xref: /linux/mm/memory.c (revision b17ef04bf3a4346d66404454d6a646343ddc9749)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 
378 		/*
379 		 * Hide vma from rmap and truncate_pagecache before freeing
380 		 * pgtables
381 		 */
382 		if (mm_wr_locked)
383 			vma_start_write(vma);
384 		unlink_anon_vmas(vma);
385 		unlink_file_vma(vma);
386 
387 		if (is_vm_hugetlb_page(vma)) {
388 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 				floor, next ? next->vm_start : ceiling);
390 		} else {
391 			/*
392 			 * Optimization: gather nearby vmas into one call down
393 			 */
394 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 			       && !is_vm_hugetlb_page(next)) {
396 				vma = next;
397 				next = mas_find(mas, ceiling - 1);
398 				if (mm_wr_locked)
399 					vma_start_write(vma);
400 				unlink_anon_vmas(vma);
401 				unlink_file_vma(vma);
402 			}
403 			free_pgd_range(tlb, addr, vma->vm_end,
404 				floor, next ? next->vm_start : ceiling);
405 		}
406 		vma = next;
407 	} while (vma);
408 }
409 
410 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
411 {
412 	spinlock_t *ptl = pmd_lock(mm, pmd);
413 
414 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
415 		mm_inc_nr_ptes(mm);
416 		/*
417 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
418 		 * visible before the pte is made visible to other CPUs by being
419 		 * put into page tables.
420 		 *
421 		 * The other side of the story is the pointer chasing in the page
422 		 * table walking code (when walking the page table without locking;
423 		 * ie. most of the time). Fortunately, these data accesses consist
424 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
425 		 * being the notable exception) will already guarantee loads are
426 		 * seen in-order. See the alpha page table accessors for the
427 		 * smp_rmb() barriers in page table walking code.
428 		 */
429 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
430 		pmd_populate(mm, pmd, *pte);
431 		*pte = NULL;
432 	}
433 	spin_unlock(ptl);
434 }
435 
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438 	pgtable_t new = pte_alloc_one(mm);
439 	if (!new)
440 		return -ENOMEM;
441 
442 	pmd_install(mm, pmd, &new);
443 	if (new)
444 		pte_free(mm, new);
445 	return 0;
446 }
447 
448 int __pte_alloc_kernel(pmd_t *pmd)
449 {
450 	pte_t *new = pte_alloc_one_kernel(&init_mm);
451 	if (!new)
452 		return -ENOMEM;
453 
454 	spin_lock(&init_mm.page_table_lock);
455 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
456 		smp_wmb(); /* See comment in pmd_install() */
457 		pmd_populate_kernel(&init_mm, pmd, new);
458 		new = NULL;
459 	}
460 	spin_unlock(&init_mm.page_table_lock);
461 	if (new)
462 		pte_free_kernel(&init_mm, new);
463 	return 0;
464 }
465 
466 static inline void init_rss_vec(int *rss)
467 {
468 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
469 }
470 
471 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
472 {
473 	int i;
474 
475 	for (i = 0; i < NR_MM_COUNTERS; i++)
476 		if (rss[i])
477 			add_mm_counter(mm, i, rss[i]);
478 }
479 
480 /*
481  * This function is called to print an error when a bad pte
482  * is found. For example, we might have a PFN-mapped pte in
483  * a region that doesn't allow it.
484  *
485  * The calling function must still handle the error.
486  */
487 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
488 			  pte_t pte, struct page *page)
489 {
490 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
491 	p4d_t *p4d = p4d_offset(pgd, addr);
492 	pud_t *pud = pud_offset(p4d, addr);
493 	pmd_t *pmd = pmd_offset(pud, addr);
494 	struct address_space *mapping;
495 	pgoff_t index;
496 	static unsigned long resume;
497 	static unsigned long nr_shown;
498 	static unsigned long nr_unshown;
499 
500 	/*
501 	 * Allow a burst of 60 reports, then keep quiet for that minute;
502 	 * or allow a steady drip of one report per second.
503 	 */
504 	if (nr_shown == 60) {
505 		if (time_before(jiffies, resume)) {
506 			nr_unshown++;
507 			return;
508 		}
509 		if (nr_unshown) {
510 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
511 				 nr_unshown);
512 			nr_unshown = 0;
513 		}
514 		nr_shown = 0;
515 	}
516 	if (nr_shown++ == 0)
517 		resume = jiffies + 60 * HZ;
518 
519 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
520 	index = linear_page_index(vma, addr);
521 
522 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
523 		 current->comm,
524 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
525 	if (page)
526 		dump_page(page, "bad pte");
527 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
528 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
529 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
530 		 vma->vm_file,
531 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
532 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
533 		 mapping ? mapping->a_ops->read_folio : NULL);
534 	dump_stack();
535 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
536 }
537 
538 /*
539  * vm_normal_page -- This function gets the "struct page" associated with a pte.
540  *
541  * "Special" mappings do not wish to be associated with a "struct page" (either
542  * it doesn't exist, or it exists but they don't want to touch it). In this
543  * case, NULL is returned here. "Normal" mappings do have a struct page.
544  *
545  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
546  * pte bit, in which case this function is trivial. Secondly, an architecture
547  * may not have a spare pte bit, which requires a more complicated scheme,
548  * described below.
549  *
550  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
551  * special mapping (even if there are underlying and valid "struct pages").
552  * COWed pages of a VM_PFNMAP are always normal.
553  *
554  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
555  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
556  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
557  * mapping will always honor the rule
558  *
559  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
560  *
561  * And for normal mappings this is false.
562  *
563  * This restricts such mappings to be a linear translation from virtual address
564  * to pfn. To get around this restriction, we allow arbitrary mappings so long
565  * as the vma is not a COW mapping; in that case, we know that all ptes are
566  * special (because none can have been COWed).
567  *
568  *
569  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
570  *
571  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
572  * page" backing, however the difference is that _all_ pages with a struct
573  * page (that is, those where pfn_valid is true) are refcounted and considered
574  * normal pages by the VM. The disadvantage is that pages are refcounted
575  * (which can be slower and simply not an option for some PFNMAP users). The
576  * advantage is that we don't have to follow the strict linearity rule of
577  * PFNMAP mappings in order to support COWable mappings.
578  *
579  */
580 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
581 			    pte_t pte)
582 {
583 	unsigned long pfn = pte_pfn(pte);
584 
585 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
586 		if (likely(!pte_special(pte)))
587 			goto check_pfn;
588 		if (vma->vm_ops && vma->vm_ops->find_special_page)
589 			return vma->vm_ops->find_special_page(vma, addr);
590 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
591 			return NULL;
592 		if (is_zero_pfn(pfn))
593 			return NULL;
594 		if (pte_devmap(pte))
595 		/*
596 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
597 		 * and will have refcounts incremented on their struct pages
598 		 * when they are inserted into PTEs, thus they are safe to
599 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
600 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
601 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
602 		 */
603 			return NULL;
604 
605 		print_bad_pte(vma, addr, pte, NULL);
606 		return NULL;
607 	}
608 
609 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
610 
611 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
612 		if (vma->vm_flags & VM_MIXEDMAP) {
613 			if (!pfn_valid(pfn))
614 				return NULL;
615 			goto out;
616 		} else {
617 			unsigned long off;
618 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
619 			if (pfn == vma->vm_pgoff + off)
620 				return NULL;
621 			if (!is_cow_mapping(vma->vm_flags))
622 				return NULL;
623 		}
624 	}
625 
626 	if (is_zero_pfn(pfn))
627 		return NULL;
628 
629 check_pfn:
630 	if (unlikely(pfn > highest_memmap_pfn)) {
631 		print_bad_pte(vma, addr, pte, NULL);
632 		return NULL;
633 	}
634 
635 	/*
636 	 * NOTE! We still have PageReserved() pages in the page tables.
637 	 * eg. VDSO mappings can cause them to exist.
638 	 */
639 out:
640 	return pfn_to_page(pfn);
641 }
642 
643 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
644 			    pte_t pte)
645 {
646 	struct page *page = vm_normal_page(vma, addr, pte);
647 
648 	if (page)
649 		return page_folio(page);
650 	return NULL;
651 }
652 
653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
655 				pmd_t pmd)
656 {
657 	unsigned long pfn = pmd_pfn(pmd);
658 
659 	/*
660 	 * There is no pmd_special() but there may be special pmds, e.g.
661 	 * in a direct-access (dax) mapping, so let's just replicate the
662 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
663 	 */
664 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
665 		if (vma->vm_flags & VM_MIXEDMAP) {
666 			if (!pfn_valid(pfn))
667 				return NULL;
668 			goto out;
669 		} else {
670 			unsigned long off;
671 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
672 			if (pfn == vma->vm_pgoff + off)
673 				return NULL;
674 			if (!is_cow_mapping(vma->vm_flags))
675 				return NULL;
676 		}
677 	}
678 
679 	if (pmd_devmap(pmd))
680 		return NULL;
681 	if (is_huge_zero_pmd(pmd))
682 		return NULL;
683 	if (unlikely(pfn > highest_memmap_pfn))
684 		return NULL;
685 
686 	/*
687 	 * NOTE! We still have PageReserved() pages in the page tables.
688 	 * eg. VDSO mappings can cause them to exist.
689 	 */
690 out:
691 	return pfn_to_page(pfn);
692 }
693 
694 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
695 				  unsigned long addr, pmd_t pmd)
696 {
697 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
698 
699 	if (page)
700 		return page_folio(page);
701 	return NULL;
702 }
703 #endif
704 
705 static void restore_exclusive_pte(struct vm_area_struct *vma,
706 				  struct page *page, unsigned long address,
707 				  pte_t *ptep)
708 {
709 	pte_t orig_pte;
710 	pte_t pte;
711 	swp_entry_t entry;
712 
713 	orig_pte = ptep_get(ptep);
714 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
715 	if (pte_swp_soft_dirty(orig_pte))
716 		pte = pte_mksoft_dirty(pte);
717 
718 	entry = pte_to_swp_entry(orig_pte);
719 	if (pte_swp_uffd_wp(orig_pte))
720 		pte = pte_mkuffd_wp(pte);
721 	else if (is_writable_device_exclusive_entry(entry))
722 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
723 
724 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
725 
726 	/*
727 	 * No need to take a page reference as one was already
728 	 * created when the swap entry was made.
729 	 */
730 	if (PageAnon(page))
731 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
732 	else
733 		/*
734 		 * Currently device exclusive access only supports anonymous
735 		 * memory so the entry shouldn't point to a filebacked page.
736 		 */
737 		WARN_ON_ONCE(1);
738 
739 	set_pte_at(vma->vm_mm, address, ptep, pte);
740 
741 	/*
742 	 * No need to invalidate - it was non-present before. However
743 	 * secondary CPUs may have mappings that need invalidating.
744 	 */
745 	update_mmu_cache(vma, address, ptep);
746 }
747 
748 /*
749  * Tries to restore an exclusive pte if the page lock can be acquired without
750  * sleeping.
751  */
752 static int
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 			unsigned long addr)
755 {
756 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
757 	struct page *page = pfn_swap_entry_to_page(entry);
758 
759 	if (trylock_page(page)) {
760 		restore_exclusive_pte(vma, page, addr, src_pte);
761 		unlock_page(page);
762 		return 0;
763 	}
764 
765 	return -EBUSY;
766 }
767 
768 /*
769  * copy one vm_area from one task to the other. Assumes the page tables
770  * already present in the new task to be cleared in the whole range
771  * covered by this vma.
772  */
773 
774 static unsigned long
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 {
779 	unsigned long vm_flags = dst_vma->vm_flags;
780 	pte_t orig_pte = ptep_get(src_pte);
781 	pte_t pte = orig_pte;
782 	struct page *page;
783 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
784 
785 	if (likely(!non_swap_entry(entry))) {
786 		if (swap_duplicate(entry) < 0)
787 			return -EIO;
788 
789 		/* make sure dst_mm is on swapoff's mmlist. */
790 		if (unlikely(list_empty(&dst_mm->mmlist))) {
791 			spin_lock(&mmlist_lock);
792 			if (list_empty(&dst_mm->mmlist))
793 				list_add(&dst_mm->mmlist,
794 						&src_mm->mmlist);
795 			spin_unlock(&mmlist_lock);
796 		}
797 		/* Mark the swap entry as shared. */
798 		if (pte_swp_exclusive(orig_pte)) {
799 			pte = pte_swp_clear_exclusive(orig_pte);
800 			set_pte_at(src_mm, addr, src_pte, pte);
801 		}
802 		rss[MM_SWAPENTS]++;
803 	} else if (is_migration_entry(entry)) {
804 		page = pfn_swap_entry_to_page(entry);
805 
806 		rss[mm_counter(page)]++;
807 
808 		if (!is_readable_migration_entry(entry) &&
809 				is_cow_mapping(vm_flags)) {
810 			/*
811 			 * COW mappings require pages in both parent and child
812 			 * to be set to read. A previously exclusive entry is
813 			 * now shared.
814 			 */
815 			entry = make_readable_migration_entry(
816 							swp_offset(entry));
817 			pte = swp_entry_to_pte(entry);
818 			if (pte_swp_soft_dirty(orig_pte))
819 				pte = pte_swp_mksoft_dirty(pte);
820 			if (pte_swp_uffd_wp(orig_pte))
821 				pte = pte_swp_mkuffd_wp(pte);
822 			set_pte_at(src_mm, addr, src_pte, pte);
823 		}
824 	} else if (is_device_private_entry(entry)) {
825 		page = pfn_swap_entry_to_page(entry);
826 
827 		/*
828 		 * Update rss count even for unaddressable pages, as
829 		 * they should treated just like normal pages in this
830 		 * respect.
831 		 *
832 		 * We will likely want to have some new rss counters
833 		 * for unaddressable pages, at some point. But for now
834 		 * keep things as they are.
835 		 */
836 		get_page(page);
837 		rss[mm_counter(page)]++;
838 		/* Cannot fail as these pages cannot get pinned. */
839 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
840 
841 		/*
842 		 * We do not preserve soft-dirty information, because so
843 		 * far, checkpoint/restore is the only feature that
844 		 * requires that. And checkpoint/restore does not work
845 		 * when a device driver is involved (you cannot easily
846 		 * save and restore device driver state).
847 		 */
848 		if (is_writable_device_private_entry(entry) &&
849 		    is_cow_mapping(vm_flags)) {
850 			entry = make_readable_device_private_entry(
851 							swp_offset(entry));
852 			pte = swp_entry_to_pte(entry);
853 			if (pte_swp_uffd_wp(orig_pte))
854 				pte = pte_swp_mkuffd_wp(pte);
855 			set_pte_at(src_mm, addr, src_pte, pte);
856 		}
857 	} else if (is_device_exclusive_entry(entry)) {
858 		/*
859 		 * Make device exclusive entries present by restoring the
860 		 * original entry then copying as for a present pte. Device
861 		 * exclusive entries currently only support private writable
862 		 * (ie. COW) mappings.
863 		 */
864 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
865 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
866 			return -EBUSY;
867 		return -ENOENT;
868 	} else if (is_pte_marker_entry(entry)) {
869 		pte_marker marker = copy_pte_marker(entry, dst_vma);
870 
871 		if (marker)
872 			set_pte_at(dst_mm, addr, dst_pte,
873 				   make_pte_marker(marker));
874 		return 0;
875 	}
876 	if (!userfaultfd_wp(dst_vma))
877 		pte = pte_swp_clear_uffd_wp(pte);
878 	set_pte_at(dst_mm, addr, dst_pte, pte);
879 	return 0;
880 }
881 
882 /*
883  * Copy a present and normal page.
884  *
885  * NOTE! The usual case is that this isn't required;
886  * instead, the caller can just increase the page refcount
887  * and re-use the pte the traditional way.
888  *
889  * And if we need a pre-allocated page but don't yet have
890  * one, return a negative error to let the preallocation
891  * code know so that it can do so outside the page table
892  * lock.
893  */
894 static inline int
895 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 		  struct folio **prealloc, struct page *page)
898 {
899 	struct folio *new_folio;
900 	pte_t pte;
901 
902 	new_folio = *prealloc;
903 	if (!new_folio)
904 		return -EAGAIN;
905 
906 	/*
907 	 * We have a prealloc page, all good!  Take it
908 	 * over and copy the page & arm it.
909 	 */
910 	*prealloc = NULL;
911 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
912 	__folio_mark_uptodate(new_folio);
913 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
914 	folio_add_lru_vma(new_folio, dst_vma);
915 	rss[MM_ANONPAGES]++;
916 
917 	/* All done, just insert the new page copy in the child */
918 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
919 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
920 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
921 		/* Uffd-wp needs to be delivered to dest pte as well */
922 		pte = pte_mkuffd_wp(pte);
923 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
924 	return 0;
925 }
926 
927 /*
928  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
929  * is required to copy this pte.
930  */
931 static inline int
932 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
933 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
934 		 struct folio **prealloc)
935 {
936 	struct mm_struct *src_mm = src_vma->vm_mm;
937 	unsigned long vm_flags = src_vma->vm_flags;
938 	pte_t pte = ptep_get(src_pte);
939 	struct page *page;
940 	struct folio *folio;
941 
942 	page = vm_normal_page(src_vma, addr, pte);
943 	if (page)
944 		folio = page_folio(page);
945 	if (page && folio_test_anon(folio)) {
946 		/*
947 		 * If this page may have been pinned by the parent process,
948 		 * copy the page immediately for the child so that we'll always
949 		 * guarantee the pinned page won't be randomly replaced in the
950 		 * future.
951 		 */
952 		folio_get(folio);
953 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
954 			/* Page may be pinned, we have to copy. */
955 			folio_put(folio);
956 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
957 						 addr, rss, prealloc, page);
958 		}
959 		rss[MM_ANONPAGES]++;
960 	} else if (page) {
961 		folio_get(folio);
962 		page_dup_file_rmap(page, false);
963 		rss[mm_counter_file(page)]++;
964 	}
965 
966 	/*
967 	 * If it's a COW mapping, write protect it both
968 	 * in the parent and the child
969 	 */
970 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
971 		ptep_set_wrprotect(src_mm, addr, src_pte);
972 		pte = pte_wrprotect(pte);
973 	}
974 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
975 
976 	/*
977 	 * If it's a shared mapping, mark it clean in
978 	 * the child
979 	 */
980 	if (vm_flags & VM_SHARED)
981 		pte = pte_mkclean(pte);
982 	pte = pte_mkold(pte);
983 
984 	if (!userfaultfd_wp(dst_vma))
985 		pte = pte_clear_uffd_wp(pte);
986 
987 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
988 	return 0;
989 }
990 
991 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
992 		struct vm_area_struct *vma, unsigned long addr)
993 {
994 	struct folio *new_folio;
995 
996 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
997 	if (!new_folio)
998 		return NULL;
999 
1000 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1001 		folio_put(new_folio);
1002 		return NULL;
1003 	}
1004 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1005 
1006 	return new_folio;
1007 }
1008 
1009 static int
1010 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1011 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1012 	       unsigned long end)
1013 {
1014 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1015 	struct mm_struct *src_mm = src_vma->vm_mm;
1016 	pte_t *orig_src_pte, *orig_dst_pte;
1017 	pte_t *src_pte, *dst_pte;
1018 	pte_t ptent;
1019 	spinlock_t *src_ptl, *dst_ptl;
1020 	int progress, ret = 0;
1021 	int rss[NR_MM_COUNTERS];
1022 	swp_entry_t entry = (swp_entry_t){0};
1023 	struct folio *prealloc = NULL;
1024 
1025 again:
1026 	progress = 0;
1027 	init_rss_vec(rss);
1028 
1029 	/*
1030 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1031 	 * error handling here, assume that exclusive mmap_lock on dst and src
1032 	 * protects anon from unexpected THP transitions; with shmem and file
1033 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1034 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1035 	 * can remove such assumptions later, but this is good enough for now.
1036 	 */
1037 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1038 	if (!dst_pte) {
1039 		ret = -ENOMEM;
1040 		goto out;
1041 	}
1042 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1043 	if (!src_pte) {
1044 		pte_unmap_unlock(dst_pte, dst_ptl);
1045 		/* ret == 0 */
1046 		goto out;
1047 	}
1048 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1049 	orig_src_pte = src_pte;
1050 	orig_dst_pte = dst_pte;
1051 	arch_enter_lazy_mmu_mode();
1052 
1053 	do {
1054 		/*
1055 		 * We are holding two locks at this point - either of them
1056 		 * could generate latencies in another task on another CPU.
1057 		 */
1058 		if (progress >= 32) {
1059 			progress = 0;
1060 			if (need_resched() ||
1061 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1062 				break;
1063 		}
1064 		ptent = ptep_get(src_pte);
1065 		if (pte_none(ptent)) {
1066 			progress++;
1067 			continue;
1068 		}
1069 		if (unlikely(!pte_present(ptent))) {
1070 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1071 						  dst_pte, src_pte,
1072 						  dst_vma, src_vma,
1073 						  addr, rss);
1074 			if (ret == -EIO) {
1075 				entry = pte_to_swp_entry(ptep_get(src_pte));
1076 				break;
1077 			} else if (ret == -EBUSY) {
1078 				break;
1079 			} else if (!ret) {
1080 				progress += 8;
1081 				continue;
1082 			}
1083 
1084 			/*
1085 			 * Device exclusive entry restored, continue by copying
1086 			 * the now present pte.
1087 			 */
1088 			WARN_ON_ONCE(ret != -ENOENT);
1089 		}
1090 		/* copy_present_pte() will clear `*prealloc' if consumed */
1091 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1092 				       addr, rss, &prealloc);
1093 		/*
1094 		 * If we need a pre-allocated page for this pte, drop the
1095 		 * locks, allocate, and try again.
1096 		 */
1097 		if (unlikely(ret == -EAGAIN))
1098 			break;
1099 		if (unlikely(prealloc)) {
1100 			/*
1101 			 * pre-alloc page cannot be reused by next time so as
1102 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1103 			 * will allocate page according to address).  This
1104 			 * could only happen if one pinned pte changed.
