xref: /linux/mm/memory.c (revision af8e51644a70f612974a6e767fa7d896d3c23f88)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!userfaultfd_wp(vmf->vma))
118 		return false;
119 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 		return false;
121 
122 	return pte_marker_uffd_wp(vmf->orig_pte);
123 }
124 
125 /*
126  * A number of key systems in x86 including ioremap() rely on the assumption
127  * that high_memory defines the upper bound on direct map memory, then end
128  * of ZONE_NORMAL.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 		if (unlikely(xa_is_zero(next)))
378 			next = NULL;
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 		unlink_file_vma(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			/*
394 			 * Optimization: gather nearby vmas into one call down
395 			 */
396 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 			       && !is_vm_hugetlb_page(next)) {
398 				vma = next;
399 				next = mas_find(mas, ceiling - 1);
400 				if (unlikely(xa_is_zero(next)))
401 					next = NULL;
402 				if (mm_wr_locked)
403 					vma_start_write(vma);
404 				unlink_anon_vmas(vma);
405 				unlink_file_vma(vma);
406 			}
407 			free_pgd_range(tlb, addr, vma->vm_end,
408 				floor, next ? next->vm_start : ceiling);
409 		}
410 		vma = next;
411 	} while (vma);
412 }
413 
414 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
415 {
416 	spinlock_t *ptl = pmd_lock(mm, pmd);
417 
418 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
419 		mm_inc_nr_ptes(mm);
420 		/*
421 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
422 		 * visible before the pte is made visible to other CPUs by being
423 		 * put into page tables.
424 		 *
425 		 * The other side of the story is the pointer chasing in the page
426 		 * table walking code (when walking the page table without locking;
427 		 * ie. most of the time). Fortunately, these data accesses consist
428 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
429 		 * being the notable exception) will already guarantee loads are
430 		 * seen in-order. See the alpha page table accessors for the
431 		 * smp_rmb() barriers in page table walking code.
432 		 */
433 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
434 		pmd_populate(mm, pmd, *pte);
435 		*pte = NULL;
436 	}
437 	spin_unlock(ptl);
438 }
439 
440 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
441 {
442 	pgtable_t new = pte_alloc_one(mm);
443 	if (!new)
444 		return -ENOMEM;
445 
446 	pmd_install(mm, pmd, &new);
447 	if (new)
448 		pte_free(mm, new);
449 	return 0;
450 }
451 
452 int __pte_alloc_kernel(pmd_t *pmd)
453 {
454 	pte_t *new = pte_alloc_one_kernel(&init_mm);
455 	if (!new)
456 		return -ENOMEM;
457 
458 	spin_lock(&init_mm.page_table_lock);
459 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
460 		smp_wmb(); /* See comment in pmd_install() */
461 		pmd_populate_kernel(&init_mm, pmd, new);
462 		new = NULL;
463 	}
464 	spin_unlock(&init_mm.page_table_lock);
465 	if (new)
466 		pte_free_kernel(&init_mm, new);
467 	return 0;
468 }
469 
470 static inline void init_rss_vec(int *rss)
471 {
472 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 }
474 
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 {
477 	int i;
478 
479 	for (i = 0; i < NR_MM_COUNTERS; i++)
480 		if (rss[i])
481 			add_mm_counter(mm, i, rss[i]);
482 }
483 
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 			  pte_t pte, struct page *page)
493 {
494 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 	p4d_t *p4d = p4d_offset(pgd, addr);
496 	pud_t *pud = pud_offset(p4d, addr);
497 	pmd_t *pmd = pmd_offset(pud, addr);
498 	struct address_space *mapping;
499 	pgoff_t index;
500 	static unsigned long resume;
501 	static unsigned long nr_shown;
502 	static unsigned long nr_unshown;
503 
504 	/*
505 	 * Allow a burst of 60 reports, then keep quiet for that minute;
506 	 * or allow a steady drip of one report per second.
507 	 */
508 	if (nr_shown == 60) {
509 		if (time_before(jiffies, resume)) {
510 			nr_unshown++;
511 			return;
512 		}
513 		if (nr_unshown) {
514 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 				 nr_unshown);
516 			nr_unshown = 0;
517 		}
518 		nr_shown = 0;
519 	}
520 	if (nr_shown++ == 0)
521 		resume = jiffies + 60 * HZ;
522 
523 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 	index = linear_page_index(vma, addr);
525 
526 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527 		 current->comm,
528 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 	if (page)
530 		dump_page(page, "bad pte");
531 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 		 vma->vm_file,
535 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 		 mapping ? mapping->a_ops->read_folio : NULL);
538 	dump_stack();
539 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541 
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 			    pte_t pte)
586 {
587 	unsigned long pfn = pte_pfn(pte);
588 
589 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 		if (likely(!pte_special(pte)))
591 			goto check_pfn;
592 		if (vma->vm_ops && vma->vm_ops->find_special_page)
593 			return vma->vm_ops->find_special_page(vma, addr);
594 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 			return NULL;
596 		if (is_zero_pfn(pfn))
597 			return NULL;
598 		if (pte_devmap(pte))
599 		/*
600 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 		 * and will have refcounts incremented on their struct pages
602 		 * when they are inserted into PTEs, thus they are safe to
603 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 		 */
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 			    pte_t pte)
649 {
650 	struct page *page = vm_normal_page(vma, addr, pte);
651 
652 	if (page)
653 		return page_folio(page);
654 	return NULL;
655 }
656 
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 				pmd_t pmd)
660 {
661 	unsigned long pfn = pmd_pfn(pmd);
662 
663 	/*
664 	 * There is no pmd_special() but there may be special pmds, e.g.
665 	 * in a direct-access (dax) mapping, so let's just replicate the
666 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 	 */
668 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 		if (vma->vm_flags & VM_MIXEDMAP) {
670 			if (!pfn_valid(pfn))
671 				return NULL;
672 			goto out;
673 		} else {
674 			unsigned long off;
675 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 			if (pfn == vma->vm_pgoff + off)
677 				return NULL;
678 			if (!is_cow_mapping(vma->vm_flags))
679 				return NULL;
680 		}
681 	}
682 
683 	if (pmd_devmap(pmd))
684 		return NULL;
685 	if (is_huge_zero_pmd(pmd))
686 		return NULL;
687 	if (unlikely(pfn > highest_memmap_pfn))
688 		return NULL;
689 
690 	/*
691 	 * NOTE! We still have PageReserved() pages in the page tables.
692 	 * eg. VDSO mappings can cause them to exist.
693 	 */
694 out:
695 	return pfn_to_page(pfn);
696 }
697 
698 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
699 				  unsigned long addr, pmd_t pmd)
700 {
701 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
702 
703 	if (page)
704 		return page_folio(page);
705 	return NULL;
706 }
707 #endif
708 
709 static void restore_exclusive_pte(struct vm_area_struct *vma,
710 				  struct page *page, unsigned long address,
711 				  pte_t *ptep)
712 {
713 	struct folio *folio = page_folio(page);
714 	pte_t orig_pte;
715 	pte_t pte;
716 	swp_entry_t entry;
717 
718 	orig_pte = ptep_get(ptep);
719 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
720 	if (pte_swp_soft_dirty(orig_pte))
721 		pte = pte_mksoft_dirty(pte);
722 
723 	entry = pte_to_swp_entry(orig_pte);
724 	if (pte_swp_uffd_wp(orig_pte))
725 		pte = pte_mkuffd_wp(pte);
726 	else if (is_writable_device_exclusive_entry(entry))
727 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
728 
729 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
730 					   PageAnonExclusive(page)), folio);
731 
732 	/*
733 	 * No need to take a page reference as one was already
734 	 * created when the swap entry was made.
735 	 */
736 	if (folio_test_anon(folio))
737 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
738 	else
739 		/*
740 		 * Currently device exclusive access only supports anonymous
741 		 * memory so the entry shouldn't point to a filebacked page.
742 		 */
743 		WARN_ON_ONCE(1);
744 
745 	set_pte_at(vma->vm_mm, address, ptep, pte);
746 
747 	/*
748 	 * No need to invalidate - it was non-present before. However
749 	 * secondary CPUs may have mappings that need invalidating.
750 	 */
751 	update_mmu_cache(vma, address, ptep);
752 }
753 
754 /*
755  * Tries to restore an exclusive pte if the page lock can be acquired without
756  * sleeping.
757  */
758 static int
759 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
760 			unsigned long addr)
761 {
762 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
763 	struct page *page = pfn_swap_entry_to_page(entry);
764 
765 	if (trylock_page(page)) {
766 		restore_exclusive_pte(vma, page, addr, src_pte);
767 		unlock_page(page);
768 		return 0;
769 	}
770 
771 	return -EBUSY;
772 }
773 
774 /*
775  * copy one vm_area from one task to the other. Assumes the page tables
776  * already present in the new task to be cleared in the whole range
777  * covered by this vma.
778  */
779 
780 static unsigned long
781 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
782 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
783 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
784 {
785 	unsigned long vm_flags = dst_vma->vm_flags;
786 	pte_t orig_pte = ptep_get(src_pte);
787 	pte_t pte = orig_pte;
788 	struct folio *folio;
789 	struct page *page;
790 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
791 
792 	if (likely(!non_swap_entry(entry))) {
793 		if (swap_duplicate(entry) < 0)
794 			return -EIO;
795 
796 		/* make sure dst_mm is on swapoff's mmlist. */
797 		if (unlikely(list_empty(&dst_mm->mmlist))) {
798 			spin_lock(&mmlist_lock);
799 			if (list_empty(&dst_mm->mmlist))
800 				list_add(&dst_mm->mmlist,
801 						&src_mm->mmlist);
802 			spin_unlock(&mmlist_lock);
803 		}
804 		/* Mark the swap entry as shared. */
805 		if (pte_swp_exclusive(orig_pte)) {
806 			pte = pte_swp_clear_exclusive(orig_pte);
807 			set_pte_at(src_mm, addr, src_pte, pte);
808 		}
809 		rss[MM_SWAPENTS]++;
810 	} else if (is_migration_entry(entry)) {
811 		folio = pfn_swap_entry_folio(entry);
812 
813 		rss[mm_counter(folio)]++;
814 
815 		if (!is_readable_migration_entry(entry) &&
816 				is_cow_mapping(vm_flags)) {
817 			/*
818 			 * COW mappings require pages in both parent and child
819 			 * to be set to read. A previously exclusive entry is
820 			 * now shared.
821 			 */
822 			entry = make_readable_migration_entry(
823 							swp_offset(entry));
824 			pte = swp_entry_to_pte(entry);
825 			if (pte_swp_soft_dirty(orig_pte))
826 				pte = pte_swp_mksoft_dirty(pte);
827 			if (pte_swp_uffd_wp(orig_pte))
828 				pte = pte_swp_mkuffd_wp(pte);
829 			set_pte_at(src_mm, addr, src_pte, pte);
830 		}
831 	} else if (is_device_private_entry(entry)) {
832 		page = pfn_swap_entry_to_page(entry);
833 		folio = page_folio(page);
834 
835 		/*
836 		 * Update rss count even for unaddressable pages, as
837 		 * they should treated just like normal pages in this
838 		 * respect.
839 		 *
840 		 * We will likely want to have some new rss counters
841 		 * for unaddressable pages, at some point. But for now
842 		 * keep things as they are.
843 		 */
844 		folio_get(folio);
845 		rss[mm_counter(folio)]++;
846 		/* Cannot fail as these pages cannot get pinned. */
847 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
848 
849 		/*
850 		 * We do not preserve soft-dirty information, because so
851 		 * far, checkpoint/restore is the only feature that
852 		 * requires that. And checkpoint/restore does not work
853 		 * when a device driver is involved (you cannot easily
854 		 * save and restore device driver state).
855 		 */
856 		if (is_writable_device_private_entry(entry) &&
857 		    is_cow_mapping(vm_flags)) {
858 			entry = make_readable_device_private_entry(
859 							swp_offset(entry));
860 			pte = swp_entry_to_pte(entry);
861 			if (pte_swp_uffd_wp(orig_pte))
862 				pte = pte_swp_mkuffd_wp(pte);
863 			set_pte_at(src_mm, addr, src_pte, pte);
864 		}
865 	} else if (is_device_exclusive_entry(entry)) {
866 		/*
867 		 * Make device exclusive entries present by restoring the
868 		 * original entry then copying as for a present pte. Device
869 		 * exclusive entries currently only support private writable
870 		 * (ie. COW) mappings.
871 		 */
872 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
873 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
874 			return -EBUSY;
875 		return -ENOENT;
876 	} else if (is_pte_marker_entry(entry)) {
877 		pte_marker marker = copy_pte_marker(entry, dst_vma);
878 
879 		if (marker)
880 			set_pte_at(dst_mm, addr, dst_pte,
881 				   make_pte_marker(marker));
882 		return 0;
883 	}
884 	if (!userfaultfd_wp(dst_vma))
885 		pte = pte_swp_clear_uffd_wp(pte);
886 	set_pte_at(dst_mm, addr, dst_pte, pte);
887 	return 0;
888 }
889 
890 /*
891  * Copy a present and normal page.
892  *
893  * NOTE! The usual case is that this isn't required;
894  * instead, the caller can just increase the page refcount
895  * and re-use the pte the traditional way.
896  *
897  * And if we need a pre-allocated page but don't yet have
898  * one, return a negative error to let the preallocation
899  * code know so that it can do so outside the page table
900  * lock.
901  */
902 static inline int
903 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
904 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
905 		  struct folio **prealloc, struct page *page)
906 {
907 	struct folio *new_folio;
908 	pte_t pte;
909 
910 	new_folio = *prealloc;
911 	if (!new_folio)
912 		return -EAGAIN;
913 
914 	/*
915 	 * We have a prealloc page, all good!  Take it
916 	 * over and copy the page & arm it.
917 	 */
918 	*prealloc = NULL;
919 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
920 	__folio_mark_uptodate(new_folio);
921 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
922 	folio_add_lru_vma(new_folio, dst_vma);
923 	rss[MM_ANONPAGES]++;
924 
925 	/* All done, just insert the new page copy in the child */
926 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
927 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
929 		/* Uffd-wp needs to be delivered to dest pte as well */
930 		pte = pte_mkuffd_wp(pte);
931 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
932 	return 0;
933 }
934 
935 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
936 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
937 		pte_t pte, unsigned long addr, int nr)
938 {
939 	struct mm_struct *src_mm = src_vma->vm_mm;
940 
941 	/* If it's a COW mapping, write protect it both processes. */
942 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
943 		wrprotect_ptes(src_mm, addr, src_pte, nr);
944 		pte = pte_wrprotect(pte);
945 	}
946 
947 	/* If it's a shared mapping, mark it clean in the child. */
948 	if (src_vma->vm_flags & VM_SHARED)
949 		pte = pte_mkclean(pte);
950 	pte = pte_mkold(pte);
951 
952 	if (!userfaultfd_wp(dst_vma))
953 		pte = pte_clear_uffd_wp(pte);
954 
955 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
956 }
957 
958 /*
959  * Copy one present PTE, trying to batch-process subsequent PTEs that map
960  * consecutive pages of the same folio by copying them as well.
961  *
962  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
963  * Otherwise, returns the number of copied PTEs (at least 1).
964  */
965 static inline int
966 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
967 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
968 		 int max_nr, int *rss, struct folio **prealloc)
969 {
970 	struct page *page;
971 	struct folio *folio;
972 	bool any_writable;
973 	fpb_t flags = 0;
974 	int err, nr;
975 
976 	page = vm_normal_page(src_vma, addr, pte);
977 	if (unlikely(!page))
978 		goto copy_pte;
979 
980 	folio = page_folio(page);
981 
982 	/*
983 	 * If we likely have to copy, just don't bother with batching. Make
984 	 * sure that the common "small folio" case is as fast as possible
985 	 * by keeping the batching logic separate.
986 	 */
987 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
988 		if (src_vma->vm_flags & VM_SHARED)
989 			flags |= FPB_IGNORE_DIRTY;
990 		if (!vma_soft_dirty_enabled(src_vma))
991 			flags |= FPB_IGNORE_SOFT_DIRTY;
992 
993 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
994 				     &any_writable, NULL, NULL);
995 		folio_ref_add(folio, nr);
996 		if (folio_test_anon(folio)) {
997 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
998 								  nr, src_vma))) {
999 				folio_ref_sub(folio, nr);
1000 				return -EAGAIN;
1001 			}
1002 			rss[MM_ANONPAGES] += nr;
1003 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1004 		} else {
1005 			folio_dup_file_rmap_ptes(folio, page, nr);
1006 			rss[mm_counter_file(folio)] += nr;
1007 		}
1008 		if (any_writable)
1009 			pte = pte_mkwrite(pte, src_vma);
1010 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1011 				    addr, nr);
1012 		return nr;
1013 	}
1014 
1015 	folio_get(folio);
1016 	if (folio_test_anon(folio)) {
1017 		/*
1018 		 * If this page may have been pinned by the parent process,
1019 		 * copy the page immediately for the child so that we'll always
1020 		 * guarantee the pinned page won't be randomly replaced in the
1021 		 * future.
1022 		 */
1023 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1024 			/* Page may be pinned, we have to copy. */
1025 			folio_put(folio);
1026 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1027 						addr, rss, prealloc, page);
1028 			return err ? err : 1;
1029 		}
1030 		rss[MM_ANONPAGES]++;
1031 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1032 	} else {
1033 		folio_dup_file_rmap_pte(folio, page);
1034 		rss[mm_counter_file(folio)]++;
1035 	}
1036 
1037 copy_pte:
1038 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1039 	return 1;
1040 }
1041 
1042 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1043 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1044 {
1045 	struct folio *new_folio;
1046 
1047 	if (need_zero)
1048 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1049 	else
1050 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1051 					    addr, false);
1052 
1053 	if (!new_folio)
1054 		return NULL;
1055 
1056 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1057 		folio_put(new_folio);
1058 		return NULL;
1059 	}
1060 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1061 
1062 	return new_folio;
1063 }
1064 
1065 static int
1066 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1068 	       unsigned long end)
1069 {
1070 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 	struct mm_struct *src_mm = src_vma->vm_mm;
1072 	pte_t *orig_src_pte, *orig_dst_pte;
1073 	pte_t *src_pte, *dst_pte;
1074 	pte_t ptent;
1075 	spinlock_t *src_ptl, *dst_ptl;
1076 	int progress, max_nr, ret = 0;
1077 	int rss[NR_MM_COUNTERS];
1078 	swp_entry_t entry = (swp_entry_t){0};
1079 	struct folio *prealloc = NULL;
1080 	int nr;
1081 
1082 again:
1083 	progress = 0;
1084 	init_rss_vec(rss);
1085 
1086 	/*
1087 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1088 	 * error handling here, assume that exclusive mmap_lock on dst and src
1089 	 * protects anon from unexpected THP transitions; with shmem and file
1090 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1091 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1092 	 * can remove such assumptions later, but this is good enough for now.
1093 	 */
1094 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1095 	if (!dst_pte) {
1096 		ret = -ENOMEM;
1097 		goto out;
1098 	}
1099 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1100 	if (!src_pte) {
1101 		pte_unmap_unlock(dst_pte, dst_ptl);
1102 		/* ret == 0 */
1103 		goto out;
1104 	}
1105 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1106 	orig_src_pte = src_pte;
1107 	orig_dst_pte = dst_pte;
1108 	arch_enter_lazy_mmu_mode();
1109 
1110 	do {
1111 		nr = 1;
1112 
1113 		/*
1114 		 * We are holding two locks at this point - either of them
1115 		 * could generate latencies in another task on another CPU.
1116 		 */
1117 		if (progress >= 32) {
1118 			progress = 0;
1119 			if (need_resched() ||
1120 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1121 				break;
1122 		}
1123 		ptent = ptep_get(src_pte);
1124 		if (pte_none(ptent)) {
1125 			progress++;
1126 			continue;
1127 		}
1128 		if (unlikely(!pte_present(ptent))) {
1129 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1130 						  dst_pte, src_pte,
1131 						  dst_vma, src_vma,
1132 						  addr, rss);
1133 			if (ret == -EIO) {
1134 				entry = pte_to_swp_entry(ptep_get(src_pte));
1135 				break;
1136 			} else if (ret == -EBUSY) {
1137 				break;
1138 			} else if (!ret) {
1139 				progress += 8;
1140 				continue;
1141 			}
1142 			ptent = ptep_get(src_pte);
1143 			VM_WARN_ON_ONCE(!pte_present(ptent));
1144 
1145 			/*
1146 			 * Device exclusive entry restored, continue by copying
1147 			 * the now present pte.
1148 			 */
1149 			WARN_ON_ONCE(ret != -ENOENT);
1150 		}
1151 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1152 		max_nr = (end - addr) / PAGE_SIZE;
1153 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1154 					ptent, addr, max_nr, rss, &prealloc);
1155 		/*
1156 		 * If we need a pre-allocated page for this pte, drop the
1157 		 * locks, allocate, and try again.
1158 		 */
1159 		if (unlikely(ret == -EAGAIN))
1160 			break;
1161 		if (unlikely(prealloc)) {
1162 			/*
1163 			 * pre-alloc page cannot be reused by next time so as
1164 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1165 			 * will allocate page according to address).  This
1166 			 * could only happen if one pinned pte changed.
1167 			 */
1168 			folio_put(prealloc);
1169 			prealloc = NULL;
1170 		}
1171 		nr = ret;
1172 		progress += 8 * nr;
1173 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1174 		 addr != end);
1175 
1176 	arch_leave_lazy_mmu_mode();
1177 	pte_unmap_unlock(orig_src_pte, src_ptl);
1178 	add_mm_rss_vec(dst_mm, rss);
1179 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1180 	cond_resched();
1181 
1182 	if (ret == -EIO) {
1183 		VM_WARN_ON_ONCE(!entry.val);
1184 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1185 			ret = -ENOMEM;
1186 			goto out;
1187 		}
1188 		entry.val = 0;
1189 	} else if (ret == -EBUSY) {
1190 		goto out;
1191 	} else if (ret ==  -EAGAIN) {
1192 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1193 		if (!prealloc)
1194 			return -ENOMEM;
1195 	} else if (ret < 0) {
1196 		VM_WARN_ON_ONCE(1);
1197 	}
1198 
1199 	/* We've captured and resolved the error. Reset, try again. */
1200 	ret = 0;
1201 
1202 	if (addr != end)
1203 		goto again;
1204 out:
1205 	if (unlikely(prealloc))
1206 		folio_put(prealloc);
1207 	return ret;
1208 }
1209 
1210 static inline int
1211 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1212 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1213 	       unsigned long end)
1214 {
1215 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1216 	struct mm_struct *src_mm = src_vma->vm_mm;
1217 	pmd_t *src_pmd, *dst_pmd;
1218 	unsigned long next;
1219 
1220 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1221 	if (!dst_pmd)
1222 		return -ENOMEM;
1223 	src_pmd = pmd_offset(src_pud, addr);
1224 	do {
1225 		next = pmd_addr_end(addr, end);
1226 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1227 			|| pmd_devmap(*src_pmd)) {
1228 			int err;
1229 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1230 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1231 					    addr, dst_vma, src_vma);
1232 			if (err == -ENOMEM)
1233 				return -ENOMEM;
1234 			if (!err)
1235 				continue;
1236 			/* fall through */
1237 		}
1238 		if (pmd_none_or_clear_bad(src_pmd))
1239 			continue;
1240 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1241 				   addr, next))
1242 			return -ENOMEM;
1243 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1244 	return 0;
1245 }
1246 
1247 static inline int
1248 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1249 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1250 	       unsigned long end)
1251 {
1252 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1253 	struct mm_struct *src_mm = src_vma->vm_mm;
1254 	pud_t *src_pud, *dst_pud;
1255 	unsigned long next;
1256 
1257 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1258 	if (!dst_pud)
1259 		return -ENOMEM;
1260 	src_pud = pud_offset(src_p4d, addr);
1261 	do {
1262 		next = pud_addr_end(addr, end);
1263 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1264 			int err;
1265 
1266 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1267 			err = copy_huge_pud(dst_mm, src_mm,
1268 					    dst_pud, src_pud, addr, src_vma);
1269 			if (err == -ENOMEM)
1270 				return -ENOMEM;
1271 			if (!err)
1272 				continue;
1273 			/* fall through */
1274 		}
1275 		if (pud_none_or_clear_bad(src_pud))
1276 			continue;
1277 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1278 				   addr, next))
1279 			return -ENOMEM;
1280 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1281 	return 0;
1282 }
1283 
1284 static inline int
1285 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1286 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1287 	       unsigned long end)
1288 {
1289 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1290 	p4d_t *src_p4d, *dst_p4d;
1291 	unsigned long next;
1292 
1293 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1294 	if (!dst_p4d)
1295 		return -ENOMEM;
1296 	src_p4d = p4d_offset(src_pgd, addr);
1297 	do {
1298 		next = p4d_addr_end(addr, end);
1299 		if (p4d_none_or_clear_bad(src_p4d))
1300 			continue;
1301 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1302 				   addr, next))
1303 			return -ENOMEM;
1304 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Return true if the vma needs to copy the pgtable during this fork().  Return
1310  * false when we can speed up fork() by allowing lazy page faults later until
1311  * when the child accesses the memory range.
