
3938 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3939 		ret = create_huge_pmd(&vmf);
3940 		if (!(ret & VM_FAULT_FALLBACK))
3941 			return ret;
3942 	} else {
3943 		pmd_t orig_pmd = *vmf.pmd;
3944 
3945 		barrier();
3946 		if (unlikely(is_swap_pmd(orig_pmd))) {
3947 			VM_BUG_ON(thp_migration_supported() &&
3948 					  !is_pmd_migration_entry(orig_pmd));
3949 			if (is_pmd_migration_entry(orig_pmd))
3950 				pmd_migration_entry_wait(mm, vmf.pmd);
3951 			return 0;
3952 		}
3953 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3954 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3955 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3956 
3957 			if (dirty && !pmd_write(orig_pmd)) {
3958 				ret = wp_huge_pmd(&vmf, orig_pmd);
3959 				if (!(ret & VM_FAULT_FALLBACK))
3960 					return ret;
3961 			} else {
3962 				huge_pmd_set_accessed(&vmf, orig_pmd);
3963 				return 0;
3964 			}
3965 		}
3966 	}
3967 
3968 	return handle_pte_fault(&vmf);
3969 }
3970 
3971 /*
3972  * By the time we get here, we already hold the mm semaphore
3973  *
3974  * The mmap_sem may have been released depending on flags and our
3975  * return value.  See filemap_fault() and __lock_page_or_retry().
3976  */
3977 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3978 		unsigned int flags)
3979 {
3980 	vm_fault_t ret;
3981 
3982 	__set_current_state(TASK_RUNNING);
3983 
3984 	count_vm_event(PGFAULT);
3985 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3986 
3987 	/* do counter updates before entering really critical section. */
3988 	check_sync_rss_stat(current);
3989 
3990 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3991 					    flags & FAULT_FLAG_INSTRUCTION,
3992 					    flags & FAULT_FLAG_REMOTE))
3993 		return VM_FAULT_SIGSEGV;
3994 
3995 	/*
3996 	 * Enable the memcg OOM handling for faults triggered in user
3997 	 * space.  Kernel faults are handled more gracefully.
3998 	 */
3999 	if (flags & FAULT_FLAG_USER)
4000 		mem_cgroup_enter_user_fault();
4001 
4002 	if (unlikely(is_vm_hugetlb_page(vma)))
4003 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4004 	else
4005 		ret = __handle_mm_fault(vma, address, flags);
4006 
4007 	if (flags & FAULT_FLAG_USER) {
4008 		mem_cgroup_exit_user_fault();
4009 		/*
4010 		 * The task may have entered a memcg OOM situation but
4011 		 * if the allocation error was handled gracefully (no
4012 		 * VM_FAULT_OOM), there is no need to kill anything.
4013 		 * Just clean up the OOM state peacefully.
4014 		 */
4015 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4016 			mem_cgroup_oom_synchronize(false);
4017 	}
4018 
4019 	return ret;
4020 }
4021 EXPORT_SYMBOL_GPL(handle_mm_fault);
4022 
4023 #ifndef __PAGETABLE_P4D_FOLDED
4024 /*
4025  * Allocate p4d page table.
4026  * We've already handled the fast-path in-line.
4027  */
4028 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4029 {
4030 	p4d_t *new = p4d_alloc_one(mm, address);
4031 	if (!new)
4032 		return -ENOMEM;
4033 
4034 	smp_wmb(); /* See comment in __pte_alloc */
4035 
4036 	spin_lock(&mm->page_table_lock);
4037 	if (pgd_present(*pgd))		/* Another has populated it */
4038 		p4d_free(mm, new);
4039 	else
4040 		pgd_populate(mm, pgd, new);
4041 	spin_unlock(&mm->page_table_lock);
4042 	return 0;
4043 }
4044 #endif /* __PAGETABLE_P4D_FOLDED */
4045 
4046 #ifndef __PAGETABLE_PUD_FOLDED
4047 /*
4048  * Allocate page upper directory.
4049  * We've already handled the fast-path in-line.
