xref: /linux/mm/memory.c (revision a9117b4d7f178ea36e8d256f8ab3752839e245b2)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	do {
367 		unsigned long addr = vma->vm_start;
368 		struct vm_area_struct *next;
369 
370 		/*
371 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
372 		 * be 0.  This will underflow and is okay.
373 		 */
374 		next = mas_find(mas, ceiling - 1);
375 		if (unlikely(xa_is_zero(next)))
376 			next = NULL;
377 
378 		/*
379 		 * Hide vma from rmap and truncate_pagecache before freeing
380 		 * pgtables
381 		 */
382 		if (mm_wr_locked)
383 			vma_start_write(vma);
384 		unlink_anon_vmas(vma);
385 		unlink_file_vma(vma);
386 
387 		if (is_vm_hugetlb_page(vma)) {
388 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 				floor, next ? next->vm_start : ceiling);
390 		} else {
391 			/*
392 			 * Optimization: gather nearby vmas into one call down
393 			 */
394 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 			       && !is_vm_hugetlb_page(next)) {
396 				vma = next;
397 				next = mas_find(mas, ceiling - 1);
398 				if (unlikely(xa_is_zero(next)))
399 					next = NULL;
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	for (i = 0; i < NR_MM_COUNTERS; i++)
478 		if (rss[i])
479 			add_mm_counter(mm, i, rss[i]);
480 }
481 
482 /*
483  * This function is called to print an error when a bad pte
484  * is found. For example, we might have a PFN-mapped pte in
485  * a region that doesn't allow it.
486  *
487  * The calling function must still handle the error.
488  */
489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
490 			  pte_t pte, struct page *page)
491 {
492 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
493 	p4d_t *p4d = p4d_offset(pgd, addr);
494 	pud_t *pud = pud_offset(p4d, addr);
495 	pmd_t *pmd = pmd_offset(pud, addr);
496 	struct address_space *mapping;
497 	pgoff_t index;
498 	static unsigned long resume;
499 	static unsigned long nr_shown;
500 	static unsigned long nr_unshown;
501 
502 	/*
503 	 * Allow a burst of 60 reports, then keep quiet for that minute;
504 	 * or allow a steady drip of one report per second.
505 	 */
506 	if (nr_shown == 60) {
507 		if (time_before(jiffies, resume)) {
508 			nr_unshown++;
509 			return;
510 		}
511 		if (nr_unshown) {
512 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
513 				 nr_unshown);
514 			nr_unshown = 0;
515 		}
516 		nr_shown = 0;
517 	}
518 	if (nr_shown++ == 0)
519 		resume = jiffies + 60 * HZ;
520 
521 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
522 	index = linear_page_index(vma, addr);
523 
524 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
525 		 current->comm,
526 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
527 	if (page)
528 		dump_page(page, "bad pte");
529 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
530 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
531 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
532 		 vma->vm_file,
533 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
534 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
535 		 mapping ? mapping->a_ops->read_folio : NULL);
536 	dump_stack();
537 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
538 }
539 
540 /*
541  * vm_normal_page -- This function gets the "struct page" associated with a pte.
542  *
543  * "Special" mappings do not wish to be associated with a "struct page" (either
544  * it doesn't exist, or it exists but they don't want to touch it). In this
545  * case, NULL is returned here. "Normal" mappings do have a struct page.
546  *
547  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
548  * pte bit, in which case this function is trivial. Secondly, an architecture
549  * may not have a spare pte bit, which requires a more complicated scheme,
550  * described below.
551  *
552  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
553  * special mapping (even if there are underlying and valid "struct pages").
554  * COWed pages of a VM_PFNMAP are always normal.
555  *
556  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
557  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
558  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
559  * mapping will always honor the rule
560  *
561  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562  *
563  * And for normal mappings this is false.
564  *
565  * This restricts such mappings to be a linear translation from virtual address
566  * to pfn. To get around this restriction, we allow arbitrary mappings so long
567  * as the vma is not a COW mapping; in that case, we know that all ptes are
568  * special (because none can have been COWed).
569  *
570  *
571  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
572  *
573  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
574  * page" backing, however the difference is that _all_ pages with a struct
575  * page (that is, those where pfn_valid is true) are refcounted and considered
576  * normal pages by the VM. The disadvantage is that pages are refcounted
577  * (which can be slower and simply not an option for some PFNMAP users). The
578  * advantage is that we don't have to follow the strict linearity rule of
579  * PFNMAP mappings in order to support COWable mappings.
580  *
581  */
582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
583 			    pte_t pte)
584 {
585 	unsigned long pfn = pte_pfn(pte);
586 
587 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
588 		if (likely(!pte_special(pte)))
589 			goto check_pfn;
590 		if (vma->vm_ops && vma->vm_ops->find_special_page)
591 			return vma->vm_ops->find_special_page(vma, addr);
592 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 			return NULL;
594 		if (is_zero_pfn(pfn))
595 			return NULL;
596 		if (pte_devmap(pte))
597 		/*
598 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
599 		 * and will have refcounts incremented on their struct pages
600 		 * when they are inserted into PTEs, thus they are safe to
601 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
602 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
603 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
604 		 */
605 			return NULL;
606 
607 		print_bad_pte(vma, addr, pte, NULL);
608 		return NULL;
609 	}
610 
611 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
612 
613 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 		if (vma->vm_flags & VM_MIXEDMAP) {
615 			if (!pfn_valid(pfn))
616 				return NULL;
617 			goto out;
618 		} else {
619 			unsigned long off;
620 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
621 			if (pfn == vma->vm_pgoff + off)
622 				return NULL;
623 			if (!is_cow_mapping(vma->vm_flags))
624 				return NULL;
625 		}
626 	}
627 
628 	if (is_zero_pfn(pfn))
629 		return NULL;
630 
631 check_pfn:
632 	if (unlikely(pfn > highest_memmap_pfn)) {
633 		print_bad_pte(vma, addr, pte, NULL);
634 		return NULL;
635 	}
636 
637 	/*
638 	 * NOTE! We still have PageReserved() pages in the page tables.
639 	 * eg. VDSO mappings can cause them to exist.
640 	 */
641 out:
642 	return pfn_to_page(pfn);
643 }
644 
645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
646 			    pte_t pte)
647 {
648 	struct page *page = vm_normal_page(vma, addr, pte);
649 
650 	if (page)
651 		return page_folio(page);
652 	return NULL;
653 }
654 
655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
657 				pmd_t pmd)
658 {
659 	unsigned long pfn = pmd_pfn(pmd);
660 
661 	/*
662 	 * There is no pmd_special() but there may be special pmds, e.g.
663 	 * in a direct-access (dax) mapping, so let's just replicate the
664 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
665 	 */
666 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 		if (vma->vm_flags & VM_MIXEDMAP) {
668 			if (!pfn_valid(pfn))
669 				return NULL;
670 			goto out;
671 		} else {
672 			unsigned long off;
673 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 			if (pfn == vma->vm_pgoff + off)
675 				return NULL;
676 			if (!is_cow_mapping(vma->vm_flags))
677 				return NULL;
678 		}
679 	}
680 
681 	if (pmd_devmap(pmd))
682 		return NULL;
683 	if (is_huge_zero_pmd(pmd))
684 		return NULL;
685 	if (unlikely(pfn > highest_memmap_pfn))
686 		return NULL;
687 
688 	/*
689 	 * NOTE! We still have PageReserved() pages in the page tables.
690 	 * eg. VDSO mappings can cause them to exist.
691 	 */
692 out:
693 	return pfn_to_page(pfn);
694 }
695 
696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
697 				  unsigned long addr, pmd_t pmd)
698 {
699 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
700 
701 	if (page)
702 		return page_folio(page);
703 	return NULL;
704 }
705 #endif
706 
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 				  struct page *page, unsigned long address,
709 				  pte_t *ptep)
710 {
711 	struct folio *folio = page_folio(page);
712 	pte_t orig_pte;
713 	pte_t pte;
714 	swp_entry_t entry;
715 
716 	orig_pte = ptep_get(ptep);
717 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
718 	if (pte_swp_soft_dirty(orig_pte))
719 		pte = pte_mksoft_dirty(pte);
720 
721 	entry = pte_to_swp_entry(orig_pte);
722 	if (pte_swp_uffd_wp(orig_pte))
723 		pte = pte_mkuffd_wp(pte);
724 	else if (is_writable_device_exclusive_entry(entry))
725 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
726 
727 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
728 					   PageAnonExclusive(page)), folio);
729 
730 	/*
731 	 * No need to take a page reference as one was already
732 	 * created when the swap entry was made.
733 	 */
734 	if (folio_test_anon(folio))
735 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
736 	else
737 		/*
738 		 * Currently device exclusive access only supports anonymous
739 		 * memory so the entry shouldn't point to a filebacked page.
740 		 */
741 		WARN_ON_ONCE(1);
742 
743 	set_pte_at(vma->vm_mm, address, ptep, pte);
744 
745 	/*
746 	 * No need to invalidate - it was non-present before. However
747 	 * secondary CPUs may have mappings that need invalidating.
748 	 */
749 	update_mmu_cache(vma, address, ptep);
750 }
751 
752 /*
753  * Tries to restore an exclusive pte if the page lock can be acquired without
754  * sleeping.
755  */
756 static int
757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 			unsigned long addr)
759 {
760 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
761 	struct page *page = pfn_swap_entry_to_page(entry);
762 
763 	if (trylock_page(page)) {
764 		restore_exclusive_pte(vma, page, addr, src_pte);
765 		unlock_page(page);
766 		return 0;
767 	}
768 
769 	return -EBUSY;
770 }
771 
772 /*
773  * copy one vm_area from one task to the other. Assumes the page tables
774  * already present in the new task to be cleared in the whole range
775  * covered by this vma.
