xref: /linux/mm/memory.c (revision b1d29ba82cf2bc784f4c963ddd6a2cf29e229b33)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 /*
190  * Note: this doesn't free the actual pages themselves. That
191  * has been handled earlier when unmapping all the memory regions.
192  */
193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194 			   unsigned long addr)
195 {
196 	pgtable_t token = pmd_pgtable(*pmd);
197 	pmd_clear(pmd);
198 	pte_free_tlb(tlb, token, addr);
199 	mm_dec_nr_ptes(tlb->mm);
200 }
201 
202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203 				unsigned long addr, unsigned long end,
204 				unsigned long floor, unsigned long ceiling)
205 {
206 	pmd_t *pmd;
207 	unsigned long next;
208 	unsigned long start;
209 
210 	start = addr;
211 	pmd = pmd_offset(pud, addr);
212 	do {
213 		next = pmd_addr_end(addr, end);
214 		if (pmd_none_or_clear_bad(pmd))
215 			continue;
216 		free_pte_range(tlb, pmd, addr);
217 	} while (pmd++, addr = next, addr != end);
218 
219 	start &= PUD_MASK;
220 	if (start < floor)
221 		return;
222 	if (ceiling) {
223 		ceiling &= PUD_MASK;
224 		if (!ceiling)
225 			return;
226 	}
227 	if (end - 1 > ceiling - 1)
228 		return;
229 
230 	pmd = pmd_offset(pud, start);
231 	pud_clear(pud);
232 	pmd_free_tlb(tlb, pmd, start);
233 	mm_dec_nr_pmds(tlb->mm);
234 }
235 
236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
237 				unsigned long addr, unsigned long end,
238 				unsigned long floor, unsigned long ceiling)
239 {
240 	pud_t *pud;
241 	unsigned long next;
242 	unsigned long start;
243 
244 	start = addr;
245 	pud = pud_offset(p4d, addr);
246 	do {
247 		next = pud_addr_end(addr, end);
248 		if (pud_none_or_clear_bad(pud))
249 			continue;
250 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
251 	} while (pud++, addr = next, addr != end);
252 
253 	start &= P4D_MASK;
254 	if (start < floor)
255 		return;
256 	if (ceiling) {
257 		ceiling &= P4D_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		return;
263 
264 	pud = pud_offset(p4d, start);
265 	p4d_clear(p4d);
266 	pud_free_tlb(tlb, pud, start);
267 	mm_dec_nr_puds(tlb->mm);
268 }
269 
270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271 				unsigned long addr, unsigned long end,
272 				unsigned long floor, unsigned long ceiling)
273 {
274 	p4d_t *p4d;
275 	unsigned long next;
276 	unsigned long start;
277 
278 	start = addr;
279 	p4d = p4d_offset(pgd, addr);
280 	do {
281 		next = p4d_addr_end(addr, end);
282 		if (p4d_none_or_clear_bad(p4d))
283 			continue;
284 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285 	} while (p4d++, addr = next, addr != end);
286 
287 	start &= PGDIR_MASK;
288 	if (start < floor)
289 		return;
290 	if (ceiling) {
291 		ceiling &= PGDIR_MASK;
292 		if (!ceiling)
293 			return;
294 	}
295 	if (end - 1 > ceiling - 1)
296 		return;
297 
298 	p4d = p4d_offset(pgd, start);
299 	pgd_clear(pgd);
300 	p4d_free_tlb(tlb, p4d, start);
301 }
302 
303 /*
304  * This function frees user-level page tables of a process.
305  */
306 void free_pgd_range(struct mmu_gather *tlb,
307 			unsigned long addr, unsigned long end,
308 			unsigned long floor, unsigned long ceiling)
309 {
310 	pgd_t *pgd;
311 	unsigned long next;
312 
313 	/*
314 	 * The next few lines have given us lots of grief...
315 	 *
316 	 * Why are we testing PMD* at this top level?  Because often
317 	 * there will be no work to do at all, and we'd prefer not to
318 	 * go all the way down to the bottom just to discover that.
319 	 *
320 	 * Why all these "- 1"s?  Because 0 represents both the bottom
321 	 * of the address space and the top of it (using -1 for the
322 	 * top wouldn't help much: the masks would do the wrong thing).
323 	 * The rule is that addr 0 and floor 0 refer to the bottom of
324 	 * the address space, but end 0 and ceiling 0 refer to the top
325 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 	 * that end 0 case should be mythical).
327 	 *
328 	 * Wherever addr is brought up or ceiling brought down, we must
329 	 * be careful to reject "the opposite 0" before it confuses the
330 	 * subsequent tests.  But what about where end is brought down
331 	 * by PMD_SIZE below? no, end can't go down to 0 there.
332 	 *
333 	 * Whereas we round start (addr) and ceiling down, by different
334 	 * masks at different levels, in order to test whether a table
335 	 * now has no other vmas using it, so can be freed, we don't
336 	 * bother to round floor or end up - the tests don't need that.
337 	 */
338 
339 	addr &= PMD_MASK;
340 	if (addr < floor) {
341 		addr += PMD_SIZE;
342 		if (!addr)
343 			return;
344 	}
345 	if (ceiling) {
346 		ceiling &= PMD_MASK;
347 		if (!ceiling)
348 			return;
349 	}
350 	if (end - 1 > ceiling - 1)
351 		end -= PMD_SIZE;
352 	if (addr > end - 1)
353 		return;
354 	/*
355 	 * We add page table cache pages with PAGE_SIZE,
356 	 * (see pte_free_tlb()), flush the tlb if we need
357 	 */
358 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
359 	pgd = pgd_offset(tlb->mm, addr);
360 	do {
361 		next = pgd_addr_end(addr, end);
362 		if (pgd_none_or_clear_bad(pgd))
363 			continue;
364 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
365 	} while (pgd++, addr = next, addr != end);
366 }
367 
368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
369 		unsigned long floor, unsigned long ceiling)
370 {
371 	while (vma) {
372 		struct vm_area_struct *next = vma->vm_next;
373 		unsigned long addr = vma->vm_start;
374 
375 		/*
376 		 * Hide vma from rmap and truncate_pagecache before freeing
377 		 * pgtables
378 		 */
379 		unlink_anon_vmas(vma);
380 		unlink_file_vma(vma);
381 
382 		if (is_vm_hugetlb_page(vma)) {
383 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
384 				floor, next ? next->vm_start : ceiling);
385 		} else {
386 			/*
387 			 * Optimization: gather nearby vmas into one call down
388 			 */
389 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
390 			       && !is_vm_hugetlb_page(next)) {
391 				vma = next;
392 				next = vma->vm_next;
393 				unlink_anon_vmas(vma);
394 				unlink_file_vma(vma);
395 			}
396 			free_pgd_range(tlb, addr, vma->vm_end,
397 				floor, next ? next->vm_start : ceiling);
398 		}
399 		vma = next;
400 	}
401 }
402 
403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
404 {
405 	spinlock_t *ptl;
406 	pgtable_t new = pte_alloc_one(mm, address);
407 	if (!new)
408 		return -ENOMEM;
409 
410 	/*
411 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
412 	 * visible before the pte is made visible to other CPUs by being
413 	 * put into page tables.
414 	 *
415 	 * The other side of the story is the pointer chasing in the page
416 	 * table walking code (when walking the page table without locking;
417 	 * ie. most of the time). Fortunately, these data accesses consist
418 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
419 	 * being the notable exception) will already guarantee loads are
420 	 * seen in-order. See the alpha page table accessors for the
421 	 * smp_read_barrier_depends() barriers in page table walking code.
422 	 */
423 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
424 
425 	ptl = pmd_lock(mm, pmd);
426 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
427 		mm_inc_nr_ptes(mm);
428 		pmd_populate(mm, pmd, new);
429 		new = NULL;
430 	}
431 	spin_unlock(ptl);
432 	if (new)
433 		pte_free(mm, new);
434 	return 0;
435 }
436 
437 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
438 {
439 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
440 	if (!new)
441 		return -ENOMEM;
442 
443 	smp_wmb(); /* See comment in __pte_alloc */
444 
445 	spin_lock(&init_mm.page_table_lock);
446 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
447 		pmd_populate_kernel(&init_mm, pmd, new);
448 		new = NULL;
449 	}
450 	spin_unlock(&init_mm.page_table_lock);
451 	if (new)
452 		pte_free_kernel(&init_mm, new);
453 	return 0;
454 }
455 
456 static inline void init_rss_vec(int *rss)
457 {
458 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459 }
460 
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
462 {
463 	int i;
464 
465 	if (current->mm == mm)
466 		sync_mm_rss(mm);
467 	for (i = 0; i < NR_MM_COUNTERS; i++)
468 		if (rss[i])
469 			add_mm_counter(mm, i, rss[i]);
470 }
471 
472 /*
473  * This function is called to print an error when a bad pte
474  * is found. For example, we might have a PFN-mapped pte in
475  * a region that doesn't allow it.
476  *
477  * The calling function must still handle the error.
478  */
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 			  pte_t pte, struct page *page)
481 {
482 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483 	p4d_t *p4d = p4d_offset(pgd, addr);
484 	pud_t *pud = pud_offset(p4d, addr);
485 	pmd_t *pmd = pmd_offset(pud, addr);
486 	struct address_space *mapping;
487 	pgoff_t index;
488 	static unsigned long resume;
489 	static unsigned long nr_shown;
490 	static unsigned long nr_unshown;
491 
492 	/*
493 	 * Allow a burst of 60 reports, then keep quiet for that minute;
494 	 * or allow a steady drip of one report per second.
495 	 */
496 	if (nr_shown == 60) {
497 		if (time_before(jiffies, resume)) {
498 			nr_unshown++;
499 			return;
500 		}
501 		if (nr_unshown) {
502 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503 				 nr_unshown);
504 			nr_unshown = 0;
505 		}
506 		nr_shown = 0;
507 	}
508 	if (nr_shown++ == 0)
509 		resume = jiffies + 60 * HZ;
510 
511 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 	index = linear_page_index(vma, addr);
513 
514 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
515 		 current->comm,
516 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
517 	if (page)
518 		dump_page(page, "bad pte");
519 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
521 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522 		 vma->vm_file,
523 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
524 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525 		 mapping ? mapping->a_ops->readpage : NULL);
526 	dump_stack();
527 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
528 }
529 
530 /*
531  * vm_normal_page -- This function gets the "struct page" associated with a pte.
532  *
533  * "Special" mappings do not wish to be associated with a "struct page" (either
534  * it doesn't exist, or it exists but they don't want to touch it). In this
535  * case, NULL is returned here. "Normal" mappings do have a struct page.
536  *
537  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538  * pte bit, in which case this function is trivial. Secondly, an architecture
539  * may not have a spare pte bit, which requires a more complicated scheme,
540  * described below.
541  *
542  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543  * special mapping (even if there are underlying and valid "struct pages").
544  * COWed pages of a VM_PFNMAP are always normal.
545  *
546  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
548  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549  * mapping will always honor the rule
550  *
551  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
552  *
553  * And for normal mappings this is false.
554  *
555  * This restricts such mappings to be a linear translation from virtual address
556  * to pfn. To get around this restriction, we allow arbitrary mappings so long
557  * as the vma is not a COW mapping; in that case, we know that all ptes are
558  * special (because none can have been COWed).
559  *
560  *
561  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
562  *
563  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564  * page" backing, however the difference is that _all_ pages with a struct
565  * page (that is, those where pfn_valid is true) are refcounted and considered
566  * normal pages by the VM. The disadvantage is that pages are refcounted
567  * (which can be slower and simply not an option for some PFNMAP users). The
568  * advantage is that we don't have to follow the strict linearity rule of
569  * PFNMAP mappings in order to support COWable mappings.
570  *
571  */
572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573 			     pte_t pte, bool with_public_device)
574 {
575 	unsigned long pfn = pte_pfn(pte);
576 
577 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
578 		if (likely(!pte_special(pte)))
579 			goto check_pfn;
580 		if (vma->vm_ops && vma->vm_ops->find_special_page)
581 			return vma->vm_ops->find_special_page(vma, addr);
582 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583 			return NULL;
584 		if (is_zero_pfn(pfn))
585 			return NULL;
586 
587 		/*
588 		 * Device public pages are special pages (they are ZONE_DEVICE
589 		 * pages but different from persistent memory). They behave
590 		 * allmost like normal pages. The difference is that they are
591 		 * not on the lru and thus should never be involve with any-
592 		 * thing that involve lru manipulation (mlock, numa balancing,
593 		 * ...).
594 		 *
595 		 * This is why we still want to return NULL for such page from
596 		 * vm_normal_page() so that we do not have to special case all
597 		 * call site of vm_normal_page().
598 		 */
599 		if (likely(pfn <= highest_memmap_pfn)) {
600 			struct page *page = pfn_to_page(pfn);
601 
602 			if (is_device_public_page(page)) {
603 				if (with_public_device)
604 					return page;
605 				return NULL;
606 			}
607 		}
608 
609 		if (pte_devmap(pte))
610 			return NULL;
611 
612 		print_bad_pte(vma, addr, pte, NULL);
613 		return NULL;
614 	}
615 
616 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617 
618 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 		if (vma->vm_flags & VM_MIXEDMAP) {
620 			if (!pfn_valid(pfn))
621 				return NULL;
622 			goto out;
623 		} else {
624 			unsigned long off;
625 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 			if (pfn == vma->vm_pgoff + off)
627 				return NULL;
628 			if (!is_cow_mapping(vma->vm_flags))
629 				return NULL;
630 		}
631 	}
632 
633 	if (is_zero_pfn(pfn))
634 		return NULL;
635 
636 check_pfn:
637 	if (unlikely(pfn > highest_memmap_pfn)) {
638 		print_bad_pte(vma, addr, pte, NULL);
639 		return NULL;
640 	}
641 
642 	/*
643 	 * NOTE! We still have PageReserved() pages in the page tables.
644 	 * eg. VDSO mappings can cause them to exist.
645 	 */
646 out:
647 	return pfn_to_page(pfn);
648 }
649 
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 				pmd_t pmd)
653 {
654 	unsigned long pfn = pmd_pfn(pmd);
655 
656 	/*
657 	 * There is no pmd_special() but there may be special pmds, e.g.
658 	 * in a direct-access (dax) mapping, so let's just replicate the
659 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660 	 */
661 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 		if (vma->vm_flags & VM_MIXEDMAP) {
663 			if (!pfn_valid(pfn))
664 				return NULL;
665 			goto out;
666 		} else {
667 			unsigned long off;
668 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 			if (pfn == vma->vm_pgoff + off)
670 				return NULL;
671 			if (!is_cow_mapping(vma->vm_flags))
672 				return NULL;
673 		}
674 	}
675 
676 	if (pmd_devmap(pmd))
677 		return NULL;
678 	if (is_zero_pfn(pfn))
679 		return NULL;
680 	if (unlikely(pfn > highest_memmap_pfn))
681 		return NULL;
682 
683 	/*
684 	 * NOTE! We still have PageReserved() pages in the page tables.
685 	 * eg. VDSO mappings can cause them to exist.
686 	 */
687 out:
688 	return pfn_to_page(pfn);
689 }
690 #endif
691 
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697 
698 static inline unsigned long
699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701 		unsigned long addr, int *rss)
702 {
703 	unsigned long vm_flags = vma->vm_flags;
704 	pte_t pte = *src_pte;
705 	struct page *page;
706 
707 	/* pte contains position in swap or file, so copy. */
708 	if (unlikely(!pte_present(pte))) {
709 		swp_entry_t entry = pte_to_swp_entry(pte);
710 
711 		if (likely(!non_swap_entry(entry))) {
712 			if (swap_duplicate(entry) < 0)
713 				return entry.val;
714 
715 			/* make sure dst_mm is on swapoff's mmlist. */
716 			if (unlikely(list_empty(&dst_mm->mmlist))) {
717 				spin_lock(&mmlist_lock);
718 				if (list_empty(&dst_mm->mmlist))
719 					list_add(&dst_mm->mmlist,
720 							&src_mm->mmlist);
721 				spin_unlock(&mmlist_lock);
722 			}
723 			rss[MM_SWAPENTS]++;
724 		} else if (is_migration_entry(entry)) {
725 			page = migration_entry_to_page(entry);
726 
727 			rss[mm_counter(page)]++;
728 
729 			if (is_write_migration_entry(entry) &&
730 					is_cow_mapping(vm_flags)) {
731 				/*
732 				 * COW mappings require pages in both
733 				 * parent and child to be set to read.
