1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_marker_uffd_wp(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 #ifndef arch_wants_old_prefaulted_pte 129 static inline bool arch_wants_old_prefaulted_pte(void) 130 { 131 /* 132 * Transitioning a PTE from 'old' to 'young' can be expensive on 133 * some architectures, even if it's performed in hardware. By 134 * default, "false" means prefaulted entries will be 'young'. 135 */ 136 return false; 137 } 138 #endif 139 140 static int __init disable_randmaps(char *s) 141 { 142 randomize_va_space = 0; 143 return 1; 144 } 145 __setup("norandmaps", disable_randmaps); 146 147 unsigned long zero_pfn __read_mostly; 148 EXPORT_SYMBOL(zero_pfn); 149 150 unsigned long highest_memmap_pfn __read_mostly; 151 152 /* 153 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 154 */ 155 static int __init init_zero_pfn(void) 156 { 157 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 158 return 0; 159 } 160 early_initcall(init_zero_pfn); 161 162 void mm_trace_rss_stat(struct mm_struct *mm, int member) 163 { 164 trace_rss_stat(mm, member); 165 } 166 167 /* 168 * Note: this doesn't free the actual pages themselves. That 169 * has been handled earlier when unmapping all the memory regions. 170 */ 171 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 172 unsigned long addr) 173 { 174 pgtable_t token = pmd_pgtable(*pmd); 175 pmd_clear(pmd); 176 pte_free_tlb(tlb, token, addr); 177 mm_dec_nr_ptes(tlb->mm); 178 } 179 180 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 181 unsigned long addr, unsigned long end, 182 unsigned long floor, unsigned long ceiling) 183 { 184 pmd_t *pmd; 185 unsigned long next; 186 unsigned long start; 187 188 start = addr; 189 pmd = pmd_offset(pud, addr); 190 do { 191 next = pmd_addr_end(addr, end); 192 if (pmd_none_or_clear_bad(pmd)) 193 continue; 194 free_pte_range(tlb, pmd, addr); 195 } while (pmd++, addr = next, addr != end); 196 197 start &= PUD_MASK; 198 if (start < floor) 199 return; 200 if (ceiling) { 201 ceiling &= PUD_MASK; 202 if (!ceiling) 203 return; 204 } 205 if (end - 1 > ceiling - 1) 206 return; 207 208 pmd = pmd_offset(pud, start); 209 pud_clear(pud); 210 pmd_free_tlb(tlb, pmd, start); 211 mm_dec_nr_pmds(tlb->mm); 212 } 213 214 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 215 unsigned long addr, unsigned long end, 216 unsigned long floor, unsigned long ceiling) 217 { 218 pud_t *pud; 219 unsigned long next; 220 unsigned long start; 221 222 start = addr; 223 pud = pud_offset(p4d, addr); 224 do { 225 next = pud_addr_end(addr, end); 226 if (pud_none_or_clear_bad(pud)) 227 continue; 228 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 229 } while (pud++, addr = next, addr != end); 230 231 start &= P4D_MASK; 232 if (start < floor) 233 return; 234 if (ceiling) { 235 ceiling &= P4D_MASK; 236 if (!ceiling) 237 return; 238 } 239 if (end - 1 > ceiling - 1) 240 return; 241 242 pud = pud_offset(p4d, start); 243 p4d_clear(p4d); 244 pud_free_tlb(tlb, pud, start); 245 mm_dec_nr_puds(tlb->mm); 246 } 247 248 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 249 unsigned long addr, unsigned long end, 250 unsigned long floor, unsigned long ceiling) 251 { 252 p4d_t *p4d; 253 unsigned long next; 254 unsigned long start; 255 256 start = addr; 257 p4d = p4d_offset(pgd, addr); 258 do { 259 next = p4d_addr_end(addr, end); 260 if (p4d_none_or_clear_bad(p4d)) 261 continue; 262 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 263 } while (p4d++, addr = next, addr != end); 264 265 start &= PGDIR_MASK; 266 if (start < floor) 267 return; 268 if (ceiling) { 269 ceiling &= PGDIR_MASK; 270 if (!ceiling) 271 return; 272 } 273 if (end - 1 > ceiling - 1) 274 return; 275 276 p4d = p4d_offset(pgd, start); 277 pgd_clear(pgd); 278 p4d_free_tlb(tlb, p4d, start); 279 } 280 281 /** 282 * free_pgd_range - Unmap and free page tables in the range 283 * @tlb: the mmu_gather containing pending TLB flush info 284 * @addr: virtual address start 285 * @end: virtual address end 286 * @floor: lowest address boundary 287 * @ceiling: highest address boundary 288 * 289 * This function tears down all user-level page tables in the 290 * specified virtual address range [@addr..@end). It is part of 291 * the memory unmap flow. 292 */ 293 void free_pgd_range(struct mmu_gather *tlb, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 pgd_t *pgd; 298 unsigned long next; 299 300 /* 301 * The next few lines have given us lots of grief... 302 * 303 * Why are we testing PMD* at this top level? Because often 304 * there will be no work to do at all, and we'd prefer not to 305 * go all the way down to the bottom just to discover that. 306 * 307 * Why all these "- 1"s? Because 0 represents both the bottom 308 * of the address space and the top of it (using -1 for the 309 * top wouldn't help much: the masks would do the wrong thing). 310 * The rule is that addr 0 and floor 0 refer to the bottom of 311 * the address space, but end 0 and ceiling 0 refer to the top 312 * Comparisons need to use "end - 1" and "ceiling - 1" (though 313 * that end 0 case should be mythical). 314 * 315 * Wherever addr is brought up or ceiling brought down, we must 316 * be careful to reject "the opposite 0" before it confuses the 317 * subsequent tests. But what about where end is brought down 318 * by PMD_SIZE below? no, end can't go down to 0 there. 319 * 320 * Whereas we round start (addr) and ceiling down, by different 321 * masks at different levels, in order to test whether a table 322 * now has no other vmas using it, so can be freed, we don't 323 * bother to round floor or end up - the tests don't need that. 324 */ 325 326 addr &= PMD_MASK; 327 if (addr < floor) { 328 addr += PMD_SIZE; 329 if (!addr) 330 return; 331 } 332 if (ceiling) { 333 ceiling &= PMD_MASK; 334 if (!ceiling) 335 return; 336 } 337 if (end - 1 > ceiling - 1) 338 end -= PMD_SIZE; 339 if (addr > end - 1) 340 return; 341 /* 342 * We add page table cache pages with PAGE_SIZE, 343 * (see pte_free_tlb()), flush the tlb if we need 344 */ 345 tlb_change_page_size(tlb, PAGE_SIZE); 346 pgd = pgd_offset(tlb->mm, addr); 347 do { 348 next = pgd_addr_end(addr, end); 349 if (pgd_none_or_clear_bad(pgd)) 350 continue; 351 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 352 } while (pgd++, addr = next, addr != end); 353 } 354 355 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 356 struct vm_area_struct *vma, unsigned long floor, 357 unsigned long ceiling, bool mm_wr_locked) 358 { 359 struct unlink_vma_file_batch vb; 360 361 do { 362 unsigned long addr = vma->vm_start; 363 struct vm_area_struct *next; 364 365 /* 366 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 367 * be 0. This will underflow and is okay. 368 */ 369 next = mas_find(mas, ceiling - 1); 370 if (unlikely(xa_is_zero(next))) 371 next = NULL; 372 373 /* 374 * Hide vma from rmap and truncate_pagecache before freeing 375 * pgtables 376 */ 377 if (mm_wr_locked) 378 vma_start_write(vma); 379 unlink_anon_vmas(vma); 380 381 if (is_vm_hugetlb_page(vma)) { 382 unlink_file_vma(vma); 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 384 floor, next ? next->vm_start : ceiling); 385 } else { 386 unlink_file_vma_batch_init(&vb); 387 unlink_file_vma_batch_add(&vb, vma); 388 389 /* 390 * Optimization: gather nearby vmas into one call down 391 */ 392 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 393 && !is_vm_hugetlb_page(next)) { 394 vma = next; 395 next = mas_find(mas, ceiling - 1); 396 if (unlikely(xa_is_zero(next))) 397 next = NULL; 398 if (mm_wr_locked) 399 vma_start_write(vma); 400 unlink_anon_vmas(vma); 401 unlink_file_vma_batch_add(&vb, vma); 402 } 403 unlink_file_vma_batch_final(&vb); 404 free_pgd_range(tlb, addr, vma->vm_end, 405 floor, next ? next->vm_start : ceiling); 406 } 407 vma = next; 408 } while (vma); 409 } 410 411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 412 { 413 spinlock_t *ptl = pmd_lock(mm, pmd); 414 415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 416 mm_inc_nr_ptes(mm); 417 /* 418 * Ensure all pte setup (eg. pte page lock and page clearing) are 419 * visible before the pte is made visible to other CPUs by being 420 * put into page tables. 421 * 422 * The other side of the story is the pointer chasing in the page 423 * table walking code (when walking the page table without locking; 424 * ie. most of the time). Fortunately, these data accesses consist 425 * of a chain of data-dependent loads, meaning most CPUs (alpha 426 * being the notable exception) will already guarantee loads are 427 * seen in-order. See the alpha page table accessors for the 428 * smp_rmb() barriers in page table walking code. 429 */ 430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 431 pmd_populate(mm, pmd, *pte); 432 *pte = NULL; 433 } 434 spin_unlock(ptl); 435 } 436 437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 438 { 439 pgtable_t new = pte_alloc_one(mm); 440 if (!new) 441 return -ENOMEM; 442 443 pmd_install(mm, pmd, &new); 444 if (new) 445 pte_free(mm, new); 446 return 0; 447 } 448 449 int __pte_alloc_kernel(pmd_t *pmd) 450 { 451 pte_t *new = pte_alloc_one_kernel(&init_mm); 452 if (!new) 453 return -ENOMEM; 454 455 spin_lock(&init_mm.page_table_lock); 456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 457 smp_wmb(); /* See comment in pmd_install() */ 458 pmd_populate_kernel(&init_mm, pmd, new); 459 new = NULL; 460 } 461 spin_unlock(&init_mm.page_table_lock); 462 if (new) 463 pte_free_kernel(&init_mm, new); 464 return 0; 465 } 466 467 static inline void init_rss_vec(int *rss) 468 { 469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 470 } 471 472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 473 { 474 int i; 475 476 for (i = 0; i < NR_MM_COUNTERS; i++) 477 if (rss[i]) 478 add_mm_counter(mm, i, rss[i]); 479 } 480 481 /* 482 * This function is called to print an error when a bad pte 483 * is found. For example, we might have a PFN-mapped pte in 484 * a region that doesn't allow it. 485 * 486 * The calling function must still handle the error. 487 */ 488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 489 pte_t pte, struct page *page) 490 { 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 492 p4d_t *p4d = p4d_offset(pgd, addr); 493 pud_t *pud = pud_offset(p4d, addr); 494 pmd_t *pmd = pmd_offset(pud, addr); 495 struct address_space *mapping; 496 pgoff_t index; 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 521 index = linear_page_index(vma, addr); 522 523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 524 current->comm, 525 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 526 if (page) 527 dump_page(page, "bad pte"); 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 531 vma->vm_file, 532 vma->vm_ops ? vma->vm_ops->fault : NULL, 533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 534 mapping ? mapping->a_ops->read_folio : NULL); 535 dump_stack(); 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 537 } 538 539 /* 540 * vm_normal_page -- This function gets the "struct page" associated with a pte. 541 * 542 * "Special" mappings do not wish to be associated with a "struct page" (either 543 * it doesn't exist, or it exists but they don't want to touch it). In this 544 * case, NULL is returned here. "Normal" mappings do have a struct page. 545 * 546 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 547 * pte bit, in which case this function is trivial. Secondly, an architecture 548 * may not have a spare pte bit, which requires a more complicated scheme, 549 * described below. 550 * 551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 552 * special mapping (even if there are underlying and valid "struct pages"). 553 * COWed pages of a VM_PFNMAP are always normal. 554 * 555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 558 * mapping will always honor the rule 559 * 560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 561 * 562 * And for normal mappings this is false. 563 * 564 * This restricts such mappings to be a linear translation from virtual address 565 * to pfn. To get around this restriction, we allow arbitrary mappings so long 566 * as the vma is not a COW mapping; in that case, we know that all ptes are 567 * special (because none can have been COWed). 568 * 569 * 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 571 * 572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 573 * page" backing, however the difference is that _all_ pages with a struct 574 * page (that is, those where pfn_valid is true) are refcounted and considered 575 * normal pages by the VM. The only exception are zeropages, which are 576 * *never* refcounted. 577 * 578 * The disadvantage is that pages are refcounted (which can be slower and 579 * simply not an option for some PFNMAP users). The advantage is that we 580 * don't have to follow the strict linearity rule of PFNMAP mappings in 581 * order to support COWable mappings. 582 * 583 */ 584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 585 pte_t pte) 586 { 587 unsigned long pfn = pte_pfn(pte); 588 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 590 if (likely(!pte_special(pte))) 591 goto check_pfn; 592 if (vma->vm_ops && vma->vm_ops->find_special_page) 593 return vma->vm_ops->find_special_page(vma, addr); 594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 595 return NULL; 596 if (is_zero_pfn(pfn)) 597 return NULL; 598 if (pte_devmap(pte)) 599 /* 600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 601 * and will have refcounts incremented on their struct pages 602 * when they are inserted into PTEs, thus they are safe to 603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 604 * do not have refcounts. Example of legacy ZONE_DEVICE is 605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 606 */ 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 if (is_zero_pfn(pfn)) 620 return NULL; 621 goto out; 622 } else { 623 unsigned long off; 624 off = (addr - vma->vm_start) >> PAGE_SHIFT; 625 if (pfn == vma->vm_pgoff + off) 626 return NULL; 627 if (!is_cow_mapping(vma->vm_flags)) 628 return NULL; 629 } 630 } 631 632 if (is_zero_pfn(pfn)) 633 return NULL; 634 635 check_pfn: 636 if (unlikely(pfn > highest_memmap_pfn)) { 637 print_bad_pte(vma, addr, pte, NULL); 638 return NULL; 639 } 640 641 /* 642 * NOTE! We still have PageReserved() pages in the page tables. 643 * eg. VDSO mappings can cause them to exist. 644 */ 645 out: 646 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 647 return pfn_to_page(pfn); 648 } 649 650 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 651 pte_t pte) 652 { 653 struct page *page = vm_normal_page(vma, addr, pte); 654 655 if (page) 656 return page_folio(page); 657 return NULL; 658 } 659 660 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 662 pmd_t pmd) 663 { 664 unsigned long pfn = pmd_pfn(pmd); 665 666 /* Currently it's only used for huge pfnmaps */ 667 if (unlikely(pmd_special(pmd))) 668 return NULL; 669 670 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 671 if (vma->vm_flags & VM_MIXEDMAP) { 672 if (!pfn_valid(pfn)) 673 return NULL; 674 goto out; 675 } else { 676 unsigned long off; 677 off = (addr - vma->vm_start) >> PAGE_SHIFT; 678 if (pfn == vma->vm_pgoff + off) 679 return NULL; 680 if (!is_cow_mapping(vma->vm_flags)) 681 return NULL; 682 } 683 } 684 685 if (pmd_devmap(pmd)) 686 return NULL; 687 if (is_huge_zero_pmd(pmd)) 688 return NULL; 689 if (unlikely(pfn > highest_memmap_pfn)) 690 return NULL; 691 692 /* 693 * NOTE! We still have PageReserved() pages in the page tables. 694 * eg. VDSO mappings can cause them to exist. 695 */ 696 out: 697 return pfn_to_page(pfn); 698 } 699 700 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 701 unsigned long addr, pmd_t pmd) 702 { 703 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 704 705 if (page) 706 return page_folio(page); 707 return NULL; 708 } 709 #endif 710 711 /** 712 * restore_exclusive_pte - Restore a device-exclusive entry 713 * @vma: VMA covering @address 714 * @folio: the mapped folio 715 * @page: the mapped folio page 716 * @address: the virtual address 717 * @ptep: pte pointer into the locked page table mapping the folio page 718 * @orig_pte: pte value at @ptep 719 * 720 * Restore a device-exclusive non-swap entry to an ordinary present pte. 721 * 722 * The folio and the page table must be locked, and MMU notifiers must have 723 * been called to invalidate any (exclusive) device mappings. 724 * 725 * Locking the folio makes sure that anybody who just converted the pte to 726 * a device-exclusive entry can map it into the device to make forward 727 * progress without others converting it back until the folio was unlocked. 728 * 729 * If the folio lock ever becomes an issue, we can stop relying on the folio 730 * lock; it might make some scenarios with heavy thrashing less likely to 731 * make forward progress, but these scenarios might not be valid use cases. 732 * 733 * Note that the folio lock does not protect against all cases of concurrent 734 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 735 * must use MMU notifiers to sync against any concurrent changes. 736 */ 737 static void restore_exclusive_pte(struct vm_area_struct *vma, 738 struct folio *folio, struct page *page, unsigned long address, 739 pte_t *ptep, pte_t orig_pte) 740 { 741 pte_t pte; 742 743 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 744 745 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 746 if (pte_swp_soft_dirty(orig_pte)) 747 pte = pte_mksoft_dirty(pte); 748 749 if (pte_swp_uffd_wp(orig_pte)) 750 pte = pte_mkuffd_wp(pte); 751 752 if ((vma->vm_flags & VM_WRITE) && 753 can_change_pte_writable(vma, address, pte)) { 754 if (folio_test_dirty(folio)) 755 pte = pte_mkdirty(pte); 756 pte = pte_mkwrite(pte, vma); 757 } 758 set_pte_at(vma->vm_mm, address, ptep, pte); 759 760 /* 761 * No need to invalidate - it was non-present before. However 762 * secondary CPUs may have mappings that need invalidating. 763 */ 764 update_mmu_cache(vma, address, ptep); 765 } 766 767 /* 768 * Tries to restore an exclusive pte if the page lock can be acquired without 769 * sleeping. 770 */ 771 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 772 unsigned long addr, pte_t *ptep, pte_t orig_pte) 773 { 774 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 775 struct folio *folio = page_folio(page); 776 777 if (folio_trylock(folio)) { 778 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 779 folio_unlock(folio); 780 return 0; 781 } 782 783 return -EBUSY; 784 } 785 786 /* 787 * copy one vm_area from one task to the other. Assumes the page tables 788 * already present in the new task to be cleared in the whole range 789 * covered by this vma. 790 */ 791 792 static unsigned long 793 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 794 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 795 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 796 { 797 unsigned long vm_flags = dst_vma->vm_flags; 798 pte_t orig_pte = ptep_get(src_pte); 799 pte_t pte = orig_pte; 800 struct folio *folio; 801 struct page *page; 802 swp_entry_t entry = pte_to_swp_entry(orig_pte); 803 804 if (likely(!non_swap_entry(entry))) { 805 if (swap_duplicate(entry) < 0) 806 return -EIO; 807 808 /* make sure dst_mm is on swapoff's mmlist. */ 809 if (unlikely(list_empty(&dst_mm->mmlist))) { 810 spin_lock(&mmlist_lock); 811 if (list_empty(&dst_mm->mmlist)) 812 list_add(&dst_mm->mmlist, 813 &src_mm->mmlist); 814 spin_unlock(&mmlist_lock); 815 } 816 /* Mark the swap entry as shared. */ 817 if (pte_swp_exclusive(orig_pte)) { 818 pte = pte_swp_clear_exclusive(orig_pte); 819 set_pte_at(src_mm, addr, src_pte, pte); 820 } 821 rss[MM_SWAPENTS]++; 822 } else if (is_migration_entry(entry)) { 823 folio = pfn_swap_entry_folio(entry); 824 825 rss[mm_counter(folio)]++; 826 827 if (!is_readable_migration_entry(entry) && 828 is_cow_mapping(vm_flags)) { 829 /* 830 * COW mappings require pages in both parent and child 831 * to be set to read. A previously exclusive entry is 832 * now shared. 833 */ 834 entry = make_readable_migration_entry( 835 swp_offset(entry)); 836 pte = swp_entry_to_pte(entry); 837 if (pte_swp_soft_dirty(orig_pte)) 838 pte = pte_swp_mksoft_dirty(pte); 839 if (pte_swp_uffd_wp(orig_pte)) 840 pte = pte_swp_mkuffd_wp(pte); 841 set_pte_at(src_mm, addr, src_pte, pte); 842 } 843 } else if (is_device_private_entry(entry)) { 844 page = pfn_swap_entry_to_page(entry); 845 folio = page_folio(page); 846 847 /* 848 * Update rss count even for unaddressable pages, as 849 * they should treated just like normal pages in this 850 * respect. 851 * 852 * We will likely want to have some new rss counters 853 * for unaddressable pages, at some point. But for now 854 * keep things as they are. 855 */ 856 folio_get(folio); 857 rss[mm_counter(folio)]++; 858 /* Cannot fail as these pages cannot get pinned. */ 859 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 860 861 /* 862 * We do not preserve soft-dirty information, because so 863 * far, checkpoint/restore is the only feature that 864 * requires that. And checkpoint/restore does not work 865 * when a device driver is involved (you cannot easily 866 * save and restore device driver state). 867 */ 868 if (is_writable_device_private_entry(entry) && 869 is_cow_mapping(vm_flags)) { 870 entry = make_readable_device_private_entry( 871 swp_offset(entry)); 872 pte = swp_entry_to_pte(entry); 873 if (pte_swp_uffd_wp(orig_pte)) 874 pte = pte_swp_mkuffd_wp(pte); 875 set_pte_at(src_mm, addr, src_pte, pte); 876 } 877 } else if (is_device_exclusive_entry(entry)) { 878 /* 879 * Make device exclusive entries present by restoring the 880 * original entry then copying as for a present pte. Device 881 * exclusive entries currently only support private writable 882 * (ie. COW) mappings. 883 */ 884 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 885 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 886 return -EBUSY; 887 return -ENOENT; 888 } else if (is_pte_marker_entry(entry)) { 889 pte_marker marker = copy_pte_marker(entry, dst_vma); 890 891 if (marker) 892 set_pte_at(dst_mm, addr, dst_pte, 893 make_pte_marker(marker)); 894 return 0; 895 } 896 if (!userfaultfd_wp(dst_vma)) 897 pte = pte_swp_clear_uffd_wp(pte); 898 set_pte_at(dst_mm, addr, dst_pte, pte); 899 return 0; 900 } 901 902 /* 903 * Copy a present and normal page. 904 * 905 * NOTE! The usual case is that this isn't required; 906 * instead, the caller can just increase the page refcount 907 * and re-use the pte the traditional way. 908 * 909 * And if we need a pre-allocated page but don't yet have 910 * one, return a negative error to let the preallocation 911 * code know so that it can do so outside the page table 912 * lock. 913 */ 914 static inline int 915 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 916 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 917 struct folio **prealloc, struct page *page) 918 { 919 struct folio *new_folio; 920 pte_t pte; 921 922 new_folio = *prealloc; 923 if (!new_folio) 924 return -EAGAIN; 925 926 /* 927 * We have a prealloc page, all good! Take it 928 * over and copy the page & arm it. 929 */ 930 931 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 932 return -EHWPOISON; 933 934 *prealloc = NULL; 935 __folio_mark_uptodate(new_folio); 936 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 937 folio_add_lru_vma(new_folio, dst_vma); 938 rss[MM_ANONPAGES]++; 939 940 /* All done, just insert the new page copy in the child */ 941 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 942 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 943 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 944 /* Uffd-wp needs to be delivered to dest pte as well */ 945 pte = pte_mkuffd_wp(pte); 946 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 947 return 0; 948 } 949 950 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 951 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 952 pte_t pte, unsigned long addr, int nr) 953 { 954 struct mm_struct *src_mm = src_vma->vm_mm; 955 956 /* If it's a COW mapping, write protect it both processes. */ 957 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 958 wrprotect_ptes(src_mm, addr, src_pte, nr); 959 pte = pte_wrprotect(pte); 960 } 961 962 /* If it's a shared mapping, mark it clean in the child. */ 963 if (src_vma->vm_flags & VM_SHARED) 964 pte = pte_mkclean(pte); 965 pte = pte_mkold(pte); 966 967 if (!userfaultfd_wp(dst_vma)) 968 pte = pte_clear_uffd_wp(pte); 969 970 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 971 } 972 973 /* 974 * Copy one present PTE, trying to batch-process subsequent PTEs that map 975 * consecutive pages of the same folio by copying them as well. 976 * 977 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 978 * Otherwise, returns the number of copied PTEs (at least 1). 979 */ 980 static inline int 981 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 982 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 983 int max_nr, int *rss, struct folio **prealloc) 984 { 985 struct page *page; 986 struct folio *folio; 987 bool any_writable; 988 fpb_t flags = 0; 989 int err, nr; 990 991 page = vm_normal_page(src_vma, addr, pte); 992 if (unlikely(!page)) 993 goto copy_pte; 994 995 folio = page_folio(page); 996 997 /* 998 * If we likely have to copy, just don't bother with batching. Make 999 * sure that the common "small folio" case is as fast as possible 1000 * by keeping the batching logic separate. 1001 */ 1002 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1003 if (src_vma->vm_flags & VM_SHARED) 1004 flags |= FPB_IGNORE_DIRTY; 1005 if (!vma_soft_dirty_enabled(src_vma)) 1006 flags |= FPB_IGNORE_SOFT_DIRTY; 1007 1008 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1009 &any_writable, NULL, NULL); 1010 folio_ref_add(folio, nr); 1011 if (folio_test_anon(folio)) { 1012 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1013 nr, dst_vma, src_vma))) { 1014 folio_ref_sub(folio, nr); 1015 return -EAGAIN; 1016 } 1017 rss[MM_ANONPAGES] += nr; 1018 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1019 } else { 1020 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1021 rss[mm_counter_file(folio)] += nr; 1022 } 1023 if (any_writable) 1024 pte = pte_mkwrite(pte, src_vma); 1025 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1026 addr, nr); 1027 return nr; 1028 } 1029 1030 folio_get(folio); 1031 if (folio_test_anon(folio)) { 1032 /* 1033 * If this page may have been pinned by the parent process, 1034 * copy the page immediately for the child so that we'll always 1035 * guarantee the pinned page won't be randomly replaced in the 1036 * future. 