1105 			 */
1106 			folio_put(prealloc);
1107 			prealloc = NULL;
1108 		}
1109 		progress += 8;
1110 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1111 
1112 	arch_leave_lazy_mmu_mode();
1113 	pte_unmap_unlock(orig_src_pte, src_ptl);
1114 	add_mm_rss_vec(dst_mm, rss);
1115 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1116 	cond_resched();
1117 
1118 	if (ret == -EIO) {
1119 		VM_WARN_ON_ONCE(!entry.val);
1120 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1121 			ret = -ENOMEM;
1122 			goto out;
1123 		}
1124 		entry.val = 0;
1125 	} else if (ret == -EBUSY) {
1126 		goto out;
1127 	} else if (ret ==  -EAGAIN) {
1128 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1129 		if (!prealloc)
1130 			return -ENOMEM;
1131 	} else if (ret) {
1132 		VM_WARN_ON_ONCE(1);
1133 	}
1134 
1135 	/* We've captured and resolved the error. Reset, try again. */
1136 	ret = 0;
1137 
1138 	if (addr != end)
1139 		goto again;
1140 out:
1141 	if (unlikely(prealloc))
1142 		folio_put(prealloc);
1143 	return ret;
1144 }
1145 
1146 static inline int
1147 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1148 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1149 	       unsigned long end)
1150 {
1151 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1152 	struct mm_struct *src_mm = src_vma->vm_mm;
1153 	pmd_t *src_pmd, *dst_pmd;
1154 	unsigned long next;
1155 
1156 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1157 	if (!dst_pmd)
1158 		return -ENOMEM;
1159 	src_pmd = pmd_offset(src_pud, addr);
1160 	do {
1161 		next = pmd_addr_end(addr, end);
1162 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1163 			|| pmd_devmap(*src_pmd)) {
1164 			int err;
1165 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1166 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1167 					    addr, dst_vma, src_vma);
1168 			if (err == -ENOMEM)
1169 				return -ENOMEM;
1170 			if (!err)
1171 				continue;
1172 			/* fall through */
1173 		}
1174 		if (pmd_none_or_clear_bad(src_pmd))
1175 			continue;
1176 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1177 				   addr, next))
1178 			return -ENOMEM;
1179 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1180 	return 0;
1181 }
1182 
1183 static inline int
1184 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1185 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1186 	       unsigned long end)
1187 {
1188 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1189 	struct mm_struct *src_mm = src_vma->vm_mm;
1190 	pud_t *src_pud, *dst_pud;
1191 	unsigned long next;
1192 
1193 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1194 	if (!dst_pud)
1195 		return -ENOMEM;
1196 	src_pud = pud_offset(src_p4d, addr);
1197 	do {
1198 		next = pud_addr_end(addr, end);
1199 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1200 			int err;
1201 
1202 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1203 			err = copy_huge_pud(dst_mm, src_mm,
1204 					    dst_pud, src_pud, addr, src_vma);
1205 			if (err == -ENOMEM)
1206 				return -ENOMEM;
1207 			if (!err)
1208 				continue;
1209 			/* fall through */
1210 		}
1211 		if (pud_none_or_clear_bad(src_pud))
1212 			continue;
1213 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1214 				   addr, next))
1215 			return -ENOMEM;
1216 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1217 	return 0;
1218 }
1219 
1220 static inline int
1221 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1222 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1223 	       unsigned long end)
1224 {
1225 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1226 	p4d_t *src_p4d, *dst_p4d;
1227 	unsigned long next;
1228 
1229 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1230 	if (!dst_p4d)
1231 		return -ENOMEM;
1232 	src_p4d = p4d_offset(src_pgd, addr);
1233 	do {
1234 		next = p4d_addr_end(addr, end);
1235 		if (p4d_none_or_clear_bad(src_p4d))
1236 			continue;
1237 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1238 				   addr, next))
1239 			return -ENOMEM;
1240 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1241 	return 0;
1242 }
1243 
1244 /*
1245  * Return true if the vma needs to copy the pgtable during this fork().  Return
1246  * false when we can speed up fork() by allowing lazy page faults later until
1247  * when the child accesses the memory range.
1248  */
1249 static bool
1250 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1251 {
1252 	/*
1253 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1254 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1255 	 * contains uffd-wp protection information, that's something we can't
1256 	 * retrieve from page cache, and skip copying will lose those info.
1257 	 */
1258 	if (userfaultfd_wp(dst_vma))
1259 		return true;
1260 
1261 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1262 		return true;
1263 
1264 	if (src_vma->anon_vma)
1265 		return true;
1266 
1267 	/*
1268 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1269 	 * becomes much lighter when there are big shared or private readonly
1270 	 * mappings. The tradeoff is that copy_page_range is more efficient
1271 	 * than faulting.
1272 	 */
1273 	return false;
1274 }
1275 
1276 int
1277 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1278 {
1279 	pgd_t *src_pgd, *dst_pgd;
1280 	unsigned long next;
1281 	unsigned long addr = src_vma->vm_start;
1282 	unsigned long end = src_vma->vm_end;
1283 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1284 	struct mm_struct *src_mm = src_vma->vm_mm;
1285 	struct mmu_notifier_range range;
1286 	bool is_cow;
1287 	int ret;
1288 
1289 	if (!vma_needs_copy(dst_vma, src_vma))
1290 		return 0;
1291 
1292 	if (is_vm_hugetlb_page(src_vma))
1293 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1294 
1295 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1296 		/*
1297 		 * We do not free on error cases below as remove_vma
1298 		 * gets called on error from higher level routine
1299 		 */
1300 		ret = track_pfn_copy(src_vma);
1301 		if (ret)
1302 			return ret;
1303 	}
1304 
1305 	/*
1306 	 * We need to invalidate the secondary MMU mappings only when
1307 	 * there could be a permission downgrade on the ptes of the
1308 	 * parent mm. And a permission downgrade will only happen if
1309 	 * is_cow_mapping() returns true.
1310 	 */
1311 	is_cow = is_cow_mapping(src_vma->vm_flags);
1312 
1313 	if (is_cow) {
1314 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1315 					0, src_mm, addr, end);
1316 		mmu_notifier_invalidate_range_start(&range);
1317 		/*
1318 		 * Disabling preemption is not needed for the write side, as
1319 		 * the read side doesn't spin, but goes to the mmap_lock.
1320 		 *
1321 		 * Use the raw variant of the seqcount_t write API to avoid
1322 		 * lockdep complaining about preemptibility.
1323 		 */
1324 		vma_assert_write_locked(src_vma);
1325 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1326 	}
1327 
1328 	ret = 0;
1329 	dst_pgd = pgd_offset(dst_mm, addr);
1330 	src_pgd = pgd_offset(src_mm, addr);
1331 	do {
1332 		next = pgd_addr_end(addr, end);
1333 		if (pgd_none_or_clear_bad(src_pgd))
1334 			continue;
1335 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1336 					    addr, next))) {
1337 			untrack_pfn_clear(dst_vma);
1338 			ret = -ENOMEM;
1339 			break;
1340 		}
1341 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1342 
1343 	if (is_cow) {
1344 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1345 		mmu_notifier_invalidate_range_end(&range);
1346 	}
1347 	return ret;
1348 }
1349 
1350 /* Whether we should zap all COWed (private) pages too */
1351 static inline bool should_zap_cows(struct zap_details *details)
1352 {
1353 	/* By default, zap all pages */
1354 	if (!details)
1355 		return true;
1356 
1357 	/* Or, we zap COWed pages only if the caller wants to */
1358 	return details->even_cows;
1359 }
1360 
1361 /* Decides whether we should zap this page with the page pointer specified */
1362 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1363 {
1364 	/* If we can make a decision without *page.. */
1365 	if (should_zap_cows(details))
1366 		return true;
1367 
1368 	/* E.g. the caller passes NULL for the case of a zero page */
1369 	if (!page)
1370 		return true;
1371 
1372 	/* Otherwise we should only zap non-anon pages */
1373 	return !PageAnon(page);
1374 }
1375 
1376 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1377 {
1378 	if (!details)
1379 		return false;
1380 
1381 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1382 }
1383 
1384 /*
1385  * This function makes sure that we'll replace the none pte with an uffd-wp
1386  * swap special pte marker when necessary. Must be with the pgtable lock held.
1387  */
1388 static inline void
1389 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1390 			      unsigned long addr, pte_t *pte,
1391 			      struct zap_details *details, pte_t pteval)
1392 {
1393 	/* Zap on anonymous always means dropping everything */
1394 	if (vma_is_anonymous(vma))
1395 		return;
1396 
1397 	if (zap_drop_file_uffd_wp(details))
1398 		return;
1399 
1400 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1401 }
1402 
1403 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1404 				struct vm_area_struct *vma, pmd_t *pmd,
1405 				unsigned long addr, unsigned long end,
1406 				struct zap_details *details)
1407 {
1408 	struct mm_struct *mm = tlb->mm;
1409 	int force_flush = 0;
1410 	int rss[NR_MM_COUNTERS];
1411 	spinlock_t *ptl;
1412 	pte_t *start_pte;
1413 	pte_t *pte;
1414 	swp_entry_t entry;
1415 
1416 	tlb_change_page_size(tlb, PAGE_SIZE);
1417 	init_rss_vec(rss);
1418 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419 	if (!pte)
1420 		return addr;
1421 
1422 	flush_tlb_batched_pending(mm);
1423 	arch_enter_lazy_mmu_mode();
1424 	do {
1425 		pte_t ptent = ptep_get(pte);
1426 		struct page *page;
1427 
1428 		if (pte_none(ptent))
1429 			continue;
1430 
1431 		if (need_resched())
1432 			break;
1433 
1434 		if (pte_present(ptent)) {
1435 			unsigned int delay_rmap;
1436 
1437 			page = vm_normal_page(vma, addr, ptent);
1438 			if (unlikely(!should_zap_page(details, page)))
1439 				continue;
1440 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1441 							tlb->fullmm);
1442 			arch_check_zapped_pte(vma, ptent);
1443 			tlb_remove_tlb_entry(tlb, pte, addr);
1444 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1445 						      ptent);
1446 			if (unlikely(!page)) {
1447 				ksm_might_unmap_zero_page(mm, ptent);
1448 				continue;
1449 			}
1450 
1451 			delay_rmap = 0;
1452 			if (!PageAnon(page)) {
1453 				if (pte_dirty(ptent)) {
1454 					set_page_dirty(page);
1455 					if (tlb_delay_rmap(tlb)) {
1456 						delay_rmap = 1;
1457 						force_flush = 1;
1458 					}
1459 				}
1460 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1461 					mark_page_accessed(page);
1462 			}
1463 			rss[mm_counter(page)]--;
1464 			if (!delay_rmap) {
1465 				page_remove_rmap(page, vma, false);
1466 				if (unlikely(page_mapcount(page) < 0))
1467 					print_bad_pte(vma, addr, ptent, page);
1468 			}
1469 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1470 				force_flush = 1;
1471 				addr += PAGE_SIZE;
1472 				break;
1473 			}
1474 			continue;
1475 		}
1476 
1477 		entry = pte_to_swp_entry(ptent);
1478 		if (is_device_private_entry(entry) ||
1479 		    is_device_exclusive_entry(entry)) {
1480 			page = pfn_swap_entry_to_page(entry);
1481 			if (unlikely(!should_zap_page(details, page)))
1482 				continue;
1483 			/*
1484 			 * Both device private/exclusive mappings should only
1485 			 * work with anonymous page so far, so we don't need to
1486 			 * consider uffd-wp bit when zap. For more information,
1487 			 * see zap_install_uffd_wp_if_needed().
1488 			 */
1489 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1490 			rss[mm_counter(page)]--;
1491 			if (is_device_private_entry(entry))
1492 				page_remove_rmap(page, vma, false);
1493 			put_page(page);
1494 		} else if (!non_swap_entry(entry)) {
1495 			/* Genuine swap entry, hence a private anon page */
1496 			if (!should_zap_cows(details))
1497 				continue;
1498 			rss[MM_SWAPENTS]--;
1499 			if (unlikely(!free_swap_and_cache(entry)))
1500 				print_bad_pte(vma, addr, ptent, NULL);
1501 		} else if (is_migration_entry(entry)) {
1502 			page = pfn_swap_entry_to_page(entry);
1503 			if (!should_zap_page(details, page))
1504 				continue;
1505 			rss[mm_counter(page)]--;
1506 		} else if (pte_marker_entry_uffd_wp(entry)) {
1507 			/*
1508 			 * For anon: always drop the marker; for file: only
1509 			 * drop the marker if explicitly requested.
1510 			 */
1511 			if (!vma_is_anonymous(vma) &&
1512 			    !zap_drop_file_uffd_wp(details))
1513 				continue;
1514 		} else if (is_hwpoison_entry(entry) ||
1515 			   is_poisoned_swp_entry(entry)) {
1516 			if (!should_zap_cows(details))
1517 				continue;
1518 		} else {
1519 			/* We should have covered all the swap entry types */
1520 			WARN_ON_ONCE(1);
1521 		}
1522 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1523 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1524 	} while (pte++, addr += PAGE_SIZE, addr != end);
1525 
1526 	add_mm_rss_vec(mm, rss);
1527 	arch_leave_lazy_mmu_mode();
1528 
1529 	/* Do the actual TLB flush before dropping ptl */
1530 	if (force_flush) {
1531 		tlb_flush_mmu_tlbonly(tlb);
1532 		tlb_flush_rmaps(tlb, vma);
1533 	}
1534 	pte_unmap_unlock(start_pte, ptl);
1535 
1536 	/*
1537 	 * If we forced a TLB flush (either due to running out of
1538 	 * batch buffers or because we needed to flush dirty TLB
1539 	 * entries before releasing the ptl), free the batched
1540 	 * memory too. Come back again if we didn't do everything.
1541 	 */
1542 	if (force_flush)
1543 		tlb_flush_mmu(tlb);
1544 
1545 	return addr;
1546 }
1547 
1548 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1549 				struct vm_area_struct *vma, pud_t *pud,
1550 				unsigned long addr, unsigned long end,
1551 				struct zap_details *details)
1552 {
1553 	pmd_t *pmd;
1554 	unsigned long next;
1555 
1556 	pmd = pmd_offset(pud, addr);
1557 	do {
1558 		next = pmd_addr_end(addr, end);
1559 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1560 			if (next - addr != HPAGE_PMD_SIZE)
1561 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1562 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1563 				addr = next;
1564 				continue;
1565 			}
1566 			/* fall through */
1567 		} else if (details && details->single_folio &&
1568 			   folio_test_pmd_mappable(details->single_folio) &&
1569 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1570 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1571 			/*
1572 			 * Take and drop THP pmd lock so that we cannot return
1573 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1574 			 * but not yet decremented compound_mapcount().
1575 			 */
1576 			spin_unlock(ptl);
1577 		}
1578 		if (pmd_none(*pmd)) {
1579 			addr = next;
1580 			continue;
1581 		}
1582 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1583 		if (addr != next)
1584 			pmd--;
1585 	} while (pmd++, cond_resched(), addr != end);
1586 
1587 	return addr;
1588 }
1589 
1590 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1591 				struct vm_area_struct *vma, p4d_t *p4d,
1592 				unsigned long addr, unsigned long end,
1593 				struct zap_details *details)
1594 {
1595 	pud_t *pud;
1596 	unsigned long next;
1597 
1598 	pud = pud_offset(p4d, addr);
1599 	do {
1600 		next = pud_addr_end(addr, end);
1601 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1602 			if (next - addr != HPAGE_PUD_SIZE) {
1603 				mmap_assert_locked(tlb->mm);
1604 				split_huge_pud(vma, pud, addr);
1605 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1606 				goto next;
1607 			/* fall through */
1608 		}
1609 		if (pud_none_or_clear_bad(pud))
1610 			continue;
1611 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1612 next:
1613 		cond_resched();
1614 	} while (pud++, addr = next, addr != end);
1615 
1616 	return addr;
1617 }
1618 
1619 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1620 				struct vm_area_struct *vma, pgd_t *pgd,
1621 				unsigned long addr, unsigned long end,
1622 				struct zap_details *details)
1623 {
1624 	p4d_t *p4d;
1625 	unsigned long next;
1626 
1627 	p4d = p4d_offset(pgd, addr);
1628 	do {
1629 		next = p4d_addr_end(addr, end);
1630 		if (p4d_none_or_clear_bad(p4d))
1631 			continue;
1632 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1633 	} while (p4d++, addr = next, addr != end);
1634 
1635 	return addr;
1636 }
1637 
1638 void unmap_page_range(struct mmu_gather *tlb,
1639 			     struct vm_area_struct *vma,
1640 			     unsigned long addr, unsigned long end,
1641 			     struct zap_details *details)
1642 {
1643 	pgd_t *pgd;
1644 	unsigned long next;
1645 
1646 	BUG_ON(addr >= end);
1647 	tlb_start_vma(tlb, vma);
1648 	pgd = pgd_offset(vma->vm_mm, addr);
1649 	do {
1650 		next = pgd_addr_end(addr, end);
1651 		if (pgd_none_or_clear_bad(pgd))
1652 			continue;
1653 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1654 	} while (pgd++, addr = next, addr != end);
1655 	tlb_end_vma(tlb, vma);
1656 }
1657 
1658 
1659 static void unmap_single_vma(struct mmu_gather *tlb,
1660 		struct vm_area_struct *vma, unsigned long start_addr,
1661 		unsigned long end_addr,
1662 		struct zap_details *details, bool mm_wr_locked)
1663 {
1664 	unsigned long start = max(vma->vm_start, start_addr);
1665 	unsigned long end;
1666 
1667 	if (start >= vma->vm_end)
1668 		return;
1669 	end = min(vma->vm_end, end_addr);
1670 	if (end <= vma->vm_start)
1671 		return;
1672 
1673 	if (vma->vm_file)
1674 		uprobe_munmap(vma, start, end);
1675 
1676 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1677 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1678 
1679 	if (start != end) {
1680 		if (unlikely(is_vm_hugetlb_page(vma))) {
1681 			/*
1682 			 * It is undesirable to test vma->vm_file as it
1683 			 * should be non-null for valid hugetlb area.
1684 			 * However, vm_file will be NULL in the error
1685 			 * cleanup path of mmap_region. When
1686 			 * hugetlbfs ->mmap method fails,
1687 			 * mmap_region() nullifies vma->vm_file
1688 			 * before calling this function to clean up.
1689 			 * Since no pte has actually been setup, it is
1690 			 * safe to do nothing in this case.
1691 			 */
1692 			if (vma->vm_file) {
1693 				zap_flags_t zap_flags = details ?
1694 				    details->zap_flags : 0;
1695 				__unmap_hugepage_range(tlb, vma, start, end,
1696 							     NULL, zap_flags);
1697 			}
1698 		} else
1699 			unmap_page_range(tlb, vma, start, end, details);
1700 	}
1701 }
1702 
1703 /**
1704  * unmap_vmas - unmap a range of memory covered by a list of vma's
1705  * @tlb: address of the caller's struct mmu_gather
1706  * @mas: the maple state
1707  * @vma: the starting vma
1708  * @start_addr: virtual address at which to start unmapping
1709  * @end_addr: virtual address at which to end unmapping
1710  * @tree_end: The maximum index to check
1711  * @mm_wr_locked: lock flag
1712  *
1713  * Unmap all pages in the vma list.
1714  *
1715  * Only addresses between `start' and `end' will be unmapped.
1716  *
1717  * The VMA list must be sorted in ascending virtual address order.
1718  *
1719  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1720  * range after unmap_vmas() returns.  So the only responsibility here is to
1721  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1722  * drops the lock and schedules.
1723  */
1724 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1725 		struct vm_area_struct *vma, unsigned long start_addr,
1726 		unsigned long end_addr, unsigned long tree_end,
1727 		bool mm_wr_locked)
1728 {
1729 	struct mmu_notifier_range range;
1730 	struct zap_details details = {
1731 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1732 		/* Careful - we need to zap private pages too! */
1733 		.even_cows = true,
1734 	};
1735 
1736 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1737 				start_addr, end_addr);
1738 	mmu_notifier_invalidate_range_start(&range);
1739 	do {
1740 		unsigned long start = start_addr;
1741 		unsigned long end = end_addr;
1742 		hugetlb_zap_begin(vma, &start, &end);
1743 		unmap_single_vma(tlb, vma, start, end, &details,
1744 				 mm_wr_locked);
1745 		hugetlb_zap_end(vma, &details);
1746 	} while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1747 	mmu_notifier_invalidate_range_end(&range);
1748 }
1749 
1750 /**
1751  * zap_page_range_single - remove user pages in a given range
1752  * @vma: vm_area_struct holding the applicable pages
1753  * @address: starting address of pages to zap
1754  * @size: number of bytes to zap
1755  * @details: details of shared cache invalidation
1756  *
1757  * The range must fit into one VMA.
1758  */
1759 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1760 		unsigned long size, struct zap_details *details)
1761 {
1762 	const unsigned long end = address + size;
1763 	struct mmu_notifier_range range;
1764 	struct mmu_gather tlb;
1765 
1766 	lru_add_drain();
1767 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1768 				address, end);
1769 	hugetlb_zap_begin(vma, &range.start, &range.end);
1770 	tlb_gather_mmu(&tlb, vma->vm_mm);
1771 	update_hiwater_rss(vma->vm_mm);
1772 	mmu_notifier_invalidate_range_start(&range);
1773 	/*
1774 	 * unmap 'address-end' not 'range.start-range.end' as range
1775 	 * could have been expanded for hugetlb pmd sharing.
1776 	 */
1777 	unmap_single_vma(&tlb, vma, address, end, details, false);
1778 	mmu_notifier_invalidate_range_end(&range);
1779 	tlb_finish_mmu(&tlb);
1780 	hugetlb_zap_end(vma, details);
1781 }
1782 
1783 /**
1784  * zap_vma_ptes - remove ptes mapping the vma
1785  * @vma: vm_area_struct holding ptes to be zapped
1786  * @address: starting address of pages to zap
1787  * @size: number of bytes to zap
1788  *
1789  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1790  *
1791  * The entire address range must be fully contained within the vma.