4050  */
4051 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4052 {
4053 	pud_t *new = pud_alloc_one(mm, address);
4054 	if (!new)
4055 		return -ENOMEM;
4056 
4057 	smp_wmb(); /* See comment in __pte_alloc */
4058 
4059 	spin_lock(&mm->page_table_lock);
4060 #ifndef __ARCH_HAS_5LEVEL_HACK
4061 	if (!p4d_present(*p4d)) {
4062 		mm_inc_nr_puds(mm);
4063 		p4d_populate(mm, p4d, new);
4064 	} else	/* Another has populated it */
4065 		pud_free(mm, new);
4066 #else
4067 	if (!pgd_present(*p4d)) {
4068 		mm_inc_nr_puds(mm);
4069 		pgd_populate(mm, p4d, new);
4070 	} else	/* Another has populated it */
4071 		pud_free(mm, new);
4072 #endif /* __ARCH_HAS_5LEVEL_HACK */
4073 	spin_unlock(&mm->page_table_lock);
4074 	return 0;
4075 }
4076 #endif /* __PAGETABLE_PUD_FOLDED */
4077 
4078 #ifndef __PAGETABLE_PMD_FOLDED
4079 /*
4080  * Allocate page middle directory.
4081  * We've already handled the fast-path in-line.
4082  */
4083 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4084 {
4085 	spinlock_t *ptl;
4086 	pmd_t *new = pmd_alloc_one(mm, address);
4087 	if (!new)
4088 		return -ENOMEM;
4089 
4090 	smp_wmb(); /* See comment in __pte_alloc */
4091 
4092 	ptl = pud_lock(mm, pud);
4093 #ifndef __ARCH_HAS_4LEVEL_HACK
4094 	if (!pud_present(*pud)) {
4095 		mm_inc_nr_pmds(mm);
4096 		pud_populate(mm, pud, new);
4097 	} else	/* Another has populated it */
4098 		pmd_free(mm, new);
4099 #else
4100 	if (!pgd_present(*pud)) {
4101 		mm_inc_nr_pmds(mm);
4102 		pgd_populate(mm, pud, new);
4103 	} else /* Another has populated it */
4104 		pmd_free(mm, new);
4105 #endif /* __ARCH_HAS_4LEVEL_HACK */
4106 	spin_unlock(ptl);
4107 	return 0;
4108 }
4109 #endif /* __PAGETABLE_PMD_FOLDED */
4110 
4111 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4112 			    struct mmu_notifier_range *range,
4113 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4114 {
4115 	pgd_t *pgd;
4116 	p4d_t *p4d;
4117 	pud_t *pud;
4118 	pmd_t *pmd;
4119 	pte_t *ptep;
4120 
4121 	pgd = pgd_offset(mm, address);
4122 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4123 		goto out;
4124 
4125 	p4d = p4d_offset(pgd, address);
4126 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4127 		goto out;
4128 
4129 	pud = pud_offset(p4d, address);
4130 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4131 		goto out;
4132 
4133 	pmd = pmd_offset(pud, address);
4134 	VM_BUG_ON(pmd_trans_huge(*pmd));
4135 
4136 	if (pmd_huge(*pmd)) {
4137 		if (!pmdpp)
4138 			goto out;
4139 
4140 		if (range) {
4141 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4142 						NULL, mm, address & PMD_MASK,
4143 						(address & PMD_MASK) + PMD_SIZE);
4144 			mmu_notifier_invalidate_range_start(range);
4145 		}
4146 		*ptlp = pmd_lock(mm, pmd);
4147 		if (pmd_huge(*pmd)) {
4148 			*pmdpp = pmd;
4149 			return 0;
4150 		}
4151 		spin_unlock(*ptlp);
4152 		if (range)
4153 			mmu_notifier_invalidate_range_end(range);
4154 	}
4155 
4156 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4157 		goto out;
4158 
4159 	if (range) {
4160 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4161 					address & PAGE_MASK,
4162 					(address & PAGE_MASK) + PAGE_SIZE);
4163 		mmu_notifier_invalidate_range_start(range);
4164 	}
4165 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4166 	if (!pte_present(*ptep))
4167 		goto unlock;
4168 	*ptepp = ptep;
4169 	return 0;
4170 unlock:
4171 	pte_unmap_unlock(ptep, *ptlp);
4172 	if (range)
4173 		mmu_notifier_invalidate_range_end(range);
4174 out:
4175 	return -EINVAL;
4176 }
4177 
4178 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4179 			     pte_t **ptepp, spinlock_t **ptlp)
4180 {
4181 	int res;
4182 
4183 	/* (void) is needed to make gcc happy */
4184 	(void) __cond_lock(*ptlp,
4185 			   !(res = __follow_pte_pmd(mm, address, NULL,
4186 						    ptepp, NULL, ptlp)));
4187 	return res;
4188 }
4189 
4190 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4191 		   struct mmu_notifier_range *range,
4192 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4193 {
4194 	int res;
4195 
4196 	/* (void) is needed to make gcc happy */
4197 	(void) __cond_lock(*ptlp,
4198 			   !(res = __follow_pte_pmd(mm, address, range,
4199 						    ptepp, pmdpp, ptlp)));
4200 	return res;
4201 }
4202 EXPORT_SYMBOL(follow_pte_pmd);
4203 
4204 /**
4205  * follow_pfn - look up PFN at a user virtual address
4206  * @vma: memory mapping
4207  * @address: user virtual address
4208  * @pfn: location to store found PFN
4209  *
4210  * Only IO mappings and raw PFN mappings are allowed.