1037 */ 1038 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1039 /* Page may be pinned, we have to copy. */ 1040 folio_put(folio); 1041 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1042 addr, rss, prealloc, page); 1043 return err ? err : 1; 1044 } 1045 rss[MM_ANONPAGES]++; 1046 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1047 } else { 1048 folio_dup_file_rmap_pte(folio, page, dst_vma); 1049 rss[mm_counter_file(folio)]++; 1050 } 1051 1052 copy_pte: 1053 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1054 return 1; 1055 } 1056 1057 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1058 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1059 { 1060 struct folio *new_folio; 1061 1062 if (need_zero) 1063 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1064 else 1065 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1066 1067 if (!new_folio) 1068 return NULL; 1069 1070 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1071 folio_put(new_folio); 1072 return NULL; 1073 } 1074 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1075 1076 return new_folio; 1077 } 1078 1079 static int 1080 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1081 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1082 unsigned long end) 1083 { 1084 struct mm_struct *dst_mm = dst_vma->vm_mm; 1085 struct mm_struct *src_mm = src_vma->vm_mm; 1086 pte_t *orig_src_pte, *orig_dst_pte; 1087 pte_t *src_pte, *dst_pte; 1088 pmd_t dummy_pmdval; 1089 pte_t ptent; 1090 spinlock_t *src_ptl, *dst_ptl; 1091 int progress, max_nr, ret = 0; 1092 int rss[NR_MM_COUNTERS]; 1093 swp_entry_t entry = (swp_entry_t){0}; 1094 struct folio *prealloc = NULL; 1095 int nr; 1096 1097 again: 1098 progress = 0; 1099 init_rss_vec(rss); 1100 1101 /* 1102 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1103 * error handling here, assume that exclusive mmap_lock on dst and src 1104 * protects anon from unexpected THP transitions; with shmem and file 1105 * protected by mmap_lock-less collapse skipping areas with anon_vma 1106 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1107 * can remove such assumptions later, but this is good enough for now. 1108 */ 1109 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1110 if (!dst_pte) { 1111 ret = -ENOMEM; 1112 goto out; 1113 } 1114 1115 /* 1116 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1117 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1118 * the PTE page is stable, and there is no need to get pmdval and do 1119 * pmd_same() check. 1120 */ 1121 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1122 &src_ptl); 1123 if (!src_pte) { 1124 pte_unmap_unlock(dst_pte, dst_ptl); 1125 /* ret == 0 */ 1126 goto out; 1127 } 1128 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1129 orig_src_pte = src_pte; 1130 orig_dst_pte = dst_pte; 1131 arch_enter_lazy_mmu_mode(); 1132 1133 do { 1134 nr = 1; 1135 1136 /* 1137 * We are holding two locks at this point - either of them 1138 * could generate latencies in another task on another CPU. 1139 */ 1140 if (progress >= 32) { 1141 progress = 0; 1142 if (need_resched() || 1143 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1144 break; 1145 } 1146 ptent = ptep_get(src_pte); 1147 if (pte_none(ptent)) { 1148 progress++; 1149 continue; 1150 } 1151 if (unlikely(!pte_present(ptent))) { 1152 ret = copy_nonpresent_pte(dst_mm, src_mm, 1153 dst_pte, src_pte, 1154 dst_vma, src_vma, 1155 addr, rss); 1156 if (ret == -EIO) { 1157 entry = pte_to_swp_entry(ptep_get(src_pte)); 1158 break; 1159 } else if (ret == -EBUSY) { 1160 break; 1161 } else if (!ret) { 1162 progress += 8; 1163 continue; 1164 } 1165 ptent = ptep_get(src_pte); 1166 VM_WARN_ON_ONCE(!pte_present(ptent)); 1167 1168 /* 1169 * Device exclusive entry restored, continue by copying 1170 * the now present pte. 1171 */ 1172 WARN_ON_ONCE(ret != -ENOENT); 1173 } 1174 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1175 max_nr = (end - addr) / PAGE_SIZE; 1176 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1177 ptent, addr, max_nr, rss, &prealloc); 1178 /* 1179 * If we need a pre-allocated page for this pte, drop the 1180 * locks, allocate, and try again. 1181 * If copy failed due to hwpoison in source page, break out. 1182 */ 1183 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1184 break; 1185 if (unlikely(prealloc)) { 1186 /* 1187 * pre-alloc page cannot be reused by next time so as 1188 * to strictly follow mempolicy (e.g., alloc_page_vma() 1189 * will allocate page according to address). This 1190 * could only happen if one pinned pte changed. 1191 */ 1192 folio_put(prealloc); 1193 prealloc = NULL; 1194 } 1195 nr = ret; 1196 progress += 8 * nr; 1197 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1198 addr != end); 1199 1200 arch_leave_lazy_mmu_mode(); 1201 pte_unmap_unlock(orig_src_pte, src_ptl); 1202 add_mm_rss_vec(dst_mm, rss); 1203 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1204 cond_resched(); 1205 1206 if (ret == -EIO) { 1207 VM_WARN_ON_ONCE(!entry.val); 1208 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1209 ret = -ENOMEM; 1210 goto out; 1211 } 1212 entry.val = 0; 1213 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1214 goto out; 1215 } else if (ret == -EAGAIN) { 1216 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1217 if (!prealloc) 1218 return -ENOMEM; 1219 } else if (ret < 0) { 1220 VM_WARN_ON_ONCE(1); 1221 } 1222 1223 /* We've captured and resolved the error. Reset, try again. */ 1224 ret = 0; 1225 1226 if (addr != end) 1227 goto again; 1228 out: 1229 if (unlikely(prealloc)) 1230 folio_put(prealloc); 1231 return ret; 1232 } 1233 1234 static inline int 1235 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1236 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1237 unsigned long end) 1238 { 1239 struct mm_struct *dst_mm = dst_vma->vm_mm; 1240 struct mm_struct *src_mm = src_vma->vm_mm; 1241 pmd_t *src_pmd, *dst_pmd; 1242 unsigned long next; 1243 1244 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1245 if (!dst_pmd) 1246 return -ENOMEM; 1247 src_pmd = pmd_offset(src_pud, addr); 1248 do { 1249 next = pmd_addr_end(addr, end); 1250 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1251 || pmd_devmap(*src_pmd)) { 1252 int err; 1253 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1254 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1255 addr, dst_vma, src_vma); 1256 if (err == -ENOMEM) 1257 return -ENOMEM; 1258 if (!err) 1259 continue; 1260 /* fall through */ 1261 } 1262 if (pmd_none_or_clear_bad(src_pmd)) 1263 continue; 1264 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1265 addr, next)) 1266 return -ENOMEM; 1267 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1268 return 0; 1269 } 1270 1271 static inline int 1272 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1273 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1274 unsigned long end) 1275 { 1276 struct mm_struct *dst_mm = dst_vma->vm_mm; 1277 struct mm_struct *src_mm = src_vma->vm_mm; 1278 pud_t *src_pud, *dst_pud; 1279 unsigned long next; 1280 1281 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1282 if (!dst_pud) 1283 return -ENOMEM; 1284 src_pud = pud_offset(src_p4d, addr); 1285 do { 1286 next = pud_addr_end(addr, end); 1287 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1288 int err; 1289 1290 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1291 err = copy_huge_pud(dst_mm, src_mm, 1292 dst_pud, src_pud, addr, src_vma); 1293 if (err == -ENOMEM) 1294 return -ENOMEM; 1295 if (!err) 1296 continue; 1297 /* fall through */ 1298 } 1299 if (pud_none_or_clear_bad(src_pud)) 1300 continue; 1301 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1302 addr, next)) 1303 return -ENOMEM; 1304 } while (dst_pud++, src_pud++, addr = next, addr != end); 1305 return 0; 1306 } 1307 1308 static inline int 1309 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1310 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1311 unsigned long end) 1312 { 1313 struct mm_struct *dst_mm = dst_vma->vm_mm; 1314 p4d_t *src_p4d, *dst_p4d; 1315 unsigned long next; 1316 1317 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1318 if (!dst_p4d) 1319 return -ENOMEM; 1320 src_p4d = p4d_offset(src_pgd, addr); 1321 do { 1322 next = p4d_addr_end(addr, end); 1323 if (p4d_none_or_clear_bad(src_p4d)) 1324 continue; 1325 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1326 addr, next)) 1327 return -ENOMEM; 1328 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1329 return 0; 1330 } 1331 1332 /* 1333 * Return true if the vma needs to copy the pgtable during this fork(). Return 1334 * false when we can speed up fork() by allowing lazy page faults later until 1335 * when the child accesses the memory range. 1336 */ 1337 static bool 1338 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1339 { 1340 /* 1341 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1342 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1343 * contains uffd-wp protection information, that's something we can't 1344 * retrieve from page cache, and skip copying will lose those info. 1345 */ 1346 if (userfaultfd_wp(dst_vma)) 1347 return true; 1348 1349 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1350 return true; 1351 1352 if (src_vma->anon_vma) 1353 return true; 1354 1355 /* 1356 * Don't copy ptes where a page fault will fill them correctly. Fork 1357 * becomes much lighter when there are big shared or private readonly 1358 * mappings. The tradeoff is that copy_page_range is more efficient 1359 * than faulting. 1360 */ 1361 return false; 1362 } 1363 1364 int 1365 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1366 { 1367 pgd_t *src_pgd, *dst_pgd; 1368 unsigned long addr = src_vma->vm_start; 1369 unsigned long end = src_vma->vm_end; 1370 struct mm_struct *dst_mm = dst_vma->vm_mm; 1371 struct mm_struct *src_mm = src_vma->vm_mm; 1372 struct mmu_notifier_range range; 1373 unsigned long next, pfn = 0; 1374 bool is_cow; 1375 int ret; 1376 1377 if (!vma_needs_copy(dst_vma, src_vma)) 1378 return 0; 1379 1380 if (is_vm_hugetlb_page(src_vma)) 1381 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1382 1383 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1384 ret = track_pfn_copy(dst_vma, src_vma, &pfn); 1385 if (ret) 1386 return ret; 1387 } 1388 1389 /* 1390 * We need to invalidate the secondary MMU mappings only when 1391 * there could be a permission downgrade on the ptes of the 1392 * parent mm. And a permission downgrade will only happen if 1393 * is_cow_mapping() returns true. 1394 */ 1395 is_cow = is_cow_mapping(src_vma->vm_flags); 1396 1397 if (is_cow) { 1398 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1399 0, src_mm, addr, end); 1400 mmu_notifier_invalidate_range_start(&range); 1401 /* 1402 * Disabling preemption is not needed for the write side, as 1403 * the read side doesn't spin, but goes to the mmap_lock. 1404 * 1405 * Use the raw variant of the seqcount_t write API to avoid 1406 * lockdep complaining about preemptibility. 1407 */ 1408 vma_assert_write_locked(src_vma); 1409 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1410 } 1411 1412 ret = 0; 1413 dst_pgd = pgd_offset(dst_mm, addr); 1414 src_pgd = pgd_offset(src_mm, addr); 1415 do { 1416 next = pgd_addr_end(addr, end); 1417 if (pgd_none_or_clear_bad(src_pgd)) 1418 continue; 1419 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1420 addr, next))) { 1421 ret = -ENOMEM; 1422 break; 1423 } 1424 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1425 1426 if (is_cow) { 1427 raw_write_seqcount_end(&src_mm->write_protect_seq); 1428 mmu_notifier_invalidate_range_end(&range); 1429 } 1430 if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP)) 1431 untrack_pfn_copy(dst_vma, pfn); 1432 return ret; 1433 } 1434 1435 /* Whether we should zap all COWed (private) pages too */ 1436 static inline bool should_zap_cows(struct zap_details *details) 1437 { 1438 /* By default, zap all pages */ 1439 if (!details || details->reclaim_pt) 1440 return true; 1441 1442 /* Or, we zap COWed pages only if the caller wants to */ 1443 return details->even_cows; 1444 } 1445 1446 /* Decides whether we should zap this folio with the folio pointer specified */ 1447 static inline bool should_zap_folio(struct zap_details *details, 1448 struct folio *folio) 1449 { 1450 /* If we can make a decision without *folio.. */ 1451 if (should_zap_cows(details)) 1452 return true; 1453 1454 /* Otherwise we should only zap non-anon folios */ 1455 return !folio_test_anon(folio); 1456 } 1457 1458 static inline bool zap_drop_markers(struct zap_details *details) 1459 { 1460 if (!details) 1461 return false; 1462 1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1464 } 1465 1466 /* 1467 * This function makes sure that we'll replace the none pte with an uffd-wp 1468 * swap special pte marker when necessary. Must be with the pgtable lock held. 1469 * 1470 * Returns true if uffd-wp ptes was installed, false otherwise. 1471 */ 1472 static inline bool 1473 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1474 unsigned long addr, pte_t *pte, int nr, 1475 struct zap_details *details, pte_t pteval) 1476 { 1477 bool was_installed = false; 1478 1479 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1480 /* Zap on anonymous always means dropping everything */ 1481 if (vma_is_anonymous(vma)) 1482 return false; 1483 1484 if (zap_drop_markers(details)) 1485 return false; 1486 1487 for (;;) { 1488 /* the PFN in the PTE is irrelevant. */ 1489 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1490 was_installed = true; 1491 if (--nr == 0) 1492 break; 1493 pte++; 1494 addr += PAGE_SIZE; 1495 } 1496 #endif 1497 return was_installed; 1498 } 1499 1500 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1501 struct vm_area_struct *vma, struct folio *folio, 1502 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1503 unsigned long addr, struct zap_details *details, int *rss, 1504 bool *force_flush, bool *force_break, bool *any_skipped) 1505 { 1506 struct mm_struct *mm = tlb->mm; 1507 bool delay_rmap = false; 1508 1509 if (!folio_test_anon(folio)) { 1510 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1511 if (pte_dirty(ptent)) { 1512 folio_mark_dirty(folio); 1513 if (tlb_delay_rmap(tlb)) { 1514 delay_rmap = true; 1515 *force_flush = true; 1516 } 1517 } 1518 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1519 folio_mark_accessed(folio); 1520 rss[mm_counter(folio)] -= nr; 1521 } else { 1522 /* We don't need up-to-date accessed/dirty bits. */ 1523 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1524 rss[MM_ANONPAGES] -= nr; 1525 } 1526 /* Checking a single PTE in a batch is sufficient. */ 1527 arch_check_zapped_pte(vma, ptent); 1528 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1529 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1530 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1531 nr, details, ptent); 1532 1533 if (!delay_rmap) { 1534 folio_remove_rmap_ptes(folio, page, nr, vma); 1535 1536 if (unlikely(folio_mapcount(folio) < 0)) 1537 print_bad_pte(vma, addr, ptent, page); 1538 } 1539 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1540 *force_flush = true; 1541 *force_break = true; 1542 } 1543 } 1544 1545 /* 1546 * Zap or skip at least one present PTE, trying to batch-process subsequent 1547 * PTEs that map consecutive pages of the same folio. 1548 * 1549 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1550 */ 1551 static inline int zap_present_ptes(struct mmu_gather *tlb, 1552 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1553 unsigned int max_nr, unsigned long addr, 1554 struct zap_details *details, int *rss, bool *force_flush, 1555 bool *force_break, bool *any_skipped) 1556 { 1557 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1558 struct mm_struct *mm = tlb->mm; 1559 struct folio *folio; 1560 struct page *page; 1561 int nr; 1562 1563 page = vm_normal_page(vma, addr, ptent); 1564 if (!page) { 1565 /* We don't need up-to-date accessed/dirty bits. */ 1566 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1567 arch_check_zapped_pte(vma, ptent); 1568 tlb_remove_tlb_entry(tlb, pte, addr); 1569 if (userfaultfd_pte_wp(vma, ptent)) 1570 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1571 pte, 1, details, ptent); 1572 ksm_might_unmap_zero_page(mm, ptent); 1573 return 1; 1574 } 1575 1576 folio = page_folio(page); 1577 if (unlikely(!should_zap_folio(details, folio))) { 1578 *any_skipped = true; 1579 return 1; 1580 } 1581 1582 /* 1583 * Make sure that the common "small folio" case is as fast as possible 1584 * by keeping the batching logic separate. 1585 */ 1586 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1587 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1588 NULL, NULL, NULL); 1589 1590 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1591 addr, details, rss, force_flush, 1592 force_break, any_skipped); 1593 return nr; 1594 } 1595 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1596 details, rss, force_flush, force_break, any_skipped); 1597 return 1; 1598 } 1599 1600 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1601 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1602 unsigned int max_nr, unsigned long addr, 1603 struct zap_details *details, int *rss, bool *any_skipped) 1604 { 1605 swp_entry_t entry; 1606 int nr = 1; 1607 1608 *any_skipped = true; 1609 entry = pte_to_swp_entry(ptent); 1610 if (is_device_private_entry(entry) || 1611 is_device_exclusive_entry(entry)) { 1612 struct page *page = pfn_swap_entry_to_page(entry); 1613 struct folio *folio = page_folio(page); 1614 1615 if (unlikely(!should_zap_folio(details, folio))) 1616 return 1; 1617 /* 1618 * Both device private/exclusive mappings should only 1619 * work with anonymous page so far, so we don't need to 1620 * consider uffd-wp bit when zap. For more information, 1621 * see zap_install_uffd_wp_if_needed(). 1622 */ 1623 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1624 rss[mm_counter(folio)]--; 1625 folio_remove_rmap_pte(folio, page, vma); 1626 folio_put(folio); 1627 } else if (!non_swap_entry(entry)) { 1628 /* Genuine swap entries, hence a private anon pages */ 1629 if (!should_zap_cows(details)) 1630 return 1; 1631 1632 nr = swap_pte_batch(pte, max_nr, ptent); 1633 rss[MM_SWAPENTS] -= nr; 1634 free_swap_and_cache_nr(entry, nr); 1635 } else if (is_migration_entry(entry)) { 1636 struct folio *folio = pfn_swap_entry_folio(entry); 1637 1638 if (!should_zap_folio(details, folio)) 1639 return 1; 1640 rss[mm_counter(folio)]--; 1641 } else if (pte_marker_entry_uffd_wp(entry)) { 1642 /* 1643 * For anon: always drop the marker; for file: only 1644 * drop the marker if explicitly requested. 1645 */ 1646 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1647 return 1; 1648 } else if (is_guard_swp_entry(entry)) { 1649 /* 1650 * Ordinary zapping should not remove guard PTE 1651 * markers. Only do so if we should remove PTE markers 1652 * in general. 1653 */ 1654 if (!zap_drop_markers(details)) 1655 return 1; 1656 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1657 if (!should_zap_cows(details)) 1658 return 1; 1659 } else { 1660 /* We should have covered all the swap entry types */ 1661 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1662 WARN_ON_ONCE(1); 1663 } 1664 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1665 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1666 1667 return nr; 1668 } 1669 1670 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1671 struct vm_area_struct *vma, pte_t *pte, 1672 unsigned long addr, unsigned long end, 1673 struct zap_details *details, int *rss, 1674 bool *force_flush, bool *force_break, 1675 bool *any_skipped) 1676 { 1677 pte_t ptent = ptep_get(pte); 1678 int max_nr = (end - addr) / PAGE_SIZE; 1679 int nr = 0; 1680 1681 /* Skip all consecutive none ptes */ 1682 if (pte_none(ptent)) { 1683 for (nr = 1; nr < max_nr; nr++) { 1684 ptent = ptep_get(pte + nr); 1685 if (!pte_none(ptent)) 1686 break; 1687 } 1688 max_nr -= nr; 1689 if (!max_nr) 1690 return nr; 1691 pte += nr; 1692 addr += nr * PAGE_SIZE; 1693 } 1694 1695 if (pte_present(ptent)) 1696 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1697 details, rss, force_flush, force_break, 1698 any_skipped); 1699 else 1700 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1701 details, rss, any_skipped); 1702 1703 return nr; 1704 } 1705 1706 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1707 struct vm_area_struct *vma, pmd_t *pmd, 1708 unsigned long addr, unsigned long end, 1709 struct zap_details *details) 1710 { 1711 bool force_flush = false, force_break = false; 1712 struct mm_struct *mm = tlb->mm; 1713 int rss[NR_MM_COUNTERS]; 1714 spinlock_t *ptl; 1715 pte_t *start_pte; 1716 pte_t *pte; 1717 pmd_t pmdval; 1718 unsigned long start = addr; 1719 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1720 bool direct_reclaim = true; 1721 int nr; 1722 1723 retry: 1724 tlb_change_page_size(tlb, PAGE_SIZE); 1725 init_rss_vec(rss); 1726 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1727 if (!pte) 1728 return addr; 1729 1730 flush_tlb_batched_pending(mm); 1731 arch_enter_lazy_mmu_mode(); 1732 do { 1733 bool any_skipped = false; 1734 1735 if (need_resched()) { 1736 direct_reclaim = false; 1737 break; 1738 } 1739 1740 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1741 &force_flush, &force_break, &any_skipped); 1742 if (any_skipped) 1743 can_reclaim_pt = false; 1744 if (unlikely(force_break)) { 1745 addr += nr * PAGE_SIZE; 1746 direct_reclaim = false; 1747 break; 1748 } 1749 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1750 1751 /* 1752 * Fast path: try to hold the pmd lock and unmap the PTE page. 1753 * 1754 * If the pte lock was released midway (retry case), or if the attempt 1755 * to hold the pmd lock failed, then we need to recheck all pte entries 1756 * to ensure they are still none, thereby preventing the pte entries 1757 * from being repopulated by another thread. 1758 */ 1759 if (can_reclaim_pt && direct_reclaim && addr == end) 1760 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1761 1762 add_mm_rss_vec(mm, rss); 1763 arch_leave_lazy_mmu_mode(); 1764 1765 /* Do the actual TLB flush before dropping ptl */ 1766 if (force_flush) { 1767 tlb_flush_mmu_tlbonly(tlb); 1768 tlb_flush_rmaps(tlb, vma); 1769 } 1770 pte_unmap_unlock(start_pte, ptl); 1771 1772 /* 1773 * If we forced a TLB flush (either due to running out of 1774 * batch buffers or because we needed to flush dirty TLB 1775 * entries before releasing the ptl), free the batched 1776 * memory too. Come back again if we didn't do everything. 1777 */ 1778 if (force_flush) 1779 tlb_flush_mmu(tlb); 1780 1781 if (addr != end) { 1782 cond_resched(); 1783 force_flush = false; 1784 force_break = false; 1785 goto retry; 1786 } 1787 1788 if (can_reclaim_pt) { 1789 if (direct_reclaim) 1790 free_pte(mm, start, tlb, pmdval); 1791 else 1792 try_to_free_pte(mm, pmd, start, tlb); 1793 } 1794 1795 return addr; 1796 } 1797 1798 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1799 struct vm_area_struct *vma, pud_t *pud, 1800 unsigned long addr, unsigned long end, 1801 struct zap_details *details) 1802 { 1803 pmd_t *pmd; 1804 unsigned long next; 1805 1806 pmd = pmd_offset(pud, addr); 1807 do { 1808 next = pmd_addr_end(addr, end); 1809 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1810 if (next - addr != HPAGE_PMD_SIZE) 1811 __split_huge_pmd(vma, pmd, addr, false, NULL); 1812 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1813 addr = next; 1814 continue; 1815 } 1816 /* fall through */ 1817 } else if (details && details->single_folio && 1818 folio_test_pmd_mappable(details->single_folio) && 1819 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1820 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1821 /* 1822 * Take and drop THP pmd lock so that we cannot return 1823 * prematurely, while zap_huge_pmd() has cleared *pmd, 1824 * but not yet decremented compound_mapcount(). 1825 */ 1826 spin_unlock(ptl); 1827 } 1828 if (pmd_none(*pmd)) { 1829 addr = next; 1830 continue; 1831 } 1832 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1833 if (addr != next) 1834 pmd--; 1835 } while (pmd++, cond_resched(), addr != end); 1836 1837 return addr; 1838 } 1839 1840 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1841 struct vm_area_struct *vma, p4d_t *p4d, 1842 unsigned long addr, unsigned long end, 1843 struct zap_details *details) 1844 { 1845 pud_t *pud; 1846 unsigned long next; 1847 1848 pud = pud_offset(p4d, addr); 1849 do { 1850 next = pud_addr_end(addr, end); 1851 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1852 if (next - addr != HPAGE_PUD_SIZE) { 1853 mmap_assert_locked(tlb->mm); 1854 split_huge_pud(vma, pud, addr); 1855 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1856 goto next; 1857 /* fall through */ 1858 } 1859 if (pud_none_or_clear_bad(pud)) 1860 continue; 1861 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1862 next: 1863 cond_resched(); 1864 } while (pud++, addr = next, addr != end); 1865 1866 return addr; 1867 } 1868 1869 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1870 struct vm_area_struct *vma, pgd_t *pgd, 1871 unsigned long addr, unsigned long end, 1872 struct zap_details *details) 1873 { 1874 p4d_t *p4d; 1875 unsigned long next; 1876 1877 p4d = p4d_offset(pgd, addr); 1878 do { 1879 next = p4d_addr_end(addr, end); 1880 if (p4d_none_or_clear_bad(p4d)) 1881 continue; 1882 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1883 } while (p4d++, addr = next, addr != end); 1884 1885 return addr; 1886 } 1887 1888 void unmap_page_range(struct mmu_gather *tlb, 1889 struct vm_area_struct *vma, 1890 unsigned long addr, unsigned long end, 1891 struct zap_details *details) 1892 { 1893 pgd_t *pgd; 1894 unsigned long next; 1895 1896 BUG_ON(addr >= end); 1897 tlb_start_vma(tlb, vma); 1898 pgd = pgd_offset(vma->vm_mm, addr); 1899 do { 1900 next = pgd_addr_end(addr, end); 1901 if (pgd_none_or_clear_bad(pgd)) 1902 continue; 1903 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1904 } while (pgd++, addr = next, addr != end); 1905 tlb_end_vma(tlb, vma); 1906 } 1907 1908 1909 static void unmap_single_vma(struct mmu_gather *tlb, 1910 struct vm_area_struct *vma, unsigned long start_addr, 1911 unsigned long end_addr, 1912 struct zap_details *details, bool mm_wr_locked) 1913 { 1914 unsigned long start = max(vma->vm_start, start_addr); 1915 unsigned long end; 1916 1917 if (start >= vma->vm_end) 1918 return; 1919 end = min(vma->vm_end, end_addr); 1920 if (end <= vma->vm_start) 1921 return; 1922 1923 if (vma->vm_file) 1924 uprobe_munmap(vma, start, end); 1925 1926 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1927 untrack_pfn(vma, 0, 0, mm_wr_locked); 1928 1929 if (start != end) { 1930 if (unlikely(is_vm_hugetlb_page(vma))) { 1931 /* 1932 * It is undesirable to test vma->vm_file as it 1933 * should be non-null for valid hugetlb area. 1934 * However, vm_file will be NULL in the error 1935 * cleanup path of mmap_region. When 1936 * hugetlbfs ->mmap method fails, 1937 * mmap_region() nullifies vma->vm_file 1938 * before calling this function to clean up. 1939 * Since no pte has actually been setup, it is 1940 * safe to do nothing in this case. 1941 */ 1942 if (vma->vm_file) { 1943 zap_flags_t zap_flags = details ? 