1312  */
1313 static bool
1314 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1315 {
1316 	/*
1317 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1318 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1319 	 * contains uffd-wp protection information, that's something we can't
1320 	 * retrieve from page cache, and skip copying will lose those info.
1321 	 */
1322 	if (userfaultfd_wp(dst_vma))
1323 		return true;
1324 
1325 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1326 		return true;
1327 
1328 	if (src_vma->anon_vma)
1329 		return true;
1330 
1331 	/*
1332 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1333 	 * becomes much lighter when there are big shared or private readonly
1334 	 * mappings. The tradeoff is that copy_page_range is more efficient
1335 	 * than faulting.
1336 	 */
1337 	return false;
1338 }
1339 
1340 int
1341 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1342 {
1343 	pgd_t *src_pgd, *dst_pgd;
1344 	unsigned long next;
1345 	unsigned long addr = src_vma->vm_start;
1346 	unsigned long end = src_vma->vm_end;
1347 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1348 	struct mm_struct *src_mm = src_vma->vm_mm;
1349 	struct mmu_notifier_range range;
1350 	bool is_cow;
1351 	int ret;
1352 
1353 	if (!vma_needs_copy(dst_vma, src_vma))
1354 		return 0;
1355 
1356 	if (is_vm_hugetlb_page(src_vma))
1357 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1358 
1359 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1360 		/*
1361 		 * We do not free on error cases below as remove_vma
1362 		 * gets called on error from higher level routine
1363 		 */
1364 		ret = track_pfn_copy(src_vma);
1365 		if (ret)
1366 			return ret;
1367 	}
1368 
1369 	/*
1370 	 * We need to invalidate the secondary MMU mappings only when
1371 	 * there could be a permission downgrade on the ptes of the
1372 	 * parent mm. And a permission downgrade will only happen if
1373 	 * is_cow_mapping() returns true.
1374 	 */
1375 	is_cow = is_cow_mapping(src_vma->vm_flags);
1376 
1377 	if (is_cow) {
1378 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1379 					0, src_mm, addr, end);
1380 		mmu_notifier_invalidate_range_start(&range);
1381 		/*
1382 		 * Disabling preemption is not needed for the write side, as
1383 		 * the read side doesn't spin, but goes to the mmap_lock.
1384 		 *
1385 		 * Use the raw variant of the seqcount_t write API to avoid
1386 		 * lockdep complaining about preemptibility.
1387 		 */
1388 		vma_assert_write_locked(src_vma);
1389 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1390 	}
1391 
1392 	ret = 0;
1393 	dst_pgd = pgd_offset(dst_mm, addr);
1394 	src_pgd = pgd_offset(src_mm, addr);
1395 	do {
1396 		next = pgd_addr_end(addr, end);
1397 		if (pgd_none_or_clear_bad(src_pgd))
1398 			continue;
1399 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1400 					    addr, next))) {
1401 			untrack_pfn_clear(dst_vma);
1402 			ret = -ENOMEM;
1403 			break;
1404 		}
1405 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1406 
1407 	if (is_cow) {
1408 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1409 		mmu_notifier_invalidate_range_end(&range);
1410 	}
1411 	return ret;
1412 }
1413 
1414 /* Whether we should zap all COWed (private) pages too */
1415 static inline bool should_zap_cows(struct zap_details *details)
1416 {
1417 	/* By default, zap all pages */
1418 	if (!details)
1419 		return true;
1420 
1421 	/* Or, we zap COWed pages only if the caller wants to */
1422 	return details->even_cows;
1423 }
1424 
1425 /* Decides whether we should zap this folio with the folio pointer specified */
1426 static inline bool should_zap_folio(struct zap_details *details,
1427 				    struct folio *folio)
1428 {
1429 	/* If we can make a decision without *folio.. */
1430 	if (should_zap_cows(details))
1431 		return true;
1432 
1433 	/* Otherwise we should only zap non-anon folios */
1434 	return !folio_test_anon(folio);
1435 }
1436 
1437 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1438 {
1439 	if (!details)
1440 		return false;
1441 
1442 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1443 }
1444 
1445 /*
1446  * This function makes sure that we'll replace the none pte with an uffd-wp
1447  * swap special pte marker when necessary. Must be with the pgtable lock held.
1448  */
1449 static inline void
1450 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1451 			      unsigned long addr, pte_t *pte, int nr,
1452 			      struct zap_details *details, pte_t pteval)
1453 {
1454 	/* Zap on anonymous always means dropping everything */
1455 	if (vma_is_anonymous(vma))
1456 		return;
1457 
1458 	if (zap_drop_file_uffd_wp(details))
1459 		return;
1460 
1461 	for (;;) {
1462 		/* the PFN in the PTE is irrelevant. */
1463 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1464 		if (--nr == 0)
1465 			break;
1466 		pte++;
1467 		addr += PAGE_SIZE;
1468 	}
1469 }
1470 
1471 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1472 		struct vm_area_struct *vma, struct folio *folio,
1473 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1474 		unsigned long addr, struct zap_details *details, int *rss,
1475 		bool *force_flush, bool *force_break)
1476 {
1477 	struct mm_struct *mm = tlb->mm;
1478 	bool delay_rmap = false;
1479 
1480 	if (!folio_test_anon(folio)) {
1481 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1482 		if (pte_dirty(ptent)) {
1483 			folio_mark_dirty(folio);
1484 			if (tlb_delay_rmap(tlb)) {
1485 				delay_rmap = true;
1486 				*force_flush = true;
1487 			}
1488 		}
1489 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1490 			folio_mark_accessed(folio);
1491 		rss[mm_counter(folio)] -= nr;
1492 	} else {
1493 		/* We don't need up-to-date accessed/dirty bits. */
1494 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1495 		rss[MM_ANONPAGES] -= nr;
1496 	}
1497 	/* Checking a single PTE in a batch is sufficient. */
1498 	arch_check_zapped_pte(vma, ptent);
1499 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1500 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1501 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1502 					      ptent);
1503 
1504 	if (!delay_rmap) {
1505 		folio_remove_rmap_ptes(folio, page, nr, vma);
1506 
1507 		if (unlikely(folio_mapcount(folio) < 0))
1508 			print_bad_pte(vma, addr, ptent, page);
1509 	}
1510 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1511 		*force_flush = true;
1512 		*force_break = true;
1513 	}
1514 }
1515 
1516 /*
1517  * Zap or skip at least one present PTE, trying to batch-process subsequent
1518  * PTEs that map consecutive pages of the same folio.
1519  *
1520  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1521  */
1522 static inline int zap_present_ptes(struct mmu_gather *tlb,
1523 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1524 		unsigned int max_nr, unsigned long addr,
1525 		struct zap_details *details, int *rss, bool *force_flush,
1526 		bool *force_break)
1527 {
1528 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1529 	struct mm_struct *mm = tlb->mm;
1530 	struct folio *folio;
1531 	struct page *page;
1532 	int nr;
1533 
1534 	page = vm_normal_page(vma, addr, ptent);
1535 	if (!page) {
1536 		/* We don't need up-to-date accessed/dirty bits. */
1537 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1538 		arch_check_zapped_pte(vma, ptent);
1539 		tlb_remove_tlb_entry(tlb, pte, addr);
1540 		if (userfaultfd_pte_wp(vma, ptent))
1541 			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1542 						      details, ptent);
1543 		ksm_might_unmap_zero_page(mm, ptent);
1544 		return 1;
1545 	}
1546 
1547 	folio = page_folio(page);
1548 	if (unlikely(!should_zap_folio(details, folio)))
1549 		return 1;
1550 
1551 	/*
1552 	 * Make sure that the common "small folio" case is as fast as possible
1553 	 * by keeping the batching logic separate.
1554 	 */
1555 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1556 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1557 				     NULL, NULL, NULL);
1558 
1559 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1560 				       addr, details, rss, force_flush,
1561 				       force_break);
1562 		return nr;
1563 	}
1564 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1565 			       details, rss, force_flush, force_break);
1566 	return 1;
1567 }
1568 
1569 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1570 				struct vm_area_struct *vma, pmd_t *pmd,
1571 				unsigned long addr, unsigned long end,
1572 				struct zap_details *details)
1573 {
1574 	bool force_flush = false, force_break = false;
1575 	struct mm_struct *mm = tlb->mm;
1576 	int rss[NR_MM_COUNTERS];
1577 	spinlock_t *ptl;
1578 	pte_t *start_pte;
1579 	pte_t *pte;
1580 	swp_entry_t entry;
1581 	int nr;
1582 
1583 	tlb_change_page_size(tlb, PAGE_SIZE);
1584 	init_rss_vec(rss);
1585 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1586 	if (!pte)
1587 		return addr;
1588 
1589 	flush_tlb_batched_pending(mm);
1590 	arch_enter_lazy_mmu_mode();
1591 	do {
1592 		pte_t ptent = ptep_get(pte);
1593 		struct folio *folio;
1594 		struct page *page;
1595 		int max_nr;
1596 
1597 		nr = 1;
1598 		if (pte_none(ptent))
1599 			continue;
1600 
1601 		if (need_resched())
1602 			break;
1603 
1604 		if (pte_present(ptent)) {
1605 			max_nr = (end - addr) / PAGE_SIZE;
1606 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1607 					      addr, details, rss, &force_flush,
1608 					      &force_break);
1609 			if (unlikely(force_break)) {
1610 				addr += nr * PAGE_SIZE;
1611 				break;
1612 			}
1613 			continue;
1614 		}
1615 
1616 		entry = pte_to_swp_entry(ptent);
1617 		if (is_device_private_entry(entry) ||
1618 		    is_device_exclusive_entry(entry)) {
1619 			page = pfn_swap_entry_to_page(entry);
1620 			folio = page_folio(page);
1621 			if (unlikely(!should_zap_folio(details, folio)))
1622 				continue;
1623 			/*
1624 			 * Both device private/exclusive mappings should only
1625 			 * work with anonymous page so far, so we don't need to
1626 			 * consider uffd-wp bit when zap. For more information,
1627 			 * see zap_install_uffd_wp_if_needed().
1628 			 */
1629 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1630 			rss[mm_counter(folio)]--;
1631 			if (is_device_private_entry(entry))
1632 				folio_remove_rmap_pte(folio, page, vma);
1633 			folio_put(folio);
1634 		} else if (!non_swap_entry(entry)) {
1635 			max_nr = (end - addr) / PAGE_SIZE;
1636 			nr = swap_pte_batch(pte, max_nr, ptent);
1637 			/* Genuine swap entries, hence a private anon pages */
1638 			if (!should_zap_cows(details))
1639 				continue;
1640 			rss[MM_SWAPENTS] -= nr;
1641 			free_swap_and_cache_nr(entry, nr);
1642 		} else if (is_migration_entry(entry)) {
1643 			folio = pfn_swap_entry_folio(entry);
1644 			if (!should_zap_folio(details, folio))
1645 				continue;
1646 			rss[mm_counter(folio)]--;
1647 		} else if (pte_marker_entry_uffd_wp(entry)) {
1648 			/*
1649 			 * For anon: always drop the marker; for file: only
1650 			 * drop the marker if explicitly requested.
1651 			 */
1652 			if (!vma_is_anonymous(vma) &&
1653 			    !zap_drop_file_uffd_wp(details))
1654 				continue;
1655 		} else if (is_hwpoison_entry(entry) ||
1656 			   is_poisoned_swp_entry(entry)) {
1657 			if (!should_zap_cows(details))
1658 				continue;
1659 		} else {
1660 			/* We should have covered all the swap entry types */
1661 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1662 			WARN_ON_ONCE(1);
1663 		}
1664 		clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1665 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1666 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1667 
1668 	add_mm_rss_vec(mm, rss);
1669 	arch_leave_lazy_mmu_mode();
1670 
1671 	/* Do the actual TLB flush before dropping ptl */
1672 	if (force_flush) {
1673 		tlb_flush_mmu_tlbonly(tlb);
1674 		tlb_flush_rmaps(tlb, vma);
1675 	}
1676 	pte_unmap_unlock(start_pte, ptl);
1677 
1678 	/*
1679 	 * If we forced a TLB flush (either due to running out of
1680 	 * batch buffers or because we needed to flush dirty TLB
1681 	 * entries before releasing the ptl), free the batched
1682 	 * memory too. Come back again if we didn't do everything.
1683 	 */
1684 	if (force_flush)
1685 		tlb_flush_mmu(tlb);
1686 
1687 	return addr;
1688 }
1689 
1690 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1691 				struct vm_area_struct *vma, pud_t *pud,
1692 				unsigned long addr, unsigned long end,
1693 				struct zap_details *details)
1694 {
1695 	pmd_t *pmd;
1696 	unsigned long next;
1697 
1698 	pmd = pmd_offset(pud, addr);
1699 	do {
1700 		next = pmd_addr_end(addr, end);
1701 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1702 			if (next - addr != HPAGE_PMD_SIZE)
1703 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1704 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1705 				addr = next;
1706 				continue;
1707 			}
1708 			/* fall through */
1709 		} else if (details && details->single_folio &&
1710 			   folio_test_pmd_mappable(details->single_folio) &&
1711 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1712 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1713 			/*
1714 			 * Take and drop THP pmd lock so that we cannot return
1715 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1716 			 * but not yet decremented compound_mapcount().
1717 			 */
1718 			spin_unlock(ptl);
1719 		}
1720 		if (pmd_none(*pmd)) {
1721 			addr = next;
1722 			continue;
1723 		}
1724 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1725 		if (addr != next)
1726 			pmd--;
1727 	} while (pmd++, cond_resched(), addr != end);
1728 
1729 	return addr;
1730 }
1731 
1732 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1733 				struct vm_area_struct *vma, p4d_t *p4d,
1734 				unsigned long addr, unsigned long end,
1735 				struct zap_details *details)
1736 {
1737 	pud_t *pud;
1738 	unsigned long next;
1739 
1740 	pud = pud_offset(p4d, addr);
1741 	do {
1742 		next = pud_addr_end(addr, end);
1743 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1744 			if (next - addr != HPAGE_PUD_SIZE) {
1745 				mmap_assert_locked(tlb->mm);
1746 				split_huge_pud(vma, pud, addr);
1747 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1748 				goto next;
1749 			/* fall through */
1750 		}
1751 		if (pud_none_or_clear_bad(pud))
1752 			continue;
1753 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1754 next:
1755 		cond_resched();
1756 	} while (pud++, addr = next, addr != end);
1757 
1758 	return addr;
1759 }
1760 
1761 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1762 				struct vm_area_struct *vma, pgd_t *pgd,
1763 				unsigned long addr, unsigned long end,
1764 				struct zap_details *details)
1765 {
1766 	p4d_t *p4d;
1767 	unsigned long next;
1768 
1769 	p4d = p4d_offset(pgd, addr);
1770 	do {
1771 		next = p4d_addr_end(addr, end);
1772 		if (p4d_none_or_clear_bad(p4d))
1773 			continue;
1774 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1775 	} while (p4d++, addr = next, addr != end);
1776 
1777 	return addr;
1778 }
1779 
1780 void unmap_page_range(struct mmu_gather *tlb,
1781 			     struct vm_area_struct *vma,
1782 			     unsigned long addr, unsigned long end,
1783 			     struct zap_details *details)
1784 {
1785 	pgd_t *pgd;
1786 	unsigned long next;
1787 
1788 	BUG_ON(addr >= end);
1789 	tlb_start_vma(tlb, vma);
1790 	pgd = pgd_offset(vma->vm_mm, addr);
1791 	do {
1792 		next = pgd_addr_end(addr, end);
1793 		if (pgd_none_or_clear_bad(pgd))
1794 			continue;
1795 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1796 	} while (pgd++, addr = next, addr != end);
1797 	tlb_end_vma(tlb, vma);
1798 }
1799 
1800 
1801 static void unmap_single_vma(struct mmu_gather *tlb,
1802 		struct vm_area_struct *vma, unsigned long start_addr,
1803 		unsigned long end_addr,
1804 		struct zap_details *details, bool mm_wr_locked)
1805 {
1806 	unsigned long start = max(vma->vm_start, start_addr);
1807 	unsigned long end;
1808 
1809 	if (start >= vma->vm_end)
1810 		return;
1811 	end = min(vma->vm_end, end_addr);
1812 	if (end <= vma->vm_start)
1813 		return;
1814 
1815 	if (vma->vm_file)
1816 		uprobe_munmap(vma, start, end);
1817 
1818 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1819 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1820 
1821 	if (start != end) {
1822 		if (unlikely(is_vm_hugetlb_page(vma))) {
1823 			/*
1824 			 * It is undesirable to test vma->vm_file as it
1825 			 * should be non-null for valid hugetlb area.
1826 			 * However, vm_file will be NULL in the error
1827 			 * cleanup path of mmap_region. When
1828 			 * hugetlbfs ->mmap method fails,
1829 			 * mmap_region() nullifies vma->vm_file
1830 			 * before calling this function to clean up.
1831 			 * Since no pte has actually been setup, it is
1832 			 * safe to do nothing in this case.
1833 			 */
1834 			if (vma->vm_file) {
1835 				zap_flags_t zap_flags = details ?
1836 				    details->zap_flags : 0;
1837 				__unmap_hugepage_range(tlb, vma, start, end,
1838 							     NULL, zap_flags);
1839 			}
1840 		} else
1841 			unmap_page_range(tlb, vma, start, end, details);
1842 	}
1843 }
1844 
1845 /**
1846  * unmap_vmas - unmap a range of memory covered by a list of vma's
1847  * @tlb: address of the caller's struct mmu_gather
1848  * @mas: the maple state
1849  * @vma: the starting vma
1850  * @start_addr: virtual address at which to start unmapping
1851  * @end_addr: virtual address at which to end unmapping
1852  * @tree_end: The maximum index to check
1853  * @mm_wr_locked: lock flag
1854  *
1855  * Unmap all pages in the vma list.
1856  *
1857  * Only addresses between `start' and `end' will be unmapped.
1858  *
1859  * The VMA list must be sorted in ascending virtual address order.
1860  *
1861  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1862  * range after unmap_vmas() returns.  So the only responsibility here is to
1863  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1864  * drops the lock and schedules.
1865  */
1866 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1867 		struct vm_area_struct *vma, unsigned long start_addr,
1868 		unsigned long end_addr, unsigned long tree_end,
1869 		bool mm_wr_locked)
1870 {
1871 	struct mmu_notifier_range range;
1872 	struct zap_details details = {
1873 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1874 		/* Careful - we need to zap private pages too! */
1875 		.even_cows = true,
1876 	};
1877 
1878 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1879 				start_addr, end_addr);
1880 	mmu_notifier_invalidate_range_start(&range);
1881 	do {
1882 		unsigned long start = start_addr;
1883 		unsigned long end = end_addr;
1884 		hugetlb_zap_begin(vma, &start, &end);
1885 		unmap_single_vma(tlb, vma, start, end, &details,
1886 				 mm_wr_locked);
1887 		hugetlb_zap_end(vma, &details);
1888 		vma = mas_find(mas, tree_end - 1);
1889 	} while (vma && likely(!xa_is_zero(vma)));
1890 	mmu_notifier_invalidate_range_end(&range);
1891 }
1892 
1893 /**
1894  * zap_page_range_single - remove user pages in a given range
1895  * @vma: vm_area_struct holding the applicable pages
1896  * @address: starting address of pages to zap
1897  * @size: number of bytes to zap
1898  * @details: details of shared cache invalidation
1899  *
1900  * The range must fit into one VMA.
1901  */
1902 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1903 		unsigned long size, struct zap_details *details)
1904 {
1905 	const unsigned long end = address + size;
1906 	struct mmu_notifier_range range;
1907 	struct mmu_gather tlb;
1908 
1909 	lru_add_drain();
1910 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1911 				address, end);
1912 	hugetlb_zap_begin(vma, &range.start, &range.end);
1913 	tlb_gather_mmu(&tlb, vma->vm_mm);
1914 	update_hiwater_rss(vma->vm_mm);
1915 	mmu_notifier_invalidate_range_start(&range);
1916 	/*
1917 	 * unmap 'address-end' not 'range.start-range.end' as range
1918 	 * could have been expanded for hugetlb pmd sharing.
1919 	 */
1920 	unmap_single_vma(&tlb, vma, address, end, details, false);
1921 	mmu_notifier_invalidate_range_end(&range);
1922 	tlb_finish_mmu(&tlb);
1923 	hugetlb_zap_end(vma, details);
1924 }
1925 
1926 /**
1927  * zap_vma_ptes - remove ptes mapping the vma
1928  * @vma: vm_area_struct holding ptes to be zapped
1929  * @address: starting address of pages to zap
1930  * @size: number of bytes to zap
1931  *
1932  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1933  *
1934  * The entire address range must be fully contained within the vma.