4211  *
4212  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4213  */
4214 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4215 	unsigned long *pfn)
4216 {
4217 	int ret = -EINVAL;
4218 	spinlock_t *ptl;
4219 	pte_t *ptep;
4220 
4221 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4222 		return ret;
4223 
4224 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4225 	if (ret)
4226 		return ret;
4227 	*pfn = pte_pfn(*ptep);
4228 	pte_unmap_unlock(ptep, ptl);
4229 	return 0;
4230 }
4231 EXPORT_SYMBOL(follow_pfn);
4232 
4233 #ifdef CONFIG_HAVE_IOREMAP_PROT
4234 int follow_phys(struct vm_area_struct *vma,
4235 		unsigned long address, unsigned int flags,
4236 		unsigned long *prot, resource_size_t *phys)
4237 {
4238 	int ret = -EINVAL;
4239 	pte_t *ptep, pte;
4240 	spinlock_t *ptl;
4241 
4242 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4243 		goto out;
4244 
4245 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4246 		goto out;
4247 	pte = *ptep;
4248 
4249 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4250 		goto unlock;
4251 
4252 	*prot = pgprot_val(pte_pgprot(pte));
4253 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4254 
4255 	ret = 0;
4256 unlock:
4257 	pte_unmap_unlock(ptep, ptl);
4258 out:
4259 	return ret;
4260 }
4261 
4262 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4263 			void *buf, int len, int write)
4264 {
4265 	resource_size_t phys_addr;
4266 	unsigned long prot = 0;
4267 	void __iomem *maddr;
4268 	int offset = addr & (PAGE_SIZE-1);
4269 
4270 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4271 		return -EINVAL;
4272 
4273 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4274 	if (!maddr)
4275 		return -ENOMEM;
4276 
4277 	if (write)
4278 		memcpy_toio(maddr + offset, buf, len);
4279 	else
4280 		memcpy_fromio(buf, maddr + offset, len);
4281 	iounmap(maddr);
4282 
4283 	return len;
4284 }
4285 EXPORT_SYMBOL_GPL(generic_access_phys);
4286 #endif
4287 
4288 /*
4289  * Access another process' address space as given in mm.  If non-NULL, use the
4290  * given task for page fault accounting.
4291  */
4292 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4293 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4294 {
4295 	struct vm_area_struct *vma;
4296 	void *old_buf = buf;
4297 	int write = gup_flags & FOLL_WRITE;
4298 
4299 	if (down_read_killable(&mm->mmap_sem))
4300 		return 0;
4301 
4302 	/* ignore errors, just check how much was successfully transferred */
4303 	while (len) {
4304 		int bytes, ret, offset;
4305 		void *maddr;
4306 		struct page *page = NULL;
4307 
4308 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4309 				gup_flags, &page, &vma, NULL);
4310 		if (ret <= 0) {
4311 #ifndef CONFIG_HAVE_IOREMAP_PROT
4312 			break;
4313 #else
4314 			/*
4315 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4316 			 * we can access using slightly different code.
4317 			 */
4318 			vma = find_vma(mm, addr);
4319 			if (!vma || vma->vm_start > addr)
4320 				break;
4321 			if (vma->vm_ops && vma->vm_ops->access)
4322 				ret = vma->vm_ops->access(vma, addr, buf,
4323 							  len, write);
4324 			if (ret <= 0)
4325 				break;
4326 			bytes = ret;
4327 #endif
4328 		} else {
4329 			bytes = len;
4330 			offset = addr & (PAGE_SIZE-1);
4331 			if (bytes > PAGE_SIZE-offset)
4332 				bytes = PAGE_SIZE-offset;
4333 
4334 			maddr = kmap(page);
4335 			if (write) {
4336 				copy_to_user_page(vma, page, addr,
4337 						  maddr + offset, buf, bytes);
4338 				set_page_dirty_lock(page);
4339 			} else {
4340 				copy_from_user_page(vma, page, addr,
4341 						    buf, maddr + offset, bytes);
4342 			}
4343 			kunmap(page);
4344 			put_page(page);
4345 		}
4346 		len -= bytes;
4347 		buf += bytes;
4348 		addr += bytes;
4349 	}
4350 	up_read(&mm->mmap_sem);
4351 
4352 	return buf - old_buf;
4353 }
4354 
4355 /**
4356  * access_remote_vm - access another process' address space
4357  * @mm:		the mm_struct of the target address space
4358  * @addr:	start address to access
4359  * @buf:	source or destination buffer
4360  * @len:	number of bytes to transfer
4361  * @gup_flags:	flags modifying lookup behaviour
4362  *
4363  * The caller must hold a reference on @mm.
