xref: /linux/mm/memory.c (revision aeb3f46252e26acdc60a1a8e31fb1ca6319d9a07)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59 
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62 
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67 
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71 
72 unsigned long num_physpages;
73 /*
74  * A number of key systems in x86 including ioremap() rely on the assumption
75  * that high_memory defines the upper bound on direct map memory, then end
76  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78  * and ZONE_HIGHMEM.
79  */
80 void * high_memory;
81 
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84 
85 int randomize_va_space __read_mostly = 1;
86 
87 static int __init disable_randmaps(char *s)
88 {
89 	randomize_va_space = 0;
90 	return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93 
94 
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100 
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103 	pgd_ERROR(*pgd);
104 	pgd_clear(pgd);
105 }
106 
107 void pud_clear_bad(pud_t *pud)
108 {
109 	pud_ERROR(*pud);
110 	pud_clear(pud);
111 }
112 
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115 	pmd_ERROR(*pmd);
116 	pmd_clear(pmd);
117 }
118 
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125 	struct page *page = pmd_page(*pmd);
126 	pmd_clear(pmd);
127 	pte_lock_deinit(page);
128 	pte_free_tlb(tlb, page);
129 	dec_zone_page_state(page, NR_PAGETABLE);
130 	tlb->mm->nr_ptes--;
131 }
132 
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 				unsigned long addr, unsigned long end,
135 				unsigned long floor, unsigned long ceiling)
136 {
137 	pmd_t *pmd;
138 	unsigned long next;
139 	unsigned long start;
140 
141 	start = addr;
142 	pmd = pmd_offset(pud, addr);
143 	do {
144 		next = pmd_addr_end(addr, end);
145 		if (pmd_none_or_clear_bad(pmd))
146 			continue;
147 		free_pte_range(tlb, pmd);
148 	} while (pmd++, addr = next, addr != end);
149 
150 	start &= PUD_MASK;
151 	if (start < floor)
152 		return;
153 	if (ceiling) {
154 		ceiling &= PUD_MASK;
155 		if (!ceiling)
156 			return;
157 	}
158 	if (end - 1 > ceiling - 1)
159 		return;
160 
161 	pmd = pmd_offset(pud, start);
162 	pud_clear(pud);
163 	pmd_free_tlb(tlb, pmd);
164 }
165 
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 				unsigned long addr, unsigned long end,
168 				unsigned long floor, unsigned long ceiling)
169 {
170 	pud_t *pud;
171 	unsigned long next;
172 	unsigned long start;
173 
174 	start = addr;
175 	pud = pud_offset(pgd, addr);
176 	do {
177 		next = pud_addr_end(addr, end);
178 		if (pud_none_or_clear_bad(pud))
179 			continue;
180 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 	} while (pud++, addr = next, addr != end);
182 
183 	start &= PGDIR_MASK;
184 	if (start < floor)
185 		return;
186 	if (ceiling) {
187 		ceiling &= PGDIR_MASK;
188 		if (!ceiling)
189 			return;
190 	}
191 	if (end - 1 > ceiling - 1)
192 		return;
193 
194 	pud = pud_offset(pgd, start);
195 	pgd_clear(pgd);
196 	pud_free_tlb(tlb, pud);
197 }
198 
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205 			unsigned long addr, unsigned long end,
206 			unsigned long floor, unsigned long ceiling)
207 {
208 	pgd_t *pgd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	/*
213 	 * The next few lines have given us lots of grief...
214 	 *
215 	 * Why are we testing PMD* at this top level?  Because often
216 	 * there will be no work to do at all, and we'd prefer not to
217 	 * go all the way down to the bottom just to discover that.
218 	 *
219 	 * Why all these "- 1"s?  Because 0 represents both the bottom
220 	 * of the address space and the top of it (using -1 for the
221 	 * top wouldn't help much: the masks would do the wrong thing).
222 	 * The rule is that addr 0 and floor 0 refer to the bottom of
223 	 * the address space, but end 0 and ceiling 0 refer to the top
224 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 	 * that end 0 case should be mythical).
226 	 *
227 	 * Wherever addr is brought up or ceiling brought down, we must
228 	 * be careful to reject "the opposite 0" before it confuses the
229 	 * subsequent tests.  But what about where end is brought down
230 	 * by PMD_SIZE below? no, end can't go down to 0 there.
231 	 *
232 	 * Whereas we round start (addr) and ceiling down, by different
233 	 * masks at different levels, in order to test whether a table
234 	 * now has no other vmas using it, so can be freed, we don't
235 	 * bother to round floor or end up - the tests don't need that.
236 	 */
237 
238 	addr &= PMD_MASK;
239 	if (addr < floor) {
240 		addr += PMD_SIZE;
241 		if (!addr)
242 			return;
243 	}
244 	if (ceiling) {
245 		ceiling &= PMD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		end -= PMD_SIZE;
251 	if (addr > end - 1)
252 		return;
253 
254 	start = addr;
255 	pgd = pgd_offset((*tlb)->mm, addr);
256 	do {
257 		next = pgd_addr_end(addr, end);
258 		if (pgd_none_or_clear_bad(pgd))
259 			continue;
260 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 	} while (pgd++, addr = next, addr != end);
262 
263 	if (!(*tlb)->fullmm)
264 		flush_tlb_pgtables((*tlb)->mm, start, end);
265 }
266 
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 		unsigned long floor, unsigned long ceiling)
269 {
270 	while (vma) {
271 		struct vm_area_struct *next = vma->vm_next;
272 		unsigned long addr = vma->vm_start;
273 
274 		/*
275 		 * Hide vma from rmap and vmtruncate before freeing pgtables
276 		 */
277 		anon_vma_unlink(vma);
278 		unlink_file_vma(vma);
279 
280 		if (is_vm_hugetlb_page(vma)) {
281 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 				floor, next? next->vm_start: ceiling);
283 		} else {
284 			/*
285 			 * Optimization: gather nearby vmas into one call down
286 			 */
287 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 			       && !is_vm_hugetlb_page(next)) {
289 				vma = next;
290 				next = vma->vm_next;
291 				anon_vma_unlink(vma);
292 				unlink_file_vma(vma);
293 			}
294 			free_pgd_range(tlb, addr, vma->vm_end,
295 				floor, next? next->vm_start: ceiling);
296 		}
297 		vma = next;
298 	}
299 }
300 
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
302 {
303 	struct page *new = pte_alloc_one(mm, address);
304 	if (!new)
305 		return -ENOMEM;
306 
307 	pte_lock_init(new);
308 	spin_lock(&mm->page_table_lock);
309 	if (pmd_present(*pmd)) {	/* Another has populated it */
310 		pte_lock_deinit(new);
311 		pte_free(new);
312 	} else {
313 		mm->nr_ptes++;
314 		inc_zone_page_state(new, NR_PAGETABLE);
315 		pmd_populate(mm, pmd, new);
316 	}
317 	spin_unlock(&mm->page_table_lock);
318 	return 0;
319 }
320 
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
322 {
323 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 	if (!new)
325 		return -ENOMEM;
326 
327 	spin_lock(&init_mm.page_table_lock);
328 	if (pmd_present(*pmd))		/* Another has populated it */
329 		pte_free_kernel(new);
330 	else
331 		pmd_populate_kernel(&init_mm, pmd, new);
332 	spin_unlock(&init_mm.page_table_lock);
333 	return 0;
334 }
335 
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337 {
338 	if (file_rss)
339 		add_mm_counter(mm, file_rss, file_rss);
340 	if (anon_rss)
341 		add_mm_counter(mm, anon_rss, anon_rss);
342 }
343 
344 /*
345  * This function is called to print an error when a bad pte
346  * is found. For example, we might have a PFN-mapped pte in
347  * a region that doesn't allow it.
348  *
349  * The calling function must still handle the error.
350  */
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352 {
353 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 			"vm_flags = %lx, vaddr = %lx\n",
355 		(long long)pte_val(pte),
356 		(vma->vm_mm == current->mm ? current->comm : "???"),
357 		vma->vm_flags, vaddr);
358 	dump_stack();
359 }
360 
361 static inline int is_cow_mapping(unsigned int flags)
362 {
363 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364 }
365 
366 /*
367  * This function gets the "struct page" associated with a pte.
368  *
369  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370  * will have each page table entry just pointing to a raw page frame
371  * number, and as far as the VM layer is concerned, those do not have
372  * pages associated with them - even if the PFN might point to memory
373  * that otherwise is perfectly fine and has a "struct page".
374  *
375  * The way we recognize those mappings is through the rules set up
376  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377  * and the vm_pgoff will point to the first PFN mapped: thus every
378  * page that is a raw mapping will always honor the rule
379  *
380  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
381  *
382  * and if that isn't true, the page has been COW'ed (in which case it
383  * _does_ have a "struct page" associated with it even if it is in a
384  * VM_PFNMAP range).
385  */
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
387 {
388 	unsigned long pfn = pte_pfn(pte);
389 
390 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 		if (pfn == vma->vm_pgoff + off)
393 			return NULL;
394 		if (!is_cow_mapping(vma->vm_flags))
395 			return NULL;
396 	}
397 
398 	/*
399 	 * Add some anal sanity checks for now. Eventually,
400 	 * we should just do "return pfn_to_page(pfn)", but
401 	 * in the meantime we check that we get a valid pfn,
402 	 * and that the resulting page looks ok.
403 	 */
404 	if (unlikely(!pfn_valid(pfn))) {
405 		print_bad_pte(vma, pte, addr);
406 		return NULL;
407 	}
408 
409 	/*
410 	 * NOTE! We still have PageReserved() pages in the page
411 	 * tables.
412 	 *
413 	 * The PAGE_ZERO() pages and various VDSO mappings can
414 	 * cause them to exist.
415 	 */
416 	return pfn_to_page(pfn);
417 }
418 
419 /*
420  * copy one vm_area from one task to the other. Assumes the page tables
421  * already present in the new task to be cleared in the whole range
422  * covered by this vma.
423  */
424 
425 static inline void
426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
427 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
428 		unsigned long addr, int *rss)
429 {
430 	unsigned long vm_flags = vma->vm_flags;
431 	pte_t pte = *src_pte;
432 	struct page *page;
433 
434 	/* pte contains position in swap or file, so copy. */
435 	if (unlikely(!pte_present(pte))) {
436 		if (!pte_file(pte)) {
437 			swp_entry_t entry = pte_to_swp_entry(pte);
438 
439 			swap_duplicate(entry);
440 			/* make sure dst_mm is on swapoff's mmlist. */
441 			if (unlikely(list_empty(&dst_mm->mmlist))) {
442 				spin_lock(&mmlist_lock);
443 				if (list_empty(&dst_mm->mmlist))
444 					list_add(&dst_mm->mmlist,
445 						 &src_mm->mmlist);
446 				spin_unlock(&mmlist_lock);
447 			}
448 			if (is_write_migration_entry(entry) &&
449 					is_cow_mapping(vm_flags)) {
450 				/*
451 				 * COW mappings require pages in both parent
452 				 * and child to be set to read.