1944 details->zap_flags : 0; 1945 __unmap_hugepage_range(tlb, vma, start, end, 1946 NULL, zap_flags); 1947 } 1948 } else 1949 unmap_page_range(tlb, vma, start, end, details); 1950 } 1951 } 1952 1953 /** 1954 * unmap_vmas - unmap a range of memory covered by a list of vma's 1955 * @tlb: address of the caller's struct mmu_gather 1956 * @mas: the maple state 1957 * @vma: the starting vma 1958 * @start_addr: virtual address at which to start unmapping 1959 * @end_addr: virtual address at which to end unmapping 1960 * @tree_end: The maximum index to check 1961 * @mm_wr_locked: lock flag 1962 * 1963 * Unmap all pages in the vma list. 1964 * 1965 * Only addresses between `start' and `end' will be unmapped. 1966 * 1967 * The VMA list must be sorted in ascending virtual address order. 1968 * 1969 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1970 * range after unmap_vmas() returns. So the only responsibility here is to 1971 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1972 * drops the lock and schedules. 1973 */ 1974 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1975 struct vm_area_struct *vma, unsigned long start_addr, 1976 unsigned long end_addr, unsigned long tree_end, 1977 bool mm_wr_locked) 1978 { 1979 struct mmu_notifier_range range; 1980 struct zap_details details = { 1981 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1982 /* Careful - we need to zap private pages too! */ 1983 .even_cows = true, 1984 }; 1985 1986 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1987 start_addr, end_addr); 1988 mmu_notifier_invalidate_range_start(&range); 1989 do { 1990 unsigned long start = start_addr; 1991 unsigned long end = end_addr; 1992 hugetlb_zap_begin(vma, &start, &end); 1993 unmap_single_vma(tlb, vma, start, end, &details, 1994 mm_wr_locked); 1995 hugetlb_zap_end(vma, &details); 1996 vma = mas_find(mas, tree_end - 1); 1997 } while (vma && likely(!xa_is_zero(vma))); 1998 mmu_notifier_invalidate_range_end(&range); 1999 } 2000 2001 /** 2002 * zap_page_range_single_batched - remove user pages in a given range 2003 * @tlb: pointer to the caller's struct mmu_gather 2004 * @vma: vm_area_struct holding the applicable pages 2005 * @address: starting address of pages to remove 2006 * @size: number of bytes to remove 2007 * @details: details of shared cache invalidation 2008 * 2009 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2010 * hugetlb, @tlb is flushed and re-initialized by this function. 2011 */ 2012 void zap_page_range_single_batched(struct mmu_gather *tlb, 2013 struct vm_area_struct *vma, unsigned long address, 2014 unsigned long size, struct zap_details *details) 2015 { 2016 const unsigned long end = address + size; 2017 struct mmu_notifier_range range; 2018 2019 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2020 2021 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2022 address, end); 2023 hugetlb_zap_begin(vma, &range.start, &range.end); 2024 update_hiwater_rss(vma->vm_mm); 2025 mmu_notifier_invalidate_range_start(&range); 2026 /* 2027 * unmap 'address-end' not 'range.start-range.end' as range 2028 * could have been expanded for hugetlb pmd sharing. 2029 */ 2030 unmap_single_vma(tlb, vma, address, end, details, false); 2031 mmu_notifier_invalidate_range_end(&range); 2032 if (is_vm_hugetlb_page(vma)) { 2033 /* 2034 * flush tlb and free resources before hugetlb_zap_end(), to 2035 * avoid concurrent page faults' allocation failure. 2036 */ 2037 tlb_finish_mmu(tlb); 2038 hugetlb_zap_end(vma, details); 2039 tlb_gather_mmu(tlb, vma->vm_mm); 2040 } 2041 } 2042 2043 /** 2044 * zap_page_range_single - remove user pages in a given range 2045 * @vma: vm_area_struct holding the applicable pages 2046 * @address: starting address of pages to zap 2047 * @size: number of bytes to zap 2048 * @details: details of shared cache invalidation 2049 * 2050 * The range must fit into one VMA. 2051 */ 2052 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2053 unsigned long size, struct zap_details *details) 2054 { 2055 struct mmu_gather tlb; 2056 2057 tlb_gather_mmu(&tlb, vma->vm_mm); 2058 zap_page_range_single_batched(&tlb, vma, address, size, details); 2059 tlb_finish_mmu(&tlb); 2060 } 2061 2062 /** 2063 * zap_vma_ptes - remove ptes mapping the vma 2064 * @vma: vm_area_struct holding ptes to be zapped 2065 * @address: starting address of pages to zap 2066 * @size: number of bytes to zap 2067 * 2068 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2069 * 2070 * The entire address range must be fully contained within the vma. 2071 * 2072 */ 2073 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2074 unsigned long size) 2075 { 2076 if (!range_in_vma(vma, address, address + size) || 2077 !(vma->vm_flags & VM_PFNMAP)) 2078 return; 2079 2080 zap_page_range_single(vma, address, size, NULL); 2081 } 2082 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2083 2084 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2085 { 2086 pgd_t *pgd; 2087 p4d_t *p4d; 2088 pud_t *pud; 2089 pmd_t *pmd; 2090 2091 pgd = pgd_offset(mm, addr); 2092 p4d = p4d_alloc(mm, pgd, addr); 2093 if (!p4d) 2094 return NULL; 2095 pud = pud_alloc(mm, p4d, addr); 2096 if (!pud) 2097 return NULL; 2098 pmd = pmd_alloc(mm, pud, addr); 2099 if (!pmd) 2100 return NULL; 2101 2102 VM_BUG_ON(pmd_trans_huge(*pmd)); 2103 return pmd; 2104 } 2105 2106 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2107 spinlock_t **ptl) 2108 { 2109 pmd_t *pmd = walk_to_pmd(mm, addr); 2110 2111 if (!pmd) 2112 return NULL; 2113 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2114 } 2115 2116 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2117 { 2118 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2119 /* 2120 * Whoever wants to forbid the zeropage after some zeropages 2121 * might already have been mapped has to scan the page tables and 2122 * bail out on any zeropages. Zeropages in COW mappings can 2123 * be unshared using FAULT_FLAG_UNSHARE faults. 2124 */ 2125 if (mm_forbids_zeropage(vma->vm_mm)) 2126 return false; 2127 /* zeropages in COW mappings are common and unproblematic. */ 2128 if (is_cow_mapping(vma->vm_flags)) 2129 return true; 2130 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2131 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2132 return true; 2133 /* 2134 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2135 * find the shared zeropage and longterm-pin it, which would 2136 * be problematic as soon as the zeropage gets replaced by a different 2137 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2138 * now differ to what GUP looked up. FSDAX is incompatible to 2139 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2140 * check_vma_flags). 2141 */ 2142 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2143 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2144 } 2145 2146 static int validate_page_before_insert(struct vm_area_struct *vma, 2147 struct page *page) 2148 { 2149 struct folio *folio = page_folio(page); 2150 2151 if (!folio_ref_count(folio)) 2152 return -EINVAL; 2153 if (unlikely(is_zero_folio(folio))) { 2154 if (!vm_mixed_zeropage_allowed(vma)) 2155 return -EINVAL; 2156 return 0; 2157 } 2158 if (folio_test_anon(folio) || folio_test_slab(folio) || 2159 page_has_type(page)) 2160 return -EINVAL; 2161 flush_dcache_folio(folio); 2162 return 0; 2163 } 2164 2165 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2166 unsigned long addr, struct page *page, 2167 pgprot_t prot, bool mkwrite) 2168 { 2169 struct folio *folio = page_folio(page); 2170 pte_t pteval = ptep_get(pte); 2171 2172 if (!pte_none(pteval)) { 2173 if (!mkwrite) 2174 return -EBUSY; 2175 2176 /* see insert_pfn(). */ 2177 if (pte_pfn(pteval) != page_to_pfn(page)) { 2178 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2179 return -EFAULT; 2180 } 2181 pteval = maybe_mkwrite(pteval, vma); 2182 pteval = pte_mkyoung(pteval); 2183 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2184 update_mmu_cache(vma, addr, pte); 2185 return 0; 2186 } 2187 2188 /* Ok, finally just insert the thing.. */ 2189 pteval = mk_pte(page, prot); 2190 if (unlikely(is_zero_folio(folio))) { 2191 pteval = pte_mkspecial(pteval); 2192 } else { 2193 folio_get(folio); 2194 pteval = mk_pte(page, prot); 2195 if (mkwrite) { 2196 pteval = pte_mkyoung(pteval); 2197 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2198 } 2199 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2200 folio_add_file_rmap_pte(folio, page, vma); 2201 } 2202 set_pte_at(vma->vm_mm, addr, pte, pteval); 2203 return 0; 2204 } 2205 2206 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2207 struct page *page, pgprot_t prot, bool mkwrite) 2208 { 2209 int retval; 2210 pte_t *pte; 2211 spinlock_t *ptl; 2212 2213 retval = validate_page_before_insert(vma, page); 2214 if (retval) 2215 goto out; 2216 retval = -ENOMEM; 2217 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2218 if (!pte) 2219 goto out; 2220 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2221 mkwrite); 2222 pte_unmap_unlock(pte, ptl); 2223 out: 2224 return retval; 2225 } 2226 2227 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2228 unsigned long addr, struct page *page, pgprot_t prot) 2229 { 2230 int err; 2231 2232 err = validate_page_before_insert(vma, page); 2233 if (err) 2234 return err; 2235 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2236 } 2237 2238 /* insert_pages() amortizes the cost of spinlock operations 2239 * when inserting pages in a loop. 2240 */ 2241 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2242 struct page **pages, unsigned long *num, pgprot_t prot) 2243 { 2244 pmd_t *pmd = NULL; 2245 pte_t *start_pte, *pte; 2246 spinlock_t *pte_lock; 2247 struct mm_struct *const mm = vma->vm_mm; 2248 unsigned long curr_page_idx = 0; 2249 unsigned long remaining_pages_total = *num; 2250 unsigned long pages_to_write_in_pmd; 2251 int ret; 2252 more: 2253 ret = -EFAULT; 2254 pmd = walk_to_pmd(mm, addr); 2255 if (!pmd) 2256 goto out; 2257 2258 pages_to_write_in_pmd = min_t(unsigned long, 2259 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2260 2261 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2262 ret = -ENOMEM; 2263 if (pte_alloc(mm, pmd)) 2264 goto out; 2265 2266 while (pages_to_write_in_pmd) { 2267 int pte_idx = 0; 2268 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2269 2270 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2271 if (!start_pte) { 2272 ret = -EFAULT; 2273 goto out; 2274 } 2275 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2276 int err = insert_page_in_batch_locked(vma, pte, 2277 addr, pages[curr_page_idx], prot); 2278 if (unlikely(err)) { 2279 pte_unmap_unlock(start_pte, pte_lock); 2280 ret = err; 2281 remaining_pages_total -= pte_idx; 2282 goto out; 2283 } 2284 addr += PAGE_SIZE; 2285 ++curr_page_idx; 2286 } 2287 pte_unmap_unlock(start_pte, pte_lock); 2288 pages_to_write_in_pmd -= batch_size; 2289 remaining_pages_total -= batch_size; 2290 } 2291 if (remaining_pages_total) 2292 goto more; 2293 ret = 0; 2294 out: 2295 *num = remaining_pages_total; 2296 return ret; 2297 } 2298 2299 /** 2300 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2301 * @vma: user vma to map to 2302 * @addr: target start user address of these pages 2303 * @pages: source kernel pages 2304 * @num: in: number of pages to map. out: number of pages that were *not* 2305 * mapped. (0 means all pages were successfully mapped). 2306 * 2307 * Preferred over vm_insert_page() when inserting multiple pages. 2308 * 2309 * In case of error, we may have mapped a subset of the provided 2310 * pages. It is the caller's responsibility to account for this case. 2311 * 2312 * The same restrictions apply as in vm_insert_page(). 2313 */ 2314 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2315 struct page **pages, unsigned long *num) 2316 { 2317 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2318 2319 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2320 return -EFAULT; 2321 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2322 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2323 BUG_ON(vma->vm_flags & VM_PFNMAP); 2324 vm_flags_set(vma, VM_MIXEDMAP); 2325 } 2326 /* Defer page refcount checking till we're about to map that page. */ 2327 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2328 } 2329 EXPORT_SYMBOL(vm_insert_pages); 2330 2331 /** 2332 * vm_insert_page - insert single page into user vma 2333 * @vma: user vma to map to 2334 * @addr: target user address of this page 2335 * @page: source kernel page 2336 * 2337 * This allows drivers to insert individual pages they've allocated 2338 * into a user vma. The zeropage is supported in some VMAs, 2339 * see vm_mixed_zeropage_allowed(). 2340 * 2341 * The page has to be a nice clean _individual_ kernel allocation. 2342 * If you allocate a compound page, you need to have marked it as 2343 * such (__GFP_COMP), or manually just split the page up yourself 2344 * (see split_page()). 2345 * 2346 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2347 * took an arbitrary page protection parameter. This doesn't allow 2348 * that. Your vma protection will have to be set up correctly, which 2349 * means that if you want a shared writable mapping, you'd better 2350 * ask for a shared writable mapping! 2351 * 2352 * The page does not need to be reserved. 2353 * 2354 * Usually this function is called from f_op->mmap() handler 2355 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2356 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2357 * function from other places, for example from page-fault handler. 2358 * 2359 * Return: %0 on success, negative error code otherwise. 2360 */ 2361 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2362 struct page *page) 2363 { 2364 if (addr < vma->vm_start || addr >= vma->vm_end) 2365 return -EFAULT; 2366 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2367 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2368 BUG_ON(vma->vm_flags & VM_PFNMAP); 2369 vm_flags_set(vma, VM_MIXEDMAP); 2370 } 2371 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2372 } 2373 EXPORT_SYMBOL(vm_insert_page); 2374 2375 /* 2376 * __vm_map_pages - maps range of kernel pages into user vma 2377 * @vma: user vma to map to 2378 * @pages: pointer to array of source kernel pages 2379 * @num: number of pages in page array 2380 * @offset: user's requested vm_pgoff 2381 * 2382 * This allows drivers to map range of kernel pages into a user vma. 2383 * The zeropage is supported in some VMAs, see 2384 * vm_mixed_zeropage_allowed(). 2385 * 2386 * Return: 0 on success and error code otherwise. 2387 */ 2388 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2389 unsigned long num, unsigned long offset) 2390 { 2391 unsigned long count = vma_pages(vma); 2392 unsigned long uaddr = vma->vm_start; 2393 int ret, i; 2394 2395 /* Fail if the user requested offset is beyond the end of the object */ 2396 if (offset >= num) 2397 return -ENXIO; 2398 2399 /* Fail if the user requested size exceeds available object size */ 2400 if (count > num - offset) 2401 return -ENXIO; 2402 2403 for (i = 0; i < count; i++) { 2404 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2405 if (ret < 0) 2406 return ret; 2407 uaddr += PAGE_SIZE; 2408 } 2409 2410 return 0; 2411 } 2412 2413 /** 2414 * vm_map_pages - maps range of kernel pages starts with non zero offset 2415 * @vma: user vma to map to 2416 * @pages: pointer to array of source kernel pages 2417 * @num: number of pages in page array 2418 * 2419 * Maps an object consisting of @num pages, catering for the user's 2420 * requested vm_pgoff 2421 * 2422 * If we fail to insert any page into the vma, the function will return 2423 * immediately leaving any previously inserted pages present. Callers 2424 * from the mmap handler may immediately return the error as their caller 2425 * will destroy the vma, removing any successfully inserted pages. Other 2426 * callers should make their own arrangements for calling unmap_region(). 2427 * 2428 * Context: Process context. Called by mmap handlers. 2429 * Return: 0 on success and error code otherwise. 2430 */ 2431 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2432 unsigned long num) 2433 { 2434 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2435 } 2436 EXPORT_SYMBOL(vm_map_pages); 2437 2438 /** 2439 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2440 * @vma: user vma to map to 2441 * @pages: pointer to array of source kernel pages 2442 * @num: number of pages in page array 2443 * 2444 * Similar to vm_map_pages(), except that it explicitly sets the offset 2445 * to 0. This function is intended for the drivers that did not consider 2446 * vm_pgoff. 2447 * 2448 * Context: Process context. Called by mmap handlers. 2449 * Return: 0 on success and error code otherwise. 2450 */ 2451 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2452 unsigned long num) 2453 { 2454 return __vm_map_pages(vma, pages, num, 0); 2455 } 2456 EXPORT_SYMBOL(vm_map_pages_zero); 2457 2458 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2459 pfn_t pfn, pgprot_t prot, bool mkwrite) 2460 { 2461 struct mm_struct *mm = vma->vm_mm; 2462 pte_t *pte, entry; 2463 spinlock_t *ptl; 2464 2465 pte = get_locked_pte(mm, addr, &ptl); 2466 if (!pte) 2467 return VM_FAULT_OOM; 2468 entry = ptep_get(pte); 2469 if (!pte_none(entry)) { 2470 if (mkwrite) { 2471 /* 2472 * For read faults on private mappings the PFN passed 2473 * in may not match the PFN we have mapped if the 2474 * mapped PFN is a writeable COW page. In the mkwrite 2475 * case we are creating a writable PTE for a shared 2476 * mapping and we expect the PFNs to match. If they 2477 * don't match, we are likely racing with block 2478 * allocation and mapping invalidation so just skip the 2479 * update. 2480 */ 2481 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2482 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2483 goto out_unlock; 2484 } 2485 entry = pte_mkyoung(entry); 2486 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2487 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2488 update_mmu_cache(vma, addr, pte); 2489 } 2490 goto out_unlock; 2491 } 2492 2493 /* Ok, finally just insert the thing.. */ 2494 if (pfn_t_devmap(pfn)) 2495 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2496 else 2497 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2498 2499 if (mkwrite) { 2500 entry = pte_mkyoung(entry); 2501 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2502 } 2503 2504 set_pte_at(mm, addr, pte, entry); 2505 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2506 2507 out_unlock: 2508 pte_unmap_unlock(pte, ptl); 2509 return VM_FAULT_NOPAGE; 2510 } 2511 2512 /** 2513 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2514 * @vma: user vma to map to 2515 * @addr: target user address of this page 2516 * @pfn: source kernel pfn 2517 * @pgprot: pgprot flags for the inserted page 2518 * 2519 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2520 * to override pgprot on a per-page basis. 2521 * 2522 * This only makes sense for IO mappings, and it makes no sense for 2523 * COW mappings. In general, using multiple vmas is preferable; 2524 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2525 * impractical. 2526 * 2527 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2528 * caching- and encryption bits different than those of @vma->vm_page_prot, 2529 * because the caching- or encryption mode may not be known at mmap() time. 2530 * 2531 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2532 * to set caching and encryption bits for those vmas (except for COW pages). 2533 * This is ensured by core vm only modifying these page table entries using 2534 * functions that don't touch caching- or encryption bits, using pte_modify() 2535 * if needed. (See for example mprotect()). 2536 * 2537 * Also when new page-table entries are created, this is only done using the 2538 * fault() callback, and never using the value of vma->vm_page_prot, 2539 * except for page-table entries that point to anonymous pages as the result 2540 * of COW. 2541 * 2542 * Context: Process context. May allocate using %GFP_KERNEL. 2543 * Return: vm_fault_t value. 2544 */ 2545 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2546 unsigned long pfn, pgprot_t pgprot) 2547 { 2548 /* 2549 * Technically, architectures with pte_special can avoid all these 2550 * restrictions (same for remap_pfn_range). However we would like 2551 * consistency in testing and feature parity among all, so we should 2552 * try to keep these invariants in place for everybody. 2553 */ 2554 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2555 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2556 (VM_PFNMAP|VM_MIXEDMAP)); 2557 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2558 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2559 2560 if (addr < vma->vm_start || addr >= vma->vm_end) 2561 return VM_FAULT_SIGBUS; 2562 2563 if (!pfn_modify_allowed(pfn, pgprot)) 2564 return VM_FAULT_SIGBUS; 2565 2566 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2567 2568 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2569 false); 2570 } 2571 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2572 2573 /** 2574 * vmf_insert_pfn - insert single pfn into user vma 2575 * @vma: user vma to map to 2576 * @addr: target user address of this page 2577 * @pfn: source kernel pfn 2578 * 2579 * Similar to vm_insert_page, this allows drivers to insert individual pages 2580 * they've allocated into a user vma. Same comments apply. 2581 * 2582 * This function should only be called from a vm_ops->fault handler, and 2583 * in that case the handler should return the result of this function. 2584 * 2585 * vma cannot be a COW mapping. 2586 * 2587 * As this is called only for pages that do not currently exist, we 2588 * do not need to flush old virtual caches or the TLB. 2589 * 2590 * Context: Process context. May allocate using %GFP_KERNEL. 2591 * Return: vm_fault_t value. 2592 */ 2593 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2594 unsigned long pfn) 2595 { 2596 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2597 } 2598 EXPORT_SYMBOL(vmf_insert_pfn); 2599 2600 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2601 { 2602 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2603 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2604 return false; 2605 /* these checks mirror the abort conditions in vm_normal_page */ 2606 if (vma->vm_flags & VM_MIXEDMAP) 2607 return true; 2608 if (pfn_t_devmap(pfn)) 2609 return true; 2610 if (pfn_t_special(pfn)) 2611 return true; 2612 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2613 return true; 2614 return false; 2615 } 2616 2617 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2618 unsigned long addr, pfn_t pfn, bool mkwrite) 2619 { 2620 pgprot_t pgprot = vma->vm_page_prot; 2621 int err; 2622 2623 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2624 return VM_FAULT_SIGBUS; 2625 2626 if (addr < vma->vm_start || addr >= vma->vm_end) 2627 return VM_FAULT_SIGBUS; 2628 2629 track_pfn_insert(vma, &pgprot, pfn); 2630 2631 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2632 return VM_FAULT_SIGBUS; 2633 2634 /* 2635 * If we don't have pte special, then we have to use the pfn_valid() 2636 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2637 * refcount the page if pfn_valid is true (hence insert_page rather 2638 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2639 * without pte special, it would there be refcounted as a normal page. 2640 */ 2641 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2642 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2643 struct page *page; 2644 2645 /* 2646 * At this point we are committed to insert_page() 2647 * regardless of whether the caller specified flags that 2648 * result in pfn_t_has_page() == false. 2649 */ 2650 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2651 err = insert_page(vma, addr, page, pgprot, mkwrite); 2652 } else { 2653 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2654 } 2655 2656 if (err == -ENOMEM) 2657 return VM_FAULT_OOM; 2658 if (err < 0 && err != -EBUSY) 2659 return VM_FAULT_SIGBUS; 2660 2661 return VM_FAULT_NOPAGE; 2662 } 2663 2664 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2665 bool write) 2666 { 2667 pgprot_t pgprot = vmf->vma->vm_page_prot; 2668 unsigned long addr = vmf->address; 2669 int err; 2670 2671 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2672 return VM_FAULT_SIGBUS; 2673 2674 err = insert_page(vmf->vma, addr, page, pgprot, write); 2675 if (err == -ENOMEM) 2676 return VM_FAULT_OOM; 2677 if (err < 0 && err != -EBUSY) 2678 return VM_FAULT_SIGBUS; 2679 2680 return VM_FAULT_NOPAGE; 2681 } 2682 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2683 2684 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2685 pfn_t pfn) 2686 { 2687 return __vm_insert_mixed(vma, addr, pfn, false); 2688 } 2689 EXPORT_SYMBOL(vmf_insert_mixed); 2690 2691 /* 2692 * If the insertion of PTE failed because someone else already added a 2693 * different entry in the mean time, we treat that as success as we assume 2694 * the same entry was actually inserted. 2695 */ 2696 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2697 unsigned long addr, pfn_t pfn) 2698 { 2699 return __vm_insert_mixed(vma, addr, pfn, true); 2700 } 2701 2702 /* 2703 * maps a range of physical memory into the requested pages. the old 2704 * mappings are removed. any references to nonexistent pages results 2705 * in null mappings (currently treated as "copy-on-access") 2706 */ 2707 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2708 unsigned long addr, unsigned long end, 2709 unsigned long pfn, pgprot_t prot) 2710 { 2711 pte_t *pte, *mapped_pte; 2712 spinlock_t *ptl; 2713 int err = 0; 2714 2715 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2716 if (!pte) 2717 return -ENOMEM; 2718 arch_enter_lazy_mmu_mode(); 2719 do { 2720 BUG_ON(!pte_none(ptep_get(pte))); 2721 if (!pfn_modify_allowed(pfn, prot)) { 2722 err = -EACCES; 2723 break; 2724 } 2725 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2726 pfn++; 2727 } while (pte++, addr += PAGE_SIZE, addr != end); 2728 arch_leave_lazy_mmu_mode(); 2729 pte_unmap_unlock(mapped_pte, ptl); 2730 return err; 2731 } 2732 2733 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2734 unsigned long addr, unsigned long end, 2735 unsigned long pfn, pgprot_t prot) 2736 { 2737 pmd_t *pmd; 2738 unsigned long next; 2739 int err; 2740 2741 pfn -= addr >> PAGE_SHIFT; 2742 pmd = pmd_alloc(mm, pud, addr); 2743 if (!pmd) 2744 return -ENOMEM; 2745 VM_BUG_ON(pmd_trans_huge(*pmd)); 2746 do { 2747 next = pmd_addr_end(addr, end); 2748 err = remap_pte_range(mm, pmd, addr, next, 2749 pfn + (addr >> PAGE_SHIFT), prot); 2750 if (err) 2751 return err; 2752 } while (pmd++, addr = next, addr != end); 2753 return 0; 2754 } 2755 2756 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2757 unsigned long addr, unsigned long end, 2758 unsigned long pfn, pgprot_t prot) 2759 { 2760 pud_t *pud; 2761 unsigned long next; 2762 int err; 2763 2764 pfn -= addr >> PAGE_SHIFT; 2765 pud = pud_alloc(mm, p4d, addr); 2766 if (!pud) 2767 return -ENOMEM; 2768 do { 2769 next = pud_addr_end(addr, end); 2770 err = remap_pmd_range(mm, pud, addr, next, 2771 pfn + (addr >> PAGE_SHIFT), prot); 2772 if (err) 2773 return err; 2774 } while (pud++, addr = next, addr != end); 2775 return 0; 2776 } 2777 2778 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2779 unsigned long addr, unsigned long end, 2780 unsigned long pfn, pgprot_t prot) 2781 { 2782 p4d_t *p4d; 2783 unsigned long next; 2784 int err; 2785 2786 pfn -= addr >> PAGE_SHIFT; 2787 p4d = p4d_alloc(mm, pgd, addr); 2788 if (!p4d) 2789 return -ENOMEM; 2790 do { 2791 next = p4d_addr_end(addr, end); 2792 err = remap_pud_range(mm, p4d, addr, next, 2793 pfn + (addr >> PAGE_SHIFT), prot); 2794 if (err) 2795 return err; 2796 } while (p4d++, addr = next, addr != end); 2797 return 0; 2798 } 2799 2800 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2801 unsigned long pfn, unsigned long size, pgprot_t prot) 2802 { 2803 pgd_t *pgd; 2804 unsigned long next; 2805 unsigned long end = addr + PAGE_ALIGN(size); 2806 struct mm_struct *mm = vma->vm_mm; 2807 int err; 2808 2809 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2810 return -EINVAL; 2811 2812 /* 2813 * Physically remapped pages are special. Tell the 2814 * rest of the world about it: 2815 * VM_IO tells people not to look at these pages 2816 * (accesses can have side effects). 