1792  *
1793  */
1794 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1795 		unsigned long size)
1796 {
1797 	if (!range_in_vma(vma, address, address + size) ||
1798 	    		!(vma->vm_flags & VM_PFNMAP))
1799 		return;
1800 
1801 	zap_page_range_single(vma, address, size, NULL);
1802 }
1803 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1804 
1805 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1806 {
1807 	pgd_t *pgd;
1808 	p4d_t *p4d;
1809 	pud_t *pud;
1810 	pmd_t *pmd;
1811 
1812 	pgd = pgd_offset(mm, addr);
1813 	p4d = p4d_alloc(mm, pgd, addr);
1814 	if (!p4d)
1815 		return NULL;
1816 	pud = pud_alloc(mm, p4d, addr);
1817 	if (!pud)
1818 		return NULL;
1819 	pmd = pmd_alloc(mm, pud, addr);
1820 	if (!pmd)
1821 		return NULL;
1822 
1823 	VM_BUG_ON(pmd_trans_huge(*pmd));
1824 	return pmd;
1825 }
1826 
1827 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1828 			spinlock_t **ptl)
1829 {
1830 	pmd_t *pmd = walk_to_pmd(mm, addr);
1831 
1832 	if (!pmd)
1833 		return NULL;
1834 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1835 }
1836 
1837 static int validate_page_before_insert(struct page *page)
1838 {
1839 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1840 		return -EINVAL;
1841 	flush_dcache_page(page);
1842 	return 0;
1843 }
1844 
1845 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1846 			unsigned long addr, struct page *page, pgprot_t prot)
1847 {
1848 	if (!pte_none(ptep_get(pte)))
1849 		return -EBUSY;
1850 	/* Ok, finally just insert the thing.. */
1851 	get_page(page);
1852 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1853 	page_add_file_rmap(page, vma, false);
1854 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1855 	return 0;
1856 }
1857 
1858 /*
1859  * This is the old fallback for page remapping.
1860  *
1861  * For historical reasons, it only allows reserved pages. Only
1862  * old drivers should use this, and they needed to mark their
1863  * pages reserved for the old functions anyway.
1864  */
1865 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1866 			struct page *page, pgprot_t prot)
1867 {
1868 	int retval;
1869 	pte_t *pte;
1870 	spinlock_t *ptl;
1871 
1872 	retval = validate_page_before_insert(page);
1873 	if (retval)
1874 		goto out;
1875 	retval = -ENOMEM;
1876 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1877 	if (!pte)
1878 		goto out;
1879 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1880 	pte_unmap_unlock(pte, ptl);
1881 out:
1882 	return retval;
1883 }
1884 
1885 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1886 			unsigned long addr, struct page *page, pgprot_t prot)
1887 {
1888 	int err;
1889 
1890 	if (!page_count(page))
1891 		return -EINVAL;
1892 	err = validate_page_before_insert(page);
1893 	if (err)
1894 		return err;
1895 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1896 }
1897 
1898 /* insert_pages() amortizes the cost of spinlock operations
1899  * when inserting pages in a loop.
1900  */
1901 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1902 			struct page **pages, unsigned long *num, pgprot_t prot)
1903 {
1904 	pmd_t *pmd = NULL;
1905 	pte_t *start_pte, *pte;
1906 	spinlock_t *pte_lock;
1907 	struct mm_struct *const mm = vma->vm_mm;
1908 	unsigned long curr_page_idx = 0;
1909 	unsigned long remaining_pages_total = *num;
1910 	unsigned long pages_to_write_in_pmd;
1911 	int ret;
1912 more:
1913 	ret = -EFAULT;
1914 	pmd = walk_to_pmd(mm, addr);
1915 	if (!pmd)
1916 		goto out;
1917 
1918 	pages_to_write_in_pmd = min_t(unsigned long,
1919 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1920 
1921 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1922 	ret = -ENOMEM;
1923 	if (pte_alloc(mm, pmd))
1924 		goto out;
1925 
1926 	while (pages_to_write_in_pmd) {
1927 		int pte_idx = 0;
1928 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1929 
1930 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1931 		if (!start_pte) {
1932 			ret = -EFAULT;
1933 			goto out;
1934 		}
1935 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1936 			int err = insert_page_in_batch_locked(vma, pte,
1937 				addr, pages[curr_page_idx], prot);
1938 			if (unlikely(err)) {
1939 				pte_unmap_unlock(start_pte, pte_lock);
1940 				ret = err;
1941 				remaining_pages_total -= pte_idx;
1942 				goto out;
1943 			}
1944 			addr += PAGE_SIZE;
1945 			++curr_page_idx;
1946 		}
1947 		pte_unmap_unlock(start_pte, pte_lock);
1948 		pages_to_write_in_pmd -= batch_size;
1949 		remaining_pages_total -= batch_size;
1950 	}
1951 	if (remaining_pages_total)
1952 		goto more;
1953 	ret = 0;
1954 out:
1955 	*num = remaining_pages_total;
1956 	return ret;
1957 }
1958 
1959 /**
1960  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1961  * @vma: user vma to map to
1962  * @addr: target start user address of these pages
1963  * @pages: source kernel pages
1964  * @num: in: number of pages to map. out: number of pages that were *not*
1965  * mapped. (0 means all pages were successfully mapped).
1966  *
1967  * Preferred over vm_insert_page() when inserting multiple pages.
1968  *
1969  * In case of error, we may have mapped a subset of the provided
1970  * pages. It is the caller's responsibility to account for this case.
1971  *
1972  * The same restrictions apply as in vm_insert_page().
1973  */
1974 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1975 			struct page **pages, unsigned long *num)
1976 {
1977 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1978 
1979 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1980 		return -EFAULT;
1981 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1982 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1983 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1984 		vm_flags_set(vma, VM_MIXEDMAP);
1985 	}
1986 	/* Defer page refcount checking till we're about to map that page. */
1987 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1988 }
1989 EXPORT_SYMBOL(vm_insert_pages);
1990 
1991 /**
1992  * vm_insert_page - insert single page into user vma
1993  * @vma: user vma to map to
1994  * @addr: target user address of this page
1995  * @page: source kernel page
1996  *
1997  * This allows drivers to insert individual pages they've allocated
1998  * into a user vma.
1999  *
2000  * The page has to be a nice clean _individual_ kernel allocation.
2001  * If you allocate a compound page, you need to have marked it as
2002  * such (__GFP_COMP), or manually just split the page up yourself
2003  * (see split_page()).
2004  *
2005  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2006  * took an arbitrary page protection parameter. This doesn't allow
2007  * that. Your vma protection will have to be set up correctly, which
2008  * means that if you want a shared writable mapping, you'd better
2009  * ask for a shared writable mapping!
2010  *
2011  * The page does not need to be reserved.
2012  *
2013  * Usually this function is called from f_op->mmap() handler
2014  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2015  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2016  * function from other places, for example from page-fault handler.
2017  *
2018  * Return: %0 on success, negative error code otherwise.
2019  */
2020 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2021 			struct page *page)
2022 {
2023 	if (addr < vma->vm_start || addr >= vma->vm_end)
2024 		return -EFAULT;
2025 	if (!page_count(page))
2026 		return -EINVAL;
2027 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2028 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2029 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2030 		vm_flags_set(vma, VM_MIXEDMAP);
2031 	}
2032 	return insert_page(vma, addr, page, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vm_insert_page);
2035 
2036 /*
2037  * __vm_map_pages - maps range of kernel pages into user vma
2038  * @vma: user vma to map to
2039  * @pages: pointer to array of source kernel pages
2040  * @num: number of pages in page array
2041  * @offset: user's requested vm_pgoff
2042  *
2043  * This allows drivers to map range of kernel pages into a user vma.
2044  *
2045  * Return: 0 on success and error code otherwise.
2046  */
2047 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2048 				unsigned long num, unsigned long offset)
2049 {
2050 	unsigned long count = vma_pages(vma);
2051 	unsigned long uaddr = vma->vm_start;
2052 	int ret, i;
2053 
2054 	/* Fail if the user requested offset is beyond the end of the object */
2055 	if (offset >= num)
2056 		return -ENXIO;
2057 
2058 	/* Fail if the user requested size exceeds available object size */
2059 	if (count > num - offset)
2060 		return -ENXIO;
2061 
2062 	for (i = 0; i < count; i++) {
2063 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2064 		if (ret < 0)
2065 			return ret;
2066 		uaddr += PAGE_SIZE;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 /**
2073  * vm_map_pages - maps range of kernel pages starts with non zero offset
2074  * @vma: user vma to map to
2075  * @pages: pointer to array of source kernel pages
2076  * @num: number of pages in page array
2077  *
2078  * Maps an object consisting of @num pages, catering for the user's
2079  * requested vm_pgoff
2080  *
2081  * If we fail to insert any page into the vma, the function will return
2082  * immediately leaving any previously inserted pages present.  Callers
2083  * from the mmap handler may immediately return the error as their caller
2084  * will destroy the vma, removing any successfully inserted pages. Other
2085  * callers should make their own arrangements for calling unmap_region().
2086  *
2087  * Context: Process context. Called by mmap handlers.
2088  * Return: 0 on success and error code otherwise.
2089  */
2090 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2091 				unsigned long num)
2092 {
2093 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2094 }
2095 EXPORT_SYMBOL(vm_map_pages);
2096 
2097 /**
2098  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2099  * @vma: user vma to map to
2100  * @pages: pointer to array of source kernel pages
2101  * @num: number of pages in page array
2102  *
2103  * Similar to vm_map_pages(), except that it explicitly sets the offset
2104  * to 0. This function is intended for the drivers that did not consider
2105  * vm_pgoff.
2106  *
2107  * Context: Process context. Called by mmap handlers.
2108  * Return: 0 on success and error code otherwise.
2109  */
2110 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2111 				unsigned long num)
2112 {
2113 	return __vm_map_pages(vma, pages, num, 0);
2114 }
2115 EXPORT_SYMBOL(vm_map_pages_zero);
2116 
2117 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2119 {
2120 	struct mm_struct *mm = vma->vm_mm;
2121 	pte_t *pte, entry;
2122 	spinlock_t *ptl;
2123 
2124 	pte = get_locked_pte(mm, addr, &ptl);
2125 	if (!pte)
2126 		return VM_FAULT_OOM;
2127 	entry = ptep_get(pte);
2128 	if (!pte_none(entry)) {
2129 		if (mkwrite) {
2130 			/*
2131 			 * For read faults on private mappings the PFN passed
2132 			 * in may not match the PFN we have mapped if the
2133 			 * mapped PFN is a writeable COW page.  In the mkwrite
2134 			 * case we are creating a writable PTE for a shared
2135 			 * mapping and we expect the PFNs to match. If they
2136 			 * don't match, we are likely racing with block
2137 			 * allocation and mapping invalidation so just skip the
2138 			 * update.
2139 			 */
2140 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2141 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2142 				goto out_unlock;
2143 			}
2144 			entry = pte_mkyoung(entry);
2145 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2146 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2147 				update_mmu_cache(vma, addr, pte);
2148 		}
2149 		goto out_unlock;
2150 	}
2151 
2152 	/* Ok, finally just insert the thing.. */
2153 	if (pfn_t_devmap(pfn))
2154 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2155 	else
2156 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2157 
2158 	if (mkwrite) {
2159 		entry = pte_mkyoung(entry);
2160 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2161 	}
2162 
2163 	set_pte_at(mm, addr, pte, entry);
2164 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2165 
2166 out_unlock:
2167 	pte_unmap_unlock(pte, ptl);
2168 	return VM_FAULT_NOPAGE;
2169 }
2170 
2171 /**
2172  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2173  * @vma: user vma to map to
2174  * @addr: target user address of this page
2175  * @pfn: source kernel pfn
2176  * @pgprot: pgprot flags for the inserted page
2177  *
2178  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2179  * to override pgprot on a per-page basis.
2180  *
2181  * This only makes sense for IO mappings, and it makes no sense for
2182  * COW mappings.  In general, using multiple vmas is preferable;
2183  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2184  * impractical.
2185  *
2186  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2187  * caching- and encryption bits different than those of @vma->vm_page_prot,
2188  * because the caching- or encryption mode may not be known at mmap() time.
2189  *
2190  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2191  * to set caching and encryption bits for those vmas (except for COW pages).
2192  * This is ensured by core vm only modifying these page table entries using
2193  * functions that don't touch caching- or encryption bits, using pte_modify()
2194  * if needed. (See for example mprotect()).
2195  *
2196  * Also when new page-table entries are created, this is only done using the
2197  * fault() callback, and never using the value of vma->vm_page_prot,
2198  * except for page-table entries that point to anonymous pages as the result
2199  * of COW.
2200  *
2201  * Context: Process context.  May allocate using %GFP_KERNEL.
2202  * Return: vm_fault_t value.
2203  */
2204 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2205 			unsigned long pfn, pgprot_t pgprot)
2206 {
2207 	/*
2208 	 * Technically, architectures with pte_special can avoid all these
2209 	 * restrictions (same for remap_pfn_range).  However we would like
2210 	 * consistency in testing and feature parity among all, so we should
2211 	 * try to keep these invariants in place for everybody.
2212 	 */
2213 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2214 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2215 						(VM_PFNMAP|VM_MIXEDMAP));
2216 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2217 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2218 
2219 	if (addr < vma->vm_start || addr >= vma->vm_end)
2220 		return VM_FAULT_SIGBUS;
2221 
2222 	if (!pfn_modify_allowed(pfn, pgprot))
2223 		return VM_FAULT_SIGBUS;
2224 
2225 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2226 
2227 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2228 			false);
2229 }
2230 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2231 
2232 /**
2233  * vmf_insert_pfn - insert single pfn into user vma
2234  * @vma: user vma to map to
2235  * @addr: target user address of this page
2236  * @pfn: source kernel pfn
2237  *
2238  * Similar to vm_insert_page, this allows drivers to insert individual pages
2239  * they've allocated into a user vma. Same comments apply.
2240  *
2241  * This function should only be called from a vm_ops->fault handler, and
2242  * in that case the handler should return the result of this function.
2243  *
2244  * vma cannot be a COW mapping.
2245  *
2246  * As this is called only for pages that do not currently exist, we
2247  * do not need to flush old virtual caches or the TLB.
2248  *
2249  * Context: Process context.  May allocate using %GFP_KERNEL.
2250  * Return: vm_fault_t value.
2251  */
2252 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2253 			unsigned long pfn)
2254 {
2255 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2256 }
2257 EXPORT_SYMBOL(vmf_insert_pfn);
2258 
2259 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2260 {
2261 	/* these checks mirror the abort conditions in vm_normal_page */
2262 	if (vma->vm_flags & VM_MIXEDMAP)
2263 		return true;
2264 	if (pfn_t_devmap(pfn))
2265 		return true;
2266 	if (pfn_t_special(pfn))
2267 		return true;
2268 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2269 		return true;
2270 	return false;
2271 }
2272 
2273 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2274 		unsigned long addr, pfn_t pfn, bool mkwrite)
2275 {
2276 	pgprot_t pgprot = vma->vm_page_prot;
2277 	int err;
2278 
2279 	BUG_ON(!vm_mixed_ok(vma, pfn));
2280 
2281 	if (addr < vma->vm_start || addr >= vma->vm_end)
2282 		return VM_FAULT_SIGBUS;
2283 
2284 	track_pfn_insert(vma, &pgprot, pfn);
2285 
2286 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2287 		return VM_FAULT_SIGBUS;
2288 
2289 	/*
2290 	 * If we don't have pte special, then we have to use the pfn_valid()
2291 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2292 	 * refcount the page if pfn_valid is true (hence insert_page rather
2293 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2294 	 * without pte special, it would there be refcounted as a normal page.
2295 	 */
2296 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2297 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2298 		struct page *page;
2299 
2300 		/*
2301 		 * At this point we are committed to insert_page()
2302 		 * regardless of whether the caller specified flags that
2303 		 * result in pfn_t_has_page() == false.
2304 		 */
2305 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2306 		err = insert_page(vma, addr, page, pgprot);
2307 	} else {
2308 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2309 	}
2310 
2311 	if (err == -ENOMEM)
2312 		return VM_FAULT_OOM;
2313 	if (err < 0 && err != -EBUSY)
2314 		return VM_FAULT_SIGBUS;
2315 
2316 	return VM_FAULT_NOPAGE;
2317 }
2318 
2319 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2320 		pfn_t pfn)
2321 {
2322 	return __vm_insert_mixed(vma, addr, pfn, false);
2323 }
2324 EXPORT_SYMBOL(vmf_insert_mixed);
2325 
2326 /*
2327  *  If the insertion of PTE failed because someone else already added a
2328  *  different entry in the mean time, we treat that as success as we assume
2329  *  the same entry was actually inserted.
2330  */
2331 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2332 		unsigned long addr, pfn_t pfn)
2333 {
2334 	return __vm_insert_mixed(vma, addr, pfn, true);
2335 }
2336 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2337 
2338 /*
2339  * maps a range of physical memory into the requested pages. the old
2340  * mappings are removed. any references to nonexistent pages results
2341  * in null mappings (currently treated as "copy-on-access")
2342  */
2343 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2344 			unsigned long addr, unsigned long end,
2345 			unsigned long pfn, pgprot_t prot)
2346 {
2347 	pte_t *pte, *mapped_pte;
2348 	spinlock_t *ptl;
2349 	int err = 0;
2350 
2351 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2352 	if (!pte)
2353 		return -ENOMEM;
2354 	arch_enter_lazy_mmu_mode();
2355 	do {
2356 		BUG_ON(!pte_none(ptep_get(pte)));
2357 		if (!pfn_modify_allowed(pfn, prot)) {
2358 			err = -EACCES;
2359 			break;
2360 		}
2361 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2362 		pfn++;
2363 	} while (pte++, addr += PAGE_SIZE, addr != end);
2364 	arch_leave_lazy_mmu_mode();
2365 	pte_unmap_unlock(mapped_pte, ptl);
2366 	return err;
2367 }
2368 
2369 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2370 			unsigned long addr, unsigned long end,
2371 			unsigned long pfn, pgprot_t prot)
2372 {
2373 	pmd_t *pmd;
2374 	unsigned long next;
2375 	int err;
2376 
2377 	pfn -= addr >> PAGE_SHIFT;
2378 	pmd = pmd_alloc(mm, pud, addr);
2379 	if (!pmd)
2380 		return -ENOMEM;
2381 	VM_BUG_ON(pmd_trans_huge(*pmd));
2382 	do {
2383 		next = pmd_addr_end(addr, end);
2384 		err = remap_pte_range(mm, pmd, addr, next,
2385 				pfn + (addr >> PAGE_SHIFT), prot);
2386 		if (err)
2387 			return err;
2388 	} while (pmd++, addr = next, addr != end);
2389 	return 0;
2390 }
2391 
2392 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2393 			unsigned long addr, unsigned long end,
2394 			unsigned long pfn, pgprot_t prot)
2395 {
2396 	pud_t *pud;
2397 	unsigned long next;
2398 	int err;
2399 
2400 	pfn -= addr >> PAGE_SHIFT;
2401 	pud = pud_alloc(mm, p4d, addr);
2402 	if (!pud)
2403 		return -ENOMEM;
2404 	do {
2405 		next = pud_addr_end(addr, end);
2406 		err = remap_pmd_range(mm, pud, addr, next,
2407 				pfn + (addr >> PAGE_SHIFT), prot);
2408 		if (err)
2409 			return err;
2410 	} while (pud++, addr = next, addr != end);
2411 	return 0;
2412 }
2413 
2414 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2415 			unsigned long addr, unsigned long end,
2416 			unsigned long pfn, pgprot_t prot)
2417 {
2418 	p4d_t *p4d;
2419 	unsigned long next;
2420 	int err;
2421 
2422 	pfn -= addr >> PAGE_SHIFT;
2423 	p4d = p4d_alloc(mm, pgd, addr);
2424 	if (!p4d)
2425 		return -ENOMEM;
2426 	do {
2427 		next = p4d_addr_end(addr, end);
2428 		err = remap_pud_range(mm, p4d, addr, next,
2429 				pfn + (addr >> PAGE_SHIFT), prot);
2430 		if (err)
2431 			return err;
2432 	} while (p4d++, addr = next, addr != end);
2433 	return 0;
2434 }
2435 
2436 /*
2437  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2438  * must have pre-validated the caching bits of the pgprot_t.
2439  */
2440 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2441 		unsigned long pfn, unsigned long size, pgprot_t prot)
2442 {
2443 	pgd_t *pgd;
2444 	unsigned long next;
2445 	unsigned long end = addr + PAGE_ALIGN(size);
2446 	struct mm_struct *mm = vma->vm_mm;
2447 	int err;
2448 
2449 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2450 		return -EINVAL;
2451 
2452 	/*
2453 	 * Physically remapped pages are special. Tell the
2454 	 * rest of the world about it:
2455 	 *   VM_IO tells people not to look at these pages
2456 	 *	(accesses can have side effects).
2457 	 *   VM_PFNMAP tells the core MM that the base pages are just
2458 	 *	raw PFN mappings, and do not have a "struct page" associated
2459 	 *	with them.
2460 	 *   VM_DONTEXPAND
2461 	 *      Disable vma merging and expanding with mremap().
2462 	 *   VM_DONTDUMP
2463 	 *      Omit vma from core dump, even when VM_IO turned off.
2464 	 *
2465 	 * There's a horrible special case to handle copy-on-write
2466 	 * behaviour that some programs depend on. We mark the "original"
2467 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2468 	 * See vm_normal_page() for details.
2469 	 */
2470 	if (is_cow_mapping(vma->vm_flags)) {
2471 		if (addr != vma->vm_start || end != vma->vm_end)
2472 			return -EINVAL;
2473 		vma->vm_pgoff = pfn;
2474 	}
2475 
2476 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2477 
2478 	BUG_ON(addr >= end);
2479 	pfn -= addr >> PAGE_SHIFT;
2480 	pgd = pgd_offset(mm, addr);
2481 	flush_cache_range(vma, addr, end);
2482 	do {
2483 		next = pgd_addr_end(addr, end);
2484 		err = remap_p4d_range(mm, pgd, addr, next,
2485 				pfn + (addr >> PAGE_SHIFT), prot);
2486 		if (err)
2487 			return err;
2488 	} while (pgd++, addr = next, addr != end);
2489 
2490 	return 0;
2491 }
2492 
2493 /**
2494  * remap_pfn_range - remap kernel memory to userspace
2495  * @vma: user vma to map to
2496  * @addr: target page aligned user address to start at
2497  * @pfn: page frame number of kernel physical memory address
2498  * @size: size of mapping area
2499  * @prot: page protection flags for this mapping
2500  *
2501  * Note: this is only safe if the mm semaphore is held when called.
2502  *
2503  * Return: %0 on success, negative error code otherwise.
2504  */
2505 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2506 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2507 {
2508 	int err;
2509 
2510 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2511 	if (err)
2512 		return -EINVAL;
2513 
2514 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2515 	if (err)
2516 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2517 	return err;
2518 }
2519 EXPORT_SYMBOL(remap_pfn_range);
2520 
2521 /**
2522  * vm_iomap_memory - remap memory to userspace
2523  * @vma: user vma to map to
2524  * @start: start of the physical memory to be mapped
2525  * @len: size of area
2526  *
2527  * This is a simplified io_remap_pfn_range() for common driver use. The
2528  * driver just needs to give us the physical memory range to be mapped,
2529  * we'll figure out the rest from the vma information.