453 				 */
454 				make_migration_entry_read(&entry);
455 				pte = swp_entry_to_pte(entry);
456 				set_pte_at(src_mm, addr, src_pte, pte);
457 			}
458 		}
459 		goto out_set_pte;
460 	}
461 
462 	/*
463 	 * If it's a COW mapping, write protect it both
464 	 * in the parent and the child
465 	 */
466 	if (is_cow_mapping(vm_flags)) {
467 		ptep_set_wrprotect(src_mm, addr, src_pte);
468 		pte = pte_wrprotect(pte);
469 	}
470 
471 	/*
472 	 * If it's a shared mapping, mark it clean in
473 	 * the child
474 	 */
475 	if (vm_flags & VM_SHARED)
476 		pte = pte_mkclean(pte);
477 	pte = pte_mkold(pte);
478 
479 	page = vm_normal_page(vma, addr, pte);
480 	if (page) {
481 		get_page(page);
482 		page_dup_rmap(page, vma, addr);
483 		rss[!!PageAnon(page)]++;
484 	}
485 
486 out_set_pte:
487 	set_pte_at(dst_mm, addr, dst_pte, pte);
488 }
489 
490 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
492 		unsigned long addr, unsigned long end)
493 {
494 	pte_t *src_pte, *dst_pte;
495 	spinlock_t *src_ptl, *dst_ptl;
496 	int progress = 0;
497 	int rss[2];
498 
499 again:
500 	rss[1] = rss[0] = 0;
501 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
502 	if (!dst_pte)
503 		return -ENOMEM;
504 	src_pte = pte_offset_map_nested(src_pmd, addr);
505 	src_ptl = pte_lockptr(src_mm, src_pmd);
506 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
507 	arch_enter_lazy_mmu_mode();
508 
509 	do {
510 		/*
511 		 * We are holding two locks at this point - either of them
512 		 * could generate latencies in another task on another CPU.
513 		 */
514 		if (progress >= 32) {
515 			progress = 0;
516 			if (need_resched() ||
517 			    need_lockbreak(src_ptl) ||
518 			    need_lockbreak(dst_ptl))
519 				break;
520 		}
521 		if (pte_none(*src_pte)) {
522 			progress++;
523 			continue;
524 		}
525 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
526 		progress += 8;
527 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
528 
529 	arch_leave_lazy_mmu_mode();
530 	spin_unlock(src_ptl);
531 	pte_unmap_nested(src_pte - 1);
532 	add_mm_rss(dst_mm, rss[0], rss[1]);
533 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
534 	cond_resched();
535 	if (addr != end)
536 		goto again;
537 	return 0;
538 }
539 
540 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
541 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
542 		unsigned long addr, unsigned long end)
543 {
544 	pmd_t *src_pmd, *dst_pmd;
545 	unsigned long next;
546 
547 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
548 	if (!dst_pmd)
549 		return -ENOMEM;
550 	src_pmd = pmd_offset(src_pud, addr);
551 	do {
552 		next = pmd_addr_end(addr, end);
553 		if (pmd_none_or_clear_bad(src_pmd))
554 			continue;
555 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
556 						vma, addr, next))
557 			return -ENOMEM;
558 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
559 	return 0;
560 }
561 
562 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
563 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
564 		unsigned long addr, unsigned long end)
565 {
566 	pud_t *src_pud, *dst_pud;
567 	unsigned long next;
568 
569 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
570 	if (!dst_pud)
571 		return -ENOMEM;
572 	src_pud = pud_offset(src_pgd, addr);
573 	do {
574 		next = pud_addr_end(addr, end);
575 		if (pud_none_or_clear_bad(src_pud))
576 			continue;
577 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
578 						vma, addr, next))
579 			return -ENOMEM;
580 	} while (dst_pud++, src_pud++, addr = next, addr != end);
581 	return 0;
582 }
583 
584 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585 		struct vm_area_struct *vma)
586 {
587 	pgd_t *src_pgd, *dst_pgd;
588 	unsigned long next;
589 	unsigned long addr = vma->vm_start;
590 	unsigned long end = vma->vm_end;
591 
592 	/*
593 	 * Don't copy ptes where a page fault will fill them correctly.
594 	 * Fork becomes much lighter when there are big shared or private
595 	 * readonly mappings. The tradeoff is that copy_page_range is more
596 	 * efficient than faulting.
597 	 */
598 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
599 		if (!vma->anon_vma)
600 			return 0;
601 	}
602 
603 	if (is_vm_hugetlb_page(vma))
604 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
605 
606 	dst_pgd = pgd_offset(dst_mm, addr);
607 	src_pgd = pgd_offset(src_mm, addr);
608 	do {
609 		next = pgd_addr_end(addr, end);
610 		if (pgd_none_or_clear_bad(src_pgd))
611 			continue;
612 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
613 						vma, addr, next))
614 			return -ENOMEM;
615 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
616 	return 0;
617 }
618 
619 static unsigned long zap_pte_range(struct mmu_gather *tlb,
620 				struct vm_area_struct *vma, pmd_t *pmd,
621 				unsigned long addr, unsigned long end,
622 				long *zap_work, struct zap_details *details)
623 {
624 	struct mm_struct *mm = tlb->mm;
625 	pte_t *pte;
626 	spinlock_t *ptl;
627 	int file_rss = 0;
628 	int anon_rss = 0;
629 
630 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
631 	arch_enter_lazy_mmu_mode();
632 	do {
633 		pte_t ptent = *pte;
634 		if (pte_none(ptent)) {
635 			(*zap_work)--;
636 			continue;
637 		}
638 
639 		(*zap_work) -= PAGE_SIZE;
640 
641 		if (pte_present(ptent)) {
642 			struct page *page;
643 
644 			page = vm_normal_page(vma, addr, ptent);
645 			if (unlikely(details) && page) {
646 				/*
647 				 * unmap_shared_mapping_pages() wants to
648 				 * invalidate cache without truncating:
649 				 * unmap shared but keep private pages.
650 				 */
651 				if (details->check_mapping &&
652 				    details->check_mapping != page->mapping)
653 					continue;
654 				/*
655 				 * Each page->index must be checked when
656 				 * invalidating or truncating nonlinear.
657 				 */
658 				if (details->nonlinear_vma &&
659 				    (page->index < details->first_index ||
660 				     page->index > details->last_index))
661 					continue;
662 			}
663 			ptent = ptep_get_and_clear_full(mm, addr, pte,
664 							tlb->fullmm);
665 			tlb_remove_tlb_entry(tlb, pte, addr);
666 			if (unlikely(!page))
667 				continue;
668 			if (unlikely(details) && details->nonlinear_vma
669 			    && linear_page_index(details->nonlinear_vma,
670 						addr) != page->index)
671 				set_pte_at(mm, addr, pte,
672 					   pgoff_to_pte(page->index));
673 			if (PageAnon(page))
674 				anon_rss--;
675 			else {
676 				if (pte_dirty(ptent))
677 					set_page_dirty(page);
678 				if (pte_young(ptent))
679 					SetPageReferenced(page);
680 				file_rss--;
681 			}
682 			page_remove_rmap(page, vma);
683 			tlb_remove_page(tlb, page);
684 			continue;
685 		}
686 		/*
687 		 * If details->check_mapping, we leave swap entries;
688 		 * if details->nonlinear_vma, we leave file entries.
689 		 */
690 		if (unlikely(details))
691 			continue;
692 		if (!pte_file(ptent))
693 			free_swap_and_cache(pte_to_swp_entry(ptent));
694 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
695 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
696 
697 	add_mm_rss(mm, file_rss, anon_rss);
698 	arch_leave_lazy_mmu_mode();
699 	pte_unmap_unlock(pte - 1, ptl);
700 
701 	return addr;
702 }
703 
704 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
705 				struct vm_area_struct *vma, pud_t *pud,
706 				unsigned long addr, unsigned long end,
707 				long *zap_work, struct zap_details *details)
708 {
709 	pmd_t *pmd;
710 	unsigned long next;
711 
712 	pmd = pmd_offset(pud, addr);
713 	do {
714 		next = pmd_addr_end(addr, end);
715 		if (pmd_none_or_clear_bad(pmd)) {
716 			(*zap_work)--;
717 			continue;
718 		}
719 		next = zap_pte_range(tlb, vma, pmd, addr, next,
720 						zap_work, details);
721 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
722 
723 	return addr;
724 }
725 
726 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
727 				struct vm_area_struct *vma, pgd_t *pgd,
728 				unsigned long addr, unsigned long end,
729 				long *zap_work, struct zap_details *details)
730 {
731 	pud_t *pud;
732 	unsigned long next;
733 
734 	pud = pud_offset(pgd, addr);
735 	do {
736 		next = pud_addr_end(addr, end);
737 		if (pud_none_or_clear_bad(pud)) {
738 			(*zap_work)--;
739 			continue;
740 		}
741 		next = zap_pmd_range(tlb, vma, pud, addr, next,
742 						zap_work, details);
743 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
744 
745 	return addr;
746 }
747 
748 static unsigned long unmap_page_range(struct mmu_gather *tlb,
749 				struct vm_area_struct *vma,
750 				unsigned long addr, unsigned long end,
751 				long *zap_work, struct zap_details *details)
752 {
753 	pgd_t *pgd;
754 	unsigned long next;
755 
756 	if (details && !details->check_mapping && !details->nonlinear_vma)
757 		details = NULL;
758 
759 	BUG_ON(addr >= end);
760 	tlb_start_vma(tlb, vma);
761 	pgd = pgd_offset(vma->vm_mm, addr);
762 	do {
763 		next = pgd_addr_end(addr, end);
764 		if (pgd_none_or_clear_bad(pgd)) {
765 			(*zap_work)--;
766 			continue;
767 		}
768 		next = zap_pud_range(tlb, vma, pgd, addr, next,
769 						zap_work, details);
770 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
771 	tlb_end_vma(tlb, vma);
772 
773 	return addr;
774 }
775 
776 #ifdef CONFIG_PREEMPT
777 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
778 #else
779 /* No preempt: go for improved straight-line efficiency */
780 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
781 #endif
782 
783 /**
784  * unmap_vmas - unmap a range of memory covered by a list of vma's
785  * @tlbp: address of the caller's struct mmu_gather
786  * @vma: the starting vma
787  * @start_addr: virtual address at which to start unmapping
788  * @end_addr: virtual address at which to end unmapping
789  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
790  * @details: details of nonlinear truncation or shared cache invalidation
791  *
792  * Returns the end address of the unmapping (restart addr if interrupted).
793  *
794  * Unmap all pages in the vma list.
795  *
796  * We aim to not hold locks for too long (for scheduling latency reasons).
797  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
798  * return the ending mmu_gather to the caller.
799  *
800  * Only addresses between `start' and `end' will be unmapped.
801  *
802  * The VMA list must be sorted in ascending virtual address order.
803  *
804  * unmap_vmas() assumes that the caller will flush the whole unmapped address
805  * range after unmap_vmas() returns.  So the only responsibility here is to
806  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
807  * drops the lock and schedules.