776  */
777 
778 static unsigned long
779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
780 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
782 {
783 	unsigned long vm_flags = dst_vma->vm_flags;
784 	pte_t orig_pte = ptep_get(src_pte);
785 	pte_t pte = orig_pte;
786 	struct folio *folio;
787 	struct page *page;
788 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
789 
790 	if (likely(!non_swap_entry(entry))) {
791 		if (swap_duplicate(entry) < 0)
792 			return -EIO;
793 
794 		/* make sure dst_mm is on swapoff's mmlist. */
795 		if (unlikely(list_empty(&dst_mm->mmlist))) {
796 			spin_lock(&mmlist_lock);
797 			if (list_empty(&dst_mm->mmlist))
798 				list_add(&dst_mm->mmlist,
799 						&src_mm->mmlist);
800 			spin_unlock(&mmlist_lock);
801 		}
802 		/* Mark the swap entry as shared. */
803 		if (pte_swp_exclusive(orig_pte)) {
804 			pte = pte_swp_clear_exclusive(orig_pte);
805 			set_pte_at(src_mm, addr, src_pte, pte);
806 		}
807 		rss[MM_SWAPENTS]++;
808 	} else if (is_migration_entry(entry)) {
809 		folio = pfn_swap_entry_folio(entry);
810 
811 		rss[mm_counter(folio)]++;
812 
813 		if (!is_readable_migration_entry(entry) &&
814 				is_cow_mapping(vm_flags)) {
815 			/*
816 			 * COW mappings require pages in both parent and child
817 			 * to be set to read. A previously exclusive entry is
818 			 * now shared.
819 			 */
820 			entry = make_readable_migration_entry(
821 							swp_offset(entry));
822 			pte = swp_entry_to_pte(entry);
823 			if (pte_swp_soft_dirty(orig_pte))
824 				pte = pte_swp_mksoft_dirty(pte);
825 			if (pte_swp_uffd_wp(orig_pte))
826 				pte = pte_swp_mkuffd_wp(pte);
827 			set_pte_at(src_mm, addr, src_pte, pte);
828 		}
829 	} else if (is_device_private_entry(entry)) {
830 		page = pfn_swap_entry_to_page(entry);
831 		folio = page_folio(page);
832 
833 		/*
834 		 * Update rss count even for unaddressable pages, as
835 		 * they should treated just like normal pages in this
836 		 * respect.
837 		 *
838 		 * We will likely want to have some new rss counters
839 		 * for unaddressable pages, at some point. But for now
840 		 * keep things as they are.
841 		 */
842 		folio_get(folio);
843 		rss[mm_counter(folio)]++;
844 		/* Cannot fail as these pages cannot get pinned. */
845 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
846 
847 		/*
848 		 * We do not preserve soft-dirty information, because so
849 		 * far, checkpoint/restore is the only feature that
850 		 * requires that. And checkpoint/restore does not work
851 		 * when a device driver is involved (you cannot easily
852 		 * save and restore device driver state).
853 		 */
854 		if (is_writable_device_private_entry(entry) &&
855 		    is_cow_mapping(vm_flags)) {
856 			entry = make_readable_device_private_entry(
857 							swp_offset(entry));
858 			pte = swp_entry_to_pte(entry);
859 			if (pte_swp_uffd_wp(orig_pte))
860 				pte = pte_swp_mkuffd_wp(pte);
861 			set_pte_at(src_mm, addr, src_pte, pte);
862 		}
863 	} else if (is_device_exclusive_entry(entry)) {
864 		/*
865 		 * Make device exclusive entries present by restoring the
866 		 * original entry then copying as for a present pte. Device
867 		 * exclusive entries currently only support private writable
868 		 * (ie. COW) mappings.
869 		 */
870 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
871 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
872 			return -EBUSY;
873 		return -ENOENT;
874 	} else if (is_pte_marker_entry(entry)) {
875 		pte_marker marker = copy_pte_marker(entry, dst_vma);
876 
877 		if (marker)
878 			set_pte_at(dst_mm, addr, dst_pte,
879 				   make_pte_marker(marker));
880 		return 0;
881 	}
882 	if (!userfaultfd_wp(dst_vma))
883 		pte = pte_swp_clear_uffd_wp(pte);
884 	set_pte_at(dst_mm, addr, dst_pte, pte);
885 	return 0;
886 }
887 
888 /*
889  * Copy a present and normal page.
890  *
891  * NOTE! The usual case is that this isn't required;
892  * instead, the caller can just increase the page refcount
893  * and re-use the pte the traditional way.
894  *
895  * And if we need a pre-allocated page but don't yet have
896  * one, return a negative error to let the preallocation
897  * code know so that it can do so outside the page table
898  * lock.
899  */
900 static inline int
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 		  struct folio **prealloc, struct page *page)
904 {
905 	struct folio *new_folio;
906 	pte_t pte;
907 
908 	new_folio = *prealloc;
909 	if (!new_folio)
910 		return -EAGAIN;
911 
912 	/*
913 	 * We have a prealloc page, all good!  Take it
914 	 * over and copy the page & arm it.
915 	 */
916 	*prealloc = NULL;
917 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
918 	__folio_mark_uptodate(new_folio);
919 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
920 	folio_add_lru_vma(new_folio, dst_vma);
921 	rss[MM_ANONPAGES]++;
922 
923 	/* All done, just insert the new page copy in the child */
924 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
925 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
927 		/* Uffd-wp needs to be delivered to dest pte as well */
928 		pte = pte_mkuffd_wp(pte);
929 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
930 	return 0;
931 }
932 
933 /*
934  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
935  * is required to copy this pte.
936  */
937 static inline int
938 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
939 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
940 		 struct folio **prealloc)
941 {
942 	struct mm_struct *src_mm = src_vma->vm_mm;
943 	unsigned long vm_flags = src_vma->vm_flags;
944 	pte_t pte = ptep_get(src_pte);
945 	struct page *page;
946 	struct folio *folio;
947 
948 	page = vm_normal_page(src_vma, addr, pte);
949 	if (page)
950 		folio = page_folio(page);
951 	if (page && folio_test_anon(folio)) {
952 		/*
953 		 * If this page may have been pinned by the parent process,
954 		 * copy the page immediately for the child so that we'll always
955 		 * guarantee the pinned page won't be randomly replaced in the
956 		 * future.
957 		 */
958 		folio_get(folio);
959 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
960 			/* Page may be pinned, we have to copy. */
961 			folio_put(folio);
962 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
963 						 addr, rss, prealloc, page);
964 		}
965 		rss[MM_ANONPAGES]++;
966 	} else if (page) {
967 		folio_get(folio);
968 		folio_dup_file_rmap_pte(folio, page);
969 		rss[mm_counter_file(folio)]++;
970 	}
971 
972 	/*
973 	 * If it's a COW mapping, write protect it both
974 	 * in the parent and the child
975 	 */
976 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
977 		ptep_set_wrprotect(src_mm, addr, src_pte);
978 		pte = pte_wrprotect(pte);
979 	}
980 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
981 
982 	/*
983 	 * If it's a shared mapping, mark it clean in
984 	 * the child
985 	 */
986 	if (vm_flags & VM_SHARED)
987 		pte = pte_mkclean(pte);
988 	pte = pte_mkold(pte);
989 
990 	if (!userfaultfd_wp(dst_vma))
991 		pte = pte_clear_uffd_wp(pte);
992 
993 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
994 	return 0;
995 }
996 
997 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
998 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
999 {
1000 	struct folio *new_folio;
1001 
1002 	if (need_zero)
1003 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1004 	else
1005 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1006 					    addr, false);
1007 
1008 	if (!new_folio)
1009 		return NULL;
1010 
1011 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1012 		folio_put(new_folio);
1013 		return NULL;
1014 	}
1015 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1016 
1017 	return new_folio;
1018 }
1019 
1020 static int
1021 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1022 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1023 	       unsigned long end)
1024 {
1025 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1026 	struct mm_struct *src_mm = src_vma->vm_mm;
1027 	pte_t *orig_src_pte, *orig_dst_pte;
1028 	pte_t *src_pte, *dst_pte;
1029 	pte_t ptent;
1030 	spinlock_t *src_ptl, *dst_ptl;
1031 	int progress, ret = 0;
1032 	int rss[NR_MM_COUNTERS];
1033 	swp_entry_t entry = (swp_entry_t){0};
1034 	struct folio *prealloc = NULL;
1035 
1036 again:
1037 	progress = 0;
1038 	init_rss_vec(rss);
1039 
1040 	/*
1041 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1042 	 * error handling here, assume that exclusive mmap_lock on dst and src
1043 	 * protects anon from unexpected THP transitions; with shmem and file
1044 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1045 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1046 	 * can remove such assumptions later, but this is good enough for now.
1047 	 */
1048 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1049 	if (!dst_pte) {
1050 		ret = -ENOMEM;
1051 		goto out;
1052 	}
1053 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1054 	if (!src_pte) {
1055 		pte_unmap_unlock(dst_pte, dst_ptl);
1056 		/* ret == 0 */
1057 		goto out;
1058 	}
1059 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1060 	orig_src_pte = src_pte;
1061 	orig_dst_pte = dst_pte;
1062 	arch_enter_lazy_mmu_mode();
1063 
1064 	do {
1065 		/*
1066 		 * We are holding two locks at this point - either of them
1067 		 * could generate latencies in another task on another CPU.
1068 		 */
1069 		if (progress >= 32) {
1070 			progress = 0;
1071 			if (need_resched() ||
1072 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1073 				break;
1074 		}
1075 		ptent = ptep_get(src_pte);
1076 		if (pte_none(ptent)) {
1077 			progress++;
1078 			continue;
1079 		}
1080 		if (unlikely(!pte_present(ptent))) {
1081 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1082 						  dst_pte, src_pte,
1083 						  dst_vma, src_vma,
1084 						  addr, rss);
1085 			if (ret == -EIO) {
1086 				entry = pte_to_swp_entry(ptep_get(src_pte));
1087 				break;
1088 			} else if (ret == -EBUSY) {
1089 				break;
1090 			} else if (!ret) {
1091 				progress += 8;
1092 				continue;
1093 			}
1094 
1095 			/*
1096 			 * Device exclusive entry restored, continue by copying
1097 			 * the now present pte.