1935  *
1936  */
1937 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1938 		unsigned long size)
1939 {
1940 	if (!range_in_vma(vma, address, address + size) ||
1941 	    		!(vma->vm_flags & VM_PFNMAP))
1942 		return;
1943 
1944 	zap_page_range_single(vma, address, size, NULL);
1945 }
1946 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1947 
1948 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1949 {
1950 	pgd_t *pgd;
1951 	p4d_t *p4d;
1952 	pud_t *pud;
1953 	pmd_t *pmd;
1954 
1955 	pgd = pgd_offset(mm, addr);
1956 	p4d = p4d_alloc(mm, pgd, addr);
1957 	if (!p4d)
1958 		return NULL;
1959 	pud = pud_alloc(mm, p4d, addr);
1960 	if (!pud)
1961 		return NULL;
1962 	pmd = pmd_alloc(mm, pud, addr);
1963 	if (!pmd)
1964 		return NULL;
1965 
1966 	VM_BUG_ON(pmd_trans_huge(*pmd));
1967 	return pmd;
1968 }
1969 
1970 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1971 			spinlock_t **ptl)
1972 {
1973 	pmd_t *pmd = walk_to_pmd(mm, addr);
1974 
1975 	if (!pmd)
1976 		return NULL;
1977 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1978 }
1979 
1980 static int validate_page_before_insert(struct page *page)
1981 {
1982 	struct folio *folio = page_folio(page);
1983 
1984 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
1985 	    page_has_type(page))
1986 		return -EINVAL;
1987 	flush_dcache_folio(folio);
1988 	return 0;
1989 }
1990 
1991 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1992 			unsigned long addr, struct page *page, pgprot_t prot)
1993 {
1994 	struct folio *folio = page_folio(page);
1995 
1996 	if (!pte_none(ptep_get(pte)))
1997 		return -EBUSY;
1998 	/* Ok, finally just insert the thing.. */
1999 	folio_get(folio);
2000 	inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2001 	folio_add_file_rmap_pte(folio, page, vma);
2002 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
2003 	return 0;
2004 }
2005 
2006 /*
2007  * This is the old fallback for page remapping.
2008  *
2009  * For historical reasons, it only allows reserved pages. Only
2010  * old drivers should use this, and they needed to mark their
2011  * pages reserved for the old functions anyway.
2012  */
2013 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2014 			struct page *page, pgprot_t prot)
2015 {
2016 	int retval;
2017 	pte_t *pte;
2018 	spinlock_t *ptl;
2019 
2020 	retval = validate_page_before_insert(page);
2021 	if (retval)
2022 		goto out;
2023 	retval = -ENOMEM;
2024 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2025 	if (!pte)
2026 		goto out;
2027 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2028 	pte_unmap_unlock(pte, ptl);
2029 out:
2030 	return retval;
2031 }
2032 
2033 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2034 			unsigned long addr, struct page *page, pgprot_t prot)
2035 {
2036 	int err;
2037 
2038 	if (!page_count(page))
2039 		return -EINVAL;
2040 	err = validate_page_before_insert(page);
2041 	if (err)
2042 		return err;
2043 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2044 }
2045 
2046 /* insert_pages() amortizes the cost of spinlock operations
2047  * when inserting pages in a loop.
2048  */
2049 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2050 			struct page **pages, unsigned long *num, pgprot_t prot)
2051 {
2052 	pmd_t *pmd = NULL;
2053 	pte_t *start_pte, *pte;
2054 	spinlock_t *pte_lock;
2055 	struct mm_struct *const mm = vma->vm_mm;
2056 	unsigned long curr_page_idx = 0;
2057 	unsigned long remaining_pages_total = *num;
2058 	unsigned long pages_to_write_in_pmd;
2059 	int ret;
2060 more:
2061 	ret = -EFAULT;
2062 	pmd = walk_to_pmd(mm, addr);
2063 	if (!pmd)
2064 		goto out;
2065 
2066 	pages_to_write_in_pmd = min_t(unsigned long,
2067 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2068 
2069 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2070 	ret = -ENOMEM;
2071 	if (pte_alloc(mm, pmd))
2072 		goto out;
2073 
2074 	while (pages_to_write_in_pmd) {
2075 		int pte_idx = 0;
2076 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2077 
2078 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2079 		if (!start_pte) {
2080 			ret = -EFAULT;
2081 			goto out;
2082 		}
2083 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2084 			int err = insert_page_in_batch_locked(vma, pte,
2085 				addr, pages[curr_page_idx], prot);
2086 			if (unlikely(err)) {
2087 				pte_unmap_unlock(start_pte, pte_lock);
2088 				ret = err;
2089 				remaining_pages_total -= pte_idx;
2090 				goto out;
2091 			}
2092 			addr += PAGE_SIZE;
2093 			++curr_page_idx;
2094 		}
2095 		pte_unmap_unlock(start_pte, pte_lock);
2096 		pages_to_write_in_pmd -= batch_size;
2097 		remaining_pages_total -= batch_size;
2098 	}
2099 	if (remaining_pages_total)
2100 		goto more;
2101 	ret = 0;
2102 out:
2103 	*num = remaining_pages_total;
2104 	return ret;
2105 }
2106 
2107 /**
2108  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2109  * @vma: user vma to map to
2110  * @addr: target start user address of these pages
2111  * @pages: source kernel pages
2112  * @num: in: number of pages to map. out: number of pages that were *not*
2113  * mapped. (0 means all pages were successfully mapped).
2114  *
2115  * Preferred over vm_insert_page() when inserting multiple pages.
2116  *
2117  * In case of error, we may have mapped a subset of the provided
2118  * pages. It is the caller's responsibility to account for this case.
2119  *
2120  * The same restrictions apply as in vm_insert_page().
2121  */
2122 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2123 			struct page **pages, unsigned long *num)
2124 {
2125 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2126 
2127 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2128 		return -EFAULT;
2129 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2130 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2131 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2132 		vm_flags_set(vma, VM_MIXEDMAP);
2133 	}
2134 	/* Defer page refcount checking till we're about to map that page. */
2135 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2136 }
2137 EXPORT_SYMBOL(vm_insert_pages);
2138 
2139 /**
2140  * vm_insert_page - insert single page into user vma
2141  * @vma: user vma to map to
2142  * @addr: target user address of this page
2143  * @page: source kernel page
2144  *
2145  * This allows drivers to insert individual pages they've allocated
2146  * into a user vma.
2147  *
2148  * The page has to be a nice clean _individual_ kernel allocation.
2149  * If you allocate a compound page, you need to have marked it as
2150  * such (__GFP_COMP), or manually just split the page up yourself
2151  * (see split_page()).
2152  *
2153  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2154  * took an arbitrary page protection parameter. This doesn't allow
2155  * that. Your vma protection will have to be set up correctly, which
2156  * means that if you want a shared writable mapping, you'd better
2157  * ask for a shared writable mapping!
2158  *
2159  * The page does not need to be reserved.
2160  *
2161  * Usually this function is called from f_op->mmap() handler
2162  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2163  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2164  * function from other places, for example from page-fault handler.
2165  *
2166  * Return: %0 on success, negative error code otherwise.
2167  */
2168 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2169 			struct page *page)
2170 {
2171 	if (addr < vma->vm_start || addr >= vma->vm_end)
2172 		return -EFAULT;
2173 	if (!page_count(page))
2174 		return -EINVAL;
2175 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2176 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2177 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2178 		vm_flags_set(vma, VM_MIXEDMAP);
2179 	}
2180 	return insert_page(vma, addr, page, vma->vm_page_prot);
2181 }
2182 EXPORT_SYMBOL(vm_insert_page);
2183 
2184 /*
2185  * __vm_map_pages - maps range of kernel pages into user vma
2186  * @vma: user vma to map to
2187  * @pages: pointer to array of source kernel pages
2188  * @num: number of pages in page array
2189  * @offset: user's requested vm_pgoff
2190  *
2191  * This allows drivers to map range of kernel pages into a user vma.
2192  *
2193  * Return: 0 on success and error code otherwise.
2194  */
2195 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2196 				unsigned long num, unsigned long offset)
2197 {
2198 	unsigned long count = vma_pages(vma);
2199 	unsigned long uaddr = vma->vm_start;
2200 	int ret, i;
2201 
2202 	/* Fail if the user requested offset is beyond the end of the object */
2203 	if (offset >= num)
2204 		return -ENXIO;
2205 
2206 	/* Fail if the user requested size exceeds available object size */
2207 	if (count > num - offset)
2208 		return -ENXIO;
2209 
2210 	for (i = 0; i < count; i++) {
2211 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2212 		if (ret < 0)
2213 			return ret;
2214 		uaddr += PAGE_SIZE;
2215 	}
2216 
2217 	return 0;
2218 }
2219 
2220 /**
2221  * vm_map_pages - maps range of kernel pages starts with non zero offset
2222  * @vma: user vma to map to
2223  * @pages: pointer to array of source kernel pages
2224  * @num: number of pages in page array
2225  *
2226  * Maps an object consisting of @num pages, catering for the user's
2227  * requested vm_pgoff
2228  *
2229  * If we fail to insert any page into the vma, the function will return
2230  * immediately leaving any previously inserted pages present.  Callers
2231  * from the mmap handler may immediately return the error as their caller
2232  * will destroy the vma, removing any successfully inserted pages. Other
2233  * callers should make their own arrangements for calling unmap_region().
2234  *
2235  * Context: Process context. Called by mmap handlers.
2236  * Return: 0 on success and error code otherwise.
2237  */
2238 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2239 				unsigned long num)
2240 {
2241 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2242 }
2243 EXPORT_SYMBOL(vm_map_pages);
2244 
2245 /**
2246  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2247  * @vma: user vma to map to
2248  * @pages: pointer to array of source kernel pages
2249  * @num: number of pages in page array
2250  *
2251  * Similar to vm_map_pages(), except that it explicitly sets the offset
2252  * to 0. This function is intended for the drivers that did not consider
2253  * vm_pgoff.
2254  *
2255  * Context: Process context. Called by mmap handlers.
2256  * Return: 0 on success and error code otherwise.
2257  */
2258 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2259 				unsigned long num)
2260 {
2261 	return __vm_map_pages(vma, pages, num, 0);
2262 }
2263 EXPORT_SYMBOL(vm_map_pages_zero);
2264 
2265 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2266 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2267 {
2268 	struct mm_struct *mm = vma->vm_mm;
2269 	pte_t *pte, entry;
2270 	spinlock_t *ptl;
2271 
2272 	pte = get_locked_pte(mm, addr, &ptl);
2273 	if (!pte)
2274 		return VM_FAULT_OOM;
2275 	entry = ptep_get(pte);
2276 	if (!pte_none(entry)) {
2277 		if (mkwrite) {
2278 			/*
2279 			 * For read faults on private mappings the PFN passed
2280 			 * in may not match the PFN we have mapped if the
2281 			 * mapped PFN is a writeable COW page.  In the mkwrite
2282 			 * case we are creating a writable PTE for a shared
2283 			 * mapping and we expect the PFNs to match. If they
2284 			 * don't match, we are likely racing with block
2285 			 * allocation and mapping invalidation so just skip the
2286 			 * update.
2287 			 */
2288 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2289 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2290 				goto out_unlock;
2291 			}
2292 			entry = pte_mkyoung(entry);
2293 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2294 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2295 				update_mmu_cache(vma, addr, pte);
2296 		}
2297 		goto out_unlock;
2298 	}
2299 
2300 	/* Ok, finally just insert the thing.. */
2301 	if (pfn_t_devmap(pfn))
2302 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2303 	else
2304 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2305 
2306 	if (mkwrite) {
2307 		entry = pte_mkyoung(entry);
2308 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2309 	}
2310 
2311 	set_pte_at(mm, addr, pte, entry);
2312 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2313 
2314 out_unlock:
2315 	pte_unmap_unlock(pte, ptl);
2316 	return VM_FAULT_NOPAGE;
2317 }
2318 
2319 /**
2320  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2321  * @vma: user vma to map to
2322  * @addr: target user address of this page
2323  * @pfn: source kernel pfn
2324  * @pgprot: pgprot flags for the inserted page
2325  *
2326  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2327  * to override pgprot on a per-page basis.
2328  *
2329  * This only makes sense for IO mappings, and it makes no sense for
2330  * COW mappings.  In general, using multiple vmas is preferable;
2331  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2332  * impractical.
2333  *
2334  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2335  * caching- and encryption bits different than those of @vma->vm_page_prot,
2336  * because the caching- or encryption mode may not be known at mmap() time.
2337  *
2338  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2339  * to set caching and encryption bits for those vmas (except for COW pages).
2340  * This is ensured by core vm only modifying these page table entries using
2341  * functions that don't touch caching- or encryption bits, using pte_modify()
2342  * if needed. (See for example mprotect()).
2343  *
2344  * Also when new page-table entries are created, this is only done using the
2345  * fault() callback, and never using the value of vma->vm_page_prot,
2346  * except for page-table entries that point to anonymous pages as the result
2347  * of COW.
2348  *
2349  * Context: Process context.  May allocate using %GFP_KERNEL.
2350  * Return: vm_fault_t value.
2351  */
2352 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2353 			unsigned long pfn, pgprot_t pgprot)
2354 {
2355 	/*
2356 	 * Technically, architectures with pte_special can avoid all these
2357 	 * restrictions (same for remap_pfn_range).  However we would like
2358 	 * consistency in testing and feature parity among all, so we should
2359 	 * try to keep these invariants in place for everybody.
2360 	 */
2361 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2362 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2363 						(VM_PFNMAP|VM_MIXEDMAP));
2364 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2365 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2366 
2367 	if (addr < vma->vm_start || addr >= vma->vm_end)
2368 		return VM_FAULT_SIGBUS;
2369 
2370 	if (!pfn_modify_allowed(pfn, pgprot))
2371 		return VM_FAULT_SIGBUS;
2372 
2373 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2374 
2375 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2376 			false);
2377 }
2378 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2379 
2380 /**
2381  * vmf_insert_pfn - insert single pfn into user vma
2382  * @vma: user vma to map to
2383  * @addr: target user address of this page
2384  * @pfn: source kernel pfn
2385  *
2386  * Similar to vm_insert_page, this allows drivers to insert individual pages
2387  * they've allocated into a user vma. Same comments apply.
2388  *
2389  * This function should only be called from a vm_ops->fault handler, and
2390  * in that case the handler should return the result of this function.
2391  *
2392  * vma cannot be a COW mapping.
2393  *
2394  * As this is called only for pages that do not currently exist, we
2395  * do not need to flush old virtual caches or the TLB.
2396  *
2397  * Context: Process context.  May allocate using %GFP_KERNEL.
2398  * Return: vm_fault_t value.
2399  */
2400 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2401 			unsigned long pfn)
2402 {
2403 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2404 }
2405 EXPORT_SYMBOL(vmf_insert_pfn);
2406 
2407 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2408 {
2409 	/* these checks mirror the abort conditions in vm_normal_page */
2410 	if (vma->vm_flags & VM_MIXEDMAP)
2411 		return true;
2412 	if (pfn_t_devmap(pfn))
2413 		return true;
2414 	if (pfn_t_special(pfn))
2415 		return true;
2416 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2417 		return true;
2418 	return false;
2419 }
2420 
2421 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2422 		unsigned long addr, pfn_t pfn, bool mkwrite)
2423 {
2424 	pgprot_t pgprot = vma->vm_page_prot;
2425 	int err;
2426 
2427 	BUG_ON(!vm_mixed_ok(vma, pfn));
2428 
2429 	if (addr < vma->vm_start || addr >= vma->vm_end)
2430 		return VM_FAULT_SIGBUS;
2431 
2432 	track_pfn_insert(vma, &pgprot, pfn);
2433 
2434 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2435 		return VM_FAULT_SIGBUS;
2436 
2437 	/*
2438 	 * If we don't have pte special, then we have to use the pfn_valid()
2439 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2440 	 * refcount the page if pfn_valid is true (hence insert_page rather
2441 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2442 	 * without pte special, it would there be refcounted as a normal page.
2443 	 */
2444 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2445 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2446 		struct page *page;
2447 
2448 		/*
2449 		 * At this point we are committed to insert_page()
2450 		 * regardless of whether the caller specified flags that
2451 		 * result in pfn_t_has_page() == false.
2452 		 */
2453 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2454 		err = insert_page(vma, addr, page, pgprot);
2455 	} else {
2456 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2457 	}
2458 
2459 	if (err == -ENOMEM)
2460 		return VM_FAULT_OOM;
2461 	if (err < 0 && err != -EBUSY)
2462 		return VM_FAULT_SIGBUS;
2463 
2464 	return VM_FAULT_NOPAGE;
2465 }
2466 
2467 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2468 		pfn_t pfn)
2469 {
2470 	return __vm_insert_mixed(vma, addr, pfn, false);
2471 }
2472 EXPORT_SYMBOL(vmf_insert_mixed);
2473 
2474 /*
2475  *  If the insertion of PTE failed because someone else already added a
2476  *  different entry in the mean time, we treat that as success as we assume
2477  *  the same entry was actually inserted.
2478  */
2479 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2480 		unsigned long addr, pfn_t pfn)
2481 {
2482 	return __vm_insert_mixed(vma, addr, pfn, true);
2483 }
2484 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2485 
2486 /*
2487  * maps a range of physical memory into the requested pages. the old
2488  * mappings are removed. any references to nonexistent pages results
2489  * in null mappings (currently treated as "copy-on-access")
2490  */
2491 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2492 			unsigned long addr, unsigned long end,
2493 			unsigned long pfn, pgprot_t prot)
2494 {
2495 	pte_t *pte, *mapped_pte;
2496 	spinlock_t *ptl;
2497 	int err = 0;
2498 
2499 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2500 	if (!pte)
2501 		return -ENOMEM;
2502 	arch_enter_lazy_mmu_mode();
2503 	do {
2504 		BUG_ON(!pte_none(ptep_get(pte)));
2505 		if (!pfn_modify_allowed(pfn, prot)) {
2506 			err = -EACCES;
2507 			break;
2508 		}
2509 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2510 		pfn++;
2511 	} while (pte++, addr += PAGE_SIZE, addr != end);
2512 	arch_leave_lazy_mmu_mode();
2513 	pte_unmap_unlock(mapped_pte, ptl);
2514 	return err;
2515 }
2516 
2517 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2518 			unsigned long addr, unsigned long end,
2519 			unsigned long pfn, pgprot_t prot)
2520 {
2521 	pmd_t *pmd;
2522 	unsigned long next;
2523 	int err;
2524 
2525 	pfn -= addr >> PAGE_SHIFT;
2526 	pmd = pmd_alloc(mm, pud, addr);
2527 	if (!pmd)
2528 		return -ENOMEM;
2529 	VM_BUG_ON(pmd_trans_huge(*pmd));
2530 	do {
2531 		next = pmd_addr_end(addr, end);
2532 		err = remap_pte_range(mm, pmd, addr, next,
2533 				pfn + (addr >> PAGE_SHIFT), prot);
2534 		if (err)
2535 			return err;
2536 	} while (pmd++, addr = next, addr != end);
2537 	return 0;
2538 }
2539 
2540 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2541 			unsigned long addr, unsigned long end,
2542 			unsigned long pfn, pgprot_t prot)
2543 {
2544 	pud_t *pud;
2545 	unsigned long next;
2546 	int err;
2547 
2548 	pfn -= addr >> PAGE_SHIFT;
2549 	pud = pud_alloc(mm, p4d, addr);
2550 	if (!pud)
2551 		return -ENOMEM;
2552 	do {
2553 		next = pud_addr_end(addr, end);
2554 		err = remap_pmd_range(mm, pud, addr, next,
2555 				pfn + (addr >> PAGE_SHIFT), prot);
2556 		if (err)
2557 			return err;
2558 	} while (pud++, addr = next, addr != end);
2559 	return 0;
2560 }
2561 
2562 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2563 			unsigned long addr, unsigned long end,
2564 			unsigned long pfn, pgprot_t prot)
2565 {
2566 	p4d_t *p4d;
2567 	unsigned long next;
2568 	int err;
2569 
2570 	pfn -= addr >> PAGE_SHIFT;
2571 	p4d = p4d_alloc(mm, pgd, addr);
2572 	if (!p4d)
2573 		return -ENOMEM;
2574 	do {
2575 		next = p4d_addr_end(addr, end);
2576 		err = remap_pud_range(mm, p4d, addr, next,
2577 				pfn + (addr >> PAGE_SHIFT), prot);
2578 		if (err)
2579 			return err;
2580 	} while (p4d++, addr = next, addr != end);
2581 	return 0;
2582 }
2583 
2584 /*
2585  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2586  * must have pre-validated the caching bits of the pgprot_t.
2587  */
2588 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2589 		unsigned long pfn, unsigned long size, pgprot_t prot)
2590 {
2591 	pgd_t *pgd;
2592 	unsigned long next;
2593 	unsigned long end = addr + PAGE_ALIGN(size);
2594 	struct mm_struct *mm = vma->vm_mm;
2595 	int err;
2596 
2597 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2598 		return -EINVAL;
2599 
2600 	/*
2601 	 * Physically remapped pages are special. Tell the
2602 	 * rest of the world about it:
2603 	 *   VM_IO tells people not to look at these pages
2604 	 *	(accesses can have side effects).
2605 	 *   VM_PFNMAP tells the core MM that the base pages are just
2606 	 *	raw PFN mappings, and do not have a "struct page" associated
2607 	 *	with them.
2608 	 *   VM_DONTEXPAND
2609 	 *      Disable vma merging and expanding with mremap().
2610 	 *   VM_DONTDUMP
2611 	 *      Omit vma from core dump, even when VM_IO turned off.
2612 	 *
2613 	 * There's a horrible special case to handle copy-on-write
2614 	 * behaviour that some programs depend on. We mark the "original"
2615 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2616 	 * See vm_normal_page() for details.
2617 	 */
2618 	if (is_cow_mapping(vma->vm_flags)) {
2619 		if (addr != vma->vm_start || end != vma->vm_end)
2620 			return -EINVAL;
2621 		vma->vm_pgoff = pfn;
2622 	}
2623 
2624 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2625 
2626 	BUG_ON(addr >= end);
2627 	pfn -= addr >> PAGE_SHIFT;
2628 	pgd = pgd_offset(mm, addr);
2629 	flush_cache_range(vma, addr, end);
2630 	do {
2631 		next = pgd_addr_end(addr, end);
2632 		err = remap_p4d_range(mm, pgd, addr, next,
2633 				pfn + (addr >> PAGE_SHIFT), prot);
2634 		if (err)
2635 			return err;
2636 	} while (pgd++, addr = next, addr != end);
2637 
2638 	return 0;
2639 }
2640 
2641 /**
2642  * remap_pfn_range - remap kernel memory to userspace
2643  * @vma: user vma to map to
2644  * @addr: target page aligned user address to start at
2645  * @pfn: page frame number of kernel physical memory address
2646  * @size: size of mapping area
2647  * @prot: page protection flags for this mapping
2648  *
2649  * Note: this is only safe if the mm semaphore is held when called.
2650  *
2651  * Return: %0 on success, negative error code otherwise.
2652  */
2653 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2654 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2655 {
2656 	int err;
2657 
2658 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2659 	if (err)
2660 		return -EINVAL;
2661 
2662 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2663 	if (err)
2664 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2665 	return err;
2666 }
2667 EXPORT_SYMBOL(remap_pfn_range);
2668 
2669 /**
2670  * vm_iomap_memory - remap memory to userspace
2671  * @vma: user vma to map to
2672  * @start: start of the physical memory to be mapped
2673  * @len: size of area
2674  *
2675  * This is a simplified io_remap_pfn_range() for common driver use. The
2676  * driver just needs to give us the physical memory range to be mapped,
2677  * we'll figure out the rest from the vma information.
2678  *
2679  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2680  * whatever write-combining details or similar.
2681  *
2682  * Return: %0 on success, negative error code otherwise.
2683  */
2684 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2685 {
2686 	unsigned long vm_len, pfn, pages;
2687 
2688 	/* Check that the physical memory area passed in looks valid */
2689 	if (start + len < start)
2690 		return -EINVAL;
2691 	/*
2692 	 * You *really* shouldn't map things that aren't page-aligned,
2693 	 * but we've historically allowed it because IO memory might
2694 	 * just have smaller alignment.