808  */
809 unsigned long unmap_vmas(struct mmu_gather **tlbp,
810 		struct vm_area_struct *vma, unsigned long start_addr,
811 		unsigned long end_addr, unsigned long *nr_accounted,
812 		struct zap_details *details)
813 {
814 	long zap_work = ZAP_BLOCK_SIZE;
815 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
816 	int tlb_start_valid = 0;
817 	unsigned long start = start_addr;
818 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
819 	int fullmm = (*tlbp)->fullmm;
820 
821 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
822 		unsigned long end;
823 
824 		start = max(vma->vm_start, start_addr);
825 		if (start >= vma->vm_end)
826 			continue;
827 		end = min(vma->vm_end, end_addr);
828 		if (end <= vma->vm_start)
829 			continue;
830 
831 		if (vma->vm_flags & VM_ACCOUNT)
832 			*nr_accounted += (end - start) >> PAGE_SHIFT;
833 
834 		while (start != end) {
835 			if (!tlb_start_valid) {
836 				tlb_start = start;
837 				tlb_start_valid = 1;
838 			}
839 
840 			if (unlikely(is_vm_hugetlb_page(vma))) {
841 				unmap_hugepage_range(vma, start, end);
842 				zap_work -= (end - start) /
843 						(HPAGE_SIZE / PAGE_SIZE);
844 				start = end;
845 			} else
846 				start = unmap_page_range(*tlbp, vma,
847 						start, end, &zap_work, details);
848 
849 			if (zap_work > 0) {
850 				BUG_ON(start != end);
851 				break;
852 			}
853 
854 			tlb_finish_mmu(*tlbp, tlb_start, start);
855 
856 			if (need_resched() ||
857 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
858 				if (i_mmap_lock) {
859 					*tlbp = NULL;
860 					goto out;
861 				}
862 				cond_resched();
863 			}
864 
865 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
866 			tlb_start_valid = 0;
867 			zap_work = ZAP_BLOCK_SIZE;
868 		}
869 	}
870 out:
871 	return start;	/* which is now the end (or restart) address */
872 }
873 
874 /**
875  * zap_page_range - remove user pages in a given range
876  * @vma: vm_area_struct holding the applicable pages
877  * @address: starting address of pages to zap
878  * @size: number of bytes to zap
879  * @details: details of nonlinear truncation or shared cache invalidation
880  */
881 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
882 		unsigned long size, struct zap_details *details)
883 {
884 	struct mm_struct *mm = vma->vm_mm;
885 	struct mmu_gather *tlb;
886 	unsigned long end = address + size;
887 	unsigned long nr_accounted = 0;
888 
889 	lru_add_drain();
890 	tlb = tlb_gather_mmu(mm, 0);
891 	update_hiwater_rss(mm);
892 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
893 	if (tlb)
894 		tlb_finish_mmu(tlb, address, end);
895 	return end;
896 }
897 
898 /*
899  * Do a quick page-table lookup for a single page.
900  */
901 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
902 			unsigned int flags)
903 {
904 	pgd_t *pgd;
905 	pud_t *pud;
906 	pmd_t *pmd;
907 	pte_t *ptep, pte;
908 	spinlock_t *ptl;
909 	struct page *page;
910 	struct mm_struct *mm = vma->vm_mm;
911 
912 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
913 	if (!IS_ERR(page)) {
914 		BUG_ON(flags & FOLL_GET);
915 		goto out;
916 	}
917 
918 	page = NULL;
919 	pgd = pgd_offset(mm, address);
920 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
921 		goto no_page_table;
922 
923 	pud = pud_offset(pgd, address);
924 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
925 		goto no_page_table;
926 
927 	pmd = pmd_offset(pud, address);
928 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
929 		goto no_page_table;
930 
931 	if (pmd_huge(*pmd)) {
932 		BUG_ON(flags & FOLL_GET);
933 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
934 		goto out;
935 	}
936 
937 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
938 	if (!ptep)
939 		goto out;
940 
941 	pte = *ptep;
942 	if (!pte_present(pte))
943 		goto unlock;
944 	if ((flags & FOLL_WRITE) && !pte_write(pte))
945 		goto unlock;
946 	page = vm_normal_page(vma, address, pte);
947 	if (unlikely(!page))
948 		goto unlock;
949 
950 	if (flags & FOLL_GET)
951 		get_page(page);
952 	if (flags & FOLL_TOUCH) {
953 		if ((flags & FOLL_WRITE) &&
954 		    !pte_dirty(pte) && !PageDirty(page))
955 			set_page_dirty(page);
956 		mark_page_accessed(page);
957 	}
958 unlock:
959 	pte_unmap_unlock(ptep, ptl);
960 out:
961 	return page;
962 
963 no_page_table:
964 	/*
965 	 * When core dumping an enormous anonymous area that nobody
966 	 * has touched so far, we don't want to allocate page tables.
967 	 */
968 	if (flags & FOLL_ANON) {
969 		page = ZERO_PAGE(address);
970 		if (flags & FOLL_GET)
971 			get_page(page);
972 		BUG_ON(flags & FOLL_WRITE);
973 	}
974 	return page;
975 }
976 
977 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
978 		unsigned long start, int len, int write, int force,
979 		struct page **pages, struct vm_area_struct **vmas)
980 {
981 	int i;
982 	unsigned int vm_flags;
983 
984 	/*
985 	 * Require read or write permissions.
986 	 * If 'force' is set, we only require the "MAY" flags.
987 	 */
988 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
989 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
990 	i = 0;
991 
992 	do {
993 		struct vm_area_struct *vma;
994 		unsigned int foll_flags;
995 
996 		vma = find_extend_vma(mm, start);
997 		if (!vma && in_gate_area(tsk, start)) {
998 			unsigned long pg = start & PAGE_MASK;
999 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1000 			pgd_t *pgd;
1001 			pud_t *pud;
1002 			pmd_t *pmd;
1003 			pte_t *pte;
1004 			if (write) /* user gate pages are read-only */
1005 				return i ? : -EFAULT;
1006 			if (pg > TASK_SIZE)
1007 				pgd = pgd_offset_k(pg);
1008 			else
1009 				pgd = pgd_offset_gate(mm, pg);
1010 			BUG_ON(pgd_none(*pgd));
1011 			pud = pud_offset(pgd, pg);
1012 			BUG_ON(pud_none(*pud));
1013 			pmd = pmd_offset(pud, pg);
1014 			if (pmd_none(*pmd))
1015 				return i ? : -EFAULT;
1016 			pte = pte_offset_map(pmd, pg);
1017 			if (pte_none(*pte)) {
1018 				pte_unmap(pte);
1019 				return i ? : -EFAULT;
1020 			}
1021 			if (pages) {
1022 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1023 				pages[i] = page;
1024 				if (page)
1025 					get_page(page);
1026 			}
1027 			pte_unmap(pte);
1028 			if (vmas)
1029 				vmas[i] = gate_vma;
1030 			i++;
1031 			start += PAGE_SIZE;
1032 			len--;
1033 			continue;
1034 		}
1035 
1036 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1037 				|| !(vm_flags & vma->vm_flags))
1038 			return i ? : -EFAULT;
1039 
1040 		if (is_vm_hugetlb_page(vma)) {
1041 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1042 						&start, &len, i);
1043 			continue;
1044 		}
1045 
1046 		foll_flags = FOLL_TOUCH;
1047 		if (pages)
1048 			foll_flags |= FOLL_GET;
1049 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1050 		    (!vma->vm_ops || (!vma->vm_ops->nopage &&
1051 					!vma->vm_ops->fault)))
1052 			foll_flags |= FOLL_ANON;
1053 
1054 		do {
1055 			struct page *page;
1056 
1057 			/*
1058 			 * If tsk is ooming, cut off its access to large memory
1059 			 * allocations. It has a pending SIGKILL, but it can't
1060 			 * be processed until returning to user space.
1061 			 */
1062 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1063 				return -ENOMEM;
1064 
1065 			if (write)
1066 				foll_flags |= FOLL_WRITE;
1067 
1068 			cond_resched();
1069 			while (!(page = follow_page(vma, start, foll_flags))) {
1070 				int ret;
1071 				ret = handle_mm_fault(mm, vma, start,
1072 						foll_flags & FOLL_WRITE);
1073 				if (ret & VM_FAULT_ERROR) {
1074 					if (ret & VM_FAULT_OOM)
1075 						return i ? i : -ENOMEM;
1076 					else if (ret & VM_FAULT_SIGBUS)
1077 						return i ? i : -EFAULT;
1078 					BUG();
1079 				}
1080 				if (ret & VM_FAULT_MAJOR)
1081 					tsk->maj_flt++;
1082 				else
1083 					tsk->min_flt++;
1084 
1085 				/*
1086 				 * The VM_FAULT_WRITE bit tells us that
1087 				 * do_wp_page has broken COW when necessary,
1088 				 * even if maybe_mkwrite decided not to set
1089 				 * pte_write. We can thus safely do subsequent
1090 				 * page lookups as if they were reads.
1091 				 */
1092 				if (ret & VM_FAULT_WRITE)
1093 					foll_flags &= ~FOLL_WRITE;
1094 
1095 				cond_resched();
1096 			}
1097 			if (pages) {
1098 				pages[i] = page;
1099 
1100 				flush_anon_page(vma, page, start);
1101 				flush_dcache_page(page);
1102 			}
1103 			if (vmas)
1104 				vmas[i] = vma;
1105 			i++;
1106 			start += PAGE_SIZE;
1107 			len--;
1108 		} while (len && start < vma->vm_end);
1109 	} while (len);
1110 	return i;
1111 }
1112 EXPORT_SYMBOL(get_user_pages);
1113 
1114 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1115 			unsigned long addr, unsigned long end, pgprot_t prot)
1116 {
1117 	pte_t *pte;
1118 	spinlock_t *ptl;
1119 	int err = 0;
1120 
1121 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1122 	if (!pte)
1123 		return -EAGAIN;
1124 	arch_enter_lazy_mmu_mode();
1125 	do {
1126 		struct page *page = ZERO_PAGE(addr);
1127 		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1128 
1129 		if (unlikely(!pte_none(*pte))) {
1130 			err = -EEXIST;
1131 			pte++;
1132 			break;
1133 		}
1134 		page_cache_get(page);
1135 		page_add_file_rmap(page);
1136 		inc_mm_counter(mm, file_rss);
1137 		set_pte_at(mm, addr, pte, zero_pte);
1138 	} while (pte++, addr += PAGE_SIZE, addr != end);
1139 	arch_leave_lazy_mmu_mode();
1140 	pte_unmap_unlock(pte - 1, ptl);
1141 	return err;
1142 }
1143 
1144 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1145 			unsigned long addr, unsigned long end, pgprot_t prot)
1146 {
1147 	pmd_t *pmd;
1148 	unsigned long next;
1149 	int err;
1150 
1151 	pmd = pmd_alloc(mm, pud, addr);
1152 	if (!pmd)
1153 		return -EAGAIN;
1154 	do {
1155 		next = pmd_addr_end(addr, end);
1156 		err = zeromap_pte_range(mm, pmd, addr, next, prot);
1157 		if (err)
1158 			break;
1159 	} while (pmd++, addr = next, addr != end);
1160 	return err;
1161 }
1162 
1163 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1164 			unsigned long addr, unsigned long end, pgprot_t prot)
1165 {
1166 	pud_t *pud;
1167 	unsigned long next;
1168 	int err;
1169 
1170 	pud = pud_alloc(mm, pgd, addr);
1171 	if (!pud)
1172 		return -EAGAIN;
1173 	do {
1174 		next = pud_addr_end(addr, end);
1175 		err = zeromap_pmd_range(mm, pud, addr, next, prot);
1176 		if (err)
1177 			break;
1178 	} while (pud++, addr = next, addr != end);
1179 	return err;
1180 }
1181 
1182 int zeromap_page_range(struct vm_area_struct *vma,
1183 			unsigned long addr, unsigned long size, pgprot_t prot)
1184 {
1185 	pgd_t *pgd;
1186 	unsigned long next;
1187 	unsigned long end = addr + size;
1188 	struct mm_struct *mm = vma->vm_mm;
1189 	int err;
1190 
1191 	BUG_ON(addr >= end);
1192 	pgd = pgd_offset(mm, addr);
1193 	flush_cache_range(vma, addr, end);
1194 	do {
1195 		next = pgd_addr_end(addr, end);
1196 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1197 		if (err)
1198 			break;
1199 	} while (pgd++, addr = next, addr != end);
1200 	return err;
1201 }
1202 
1203 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1204 {
1205 	pgd_t * pgd = pgd_offset(mm, addr);
1206 	pud_t * pud = pud_alloc(mm, pgd, addr);
1207 	if (pud) {
1208 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1209 		if (pmd)
1210 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1211 	}
1212 	return NULL;
1213 }
1214 
1215 /*
1216  * This is the old fallback for page remapping.