2817 * VM_PFNMAP tells the core MM that the base pages are just 2818 * raw PFN mappings, and do not have a "struct page" associated 2819 * with them. 2820 * VM_DONTEXPAND 2821 * Disable vma merging and expanding with mremap(). 2822 * VM_DONTDUMP 2823 * Omit vma from core dump, even when VM_IO turned off. 2824 * 2825 * There's a horrible special case to handle copy-on-write 2826 * behaviour that some programs depend on. We mark the "original" 2827 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2828 * See vm_normal_page() for details. 2829 */ 2830 if (is_cow_mapping(vma->vm_flags)) { 2831 if (addr != vma->vm_start || end != vma->vm_end) 2832 return -EINVAL; 2833 vma->vm_pgoff = pfn; 2834 } 2835 2836 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2837 2838 BUG_ON(addr >= end); 2839 pfn -= addr >> PAGE_SHIFT; 2840 pgd = pgd_offset(mm, addr); 2841 flush_cache_range(vma, addr, end); 2842 do { 2843 next = pgd_addr_end(addr, end); 2844 err = remap_p4d_range(mm, pgd, addr, next, 2845 pfn + (addr >> PAGE_SHIFT), prot); 2846 if (err) 2847 return err; 2848 } while (pgd++, addr = next, addr != end); 2849 2850 return 0; 2851 } 2852 2853 /* 2854 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2855 * must have pre-validated the caching bits of the pgprot_t. 2856 */ 2857 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2858 unsigned long pfn, unsigned long size, pgprot_t prot) 2859 { 2860 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2861 2862 if (!error) 2863 return 0; 2864 2865 /* 2866 * A partial pfn range mapping is dangerous: it does not 2867 * maintain page reference counts, and callers may free 2868 * pages due to the error. So zap it early. 2869 */ 2870 zap_page_range_single(vma, addr, size, NULL); 2871 return error; 2872 } 2873 2874 /** 2875 * remap_pfn_range - remap kernel memory to userspace 2876 * @vma: user vma to map to 2877 * @addr: target page aligned user address to start at 2878 * @pfn: page frame number of kernel physical memory address 2879 * @size: size of mapping area 2880 * @prot: page protection flags for this mapping 2881 * 2882 * Note: this is only safe if the mm semaphore is held when called. 2883 * 2884 * Return: %0 on success, negative error code otherwise. 2885 */ 2886 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2887 unsigned long pfn, unsigned long size, pgprot_t prot) 2888 { 2889 int err; 2890 2891 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2892 if (err) 2893 return -EINVAL; 2894 2895 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2896 if (err) 2897 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2898 return err; 2899 } 2900 EXPORT_SYMBOL(remap_pfn_range); 2901 2902 /** 2903 * vm_iomap_memory - remap memory to userspace 2904 * @vma: user vma to map to 2905 * @start: start of the physical memory to be mapped 2906 * @len: size of area 2907 * 2908 * This is a simplified io_remap_pfn_range() for common driver use. The 2909 * driver just needs to give us the physical memory range to be mapped, 2910 * we'll figure out the rest from the vma information. 2911 * 2912 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2913 * whatever write-combining details or similar. 2914 * 2915 * Return: %0 on success, negative error code otherwise. 2916 */ 2917 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2918 { 2919 unsigned long vm_len, pfn, pages; 2920 2921 /* Check that the physical memory area passed in looks valid */ 2922 if (start + len < start) 2923 return -EINVAL; 2924 /* 2925 * You *really* shouldn't map things that aren't page-aligned, 2926 * but we've historically allowed it because IO memory might 2927 * just have smaller alignment. 2928 */ 2929 len += start & ~PAGE_MASK; 2930 pfn = start >> PAGE_SHIFT; 2931 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2932 if (pfn + pages < pfn) 2933 return -EINVAL; 2934 2935 /* We start the mapping 'vm_pgoff' pages into the area */ 2936 if (vma->vm_pgoff > pages) 2937 return -EINVAL; 2938 pfn += vma->vm_pgoff; 2939 pages -= vma->vm_pgoff; 2940 2941 /* Can we fit all of the mapping? */ 2942 vm_len = vma->vm_end - vma->vm_start; 2943 if (vm_len >> PAGE_SHIFT > pages) 2944 return -EINVAL; 2945 2946 /* Ok, let it rip */ 2947 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2948 } 2949 EXPORT_SYMBOL(vm_iomap_memory); 2950 2951 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2952 unsigned long addr, unsigned long end, 2953 pte_fn_t fn, void *data, bool create, 2954 pgtbl_mod_mask *mask) 2955 { 2956 pte_t *pte, *mapped_pte; 2957 int err = 0; 2958 spinlock_t *ptl; 2959 2960 if (create) { 2961 mapped_pte = pte = (mm == &init_mm) ? 2962 pte_alloc_kernel_track(pmd, addr, mask) : 2963 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2964 if (!pte) 2965 return -ENOMEM; 2966 } else { 2967 mapped_pte = pte = (mm == &init_mm) ? 2968 pte_offset_kernel(pmd, addr) : 2969 pte_offset_map_lock(mm, pmd, addr, &ptl); 2970 if (!pte) 2971 return -EINVAL; 2972 } 2973 2974 arch_enter_lazy_mmu_mode(); 2975 2976 if (fn) { 2977 do { 2978 if (create || !pte_none(ptep_get(pte))) { 2979 err = fn(pte, addr, data); 2980 if (err) 2981 break; 2982 } 2983 } while (pte++, addr += PAGE_SIZE, addr != end); 2984 } 2985 *mask |= PGTBL_PTE_MODIFIED; 2986 2987 arch_leave_lazy_mmu_mode(); 2988 2989 if (mm != &init_mm) 2990 pte_unmap_unlock(mapped_pte, ptl); 2991 return err; 2992 } 2993 2994 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2995 unsigned long addr, unsigned long end, 2996 pte_fn_t fn, void *data, bool create, 2997 pgtbl_mod_mask *mask) 2998 { 2999 pmd_t *pmd; 3000 unsigned long next; 3001 int err = 0; 3002 3003 BUG_ON(pud_leaf(*pud)); 3004 3005 if (create) { 3006 pmd = pmd_alloc_track(mm, pud, addr, mask); 3007 if (!pmd) 3008 return -ENOMEM; 3009 } else { 3010 pmd = pmd_offset(pud, addr); 3011 } 3012 do { 3013 next = pmd_addr_end(addr, end); 3014 if (pmd_none(*pmd) && !create) 3015 continue; 3016 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3017 return -EINVAL; 3018 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3019 if (!create) 3020 continue; 3021 pmd_clear_bad(pmd); 3022 } 3023 err = apply_to_pte_range(mm, pmd, addr, next, 3024 fn, data, create, mask); 3025 if (err) 3026 break; 3027 } while (pmd++, addr = next, addr != end); 3028 3029 return err; 3030 } 3031 3032 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3033 unsigned long addr, unsigned long end, 3034 pte_fn_t fn, void *data, bool create, 3035 pgtbl_mod_mask *mask) 3036 { 3037 pud_t *pud; 3038 unsigned long next; 3039 int err = 0; 3040 3041 if (create) { 3042 pud = pud_alloc_track(mm, p4d, addr, mask); 3043 if (!pud) 3044 return -ENOMEM; 3045 } else { 3046 pud = pud_offset(p4d, addr); 3047 } 3048 do { 3049 next = pud_addr_end(addr, end); 3050 if (pud_none(*pud) && !create) 3051 continue; 3052 if (WARN_ON_ONCE(pud_leaf(*pud))) 3053 return -EINVAL; 3054 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3055 if (!create) 3056 continue; 3057 pud_clear_bad(pud); 3058 } 3059 err = apply_to_pmd_range(mm, pud, addr, next, 3060 fn, data, create, mask); 3061 if (err) 3062 break; 3063 } while (pud++, addr = next, addr != end); 3064 3065 return err; 3066 } 3067 3068 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3069 unsigned long addr, unsigned long end, 3070 pte_fn_t fn, void *data, bool create, 3071 pgtbl_mod_mask *mask) 3072 { 3073 p4d_t *p4d; 3074 unsigned long next; 3075 int err = 0; 3076 3077 if (create) { 3078 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3079 if (!p4d) 3080 return -ENOMEM; 3081 } else { 3082 p4d = p4d_offset(pgd, addr); 3083 } 3084 do { 3085 next = p4d_addr_end(addr, end); 3086 if (p4d_none(*p4d) && !create) 3087 continue; 3088 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3089 return -EINVAL; 3090 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3091 if (!create) 3092 continue; 3093 p4d_clear_bad(p4d); 3094 } 3095 err = apply_to_pud_range(mm, p4d, addr, next, 3096 fn, data, create, mask); 3097 if (err) 3098 break; 3099 } while (p4d++, addr = next, addr != end); 3100 3101 return err; 3102 } 3103 3104 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3105 unsigned long size, pte_fn_t fn, 3106 void *data, bool create) 3107 { 3108 pgd_t *pgd; 3109 unsigned long start = addr, next; 3110 unsigned long end = addr + size; 3111 pgtbl_mod_mask mask = 0; 3112 int err = 0; 3113 3114 if (WARN_ON(addr >= end)) 3115 return -EINVAL; 3116 3117 pgd = pgd_offset(mm, addr); 3118 do { 3119 next = pgd_addr_end(addr, end); 3120 if (pgd_none(*pgd) && !create) 3121 continue; 3122 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3123 err = -EINVAL; 3124 break; 3125 } 3126 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3127 if (!create) 3128 continue; 3129 pgd_clear_bad(pgd); 3130 } 3131 err = apply_to_p4d_range(mm, pgd, addr, next, 3132 fn, data, create, &mask); 3133 if (err) 3134 break; 3135 } while (pgd++, addr = next, addr != end); 3136 3137 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3138 arch_sync_kernel_mappings(start, start + size); 3139 3140 return err; 3141 } 3142 3143 /* 3144 * Scan a region of virtual memory, filling in page tables as necessary 3145 * and calling a provided function on each leaf page table. 3146 */ 3147 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3148 unsigned long size, pte_fn_t fn, void *data) 3149 { 3150 return __apply_to_page_range(mm, addr, size, fn, data, true); 3151 } 3152 EXPORT_SYMBOL_GPL(apply_to_page_range); 3153 3154 /* 3155 * Scan a region of virtual memory, calling a provided function on 3156 * each leaf page table where it exists. 3157 * 3158 * Unlike apply_to_page_range, this does _not_ fill in page tables 3159 * where they are absent. 3160 */ 3161 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3162 unsigned long size, pte_fn_t fn, void *data) 3163 { 3164 return __apply_to_page_range(mm, addr, size, fn, data, false); 3165 } 3166 3167 /* 3168 * handle_pte_fault chooses page fault handler according to an entry which was 3169 * read non-atomically. Before making any commitment, on those architectures 3170 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3171 * parts, do_swap_page must check under lock before unmapping the pte and 3172 * proceeding (but do_wp_page is only called after already making such a check; 3173 * and do_anonymous_page can safely check later on). 3174 */ 3175 static inline int pte_unmap_same(struct vm_fault *vmf) 3176 { 3177 int same = 1; 3178 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3179 if (sizeof(pte_t) > sizeof(unsigned long)) { 3180 spin_lock(vmf->ptl); 3181 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3182 spin_unlock(vmf->ptl); 3183 } 3184 #endif 3185 pte_unmap(vmf->pte); 3186 vmf->pte = NULL; 3187 return same; 3188 } 3189 3190 /* 3191 * Return: 3192 * 0: copied succeeded 3193 * -EHWPOISON: copy failed due to hwpoison in source page 3194 * -EAGAIN: copied failed (some other reason) 3195 */ 3196 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3197 struct vm_fault *vmf) 3198 { 3199 int ret; 3200 void *kaddr; 3201 void __user *uaddr; 3202 struct vm_area_struct *vma = vmf->vma; 3203 struct mm_struct *mm = vma->vm_mm; 3204 unsigned long addr = vmf->address; 3205 3206 if (likely(src)) { 3207 if (copy_mc_user_highpage(dst, src, addr, vma)) 3208 return -EHWPOISON; 3209 return 0; 3210 } 3211 3212 /* 3213 * If the source page was a PFN mapping, we don't have 3214 * a "struct page" for it. We do a best-effort copy by 3215 * just copying from the original user address. If that 3216 * fails, we just zero-fill it. Live with it. 3217 */ 3218 kaddr = kmap_local_page(dst); 3219 pagefault_disable(); 3220 uaddr = (void __user *)(addr & PAGE_MASK); 3221 3222 /* 3223 * On architectures with software "accessed" bits, we would 3224 * take a double page fault, so mark it accessed here. 3225 */ 3226 vmf->pte = NULL; 3227 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3228 pte_t entry; 3229 3230 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3231 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3232 /* 3233 * Other thread has already handled the fault 3234 * and update local tlb only 3235 */ 3236 if (vmf->pte) 3237 update_mmu_tlb(vma, addr, vmf->pte); 3238 ret = -EAGAIN; 3239 goto pte_unlock; 3240 } 3241 3242 entry = pte_mkyoung(vmf->orig_pte); 3243 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3244 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3245 } 3246 3247 /* 3248 * This really shouldn't fail, because the page is there 3249 * in the page tables. But it might just be unreadable, 3250 * in which case we just give up and fill the result with 3251 * zeroes. 3252 */ 3253 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3254 if (vmf->pte) 3255 goto warn; 3256 3257 /* Re-validate under PTL if the page is still mapped */ 3258 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3259 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3260 /* The PTE changed under us, update local tlb */ 3261 if (vmf->pte) 3262 update_mmu_tlb(vma, addr, vmf->pte); 3263 ret = -EAGAIN; 3264 goto pte_unlock; 3265 } 3266 3267 /* 3268 * The same page can be mapped back since last copy attempt. 3269 * Try to copy again under PTL. 3270 */ 3271 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3272 /* 3273 * Give a warn in case there can be some obscure 3274 * use-case 3275 */ 3276 warn: 3277 WARN_ON_ONCE(1); 3278 clear_page(kaddr); 3279 } 3280 } 3281 3282 ret = 0; 3283 3284 pte_unlock: 3285 if (vmf->pte) 3286 pte_unmap_unlock(vmf->pte, vmf->ptl); 3287 pagefault_enable(); 3288 kunmap_local(kaddr); 3289 flush_dcache_page(dst); 3290 3291 return ret; 3292 } 3293 3294 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3295 { 3296 struct file *vm_file = vma->vm_file; 3297 3298 if (vm_file) 3299 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3300 3301 /* 3302 * Special mappings (e.g. VDSO) do not have any file so fake 3303 * a default GFP_KERNEL for them. 3304 */ 3305 return GFP_KERNEL; 3306 } 3307 3308 /* 3309 * Notify the address space that the page is about to become writable so that 3310 * it can prohibit this or wait for the page to get into an appropriate state. 3311 * 3312 * We do this without the lock held, so that it can sleep if it needs to. 3313 */ 3314 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3315 { 3316 vm_fault_t ret; 3317 unsigned int old_flags = vmf->flags; 3318 3319 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3320 3321 if (vmf->vma->vm_file && 3322 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3323 return VM_FAULT_SIGBUS; 3324 3325 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3326 /* Restore original flags so that caller is not surprised */ 3327 vmf->flags = old_flags; 3328 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3329 return ret; 3330 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3331 folio_lock(folio); 3332 if (!folio->mapping) { 3333 folio_unlock(folio); 3334 return 0; /* retry */ 3335 } 3336 ret |= VM_FAULT_LOCKED; 3337 } else 3338 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3339 return ret; 3340 } 3341 3342 /* 3343 * Handle dirtying of a page in shared file mapping on a write fault. 3344 * 3345 * The function expects the page to be locked and unlocks it. 3346 */ 3347 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3348 { 3349 struct vm_area_struct *vma = vmf->vma; 3350 struct address_space *mapping; 3351 struct folio *folio = page_folio(vmf->page); 3352 bool dirtied; 3353 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3354 3355 dirtied = folio_mark_dirty(folio); 3356 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3357 /* 3358 * Take a local copy of the address_space - folio.mapping may be zeroed 3359 * by truncate after folio_unlock(). The address_space itself remains 3360 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3361 * release semantics to prevent the compiler from undoing this copying. 3362 */ 3363 mapping = folio_raw_mapping(folio); 3364 folio_unlock(folio); 3365 3366 if (!page_mkwrite) 3367 file_update_time(vma->vm_file); 3368 3369 /* 3370 * Throttle page dirtying rate down to writeback speed. 3371 * 3372 * mapping may be NULL here because some device drivers do not 3373 * set page.mapping but still dirty their pages 3374 * 3375 * Drop the mmap_lock before waiting on IO, if we can. The file 3376 * is pinning the mapping, as per above. 3377 */ 3378 if ((dirtied || page_mkwrite) && mapping) { 3379 struct file *fpin; 3380 3381 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3382 balance_dirty_pages_ratelimited(mapping); 3383 if (fpin) { 3384 fput(fpin); 3385 return VM_FAULT_COMPLETED; 3386 } 3387 } 3388 3389 return 0; 3390 } 3391 3392 /* 3393 * Handle write page faults for pages that can be reused in the current vma 3394 * 3395 * This can happen either due to the mapping being with the VM_SHARED flag, 3396 * or due to us being the last reference standing to the page. In either 3397 * case, all we need to do here is to mark the page as writable and update 3398 * any related book-keeping. 3399 */ 3400 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3401 __releases(vmf->ptl) 3402 { 3403 struct vm_area_struct *vma = vmf->vma; 3404 pte_t entry; 3405 3406 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3407 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3408 3409 if (folio) { 3410 VM_BUG_ON(folio_test_anon(folio) && 3411 !PageAnonExclusive(vmf->page)); 3412 /* 3413 * Clear the folio's cpupid information as the existing 3414 * information potentially belongs to a now completely 3415 * unrelated process. 3416 */ 3417 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3418 } 3419 3420 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3421 entry = pte_mkyoung(vmf->orig_pte); 3422 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3423 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3424 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3425 pte_unmap_unlock(vmf->pte, vmf->ptl); 3426 count_vm_event(PGREUSE); 3427 } 3428 3429 /* 3430 * We could add a bitflag somewhere, but for now, we know that all 3431 * vm_ops that have a ->map_pages have been audited and don't need 3432 * the mmap_lock to be held. 3433 */ 3434 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3435 { 3436 struct vm_area_struct *vma = vmf->vma; 3437 3438 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3439 return 0; 3440 vma_end_read(vma); 3441 return VM_FAULT_RETRY; 3442 } 3443 3444 /** 3445 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3446 * @vmf: The vm_fault descriptor passed from the fault handler. 3447 * 3448 * When preparing to insert an anonymous page into a VMA from a 3449 * fault handler, call this function rather than anon_vma_prepare(). 3450 * If this vma does not already have an associated anon_vma and we are 3451 * only protected by the per-VMA lock, the caller must retry with the 3452 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3453 * determine if this VMA can share its anon_vma, and that's not safe to 3454 * do with only the per-VMA lock held for this VMA. 3455 * 3456 * Return: 0 if fault handling can proceed. Any other value should be 3457 * returned to the caller. 3458 */ 3459 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3460 { 3461 struct vm_area_struct *vma = vmf->vma; 3462 vm_fault_t ret = 0; 3463 3464 if (likely(vma->anon_vma)) 3465 return 0; 3466 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3467 if (!mmap_read_trylock(vma->vm_mm)) 3468 return VM_FAULT_RETRY; 3469 } 3470 if (__anon_vma_prepare(vma)) 3471 ret = VM_FAULT_OOM; 3472 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3473 mmap_read_unlock(vma->vm_mm); 3474 return ret; 3475 } 3476 3477 /* 3478 * Handle the case of a page which we actually need to copy to a new page, 3479 * either due to COW or unsharing. 3480 * 3481 * Called with mmap_lock locked and the old page referenced, but 3482 * without the ptl held. 3483 * 3484 * High level logic flow: 3485 * 3486 * - Allocate a page, copy the content of the old page to the new one. 3487 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3488 * - Take the PTL. If the pte changed, bail out and release the allocated page 3489 * - If the pte is still the way we remember it, update the page table and all 3490 * relevant references. This includes dropping the reference the page-table 3491 * held to the old page, as well as updating the rmap. 3492 * - In any case, unlock the PTL and drop the reference we took to the old page. 3493 */ 3494 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3495 { 3496 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3497 struct vm_area_struct *vma = vmf->vma; 3498 struct mm_struct *mm = vma->vm_mm; 3499 struct folio *old_folio = NULL; 3500 struct folio *new_folio = NULL; 3501 pte_t entry; 3502 int page_copied = 0; 3503 struct mmu_notifier_range range; 3504 vm_fault_t ret; 3505 bool pfn_is_zero; 3506 3507 delayacct_wpcopy_start(); 3508 3509 if (vmf->page) 3510 old_folio = page_folio(vmf->page); 3511 ret = vmf_anon_prepare(vmf); 3512 if (unlikely(ret)) 3513 goto out; 3514 3515 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3516 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3517 if (!new_folio) 3518 goto oom; 3519 3520 if (!pfn_is_zero) { 3521 int err; 3522 3523 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3524 if (err) { 3525 /* 3526 * COW failed, if the fault was solved by other, 3527 * it's fine. If not, userspace would re-fault on 3528 * the same address and we will handle the fault 3529 * from the second attempt. 3530 * The -EHWPOISON case will not be retried. 3531 */ 3532 folio_put(new_folio); 3533 if (old_folio) 3534 folio_put(old_folio); 3535 3536 delayacct_wpcopy_end(); 3537 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3538 } 3539 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3540 } 3541 3542 __folio_mark_uptodate(new_folio); 3543 3544 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3545 vmf->address & PAGE_MASK, 3546 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3547 mmu_notifier_invalidate_range_start(&range); 3548 3549 /* 3550 * Re-check the pte - we dropped the lock 3551 */ 3552 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3553 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3554 if (old_folio) { 3555 if (!folio_test_anon(old_folio)) { 3556 dec_mm_counter(mm, mm_counter_file(old_folio)); 3557 inc_mm_counter(mm, MM_ANONPAGES); 3558 } 3559 } else { 3560 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3561 inc_mm_counter(mm, MM_ANONPAGES); 3562 } 3563 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3564 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3565 entry = pte_sw_mkyoung(entry); 3566 if (unlikely(unshare)) { 3567 if (pte_soft_dirty(vmf->orig_pte)) 3568 entry = pte_mksoft_dirty(entry); 3569 if (pte_uffd_wp(vmf->orig_pte)) 3570 entry = pte_mkuffd_wp(entry); 3571 } else { 3572 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3573 } 3574 3575 /* 3576 * Clear the pte entry and flush it first, before updating the 3577 * pte with the new entry, to keep TLBs on different CPUs in 3578 * sync. This code used to set the new PTE then flush TLBs, but 3579 * that left a window where the new PTE could be loaded into 3580 * some TLBs while the old PTE remains in others. 3581 */ 3582 ptep_clear_flush(vma, vmf->address, vmf->pte); 3583 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3584 folio_add_lru_vma(new_folio, vma); 3585 BUG_ON(unshare && pte_write(entry)); 3586 set_pte_at(mm, vmf->address, vmf->pte, entry); 3587 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3588 if (old_folio) { 3589 /* 3590 * Only after switching the pte to the new page may 3591 * we remove the mapcount here. Otherwise another 3592 * process may come and find the rmap count decremented 3593 * before the pte is switched to the new page, and 3594 * "reuse" the old page writing into it while our pte 3595 * here still points into it and can be read by other 3596 * threads. 3597 * 3598 * The critical issue is to order this 3599 * folio_remove_rmap_pte() with the ptp_clear_flush 3600 * above. Those stores are ordered by (if nothing else,) 3601 * the barrier present in the atomic_add_negative 3602 * in folio_remove_rmap_pte(); 3603 * 3604 * Then the TLB flush in ptep_clear_flush ensures that 3605 * no process can access the old page before the 3606 * decremented mapcount is visible. And the old page 3607 * cannot be reused until after the decremented 3608 * mapcount is visible. So transitively, TLBs to 3609 * old page will be flushed before it can be reused. 3610 */ 3611 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3612 } 3613 3614 /* Free the old page.. */ 3615 new_folio = old_folio; 3616 page_copied = 1; 3617 pte_unmap_unlock(vmf->pte, vmf->ptl); 3618 } else if (vmf->pte) { 3619 update_mmu_tlb(vma, vmf->address, vmf->pte); 3620 pte_unmap_unlock(vmf->pte, vmf->ptl); 3621 } 3622 3623 mmu_notifier_invalidate_range_end(&range); 3624 3625 if (new_folio) 3626 folio_put(new_folio); 3627 if (old_folio) { 3628 if (page_copied) 3629 free_swap_cache(old_folio); 3630 folio_put(old_folio); 3631 } 3632 3633 delayacct_wpcopy_end(); 3634 return 0; 3635 oom: 3636 ret = VM_FAULT_OOM; 3637 out: 3638 if (old_folio) 3639 folio_put(old_folio); 3640 3641 delayacct_wpcopy_end(); 3642 return ret; 3643 } 3644 3645 /** 3646 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3647 * writeable once the page is prepared 3648 * 3649 * @vmf: structure describing the fault 3650 * @folio: the folio of vmf->page 3651 * 3652 * This function handles all that is needed to finish a write page fault in a 3653 * shared mapping due to PTE being read-only once the mapped page is prepared. 