2695 	 */
2696 	len += start & ~PAGE_MASK;
2697 	pfn = start >> PAGE_SHIFT;
2698 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2699 	if (pfn + pages < pfn)
2700 		return -EINVAL;
2701 
2702 	/* We start the mapping 'vm_pgoff' pages into the area */
2703 	if (vma->vm_pgoff > pages)
2704 		return -EINVAL;
2705 	pfn += vma->vm_pgoff;
2706 	pages -= vma->vm_pgoff;
2707 
2708 	/* Can we fit all of the mapping? */
2709 	vm_len = vma->vm_end - vma->vm_start;
2710 	if (vm_len >> PAGE_SHIFT > pages)
2711 		return -EINVAL;
2712 
2713 	/* Ok, let it rip */
2714 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2715 }
2716 EXPORT_SYMBOL(vm_iomap_memory);
2717 
2718 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2719 				     unsigned long addr, unsigned long end,
2720 				     pte_fn_t fn, void *data, bool create,
2721 				     pgtbl_mod_mask *mask)
2722 {
2723 	pte_t *pte, *mapped_pte;
2724 	int err = 0;
2725 	spinlock_t *ptl;
2726 
2727 	if (create) {
2728 		mapped_pte = pte = (mm == &init_mm) ?
2729 			pte_alloc_kernel_track(pmd, addr, mask) :
2730 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2731 		if (!pte)
2732 			return -ENOMEM;
2733 	} else {
2734 		mapped_pte = pte = (mm == &init_mm) ?
2735 			pte_offset_kernel(pmd, addr) :
2736 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2737 		if (!pte)
2738 			return -EINVAL;
2739 	}
2740 
2741 	arch_enter_lazy_mmu_mode();
2742 
2743 	if (fn) {
2744 		do {
2745 			if (create || !pte_none(ptep_get(pte))) {
2746 				err = fn(pte++, addr, data);
2747 				if (err)
2748 					break;
2749 			}
2750 		} while (addr += PAGE_SIZE, addr != end);
2751 	}
2752 	*mask |= PGTBL_PTE_MODIFIED;
2753 
2754 	arch_leave_lazy_mmu_mode();
2755 
2756 	if (mm != &init_mm)
2757 		pte_unmap_unlock(mapped_pte, ptl);
2758 	return err;
2759 }
2760 
2761 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2762 				     unsigned long addr, unsigned long end,
2763 				     pte_fn_t fn, void *data, bool create,
2764 				     pgtbl_mod_mask *mask)
2765 {
2766 	pmd_t *pmd;
2767 	unsigned long next;
2768 	int err = 0;
2769 
2770 	BUG_ON(pud_leaf(*pud));
2771 
2772 	if (create) {
2773 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2774 		if (!pmd)
2775 			return -ENOMEM;
2776 	} else {
2777 		pmd = pmd_offset(pud, addr);
2778 	}
2779 	do {
2780 		next = pmd_addr_end(addr, end);
2781 		if (pmd_none(*pmd) && !create)
2782 			continue;
2783 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2784 			return -EINVAL;
2785 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2786 			if (!create)
2787 				continue;
2788 			pmd_clear_bad(pmd);
2789 		}
2790 		err = apply_to_pte_range(mm, pmd, addr, next,
2791 					 fn, data, create, mask);
2792 		if (err)
2793 			break;
2794 	} while (pmd++, addr = next, addr != end);
2795 
2796 	return err;
2797 }
2798 
2799 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2800 				     unsigned long addr, unsigned long end,
2801 				     pte_fn_t fn, void *data, bool create,
2802 				     pgtbl_mod_mask *mask)
2803 {
2804 	pud_t *pud;
2805 	unsigned long next;
2806 	int err = 0;
2807 
2808 	if (create) {
2809 		pud = pud_alloc_track(mm, p4d, addr, mask);
2810 		if (!pud)
2811 			return -ENOMEM;
2812 	} else {
2813 		pud = pud_offset(p4d, addr);
2814 	}
2815 	do {
2816 		next = pud_addr_end(addr, end);
2817 		if (pud_none(*pud) && !create)
2818 			continue;
2819 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2820 			return -EINVAL;
2821 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2822 			if (!create)
2823 				continue;
2824 			pud_clear_bad(pud);
2825 		}
2826 		err = apply_to_pmd_range(mm, pud, addr, next,
2827 					 fn, data, create, mask);
2828 		if (err)
2829 			break;
2830 	} while (pud++, addr = next, addr != end);
2831 
2832 	return err;
2833 }
2834 
2835 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2836 				     unsigned long addr, unsigned long end,
2837 				     pte_fn_t fn, void *data, bool create,
2838 				     pgtbl_mod_mask *mask)
2839 {
2840 	p4d_t *p4d;
2841 	unsigned long next;
2842 	int err = 0;
2843 
2844 	if (create) {
2845 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2846 		if (!p4d)
2847 			return -ENOMEM;
2848 	} else {
2849 		p4d = p4d_offset(pgd, addr);
2850 	}
2851 	do {
2852 		next = p4d_addr_end(addr, end);
2853 		if (p4d_none(*p4d) && !create)
2854 			continue;
2855 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2856 			return -EINVAL;
2857 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2858 			if (!create)
2859 				continue;
2860 			p4d_clear_bad(p4d);
2861 		}
2862 		err = apply_to_pud_range(mm, p4d, addr, next,
2863 					 fn, data, create, mask);
2864 		if (err)
2865 			break;
2866 	} while (p4d++, addr = next, addr != end);
2867 
2868 	return err;
2869 }
2870 
2871 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2872 				 unsigned long size, pte_fn_t fn,
2873 				 void *data, bool create)
2874 {
2875 	pgd_t *pgd;
2876 	unsigned long start = addr, next;
2877 	unsigned long end = addr + size;
2878 	pgtbl_mod_mask mask = 0;
2879 	int err = 0;
2880 
2881 	if (WARN_ON(addr >= end))
2882 		return -EINVAL;
2883 
2884 	pgd = pgd_offset(mm, addr);
2885 	do {
2886 		next = pgd_addr_end(addr, end);
2887 		if (pgd_none(*pgd) && !create)
2888 			continue;
2889 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2890 			return -EINVAL;
2891 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2892 			if (!create)
2893 				continue;
2894 			pgd_clear_bad(pgd);
2895 		}
2896 		err = apply_to_p4d_range(mm, pgd, addr, next,
2897 					 fn, data, create, &mask);
2898 		if (err)
2899 			break;
2900 	} while (pgd++, addr = next, addr != end);
2901 
2902 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2903 		arch_sync_kernel_mappings(start, start + size);
2904 
2905 	return err;
2906 }
2907 
2908 /*
2909  * Scan a region of virtual memory, filling in page tables as necessary
2910  * and calling a provided function on each leaf page table.
2911  */
2912 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2913 			unsigned long size, pte_fn_t fn, void *data)
2914 {
2915 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2916 }
2917 EXPORT_SYMBOL_GPL(apply_to_page_range);
2918 
2919 /*
2920  * Scan a region of virtual memory, calling a provided function on
2921  * each leaf page table where it exists.
2922  *
2923  * Unlike apply_to_page_range, this does _not_ fill in page tables
2924  * where they are absent.
2925  */
2926 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2927 				 unsigned long size, pte_fn_t fn, void *data)
2928 {
2929 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2930 }
2931 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2932 
2933 /*
2934  * handle_pte_fault chooses page fault handler according to an entry which was
2935  * read non-atomically.  Before making any commitment, on those architectures
2936  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2937  * parts, do_swap_page must check under lock before unmapping the pte and
2938  * proceeding (but do_wp_page is only called after already making such a check;
2939  * and do_anonymous_page can safely check later on).
2940  */
2941 static inline int pte_unmap_same(struct vm_fault *vmf)
2942 {
2943 	int same = 1;
2944 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2945 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2946 		spin_lock(vmf->ptl);
2947 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2948 		spin_unlock(vmf->ptl);
2949 	}
2950 #endif
2951 	pte_unmap(vmf->pte);
2952 	vmf->pte = NULL;
2953 	return same;
2954 }
2955 
2956 /*
2957  * Return:
2958  *	0:		copied succeeded
2959  *	-EHWPOISON:	copy failed due to hwpoison in source page
2960  *	-EAGAIN:	copied failed (some other reason)
2961  */
2962 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2963 				      struct vm_fault *vmf)
2964 {
2965 	int ret;
2966 	void *kaddr;
2967 	void __user *uaddr;
2968 	struct vm_area_struct *vma = vmf->vma;
2969 	struct mm_struct *mm = vma->vm_mm;
2970 	unsigned long addr = vmf->address;
2971 
2972 	if (likely(src)) {
2973 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2974 			memory_failure_queue(page_to_pfn(src), 0);
2975 			return -EHWPOISON;
2976 		}
2977 		return 0;
2978 	}
2979 
2980 	/*
2981 	 * If the source page was a PFN mapping, we don't have
2982 	 * a "struct page" for it. We do a best-effort copy by
2983 	 * just copying from the original user address. If that
2984 	 * fails, we just zero-fill it. Live with it.
2985 	 */
2986 	kaddr = kmap_local_page(dst);
2987 	pagefault_disable();
2988 	uaddr = (void __user *)(addr & PAGE_MASK);
2989 
2990 	/*
2991 	 * On architectures with software "accessed" bits, we would
2992 	 * take a double page fault, so mark it accessed here.
2993 	 */
2994 	vmf->pte = NULL;
2995 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2996 		pte_t entry;
2997 
2998 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2999 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3000 			/*
3001 			 * Other thread has already handled the fault
3002 			 * and update local tlb only
3003 			 */
3004 			if (vmf->pte)
3005 				update_mmu_tlb(vma, addr, vmf->pte);
3006 			ret = -EAGAIN;
3007 			goto pte_unlock;
3008 		}
3009 
3010 		entry = pte_mkyoung(vmf->orig_pte);
3011 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3012 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3013 	}
3014 
3015 	/*
3016 	 * This really shouldn't fail, because the page is there
3017 	 * in the page tables. But it might just be unreadable,
3018 	 * in which case we just give up and fill the result with
3019 	 * zeroes.
3020 	 */
3021 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3022 		if (vmf->pte)
3023 			goto warn;
3024 
3025 		/* Re-validate under PTL if the page is still mapped */
3026 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3027 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3028 			/* The PTE changed under us, update local tlb */
3029 			if (vmf->pte)
3030 				update_mmu_tlb(vma, addr, vmf->pte);
3031 			ret = -EAGAIN;
3032 			goto pte_unlock;
3033 		}
3034 
3035 		/*
3036 		 * The same page can be mapped back since last copy attempt.
3037 		 * Try to copy again under PTL.
3038 		 */
3039 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3040 			/*
3041 			 * Give a warn in case there can be some obscure
3042 			 * use-case
3043 			 */
3044 warn:
3045 			WARN_ON_ONCE(1);
3046 			clear_page(kaddr);
3047 		}
3048 	}
3049 
3050 	ret = 0;
3051 
3052 pte_unlock:
3053 	if (vmf->pte)
3054 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3055 	pagefault_enable();
3056 	kunmap_local(kaddr);
3057 	flush_dcache_page(dst);
3058 
3059 	return ret;
3060 }
3061 
3062 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3063 {
3064 	struct file *vm_file = vma->vm_file;
3065 
3066 	if (vm_file)
3067 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3068 
3069 	/*
3070 	 * Special mappings (e.g. VDSO) do not have any file so fake
3071 	 * a default GFP_KERNEL for them.
3072 	 */
3073 	return GFP_KERNEL;
3074 }
3075 
3076 /*
3077  * Notify the address space that the page is about to become writable so that
3078  * it can prohibit this or wait for the page to get into an appropriate state.
3079  *
3080  * We do this without the lock held, so that it can sleep if it needs to.
3081  */
3082 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3083 {
3084 	vm_fault_t ret;
3085 	unsigned int old_flags = vmf->flags;
3086 
3087 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3088 
3089 	if (vmf->vma->vm_file &&
3090 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3091 		return VM_FAULT_SIGBUS;
3092 
3093 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3094 	/* Restore original flags so that caller is not surprised */
3095 	vmf->flags = old_flags;
3096 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3097 		return ret;
3098 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3099 		folio_lock(folio);
3100 		if (!folio->mapping) {
3101 			folio_unlock(folio);
3102 			return 0; /* retry */
3103 		}
3104 		ret |= VM_FAULT_LOCKED;
3105 	} else
3106 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3107 	return ret;
3108 }
3109 
3110 /*
3111  * Handle dirtying of a page in shared file mapping on a write fault.
3112  *
3113  * The function expects the page to be locked and unlocks it.
3114  */
3115 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3116 {
3117 	struct vm_area_struct *vma = vmf->vma;
3118 	struct address_space *mapping;
3119 	struct folio *folio = page_folio(vmf->page);
3120 	bool dirtied;
3121 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3122 
3123 	dirtied = folio_mark_dirty(folio);
3124 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3125 	/*
3126 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3127 	 * by truncate after folio_unlock().   The address_space itself remains
3128 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3129 	 * release semantics to prevent the compiler from undoing this copying.
3130 	 */
3131 	mapping = folio_raw_mapping(folio);
3132 	folio_unlock(folio);
3133 
3134 	if (!page_mkwrite)
3135 		file_update_time(vma->vm_file);
3136 
3137 	/*
3138 	 * Throttle page dirtying rate down to writeback speed.
3139 	 *
3140 	 * mapping may be NULL here because some device drivers do not
3141 	 * set page.mapping but still dirty their pages
3142 	 *
3143 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3144 	 * is pinning the mapping, as per above.
3145 	 */
3146 	if ((dirtied || page_mkwrite) && mapping) {
3147 		struct file *fpin;
3148 
3149 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3150 		balance_dirty_pages_ratelimited(mapping);
3151 		if (fpin) {
3152 			fput(fpin);
3153 			return VM_FAULT_COMPLETED;
3154 		}
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 /*
3161  * Handle write page faults for pages that can be reused in the current vma
3162  *
3163  * This can happen either due to the mapping being with the VM_SHARED flag,
3164  * or due to us being the last reference standing to the page. In either
3165  * case, all we need to do here is to mark the page as writable and update
3166  * any related book-keeping.
3167  */
3168 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3169 	__releases(vmf->ptl)
3170 {
3171 	struct vm_area_struct *vma = vmf->vma;
3172 	pte_t entry;
3173 
3174 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3175 
3176 	if (folio) {
3177 		VM_BUG_ON(folio_test_anon(folio) &&
3178 			  !PageAnonExclusive(vmf->page));
3179 		/*
3180 		 * Clear the folio's cpupid information as the existing
3181 		 * information potentially belongs to a now completely
3182 		 * unrelated process.
3183 		 */
3184 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3185 	}
3186 
3187 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3188 	entry = pte_mkyoung(vmf->orig_pte);
3189 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3190 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3191 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3192 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3193 	count_vm_event(PGREUSE);
3194 }
3195 
3196 /*
3197  * We could add a bitflag somewhere, but for now, we know that all
3198  * vm_ops that have a ->map_pages have been audited and don't need
3199  * the mmap_lock to be held.
3200  */
3201 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3202 {
3203 	struct vm_area_struct *vma = vmf->vma;
3204 
3205 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3206 		return 0;
3207 	vma_end_read(vma);
3208 	return VM_FAULT_RETRY;
3209 }
3210 
3211 /**
3212  * vmf_anon_prepare - Prepare to handle an anonymous fault.
3213  * @vmf: The vm_fault descriptor passed from the fault handler.
3214  *
3215  * When preparing to insert an anonymous page into a VMA from a
3216  * fault handler, call this function rather than anon_vma_prepare().
3217  * If this vma does not already have an associated anon_vma and we are
3218  * only protected by the per-VMA lock, the caller must retry with the
3219  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3220  * determine if this VMA can share its anon_vma, and that's not safe to
3221  * do with only the per-VMA lock held for this VMA.
3222  *
3223  * Return: 0 if fault handling can proceed.  Any other value should be
3224  * returned to the caller.
3225  */
3226 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3227 {
3228 	struct vm_area_struct *vma = vmf->vma;
3229 	vm_fault_t ret = 0;
3230 
3231 	if (likely(vma->anon_vma))
3232 		return 0;
3233 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3234 		if (!mmap_read_trylock(vma->vm_mm)) {
3235 			vma_end_read(vma);
3236 			return VM_FAULT_RETRY;
3237 		}
3238 	}
3239 	if (__anon_vma_prepare(vma))
3240 		ret = VM_FAULT_OOM;
3241 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3242 		mmap_read_unlock(vma->vm_mm);
3243 	return ret;
3244 }
3245 
3246 /*
3247  * Handle the case of a page which we actually need to copy to a new page,
3248  * either due to COW or unsharing.
3249  *
3250  * Called with mmap_lock locked and the old page referenced, but
3251  * without the ptl held.
3252  *
3253  * High level logic flow:
3254  *
3255  * - Allocate a page, copy the content of the old page to the new one.
3256  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3257  * - Take the PTL. If the pte changed, bail out and release the allocated page
3258  * - If the pte is still the way we remember it, update the page table and all
3259  *   relevant references. This includes dropping the reference the page-table
3260  *   held to the old page, as well as updating the rmap.
3261  * - In any case, unlock the PTL and drop the reference we took to the old page.
3262  */
3263 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3264 {
3265 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3266 	struct vm_area_struct *vma = vmf->vma;
3267 	struct mm_struct *mm = vma->vm_mm;
3268 	struct folio *old_folio = NULL;
3269 	struct folio *new_folio = NULL;
3270 	pte_t entry;
3271 	int page_copied = 0;
3272 	struct mmu_notifier_range range;
3273 	vm_fault_t ret;
3274 	bool pfn_is_zero;
3275 
3276 	delayacct_wpcopy_start();
3277 
3278 	if (vmf->page)
3279 		old_folio = page_folio(vmf->page);
3280 	ret = vmf_anon_prepare(vmf);
3281 	if (unlikely(ret))
3282 		goto out;
3283 
3284 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3285 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3286 	if (!new_folio)
3287 		goto oom;
3288 
3289 	if (!pfn_is_zero) {
3290 		int err;
3291 
3292 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3293 		if (err) {
3294 			/*
3295 			 * COW failed, if the fault was solved by other,
3296 			 * it's fine. If not, userspace would re-fault on
3297 			 * the same address and we will handle the fault
3298 			 * from the second attempt.
3299 			 * The -EHWPOISON case will not be retried.
3300 			 */
3301 			folio_put(new_folio);
3302 			if (old_folio)
3303 				folio_put(old_folio);
3304 
3305 			delayacct_wpcopy_end();
3306 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3307 		}
3308 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3309 	}
3310 
3311 	__folio_mark_uptodate(new_folio);
3312 
3313 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3314 				vmf->address & PAGE_MASK,
3315 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3316 	mmu_notifier_invalidate_range_start(&range);
3317 
3318 	/*
3319 	 * Re-check the pte - we dropped the lock
3320 	 */
3321 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3322 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3323 		if (old_folio) {
3324 			if (!folio_test_anon(old_folio)) {
3325 				dec_mm_counter(mm, mm_counter_file(old_folio));
3326 				inc_mm_counter(mm, MM_ANONPAGES);
3327 			}
3328 		} else {
3329 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3330 			inc_mm_counter(mm, MM_ANONPAGES);
3331 		}
3332 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3333 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3334 		entry = pte_sw_mkyoung(entry);
3335 		if (unlikely(unshare)) {
3336 			if (pte_soft_dirty(vmf->orig_pte))
3337 				entry = pte_mksoft_dirty(entry);
3338 			if (pte_uffd_wp(vmf->orig_pte))
3339 				entry = pte_mkuffd_wp(entry);
3340 		} else {
3341 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3342 		}
3343 
3344 		/*
3345 		 * Clear the pte entry and flush it first, before updating the
3346 		 * pte with the new entry, to keep TLBs on different CPUs in
3347 		 * sync. This code used to set the new PTE then flush TLBs, but
3348 		 * that left a window where the new PTE could be loaded into
3349 		 * some TLBs while the old PTE remains in others.
3350 		 */
3351 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3352 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3353 		folio_add_lru_vma(new_folio, vma);
3354 		BUG_ON(unshare && pte_write(entry));
3355 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3356 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3357 		if (old_folio) {
3358 			/*
3359 			 * Only after switching the pte to the new page may
3360 			 * we remove the mapcount here. Otherwise another
3361 			 * process may come and find the rmap count decremented
3362 			 * before the pte is switched to the new page, and
3363 			 * "reuse" the old page writing into it while our pte
3364 			 * here still points into it and can be read by other
3365 			 * threads.
3366 			 *
3367 			 * The critical issue is to order this
3368 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3369 			 * above. Those stores are ordered by (if nothing else,)
3370 			 * the barrier present in the atomic_add_negative
3371 			 * in folio_remove_rmap_pte();
3372 			 *
3373 			 * Then the TLB flush in ptep_clear_flush ensures that
3374 			 * no process can access the old page before the
3375 			 * decremented mapcount is visible. And the old page
3376 			 * cannot be reused until after the decremented
3377 			 * mapcount is visible. So transitively, TLBs to
3378 			 * old page will be flushed before it can be reused.
3379 			 */
3380 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3381 		}
3382 
3383 		/* Free the old page.. */
3384 		new_folio = old_folio;
3385 		page_copied = 1;
3386 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3387 	} else if (vmf->pte) {
3388 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3389 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3390 	}
3391 
3392 	mmu_notifier_invalidate_range_end(&range);
3393 
3394 	if (new_folio)
3395 		folio_put(new_folio);
3396 	if (old_folio) {
3397 		if (page_copied)
3398 			free_swap_cache(old_folio);
3399 		folio_put(old_folio);
3400 	}
3401 
3402 	delayacct_wpcopy_end();
3403 	return 0;
3404 oom:
3405 	ret = VM_FAULT_OOM;
3406 out:
3407 	if (old_folio)
3408 		folio_put(old_folio);
3409 
3410 	delayacct_wpcopy_end();
3411 	return ret;
3412 }
3413 
3414 /**
3415  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3416  *			  writeable once the page is prepared
3417  *
3418  * @vmf: structure describing the fault
3419  * @folio: the folio of vmf->page
3420  *
3421  * This function handles all that is needed to finish a write page fault in a
3422  * shared mapping due to PTE being read-only once the mapped page is prepared.
3423  * It handles locking of PTE and modifying it.
3424  *
3425  * The function expects the page to be locked or other protection against
3426  * concurrent faults / writeback (such as DAX radix tree locks).
3427  *
3428  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3429  * we acquired PTE lock.
3430  */
3431 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3432 {
3433 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3434 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3435 				       &vmf->ptl);
3436 	if (!vmf->pte)
3437 		return VM_FAULT_NOPAGE;
3438 	/*
3439 	 * We might have raced with another page fault while we released the
3440 	 * pte_offset_map_lock.