2530  *
2531  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2532  * whatever write-combining details or similar.
2533  *
2534  * Return: %0 on success, negative error code otherwise.
2535  */
2536 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2537 {
2538 	unsigned long vm_len, pfn, pages;
2539 
2540 	/* Check that the physical memory area passed in looks valid */
2541 	if (start + len < start)
2542 		return -EINVAL;
2543 	/*
2544 	 * You *really* shouldn't map things that aren't page-aligned,
2545 	 * but we've historically allowed it because IO memory might
2546 	 * just have smaller alignment.
2547 	 */
2548 	len += start & ~PAGE_MASK;
2549 	pfn = start >> PAGE_SHIFT;
2550 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2551 	if (pfn + pages < pfn)
2552 		return -EINVAL;
2553 
2554 	/* We start the mapping 'vm_pgoff' pages into the area */
2555 	if (vma->vm_pgoff > pages)
2556 		return -EINVAL;
2557 	pfn += vma->vm_pgoff;
2558 	pages -= vma->vm_pgoff;
2559 
2560 	/* Can we fit all of the mapping? */
2561 	vm_len = vma->vm_end - vma->vm_start;
2562 	if (vm_len >> PAGE_SHIFT > pages)
2563 		return -EINVAL;
2564 
2565 	/* Ok, let it rip */
2566 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2567 }
2568 EXPORT_SYMBOL(vm_iomap_memory);
2569 
2570 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2571 				     unsigned long addr, unsigned long end,
2572 				     pte_fn_t fn, void *data, bool create,
2573 				     pgtbl_mod_mask *mask)
2574 {
2575 	pte_t *pte, *mapped_pte;
2576 	int err = 0;
2577 	spinlock_t *ptl;
2578 
2579 	if (create) {
2580 		mapped_pte = pte = (mm == &init_mm) ?
2581 			pte_alloc_kernel_track(pmd, addr, mask) :
2582 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2583 		if (!pte)
2584 			return -ENOMEM;
2585 	} else {
2586 		mapped_pte = pte = (mm == &init_mm) ?
2587 			pte_offset_kernel(pmd, addr) :
2588 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2589 		if (!pte)
2590 			return -EINVAL;
2591 	}
2592 
2593 	arch_enter_lazy_mmu_mode();
2594 
2595 	if (fn) {
2596 		do {
2597 			if (create || !pte_none(ptep_get(pte))) {
2598 				err = fn(pte++, addr, data);
2599 				if (err)
2600 					break;
2601 			}
2602 		} while (addr += PAGE_SIZE, addr != end);
2603 	}
2604 	*mask |= PGTBL_PTE_MODIFIED;
2605 
2606 	arch_leave_lazy_mmu_mode();
2607 
2608 	if (mm != &init_mm)
2609 		pte_unmap_unlock(mapped_pte, ptl);
2610 	return err;
2611 }
2612 
2613 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2614 				     unsigned long addr, unsigned long end,
2615 				     pte_fn_t fn, void *data, bool create,
2616 				     pgtbl_mod_mask *mask)
2617 {
2618 	pmd_t *pmd;
2619 	unsigned long next;
2620 	int err = 0;
2621 
2622 	BUG_ON(pud_huge(*pud));
2623 
2624 	if (create) {
2625 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2626 		if (!pmd)
2627 			return -ENOMEM;
2628 	} else {
2629 		pmd = pmd_offset(pud, addr);
2630 	}
2631 	do {
2632 		next = pmd_addr_end(addr, end);
2633 		if (pmd_none(*pmd) && !create)
2634 			continue;
2635 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2636 			return -EINVAL;
2637 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2638 			if (!create)
2639 				continue;
2640 			pmd_clear_bad(pmd);
2641 		}
2642 		err = apply_to_pte_range(mm, pmd, addr, next,
2643 					 fn, data, create, mask);
2644 		if (err)
2645 			break;
2646 	} while (pmd++, addr = next, addr != end);
2647 
2648 	return err;
2649 }
2650 
2651 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2652 				     unsigned long addr, unsigned long end,
2653 				     pte_fn_t fn, void *data, bool create,
2654 				     pgtbl_mod_mask *mask)
2655 {
2656 	pud_t *pud;
2657 	unsigned long next;
2658 	int err = 0;
2659 
2660 	if (create) {
2661 		pud = pud_alloc_track(mm, p4d, addr, mask);
2662 		if (!pud)
2663 			return -ENOMEM;
2664 	} else {
2665 		pud = pud_offset(p4d, addr);
2666 	}
2667 	do {
2668 		next = pud_addr_end(addr, end);
2669 		if (pud_none(*pud) && !create)
2670 			continue;
2671 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2672 			return -EINVAL;
2673 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2674 			if (!create)
2675 				continue;
2676 			pud_clear_bad(pud);
2677 		}
2678 		err = apply_to_pmd_range(mm, pud, addr, next,
2679 					 fn, data, create, mask);
2680 		if (err)
2681 			break;
2682 	} while (pud++, addr = next, addr != end);
2683 
2684 	return err;
2685 }
2686 
2687 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2688 				     unsigned long addr, unsigned long end,
2689 				     pte_fn_t fn, void *data, bool create,
2690 				     pgtbl_mod_mask *mask)
2691 {
2692 	p4d_t *p4d;
2693 	unsigned long next;
2694 	int err = 0;
2695 
2696 	if (create) {
2697 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2698 		if (!p4d)
2699 			return -ENOMEM;
2700 	} else {
2701 		p4d = p4d_offset(pgd, addr);
2702 	}
2703 	do {
2704 		next = p4d_addr_end(addr, end);
2705 		if (p4d_none(*p4d) && !create)
2706 			continue;
2707 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2708 			return -EINVAL;
2709 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2710 			if (!create)
2711 				continue;
2712 			p4d_clear_bad(p4d);
2713 		}
2714 		err = apply_to_pud_range(mm, p4d, addr, next,
2715 					 fn, data, create, mask);
2716 		if (err)
2717 			break;
2718 	} while (p4d++, addr = next, addr != end);
2719 
2720 	return err;
2721 }
2722 
2723 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2724 				 unsigned long size, pte_fn_t fn,
2725 				 void *data, bool create)
2726 {
2727 	pgd_t *pgd;
2728 	unsigned long start = addr, next;
2729 	unsigned long end = addr + size;
2730 	pgtbl_mod_mask mask = 0;
2731 	int err = 0;
2732 
2733 	if (WARN_ON(addr >= end))
2734 		return -EINVAL;
2735 
2736 	pgd = pgd_offset(mm, addr);
2737 	do {
2738 		next = pgd_addr_end(addr, end);
2739 		if (pgd_none(*pgd) && !create)
2740 			continue;
2741 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2742 			return -EINVAL;
2743 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2744 			if (!create)
2745 				continue;
2746 			pgd_clear_bad(pgd);
2747 		}
2748 		err = apply_to_p4d_range(mm, pgd, addr, next,
2749 					 fn, data, create, &mask);
2750 		if (err)
2751 			break;
2752 	} while (pgd++, addr = next, addr != end);
2753 
2754 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2755 		arch_sync_kernel_mappings(start, start + size);
2756 
2757 	return err;
2758 }
2759 
2760 /*
2761  * Scan a region of virtual memory, filling in page tables as necessary
2762  * and calling a provided function on each leaf page table.
2763  */
2764 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2765 			unsigned long size, pte_fn_t fn, void *data)
2766 {
2767 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2768 }
2769 EXPORT_SYMBOL_GPL(apply_to_page_range);
2770 
2771 /*
2772  * Scan a region of virtual memory, calling a provided function on
2773  * each leaf page table where it exists.
2774  *
2775  * Unlike apply_to_page_range, this does _not_ fill in page tables
2776  * where they are absent.
2777  */
2778 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2779 				 unsigned long size, pte_fn_t fn, void *data)
2780 {
2781 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2782 }
2783 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2784 
2785 /*
2786  * handle_pte_fault chooses page fault handler according to an entry which was
2787  * read non-atomically.  Before making any commitment, on those architectures
2788  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2789  * parts, do_swap_page must check under lock before unmapping the pte and
2790  * proceeding (but do_wp_page is only called after already making such a check;
2791  * and do_anonymous_page can safely check later on).
2792  */
2793 static inline int pte_unmap_same(struct vm_fault *vmf)
2794 {
2795 	int same = 1;
2796 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2797 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2798 		spin_lock(vmf->ptl);
2799 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2800 		spin_unlock(vmf->ptl);
2801 	}
2802 #endif
2803 	pte_unmap(vmf->pte);
2804 	vmf->pte = NULL;
2805 	return same;
2806 }
2807 
2808 /*
2809  * Return:
2810  *	0:		copied succeeded
2811  *	-EHWPOISON:	copy failed due to hwpoison in source page
2812  *	-EAGAIN:	copied failed (some other reason)
2813  */
2814 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2815 				      struct vm_fault *vmf)
2816 {
2817 	int ret;
2818 	void *kaddr;
2819 	void __user *uaddr;
2820 	struct vm_area_struct *vma = vmf->vma;
2821 	struct mm_struct *mm = vma->vm_mm;
2822 	unsigned long addr = vmf->address;
2823 
2824 	if (likely(src)) {
2825 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2826 			memory_failure_queue(page_to_pfn(src), 0);
2827 			return -EHWPOISON;
2828 		}
2829 		return 0;
2830 	}
2831 
2832 	/*
2833 	 * If the source page was a PFN mapping, we don't have
2834 	 * a "struct page" for it. We do a best-effort copy by
2835 	 * just copying from the original user address. If that
2836 	 * fails, we just zero-fill it. Live with it.
2837 	 */
2838 	kaddr = kmap_atomic(dst);
2839 	uaddr = (void __user *)(addr & PAGE_MASK);
2840 
2841 	/*
2842 	 * On architectures with software "accessed" bits, we would
2843 	 * take a double page fault, so mark it accessed here.
2844 	 */
2845 	vmf->pte = NULL;
2846 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2847 		pte_t entry;
2848 
2849 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2850 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2851 			/*
2852 			 * Other thread has already handled the fault
2853 			 * and update local tlb only
2854 			 */
2855 			if (vmf->pte)
2856 				update_mmu_tlb(vma, addr, vmf->pte);
2857 			ret = -EAGAIN;
2858 			goto pte_unlock;
2859 		}
2860 
2861 		entry = pte_mkyoung(vmf->orig_pte);
2862 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2863 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2864 	}
2865 
2866 	/*
2867 	 * This really shouldn't fail, because the page is there
2868 	 * in the page tables. But it might just be unreadable,
2869 	 * in which case we just give up and fill the result with
2870 	 * zeroes.
2871 	 */
2872 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2873 		if (vmf->pte)
2874 			goto warn;
2875 
2876 		/* Re-validate under PTL if the page is still mapped */
2877 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2878 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2879 			/* The PTE changed under us, update local tlb */
2880 			if (vmf->pte)
2881 				update_mmu_tlb(vma, addr, vmf->pte);
2882 			ret = -EAGAIN;
2883 			goto pte_unlock;
2884 		}
2885 
2886 		/*
2887 		 * The same page can be mapped back since last copy attempt.
2888 		 * Try to copy again under PTL.
2889 		 */
2890 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2891 			/*
2892 			 * Give a warn in case there can be some obscure
2893 			 * use-case
2894 			 */
2895 warn:
2896 			WARN_ON_ONCE(1);
2897 			clear_page(kaddr);
2898 		}
2899 	}
2900 
2901 	ret = 0;
2902 
2903 pte_unlock:
2904 	if (vmf->pte)
2905 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2906 	kunmap_atomic(kaddr);
2907 	flush_dcache_page(dst);
2908 
2909 	return ret;
2910 }
2911 
2912 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2913 {
2914 	struct file *vm_file = vma->vm_file;
2915 
2916 	if (vm_file)
2917 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2918 
2919 	/*
2920 	 * Special mappings (e.g. VDSO) do not have any file so fake
2921 	 * a default GFP_KERNEL for them.
2922 	 */
2923 	return GFP_KERNEL;
2924 }
2925 
2926 /*
2927  * Notify the address space that the page is about to become writable so that
2928  * it can prohibit this or wait for the page to get into an appropriate state.
2929  *
2930  * We do this without the lock held, so that it can sleep if it needs to.
2931  */
2932 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2933 {
2934 	vm_fault_t ret;
2935 	unsigned int old_flags = vmf->flags;
2936 
2937 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2938 
2939 	if (vmf->vma->vm_file &&
2940 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2941 		return VM_FAULT_SIGBUS;
2942 
2943 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2944 	/* Restore original flags so that caller is not surprised */
2945 	vmf->flags = old_flags;
2946 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2947 		return ret;
2948 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2949 		folio_lock(folio);
2950 		if (!folio->mapping) {
2951 			folio_unlock(folio);
2952 			return 0; /* retry */
2953 		}
2954 		ret |= VM_FAULT_LOCKED;
2955 	} else
2956 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2957 	return ret;
2958 }
2959 
2960 /*
2961  * Handle dirtying of a page in shared file mapping on a write fault.
2962  *
2963  * The function expects the page to be locked and unlocks it.
2964  */
2965 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2966 {
2967 	struct vm_area_struct *vma = vmf->vma;
2968 	struct address_space *mapping;
2969 	struct folio *folio = page_folio(vmf->page);
2970 	bool dirtied;
2971 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2972 
2973 	dirtied = folio_mark_dirty(folio);
2974 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2975 	/*
2976 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2977 	 * by truncate after folio_unlock().   The address_space itself remains
2978 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2979 	 * release semantics to prevent the compiler from undoing this copying.
2980 	 */
2981 	mapping = folio_raw_mapping(folio);
2982 	folio_unlock(folio);
2983 
2984 	if (!page_mkwrite)
2985 		file_update_time(vma->vm_file);
2986 
2987 	/*
2988 	 * Throttle page dirtying rate down to writeback speed.
2989 	 *
2990 	 * mapping may be NULL here because some device drivers do not
2991 	 * set page.mapping but still dirty their pages
2992 	 *
2993 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2994 	 * is pinning the mapping, as per above.
2995 	 */
2996 	if ((dirtied || page_mkwrite) && mapping) {
2997 		struct file *fpin;
2998 
2999 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3000 		balance_dirty_pages_ratelimited(mapping);
3001 		if (fpin) {
3002 			fput(fpin);
3003 			return VM_FAULT_COMPLETED;
3004 		}
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 /*
3011  * Handle write page faults for pages that can be reused in the current vma
3012  *
3013  * This can happen either due to the mapping being with the VM_SHARED flag,
3014  * or due to us being the last reference standing to the page. In either
3015  * case, all we need to do here is to mark the page as writable and update
3016  * any related book-keeping.
3017  */
3018 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3019 	__releases(vmf->ptl)
3020 {
3021 	struct vm_area_struct *vma = vmf->vma;
3022 	pte_t entry;
3023 
3024 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3025 
3026 	if (folio) {
3027 		VM_BUG_ON(folio_test_anon(folio) &&
3028 			  !PageAnonExclusive(vmf->page));
3029 		/*
3030 		 * Clear the folio's cpupid information as the existing
3031 		 * information potentially belongs to a now completely
3032 		 * unrelated process.
3033 		 */
3034 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3035 	}
3036 
3037 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3038 	entry = pte_mkyoung(vmf->orig_pte);
3039 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3040 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3041 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3042 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3043 	count_vm_event(PGREUSE);
3044 }
3045 
3046 /*
3047  * We could add a bitflag somewhere, but for now, we know that all
3048  * vm_ops that have a ->map_pages have been audited and don't need
3049  * the mmap_lock to be held.
3050  */
3051 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3052 {
3053 	struct vm_area_struct *vma = vmf->vma;
3054 
3055 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3056 		return 0;
3057 	vma_end_read(vma);
3058 	return VM_FAULT_RETRY;
3059 }
3060 
3061 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3062 {
3063 	struct vm_area_struct *vma = vmf->vma;
3064 
3065 	if (likely(vma->anon_vma))
3066 		return 0;
3067 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3068 		vma_end_read(vma);
3069 		return VM_FAULT_RETRY;
3070 	}
3071 	if (__anon_vma_prepare(vma))
3072 		return VM_FAULT_OOM;
3073 	return 0;
3074 }
3075 
3076 /*
3077  * Handle the case of a page which we actually need to copy to a new page,
3078  * either due to COW or unsharing.
3079  *
3080  * Called with mmap_lock locked and the old page referenced, but
3081  * without the ptl held.
3082  *
3083  * High level logic flow:
3084  *
3085  * - Allocate a page, copy the content of the old page to the new one.
3086  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3087  * - Take the PTL. If the pte changed, bail out and release the allocated page
3088  * - If the pte is still the way we remember it, update the page table and all
3089  *   relevant references. This includes dropping the reference the page-table
3090  *   held to the old page, as well as updating the rmap.
3091  * - In any case, unlock the PTL and drop the reference we took to the old page.
3092  */
3093 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3094 {
3095 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3096 	struct vm_area_struct *vma = vmf->vma;
3097 	struct mm_struct *mm = vma->vm_mm;
3098 	struct folio *old_folio = NULL;
3099 	struct folio *new_folio = NULL;
3100 	pte_t entry;
3101 	int page_copied = 0;
3102 	struct mmu_notifier_range range;
3103 	vm_fault_t ret;
3104 
3105 	delayacct_wpcopy_start();
3106 
3107 	if (vmf->page)
3108 		old_folio = page_folio(vmf->page);
3109 	ret = vmf_anon_prepare(vmf);
3110 	if (unlikely(ret))
3111 		goto out;
3112 
3113 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3114 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3115 		if (!new_folio)
3116 			goto oom;
3117 	} else {
3118 		int err;
3119 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3120 				vmf->address, false);
3121 		if (!new_folio)
3122 			goto oom;
3123 
3124 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3125 		if (err) {
3126 			/*
3127 			 * COW failed, if the fault was solved by other,
3128 			 * it's fine. If not, userspace would re-fault on
3129 			 * the same address and we will handle the fault
3130 			 * from the second attempt.
3131 			 * The -EHWPOISON case will not be retried.
3132 			 */
3133 			folio_put(new_folio);
3134 			if (old_folio)
3135 				folio_put(old_folio);
3136 
3137 			delayacct_wpcopy_end();
3138 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3139 		}
3140 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3141 	}
3142 
3143 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3144 		goto oom_free_new;
3145 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3146 
3147 	__folio_mark_uptodate(new_folio);
3148 
3149 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3150 				vmf->address & PAGE_MASK,
3151 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3152 	mmu_notifier_invalidate_range_start(&range);
3153 
3154 	/*
3155 	 * Re-check the pte - we dropped the lock
3156 	 */
3157 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3158 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3159 		if (old_folio) {
3160 			if (!folio_test_anon(old_folio)) {
3161 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3162 				inc_mm_counter(mm, MM_ANONPAGES);
3163 			}
3164 		} else {
3165 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3166 			inc_mm_counter(mm, MM_ANONPAGES);
3167 		}
3168 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3169 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3170 		entry = pte_sw_mkyoung(entry);
3171 		if (unlikely(unshare)) {
3172 			if (pte_soft_dirty(vmf->orig_pte))
3173 				entry = pte_mksoft_dirty(entry);
3174 			if (pte_uffd_wp(vmf->orig_pte))
3175 				entry = pte_mkuffd_wp(entry);
3176 		} else {
3177 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3178 		}
3179 
3180 		/*
3181 		 * Clear the pte entry and flush it first, before updating the
3182 		 * pte with the new entry, to keep TLBs on different CPUs in
3183 		 * sync. This code used to set the new PTE then flush TLBs, but
3184 		 * that left a window where the new PTE could be loaded into
3185 		 * some TLBs while the old PTE remains in others.
3186 		 */
3187 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3188 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3189 		folio_add_lru_vma(new_folio, vma);
3190 		/*
3191 		 * We call the notify macro here because, when using secondary
3192 		 * mmu page tables (such as kvm shadow page tables), we want the
3193 		 * new page to be mapped directly into the secondary page table.
3194 		 */
3195 		BUG_ON(unshare && pte_write(entry));
3196 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3197 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3198 		if (old_folio) {
3199 			/*
3200 			 * Only after switching the pte to the new page may
3201 			 * we remove the mapcount here. Otherwise another
3202 			 * process may come and find the rmap count decremented
3203 			 * before the pte is switched to the new page, and
3204 			 * "reuse" the old page writing into it while our pte
3205 			 * here still points into it and can be read by other
3206 			 * threads.
3207 			 *
3208 			 * The critical issue is to order this
3209 			 * page_remove_rmap with the ptp_clear_flush above.
3210 			 * Those stores are ordered by (if nothing else,)
3211 			 * the barrier present in the atomic_add_negative
3212 			 * in page_remove_rmap.
3213 			 *
3214 			 * Then the TLB flush in ptep_clear_flush ensures that
3215 			 * no process can access the old page before the
3216 			 * decremented mapcount is visible. And the old page
3217 			 * cannot be reused until after the decremented
3218 			 * mapcount is visible. So transitively, TLBs to
3219 			 * old page will be flushed before it can be reused.
3220 			 */
3221 			page_remove_rmap(vmf->page, vma, false);
3222 		}
3223 
3224 		/* Free the old page.. */
3225 		new_folio = old_folio;
3226 		page_copied = 1;
3227 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3228 	} else if (vmf->pte) {
3229 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3230 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3231 	}
3232 
3233 	mmu_notifier_invalidate_range_end(&range);
3234 
3235 	if (new_folio)
3236 		folio_put(new_folio);
3237 	if (old_folio) {
3238 		if (page_copied)
3239 			free_swap_cache(&old_folio->page);
3240 		folio_put(old_folio);
3241 	}
3242 
3243 	delayacct_wpcopy_end();
3244 	return 0;
3245 oom_free_new:
3246 	folio_put(new_folio);
3247 oom:
3248 	ret = VM_FAULT_OOM;
3249 out:
3250 	if (old_folio)
3251 		folio_put(old_folio);
3252 
3253 	delayacct_wpcopy_end();
3254 	return ret;
3255 }
3256 
3257 /**
3258  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3259  *			  writeable once the page is prepared
3260  *
3261  * @vmf: structure describing the fault
3262  * @folio: the folio of vmf->page
3263  *
3264  * This function handles all that is needed to finish a write page fault in a
3265  * shared mapping due to PTE being read-only once the mapped page is prepared.
3266  * It handles locking of PTE and modifying it.