734 				 */
735 				make_migration_entry_read(&entry);
736 				pte = swp_entry_to_pte(entry);
737 				if (pte_swp_soft_dirty(*src_pte))
738 					pte = pte_swp_mksoft_dirty(pte);
739 				set_pte_at(src_mm, addr, src_pte, pte);
740 			}
741 		} else if (is_device_private_entry(entry)) {
742 			page = device_private_entry_to_page(entry);
743 
744 			/*
745 			 * Update rss count even for unaddressable pages, as
746 			 * they should treated just like normal pages in this
747 			 * respect.
748 			 *
749 			 * We will likely want to have some new rss counters
750 			 * for unaddressable pages, at some point. But for now
751 			 * keep things as they are.
752 			 */
753 			get_page(page);
754 			rss[mm_counter(page)]++;
755 			page_dup_rmap(page, false);
756 
757 			/*
758 			 * We do not preserve soft-dirty information, because so
759 			 * far, checkpoint/restore is the only feature that
760 			 * requires that. And checkpoint/restore does not work
761 			 * when a device driver is involved (you cannot easily
762 			 * save and restore device driver state).
763 			 */
764 			if (is_write_device_private_entry(entry) &&
765 			    is_cow_mapping(vm_flags)) {
766 				make_device_private_entry_read(&entry);
767 				pte = swp_entry_to_pte(entry);
768 				set_pte_at(src_mm, addr, src_pte, pte);
769 			}
770 		}
771 		goto out_set_pte;
772 	}
773 
774 	/*
775 	 * If it's a COW mapping, write protect it both
776 	 * in the parent and the child
777 	 */
778 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779 		ptep_set_wrprotect(src_mm, addr, src_pte);
780 		pte = pte_wrprotect(pte);
781 	}
782 
783 	/*
784 	 * If it's a shared mapping, mark it clean in
785 	 * the child
786 	 */
787 	if (vm_flags & VM_SHARED)
788 		pte = pte_mkclean(pte);
789 	pte = pte_mkold(pte);
790 
791 	page = vm_normal_page(vma, addr, pte);
792 	if (page) {
793 		get_page(page);
794 		page_dup_rmap(page, false);
795 		rss[mm_counter(page)]++;
796 	} else if (pte_devmap(pte)) {
797 		page = pte_page(pte);
798 
799 		/*
800 		 * Cache coherent device memory behave like regular page and
801 		 * not like persistent memory page. For more informations see
802 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
803 		 */
804 		if (is_device_public_page(page)) {
805 			get_page(page);
806 			page_dup_rmap(page, false);
807 			rss[mm_counter(page)]++;
808 		}
809 	}
810 
811 out_set_pte:
812 	set_pte_at(dst_mm, addr, dst_pte, pte);
813 	return 0;
814 }
815 
816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
817 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818 		   unsigned long addr, unsigned long end)
819 {
820 	pte_t *orig_src_pte, *orig_dst_pte;
821 	pte_t *src_pte, *dst_pte;
822 	spinlock_t *src_ptl, *dst_ptl;
823 	int progress = 0;
824 	int rss[NR_MM_COUNTERS];
825 	swp_entry_t entry = (swp_entry_t){0};
826 
827 again:
828 	init_rss_vec(rss);
829 
830 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
831 	if (!dst_pte)
832 		return -ENOMEM;
833 	src_pte = pte_offset_map(src_pmd, addr);
834 	src_ptl = pte_lockptr(src_mm, src_pmd);
835 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836 	orig_src_pte = src_pte;
837 	orig_dst_pte = dst_pte;
838 	arch_enter_lazy_mmu_mode();
839 
840 	do {
841 		/*
842 		 * We are holding two locks at this point - either of them
843 		 * could generate latencies in another task on another CPU.
844 		 */
845 		if (progress >= 32) {
846 			progress = 0;
847 			if (need_resched() ||
848 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
849 				break;
850 		}
851 		if (pte_none(*src_pte)) {
852 			progress++;
853 			continue;
854 		}
855 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856 							vma, addr, rss);
857 		if (entry.val)
858 			break;
859 		progress += 8;
860 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
861 
862 	arch_leave_lazy_mmu_mode();
863 	spin_unlock(src_ptl);
864 	pte_unmap(orig_src_pte);
865 	add_mm_rss_vec(dst_mm, rss);
866 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
867 	cond_resched();
868 
869 	if (entry.val) {
870 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871 			return -ENOMEM;
872 		progress = 0;
873 	}
874 	if (addr != end)
875 		goto again;
876 	return 0;
877 }
878 
879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881 		unsigned long addr, unsigned long end)
882 {
883 	pmd_t *src_pmd, *dst_pmd;
884 	unsigned long next;
885 
886 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887 	if (!dst_pmd)
888 		return -ENOMEM;
889 	src_pmd = pmd_offset(src_pud, addr);
890 	do {
891 		next = pmd_addr_end(addr, end);
892 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893 			|| pmd_devmap(*src_pmd)) {
894 			int err;
895 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
896 			err = copy_huge_pmd(dst_mm, src_mm,
897 					    dst_pmd, src_pmd, addr, vma);
898 			if (err == -ENOMEM)
899 				return -ENOMEM;
900 			if (!err)
901 				continue;
902 			/* fall through */
903 		}
904 		if (pmd_none_or_clear_bad(src_pmd))
905 			continue;
906 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907 						vma, addr, next))
908 			return -ENOMEM;
909 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
910 	return 0;
911 }
912 
913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
915 		unsigned long addr, unsigned long end)
916 {
917 	pud_t *src_pud, *dst_pud;
918 	unsigned long next;
919 
920 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
921 	if (!dst_pud)
922 		return -ENOMEM;
923 	src_pud = pud_offset(src_p4d, addr);
924 	do {
925 		next = pud_addr_end(addr, end);
926 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927 			int err;
928 
929 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930 			err = copy_huge_pud(dst_mm, src_mm,
931 					    dst_pud, src_pud, addr, vma);
932 			if (err == -ENOMEM)
933 				return -ENOMEM;
934 			if (!err)
935 				continue;
936 			/* fall through */
937 		}
938 		if (pud_none_or_clear_bad(src_pud))
939 			continue;
940 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941 						vma, addr, next))
942 			return -ENOMEM;
943 	} while (dst_pud++, src_pud++, addr = next, addr != end);
944 	return 0;
945 }
946 
947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949 		unsigned long addr, unsigned long end)
950 {
951 	p4d_t *src_p4d, *dst_p4d;
952 	unsigned long next;
953 
954 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955 	if (!dst_p4d)
956 		return -ENOMEM;
957 	src_p4d = p4d_offset(src_pgd, addr);
958 	do {
959 		next = p4d_addr_end(addr, end);
960 		if (p4d_none_or_clear_bad(src_p4d))
961 			continue;
962 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963 						vma, addr, next))
964 			return -ENOMEM;
965 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
966 	return 0;
967 }
968 
969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 		struct vm_area_struct *vma)
971 {
972 	pgd_t *src_pgd, *dst_pgd;
973 	unsigned long next;
974 	unsigned long addr = vma->vm_start;
975 	unsigned long end = vma->vm_end;
976 	unsigned long mmun_start;	/* For mmu_notifiers */
977 	unsigned long mmun_end;		/* For mmu_notifiers */
978 	bool is_cow;
979 	int ret;
980 
981 	/*
982 	 * Don't copy ptes where a page fault will fill them correctly.
983 	 * Fork becomes much lighter when there are big shared or private
984 	 * readonly mappings. The tradeoff is that copy_page_range is more
985 	 * efficient than faulting.
986 	 */
987 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 			!vma->anon_vma)
989 		return 0;
990 
991 	if (is_vm_hugetlb_page(vma))
992 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993 
994 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995 		/*
996 		 * We do not free on error cases below as remove_vma
997 		 * gets called on error from higher level routine
998 		 */
999 		ret = track_pfn_copy(vma);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	/*
1005 	 * We need to invalidate the secondary MMU mappings only when
1006 	 * there could be a permission downgrade on the ptes of the
1007 	 * parent mm. And a permission downgrade will only happen if
1008 	 * is_cow_mapping() returns true.
1009 	 */
1010 	is_cow = is_cow_mapping(vma->vm_flags);
1011 	mmun_start = addr;
1012 	mmun_end   = end;
1013 	if (is_cow)
1014 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1015 						    mmun_end);
1016 
1017 	ret = 0;
1018 	dst_pgd = pgd_offset(dst_mm, addr);
1019 	src_pgd = pgd_offset(src_mm, addr);
1020 	do {
1021 		next = pgd_addr_end(addr, end);
1022 		if (pgd_none_or_clear_bad(src_pgd))
1023 			continue;
1024 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1025 					    vma, addr, next))) {
1026 			ret = -ENOMEM;
1027 			break;
1028 		}
1029 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1030 
1031 	if (is_cow)
1032 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1033 	return ret;
1034 }
1035 
1036 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1037 				struct vm_area_struct *vma, pmd_t *pmd,
1038 				unsigned long addr, unsigned long end,
1039 				struct zap_details *details)
1040 {
1041 	struct mm_struct *mm = tlb->mm;
1042 	int force_flush = 0;
1043 	int rss[NR_MM_COUNTERS];
1044 	spinlock_t *ptl;
1045 	pte_t *start_pte;
1046 	pte_t *pte;
1047 	swp_entry_t entry;
1048 
1049 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1050 again:
1051 	init_rss_vec(rss);
1052 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 	pte = start_pte;
1054 	flush_tlb_batched_pending(mm);
1055 	arch_enter_lazy_mmu_mode();
1056 	do {
1057 		pte_t ptent = *pte;
1058 		if (pte_none(ptent))
1059 			continue;
1060 
1061 		if (pte_present(ptent)) {
1062 			struct page *page;
1063 
1064 			page = _vm_normal_page(vma, addr, ptent, true);
1065 			if (unlikely(details) && page) {
1066 				/*
1067 				 * unmap_shared_mapping_pages() wants to
1068 				 * invalidate cache without truncating:
1069 				 * unmap shared but keep private pages.
1070 				 */
1071 				if (details->check_mapping &&
1072 				    details->check_mapping != page_rmapping(page))
1073 					continue;
1074 			}
1075 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1076 							tlb->fullmm);
1077 			tlb_remove_tlb_entry(tlb, pte, addr);
1078 			if (unlikely(!page))
1079 				continue;
1080 
1081 			if (!PageAnon(page)) {
1082 				if (pte_dirty(ptent)) {
1083 					force_flush = 1;
1084 					set_page_dirty(page);
1085 				}
1086 				if (pte_young(ptent) &&
1087 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1088 					mark_page_accessed(page);
1089 			}
1090 			rss[mm_counter(page)]--;
1091 			page_remove_rmap(page, false);
1092 			if (unlikely(page_mapcount(page) < 0))
1093 				print_bad_pte(vma, addr, ptent, page);
1094 			if (unlikely(__tlb_remove_page(tlb, page))) {
1095 				force_flush = 1;
1096 				addr += PAGE_SIZE;
1097 				break;
1098 			}
1099 			continue;
1100 		}
1101 
1102 		entry = pte_to_swp_entry(ptent);
1103 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 			struct page *page = device_private_entry_to_page(entry);
1105 
1106 			if (unlikely(details && details->check_mapping)) {
1107 				/*
1108 				 * unmap_shared_mapping_pages() wants to
1109 				 * invalidate cache without truncating:
1110 				 * unmap shared but keep private pages.
1111 				 */
1112 				if (details->check_mapping !=
1113 				    page_rmapping(page))
1114 					continue;
1115 			}
1116 
1117 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 			rss[mm_counter(page)]--;
1119 			page_remove_rmap(page, false);
1120 			put_page(page);
1121 			continue;
1122 		}
1123 
1124 		/* If details->check_mapping, we leave swap entries. */
1125 		if (unlikely(details))
1126 			continue;
1127 
1128 		entry = pte_to_swp_entry(ptent);
1129 		if (!non_swap_entry(entry))
1130 			rss[MM_SWAPENTS]--;
1131 		else if (is_migration_entry(entry)) {
1132 			struct page *page;
1133 
1134 			page = migration_entry_to_page(entry);
1135 			rss[mm_counter(page)]--;
1136 		}
1137 		if (unlikely(!free_swap_and_cache(entry)))
1138 			print_bad_pte(vma, addr, ptent, NULL);
1139 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140 	} while (pte++, addr += PAGE_SIZE, addr != end);
1141 
1142 	add_mm_rss_vec(mm, rss);
1143 	arch_leave_lazy_mmu_mode();
1144 
1145 	/* Do the actual TLB flush before dropping ptl */
1146 	if (force_flush)
1147 		tlb_flush_mmu_tlbonly(tlb);
1148 	pte_unmap_unlock(start_pte, ptl);
1149 
1150 	/*
1151 	 * If we forced a TLB flush (either due to running out of
1152 	 * batch buffers or because we needed to flush dirty TLB
1153 	 * entries before releasing the ptl), free the batched
1154 	 * memory too. Restart if we didn't do everything.
1155 	 */
1156 	if (force_flush) {
1157 		force_flush = 0;
1158 		tlb_flush_mmu_free(tlb);
1159 		if (addr != end)
1160 			goto again;
1161 	}
1162 
1163 	return addr;
1164 }
1165 
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 				struct vm_area_struct *vma, pud_t *pud,
1168 				unsigned long addr, unsigned long end,
1169 				struct zap_details *details)
1170 {
1171 	pmd_t *pmd;
1172 	unsigned long next;
1173 
1174 	pmd = pmd_offset(pud, addr);
1175 	do {
1176 		next = pmd_addr_end(addr, end);
1177 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 			if (next - addr != HPAGE_PMD_SIZE)
1179 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1180 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181 				goto next;
1182 			/* fall through */
1183 		}
1184 		/*
1185 		 * Here there can be other concurrent MADV_DONTNEED or
1186 		 * trans huge page faults running, and if the pmd is
1187 		 * none or trans huge it can change under us. This is
1188 		 * because MADV_DONTNEED holds the mmap_sem in read
1189 		 * mode.
1190 		 */
1191 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 			goto next;
1193 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195 		cond_resched();
1196 	} while (pmd++, addr = next, addr != end);
1197 
1198 	return addr;
1199 }
1200 
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202 				struct vm_area_struct *vma, p4d_t *p4d,
1203 				unsigned long addr, unsigned long end,
1204 				struct zap_details *details)
1205 {
1206 	pud_t *pud;
1207 	unsigned long next;
1208 
1209 	pud = pud_offset(p4d, addr);
1210 	do {
1211 		next = pud_addr_end(addr, end);
1212 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 			if (next - addr != HPAGE_PUD_SIZE) {
1214 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 				split_huge_pud(vma, pud, addr);
1216 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1217 				goto next;
1218 			/* fall through */
1219 		}
1220 		if (pud_none_or_clear_bad(pud))
1221 			continue;
1222 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224 		cond_resched();
1225 	} while (pud++, addr = next, addr != end);
1226 
1227 	return addr;
1228 }
1229 
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 				struct vm_area_struct *vma, pgd_t *pgd,
1232 				unsigned long addr, unsigned long end,
1233 				struct zap_details *details)
1234 {
1235 	p4d_t *p4d;
1236 	unsigned long next;
1237 
1238 	p4d = p4d_offset(pgd, addr);
1239 	do {
1240 		next = p4d_addr_end(addr, end);
1241 		if (p4d_none_or_clear_bad(p4d))
1242 			continue;
1243 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 	} while (p4d++, addr = next, addr != end);
1245 
1246 	return addr;
1247 }
1248 
1249 void unmap_page_range(struct mmu_gather *tlb,
1250 			     struct vm_area_struct *vma,
1251 			     unsigned long addr, unsigned long end,
1252 			     struct zap_details *details)
1253 {
1254 	pgd_t *pgd;
1255 	unsigned long next;
1256 
1257 	BUG_ON(addr >= end);
1258 	tlb_start_vma(tlb, vma);
1259 	pgd = pgd_offset(vma->vm_mm, addr);
1260 	do {
1261 		next = pgd_addr_end(addr, end);
1262 		if (pgd_none_or_clear_bad(pgd))
1263 			continue;
1264 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265 	} while (pgd++, addr = next, addr != end);
1266 	tlb_end_vma(tlb, vma);
1267 }
1268 
1269 
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271 		struct vm_area_struct *vma, unsigned long start_addr,
1272 		unsigned long end_addr,
1273 		struct zap_details *details)
1274 {
1275 	unsigned long start = max(vma->vm_start, start_addr);
1276 	unsigned long end;
1277 
1278 	if (start >= vma->vm_end)
1279 		return;
1280 	end = min(vma->vm_end, end_addr);
1281 	if (end <= vma->vm_start)
1282 		return;
1283 
1284 	if (vma->vm_file)
1285 		uprobe_munmap(vma, start, end);
1286 
1287 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1288 		untrack_pfn(vma, 0, 0);
1289 
1290 	if (start != end) {
1291 		if (unlikely(is_vm_hugetlb_page(vma))) {
1292 			/*
1293 			 * It is undesirable to test vma->vm_file as it
1294 			 * should be non-null for valid hugetlb area.