3654 * It handles locking of PTE and modifying it. 3655 * 3656 * The function expects the page to be locked or other protection against 3657 * concurrent faults / writeback (such as DAX radix tree locks). 3658 * 3659 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3660 * we acquired PTE lock. 3661 */ 3662 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3663 { 3664 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3665 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3666 &vmf->ptl); 3667 if (!vmf->pte) 3668 return VM_FAULT_NOPAGE; 3669 /* 3670 * We might have raced with another page fault while we released the 3671 * pte_offset_map_lock. 3672 */ 3673 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3674 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3675 pte_unmap_unlock(vmf->pte, vmf->ptl); 3676 return VM_FAULT_NOPAGE; 3677 } 3678 wp_page_reuse(vmf, folio); 3679 return 0; 3680 } 3681 3682 /* 3683 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3684 * mapping 3685 */ 3686 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3687 { 3688 struct vm_area_struct *vma = vmf->vma; 3689 3690 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3691 vm_fault_t ret; 3692 3693 pte_unmap_unlock(vmf->pte, vmf->ptl); 3694 ret = vmf_can_call_fault(vmf); 3695 if (ret) 3696 return ret; 3697 3698 vmf->flags |= FAULT_FLAG_MKWRITE; 3699 ret = vma->vm_ops->pfn_mkwrite(vmf); 3700 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3701 return ret; 3702 return finish_mkwrite_fault(vmf, NULL); 3703 } 3704 wp_page_reuse(vmf, NULL); 3705 return 0; 3706 } 3707 3708 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3709 __releases(vmf->ptl) 3710 { 3711 struct vm_area_struct *vma = vmf->vma; 3712 vm_fault_t ret = 0; 3713 3714 folio_get(folio); 3715 3716 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3717 vm_fault_t tmp; 3718 3719 pte_unmap_unlock(vmf->pte, vmf->ptl); 3720 tmp = vmf_can_call_fault(vmf); 3721 if (tmp) { 3722 folio_put(folio); 3723 return tmp; 3724 } 3725 3726 tmp = do_page_mkwrite(vmf, folio); 3727 if (unlikely(!tmp || (tmp & 3728 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3729 folio_put(folio); 3730 return tmp; 3731 } 3732 tmp = finish_mkwrite_fault(vmf, folio); 3733 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3734 folio_unlock(folio); 3735 folio_put(folio); 3736 return tmp; 3737 } 3738 } else { 3739 wp_page_reuse(vmf, folio); 3740 folio_lock(folio); 3741 } 3742 ret |= fault_dirty_shared_page(vmf); 3743 folio_put(folio); 3744 3745 return ret; 3746 } 3747 3748 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3749 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3750 struct vm_area_struct *vma) 3751 { 3752 bool exclusive = false; 3753 3754 /* Let's just free up a large folio if only a single page is mapped. */ 3755 if (folio_large_mapcount(folio) <= 1) 3756 return false; 3757 3758 /* 3759 * The assumption for anonymous folios is that each page can only get 3760 * mapped once into each MM. The only exception are KSM folios, which 3761 * are always small. 3762 * 3763 * Each taken mapcount must be paired with exactly one taken reference, 3764 * whereby the refcount must be incremented before the mapcount when 3765 * mapping a page, and the refcount must be decremented after the 3766 * mapcount when unmapping a page. 3767 * 3768 * If all folio references are from mappings, and all mappings are in 3769 * the page tables of this MM, then this folio is exclusive to this MM. 3770 */ 3771 if (folio_test_large_maybe_mapped_shared(folio)) 3772 return false; 3773 3774 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3775 3776 if (unlikely(folio_test_swapcache(folio))) { 3777 /* 3778 * Note: freeing up the swapcache will fail if some PTEs are 3779 * still swap entries. 3780 */ 3781 if (!folio_trylock(folio)) 3782 return false; 3783 folio_free_swap(folio); 3784 folio_unlock(folio); 3785 } 3786 3787 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3788 return false; 3789 3790 /* Stabilize the mapcount vs. refcount and recheck. */ 3791 folio_lock_large_mapcount(folio); 3792 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3793 3794 if (folio_test_large_maybe_mapped_shared(folio)) 3795 goto unlock; 3796 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3797 goto unlock; 3798 3799 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3800 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3801 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3802 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3803 3804 /* 3805 * Do we need the folio lock? Likely not. If there would have been 3806 * references from page migration/swapout, we would have detected 3807 * an additional folio reference and never ended up here. 3808 */ 3809 exclusive = true; 3810 unlock: 3811 folio_unlock_large_mapcount(folio); 3812 return exclusive; 3813 } 3814 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3815 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3816 struct vm_area_struct *vma) 3817 { 3818 BUILD_BUG(); 3819 } 3820 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3821 3822 static bool wp_can_reuse_anon_folio(struct folio *folio, 3823 struct vm_area_struct *vma) 3824 { 3825 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3826 return __wp_can_reuse_large_anon_folio(folio, vma); 3827 3828 /* 3829 * We have to verify under folio lock: these early checks are 3830 * just an optimization to avoid locking the folio and freeing 3831 * the swapcache if there is little hope that we can reuse. 3832 * 3833 * KSM doesn't necessarily raise the folio refcount. 3834 */ 3835 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3836 return false; 3837 if (!folio_test_lru(folio)) 3838 /* 3839 * We cannot easily detect+handle references from 3840 * remote LRU caches or references to LRU folios. 3841 */ 3842 lru_add_drain(); 3843 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3844 return false; 3845 if (!folio_trylock(folio)) 3846 return false; 3847 if (folio_test_swapcache(folio)) 3848 folio_free_swap(folio); 3849 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3850 folio_unlock(folio); 3851 return false; 3852 } 3853 /* 3854 * Ok, we've got the only folio reference from our mapping 3855 * and the folio is locked, it's dark out, and we're wearing 3856 * sunglasses. Hit it. 3857 */ 3858 folio_move_anon_rmap(folio, vma); 3859 folio_unlock(folio); 3860 return true; 3861 } 3862 3863 /* 3864 * This routine handles present pages, when 3865 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3866 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3867 * (FAULT_FLAG_UNSHARE) 3868 * 3869 * It is done by copying the page to a new address and decrementing the 3870 * shared-page counter for the old page. 3871 * 3872 * Note that this routine assumes that the protection checks have been 3873 * done by the caller (the low-level page fault routine in most cases). 3874 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3875 * done any necessary COW. 3876 * 3877 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3878 * though the page will change only once the write actually happens. This 3879 * avoids a few races, and potentially makes it more efficient. 3880 * 3881 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3882 * but allow concurrent faults), with pte both mapped and locked. 3883 * We return with mmap_lock still held, but pte unmapped and unlocked. 3884 */ 3885 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3886 __releases(vmf->ptl) 3887 { 3888 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3889 struct vm_area_struct *vma = vmf->vma; 3890 struct folio *folio = NULL; 3891 pte_t pte; 3892 3893 if (likely(!unshare)) { 3894 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3895 if (!userfaultfd_wp_async(vma)) { 3896 pte_unmap_unlock(vmf->pte, vmf->ptl); 3897 return handle_userfault(vmf, VM_UFFD_WP); 3898 } 3899 3900 /* 3901 * Nothing needed (cache flush, TLB invalidations, 3902 * etc.) because we're only removing the uffd-wp bit, 3903 * which is completely invisible to the user. 3904 */ 3905 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3906 3907 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3908 /* 3909 * Update this to be prepared for following up CoW 3910 * handling 3911 */ 3912 vmf->orig_pte = pte; 3913 } 3914 3915 /* 3916 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3917 * is flushed in this case before copying. 3918 */ 3919 if (unlikely(userfaultfd_wp(vmf->vma) && 3920 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3921 flush_tlb_page(vmf->vma, vmf->address); 3922 } 3923 3924 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3925 3926 if (vmf->page) 3927 folio = page_folio(vmf->page); 3928 3929 /* 3930 * Shared mapping: we are guaranteed to have VM_WRITE and 3931 * FAULT_FLAG_WRITE set at this point. 3932 */ 3933 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3934 /* 3935 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3936 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 3937 * 3938 * We should not cow pages in a shared writeable mapping. 3939 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3940 */ 3941 if (!vmf->page || is_fsdax_page(vmf->page)) { 3942 vmf->page = NULL; 3943 return wp_pfn_shared(vmf); 3944 } 3945 return wp_page_shared(vmf, folio); 3946 } 3947 3948 /* 3949 * Private mapping: create an exclusive anonymous page copy if reuse 3950 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3951 * 3952 * If we encounter a page that is marked exclusive, we must reuse 3953 * the page without further checks. 3954 */ 3955 if (folio && folio_test_anon(folio) && 3956 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3957 if (!PageAnonExclusive(vmf->page)) 3958 SetPageAnonExclusive(vmf->page); 3959 if (unlikely(unshare)) { 3960 pte_unmap_unlock(vmf->pte, vmf->ptl); 3961 return 0; 3962 } 3963 wp_page_reuse(vmf, folio); 3964 return 0; 3965 } 3966 /* 3967 * Ok, we need to copy. Oh, well.. 3968 */ 3969 if (folio) 3970 folio_get(folio); 3971 3972 pte_unmap_unlock(vmf->pte, vmf->ptl); 3973 #ifdef CONFIG_KSM 3974 if (folio && folio_test_ksm(folio)) 3975 count_vm_event(COW_KSM); 3976 #endif 3977 return wp_page_copy(vmf); 3978 } 3979 3980 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3981 unsigned long start_addr, unsigned long end_addr, 3982 struct zap_details *details) 3983 { 3984 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3985 } 3986 3987 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3988 pgoff_t first_index, 3989 pgoff_t last_index, 3990 struct zap_details *details) 3991 { 3992 struct vm_area_struct *vma; 3993 pgoff_t vba, vea, zba, zea; 3994 3995 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3996 vba = vma->vm_pgoff; 3997 vea = vba + vma_pages(vma) - 1; 3998 zba = max(first_index, vba); 3999 zea = min(last_index, vea); 4000 4001 unmap_mapping_range_vma(vma, 4002 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4003 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4004 details); 4005 } 4006 } 4007 4008 /** 4009 * unmap_mapping_folio() - Unmap single folio from processes. 4010 * @folio: The locked folio to be unmapped. 4011 * 4012 * Unmap this folio from any userspace process which still has it mmaped. 4013 * Typically, for efficiency, the range of nearby pages has already been 4014 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4015 * truncation or invalidation holds the lock on a folio, it may find that 4016 * the page has been remapped again: and then uses unmap_mapping_folio() 4017 * to unmap it finally. 4018 */ 4019 void unmap_mapping_folio(struct folio *folio) 4020 { 4021 struct address_space *mapping = folio->mapping; 4022 struct zap_details details = { }; 4023 pgoff_t first_index; 4024 pgoff_t last_index; 4025 4026 VM_BUG_ON(!folio_test_locked(folio)); 4027 4028 first_index = folio->index; 4029 last_index = folio_next_index(folio) - 1; 4030 4031 details.even_cows = false; 4032 details.single_folio = folio; 4033 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4034 4035 i_mmap_lock_read(mapping); 4036 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4037 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4038 last_index, &details); 4039 i_mmap_unlock_read(mapping); 4040 } 4041 4042 /** 4043 * unmap_mapping_pages() - Unmap pages from processes. 4044 * @mapping: The address space containing pages to be unmapped. 4045 * @start: Index of first page to be unmapped. 4046 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4047 * @even_cows: Whether to unmap even private COWed pages. 4048 * 4049 * Unmap the pages in this address space from any userspace process which 4050 * has them mmaped. Generally, you want to remove COWed pages as well when 4051 * a file is being truncated, but not when invalidating pages from the page 4052 * cache. 4053 */ 4054 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4055 pgoff_t nr, bool even_cows) 4056 { 4057 struct zap_details details = { }; 4058 pgoff_t first_index = start; 4059 pgoff_t last_index = start + nr - 1; 4060 4061 details.even_cows = even_cows; 4062 if (last_index < first_index) 4063 last_index = ULONG_MAX; 4064 4065 i_mmap_lock_read(mapping); 4066 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4067 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4068 last_index, &details); 4069 i_mmap_unlock_read(mapping); 4070 } 4071 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4072 4073 /** 4074 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4075 * address_space corresponding to the specified byte range in the underlying 4076 * file. 4077 * 4078 * @mapping: the address space containing mmaps to be unmapped. 4079 * @holebegin: byte in first page to unmap, relative to the start of 4080 * the underlying file. This will be rounded down to a PAGE_SIZE 4081 * boundary. Note that this is different from truncate_pagecache(), which 4082 * must keep the partial page. In contrast, we must get rid of 4083 * partial pages. 4084 * @holelen: size of prospective hole in bytes. This will be rounded 4085 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4086 * end of the file. 4087 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4088 * but 0 when invalidating pagecache, don't throw away private data. 4089 */ 4090 void unmap_mapping_range(struct address_space *mapping, 4091 loff_t const holebegin, loff_t const holelen, int even_cows) 4092 { 4093 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4094 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4095 4096 /* Check for overflow. */ 4097 if (sizeof(holelen) > sizeof(hlen)) { 4098 long long holeend = 4099 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4100 if (holeend & ~(long long)ULONG_MAX) 4101 hlen = ULONG_MAX - hba + 1; 4102 } 4103 4104 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4105 } 4106 EXPORT_SYMBOL(unmap_mapping_range); 4107 4108 /* 4109 * Restore a potential device exclusive pte to a working pte entry 4110 */ 4111 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4112 { 4113 struct folio *folio = page_folio(vmf->page); 4114 struct vm_area_struct *vma = vmf->vma; 4115 struct mmu_notifier_range range; 4116 vm_fault_t ret; 4117 4118 /* 4119 * We need a reference to lock the folio because we don't hold 4120 * the PTL so a racing thread can remove the device-exclusive 4121 * entry and unmap it. If the folio is free the entry must 4122 * have been removed already. If it happens to have already 4123 * been re-allocated after being freed all we do is lock and 4124 * unlock it. 4125 */ 4126 if (!folio_try_get(folio)) 4127 return 0; 4128 4129 ret = folio_lock_or_retry(folio, vmf); 4130 if (ret) { 4131 folio_put(folio); 4132 return ret; 4133 } 4134 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4135 vma->vm_mm, vmf->address & PAGE_MASK, 4136 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4137 mmu_notifier_invalidate_range_start(&range); 4138 4139 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4140 &vmf->ptl); 4141 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4142 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4143 vmf->pte, vmf->orig_pte); 4144 4145 if (vmf->pte) 4146 pte_unmap_unlock(vmf->pte, vmf->ptl); 4147 folio_unlock(folio); 4148 folio_put(folio); 4149 4150 mmu_notifier_invalidate_range_end(&range); 4151 return 0; 4152 } 4153 4154 static inline bool should_try_to_free_swap(struct folio *folio, 4155 struct vm_area_struct *vma, 4156 unsigned int fault_flags) 4157 { 4158 if (!folio_test_swapcache(folio)) 4159 return false; 4160 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4161 folio_test_mlocked(folio)) 4162 return true; 4163 /* 4164 * If we want to map a page that's in the swapcache writable, we 4165 * have to detect via the refcount if we're really the exclusive 4166 * user. Try freeing the swapcache to get rid of the swapcache 4167 * reference only in case it's likely that we'll be the exlusive user. 4168 */ 4169 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4170 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4171 } 4172 4173 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4174 { 4175 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4176 vmf->address, &vmf->ptl); 4177 if (!vmf->pte) 4178 return 0; 4179 /* 4180 * Be careful so that we will only recover a special uffd-wp pte into a 4181 * none pte. Otherwise it means the pte could have changed, so retry. 4182 * 4183 * This should also cover the case where e.g. the pte changed 4184 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4185 * So is_pte_marker() check is not enough to safely drop the pte. 4186 */ 4187 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4188 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4189 pte_unmap_unlock(vmf->pte, vmf->ptl); 4190 return 0; 4191 } 4192 4193 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4194 { 4195 if (vma_is_anonymous(vmf->vma)) 4196 return do_anonymous_page(vmf); 4197 else 4198 return do_fault(vmf); 4199 } 4200 4201 /* 4202 * This is actually a page-missing access, but with uffd-wp special pte 4203 * installed. It means this pte was wr-protected before being unmapped. 4204 */ 4205 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4206 { 4207 /* 4208 * Just in case there're leftover special ptes even after the region 4209 * got unregistered - we can simply clear them. 4210 */ 4211 if (unlikely(!userfaultfd_wp(vmf->vma))) 4212 return pte_marker_clear(vmf); 4213 4214 return do_pte_missing(vmf); 4215 } 4216 4217 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4218 { 4219 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4220 unsigned long marker = pte_marker_get(entry); 4221 4222 /* 4223 * PTE markers should never be empty. If anything weird happened, 4224 * the best thing to do is to kill the process along with its mm. 4225 */ 4226 if (WARN_ON_ONCE(!marker)) 4227 return VM_FAULT_SIGBUS; 4228 4229 /* Higher priority than uffd-wp when data corrupted */ 4230 if (marker & PTE_MARKER_POISONED) 4231 return VM_FAULT_HWPOISON; 4232 4233 /* Hitting a guard page is always a fatal condition. */ 4234 if (marker & PTE_MARKER_GUARD) 4235 return VM_FAULT_SIGSEGV; 4236 4237 if (pte_marker_entry_uffd_wp(entry)) 4238 return pte_marker_handle_uffd_wp(vmf); 4239 4240 /* This is an unknown pte marker */ 4241 return VM_FAULT_SIGBUS; 4242 } 4243 4244 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4245 { 4246 struct vm_area_struct *vma = vmf->vma; 4247 struct folio *folio; 4248 swp_entry_t entry; 4249 4250 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4251 if (!folio) 4252 return NULL; 4253 4254 entry = pte_to_swp_entry(vmf->orig_pte); 4255 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4256 GFP_KERNEL, entry)) { 4257 folio_put(folio); 4258 return NULL; 4259 } 4260 4261 return folio; 4262 } 4263 4264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4265 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4266 { 4267 struct swap_info_struct *si = swp_swap_info(entry); 4268 pgoff_t offset = swp_offset(entry); 4269 int i; 4270 4271 /* 4272 * While allocating a large folio and doing swap_read_folio, which is 4273 * the case the being faulted pte doesn't have swapcache. We need to 4274 * ensure all PTEs have no cache as well, otherwise, we might go to 4275 * swap devices while the content is in swapcache. 4276 */ 4277 for (i = 0; i < max_nr; i++) { 4278 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4279 return i; 4280 } 4281 4282 return i; 4283 } 4284 4285 /* 4286 * Check if the PTEs within a range are contiguous swap entries 4287 * and have consistent swapcache, zeromap. 4288 */ 4289 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4290 { 4291 unsigned long addr; 4292 swp_entry_t entry; 4293 int idx; 4294 pte_t pte; 4295 4296 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4297 idx = (vmf->address - addr) / PAGE_SIZE; 4298 pte = ptep_get(ptep); 4299 4300 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4301 return false; 4302 entry = pte_to_swp_entry(pte); 4303 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4304 return false; 4305 4306 /* 4307 * swap_read_folio() can't handle the case a large folio is hybridly 4308 * from different backends. And they are likely corner cases. Similar 4309 * things might be added once zswap support large folios. 4310 */ 4311 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4312 return false; 4313 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4314 return false; 4315 4316 return true; 4317 } 4318 4319 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4320 unsigned long addr, 4321 unsigned long orders) 4322 { 4323 int order, nr; 4324 4325 order = highest_order(orders); 4326 4327 /* 4328 * To swap in a THP with nr pages, we require that its first swap_offset 4329 * is aligned with that number, as it was when the THP was swapped out. 4330 * This helps filter out most invalid entries. 4331 */ 4332 while (orders) { 4333 nr = 1 << order; 4334 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4335 break; 4336 order = next_order(&orders, order); 4337 } 4338 4339 return orders; 4340 } 4341 4342 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4343 { 4344 struct vm_area_struct *vma = vmf->vma; 4345 unsigned long orders; 4346 struct folio *folio; 4347 unsigned long addr; 4348 swp_entry_t entry; 4349 spinlock_t *ptl; 4350 pte_t *pte; 4351 gfp_t gfp; 4352 int order; 4353 4354 /* 4355 * If uffd is active for the vma we need per-page fault fidelity to 4356 * maintain the uffd semantics. 4357 */ 4358 if (unlikely(userfaultfd_armed(vma))) 4359 goto fallback; 4360 4361 /* 4362 * A large swapped out folio could be partially or fully in zswap. We 4363 * lack handling for such cases, so fallback to swapping in order-0 4364 * folio. 4365 */ 4366 if (!zswap_never_enabled()) 4367 goto fallback; 4368 4369 entry = pte_to_swp_entry(vmf->orig_pte); 4370 /* 4371 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4372 * and suitable for swapping THP. 4373 */ 4374 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4375 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4376 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4377 orders = thp_swap_suitable_orders(swp_offset(entry), 4378 vmf->address, orders); 4379 4380 if (!orders) 4381 goto fallback; 4382 4383 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4384 vmf->address & PMD_MASK, &ptl); 4385 if (unlikely(!pte)) 4386 goto fallback; 4387 4388 /* 4389 * For do_swap_page, find the highest order where the aligned range is 4390 * completely swap entries with contiguous swap offsets. 4391 */ 4392 order = highest_order(orders); 4393 while (orders) { 4394 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4395 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4396 break; 4397 order = next_order(&orders, order); 4398 } 4399 4400 pte_unmap_unlock(pte, ptl); 4401 4402 /* Try allocating the highest of the remaining orders. */ 4403 gfp = vma_thp_gfp_mask(vma); 4404 while (orders) { 4405 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4406 folio = vma_alloc_folio(gfp, order, vma, addr); 4407 if (folio) { 4408 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4409 gfp, entry)) 4410 return folio; 4411 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4412 folio_put(folio); 4413 } 4414 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4415 order = next_order(&orders, order); 4416 } 4417 4418 fallback: 4419 return __alloc_swap_folio(vmf); 4420 } 4421 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4422 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4423 { 4424 return __alloc_swap_folio(vmf); 4425 } 4426 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4427 4428 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4429 4430 /* 4431 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4432 * but allow concurrent faults), and pte mapped but not yet locked. 4433 * We return with pte unmapped and unlocked. 4434 * 4435 * We return with the mmap_lock locked or unlocked in the same cases 4436 * as does filemap_fault(). 4437 */ 4438 vm_fault_t do_swap_page(struct vm_fault *vmf) 4439 { 4440 struct vm_area_struct *vma = vmf->vma; 4441 struct folio *swapcache, *folio = NULL; 4442 DECLARE_WAITQUEUE(wait, current); 4443 struct page *page; 4444 struct swap_info_struct *si = NULL; 4445 rmap_t rmap_flags = RMAP_NONE; 4446 bool need_clear_cache = false; 4447 bool exclusive = false; 4448 swp_entry_t entry; 4449 pte_t pte; 4450 vm_fault_t ret = 0; 4451 void *shadow = NULL; 4452 int nr_pages; 4453 unsigned long page_idx; 4454 unsigned long address; 4455 pte_t *ptep; 4456 4457 if (!pte_unmap_same(vmf)) 4458 goto out; 4459 4460 entry = pte_to_swp_entry(vmf->orig_pte); 4461 if (unlikely(non_swap_entry(entry))) { 4462 if (is_migration_entry(entry)) { 4463 migration_entry_wait(vma->vm_mm, vmf->pmd, 4464 vmf->address); 4465 } else if (is_device_exclusive_entry(entry)) { 4466 vmf->page = pfn_swap_entry_to_page(entry); 4467 ret = remove_device_exclusive_entry(vmf); 4468 } else if (is_device_private_entry(entry)) { 4469 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4470 /* 4471 * migrate_to_ram is not yet ready to operate 4472 * under VMA lock. 4473 */ 4474 vma_end_read(vma); 4475 ret = VM_FAULT_RETRY; 4476 goto out; 4477 } 4478 4479 vmf->page = pfn_swap_entry_to_page(entry); 4480 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4481 vmf->address, &vmf->ptl); 4482 if (unlikely(!vmf->pte || 4483 !pte_same(ptep_get(vmf->pte), 4484 vmf->orig_pte))) 4485 goto unlock; 4486 4487 /* 4488 * Get a page reference while we know the page can't be 4489 * freed. 