4364  *
4365  * Return: number of bytes copied from source to destination.
4366  */
4367 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4368 		void *buf, int len, unsigned int gup_flags)
4369 {
4370 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4371 }
4372 
4373 /*
4374  * Access another process' address space.
4375  * Source/target buffer must be kernel space,
4376  * Do not walk the page table directly, use get_user_pages
4377  */
4378 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4379 		void *buf, int len, unsigned int gup_flags)
4380 {
4381 	struct mm_struct *mm;
4382 	int ret;
4383 
4384 	mm = get_task_mm(tsk);
4385 	if (!mm)
4386 		return 0;
4387 
4388 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4389 
4390 	mmput(mm);
4391 
4392 	return ret;
4393 }
4394 EXPORT_SYMBOL_GPL(access_process_vm);
4395 
4396 /*
4397  * Print the name of a VMA.
4398  */
4399 void print_vma_addr(char *prefix, unsigned long ip)
4400 {
4401 	struct mm_struct *mm = current->mm;
4402 	struct vm_area_struct *vma;
4403 
4404 	/*
4405 	 * we might be running from an atomic context so we cannot sleep
4406 	 */
4407 	if (!down_read_trylock(&mm->mmap_sem))
4408 		return;
4409 
4410 	vma = find_vma(mm, ip);
4411 	if (vma && vma->vm_file) {
4412 		struct file *f = vma->vm_file;
4413 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4414 		if (buf) {
4415 			char *p;
4416 
4417 			p = file_path(f, buf, PAGE_SIZE);
4418 			if (IS_ERR(p))
4419 				p = "?";
4420 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4421 					vma->vm_start,
4422 					vma->vm_end - vma->vm_start);
4423 			free_page((unsigned long)buf);
4424 		}
4425 	}
4426 	up_read(&mm->mmap_sem);
4427 }
4428 
4429 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4430 void __might_fault(const char *file, int line)
4431 {
4432 	/*
4433 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4434 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4435 	 * get paged out, therefore we'll never actually fault, and the
4436 	 * below annotations will generate false positives.
4437 	 */
4438 	if (uaccess_kernel())
4439 		return;
4440 	if (pagefault_disabled())
4441 		return;
4442 	__might_sleep(file, line, 0);
4443 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4444 	if (current->mm)
4445 		might_lock_read(&current->mm->mmap_sem);
4446 #endif
4447 }
4448 EXPORT_SYMBOL(__might_fault);
4449 #endif
4450 
4451 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4452 /*
4453  * Process all subpages of the specified huge page with the specified
4454  * operation.  The target subpage will be processed last to keep its
4455  * cache lines hot.