1295 			 * However, vm_file will be NULL in the error
1296 			 * cleanup path of mmap_region. When
1297 			 * hugetlbfs ->mmap method fails,
1298 			 * mmap_region() nullifies vma->vm_file
1299 			 * before calling this function to clean up.
1300 			 * Since no pte has actually been setup, it is
1301 			 * safe to do nothing in this case.
1302 			 */
1303 			if (vma->vm_file) {
1304 				i_mmap_lock_write(vma->vm_file->f_mapping);
1305 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1307 			}
1308 		} else
1309 			unmap_page_range(tlb, vma, start, end, details);
1310 	}
1311 }
1312 
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332 		struct vm_area_struct *vma, unsigned long start_addr,
1333 		unsigned long end_addr)
1334 {
1335 	struct mm_struct *mm = vma->vm_mm;
1336 
1337 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1338 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1339 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1340 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1341 }
1342 
1343 /**
1344  * zap_page_range - remove user pages in a given range
1345  * @vma: vm_area_struct holding the applicable pages
1346  * @start: starting address of pages to zap
1347  * @size: number of bytes to zap
1348  *
1349  * Caller must protect the VMA list
1350  */
1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1352 		unsigned long size)
1353 {
1354 	struct mm_struct *mm = vma->vm_mm;
1355 	struct mmu_gather tlb;
1356 	unsigned long end = start + size;
1357 
1358 	lru_add_drain();
1359 	tlb_gather_mmu(&tlb, mm, start, end);
1360 	update_hiwater_rss(mm);
1361 	mmu_notifier_invalidate_range_start(mm, start, end);
1362 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1363 		unmap_single_vma(&tlb, vma, start, end, NULL);
1364 	mmu_notifier_invalidate_range_end(mm, start, end);
1365 	tlb_finish_mmu(&tlb, start, end);
1366 }
1367 
1368 /**
1369  * zap_page_range_single - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @address: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of shared cache invalidation
1374  *
1375  * The range must fit into one VMA.
1376  */
1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378 		unsigned long size, struct zap_details *details)
1379 {
1380 	struct mm_struct *mm = vma->vm_mm;
1381 	struct mmu_gather tlb;
1382 	unsigned long end = address + size;
1383 
1384 	lru_add_drain();
1385 	tlb_gather_mmu(&tlb, mm, address, end);
1386 	update_hiwater_rss(mm);
1387 	mmu_notifier_invalidate_range_start(mm, address, end);
1388 	unmap_single_vma(&tlb, vma, address, end, details);
1389 	mmu_notifier_invalidate_range_end(mm, address, end);
1390 	tlb_finish_mmu(&tlb, address, end);
1391 }
1392 
1393 /**
1394  * zap_vma_ptes - remove ptes mapping the vma
1395  * @vma: vm_area_struct holding ptes to be zapped
1396  * @address: starting address of pages to zap
1397  * @size: number of bytes to zap
1398  *
1399  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400  *
1401  * The entire address range must be fully contained within the vma.
1402  *
1403  */
1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405 		unsigned long size)
1406 {
1407 	if (address < vma->vm_start || address + size > vma->vm_end ||
1408 	    		!(vma->vm_flags & VM_PFNMAP))
1409 		return;
1410 
1411 	zap_page_range_single(vma, address, size, NULL);
1412 }
1413 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414 
1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416 			spinlock_t **ptl)
1417 {
1418 	pgd_t *pgd;
1419 	p4d_t *p4d;
1420 	pud_t *pud;
1421 	pmd_t *pmd;
1422 
1423 	pgd = pgd_offset(mm, addr);
1424 	p4d = p4d_alloc(mm, pgd, addr);
1425 	if (!p4d)
1426 		return NULL;
1427 	pud = pud_alloc(mm, p4d, addr);
1428 	if (!pud)
1429 		return NULL;
1430 	pmd = pmd_alloc(mm, pud, addr);
1431 	if (!pmd)
1432 		return NULL;
1433 
1434 	VM_BUG_ON(pmd_trans_huge(*pmd));
1435 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1436 }
1437 
1438 /*
1439  * This is the old fallback for page remapping.
1440  *
1441  * For historical reasons, it only allows reserved pages. Only
1442  * old drivers should use this, and they needed to mark their
1443  * pages reserved for the old functions anyway.
1444  */
1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446 			struct page *page, pgprot_t prot)
1447 {
1448 	struct mm_struct *mm = vma->vm_mm;
1449 	int retval;
1450 	pte_t *pte;
1451 	spinlock_t *ptl;
1452 
1453 	retval = -EINVAL;
1454 	if (PageAnon(page))
1455 		goto out;
1456 	retval = -ENOMEM;
1457 	flush_dcache_page(page);
1458 	pte = get_locked_pte(mm, addr, &ptl);
1459 	if (!pte)
1460 		goto out;
1461 	retval = -EBUSY;
1462 	if (!pte_none(*pte))
1463 		goto out_unlock;
1464 
1465 	/* Ok, finally just insert the thing.. */
1466 	get_page(page);
1467 	inc_mm_counter_fast(mm, mm_counter_file(page));
1468 	page_add_file_rmap(page, false);
1469 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470 
1471 	retval = 0;
1472 	pte_unmap_unlock(pte, ptl);
1473 	return retval;
1474 out_unlock:
1475 	pte_unmap_unlock(pte, ptl);
1476 out:
1477 	return retval;
1478 }
1479 
1480 /**
1481  * vm_insert_page - insert single page into user vma
1482  * @vma: user vma to map to
1483  * @addr: target user address of this page
1484  * @page: source kernel page
1485  *
1486  * This allows drivers to insert individual pages they've allocated
1487  * into a user vma.
1488  *
1489  * The page has to be a nice clean _individual_ kernel allocation.
1490  * If you allocate a compound page, you need to have marked it as
1491  * such (__GFP_COMP), or manually just split the page up yourself
1492  * (see split_page()).
1493  *
1494  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495  * took an arbitrary page protection parameter. This doesn't allow
1496  * that. Your vma protection will have to be set up correctly, which
1497  * means that if you want a shared writable mapping, you'd better
1498  * ask for a shared writable mapping!
1499  *
1500  * The page does not need to be reserved.
1501  *
1502  * Usually this function is called from f_op->mmap() handler
1503  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505  * function from other places, for example from page-fault handler.
1506  */
1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508 			struct page *page)
1509 {
1510 	if (addr < vma->vm_start || addr >= vma->vm_end)
1511 		return -EFAULT;
1512 	if (!page_count(page))
1513 		return -EINVAL;
1514 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1517 		vma->vm_flags |= VM_MIXEDMAP;
1518 	}
1519 	return insert_page(vma, addr, page, vma->vm_page_prot);
1520 }
1521 EXPORT_SYMBOL(vm_insert_page);
1522 
1523 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1525 {
1526 	struct mm_struct *mm = vma->vm_mm;
1527 	pte_t *pte, entry;
1528 	spinlock_t *ptl;
1529 
1530 	pte = get_locked_pte(mm, addr, &ptl);
1531 	if (!pte)
1532 		return VM_FAULT_OOM;
1533 	if (!pte_none(*pte)) {
1534 		if (mkwrite) {
1535 			/*
1536 			 * For read faults on private mappings the PFN passed
1537 			 * in may not match the PFN we have mapped if the
1538 			 * mapped PFN is a writeable COW page.  In the mkwrite
1539 			 * case we are creating a writable PTE for a shared
1540 			 * mapping and we expect the PFNs to match.
1541 			 */
1542 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1543 				goto out_unlock;
1544 			entry = *pte;
1545 			goto out_mkwrite;
1546 		} else
1547 			goto out_unlock;
1548 	}
1549 
1550 	/* Ok, finally just insert the thing.. */
1551 	if (pfn_t_devmap(pfn))
1552 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1553 	else
1554 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1555 
1556 out_mkwrite:
1557 	if (mkwrite) {
1558 		entry = pte_mkyoung(entry);
1559 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1560 	}
1561 
1562 	set_pte_at(mm, addr, pte, entry);
1563 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1564 
1565 out_unlock:
1566 	pte_unmap_unlock(pte, ptl);
1567 	return VM_FAULT_NOPAGE;
1568 }
1569 
1570 /**
1571  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1572  * @vma: user vma to map to
1573  * @addr: target user address of this page
1574  * @pfn: source kernel pfn
1575  * @pgprot: pgprot flags for the inserted page
1576  *
1577  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1578  * to override pgprot on a per-page basis.
1579  *
1580  * This only makes sense for IO mappings, and it makes no sense for
1581  * COW mappings.  In general, using multiple vmas is preferable;
1582  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1583  * impractical.
1584  *
1585  * Context: Process context.  May allocate using %GFP_KERNEL.
1586  * Return: vm_fault_t value.
1587  */
1588 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1589 			unsigned long pfn, pgprot_t pgprot)
1590 {
1591 	/*
1592 	 * Technically, architectures with pte_special can avoid all these
1593 	 * restrictions (same for remap_pfn_range).  However we would like
1594 	 * consistency in testing and feature parity among all, so we should
1595 	 * try to keep these invariants in place for everybody.
1596 	 */
1597 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1598 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1599 						(VM_PFNMAP|VM_MIXEDMAP));
1600 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1601 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1602 
1603 	if (addr < vma->vm_start || addr >= vma->vm_end)
1604 		return VM_FAULT_SIGBUS;
1605 
1606 	if (!pfn_modify_allowed(pfn, pgprot))
1607 		return VM_FAULT_SIGBUS;
1608 
1609 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1610 
1611 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1612 			false);
1613 }
1614 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1615 
1616 /**
1617  * vmf_insert_pfn - insert single pfn into user vma
1618  * @vma: user vma to map to
1619  * @addr: target user address of this page
1620  * @pfn: source kernel pfn
1621  *
1622  * Similar to vm_insert_page, this allows drivers to insert individual pages
1623  * they've allocated into a user vma. Same comments apply.
1624  *
1625  * This function should only be called from a vm_ops->fault handler, and
1626  * in that case the handler should return the result of this function.
1627  *
1628  * vma cannot be a COW mapping.
1629  *
1630  * As this is called only for pages that do not currently exist, we
1631  * do not need to flush old virtual caches or the TLB.
1632  *
1633  * Context: Process context.  May allocate using %GFP_KERNEL.
1634  * Return: vm_fault_t value.
1635  */
1636 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1637 			unsigned long pfn)
1638 {
1639 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1640 }
1641 EXPORT_SYMBOL(vmf_insert_pfn);
1642 
1643 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1644 {
1645 	/* these checks mirror the abort conditions in vm_normal_page */
1646 	if (vma->vm_flags & VM_MIXEDMAP)
1647 		return true;
1648 	if (pfn_t_devmap(pfn))
1649 		return true;
1650 	if (pfn_t_special(pfn))
1651 		return true;
1652 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1653 		return true;
1654 	return false;
1655 }
1656 
1657 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1658 		unsigned long addr, pfn_t pfn, bool mkwrite)
1659 {
1660 	pgprot_t pgprot = vma->vm_page_prot;
1661 	int err;
1662 
1663 	BUG_ON(!vm_mixed_ok(vma, pfn));
1664 
1665 	if (addr < vma->vm_start || addr >= vma->vm_end)
1666 		return VM_FAULT_SIGBUS;
1667 
1668 	track_pfn_insert(vma, &pgprot, pfn);
1669 
1670 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1671 		return VM_FAULT_SIGBUS;
1672 
1673 	/*
1674 	 * If we don't have pte special, then we have to use the pfn_valid()
1675 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1676 	 * refcount the page if pfn_valid is true (hence insert_page rather
1677 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1678 	 * without pte special, it would there be refcounted as a normal page.
1679 	 */
1680 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1681 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1682 		struct page *page;
1683 
1684 		/*
1685 		 * At this point we are committed to insert_page()
1686 		 * regardless of whether the caller specified flags that
1687 		 * result in pfn_t_has_page() == false.
1688 		 */
1689 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1690 		err = insert_page(vma, addr, page, pgprot);
1691 	} else {
1692 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1693 	}
1694 
1695 	if (err == -ENOMEM)
1696 		return VM_FAULT_OOM;
1697 	if (err < 0 && err != -EBUSY)
1698 		return VM_FAULT_SIGBUS;
1699 
1700 	return VM_FAULT_NOPAGE;
1701 }
1702 
1703 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1704 		pfn_t pfn)
1705 {
1706 	return __vm_insert_mixed(vma, addr, pfn, false);
1707 }
1708 EXPORT_SYMBOL(vmf_insert_mixed);
1709 
1710 /*
1711  *  If the insertion of PTE failed because someone else already added a
1712  *  different entry in the mean time, we treat that as success as we assume
1713  *  the same entry was actually inserted.
1714  */
1715 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1716 		unsigned long addr, pfn_t pfn)
1717 {
1718 	return __vm_insert_mixed(vma, addr, pfn, true);
1719 }
1720 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1721 
1722 /*
1723  * maps a range of physical memory into the requested pages. the old
1724  * mappings are removed. any references to nonexistent pages results
1725  * in null mappings (currently treated as "copy-on-access")
1726  */
1727 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1728 			unsigned long addr, unsigned long end,
1729 			unsigned long pfn, pgprot_t prot)
1730 {
1731 	pte_t *pte;
1732 	spinlock_t *ptl;
1733 	int err = 0;
1734 
1735 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1736 	if (!pte)
1737 		return -ENOMEM;
1738 	arch_enter_lazy_mmu_mode();
1739 	do {
1740 		BUG_ON(!pte_none(*pte));
1741 		if (!pfn_modify_allowed(pfn, prot)) {
1742 			err = -EACCES;
1743 			break;
1744 		}
1745 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1746 		pfn++;
1747 	} while (pte++, addr += PAGE_SIZE, addr != end);
1748 	arch_leave_lazy_mmu_mode();
1749 	pte_unmap_unlock(pte - 1, ptl);
1750 	return err;
1751 }
1752 
1753 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1754 			unsigned long addr, unsigned long end,
1755 			unsigned long pfn, pgprot_t prot)
1756 {
1757 	pmd_t *pmd;
1758 	unsigned long next;
1759 	int err;
1760 
1761 	pfn -= addr >> PAGE_SHIFT;
1762 	pmd = pmd_alloc(mm, pud, addr);
1763 	if (!pmd)
1764 		return -ENOMEM;
1765 	VM_BUG_ON(pmd_trans_huge(*pmd));
1766 	do {
1767 		next = pmd_addr_end(addr, end);
1768 		err = remap_pte_range(mm, pmd, addr, next,
1769 				pfn + (addr >> PAGE_SHIFT), prot);
1770 		if (err)
1771 			return err;
1772 	} while (pmd++, addr = next, addr != end);
1773 	return 0;
1774 }
1775 
1776 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1777 			unsigned long addr, unsigned long end,
1778 			unsigned long pfn, pgprot_t prot)
1779 {
1780 	pud_t *pud;
1781 	unsigned long next;
1782 	int err;
1783 
1784 	pfn -= addr >> PAGE_SHIFT;
1785 	pud = pud_alloc(mm, p4d, addr);
1786 	if (!pud)
1787 		return -ENOMEM;
1788 	do {
1789 		next = pud_addr_end(addr, end);
1790 		err = remap_pmd_range(mm, pud, addr, next,
1791 				pfn + (addr >> PAGE_SHIFT), prot);
1792 		if (err)
1793 			return err;
1794 	} while (pud++, addr = next, addr != end);
1795 	return 0;
1796 }
1797 
1798 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1799 			unsigned long addr, unsigned long end,
1800 			unsigned long pfn, pgprot_t prot)
1801 {
1802 	p4d_t *p4d;
1803 	unsigned long next;
1804 	int err;
1805 
1806 	pfn -= addr >> PAGE_SHIFT;
1807 	p4d = p4d_alloc(mm, pgd, addr);
1808 	if (!p4d)
1809 		return -ENOMEM;
1810 	do {
1811 		next = p4d_addr_end(addr, end);
1812 		err = remap_pud_range(mm, p4d, addr, next,
1813 				pfn + (addr >> PAGE_SHIFT), prot);
1814 		if (err)
1815 			return err;
1816 	} while (p4d++, addr = next, addr != end);
1817 	return 0;
1818 }
1819 
1820 /**
1821  * remap_pfn_range - remap kernel memory to userspace
1822  * @vma: user vma to map to
1823  * @addr: target user address to start at
1824  * @pfn: physical address of kernel memory
1825  * @size: size of map area
1826  * @prot: page protection flags for this mapping
1827  *
1828  *  Note: this is only safe if the mm semaphore is held when called.