4490 */ 4491 if (trylock_page(vmf->page)) { 4492 struct dev_pagemap *pgmap; 4493 4494 get_page(vmf->page); 4495 pte_unmap_unlock(vmf->pte, vmf->ptl); 4496 pgmap = page_pgmap(vmf->page); 4497 ret = pgmap->ops->migrate_to_ram(vmf); 4498 unlock_page(vmf->page); 4499 put_page(vmf->page); 4500 } else { 4501 pte_unmap_unlock(vmf->pte, vmf->ptl); 4502 } 4503 } else if (is_hwpoison_entry(entry)) { 4504 ret = VM_FAULT_HWPOISON; 4505 } else if (is_pte_marker_entry(entry)) { 4506 ret = handle_pte_marker(vmf); 4507 } else { 4508 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4509 ret = VM_FAULT_SIGBUS; 4510 } 4511 goto out; 4512 } 4513 4514 /* Prevent swapoff from happening to us. */ 4515 si = get_swap_device(entry); 4516 if (unlikely(!si)) 4517 goto out; 4518 4519 folio = swap_cache_get_folio(entry, vma, vmf->address); 4520 if (folio) 4521 page = folio_file_page(folio, swp_offset(entry)); 4522 swapcache = folio; 4523 4524 if (!folio) { 4525 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4526 __swap_count(entry) == 1) { 4527 /* skip swapcache */ 4528 folio = alloc_swap_folio(vmf); 4529 if (folio) { 4530 __folio_set_locked(folio); 4531 __folio_set_swapbacked(folio); 4532 4533 nr_pages = folio_nr_pages(folio); 4534 if (folio_test_large(folio)) 4535 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4536 /* 4537 * Prevent parallel swapin from proceeding with 4538 * the cache flag. Otherwise, another thread 4539 * may finish swapin first, free the entry, and 4540 * swapout reusing the same entry. It's 4541 * undetectable as pte_same() returns true due 4542 * to entry reuse. 4543 */ 4544 if (swapcache_prepare(entry, nr_pages)) { 4545 /* 4546 * Relax a bit to prevent rapid 4547 * repeated page faults. 4548 */ 4549 add_wait_queue(&swapcache_wq, &wait); 4550 schedule_timeout_uninterruptible(1); 4551 remove_wait_queue(&swapcache_wq, &wait); 4552 goto out_page; 4553 } 4554 need_clear_cache = true; 4555 4556 memcg1_swapin(entry, nr_pages); 4557 4558 shadow = get_shadow_from_swap_cache(entry); 4559 if (shadow) 4560 workingset_refault(folio, shadow); 4561 4562 folio_add_lru(folio); 4563 4564 /* To provide entry to swap_read_folio() */ 4565 folio->swap = entry; 4566 swap_read_folio(folio, NULL); 4567 folio->private = NULL; 4568 } 4569 } else { 4570 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4571 vmf); 4572 swapcache = folio; 4573 } 4574 4575 if (!folio) { 4576 /* 4577 * Back out if somebody else faulted in this pte 4578 * while we released the pte lock. 4579 */ 4580 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4581 vmf->address, &vmf->ptl); 4582 if (likely(vmf->pte && 4583 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4584 ret = VM_FAULT_OOM; 4585 goto unlock; 4586 } 4587 4588 /* Had to read the page from swap area: Major fault */ 4589 ret = VM_FAULT_MAJOR; 4590 count_vm_event(PGMAJFAULT); 4591 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4592 page = folio_file_page(folio, swp_offset(entry)); 4593 } else if (PageHWPoison(page)) { 4594 /* 4595 * hwpoisoned dirty swapcache pages are kept for killing 4596 * owner processes (which may be unknown at hwpoison time) 4597 */ 4598 ret = VM_FAULT_HWPOISON; 4599 goto out_release; 4600 } 4601 4602 ret |= folio_lock_or_retry(folio, vmf); 4603 if (ret & VM_FAULT_RETRY) 4604 goto out_release; 4605 4606 if (swapcache) { 4607 /* 4608 * Make sure folio_free_swap() or swapoff did not release the 4609 * swapcache from under us. The page pin, and pte_same test 4610 * below, are not enough to exclude that. Even if it is still 4611 * swapcache, we need to check that the page's swap has not 4612 * changed. 4613 */ 4614 if (unlikely(!folio_test_swapcache(folio) || 4615 page_swap_entry(page).val != entry.val)) 4616 goto out_page; 4617 4618 /* 4619 * KSM sometimes has to copy on read faults, for example, if 4620 * page->index of !PageKSM() pages would be nonlinear inside the 4621 * anon VMA -- PageKSM() is lost on actual swapout. 4622 */ 4623 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4624 if (unlikely(!folio)) { 4625 ret = VM_FAULT_OOM; 4626 folio = swapcache; 4627 goto out_page; 4628 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4629 ret = VM_FAULT_HWPOISON; 4630 folio = swapcache; 4631 goto out_page; 4632 } 4633 if (folio != swapcache) 4634 page = folio_page(folio, 0); 4635 4636 /* 4637 * If we want to map a page that's in the swapcache writable, we 4638 * have to detect via the refcount if we're really the exclusive 4639 * owner. Try removing the extra reference from the local LRU 4640 * caches if required. 4641 */ 4642 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4643 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4644 lru_add_drain(); 4645 } 4646 4647 folio_throttle_swaprate(folio, GFP_KERNEL); 4648 4649 /* 4650 * Back out if somebody else already faulted in this pte. 4651 */ 4652 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4653 &vmf->ptl); 4654 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4655 goto out_nomap; 4656 4657 if (unlikely(!folio_test_uptodate(folio))) { 4658 ret = VM_FAULT_SIGBUS; 4659 goto out_nomap; 4660 } 4661 4662 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4663 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4664 unsigned long nr = folio_nr_pages(folio); 4665 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4666 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4667 pte_t *folio_ptep = vmf->pte - idx; 4668 pte_t folio_pte = ptep_get(folio_ptep); 4669 4670 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4671 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4672 goto out_nomap; 4673 4674 page_idx = idx; 4675 address = folio_start; 4676 ptep = folio_ptep; 4677 goto check_folio; 4678 } 4679 4680 nr_pages = 1; 4681 page_idx = 0; 4682 address = vmf->address; 4683 ptep = vmf->pte; 4684 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4685 int nr = folio_nr_pages(folio); 4686 unsigned long idx = folio_page_idx(folio, page); 4687 unsigned long folio_start = address - idx * PAGE_SIZE; 4688 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4689 pte_t *folio_ptep; 4690 pte_t folio_pte; 4691 4692 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4693 goto check_folio; 4694 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4695 goto check_folio; 4696 4697 folio_ptep = vmf->pte - idx; 4698 folio_pte = ptep_get(folio_ptep); 4699 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4700 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4701 goto check_folio; 4702 4703 page_idx = idx; 4704 address = folio_start; 4705 ptep = folio_ptep; 4706 nr_pages = nr; 4707 entry = folio->swap; 4708 page = &folio->page; 4709 } 4710 4711 check_folio: 4712 /* 4713 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4714 * must never point at an anonymous page in the swapcache that is 4715 * PG_anon_exclusive. Sanity check that this holds and especially, that 4716 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4717 * check after taking the PT lock and making sure that nobody 4718 * concurrently faulted in this page and set PG_anon_exclusive. 4719 */ 4720 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4721 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4722 4723 /* 4724 * Check under PT lock (to protect against concurrent fork() sharing 4725 * the swap entry concurrently) for certainly exclusive pages. 4726 */ 4727 if (!folio_test_ksm(folio)) { 4728 exclusive = pte_swp_exclusive(vmf->orig_pte); 4729 if (folio != swapcache) { 4730 /* 4731 * We have a fresh page that is not exposed to the 4732 * swapcache -> certainly exclusive. 4733 */ 4734 exclusive = true; 4735 } else if (exclusive && folio_test_writeback(folio) && 4736 data_race(si->flags & SWP_STABLE_WRITES)) { 4737 /* 4738 * This is tricky: not all swap backends support 4739 * concurrent page modifications while under writeback. 4740 * 4741 * So if we stumble over such a page in the swapcache 4742 * we must not set the page exclusive, otherwise we can 4743 * map it writable without further checks and modify it 4744 * while still under writeback. 4745 * 4746 * For these problematic swap backends, simply drop the 4747 * exclusive marker: this is perfectly fine as we start 4748 * writeback only if we fully unmapped the page and 4749 * there are no unexpected references on the page after 4750 * unmapping succeeded. After fully unmapped, no 4751 * further GUP references (FOLL_GET and FOLL_PIN) can 4752 * appear, so dropping the exclusive marker and mapping 4753 * it only R/O is fine. 4754 */ 4755 exclusive = false; 4756 } 4757 } 4758 4759 /* 4760 * Some architectures may have to restore extra metadata to the page 4761 * when reading from swap. This metadata may be indexed by swap entry 4762 * so this must be called before swap_free(). 4763 */ 4764 arch_swap_restore(folio_swap(entry, folio), folio); 4765 4766 /* 4767 * Remove the swap entry and conditionally try to free up the swapcache. 4768 * We're already holding a reference on the page but haven't mapped it 4769 * yet. 4770 */ 4771 swap_free_nr(entry, nr_pages); 4772 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4773 folio_free_swap(folio); 4774 4775 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4776 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4777 pte = mk_pte(page, vma->vm_page_prot); 4778 if (pte_swp_soft_dirty(vmf->orig_pte)) 4779 pte = pte_mksoft_dirty(pte); 4780 if (pte_swp_uffd_wp(vmf->orig_pte)) 4781 pte = pte_mkuffd_wp(pte); 4782 4783 /* 4784 * Same logic as in do_wp_page(); however, optimize for pages that are 4785 * certainly not shared either because we just allocated them without 4786 * exposing them to the swapcache or because the swap entry indicates 4787 * exclusivity. 4788 */ 4789 if (!folio_test_ksm(folio) && 4790 (exclusive || folio_ref_count(folio) == 1)) { 4791 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4792 !pte_needs_soft_dirty_wp(vma, pte)) { 4793 pte = pte_mkwrite(pte, vma); 4794 if (vmf->flags & FAULT_FLAG_WRITE) { 4795 pte = pte_mkdirty(pte); 4796 vmf->flags &= ~FAULT_FLAG_WRITE; 4797 } 4798 } 4799 rmap_flags |= RMAP_EXCLUSIVE; 4800 } 4801 folio_ref_add(folio, nr_pages - 1); 4802 flush_icache_pages(vma, page, nr_pages); 4803 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4804 4805 /* ksm created a completely new copy */ 4806 if (unlikely(folio != swapcache && swapcache)) { 4807 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4808 folio_add_lru_vma(folio, vma); 4809 } else if (!folio_test_anon(folio)) { 4810 /* 4811 * We currently only expect small !anon folios which are either 4812 * fully exclusive or fully shared, or new allocated large 4813 * folios which are fully exclusive. If we ever get large 4814 * folios within swapcache here, we have to be careful. 4815 */ 4816 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4817 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4818 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4819 } else { 4820 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4821 rmap_flags); 4822 } 4823 4824 VM_BUG_ON(!folio_test_anon(folio) || 4825 (pte_write(pte) && !PageAnonExclusive(page))); 4826 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4827 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4828 pte, pte, nr_pages); 4829 4830 folio_unlock(folio); 4831 if (folio != swapcache && swapcache) { 4832 /* 4833 * Hold the lock to avoid the swap entry to be reused 4834 * until we take the PT lock for the pte_same() check 4835 * (to avoid false positives from pte_same). For 4836 * further safety release the lock after the swap_free 4837 * so that the swap count won't change under a 4838 * parallel locked swapcache. 4839 */ 4840 folio_unlock(swapcache); 4841 folio_put(swapcache); 4842 } 4843 4844 if (vmf->flags & FAULT_FLAG_WRITE) { 4845 ret |= do_wp_page(vmf); 4846 if (ret & VM_FAULT_ERROR) 4847 ret &= VM_FAULT_ERROR; 4848 goto out; 4849 } 4850 4851 /* No need to invalidate - it was non-present before */ 4852 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4853 unlock: 4854 if (vmf->pte) 4855 pte_unmap_unlock(vmf->pte, vmf->ptl); 4856 out: 4857 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4858 if (need_clear_cache) { 4859 swapcache_clear(si, entry, nr_pages); 4860 if (waitqueue_active(&swapcache_wq)) 4861 wake_up(&swapcache_wq); 4862 } 4863 if (si) 4864 put_swap_device(si); 4865 return ret; 4866 out_nomap: 4867 if (vmf->pte) 4868 pte_unmap_unlock(vmf->pte, vmf->ptl); 4869 out_page: 4870 folio_unlock(folio); 4871 out_release: 4872 folio_put(folio); 4873 if (folio != swapcache && swapcache) { 4874 folio_unlock(swapcache); 4875 folio_put(swapcache); 4876 } 4877 if (need_clear_cache) { 4878 swapcache_clear(si, entry, nr_pages); 4879 if (waitqueue_active(&swapcache_wq)) 4880 wake_up(&swapcache_wq); 4881 } 4882 if (si) 4883 put_swap_device(si); 4884 return ret; 4885 } 4886 4887 static bool pte_range_none(pte_t *pte, int nr_pages) 4888 { 4889 int i; 4890 4891 for (i = 0; i < nr_pages; i++) { 4892 if (!pte_none(ptep_get_lockless(pte + i))) 4893 return false; 4894 } 4895 4896 return true; 4897 } 4898 4899 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4900 { 4901 struct vm_area_struct *vma = vmf->vma; 4902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4903 unsigned long orders; 4904 struct folio *folio; 4905 unsigned long addr; 4906 pte_t *pte; 4907 gfp_t gfp; 4908 int order; 4909 4910 /* 4911 * If uffd is active for the vma we need per-page fault fidelity to 4912 * maintain the uffd semantics. 4913 */ 4914 if (unlikely(userfaultfd_armed(vma))) 4915 goto fallback; 4916 4917 /* 4918 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4919 * for this vma. Then filter out the orders that can't be allocated over 4920 * the faulting address and still be fully contained in the vma. 4921 */ 4922 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4923 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4924 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4925 4926 if (!orders) 4927 goto fallback; 4928 4929 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4930 if (!pte) 4931 return ERR_PTR(-EAGAIN); 4932 4933 /* 4934 * Find the highest order where the aligned range is completely 4935 * pte_none(). Note that all remaining orders will be completely 4936 * pte_none(). 4937 */ 4938 order = highest_order(orders); 4939 while (orders) { 4940 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4941 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4942 break; 4943 order = next_order(&orders, order); 4944 } 4945 4946 pte_unmap(pte); 4947 4948 if (!orders) 4949 goto fallback; 4950 4951 /* Try allocating the highest of the remaining orders. */ 4952 gfp = vma_thp_gfp_mask(vma); 4953 while (orders) { 4954 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4955 folio = vma_alloc_folio(gfp, order, vma, addr); 4956 if (folio) { 4957 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4958 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4959 folio_put(folio); 4960 goto next; 4961 } 4962 folio_throttle_swaprate(folio, gfp); 4963 /* 4964 * When a folio is not zeroed during allocation 4965 * (__GFP_ZERO not used) or user folios require special 4966 * handling, folio_zero_user() is used to make sure 4967 * that the page corresponding to the faulting address 4968 * will be hot in the cache after zeroing. 4969 */ 4970 if (user_alloc_needs_zeroing()) 4971 folio_zero_user(folio, vmf->address); 4972 return folio; 4973 } 4974 next: 4975 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4976 order = next_order(&orders, order); 4977 } 4978 4979 fallback: 4980 #endif 4981 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4982 } 4983 4984 /* 4985 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4986 * but allow concurrent faults), and pte mapped but not yet locked. 4987 * We return with mmap_lock still held, but pte unmapped and unlocked. 4988 */ 4989 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4990 { 4991 struct vm_area_struct *vma = vmf->vma; 4992 unsigned long addr = vmf->address; 4993 struct folio *folio; 4994 vm_fault_t ret = 0; 4995 int nr_pages = 1; 4996 pte_t entry; 4997 4998 /* File mapping without ->vm_ops ? */ 4999 if (vma->vm_flags & VM_SHARED) 5000 return VM_FAULT_SIGBUS; 5001 5002 /* 5003 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5004 * be distinguished from a transient failure of pte_offset_map(). 5005 */ 5006 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5007 return VM_FAULT_OOM; 5008 5009 /* Use the zero-page for reads */ 5010 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5011 !mm_forbids_zeropage(vma->vm_mm)) { 5012 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5013 vma->vm_page_prot)); 5014 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5015 vmf->address, &vmf->ptl); 5016 if (!vmf->pte) 5017 goto unlock; 5018 if (vmf_pte_changed(vmf)) { 5019 update_mmu_tlb(vma, vmf->address, vmf->pte); 5020 goto unlock; 5021 } 5022 ret = check_stable_address_space(vma->vm_mm); 5023 if (ret) 5024 goto unlock; 5025 /* Deliver the page fault to userland, check inside PT lock */ 5026 if (userfaultfd_missing(vma)) { 5027 pte_unmap_unlock(vmf->pte, vmf->ptl); 5028 return handle_userfault(vmf, VM_UFFD_MISSING); 5029 } 5030 goto setpte; 5031 } 5032 5033 /* Allocate our own private page. */ 5034 ret = vmf_anon_prepare(vmf); 5035 if (ret) 5036 return ret; 5037 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5038 folio = alloc_anon_folio(vmf); 5039 if (IS_ERR(folio)) 5040 return 0; 5041 if (!folio) 5042 goto oom; 5043 5044 nr_pages = folio_nr_pages(folio); 5045 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5046 5047 /* 5048 * The memory barrier inside __folio_mark_uptodate makes sure that 5049 * preceding stores to the page contents become visible before 5050 * the set_pte_at() write. 5051 */ 5052 __folio_mark_uptodate(folio); 5053 5054 entry = folio_mk_pte(folio, vma->vm_page_prot); 5055 entry = pte_sw_mkyoung(entry); 5056 if (vma->vm_flags & VM_WRITE) 5057 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5058 5059 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5060 if (!vmf->pte) 5061 goto release; 5062 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5063 update_mmu_tlb(vma, addr, vmf->pte); 5064 goto release; 5065 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5066 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5067 goto release; 5068 } 5069 5070 ret = check_stable_address_space(vma->vm_mm); 5071 if (ret) 5072 goto release; 5073 5074 /* Deliver the page fault to userland, check inside PT lock */ 5075 if (userfaultfd_missing(vma)) { 5076 pte_unmap_unlock(vmf->pte, vmf->ptl); 5077 folio_put(folio); 5078 return handle_userfault(vmf, VM_UFFD_MISSING); 5079 } 5080 5081 folio_ref_add(folio, nr_pages - 1); 5082 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5083 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5084 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5085 folio_add_lru_vma(folio, vma); 5086 setpte: 5087 if (vmf_orig_pte_uffd_wp(vmf)) 5088 entry = pte_mkuffd_wp(entry); 5089 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5090 5091 /* No need to invalidate - it was non-present before */ 5092 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5093 unlock: 5094 if (vmf->pte) 5095 pte_unmap_unlock(vmf->pte, vmf->ptl); 5096 return ret; 5097 release: 5098 folio_put(folio); 5099 goto unlock; 5100 oom: 5101 return VM_FAULT_OOM; 5102 } 5103 5104 /* 5105 * The mmap_lock must have been held on entry, and may have been 5106 * released depending on flags and vma->vm_ops->fault() return value. 5107 * See filemap_fault() and __lock_page_retry(). 5108 */ 5109 static vm_fault_t __do_fault(struct vm_fault *vmf) 5110 { 5111 struct vm_area_struct *vma = vmf->vma; 5112 struct folio *folio; 5113 vm_fault_t ret; 5114 5115 /* 5116 * Preallocate pte before we take page_lock because this might lead to 5117 * deadlocks for memcg reclaim which waits for pages under writeback: 5118 * lock_page(A) 5119 * SetPageWriteback(A) 5120 * unlock_page(A) 5121 * lock_page(B) 5122 * lock_page(B) 5123 * pte_alloc_one 5124 * shrink_folio_list 5125 * wait_on_page_writeback(A) 5126 * SetPageWriteback(B) 5127 * unlock_page(B) 5128 * # flush A, B to clear the writeback 5129 */ 5130 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5131 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5132 if (!vmf->prealloc_pte) 5133 return VM_FAULT_OOM; 5134 } 5135 5136 ret = vma->vm_ops->fault(vmf); 5137 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5138 VM_FAULT_DONE_COW))) 5139 return ret; 5140 5141 folio = page_folio(vmf->page); 5142 if (unlikely(PageHWPoison(vmf->page))) { 5143 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5144 if (ret & VM_FAULT_LOCKED) { 5145 if (page_mapped(vmf->page)) 5146 unmap_mapping_folio(folio); 5147 /* Retry if a clean folio was removed from the cache. */ 5148 if (mapping_evict_folio(folio->mapping, folio)) 5149 poisonret = VM_FAULT_NOPAGE; 5150 folio_unlock(folio); 5151 } 5152 folio_put(folio); 5153 vmf->page = NULL; 5154 return poisonret; 5155 } 5156 5157 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5158 folio_lock(folio); 5159 else 5160 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5161 5162 return ret; 5163 } 5164 5165 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5166 static void deposit_prealloc_pte(struct vm_fault *vmf) 5167 { 5168 struct vm_area_struct *vma = vmf->vma; 5169 5170 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5171 /* 5172 * We are going to consume the prealloc table, 5173 * count that as nr_ptes. 5174 */ 5175 mm_inc_nr_ptes(vma->vm_mm); 5176 vmf->prealloc_pte = NULL; 5177 } 5178 5179 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5180 { 5181 struct folio *folio = page_folio(page); 5182 struct vm_area_struct *vma = vmf->vma; 5183 bool write = vmf->flags & FAULT_FLAG_WRITE; 5184 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5185 pmd_t entry; 5186 vm_fault_t ret = VM_FAULT_FALLBACK; 5187 5188 /* 5189 * It is too late to allocate a small folio, we already have a large 5190 * folio in the pagecache: especially s390 KVM cannot tolerate any 5191 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5192 * PMD mappings if THPs are disabled. 5193 */ 5194 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5195 return ret; 5196 5197 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5198 return ret; 5199 5200 if (folio_order(folio) != HPAGE_PMD_ORDER) 5201 return ret; 5202 page = &folio->page; 5203 5204 /* 5205 * Just backoff if any subpage of a THP is corrupted otherwise 5206 * the corrupted page may mapped by PMD silently to escape the 5207 * check. This kind of THP just can be PTE mapped. Access to 5208 * the corrupted subpage should trigger SIGBUS as expected. 5209 */ 5210 if (unlikely(folio_test_has_hwpoisoned(folio))) 5211 return ret; 5212 5213 /* 5214 * Archs like ppc64 need additional space to store information 5215 * related to pte entry. Use the preallocated table for that. 5216 */ 5217 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5218 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5219 if (!vmf->prealloc_pte) 5220 return VM_FAULT_OOM; 5221 } 5222 5223 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5224 if (unlikely(!pmd_none(*vmf->pmd))) 5225 goto out; 5226 5227 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5228 5229 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5230 if (write) 5231 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5232 5233 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5234 folio_add_file_rmap_pmd(folio, page, vma); 5235 5236 /* 5237 * deposit and withdraw with pmd lock held 5238 */ 5239 if (arch_needs_pgtable_deposit()) 5240 deposit_prealloc_pte(vmf); 5241 5242 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5243 5244 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5245 5246 /* fault is handled */ 5247 ret = 0; 5248 count_vm_event(THP_FILE_MAPPED); 5249 out: 5250 spin_unlock(vmf->ptl); 5251 return ret; 5252 } 5253 #else 5254 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5255 { 5256 return VM_FAULT_FALLBACK; 5257 } 5258 #endif 5259 5260 /** 5261 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5262 * @vmf: Fault decription. 5263 * @folio: The folio that contains @page. 5264 * @page: The first page to create a PTE for. 5265 * @nr: The number of PTEs to create. 5266 * @addr: The first address to create a PTE for. 5267 */ 5268 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5269 struct page *page, unsigned int nr, unsigned long addr) 5270 { 5271 struct vm_area_struct *vma = vmf->vma; 5272 bool write = vmf->flags & FAULT_FLAG_WRITE; 5273 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5274 pte_t entry; 5275 5276 flush_icache_pages(vma, page, nr); 5277 entry = mk_pte(page, vma->vm_page_prot); 5278 5279 if (prefault && arch_wants_old_prefaulted_pte()) 5280 entry = pte_mkold(entry); 5281 else 5282 entry = pte_sw_mkyoung(entry); 5283 5284 if (write) 5285 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5286 else if (pte_write(entry) && folio_test_dirty(folio)) 5287 entry = pte_mkdirty(entry); 5288 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5289 entry = pte_mkuffd_wp(entry); 5290 /* copy-on-write page */ 5291 if (write && !(vma->vm_flags & VM_SHARED)) { 5292 VM_BUG_ON_FOLIO(nr != 1, folio); 5293 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5294 folio_add_lru_vma(folio, vma); 5295 } else { 5296 folio_add_file_rmap_ptes(folio, page, nr, vma); 5297 } 5298 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5299 5300 /* no need to invalidate: a not-present page won't be cached */ 5301 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5302 } 5303 5304 static bool vmf_pte_changed(struct vm_fault *vmf) 5305 { 5306 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5307 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5308 5309 return !pte_none(ptep_get(vmf->pte)); 5310 } 5311 5312 /** 5313 * finish_fault - finish page fault once we have prepared the page to fault 5314 * 5315 * @vmf: structure describing the fault 5316 * 5317 * This function handles all that is needed to finish a page fault once the 5318 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5319 * given page, adds reverse page mapping, handles memcg charges and LRU 5320 * addition. 5321 * 5322 * The function expects the page to be locked and on success it consumes a 5323 * reference of a page being mapped (for the PTE which maps it). 5324 * 5325 * Return: %0 on success, %VM_FAULT_ code in case of error. 5326 */ 5327 vm_fault_t finish_fault(struct vm_fault *vmf) 5328 { 5329 struct vm_area_struct *vma = vmf->vma; 5330 struct page *page; 5331 struct folio *folio; 5332 vm_fault_t ret; 5333 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5334 !(vma->vm_flags & VM_SHARED); 5335 int type, nr_pages; 5336 unsigned long addr; 5337 bool needs_fallback = false; 5338 5339 fallback: 5340 addr = vmf->address; 5341 5342 /* Did we COW the page? */ 5343 if (is_cow) 5344 page = vmf->cow_page; 5345 else 5346 page = vmf->page; 5347 5348 /* 5349 * check even for read faults because we might have lost our CoWed 5350 * page 5351 */ 5352 if (!