1217  *
1218  * For historical reasons, it only allows reserved pages. Only
1219  * old drivers should use this, and they needed to mark their
1220  * pages reserved for the old functions anyway.
1221  */
1222 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1223 {
1224 	int retval;
1225 	pte_t *pte;
1226 	spinlock_t *ptl;
1227 
1228 	retval = -EINVAL;
1229 	if (PageAnon(page))
1230 		goto out;
1231 	retval = -ENOMEM;
1232 	flush_dcache_page(page);
1233 	pte = get_locked_pte(mm, addr, &ptl);
1234 	if (!pte)
1235 		goto out;
1236 	retval = -EBUSY;
1237 	if (!pte_none(*pte))
1238 		goto out_unlock;
1239 
1240 	/* Ok, finally just insert the thing.. */
1241 	get_page(page);
1242 	inc_mm_counter(mm, file_rss);
1243 	page_add_file_rmap(page);
1244 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1245 
1246 	retval = 0;
1247 out_unlock:
1248 	pte_unmap_unlock(pte, ptl);
1249 out:
1250 	return retval;
1251 }
1252 
1253 /**
1254  * vm_insert_page - insert single page into user vma
1255  * @vma: user vma to map to
1256  * @addr: target user address of this page
1257  * @page: source kernel page
1258  *
1259  * This allows drivers to insert individual pages they've allocated
1260  * into a user vma.
1261  *
1262  * The page has to be a nice clean _individual_ kernel allocation.
1263  * If you allocate a compound page, you need to have marked it as
1264  * such (__GFP_COMP), or manually just split the page up yourself
1265  * (see split_page()).
1266  *
1267  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1268  * took an arbitrary page protection parameter. This doesn't allow
1269  * that. Your vma protection will have to be set up correctly, which
1270  * means that if you want a shared writable mapping, you'd better
1271  * ask for a shared writable mapping!
1272  *
1273  * The page does not need to be reserved.
1274  */
1275 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1276 {
1277 	if (addr < vma->vm_start || addr >= vma->vm_end)
1278 		return -EFAULT;
1279 	if (!page_count(page))
1280 		return -EINVAL;
1281 	vma->vm_flags |= VM_INSERTPAGE;
1282 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1283 }
1284 EXPORT_SYMBOL(vm_insert_page);
1285 
1286 /**
1287  * vm_insert_pfn - insert single pfn into user vma
1288  * @vma: user vma to map to
1289  * @addr: target user address of this page
1290  * @pfn: source kernel pfn
1291  *
1292  * Similar to vm_inert_page, this allows drivers to insert individual pages
1293  * they've allocated into a user vma. Same comments apply.
1294  *
1295  * This function should only be called from a vm_ops->fault handler, and
1296  * in that case the handler should return NULL.
1297  */
1298 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1299 		unsigned long pfn)
1300 {
1301 	struct mm_struct *mm = vma->vm_mm;
1302 	int retval;
1303 	pte_t *pte, entry;
1304 	spinlock_t *ptl;
1305 
1306 	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1307 	BUG_ON(is_cow_mapping(vma->vm_flags));
1308 
1309 	retval = -ENOMEM;
1310 	pte = get_locked_pte(mm, addr, &ptl);
1311 	if (!pte)
1312 		goto out;
1313 	retval = -EBUSY;
1314 	if (!pte_none(*pte))
1315 		goto out_unlock;
1316 
1317 	/* Ok, finally just insert the thing.. */
1318 	entry = pfn_pte(pfn, vma->vm_page_prot);
1319 	set_pte_at(mm, addr, pte, entry);
1320 	update_mmu_cache(vma, addr, entry);
1321 
1322 	retval = 0;
1323 out_unlock:
1324 	pte_unmap_unlock(pte, ptl);
1325 
1326 out:
1327 	return retval;
1328 }
1329 EXPORT_SYMBOL(vm_insert_pfn);
1330 
1331 /*
1332  * maps a range of physical memory into the requested pages. the old
1333  * mappings are removed. any references to nonexistent pages results
1334  * in null mappings (currently treated as "copy-on-access")
1335  */
1336 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1337 			unsigned long addr, unsigned long end,
1338 			unsigned long pfn, pgprot_t prot)
1339 {
1340 	pte_t *pte;
1341 	spinlock_t *ptl;
1342 
1343 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1344 	if (!pte)
1345 		return -ENOMEM;
1346 	arch_enter_lazy_mmu_mode();
1347 	do {
1348 		BUG_ON(!pte_none(*pte));
1349 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1350 		pfn++;
1351 	} while (pte++, addr += PAGE_SIZE, addr != end);
1352 	arch_leave_lazy_mmu_mode();
1353 	pte_unmap_unlock(pte - 1, ptl);
1354 	return 0;
1355 }
1356 
1357 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1358 			unsigned long addr, unsigned long end,
1359 			unsigned long pfn, pgprot_t prot)
1360 {
1361 	pmd_t *pmd;
1362 	unsigned long next;
1363 
1364 	pfn -= addr >> PAGE_SHIFT;
1365 	pmd = pmd_alloc(mm, pud, addr);
1366 	if (!pmd)
1367 		return -ENOMEM;
1368 	do {
1369 		next = pmd_addr_end(addr, end);
1370 		if (remap_pte_range(mm, pmd, addr, next,
1371 				pfn + (addr >> PAGE_SHIFT), prot))
1372 			return -ENOMEM;
1373 	} while (pmd++, addr = next, addr != end);
1374 	return 0;
1375 }
1376 
1377 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1378 			unsigned long addr, unsigned long end,
1379 			unsigned long pfn, pgprot_t prot)
1380 {
1381 	pud_t *pud;
1382 	unsigned long next;
1383 
1384 	pfn -= addr >> PAGE_SHIFT;
1385 	pud = pud_alloc(mm, pgd, addr);
1386 	if (!pud)
1387 		return -ENOMEM;
1388 	do {
1389 		next = pud_addr_end(addr, end);
1390 		if (remap_pmd_range(mm, pud, addr, next,
1391 				pfn + (addr >> PAGE_SHIFT), prot))
1392 			return -ENOMEM;
1393 	} while (pud++, addr = next, addr != end);
1394 	return 0;
1395 }
1396 
1397 /**
1398  * remap_pfn_range - remap kernel memory to userspace
1399  * @vma: user vma to map to
1400  * @addr: target user address to start at
1401  * @pfn: physical address of kernel memory
1402  * @size: size of map area
1403  * @prot: page protection flags for this mapping
1404  *
1405  *  Note: this is only safe if the mm semaphore is held when called.
1406  */
1407 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1408 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1409 {
1410 	pgd_t *pgd;
1411 	unsigned long next;
1412 	unsigned long end = addr + PAGE_ALIGN(size);
1413 	struct mm_struct *mm = vma->vm_mm;
1414 	int err;
1415 
1416 	/*
1417 	 * Physically remapped pages are special. Tell the
1418 	 * rest of the world about it:
1419 	 *   VM_IO tells people not to look at these pages
1420 	 *	(accesses can have side effects).
1421 	 *   VM_RESERVED is specified all over the place, because
1422 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1423 	 *	in 2.6 the LRU scan won't even find its pages, so this
1424 	 *	flag means no more than count its pages in reserved_vm,
1425 	 * 	and omit it from core dump, even when VM_IO turned off.
1426 	 *   VM_PFNMAP tells the core MM that the base pages are just
1427 	 *	raw PFN mappings, and do not have a "struct page" associated
1428 	 *	with them.
1429 	 *
1430 	 * There's a horrible special case to handle copy-on-write
1431 	 * behaviour that some programs depend on. We mark the "original"
1432 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1433 	 */
1434 	if (is_cow_mapping(vma->vm_flags)) {
1435 		if (addr != vma->vm_start || end != vma->vm_end)
1436 			return -EINVAL;
1437 		vma->vm_pgoff = pfn;
1438 	}
1439 
1440 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1441 
1442 	BUG_ON(addr >= end);
1443 	pfn -= addr >> PAGE_SHIFT;
1444 	pgd = pgd_offset(mm, addr);
1445 	flush_cache_range(vma, addr, end);
1446 	do {
1447 		next = pgd_addr_end(addr, end);
1448 		err = remap_pud_range(mm, pgd, addr, next,
1449 				pfn + (addr >> PAGE_SHIFT), prot);
1450 		if (err)
1451 			break;
1452 	} while (pgd++, addr = next, addr != end);
1453 	return err;
1454 }
1455 EXPORT_SYMBOL(remap_pfn_range);
1456 
1457 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1458 				     unsigned long addr, unsigned long end,
1459 				     pte_fn_t fn, void *data)
1460 {
1461 	pte_t *pte;
1462 	int err;
1463 	struct page *pmd_page;
1464 	spinlock_t *uninitialized_var(ptl);
1465 
1466 	pte = (mm == &init_mm) ?
1467 		pte_alloc_kernel(pmd, addr) :
1468 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1469 	if (!pte)
1470 		return -ENOMEM;
1471 
1472 	BUG_ON(pmd_huge(*pmd));
1473 
1474 	pmd_page = pmd_page(*pmd);
1475 
1476 	do {
1477 		err = fn(pte, pmd_page, addr, data);
1478 		if (err)
1479 			break;
1480 	} while (pte++, addr += PAGE_SIZE, addr != end);
1481 
1482 	if (mm != &init_mm)
1483 		pte_unmap_unlock(pte-1, ptl);
1484 	return err;
1485 }
1486 
1487 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1488 				     unsigned long addr, unsigned long end,
1489 				     pte_fn_t fn, void *data)
1490 {
1491 	pmd_t *pmd;
1492 	unsigned long next;
1493 	int err;
1494 
1495 	pmd = pmd_alloc(mm, pud, addr);
1496 	if (!pmd)
1497 		return -ENOMEM;
1498 	do {
1499 		next = pmd_addr_end(addr, end);
1500 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1501 		if (err)
1502 			break;
1503 	} while (pmd++, addr = next, addr != end);
1504 	return err;
1505 }
1506 
1507 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1508 				     unsigned long addr, unsigned long end,
1509 				     pte_fn_t fn, void *data)
1510 {
1511 	pud_t *pud;
1512 	unsigned long next;
1513 	int err;
1514 
1515 	pud = pud_alloc(mm, pgd, addr);
1516 	if (!pud)
1517 		return -ENOMEM;
1518 	do {
1519 		next = pud_addr_end(addr, end);
1520 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1521 		if (err)
1522 			break;
1523 	} while (pud++, addr = next, addr != end);
1524 	return err;
1525 }
1526 
1527 /*
1528  * Scan a region of virtual memory, filling in page tables as necessary
1529  * and calling a provided function on each leaf page table.