1829  */
1830 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1831 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1832 {
1833 	pgd_t *pgd;
1834 	unsigned long next;
1835 	unsigned long end = addr + PAGE_ALIGN(size);
1836 	struct mm_struct *mm = vma->vm_mm;
1837 	unsigned long remap_pfn = pfn;
1838 	int err;
1839 
1840 	/*
1841 	 * Physically remapped pages are special. Tell the
1842 	 * rest of the world about it:
1843 	 *   VM_IO tells people not to look at these pages
1844 	 *	(accesses can have side effects).
1845 	 *   VM_PFNMAP tells the core MM that the base pages are just
1846 	 *	raw PFN mappings, and do not have a "struct page" associated
1847 	 *	with them.
1848 	 *   VM_DONTEXPAND
1849 	 *      Disable vma merging and expanding with mremap().
1850 	 *   VM_DONTDUMP
1851 	 *      Omit vma from core dump, even when VM_IO turned off.
1852 	 *
1853 	 * There's a horrible special case to handle copy-on-write
1854 	 * behaviour that some programs depend on. We mark the "original"
1855 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1856 	 * See vm_normal_page() for details.
1857 	 */
1858 	if (is_cow_mapping(vma->vm_flags)) {
1859 		if (addr != vma->vm_start || end != vma->vm_end)
1860 			return -EINVAL;
1861 		vma->vm_pgoff = pfn;
1862 	}
1863 
1864 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1865 	if (err)
1866 		return -EINVAL;
1867 
1868 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1869 
1870 	BUG_ON(addr >= end);
1871 	pfn -= addr >> PAGE_SHIFT;
1872 	pgd = pgd_offset(mm, addr);
1873 	flush_cache_range(vma, addr, end);
1874 	do {
1875 		next = pgd_addr_end(addr, end);
1876 		err = remap_p4d_range(mm, pgd, addr, next,
1877 				pfn + (addr >> PAGE_SHIFT), prot);
1878 		if (err)
1879 			break;
1880 	} while (pgd++, addr = next, addr != end);
1881 
1882 	if (err)
1883 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1884 
1885 	return err;
1886 }
1887 EXPORT_SYMBOL(remap_pfn_range);
1888 
1889 /**
1890  * vm_iomap_memory - remap memory to userspace
1891  * @vma: user vma to map to
1892  * @start: start of area
1893  * @len: size of area
1894  *
1895  * This is a simplified io_remap_pfn_range() for common driver use. The
1896  * driver just needs to give us the physical memory range to be mapped,
1897  * we'll figure out the rest from the vma information.
1898  *
1899  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1900  * whatever write-combining details or similar.
1901  */
1902 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1903 {
1904 	unsigned long vm_len, pfn, pages;
1905 
1906 	/* Check that the physical memory area passed in looks valid */
1907 	if (start + len < start)
1908 		return -EINVAL;
1909 	/*
1910 	 * You *really* shouldn't map things that aren't page-aligned,
1911 	 * but we've historically allowed it because IO memory might
1912 	 * just have smaller alignment.
1913 	 */
1914 	len += start & ~PAGE_MASK;
1915 	pfn = start >> PAGE_SHIFT;
1916 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1917 	if (pfn + pages < pfn)
1918 		return -EINVAL;
1919 
1920 	/* We start the mapping 'vm_pgoff' pages into the area */
1921 	if (vma->vm_pgoff > pages)
1922 		return -EINVAL;
1923 	pfn += vma->vm_pgoff;
1924 	pages -= vma->vm_pgoff;
1925 
1926 	/* Can we fit all of the mapping? */
1927 	vm_len = vma->vm_end - vma->vm_start;
1928 	if (vm_len >> PAGE_SHIFT > pages)
1929 		return -EINVAL;
1930 
1931 	/* Ok, let it rip */
1932 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1933 }
1934 EXPORT_SYMBOL(vm_iomap_memory);
1935 
1936 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1937 				     unsigned long addr, unsigned long end,
1938 				     pte_fn_t fn, void *data)
1939 {
1940 	pte_t *pte;
1941 	int err;
1942 	pgtable_t token;
1943 	spinlock_t *uninitialized_var(ptl);
1944 
1945 	pte = (mm == &init_mm) ?
1946 		pte_alloc_kernel(pmd, addr) :
1947 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1948 	if (!pte)
1949 		return -ENOMEM;
1950 
1951 	BUG_ON(pmd_huge(*pmd));
1952 
1953 	arch_enter_lazy_mmu_mode();
1954 
1955 	token = pmd_pgtable(*pmd);
1956 
1957 	do {
1958 		err = fn(pte++, token, addr, data);
1959 		if (err)
1960 			break;
1961 	} while (addr += PAGE_SIZE, addr != end);
1962 
1963 	arch_leave_lazy_mmu_mode();
1964 
1965 	if (mm != &init_mm)
1966 		pte_unmap_unlock(pte-1, ptl);
1967 	return err;
1968 }
1969 
1970 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1971 				     unsigned long addr, unsigned long end,
1972 				     pte_fn_t fn, void *data)
1973 {
1974 	pmd_t *pmd;
1975 	unsigned long next;
1976 	int err;
1977 
1978 	BUG_ON(pud_huge(*pud));
1979 
1980 	pmd = pmd_alloc(mm, pud, addr);
1981 	if (!pmd)
1982 		return -ENOMEM;
1983 	do {
1984 		next = pmd_addr_end(addr, end);
1985 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1986 		if (err)
1987 			break;
1988 	} while (pmd++, addr = next, addr != end);
1989 	return err;
1990 }
1991 
1992 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
1993 				     unsigned long addr, unsigned long end,
1994 				     pte_fn_t fn, void *data)
1995 {
1996 	pud_t *pud;
1997 	unsigned long next;
1998 	int err;
1999 
2000 	pud = pud_alloc(mm, p4d, addr);
2001 	if (!pud)
2002 		return -ENOMEM;
2003 	do {
2004 		next = pud_addr_end(addr, end);
2005 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2006 		if (err)
2007 			break;
2008 	} while (pud++, addr = next, addr != end);
2009 	return err;
2010 }
2011 
2012 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2013 				     unsigned long addr, unsigned long end,
2014 				     pte_fn_t fn, void *data)
2015 {
2016 	p4d_t *p4d;
2017 	unsigned long next;
2018 	int err;
2019 
2020 	p4d = p4d_alloc(mm, pgd, addr);
2021 	if (!p4d)
2022 		return -ENOMEM;
2023 	do {
2024 		next = p4d_addr_end(addr, end);
2025 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2026 		if (err)
2027 			break;
2028 	} while (p4d++, addr = next, addr != end);
2029 	return err;
2030 }
2031 
2032 /*
2033  * Scan a region of virtual memory, filling in page tables as necessary
2034  * and calling a provided function on each leaf page table.
2035  */
2036 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2037 			unsigned long size, pte_fn_t fn, void *data)
2038 {
2039 	pgd_t *pgd;
2040 	unsigned long next;
2041 	unsigned long end = addr + size;
2042 	int err;
2043 
2044 	if (WARN_ON(addr >= end))
2045 		return -EINVAL;
2046 
2047 	pgd = pgd_offset(mm, addr);
2048 	do {
2049 		next = pgd_addr_end(addr, end);
2050 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2051 		if (err)
2052 			break;
2053 	} while (pgd++, addr = next, addr != end);
2054 
2055 	return err;
2056 }
2057 EXPORT_SYMBOL_GPL(apply_to_page_range);
2058 
2059 /*
2060  * handle_pte_fault chooses page fault handler according to an entry which was
2061  * read non-atomically.  Before making any commitment, on those architectures
2062  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2063  * parts, do_swap_page must check under lock before unmapping the pte and
2064  * proceeding (but do_wp_page is only called after already making such a check;
2065  * and do_anonymous_page can safely check later on).
2066  */
2067 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2068 				pte_t *page_table, pte_t orig_pte)
2069 {
2070 	int same = 1;
2071 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2072 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2073 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2074 		spin_lock(ptl);
2075 		same = pte_same(*page_table, orig_pte);
2076 		spin_unlock(ptl);
2077 	}
2078 #endif
2079 	pte_unmap(page_table);
2080 	return same;
2081 }
2082 
2083 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2084 {
2085 	debug_dma_assert_idle(src);
2086 
2087 	/*
2088 	 * If the source page was a PFN mapping, we don't have
2089 	 * a "struct page" for it. We do a best-effort copy by
2090 	 * just copying from the original user address. If that
2091 	 * fails, we just zero-fill it. Live with it.
2092 	 */
2093 	if (unlikely(!src)) {
2094 		void *kaddr = kmap_atomic(dst);
2095 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2096 
2097 		/*
2098 		 * This really shouldn't fail, because the page is there
2099 		 * in the page tables. But it might just be unreadable,
2100 		 * in which case we just give up and fill the result with
2101 		 * zeroes.
2102 		 */
2103 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2104 			clear_page(kaddr);
2105 		kunmap_atomic(kaddr);
2106 		flush_dcache_page(dst);
2107 	} else
2108 		copy_user_highpage(dst, src, va, vma);
2109 }
2110 
2111 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2112 {
2113 	struct file *vm_file = vma->vm_file;
2114 
2115 	if (vm_file)
2116 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2117 
2118 	/*
2119 	 * Special mappings (e.g. VDSO) do not have any file so fake
2120 	 * a default GFP_KERNEL for them.
2121 	 */
2122 	return GFP_KERNEL;
2123 }
2124 
2125 /*
2126  * Notify the address space that the page is about to become writable so that
2127  * it can prohibit this or wait for the page to get into an appropriate state.
2128  *
2129  * We do this without the lock held, so that it can sleep if it needs to.
2130  */
2131 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2132 {
2133 	vm_fault_t ret;
2134 	struct page *page = vmf->page;
2135 	unsigned int old_flags = vmf->flags;
2136 
2137 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2138 
2139 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2140 	/* Restore original flags so that caller is not surprised */
2141 	vmf->flags = old_flags;
2142 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2143 		return ret;
2144 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2145 		lock_page(page);
2146 		if (!page->mapping) {
2147 			unlock_page(page);
2148 			return 0; /* retry */
2149 		}
2150 		ret |= VM_FAULT_LOCKED;
2151 	} else
2152 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2153 	return ret;
2154 }
2155 
2156 /*
2157  * Handle dirtying of a page in shared file mapping on a write fault.
2158  *
2159  * The function expects the page to be locked and unlocks it.
2160  */
2161 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2162 				    struct page *page)
2163 {
2164 	struct address_space *mapping;
2165 	bool dirtied;
2166 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2167 
2168 	dirtied = set_page_dirty(page);
2169 	VM_BUG_ON_PAGE(PageAnon(page), page);
2170 	/*
2171 	 * Take a local copy of the address_space - page.mapping may be zeroed
2172 	 * by truncate after unlock_page().   The address_space itself remains
2173 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2174 	 * release semantics to prevent the compiler from undoing this copying.
2175 	 */
2176 	mapping = page_rmapping(page);
2177 	unlock_page(page);
2178 
2179 	if ((dirtied || page_mkwrite) && mapping) {
2180 		/*
2181 		 * Some device drivers do not set page.mapping
2182 		 * but still dirty their pages
2183 		 */
2184 		balance_dirty_pages_ratelimited(mapping);
2185 	}
2186 
2187 	if (!page_mkwrite)
2188 		file_update_time(vma->vm_file);
2189 }
2190 
2191 /*
2192  * Handle write page faults for pages that can be reused in the current vma
2193  *
2194  * This can happen either due to the mapping being with the VM_SHARED flag,
2195  * or due to us being the last reference standing to the page. In either
2196  * case, all we need to do here is to mark the page as writable and update
2197  * any related book-keeping.
2198  */
2199 static inline void wp_page_reuse(struct vm_fault *vmf)
2200 	__releases(vmf->ptl)
2201 {
2202 	struct vm_area_struct *vma = vmf->vma;
2203 	struct page *page = vmf->page;
2204 	pte_t entry;
2205 	/*
2206 	 * Clear the pages cpupid information as the existing
2207 	 * information potentially belongs to a now completely
2208 	 * unrelated process.
2209 	 */
2210 	if (page)
2211 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2212 
2213 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2214 	entry = pte_mkyoung(vmf->orig_pte);
2215 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2216 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2217 		update_mmu_cache(vma, vmf->address, vmf->pte);
2218 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2219 }
2220 
2221 /*
2222  * Handle the case of a page which we actually need to copy to a new page.
2223  *
2224  * Called with mmap_sem locked and the old page referenced, but
2225  * without the ptl held.
2226  *
2227  * High level logic flow:
2228  *
2229  * - Allocate a page, copy the content of the old page to the new one.
2230  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2231  * - Take the PTL. If the pte changed, bail out and release the allocated page
2232  * - If the pte is still the way we remember it, update the page table and all
2233  *   relevant references. This includes dropping the reference the page-table
2234  *   held to the old page, as well as updating the rmap.
2235  * - In any case, unlock the PTL and drop the reference we took to the old page.
2236  */
2237 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2238 {
2239 	struct vm_area_struct *vma = vmf->vma;
2240 	struct mm_struct *mm = vma->vm_mm;
2241 	struct page *old_page = vmf->page;
2242 	struct page *new_page = NULL;
2243 	pte_t entry;
2244 	int page_copied = 0;
2245 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2246 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2247 	struct mem_cgroup *memcg;
2248 
2249 	if (unlikely(anon_vma_prepare(vma)))
2250 		goto oom;
2251 
2252 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2253 		new_page = alloc_zeroed_user_highpage_movable(vma,
2254 							      vmf->address);
2255 		if (!new_page)
2256 			goto oom;
2257 	} else {
2258 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2259 				vmf->address);
2260 		if (!new_page)
2261 			goto oom;
2262 		cow_user_page(new_page, old_page, vmf->address, vma);
2263 	}
2264 
2265 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2266 		goto oom_free_new;
2267 
2268 	__SetPageUptodate(new_page);
2269 
2270 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2271 
2272 	/*
2273 	 * Re-check the pte - we dropped the lock
2274 	 */
2275 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2276 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2277 		if (old_page) {
2278 			if (!PageAnon(old_page)) {
2279 				dec_mm_counter_fast(mm,
2280 						mm_counter_file(old_page));
2281 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2282 			}
2283 		} else {
2284 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2285 		}
2286 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2287 		entry = mk_pte(new_page, vma->vm_page_prot);
2288 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2289 		/*
2290 		 * Clear the pte entry and flush it first, before updating the
2291 		 * pte with the new entry. This will avoid a race condition
2292 		 * seen in the presence of one thread doing SMC and another
2293 		 * thread doing COW.
2294 		 */
2295 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2296 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2297 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2298 		lru_cache_add_active_or_unevictable(new_page, vma);
2299 		/*
2300 		 * We call the notify macro here because, when using secondary
2301 		 * mmu page tables (such as kvm shadow page tables), we want the
2302 		 * new page to be mapped directly into the secondary page table.
2303 		 */
2304 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2305 		update_mmu_cache(vma, vmf->address, vmf->pte);
2306 		if (old_page) {
2307 			/*
2308 			 * Only after switching the pte to the new page may
2309 			 * we remove the mapcount here. Otherwise another
2310 			 * process may come and find the rmap count decremented
2311 			 * before the pte is switched to the new page, and
2312 			 * "reuse" the old page writing into it while our pte
2313 			 * here still points into it and can be read by other
2314 			 * threads.
2315 			 *
2316 			 * The critical issue is to order this
2317 			 * page_remove_rmap with the ptp_clear_flush above.
2318 			 * Those stores are ordered by (if nothing else,)
2319 			 * the barrier present in the atomic_add_negative
2320 			 * in page_remove_rmap.
2321 			 *
2322 			 * Then the TLB flush in ptep_clear_flush ensures that
2323 			 * no process can access the old page before the
2324 			 * decremented mapcount is visible. And the old page
2325 			 * cannot be reused until after the decremented
2326 			 * mapcount is visible. So transitively, TLBs to
2327 			 * old page will be flushed before it can be reused.
2328 			 */
2329 			page_remove_rmap(old_page, false);
2330 		}
2331 
2332 		/* Free the old page.. */
2333 		new_page = old_page;
2334 		page_copied = 1;
2335 	} else {
2336 		mem_cgroup_cancel_charge(new_page, memcg, false);
2337 	}
2338 
2339 	if (new_page)
2340 		put_page(new_page);
2341 
2342 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2343 	/*
2344 	 * No need to double call mmu_notifier->invalidate_range() callback as
2345 	 * the above ptep_clear_flush_notify() did already call it.