3267  *
3268  * The function expects the page to be locked or other protection against
3269  * concurrent faults / writeback (such as DAX radix tree locks).
3270  *
3271  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3272  * we acquired PTE lock.
3273  */
3274 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3275 {
3276 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3277 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3278 				       &vmf->ptl);
3279 	if (!vmf->pte)
3280 		return VM_FAULT_NOPAGE;
3281 	/*
3282 	 * We might have raced with another page fault while we released the
3283 	 * pte_offset_map_lock.
3284 	 */
3285 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3286 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3287 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3288 		return VM_FAULT_NOPAGE;
3289 	}
3290 	wp_page_reuse(vmf, folio);
3291 	return 0;
3292 }
3293 
3294 /*
3295  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3296  * mapping
3297  */
3298 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3299 {
3300 	struct vm_area_struct *vma = vmf->vma;
3301 
3302 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3303 		vm_fault_t ret;
3304 
3305 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 		ret = vmf_can_call_fault(vmf);
3307 		if (ret)
3308 			return ret;
3309 
3310 		vmf->flags |= FAULT_FLAG_MKWRITE;
3311 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3312 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3313 			return ret;
3314 		return finish_mkwrite_fault(vmf, NULL);
3315 	}
3316 	wp_page_reuse(vmf, NULL);
3317 	return 0;
3318 }
3319 
3320 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3321 	__releases(vmf->ptl)
3322 {
3323 	struct vm_area_struct *vma = vmf->vma;
3324 	vm_fault_t ret = 0;
3325 
3326 	folio_get(folio);
3327 
3328 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3329 		vm_fault_t tmp;
3330 
3331 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3332 		tmp = vmf_can_call_fault(vmf);
3333 		if (tmp) {
3334 			folio_put(folio);
3335 			return tmp;
3336 		}
3337 
3338 		tmp = do_page_mkwrite(vmf, folio);
3339 		if (unlikely(!tmp || (tmp &
3340 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3341 			folio_put(folio);
3342 			return tmp;
3343 		}
3344 		tmp = finish_mkwrite_fault(vmf, folio);
3345 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3346 			folio_unlock(folio);
3347 			folio_put(folio);
3348 			return tmp;
3349 		}
3350 	} else {
3351 		wp_page_reuse(vmf, folio);
3352 		folio_lock(folio);
3353 	}
3354 	ret |= fault_dirty_shared_page(vmf);
3355 	folio_put(folio);
3356 
3357 	return ret;
3358 }
3359 
3360 static bool wp_can_reuse_anon_folio(struct folio *folio,
3361 				    struct vm_area_struct *vma)
3362 {
3363 	/*
3364 	 * We have to verify under folio lock: these early checks are
3365 	 * just an optimization to avoid locking the folio and freeing
3366 	 * the swapcache if there is little hope that we can reuse.
3367 	 *
3368 	 * KSM doesn't necessarily raise the folio refcount.
3369 	 */
3370 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3371 		return false;
3372 	if (!folio_test_lru(folio))
3373 		/*
3374 		 * We cannot easily detect+handle references from
3375 		 * remote LRU caches or references to LRU folios.
3376 		 */
3377 		lru_add_drain();
3378 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3379 		return false;
3380 	if (!folio_trylock(folio))
3381 		return false;
3382 	if (folio_test_swapcache(folio))
3383 		folio_free_swap(folio);
3384 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3385 		folio_unlock(folio);
3386 		return false;
3387 	}
3388 	/*
3389 	 * Ok, we've got the only folio reference from our mapping
3390 	 * and the folio is locked, it's dark out, and we're wearing
3391 	 * sunglasses. Hit it.
3392 	 */
3393 	folio_move_anon_rmap(folio, vma);
3394 	folio_unlock(folio);
3395 	return true;
3396 }
3397 
3398 /*
3399  * This routine handles present pages, when
3400  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3401  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3402  *   (FAULT_FLAG_UNSHARE)
3403  *
3404  * It is done by copying the page to a new address and decrementing the
3405  * shared-page counter for the old page.
3406  *
3407  * Note that this routine assumes that the protection checks have been
3408  * done by the caller (the low-level page fault routine in most cases).
3409  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3410  * done any necessary COW.
3411  *
3412  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3413  * though the page will change only once the write actually happens. This
3414  * avoids a few races, and potentially makes it more efficient.
3415  *
3416  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3417  * but allow concurrent faults), with pte both mapped and locked.
3418  * We return with mmap_lock still held, but pte unmapped and unlocked.
3419  */
3420 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3421 	__releases(vmf->ptl)
3422 {
3423 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3424 	struct vm_area_struct *vma = vmf->vma;
3425 	struct folio *folio = NULL;
3426 	pte_t pte;
3427 
3428 	if (likely(!unshare)) {
3429 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3430 			if (!userfaultfd_wp_async(vma)) {
3431 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3432 				return handle_userfault(vmf, VM_UFFD_WP);
3433 			}
3434 
3435 			/*
3436 			 * Nothing needed (cache flush, TLB invalidations,
3437 			 * etc.) because we're only removing the uffd-wp bit,
3438 			 * which is completely invisible to the user.
3439 			 */
3440 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3441 
3442 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3443 			/*
3444 			 * Update this to be prepared for following up CoW
3445 			 * handling
3446 			 */
3447 			vmf->orig_pte = pte;
3448 		}
3449 
3450 		/*
3451 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3452 		 * is flushed in this case before copying.
3453 		 */
3454 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3455 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3456 			flush_tlb_page(vmf->vma, vmf->address);
3457 	}
3458 
3459 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3460 
3461 	if (vmf->page)
3462 		folio = page_folio(vmf->page);
3463 
3464 	/*
3465 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3466 	 * FAULT_FLAG_WRITE set at this point.
3467 	 */
3468 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3469 		/*
3470 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3471 		 * VM_PFNMAP VMA.
3472 		 *
3473 		 * We should not cow pages in a shared writeable mapping.
3474 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3475 		 */
3476 		if (!vmf->page)
3477 			return wp_pfn_shared(vmf);
3478 		return wp_page_shared(vmf, folio);
3479 	}
3480 
3481 	/*
3482 	 * Private mapping: create an exclusive anonymous page copy if reuse
3483 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3484 	 *
3485 	 * If we encounter a page that is marked exclusive, we must reuse
3486 	 * the page without further checks.
3487 	 */
3488 	if (folio && folio_test_anon(folio) &&
3489 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3490 		if (!PageAnonExclusive(vmf->page))
3491 			SetPageAnonExclusive(vmf->page);
3492 		if (unlikely(unshare)) {
3493 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3494 			return 0;
3495 		}
3496 		wp_page_reuse(vmf, folio);
3497 		return 0;
3498 	}
3499 	/*
3500 	 * Ok, we need to copy. Oh, well..
3501 	 */
3502 	if (folio)
3503 		folio_get(folio);
3504 
3505 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3506 #ifdef CONFIG_KSM
3507 	if (folio && folio_test_ksm(folio))
3508 		count_vm_event(COW_KSM);
3509 #endif
3510 	return wp_page_copy(vmf);
3511 }
3512 
3513 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3514 		unsigned long start_addr, unsigned long end_addr,
3515 		struct zap_details *details)
3516 {
3517 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3518 }
3519 
3520 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3521 					    pgoff_t first_index,
3522 					    pgoff_t last_index,
3523 					    struct zap_details *details)
3524 {
3525 	struct vm_area_struct *vma;
3526 	pgoff_t vba, vea, zba, zea;
3527 
3528 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3529 		vba = vma->vm_pgoff;
3530 		vea = vba + vma_pages(vma) - 1;
3531 		zba = max(first_index, vba);
3532 		zea = min(last_index, vea);
3533 
3534 		unmap_mapping_range_vma(vma,
3535 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3536 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3537 				details);
3538 	}
3539 }
3540 
3541 /**
3542  * unmap_mapping_folio() - Unmap single folio from processes.
3543  * @folio: The locked folio to be unmapped.
3544  *
3545  * Unmap this folio from any userspace process which still has it mmaped.
3546  * Typically, for efficiency, the range of nearby pages has already been
3547  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3548  * truncation or invalidation holds the lock on a folio, it may find that
3549  * the page has been remapped again: and then uses unmap_mapping_folio()
3550  * to unmap it finally.
3551  */
3552 void unmap_mapping_folio(struct folio *folio)
3553 {
3554 	struct address_space *mapping = folio->mapping;
3555 	struct zap_details details = { };
3556 	pgoff_t	first_index;
3557 	pgoff_t	last_index;
3558 
3559 	VM_BUG_ON(!folio_test_locked(folio));
3560 
3561 	first_index = folio->index;
3562 	last_index = folio_next_index(folio) - 1;
3563 
3564 	details.even_cows = false;
3565 	details.single_folio = folio;
3566 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3567 
3568 	i_mmap_lock_read(mapping);
3569 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3570 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3571 					 last_index, &details);
3572 	i_mmap_unlock_read(mapping);
3573 }
3574 
3575 /**
3576  * unmap_mapping_pages() - Unmap pages from processes.
3577  * @mapping: The address space containing pages to be unmapped.
3578  * @start: Index of first page to be unmapped.
3579  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3580  * @even_cows: Whether to unmap even private COWed pages.
3581  *
3582  * Unmap the pages in this address space from any userspace process which
3583  * has them mmaped.  Generally, you want to remove COWed pages as well when
3584  * a file is being truncated, but not when invalidating pages from the page
3585  * cache.
3586  */
3587 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3588 		pgoff_t nr, bool even_cows)
3589 {
3590 	struct zap_details details = { };
3591 	pgoff_t	first_index = start;
3592 	pgoff_t	last_index = start + nr - 1;
3593 
3594 	details.even_cows = even_cows;
3595 	if (last_index < first_index)
3596 		last_index = ULONG_MAX;
3597 
3598 	i_mmap_lock_read(mapping);
3599 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3600 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3601 					 last_index, &details);
3602 	i_mmap_unlock_read(mapping);
3603 }
3604 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3605 
3606 /**
3607  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3608  * address_space corresponding to the specified byte range in the underlying
3609  * file.
3610  *
3611  * @mapping: the address space containing mmaps to be unmapped.
3612  * @holebegin: byte in first page to unmap, relative to the start of
3613  * the underlying file.  This will be rounded down to a PAGE_SIZE
3614  * boundary.  Note that this is different from truncate_pagecache(), which
3615  * must keep the partial page.  In contrast, we must get rid of
3616  * partial pages.
3617  * @holelen: size of prospective hole in bytes.  This will be rounded
3618  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3619  * end of the file.
3620  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3621  * but 0 when invalidating pagecache, don't throw away private data.
3622  */
3623 void unmap_mapping_range(struct address_space *mapping,
3624 		loff_t const holebegin, loff_t const holelen, int even_cows)
3625 {
3626 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3627 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3628 
3629 	/* Check for overflow. */
3630 	if (sizeof(holelen) > sizeof(hlen)) {
3631 		long long holeend =
3632 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3633 		if (holeend & ~(long long)ULONG_MAX)
3634 			hlen = ULONG_MAX - hba + 1;
3635 	}
3636 
3637 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3638 }
3639 EXPORT_SYMBOL(unmap_mapping_range);
3640 
3641 /*
3642  * Restore a potential device exclusive pte to a working pte entry
3643  */
3644 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3645 {
3646 	struct folio *folio = page_folio(vmf->page);
3647 	struct vm_area_struct *vma = vmf->vma;
3648 	struct mmu_notifier_range range;
3649 	vm_fault_t ret;
3650 
3651 	/*
3652 	 * We need a reference to lock the folio because we don't hold
3653 	 * the PTL so a racing thread can remove the device-exclusive
3654 	 * entry and unmap it. If the folio is free the entry must
3655 	 * have been removed already. If it happens to have already
3656 	 * been re-allocated after being freed all we do is lock and
3657 	 * unlock it.
3658 	 */
3659 	if (!folio_try_get(folio))
3660 		return 0;
3661 
3662 	ret = folio_lock_or_retry(folio, vmf);
3663 	if (ret) {
3664 		folio_put(folio);
3665 		return ret;
3666 	}
3667 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3668 				vma->vm_mm, vmf->address & PAGE_MASK,
3669 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3670 	mmu_notifier_invalidate_range_start(&range);
3671 
3672 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3673 				&vmf->ptl);
3674 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3675 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3676 
3677 	if (vmf->pte)
3678 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3679 	folio_unlock(folio);
3680 	folio_put(folio);
3681 
3682 	mmu_notifier_invalidate_range_end(&range);
3683 	return 0;
3684 }
3685 
3686 static inline bool should_try_to_free_swap(struct folio *folio,
3687 					   struct vm_area_struct *vma,
3688 					   unsigned int fault_flags)
3689 {
3690 	if (!folio_test_swapcache(folio))
3691 		return false;
3692 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3693 	    folio_test_mlocked(folio))
3694 		return true;
3695 	/*
3696 	 * If we want to map a page that's in the swapcache writable, we
3697 	 * have to detect via the refcount if we're really the exclusive
3698 	 * user. Try freeing the swapcache to get rid of the swapcache
3699 	 * reference only in case it's likely that we'll be the exlusive user.
3700 	 */
3701 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3702 		folio_ref_count(folio) == 2;
3703 }
3704 
3705 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3706 {
3707 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3708 				       vmf->address, &vmf->ptl);
3709 	if (!vmf->pte)
3710 		return 0;
3711 	/*
3712 	 * Be careful so that we will only recover a special uffd-wp pte into a
3713 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3714 	 *
3715 	 * This should also cover the case where e.g. the pte changed
3716 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3717 	 * So is_pte_marker() check is not enough to safely drop the pte.
3718 	 */
3719 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3720 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3721 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3722 	return 0;
3723 }
3724 
3725 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3726 {
3727 	if (vma_is_anonymous(vmf->vma))
3728 		return do_anonymous_page(vmf);
3729 	else
3730 		return do_fault(vmf);
3731 }
3732 
3733 /*
3734  * This is actually a page-missing access, but with uffd-wp special pte
3735  * installed.  It means this pte was wr-protected before being unmapped.
3736  */
3737 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3738 {
3739 	/*
3740 	 * Just in case there're leftover special ptes even after the region
3741 	 * got unregistered - we can simply clear them.
3742 	 */
3743 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3744 		return pte_marker_clear(vmf);
3745 
3746 	return do_pte_missing(vmf);
3747 }
3748 
3749 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3750 {
3751 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3752 	unsigned long marker = pte_marker_get(entry);
3753 
3754 	/*
3755 	 * PTE markers should never be empty.  If anything weird happened,
3756 	 * the best thing to do is to kill the process along with its mm.
3757 	 */
3758 	if (WARN_ON_ONCE(!marker))
3759 		return VM_FAULT_SIGBUS;
3760 
3761 	/* Higher priority than uffd-wp when data corrupted */
3762 	if (marker & PTE_MARKER_POISONED)
3763 		return VM_FAULT_HWPOISON;
3764 
3765 	if (pte_marker_entry_uffd_wp(entry))
3766 		return pte_marker_handle_uffd_wp(vmf);
3767 
3768 	/* This is an unknown pte marker */
3769 	return VM_FAULT_SIGBUS;
3770 }
3771 
3772 /*
3773  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3774  * but allow concurrent faults), and pte mapped but not yet locked.
3775  * We return with pte unmapped and unlocked.
3776  *
3777  * We return with the mmap_lock locked or unlocked in the same cases
3778  * as does filemap_fault().
3779  */
3780 vm_fault_t do_swap_page(struct vm_fault *vmf)
3781 {
3782 	struct vm_area_struct *vma = vmf->vma;
3783 	struct folio *swapcache, *folio = NULL;
3784 	struct page *page;
3785 	struct swap_info_struct *si = NULL;
3786 	rmap_t rmap_flags = RMAP_NONE;
3787 	bool exclusive = false;
3788 	swp_entry_t entry;
3789 	pte_t pte;
3790 	vm_fault_t ret = 0;
3791 	void *shadow = NULL;
3792 
3793 	if (!pte_unmap_same(vmf))
3794 		goto out;
3795 
3796 	entry = pte_to_swp_entry(vmf->orig_pte);
3797 	if (unlikely(non_swap_entry(entry))) {
3798 		if (is_migration_entry(entry)) {
3799 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3800 					     vmf->address);
3801 		} else if (is_device_exclusive_entry(entry)) {
3802 			vmf->page = pfn_swap_entry_to_page(entry);
3803 			ret = remove_device_exclusive_entry(vmf);
3804 		} else if (is_device_private_entry(entry)) {
3805 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3806 				/*
3807 				 * migrate_to_ram is not yet ready to operate
3808 				 * under VMA lock.
3809 				 */
3810 				vma_end_read(vma);
3811 				ret = VM_FAULT_RETRY;
3812 				goto out;
3813 			}
3814 
3815 			vmf->page = pfn_swap_entry_to_page(entry);
3816 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3817 					vmf->address, &vmf->ptl);
3818 			if (unlikely(!vmf->pte ||
3819 				     !pte_same(ptep_get(vmf->pte),
3820 							vmf->orig_pte)))
3821 				goto unlock;
3822 
3823 			/*
3824 			 * Get a page reference while we know the page can't be
3825 			 * freed.
3826 			 */
3827 			get_page(vmf->page);
3828 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3829 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3830 			put_page(vmf->page);
3831 		} else if (is_hwpoison_entry(entry)) {
3832 			ret = VM_FAULT_HWPOISON;
3833 		} else if (is_pte_marker_entry(entry)) {
3834 			ret = handle_pte_marker(vmf);
3835 		} else {
3836 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3837 			ret = VM_FAULT_SIGBUS;
3838 		}
3839 		goto out;
3840 	}
3841 
3842 	/* Prevent swapoff from happening to us. */
3843 	si = get_swap_device(entry);
3844 	if (unlikely(!si))
3845 		goto out;
3846 
3847 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3848 	if (folio)
3849 		page = folio_file_page(folio, swp_offset(entry));
3850 	swapcache = folio;
3851 
3852 	if (!folio) {
3853 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3854 		    __swap_count(entry) == 1) {
3855 			/* skip swapcache */
3856 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3857 						vma, vmf->address, false);
3858 			page = &folio->page;
3859 			if (folio) {
3860 				__folio_set_locked(folio);
3861 				__folio_set_swapbacked(folio);
3862 
3863 				if (mem_cgroup_swapin_charge_folio(folio,
3864 							vma->vm_mm, GFP_KERNEL,
3865 							entry)) {
3866 					ret = VM_FAULT_OOM;
3867 					goto out_page;
3868 				}
3869 				mem_cgroup_swapin_uncharge_swap(entry);
3870 
3871 				shadow = get_shadow_from_swap_cache(entry);
3872 				if (shadow)
3873 					workingset_refault(folio, shadow);
3874 
3875 				folio_add_lru(folio);
3876 
3877 				/* To provide entry to swap_readpage() */
3878 				folio->swap = entry;
3879 				swap_readpage(page, true, NULL);
3880 				folio->private = NULL;
3881 			}
3882 		} else {
3883 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3884 						vmf);
3885 			if (page)
3886 				folio = page_folio(page);
3887 			swapcache = folio;
3888 		}
3889 
3890 		if (!folio) {
3891 			/*
3892 			 * Back out if somebody else faulted in this pte
3893 			 * while we released the pte lock.
3894 			 */
3895 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3896 					vmf->address, &vmf->ptl);
3897 			if (likely(vmf->pte &&
3898 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3899 				ret = VM_FAULT_OOM;
3900 			goto unlock;
3901 		}
3902 
3903 		/* Had to read the page from swap area: Major fault */
3904 		ret = VM_FAULT_MAJOR;
3905 		count_vm_event(PGMAJFAULT);
3906 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3907 	} else if (PageHWPoison(page)) {
3908 		/*
3909 		 * hwpoisoned dirty swapcache pages are kept for killing
3910 		 * owner processes (which may be unknown at hwpoison time)
3911 		 */
3912 		ret = VM_FAULT_HWPOISON;
3913 		goto out_release;
3914 	}
3915 
3916 	ret |= folio_lock_or_retry(folio, vmf);
3917 	if (ret & VM_FAULT_RETRY)
3918 		goto out_release;
3919 
3920 	if (swapcache) {
3921 		/*
3922 		 * Make sure folio_free_swap() or swapoff did not release the
3923 		 * swapcache from under us.  The page pin, and pte_same test
3924 		 * below, are not enough to exclude that.  Even if it is still
3925 		 * swapcache, we need to check that the page's swap has not
3926 		 * changed.
3927 		 */
3928 		if (unlikely(!folio_test_swapcache(folio) ||
3929 			     page_swap_entry(page).val != entry.val))
3930 			goto out_page;
3931 
3932 		/*
3933 		 * KSM sometimes has to copy on read faults, for example, if
3934 		 * page->index of !PageKSM() pages would be nonlinear inside the
3935 		 * anon VMA -- PageKSM() is lost on actual swapout.
3936 		 */
3937 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3938 		if (unlikely(!page)) {
3939 			ret = VM_FAULT_OOM;
3940 			goto out_page;
3941 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3942 			ret = VM_FAULT_HWPOISON;
3943 			goto out_page;
3944 		}
3945 		folio = page_folio(page);
3946 
3947 		/*
3948 		 * If we want to map a page that's in the swapcache writable, we
3949 		 * have to detect via the refcount if we're really the exclusive
3950 		 * owner. Try removing the extra reference from the local LRU
3951 		 * caches if required.
3952 		 */
3953 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3954 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3955 			lru_add_drain();
3956 	}
3957 
3958 	folio_throttle_swaprate(folio, GFP_KERNEL);
3959 
3960 	/*
3961 	 * Back out if somebody else already faulted in this pte.
3962 	 */
3963 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3964 			&vmf->ptl);
3965 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3966 		goto out_nomap;
3967 
3968 	if (unlikely(!folio_test_uptodate(folio))) {
3969 		ret = VM_FAULT_SIGBUS;
3970 		goto out_nomap;
3971 	}
3972 
3973 	/*
3974 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3975 	 * must never point at an anonymous page in the swapcache that is
3976 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3977 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3978 	 * check after taking the PT lock and making sure that nobody
3979 	 * concurrently faulted in this page and set PG_anon_exclusive.
3980 	 */
3981 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3982 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3983 
3984 	/*
3985 	 * Check under PT lock (to protect against concurrent fork() sharing
3986 	 * the swap entry concurrently) for certainly exclusive pages.
3987 	 */
3988 	if (!folio_test_ksm(folio)) {
3989 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3990 		if (folio != swapcache) {
3991 			/*
3992 			 * We have a fresh page that is not exposed to the
3993 			 * swapcache -> certainly exclusive.