1098 			 */
1099 			WARN_ON_ONCE(ret != -ENOENT);
1100 		}
1101 		/* copy_present_pte() will clear `*prealloc' if consumed */
1102 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1103 				       addr, rss, &prealloc);
1104 		/*
1105 		 * If we need a pre-allocated page for this pte, drop the
1106 		 * locks, allocate, and try again.
1107 		 */
1108 		if (unlikely(ret == -EAGAIN))
1109 			break;
1110 		if (unlikely(prealloc)) {
1111 			/*
1112 			 * pre-alloc page cannot be reused by next time so as
1113 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1114 			 * will allocate page according to address).  This
1115 			 * could only happen if one pinned pte changed.
1116 			 */
1117 			folio_put(prealloc);
1118 			prealloc = NULL;
1119 		}
1120 		progress += 8;
1121 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1122 
1123 	arch_leave_lazy_mmu_mode();
1124 	pte_unmap_unlock(orig_src_pte, src_ptl);
1125 	add_mm_rss_vec(dst_mm, rss);
1126 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1127 	cond_resched();
1128 
1129 	if (ret == -EIO) {
1130 		VM_WARN_ON_ONCE(!entry.val);
1131 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1132 			ret = -ENOMEM;
1133 			goto out;
1134 		}
1135 		entry.val = 0;
1136 	} else if (ret == -EBUSY) {
1137 		goto out;
1138 	} else if (ret ==  -EAGAIN) {
1139 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1140 		if (!prealloc)
1141 			return -ENOMEM;
1142 	} else if (ret) {
1143 		VM_WARN_ON_ONCE(1);
1144 	}
1145 
1146 	/* We've captured and resolved the error. Reset, try again. */
1147 	ret = 0;
1148 
1149 	if (addr != end)
1150 		goto again;
1151 out:
1152 	if (unlikely(prealloc))
1153 		folio_put(prealloc);
1154 	return ret;
1155 }
1156 
1157 static inline int
1158 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1159 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1160 	       unsigned long end)
1161 {
1162 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1163 	struct mm_struct *src_mm = src_vma->vm_mm;
1164 	pmd_t *src_pmd, *dst_pmd;
1165 	unsigned long next;
1166 
1167 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1168 	if (!dst_pmd)
1169 		return -ENOMEM;
1170 	src_pmd = pmd_offset(src_pud, addr);
1171 	do {
1172 		next = pmd_addr_end(addr, end);
1173 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1174 			|| pmd_devmap(*src_pmd)) {
1175 			int err;
1176 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1177 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1178 					    addr, dst_vma, src_vma);
1179 			if (err == -ENOMEM)
1180 				return -ENOMEM;
1181 			if (!err)
1182 				continue;
1183 			/* fall through */
1184 		}
1185 		if (pmd_none_or_clear_bad(src_pmd))
1186 			continue;
1187 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1188 				   addr, next))
1189 			return -ENOMEM;
1190 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1191 	return 0;
1192 }
1193 
1194 static inline int
1195 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1196 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1197 	       unsigned long end)
1198 {
1199 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1200 	struct mm_struct *src_mm = src_vma->vm_mm;
1201 	pud_t *src_pud, *dst_pud;
1202 	unsigned long next;
1203 
1204 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1205 	if (!dst_pud)
1206 		return -ENOMEM;
1207 	src_pud = pud_offset(src_p4d, addr);
1208 	do {
1209 		next = pud_addr_end(addr, end);
1210 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1211 			int err;
1212 
1213 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1214 			err = copy_huge_pud(dst_mm, src_mm,
1215 					    dst_pud, src_pud, addr, src_vma);
1216 			if (err == -ENOMEM)
1217 				return -ENOMEM;
1218 			if (!err)
1219 				continue;
1220 			/* fall through */
1221 		}
1222 		if (pud_none_or_clear_bad(src_pud))
1223 			continue;
1224 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1225 				   addr, next))
1226 			return -ENOMEM;
1227 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1228 	return 0;
1229 }
1230 
1231 static inline int
1232 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1234 	       unsigned long end)
1235 {
1236 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 	p4d_t *src_p4d, *dst_p4d;
1238 	unsigned long next;
1239 
1240 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1241 	if (!dst_p4d)
1242 		return -ENOMEM;
1243 	src_p4d = p4d_offset(src_pgd, addr);
1244 	do {
1245 		next = p4d_addr_end(addr, end);
1246 		if (p4d_none_or_clear_bad(src_p4d))
1247 			continue;
1248 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1249 				   addr, next))
1250 			return -ENOMEM;
1251 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1252 	return 0;
1253 }
1254 
1255 /*
1256  * Return true if the vma needs to copy the pgtable during this fork().  Return
1257  * false when we can speed up fork() by allowing lazy page faults later until
1258  * when the child accesses the memory range.
1259  */
1260 static bool
1261 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1262 {
1263 	/*
1264 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1265 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1266 	 * contains uffd-wp protection information, that's something we can't
1267 	 * retrieve from page cache, and skip copying will lose those info.
1268 	 */
1269 	if (userfaultfd_wp(dst_vma))
1270 		return true;
1271 
1272 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1273 		return true;
1274 
1275 	if (src_vma->anon_vma)
1276 		return true;
1277 
1278 	/*
1279 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1280 	 * becomes much lighter when there are big shared or private readonly
1281 	 * mappings. The tradeoff is that copy_page_range is more efficient
1282 	 * than faulting.
1283 	 */
1284 	return false;
1285 }
1286 
1287 int
1288 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1289 {
1290 	pgd_t *src_pgd, *dst_pgd;
1291 	unsigned long next;
1292 	unsigned long addr = src_vma->vm_start;
1293 	unsigned long end = src_vma->vm_end;
1294 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1295 	struct mm_struct *src_mm = src_vma->vm_mm;
1296 	struct mmu_notifier_range range;
1297 	bool is_cow;
1298 	int ret;
1299 
1300 	if (!vma_needs_copy(dst_vma, src_vma))
1301 		return 0;
1302 
1303 	if (is_vm_hugetlb_page(src_vma))
1304 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1305 
1306 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1307 		/*
1308 		 * We do not free on error cases below as remove_vma
1309 		 * gets called on error from higher level routine
1310 		 */
1311 		ret = track_pfn_copy(src_vma);
1312 		if (ret)
1313 			return ret;
1314 	}
1315 
1316 	/*
1317 	 * We need to invalidate the secondary MMU mappings only when
1318 	 * there could be a permission downgrade on the ptes of the
1319 	 * parent mm. And a permission downgrade will only happen if
1320 	 * is_cow_mapping() returns true.
1321 	 */
1322 	is_cow = is_cow_mapping(src_vma->vm_flags);
1323 
1324 	if (is_cow) {
1325 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1326 					0, src_mm, addr, end);
1327 		mmu_notifier_invalidate_range_start(&range);
1328 		/*
1329 		 * Disabling preemption is not needed for the write side, as
1330 		 * the read side doesn't spin, but goes to the mmap_lock.
1331 		 *
1332 		 * Use the raw variant of the seqcount_t write API to avoid
1333 		 * lockdep complaining about preemptibility.
1334 		 */
1335 		vma_assert_write_locked(src_vma);
1336 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1337 	}
1338 
1339 	ret = 0;
1340 	dst_pgd = pgd_offset(dst_mm, addr);
1341 	src_pgd = pgd_offset(src_mm, addr);
1342 	do {
1343 		next = pgd_addr_end(addr, end);
1344 		if (pgd_none_or_clear_bad(src_pgd))
1345 			continue;
1346 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1347 					    addr, next))) {
1348 			untrack_pfn_clear(dst_vma);
1349 			ret = -ENOMEM;
1350 			break;
1351 		}
1352 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1353 
1354 	if (is_cow) {
1355 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1356 		mmu_notifier_invalidate_range_end(&range);
1357 	}
1358 	return ret;
1359 }
1360 
1361 /* Whether we should zap all COWed (private) pages too */
1362 static inline bool should_zap_cows(struct zap_details *details)
1363 {
1364 	/* By default, zap all pages */
1365 	if (!details)
1366 		return true;
1367 
1368 	/* Or, we zap COWed pages only if the caller wants to */
1369 	return details->even_cows;
1370 }
1371 
1372 /* Decides whether we should zap this folio with the folio pointer specified */
1373 static inline bool should_zap_folio(struct zap_details *details,
1374 				    struct folio *folio)
1375 {
1376 	/* If we can make a decision without *folio.. */
1377 	if (should_zap_cows(details))
1378 		return true;
1379 
1380 	/* E.g. the caller passes NULL for the case of a zero folio */
1381 	if (!folio)
1382 		return true;
1383 
1384 	/* Otherwise we should only zap non-anon folios */
1385 	return !folio_test_anon(folio);
1386 }
1387 
1388 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1389 {
1390 	if (!details)
1391 		return false;
1392 
1393 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1394 }
1395 
1396 /*
1397  * This function makes sure that we'll replace the none pte with an uffd-wp
1398  * swap special pte marker when necessary. Must be with the pgtable lock held.