2346 	 */
2347 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2348 	if (old_page) {
2349 		/*
2350 		 * Don't let another task, with possibly unlocked vma,
2351 		 * keep the mlocked page.
2352 		 */
2353 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2354 			lock_page(old_page);	/* LRU manipulation */
2355 			if (PageMlocked(old_page))
2356 				munlock_vma_page(old_page);
2357 			unlock_page(old_page);
2358 		}
2359 		put_page(old_page);
2360 	}
2361 	return page_copied ? VM_FAULT_WRITE : 0;
2362 oom_free_new:
2363 	put_page(new_page);
2364 oom:
2365 	if (old_page)
2366 		put_page(old_page);
2367 	return VM_FAULT_OOM;
2368 }
2369 
2370 /**
2371  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2372  *			  writeable once the page is prepared
2373  *
2374  * @vmf: structure describing the fault
2375  *
2376  * This function handles all that is needed to finish a write page fault in a
2377  * shared mapping due to PTE being read-only once the mapped page is prepared.
2378  * It handles locking of PTE and modifying it. The function returns
2379  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2380  * lock.
2381  *
2382  * The function expects the page to be locked or other protection against
2383  * concurrent faults / writeback (such as DAX radix tree locks).
2384  */
2385 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2386 {
2387 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2388 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2389 				       &vmf->ptl);
2390 	/*
2391 	 * We might have raced with another page fault while we released the
2392 	 * pte_offset_map_lock.
2393 	 */
2394 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2395 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2396 		return VM_FAULT_NOPAGE;
2397 	}
2398 	wp_page_reuse(vmf);
2399 	return 0;
2400 }
2401 
2402 /*
2403  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2404  * mapping
2405  */
2406 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2407 {
2408 	struct vm_area_struct *vma = vmf->vma;
2409 
2410 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2411 		vm_fault_t ret;
2412 
2413 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2414 		vmf->flags |= FAULT_FLAG_MKWRITE;
2415 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2416 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2417 			return ret;
2418 		return finish_mkwrite_fault(vmf);
2419 	}
2420 	wp_page_reuse(vmf);
2421 	return VM_FAULT_WRITE;
2422 }
2423 
2424 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2425 	__releases(vmf->ptl)
2426 {
2427 	struct vm_area_struct *vma = vmf->vma;
2428 
2429 	get_page(vmf->page);
2430 
2431 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2432 		vm_fault_t tmp;
2433 
2434 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2435 		tmp = do_page_mkwrite(vmf);
2436 		if (unlikely(!tmp || (tmp &
2437 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2438 			put_page(vmf->page);
2439 			return tmp;
2440 		}
2441 		tmp = finish_mkwrite_fault(vmf);
2442 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2443 			unlock_page(vmf->page);
2444 			put_page(vmf->page);
2445 			return tmp;
2446 		}
2447 	} else {
2448 		wp_page_reuse(vmf);
2449 		lock_page(vmf->page);
2450 	}
2451 	fault_dirty_shared_page(vma, vmf->page);
2452 	put_page(vmf->page);
2453 
2454 	return VM_FAULT_WRITE;
2455 }
2456 
2457 /*
2458  * This routine handles present pages, when users try to write
2459  * to a shared page. It is done by copying the page to a new address
2460  * and decrementing the shared-page counter for the old page.
2461  *
2462  * Note that this routine assumes that the protection checks have been
2463  * done by the caller (the low-level page fault routine in most cases).
2464  * Thus we can safely just mark it writable once we've done any necessary
2465  * COW.
2466  *
2467  * We also mark the page dirty at this point even though the page will
2468  * change only once the write actually happens. This avoids a few races,
2469  * and potentially makes it more efficient.
2470  *
2471  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2472  * but allow concurrent faults), with pte both mapped and locked.
2473  * We return with mmap_sem still held, but pte unmapped and unlocked.
2474  */
2475 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2476 	__releases(vmf->ptl)
2477 {
2478 	struct vm_area_struct *vma = vmf->vma;
2479 
2480 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2481 	if (!vmf->page) {
2482 		/*
2483 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2484 		 * VM_PFNMAP VMA.
2485 		 *
2486 		 * We should not cow pages in a shared writeable mapping.
2487 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2488 		 */
2489 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2490 				     (VM_WRITE|VM_SHARED))
2491 			return wp_pfn_shared(vmf);
2492 
2493 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2494 		return wp_page_copy(vmf);
2495 	}
2496 
2497 	/*
2498 	 * Take out anonymous pages first, anonymous shared vmas are
2499 	 * not dirty accountable.
2500 	 */
2501 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2502 		int total_map_swapcount;
2503 		if (!trylock_page(vmf->page)) {
2504 			get_page(vmf->page);
2505 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2506 			lock_page(vmf->page);
2507 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2508 					vmf->address, &vmf->ptl);
2509 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2510 				unlock_page(vmf->page);
2511 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2512 				put_page(vmf->page);
2513 				return 0;
2514 			}
2515 			put_page(vmf->page);
2516 		}
2517 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2518 			if (total_map_swapcount == 1) {
2519 				/*
2520 				 * The page is all ours. Move it to
2521 				 * our anon_vma so the rmap code will
2522 				 * not search our parent or siblings.
2523 				 * Protected against the rmap code by
2524 				 * the page lock.
2525 				 */
2526 				page_move_anon_rmap(vmf->page, vma);
2527 			}
2528 			unlock_page(vmf->page);
2529 			wp_page_reuse(vmf);
2530 			return VM_FAULT_WRITE;
2531 		}
2532 		unlock_page(vmf->page);
2533 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2534 					(VM_WRITE|VM_SHARED))) {
2535 		return wp_page_shared(vmf);
2536 	}
2537 
2538 	/*
2539 	 * Ok, we need to copy. Oh, well..
2540 	 */
2541 	get_page(vmf->page);
2542 
2543 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2544 	return wp_page_copy(vmf);
2545 }
2546 
2547 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2548 		unsigned long start_addr, unsigned long end_addr,
2549 		struct zap_details *details)
2550 {
2551 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2552 }
2553 
2554 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2555 					    struct zap_details *details)
2556 {
2557 	struct vm_area_struct *vma;
2558 	pgoff_t vba, vea, zba, zea;
2559 
2560 	vma_interval_tree_foreach(vma, root,
2561 			details->first_index, details->last_index) {
2562 
2563 		vba = vma->vm_pgoff;
2564 		vea = vba + vma_pages(vma) - 1;
2565 		zba = details->first_index;
2566 		if (zba < vba)
2567 			zba = vba;
2568 		zea = details->last_index;
2569 		if (zea > vea)
2570 			zea = vea;
2571 
2572 		unmap_mapping_range_vma(vma,
2573 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2574 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2575 				details);
2576 	}
2577 }
2578 
2579 /**
2580  * unmap_mapping_pages() - Unmap pages from processes.
2581  * @mapping: The address space containing pages to be unmapped.
2582  * @start: Index of first page to be unmapped.
2583  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2584  * @even_cows: Whether to unmap even private COWed pages.
2585  *
2586  * Unmap the pages in this address space from any userspace process which
2587  * has them mmaped.  Generally, you want to remove COWed pages as well when
2588  * a file is being truncated, but not when invalidating pages from the page
2589  * cache.
2590  */
2591 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2592 		pgoff_t nr, bool even_cows)
2593 {
2594 	struct zap_details details = { };
2595 
2596 	details.check_mapping = even_cows ? NULL : mapping;
2597 	details.first_index = start;
2598 	details.last_index = start + nr - 1;
2599 	if (details.last_index < details.first_index)
2600 		details.last_index = ULONG_MAX;
2601 
2602 	i_mmap_lock_write(mapping);
2603 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2604 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2605 	i_mmap_unlock_write(mapping);
2606 }
2607 
2608 /**
2609  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2610  * address_space corresponding to the specified byte range in the underlying
2611  * file.
2612  *
2613  * @mapping: the address space containing mmaps to be unmapped.
2614  * @holebegin: byte in first page to unmap, relative to the start of
2615  * the underlying file.  This will be rounded down to a PAGE_SIZE
2616  * boundary.  Note that this is different from truncate_pagecache(), which
2617  * must keep the partial page.  In contrast, we must get rid of
2618  * partial pages.
2619  * @holelen: size of prospective hole in bytes.  This will be rounded
2620  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2621  * end of the file.
2622  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2623  * but 0 when invalidating pagecache, don't throw away private data.
2624  */
2625 void unmap_mapping_range(struct address_space *mapping,
2626 		loff_t const holebegin, loff_t const holelen, int even_cows)
2627 {
2628 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2629 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2630 
2631 	/* Check for overflow. */
2632 	if (sizeof(holelen) > sizeof(hlen)) {
2633 		long long holeend =
2634 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2635 		if (holeend & ~(long long)ULONG_MAX)
2636 			hlen = ULONG_MAX - hba + 1;
2637 	}
2638 
2639 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2640 }
2641 EXPORT_SYMBOL(unmap_mapping_range);
2642 
2643 /*
2644  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2645  * but allow concurrent faults), and pte mapped but not yet locked.
2646  * We return with pte unmapped and unlocked.
2647  *
2648  * We return with the mmap_sem locked or unlocked in the same cases
2649  * as does filemap_fault().
2650  */
2651 vm_fault_t do_swap_page(struct vm_fault *vmf)
2652 {
2653 	struct vm_area_struct *vma = vmf->vma;
2654 	struct page *page = NULL, *swapcache;
2655 	struct mem_cgroup *memcg;
2656 	swp_entry_t entry;
2657 	pte_t pte;
2658 	int locked;
2659 	int exclusive = 0;
2660 	vm_fault_t ret = 0;
2661 
2662 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2663 		goto out;
2664 
2665 	entry = pte_to_swp_entry(vmf->orig_pte);
2666 	if (unlikely(non_swap_entry(entry))) {
2667 		if (is_migration_entry(entry)) {
2668 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2669 					     vmf->address);
2670 		} else if (is_device_private_entry(entry)) {
2671 			/*
2672 			 * For un-addressable device memory we call the pgmap
2673 			 * fault handler callback. The callback must migrate
2674 			 * the page back to some CPU accessible page.
2675 			 */
2676 			ret = device_private_entry_fault(vma, vmf->address, entry,
2677 						 vmf->flags, vmf->pmd);
2678 		} else if (is_hwpoison_entry(entry)) {
2679 			ret = VM_FAULT_HWPOISON;
2680 		} else {
2681 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2682 			ret = VM_FAULT_SIGBUS;
2683 		}
2684 		goto out;
2685 	}
2686 
2687 
2688 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2689 	page = lookup_swap_cache(entry, vma, vmf->address);
2690 	swapcache = page;
2691 
2692 	if (!page) {
2693 		struct swap_info_struct *si = swp_swap_info(entry);
2694 
2695 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2696 				__swap_count(si, entry) == 1) {
2697 			/* skip swapcache */
2698 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2699 							vmf->address);
2700 			if (page) {
2701 				__SetPageLocked(page);
2702 				__SetPageSwapBacked(page);
2703 				set_page_private(page, entry.val);
2704 				lru_cache_add_anon(page);
2705 				swap_readpage(page, true);
2706 			}
2707 		} else {
2708 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2709 						vmf);
2710 			swapcache = page;
2711 		}
2712 
2713 		if (!page) {
2714 			/*
2715 			 * Back out if somebody else faulted in this pte
2716 			 * while we released the pte lock.
2717 			 */
2718 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2719 					vmf->address, &vmf->ptl);
2720 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2721 				ret = VM_FAULT_OOM;
2722 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2723 			goto unlock;
2724 		}
2725 
2726 		/* Had to read the page from swap area: Major fault */
2727 		ret = VM_FAULT_MAJOR;
2728 		count_vm_event(PGMAJFAULT);
2729 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2730 	} else if (PageHWPoison(page)) {
2731 		/*
2732 		 * hwpoisoned dirty swapcache pages are kept for killing
2733 		 * owner processes (which may be unknown at hwpoison time)
2734 		 */
2735 		ret = VM_FAULT_HWPOISON;
2736 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2737 		goto out_release;
2738 	}
2739 
2740 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2741 
2742 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2743 	if (!locked) {
2744 		ret |= VM_FAULT_RETRY;
2745 		goto out_release;
2746 	}
2747 
2748 	/*
2749 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2750 	 * release the swapcache from under us.  The page pin, and pte_same
2751 	 * test below, are not enough to exclude that.  Even if it is still
2752 	 * swapcache, we need to check that the page's swap has not changed.
2753 	 */
2754 	if (unlikely((!PageSwapCache(page) ||
2755 			page_private(page) != entry.val)) && swapcache)
2756 		goto out_page;
2757 
2758 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2759 	if (unlikely(!page)) {
2760 		ret = VM_FAULT_OOM;
2761 		page = swapcache;
2762 		goto out_page;
2763 	}
2764 
2765 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2766 					&memcg, false)) {
2767 		ret = VM_FAULT_OOM;
2768 		goto out_page;
2769 	}
2770 
2771 	/*
2772 	 * Back out if somebody else already faulted in this pte.
2773 	 */
2774 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2775 			&vmf->ptl);
2776 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2777 		goto out_nomap;
2778 
2779 	if (unlikely(!PageUptodate(page))) {
2780 		ret = VM_FAULT_SIGBUS;
2781 		goto out_nomap;
2782 	}
2783 
2784 	/*
2785 	 * The page isn't present yet, go ahead with the fault.
2786 	 *
2787 	 * Be careful about the sequence of operations here.
2788 	 * To get its accounting right, reuse_swap_page() must be called
2789 	 * while the page is counted on swap but not yet in mapcount i.e.
2790 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2791 	 * must be called after the swap_free(), or it will never succeed.
2792 	 */
2793 
2794 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2795 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2796 	pte = mk_pte(page, vma->vm_page_prot);
2797 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2798 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2799 		vmf->flags &= ~FAULT_FLAG_WRITE;
2800 		ret |= VM_FAULT_WRITE;
2801 		exclusive = RMAP_EXCLUSIVE;
2802 	}
2803 	flush_icache_page(vma, page);
2804 	if (pte_swp_soft_dirty(vmf->orig_pte))
2805 		pte = pte_mksoft_dirty(pte);
2806 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2807 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2808 	vmf->orig_pte = pte;
2809 
2810 	/* ksm created a completely new copy */
2811 	if (unlikely(page != swapcache && swapcache)) {
2812 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2813 		mem_cgroup_commit_charge(page, memcg, false, false);
2814 		lru_cache_add_active_or_unevictable(page, vma);
2815 	} else {
2816 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2817 		mem_cgroup_commit_charge(page, memcg, true, false);
2818 		activate_page(page);
2819 	}
2820 
2821 	swap_free(entry);
2822 	if (mem_cgroup_swap_full(page) ||
2823 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2824 		try_to_free_swap(page);
2825 	unlock_page(page);
2826 	if (page != swapcache && swapcache) {
2827 		/*
2828 		 * Hold the lock to avoid the swap entry to be reused
2829 		 * until we take the PT lock for the pte_same() check
2830 		 * (to avoid false positives from pte_same). For
2831 		 * further safety release the lock after the swap_free
2832 		 * so that the swap count won't change under a
2833 		 * parallel locked swapcache.
2834 		 */
2835 		unlock_page(swapcache);
2836 		put_page(swapcache);
2837 	}
2838 
2839 	if (vmf->flags & FAULT_FLAG_WRITE) {
2840 		ret |= do_wp_page(vmf);
2841 		if (ret & VM_FAULT_ERROR)
2842 			ret &= VM_FAULT_ERROR;
2843 		goto out;
2844 	}
2845 
2846 	/* No need to invalidate - it was non-present before */
2847 	update_mmu_cache(vma, vmf->address, vmf->pte);
2848 unlock:
2849 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2850 out:
2851 	return ret;
2852 out_nomap:
2853 	mem_cgroup_cancel_charge(page, memcg, false);
2854 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2855 out_page:
2856 	unlock_page(page);
2857 out_release:
2858 	put_page(page);
2859 	if (page != swapcache && swapcache) {
2860 		unlock_page(swapcache);
2861 		put_page(swapcache);
2862 	}
2863 	return ret;
2864 }
2865 
2866 /*
2867  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2868  * but allow concurrent faults), and pte mapped but not yet locked.
2869  * We return with mmap_sem still held, but pte unmapped and unlocked.
2870  */
2871 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2872 {
2873 	struct vm_area_struct *vma = vmf->vma;
2874 	struct mem_cgroup *memcg;
2875 	struct page *page;
2876 	vm_fault_t ret = 0;
2877 	pte_t entry;
2878 
2879 	/* File mapping without ->vm_ops ? */
2880 	if (vma->vm_flags & VM_SHARED)
2881 		return VM_FAULT_SIGBUS;
2882 
2883 	/*
2884 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2885 	 * pte_offset_map() on pmds where a huge pmd might be created
2886 	 * from a different thread.