(vma->vm_flags & VM_SHARED)) { 5353 ret = check_stable_address_space(vma->vm_mm); 5354 if (ret) 5355 return ret; 5356 } 5357 5358 if (pmd_none(*vmf->pmd)) { 5359 if (PageTransCompound(page)) { 5360 ret = do_set_pmd(vmf, page); 5361 if (ret != VM_FAULT_FALLBACK) 5362 return ret; 5363 } 5364 5365 if (vmf->prealloc_pte) 5366 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5367 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5368 return VM_FAULT_OOM; 5369 } 5370 5371 folio = page_folio(page); 5372 nr_pages = folio_nr_pages(folio); 5373 5374 /* 5375 * Using per-page fault to maintain the uffd semantics, and same 5376 * approach also applies to non-anonymous-shmem faults to avoid 5377 * inflating the RSS of the process. 5378 */ 5379 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5380 unlikely(needs_fallback)) { 5381 nr_pages = 1; 5382 } else if (nr_pages > 1) { 5383 pgoff_t idx = folio_page_idx(folio, page); 5384 /* The page offset of vmf->address within the VMA. */ 5385 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5386 /* The index of the entry in the pagetable for fault page. */ 5387 pgoff_t pte_off = pte_index(vmf->address); 5388 5389 /* 5390 * Fallback to per-page fault in case the folio size in page 5391 * cache beyond the VMA limits and PMD pagetable limits. 5392 */ 5393 if (unlikely(vma_off < idx || 5394 vma_off + (nr_pages - idx) > vma_pages(vma) || 5395 pte_off < idx || 5396 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5397 nr_pages = 1; 5398 } else { 5399 /* Now we can set mappings for the whole large folio. */ 5400 addr = vmf->address - idx * PAGE_SIZE; 5401 page = &folio->page; 5402 } 5403 } 5404 5405 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5406 addr, &vmf->ptl); 5407 if (!vmf->pte) 5408 return VM_FAULT_NOPAGE; 5409 5410 /* Re-check under ptl */ 5411 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5412 update_mmu_tlb(vma, addr, vmf->pte); 5413 ret = VM_FAULT_NOPAGE; 5414 goto unlock; 5415 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5416 needs_fallback = true; 5417 pte_unmap_unlock(vmf->pte, vmf->ptl); 5418 goto fallback; 5419 } 5420 5421 folio_ref_add(folio, nr_pages - 1); 5422 set_pte_range(vmf, folio, page, nr_pages, addr); 5423 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5424 add_mm_counter(vma->vm_mm, type, nr_pages); 5425 ret = 0; 5426 5427 unlock: 5428 pte_unmap_unlock(vmf->pte, vmf->ptl); 5429 return ret; 5430 } 5431 5432 static unsigned long fault_around_pages __read_mostly = 5433 65536 >> PAGE_SHIFT; 5434 5435 #ifdef CONFIG_DEBUG_FS 5436 static int fault_around_bytes_get(void *data, u64 *val) 5437 { 5438 *val = fault_around_pages << PAGE_SHIFT; 5439 return 0; 5440 } 5441 5442 /* 5443 * fault_around_bytes must be rounded down to the nearest page order as it's 5444 * what do_fault_around() expects to see. 5445 */ 5446 static int fault_around_bytes_set(void *data, u64 val) 5447 { 5448 if (val / PAGE_SIZE > PTRS_PER_PTE) 5449 return -EINVAL; 5450 5451 /* 5452 * The minimum value is 1 page, however this results in no fault-around 5453 * at all. See should_fault_around(). 5454 */ 5455 val = max(val, PAGE_SIZE); 5456 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5457 5458 return 0; 5459 } 5460 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5461 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5462 5463 static int __init fault_around_debugfs(void) 5464 { 5465 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5466 &fault_around_bytes_fops); 5467 return 0; 5468 } 5469 late_initcall(fault_around_debugfs); 5470 #endif 5471 5472 /* 5473 * do_fault_around() tries to map few pages around the fault address. The hope 5474 * is that the pages will be needed soon and this will lower the number of 5475 * faults to handle. 5476 * 5477 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5478 * not ready to be mapped: not up-to-date, locked, etc. 5479 * 5480 * This function doesn't cross VMA or page table boundaries, in order to call 5481 * map_pages() and acquire a PTE lock only once. 5482 * 5483 * fault_around_pages defines how many pages we'll try to map. 5484 * do_fault_around() expects it to be set to a power of two less than or equal 5485 * to PTRS_PER_PTE. 5486 * 5487 * The virtual address of the area that we map is naturally aligned to 5488 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5489 * (and therefore to page order). This way it's easier to guarantee 5490 * that we don't cross page table boundaries. 5491 */ 5492 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5493 { 5494 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5495 pgoff_t pte_off = pte_index(vmf->address); 5496 /* The page offset of vmf->address within the VMA. */ 5497 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5498 pgoff_t from_pte, to_pte; 5499 vm_fault_t ret; 5500 5501 /* The PTE offset of the start address, clamped to the VMA. */ 5502 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5503 pte_off - min(pte_off, vma_off)); 5504 5505 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5506 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5507 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5508 5509 if (pmd_none(*vmf->pmd)) { 5510 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5511 if (!vmf->prealloc_pte) 5512 return VM_FAULT_OOM; 5513 } 5514 5515 rcu_read_lock(); 5516 ret = vmf->vma->vm_ops->map_pages(vmf, 5517 vmf->pgoff + from_pte - pte_off, 5518 vmf->pgoff + to_pte - pte_off); 5519 rcu_read_unlock(); 5520 5521 return ret; 5522 } 5523 5524 /* Return true if we should do read fault-around, false otherwise */ 5525 static inline bool should_fault_around(struct vm_fault *vmf) 5526 { 5527 /* No ->map_pages? No way to fault around... */ 5528 if (!vmf->vma->vm_ops->map_pages) 5529 return false; 5530 5531 if (uffd_disable_fault_around(vmf->vma)) 5532 return false; 5533 5534 /* A single page implies no faulting 'around' at all. */ 5535 return fault_around_pages > 1; 5536 } 5537 5538 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5539 { 5540 vm_fault_t ret = 0; 5541 struct folio *folio; 5542 5543 /* 5544 * Let's call ->map_pages() first and use ->fault() as fallback 5545 * if page by the offset is not ready to be mapped (cold cache or 5546 * something). 5547 */ 5548 if (should_fault_around(vmf)) { 5549 ret = do_fault_around(vmf); 5550 if (ret) 5551 return ret; 5552 } 5553 5554 ret = vmf_can_call_fault(vmf); 5555 if (ret) 5556 return ret; 5557 5558 ret = __do_fault(vmf); 5559 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5560 return ret; 5561 5562 ret |= finish_fault(vmf); 5563 folio = page_folio(vmf->page); 5564 folio_unlock(folio); 5565 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5566 folio_put(folio); 5567 return ret; 5568 } 5569 5570 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5571 { 5572 struct vm_area_struct *vma = vmf->vma; 5573 struct folio *folio; 5574 vm_fault_t ret; 5575 5576 ret = vmf_can_call_fault(vmf); 5577 if (!ret) 5578 ret = vmf_anon_prepare(vmf); 5579 if (ret) 5580 return ret; 5581 5582 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5583 if (!folio) 5584 return VM_FAULT_OOM; 5585 5586 vmf->cow_page = &folio->page; 5587 5588 ret = __do_fault(vmf); 5589 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5590 goto uncharge_out; 5591 if (ret & VM_FAULT_DONE_COW) 5592 return ret; 5593 5594 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5595 ret = VM_FAULT_HWPOISON; 5596 goto unlock; 5597 } 5598 __folio_mark_uptodate(folio); 5599 5600 ret |= finish_fault(vmf); 5601 unlock: 5602 unlock_page(vmf->page); 5603 put_page(vmf->page); 5604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5605 goto uncharge_out; 5606 return ret; 5607 uncharge_out: 5608 folio_put(folio); 5609 return ret; 5610 } 5611 5612 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5613 { 5614 struct vm_area_struct *vma = vmf->vma; 5615 vm_fault_t ret, tmp; 5616 struct folio *folio; 5617 5618 ret = vmf_can_call_fault(vmf); 5619 if (ret) 5620 return ret; 5621 5622 ret = __do_fault(vmf); 5623 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5624 return ret; 5625 5626 folio = page_folio(vmf->page); 5627 5628 /* 5629 * Check if the backing address space wants to know that the page is 5630 * about to become writable 5631 */ 5632 if (vma->vm_ops->page_mkwrite) { 5633 folio_unlock(folio); 5634 tmp = do_page_mkwrite(vmf, folio); 5635 if (unlikely(!tmp || 5636 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5637 folio_put(folio); 5638 return tmp; 5639 } 5640 } 5641 5642 ret |= finish_fault(vmf); 5643 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5644 VM_FAULT_RETRY))) { 5645 folio_unlock(folio); 5646 folio_put(folio); 5647 return ret; 5648 } 5649 5650 ret |= fault_dirty_shared_page(vmf); 5651 return ret; 5652 } 5653 5654 /* 5655 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5656 * but allow concurrent faults). 5657 * The mmap_lock may have been released depending on flags and our 5658 * return value. See filemap_fault() and __folio_lock_or_retry(). 5659 * If mmap_lock is released, vma may become invalid (for example 5660 * by other thread calling munmap()). 5661 */ 5662 static vm_fault_t do_fault(struct vm_fault *vmf) 5663 { 5664 struct vm_area_struct *vma = vmf->vma; 5665 struct mm_struct *vm_mm = vma->vm_mm; 5666 vm_fault_t ret; 5667 5668 /* 5669 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5670 */ 5671 if (!vma->vm_ops->fault) { 5672 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5673 vmf->address, &vmf->ptl); 5674 if (unlikely(!vmf->pte)) 5675 ret = VM_FAULT_SIGBUS; 5676 else { 5677 /* 5678 * Make sure this is not a temporary clearing of pte 5679 * by holding ptl and checking again. A R/M/W update 5680 * of pte involves: take ptl, clearing the pte so that 5681 * we don't have concurrent modification by hardware 5682 * followed by an update. 5683 */ 5684 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5685 ret = VM_FAULT_SIGBUS; 5686 else 5687 ret = VM_FAULT_NOPAGE; 5688 5689 pte_unmap_unlock(vmf->pte, vmf->ptl); 5690 } 5691 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5692 ret = do_read_fault(vmf); 5693 else if (!(vma->vm_flags & VM_SHARED)) 5694 ret = do_cow_fault(vmf); 5695 else 5696 ret = do_shared_fault(vmf); 5697 5698 /* preallocated pagetable is unused: free it */ 5699 if (vmf->prealloc_pte) { 5700 pte_free(vm_mm, vmf->prealloc_pte); 5701 vmf->prealloc_pte = NULL; 5702 } 5703 return ret; 5704 } 5705 5706 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5707 unsigned long addr, int *flags, 5708 bool writable, int *last_cpupid) 5709 { 5710 struct vm_area_struct *vma = vmf->vma; 5711 5712 /* 5713 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5714 * much anyway since they can be in shared cache state. This misses 5715 * the case where a mapping is writable but the process never writes 5716 * to it but pte_write gets cleared during protection updates and 5717 * pte_dirty has unpredictable behaviour between PTE scan updates, 5718 * background writeback, dirty balancing and application behaviour. 5719 */ 5720 if (!writable) 5721 *flags |= TNF_NO_GROUP; 5722 5723 /* 5724 * Flag if the folio is shared between multiple address spaces. This 5725 * is later used when determining whether to group tasks together 5726 */ 5727 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5728 *flags |= TNF_SHARED; 5729 /* 5730 * For memory tiering mode, cpupid of slow memory page is used 5731 * to record page access time. So use default value. 5732 */ 5733 if (folio_use_access_time(folio)) 5734 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5735 else 5736 *last_cpupid = folio_last_cpupid(folio); 5737 5738 /* Record the current PID acceesing VMA */ 5739 vma_set_access_pid_bit(vma); 5740 5741 count_vm_numa_event(NUMA_HINT_FAULTS); 5742 #ifdef CONFIG_NUMA_BALANCING 5743 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5744 #endif 5745 if (folio_nid(folio) == numa_node_id()) { 5746 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5747 *flags |= TNF_FAULT_LOCAL; 5748 } 5749 5750 return mpol_misplaced(folio, vmf, addr); 5751 } 5752 5753 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5754 unsigned long fault_addr, pte_t *fault_pte, 5755 bool writable) 5756 { 5757 pte_t pte, old_pte; 5758 5759 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5760 pte = pte_modify(old_pte, vma->vm_page_prot); 5761 pte = pte_mkyoung(pte); 5762 if (writable) 5763 pte = pte_mkwrite(pte, vma); 5764 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5765 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5766 } 5767 5768 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5769 struct folio *folio, pte_t fault_pte, 5770 bool ignore_writable, bool pte_write_upgrade) 5771 { 5772 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5773 unsigned long start, end, addr = vmf->address; 5774 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5775 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5776 pte_t *start_ptep; 5777 5778 /* Stay within the VMA and within the page table. */ 5779 start = max3(addr_start, pt_start, vma->vm_start); 5780 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5781 vma->vm_end); 5782 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5783 5784 /* Restore all PTEs' mapping of the large folio */ 5785 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5786 pte_t ptent = ptep_get(start_ptep); 5787 bool writable = false; 5788 5789 if (!pte_present(ptent) || !pte_protnone(ptent)) 5790 continue; 5791 5792 if (pfn_folio(pte_pfn(ptent)) != folio) 5793 continue; 5794 5795 if (!ignore_writable) { 5796 ptent = pte_modify(ptent, vma->vm_page_prot); 5797 writable = pte_write(ptent); 5798 if (!writable && pte_write_upgrade && 5799 can_change_pte_writable(vma, addr, ptent)) 5800 writable = true; 5801 } 5802 5803 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5804 } 5805 } 5806 5807 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5808 { 5809 struct vm_area_struct *vma = vmf->vma; 5810 struct folio *folio = NULL; 5811 int nid = NUMA_NO_NODE; 5812 bool writable = false, ignore_writable = false; 5813 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5814 int last_cpupid; 5815 int target_nid; 5816 pte_t pte, old_pte; 5817 int flags = 0, nr_pages; 5818 5819 /* 5820 * The pte cannot be used safely until we verify, while holding the page 5821 * table lock, that its contents have not changed during fault handling. 5822 */ 5823 spin_lock(vmf->ptl); 5824 /* Read the live PTE from the page tables: */ 5825 old_pte = ptep_get(vmf->pte); 5826 5827 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5828 pte_unmap_unlock(vmf->pte, vmf->ptl); 5829 return 0; 5830 } 5831 5832 pte = pte_modify(old_pte, vma->vm_page_prot); 5833 5834 /* 5835 * Detect now whether the PTE could be writable; this information 5836 * is only valid while holding the PT lock. 5837 */ 5838 writable = pte_write(pte); 5839 if (!writable && pte_write_upgrade && 5840 can_change_pte_writable(vma, vmf->address, pte)) 5841 writable = true; 5842 5843 folio = vm_normal_folio(vma, vmf->address, pte); 5844 if (!folio || folio_is_zone_device(folio)) 5845 goto out_map; 5846 5847 nid = folio_nid(folio); 5848 nr_pages = folio_nr_pages(folio); 5849 5850 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5851 writable, &last_cpupid); 5852 if (target_nid == NUMA_NO_NODE) 5853 goto out_map; 5854 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5855 flags |= TNF_MIGRATE_FAIL; 5856 goto out_map; 5857 } 5858 /* The folio is isolated and isolation code holds a folio reference. */ 5859 pte_unmap_unlock(vmf->pte, vmf->ptl); 5860 writable = false; 5861 ignore_writable = true; 5862 5863 /* Migrate to the requested node */ 5864 if (!migrate_misplaced_folio(folio, target_nid)) { 5865 nid = target_nid; 5866 flags |= TNF_MIGRATED; 5867 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5868 return 0; 5869 } 5870 5871 flags |= TNF_MIGRATE_FAIL; 5872 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5873 vmf->address, &vmf->ptl); 5874 if (unlikely(!vmf->pte)) 5875 return 0; 5876 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5877 pte_unmap_unlock(vmf->pte, vmf->ptl); 5878 return 0; 5879 } 5880 out_map: 5881 /* 5882 * Make it present again, depending on how arch implements 5883 * non-accessible ptes, some can allow access by kernel mode. 5884 */ 5885 if (folio && folio_test_large(folio)) 5886 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5887 pte_write_upgrade); 5888 else 5889 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5890 writable); 5891 pte_unmap_unlock(vmf->pte, vmf->ptl); 5892 5893 if (nid != NUMA_NO_NODE) 5894 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5895 return 0; 5896 } 5897 5898 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5899 { 5900 struct vm_area_struct *vma = vmf->vma; 5901 if (vma_is_anonymous(vma)) 5902 return do_huge_pmd_anonymous_page(vmf); 5903 if (vma->vm_ops->huge_fault) 5904 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5905 return VM_FAULT_FALLBACK; 5906 } 5907 5908 /* `inline' is required to avoid gcc 4.1.2 build error */ 5909 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5910 { 5911 struct vm_area_struct *vma = vmf->vma; 5912 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5913 vm_fault_t ret; 5914 5915 if (vma_is_anonymous(vma)) { 5916 if (likely(!unshare) && 5917 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5918 if (userfaultfd_wp_async(vmf->vma)) 5919 goto split; 5920 return handle_userfault(vmf, VM_UFFD_WP); 5921 } 5922 return do_huge_pmd_wp_page(vmf); 5923 } 5924 5925 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5926 if (vma->vm_ops->huge_fault) { 5927 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5928 if (!(ret & VM_FAULT_FALLBACK)) 5929 return ret; 5930 } 5931 } 5932 5933 split: 5934 /* COW or write-notify handled on pte level: split pmd. */ 5935 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5936 5937 return VM_FAULT_FALLBACK; 5938 } 5939 5940 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5941 { 5942 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5943 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5944 struct vm_area_struct *vma = vmf->vma; 5945 /* No support for anonymous transparent PUD pages yet */ 5946 if (vma_is_anonymous(vma)) 5947 return VM_FAULT_FALLBACK; 5948 if (vma->vm_ops->huge_fault) 5949 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5950 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5951 return VM_FAULT_FALLBACK; 5952 } 5953 5954 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5955 { 5956 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5957 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5958 struct vm_area_struct *vma = vmf->vma; 5959 vm_fault_t ret; 5960 5961 /* No support for anonymous transparent PUD pages yet */ 5962 if (vma_is_anonymous(vma)) 5963 goto split; 5964 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5965 if (vma->vm_ops->huge_fault) { 5966 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5967 if (!(ret & VM_FAULT_FALLBACK)) 5968 return ret; 5969 } 5970 } 5971 split: 5972 /* COW or write-notify not handled on PUD level: split pud.*/ 5973 __split_huge_pud(vma, vmf->pud, vmf->address); 5974 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5975 return VM_FAULT_FALLBACK; 5976 } 5977 5978 /* 5979 * These routines also need to handle stuff like marking pages dirty 5980 * and/or accessed for architectures that don't do it in hardware (most 5981 * RISC architectures). The early dirtying is also good on the i386. 5982 * 5983 * There is also a hook called "update_mmu_cache()" that architectures 5984 * with external mmu caches can use to update those (ie the Sparc or 5985 * PowerPC hashed page tables that act as extended TLBs). 5986 * 5987 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5988 * concurrent faults). 5989 * 5990 * The mmap_lock may have been released depending on flags and our return value. 5991 * See filemap_fault() and __folio_lock_or_retry(). 5992 */ 5993 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5994 { 5995 pte_t entry; 5996 5997 if (unlikely(pmd_none(*vmf->pmd))) { 5998 /* 5999 * Leave __pte_alloc() until later: because vm_ops->fault may 6000 * want to allocate huge page, and if we expose page table 6001 * for an instant, it will be difficult to retract from 6002 * concurrent faults and from rmap lookups. 6003 */ 6004 vmf->pte = NULL; 6005 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6006 } else { 6007 pmd_t dummy_pmdval; 6008 6009 /* 6010 * A regular pmd is established and it can't morph into a huge 6011 * pmd by anon khugepaged, since that takes mmap_lock in write 6012 * mode; but shmem or file collapse to THP could still morph 6013 * it into a huge pmd: just retry later if so. 6014 * 6015 * Use the maywrite version to indicate that vmf->pte may be 6016 * modified, but since we will use pte_same() to detect the 6017 * change of the !pte_none() entry, there is no need to recheck 6018 * the pmdval. Here we chooes to pass a dummy variable instead 6019 * of NULL, which helps new user think about why this place is 6020 * special. 6021 */ 6022 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6023 vmf->address, &dummy_pmdval, 6024 &vmf->ptl); 6025 if (unlikely(!vmf->pte)) 6026 return 0; 6027 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6028 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6029 6030 if (pte_none(vmf->orig_pte)) { 6031 pte_unmap(vmf->pte); 6032 vmf->pte = NULL; 6033 } 6034 } 6035 6036 if (!vmf->pte) 6037 return do_pte_missing(vmf); 6038 6039 if (!pte_present(vmf->orig_pte)) 6040 return do_swap_page(vmf); 6041 6042 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6043 return do_numa_page(vmf); 6044 6045 spin_lock(vmf->ptl); 6046 entry = vmf->orig_pte; 6047 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6048 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6049 goto unlock; 6050 } 6051 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6052 if (!pte_write(entry)) 6053 return do_wp_page(vmf); 6054 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6055 entry = pte_mkdirty(entry); 6056 } 6057 entry = pte_mkyoung(entry); 6058 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6059 vmf->flags & FAULT_FLAG_WRITE)) { 6060 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6061 vmf->pte, 1); 6062 } else { 6063 /* Skip spurious TLB flush for retried page fault */ 6064 if (vmf->flags & FAULT_FLAG_TRIED) 6065 goto unlock; 6066 /* 6067 * This is needed only for protection faults but the arch code 6068 * is not yet telling us if this is a protection fault or not. 6069 * This still avoids useless tlb flushes for .text page faults 6070 * with threads. 6071 */ 6072 if (vmf->flags & FAULT_FLAG_WRITE) 6073 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6074 vmf->pte); 6075 } 6076 unlock: 6077 pte_unmap_unlock(vmf->pte, vmf->ptl); 6078 return 0; 6079 } 6080 6081 /* 6082 * On entry, we hold either the VMA lock or the mmap_lock 6083 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6084 * the result, the mmap_lock is not held on exit. See filemap_fault() 6085 * and __folio_lock_or_retry(). 6086 */ 6087 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6088 unsigned long address, unsigned int flags) 6089 { 6090 struct vm_fault vmf = { 6091 .vma = vma, 6092 .address = address & PAGE_MASK, 6093 .real_address = address, 6094 .flags = flags, 6095 .pgoff = linear_page_index(vma, address), 6096 .gfp_mask = __get_fault_gfp_mask(vma), 6097 }; 6098 struct mm_struct *mm = vma->vm_mm; 6099 unsigned long vm_flags = vma->vm_flags; 6100 pgd_t *pgd; 6101 p4d_t *p4d; 6102 vm_fault_t ret; 6103 6104 pgd = pgd_offset(mm, address); 6105 p4d = p4d_alloc(mm, pgd, address); 6106 if (!p4d) 6107 return VM_FAULT_OOM; 6108 6109 vmf.pud = pud_alloc(mm, p4d, address); 6110 if (!vmf.pud) 6111 return VM_FAULT_OOM; 6112 retry_pud: 6113 if (pud_none(*vmf.pud) && 6114 thp_vma_allowable_order(vma, vm_flags, 6115 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 6116 ret = create_huge_pud(&vmf); 6117 if (!(ret & VM_FAULT_FALLBACK)) 6118 return ret; 6119 } else { 6120 pud_t orig_pud = *vmf.pud; 6121 6122 barrier(); 6123 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 6124 6125 /* 6126 * TODO once we support anonymous PUDs: NUMA case and 6127 * FAULT_FLAG_UNSHARE handling. 6128 */ 6129 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6130 ret = wp_huge_pud(&vmf, orig_pud); 6131 if (!(ret & VM_FAULT_FALLBACK)) 6132 return ret; 6133 } else { 6134 huge_pud_set_accessed(&vmf, orig_pud); 6135 return 0; 6136 } 6137 } 6138 } 6139 6140 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6141 if (!vmf.pmd) 6142 return VM_FAULT_OOM; 6143 6144 /* Huge pud page fault raced with pmd_alloc? */ 6145 if (pud_trans_unstable(vmf.pud)) 6146 goto retry_pud; 6147 6148 if (pmd_none(*vmf.pmd) && 6149 thp_vma_allowable_order(vma, vm_flags, 6150 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6151 ret = create_huge_pmd(&vmf); 6152 if (!(ret & VM_FAULT_FALLBACK)) 6153 return ret; 6154 } else { 6155 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6156 6157 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6158 VM_BUG_ON(thp_migration_supported() && 6159 !is_pmd_migration_entry(vmf.orig_pmd)); 6160 if (is_pmd_migration_entry(vmf.orig_pmd)) 6161 pmd_migration_entry_wait(mm, vmf.pmd); 6162 return 0; 6163 } 6164 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 6165 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6166 return do_huge_pmd_numa_page(&vmf); 6167 6168 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6169 !pmd_write(vmf.orig_pmd)) { 6170 ret = wp_huge_pmd(&vmf); 6171 if (!(ret & VM_FAULT_FALLBACK)) 6172 return ret; 6173 } else { 6174 huge_pmd_set_accessed(&vmf); 6175 return 0; 6176 } 6177 } 6178 } 6179 6180 return handle_pte_fault(&vmf); 6181 } 6182 6183 /** 6184 * mm_account_fault - Do page fault accounting 6185 * @mm: mm from which memcg should be extracted. It can be NULL. 6186 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6187 * of perf event counters, but we'll still do the per-task accounting to 6188 * the task who triggered this page fault. 6189 * @address: the faulted address. 6190 * @flags: the fault flags. 6191 * @ret: the fault retcode. 6192 * 6193 * This will take care of most of the page fault accounting. Meanwhile, it 6194 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6195 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6196 * still be in per-arch page fault handlers at the entry of page fault. 6197 */ 6198 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6199 unsigned long address, unsigned int flags, 6200 vm_fault_t ret) 6201 { 6202 bool major; 6203 6204 /* Incomplete faults will be accounted upon completion. */ 6205 if (ret & VM_FAULT_RETRY) 6206 return; 6207 6208 /* 6209 * To preserve the behavior of older kernels, PGFAULT counters record 6210 * both successful and failed faults, as opposed to perf counters, 6211 * which ignore failed cases. 