1399  */
1400 static inline void
1401 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1402 			      unsigned long addr, pte_t *pte,
1403 			      struct zap_details *details, pte_t pteval)
1404 {
1405 	/* Zap on anonymous always means dropping everything */
1406 	if (vma_is_anonymous(vma))
1407 		return;
1408 
1409 	if (zap_drop_file_uffd_wp(details))
1410 		return;
1411 
1412 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1413 }
1414 
1415 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1416 				struct vm_area_struct *vma, pmd_t *pmd,
1417 				unsigned long addr, unsigned long end,
1418 				struct zap_details *details)
1419 {
1420 	struct mm_struct *mm = tlb->mm;
1421 	int force_flush = 0;
1422 	int rss[NR_MM_COUNTERS];
1423 	spinlock_t *ptl;
1424 	pte_t *start_pte;
1425 	pte_t *pte;
1426 	swp_entry_t entry;
1427 
1428 	tlb_change_page_size(tlb, PAGE_SIZE);
1429 	init_rss_vec(rss);
1430 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1431 	if (!pte)
1432 		return addr;
1433 
1434 	flush_tlb_batched_pending(mm);
1435 	arch_enter_lazy_mmu_mode();
1436 	do {
1437 		pte_t ptent = ptep_get(pte);
1438 		struct folio *folio = NULL;
1439 		struct page *page;
1440 
1441 		if (pte_none(ptent))
1442 			continue;
1443 
1444 		if (need_resched())
1445 			break;
1446 
1447 		if (pte_present(ptent)) {
1448 			unsigned int delay_rmap;
1449 
1450 			page = vm_normal_page(vma, addr, ptent);
1451 			if (page)
1452 				folio = page_folio(page);
1453 
1454 			if (unlikely(!should_zap_folio(details, folio)))
1455 				continue;
1456 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1457 							tlb->fullmm);
1458 			arch_check_zapped_pte(vma, ptent);
1459 			tlb_remove_tlb_entry(tlb, pte, addr);
1460 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1461 						      ptent);
1462 			if (unlikely(!page)) {
1463 				ksm_might_unmap_zero_page(mm, ptent);
1464 				continue;
1465 			}
1466 
1467 			delay_rmap = 0;
1468 			if (!folio_test_anon(folio)) {
1469 				if (pte_dirty(ptent)) {
1470 					folio_mark_dirty(folio);
1471 					if (tlb_delay_rmap(tlb)) {
1472 						delay_rmap = 1;
1473 						force_flush = 1;
1474 					}
1475 				}
1476 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1477 					folio_mark_accessed(folio);
1478 			}
1479 			rss[mm_counter(folio)]--;
1480 			if (!delay_rmap) {
1481 				folio_remove_rmap_pte(folio, page, vma);
1482 				if (unlikely(page_mapcount(page) < 0))
1483 					print_bad_pte(vma, addr, ptent, page);
1484 			}
1485 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1486 				force_flush = 1;
1487 				addr += PAGE_SIZE;
1488 				break;
1489 			}
1490 			continue;
1491 		}
1492 
1493 		entry = pte_to_swp_entry(ptent);
1494 		if (is_device_private_entry(entry) ||
1495 		    is_device_exclusive_entry(entry)) {
1496 			page = pfn_swap_entry_to_page(entry);
1497 			folio = page_folio(page);
1498 			if (unlikely(!should_zap_folio(details, folio)))
1499 				continue;
1500 			/*
1501 			 * Both device private/exclusive mappings should only
1502 			 * work with anonymous page so far, so we don't need to
1503 			 * consider uffd-wp bit when zap. For more information,
1504 			 * see zap_install_uffd_wp_if_needed().
1505 			 */
1506 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1507 			rss[mm_counter(folio)]--;
1508 			if (is_device_private_entry(entry))
1509 				folio_remove_rmap_pte(folio, page, vma);
1510 			folio_put(folio);
1511 		} else if (!non_swap_entry(entry)) {
1512 			/* Genuine swap entry, hence a private anon page */
1513 			if (!should_zap_cows(details))
1514 				continue;
1515 			rss[MM_SWAPENTS]--;
1516 			if (unlikely(!free_swap_and_cache(entry)))
1517 				print_bad_pte(vma, addr, ptent, NULL);
1518 		} else if (is_migration_entry(entry)) {
1519 			folio = pfn_swap_entry_folio(entry);
1520 			if (!should_zap_folio(details, folio))
1521 				continue;
1522 			rss[mm_counter(folio)]--;
1523 		} else if (pte_marker_entry_uffd_wp(entry)) {
1524 			/*
1525 			 * For anon: always drop the marker; for file: only
1526 			 * drop the marker if explicitly requested.
1527 			 */
1528 			if (!vma_is_anonymous(vma) &&
1529 			    !zap_drop_file_uffd_wp(details))
1530 				continue;
1531 		} else if (is_hwpoison_entry(entry) ||
1532 			   is_poisoned_swp_entry(entry)) {
1533 			if (!should_zap_cows(details))
1534 				continue;
1535 		} else {
1536 			/* We should have covered all the swap entry types */
1537 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1538 			WARN_ON_ONCE(1);
1539 		}
1540 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1541 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1542 	} while (pte++, addr += PAGE_SIZE, addr != end);
1543 
1544 	add_mm_rss_vec(mm, rss);
1545 	arch_leave_lazy_mmu_mode();
1546 
1547 	/* Do the actual TLB flush before dropping ptl */
1548 	if (force_flush) {
1549 		tlb_flush_mmu_tlbonly(tlb);
1550 		tlb_flush_rmaps(tlb, vma);
1551 	}
1552 	pte_unmap_unlock(start_pte, ptl);
1553 
1554 	/*
1555 	 * If we forced a TLB flush (either due to running out of
1556 	 * batch buffers or because we needed to flush dirty TLB
1557 	 * entries before releasing the ptl), free the batched
1558 	 * memory too. Come back again if we didn't do everything.
1559 	 */
1560 	if (force_flush)
1561 		tlb_flush_mmu(tlb);
1562 
1563 	return addr;
1564 }
1565 
1566 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1567 				struct vm_area_struct *vma, pud_t *pud,
1568 				unsigned long addr, unsigned long end,
1569 				struct zap_details *details)
1570 {
1571 	pmd_t *pmd;
1572 	unsigned long next;
1573 
1574 	pmd = pmd_offset(pud, addr);
1575 	do {
1576 		next = pmd_addr_end(addr, end);
1577 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1578 			if (next - addr != HPAGE_PMD_SIZE)
1579 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1580 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1581 				addr = next;
1582 				continue;
1583 			}
1584 			/* fall through */
1585 		} else if (details && details->single_folio &&
1586 			   folio_test_pmd_mappable(details->single_folio) &&
1587 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1588 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1589 			/*
1590 			 * Take and drop THP pmd lock so that we cannot return
1591 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1592 			 * but not yet decremented compound_mapcount().
1593 			 */
1594 			spin_unlock(ptl);
1595 		}
1596 		if (pmd_none(*pmd)) {
1597 			addr = next;
1598 			continue;
1599 		}
1600 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1601 		if (addr != next)
1602 			pmd--;
1603 	} while (pmd++, cond_resched(), addr != end);
1604 
1605 	return addr;
1606 }
1607 
1608 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1609 				struct vm_area_struct *vma, p4d_t *p4d,
1610 				unsigned long addr, unsigned long end,
1611 				struct zap_details *details)
1612 {
1613 	pud_t *pud;
1614 	unsigned long next;
1615 
1616 	pud = pud_offset(p4d, addr);
1617 	do {
1618 		next = pud_addr_end(addr, end);
1619 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1620 			if (next - addr != HPAGE_PUD_SIZE) {
1621 				mmap_assert_locked(tlb->mm);
1622 				split_huge_pud(vma, pud, addr);
1623 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1624 				goto next;
1625 			/* fall through */
1626 		}
1627 		if (pud_none_or_clear_bad(pud))
1628 			continue;
1629 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1630 next:
1631 		cond_resched();
1632 	} while (pud++, addr = next, addr != end);
1633 
1634 	return addr;
1635 }
1636 
1637 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1638 				struct vm_area_struct *vma, pgd_t *pgd,
1639 				unsigned long addr, unsigned long end,
1640 				struct zap_details *details)
1641 {
1642 	p4d_t *p4d;
1643 	unsigned long next;
1644 
1645 	p4d = p4d_offset(pgd, addr);
1646 	do {
1647 		next = p4d_addr_end(addr, end);
1648 		if (p4d_none_or_clear_bad(p4d))
1649 			continue;
1650 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1651 	} while (p4d++, addr = next, addr != end);
1652 
1653 	return addr;
1654 }
1655 
1656 void unmap_page_range(struct mmu_gather *tlb,
1657 			     struct vm_area_struct *vma,
1658 			     unsigned long addr, unsigned long end,
1659 			     struct zap_details *details)
1660 {
1661 	pgd_t *pgd;
1662 	unsigned long next;
1663 
1664 	BUG_ON(addr >= end);
1665 	tlb_start_vma(tlb, vma);
1666 	pgd = pgd_offset(vma->vm_mm, addr);
1667 	do {
1668 		next = pgd_addr_end(addr, end);
1669 		if (pgd_none_or_clear_bad(pgd))
1670 			continue;
1671 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1672 	} while (pgd++, addr = next, addr != end);
1673 	tlb_end_vma(tlb, vma);
1674 }
1675 
1676 
1677 static void unmap_single_vma(struct mmu_gather *tlb,
1678 		struct vm_area_struct *vma, unsigned long start_addr,
1679 		unsigned long end_addr,
1680 		struct zap_details *details, bool mm_wr_locked)
1681 {
1682 	unsigned long start = max(vma->vm_start, start_addr);
1683 	unsigned long end;
1684 
1685 	if (start >= vma->vm_end)
1686 		return;
1687 	end = min(vma->vm_end, end_addr);
1688 	if (end <= vma->vm_start)
1689 		return;
1690 
1691 	if (vma->vm_file)
1692 		uprobe_munmap(vma, start, end);
1693 
1694 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1695 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1696 
1697 	if (start != end) {
1698 		if (unlikely(is_vm_hugetlb_page(vma))) {
1699 			/*
1700 			 * It is undesirable to test vma->vm_file as it
1701 			 * should be non-null for valid hugetlb area.
1702 			 * However, vm_file will be NULL in the error
1703 			 * cleanup path of mmap_region. When
1704 			 * hugetlbfs ->mmap method fails,
1705 			 * mmap_region() nullifies vma->vm_file
1706 			 * before calling this function to clean up.
1707 			 * Since no pte has actually been setup, it is
1708 			 * safe to do nothing in this case.
1709 			 */
1710 			if (vma->vm_file) {
1711 				zap_flags_t zap_flags = details ?