2887 	 *
2888 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2889 	 * parallel threads are excluded by other means.
2890 	 *
2891 	 * Here we only have down_read(mmap_sem).
2892 	 */
2893 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2894 		return VM_FAULT_OOM;
2895 
2896 	/* See the comment in pte_alloc_one_map() */
2897 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2898 		return 0;
2899 
2900 	/* Use the zero-page for reads */
2901 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2902 			!mm_forbids_zeropage(vma->vm_mm)) {
2903 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2904 						vma->vm_page_prot));
2905 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2906 				vmf->address, &vmf->ptl);
2907 		if (!pte_none(*vmf->pte))
2908 			goto unlock;
2909 		ret = check_stable_address_space(vma->vm_mm);
2910 		if (ret)
2911 			goto unlock;
2912 		/* Deliver the page fault to userland, check inside PT lock */
2913 		if (userfaultfd_missing(vma)) {
2914 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2915 			return handle_userfault(vmf, VM_UFFD_MISSING);
2916 		}
2917 		goto setpte;
2918 	}
2919 
2920 	/* Allocate our own private page. */
2921 	if (unlikely(anon_vma_prepare(vma)))
2922 		goto oom;
2923 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2924 	if (!page)
2925 		goto oom;
2926 
2927 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2928 					false))
2929 		goto oom_free_page;
2930 
2931 	/*
2932 	 * The memory barrier inside __SetPageUptodate makes sure that
2933 	 * preceeding stores to the page contents become visible before
2934 	 * the set_pte_at() write.
2935 	 */
2936 	__SetPageUptodate(page);
2937 
2938 	entry = mk_pte(page, vma->vm_page_prot);
2939 	if (vma->vm_flags & VM_WRITE)
2940 		entry = pte_mkwrite(pte_mkdirty(entry));
2941 
2942 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2943 			&vmf->ptl);
2944 	if (!pte_none(*vmf->pte))
2945 		goto release;
2946 
2947 	ret = check_stable_address_space(vma->vm_mm);
2948 	if (ret)
2949 		goto release;
2950 
2951 	/* Deliver the page fault to userland, check inside PT lock */
2952 	if (userfaultfd_missing(vma)) {
2953 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2954 		mem_cgroup_cancel_charge(page, memcg, false);
2955 		put_page(page);
2956 		return handle_userfault(vmf, VM_UFFD_MISSING);
2957 	}
2958 
2959 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2960 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2961 	mem_cgroup_commit_charge(page, memcg, false, false);
2962 	lru_cache_add_active_or_unevictable(page, vma);
2963 setpte:
2964 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2965 
2966 	/* No need to invalidate - it was non-present before */
2967 	update_mmu_cache(vma, vmf->address, vmf->pte);
2968 unlock:
2969 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2970 	return ret;
2971 release:
2972 	mem_cgroup_cancel_charge(page, memcg, false);
2973 	put_page(page);
2974 	goto unlock;
2975 oom_free_page:
2976 	put_page(page);
2977 oom:
2978 	return VM_FAULT_OOM;
2979 }
2980 
2981 /*
2982  * The mmap_sem must have been held on entry, and may have been
2983  * released depending on flags and vma->vm_ops->fault() return value.
2984  * See filemap_fault() and __lock_page_retry().
2985  */
2986 static vm_fault_t __do_fault(struct vm_fault *vmf)
2987 {
2988 	struct vm_area_struct *vma = vmf->vma;
2989 	vm_fault_t ret;
2990 
2991 	ret = vma->vm_ops->fault(vmf);
2992 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2993 			    VM_FAULT_DONE_COW)))
2994 		return ret;
2995 
2996 	if (unlikely(PageHWPoison(vmf->page))) {
2997 		if (ret & VM_FAULT_LOCKED)
2998 			unlock_page(vmf->page);
2999 		put_page(vmf->page);
3000 		vmf->page = NULL;
3001 		return VM_FAULT_HWPOISON;
3002 	}
3003 
3004 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3005 		lock_page(vmf->page);
3006 	else
3007 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3008 
3009 	return ret;
3010 }
3011 
3012 /*
3013  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3014  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3015  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3016  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3017  */
3018 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3019 {
3020 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3021 }
3022 
3023 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3024 {
3025 	struct vm_area_struct *vma = vmf->vma;
3026 
3027 	if (!pmd_none(*vmf->pmd))
3028 		goto map_pte;
3029 	if (vmf->prealloc_pte) {
3030 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3031 		if (unlikely(!pmd_none(*vmf->pmd))) {
3032 			spin_unlock(vmf->ptl);
3033 			goto map_pte;
3034 		}
3035 
3036 		mm_inc_nr_ptes(vma->vm_mm);
3037 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3038 		spin_unlock(vmf->ptl);
3039 		vmf->prealloc_pte = NULL;
3040 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3041 		return VM_FAULT_OOM;
3042 	}
3043 map_pte:
3044 	/*
3045 	 * If a huge pmd materialized under us just retry later.  Use
3046 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3047 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3048 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3049 	 * running immediately after a huge pmd fault in a different thread of
3050 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3051 	 * All we have to ensure is that it is a regular pmd that we can walk
3052 	 * with pte_offset_map() and we can do that through an atomic read in
3053 	 * C, which is what pmd_trans_unstable() provides.
3054 	 */
3055 	if (pmd_devmap_trans_unstable(vmf->pmd))
3056 		return VM_FAULT_NOPAGE;
3057 
3058 	/*
3059 	 * At this point we know that our vmf->pmd points to a page of ptes
3060 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3061 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3062 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3063 	 * be valid and we will re-check to make sure the vmf->pte isn't
3064 	 * pte_none() under vmf->ptl protection when we return to
3065 	 * alloc_set_pte().
3066 	 */
3067 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3068 			&vmf->ptl);
3069 	return 0;
3070 }
3071 
3072 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3073 
3074 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3075 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3076 		unsigned long haddr)
3077 {
3078 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3079 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3080 		return false;
3081 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3082 		return false;
3083 	return true;
3084 }
3085 
3086 static void deposit_prealloc_pte(struct vm_fault *vmf)
3087 {
3088 	struct vm_area_struct *vma = vmf->vma;
3089 
3090 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3091 	/*
3092 	 * We are going to consume the prealloc table,
3093 	 * count that as nr_ptes.
3094 	 */
3095 	mm_inc_nr_ptes(vma->vm_mm);
3096 	vmf->prealloc_pte = NULL;
3097 }
3098 
3099 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3100 {
3101 	struct vm_area_struct *vma = vmf->vma;
3102 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3103 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3104 	pmd_t entry;
3105 	int i;
3106 	vm_fault_t ret;
3107 
3108 	if (!transhuge_vma_suitable(vma, haddr))
3109 		return VM_FAULT_FALLBACK;
3110 
3111 	ret = VM_FAULT_FALLBACK;
3112 	page = compound_head(page);
3113 
3114 	/*
3115 	 * Archs like ppc64 need additonal space to store information
3116 	 * related to pte entry. Use the preallocated table for that.
3117 	 */
3118 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3119 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3120 		if (!vmf->prealloc_pte)
3121 			return VM_FAULT_OOM;
3122 		smp_wmb(); /* See comment in __pte_alloc() */
3123 	}
3124 
3125 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3126 	if (unlikely(!pmd_none(*vmf->pmd)))
3127 		goto out;
3128 
3129 	for (i = 0; i < HPAGE_PMD_NR; i++)
3130 		flush_icache_page(vma, page + i);
3131 
3132 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3133 	if (write)
3134 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3135 
3136 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3137 	page_add_file_rmap(page, true);
3138 	/*
3139 	 * deposit and withdraw with pmd lock held
3140 	 */
3141 	if (arch_needs_pgtable_deposit())
3142 		deposit_prealloc_pte(vmf);
3143 
3144 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3145 
3146 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3147 
3148 	/* fault is handled */
3149 	ret = 0;
3150 	count_vm_event(THP_FILE_MAPPED);
3151 out:
3152 	spin_unlock(vmf->ptl);
3153 	return ret;
3154 }
3155 #else
3156 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3157 {
3158 	BUILD_BUG();
3159 	return 0;
3160 }
3161 #endif
3162 
3163 /**
3164  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3165  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3166  *
3167  * @vmf: fault environment
3168  * @memcg: memcg to charge page (only for private mappings)
3169  * @page: page to map
3170  *
3171  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3172  * return.
3173  *
3174  * Target users are page handler itself and implementations of
3175  * vm_ops->map_pages.
3176  */
3177 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3178 		struct page *page)
3179 {
3180 	struct vm_area_struct *vma = vmf->vma;
3181 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3182 	pte_t entry;
3183 	vm_fault_t ret;
3184 
3185 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3186 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3187 		/* THP on COW? */
3188 		VM_BUG_ON_PAGE(memcg, page);
3189 
3190 		ret = do_set_pmd(vmf, page);
3191 		if (ret != VM_FAULT_FALLBACK)
3192 			return ret;
3193 	}
3194 
3195 	if (!vmf->pte) {
3196 		ret = pte_alloc_one_map(vmf);
3197 		if (ret)
3198 			return ret;
3199 	}
3200 
3201 	/* Re-check under ptl */
3202 	if (unlikely(!pte_none(*vmf->pte)))
3203 		return VM_FAULT_NOPAGE;
3204 
3205 	flush_icache_page(vma, page);
3206 	entry = mk_pte(page, vma->vm_page_prot);
3207 	if (write)
3208 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3209 	/* copy-on-write page */
3210 	if (write && !(vma->vm_flags & VM_SHARED)) {
3211 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3212 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3213 		mem_cgroup_commit_charge(page, memcg, false, false);
3214 		lru_cache_add_active_or_unevictable(page, vma);
3215 	} else {
3216 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3217 		page_add_file_rmap(page, false);
3218 	}
3219 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3220 
3221 	/* no need to invalidate: a not-present page won't be cached */
3222 	update_mmu_cache(vma, vmf->address, vmf->pte);
3223 
3224 	return 0;
3225 }
3226 
3227 
3228 /**
3229  * finish_fault - finish page fault once we have prepared the page to fault
3230  *
3231  * @vmf: structure describing the fault
3232  *
3233  * This function handles all that is needed to finish a page fault once the
3234  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3235  * given page, adds reverse page mapping, handles memcg charges and LRU
3236  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3237  * error.
3238  *
3239  * The function expects the page to be locked and on success it consumes a
3240  * reference of a page being mapped (for the PTE which maps it).
3241  */
3242 vm_fault_t finish_fault(struct vm_fault *vmf)
3243 {
3244 	struct page *page;
3245 	vm_fault_t ret = 0;
3246 
3247 	/* Did we COW the page? */
3248 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3249 	    !(vmf->vma->vm_flags & VM_SHARED))
3250 		page = vmf->cow_page;
3251 	else
3252 		page = vmf->page;
3253 
3254 	/*
3255 	 * check even for read faults because we might have lost our CoWed
3256 	 * page
3257 	 */
3258 	if (!(vmf->vma->vm_flags & VM_SHARED))
3259 		ret = check_stable_address_space(vmf->vma->vm_mm);
3260 	if (!ret)
3261 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3262 	if (vmf->pte)
3263 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3264 	return ret;
3265 }
3266 
3267 static unsigned long fault_around_bytes __read_mostly =
3268 	rounddown_pow_of_two(65536);
3269 
3270 #ifdef CONFIG_DEBUG_FS
3271 static int fault_around_bytes_get(void *data, u64 *val)
3272 {
3273 	*val = fault_around_bytes;
3274 	return 0;
3275 }
3276 
3277 /*
3278  * fault_around_bytes must be rounded down to the nearest page order as it's
3279  * what do_fault_around() expects to see.
3280  */
3281 static int fault_around_bytes_set(void *data, u64 val)
3282 {
3283 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3284 		return -EINVAL;
3285 	if (val > PAGE_SIZE)
3286 		fault_around_bytes = rounddown_pow_of_two(val);
3287 	else
3288 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3289 	return 0;
3290 }
3291 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3292 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3293 
3294 static int __init fault_around_debugfs(void)
3295 {
3296 	void *ret;
3297 
3298 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3299 			&fault_around_bytes_fops);
3300 	if (!ret)
3301 		pr_warn("Failed to create fault_around_bytes in debugfs");
3302 	return 0;
3303 }
3304 late_initcall(fault_around_debugfs);
3305 #endif
3306 
3307 /*
3308  * do_fault_around() tries to map few pages around the fault address. The hope
3309  * is that the pages will be needed soon and this will lower the number of
3310  * faults to handle.
3311  *
3312  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3313  * not ready to be mapped: not up-to-date, locked, etc.
3314  *
3315  * This function is called with the page table lock taken. In the split ptlock
3316  * case the page table lock only protects only those entries which belong to
3317  * the page table corresponding to the fault address.
3318  *
3319  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3320  * only once.
3321  *
3322  * fault_around_bytes defines how many bytes we'll try to map.
3323  * do_fault_around() expects it to be set to a power of two less than or equal
3324  * to PTRS_PER_PTE.
3325  *
3326  * The virtual address of the area that we map is naturally aligned to
3327  * fault_around_bytes rounded down to the machine page size
3328  * (and therefore to page order).  This way it's easier to guarantee
3329  * that we don't cross page table boundaries.
3330  */
3331 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3332 {
3333 	unsigned long address = vmf->address, nr_pages, mask;
3334 	pgoff_t start_pgoff = vmf->pgoff;
3335 	pgoff_t end_pgoff;
3336 	int off;
3337 	vm_fault_t ret = 0;
3338 
3339 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3340 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3341 
3342 	vmf->address = max(address & mask, vmf->vma->vm_start);
3343 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3344 	start_pgoff -= off;
3345 
3346 	/*
3347 	 *  end_pgoff is either the end of the page table, the end of
3348 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3349 	 */
3350 	end_pgoff = start_pgoff -
3351 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3352 		PTRS_PER_PTE - 1;
3353 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3354 			start_pgoff + nr_pages - 1);
3355 
3356 	if (pmd_none(*vmf->pmd)) {
3357 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3358 						  vmf->address);
3359 		if (!vmf->prealloc_pte)
3360 			goto out;
3361 		smp_wmb(); /* See comment in __pte_alloc() */
3362 	}
3363 
3364 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3365 
3366 	/* Huge page is mapped? Page fault is solved */
3367 	if (pmd_trans_huge(*vmf->pmd)) {
3368 		ret = VM_FAULT_NOPAGE;
3369 		goto out;
3370 	}
3371 
3372 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3373 	if (!vmf->pte)
3374 		goto out;
3375 
3376 	/* check if the page fault is solved */
3377 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3378 	if (!pte_none(*vmf->pte))
3379 		ret = VM_FAULT_NOPAGE;
3380 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3381 out:
3382 	vmf->address = address;
3383 	vmf->pte = NULL;
3384 	return ret;
3385 }
3386 
3387 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3388 {
3389 	struct vm_area_struct *vma = vmf->vma;
3390 	vm_fault_t ret = 0;
3391 
3392 	/*
3393 	 * Let's call ->map_pages() first and use ->fault() as fallback
3394 	 * if page by the offset is not ready to be mapped (cold cache or
3395 	 * something).
3396 	 */
3397 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3398 		ret = do_fault_around(vmf);
3399 		if (ret)
3400 			return ret;
3401 	}
3402 
3403 	ret = __do_fault(vmf);
3404 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3405 		return ret;
3406 
3407 	ret |= finish_fault(vmf);
3408 	unlock_page(vmf->page);
3409 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3410 		put_page(vmf->page);
3411 	return ret;
3412 }
3413 
3414 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3415 {
3416 	struct vm_area_struct *vma = vmf->vma;
3417 	vm_fault_t ret;
3418 
3419 	if (unlikely(anon_vma_prepare(vma)))
3420 		return VM_FAULT_OOM;
3421 
3422 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3423 	if (!vmf->cow_page)
3424 		return VM_FAULT_OOM;
3425 
3426 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3427 				&vmf->memcg, false)) {
3428 		put_page(vmf->cow_page);
3429 		return VM_FAULT_OOM;
3430 	}
3431 
3432 	ret = __do_fault(vmf);
3433 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3434 		goto uncharge_out;
3435 	if (ret & VM_FAULT_DONE_COW)
3436 		return ret;
3437 
3438 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3439 	__SetPageUptodate(vmf->cow_page);
3440 
3441 	ret |= finish_fault(vmf);
3442 	unlock_page(vmf->page);
3443 	put_page(vmf->page);
3444 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3445 		goto uncharge_out;
3446 	return ret;
3447 uncharge_out:
3448 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3449 	put_page(vmf->cow_page);
3450 	return ret;
3451 }
3452 
3453 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3454 {
3455 	struct vm_area_struct *vma = vmf->vma;
3456 	vm_fault_t ret, tmp;
3457 
3458 	ret = __do_fault(vmf);
3459 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3460 		return ret;
3461 
3462 	/*
3463 	 * Check if the backing address space wants to know that the page is
3464 	 * about to become writable
3465 	 */
3466 	if (vma->vm_ops->page_mkwrite) {
3467 		unlock_page(vmf->page);
3468 		tmp = do_page_mkwrite(vmf);
3469 		if (unlikely(!tmp ||
3470 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3471 			put_page(vmf->page);
3472 			return tmp;
3473 		}
3474 	}
3475 
3476 	ret |= finish_fault(vmf);
3477 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3478 					VM_FAULT_RETRY))) {
3479 		unlock_page(vmf->page);
3480 		put_page(vmf->page);
3481 		return ret;
3482 	}
3483 
3484 	fault_dirty_shared_page(vma, vmf->page);
3485 	return ret;
3486 }
3487 
3488 /*
3489  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3490  * but allow concurrent faults).