3441 	 */
3442 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3443 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3444 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 		return VM_FAULT_NOPAGE;
3446 	}
3447 	wp_page_reuse(vmf, folio);
3448 	return 0;
3449 }
3450 
3451 /*
3452  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3453  * mapping
3454  */
3455 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3456 {
3457 	struct vm_area_struct *vma = vmf->vma;
3458 
3459 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3460 		vm_fault_t ret;
3461 
3462 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3463 		ret = vmf_can_call_fault(vmf);
3464 		if (ret)
3465 			return ret;
3466 
3467 		vmf->flags |= FAULT_FLAG_MKWRITE;
3468 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3469 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3470 			return ret;
3471 		return finish_mkwrite_fault(vmf, NULL);
3472 	}
3473 	wp_page_reuse(vmf, NULL);
3474 	return 0;
3475 }
3476 
3477 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3478 	__releases(vmf->ptl)
3479 {
3480 	struct vm_area_struct *vma = vmf->vma;
3481 	vm_fault_t ret = 0;
3482 
3483 	folio_get(folio);
3484 
3485 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3486 		vm_fault_t tmp;
3487 
3488 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3489 		tmp = vmf_can_call_fault(vmf);
3490 		if (tmp) {
3491 			folio_put(folio);
3492 			return tmp;
3493 		}
3494 
3495 		tmp = do_page_mkwrite(vmf, folio);
3496 		if (unlikely(!tmp || (tmp &
3497 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3498 			folio_put(folio);
3499 			return tmp;
3500 		}
3501 		tmp = finish_mkwrite_fault(vmf, folio);
3502 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3503 			folio_unlock(folio);
3504 			folio_put(folio);
3505 			return tmp;
3506 		}
3507 	} else {
3508 		wp_page_reuse(vmf, folio);
3509 		folio_lock(folio);
3510 	}
3511 	ret |= fault_dirty_shared_page(vmf);
3512 	folio_put(folio);
3513 
3514 	return ret;
3515 }
3516 
3517 static bool wp_can_reuse_anon_folio(struct folio *folio,
3518 				    struct vm_area_struct *vma)
3519 {
3520 	/*
3521 	 * We could currently only reuse a subpage of a large folio if no
3522 	 * other subpages of the large folios are still mapped. However,
3523 	 * let's just consistently not reuse subpages even if we could
3524 	 * reuse in that scenario, and give back a large folio a bit
3525 	 * sooner.
3526 	 */
3527 	if (folio_test_large(folio))
3528 		return false;
3529 
3530 	/*
3531 	 * We have to verify under folio lock: these early checks are
3532 	 * just an optimization to avoid locking the folio and freeing
3533 	 * the swapcache if there is little hope that we can reuse.
3534 	 *
3535 	 * KSM doesn't necessarily raise the folio refcount.
3536 	 */
3537 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3538 		return false;
3539 	if (!folio_test_lru(folio))
3540 		/*
3541 		 * We cannot easily detect+handle references from
3542 		 * remote LRU caches or references to LRU folios.
3543 		 */
3544 		lru_add_drain();
3545 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3546 		return false;
3547 	if (!folio_trylock(folio))
3548 		return false;
3549 	if (folio_test_swapcache(folio))
3550 		folio_free_swap(folio);
3551 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3552 		folio_unlock(folio);
3553 		return false;
3554 	}
3555 	/*
3556 	 * Ok, we've got the only folio reference from our mapping
3557 	 * and the folio is locked, it's dark out, and we're wearing
3558 	 * sunglasses. Hit it.
3559 	 */
3560 	folio_move_anon_rmap(folio, vma);
3561 	folio_unlock(folio);
3562 	return true;
3563 }
3564 
3565 /*
3566  * This routine handles present pages, when
3567  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3568  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3569  *   (FAULT_FLAG_UNSHARE)
3570  *
3571  * It is done by copying the page to a new address and decrementing the
3572  * shared-page counter for the old page.
3573  *
3574  * Note that this routine assumes that the protection checks have been
3575  * done by the caller (the low-level page fault routine in most cases).
3576  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3577  * done any necessary COW.
3578  *
3579  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3580  * though the page will change only once the write actually happens. This
3581  * avoids a few races, and potentially makes it more efficient.
3582  *
3583  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3584  * but allow concurrent faults), with pte both mapped and locked.
3585  * We return with mmap_lock still held, but pte unmapped and unlocked.
3586  */
3587 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3588 	__releases(vmf->ptl)
3589 {
3590 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3591 	struct vm_area_struct *vma = vmf->vma;
3592 	struct folio *folio = NULL;
3593 	pte_t pte;
3594 
3595 	if (likely(!unshare)) {
3596 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3597 			if (!userfaultfd_wp_async(vma)) {
3598 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3599 				return handle_userfault(vmf, VM_UFFD_WP);
3600 			}
3601 
3602 			/*
3603 			 * Nothing needed (cache flush, TLB invalidations,
3604 			 * etc.) because we're only removing the uffd-wp bit,
3605 			 * which is completely invisible to the user.
3606 			 */
3607 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3608 
3609 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3610 			/*
3611 			 * Update this to be prepared for following up CoW
3612 			 * handling
3613 			 */
3614 			vmf->orig_pte = pte;
3615 		}
3616 
3617 		/*
3618 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3619 		 * is flushed in this case before copying.
3620 		 */
3621 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3622 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3623 			flush_tlb_page(vmf->vma, vmf->address);
3624 	}
3625 
3626 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3627 
3628 	if (vmf->page)
3629 		folio = page_folio(vmf->page);
3630 
3631 	/*
3632 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3633 	 * FAULT_FLAG_WRITE set at this point.
3634 	 */
3635 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3636 		/*
3637 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3638 		 * VM_PFNMAP VMA.
3639 		 *
3640 		 * We should not cow pages in a shared writeable mapping.
3641 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3642 		 */
3643 		if (!vmf->page)
3644 			return wp_pfn_shared(vmf);
3645 		return wp_page_shared(vmf, folio);
3646 	}
3647 
3648 	/*
3649 	 * Private mapping: create an exclusive anonymous page copy if reuse
3650 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3651 	 *
3652 	 * If we encounter a page that is marked exclusive, we must reuse
3653 	 * the page without further checks.
3654 	 */
3655 	if (folio && folio_test_anon(folio) &&
3656 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3657 		if (!PageAnonExclusive(vmf->page))
3658 			SetPageAnonExclusive(vmf->page);
3659 		if (unlikely(unshare)) {
3660 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3661 			return 0;
3662 		}
3663 		wp_page_reuse(vmf, folio);
3664 		return 0;
3665 	}
3666 	/*
3667 	 * Ok, we need to copy. Oh, well..
3668 	 */
3669 	if (folio)
3670 		folio_get(folio);
3671 
3672 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3673 #ifdef CONFIG_KSM
3674 	if (folio && folio_test_ksm(folio))
3675 		count_vm_event(COW_KSM);
3676 #endif
3677 	return wp_page_copy(vmf);
3678 }
3679 
3680 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3681 		unsigned long start_addr, unsigned long end_addr,
3682 		struct zap_details *details)
3683 {
3684 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3685 }
3686 
3687 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3688 					    pgoff_t first_index,
3689 					    pgoff_t last_index,
3690 					    struct zap_details *details)
3691 {
3692 	struct vm_area_struct *vma;
3693 	pgoff_t vba, vea, zba, zea;
3694 
3695 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3696 		vba = vma->vm_pgoff;
3697 		vea = vba + vma_pages(vma) - 1;
3698 		zba = max(first_index, vba);
3699 		zea = min(last_index, vea);
3700 
3701 		unmap_mapping_range_vma(vma,
3702 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3703 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3704 				details);
3705 	}
3706 }
3707 
3708 /**
3709  * unmap_mapping_folio() - Unmap single folio from processes.
3710  * @folio: The locked folio to be unmapped.
3711  *
3712  * Unmap this folio from any userspace process which still has it mmaped.
3713  * Typically, for efficiency, the range of nearby pages has already been
3714  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3715  * truncation or invalidation holds the lock on a folio, it may find that
3716  * the page has been remapped again: and then uses unmap_mapping_folio()
3717  * to unmap it finally.
3718  */
3719 void unmap_mapping_folio(struct folio *folio)
3720 {
3721 	struct address_space *mapping = folio->mapping;
3722 	struct zap_details details = { };
3723 	pgoff_t	first_index;
3724 	pgoff_t	last_index;
3725 
3726 	VM_BUG_ON(!folio_test_locked(folio));
3727 
3728 	first_index = folio->index;
3729 	last_index = folio_next_index(folio) - 1;
3730 
3731 	details.even_cows = false;
3732 	details.single_folio = folio;
3733 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3734 
3735 	i_mmap_lock_read(mapping);
3736 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3737 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3738 					 last_index, &details);
3739 	i_mmap_unlock_read(mapping);
3740 }
3741 
3742 /**
3743  * unmap_mapping_pages() - Unmap pages from processes.
3744  * @mapping: The address space containing pages to be unmapped.
3745  * @start: Index of first page to be unmapped.
3746  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3747  * @even_cows: Whether to unmap even private COWed pages.
3748  *
3749  * Unmap the pages in this address space from any userspace process which
3750  * has them mmaped.  Generally, you want to remove COWed pages as well when
3751  * a file is being truncated, but not when invalidating pages from the page
3752  * cache.
3753  */
3754 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3755 		pgoff_t nr, bool even_cows)
3756 {
3757 	struct zap_details details = { };
3758 	pgoff_t	first_index = start;
3759 	pgoff_t	last_index = start + nr - 1;
3760 
3761 	details.even_cows = even_cows;
3762 	if (last_index < first_index)
3763 		last_index = ULONG_MAX;
3764 
3765 	i_mmap_lock_read(mapping);
3766 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3767 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3768 					 last_index, &details);
3769 	i_mmap_unlock_read(mapping);
3770 }
3771 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3772 
3773 /**
3774  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3775  * address_space corresponding to the specified byte range in the underlying
3776  * file.
3777  *
3778  * @mapping: the address space containing mmaps to be unmapped.
3779  * @holebegin: byte in first page to unmap, relative to the start of
3780  * the underlying file.  This will be rounded down to a PAGE_SIZE
3781  * boundary.  Note that this is different from truncate_pagecache(), which
3782  * must keep the partial page.  In contrast, we must get rid of
3783  * partial pages.
3784  * @holelen: size of prospective hole in bytes.  This will be rounded
3785  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3786  * end of the file.
3787  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3788  * but 0 when invalidating pagecache, don't throw away private data.
3789  */
3790 void unmap_mapping_range(struct address_space *mapping,
3791 		loff_t const holebegin, loff_t const holelen, int even_cows)
3792 {
3793 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3794 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3795 
3796 	/* Check for overflow. */
3797 	if (sizeof(holelen) > sizeof(hlen)) {
3798 		long long holeend =
3799 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3800 		if (holeend & ~(long long)ULONG_MAX)
3801 			hlen = ULONG_MAX - hba + 1;
3802 	}
3803 
3804 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3805 }
3806 EXPORT_SYMBOL(unmap_mapping_range);
3807 
3808 /*
3809  * Restore a potential device exclusive pte to a working pte entry
3810  */
3811 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3812 {
3813 	struct folio *folio = page_folio(vmf->page);
3814 	struct vm_area_struct *vma = vmf->vma;
3815 	struct mmu_notifier_range range;
3816 	vm_fault_t ret;
3817 
3818 	/*
3819 	 * We need a reference to lock the folio because we don't hold
3820 	 * the PTL so a racing thread can remove the device-exclusive
3821 	 * entry and unmap it. If the folio is free the entry must
3822 	 * have been removed already. If it happens to have already
3823 	 * been re-allocated after being freed all we do is lock and
3824 	 * unlock it.
3825 	 */
3826 	if (!folio_try_get(folio))
3827 		return 0;
3828 
3829 	ret = folio_lock_or_retry(folio, vmf);
3830 	if (ret) {
3831 		folio_put(folio);
3832 		return ret;
3833 	}
3834 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3835 				vma->vm_mm, vmf->address & PAGE_MASK,
3836 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3837 	mmu_notifier_invalidate_range_start(&range);
3838 
3839 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3840 				&vmf->ptl);
3841 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3842 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3843 
3844 	if (vmf->pte)
3845 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3846 	folio_unlock(folio);
3847 	folio_put(folio);
3848 
3849 	mmu_notifier_invalidate_range_end(&range);
3850 	return 0;
3851 }
3852 
3853 static inline bool should_try_to_free_swap(struct folio *folio,
3854 					   struct vm_area_struct *vma,
3855 					   unsigned int fault_flags)
3856 {
3857 	if (!folio_test_swapcache(folio))
3858 		return false;
3859 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3860 	    folio_test_mlocked(folio))
3861 		return true;
3862 	/*
3863 	 * If we want to map a page that's in the swapcache writable, we
3864 	 * have to detect via the refcount if we're really the exclusive
3865 	 * user. Try freeing the swapcache to get rid of the swapcache
3866 	 * reference only in case it's likely that we'll be the exlusive user.
3867 	 */
3868 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3869 		folio_ref_count(folio) == 2;
3870 }
3871 
3872 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3873 {
3874 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3875 				       vmf->address, &vmf->ptl);
3876 	if (!vmf->pte)
3877 		return 0;
3878 	/*
3879 	 * Be careful so that we will only recover a special uffd-wp pte into a
3880 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3881 	 *
3882 	 * This should also cover the case where e.g. the pte changed
3883 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3884 	 * So is_pte_marker() check is not enough to safely drop the pte.
3885 	 */
3886 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3887 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3888 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3889 	return 0;
3890 }
3891 
3892 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3893 {
3894 	if (vma_is_anonymous(vmf->vma))
3895 		return do_anonymous_page(vmf);
3896 	else
3897 		return do_fault(vmf);
3898 }
3899 
3900 /*
3901  * This is actually a page-missing access, but with uffd-wp special pte
3902  * installed.  It means this pte was wr-protected before being unmapped.
3903  */
3904 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3905 {
3906 	/*
3907 	 * Just in case there're leftover special ptes even after the region
3908 	 * got unregistered - we can simply clear them.
3909 	 */
3910 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3911 		return pte_marker_clear(vmf);
3912 
3913 	return do_pte_missing(vmf);
3914 }
3915 
3916 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3917 {
3918 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3919 	unsigned long marker = pte_marker_get(entry);
3920 
3921 	/*
3922 	 * PTE markers should never be empty.  If anything weird happened,
3923 	 * the best thing to do is to kill the process along with its mm.
3924 	 */
3925 	if (WARN_ON_ONCE(!marker))
3926 		return VM_FAULT_SIGBUS;
3927 
3928 	/* Higher priority than uffd-wp when data corrupted */
3929 	if (marker & PTE_MARKER_POISONED)
3930 		return VM_FAULT_HWPOISON;
3931 
3932 	if (pte_marker_entry_uffd_wp(entry))
3933 		return pte_marker_handle_uffd_wp(vmf);
3934 
3935 	/* This is an unknown pte marker */
3936 	return VM_FAULT_SIGBUS;
3937 }
3938 
3939 /*
3940  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3941  * but allow concurrent faults), and pte mapped but not yet locked.
3942  * We return with pte unmapped and unlocked.
3943  *
3944  * We return with the mmap_lock locked or unlocked in the same cases
3945  * as does filemap_fault().
3946  */
3947 vm_fault_t do_swap_page(struct vm_fault *vmf)
3948 {
3949 	struct vm_area_struct *vma = vmf->vma;
3950 	struct folio *swapcache, *folio = NULL;
3951 	struct page *page;
3952 	struct swap_info_struct *si = NULL;
3953 	rmap_t rmap_flags = RMAP_NONE;
3954 	bool need_clear_cache = false;
3955 	bool exclusive = false;
3956 	swp_entry_t entry;
3957 	pte_t pte;
3958 	vm_fault_t ret = 0;
3959 	void *shadow = NULL;
3960 
3961 	if (!pte_unmap_same(vmf))
3962 		goto out;
3963 
3964 	entry = pte_to_swp_entry(vmf->orig_pte);
3965 	if (unlikely(non_swap_entry(entry))) {
3966 		if (is_migration_entry(entry)) {
3967 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3968 					     vmf->address);
3969 		} else if (is_device_exclusive_entry(entry)) {
3970 			vmf->page = pfn_swap_entry_to_page(entry);
3971 			ret = remove_device_exclusive_entry(vmf);
3972 		} else if (is_device_private_entry(entry)) {
3973 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3974 				/*
3975 				 * migrate_to_ram is not yet ready to operate
3976 				 * under VMA lock.
3977 				 */
3978 				vma_end_read(vma);
3979 				ret = VM_FAULT_RETRY;
3980 				goto out;
3981 			}
3982 
3983 			vmf->page = pfn_swap_entry_to_page(entry);
3984 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3985 					vmf->address, &vmf->ptl);
3986 			if (unlikely(!vmf->pte ||
3987 				     !pte_same(ptep_get(vmf->pte),
3988 							vmf->orig_pte)))
3989 				goto unlock;
3990 
3991 			/*
3992 			 * Get a page reference while we know the page can't be
3993 			 * freed.
3994 			 */
3995 			get_page(vmf->page);
3996 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3997 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3998 			put_page(vmf->page);
3999 		} else if (is_hwpoison_entry(entry)) {
4000 			ret = VM_FAULT_HWPOISON;
4001 		} else if (is_pte_marker_entry(entry)) {
4002 			ret = handle_pte_marker(vmf);
4003 		} else {
4004 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4005 			ret = VM_FAULT_SIGBUS;
4006 		}
4007 		goto out;
4008 	}
4009 
4010 	/* Prevent swapoff from happening to us. */
4011 	si = get_swap_device(entry);
4012 	if (unlikely(!si))
4013 		goto out;
4014 
4015 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4016 	if (folio)
4017 		page = folio_file_page(folio, swp_offset(entry));
4018 	swapcache = folio;
4019 
4020 	if (!folio) {
4021 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4022 		    __swap_count(entry) == 1) {
4023 			/*
4024 			 * Prevent parallel swapin from proceeding with
4025 			 * the cache flag. Otherwise, another thread may
4026 			 * finish swapin first, free the entry, and swapout
4027 			 * reusing the same entry. It's undetectable as
4028 			 * pte_same() returns true due to entry reuse.
4029 			 */
4030 			if (swapcache_prepare(entry)) {
4031 				/* Relax a bit to prevent rapid repeated page faults */
4032 				schedule_timeout_uninterruptible(1);
4033 				goto out;
4034 			}
4035 			need_clear_cache = true;
4036 
4037 			/* skip swapcache */
4038 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4039 						vma, vmf->address, false);
4040 			page = &folio->page;
4041 			if (folio) {
4042 				__folio_set_locked(folio);
4043 				__folio_set_swapbacked(folio);
4044 
4045 				if (mem_cgroup_swapin_charge_folio(folio,
4046 							vma->vm_mm, GFP_KERNEL,
4047 							entry)) {
4048 					ret = VM_FAULT_OOM;
4049 					goto out_page;
4050 				}
4051 				mem_cgroup_swapin_uncharge_swap(entry);
4052 
4053 				shadow = get_shadow_from_swap_cache(entry);
4054 				if (shadow)
4055 					workingset_refault(folio, shadow);
4056 
4057 				folio_add_lru(folio);
4058 
4059 				/* To provide entry to swap_read_folio() */
4060 				folio->swap = entry;
4061 				swap_read_folio(folio, true, NULL);
4062 				folio->private = NULL;
4063 			}
4064 		} else {
4065 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4066 						vmf);
4067 			if (page)
4068 				folio = page_folio(page);
4069 			swapcache = folio;
4070 		}
4071 
4072 		if (!folio) {
4073 			/*
4074 			 * Back out if somebody else faulted in this pte
4075 			 * while we released the pte lock.
4076 			 */
4077 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4078 					vmf->address, &vmf->ptl);
4079 			if (likely(vmf->pte &&
4080 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4081 				ret = VM_FAULT_OOM;
4082 			goto unlock;
4083 		}
4084 
4085 		/* Had to read the page from swap area: Major fault */
4086 		ret = VM_FAULT_MAJOR;
4087 		count_vm_event(PGMAJFAULT);
4088 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4089 	} else if (PageHWPoison(page)) {
4090 		/*
4091 		 * hwpoisoned dirty swapcache pages are kept for killing
4092 		 * owner processes (which may be unknown at hwpoison time)
4093 		 */
4094 		ret = VM_FAULT_HWPOISON;
4095 		goto out_release;
4096 	}
4097 
4098 	ret |= folio_lock_or_retry(folio, vmf);
4099 	if (ret & VM_FAULT_RETRY)
4100 		goto out_release;
4101 
4102 	if (swapcache) {
4103 		/*
4104 		 * Make sure folio_free_swap() or swapoff did not release the
4105 		 * swapcache from under us.  The page pin, and pte_same test
4106 		 * below, are not enough to exclude that.  Even if it is still
4107 		 * swapcache, we need to check that the page's swap has not
4108 		 * changed.
4109 		 */
4110 		if (unlikely(!folio_test_swapcache(folio) ||
4111 			     page_swap_entry(page).val != entry.val))
4112 			goto out_page;
4113 
4114 		/*
4115 		 * KSM sometimes has to copy on read faults, for example, if
4116 		 * page->index of !PageKSM() pages would be nonlinear inside the
4117 		 * anon VMA -- PageKSM() is lost on actual swapout.
4118 		 */
4119 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4120 		if (unlikely(!folio)) {
4121 			ret = VM_FAULT_OOM;
4122 			folio = swapcache;
4123 			goto out_page;
4124 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4125 			ret = VM_FAULT_HWPOISON;
4126 			folio = swapcache;
4127 			goto out_page;
4128 		}
4129 		if (folio != swapcache)
4130 			page = folio_page(folio, 0);
4131 
4132 		/*
4133 		 * If we want to map a page that's in the swapcache writable, we
4134 		 * have to detect via the refcount if we're really the exclusive
4135 		 * owner. Try removing the extra reference from the local LRU
4136 		 * caches if required.
4137 		 */
4138 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4139 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4140 			lru_add_drain();
4141 	}
4142 
4143 	folio_throttle_swaprate(folio, GFP_KERNEL);
4144 
4145 	/*
4146 	 * Back out if somebody else already faulted in this pte.
4147 	 */
4148 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4149 			&vmf->ptl);
4150 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4151 		goto out_nomap;
4152 
4153 	if (unlikely(!folio_test_uptodate(folio))) {
4154 		ret = VM_FAULT_SIGBUS;
4155 		goto out_nomap;
4156 	}
4157 
4158 	/*
4159 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4160 	 * must never point at an anonymous page in the swapcache that is
4161 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4162 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4163 	 * check after taking the PT lock and making sure that nobody
4164 	 * concurrently faulted in this page and set PG_anon_exclusive.
4165 	 */
4166 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4167 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4168 
4169 	/*
4170 	 * Check under PT lock (to protect against concurrent fork() sharing
4171 	 * the swap entry concurrently) for certainly exclusive pages.
4172 	 */
4173 	if (!folio_test_ksm(folio)) {
4174 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4175 		if (folio != swapcache) {
4176 			/*
4177 			 * We have a fresh page that is not exposed to the
4178 			 * swapcache -> certainly exclusive.
4179 			 */
4180 			exclusive = true;
4181 		} else if (exclusive && folio_test_writeback(folio) &&
4182 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4183 			/*
4184 			 * This is tricky: not all swap backends support
4185 			 * concurrent page modifications while under writeback.
4186 			 *
4187 			 * So if we stumble over such a page in the swapcache
4188 			 * we must not set the page exclusive, otherwise we can
4189 			 * map it writable without further checks and modify it
4190 			 * while still under writeback.
4191 			 *
4192 			 * For these problematic swap backends, simply drop the
4193 			 * exclusive marker: this is perfectly fine as we start
4194 			 * writeback only if we fully unmapped the page and
4195 			 * there are no unexpected references on the page after
4196 			 * unmapping succeeded. After fully unmapped, no
4197 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4198 			 * appear, so dropping the exclusive marker and mapping
4199 			 * it only R/O is fine.