4456  */
4457 static inline void process_huge_page(
4458 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4459 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4460 	void *arg)
4461 {
4462 	int i, n, base, l;
4463 	unsigned long addr = addr_hint &
4464 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4465 
4466 	/* Process target subpage last to keep its cache lines hot */
4467 	might_sleep();
4468 	n = (addr_hint - addr) / PAGE_SIZE;
4469 	if (2 * n <= pages_per_huge_page) {
4470 		/* If target subpage in first half of huge page */
4471 		base = 0;
4472 		l = n;
4473 		/* Process subpages at the end of huge page */
4474 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4475 			cond_resched();
4476 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4477 		}
4478 	} else {
4479 		/* If target subpage in second half of huge page */
4480 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4481 		l = pages_per_huge_page - n;
4482 		/* Process subpages at the begin of huge page */
4483 		for (i = 0; i < base; i++) {
4484 			cond_resched();
4485 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4486 		}
4487 	}
4488 	/*
4489 	 * Process remaining subpages in left-right-left-right pattern
4490 	 * towards the target subpage
4491 	 */
4492 	for (i = 0; i < l; i++) {
4493 		int left_idx = base + i;
4494 		int right_idx = base + 2 * l - 1 - i;
4495 
4496 		cond_resched();
4497 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4498 		cond_resched();
4499 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4500 	}
4501 }
4502 
4503 static void clear_gigantic_page(struct page *page,
4504 				unsigned long addr,
4505 				unsigned int pages_per_huge_page)
4506 {
4507 	int i;
4508 	struct page *p = page;
4509 
4510 	might_sleep();
4511 	for (i = 0; i < pages_per_huge_page;
4512 	     i++, p = mem_map_next(p, page, i)) {
4513 		cond_resched();
4514 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4515 	}
4516 }
4517 
4518 static void clear_subpage(unsigned long addr, int idx, void *arg)
4519 {
4520 	struct page *page = arg;
4521 
4522 	clear_user_highpage(page + idx, addr);
4523 }
4524 
4525 void clear_huge_page(struct page *page,
4526 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4527 {
4528 	unsigned long addr = addr_hint &
4529 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4530 
4531 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4532 		clear_gigantic_page(page, addr, pages_per_huge_page);
4533 		return;
4534 	}
4535 
4536 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4537 }
4538 
4539 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4540 				    unsigned long addr,
4541 				    struct vm_area_struct *vma,
4542 				    unsigned int pages_per_huge_page)
4543 {
4544 	int i;
4545 	struct page *dst_base = dst;
4546 	struct page *src_base = src;
4547 
4548 	for (i = 0; i < pages_per_huge_page; ) {
4549 		cond_resched();
4550 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4551 
4552 		i++;
4553 		dst = mem_map_next(dst, dst_base, i);
4554 		src = mem_map_next(src, src_base, i);
4555 	}
4556 }
4557 
4558 struct copy_subpage_arg {
4559 	struct page *dst;
4560 	struct page *src;
4561 	struct vm_area_struct *vma;
4562 };
4563 
4564 static void copy_subpage(unsigned long addr, int idx, void *arg)
4565 {
4566 	struct copy_subpage_arg *copy_arg = arg;
4567 
4568 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4569 			   addr, copy_arg->vma);
4570 }
4571 
4572 void copy_user_huge_page(struct page *dst, struct page *src,
4573 			 unsigned long addr_hint, struct vm_area_struct *vma,
4574 			 unsigned int pages_per_huge_page)
4575 {
4576 	unsigned long addr = addr_hint &
4577 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4578 	struct copy_subpage_arg arg = {
4579 		.dst = dst,
4580 		.src = src,
4581 		.vma = vma,
4582 	};
4583 
4584 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4585 		copy_user_gigantic_page(dst, src, addr, vma,
4586 					pages_per_huge_page);
4587 		return;
4588 	}
4589 
4590 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4591 }
4592 
4593 long copy_huge_page_from_user(struct page *dst_page,
4594 				const void __user *usr_src,
4595 				unsigned int pages_per_huge_page,
4596 				bool allow_pagefault)
4597 {
4598 	void *src = (void *)usr_src;
4599 	void *page_kaddr;
4600 	unsigned long i, rc = 0;
4601 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4602 
4603 	for (i = 0; i < pages_per_huge_page; i++) {
4604 		if (allow_pagefault)
4605 			page_kaddr = kmap(dst_page + i);
4606 		else
4607 			page_kaddr = kmap_atomic(dst_page + i);
4608 		rc = copy_from_user(page_kaddr,
4609 				(const void __user *)(src + i * PAGE_SIZE),
4610 				PAGE_SIZE);
4611 		if (allow_pagefault)
4612 			kunmap(dst_page + i);
4613 		else
4614 			kunmap_atomic(page_kaddr);
4615 
4616 		ret_val -= (PAGE_SIZE - rc);
4617 		if (rc)
4618 			break;
4619 
4620 		cond_resched();
4621 	}
4622 	return ret_val;
4623 }
4624 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4625 
4626 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4627 
4628 static struct kmem_cache *page_ptl_cachep;
4629 
4630 void __init ptlock_cache_init(void)
4631 {
4632 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4633 			SLAB_PANIC, NULL);
4634 }
4635 
4636 bool ptlock_alloc(struct page *page)
4637 {
4638 	spinlock_t *ptl;
4639 
4640 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4641 	if (!ptl)
4642 		return false;
4643 	page->ptl = ptl;
4644 	return true;
4645 }
4646 
4647 void ptlock_free(struct page *page)
4648 {
4649 	kmem_cache_free(page_ptl_cachep, page->ptl);
4650 }
4651 #endif
4652