3491  * The mmap_sem may have been released depending on flags and our
3492  * return value.  See filemap_fault() and __lock_page_or_retry().
3493  */
3494 static vm_fault_t do_fault(struct vm_fault *vmf)
3495 {
3496 	struct vm_area_struct *vma = vmf->vma;
3497 	vm_fault_t ret;
3498 
3499 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3500 	if (!vma->vm_ops->fault)
3501 		ret = VM_FAULT_SIGBUS;
3502 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3503 		ret = do_read_fault(vmf);
3504 	else if (!(vma->vm_flags & VM_SHARED))
3505 		ret = do_cow_fault(vmf);
3506 	else
3507 		ret = do_shared_fault(vmf);
3508 
3509 	/* preallocated pagetable is unused: free it */
3510 	if (vmf->prealloc_pte) {
3511 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3512 		vmf->prealloc_pte = NULL;
3513 	}
3514 	return ret;
3515 }
3516 
3517 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3518 				unsigned long addr, int page_nid,
3519 				int *flags)
3520 {
3521 	get_page(page);
3522 
3523 	count_vm_numa_event(NUMA_HINT_FAULTS);
3524 	if (page_nid == numa_node_id()) {
3525 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3526 		*flags |= TNF_FAULT_LOCAL;
3527 	}
3528 
3529 	return mpol_misplaced(page, vma, addr);
3530 }
3531 
3532 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3533 {
3534 	struct vm_area_struct *vma = vmf->vma;
3535 	struct page *page = NULL;
3536 	int page_nid = -1;
3537 	int last_cpupid;
3538 	int target_nid;
3539 	bool migrated = false;
3540 	pte_t pte;
3541 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3542 	int flags = 0;
3543 
3544 	/*
3545 	 * The "pte" at this point cannot be used safely without
3546 	 * validation through pte_unmap_same(). It's of NUMA type but
3547 	 * the pfn may be screwed if the read is non atomic.
3548 	 */
3549 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3550 	spin_lock(vmf->ptl);
3551 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3552 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3553 		goto out;
3554 	}
3555 
3556 	/*
3557 	 * Make it present again, Depending on how arch implementes non
3558 	 * accessible ptes, some can allow access by kernel mode.
3559 	 */
3560 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3561 	pte = pte_modify(pte, vma->vm_page_prot);
3562 	pte = pte_mkyoung(pte);
3563 	if (was_writable)
3564 		pte = pte_mkwrite(pte);
3565 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3566 	update_mmu_cache(vma, vmf->address, vmf->pte);
3567 
3568 	page = vm_normal_page(vma, vmf->address, pte);
3569 	if (!page) {
3570 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3571 		return 0;
3572 	}
3573 
3574 	/* TODO: handle PTE-mapped THP */
3575 	if (PageCompound(page)) {
3576 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3577 		return 0;
3578 	}
3579 
3580 	/*
3581 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3582 	 * much anyway since they can be in shared cache state. This misses
3583 	 * the case where a mapping is writable but the process never writes
3584 	 * to it but pte_write gets cleared during protection updates and
3585 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3586 	 * background writeback, dirty balancing and application behaviour.
3587 	 */
3588 	if (!pte_write(pte))
3589 		flags |= TNF_NO_GROUP;
3590 
3591 	/*
3592 	 * Flag if the page is shared between multiple address spaces. This
3593 	 * is later used when determining whether to group tasks together
3594 	 */
3595 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3596 		flags |= TNF_SHARED;
3597 
3598 	last_cpupid = page_cpupid_last(page);
3599 	page_nid = page_to_nid(page);
3600 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3601 			&flags);
3602 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3603 	if (target_nid == -1) {
3604 		put_page(page);
3605 		goto out;
3606 	}
3607 
3608 	/* Migrate to the requested node */
3609 	migrated = migrate_misplaced_page(page, vma, target_nid);
3610 	if (migrated) {
3611 		page_nid = target_nid;
3612 		flags |= TNF_MIGRATED;
3613 	} else
3614 		flags |= TNF_MIGRATE_FAIL;
3615 
3616 out:
3617 	if (page_nid != -1)
3618 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3619 	return 0;
3620 }
3621 
3622 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3623 {
3624 	if (vma_is_anonymous(vmf->vma))
3625 		return do_huge_pmd_anonymous_page(vmf);
3626 	if (vmf->vma->vm_ops->huge_fault)
3627 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3628 	return VM_FAULT_FALLBACK;
3629 }
3630 
3631 /* `inline' is required to avoid gcc 4.1.2 build error */
3632 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3633 {
3634 	if (vma_is_anonymous(vmf->vma))
3635 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3636 	if (vmf->vma->vm_ops->huge_fault)
3637 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3638 
3639 	/* COW handled on pte level: split pmd */
3640 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3641 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3642 
3643 	return VM_FAULT_FALLBACK;
3644 }
3645 
3646 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3647 {
3648 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3649 }
3650 
3651 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3652 {
3653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3654 	/* No support for anonymous transparent PUD pages yet */
3655 	if (vma_is_anonymous(vmf->vma))
3656 		return VM_FAULT_FALLBACK;
3657 	if (vmf->vma->vm_ops->huge_fault)
3658 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3659 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3660 	return VM_FAULT_FALLBACK;
3661 }
3662 
3663 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3664 {
3665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3666 	/* No support for anonymous transparent PUD pages yet */
3667 	if (vma_is_anonymous(vmf->vma))
3668 		return VM_FAULT_FALLBACK;
3669 	if (vmf->vma->vm_ops->huge_fault)
3670 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3671 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3672 	return VM_FAULT_FALLBACK;
3673 }
3674 
3675 /*
3676  * These routines also need to handle stuff like marking pages dirty
3677  * and/or accessed for architectures that don't do it in hardware (most
3678  * RISC architectures).  The early dirtying is also good on the i386.
3679  *
3680  * There is also a hook called "update_mmu_cache()" that architectures
3681  * with external mmu caches can use to update those (ie the Sparc or
3682  * PowerPC hashed page tables that act as extended TLBs).
3683  *
3684  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3685  * concurrent faults).
3686  *
3687  * The mmap_sem may have been released depending on flags and our return value.
3688  * See filemap_fault() and __lock_page_or_retry().
3689  */
3690 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3691 {
3692 	pte_t entry;
3693 
3694 	if (unlikely(pmd_none(*vmf->pmd))) {
3695 		/*
3696 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3697 		 * want to allocate huge page, and if we expose page table
3698 		 * for an instant, it will be difficult to retract from
3699 		 * concurrent faults and from rmap lookups.
3700 		 */
3701 		vmf->pte = NULL;
3702 	} else {
3703 		/* See comment in pte_alloc_one_map() */
3704 		if (pmd_devmap_trans_unstable(vmf->pmd))
3705 			return 0;
3706 		/*
3707 		 * A regular pmd is established and it can't morph into a huge
3708 		 * pmd from under us anymore at this point because we hold the
3709 		 * mmap_sem read mode and khugepaged takes it in write mode.
3710 		 * So now it's safe to run pte_offset_map().
3711 		 */
3712 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3713 		vmf->orig_pte = *vmf->pte;
3714 
3715 		/*
3716 		 * some architectures can have larger ptes than wordsize,
3717 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3718 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3719 		 * accesses.  The code below just needs a consistent view
3720 		 * for the ifs and we later double check anyway with the
3721 		 * ptl lock held. So here a barrier will do.
3722 		 */
3723 		barrier();
3724 		if (pte_none(vmf->orig_pte)) {
3725 			pte_unmap(vmf->pte);
3726 			vmf->pte = NULL;
3727 		}
3728 	}
3729 
3730 	if (!vmf->pte) {
3731 		if (vma_is_anonymous(vmf->vma))
3732 			return do_anonymous_page(vmf);
3733 		else
3734 			return do_fault(vmf);
3735 	}
3736 
3737 	if (!pte_present(vmf->orig_pte))
3738 		return do_swap_page(vmf);
3739 
3740 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3741 		return do_numa_page(vmf);
3742 
3743 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3744 	spin_lock(vmf->ptl);
3745 	entry = vmf->orig_pte;
3746 	if (unlikely(!pte_same(*vmf->pte, entry)))
3747 		goto unlock;
3748 	if (vmf->flags & FAULT_FLAG_WRITE) {
3749 		if (!pte_write(entry))
3750 			return do_wp_page(vmf);
3751 		entry = pte_mkdirty(entry);
3752 	}
3753 	entry = pte_mkyoung(entry);
3754 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3755 				vmf->flags & FAULT_FLAG_WRITE)) {
3756 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3757 	} else {
3758 		/*
3759 		 * This is needed only for protection faults but the arch code
3760 		 * is not yet telling us if this is a protection fault or not.
3761 		 * This still avoids useless tlb flushes for .text page faults
3762 		 * with threads.
3763 		 */
3764 		if (vmf->flags & FAULT_FLAG_WRITE)
3765 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3766 	}
3767 unlock:
3768 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3769 	return 0;
3770 }
3771 
3772 /*
3773  * By the time we get here, we already hold the mm semaphore
3774  *
3775  * The mmap_sem may have been released depending on flags and our
3776  * return value.  See filemap_fault() and __lock_page_or_retry().
3777  */
3778 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3779 		unsigned long address, unsigned int flags)
3780 {
3781 	struct vm_fault vmf = {
3782 		.vma = vma,
3783 		.address = address & PAGE_MASK,
3784 		.flags = flags,
3785 		.pgoff = linear_page_index(vma, address),
3786 		.gfp_mask = __get_fault_gfp_mask(vma),
3787 	};
3788 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3789 	struct mm_struct *mm = vma->vm_mm;
3790 	pgd_t *pgd;
3791 	p4d_t *p4d;
3792 	vm_fault_t ret;
3793 
3794 	pgd = pgd_offset(mm, address);
3795 	p4d = p4d_alloc(mm, pgd, address);
3796 	if (!p4d)
3797 		return VM_FAULT_OOM;
3798 
3799 	vmf.pud = pud_alloc(mm, p4d, address);
3800 	if (!vmf.pud)
3801 		return VM_FAULT_OOM;
3802 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3803 		ret = create_huge_pud(&vmf);
3804 		if (!(ret & VM_FAULT_FALLBACK))
3805 			return ret;
3806 	} else {
3807 		pud_t orig_pud = *vmf.pud;
3808 
3809 		barrier();
3810 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3811 
3812 			/* NUMA case for anonymous PUDs would go here */
3813 
3814 			if (dirty && !pud_write(orig_pud)) {
3815 				ret = wp_huge_pud(&vmf, orig_pud);
3816 				if (!(ret & VM_FAULT_FALLBACK))
3817 					return ret;
3818 			} else {
3819 				huge_pud_set_accessed(&vmf, orig_pud);
3820 				return 0;
3821 			}
3822 		}
3823 	}
3824 
3825 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3826 	if (!vmf.pmd)
3827 		return VM_FAULT_OOM;
3828 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3829 		ret = create_huge_pmd(&vmf);
3830 		if (!(ret & VM_FAULT_FALLBACK))
3831 			return ret;
3832 	} else {
3833 		pmd_t orig_pmd = *vmf.pmd;
3834 
3835 		barrier();
3836 		if (unlikely(is_swap_pmd(orig_pmd))) {
3837 			VM_BUG_ON(thp_migration_supported() &&
3838 					  !is_pmd_migration_entry(orig_pmd));
3839 			if (is_pmd_migration_entry(orig_pmd))
3840 				pmd_migration_entry_wait(mm, vmf.pmd);
3841 			return 0;
3842 		}
3843 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3844 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3845 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3846 
3847 			if (dirty && !pmd_write(orig_pmd)) {
3848 				ret = wp_huge_pmd(&vmf, orig_pmd);
3849 				if (!(ret & VM_FAULT_FALLBACK))
3850 					return ret;
3851 			} else {
3852 				huge_pmd_set_accessed(&vmf, orig_pmd);
3853 				return 0;
3854 			}
3855 		}
3856 	}
3857 
3858 	return handle_pte_fault(&vmf);
3859 }
3860 
3861 /*
3862  * By the time we get here, we already hold the mm semaphore
3863  *
3864  * The mmap_sem may have been released depending on flags and our
3865  * return value.  See filemap_fault() and __lock_page_or_retry().
3866  */
3867 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3868 		unsigned int flags)
3869 {
3870 	vm_fault_t ret;
3871 
3872 	__set_current_state(TASK_RUNNING);
3873 
3874 	count_vm_event(PGFAULT);
3875 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3876 
3877 	/* do counter updates before entering really critical section. */
3878 	check_sync_rss_stat(current);
3879 
3880 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3881 					    flags & FAULT_FLAG_INSTRUCTION,
3882 					    flags & FAULT_FLAG_REMOTE))
3883 		return VM_FAULT_SIGSEGV;
3884 
3885 	/*
3886 	 * Enable the memcg OOM handling for faults triggered in user
3887 	 * space.  Kernel faults are handled more gracefully.
3888 	 */
3889 	if (flags & FAULT_FLAG_USER)
3890 		mem_cgroup_enter_user_fault();
3891 
3892 	if (unlikely(is_vm_hugetlb_page(vma)))
3893 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3894 	else
3895 		ret = __handle_mm_fault(vma, address, flags);
3896 
3897 	if (flags & FAULT_FLAG_USER) {
3898 		mem_cgroup_exit_user_fault();
3899 		/*
3900 		 * The task may have entered a memcg OOM situation but
3901 		 * if the allocation error was handled gracefully (no
3902 		 * VM_FAULT_OOM), there is no need to kill anything.
3903 		 * Just clean up the OOM state peacefully.
3904 		 */
3905 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3906 			mem_cgroup_oom_synchronize(false);
3907 	}
3908 
3909 	return ret;
3910 }
3911 EXPORT_SYMBOL_GPL(handle_mm_fault);
3912 
3913 #ifndef __PAGETABLE_P4D_FOLDED
3914 /*
3915  * Allocate p4d page table.
3916  * We've already handled the fast-path in-line.
3917  */
3918 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3919 {
3920 	p4d_t *new = p4d_alloc_one(mm, address);
3921 	if (!new)
3922 		return -ENOMEM;
3923 
3924 	smp_wmb(); /* See comment in __pte_alloc */
3925 
3926 	spin_lock(&mm->page_table_lock);
3927 	if (pgd_present(*pgd))		/* Another has populated it */
3928 		p4d_free(mm, new);
3929 	else
3930 		pgd_populate(mm, pgd, new);
3931 	spin_unlock(&mm->page_table_lock);
3932 	return 0;
3933 }
3934 #endif /* __PAGETABLE_P4D_FOLDED */
3935 
3936 #ifndef __PAGETABLE_PUD_FOLDED
3937 /*
3938  * Allocate page upper directory.
3939  * We've already handled the fast-path in-line.
3940  */
3941 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3942 {
3943 	pud_t *new = pud_alloc_one(mm, address);
3944 	if (!new)
3945 		return -ENOMEM;
3946 
3947 	smp_wmb(); /* See comment in __pte_alloc */
3948 
3949 	spin_lock(&mm->page_table_lock);
3950 #ifndef __ARCH_HAS_5LEVEL_HACK
3951 	if (!p4d_present(*p4d)) {
3952 		mm_inc_nr_puds(mm);
3953 		p4d_populate(mm, p4d, new);
3954 	} else	/* Another has populated it */
3955 		pud_free(mm, new);
3956 #else
3957 	if (!pgd_present(*p4d)) {
3958 		mm_inc_nr_puds(mm);
3959 		pgd_populate(mm, p4d, new);
3960 	} else	/* Another has populated it */
3961 		pud_free(mm, new);
3962 #endif /* __ARCH_HAS_5LEVEL_HACK */
3963 	spin_unlock(&mm->page_table_lock);
3964 	return 0;
3965 }
3966 #endif /* __PAGETABLE_PUD_FOLDED */
3967 
3968 #ifndef __PAGETABLE_PMD_FOLDED
3969 /*
3970  * Allocate page middle directory.