4200 			 */
4201 			exclusive = false;
4202 		}
4203 	}
4204 
4205 	/*
4206 	 * Some architectures may have to restore extra metadata to the page
4207 	 * when reading from swap. This metadata may be indexed by swap entry
4208 	 * so this must be called before swap_free().
4209 	 */
4210 	arch_swap_restore(folio_swap(entry, folio), folio);
4211 
4212 	/*
4213 	 * Remove the swap entry and conditionally try to free up the swapcache.
4214 	 * We're already holding a reference on the page but haven't mapped it
4215 	 * yet.
4216 	 */
4217 	swap_free(entry);
4218 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4219 		folio_free_swap(folio);
4220 
4221 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4222 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4223 	pte = mk_pte(page, vma->vm_page_prot);
4224 
4225 	/*
4226 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4227 	 * certainly not shared either because we just allocated them without
4228 	 * exposing them to the swapcache or because the swap entry indicates
4229 	 * exclusivity.
4230 	 */
4231 	if (!folio_test_ksm(folio) &&
4232 	    (exclusive || folio_ref_count(folio) == 1)) {
4233 		if (vmf->flags & FAULT_FLAG_WRITE) {
4234 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4235 			vmf->flags &= ~FAULT_FLAG_WRITE;
4236 		}
4237 		rmap_flags |= RMAP_EXCLUSIVE;
4238 	}
4239 	flush_icache_page(vma, page);
4240 	if (pte_swp_soft_dirty(vmf->orig_pte))
4241 		pte = pte_mksoft_dirty(pte);
4242 	if (pte_swp_uffd_wp(vmf->orig_pte))
4243 		pte = pte_mkuffd_wp(pte);
4244 	vmf->orig_pte = pte;
4245 
4246 	/* ksm created a completely new copy */
4247 	if (unlikely(folio != swapcache && swapcache)) {
4248 		folio_add_new_anon_rmap(folio, vma, vmf->address);
4249 		folio_add_lru_vma(folio, vma);
4250 	} else {
4251 		folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4252 					rmap_flags);
4253 	}
4254 
4255 	VM_BUG_ON(!folio_test_anon(folio) ||
4256 			(pte_write(pte) && !PageAnonExclusive(page)));
4257 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4258 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4259 
4260 	folio_unlock(folio);
4261 	if (folio != swapcache && swapcache) {
4262 		/*
4263 		 * Hold the lock to avoid the swap entry to be reused
4264 		 * until we take the PT lock for the pte_same() check
4265 		 * (to avoid false positives from pte_same). For
4266 		 * further safety release the lock after the swap_free
4267 		 * so that the swap count won't change under a
4268 		 * parallel locked swapcache.
4269 		 */
4270 		folio_unlock(swapcache);
4271 		folio_put(swapcache);
4272 	}
4273 
4274 	if (vmf->flags & FAULT_FLAG_WRITE) {
4275 		ret |= do_wp_page(vmf);
4276 		if (ret & VM_FAULT_ERROR)
4277 			ret &= VM_FAULT_ERROR;
4278 		goto out;
4279 	}
4280 
4281 	/* No need to invalidate - it was non-present before */
4282 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4283 unlock:
4284 	if (vmf->pte)
4285 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4286 out:
4287 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4288 	if (need_clear_cache)
4289 		swapcache_clear(si, entry);
4290 	if (si)
4291 		put_swap_device(si);
4292 	return ret;
4293 out_nomap:
4294 	if (vmf->pte)
4295 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4296 out_page:
4297 	folio_unlock(folio);
4298 out_release:
4299 	folio_put(folio);
4300 	if (folio != swapcache && swapcache) {
4301 		folio_unlock(swapcache);
4302 		folio_put(swapcache);
4303 	}
4304 	if (need_clear_cache)
4305 		swapcache_clear(si, entry);
4306 	if (si)
4307 		put_swap_device(si);
4308 	return ret;
4309 }
4310 
4311 static bool pte_range_none(pte_t *pte, int nr_pages)
4312 {
4313 	int i;
4314 
4315 	for (i = 0; i < nr_pages; i++) {
4316 		if (!pte_none(ptep_get_lockless(pte + i)))
4317 			return false;
4318 	}
4319 
4320 	return true;
4321 }
4322 
4323 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4324 {
4325 	struct vm_area_struct *vma = vmf->vma;
4326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4327 	unsigned long orders;
4328 	struct folio *folio;
4329 	unsigned long addr;
4330 	pte_t *pte;
4331 	gfp_t gfp;
4332 	int order;
4333 
4334 	/*
4335 	 * If uffd is active for the vma we need per-page fault fidelity to
4336 	 * maintain the uffd semantics.
4337 	 */
4338 	if (unlikely(userfaultfd_armed(vma)))
4339 		goto fallback;
4340 
4341 	/*
4342 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4343 	 * for this vma. Then filter out the orders that can't be allocated over
4344 	 * the faulting address and still be fully contained in the vma.
4345 	 */
4346 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4347 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4348 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4349 
4350 	if (!orders)
4351 		goto fallback;
4352 
4353 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4354 	if (!pte)
4355 		return ERR_PTR(-EAGAIN);
4356 
4357 	/*
4358 	 * Find the highest order where the aligned range is completely
4359 	 * pte_none(). Note that all remaining orders will be completely
4360 	 * pte_none().
4361 	 */
4362 	order = highest_order(orders);
4363 	while (orders) {
4364 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4365 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4366 			break;
4367 		order = next_order(&orders, order);
4368 	}
4369 
4370 	pte_unmap(pte);
4371 
4372 	if (!orders)
4373 		goto fallback;
4374 
4375 	/* Try allocating the highest of the remaining orders. */
4376 	gfp = vma_thp_gfp_mask(vma);
4377 	while (orders) {
4378 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4379 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4380 		if (folio) {
4381 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4382 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4383 				folio_put(folio);
4384 				goto next;
4385 			}
4386 			folio_throttle_swaprate(folio, gfp);
4387 			clear_huge_page(&folio->page, vmf->address, 1 << order);
4388 			return folio;
4389 		}
4390 next:
4391 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4392 		order = next_order(&orders, order);
4393 	}
4394 
4395 fallback:
4396 #endif
4397 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4398 }
4399 
4400 /*
4401  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4402  * but allow concurrent faults), and pte mapped but not yet locked.
4403  * We return with mmap_lock still held, but pte unmapped and unlocked.
4404  */
4405 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4406 {
4407 	struct vm_area_struct *vma = vmf->vma;
4408 	unsigned long addr = vmf->address;
4409 	struct folio *folio;
4410 	vm_fault_t ret = 0;
4411 	int nr_pages = 1;
4412 	pte_t entry;
4413 	int i;
4414 
4415 	/* File mapping without ->vm_ops ? */
4416 	if (vma->vm_flags & VM_SHARED)
4417 		return VM_FAULT_SIGBUS;
4418 
4419 	/*
4420 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4421 	 * be distinguished from a transient failure of pte_offset_map().
4422 	 */
4423 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4424 		return VM_FAULT_OOM;
4425 
4426 	/* Use the zero-page for reads */
4427 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4428 			!mm_forbids_zeropage(vma->vm_mm)) {
4429 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4430 						vma->vm_page_prot));
4431 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4432 				vmf->address, &vmf->ptl);
4433 		if (!vmf->pte)
4434 			goto unlock;
4435 		if (vmf_pte_changed(vmf)) {
4436 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4437 			goto unlock;
4438 		}
4439 		ret = check_stable_address_space(vma->vm_mm);
4440 		if (ret)
4441 			goto unlock;
4442 		/* Deliver the page fault to userland, check inside PT lock */
4443 		if (userfaultfd_missing(vma)) {
4444 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4445 			return handle_userfault(vmf, VM_UFFD_MISSING);
4446 		}
4447 		goto setpte;
4448 	}
4449 
4450 	/* Allocate our own private page. */
4451 	ret = vmf_anon_prepare(vmf);
4452 	if (ret)
4453 		return ret;
4454 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4455 	folio = alloc_anon_folio(vmf);
4456 	if (IS_ERR(folio))
4457 		return 0;
4458 	if (!folio)
4459 		goto oom;
4460 
4461 	nr_pages = folio_nr_pages(folio);
4462 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4463 
4464 	/*
4465 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4466 	 * preceding stores to the page contents become visible before
4467 	 * the set_pte_at() write.
4468 	 */
4469 	__folio_mark_uptodate(folio);
4470 
4471 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4472 	entry = pte_sw_mkyoung(entry);
4473 	if (vma->vm_flags & VM_WRITE)
4474 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4475 
4476 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4477 	if (!vmf->pte)
4478 		goto release;
4479 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4480 		update_mmu_tlb(vma, addr, vmf->pte);
4481 		goto release;
4482 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4483 		for (i = 0; i < nr_pages; i++)
4484 			update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4485 		goto release;
4486 	}
4487 
4488 	ret = check_stable_address_space(vma->vm_mm);
4489 	if (ret)
4490 		goto release;
4491 
4492 	/* Deliver the page fault to userland, check inside PT lock */
4493 	if (userfaultfd_missing(vma)) {
4494 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4495 		folio_put(folio);
4496 		return handle_userfault(vmf, VM_UFFD_MISSING);
4497 	}
4498 
4499 	folio_ref_add(folio, nr_pages - 1);
4500 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4502 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4503 #endif
4504 	folio_add_new_anon_rmap(folio, vma, addr);
4505 	folio_add_lru_vma(folio, vma);
4506 setpte:
4507 	if (vmf_orig_pte_uffd_wp(vmf))
4508 		entry = pte_mkuffd_wp(entry);
4509 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4510 
4511 	/* No need to invalidate - it was non-present before */
4512 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4513 unlock:
4514 	if (vmf->pte)
4515 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4516 	return ret;
4517 release:
4518 	folio_put(folio);
4519 	goto unlock;
4520 oom:
4521 	return VM_FAULT_OOM;
4522 }
4523 
4524 /*
4525  * The mmap_lock must have been held on entry, and may have been
4526  * released depending on flags and vma->vm_ops->fault() return value.
4527  * See filemap_fault() and __lock_page_retry().
4528  */
4529 static vm_fault_t __do_fault(struct vm_fault *vmf)
4530 {
4531 	struct vm_area_struct *vma = vmf->vma;
4532 	struct folio *folio;
4533 	vm_fault_t ret;
4534 
4535 	/*
4536 	 * Preallocate pte before we take page_lock because this might lead to
4537 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4538 	 *				lock_page(A)
4539 	 *				SetPageWriteback(A)
4540 	 *				unlock_page(A)
4541 	 * lock_page(B)
4542 	 *				lock_page(B)
4543 	 * pte_alloc_one
4544 	 *   shrink_page_list
4545 	 *     wait_on_page_writeback(A)
4546 	 *				SetPageWriteback(B)
4547 	 *				unlock_page(B)
4548 	 *				# flush A, B to clear the writeback
4549 	 */
4550 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4551 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4552 		if (!vmf->prealloc_pte)
4553 			return VM_FAULT_OOM;
4554 	}
4555 
4556 	ret = vma->vm_ops->fault(vmf);
4557 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4558 			    VM_FAULT_DONE_COW)))
4559 		return ret;
4560 
4561 	folio = page_folio(vmf->page);
4562 	if (unlikely(PageHWPoison(vmf->page))) {
4563 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4564 		if (ret & VM_FAULT_LOCKED) {
4565 			if (page_mapped(vmf->page))
4566 				unmap_mapping_folio(folio);
4567 			/* Retry if a clean folio was removed from the cache. */
4568 			if (mapping_evict_folio(folio->mapping, folio))
4569 				poisonret = VM_FAULT_NOPAGE;
4570 			folio_unlock(folio);
4571 		}
4572 		folio_put(folio);
4573 		vmf->page = NULL;
4574 		return poisonret;
4575 	}
4576 
4577 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4578 		folio_lock(folio);
4579 	else
4580 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4581 
4582 	return ret;
4583 }
4584 
4585 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4586 static void deposit_prealloc_pte(struct vm_fault *vmf)
4587 {
4588 	struct vm_area_struct *vma = vmf->vma;
4589 
4590 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4591 	/*
4592 	 * We are going to consume the prealloc table,
4593 	 * count that as nr_ptes.
4594 	 */
4595 	mm_inc_nr_ptes(vma->vm_mm);
4596 	vmf->prealloc_pte = NULL;
4597 }
4598 
4599 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4600 {
4601 	struct folio *folio = page_folio(page);
4602 	struct vm_area_struct *vma = vmf->vma;
4603 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4604 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4605 	pmd_t entry;
4606 	vm_fault_t ret = VM_FAULT_FALLBACK;
4607 
4608 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4609 		return ret;
4610 
4611 	if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4612 		return ret;
4613 
4614 	/*
4615 	 * Just backoff if any subpage of a THP is corrupted otherwise
4616 	 * the corrupted page may mapped by PMD silently to escape the
4617 	 * check.  This kind of THP just can be PTE mapped.  Access to
4618 	 * the corrupted subpage should trigger SIGBUS as expected.
4619 	 */
4620 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4621 		return ret;
4622 
4623 	/*
4624 	 * Archs like ppc64 need additional space to store information
4625 	 * related to pte entry. Use the preallocated table for that.
4626 	 */
4627 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4628 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4629 		if (!vmf->prealloc_pte)
4630 			return VM_FAULT_OOM;
4631 	}
4632 
4633 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4634 	if (unlikely(!pmd_none(*vmf->pmd)))
4635 		goto out;
4636 
4637 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4638 
4639 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4640 	if (write)
4641 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4642 
4643 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4644 	folio_add_file_rmap_pmd(folio, page, vma);
4645 
4646 	/*
4647 	 * deposit and withdraw with pmd lock held
4648 	 */
4649 	if (arch_needs_pgtable_deposit())
4650 		deposit_prealloc_pte(vmf);
4651 
4652 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4653 
4654 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4655 
4656 	/* fault is handled */
4657 	ret = 0;
4658 	count_vm_event(THP_FILE_MAPPED);
4659 out:
4660 	spin_unlock(vmf->ptl);
4661 	return ret;
4662 }
4663 #else
4664 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4665 {
4666 	return VM_FAULT_FALLBACK;
4667 }
4668 #endif
4669 
4670 /**
4671  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4672  * @vmf: Fault decription.
4673  * @folio: The folio that contains @page.
4674  * @page: The first page to create a PTE for.
4675  * @nr: The number of PTEs to create.
4676  * @addr: The first address to create a PTE for.
4677  */
4678 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4679 		struct page *page, unsigned int nr, unsigned long addr)
4680 {
4681 	struct vm_area_struct *vma = vmf->vma;
4682 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4683 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4684 	pte_t entry;
4685 
4686 	flush_icache_pages(vma, page, nr);
4687 	entry = mk_pte(page, vma->vm_page_prot);
4688 
4689 	if (prefault && arch_wants_old_prefaulted_pte())
4690 		entry = pte_mkold(entry);
4691 	else
4692 		entry = pte_sw_mkyoung(entry);
4693 
4694 	if (write)
4695 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4696 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
4697 		entry = pte_mkuffd_wp(entry);
4698 	/* copy-on-write page */
4699 	if (write && !(vma->vm_flags & VM_SHARED)) {
4700 		VM_BUG_ON_FOLIO(nr != 1, folio);
4701 		folio_add_new_anon_rmap(folio, vma, addr);
4702 		folio_add_lru_vma(folio, vma);
4703 	} else {
4704 		folio_add_file_rmap_ptes(folio, page, nr, vma);
4705 	}
4706 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4707 
4708 	/* no need to invalidate: a not-present page won't be cached */
4709 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4710 }
4711 
4712 static bool vmf_pte_changed(struct vm_fault *vmf)
4713 {
4714 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4715 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4716 
4717 	return !pte_none(ptep_get(vmf->pte));
4718 }
4719 
4720 /**
4721  * finish_fault - finish page fault once we have prepared the page to fault
4722  *
4723  * @vmf: structure describing the fault
4724  *
4725  * This function handles all that is needed to finish a page fault once the
4726  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4727  * given page, adds reverse page mapping, handles memcg charges and LRU
4728  * addition.
4729  *
4730  * The function expects the page to be locked and on success it consumes a
4731  * reference of a page being mapped (for the PTE which maps it).
4732  *
4733  * Return: %0 on success, %VM_FAULT_ code in case of error.
4734  */
4735 vm_fault_t finish_fault(struct vm_fault *vmf)
4736 {
4737 	struct vm_area_struct *vma = vmf->vma;
4738 	struct page *page;
4739 	vm_fault_t ret;
4740 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
4741 		      !(vma->vm_flags & VM_SHARED);
4742 
4743 	/* Did we COW the page? */
4744 	if (is_cow)
4745 		page = vmf->cow_page;
4746 	else
4747 		page = vmf->page;
4748 
4749 	/*
4750 	 * check even for read faults because we might have lost our CoWed
4751 	 * page
4752 	 */
4753 	if (!(vma->vm_flags & VM_SHARED)) {
4754 		ret = check_stable_address_space(vma->vm_mm);
4755 		if (ret)
4756 			return ret;
4757 	}
4758 
4759 	if (pmd_none(*vmf->pmd)) {
4760 		if (PageTransCompound(page)) {
4761 			ret = do_set_pmd(vmf, page);
4762 			if (ret != VM_FAULT_FALLBACK)
4763 				return ret;
4764 		}
4765 
4766 		if (vmf->prealloc_pte)
4767 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4768 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4769 			return VM_FAULT_OOM;
4770 	}
4771 
4772 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4773 				      vmf->address, &vmf->ptl);
4774 	if (!vmf->pte)
4775 		return VM_FAULT_NOPAGE;
4776 
4777 	/* Re-check under ptl */
4778 	if (likely(!vmf_pte_changed(vmf))) {
4779 		struct folio *folio = page_folio(page);
4780 		int type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
4781 
4782 		set_pte_range(vmf, folio, page, 1, vmf->address);
4783 		add_mm_counter(vma->vm_mm, type, 1);
4784 		ret = 0;
4785 	} else {
4786 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4787 		ret = VM_FAULT_NOPAGE;
4788 	}
4789 
4790 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4791 	return ret;
4792 }
4793 
4794 static unsigned long fault_around_pages __read_mostly =
4795 	65536 >> PAGE_SHIFT;
4796 
4797 #ifdef CONFIG_DEBUG_FS
4798 static int fault_around_bytes_get(void *data, u64 *val)
4799 {
4800 	*val = fault_around_pages << PAGE_SHIFT;
4801 	return 0;
4802 }
4803 
4804 /*
4805  * fault_around_bytes must be rounded down to the nearest page order as it's
4806  * what do_fault_around() expects to see.
4807  */
4808 static int fault_around_bytes_set(void *data, u64 val)
4809 {
4810 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4811 		return -EINVAL;
4812 
4813 	/*
4814 	 * The minimum value is 1 page, however this results in no fault-around
4815 	 * at all. See should_fault_around().
4816 	 */
4817 	val = max(val, PAGE_SIZE);
4818 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4819 
4820 	return 0;
4821 }
4822 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4823 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4824 
4825 static int __init fault_around_debugfs(void)
4826 {
4827 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4828 				   &fault_around_bytes_fops);
4829 	return 0;
4830 }
4831 late_initcall(fault_around_debugfs);
4832 #endif
4833 
4834 /*
4835  * do_fault_around() tries to map few pages around the fault address. The hope
4836  * is that the pages will be needed soon and this will lower the number of
4837  * faults to handle.
4838  *
4839  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4840  * not ready to be mapped: not up-to-date, locked, etc.
4841  *
4842  * This function doesn't cross VMA or page table boundaries, in order to call
4843  * map_pages() and acquire a PTE lock only once.
4844  *
4845  * fault_around_pages defines how many pages we'll try to map.
4846  * do_fault_around() expects it to be set to a power of two less than or equal
4847  * to PTRS_PER_PTE.
4848  *
4849  * The virtual address of the area that we map is naturally aligned to
4850  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4851  * (and therefore to page order).  This way it's easier to guarantee
4852  * that we don't cross page table boundaries.
4853  */
4854 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4855 {
4856 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4857 	pgoff_t pte_off = pte_index(vmf->address);
4858 	/* The page offset of vmf->address within the VMA. */
4859 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4860 	pgoff_t from_pte, to_pte;
4861 	vm_fault_t ret;
4862 
4863 	/* The PTE offset of the start address, clamped to the VMA. */
4864 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4865 		       pte_off - min(pte_off, vma_off));
4866 
4867 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4868 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4869 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4870 
4871 	if (pmd_none(*vmf->pmd)) {
4872 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4873 		if (!vmf->prealloc_pte)
4874 			return VM_FAULT_OOM;
4875 	}
4876 
4877 	rcu_read_lock();
4878 	ret = vmf->vma->vm_ops->map_pages(vmf,
4879 			vmf->pgoff + from_pte - pte_off,
4880 			vmf->pgoff + to_pte - pte_off);
4881 	rcu_read_unlock();
4882 
4883 	return ret;
4884 }
4885 
4886 /* Return true if we should do read fault-around, false otherwise */
4887 static inline bool should_fault_around(struct vm_fault *vmf)
4888 {
4889 	/* No ->map_pages?  No way to fault around... */
4890 	if (!vmf->vma->vm_ops->map_pages)
4891 		return false;
4892 
4893 	if (uffd_disable_fault_around(vmf->vma))
4894 		return false;
4895 
4896 	/* A single page implies no faulting 'around' at all. */
4897 	return fault_around_pages > 1;
4898 }
4899 
4900 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4901 {
4902 	vm_fault_t ret = 0;
4903 	struct folio *folio;
4904 
4905 	/*
4906 	 * Let's call ->map_pages() first and use ->fault() as fallback
4907 	 * if page by the offset is not ready to be mapped (cold cache or
4908 	 * something).
4909 	 */
4910 	if (should_fault_around(vmf)) {
4911 		ret = do_fault_around(vmf);
4912 		if (ret)
4913 			return ret;
4914 	}
4915 
4916 	ret = vmf_can_call_fault(vmf);
4917 	if (ret)
4918 		return ret;
4919 
4920 	ret = __do_fault(vmf);
4921 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4922 		return ret;
4923 
4924 	ret |= finish_fault(vmf);
4925 	folio = page_folio(vmf->page);
4926 	folio_unlock(folio);
4927 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4928 		folio_put(folio);
4929 	return ret;
4930 }
4931 
4932 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4933 {
4934 	struct vm_area_struct *vma = vmf->vma;
4935 	struct folio *folio;
4936 	vm_fault_t ret;
4937 
4938 	ret = vmf_can_call_fault(vmf);
4939 	if (!ret)
4940 		ret = vmf_anon_prepare(vmf);
4941 	if (ret)
4942 		return ret;
4943 
4944 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4945 	if (!folio)
4946 		return VM_FAULT_OOM;
4947 
4948 	vmf->cow_page = &folio->page;
4949 
4950 	ret = __do_fault(vmf);
4951 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4952 		goto uncharge_out;
4953 	if (ret & VM_FAULT_DONE_COW)
4954 		return ret;
4955 
4956 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4957 	__folio_mark_uptodate(folio);
4958 
4959 	ret |= finish_fault(vmf);
4960 	unlock_page(vmf->page);
4961 	put_page(vmf->page);
4962 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4963 		goto uncharge_out;
4964 	return ret;
4965 uncharge_out:
4966 	folio_put(folio);
4967 	return ret;
4968 }
4969 
4970 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4971 {
4972 	struct vm_area_struct *vma = vmf->vma;
4973 	vm_fault_t ret, tmp;
4974 	struct folio *folio;
4975 
4976 	ret = vmf_can_call_fault(vmf);
4977 	if (ret)
4978 		return ret;
4979 
4980 	ret = __do_fault(vmf);
4981 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4982 		return ret;
4983 
4984 	folio = page_folio(vmf->page);
4985 
4986 	/*
4987 	 * Check if the backing address space wants to know that the page is
4988 	 * about to become writable
4989 	 */
4990 	if (vma->vm_ops->page_mkwrite) {
4991 		folio_unlock(folio);
4992 		tmp = do_page_mkwrite(vmf, folio);
4993 		if (unlikely(!tmp ||
4994 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4995 			folio_put(folio);
4996 			return tmp;
4997 		}
4998 	}
4999 
5000 	ret |= finish_fault(vmf);
5001 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5002 					VM_FAULT_RETRY))) {
5003 		folio_unlock(folio);
5004 		folio_put(folio);
5005 		return ret;
5006 	}
5007 
5008 	ret |= fault_dirty_shared_page(vmf);
5009 	return ret;
5010 }
5011 
5012 /*
5013  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5014  * but allow concurrent faults).