3994 			 */
3995 			exclusive = true;
3996 		} else if (exclusive && folio_test_writeback(folio) &&
3997 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3998 			/*
3999 			 * This is tricky: not all swap backends support
4000 			 * concurrent page modifications while under writeback.
4001 			 *
4002 			 * So if we stumble over such a page in the swapcache
4003 			 * we must not set the page exclusive, otherwise we can
4004 			 * map it writable without further checks and modify it
4005 			 * while still under writeback.
4006 			 *
4007 			 * For these problematic swap backends, simply drop the
4008 			 * exclusive marker: this is perfectly fine as we start
4009 			 * writeback only if we fully unmapped the page and
4010 			 * there are no unexpected references on the page after
4011 			 * unmapping succeeded. After fully unmapped, no
4012 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4013 			 * appear, so dropping the exclusive marker and mapping
4014 			 * it only R/O is fine.
4015 			 */
4016 			exclusive = false;
4017 		}
4018 	}
4019 
4020 	/*
4021 	 * Some architectures may have to restore extra metadata to the page
4022 	 * when reading from swap. This metadata may be indexed by swap entry
4023 	 * so this must be called before swap_free().
4024 	 */
4025 	arch_swap_restore(entry, folio);
4026 
4027 	/*
4028 	 * Remove the swap entry and conditionally try to free up the swapcache.
4029 	 * We're already holding a reference on the page but haven't mapped it
4030 	 * yet.
4031 	 */
4032 	swap_free(entry);
4033 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4034 		folio_free_swap(folio);
4035 
4036 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4037 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4038 	pte = mk_pte(page, vma->vm_page_prot);
4039 
4040 	/*
4041 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4042 	 * certainly not shared either because we just allocated them without
4043 	 * exposing them to the swapcache or because the swap entry indicates
4044 	 * exclusivity.
4045 	 */
4046 	if (!folio_test_ksm(folio) &&
4047 	    (exclusive || folio_ref_count(folio) == 1)) {
4048 		if (vmf->flags & FAULT_FLAG_WRITE) {
4049 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4050 			vmf->flags &= ~FAULT_FLAG_WRITE;
4051 		}
4052 		rmap_flags |= RMAP_EXCLUSIVE;
4053 	}
4054 	flush_icache_page(vma, page);
4055 	if (pte_swp_soft_dirty(vmf->orig_pte))
4056 		pte = pte_mksoft_dirty(pte);
4057 	if (pte_swp_uffd_wp(vmf->orig_pte))
4058 		pte = pte_mkuffd_wp(pte);
4059 	vmf->orig_pte = pte;
4060 
4061 	/* ksm created a completely new copy */
4062 	if (unlikely(folio != swapcache && swapcache)) {
4063 		page_add_new_anon_rmap(page, vma, vmf->address);
4064 		folio_add_lru_vma(folio, vma);
4065 	} else {
4066 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4067 	}
4068 
4069 	VM_BUG_ON(!folio_test_anon(folio) ||
4070 			(pte_write(pte) && !PageAnonExclusive(page)));
4071 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4072 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4073 
4074 	folio_unlock(folio);
4075 	if (folio != swapcache && swapcache) {
4076 		/*
4077 		 * Hold the lock to avoid the swap entry to be reused
4078 		 * until we take the PT lock for the pte_same() check
4079 		 * (to avoid false positives from pte_same). For
4080 		 * further safety release the lock after the swap_free
4081 		 * so that the swap count won't change under a
4082 		 * parallel locked swapcache.
4083 		 */
4084 		folio_unlock(swapcache);
4085 		folio_put(swapcache);
4086 	}
4087 
4088 	if (vmf->flags & FAULT_FLAG_WRITE) {
4089 		ret |= do_wp_page(vmf);
4090 		if (ret & VM_FAULT_ERROR)
4091 			ret &= VM_FAULT_ERROR;
4092 		goto out;
4093 	}
4094 
4095 	/* No need to invalidate - it was non-present before */
4096 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4097 unlock:
4098 	if (vmf->pte)
4099 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4100 out:
4101 	if (si)
4102 		put_swap_device(si);
4103 	return ret;
4104 out_nomap:
4105 	if (vmf->pte)
4106 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4107 out_page:
4108 	folio_unlock(folio);
4109 out_release:
4110 	folio_put(folio);
4111 	if (folio != swapcache && swapcache) {
4112 		folio_unlock(swapcache);
4113 		folio_put(swapcache);
4114 	}
4115 	if (si)
4116 		put_swap_device(si);
4117 	return ret;
4118 }
4119 
4120 /*
4121  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4122  * but allow concurrent faults), and pte mapped but not yet locked.
4123  * We return with mmap_lock still held, but pte unmapped and unlocked.
4124  */
4125 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4126 {
4127 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4128 	struct vm_area_struct *vma = vmf->vma;
4129 	struct folio *folio;
4130 	vm_fault_t ret = 0;
4131 	pte_t entry;
4132 
4133 	/* File mapping without ->vm_ops ? */
4134 	if (vma->vm_flags & VM_SHARED)
4135 		return VM_FAULT_SIGBUS;
4136 
4137 	/*
4138 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4139 	 * be distinguished from a transient failure of pte_offset_map().
4140 	 */
4141 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4142 		return VM_FAULT_OOM;
4143 
4144 	/* Use the zero-page for reads */
4145 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4146 			!mm_forbids_zeropage(vma->vm_mm)) {
4147 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4148 						vma->vm_page_prot));
4149 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4150 				vmf->address, &vmf->ptl);
4151 		if (!vmf->pte)
4152 			goto unlock;
4153 		if (vmf_pte_changed(vmf)) {
4154 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4155 			goto unlock;
4156 		}
4157 		ret = check_stable_address_space(vma->vm_mm);
4158 		if (ret)
4159 			goto unlock;
4160 		/* Deliver the page fault to userland, check inside PT lock */
4161 		if (userfaultfd_missing(vma)) {
4162 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4163 			return handle_userfault(vmf, VM_UFFD_MISSING);
4164 		}
4165 		goto setpte;
4166 	}
4167 
4168 	/* Allocate our own private page. */
4169 	if (unlikely(anon_vma_prepare(vma)))
4170 		goto oom;
4171 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4172 	if (!folio)
4173 		goto oom;
4174 
4175 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4176 		goto oom_free_page;
4177 	folio_throttle_swaprate(folio, GFP_KERNEL);
4178 
4179 	/*
4180 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4181 	 * preceding stores to the page contents become visible before
4182 	 * the set_pte_at() write.
4183 	 */
4184 	__folio_mark_uptodate(folio);
4185 
4186 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4187 	entry = pte_sw_mkyoung(entry);
4188 	if (vma->vm_flags & VM_WRITE)
4189 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4190 
4191 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4192 			&vmf->ptl);
4193 	if (!vmf->pte)
4194 		goto release;
4195 	if (vmf_pte_changed(vmf)) {
4196 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4197 		goto release;
4198 	}
4199 
4200 	ret = check_stable_address_space(vma->vm_mm);
4201 	if (ret)
4202 		goto release;
4203 
4204 	/* Deliver the page fault to userland, check inside PT lock */
4205 	if (userfaultfd_missing(vma)) {
4206 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4207 		folio_put(folio);
4208 		return handle_userfault(vmf, VM_UFFD_MISSING);
4209 	}
4210 
4211 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4212 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4213 	folio_add_lru_vma(folio, vma);
4214 setpte:
4215 	if (uffd_wp)
4216 		entry = pte_mkuffd_wp(entry);
4217 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4218 
4219 	/* No need to invalidate - it was non-present before */
4220 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4221 unlock:
4222 	if (vmf->pte)
4223 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4224 	return ret;
4225 release:
4226 	folio_put(folio);
4227 	goto unlock;
4228 oom_free_page:
4229 	folio_put(folio);
4230 oom:
4231 	return VM_FAULT_OOM;
4232 }
4233 
4234 /*
4235  * The mmap_lock must have been held on entry, and may have been
4236  * released depending on flags and vma->vm_ops->fault() return value.
4237  * See filemap_fault() and __lock_page_retry().
4238  */
4239 static vm_fault_t __do_fault(struct vm_fault *vmf)
4240 {
4241 	struct vm_area_struct *vma = vmf->vma;
4242 	vm_fault_t ret;
4243 
4244 	/*
4245 	 * Preallocate pte before we take page_lock because this might lead to
4246 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4247 	 *				lock_page(A)
4248 	 *				SetPageWriteback(A)
4249 	 *				unlock_page(A)
4250 	 * lock_page(B)
4251 	 *				lock_page(B)
4252 	 * pte_alloc_one
4253 	 *   shrink_page_list
4254 	 *     wait_on_page_writeback(A)
4255 	 *				SetPageWriteback(B)
4256 	 *				unlock_page(B)
4257 	 *				# flush A, B to clear the writeback
4258 	 */
4259 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4260 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4261 		if (!vmf->prealloc_pte)
4262 			return VM_FAULT_OOM;
4263 	}
4264 
4265 	ret = vma->vm_ops->fault(vmf);
4266 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4267 			    VM_FAULT_DONE_COW)))
4268 		return ret;
4269 
4270 	if (unlikely(PageHWPoison(vmf->page))) {
4271 		struct page *page = vmf->page;
4272 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4273 		if (ret & VM_FAULT_LOCKED) {
4274 			if (page_mapped(page))
4275 				unmap_mapping_pages(page_mapping(page),
4276 						    page->index, 1, false);
4277 			/* Retry if a clean page was removed from the cache. */
4278 			if (invalidate_inode_page(page))
4279 				poisonret = VM_FAULT_NOPAGE;
4280 			unlock_page(page);
4281 		}
4282 		put_page(page);
4283 		vmf->page = NULL;
4284 		return poisonret;
4285 	}
4286 
4287 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4288 		lock_page(vmf->page);
4289 	else
4290 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4291 
4292 	return ret;
4293 }
4294 
4295 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4296 static void deposit_prealloc_pte(struct vm_fault *vmf)
4297 {
4298 	struct vm_area_struct *vma = vmf->vma;
4299 
4300 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4301 	/*
4302 	 * We are going to consume the prealloc table,
4303 	 * count that as nr_ptes.
4304 	 */
4305 	mm_inc_nr_ptes(vma->vm_mm);
4306 	vmf->prealloc_pte = NULL;
4307 }
4308 
4309 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4310 {
4311 	struct vm_area_struct *vma = vmf->vma;
4312 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4313 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4314 	pmd_t entry;
4315 	vm_fault_t ret = VM_FAULT_FALLBACK;
4316 
4317 	if (!transhuge_vma_suitable(vma, haddr))
4318 		return ret;
4319 
4320 	page = compound_head(page);
4321 	if (compound_order(page) != HPAGE_PMD_ORDER)
4322 		return ret;
4323 
4324 	/*
4325 	 * Just backoff if any subpage of a THP is corrupted otherwise
4326 	 * the corrupted page may mapped by PMD silently to escape the
4327 	 * check.  This kind of THP just can be PTE mapped.  Access to
4328 	 * the corrupted subpage should trigger SIGBUS as expected.
4329 	 */
4330 	if (unlikely(PageHasHWPoisoned(page)))
4331 		return ret;
4332 
4333 	/*
4334 	 * Archs like ppc64 need additional space to store information
4335 	 * related to pte entry. Use the preallocated table for that.
4336 	 */
4337 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4338 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4339 		if (!vmf->prealloc_pte)
4340 			return VM_FAULT_OOM;
4341 	}
4342 
4343 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4344 	if (unlikely(!pmd_none(*vmf->pmd)))
4345 		goto out;
4346 
4347 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4348 
4349 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4350 	if (write)
4351 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4352 
4353 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4354 	page_add_file_rmap(page, vma, true);
4355 
4356 	/*
4357 	 * deposit and withdraw with pmd lock held
4358 	 */
4359 	if (arch_needs_pgtable_deposit())
4360 		deposit_prealloc_pte(vmf);
4361 
4362 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4363 
4364 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4365 
4366 	/* fault is handled */
4367 	ret = 0;
4368 	count_vm_event(THP_FILE_MAPPED);
4369 out:
4370 	spin_unlock(vmf->ptl);
4371 	return ret;
4372 }
4373 #else
4374 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4375 {
4376 	return VM_FAULT_FALLBACK;
4377 }
4378 #endif
4379 
4380 /**
4381  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4382  * @vmf: Fault decription.
4383  * @folio: The folio that contains @page.
4384  * @page: The first page to create a PTE for.
4385  * @nr: The number of PTEs to create.
4386  * @addr: The first address to create a PTE for.
4387  */
4388 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4389 		struct page *page, unsigned int nr, unsigned long addr)
4390 {
4391 	struct vm_area_struct *vma = vmf->vma;
4392 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4393 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4394 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4395 	pte_t entry;
4396 
4397 	flush_icache_pages(vma, page, nr);
4398 	entry = mk_pte(page, vma->vm_page_prot);
4399 
4400 	if (prefault && arch_wants_old_prefaulted_pte())
4401 		entry = pte_mkold(entry);
4402 	else
4403 		entry = pte_sw_mkyoung(entry);
4404 
4405 	if (write)
4406 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4407 	if (unlikely(uffd_wp))
4408 		entry = pte_mkuffd_wp(entry);
4409 	/* copy-on-write page */
4410 	if (write && !(vma->vm_flags & VM_SHARED)) {
4411 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4412 		VM_BUG_ON_FOLIO(nr != 1, folio);
4413 		folio_add_new_anon_rmap(folio, vma, addr);
4414 		folio_add_lru_vma(folio, vma);
4415 	} else {
4416 		add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4417 		folio_add_file_rmap_range(folio, page, nr, vma, false);
4418 	}
4419 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4420 
4421 	/* no need to invalidate: a not-present page won't be cached */
4422 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4423 }
4424 
4425 static bool vmf_pte_changed(struct vm_fault *vmf)
4426 {
4427 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4428 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4429 
4430 	return !pte_none(ptep_get(vmf->pte));
4431 }
4432 
4433 /**
4434  * finish_fault - finish page fault once we have prepared the page to fault
4435  *
4436  * @vmf: structure describing the fault
4437  *
4438  * This function handles all that is needed to finish a page fault once the
4439  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4440  * given page, adds reverse page mapping, handles memcg charges and LRU
4441  * addition.
4442  *
4443  * The function expects the page to be locked and on success it consumes a
4444  * reference of a page being mapped (for the PTE which maps it).
4445  *
4446  * Return: %0 on success, %VM_FAULT_ code in case of error.
4447  */
4448 vm_fault_t finish_fault(struct vm_fault *vmf)
4449 {
4450 	struct vm_area_struct *vma = vmf->vma;
4451 	struct page *page;
4452 	vm_fault_t ret;
4453 
4454 	/* Did we COW the page? */
4455 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4456 		page = vmf->cow_page;
4457 	else
4458 		page = vmf->page;
4459 
4460 	/*
4461 	 * check even for read faults because we might have lost our CoWed
4462 	 * page
4463 	 */
4464 	if (!(vma->vm_flags & VM_SHARED)) {
4465 		ret = check_stable_address_space(vma->vm_mm);
4466 		if (ret)
4467 			return ret;
4468 	}
4469 
4470 	if (pmd_none(*vmf->pmd)) {
4471 		if (PageTransCompound(page)) {
4472 			ret = do_set_pmd(vmf, page);
4473 			if (ret != VM_FAULT_FALLBACK)
4474 				return ret;
4475 		}
4476 
4477 		if (vmf->prealloc_pte)
4478 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4479 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4480 			return VM_FAULT_OOM;
4481 	}
4482 
4483 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4484 				      vmf->address, &vmf->ptl);
4485 	if (!vmf->pte)
4486 		return VM_FAULT_NOPAGE;
4487 
4488 	/* Re-check under ptl */
4489 	if (likely(!vmf_pte_changed(vmf))) {
4490 		struct folio *folio = page_folio(page);
4491 
4492 		set_pte_range(vmf, folio, page, 1, vmf->address);
4493 		ret = 0;
4494 	} else {
4495 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4496 		ret = VM_FAULT_NOPAGE;
4497 	}
4498 
4499 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4500 	return ret;
4501 }
4502 
4503 static unsigned long fault_around_pages __read_mostly =
4504 	65536 >> PAGE_SHIFT;
4505 
4506 #ifdef CONFIG_DEBUG_FS
4507 static int fault_around_bytes_get(void *data, u64 *val)
4508 {
4509 	*val = fault_around_pages << PAGE_SHIFT;
4510 	return 0;
4511 }
4512 
4513 /*
4514  * fault_around_bytes must be rounded down to the nearest page order as it's
4515  * what do_fault_around() expects to see.
4516  */
4517 static int fault_around_bytes_set(void *data, u64 val)
4518 {
4519 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4520 		return -EINVAL;
4521 
4522 	/*
4523 	 * The minimum value is 1 page, however this results in no fault-around
4524 	 * at all. See should_fault_around().
4525 	 */
4526 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4527 
4528 	return 0;
4529 }
4530 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4531 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4532 
4533 static int __init fault_around_debugfs(void)
4534 {
4535 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4536 				   &fault_around_bytes_fops);
4537 	return 0;
4538 }
4539 late_initcall(fault_around_debugfs);
4540 #endif
4541 
4542 /*
4543  * do_fault_around() tries to map few pages around the fault address. The hope
4544  * is that the pages will be needed soon and this will lower the number of
4545  * faults to handle.
4546  *
4547  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4548  * not ready to be mapped: not up-to-date, locked, etc.
4549  *
4550  * This function doesn't cross VMA or page table boundaries, in order to call
4551  * map_pages() and acquire a PTE lock only once.
4552  *
4553  * fault_around_pages defines how many pages we'll try to map.
4554  * do_fault_around() expects it to be set to a power of two less than or equal
4555  * to PTRS_PER_PTE.
4556  *
4557  * The virtual address of the area that we map is naturally aligned to
4558  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4559  * (and therefore to page order).  This way it's easier to guarantee
4560  * that we don't cross page table boundaries.
4561  */
4562 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4563 {
4564 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4565 	pgoff_t pte_off = pte_index(vmf->address);
4566 	/* The page offset of vmf->address within the VMA. */
4567 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4568 	pgoff_t from_pte, to_pte;
4569 	vm_fault_t ret;
4570 
4571 	/* The PTE offset of the start address, clamped to the VMA. */
4572 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4573 		       pte_off - min(pte_off, vma_off));
4574 
4575 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4576 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4577 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4578 
4579 	if (pmd_none(*vmf->pmd)) {
4580 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4581 		if (!vmf->prealloc_pte)
4582 			return VM_FAULT_OOM;
4583 	}
4584 
4585 	rcu_read_lock();
4586 	ret = vmf->vma->vm_ops->map_pages(vmf,
4587 			vmf->pgoff + from_pte - pte_off,
4588 			vmf->pgoff + to_pte - pte_off);
4589 	rcu_read_unlock();
4590 
4591 	return ret;
4592 }
4593 
4594 /* Return true if we should do read fault-around, false otherwise */
4595 static inline bool should_fault_around(struct vm_fault *vmf)
4596 {
4597 	/* No ->map_pages?  No way to fault around... */
4598 	if (!vmf->vma->vm_ops->map_pages)
4599 		return false;
4600 
4601 	if (uffd_disable_fault_around(vmf->vma))
4602 		return false;
4603 
4604 	/* A single page implies no faulting 'around' at all. */
4605 	return fault_around_pages > 1;
4606 }
4607 
4608 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4609 {
4610 	vm_fault_t ret = 0;
4611 	struct folio *folio;
4612 
4613 	/*
4614 	 * Let's call ->map_pages() first and use ->fault() as fallback
4615 	 * if page by the offset is not ready to be mapped (cold cache or
4616 	 * something).
4617 	 */
4618 	if (should_fault_around(vmf)) {
4619 		ret = do_fault_around(vmf);
4620 		if (ret)
4621 			return ret;
4622 	}
4623 
4624 	ret = vmf_can_call_fault(vmf);
4625 	if (ret)
4626 		return ret;
4627 
4628 	ret = __do_fault(vmf);
4629 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4630 		return ret;
4631 
4632 	ret |= finish_fault(vmf);
4633 	folio = page_folio(vmf->page);
4634 	folio_unlock(folio);
4635 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4636 		folio_put(folio);
4637 	return ret;
4638 }
4639 
4640 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4641 {
4642 	struct vm_area_struct *vma = vmf->vma;
4643 	vm_fault_t ret;
4644 
4645 	ret = vmf_can_call_fault(vmf);
4646 	if (!ret)
4647 		ret = vmf_anon_prepare(vmf);
4648 	if (ret)
4649 		return ret;
4650 
4651 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4652 	if (!vmf->cow_page)
4653 		return VM_FAULT_OOM;
4654 
4655 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4656 				GFP_KERNEL)) {
4657 		put_page(vmf->cow_page);
4658 		return VM_FAULT_OOM;
4659 	}
4660 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4661 
4662 	ret = __do_fault(vmf);
4663 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4664 		goto uncharge_out;
4665 	if (ret & VM_FAULT_DONE_COW)
4666 		return ret;
4667 
4668 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4669 	__SetPageUptodate(vmf->cow_page);
4670 
4671 	ret |= finish_fault(vmf);
4672 	unlock_page(vmf->page);
4673 	put_page(vmf->page);
4674 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4675 		goto uncharge_out;
4676 	return ret;
4677 uncharge_out:
4678 	put_page(vmf->cow_page);
4679 	return ret;
4680 }
4681 
4682 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4683 {
4684 	struct vm_area_struct *vma = vmf->vma;
4685 	vm_fault_t ret, tmp;
4686 	struct folio *folio;
4687 
4688 	ret = vmf_can_call_fault(vmf);
4689 	if (ret)
4690 		return ret;
4691 
4692 	ret = __do_fault(vmf);
4693 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4694 		return ret;
4695 
4696 	folio = page_folio(vmf->page);
4697 
4698 	/*
4699 	 * Check if the backing address space wants to know that the page is
4700 	 * about to become writable
4701 	 */
4702 	if (vma->vm_ops->page_mkwrite) {
4703 		folio_unlock(folio);
4704 		tmp = do_page_mkwrite(vmf, folio);
4705 		if (unlikely(!tmp ||
4706 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4707 			folio_put(folio);
4708 			return tmp;
4709 		}
4710 	}
4711 
4712 	ret |= finish_fault(vmf);
4713 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4714 					VM_FAULT_RETRY))) {
4715 		folio_unlock(folio);
4716 		folio_put(folio);
4717 		return ret;
4718 	}
4719 
4720 	ret |= fault_dirty_shared_page(vmf);
4721 	return ret;
4722 }
4723 
4724 /*
4725  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4726  * but allow concurrent faults).