1712 				    details->zap_flags : 0;
1713 				__unmap_hugepage_range(tlb, vma, start, end,
1714 							     NULL, zap_flags);
1715 			}
1716 		} else
1717 			unmap_page_range(tlb, vma, start, end, details);
1718 	}
1719 }
1720 
1721 /**
1722  * unmap_vmas - unmap a range of memory covered by a list of vma's
1723  * @tlb: address of the caller's struct mmu_gather
1724  * @mas: the maple state
1725  * @vma: the starting vma
1726  * @start_addr: virtual address at which to start unmapping
1727  * @end_addr: virtual address at which to end unmapping
1728  * @tree_end: The maximum index to check
1729  * @mm_wr_locked: lock flag
1730  *
1731  * Unmap all pages in the vma list.
1732  *
1733  * Only addresses between `start' and `end' will be unmapped.
1734  *
1735  * The VMA list must be sorted in ascending virtual address order.
1736  *
1737  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1738  * range after unmap_vmas() returns.  So the only responsibility here is to
1739  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1740  * drops the lock and schedules.
1741  */
1742 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1743 		struct vm_area_struct *vma, unsigned long start_addr,
1744 		unsigned long end_addr, unsigned long tree_end,
1745 		bool mm_wr_locked)
1746 {
1747 	struct mmu_notifier_range range;
1748 	struct zap_details details = {
1749 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1750 		/* Careful - we need to zap private pages too! */
1751 		.even_cows = true,
1752 	};
1753 
1754 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1755 				start_addr, end_addr);
1756 	mmu_notifier_invalidate_range_start(&range);
1757 	do {
1758 		unsigned long start = start_addr;
1759 		unsigned long end = end_addr;
1760 		hugetlb_zap_begin(vma, &start, &end);
1761 		unmap_single_vma(tlb, vma, start, end, &details,
1762 				 mm_wr_locked);
1763 		hugetlb_zap_end(vma, &details);
1764 		vma = mas_find(mas, tree_end - 1);
1765 	} while (vma && likely(!xa_is_zero(vma)));
1766 	mmu_notifier_invalidate_range_end(&range);
1767 }
1768 
1769 /**
1770  * zap_page_range_single - remove user pages in a given range
1771  * @vma: vm_area_struct holding the applicable pages
1772  * @address: starting address of pages to zap
1773  * @size: number of bytes to zap
1774  * @details: details of shared cache invalidation
1775  *
1776  * The range must fit into one VMA.
1777  */
1778 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1779 		unsigned long size, struct zap_details *details)
1780 {
1781 	const unsigned long end = address + size;
1782 	struct mmu_notifier_range range;
1783 	struct mmu_gather tlb;
1784 
1785 	lru_add_drain();
1786 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1787 				address, end);
1788 	hugetlb_zap_begin(vma, &range.start, &range.end);
1789 	tlb_gather_mmu(&tlb, vma->vm_mm);
1790 	update_hiwater_rss(vma->vm_mm);
1791 	mmu_notifier_invalidate_range_start(&range);
1792 	/*
1793 	 * unmap 'address-end' not 'range.start-range.end' as range
1794 	 * could have been expanded for hugetlb pmd sharing.
1795 	 */
1796 	unmap_single_vma(&tlb, vma, address, end, details, false);
1797 	mmu_notifier_invalidate_range_end(&range);
1798 	tlb_finish_mmu(&tlb);
1799 	hugetlb_zap_end(vma, details);
1800 }
1801 
1802 /**
1803  * zap_vma_ptes - remove ptes mapping the vma
1804  * @vma: vm_area_struct holding ptes to be zapped
1805  * @address: starting address of pages to zap
1806  * @size: number of bytes to zap
1807  *
1808  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1809  *
1810  * The entire address range must be fully contained within the vma.
1811  *
1812  */
1813 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1814 		unsigned long size)
1815 {
1816 	if (!range_in_vma(vma, address, address + size) ||
1817 	    		!(vma->vm_flags & VM_PFNMAP))
1818 		return;
1819 
1820 	zap_page_range_single(vma, address, size, NULL);
1821 }
1822 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1823 
1824 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1825 {
1826 	pgd_t *pgd;
1827 	p4d_t *p4d;
1828 	pud_t *pud;
1829 	pmd_t *pmd;
1830 
1831 	pgd = pgd_offset(mm, addr);
1832 	p4d = p4d_alloc(mm, pgd, addr);
1833 	if (!p4d)
1834 		return NULL;
1835 	pud = pud_alloc(mm, p4d, addr);
1836 	if (!pud)
1837 		return NULL;
1838 	pmd = pmd_alloc(mm, pud, addr);
1839 	if (!pmd)
1840 		return NULL;
1841 
1842 	VM_BUG_ON(pmd_trans_huge(*pmd));
1843 	return pmd;
1844 }
1845 
1846 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1847 			spinlock_t **ptl)
1848 {
1849 	pmd_t *pmd = walk_to_pmd(mm, addr);
1850 
1851 	if (!pmd)
1852 		return NULL;
1853 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1854 }
1855 
1856 static int validate_page_before_insert(struct page *page)
1857 {
1858 	struct folio *folio = page_folio(page);
1859 
1860 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
1861 	    page_has_type(page))
1862 		return -EINVAL;
1863 	flush_dcache_folio(folio);
1864 	return 0;
1865 }
1866 
1867 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1868 			unsigned long addr, struct page *page, pgprot_t prot)
1869 {
1870 	struct folio *folio = page_folio(page);
1871 
1872 	if (!pte_none(ptep_get(pte)))
1873 		return -EBUSY;
1874 	/* Ok, finally just insert the thing.. */
1875 	folio_get(folio);
1876 	inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
1877 	folio_add_file_rmap_pte(folio, page, vma);
1878 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1879 	return 0;
1880 }
1881 
1882 /*
1883  * This is the old fallback for page remapping.
1884  *
1885  * For historical reasons, it only allows reserved pages. Only
1886  * old drivers should use this, and they needed to mark their
1887  * pages reserved for the old functions anyway.
1888  */
1889 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1890 			struct page *page, pgprot_t prot)
1891 {
1892 	int retval;
1893 	pte_t *pte;
1894 	spinlock_t *ptl;
1895 
1896 	retval = validate_page_before_insert(page);
1897 	if (retval)
1898 		goto out;
1899 	retval = -ENOMEM;
1900 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1901 	if (!pte)
1902 		goto out;
1903 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1904 	pte_unmap_unlock(pte, ptl);
1905 out:
1906 	return retval;
1907 }
1908 
1909 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1910 			unsigned long addr, struct page *page, pgprot_t prot)
1911 {
1912 	int err;
1913 
1914 	if (!page_count(page))
1915 		return -EINVAL;
1916 	err = validate_page_before_insert(page);
1917 	if (err)
1918 		return err;
1919 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1920 }
1921 
1922 /* insert_pages() amortizes the cost of spinlock operations
1923  * when inserting pages in a loop.
1924  */
1925 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1926 			struct page **pages, unsigned long *num, pgprot_t prot)
1927 {
1928 	pmd_t *pmd = NULL;
1929 	pte_t *start_pte, *pte;
1930 	spinlock_t *pte_lock;
1931 	struct mm_struct *const mm = vma->vm_mm;
1932 	unsigned long curr_page_idx = 0;
1933 	unsigned long remaining_pages_total = *num;
1934 	unsigned long pages_to_write_in_pmd;
1935 	int ret;
1936 more:
1937 	ret = -EFAULT;
1938 	pmd = walk_to_pmd(mm, addr);
1939 	if (!pmd)
1940 		goto out;
1941 
1942 	pages_to_write_in_pmd = min_t(unsigned long,
1943 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1944 
1945 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1946 	ret = -ENOMEM;
1947 	if (pte_alloc(mm, pmd))
1948 		goto out;
1949 
1950 	while (pages_to_write_in_pmd) {
1951 		int pte_idx = 0;
1952 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1953 
1954 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1955 		if (!start_pte) {
1956 			ret = -EFAULT;
1957 			goto out;
1958 		}
1959 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1960 			int err = insert_page_in_batch_locked(vma, pte,
1961 				addr, pages[curr_page_idx], prot);
1962 			if (unlikely(err)) {
1963 				pte_unmap_unlock(start_pte, pte_lock);
1964 				ret = err;
1965 				remaining_pages_total -= pte_idx;
1966 				goto out;
1967 			}
1968 			addr += PAGE_SIZE;
1969 			++curr_page_idx;
1970 		}
1971 		pte_unmap_unlock(start_pte, pte_lock);
1972 		pages_to_write_in_pmd -= batch_size;
1973 		remaining_pages_total -= batch_size;
1974 	}
1975 	if (remaining_pages_total)
1976 		goto more;
1977 	ret = 0;
1978 out:
1979 	*num = remaining_pages_total;
1980 	return ret;
1981 }
1982 
1983 /**
1984  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1985  * @vma: user vma to map to
1986  * @addr: target start user address of these pages
1987  * @pages: source kernel pages
1988  * @num: in: number of pages to map. out: number of pages that were *not*
1989  * mapped. (0 means all pages were successfully mapped).
1990  *
1991  * Preferred over vm_insert_page() when inserting multiple pages.
1992  *
1993  * In case of error, we may have mapped a subset of the provided
1994  * pages. It is the caller's responsibility to account for this case.
1995  *
1996  * The same restrictions apply as in vm_insert_page().
1997  */
1998 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1999 			struct page **pages, unsigned long *num)
2000 {
2001 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2002 
2003 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2004 		return -EFAULT;
2005 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2006 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2007 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2008 		vm_flags_set(vma, VM_MIXEDMAP);
2009 	}
2010 	/* Defer page refcount checking till we're about to map that page. */
2011 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2012 }
2013 EXPORT_SYMBOL(vm_insert_pages);
2014 
2015 /**
2016  * vm_insert_page - insert single page into user vma
2017  * @vma: user vma to map to
2018  * @addr: target user address of this page
2019  * @page: source kernel page
2020  *
2021  * This allows drivers to insert individual pages they've allocated
2022  * into a user vma.