5015  * The mmap_lock may have been released depending on flags and our
5016  * return value.  See filemap_fault() and __folio_lock_or_retry().
5017  * If mmap_lock is released, vma may become invalid (for example
5018  * by other thread calling munmap()).
5019  */
5020 static vm_fault_t do_fault(struct vm_fault *vmf)
5021 {
5022 	struct vm_area_struct *vma = vmf->vma;
5023 	struct mm_struct *vm_mm = vma->vm_mm;
5024 	vm_fault_t ret;
5025 
5026 	/*
5027 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5028 	 */
5029 	if (!vma->vm_ops->fault) {
5030 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5031 					       vmf->address, &vmf->ptl);
5032 		if (unlikely(!vmf->pte))
5033 			ret = VM_FAULT_SIGBUS;
5034 		else {
5035 			/*
5036 			 * Make sure this is not a temporary clearing of pte
5037 			 * by holding ptl and checking again. A R/M/W update
5038 			 * of pte involves: take ptl, clearing the pte so that
5039 			 * we don't have concurrent modification by hardware
5040 			 * followed by an update.
5041 			 */
5042 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5043 				ret = VM_FAULT_SIGBUS;
5044 			else
5045 				ret = VM_FAULT_NOPAGE;
5046 
5047 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5048 		}
5049 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5050 		ret = do_read_fault(vmf);
5051 	else if (!(vma->vm_flags & VM_SHARED))
5052 		ret = do_cow_fault(vmf);
5053 	else
5054 		ret = do_shared_fault(vmf);
5055 
5056 	/* preallocated pagetable is unused: free it */
5057 	if (vmf->prealloc_pte) {
5058 		pte_free(vm_mm, vmf->prealloc_pte);
5059 		vmf->prealloc_pte = NULL;
5060 	}
5061 	return ret;
5062 }
5063 
5064 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
5065 		      unsigned long addr, int page_nid, int *flags)
5066 {
5067 	struct vm_area_struct *vma = vmf->vma;
5068 
5069 	folio_get(folio);
5070 
5071 	/* Record the current PID acceesing VMA */
5072 	vma_set_access_pid_bit(vma);
5073 
5074 	count_vm_numa_event(NUMA_HINT_FAULTS);
5075 	if (page_nid == numa_node_id()) {
5076 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5077 		*flags |= TNF_FAULT_LOCAL;
5078 	}
5079 
5080 	return mpol_misplaced(folio, vmf, addr);
5081 }
5082 
5083 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5084 					unsigned long fault_addr, pte_t *fault_pte,
5085 					bool writable)
5086 {
5087 	pte_t pte, old_pte;
5088 
5089 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5090 	pte = pte_modify(old_pte, vma->vm_page_prot);
5091 	pte = pte_mkyoung(pte);
5092 	if (writable)
5093 		pte = pte_mkwrite(pte, vma);
5094 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5095 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5096 }
5097 
5098 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5099 				       struct folio *folio, pte_t fault_pte,
5100 				       bool ignore_writable, bool pte_write_upgrade)
5101 {
5102 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5103 	unsigned long start, end, addr = vmf->address;
5104 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5105 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5106 	pte_t *start_ptep;
5107 
5108 	/* Stay within the VMA and within the page table. */
5109 	start = max3(addr_start, pt_start, vma->vm_start);
5110 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5111 		   vma->vm_end);
5112 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5113 
5114 	/* Restore all PTEs' mapping of the large folio */
5115 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5116 		pte_t ptent = ptep_get(start_ptep);
5117 		bool writable = false;
5118 
5119 		if (!pte_present(ptent) || !pte_protnone(ptent))
5120 			continue;
5121 
5122 		if (pfn_folio(pte_pfn(ptent)) != folio)
5123 			continue;
5124 
5125 		if (!ignore_writable) {
5126 			ptent = pte_modify(ptent, vma->vm_page_prot);
5127 			writable = pte_write(ptent);
5128 			if (!writable && pte_write_upgrade &&
5129 			    can_change_pte_writable(vma, addr, ptent))
5130 				writable = true;
5131 		}
5132 
5133 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5134 	}
5135 }
5136 
5137 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5138 {
5139 	struct vm_area_struct *vma = vmf->vma;
5140 	struct folio *folio = NULL;
5141 	int nid = NUMA_NO_NODE;
5142 	bool writable = false, ignore_writable = false;
5143 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5144 	int last_cpupid;
5145 	int target_nid;
5146 	pte_t pte, old_pte;
5147 	int flags = 0, nr_pages;
5148 
5149 	/*
5150 	 * The pte cannot be used safely until we verify, while holding the page
5151 	 * table lock, that its contents have not changed during fault handling.
5152 	 */
5153 	spin_lock(vmf->ptl);
5154 	/* Read the live PTE from the page tables: */
5155 	old_pte = ptep_get(vmf->pte);
5156 
5157 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5158 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5159 		goto out;
5160 	}
5161 
5162 	pte = pte_modify(old_pte, vma->vm_page_prot);
5163 
5164 	/*
5165 	 * Detect now whether the PTE could be writable; this information
5166 	 * is only valid while holding the PT lock.
5167 	 */
5168 	writable = pte_write(pte);
5169 	if (!writable && pte_write_upgrade &&
5170 	    can_change_pte_writable(vma, vmf->address, pte))
5171 		writable = true;
5172 
5173 	folio = vm_normal_folio(vma, vmf->address, pte);
5174 	if (!folio || folio_is_zone_device(folio))
5175 		goto out_map;
5176 
5177 	/*
5178 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5179 	 * much anyway since they can be in shared cache state. This misses
5180 	 * the case where a mapping is writable but the process never writes
5181 	 * to it but pte_write gets cleared during protection updates and
5182 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5183 	 * background writeback, dirty balancing and application behaviour.
5184 	 */
5185 	if (!writable)
5186 		flags |= TNF_NO_GROUP;
5187 
5188 	/*
5189 	 * Flag if the folio is shared between multiple address spaces. This
5190 	 * is later used when determining whether to group tasks together
5191 	 */
5192 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5193 		flags |= TNF_SHARED;
5194 
5195 	nid = folio_nid(folio);
5196 	nr_pages = folio_nr_pages(folio);
5197 	/*
5198 	 * For memory tiering mode, cpupid of slow memory page is used
5199 	 * to record page access time.  So use default value.
5200 	 */
5201 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5202 	    !node_is_toptier(nid))
5203 		last_cpupid = (-1 & LAST_CPUPID_MASK);
5204 	else
5205 		last_cpupid = folio_last_cpupid(folio);
5206 	target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
5207 	if (target_nid == NUMA_NO_NODE) {
5208 		folio_put(folio);
5209 		goto out_map;
5210 	}
5211 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5212 	writable = false;
5213 	ignore_writable = true;
5214 
5215 	/* Migrate to the requested node */
5216 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
5217 		nid = target_nid;
5218 		flags |= TNF_MIGRATED;
5219 	} else {
5220 		flags |= TNF_MIGRATE_FAIL;
5221 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5222 					       vmf->address, &vmf->ptl);
5223 		if (unlikely(!vmf->pte))
5224 			goto out;
5225 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5226 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5227 			goto out;
5228 		}
5229 		goto out_map;
5230 	}
5231 
5232 out:
5233 	if (nid != NUMA_NO_NODE)
5234 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5235 	return 0;
5236 out_map:
5237 	/*
5238 	 * Make it present again, depending on how arch implements
5239 	 * non-accessible ptes, some can allow access by kernel mode.
5240 	 */
5241 	if (folio && folio_test_large(folio))
5242 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5243 					   pte_write_upgrade);
5244 	else
5245 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5246 					    writable);
5247 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5248 	goto out;
5249 }
5250 
5251 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5252 {
5253 	struct vm_area_struct *vma = vmf->vma;
5254 	if (vma_is_anonymous(vma))
5255 		return do_huge_pmd_anonymous_page(vmf);
5256 	if (vma->vm_ops->huge_fault)
5257 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5258 	return VM_FAULT_FALLBACK;
5259 }
5260 
5261 /* `inline' is required to avoid gcc 4.1.2 build error */
5262 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5263 {
5264 	struct vm_area_struct *vma = vmf->vma;
5265 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5266 	vm_fault_t ret;
5267 
5268 	if (vma_is_anonymous(vma)) {
5269 		if (likely(!unshare) &&
5270 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5271 			if (userfaultfd_wp_async(vmf->vma))
5272 				goto split;
5273 			return handle_userfault(vmf, VM_UFFD_WP);
5274 		}
5275 		return do_huge_pmd_wp_page(vmf);
5276 	}
5277 
5278 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5279 		if (vma->vm_ops->huge_fault) {
5280 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5281 			if (!(ret & VM_FAULT_FALLBACK))
5282 				return ret;
5283 		}
5284 	}
5285 
5286 split:
5287 	/* COW or write-notify handled on pte level: split pmd. */
5288 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5289 
5290 	return VM_FAULT_FALLBACK;
5291 }
5292 
5293 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5294 {
5295 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5296 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5297 	struct vm_area_struct *vma = vmf->vma;
5298 	/* No support for anonymous transparent PUD pages yet */
5299 	if (vma_is_anonymous(vma))
5300 		return VM_FAULT_FALLBACK;
5301 	if (vma->vm_ops->huge_fault)
5302 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5303 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5304 	return VM_FAULT_FALLBACK;
5305 }
5306 
5307 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5308 {
5309 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5310 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5311 	struct vm_area_struct *vma = vmf->vma;
5312 	vm_fault_t ret;
5313 
5314 	/* No support for anonymous transparent PUD pages yet */
5315 	if (vma_is_anonymous(vma))
5316 		goto split;
5317 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5318 		if (vma->vm_ops->huge_fault) {
5319 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5320 			if (!(ret & VM_FAULT_FALLBACK))
5321 				return ret;
5322 		}
5323 	}
5324 split:
5325 	/* COW or write-notify not handled on PUD level: split pud.*/
5326 	__split_huge_pud(vma, vmf->pud, vmf->address);
5327 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5328 	return VM_FAULT_FALLBACK;
5329 }
5330 
5331 /*
5332  * These routines also need to handle stuff like marking pages dirty
5333  * and/or accessed for architectures that don't do it in hardware (most
5334  * RISC architectures).  The early dirtying is also good on the i386.
5335  *
5336  * There is also a hook called "update_mmu_cache()" that architectures
5337  * with external mmu caches can use to update those (ie the Sparc or
5338  * PowerPC hashed page tables that act as extended TLBs).
5339  *
5340  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5341  * concurrent faults).
5342  *
5343  * The mmap_lock may have been released depending on flags and our return value.
5344  * See filemap_fault() and __folio_lock_or_retry().
5345  */
5346 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5347 {
5348 	pte_t entry;
5349 
5350 	if (unlikely(pmd_none(*vmf->pmd))) {
5351 		/*
5352 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5353 		 * want to allocate huge page, and if we expose page table
5354 		 * for an instant, it will be difficult to retract from
5355 		 * concurrent faults and from rmap lookups.
5356 		 */
5357 		vmf->pte = NULL;
5358 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5359 	} else {
5360 		/*
5361 		 * A regular pmd is established and it can't morph into a huge
5362 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5363 		 * mode; but shmem or file collapse to THP could still morph
5364 		 * it into a huge pmd: just retry later if so.
5365 		 */
5366 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5367 						 vmf->address, &vmf->ptl);
5368 		if (unlikely(!vmf->pte))
5369 			return 0;
5370 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5371 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5372 
5373 		if (pte_none(vmf->orig_pte)) {
5374 			pte_unmap(vmf->pte);
5375 			vmf->pte = NULL;
5376 		}
5377 	}
5378 
5379 	if (!vmf->pte)
5380 		return do_pte_missing(vmf);
5381 
5382 	if (!pte_present(vmf->orig_pte))
5383 		return do_swap_page(vmf);
5384 
5385 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5386 		return do_numa_page(vmf);
5387 
5388 	spin_lock(vmf->ptl);
5389 	entry = vmf->orig_pte;
5390 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5391 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5392 		goto unlock;
5393 	}
5394 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5395 		if (!pte_write(entry))
5396 			return do_wp_page(vmf);
5397 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5398 			entry = pte_mkdirty(entry);
5399 	}
5400 	entry = pte_mkyoung(entry);
5401 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5402 				vmf->flags & FAULT_FLAG_WRITE)) {
5403 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5404 				vmf->pte, 1);
5405 	} else {
5406 		/* Skip spurious TLB flush for retried page fault */
5407 		if (vmf->flags & FAULT_FLAG_TRIED)
5408 			goto unlock;
5409 		/*
5410 		 * This is needed only for protection faults but the arch code
5411 		 * is not yet telling us if this is a protection fault or not.
5412 		 * This still avoids useless tlb flushes for .text page faults
5413 		 * with threads.
5414 		 */
5415 		if (vmf->flags & FAULT_FLAG_WRITE)
5416 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5417 						     vmf->pte);
5418 	}
5419 unlock:
5420 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5421 	return 0;
5422 }
5423 
5424 /*
5425  * On entry, we hold either the VMA lock or the mmap_lock
5426  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5427  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5428  * and __folio_lock_or_retry().
5429  */
5430 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5431 		unsigned long address, unsigned int flags)
5432 {
5433 	struct vm_fault vmf = {
5434 		.vma = vma,
5435 		.address = address & PAGE_MASK,
5436 		.real_address = address,
5437 		.flags = flags,
5438 		.pgoff = linear_page_index(vma, address),
5439 		.gfp_mask = __get_fault_gfp_mask(vma),
5440 	};
5441 	struct mm_struct *mm = vma->vm_mm;
5442 	unsigned long vm_flags = vma->vm_flags;
5443 	pgd_t *pgd;
5444 	p4d_t *p4d;
5445 	vm_fault_t ret;
5446 
5447 	pgd = pgd_offset(mm, address);
5448 	p4d = p4d_alloc(mm, pgd, address);
5449 	if (!p4d)
5450 		return VM_FAULT_OOM;
5451 
5452 	vmf.pud = pud_alloc(mm, p4d, address);
5453 	if (!vmf.pud)
5454 		return VM_FAULT_OOM;
5455 retry_pud:
5456 	if (pud_none(*vmf.pud) &&
5457 	    thp_vma_allowable_order(vma, vm_flags,
5458 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5459 		ret = create_huge_pud(&vmf);
5460 		if (!(ret & VM_FAULT_FALLBACK))
5461 			return ret;
5462 	} else {
5463 		pud_t orig_pud = *vmf.pud;
5464 
5465 		barrier();
5466 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5467 
5468 			/*
5469 			 * TODO once we support anonymous PUDs: NUMA case and
5470 			 * FAULT_FLAG_UNSHARE handling.
5471 			 */
5472 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5473 				ret = wp_huge_pud(&vmf, orig_pud);
5474 				if (!(ret & VM_FAULT_FALLBACK))
5475 					return ret;
5476 			} else {
5477 				huge_pud_set_accessed(&vmf, orig_pud);
5478 				return 0;
5479 			}
5480 		}
5481 	}
5482 
5483 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5484 	if (!vmf.pmd)
5485 		return VM_FAULT_OOM;
5486 
5487 	/* Huge pud page fault raced with pmd_alloc? */
5488 	if (pud_trans_unstable(vmf.pud))
5489 		goto retry_pud;
5490 
5491 	if (pmd_none(*vmf.pmd) &&
5492 	    thp_vma_allowable_order(vma, vm_flags,
5493 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5494 		ret = create_huge_pmd(&vmf);
5495 		if (!(ret & VM_FAULT_FALLBACK))
5496 			return ret;
5497 	} else {
5498 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5499 
5500 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5501 			VM_BUG_ON(thp_migration_supported() &&
5502 					  !is_pmd_migration_entry(vmf.orig_pmd));
5503 			if (is_pmd_migration_entry(vmf.orig_pmd))
5504 				pmd_migration_entry_wait(mm, vmf.pmd);
5505 			return 0;
5506 		}
5507 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5508 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5509 				return do_huge_pmd_numa_page(&vmf);
5510 
5511 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5512 			    !pmd_write(vmf.orig_pmd)) {
5513 				ret = wp_huge_pmd(&vmf);
5514 				if (!(ret & VM_FAULT_FALLBACK))
5515 					return ret;
5516 			} else {
5517 				huge_pmd_set_accessed(&vmf);
5518 				return 0;
5519 			}
5520 		}
5521 	}
5522 
5523 	return handle_pte_fault(&vmf);
5524 }
5525 
5526 /**
5527  * mm_account_fault - Do page fault accounting
5528  * @mm: mm from which memcg should be extracted. It can be NULL.
5529  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5530  *        of perf event counters, but we'll still do the per-task accounting to
5531  *        the task who triggered this page fault.
5532  * @address: the faulted address.
5533  * @flags: the fault flags.
5534  * @ret: the fault retcode.
5535  *
5536  * This will take care of most of the page fault accounting.  Meanwhile, it
5537  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5538  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5539  * still be in per-arch page fault handlers at the entry of page fault.
5540  */
5541 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5542 				    unsigned long address, unsigned int flags,
5543 				    vm_fault_t ret)
5544 {
5545 	bool major;
5546 
5547 	/* Incomplete faults will be accounted upon completion. */
5548 	if (ret & VM_FAULT_RETRY)
5549 		return;
5550 
5551 	/*
5552 	 * To preserve the behavior of older kernels, PGFAULT counters record
5553 	 * both successful and failed faults, as opposed to perf counters,
5554 	 * which ignore failed cases.
5555 	 */
5556 	count_vm_event(PGFAULT);
5557 	count_memcg_event_mm(mm, PGFAULT);
5558 
5559 	/*
5560 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5561 	 * valid).  That includes arch_vma_access_permitted() failing before
5562 	 * reaching here. So this is not a "this many hardware page faults"
5563 	 * counter.  We should use the hw profiling for that.
5564 	 */
5565 	if (ret & VM_FAULT_ERROR)
5566 		return;
5567 
5568 	/*
5569 	 * We define the fault as a major fault when the final successful fault
5570 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5571 	 * handle it immediately previously).
5572 	 */
5573 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5574 
5575 	if (major)
5576 		current->maj_flt++;
5577 	else
5578 		current->min_flt++;
5579 
5580 	/*
5581 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5582 	 * accounting for the per thread fault counters who triggered the
5583 	 * fault, and we skip the perf event updates.
5584 	 */
5585 	if (!regs)
5586 		return;
5587 
5588 	if (major)
5589 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5590 	else
5591 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5592 }
5593 
5594 #ifdef CONFIG_LRU_GEN
5595 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5596 {
5597 	/* the LRU algorithm only applies to accesses with recency */
5598 	current->in_lru_fault = vma_has_recency(vma);
5599 }
5600 
5601 static void lru_gen_exit_fault(void)
5602 {
5603 	current->in_lru_fault = false;
5604 }
5605 #else
5606 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5607 {
5608 }
5609 
5610 static void lru_gen_exit_fault(void)
5611 {
5612 }
5613 #endif /* CONFIG_LRU_GEN */
5614 
5615 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5616 				       unsigned int *flags)
5617 {
5618 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5619 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5620 			return VM_FAULT_SIGSEGV;
5621 		/*
5622 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5623 		 * just treat it like an ordinary read-fault otherwise.
5624 		 */
5625 		if (!is_cow_mapping(vma->vm_flags))
5626 			*flags &= ~FAULT_FLAG_UNSHARE;
5627 	} else if (*flags & FAULT_FLAG_WRITE) {
5628 		/* Write faults on read-only mappings are impossible ... */
5629 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5630 			return VM_FAULT_SIGSEGV;
5631 		/* ... and FOLL_FORCE only applies to COW mappings. */
5632 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5633 				 !is_cow_mapping(vma->vm_flags)))
5634 			return VM_FAULT_SIGSEGV;
5635 	}
5636 #ifdef CONFIG_PER_VMA_LOCK
5637 	/*
5638 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5639 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5640 	 */
5641 	if (WARN_ON_ONCE((*flags &
5642 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5643 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5644 		return VM_FAULT_SIGSEGV;
5645 #endif
5646 
5647 	return 0;
5648 }
5649 
5650 /*
5651  * By the time we get here, we already hold the mm semaphore
5652  *
5653  * The mmap_lock may have been released depending on flags and our
5654  * return value.  See filemap_fault() and __folio_lock_or_retry().
5655  */
5656 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5657 			   unsigned int flags, struct pt_regs *regs)
5658 {
5659 	/* If the fault handler drops the mmap_lock, vma may be freed */
5660 	struct mm_struct *mm = vma->vm_mm;
5661 	vm_fault_t ret;
5662 
5663 	__set_current_state(TASK_RUNNING);
5664 
5665 	ret = sanitize_fault_flags(vma, &flags);
5666 	if (ret)
5667 		goto out;
5668 
5669 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5670 					    flags & FAULT_FLAG_INSTRUCTION,
5671 					    flags & FAULT_FLAG_REMOTE)) {
5672 		ret = VM_FAULT_SIGSEGV;
5673 		goto out;
5674 	}
5675 
5676 	/*
5677 	 * Enable the memcg OOM handling for faults triggered in user
5678 	 * space.  Kernel faults are handled more gracefully.
5679 	 */
5680 	if (flags & FAULT_FLAG_USER)
5681 		mem_cgroup_enter_user_fault();
5682 
5683 	lru_gen_enter_fault(vma);
5684 
5685 	if (unlikely(is_vm_hugetlb_page(vma)))
5686 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5687 	else
5688 		ret = __handle_mm_fault(vma, address, flags);
5689 
5690 	lru_gen_exit_fault();
5691 
5692 	if (flags & FAULT_FLAG_USER) {
5693 		mem_cgroup_exit_user_fault();
5694 		/*
5695 		 * The task may have entered a memcg OOM situation but
5696 		 * if the allocation error was handled gracefully (no
5697 		 * VM_FAULT_OOM), there is no need to kill anything.
5698 		 * Just clean up the OOM state peacefully.