4727  * The mmap_lock may have been released depending on flags and our
4728  * return value.  See filemap_fault() and __folio_lock_or_retry().
4729  * If mmap_lock is released, vma may become invalid (for example
4730  * by other thread calling munmap()).
4731  */
4732 static vm_fault_t do_fault(struct vm_fault *vmf)
4733 {
4734 	struct vm_area_struct *vma = vmf->vma;
4735 	struct mm_struct *vm_mm = vma->vm_mm;
4736 	vm_fault_t ret;
4737 
4738 	/*
4739 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4740 	 */
4741 	if (!vma->vm_ops->fault) {
4742 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4743 					       vmf->address, &vmf->ptl);
4744 		if (unlikely(!vmf->pte))
4745 			ret = VM_FAULT_SIGBUS;
4746 		else {
4747 			/*
4748 			 * Make sure this is not a temporary clearing of pte
4749 			 * by holding ptl and checking again. A R/M/W update
4750 			 * of pte involves: take ptl, clearing the pte so that
4751 			 * we don't have concurrent modification by hardware
4752 			 * followed by an update.
4753 			 */
4754 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4755 				ret = VM_FAULT_SIGBUS;
4756 			else
4757 				ret = VM_FAULT_NOPAGE;
4758 
4759 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4760 		}
4761 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4762 		ret = do_read_fault(vmf);
4763 	else if (!(vma->vm_flags & VM_SHARED))
4764 		ret = do_cow_fault(vmf);
4765 	else
4766 		ret = do_shared_fault(vmf);
4767 
4768 	/* preallocated pagetable is unused: free it */
4769 	if (vmf->prealloc_pte) {
4770 		pte_free(vm_mm, vmf->prealloc_pte);
4771 		vmf->prealloc_pte = NULL;
4772 	}
4773 	return ret;
4774 }
4775 
4776 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
4777 		      unsigned long addr, int page_nid, int *flags)
4778 {
4779 	folio_get(folio);
4780 
4781 	/* Record the current PID acceesing VMA */
4782 	vma_set_access_pid_bit(vma);
4783 
4784 	count_vm_numa_event(NUMA_HINT_FAULTS);
4785 	if (page_nid == numa_node_id()) {
4786 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4787 		*flags |= TNF_FAULT_LOCAL;
4788 	}
4789 
4790 	return mpol_misplaced(folio, vma, addr);
4791 }
4792 
4793 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4794 {
4795 	struct vm_area_struct *vma = vmf->vma;
4796 	struct folio *folio = NULL;
4797 	int nid = NUMA_NO_NODE;
4798 	bool writable = false;
4799 	int last_cpupid;
4800 	int target_nid;
4801 	pte_t pte, old_pte;
4802 	int flags = 0;
4803 
4804 	/*
4805 	 * The "pte" at this point cannot be used safely without
4806 	 * validation through pte_unmap_same(). It's of NUMA type but
4807 	 * the pfn may be screwed if the read is non atomic.
4808 	 */
4809 	spin_lock(vmf->ptl);
4810 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4811 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4812 		goto out;
4813 	}
4814 
4815 	/* Get the normal PTE  */
4816 	old_pte = ptep_get(vmf->pte);
4817 	pte = pte_modify(old_pte, vma->vm_page_prot);
4818 
4819 	/*
4820 	 * Detect now whether the PTE could be writable; this information
4821 	 * is only valid while holding the PT lock.
4822 	 */
4823 	writable = pte_write(pte);
4824 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4825 	    can_change_pte_writable(vma, vmf->address, pte))
4826 		writable = true;
4827 
4828 	folio = vm_normal_folio(vma, vmf->address, pte);
4829 	if (!folio || folio_is_zone_device(folio))
4830 		goto out_map;
4831 
4832 	/* TODO: handle PTE-mapped THP */
4833 	if (folio_test_large(folio))
4834 		goto out_map;
4835 
4836 	/*
4837 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4838 	 * much anyway since they can be in shared cache state. This misses
4839 	 * the case where a mapping is writable but the process never writes
4840 	 * to it but pte_write gets cleared during protection updates and
4841 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4842 	 * background writeback, dirty balancing and application behaviour.
4843 	 */
4844 	if (!writable)
4845 		flags |= TNF_NO_GROUP;
4846 
4847 	/*
4848 	 * Flag if the folio is shared between multiple address spaces. This
4849 	 * is later used when determining whether to group tasks together
4850 	 */
4851 	if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
4852 		flags |= TNF_SHARED;
4853 
4854 	nid = folio_nid(folio);
4855 	/*
4856 	 * For memory tiering mode, cpupid of slow memory page is used
4857 	 * to record page access time.  So use default value.
4858 	 */
4859 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4860 	    !node_is_toptier(nid))
4861 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4862 	else
4863 		last_cpupid = folio_last_cpupid(folio);
4864 	target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
4865 	if (target_nid == NUMA_NO_NODE) {
4866 		folio_put(folio);
4867 		goto out_map;
4868 	}
4869 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4870 	writable = false;
4871 
4872 	/* Migrate to the requested node */
4873 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
4874 		nid = target_nid;
4875 		flags |= TNF_MIGRATED;
4876 	} else {
4877 		flags |= TNF_MIGRATE_FAIL;
4878 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4879 					       vmf->address, &vmf->ptl);
4880 		if (unlikely(!vmf->pte))
4881 			goto out;
4882 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4883 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4884 			goto out;
4885 		}
4886 		goto out_map;
4887 	}
4888 
4889 out:
4890 	if (nid != NUMA_NO_NODE)
4891 		task_numa_fault(last_cpupid, nid, 1, flags);
4892 	return 0;
4893 out_map:
4894 	/*
4895 	 * Make it present again, depending on how arch implements
4896 	 * non-accessible ptes, some can allow access by kernel mode.
4897 	 */
4898 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4899 	pte = pte_modify(old_pte, vma->vm_page_prot);
4900 	pte = pte_mkyoung(pte);
4901 	if (writable)
4902 		pte = pte_mkwrite(pte, vma);
4903 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4904 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4905 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4906 	goto out;
4907 }
4908 
4909 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4910 {
4911 	struct vm_area_struct *vma = vmf->vma;
4912 	if (vma_is_anonymous(vma))
4913 		return do_huge_pmd_anonymous_page(vmf);
4914 	if (vma->vm_ops->huge_fault)
4915 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4916 	return VM_FAULT_FALLBACK;
4917 }
4918 
4919 /* `inline' is required to avoid gcc 4.1.2 build error */
4920 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4921 {
4922 	struct vm_area_struct *vma = vmf->vma;
4923 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4924 	vm_fault_t ret;
4925 
4926 	if (vma_is_anonymous(vma)) {
4927 		if (likely(!unshare) &&
4928 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
4929 			if (userfaultfd_wp_async(vmf->vma))
4930 				goto split;
4931 			return handle_userfault(vmf, VM_UFFD_WP);
4932 		}
4933 		return do_huge_pmd_wp_page(vmf);
4934 	}
4935 
4936 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4937 		if (vma->vm_ops->huge_fault) {
4938 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4939 			if (!(ret & VM_FAULT_FALLBACK))
4940 				return ret;
4941 		}
4942 	}
4943 
4944 split:
4945 	/* COW or write-notify handled on pte level: split pmd. */
4946 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4947 
4948 	return VM_FAULT_FALLBACK;
4949 }
4950 
4951 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4952 {
4953 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4954 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4955 	struct vm_area_struct *vma = vmf->vma;
4956 	/* No support for anonymous transparent PUD pages yet */
4957 	if (vma_is_anonymous(vma))
4958 		return VM_FAULT_FALLBACK;
4959 	if (vma->vm_ops->huge_fault)
4960 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4961 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4962 	return VM_FAULT_FALLBACK;
4963 }
4964 
4965 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4966 {
4967 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4968 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4969 	struct vm_area_struct *vma = vmf->vma;
4970 	vm_fault_t ret;
4971 
4972 	/* No support for anonymous transparent PUD pages yet */
4973 	if (vma_is_anonymous(vma))
4974 		goto split;
4975 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4976 		if (vma->vm_ops->huge_fault) {
4977 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4978 			if (!(ret & VM_FAULT_FALLBACK))
4979 				return ret;
4980 		}
4981 	}
4982 split:
4983 	/* COW or write-notify not handled on PUD level: split pud.*/
4984 	__split_huge_pud(vma, vmf->pud, vmf->address);
4985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4986 	return VM_FAULT_FALLBACK;
4987 }
4988 
4989 /*
4990  * These routines also need to handle stuff like marking pages dirty
4991  * and/or accessed for architectures that don't do it in hardware (most
4992  * RISC architectures).  The early dirtying is also good on the i386.
4993  *
4994  * There is also a hook called "update_mmu_cache()" that architectures
4995  * with external mmu caches can use to update those (ie the Sparc or
4996  * PowerPC hashed page tables that act as extended TLBs).
4997  *
4998  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4999  * concurrent faults).
5000  *
5001  * The mmap_lock may have been released depending on flags and our return value.
5002  * See filemap_fault() and __folio_lock_or_retry().
5003  */
5004 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5005 {
5006 	pte_t entry;
5007 
5008 	if (unlikely(pmd_none(*vmf->pmd))) {
5009 		/*
5010 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5011 		 * want to allocate huge page, and if we expose page table
5012 		 * for an instant, it will be difficult to retract from
5013 		 * concurrent faults and from rmap lookups.
5014 		 */
5015 		vmf->pte = NULL;
5016 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5017 	} else {
5018 		/*
5019 		 * A regular pmd is established and it can't morph into a huge
5020 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5021 		 * mode; but shmem or file collapse to THP could still morph
5022 		 * it into a huge pmd: just retry later if so.
5023 		 */
5024 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5025 						 vmf->address, &vmf->ptl);
5026 		if (unlikely(!vmf->pte))
5027 			return 0;
5028 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5029 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5030 
5031 		if (pte_none(vmf->orig_pte)) {
5032 			pte_unmap(vmf->pte);
5033 			vmf->pte = NULL;
5034 		}
5035 	}
5036 
5037 	if (!vmf->pte)
5038 		return do_pte_missing(vmf);
5039 
5040 	if (!pte_present(vmf->orig_pte))
5041 		return do_swap_page(vmf);
5042 
5043 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5044 		return do_numa_page(vmf);
5045 
5046 	spin_lock(vmf->ptl);
5047 	entry = vmf->orig_pte;
5048 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5049 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5050 		goto unlock;
5051 	}
5052 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5053 		if (!pte_write(entry))
5054 			return do_wp_page(vmf);
5055 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5056 			entry = pte_mkdirty(entry);
5057 	}
5058 	entry = pte_mkyoung(entry);
5059 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5060 				vmf->flags & FAULT_FLAG_WRITE)) {
5061 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5062 				vmf->pte, 1);
5063 	} else {
5064 		/* Skip spurious TLB flush for retried page fault */
5065 		if (vmf->flags & FAULT_FLAG_TRIED)
5066 			goto unlock;
5067 		/*
5068 		 * This is needed only for protection faults but the arch code
5069 		 * is not yet telling us if this is a protection fault or not.
5070 		 * This still avoids useless tlb flushes for .text page faults
5071 		 * with threads.
5072 		 */
5073 		if (vmf->flags & FAULT_FLAG_WRITE)
5074 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5075 						     vmf->pte);
5076 	}
5077 unlock:
5078 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5079 	return 0;
5080 }
5081 
5082 /*
5083  * On entry, we hold either the VMA lock or the mmap_lock
5084  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5085  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5086  * and __folio_lock_or_retry().
5087  */
5088 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5089 		unsigned long address, unsigned int flags)
5090 {
5091 	struct vm_fault vmf = {
5092 		.vma = vma,
5093 		.address = address & PAGE_MASK,
5094 		.real_address = address,
5095 		.flags = flags,
5096 		.pgoff = linear_page_index(vma, address),
5097 		.gfp_mask = __get_fault_gfp_mask(vma),
5098 	};
5099 	struct mm_struct *mm = vma->vm_mm;
5100 	unsigned long vm_flags = vma->vm_flags;
5101 	pgd_t *pgd;
5102 	p4d_t *p4d;
5103 	vm_fault_t ret;
5104 
5105 	pgd = pgd_offset(mm, address);
5106 	p4d = p4d_alloc(mm, pgd, address);
5107 	if (!p4d)
5108 		return VM_FAULT_OOM;
5109 
5110 	vmf.pud = pud_alloc(mm, p4d, address);
5111 	if (!vmf.pud)
5112 		return VM_FAULT_OOM;
5113 retry_pud:
5114 	if (pud_none(*vmf.pud) &&
5115 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5116 		ret = create_huge_pud(&vmf);
5117 		if (!(ret & VM_FAULT_FALLBACK))
5118 			return ret;
5119 	} else {
5120 		pud_t orig_pud = *vmf.pud;
5121 
5122 		barrier();
5123 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5124 
5125 			/*
5126 			 * TODO once we support anonymous PUDs: NUMA case and
5127 			 * FAULT_FLAG_UNSHARE handling.
5128 			 */
5129 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5130 				ret = wp_huge_pud(&vmf, orig_pud);
5131 				if (!(ret & VM_FAULT_FALLBACK))
5132 					return ret;
5133 			} else {
5134 				huge_pud_set_accessed(&vmf, orig_pud);
5135 				return 0;
5136 			}
5137 		}
5138 	}
5139 
5140 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5141 	if (!vmf.pmd)
5142 		return VM_FAULT_OOM;
5143 
5144 	/* Huge pud page fault raced with pmd_alloc? */
5145 	if (pud_trans_unstable(vmf.pud))
5146 		goto retry_pud;
5147 
5148 	if (pmd_none(*vmf.pmd) &&
5149 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5150 		ret = create_huge_pmd(&vmf);
5151 		if (!(ret & VM_FAULT_FALLBACK))
5152 			return ret;
5153 	} else {
5154 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5155 
5156 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5157 			VM_BUG_ON(thp_migration_supported() &&
5158 					  !is_pmd_migration_entry(vmf.orig_pmd));
5159 			if (is_pmd_migration_entry(vmf.orig_pmd))
5160 				pmd_migration_entry_wait(mm, vmf.pmd);
5161 			return 0;
5162 		}
5163 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5164 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5165 				return do_huge_pmd_numa_page(&vmf);
5166 
5167 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5168 			    !pmd_write(vmf.orig_pmd)) {
5169 				ret = wp_huge_pmd(&vmf);
5170 				if (!(ret & VM_FAULT_FALLBACK))
5171 					return ret;
5172 			} else {
5173 				huge_pmd_set_accessed(&vmf);
5174 				return 0;
5175 			}
5176 		}
5177 	}
5178 
5179 	return handle_pte_fault(&vmf);
5180 }
5181 
5182 /**
5183  * mm_account_fault - Do page fault accounting
5184  * @mm: mm from which memcg should be extracted. It can be NULL.
5185  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5186  *        of perf event counters, but we'll still do the per-task accounting to
5187  *        the task who triggered this page fault.
5188  * @address: the faulted address.
5189  * @flags: the fault flags.
5190  * @ret: the fault retcode.
5191  *
5192  * This will take care of most of the page fault accounting.  Meanwhile, it
5193  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5194  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5195  * still be in per-arch page fault handlers at the entry of page fault.
5196  */
5197 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5198 				    unsigned long address, unsigned int flags,
5199 				    vm_fault_t ret)
5200 {
5201 	bool major;
5202 
5203 	/* Incomplete faults will be accounted upon completion. */
5204 	if (ret & VM_FAULT_RETRY)
5205 		return;
5206 
5207 	/*
5208 	 * To preserve the behavior of older kernels, PGFAULT counters record
5209 	 * both successful and failed faults, as opposed to perf counters,
5210 	 * which ignore failed cases.
5211 	 */
5212 	count_vm_event(PGFAULT);
5213 	count_memcg_event_mm(mm, PGFAULT);
5214 
5215 	/*
5216 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5217 	 * valid).  That includes arch_vma_access_permitted() failing before
5218 	 * reaching here. So this is not a "this many hardware page faults"
5219 	 * counter.  We should use the hw profiling for that.
5220 	 */
5221 	if (ret & VM_FAULT_ERROR)
5222 		return;
5223 
5224 	/*
5225 	 * We define the fault as a major fault when the final successful fault
5226 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5227 	 * handle it immediately previously).
5228 	 */
5229 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5230 
5231 	if (major)
5232 		current->maj_flt++;
5233 	else
5234 		current->min_flt++;
5235 
5236 	/*
5237 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5238 	 * accounting for the per thread fault counters who triggered the
5239 	 * fault, and we skip the perf event updates.
5240 	 */
5241 	if (!regs)
5242 		return;
5243 
5244 	if (major)
5245 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5246 	else
5247 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5248 }
5249 
5250 #ifdef CONFIG_LRU_GEN
5251 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5252 {
5253 	/* the LRU algorithm only applies to accesses with recency */
5254 	current->in_lru_fault = vma_has_recency(vma);
5255 }
5256 
5257 static void lru_gen_exit_fault(void)
5258 {
5259 	current->in_lru_fault = false;
5260 }
5261 #else
5262 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5263 {
5264 }
5265 
5266 static void lru_gen_exit_fault(void)
5267 {
5268 }
5269 #endif /* CONFIG_LRU_GEN */
5270 
5271 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5272 				       unsigned int *flags)
5273 {
5274 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5275 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5276 			return VM_FAULT_SIGSEGV;
5277 		/*
5278 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5279 		 * just treat it like an ordinary read-fault otherwise.
5280 		 */
5281 		if (!is_cow_mapping(vma->vm_flags))
5282 			*flags &= ~FAULT_FLAG_UNSHARE;
5283 	} else if (*flags & FAULT_FLAG_WRITE) {
5284 		/* Write faults on read-only mappings are impossible ... */
5285 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5286 			return VM_FAULT_SIGSEGV;
5287 		/* ... and FOLL_FORCE only applies to COW mappings. */
5288 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5289 				 !is_cow_mapping(vma->vm_flags)))
5290 			return VM_FAULT_SIGSEGV;
5291 	}
5292 #ifdef CONFIG_PER_VMA_LOCK
5293 	/*
5294 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5295 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5296 	 */
5297 	if (WARN_ON_ONCE((*flags &
5298 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5299 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5300 		return VM_FAULT_SIGSEGV;
5301 #endif
5302 
5303 	return 0;
5304 }
5305 
5306 /*
5307  * By the time we get here, we already hold the mm semaphore
5308  *
5309  * The mmap_lock may have been released depending on flags and our
5310  * return value.  See filemap_fault() and __folio_lock_or_retry().
5311  */
5312 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5313 			   unsigned int flags, struct pt_regs *regs)
5314 {
5315 	/* If the fault handler drops the mmap_lock, vma may be freed */
5316 	struct mm_struct *mm = vma->vm_mm;
5317 	vm_fault_t ret;
5318 
5319 	__set_current_state(TASK_RUNNING);
5320 
5321 	ret = sanitize_fault_flags(vma, &flags);
5322 	if (ret)
5323 		goto out;
5324 
5325 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5326 					    flags & FAULT_FLAG_INSTRUCTION,
5327 					    flags & FAULT_FLAG_REMOTE)) {
5328 		ret = VM_FAULT_SIGSEGV;
5329 		goto out;
5330 	}
5331 
5332 	/*
5333 	 * Enable the memcg OOM handling for faults triggered in user
5334 	 * space.  Kernel faults are handled more gracefully.
5335 	 */
5336 	if (flags & FAULT_FLAG_USER)
5337 		mem_cgroup_enter_user_fault();
5338 
5339 	lru_gen_enter_fault(vma);
5340 
5341 	if (unlikely(is_vm_hugetlb_page(vma)))
5342 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5343 	else
5344 		ret = __handle_mm_fault(vma, address, flags);
5345 
5346 	lru_gen_exit_fault();
5347 
5348 	if (flags & FAULT_FLAG_USER) {
5349 		mem_cgroup_exit_user_fault();
5350 		/*
5351 		 * The task may have entered a memcg OOM situation but
5352 		 * if the allocation error was handled gracefully (no
5353 		 * VM_FAULT_OOM), there is no need to kill anything.
5354 		 * Just clean up the OOM state peacefully.
5355 		 */
5356 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5357 			mem_cgroup_oom_synchronize(false);
5358 	}
5359 out:
5360 	mm_account_fault(mm, regs, address, flags, ret);
5361 
5362 	return ret;
5363 }
5364 EXPORT_SYMBOL_GPL(handle_mm_fault);
5365 
5366 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5367 #include <linux/extable.h>
5368 
5369 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5370 {
5371 	if (likely(mmap_read_trylock(mm)))
5372 		return true;
5373 
5374 	if (regs && !user_mode(regs)) {
5375 		unsigned long ip = instruction_pointer(regs);
5376 		if (!search_exception_tables(ip))
5377 			return false;
5378 	}
5379 
5380 	return !mmap_read_lock_killable(mm);
5381 }
5382 
5383 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5384 {
5385 	/*
5386 	 * We don't have this operation yet.
5387 	 *
5388 	 * It should be easy enough to do: it's basically a
5389 	 *    atomic_long_try_cmpxchg_acquire()
5390 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5391 	 * it also needs the proper lockdep magic etc.
5392 	 */
5393 	return false;
5394 }
5395 
5396 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5397 {
5398 	mmap_read_unlock(mm);
5399 	if (regs && !user_mode(regs)) {
5400 		unsigned long ip = instruction_pointer(regs);
5401 		if (!search_exception_tables(ip))
5402 			return false;
5403 	}
5404 	return !mmap_write_lock_killable(mm);
5405 }
5406 
5407 /*
5408  * Helper for page fault handling.
5409  *
5410  * This is kind of equivalend to "mmap_read_lock()" followed
5411  * by "find_extend_vma()", except it's a lot more careful about
5412  * the locking (and will drop the lock on failure).
5413  *
5414  * For example, if we have a kernel bug that causes a page
5415  * fault, we don't want to just use mmap_read_lock() to get
5416  * the mm lock, because that would deadlock if the bug were
5417  * to happen while we're holding the mm lock for writing.
5418  *
5419  * So this checks the exception tables on kernel faults in
5420  * order to only do this all for instructions that are actually
5421  * expected to fault.