2023  *
2024  * The page has to be a nice clean _individual_ kernel allocation.
2025  * If you allocate a compound page, you need to have marked it as
2026  * such (__GFP_COMP), or manually just split the page up yourself
2027  * (see split_page()).
2028  *
2029  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2030  * took an arbitrary page protection parameter. This doesn't allow
2031  * that. Your vma protection will have to be set up correctly, which
2032  * means that if you want a shared writable mapping, you'd better
2033  * ask for a shared writable mapping!
2034  *
2035  * The page does not need to be reserved.
2036  *
2037  * Usually this function is called from f_op->mmap() handler
2038  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2039  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2040  * function from other places, for example from page-fault handler.
2041  *
2042  * Return: %0 on success, negative error code otherwise.
2043  */
2044 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2045 			struct page *page)
2046 {
2047 	if (addr < vma->vm_start || addr >= vma->vm_end)
2048 		return -EFAULT;
2049 	if (!page_count(page))
2050 		return -EINVAL;
2051 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2052 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2053 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2054 		vm_flags_set(vma, VM_MIXEDMAP);
2055 	}
2056 	return insert_page(vma, addr, page, vma->vm_page_prot);
2057 }
2058 EXPORT_SYMBOL(vm_insert_page);
2059 
2060 /*
2061  * __vm_map_pages - maps range of kernel pages into user vma
2062  * @vma: user vma to map to
2063  * @pages: pointer to array of source kernel pages
2064  * @num: number of pages in page array
2065  * @offset: user's requested vm_pgoff
2066  *
2067  * This allows drivers to map range of kernel pages into a user vma.
2068  *
2069  * Return: 0 on success and error code otherwise.
2070  */
2071 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2072 				unsigned long num, unsigned long offset)
2073 {
2074 	unsigned long count = vma_pages(vma);
2075 	unsigned long uaddr = vma->vm_start;
2076 	int ret, i;
2077 
2078 	/* Fail if the user requested offset is beyond the end of the object */
2079 	if (offset >= num)
2080 		return -ENXIO;
2081 
2082 	/* Fail if the user requested size exceeds available object size */
2083 	if (count > num - offset)
2084 		return -ENXIO;
2085 
2086 	for (i = 0; i < count; i++) {
2087 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2088 		if (ret < 0)
2089 			return ret;
2090 		uaddr += PAGE_SIZE;
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 /**
2097  * vm_map_pages - maps range of kernel pages starts with non zero offset
2098  * @vma: user vma to map to
2099  * @pages: pointer to array of source kernel pages
2100  * @num: number of pages in page array
2101  *
2102  * Maps an object consisting of @num pages, catering for the user's
2103  * requested vm_pgoff
2104  *
2105  * If we fail to insert any page into the vma, the function will return
2106  * immediately leaving any previously inserted pages present.  Callers
2107  * from the mmap handler may immediately return the error as their caller
2108  * will destroy the vma, removing any successfully inserted pages. Other
2109  * callers should make their own arrangements for calling unmap_region().
2110  *
2111  * Context: Process context. Called by mmap handlers.
2112  * Return: 0 on success and error code otherwise.
2113  */
2114 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2115 				unsigned long num)
2116 {
2117 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2118 }
2119 EXPORT_SYMBOL(vm_map_pages);
2120 
2121 /**
2122  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2123  * @vma: user vma to map to
2124  * @pages: pointer to array of source kernel pages
2125  * @num: number of pages in page array
2126  *
2127  * Similar to vm_map_pages(), except that it explicitly sets the offset
2128  * to 0. This function is intended for the drivers that did not consider
2129  * vm_pgoff.
2130  *
2131  * Context: Process context. Called by mmap handlers.
2132  * Return: 0 on success and error code otherwise.
2133  */
2134 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2135 				unsigned long num)
2136 {
2137 	return __vm_map_pages(vma, pages, num, 0);
2138 }
2139 EXPORT_SYMBOL(vm_map_pages_zero);
2140 
2141 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2142 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2143 {
2144 	struct mm_struct *mm = vma->vm_mm;
2145 	pte_t *pte, entry;
2146 	spinlock_t *ptl;
2147 
2148 	pte = get_locked_pte(mm, addr, &ptl);
2149 	if (!pte)
2150 		return VM_FAULT_OOM;
2151 	entry = ptep_get(pte);
2152 	if (!pte_none(entry)) {
2153 		if (mkwrite) {
2154 			/*
2155 			 * For read faults on private mappings the PFN passed
2156 			 * in may not match the PFN we have mapped if the
2157 			 * mapped PFN is a writeable COW page.  In the mkwrite
2158 			 * case we are creating a writable PTE for a shared
2159 			 * mapping and we expect the PFNs to match. If they
2160 			 * don't match, we are likely racing with block
2161 			 * allocation and mapping invalidation so just skip the
2162 			 * update.
2163 			 */
2164 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2165 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2166 				goto out_unlock;
2167 			}
2168 			entry = pte_mkyoung(entry);
2169 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2170 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2171 				update_mmu_cache(vma, addr, pte);
2172 		}
2173 		goto out_unlock;
2174 	}
2175 
2176 	/* Ok, finally just insert the thing.. */
2177 	if (pfn_t_devmap(pfn))
2178 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2179 	else
2180 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2181 
2182 	if (mkwrite) {
2183 		entry = pte_mkyoung(entry);
2184 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2185 	}
2186 
2187 	set_pte_at(mm, addr, pte, entry);
2188 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2189 
2190 out_unlock:
2191 	pte_unmap_unlock(pte, ptl);
2192 	return VM_FAULT_NOPAGE;
2193 }
2194 
2195 /**
2196  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2197  * @vma: user vma to map to
2198  * @addr: target user address of this page
2199  * @pfn: source kernel pfn
2200  * @pgprot: pgprot flags for the inserted page
2201  *
2202  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2203  * to override pgprot on a per-page basis.
2204  *
2205  * This only makes sense for IO mappings, and it makes no sense for
2206  * COW mappings.  In general, using multiple vmas is preferable;
2207  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2208  * impractical.
2209  *
2210  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2211  * caching- and encryption bits different than those of @vma->vm_page_prot,
2212  * because the caching- or encryption mode may not be known at mmap() time.
2213  *
2214  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2215  * to set caching and encryption bits for those vmas (except for COW pages).
2216  * This is ensured by core vm only modifying these page table entries using
2217  * functions that don't touch caching- or encryption bits, using pte_modify()
2218  * if needed. (See for example mprotect()).
2219  *
2220  * Also when new page-table entries are created, this is only done using the
2221  * fault() callback, and never using the value of vma->vm_page_prot,
2222  * except for page-table entries that point to anonymous pages as the result
2223  * of COW.
2224  *
2225  * Context: Process context.  May allocate using %GFP_KERNEL.
2226  * Return: vm_fault_t value.
2227  */
2228 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2229 			unsigned long pfn, pgprot_t pgprot)
2230 {
2231 	/*
2232 	 * Technically, architectures with pte_special can avoid all these
2233 	 * restrictions (same for remap_pfn_range).  However we would like
2234 	 * consistency in testing and feature parity among all, so we should
2235 	 * try to keep these invariants in place for everybody.
2236 	 */
2237 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2238 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2239 						(VM_PFNMAP|VM_MIXEDMAP));
2240 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2241 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2242 
2243 	if (addr < vma->vm_start || addr >= vma->vm_end)
2244 		return VM_FAULT_SIGBUS;
2245 
2246 	if (!pfn_modify_allowed(pfn, pgprot))
2247 		return VM_FAULT_SIGBUS;
2248 
2249 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2250 
2251 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2252 			false);
2253 }
2254 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2255 
2256 /**
2257  * vmf_insert_pfn - insert single pfn into user vma
2258  * @vma: user vma to map to
2259  * @addr: target user address of this page
2260  * @pfn: source kernel pfn
2261  *
2262  * Similar to vm_insert_page, this allows drivers to insert individual pages
2263  * they've allocated into a user vma. Same comments apply.
2264  *
2265  * This function should only be called from a vm_ops->fault handler, and
2266  * in that case the handler should return the result of this function.
2267  *
2268  * vma cannot be a COW mapping.
2269  *
2270  * As this is called only for pages that do not currently exist, we
2271  * do not need to flush old virtual caches or the TLB.
2272  *
2273  * Context: Process context.  May allocate using %GFP_KERNEL.
2274  * Return: vm_fault_t value.
2275  */
2276 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2277 			unsigned long pfn)
2278 {
2279 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2280 }
2281 EXPORT_SYMBOL(vmf_insert_pfn);
2282 
2283 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2284 {
2285 	/* these checks mirror the abort conditions in vm_normal_page */
2286 	if (vma->vm_flags & VM_MIXEDMAP)
2287 		return true;
2288 	if (pfn_t_devmap(pfn))
2289 		return true;
2290 	if (pfn_t_special(pfn))
2291 		return true;
2292 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2293 		return true;
2294 	return false;
2295 }
2296 
2297 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2298 		unsigned long addr, pfn_t pfn, bool mkwrite)
2299 {
2300 	pgprot_t pgprot = vma->vm_page_prot;
2301 	int err;
2302 
2303 	BUG_ON(!vm_mixed_ok(vma, pfn));
2304 
2305 	if (addr < vma->vm_start || addr >= vma->vm_end)
2306 		return VM_FAULT_SIGBUS;
2307 
2308 	track_pfn_insert(vma, &pgprot, pfn);
2309 
2310 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2311 		return VM_FAULT_SIGBUS;
2312 
2313 	/*
2314 	 * If we don't have pte special, then we have to use the pfn_valid()
2315 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2316 	 * refcount the page if pfn_valid is true (hence insert_page rather
2317 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2318 	 * without pte special, it would there be refcounted as a normal page.