5699 		 */
5700 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5701 			mem_cgroup_oom_synchronize(false);
5702 	}
5703 out:
5704 	mm_account_fault(mm, regs, address, flags, ret);
5705 
5706 	return ret;
5707 }
5708 EXPORT_SYMBOL_GPL(handle_mm_fault);
5709 
5710 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5711 #include <linux/extable.h>
5712 
5713 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5714 {
5715 	if (likely(mmap_read_trylock(mm)))
5716 		return true;
5717 
5718 	if (regs && !user_mode(regs)) {
5719 		unsigned long ip = exception_ip(regs);
5720 		if (!search_exception_tables(ip))
5721 			return false;
5722 	}
5723 
5724 	return !mmap_read_lock_killable(mm);
5725 }
5726 
5727 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5728 {
5729 	/*
5730 	 * We don't have this operation yet.
5731 	 *
5732 	 * It should be easy enough to do: it's basically a
5733 	 *    atomic_long_try_cmpxchg_acquire()
5734 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5735 	 * it also needs the proper lockdep magic etc.
5736 	 */
5737 	return false;
5738 }
5739 
5740 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5741 {
5742 	mmap_read_unlock(mm);
5743 	if (regs && !user_mode(regs)) {
5744 		unsigned long ip = exception_ip(regs);
5745 		if (!search_exception_tables(ip))
5746 			return false;
5747 	}
5748 	return !mmap_write_lock_killable(mm);
5749 }
5750 
5751 /*
5752  * Helper for page fault handling.
5753  *
5754  * This is kind of equivalend to "mmap_read_lock()" followed
5755  * by "find_extend_vma()", except it's a lot more careful about
5756  * the locking (and will drop the lock on failure).
5757  *
5758  * For example, if we have a kernel bug that causes a page
5759  * fault, we don't want to just use mmap_read_lock() to get
5760  * the mm lock, because that would deadlock if the bug were
5761  * to happen while we're holding the mm lock for writing.
5762  *
5763  * So this checks the exception tables on kernel faults in
5764  * order to only do this all for instructions that are actually
5765  * expected to fault.
5766  *
5767  * We can also actually take the mm lock for writing if we
5768  * need to extend the vma, which helps the VM layer a lot.
5769  */
5770 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5771 			unsigned long addr, struct pt_regs *regs)
5772 {
5773 	struct vm_area_struct *vma;
5774 
5775 	if (!get_mmap_lock_carefully(mm, regs))
5776 		return NULL;
5777 
5778 	vma = find_vma(mm, addr);
5779 	if (likely(vma && (vma->vm_start <= addr)))
5780 		return vma;
5781 
5782 	/*
5783 	 * Well, dang. We might still be successful, but only
5784 	 * if we can extend a vma to do so.
5785 	 */
5786 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5787 		mmap_read_unlock(mm);
5788 		return NULL;
5789 	}
5790 
5791 	/*
5792 	 * We can try to upgrade the mmap lock atomically,
5793 	 * in which case we can continue to use the vma
5794 	 * we already looked up.
5795 	 *
5796 	 * Otherwise we'll have to drop the mmap lock and
5797 	 * re-take it, and also look up the vma again,
5798 	 * re-checking it.
5799 	 */
5800 	if (!mmap_upgrade_trylock(mm)) {
5801 		if (!upgrade_mmap_lock_carefully(mm, regs))
5802 			return NULL;
5803 
5804 		vma = find_vma(mm, addr);
5805 		if (!vma)
5806 			goto fail;
5807 		if (vma->vm_start <= addr)
5808 			goto success;
5809 		if (!(vma->vm_flags & VM_GROWSDOWN))
5810 			goto fail;
5811 	}
5812 
5813 	if (expand_stack_locked(vma, addr))
5814 		goto fail;
5815 
5816 success:
5817 	mmap_write_downgrade(mm);
5818 	return vma;
5819 
5820 fail:
5821 	mmap_write_unlock(mm);
5822 	return NULL;
5823 }
5824 #endif
5825 
5826 #ifdef CONFIG_PER_VMA_LOCK
5827 /*
5828  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5829  * stable and not isolated. If the VMA is not found or is being modified the
5830  * function returns NULL.
5831  */
5832 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5833 					  unsigned long address)
5834 {
5835 	MA_STATE(mas, &mm->mm_mt, address, address);
5836 	struct vm_area_struct *vma;
5837 
5838 	rcu_read_lock();
5839 retry:
5840 	vma = mas_walk(&mas);
5841 	if (!vma)
5842 		goto inval;
5843 
5844 	if (!vma_start_read(vma))
5845 		goto inval;
5846 
5847 	/* Check since vm_start/vm_end might change before we lock the VMA */
5848 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5849 		goto inval_end_read;
5850 
5851 	/* Check if the VMA got isolated after we found it */
5852 	if (vma->detached) {
5853 		vma_end_read(vma);
5854 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5855 		/* The area was replaced with another one */
5856 		goto retry;
5857 	}
5858 
5859 	rcu_read_unlock();
5860 	return vma;
5861 
5862 inval_end_read:
5863 	vma_end_read(vma);
5864 inval:
5865 	rcu_read_unlock();
5866 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5867 	return NULL;
5868 }
5869 #endif /* CONFIG_PER_VMA_LOCK */
5870 
5871 #ifndef __PAGETABLE_P4D_FOLDED
5872 /*
5873  * Allocate p4d page table.
5874  * We've already handled the fast-path in-line.
5875  */
5876 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5877 {
5878 	p4d_t *new = p4d_alloc_one(mm, address);
5879 	if (!new)
5880 		return -ENOMEM;
5881 
5882 	spin_lock(&mm->page_table_lock);
5883 	if (pgd_present(*pgd)) {	/* Another has populated it */
5884 		p4d_free(mm, new);
5885 	} else {
5886 		smp_wmb(); /* See comment in pmd_install() */
5887 		pgd_populate(mm, pgd, new);
5888 	}
5889 	spin_unlock(&mm->page_table_lock);
5890 	return 0;
5891 }
5892 #endif /* __PAGETABLE_P4D_FOLDED */
5893 
5894 #ifndef __PAGETABLE_PUD_FOLDED
5895 /*
5896  * Allocate page upper directory.
5897  * We've already handled the fast-path in-line.
5898  */
5899 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5900 {
5901 	pud_t *new = pud_alloc_one(mm, address);
5902 	if (!new)
5903 		return -ENOMEM;
5904 
5905 	spin_lock(&mm->page_table_lock);
5906 	if (!p4d_present(*p4d)) {
5907 		mm_inc_nr_puds(mm);
5908 		smp_wmb(); /* See comment in pmd_install() */
5909 		p4d_populate(mm, p4d, new);
5910 	} else	/* Another has populated it */
5911 		pud_free(mm, new);
5912 	spin_unlock(&mm->page_table_lock);
5913 	return 0;
5914 }
5915 #endif /* __PAGETABLE_PUD_FOLDED */
5916 
5917 #ifndef __PAGETABLE_PMD_FOLDED
5918 /*
5919  * Allocate page middle directory.
5920  * We've already handled the fast-path in-line.
5921  */
5922 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5923 {
5924 	spinlock_t *ptl;
5925 	pmd_t *new = pmd_alloc_one(mm, address);
5926 	if (!new)
5927 		return -ENOMEM;
5928 
5929 	ptl = pud_lock(mm, pud);
5930 	if (!pud_present(*pud)) {
5931 		mm_inc_nr_pmds(mm);
5932 		smp_wmb(); /* See comment in pmd_install() */
5933 		pud_populate(mm, pud, new);
5934 	} else {	/* Another has populated it */
5935 		pmd_free(mm, new);
5936 	}
5937 	spin_unlock(ptl);
5938 	return 0;
5939 }
5940 #endif /* __PAGETABLE_PMD_FOLDED */
5941 
5942 /**
5943  * follow_pte - look up PTE at a user virtual address
5944  * @vma: the memory mapping
5945  * @address: user virtual address
5946  * @ptepp: location to store found PTE
5947  * @ptlp: location to store the lock for the PTE
5948  *
5949  * On a successful return, the pointer to the PTE is stored in @ptepp;
5950  * the corresponding lock is taken and its location is stored in @ptlp.
5951  *
5952  * The contents of the PTE are only stable until @ptlp is released using
5953  * pte_unmap_unlock(). This function will fail if the PTE is non-present.
5954  * Present PTEs may include PTEs that map refcounted pages, such as
5955  * anonymous folios in COW mappings.
5956  *
5957  * Callers must be careful when relying on PTE content after
5958  * pte_unmap_unlock(). Especially if the PTE maps a refcounted page,
5959  * callers must protect against invalidation with MMU notifiers; otherwise
5960  * access to the PFN at a later point in time can trigger use-after-free.
5961  *
5962  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5963  * should be taken for read.
5964  *
5965  * This function must not be used to modify PTE content.
5966  *
5967  * Return: zero on success, -ve otherwise.
5968  */
5969 int follow_pte(struct vm_area_struct *vma, unsigned long address,
5970 	       pte_t **ptepp, spinlock_t **ptlp)
5971 {
5972 	struct mm_struct *mm = vma->vm_mm;
5973 	pgd_t *pgd;
5974 	p4d_t *p4d;
5975 	pud_t *pud;
5976 	pmd_t *pmd;
5977 	pte_t *ptep;
5978 
5979 	mmap_assert_locked(mm);
5980 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5981 		goto out;
5982 
5983 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5984 		goto out;
5985 
5986 	pgd = pgd_offset(mm, address);
5987 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5988 		goto out;
5989 
5990 	p4d = p4d_offset(pgd, address);
5991 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5992 		goto out;
5993 
5994 	pud = pud_offset(p4d, address);
5995 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5996 		goto out;
5997 
5998 	pmd = pmd_offset(pud, address);
5999 	VM_BUG_ON(pmd_trans_huge(*pmd));
6000 
6001 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
6002 	if (!ptep)
6003 		goto out;
6004 	if (!pte_present(ptep_get(ptep)))
6005 		goto unlock;
6006 	*ptepp = ptep;
6007 	return 0;
6008 unlock:
6009 	pte_unmap_unlock(ptep, *ptlp);
6010 out:
6011 	return -EINVAL;
6012 }
6013 EXPORT_SYMBOL_GPL(follow_pte);
6014 
6015 #ifdef CONFIG_HAVE_IOREMAP_PROT
6016 /**
6017  * generic_access_phys - generic implementation for iomem mmap access
6018  * @vma: the vma to access
6019  * @addr: userspace address, not relative offset within @vma
6020  * @buf: buffer to read/write
6021  * @len: length of transfer
6022  * @write: set to FOLL_WRITE when writing, otherwise reading
6023  *
6024  * This is a generic implementation for &vm_operations_struct.access for an
6025  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6026  * not page based.
6027  */
6028 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6029 			void *buf, int len, int write)
6030 {
6031 	resource_size_t phys_addr;
6032 	unsigned long prot = 0;
6033 	void __iomem *maddr;
6034 	pte_t *ptep, pte;
6035 	spinlock_t *ptl;
6036 	int offset = offset_in_page(addr);
6037 	int ret = -EINVAL;
6038 
6039 retry:
6040 	if (follow_pte(vma, addr, &ptep, &ptl))
6041 		return -EINVAL;
6042 	pte = ptep_get(ptep);
6043 	pte_unmap_unlock(ptep, ptl);
6044 
6045 	prot = pgprot_val(pte_pgprot(pte));
6046 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6047 
6048 	if ((write & FOLL_WRITE) && !pte_write(pte))
6049 		return -EINVAL;
6050 
6051 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6052 	if (!maddr)
6053 		return -ENOMEM;
6054 
6055 	if (follow_pte(vma, addr, &ptep, &ptl))
6056 		goto out_unmap;
6057 
6058 	if (!pte_same(pte, ptep_get(ptep))) {
6059 		pte_unmap_unlock(ptep, ptl);
6060 		iounmap(maddr);
6061 
6062 		goto retry;
6063 	}
6064 
6065 	if (write)
6066 		memcpy_toio(maddr + offset, buf, len);
6067 	else
6068 		memcpy_fromio(buf, maddr + offset, len);
6069 	ret = len;
6070 	pte_unmap_unlock(ptep, ptl);
6071 out_unmap:
6072 	iounmap(maddr);
6073 
6074 	return ret;
6075 }
6076 EXPORT_SYMBOL_GPL(generic_access_phys);
6077 #endif
6078 
6079 /*
6080  * Access another process' address space as given in mm.
6081  */
6082 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6083 			      void *buf, int len, unsigned int gup_flags)
6084 {
6085 	void *old_buf = buf;
6086 	int write = gup_flags & FOLL_WRITE;
6087 
6088 	if (mmap_read_lock_killable(mm))
6089 		return 0;
6090 
6091 	/* Untag the address before looking up the VMA */
6092 	addr = untagged_addr_remote(mm, addr);
6093 
6094 	/* Avoid triggering the temporary warning in __get_user_pages */
6095 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6096 		return 0;
6097 
6098 	/* ignore errors, just check how much was successfully transferred */
6099 	while (len) {
6100 		int bytes, offset;
6101 		void *maddr;
6102 		struct vm_area_struct *vma = NULL;
6103 		struct page *page = get_user_page_vma_remote(mm, addr,
6104 							     gup_flags, &vma);
6105 
6106 		if (IS_ERR(page)) {
6107 			/* We might need to expand the stack to access it */
6108 			vma = vma_lookup(mm, addr);
6109 			if (!vma) {
6110 				vma = expand_stack(mm, addr);
6111 
6112 				/* mmap_lock was dropped on failure */
6113 				if (!vma)
6114 					return buf - old_buf;
6115 
6116 				/* Try again if stack expansion worked */
6117 				continue;
6118 			}
6119 
6120 			/*
6121 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6122 			 * we can access using slightly different code.
6123 			 */
6124 			bytes = 0;
6125 #ifdef CONFIG_HAVE_IOREMAP_PROT
6126 			if (vma->vm_ops && vma->vm_ops->access)
6127 				bytes = vma->vm_ops->access(vma, addr, buf,
6128 							    len, write);
6129 #endif
6130 			if (bytes <= 0)
6131 				break;
6132 		} else {
6133 			bytes = len;
6134 			offset = addr & (PAGE_SIZE-1);
6135 			if (bytes > PAGE_SIZE-offset)
6136 				bytes = PAGE_SIZE-offset;
6137 
6138 			maddr = kmap_local_page(page);
6139 			if (write) {
6140 				copy_to_user_page(vma, page, addr,
6141 						  maddr + offset, buf, bytes);
6142 				set_page_dirty_lock(page);
6143 			} else {
6144 				copy_from_user_page(vma, page, addr,
6145 						    buf, maddr + offset, bytes);
6146 			}
6147 			unmap_and_put_page(page, maddr);
6148 		}
6149 		len -= bytes;
6150 		buf += bytes;
6151 		addr += bytes;
6152 	}
6153 	mmap_read_unlock(mm);
6154 
6155 	return buf - old_buf;
6156 }
6157 
6158 /**
6159  * access_remote_vm - access another process' address space
6160  * @mm:		the mm_struct of the target address space
6161  * @addr:	start address to access
6162  * @buf:	source or destination buffer
6163  * @len:	number of bytes to transfer
6164  * @gup_flags:	flags modifying lookup behaviour
6165  *
6166  * The caller must hold a reference on @mm.
6167  *
6168  * Return: number of bytes copied from source to destination.
6169  */
6170 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6171 		void *buf, int len, unsigned int gup_flags)
6172 {
6173 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6174 }
6175 
6176 /*
6177  * Access another process' address space.
6178  * Source/target buffer must be kernel space,
6179  * Do not walk the page table directly, use get_user_pages
6180  */
6181 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6182 		void *buf, int len, unsigned int gup_flags)
6183 {
6184 	struct mm_struct *mm;
6185 	int ret;
6186 
6187 	mm = get_task_mm(tsk);
6188 	if (!mm)
6189 		return 0;
6190 
6191 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6192 
6193 	mmput(mm);
6194 
6195 	return ret;
6196 }
6197 EXPORT_SYMBOL_GPL(access_process_vm);
6198 
6199 /*
6200  * Print the name of a VMA.
6201  */
6202 void print_vma_addr(char *prefix, unsigned long ip)
6203 {
6204 	struct mm_struct *mm = current->mm;
6205 	struct vm_area_struct *vma;
6206 
6207 	/*
6208 	 * we might be running from an atomic context so we cannot sleep
6209 	 */
6210 	if (!mmap_read_trylock(mm))
6211 		return;
6212 
6213 	vma = vma_lookup(mm, ip);
6214 	if (vma && vma->vm_file) {
6215 		struct file *f = vma->vm_file;
6216 		ip -= vma->vm_start;
6217 		ip += vma->vm_pgoff << PAGE_SHIFT;
6218 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6219 				vma->vm_start,
6220 				vma->vm_end - vma->vm_start);
6221 	}
6222 	mmap_read_unlock(mm);
6223 }
6224 
6225 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6226 void __might_fault(const char *file, int line)
6227 {
6228 	if (pagefault_disabled())
6229 		return;
6230 	__might_sleep(file, line);
6231 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6232 	if (current->mm)
6233 		might_lock_read(&current->mm->mmap_lock);
6234 #endif
6235 }
6236 EXPORT_SYMBOL(__might_fault);
6237 #endif
6238 
6239 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6240 /*
6241  * Process all subpages of the specified huge page with the specified
6242  * operation.  The target subpage will be processed last to keep its
6243  * cache lines hot.
6244  */
6245 static inline int process_huge_page(
6246 	unsigned long addr_hint, unsigned int pages_per_huge_page,
6247 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6248 	void *arg)
6249 {
6250 	int i, n, base, l, ret;
6251 	unsigned long addr = addr_hint &
6252 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6253 
6254 	/* Process target subpage last to keep its cache lines hot */
6255 	might_sleep();
6256 	n = (addr_hint - addr) / PAGE_SIZE;
6257 	if (2 * n <= pages_per_huge_page) {
6258 		/* If target subpage in first half of huge page */
6259 		base = 0;
6260 		l = n;
6261 		/* Process subpages at the end of huge page */
6262 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6263 			cond_resched();
6264 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6265 			if (ret)
6266 				return ret;
6267 		}
6268 	} else {
6269 		/* If target subpage in second half of huge page */
6270 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6271 		l = pages_per_huge_page - n;
6272 		/* Process subpages at the begin of huge page */
6273 		for (i = 0; i < base; i++) {
6274 			cond_resched();
6275 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6276 			if (ret)
6277 				return ret;
6278 		}
6279 	}
6280 	/*
6281 	 * Process remaining subpages in left-right-left-right pattern
6282 	 * towards the target subpage
6283 	 */
6284 	for (i = 0; i < l; i++) {
6285 		int left_idx = base + i;
6286 		int right_idx = base + 2 * l - 1 - i;
6287 
6288 		cond_resched();
6289 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6290 		if (ret)
6291 			return ret;
6292 		cond_resched();
6293 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6294 		if (ret)
6295 			return ret;
6296 	}
6297 	return 0;
6298 }
6299 
6300 static void clear_gigantic_page(struct page *page,
6301 				unsigned long addr,
6302 				unsigned int pages_per_huge_page)
6303 {
6304 	int i;
6305 	struct page *p;
6306 
6307 	might_sleep();
6308 	for (i = 0; i < pages_per_huge_page; i++) {
6309 		p = nth_page(page, i);
6310 		cond_resched();
6311 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6312 	}
6313 }
6314 
6315 static int clear_subpage(unsigned long addr, int idx, void *arg)
6316 {
6317 	struct page *page = arg;
6318 
6319 	clear_user_highpage(nth_page(page, idx), addr);
6320 	return 0;
6321 }
6322 
6323 void clear_huge_page(struct page *page,
6324 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6325 {
6326 	unsigned long addr = addr_hint &
6327 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6328 
6329 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6330 		clear_gigantic_page(page, addr, pages_per_huge_page);
6331 		return;
6332 	}
6333 
6334 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6335 }
6336 
6337 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6338 				     unsigned long addr,
6339 				     struct vm_area_struct *vma,
6340 				     unsigned int pages_per_huge_page)
6341 {
6342 	int i;
6343 	struct page *dst_page;
6344 	struct page *src_page;
6345 
6346 	for (i = 0; i < pages_per_huge_page; i++) {
6347 		dst_page = folio_page(dst, i);
6348 		src_page = folio_page(src, i);
6349 
6350 		cond_resched();
6351 		if (copy_mc_user_highpage(dst_page, src_page,
6352 					  addr + i*PAGE_SIZE, vma)) {
6353 			memory_failure_queue(page_to_pfn(src_page), 0);
6354 			return -EHWPOISON;
6355 		}
6356 	}
6357 	return 0;
6358 }
6359 
6360 struct copy_subpage_arg {
6361 	struct page *dst;
6362 	struct page *src;
6363 	struct vm_area_struct *vma;
6364 };
6365 
6366 static int copy_subpage(unsigned long addr, int idx, void *arg)
6367 {
6368 	struct copy_subpage_arg *copy_arg = arg;
6369 	struct page *dst = nth_page(copy_arg->dst, idx);
6370 	struct page *src = nth_page(copy_arg->src, idx);
6371 
6372 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6373 		memory_failure_queue(page_to_pfn(src), 0);
6374 		return -EHWPOISON;
6375 	}
6376 	return 0;
6377 }
6378 
6379 int copy_user_large_folio(struct folio *dst, struct folio *src,
6380 			  unsigned long addr_hint, struct vm_area_struct *vma)
6381 {
6382 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6383 	unsigned long addr = addr_hint &
6384 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6385 	struct copy_subpage_arg arg = {
6386 		.dst = &dst->page,
6387 		.src = &src->page,
6388 		.vma = vma,
6389 	};
6390 
6391 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6392 		return copy_user_gigantic_page(dst, src, addr, vma,
6393 					       pages_per_huge_page);
6394 
6395 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6396 }
6397 
6398 long copy_folio_from_user(struct folio *dst_folio,
6399 			   const void __user *usr_src,
6400 			   bool allow_pagefault)
6401 {
6402 	void *kaddr;
6403 	unsigned long i, rc = 0;
6404 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6405 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6406 	struct page *subpage;
6407 
6408 	for (i = 0; i < nr_pages; i++) {
6409 		subpage = folio_page(dst_folio, i);
6410 		kaddr = kmap_local_page(subpage);
6411 		if (!allow_pagefault)
6412 			pagefault_disable();
6413 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6414 		if (!allow_pagefault)
6415 			pagefault_enable();
6416 		kunmap_local(kaddr);
6417 
6418 		ret_val -= (PAGE_SIZE - rc);
6419 		if (rc)
6420 			break;
6421 
6422 		flush_dcache_page(subpage);
6423 
6424 		cond_resched();
6425 	}
6426 	return ret_val;
6427 }
6428 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6429 
6430 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6431 
6432 static struct kmem_cache *page_ptl_cachep;
6433 
6434 void __init ptlock_cache_init(void)
6435 {
6436 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6437 			SLAB_PANIC, NULL);
6438 }
6439 
6440 bool ptlock_alloc(struct ptdesc *ptdesc)
6441 {
6442 	spinlock_t *ptl;
6443 
6444 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6445 	if (!ptl)
6446 		return false;
6447 	ptdesc->ptl = ptl;
6448 	return true;
6449 }
6450 
6451 void ptlock_free(struct ptdesc *ptdesc)
6452 {
6453 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6454 }
6455 #endif
6456 
6457 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6458 {
6459 	if (is_vm_hugetlb_page(vma))
6460 		hugetlb_vma_lock_read(vma);
6461 }
6462 
6463 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6464 {
6465 	if (is_vm_hugetlb_page(vma))
6466 		hugetlb_vma_unlock_read(vma);
6467 }
6468