5422  *
5423  * We can also actually take the mm lock for writing if we
5424  * need to extend the vma, which helps the VM layer a lot.
5425  */
5426 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5427 			unsigned long addr, struct pt_regs *regs)
5428 {
5429 	struct vm_area_struct *vma;
5430 
5431 	if (!get_mmap_lock_carefully(mm, regs))
5432 		return NULL;
5433 
5434 	vma = find_vma(mm, addr);
5435 	if (likely(vma && (vma->vm_start <= addr)))
5436 		return vma;
5437 
5438 	/*
5439 	 * Well, dang. We might still be successful, but only
5440 	 * if we can extend a vma to do so.
5441 	 */
5442 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5443 		mmap_read_unlock(mm);
5444 		return NULL;
5445 	}
5446 
5447 	/*
5448 	 * We can try to upgrade the mmap lock atomically,
5449 	 * in which case we can continue to use the vma
5450 	 * we already looked up.
5451 	 *
5452 	 * Otherwise we'll have to drop the mmap lock and
5453 	 * re-take it, and also look up the vma again,
5454 	 * re-checking it.
5455 	 */
5456 	if (!mmap_upgrade_trylock(mm)) {
5457 		if (!upgrade_mmap_lock_carefully(mm, regs))
5458 			return NULL;
5459 
5460 		vma = find_vma(mm, addr);
5461 		if (!vma)
5462 			goto fail;
5463 		if (vma->vm_start <= addr)
5464 			goto success;
5465 		if (!(vma->vm_flags & VM_GROWSDOWN))
5466 			goto fail;
5467 	}
5468 
5469 	if (expand_stack_locked(vma, addr))
5470 		goto fail;
5471 
5472 success:
5473 	mmap_write_downgrade(mm);
5474 	return vma;
5475 
5476 fail:
5477 	mmap_write_unlock(mm);
5478 	return NULL;
5479 }
5480 #endif
5481 
5482 #ifdef CONFIG_PER_VMA_LOCK
5483 /*
5484  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5485  * stable and not isolated. If the VMA is not found or is being modified the
5486  * function returns NULL.
5487  */
5488 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5489 					  unsigned long address)
5490 {
5491 	MA_STATE(mas, &mm->mm_mt, address, address);
5492 	struct vm_area_struct *vma;
5493 
5494 	rcu_read_lock();
5495 retry:
5496 	vma = mas_walk(&mas);
5497 	if (!vma)
5498 		goto inval;
5499 
5500 	if (!vma_start_read(vma))
5501 		goto inval;
5502 
5503 	/*
5504 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5505 	 * This check must happen after vma_start_read(); otherwise, a
5506 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5507 	 * from its anon_vma.
5508 	 */
5509 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5510 		goto inval_end_read;
5511 
5512 	/* Check since vm_start/vm_end might change before we lock the VMA */
5513 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5514 		goto inval_end_read;
5515 
5516 	/* Check if the VMA got isolated after we found it */
5517 	if (vma->detached) {
5518 		vma_end_read(vma);
5519 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5520 		/* The area was replaced with another one */
5521 		goto retry;
5522 	}
5523 
5524 	rcu_read_unlock();
5525 	return vma;
5526 
5527 inval_end_read:
5528 	vma_end_read(vma);
5529 inval:
5530 	rcu_read_unlock();
5531 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5532 	return NULL;
5533 }
5534 #endif /* CONFIG_PER_VMA_LOCK */
5535 
5536 #ifndef __PAGETABLE_P4D_FOLDED
5537 /*
5538  * Allocate p4d page table.
5539  * We've already handled the fast-path in-line.
5540  */
5541 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5542 {
5543 	p4d_t *new = p4d_alloc_one(mm, address);
5544 	if (!new)
5545 		return -ENOMEM;
5546 
5547 	spin_lock(&mm->page_table_lock);
5548 	if (pgd_present(*pgd)) {	/* Another has populated it */
5549 		p4d_free(mm, new);
5550 	} else {
5551 		smp_wmb(); /* See comment in pmd_install() */
5552 		pgd_populate(mm, pgd, new);
5553 	}
5554 	spin_unlock(&mm->page_table_lock);
5555 	return 0;
5556 }
5557 #endif /* __PAGETABLE_P4D_FOLDED */
5558 
5559 #ifndef __PAGETABLE_PUD_FOLDED
5560 /*
5561  * Allocate page upper directory.
5562  * We've already handled the fast-path in-line.
5563  */
5564 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5565 {
5566 	pud_t *new = pud_alloc_one(mm, address);
5567 	if (!new)
5568 		return -ENOMEM;
5569 
5570 	spin_lock(&mm->page_table_lock);
5571 	if (!p4d_present(*p4d)) {
5572 		mm_inc_nr_puds(mm);
5573 		smp_wmb(); /* See comment in pmd_install() */
5574 		p4d_populate(mm, p4d, new);
5575 	} else	/* Another has populated it */
5576 		pud_free(mm, new);
5577 	spin_unlock(&mm->page_table_lock);
5578 	return 0;
5579 }
5580 #endif /* __PAGETABLE_PUD_FOLDED */
5581 
5582 #ifndef __PAGETABLE_PMD_FOLDED
5583 /*
5584  * Allocate page middle directory.
5585  * We've already handled the fast-path in-line.
5586  */
5587 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5588 {
5589 	spinlock_t *ptl;
5590 	pmd_t *new = pmd_alloc_one(mm, address);
5591 	if (!new)
5592 		return -ENOMEM;
5593 
5594 	ptl = pud_lock(mm, pud);
5595 	if (!pud_present(*pud)) {
5596 		mm_inc_nr_pmds(mm);
5597 		smp_wmb(); /* See comment in pmd_install() */
5598 		pud_populate(mm, pud, new);
5599 	} else {	/* Another has populated it */
5600 		pmd_free(mm, new);
5601 	}
5602 	spin_unlock(ptl);
5603 	return 0;
5604 }
5605 #endif /* __PAGETABLE_PMD_FOLDED */
5606 
5607 /**
5608  * follow_pte - look up PTE at a user virtual address
5609  * @mm: the mm_struct of the target address space
5610  * @address: user virtual address
5611  * @ptepp: location to store found PTE
5612  * @ptlp: location to store the lock for the PTE
5613  *
5614  * On a successful return, the pointer to the PTE is stored in @ptepp;
5615  * the corresponding lock is taken and its location is stored in @ptlp.
5616  * The contents of the PTE are only stable until @ptlp is released;
5617  * any further use, if any, must be protected against invalidation
5618  * with MMU notifiers.
5619  *
5620  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5621  * should be taken for read.
5622  *
5623  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5624  * it is not a good general-purpose API.
5625  *
5626  * Return: zero on success, -ve otherwise.
5627  */
5628 int follow_pte(struct mm_struct *mm, unsigned long address,
5629 	       pte_t **ptepp, spinlock_t **ptlp)
5630 {
5631 	pgd_t *pgd;
5632 	p4d_t *p4d;
5633 	pud_t *pud;
5634 	pmd_t *pmd;
5635 	pte_t *ptep;
5636 
5637 	pgd = pgd_offset(mm, address);
5638 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5639 		goto out;
5640 
5641 	p4d = p4d_offset(pgd, address);
5642 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5643 		goto out;
5644 
5645 	pud = pud_offset(p4d, address);
5646 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5647 		goto out;
5648 
5649 	pmd = pmd_offset(pud, address);
5650 	VM_BUG_ON(pmd_trans_huge(*pmd));
5651 
5652 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5653 	if (!ptep)
5654 		goto out;
5655 	if (!pte_present(ptep_get(ptep)))
5656 		goto unlock;
5657 	*ptepp = ptep;
5658 	return 0;
5659 unlock:
5660 	pte_unmap_unlock(ptep, *ptlp);
5661 out:
5662 	return -EINVAL;
5663 }
5664 EXPORT_SYMBOL_GPL(follow_pte);
5665 
5666 /**
5667  * follow_pfn - look up PFN at a user virtual address
5668  * @vma: memory mapping
5669  * @address: user virtual address
5670  * @pfn: location to store found PFN
5671  *
5672  * Only IO mappings and raw PFN mappings are allowed.
5673  *
5674  * This function does not allow the caller to read the permissions
5675  * of the PTE.  Do not use it.
5676  *
5677  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5678  */
5679 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5680 	unsigned long *pfn)
5681 {
5682 	int ret = -EINVAL;
5683 	spinlock_t *ptl;
5684 	pte_t *ptep;
5685 
5686 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5687 		return ret;
5688 
5689 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5690 	if (ret)
5691 		return ret;
5692 	*pfn = pte_pfn(ptep_get(ptep));
5693 	pte_unmap_unlock(ptep, ptl);
5694 	return 0;
5695 }
5696 EXPORT_SYMBOL(follow_pfn);
5697 
5698 #ifdef CONFIG_HAVE_IOREMAP_PROT
5699 int follow_phys(struct vm_area_struct *vma,
5700 		unsigned long address, unsigned int flags,
5701 		unsigned long *prot, resource_size_t *phys)
5702 {
5703 	int ret = -EINVAL;
5704 	pte_t *ptep, pte;
5705 	spinlock_t *ptl;
5706 
5707 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5708 		goto out;
5709 
5710 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5711 		goto out;
5712 	pte = ptep_get(ptep);
5713 
5714 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5715 		goto unlock;
5716 
5717 	*prot = pgprot_val(pte_pgprot(pte));
5718 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5719 
5720 	ret = 0;
5721 unlock:
5722 	pte_unmap_unlock(ptep, ptl);
5723 out:
5724 	return ret;
5725 }
5726 
5727 /**
5728  * generic_access_phys - generic implementation for iomem mmap access
5729  * @vma: the vma to access
5730  * @addr: userspace address, not relative offset within @vma
5731  * @buf: buffer to read/write
5732  * @len: length of transfer
5733  * @write: set to FOLL_WRITE when writing, otherwise reading
5734  *
5735  * This is a generic implementation for &vm_operations_struct.access for an
5736  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5737  * not page based.
5738  */
5739 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5740 			void *buf, int len, int write)
5741 {
5742 	resource_size_t phys_addr;
5743 	unsigned long prot = 0;
5744 	void __iomem *maddr;
5745 	pte_t *ptep, pte;
5746 	spinlock_t *ptl;
5747 	int offset = offset_in_page(addr);
5748 	int ret = -EINVAL;
5749 
5750 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5751 		return -EINVAL;
5752 
5753 retry:
5754 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5755 		return -EINVAL;
5756 	pte = ptep_get(ptep);
5757 	pte_unmap_unlock(ptep, ptl);
5758 
5759 	prot = pgprot_val(pte_pgprot(pte));
5760 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5761 
5762 	if ((write & FOLL_WRITE) && !pte_write(pte))
5763 		return -EINVAL;
5764 
5765 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5766 	if (!maddr)
5767 		return -ENOMEM;
5768 
5769 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5770 		goto out_unmap;
5771 
5772 	if (!pte_same(pte, ptep_get(ptep))) {
5773 		pte_unmap_unlock(ptep, ptl);
5774 		iounmap(maddr);
5775 
5776 		goto retry;
5777 	}
5778 
5779 	if (write)
5780 		memcpy_toio(maddr + offset, buf, len);
5781 	else
5782 		memcpy_fromio(buf, maddr + offset, len);
5783 	ret = len;
5784 	pte_unmap_unlock(ptep, ptl);
5785 out_unmap:
5786 	iounmap(maddr);
5787 
5788 	return ret;
5789 }
5790 EXPORT_SYMBOL_GPL(generic_access_phys);
5791 #endif
5792 
5793 /*
5794  * Access another process' address space as given in mm.
5795  */
5796 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5797 			      void *buf, int len, unsigned int gup_flags)
5798 {
5799 	void *old_buf = buf;
5800 	int write = gup_flags & FOLL_WRITE;
5801 
5802 	if (mmap_read_lock_killable(mm))
5803 		return 0;
5804 
5805 	/* Untag the address before looking up the VMA */
5806 	addr = untagged_addr_remote(mm, addr);
5807 
5808 	/* Avoid triggering the temporary warning in __get_user_pages */
5809 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5810 		return 0;
5811 
5812 	/* ignore errors, just check how much was successfully transferred */
5813 	while (len) {
5814 		int bytes, offset;
5815 		void *maddr;
5816 		struct vm_area_struct *vma = NULL;
5817 		struct page *page = get_user_page_vma_remote(mm, addr,
5818 							     gup_flags, &vma);
5819 
5820 		if (IS_ERR(page)) {
5821 			/* We might need to expand the stack to access it */
5822 			vma = vma_lookup(mm, addr);
5823 			if (!vma) {
5824 				vma = expand_stack(mm, addr);
5825 
5826 				/* mmap_lock was dropped on failure */
5827 				if (!vma)
5828 					return buf - old_buf;
5829 
5830 				/* Try again if stack expansion worked */
5831 				continue;
5832 			}
5833 
5834 			/*
5835 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5836 			 * we can access using slightly different code.
5837 			 */
5838 			bytes = 0;
5839 #ifdef CONFIG_HAVE_IOREMAP_PROT
5840 			if (vma->vm_ops && vma->vm_ops->access)
5841 				bytes = vma->vm_ops->access(vma, addr, buf,
5842 							    len, write);
5843 #endif
5844 			if (bytes <= 0)
5845 				break;
5846 		} else {
5847 			bytes = len;
5848 			offset = addr & (PAGE_SIZE-1);
5849 			if (bytes > PAGE_SIZE-offset)
5850 				bytes = PAGE_SIZE-offset;
5851 
5852 			maddr = kmap(page);
5853 			if (write) {
5854 				copy_to_user_page(vma, page, addr,
5855 						  maddr + offset, buf, bytes);
5856 				set_page_dirty_lock(page);
5857 			} else {
5858 				copy_from_user_page(vma, page, addr,
5859 						    buf, maddr + offset, bytes);
5860 			}
5861 			kunmap(page);
5862 			put_page(page);
5863 		}
5864 		len -= bytes;
5865 		buf += bytes;
5866 		addr += bytes;
5867 	}
5868 	mmap_read_unlock(mm);
5869 
5870 	return buf - old_buf;
5871 }
5872 
5873 /**
5874  * access_remote_vm - access another process' address space
5875  * @mm:		the mm_struct of the target address space
5876  * @addr:	start address to access
5877  * @buf:	source or destination buffer
5878  * @len:	number of bytes to transfer
5879  * @gup_flags:	flags modifying lookup behaviour
5880  *
5881  * The caller must hold a reference on @mm.
5882  *
5883  * Return: number of bytes copied from source to destination.
5884  */
5885 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5886 		void *buf, int len, unsigned int gup_flags)
5887 {
5888 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5889 }
5890 
5891 /*
5892  * Access another process' address space.
5893  * Source/target buffer must be kernel space,
5894  * Do not walk the page table directly, use get_user_pages
5895  */
5896 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5897 		void *buf, int len, unsigned int gup_flags)
5898 {
5899 	struct mm_struct *mm;
5900 	int ret;
5901 
5902 	mm = get_task_mm(tsk);
5903 	if (!mm)
5904 		return 0;
5905 
5906 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5907 
5908 	mmput(mm);
5909 
5910 	return ret;
5911 }
5912 EXPORT_SYMBOL_GPL(access_process_vm);
5913 
5914 /*
5915  * Print the name of a VMA.
5916  */
5917 void print_vma_addr(char *prefix, unsigned long ip)
5918 {
5919 	struct mm_struct *mm = current->mm;
5920 	struct vm_area_struct *vma;
5921 
5922 	/*
5923 	 * we might be running from an atomic context so we cannot sleep
5924 	 */
5925 	if (!mmap_read_trylock(mm))
5926 		return;
5927 
5928 	vma = find_vma(mm, ip);
5929 	if (vma && vma->vm_file) {
5930 		struct file *f = vma->vm_file;
5931 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5932 		if (buf) {
5933 			char *p;
5934 
5935 			p = file_path(f, buf, PAGE_SIZE);
5936 			if (IS_ERR(p))
5937 				p = "?";
5938 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5939 					vma->vm_start,
5940 					vma->vm_end - vma->vm_start);
5941 			free_page((unsigned long)buf);
5942 		}
5943 	}
5944 	mmap_read_unlock(mm);
5945 }
5946 
5947 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5948 void __might_fault(const char *file, int line)
5949 {
5950 	if (pagefault_disabled())
5951 		return;
5952 	__might_sleep(file, line);
5953 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5954 	if (current->mm)
5955 		might_lock_read(&current->mm->mmap_lock);
5956 #endif
5957 }
5958 EXPORT_SYMBOL(__might_fault);
5959 #endif
5960 
5961 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5962 /*
5963  * Process all subpages of the specified huge page with the specified
5964  * operation.  The target subpage will be processed last to keep its
5965  * cache lines hot.
5966  */
5967 static inline int process_huge_page(
5968 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5969 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5970 	void *arg)
5971 {
5972 	int i, n, base, l, ret;
5973 	unsigned long addr = addr_hint &
5974 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5975 
5976 	/* Process target subpage last to keep its cache lines hot */
5977 	might_sleep();
5978 	n = (addr_hint - addr) / PAGE_SIZE;
5979 	if (2 * n <= pages_per_huge_page) {
5980 		/* If target subpage in first half of huge page */
5981 		base = 0;
5982 		l = n;
5983 		/* Process subpages at the end of huge page */
5984 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5985 			cond_resched();
5986 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5987 			if (ret)
5988 				return ret;
5989 		}
5990 	} else {
5991 		/* If target subpage in second half of huge page */
5992 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5993 		l = pages_per_huge_page - n;
5994 		/* Process subpages at the begin of huge page */
5995 		for (i = 0; i < base; i++) {
5996 			cond_resched();
5997 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5998 			if (ret)
5999 				return ret;
6000 		}
6001 	}
6002 	/*
6003 	 * Process remaining subpages in left-right-left-right pattern
6004 	 * towards the target subpage
6005 	 */
6006 	for (i = 0; i < l; i++) {
6007 		int left_idx = base + i;
6008 		int right_idx = base + 2 * l - 1 - i;
6009 
6010 		cond_resched();
6011 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6012 		if (ret)
6013 			return ret;
6014 		cond_resched();
6015 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6016 		if (ret)
6017 			return ret;
6018 	}
6019 	return 0;
6020 }
6021 
6022 static void clear_gigantic_page(struct page *page,
6023 				unsigned long addr,
6024 				unsigned int pages_per_huge_page)
6025 {
6026 	int i;
6027 	struct page *p;
6028 
6029 	might_sleep();
6030 	for (i = 0; i < pages_per_huge_page; i++) {
6031 		p = nth_page(page, i);
6032 		cond_resched();
6033 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6034 	}
6035 }
6036 
6037 static int clear_subpage(unsigned long addr, int idx, void *arg)
6038 {
6039 	struct page *page = arg;
6040 
6041 	clear_user_highpage(page + idx, addr);
6042 	return 0;
6043 }
6044 
6045 void clear_huge_page(struct page *page,
6046 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6047 {
6048 	unsigned long addr = addr_hint &
6049 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6050 
6051 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6052 		clear_gigantic_page(page, addr, pages_per_huge_page);
6053 		return;
6054 	}
6055 
6056 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6057 }
6058 
6059 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6060 				     unsigned long addr,
6061 				     struct vm_area_struct *vma,
6062 				     unsigned int pages_per_huge_page)
6063 {
6064 	int i;
6065 	struct page *dst_page;
6066 	struct page *src_page;
6067 
6068 	for (i = 0; i < pages_per_huge_page; i++) {
6069 		dst_page = folio_page(dst, i);
6070 		src_page = folio_page(src, i);
6071 
6072 		cond_resched();
6073 		if (copy_mc_user_highpage(dst_page, src_page,
6074 					  addr + i*PAGE_SIZE, vma)) {
6075 			memory_failure_queue(page_to_pfn(src_page), 0);
6076 			return -EHWPOISON;
6077 		}
6078 	}
6079 	return 0;
6080 }
6081 
6082 struct copy_subpage_arg {
6083 	struct page *dst;
6084 	struct page *src;
6085 	struct vm_area_struct *vma;
6086 };
6087 
6088 static int copy_subpage(unsigned long addr, int idx, void *arg)
6089 {
6090 	struct copy_subpage_arg *copy_arg = arg;
6091 
6092 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6093 				  addr, copy_arg->vma)) {
6094 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6095 		return -EHWPOISON;
6096 	}
6097 	return 0;
6098 }
6099 
6100 int copy_user_large_folio(struct folio *dst, struct folio *src,
6101 			  unsigned long addr_hint, struct vm_area_struct *vma)
6102 {
6103 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6104 	unsigned long addr = addr_hint &
6105 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6106 	struct copy_subpage_arg arg = {
6107 		.dst = &dst->page,
6108 		.src = &src->page,
6109 		.vma = vma,
6110 	};
6111 
6112 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6113 		return copy_user_gigantic_page(dst, src, addr, vma,
6114 					       pages_per_huge_page);
6115 
6116 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6117 }
6118 
6119 long copy_folio_from_user(struct folio *dst_folio,
6120 			   const void __user *usr_src,
6121 			   bool allow_pagefault)
6122 {
6123 	void *kaddr;
6124 	unsigned long i, rc = 0;
6125 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6126 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6127 	struct page *subpage;
6128 
6129 	for (i = 0; i < nr_pages; i++) {
6130 		subpage = folio_page(dst_folio, i);
6131 		kaddr = kmap_local_page(subpage);
6132 		if (!allow_pagefault)
6133 			pagefault_disable();
6134 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6135 		if (!allow_pagefault)
6136 			pagefault_enable();
6137 		kunmap_local(kaddr);
6138 
6139 		ret_val -= (PAGE_SIZE - rc);
6140 		if (rc)
6141 			break;
6142 
6143 		flush_dcache_page(subpage);
6144 
6145 		cond_resched();
6146 	}
6147 	return ret_val;
6148 }
6149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6150 
6151 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6152 
6153 static struct kmem_cache *page_ptl_cachep;
6154 
6155 void __init ptlock_cache_init(void)
6156 {
6157 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6158 			SLAB_PANIC, NULL);
6159 }
6160 
6161 bool ptlock_alloc(struct ptdesc *ptdesc)
6162 {
6163 	spinlock_t *ptl;
6164 
6165 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6166 	if (!ptl)
6167 		return false;
6168 	ptdesc->ptl = ptl;
6169 	return true;
6170 }
6171 
6172 void ptlock_free(struct ptdesc *ptdesc)
6173 {
6174 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6175 }
6176 #endif
6177