3971  * We've already handled the fast-path in-line.
3972  */
3973 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3974 {
3975 	spinlock_t *ptl;
3976 	pmd_t *new = pmd_alloc_one(mm, address);
3977 	if (!new)
3978 		return -ENOMEM;
3979 
3980 	smp_wmb(); /* See comment in __pte_alloc */
3981 
3982 	ptl = pud_lock(mm, pud);
3983 #ifndef __ARCH_HAS_4LEVEL_HACK
3984 	if (!pud_present(*pud)) {
3985 		mm_inc_nr_pmds(mm);
3986 		pud_populate(mm, pud, new);
3987 	} else	/* Another has populated it */
3988 		pmd_free(mm, new);
3989 #else
3990 	if (!pgd_present(*pud)) {
3991 		mm_inc_nr_pmds(mm);
3992 		pgd_populate(mm, pud, new);
3993 	} else /* Another has populated it */
3994 		pmd_free(mm, new);
3995 #endif /* __ARCH_HAS_4LEVEL_HACK */
3996 	spin_unlock(ptl);
3997 	return 0;
3998 }
3999 #endif /* __PAGETABLE_PMD_FOLDED */
4000 
4001 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4002 			    unsigned long *start, unsigned long *end,
4003 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4004 {
4005 	pgd_t *pgd;
4006 	p4d_t *p4d;
4007 	pud_t *pud;
4008 	pmd_t *pmd;
4009 	pte_t *ptep;
4010 
4011 	pgd = pgd_offset(mm, address);
4012 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4013 		goto out;
4014 
4015 	p4d = p4d_offset(pgd, address);
4016 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4017 		goto out;
4018 
4019 	pud = pud_offset(p4d, address);
4020 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4021 		goto out;
4022 
4023 	pmd = pmd_offset(pud, address);
4024 	VM_BUG_ON(pmd_trans_huge(*pmd));
4025 
4026 	if (pmd_huge(*pmd)) {
4027 		if (!pmdpp)
4028 			goto out;
4029 
4030 		if (start && end) {
4031 			*start = address & PMD_MASK;
4032 			*end = *start + PMD_SIZE;
4033 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4034 		}
4035 		*ptlp = pmd_lock(mm, pmd);
4036 		if (pmd_huge(*pmd)) {
4037 			*pmdpp = pmd;
4038 			return 0;
4039 		}
4040 		spin_unlock(*ptlp);
4041 		if (start && end)
4042 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4043 	}
4044 
4045 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4046 		goto out;
4047 
4048 	if (start && end) {
4049 		*start = address & PAGE_MASK;
4050 		*end = *start + PAGE_SIZE;
4051 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4052 	}
4053 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4054 	if (!pte_present(*ptep))
4055 		goto unlock;
4056 	*ptepp = ptep;
4057 	return 0;
4058 unlock:
4059 	pte_unmap_unlock(ptep, *ptlp);
4060 	if (start && end)
4061 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4062 out:
4063 	return -EINVAL;
4064 }
4065 
4066 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4067 			     pte_t **ptepp, spinlock_t **ptlp)
4068 {
4069 	int res;
4070 
4071 	/* (void) is needed to make gcc happy */
4072 	(void) __cond_lock(*ptlp,
4073 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4074 						    ptepp, NULL, ptlp)));
4075 	return res;
4076 }
4077 
4078 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4079 			     unsigned long *start, unsigned long *end,
4080 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4081 {
4082 	int res;
4083 
4084 	/* (void) is needed to make gcc happy */
4085 	(void) __cond_lock(*ptlp,
4086 			   !(res = __follow_pte_pmd(mm, address, start, end,
4087 						    ptepp, pmdpp, ptlp)));
4088 	return res;
4089 }
4090 EXPORT_SYMBOL(follow_pte_pmd);
4091 
4092 /**
4093  * follow_pfn - look up PFN at a user virtual address
4094  * @vma: memory mapping
4095  * @address: user virtual address
4096  * @pfn: location to store found PFN
4097  *
4098  * Only IO mappings and raw PFN mappings are allowed.
4099  *
4100  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4101  */
4102 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4103 	unsigned long *pfn)
4104 {
4105 	int ret = -EINVAL;
4106 	spinlock_t *ptl;
4107 	pte_t *ptep;
4108 
4109 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4110 		return ret;
4111 
4112 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4113 	if (ret)
4114 		return ret;
4115 	*pfn = pte_pfn(*ptep);
4116 	pte_unmap_unlock(ptep, ptl);
4117 	return 0;
4118 }
4119 EXPORT_SYMBOL(follow_pfn);
4120 
4121 #ifdef CONFIG_HAVE_IOREMAP_PROT
4122 int follow_phys(struct vm_area_struct *vma,
4123 		unsigned long address, unsigned int flags,
4124 		unsigned long *prot, resource_size_t *phys)
4125 {
4126 	int ret = -EINVAL;
4127 	pte_t *ptep, pte;
4128 	spinlock_t *ptl;
4129 
4130 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4131 		goto out;
4132 
4133 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4134 		goto out;
4135 	pte = *ptep;
4136 
4137 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4138 		goto unlock;
4139 
4140 	*prot = pgprot_val(pte_pgprot(pte));
4141 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4142 
4143 	ret = 0;
4144 unlock:
4145 	pte_unmap_unlock(ptep, ptl);
4146 out:
4147 	return ret;
4148 }
4149 
4150 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4151 			void *buf, int len, int write)
4152 {
4153 	resource_size_t phys_addr;
4154 	unsigned long prot = 0;
4155 	void __iomem *maddr;
4156 	int offset = addr & (PAGE_SIZE-1);
4157 
4158 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4159 		return -EINVAL;
4160 
4161 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4162 	if (!maddr)
4163 		return -ENOMEM;
4164 
4165 	if (write)
4166 		memcpy_toio(maddr + offset, buf, len);
4167 	else
4168 		memcpy_fromio(buf, maddr + offset, len);
4169 	iounmap(maddr);
4170 
4171 	return len;
4172 }
4173 EXPORT_SYMBOL_GPL(generic_access_phys);
4174 #endif
4175 
4176 /*
4177  * Access another process' address space as given in mm.  If non-NULL, use the
4178  * given task for page fault accounting.
4179  */
4180 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4181 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4182 {
4183 	struct vm_area_struct *vma;
4184 	void *old_buf = buf;
4185 	int write = gup_flags & FOLL_WRITE;
4186 
4187 	down_read(&mm->mmap_sem);
4188 	/* ignore errors, just check how much was successfully transferred */
4189 	while (len) {
4190 		int bytes, ret, offset;
4191 		void *maddr;
4192 		struct page *page = NULL;
4193 
4194 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4195 				gup_flags, &page, &vma, NULL);
4196 		if (ret <= 0) {
4197 #ifndef CONFIG_HAVE_IOREMAP_PROT
4198 			break;
4199 #else
4200 			/*
4201 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4202 			 * we can access using slightly different code.
4203 			 */
4204 			vma = find_vma(mm, addr);
4205 			if (!vma || vma->vm_start > addr)
4206 				break;
4207 			if (vma->vm_ops && vma->vm_ops->access)
4208 				ret = vma->vm_ops->access(vma, addr, buf,
4209 							  len, write);
4210 			if (ret <= 0)
4211 				break;
4212 			bytes = ret;
4213 #endif
4214 		} else {
4215 			bytes = len;
4216 			offset = addr & (PAGE_SIZE-1);
4217 			if (bytes > PAGE_SIZE-offset)
4218 				bytes = PAGE_SIZE-offset;
4219 
4220 			maddr = kmap(page);
4221 			if (write) {
4222 				copy_to_user_page(vma, page, addr,
4223 						  maddr + offset, buf, bytes);
4224 				set_page_dirty_lock(page);
4225 			} else {
4226 				copy_from_user_page(vma, page, addr,
4227 						    buf, maddr + offset, bytes);
4228 			}
4229 			kunmap(page);
4230 			put_page(page);
4231 		}
4232 		len -= bytes;
4233 		buf += bytes;
4234 		addr += bytes;
4235 	}
4236 	up_read(&mm->mmap_sem);
4237 
4238 	return buf - old_buf;
4239 }
4240 
4241 /**
4242  * access_remote_vm - access another process' address space
4243  * @mm:		the mm_struct of the target address space
4244  * @addr:	start address to access
4245  * @buf:	source or destination buffer
4246  * @len:	number of bytes to transfer
4247  * @gup_flags:	flags modifying lookup behaviour
4248  *
4249  * The caller must hold a reference on @mm.
4250  */
4251 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4252 		void *buf, int len, unsigned int gup_flags)
4253 {
4254 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4255 }
4256 
4257 /*
4258  * Access another process' address space.
4259  * Source/target buffer must be kernel space,
4260  * Do not walk the page table directly, use get_user_pages
4261  */
4262 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4263 		void *buf, int len, unsigned int gup_flags)
4264 {
4265 	struct mm_struct *mm;
4266 	int ret;
4267 
4268 	mm = get_task_mm(tsk);
4269 	if (!mm)
4270 		return 0;
4271 
4272 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4273 
4274 	mmput(mm);
4275 
4276 	return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(access_process_vm);
4279 
4280 /*
4281  * Print the name of a VMA.
4282  */
4283 void print_vma_addr(char *prefix, unsigned long ip)
4284 {
4285 	struct mm_struct *mm = current->mm;
4286 	struct vm_area_struct *vma;
4287 
4288 	/*
4289 	 * we might be running from an atomic context so we cannot sleep
4290 	 */
4291 	if (!down_read_trylock(&mm->mmap_sem))
4292 		return;
4293 
4294 	vma = find_vma(mm, ip);
4295 	if (vma && vma->vm_file) {
4296 		struct file *f = vma->vm_file;
4297 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4298 		if (buf) {
4299 			char *p;
4300 
4301 			p = file_path(f, buf, PAGE_SIZE);
4302 			if (IS_ERR(p))
4303 				p = "?";
4304 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4305 					vma->vm_start,
4306 					vma->vm_end - vma->vm_start);
4307 			free_page((unsigned long)buf);
4308 		}
4309 	}
4310 	up_read(&mm->mmap_sem);
4311 }
4312 
4313 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4314 void __might_fault(const char *file, int line)
4315 {
4316 	/*
4317 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4318 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4319 	 * get paged out, therefore we'll never actually fault, and the
4320 	 * below annotations will generate false positives.
4321 	 */
4322 	if (uaccess_kernel())
4323 		return;
4324 	if (pagefault_disabled())
4325 		return;
4326 	__might_sleep(file, line, 0);
4327 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4328 	if (current->mm)
4329 		might_lock_read(&current->mm->mmap_sem);
4330 #endif
4331 }
4332 EXPORT_SYMBOL(__might_fault);
4333 #endif
4334 
4335 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4336 /*
4337  * Process all subpages of the specified huge page with the specified
4338  * operation.  The target subpage will be processed last to keep its
4339  * cache lines hot.
4340  */
4341 static inline void process_huge_page(
4342 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4343 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4344 	void *arg)
4345 {
4346 	int i, n, base, l;
4347 	unsigned long addr = addr_hint &
4348 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4349 
4350 	/* Process target subpage last to keep its cache lines hot */
4351 	might_sleep();
4352 	n = (addr_hint - addr) / PAGE_SIZE;
4353 	if (2 * n <= pages_per_huge_page) {
4354 		/* If target subpage in first half of huge page */
4355 		base = 0;
4356 		l = n;
4357 		/* Process subpages at the end of huge page */
4358 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4359 			cond_resched();
4360 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4361 		}
4362 	} else {
4363 		/* If target subpage in second half of huge page */
4364 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4365 		l = pages_per_huge_page - n;
4366 		/* Process subpages at the begin of huge page */
4367 		for (i = 0; i < base; i++) {
4368 			cond_resched();
4369 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4370 		}
4371 	}
4372 	/*
4373 	 * Process remaining subpages in left-right-left-right pattern
4374 	 * towards the target subpage
4375 	 */
4376 	for (i = 0; i < l; i++) {
4377 		int left_idx = base + i;
4378 		int right_idx = base + 2 * l - 1 - i;
4379 
4380 		cond_resched();
4381 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4382 		cond_resched();
4383 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4384 	}
4385 }
4386 
4387 static void clear_gigantic_page(struct page *page,
4388 				unsigned long addr,
4389 				unsigned int pages_per_huge_page)
4390 {
4391 	int i;
4392 	struct page *p = page;
4393 
4394 	might_sleep();
4395 	for (i = 0; i < pages_per_huge_page;
4396 	     i++, p = mem_map_next(p, page, i)) {
4397 		cond_resched();
4398 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4399 	}
4400 }
4401 
4402 static void clear_subpage(unsigned long addr, int idx, void *arg)
4403 {
4404 	struct page *page = arg;
4405 
4406 	clear_user_highpage(page + idx, addr);
4407 }
4408 
4409 void clear_huge_page(struct page *page,
4410 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4411 {
4412 	unsigned long addr = addr_hint &
4413 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4414 
4415 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4416 		clear_gigantic_page(page, addr, pages_per_huge_page);
4417 		return;
4418 	}
4419 
4420 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4421 }
4422 
4423 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4424 				    unsigned long addr,
4425 				    struct vm_area_struct *vma,
4426 				    unsigned int pages_per_huge_page)
4427 {
4428 	int i;
4429 	struct page *dst_base = dst;
4430 	struct page *src_base = src;
4431 
4432 	for (i = 0; i < pages_per_huge_page; ) {
4433 		cond_resched();
4434 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4435 
4436 		i++;
4437 		dst = mem_map_next(dst, dst_base, i);
4438 		src = mem_map_next(src, src_base, i);
4439 	}
4440 }
4441 
4442 struct copy_subpage_arg {
4443 	struct page *dst;
4444 	struct page *src;
4445 	struct vm_area_struct *vma;
4446 };
4447 
4448 static void copy_subpage(unsigned long addr, int idx, void *arg)
4449 {
4450 	struct copy_subpage_arg *copy_arg = arg;
4451 
4452 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4453 			   addr, copy_arg->vma);
4454 }
4455 
4456 void copy_user_huge_page(struct page *dst, struct page *src,
4457 			 unsigned long addr_hint, struct vm_area_struct *vma,
4458 			 unsigned int pages_per_huge_page)
4459 {
4460 	unsigned long addr = addr_hint &
4461 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4462 	struct copy_subpage_arg arg = {
4463 		.dst = dst,
4464 		.src = src,
4465 		.vma = vma,
4466 	};
4467 
4468 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4469 		copy_user_gigantic_page(dst, src, addr, vma,
4470 					pages_per_huge_page);
4471 		return;
4472 	}
4473 
4474 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4475 }
4476 
4477 long copy_huge_page_from_user(struct page *dst_page,
4478 				const void __user *usr_src,
4479 				unsigned int pages_per_huge_page,
4480 				bool allow_pagefault)
4481 {
4482 	void *src = (void *)usr_src;
4483 	void *page_kaddr;
4484 	unsigned long i, rc = 0;
4485 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4486 
4487 	for (i = 0; i < pages_per_huge_page; i++) {
4488 		if (allow_pagefault)
4489 			page_kaddr = kmap(dst_page + i);
4490 		else
4491 			page_kaddr = kmap_atomic(dst_page + i);
4492 		rc = copy_from_user(page_kaddr,
4493 				(const void __user *)(src + i * PAGE_SIZE),
4494 				PAGE_SIZE);
4495 		if (allow_pagefault)
4496 			kunmap(dst_page + i);
4497 		else
4498 			kunmap_atomic(page_kaddr);
4499 
4500 		ret_val -= (PAGE_SIZE - rc);
4501 		if (rc)
4502 			break;
4503 
4504 		cond_resched();
4505 	}
4506 	return ret_val;
4507 }
4508 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4509 
4510 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4511 
4512 static struct kmem_cache *page_ptl_cachep;
4513 
4514 void __init ptlock_cache_init(void)
4515 {
4516 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4517 			SLAB_PANIC, NULL);
4518 }
4519 
4520 bool ptlock_alloc(struct page *page)
4521 {
4522 	spinlock_t *ptl;
4523 
4524 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4525 	if (!ptl)
4526 		return false;
4527 	page->ptl = ptl;
4528 	return true;
4529 }
4530 
4531 void ptlock_free(struct page *page)
4532 {
4533 	kmem_cache_free(page_ptl_cachep, page->ptl);
4534 }
4535 #endif
4536