6212 */ 6213 count_vm_event(PGFAULT); 6214 count_memcg_event_mm(mm, PGFAULT); 6215 6216 /* 6217 * Do not account for unsuccessful faults (e.g. when the address wasn't 6218 * valid). That includes arch_vma_access_permitted() failing before 6219 * reaching here. So this is not a "this many hardware page faults" 6220 * counter. We should use the hw profiling for that. 6221 */ 6222 if (ret & VM_FAULT_ERROR) 6223 return; 6224 6225 /* 6226 * We define the fault as a major fault when the final successful fault 6227 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6228 * handle it immediately previously). 6229 */ 6230 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6231 6232 if (major) 6233 current->maj_flt++; 6234 else 6235 current->min_flt++; 6236 6237 /* 6238 * If the fault is done for GUP, regs will be NULL. We only do the 6239 * accounting for the per thread fault counters who triggered the 6240 * fault, and we skip the perf event updates. 6241 */ 6242 if (!regs) 6243 return; 6244 6245 if (major) 6246 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6247 else 6248 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6249 } 6250 6251 #ifdef CONFIG_LRU_GEN 6252 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6253 { 6254 /* the LRU algorithm only applies to accesses with recency */ 6255 current->in_lru_fault = vma_has_recency(vma); 6256 } 6257 6258 static void lru_gen_exit_fault(void) 6259 { 6260 current->in_lru_fault = false; 6261 } 6262 #else 6263 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6264 { 6265 } 6266 6267 static void lru_gen_exit_fault(void) 6268 { 6269 } 6270 #endif /* CONFIG_LRU_GEN */ 6271 6272 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6273 unsigned int *flags) 6274 { 6275 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6276 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6277 return VM_FAULT_SIGSEGV; 6278 /* 6279 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6280 * just treat it like an ordinary read-fault otherwise. 6281 */ 6282 if (!is_cow_mapping(vma->vm_flags)) 6283 *flags &= ~FAULT_FLAG_UNSHARE; 6284 } else if (*flags & FAULT_FLAG_WRITE) { 6285 /* Write faults on read-only mappings are impossible ... */ 6286 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6287 return VM_FAULT_SIGSEGV; 6288 /* ... and FOLL_FORCE only applies to COW mappings. */ 6289 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6290 !is_cow_mapping(vma->vm_flags))) 6291 return VM_FAULT_SIGSEGV; 6292 } 6293 #ifdef CONFIG_PER_VMA_LOCK 6294 /* 6295 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6296 * the assumption that lock is dropped on VM_FAULT_RETRY. 6297 */ 6298 if (WARN_ON_ONCE((*flags & 6299 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6300 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6301 return VM_FAULT_SIGSEGV; 6302 #endif 6303 6304 return 0; 6305 } 6306 6307 /* 6308 * By the time we get here, we already hold either the VMA lock or the 6309 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6310 * 6311 * The mmap_lock may have been released depending on flags and our 6312 * return value. See filemap_fault() and __folio_lock_or_retry(). 6313 */ 6314 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6315 unsigned int flags, struct pt_regs *regs) 6316 { 6317 /* If the fault handler drops the mmap_lock, vma may be freed */ 6318 struct mm_struct *mm = vma->vm_mm; 6319 vm_fault_t ret; 6320 bool is_droppable; 6321 6322 __set_current_state(TASK_RUNNING); 6323 6324 ret = sanitize_fault_flags(vma, &flags); 6325 if (ret) 6326 goto out; 6327 6328 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6329 flags & FAULT_FLAG_INSTRUCTION, 6330 flags & FAULT_FLAG_REMOTE)) { 6331 ret = VM_FAULT_SIGSEGV; 6332 goto out; 6333 } 6334 6335 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6336 6337 /* 6338 * Enable the memcg OOM handling for faults triggered in user 6339 * space. Kernel faults are handled more gracefully. 6340 */ 6341 if (flags & FAULT_FLAG_USER) 6342 mem_cgroup_enter_user_fault(); 6343 6344 lru_gen_enter_fault(vma); 6345 6346 if (unlikely(is_vm_hugetlb_page(vma))) 6347 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6348 else 6349 ret = __handle_mm_fault(vma, address, flags); 6350 6351 /* 6352 * Warning: It is no longer safe to dereference vma-> after this point, 6353 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6354 * vma might be destroyed from underneath us. 6355 */ 6356 6357 lru_gen_exit_fault(); 6358 6359 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6360 if (is_droppable) 6361 ret &= ~VM_FAULT_OOM; 6362 6363 if (flags & FAULT_FLAG_USER) { 6364 mem_cgroup_exit_user_fault(); 6365 /* 6366 * The task may have entered a memcg OOM situation but 6367 * if the allocation error was handled gracefully (no 6368 * VM_FAULT_OOM), there is no need to kill anything. 6369 * Just clean up the OOM state peacefully. 6370 */ 6371 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6372 mem_cgroup_oom_synchronize(false); 6373 } 6374 out: 6375 mm_account_fault(mm, regs, address, flags, ret); 6376 6377 return ret; 6378 } 6379 EXPORT_SYMBOL_GPL(handle_mm_fault); 6380 6381 #ifndef __PAGETABLE_P4D_FOLDED 6382 /* 6383 * Allocate p4d page table. 6384 * We've already handled the fast-path in-line. 6385 */ 6386 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6387 { 6388 p4d_t *new = p4d_alloc_one(mm, address); 6389 if (!new) 6390 return -ENOMEM; 6391 6392 spin_lock(&mm->page_table_lock); 6393 if (pgd_present(*pgd)) { /* Another has populated it */ 6394 p4d_free(mm, new); 6395 } else { 6396 smp_wmb(); /* See comment in pmd_install() */ 6397 pgd_populate(mm, pgd, new); 6398 } 6399 spin_unlock(&mm->page_table_lock); 6400 return 0; 6401 } 6402 #endif /* __PAGETABLE_P4D_FOLDED */ 6403 6404 #ifndef __PAGETABLE_PUD_FOLDED 6405 /* 6406 * Allocate page upper directory. 6407 * We've already handled the fast-path in-line. 6408 */ 6409 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6410 { 6411 pud_t *new = pud_alloc_one(mm, address); 6412 if (!new) 6413 return -ENOMEM; 6414 6415 spin_lock(&mm->page_table_lock); 6416 if (!p4d_present(*p4d)) { 6417 mm_inc_nr_puds(mm); 6418 smp_wmb(); /* See comment in pmd_install() */ 6419 p4d_populate(mm, p4d, new); 6420 } else /* Another has populated it */ 6421 pud_free(mm, new); 6422 spin_unlock(&mm->page_table_lock); 6423 return 0; 6424 } 6425 #endif /* __PAGETABLE_PUD_FOLDED */ 6426 6427 #ifndef __PAGETABLE_PMD_FOLDED 6428 /* 6429 * Allocate page middle directory. 6430 * We've already handled the fast-path in-line. 6431 */ 6432 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6433 { 6434 spinlock_t *ptl; 6435 pmd_t *new = pmd_alloc_one(mm, address); 6436 if (!new) 6437 return -ENOMEM; 6438 6439 ptl = pud_lock(mm, pud); 6440 if (!pud_present(*pud)) { 6441 mm_inc_nr_pmds(mm); 6442 smp_wmb(); /* See comment in pmd_install() */ 6443 pud_populate(mm, pud, new); 6444 } else { /* Another has populated it */ 6445 pmd_free(mm, new); 6446 } 6447 spin_unlock(ptl); 6448 return 0; 6449 } 6450 #endif /* __PAGETABLE_PMD_FOLDED */ 6451 6452 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6453 spinlock_t *lock, pte_t *ptep, 6454 pgprot_t pgprot, unsigned long pfn_base, 6455 unsigned long addr_mask, bool writable, 6456 bool special) 6457 { 6458 args->lock = lock; 6459 args->ptep = ptep; 6460 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6461 args->addr_mask = addr_mask; 6462 args->pgprot = pgprot; 6463 args->writable = writable; 6464 args->special = special; 6465 } 6466 6467 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6468 { 6469 #ifdef CONFIG_LOCKDEP 6470 struct file *file = vma->vm_file; 6471 struct address_space *mapping = file ? file->f_mapping : NULL; 6472 6473 if (mapping) 6474 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6475 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6476 else 6477 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6478 #endif 6479 } 6480 6481 /** 6482 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6483 * @args: Pointer to struct @follow_pfnmap_args 6484 * 6485 * The caller needs to setup args->vma and args->address to point to the 6486 * virtual address as the target of such lookup. On a successful return, 6487 * the results will be put into other output fields. 6488 * 6489 * After the caller finished using the fields, the caller must invoke 6490 * another follow_pfnmap_end() to proper releases the locks and resources 6491 * of such look up request. 6492 * 6493 * During the start() and end() calls, the results in @args will be valid 6494 * as proper locks will be held. After the end() is called, all the fields 6495 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6496 * use of such information after end() may require proper synchronizations 6497 * by the caller with page table updates, otherwise it can create a 6498 * security bug. 6499 * 6500 * If the PTE maps a refcounted page, callers are responsible to protect 6501 * against invalidation with MMU notifiers; otherwise access to the PFN at 6502 * a later point in time can trigger use-after-free. 6503 * 6504 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6505 * should be taken for read, and the mmap semaphore cannot be released 6506 * before the end() is invoked. 6507 * 6508 * This function must not be used to modify PTE content. 6509 * 6510 * Return: zero on success, negative otherwise. 6511 */ 6512 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6513 { 6514 struct vm_area_struct *vma = args->vma; 6515 unsigned long address = args->address; 6516 struct mm_struct *mm = vma->vm_mm; 6517 spinlock_t *lock; 6518 pgd_t *pgdp; 6519 p4d_t *p4dp, p4d; 6520 pud_t *pudp, pud; 6521 pmd_t *pmdp, pmd; 6522 pte_t *ptep, pte; 6523 6524 pfnmap_lockdep_assert(vma); 6525 6526 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6527 goto out; 6528 6529 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6530 goto out; 6531 retry: 6532 pgdp = pgd_offset(mm, address); 6533 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6534 goto out; 6535 6536 p4dp = p4d_offset(pgdp, address); 6537 p4d = READ_ONCE(*p4dp); 6538 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6539 goto out; 6540 6541 pudp = pud_offset(p4dp, address); 6542 pud = READ_ONCE(*pudp); 6543 if (pud_none(pud)) 6544 goto out; 6545 if (pud_leaf(pud)) { 6546 lock = pud_lock(mm, pudp); 6547 if (!unlikely(pud_leaf(pud))) { 6548 spin_unlock(lock); 6549 goto retry; 6550 } 6551 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6552 pud_pfn(pud), PUD_MASK, pud_write(pud), 6553 pud_special(pud)); 6554 return 0; 6555 } 6556 6557 pmdp = pmd_offset(pudp, address); 6558 pmd = pmdp_get_lockless(pmdp); 6559 if (pmd_leaf(pmd)) { 6560 lock = pmd_lock(mm, pmdp); 6561 if (!unlikely(pmd_leaf(pmd))) { 6562 spin_unlock(lock); 6563 goto retry; 6564 } 6565 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6566 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6567 pmd_special(pmd)); 6568 return 0; 6569 } 6570 6571 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6572 if (!ptep) 6573 goto out; 6574 pte = ptep_get(ptep); 6575 if (!pte_present(pte)) 6576 goto unlock; 6577 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6578 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6579 pte_special(pte)); 6580 return 0; 6581 unlock: 6582 pte_unmap_unlock(ptep, lock); 6583 out: 6584 return -EINVAL; 6585 } 6586 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6587 6588 /** 6589 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6590 * @args: Pointer to struct @follow_pfnmap_args 6591 * 6592 * Must be used in pair of follow_pfnmap_start(). See the start() function 6593 * above for more information. 6594 */ 6595 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6596 { 6597 if (args->lock) 6598 spin_unlock(args->lock); 6599 if (args->ptep) 6600 pte_unmap(args->ptep); 6601 } 6602 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6603 6604 #ifdef CONFIG_HAVE_IOREMAP_PROT 6605 /** 6606 * generic_access_phys - generic implementation for iomem mmap access 6607 * @vma: the vma to access 6608 * @addr: userspace address, not relative offset within @vma 6609 * @buf: buffer to read/write 6610 * @len: length of transfer 6611 * @write: set to FOLL_WRITE when writing, otherwise reading 6612 * 6613 * This is a generic implementation for &vm_operations_struct.access for an 6614 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6615 * not page based. 6616 */ 6617 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6618 void *buf, int len, int write) 6619 { 6620 resource_size_t phys_addr; 6621 pgprot_t prot = __pgprot(0); 6622 void __iomem *maddr; 6623 int offset = offset_in_page(addr); 6624 int ret = -EINVAL; 6625 bool writable; 6626 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6627 6628 retry: 6629 if (follow_pfnmap_start(&args)) 6630 return -EINVAL; 6631 prot = args.pgprot; 6632 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6633 writable = args.writable; 6634 follow_pfnmap_end(&args); 6635 6636 if ((write & FOLL_WRITE) && !writable) 6637 return -EINVAL; 6638 6639 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6640 if (!maddr) 6641 return -ENOMEM; 6642 6643 if (follow_pfnmap_start(&args)) 6644 goto out_unmap; 6645 6646 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6647 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6648 (writable != args.writable)) { 6649 follow_pfnmap_end(&args); 6650 iounmap(maddr); 6651 goto retry; 6652 } 6653 6654 if (write) 6655 memcpy_toio(maddr + offset, buf, len); 6656 else 6657 memcpy_fromio(buf, maddr + offset, len); 6658 ret = len; 6659 follow_pfnmap_end(&args); 6660 out_unmap: 6661 iounmap(maddr); 6662 6663 return ret; 6664 } 6665 EXPORT_SYMBOL_GPL(generic_access_phys); 6666 #endif 6667 6668 /* 6669 * Access another process' address space as given in mm. 6670 */ 6671 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6672 void *buf, int len, unsigned int gup_flags) 6673 { 6674 void *old_buf = buf; 6675 int write = gup_flags & FOLL_WRITE; 6676 6677 if (mmap_read_lock_killable(mm)) 6678 return 0; 6679 6680 /* Untag the address before looking up the VMA */ 6681 addr = untagged_addr_remote(mm, addr); 6682 6683 /* Avoid triggering the temporary warning in __get_user_pages */ 6684 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6685 return 0; 6686 6687 /* ignore errors, just check how much was successfully transferred */ 6688 while (len) { 6689 int bytes, offset; 6690 void *maddr; 6691 struct vm_area_struct *vma = NULL; 6692 struct page *page = get_user_page_vma_remote(mm, addr, 6693 gup_flags, &vma); 6694 6695 if (IS_ERR(page)) { 6696 /* We might need to expand the stack to access it */ 6697 vma = vma_lookup(mm, addr); 6698 if (!vma) { 6699 vma = expand_stack(mm, addr); 6700 6701 /* mmap_lock was dropped on failure */ 6702 if (!vma) 6703 return buf - old_buf; 6704 6705 /* Try again if stack expansion worked */ 6706 continue; 6707 } 6708 6709 /* 6710 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6711 * we can access using slightly different code. 6712 */ 6713 bytes = 0; 6714 #ifdef CONFIG_HAVE_IOREMAP_PROT 6715 if (vma->vm_ops && vma->vm_ops->access) 6716 bytes = vma->vm_ops->access(vma, addr, buf, 6717 len, write); 6718 #endif 6719 if (bytes <= 0) 6720 break; 6721 } else { 6722 bytes = len; 6723 offset = addr & (PAGE_SIZE-1); 6724 if (bytes > PAGE_SIZE-offset) 6725 bytes = PAGE_SIZE-offset; 6726 6727 maddr = kmap_local_page(page); 6728 if (write) { 6729 copy_to_user_page(vma, page, addr, 6730 maddr + offset, buf, bytes); 6731 set_page_dirty_lock(page); 6732 } else { 6733 copy_from_user_page(vma, page, addr, 6734 buf, maddr + offset, bytes); 6735 } 6736 unmap_and_put_page(page, maddr); 6737 } 6738 len -= bytes; 6739 buf += bytes; 6740 addr += bytes; 6741 } 6742 mmap_read_unlock(mm); 6743 6744 return buf - old_buf; 6745 } 6746 6747 /** 6748 * access_remote_vm - access another process' address space 6749 * @mm: the mm_struct of the target address space 6750 * @addr: start address to access 6751 * @buf: source or destination buffer 6752 * @len: number of bytes to transfer 6753 * @gup_flags: flags modifying lookup behaviour 6754 * 6755 * The caller must hold a reference on @mm. 6756 * 6757 * Return: number of bytes copied from source to destination. 6758 */ 6759 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6760 void *buf, int len, unsigned int gup_flags) 6761 { 6762 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6763 } 6764 6765 /* 6766 * Access another process' address space. 6767 * Source/target buffer must be kernel space, 6768 * Do not walk the page table directly, use get_user_pages 6769 */ 6770 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6771 void *buf, int len, unsigned int gup_flags) 6772 { 6773 struct mm_struct *mm; 6774 int ret; 6775 6776 mm = get_task_mm(tsk); 6777 if (!mm) 6778 return 0; 6779 6780 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6781 6782 mmput(mm); 6783 6784 return ret; 6785 } 6786 EXPORT_SYMBOL_GPL(access_process_vm); 6787 6788 #ifdef CONFIG_BPF_SYSCALL 6789 /* 6790 * Copy a string from another process's address space as given in mm. 6791 * If there is any error return -EFAULT. 6792 */ 6793 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6794 void *buf, int len, unsigned int gup_flags) 6795 { 6796 void *old_buf = buf; 6797 int err = 0; 6798 6799 *(char *)buf = '\0'; 6800 6801 if (mmap_read_lock_killable(mm)) 6802 return -EFAULT; 6803 6804 addr = untagged_addr_remote(mm, addr); 6805 6806 /* Avoid triggering the temporary warning in __get_user_pages */ 6807 if (!vma_lookup(mm, addr)) { 6808 err = -EFAULT; 6809 goto out; 6810 } 6811 6812 while (len) { 6813 int bytes, offset, retval; 6814 void *maddr; 6815 struct page *page; 6816 struct vm_area_struct *vma = NULL; 6817 6818 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6819 if (IS_ERR(page)) { 6820 /* 6821 * Treat as a total failure for now until we decide how 6822 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6823 * stack expansion. 6824 */ 6825 *(char *)buf = '\0'; 6826 err = -EFAULT; 6827 goto out; 6828 } 6829 6830 bytes = len; 6831 offset = addr & (PAGE_SIZE - 1); 6832 if (bytes > PAGE_SIZE - offset) 6833 bytes = PAGE_SIZE - offset; 6834 6835 maddr = kmap_local_page(page); 6836 retval = strscpy(buf, maddr + offset, bytes); 6837 if (retval >= 0) { 6838 /* Found the end of the string */ 6839 buf += retval; 6840 unmap_and_put_page(page, maddr); 6841 break; 6842 } 6843 6844 buf += bytes - 1; 6845 /* 6846 * Because strscpy always NUL terminates we need to 6847 * copy the last byte in the page if we are going to 6848 * load more pages 6849 */ 6850 if (bytes != len) { 6851 addr += bytes - 1; 6852 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 6853 buf += 1; 6854 addr += 1; 6855 } 6856 len -= bytes; 6857 6858 unmap_and_put_page(page, maddr); 6859 } 6860 6861 out: 6862 mmap_read_unlock(mm); 6863 if (err) 6864 return err; 6865 return buf - old_buf; 6866 } 6867 6868 /** 6869 * copy_remote_vm_str - copy a string from another process's address space. 6870 * @tsk: the task of the target address space 6871 * @addr: start address to read from 6872 * @buf: destination buffer 6873 * @len: number of bytes to copy 6874 * @gup_flags: flags modifying lookup behaviour 6875 * 6876 * The caller must hold a reference on @mm. 6877 * 6878 * Return: number of bytes copied from @addr (source) to @buf (destination); 6879 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 6880 * buffer. On any error, return -EFAULT. 6881 */ 6882 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 6883 void *buf, int len, unsigned int gup_flags) 6884 { 6885 struct mm_struct *mm; 6886 int ret; 6887 6888 if (unlikely(len == 0)) 6889 return 0; 6890 6891 mm = get_task_mm(tsk); 6892 if (!mm) { 6893 *(char *)buf = '\0'; 6894 return -EFAULT; 6895 } 6896 6897 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 6898 6899 mmput(mm); 6900 6901 return ret; 6902 } 6903 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 6904 #endif /* CONFIG_BPF_SYSCALL */ 6905 6906 /* 6907 * Print the name of a VMA. 6908 */ 6909 void print_vma_addr(char *prefix, unsigned long ip) 6910 { 6911 struct mm_struct *mm = current->mm; 6912 struct vm_area_struct *vma; 6913 6914 /* 6915 * we might be running from an atomic context so we cannot sleep 6916 */ 6917 if (!mmap_read_trylock(mm)) 6918 return; 6919 6920 vma = vma_lookup(mm, ip); 6921 if (vma && vma->vm_file) { 6922 struct file *f = vma->vm_file; 6923 ip -= vma->vm_start; 6924 ip += vma->vm_pgoff << PAGE_SHIFT; 6925 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6926 vma->vm_start, 6927 vma->vm_end - vma->vm_start); 6928 } 6929 mmap_read_unlock(mm); 6930 } 6931 6932 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6933 void __might_fault(const char *file, int line) 6934 { 6935 if (pagefault_disabled()) 6936 return; 6937 __might_sleep(file, line); 6938 if (current->mm) 6939 might_lock_read(¤t->mm->mmap_lock); 6940 } 6941 EXPORT_SYMBOL(__might_fault); 6942 #endif 6943 6944 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6945 /* 6946 * Process all subpages of the specified huge page with the specified 6947 * operation. The target subpage will be processed last to keep its 6948 * cache lines hot. 6949 */ 6950 static inline int process_huge_page( 6951 unsigned long addr_hint, unsigned int nr_pages, 6952 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6953 void *arg) 6954 { 6955 int i, n, base, l, ret; 6956 unsigned long addr = addr_hint & 6957 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6958 6959 /* Process target subpage last to keep its cache lines hot */ 6960 might_sleep(); 6961 n = (addr_hint - addr) / PAGE_SIZE; 6962 if (2 * n <= nr_pages) { 6963 /* If target subpage in first half of huge page */ 6964 base = 0; 6965 l = n; 6966 /* Process subpages at the end of huge page */ 6967 for (i = nr_pages - 1; i >= 2 * n; i--) { 6968 cond_resched(); 6969 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6970 if (ret) 6971 return ret; 6972 } 6973 } else { 6974 /* If target subpage in second half of huge page */ 6975 base = nr_pages - 2 * (nr_pages - n); 6976 l = nr_pages - n; 6977 /* Process subpages at the begin of huge page */ 6978 for (i = 0; i < base; i++) { 6979 cond_resched(); 6980 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6981 if (ret) 6982 return ret; 6983 } 6984 } 6985 /* 6986 * Process remaining subpages in left-right-left-right pattern 6987 * towards the target subpage 6988 */ 6989 for (i = 0; i < l; i++) { 6990 int left_idx = base + i; 6991 int right_idx = base + 2 * l - 1 - i; 6992 6993 cond_resched(); 6994 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6995 if (ret) 6996 return ret; 6997 cond_resched(); 6998 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6999 if (ret) 7000 return ret; 7001 } 7002 return 0; 7003 } 7004 7005 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7006 unsigned int nr_pages) 7007 { 7008 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7009 int i; 7010 7011 might_sleep(); 7012 for (i = 0; i < nr_pages; i++) { 7013 cond_resched(); 7014 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7015 } 7016 } 7017 7018 static int clear_subpage(unsigned long addr, int idx, void *arg) 7019 { 7020 struct folio *folio = arg; 7021 7022 clear_user_highpage(folio_page(folio, idx), addr); 7023 return 0; 7024 } 7025 7026 /** 7027 * folio_zero_user - Zero a folio which will be mapped to userspace. 7028 * @folio: The folio to zero. 7029 * @addr_hint: The address will be accessed or the base address if uncelar. 7030 */ 7031 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7032 { 7033 unsigned int nr_pages = folio_nr_pages(folio); 7034 7035 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7036 clear_gigantic_page(folio, addr_hint, nr_pages); 7037 else 7038 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7039 } 7040 7041 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7042 unsigned long addr_hint, 7043 struct vm_area_struct *vma, 7044 unsigned int nr_pages) 7045 { 7046 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7047 struct page *dst_page; 7048 struct page *src_page; 7049 int i; 7050 7051 for (i = 0; i < nr_pages; i++) { 7052 dst_page = folio_page(dst, i); 7053 src_page = folio_page(src, i); 7054 7055 cond_resched(); 7056 if (copy_mc_user_highpage(dst_page, src_page, 7057 addr + i*PAGE_SIZE, vma)) 7058 return -EHWPOISON; 7059 } 7060 return 0; 7061 } 7062 7063 struct copy_subpage_arg { 7064 struct folio *dst; 7065 struct folio *src; 7066 struct vm_area_struct *vma; 7067 }; 7068 7069 static int copy_subpage(unsigned long addr, int idx, void *arg) 7070 { 7071 struct copy_subpage_arg *copy_arg = arg; 7072 struct page *dst = folio_page(copy_arg->dst, idx); 7073 struct page *src = folio_page(copy_arg->src, idx); 7074 7075 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7076 return -EHWPOISON; 7077 return 0; 7078 } 7079 7080 int copy_user_large_folio(struct folio *dst, struct folio *src, 7081 unsigned long addr_hint, struct vm_area_struct *vma) 7082 { 7083 unsigned int nr_pages = folio_nr_pages(dst); 7084 struct copy_subpage_arg arg = { 7085 .dst = dst, 7086 .src = src, 7087 .vma = vma, 7088 }; 7089 7090 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7091 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7092 7093 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7094 } 7095 7096 long copy_folio_from_user(struct folio *dst_folio, 7097 const void __user *usr_src, 7098 bool allow_pagefault) 7099 { 7100 void *kaddr; 7101 unsigned long i, rc = 0; 7102 unsigned int nr_pages = folio_nr_pages(dst_folio); 7103 unsigned long ret_val = nr_pages * PAGE_SIZE; 7104 struct page *subpage; 7105 7106 for (i = 0; i < nr_pages; i++) { 7107 subpage = folio_page(dst_folio, i); 7108 kaddr = kmap_local_page(subpage); 7109 if (!allow_pagefault) 7110 pagefault_disable(); 7111 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7112 if (!allow_pagefault) 7113 pagefault_enable(); 7114 kunmap_local(kaddr); 7115 7116 ret_val -= (PAGE_SIZE - rc); 7117 if (rc) 7118 break; 7119 7120 flush_dcache_page(subpage); 7121 7122 cond_resched(); 7123 } 7124 return ret_val; 7125 } 7126 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7127 7128 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7129 7130 static struct kmem_cache *page_ptl_cachep; 7131 7132 void __init ptlock_cache_init(void) 7133 { 7134 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7135 SLAB_PANIC, NULL); 7136 } 7137 7138 bool ptlock_alloc(struct ptdesc *ptdesc) 7139 { 7140 spinlock_t *ptl; 7141 7142 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7143 if (!ptl) 7144 return false; 7145 ptdesc->ptl = ptl; 7146 return true; 7147 } 7148 7149 void ptlock_free(struct ptdesc *ptdesc) 7150 { 7151 if (ptdesc->ptl) 7152 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7153 } 7154 #endif 7155 7156 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7157 { 7158 if (is_vm_hugetlb_page(vma)) 7159 hugetlb_vma_lock_read(vma); 7160 } 7161 7162 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7163 { 7164 if (is_vm_hugetlb_page(vma)) 7165 hugetlb_vma_unlock_read(vma); 7166 } 7167