1530  */
1531 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1532 			unsigned long size, pte_fn_t fn, void *data)
1533 {
1534 	pgd_t *pgd;
1535 	unsigned long next;
1536 	unsigned long end = addr + size;
1537 	int err;
1538 
1539 	BUG_ON(addr >= end);
1540 	pgd = pgd_offset(mm, addr);
1541 	do {
1542 		next = pgd_addr_end(addr, end);
1543 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1544 		if (err)
1545 			break;
1546 	} while (pgd++, addr = next, addr != end);
1547 	return err;
1548 }
1549 EXPORT_SYMBOL_GPL(apply_to_page_range);
1550 
1551 /*
1552  * handle_pte_fault chooses page fault handler according to an entry
1553  * which was read non-atomically.  Before making any commitment, on
1554  * those architectures or configurations (e.g. i386 with PAE) which
1555  * might give a mix of unmatched parts, do_swap_page and do_file_page
1556  * must check under lock before unmapping the pte and proceeding
1557  * (but do_wp_page is only called after already making such a check;
1558  * and do_anonymous_page and do_no_page can safely check later on).
1559  */
1560 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1561 				pte_t *page_table, pte_t orig_pte)
1562 {
1563 	int same = 1;
1564 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1565 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1566 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1567 		spin_lock(ptl);
1568 		same = pte_same(*page_table, orig_pte);
1569 		spin_unlock(ptl);
1570 	}
1571 #endif
1572 	pte_unmap(page_table);
1573 	return same;
1574 }
1575 
1576 /*
1577  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1578  * servicing faults for write access.  In the normal case, do always want
1579  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1580  * that do not have writing enabled, when used by access_process_vm.
1581  */
1582 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1583 {
1584 	if (likely(vma->vm_flags & VM_WRITE))
1585 		pte = pte_mkwrite(pte);
1586 	return pte;
1587 }
1588 
1589 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1590 {
1591 	/*
1592 	 * If the source page was a PFN mapping, we don't have
1593 	 * a "struct page" for it. We do a best-effort copy by
1594 	 * just copying from the original user address. If that
1595 	 * fails, we just zero-fill it. Live with it.
1596 	 */
1597 	if (unlikely(!src)) {
1598 		void *kaddr = kmap_atomic(dst, KM_USER0);
1599 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1600 
1601 		/*
1602 		 * This really shouldn't fail, because the page is there
1603 		 * in the page tables. But it might just be unreadable,
1604 		 * in which case we just give up and fill the result with
1605 		 * zeroes.
1606 		 */
1607 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1608 			memset(kaddr, 0, PAGE_SIZE);
1609 		kunmap_atomic(kaddr, KM_USER0);
1610 		flush_dcache_page(dst);
1611 		return;
1612 
1613 	}
1614 	copy_user_highpage(dst, src, va, vma);
1615 }
1616 
1617 /*
1618  * This routine handles present pages, when users try to write
1619  * to a shared page. It is done by copying the page to a new address
1620  * and decrementing the shared-page counter for the old page.
1621  *
1622  * Note that this routine assumes that the protection checks have been
1623  * done by the caller (the low-level page fault routine in most cases).
1624  * Thus we can safely just mark it writable once we've done any necessary
1625  * COW.
1626  *
1627  * We also mark the page dirty at this point even though the page will
1628  * change only once the write actually happens. This avoids a few races,
1629  * and potentially makes it more efficient.
1630  *
1631  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1632  * but allow concurrent faults), with pte both mapped and locked.
1633  * We return with mmap_sem still held, but pte unmapped and unlocked.
1634  */
1635 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1636 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1637 		spinlock_t *ptl, pte_t orig_pte)
1638 {
1639 	struct page *old_page, *new_page;
1640 	pte_t entry;
1641 	int reuse = 0, ret = 0;
1642 	struct page *dirty_page = NULL;
1643 
1644 	old_page = vm_normal_page(vma, address, orig_pte);
1645 	if (!old_page)
1646 		goto gotten;
1647 
1648 	/*
1649 	 * Take out anonymous pages first, anonymous shared vmas are
1650 	 * not dirty accountable.
1651 	 */
1652 	if (PageAnon(old_page)) {
1653 		if (!TestSetPageLocked(old_page)) {
1654 			reuse = can_share_swap_page(old_page);
1655 			unlock_page(old_page);
1656 		}
1657 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1658 					(VM_WRITE|VM_SHARED))) {
1659 		/*
1660 		 * Only catch write-faults on shared writable pages,
1661 		 * read-only shared pages can get COWed by
1662 		 * get_user_pages(.write=1, .force=1).
1663 		 */
1664 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1665 			/*
1666 			 * Notify the address space that the page is about to
1667 			 * become writable so that it can prohibit this or wait
1668 			 * for the page to get into an appropriate state.
1669 			 *
1670 			 * We do this without the lock held, so that it can
1671 			 * sleep if it needs to.
1672 			 */
1673 			page_cache_get(old_page);
1674 			pte_unmap_unlock(page_table, ptl);
1675 
1676 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1677 				goto unwritable_page;
1678 
1679 			/*
1680 			 * Since we dropped the lock we need to revalidate
1681 			 * the PTE as someone else may have changed it.  If
1682 			 * they did, we just return, as we can count on the
1683 			 * MMU to tell us if they didn't also make it writable.
1684 			 */
1685 			page_table = pte_offset_map_lock(mm, pmd, address,
1686 							 &ptl);
1687 			page_cache_release(old_page);
1688 			if (!pte_same(*page_table, orig_pte))
1689 				goto unlock;
1690 		}
1691 		dirty_page = old_page;
1692 		get_page(dirty_page);
1693 		reuse = 1;
1694 	}
1695 
1696 	if (reuse) {
1697 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1698 		entry = pte_mkyoung(orig_pte);
1699 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1700 		if (ptep_set_access_flags(vma, address, page_table, entry,1)) {
1701 			update_mmu_cache(vma, address, entry);
1702 			lazy_mmu_prot_update(entry);
1703 		}
1704 		ret |= VM_FAULT_WRITE;
1705 		goto unlock;
1706 	}
1707 
1708 	/*
1709 	 * Ok, we need to copy. Oh, well..
1710 	 */
1711 	page_cache_get(old_page);
1712 gotten:
1713 	pte_unmap_unlock(page_table, ptl);
1714 
1715 	if (unlikely(anon_vma_prepare(vma)))
1716 		goto oom;
1717 	if (old_page == ZERO_PAGE(address)) {
1718 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
1719 		if (!new_page)
1720 			goto oom;
1721 	} else {
1722 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1723 		if (!new_page)
1724 			goto oom;
1725 		cow_user_page(new_page, old_page, address, vma);
1726 	}
1727 
1728 	/*
1729 	 * Re-check the pte - we dropped the lock
1730 	 */
1731 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1732 	if (likely(pte_same(*page_table, orig_pte))) {
1733 		if (old_page) {
1734 			page_remove_rmap(old_page, vma);
1735 			if (!PageAnon(old_page)) {
1736 				dec_mm_counter(mm, file_rss);
1737 				inc_mm_counter(mm, anon_rss);
1738 			}
1739 		} else
1740 			inc_mm_counter(mm, anon_rss);
1741 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1742 		entry = mk_pte(new_page, vma->vm_page_prot);
1743 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1744 		lazy_mmu_prot_update(entry);
1745 		/*
1746 		 * Clear the pte entry and flush it first, before updating the
1747 		 * pte with the new entry. This will avoid a race condition
1748 		 * seen in the presence of one thread doing SMC and another
1749 		 * thread doing COW.
1750 		 */
1751 		ptep_clear_flush(vma, address, page_table);
1752 		set_pte_at(mm, address, page_table, entry);
1753 		update_mmu_cache(vma, address, entry);
1754 		lru_cache_add_active(new_page);
1755 		page_add_new_anon_rmap(new_page, vma, address);
1756 
1757 		/* Free the old page.. */
1758 		new_page = old_page;
1759 		ret |= VM_FAULT_WRITE;
1760 	}
1761 	if (new_page)
1762 		page_cache_release(new_page);
1763 	if (old_page)
1764 		page_cache_release(old_page);
1765 unlock:
1766 	pte_unmap_unlock(page_table, ptl);
1767 	if (dirty_page) {
1768 		/*
1769 		 * Yes, Virginia, this is actually required to prevent a race
1770 		 * with clear_page_dirty_for_io() from clearing the page dirty
1771 		 * bit after it clear all dirty ptes, but before a racing
1772 		 * do_wp_page installs a dirty pte.
1773 		 *
1774 		 * do_no_page is protected similarly.
1775 		 */
1776 		wait_on_page_locked(dirty_page);
1777 		set_page_dirty_balance(dirty_page);
1778 		put_page(dirty_page);
1779 	}
1780 	return ret;
1781 oom:
1782 	if (old_page)
1783 		page_cache_release(old_page);
1784 	return VM_FAULT_OOM;
1785 
1786 unwritable_page:
1787 	page_cache_release(old_page);
1788 	return VM_FAULT_SIGBUS;
1789 }
1790 
1791 /*
1792  * Helper functions for unmap_mapping_range().
1793  *
1794  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1795  *
1796  * We have to restart searching the prio_tree whenever we drop the lock,
1797  * since the iterator is only valid while the lock is held, and anyway
1798  * a later vma might be split and reinserted earlier while lock dropped.
1799  *
1800  * The list of nonlinear vmas could be handled more efficiently, using
1801  * a placeholder, but handle it in the same way until a need is shown.
1802  * It is important to search the prio_tree before nonlinear list: a vma
1803  * may become nonlinear and be shifted from prio_tree to nonlinear list
1804  * while the lock is dropped; but never shifted from list to prio_tree.
1805  *
1806  * In order to make forward progress despite restarting the search,
1807  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1808  * quickly skip it next time around.  Since the prio_tree search only
1809  * shows us those vmas affected by unmapping the range in question, we
1810  * can't efficiently keep all vmas in step with mapping->truncate_count:
1811  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1812  * mapping->truncate_count and vma->vm_truncate_count are protected by
1813  * i_mmap_lock.
1814  *
1815  * In order to make forward progress despite repeatedly restarting some
1816  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1817  * and restart from that address when we reach that vma again.  It might
1818  * have been split or merged, shrunk or extended, but never shifted: so
1819  * restart_addr remains valid so long as it remains in the vma's range.
1820  * unmap_mapping_range forces truncate_count to leap over page-aligned
1821  * values so we can save vma's restart_addr in its truncate_count field.
1822  */
1823 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1824 
1825 static void reset_vma_truncate_counts(struct address_space *mapping)
1826 {
1827 	struct vm_area_struct *vma;
1828 	struct prio_tree_iter iter;
1829 
1830 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1831 		vma->vm_truncate_count = 0;
1832 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1833 		vma->vm_truncate_count = 0;
1834 }
1835 
1836 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1837 		unsigned long start_addr, unsigned long end_addr,
1838 		struct zap_details *details)
1839 {
1840 	unsigned long restart_addr;
1841 	int need_break;
1842 
1843 	/*
1844 	 * files that support invalidating or truncating portions of the
1845 	 * file from under mmaped areas must have their ->fault function
1846 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1847 	 * This provides synchronisation against concurrent unmapping here.