2319 	 */
2320 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2321 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2322 		struct page *page;
2323 
2324 		/*
2325 		 * At this point we are committed to insert_page()
2326 		 * regardless of whether the caller specified flags that
2327 		 * result in pfn_t_has_page() == false.
2328 		 */
2329 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2330 		err = insert_page(vma, addr, page, pgprot);
2331 	} else {
2332 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2333 	}
2334 
2335 	if (err == -ENOMEM)
2336 		return VM_FAULT_OOM;
2337 	if (err < 0 && err != -EBUSY)
2338 		return VM_FAULT_SIGBUS;
2339 
2340 	return VM_FAULT_NOPAGE;
2341 }
2342 
2343 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2344 		pfn_t pfn)
2345 {
2346 	return __vm_insert_mixed(vma, addr, pfn, false);
2347 }
2348 EXPORT_SYMBOL(vmf_insert_mixed);
2349 
2350 /*
2351  *  If the insertion of PTE failed because someone else already added a
2352  *  different entry in the mean time, we treat that as success as we assume
2353  *  the same entry was actually inserted.
2354  */
2355 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2356 		unsigned long addr, pfn_t pfn)
2357 {
2358 	return __vm_insert_mixed(vma, addr, pfn, true);
2359 }
2360 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2361 
2362 /*
2363  * maps a range of physical memory into the requested pages. the old
2364  * mappings are removed. any references to nonexistent pages results
2365  * in null mappings (currently treated as "copy-on-access")
2366  */
2367 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2368 			unsigned long addr, unsigned long end,
2369 			unsigned long pfn, pgprot_t prot)
2370 {
2371 	pte_t *pte, *mapped_pte;
2372 	spinlock_t *ptl;
2373 	int err = 0;
2374 
2375 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2376 	if (!pte)
2377 		return -ENOMEM;
2378 	arch_enter_lazy_mmu_mode();
2379 	do {
2380 		BUG_ON(!pte_none(ptep_get(pte)));
2381 		if (!pfn_modify_allowed(pfn, prot)) {
2382 			err = -EACCES;
2383 			break;
2384 		}
2385 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2386 		pfn++;
2387 	} while (pte++, addr += PAGE_SIZE, addr != end);
2388 	arch_leave_lazy_mmu_mode();
2389 	pte_unmap_unlock(mapped_pte, ptl);
2390 	return err;
2391 }
2392 
2393 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2394 			unsigned long addr, unsigned long end,
2395 			unsigned long pfn, pgprot_t prot)
2396 {
2397 	pmd_t *pmd;
2398 	unsigned long next;
2399 	int err;
2400 
2401 	pfn -= addr >> PAGE_SHIFT;
2402 	pmd = pmd_alloc(mm, pud, addr);
2403 	if (!pmd)
2404 		return -ENOMEM;
2405 	VM_BUG_ON(pmd_trans_huge(*pmd));
2406 	do {
2407 		next = pmd_addr_end(addr, end);
2408 		err = remap_pte_range(mm, pmd, addr, next,
2409 				pfn + (addr >> PAGE_SHIFT), prot);
2410 		if (err)
2411 			return err;
2412 	} while (pmd++, addr = next, addr != end);
2413 	return 0;
2414 }
2415 
2416 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2417 			unsigned long addr, unsigned long end,
2418 			unsigned long pfn, pgprot_t prot)
2419 {
2420 	pud_t *pud;
2421 	unsigned long next;
2422 	int err;
2423 
2424 	pfn -= addr >> PAGE_SHIFT;
2425 	pud = pud_alloc(mm, p4d, addr);
2426 	if (!pud)
2427 		return -ENOMEM;
2428 	do {
2429 		next = pud_addr_end(addr, end);
2430 		err = remap_pmd_range(mm, pud, addr, next,
2431 				pfn + (addr >> PAGE_SHIFT), prot);
2432 		if (err)
2433 			return err;
2434 	} while (pud++, addr = next, addr != end);
2435 	return 0;
2436 }
2437 
2438 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2439 			unsigned long addr, unsigned long end,
2440 			unsigned long pfn, pgprot_t prot)
2441 {
2442 	p4d_t *p4d;
2443 	unsigned long next;
2444 	int err;
2445 
2446 	pfn -= addr >> PAGE_SHIFT;
2447 	p4d = p4d_alloc(mm, pgd, addr);
2448 	if (!p4d)
2449 		return -ENOMEM;
2450 	do {
2451 		next = p4d_addr_end(addr, end);
2452 		err = remap_pud_range(mm, p4d, addr, next,
2453 				pfn + (addr >> PAGE_SHIFT), prot);
2454 		if (err)
2455 			return err;
2456 	} while (p4d++, addr = next, addr != end);
2457 	return 0;
2458 }
2459 
2460 /*
2461  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2462  * must have pre-validated the caching bits of the pgprot_t.
2463  */
2464 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2465 		unsigned long pfn, unsigned long size, pgprot_t prot)
2466 {
2467 	pgd_t *pgd;
2468 	unsigned long next;
2469 	unsigned long end = addr + PAGE_ALIGN(size);
2470 	struct mm_struct *mm = vma->vm_mm;
2471 	int err;
2472 
2473 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2474 		return -EINVAL;
2475 
2476 	/*
2477 	 * Physically remapped pages are special. Tell the
2478 	 * rest of the world about it:
2479 	 *   VM_IO tells people not to look at these pages
2480 	 *	(accesses can have side effects).
2481 	 *   VM_PFNMAP tells the core MM that the base pages are just
2482 	 *	raw PFN mappings, and do not have a "struct page" associated
2483 	 *	with them.
2484 	 *   VM_DONTEXPAND
2485 	 *      Disable vma merging and expanding with mremap().
2486 	 *   VM_DONTDUMP
2487 	 *      Omit vma from core dump, even when VM_IO turned off.
2488 	 *
2489 	 * There's a horrible special case to handle copy-on-write
2490 	 * behaviour that some programs depend on. We mark the "original"
2491 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2492 	 * See vm_normal_page() for details.
2493 	 */
2494 	if (is_cow_mapping(vma->vm_flags)) {
2495 		if (addr != vma->vm_start || end != vma->vm_end)
2496 			return -EINVAL;
2497 		vma->vm_pgoff = pfn;
2498 	}
2499 
2500 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2501 
2502 	BUG_ON(addr >= end);
2503 	pfn -= addr >> PAGE_SHIFT;
2504 	pgd = pgd_offset(mm, addr);
2505 	flush_cache_range(vma, addr, end);
2506 	do {
2507 		next = pgd_addr_end(addr, end);
2508 		err = remap_p4d_range(mm, pgd, addr, next,
2509 				pfn + (addr >> PAGE_SHIFT), prot);
2510 		if (err)
2511 			return err;
2512 	} while (pgd++, addr = next, addr != end);
2513 
2514 	return 0;
2515 }
2516 
2517 /**
2518  * remap_pfn_range - remap kernel memory to userspace
2519  * @vma: user vma to map to
2520  * @addr: target page aligned user address to start at
2521  * @pfn: page frame number of kernel physical memory address
2522  * @size: size of mapping area
2523  * @prot: page protection flags for this mapping
2524  *
2525  * Note: this is only safe if the mm semaphore is held when called.
2526  *
2527  * Return: %0 on success, negative error code otherwise.
2528  */
2529 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2530 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2531 {
2532 	int err;
2533 
2534 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2535 	if (err)
2536 		return -EINVAL;
2537 
2538 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2539 	if (err)
2540 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2541 	return err;
2542 }
2543 EXPORT_SYMBOL(remap_pfn_range);
2544 
2545 /**
2546  * vm_iomap_memory - remap memory to userspace
2547  * @vma: user vma to map to
2548  * @start: start of the physical memory to be mapped
2549  * @len: size of area
2550  *
2551  * This is a simplified io_remap_pfn_range() for common driver use. The
2552  * driver just needs to give us the physical memory range to be mapped,
2553  * we'll figure out the rest from the vma information.
2554  *
2555  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2556  * whatever write-combining details or similar.
2557  *
2558  * Return: %0 on success, negative error code otherwise.
2559  */
2560 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2561 {
2562 	unsigned long vm_len, pfn, pages;
2563 
2564 	/* Check that the physical memory area passed in looks valid */
2565 	if (start + len < start)
2566 		return -EINVAL;
2567 	/*
2568 	 * You *really* shouldn't map things that aren't page-aligned,
2569 	 * but we've historically allowed it because IO memory might
2570 	 * just have smaller alignment.
2571 	 */
2572 	len += start & ~PAGE_MASK;
2573 	pfn = start >> PAGE_SHIFT;
2574 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2575 	if (pfn + pages < pfn)
2576 		return -EINVAL;
2577 
2578 	/* We start the mapping 'vm_pgoff' pages into the area */
2579 	if (vma->vm_pgoff > pages)
2580 		return -EINVAL;
2581 	pfn += vma->vm_pgoff;
2582 	pages -= vma->vm_pgoff;
2583 
2584 	/* Can we fit all of the mapping? */
2585 	vm_len = vma->vm_end - vma->vm_start;
2586 	if (vm_len >> PAGE_SHIFT > pages)
2587 		return -EINVAL;
2588 
2589 	/* Ok, let it rip */
2590 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2591 }
2592 EXPORT_SYMBOL(vm_iomap_memory);
2593 
2594 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2595 				     unsigned long addr, unsigned long end,
2596 				     pte_fn_t fn, void *data, bool create,
2597 				     pgtbl_mod_mask *mask)
2598 {
2599 	pte_t *pte, *mapped_pte;
2600 	int err = 0;
2601 	spinlock_t *ptl;
2602 
2603 	if (create) {
2604 		mapped_pte = pte = (mm == &init_mm) ?
2605 			pte_alloc_kernel_track(pmd, addr, mask) :
2606 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2607 		if (!pte)
2608 			return -ENOMEM;
2609 	} else {
2610 		mapped_pte = pte = (mm == &init_mm) ?