1848 	 */
1849 
1850 again:
1851 	restart_addr = vma->vm_truncate_count;
1852 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1853 		start_addr = restart_addr;
1854 		if (start_addr >= end_addr) {
1855 			/* Top of vma has been split off since last time */
1856 			vma->vm_truncate_count = details->truncate_count;
1857 			return 0;
1858 		}
1859 	}
1860 
1861 	restart_addr = zap_page_range(vma, start_addr,
1862 					end_addr - start_addr, details);
1863 	need_break = need_resched() ||
1864 			need_lockbreak(details->i_mmap_lock);
1865 
1866 	if (restart_addr >= end_addr) {
1867 		/* We have now completed this vma: mark it so */
1868 		vma->vm_truncate_count = details->truncate_count;
1869 		if (!need_break)
1870 			return 0;
1871 	} else {
1872 		/* Note restart_addr in vma's truncate_count field */
1873 		vma->vm_truncate_count = restart_addr;
1874 		if (!need_break)
1875 			goto again;
1876 	}
1877 
1878 	spin_unlock(details->i_mmap_lock);
1879 	cond_resched();
1880 	spin_lock(details->i_mmap_lock);
1881 	return -EINTR;
1882 }
1883 
1884 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1885 					    struct zap_details *details)
1886 {
1887 	struct vm_area_struct *vma;
1888 	struct prio_tree_iter iter;
1889 	pgoff_t vba, vea, zba, zea;
1890 
1891 restart:
1892 	vma_prio_tree_foreach(vma, &iter, root,
1893 			details->first_index, details->last_index) {
1894 		/* Skip quickly over those we have already dealt with */
1895 		if (vma->vm_truncate_count == details->truncate_count)
1896 			continue;
1897 
1898 		vba = vma->vm_pgoff;
1899 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1900 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1901 		zba = details->first_index;
1902 		if (zba < vba)
1903 			zba = vba;
1904 		zea = details->last_index;
1905 		if (zea > vea)
1906 			zea = vea;
1907 
1908 		if (unmap_mapping_range_vma(vma,
1909 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1910 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1911 				details) < 0)
1912 			goto restart;
1913 	}
1914 }
1915 
1916 static inline void unmap_mapping_range_list(struct list_head *head,
1917 					    struct zap_details *details)
1918 {
1919 	struct vm_area_struct *vma;
1920 
1921 	/*
1922 	 * In nonlinear VMAs there is no correspondence between virtual address
1923 	 * offset and file offset.  So we must perform an exhaustive search
1924 	 * across *all* the pages in each nonlinear VMA, not just the pages
1925 	 * whose virtual address lies outside the file truncation point.
1926 	 */
1927 restart:
1928 	list_for_each_entry(vma, head, shared.vm_set.list) {
1929 		/* Skip quickly over those we have already dealt with */
1930 		if (vma->vm_truncate_count == details->truncate_count)
1931 			continue;
1932 		details->nonlinear_vma = vma;
1933 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1934 					vma->vm_end, details) < 0)
1935 			goto restart;
1936 	}
1937 }
1938 
1939 /**
1940  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1941  * @mapping: the address space containing mmaps to be unmapped.
1942  * @holebegin: byte in first page to unmap, relative to the start of
1943  * the underlying file.  This will be rounded down to a PAGE_SIZE
1944  * boundary.  Note that this is different from vmtruncate(), which
1945  * must keep the partial page.  In contrast, we must get rid of
1946  * partial pages.
1947  * @holelen: size of prospective hole in bytes.  This will be rounded
1948  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1949  * end of the file.
1950  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1951  * but 0 when invalidating pagecache, don't throw away private data.
1952  */
1953 void unmap_mapping_range(struct address_space *mapping,
1954 		loff_t const holebegin, loff_t const holelen, int even_cows)
1955 {
1956 	struct zap_details details;
1957 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1958 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1959 
1960 	/* Check for overflow. */
1961 	if (sizeof(holelen) > sizeof(hlen)) {
1962 		long long holeend =
1963 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1964 		if (holeend & ~(long long)ULONG_MAX)
1965 			hlen = ULONG_MAX - hba + 1;
1966 	}
1967 
1968 	details.check_mapping = even_cows? NULL: mapping;
1969 	details.nonlinear_vma = NULL;
1970 	details.first_index = hba;
1971 	details.last_index = hba + hlen - 1;
1972 	if (details.last_index < details.first_index)
1973 		details.last_index = ULONG_MAX;
1974 	details.i_mmap_lock = &mapping->i_mmap_lock;
1975 
1976 	spin_lock(&mapping->i_mmap_lock);
1977 
1978 	/* Protect against endless unmapping loops */
1979 	mapping->truncate_count++;
1980 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1981 		if (mapping->truncate_count == 0)
1982 			reset_vma_truncate_counts(mapping);
1983 		mapping->truncate_count++;
1984 	}
1985 	details.truncate_count = mapping->truncate_count;
1986 
1987 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1988 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1989 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1990 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1991 	spin_unlock(&mapping->i_mmap_lock);
1992 }
1993 EXPORT_SYMBOL(unmap_mapping_range);
1994 
1995 /**
1996  * vmtruncate - unmap mappings "freed" by truncate() syscall
1997  * @inode: inode of the file used
1998  * @offset: file offset to start truncating
1999  *
2000  * NOTE! We have to be ready to update the memory sharing
2001  * between the file and the memory map for a potential last
2002  * incomplete page.  Ugly, but necessary.
2003  */
2004 int vmtruncate(struct inode * inode, loff_t offset)
2005 {
2006 	struct address_space *mapping = inode->i_mapping;
2007 	unsigned long limit;
2008 
2009 	if (inode->i_size < offset)
2010 		goto do_expand;
2011 	/*
2012 	 * truncation of in-use swapfiles is disallowed - it would cause
2013 	 * subsequent swapout to scribble on the now-freed blocks.
2014 	 */
2015 	if (IS_SWAPFILE(inode))
2016 		goto out_busy;
2017 	i_size_write(inode, offset);
2018 
2019 	/*
2020 	 * unmap_mapping_range is called twice, first simply for efficiency
2021 	 * so that truncate_inode_pages does fewer single-page unmaps. However
2022 	 * after this first call, and before truncate_inode_pages finishes,
2023 	 * it is possible for private pages to be COWed, which remain after
2024 	 * truncate_inode_pages finishes, hence the second unmap_mapping_range
2025 	 * call must be made for correctness.
2026 	 */
2027 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2028 	truncate_inode_pages(mapping, offset);
2029 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2030 	goto out_truncate;
2031 
2032 do_expand:
2033 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2034 	if (limit != RLIM_INFINITY && offset > limit)
2035 		goto out_sig;
2036 	if (offset > inode->i_sb->s_maxbytes)
2037 		goto out_big;
2038 	i_size_write(inode, offset);
2039 
2040 out_truncate:
2041 	if (inode->i_op && inode->i_op->truncate)
2042 		inode->i_op->truncate(inode);
2043 	return 0;
2044 out_sig:
2045 	send_sig(SIGXFSZ, current, 0);
2046 out_big:
2047 	return -EFBIG;
2048 out_busy:
2049 	return -ETXTBSY;
2050 }
2051 EXPORT_SYMBOL(vmtruncate);
2052 
2053 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2054 {
2055 	struct address_space *mapping = inode->i_mapping;
2056 
2057 	/*
2058 	 * If the underlying filesystem is not going to provide
2059 	 * a way to truncate a range of blocks (punch a hole) -
2060 	 * we should return failure right now.
2061 	 */
2062 	if (!inode->i_op || !inode->i_op->truncate_range)
2063 		return -ENOSYS;
2064 
2065 	mutex_lock(&inode->i_mutex);
2066 	down_write(&inode->i_alloc_sem);
2067 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2068 	truncate_inode_pages_range(mapping, offset, end);
2069 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2070 	inode->i_op->truncate_range(inode, offset, end);
2071 	up_write(&inode->i_alloc_sem);
2072 	mutex_unlock(&inode->i_mutex);
2073 
2074 	return 0;
2075 }
2076 
2077 /**
2078  * swapin_readahead - swap in pages in hope we need them soon
2079  * @entry: swap entry of this memory
2080  * @addr: address to start
2081  * @vma: user vma this addresses belong to
2082  *
2083  * Primitive swap readahead code. We simply read an aligned block of
2084  * (1 << page_cluster) entries in the swap area. This method is chosen
2085  * because it doesn't cost us any seek time.  We also make sure to queue
2086  * the 'original' request together with the readahead ones...
2087  *
2088  * This has been extended to use the NUMA policies from the mm triggering
2089  * the readahead.
2090  *
2091  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2092  */
2093 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2094 {
2095 #ifdef CONFIG_NUMA
2096 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2097 #endif
2098 	int i, num;
2099 	struct page *new_page;
2100 	unsigned long offset;
2101 
2102 	/*
2103 	 * Get the number of handles we should do readahead io to.
2104 	 */
2105 	num = valid_swaphandles(entry, &offset);
2106 	for (i = 0; i < num; offset++, i++) {
2107 		/* Ok, do the async read-ahead now */
2108 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2109 							   offset), vma, addr);
2110 		if (!new_page)
2111 			break;
2112 		page_cache_release(new_page);
2113 #ifdef CONFIG_NUMA
2114 		/*
2115 		 * Find the next applicable VMA for the NUMA policy.
2116 		 */
2117 		addr += PAGE_SIZE;
2118 		if (addr == 0)
2119 			vma = NULL;
2120 		if (vma) {
2121 			if (addr >= vma->vm_end) {
2122 				vma = next_vma;
2123 				next_vma = vma ? vma->vm_next : NULL;
2124 			}
2125 			if (vma && addr < vma->vm_start)
2126 				vma = NULL;
2127 		} else {
2128 			if (next_vma && addr >= next_vma->vm_start) {
2129 				vma = next_vma;
2130 				next_vma = vma->vm_next;
2131 			}
2132 		}
2133 #endif
2134 	}
2135 	lru_add_drain();	/* Push any new pages onto the LRU now */
2136 }
2137 
2138 /*
2139  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2140  * but allow concurrent faults), and pte mapped but not yet locked.
2141  * We return with mmap_sem still held, but pte unmapped and unlocked.
2142  */
2143 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2144 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2145 		int write_access, pte_t orig_pte)
2146 {
2147 	spinlock_t *ptl;
2148 	struct page *page;
2149 	swp_entry_t entry;
2150 	pte_t pte;
2151 	int ret = 0;
2152 
2153 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2154 		goto out;
2155 
2156 	entry = pte_to_swp_entry(orig_pte);
2157 	if (is_migration_entry(entry)) {
2158 		migration_entry_wait(mm, pmd, address);
2159 		goto out;
2160 	}
2161 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2162 	page = lookup_swap_cache(entry);
2163 	if (!page) {
2164 		grab_swap_token(); /* Contend for token _before_ read-in */
2165  		swapin_readahead(entry, address, vma);
2166  		page = read_swap_cache_async(entry, vma, address);
2167 		if (!page) {
2168 			/*
2169 			 * Back out if somebody else faulted in this pte
2170 			 * while we released the pte lock.
2171 			 */
2172 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2173 			if (likely(pte_same(*page_table, orig_pte)))
2174 				ret = VM_FAULT_OOM;
2175 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2176 			goto unlock;
2177 		}
2178 
2179 		/* Had to read the page from swap area: Major fault */
2180 		ret = VM_FAULT_MAJOR;
2181 		count_vm_event(PGMAJFAULT);
2182 	}
2183 
2184 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2185 	mark_page_accessed(page);
2186 	lock_page(page);
2187 
2188 	/*
2189 	 * Back out if somebody else already faulted in this pte.
2190 	 */
2191 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2192 	if (unlikely(!pte_same(*page_table, orig_pte)))
2193 		goto out_nomap;
2194 
2195 	if (unlikely(!PageUptodate(page))) {
2196 		ret = VM_FAULT_SIGBUS;
2197 		goto out_nomap;
2198 	}
2199 
2200 	/* The page isn't present yet, go ahead with the fault. */
2201 
2202 	inc_mm_counter(mm, anon_rss);
2203 	pte = mk_pte(page, vma->vm_page_prot);
2204 	if (write_access && can_share_swap_page(page)) {
2205 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2206 		write_access = 0;
2207 	}
2208 
2209 	flush_icache_page(vma, page);
2210 	set_pte_at(mm, address, page_table, pte);
2211 	page_add_anon_rmap(page, vma, address);
2212 
2213 	swap_free(entry);
2214 	if (vm_swap_full())
2215 		remove_exclusive_swap_page(page);
2216 	unlock_page(page);
2217 
2218 	if (write_access) {
2219 		/* XXX: We could OR the do_wp_page code with this one? */
2220 		if (do_wp_page(mm, vma, address,
2221 				page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2222 			ret = VM_FAULT_OOM;
2223 		goto out;
2224 	}
2225 
2226 	/* No need to invalidate - it was non-present before */
2227 	update_mmu_cache(vma, address, pte);
2228 unlock:
2229 	pte_unmap_unlock(page_table, ptl);
2230 out:
2231 	return ret;
2232 out_nomap:
2233 	pte_unmap_unlock(page_table, ptl);
2234 	unlock_page(page);
2235 	page_cache_release(page);
2236 	return ret;
2237 }
2238 
2239 /*
2240  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2241  * but allow concurrent faults), and pte mapped but not yet locked.
2242  * We return with mmap_sem still held, but pte unmapped and unlocked.
2243  */
2244 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2245 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2246 		int write_access)
2247 {
2248 	struct page *page;
2249 	spinlock_t *ptl;
2250 	pte_t entry;
2251 
2252 	if (write_access) {
2253 		/* Allocate our own private page. */
2254 		pte_unmap(page_table);
2255 
2256 		if (unlikely(anon_vma_prepare(vma)))
2257 			goto oom;
2258 		page = alloc_zeroed_user_highpage_movable(vma, address);
2259 		if (!page)
2260 			goto oom;
2261 
2262 		entry = mk_pte(page, vma->vm_page_prot);
2263 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2264 
2265 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2266 		if (!pte_none(*page_table))
2267 			goto release;
2268 		inc_mm_counter(mm, anon_rss);
2269 		lru_cache_add_active(page);
2270 		page_add_new_anon_rmap(page, vma, address);
2271 	} else {
2272 		/* Map the ZERO_PAGE - vm_page_prot is readonly */
2273 		page = ZERO_PAGE(address);
2274 		page_cache_get(page);
2275 		entry = mk_pte(page, vma->vm_page_prot);
2276 
2277 		ptl = pte_lockptr(mm, pmd);
2278 		spin_lock(ptl);
2279 		if (!pte_none(*page_table))
2280 			goto release;
2281 		inc_mm_counter(mm, file_rss);
2282 		page_add_file_rmap(page);
2283 	}
2284 
2285 	set_pte_at(mm, address, page_table, entry);
2286 
2287 	/* No need to invalidate - it was non-present before */
2288 	update_mmu_cache(vma, address, entry);
2289 	lazy_mmu_prot_update(entry);
2290 unlock:
2291 	pte_unmap_unlock(page_table, ptl);
2292 	return 0;
2293 release:
2294 	page_cache_release(page);
2295 	goto unlock;
2296 oom:
2297 	return VM_FAULT_OOM;
2298 }
2299 
2300 /*
2301  * __do_fault() tries to create a new page mapping. It aggressively
2302  * tries to share with existing pages, but makes a separate copy if
2303  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2304  * the next page fault.
2305  *
2306  * As this is called only for pages that do not currently exist, we
2307  * do not need to flush old virtual caches or the TLB.
2308  *
2309  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2310  * but allow concurrent faults), and pte mapped but not yet locked.
2311  * We return with mmap_sem still held, but pte unmapped and unlocked.
2312  */
2313 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2314 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2315 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2316 {
2317 	spinlock_t *ptl;
2318 	struct page *page;
2319 	pte_t entry;
2320 	int anon = 0;
2321 	struct page *dirty_page = NULL;
2322 	struct vm_fault vmf;
2323 	int ret;
2324 
2325 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2326 	vmf.pgoff = pgoff;
2327 	vmf.flags = flags;
2328 	vmf.page = NULL;
2329 
2330 	pte_unmap(page_table);
2331 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2332 
2333 	if (likely(vma->vm_ops->fault)) {
2334 		ret = vma->vm_ops->fault(vma, &vmf);
2335 		if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2336 			return ret;
2337 	} else {
2338 		/* Legacy ->nopage path */
2339 		ret = 0;
2340 		vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2341 		/* no page was available -- either SIGBUS or OOM */
2342 		if (unlikely(vmf.page == NOPAGE_SIGBUS))
2343 			return VM_FAULT_SIGBUS;
2344 		else if (unlikely(vmf.page == NOPAGE_OOM))
2345 			return VM_FAULT_OOM;
2346 	}
2347 
2348 	/*
2349 	 * For consistency in subsequent calls, make the faulted page always
2350 	 * locked.
2351 	 */
2352 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2353 		lock_page(vmf.page);
2354 	else
2355 		VM_BUG_ON(!PageLocked(vmf.page));
2356 
2357 	/*
2358 	 * Should we do an early C-O-W break?
2359 	 */
2360 	page = vmf.page;
2361 	if (flags & FAULT_FLAG_WRITE) {
2362 		if (!(vma->vm_flags & VM_SHARED)) {
2363 			anon = 1;
2364 			if (unlikely(anon_vma_prepare(vma))) {
2365 				ret = VM_FAULT_OOM;
2366 				goto out;
2367 			}
2368 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2369 						vma, address);
2370 			if (!page) {
2371 				ret = VM_FAULT_OOM;
2372 				goto out;
2373 			}
2374 			copy_user_highpage(page, vmf.page, address, vma);
2375 		} else {
2376 			/*
2377 			 * If the page will be shareable, see if the backing
2378 			 * address space wants to know that the page is about
2379 			 * to become writable
2380 			 */
2381 			if (vma->vm_ops->page_mkwrite) {
2382 				unlock_page(page);
2383 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2384 					ret = VM_FAULT_SIGBUS;
2385 					anon = 1; /* no anon but release vmf.page */
2386 					goto out_unlocked;
2387 				}
2388 				lock_page(page);
2389 				/*
2390 				 * XXX: this is not quite right (racy vs
2391 				 * invalidate) to unlock and relock the page
2392 				 * like this, however a better fix requires
2393 				 * reworking page_mkwrite locking API, which
2394 				 * is better done later.
2395 				 */
2396 				if (!page->mapping) {
2397 					ret = 0;
2398 					anon = 1; /* no anon but release vmf.page */
2399 					goto out;
2400 				}
2401 			}
2402 		}
2403 
2404 	}
2405 
2406 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2407 
2408 	/*
2409 	 * This silly early PAGE_DIRTY setting removes a race
2410 	 * due to the bad i386 page protection. But it's valid
2411 	 * for other architectures too.
2412 	 *
2413 	 * Note that if write_access is true, we either now have
2414 	 * an exclusive copy of the page, or this is a shared mapping,
2415 	 * so we can make it writable and dirty to avoid having to
2416 	 * handle that later.
2417 	 */
2418 	/* Only go through if we didn't race with anybody else... */
2419 	if (likely(pte_same(*page_table, orig_pte))) {
2420 		flush_icache_page(vma, page);
2421 		entry = mk_pte(page, vma->vm_page_prot);
2422 		if (flags & FAULT_FLAG_WRITE)
2423 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2424 		set_pte_at(mm, address, page_table, entry);
2425 		if (anon) {
2426                         inc_mm_counter(mm, anon_rss);
2427                         lru_cache_add_active(page);
2428                         page_add_new_anon_rmap(page, vma, address);
2429 		} else {
2430 			inc_mm_counter(mm, file_rss);
2431 			page_add_file_rmap(page);
2432 			if (flags & FAULT_FLAG_WRITE) {
2433 				dirty_page = page;
2434 				get_page(dirty_page);
2435 			}
2436 		}
2437 
2438 		/* no need to invalidate: a not-present page won't be cached */
2439 		update_mmu_cache(vma, address, entry);
2440 		lazy_mmu_prot_update(entry);
2441 	} else {
2442 		if (anon)
2443 			page_cache_release(page);
2444 		else
2445 			anon = 1; /* no anon but release faulted_page */
2446 	}
2447 
2448 	pte_unmap_unlock(page_table, ptl);
2449 
2450 out:
2451 	unlock_page(vmf.page);
2452 out_unlocked:
2453 	if (anon)
2454 		page_cache_release(vmf.page);
2455 	else if (dirty_page) {
2456 		set_page_dirty_balance(dirty_page);
2457 		put_page(dirty_page);
2458 	}
2459 
2460 	return ret;
2461 }
2462 
2463 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2464 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2465 		int write_access, pte_t orig_pte)
2466 {
2467 	pgoff_t pgoff = (((address & PAGE_MASK)
2468 			- vma->vm_start) >> PAGE_CACHE_SHIFT) + vma->vm_pgoff;
2469 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2470 
2471 	return __do_fault(mm, vma, address, page_table, pmd, pgoff,
2472 							flags, orig_pte);
2473 }
2474 
2475 
2476 /*
2477  * do_no_pfn() tries to create a new page mapping for a page without
2478  * a struct_page backing it
2479  *
2480  * As this is called only for pages that do not currently exist, we
2481  * do not need to flush old virtual caches or the TLB.
2482  *
2483  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2484  * but allow concurrent faults), and pte mapped but not yet locked.
2485  * We return with mmap_sem still held, but pte unmapped and unlocked.
2486  *
2487  * It is expected that the ->nopfn handler always returns the same pfn
2488  * for a given virtual mapping.
2489  *
2490  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2491  */
2492 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2493 		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2494 		     int write_access)
2495 {
2496 	spinlock_t *ptl;
2497 	pte_t entry;
2498 	unsigned long pfn;
2499 
2500 	pte_unmap(page_table);
2501 	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2502 	BUG_ON(is_cow_mapping(vma->vm_flags));
2503 
2504 	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2505 	if (unlikely(pfn == NOPFN_OOM))
2506 		return VM_FAULT_OOM;
2507 	else if (unlikely(pfn == NOPFN_SIGBUS))
2508 		return VM_FAULT_SIGBUS;
2509 	else if (unlikely(pfn == NOPFN_REFAULT))
2510 		return 0;
2511 
2512 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2513 
2514 	/* Only go through if we didn't race with anybody else... */
2515 	if (pte_none(*page_table)) {
2516 		entry = pfn_pte(pfn, vma->vm_page_prot);
2517 		if (write_access)
2518 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2519 		set_pte_at(mm, address, page_table, entry);
2520 	}
2521 	pte_unmap_unlock(page_table, ptl);
2522 	return 0;
2523 }
2524 
2525 /*
2526  * Fault of a previously existing named mapping. Repopulate the pte
2527  * from the encoded file_pte if possible. This enables swappable
2528  * nonlinear vmas.
2529  *
2530  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2531  * but allow concurrent faults), and pte mapped but not yet locked.
2532  * We return with mmap_sem still held, but pte unmapped and unlocked.
2533  */
2534 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2535 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2536 		int write_access, pte_t orig_pte)
2537 {
2538 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2539 				(write_access ? FAULT_FLAG_WRITE : 0);
2540 	pgoff_t pgoff;
2541 
2542 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2543 		return 0;
2544 
2545 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2546 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2547 		/*
2548 		 * Page table corrupted: show pte and kill process.
2549 		 */
2550 		print_bad_pte(vma, orig_pte, address);
2551 		return VM_FAULT_OOM;
2552 	}
2553 
2554 	pgoff = pte_to_pgoff(orig_pte);
2555 
2556 	return __do_fault(mm, vma, address, page_table, pmd, pgoff,
2557 							flags, orig_pte);
2558 }
2559 
2560 /*
2561  * These routines also need to handle stuff like marking pages dirty
2562  * and/or accessed for architectures that don't do it in hardware (most
2563  * RISC architectures).  The early dirtying is also good on the i386.
2564  *
2565  * There is also a hook called "update_mmu_cache()" that architectures
2566  * with external mmu caches can use to update those (ie the Sparc or
2567  * PowerPC hashed page tables that act as extended TLBs).
2568  *
2569  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2570  * but allow concurrent faults), and pte mapped but not yet locked.
2571  * We return with mmap_sem still held, but pte unmapped and unlocked.
2572  */
2573 static inline int handle_pte_fault(struct mm_struct *mm,
2574 		struct vm_area_struct *vma, unsigned long address,
2575 		pte_t *pte, pmd_t *pmd, int write_access)
2576 {
2577 	pte_t entry;
2578 	spinlock_t *ptl;
2579 
2580 	entry = *pte;
2581 	if (!pte_present(entry)) {
2582 		if (pte_none(entry)) {
2583 			if (vma->vm_ops) {
2584 				if (vma->vm_ops->fault || vma->vm_ops->nopage)
2585 					return do_linear_fault(mm, vma, address,
2586 						pte, pmd, write_access, entry);
2587 				if (unlikely(vma->vm_ops->nopfn))
2588 					return do_no_pfn(mm, vma, address, pte,
2589 							 pmd, write_access);
2590 			}
2591 			return do_anonymous_page(mm, vma, address,
2592 						 pte, pmd, write_access);
2593 		}
2594 		if (pte_file(entry))
2595 			return do_nonlinear_fault(mm, vma, address,
2596 					pte, pmd, write_access, entry);
2597 		return do_swap_page(mm, vma, address,
2598 					pte, pmd, write_access, entry);
2599 	}
2600 
2601 	ptl = pte_lockptr(mm, pmd);
2602 	spin_lock(ptl);
2603 	if (unlikely(!pte_same(*pte, entry)))
2604 		goto unlock;
2605 	if (write_access) {
2606 		if (!pte_write(entry))
2607 			return do_wp_page(mm, vma, address,
2608 					pte, pmd, ptl, entry);
2609 		entry = pte_mkdirty(entry);
2610 	}
2611 	entry = pte_mkyoung(entry);
2612 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2613 		update_mmu_cache(vma, address, entry);
2614 		lazy_mmu_prot_update(entry);
2615 	} else {
2616 		/*
2617 		 * This is needed only for protection faults but the arch code
2618 		 * is not yet telling us if this is a protection fault or not.
2619 		 * This still avoids useless tlb flushes for .text page faults
2620 		 * with threads.
2621 		 */
2622 		if (write_access)
2623 			flush_tlb_page(vma, address);
2624 	}
2625 unlock:
2626 	pte_unmap_unlock(pte, ptl);
2627 	return 0;
2628 }
2629 
2630 /*
2631  * By the time we get here, we already hold the mm semaphore
2632  */
2633 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2634 		unsigned long address, int write_access)
2635 {
2636 	pgd_t *pgd;
2637 	pud_t *pud;
2638 	pmd_t *pmd;
2639 	pte_t *pte;
2640 
2641 	__set_current_state(TASK_RUNNING);
2642 
2643 	count_vm_event(PGFAULT);
2644 
2645 	if (unlikely(is_vm_hugetlb_page(vma)))
2646 		return hugetlb_fault(mm, vma, address, write_access);
2647 
2648 	pgd = pgd_offset(mm, address);
2649 	pud = pud_alloc(mm, pgd, address);
2650 	if (!pud)
2651 		return VM_FAULT_OOM;
2652 	pmd = pmd_alloc(mm, pud, address);
2653 	if (!pmd)
2654 		return VM_FAULT_OOM;
2655 	pte = pte_alloc_map(mm, pmd, address);
2656 	if (!pte)
2657 		return VM_FAULT_OOM;
2658 
2659 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2660 }
2661 
2662 #ifndef __PAGETABLE_PUD_FOLDED
2663 /*
2664  * Allocate page upper directory.
2665  * We've already handled the fast-path in-line.
2666  */
2667 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2668 {
2669 	pud_t *new = pud_alloc_one(mm, address);
2670 	if (!new)
2671 		return -ENOMEM;
2672 
2673 	spin_lock(&mm->page_table_lock);
2674 	if (pgd_present(*pgd))		/* Another has populated it */
2675 		pud_free(new);
2676 	else
2677 		pgd_populate(mm, pgd, new);
2678 	spin_unlock(&mm->page_table_lock);
2679 	return 0;
2680 }
2681 #endif /* __PAGETABLE_PUD_FOLDED */
2682 
2683 #ifndef __PAGETABLE_PMD_FOLDED
2684 /*
2685  * Allocate page middle directory.
2686  * We've already handled the fast-path in-line.
2687  */
2688 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2689 {
2690 	pmd_t *new = pmd_alloc_one(mm, address);
2691 	if (!new)
2692 		return -ENOMEM;
2693 
2694 	spin_lock(&mm->page_table_lock);
2695 #ifndef __ARCH_HAS_4LEVEL_HACK
2696 	if (pud_present(*pud))		/* Another has populated it */
2697 		pmd_free(new);
2698 	else
2699 		pud_populate(mm, pud, new);
2700 #else
2701 	if (pgd_present(*pud))		/* Another has populated it */
2702 		pmd_free(new);
2703 	else
2704 		pgd_populate(mm, pud, new);
2705 #endif /* __ARCH_HAS_4LEVEL_HACK */
2706 	spin_unlock(&mm->page_table_lock);
2707 	return 0;
2708 }
2709 #endif /* __PAGETABLE_PMD_FOLDED */
2710 
2711 int make_pages_present(unsigned long addr, unsigned long end)
2712 {
2713 	int ret, len, write;
2714 	struct vm_area_struct * vma;
2715 
2716 	vma = find_vma(current->mm, addr);
2717 	if (!vma)
2718 		return -1;
2719 	write = (vma->vm_flags & VM_WRITE) != 0;
2720 	BUG_ON(addr >= end);
2721 	BUG_ON(end > vma->vm_end);
2722 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2723 	ret = get_user_pages(current, current->mm, addr,
2724 			len, write, 0, NULL, NULL);
2725 	if (ret < 0)
2726 		return ret;
2727 	return ret == len ? 0 : -1;
2728 }
2729 
2730 /*
2731  * Map a vmalloc()-space virtual address to the physical page.
2732  */
2733 struct page * vmalloc_to_page(void * vmalloc_addr)
2734 {
2735 	unsigned long addr = (unsigned long) vmalloc_addr;
2736 	struct page *page = NULL;
2737 	pgd_t *pgd = pgd_offset_k(addr);
2738 	pud_t *pud;
2739 	pmd_t *pmd;
2740 	pte_t *ptep, pte;
2741 
2742 	if (!pgd_none(*pgd)) {
2743 		pud = pud_offset(pgd, addr);
2744 		if (!pud_none(*pud)) {
2745 			pmd = pmd_offset(pud, addr);
2746 			if (!pmd_none(*pmd)) {
2747 				ptep = pte_offset_map(pmd, addr);
2748 				pte = *ptep;
2749 				if (pte_present(pte))
2750 					page = pte_page(pte);
2751 				pte_unmap(ptep);
2752 			}
2753 		}
2754 	}
2755 	return page;
2756 }
2757 
2758 EXPORT_SYMBOL(vmalloc_to_page);
2759 
2760 /*
2761  * Map a vmalloc()-space virtual address to the physical page frame number.
2762  */
2763 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2764 {
2765 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2766 }
2767 
2768 EXPORT_SYMBOL(vmalloc_to_pfn);
2769 
2770 #if !defined(__HAVE_ARCH_GATE_AREA)
2771 
2772 #if defined(AT_SYSINFO_EHDR)
2773 static struct vm_area_struct gate_vma;
2774 
2775 static int __init gate_vma_init(void)
2776 {
2777 	gate_vma.vm_mm = NULL;
2778 	gate_vma.vm_start = FIXADDR_USER_START;
2779 	gate_vma.vm_end = FIXADDR_USER_END;
2780 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2781 	gate_vma.vm_page_prot = __P101;
2782 	/*
2783 	 * Make sure the vDSO gets into every core dump.
2784 	 * Dumping its contents makes post-mortem fully interpretable later
2785 	 * without matching up the same kernel and hardware config to see
2786 	 * what PC values meant.
2787 	 */
2788 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2789 	return 0;
2790 }
2791 __initcall(gate_vma_init);
2792 #endif
2793 
2794 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2795 {
2796 #ifdef AT_SYSINFO_EHDR
2797 	return &gate_vma;
2798 #else
2799 	return NULL;
2800 #endif
2801 }
2802 
2803 int in_gate_area_no_task(unsigned long addr)
2804 {
2805 #ifdef AT_SYSINFO_EHDR
2806 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2807 		return 1;
2808 #endif
2809 	return 0;
2810 }
2811 
2812 #endif	/* __HAVE_ARCH_GATE_AREA */
2813 
2814 /*
2815  * Access another process' address space.
2816  * Source/target buffer must be kernel space,
2817  * Do not walk the page table directly, use get_user_pages
2818  */
2819 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2820 {
2821 	struct mm_struct *mm;
2822 	struct vm_area_struct *vma;
2823 	struct page *page;
2824 	void *old_buf = buf;
2825 
2826 	mm = get_task_mm(tsk);
2827 	if (!mm)
2828 		return 0;
2829 
2830 	down_read(&mm->mmap_sem);
2831 	/* ignore errors, just check how much was sucessfully transfered */
2832 	while (len) {
2833 		int bytes, ret, offset;
2834 		void *maddr;
2835 
2836 		ret = get_user_pages(tsk, mm, addr, 1,
2837 				write, 1, &page, &vma);
2838 		if (ret <= 0)
2839 			break;
2840 
2841 		bytes = len;
2842 		offset = addr & (PAGE_SIZE-1);
2843 		if (bytes > PAGE_SIZE-offset)
2844 			bytes = PAGE_SIZE-offset;
2845 
2846 		maddr = kmap(page);
2847 		if (write) {
2848 			copy_to_user_page(vma, page, addr,
2849 					  maddr + offset, buf, bytes);
2850 			set_page_dirty_lock(page);
2851 		} else {
2852 			copy_from_user_page(vma, page, addr,
2853 					    buf, maddr + offset, bytes);
2854 		}
2855 		kunmap(page);
2856 		page_cache_release(page);
2857 		len -= bytes;
2858 		buf += bytes;
2859 		addr += bytes;
2860 	}
2861 	up_read(&mm->mmap_sem);
2862 	mmput(mm);
2863 
2864 	return buf - old_buf;
2865 }
2866 EXPORT_SYMBOL_GPL(access_process_vm);
2867