2611 			pte_offset_kernel(pmd, addr) :
2612 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2613 		if (!pte)
2614 			return -EINVAL;
2615 	}
2616 
2617 	arch_enter_lazy_mmu_mode();
2618 
2619 	if (fn) {
2620 		do {
2621 			if (create || !pte_none(ptep_get(pte))) {
2622 				err = fn(pte++, addr, data);
2623 				if (err)
2624 					break;
2625 			}
2626 		} while (addr += PAGE_SIZE, addr != end);
2627 	}
2628 	*mask |= PGTBL_PTE_MODIFIED;
2629 
2630 	arch_leave_lazy_mmu_mode();
2631 
2632 	if (mm != &init_mm)
2633 		pte_unmap_unlock(mapped_pte, ptl);
2634 	return err;
2635 }
2636 
2637 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2638 				     unsigned long addr, unsigned long end,
2639 				     pte_fn_t fn, void *data, bool create,
2640 				     pgtbl_mod_mask *mask)
2641 {
2642 	pmd_t *pmd;
2643 	unsigned long next;
2644 	int err = 0;
2645 
2646 	BUG_ON(pud_huge(*pud));
2647 
2648 	if (create) {
2649 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2650 		if (!pmd)
2651 			return -ENOMEM;
2652 	} else {
2653 		pmd = pmd_offset(pud, addr);
2654 	}
2655 	do {
2656 		next = pmd_addr_end(addr, end);
2657 		if (pmd_none(*pmd) && !create)
2658 			continue;
2659 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2660 			return -EINVAL;
2661 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2662 			if (!create)
2663 				continue;
2664 			pmd_clear_bad(pmd);
2665 		}
2666 		err = apply_to_pte_range(mm, pmd, addr, next,
2667 					 fn, data, create, mask);
2668 		if (err)
2669 			break;
2670 	} while (pmd++, addr = next, addr != end);
2671 
2672 	return err;
2673 }
2674 
2675 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2676 				     unsigned long addr, unsigned long end,
2677 				     pte_fn_t fn, void *data, bool create,
2678 				     pgtbl_mod_mask *mask)
2679 {
2680 	pud_t *pud;
2681 	unsigned long next;
2682 	int err = 0;
2683 
2684 	if (create) {
2685 		pud = pud_alloc_track(mm, p4d, addr, mask);
2686 		if (!pud)
2687 			return -ENOMEM;
2688 	} else {
2689 		pud = pud_offset(p4d, addr);
2690 	}
2691 	do {
2692 		next = pud_addr_end(addr, end);
2693 		if (pud_none(*pud) && !create)
2694 			continue;
2695 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2696 			return -EINVAL;
2697 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2698 			if (!create)
2699 				continue;
2700 			pud_clear_bad(pud);
2701 		}
2702 		err = apply_to_pmd_range(mm, pud, addr, next,
2703 					 fn, data, create, mask);
2704 		if (err)
2705 			break;
2706 	} while (pud++, addr = next, addr != end);
2707 
2708 	return err;
2709 }
2710 
2711 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2712 				     unsigned long addr, unsigned long end,
2713 				     pte_fn_t fn, void *data, bool create,
2714 				     pgtbl_mod_mask *mask)
2715 {
2716 	p4d_t *p4d;
2717 	unsigned long next;
2718 	int err = 0;
2719 
2720 	if (create) {
2721 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2722 		if (!p4d)
2723 			return -ENOMEM;
2724 	} else {
2725 		p4d = p4d_offset(pgd, addr);
2726 	}
2727 	do {
2728 		next = p4d_addr_end(addr, end);
2729 		if (p4d_none(*p4d) && !create)
2730 			continue;
2731 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2732 			return -EINVAL;
2733 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2734 			if (!create)
2735 				continue;
2736 			p4d_clear_bad(p4d);
2737 		}
2738 		err = apply_to_pud_range(mm, p4d, addr, next,
2739 					 fn, data, create, mask);
2740 		if (err)
2741 			break;
2742 	} while (p4d++, addr = next, addr != end);
2743 
2744 	return err;
2745 }
2746 
2747 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2748 				 unsigned long size, pte_fn_t fn,
2749 				 void *data, bool create)
2750 {
2751 	pgd_t *pgd;
2752 	unsigned long start = addr, next;
2753 	unsigned long end = addr + size;
2754 	pgtbl_mod_mask mask = 0;
2755 	int err = 0;
2756 
2757 	if (WARN_ON(addr >= end))
2758 		return -EINVAL;
2759 
2760 	pgd = pgd_offset(mm, addr);
2761 	do {
2762 		next = pgd_addr_end(addr, end);
2763 		if (pgd_none(*pgd) && !create)
2764 			continue;
2765 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2766 			return -EINVAL;
2767 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2768 			if (!create)
2769 				continue;
2770 			pgd_clear_bad(pgd);
2771 		}
2772 		err = apply_to_p4d_range(mm, pgd, addr, next,
2773 					 fn, data, create, &mask);
2774 		if (err)
2775 			break;
2776 	} while (pgd++, addr = next, addr != end);
2777 
2778 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2779 		arch_sync_kernel_mappings(start, start + size);
2780 
2781 	return err;
2782 }
2783 
2784 /*
2785  * Scan a region of virtual memory, filling in page tables as necessary
2786  * and calling a provided function on each leaf page table.
2787  */
2788 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2789 			unsigned long size, pte_fn_t fn, void *data)
2790 {
2791 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2792 }
2793 EXPORT_SYMBOL_GPL(apply_to_page_range);
2794 
2795 /*
2796  * Scan a region of virtual memory, calling a provided function on
2797  * each leaf page table where it exists.
2798  *
2799  * Unlike apply_to_page_range, this does _not_ fill in page tables
2800  * where they are absent.
2801  */
2802 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2803 				 unsigned long size, pte_fn_t fn, void *data)
2804 {
2805 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2806 }
2807 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2808 
2809 /*
2810  * handle_pte_fault chooses page fault handler according to an entry which was
2811  * read non-atomically.  Before making any commitment, on those architectures
2812  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2813  * parts, do_swap_page must check under lock before unmapping the pte and
2814  * proceeding (but do_wp_page is only called after already making such a check;
2815  * and do_anonymous_page can safely check later on).
2816  */
2817 static inline int pte_unmap_same(struct vm_fault *vmf)
2818 {
2819 	int same = 1;
2820 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2821 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2822 		spin_lock(vmf->ptl);
2823 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2824 		spin_unlock(vmf->ptl);
2825 	}
2826 #endif
2827 	pte_unmap(vmf->pte);
2828 	vmf->pte = NULL;
2829 	return same;
2830 }
2831 
2832 /*
2833  * Return:
2834  *	0:		copied succeeded
2835  *	-EHWPOISON:	copy failed due to hwpoison in source page
2836  *	-EAGAIN:	copied failed (some other reason)
2837  */
2838 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2839 				      struct vm_fault *vmf)
2840 {
2841 	int ret;
2842 	void *kaddr;
2843 	void __user *uaddr;
2844 	struct vm_area_struct *vma = vmf->vma;
2845 	struct mm_struct *mm = vma->vm_mm;
2846 	unsigned long addr = vmf->address;
2847 
2848 	if (likely(src)) {
2849 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2850 			memory_failure_queue(page_to_pfn(src), 0);
2851 			return -EHWPOISON;
2852 		}
2853 		return 0;
2854 	}
2855 
2856 	/*
2857 	 * If the source page was a PFN mapping, we don't have
2858 	 * a "struct page" for it. We do a best-effort copy by
2859 	 * just copying from the original user address. If that
2860 	 * fails, we just zero-fill it. Live with it.
2861 	 */
2862 	kaddr = kmap_local_page(dst);
2863 	pagefault_disable();
2864 	uaddr = (void __user *)(addr & PAGE_MASK);
2865 
2866 	/*
2867 	 * On architectures with software "accessed" bits, we would
2868 	 * take a double page fault, so mark it accessed here.
2869 	 */
2870 	vmf->pte = NULL;
2871 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2872 		pte_t entry;
2873 
2874 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2875 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2876 			/*
2877 			 * Other thread has already handled the fault
2878 			 * and update local tlb only
2879 			 */
2880 			if (vmf->pte)
2881 				update_mmu_tlb(vma, addr, vmf->pte);
2882 			ret = -EAGAIN;
2883 			goto pte_unlock;
2884 		}
2885 
2886 		entry = pte_mkyoung(vmf->orig_pte);
2887 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2888 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2889 	}
2890 
2891 	/*
2892 	 * This really shouldn't fail, because the page is there
2893 	 * in the page tables. But it might just be unreadable,
2894 	 * in which case we just give up and fill the result with
2895 	 * zeroes.
2896 	 */
2897 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2898 		if (vmf->pte)
2899 			goto warn;
2900 
2901 		/* Re-validate under PTL if the page is still mapped */
2902 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2903 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2904 			/* The PTE changed under us, update local tlb */
2905 			if (vmf->pte)
2906 				update_mmu_tlb(vma, addr, vmf->pte);
2907 			ret = -EAGAIN;
2908 			goto pte_unlock;
2909 		}
2910 
2911 		/*
2912 		 * The same page can be mapped back since last copy attempt.
2913 		 * Try to copy again under PTL.
2914 		 */
2915 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2916 			/*
2917 			 * Give a warn in case there can be some obscure
2918 			 * use-case
2919 			 */
2920 warn:
2921 			WARN_ON_ONCE(1);
2922 			clear_page(kaddr);
2923 		}
2924 	}
2925 
2926 	ret = 0;
2927 
2928 pte_unlock:
2929 	if (vmf->pte)
2930 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2931 	pagefault_enable();
2932 	kunmap_local(kaddr);
2933 	flush_dcache_page(dst);
2934 
2935 	return ret;
2936 }
2937 
2938 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2939 {
2940 	struct file *vm_file = vma->vm_file;
2941 
2942 	if (vm_file)
2943 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2944 
2945 	/*
2946 	 * Special mappings (e.g. VDSO) do not have any file so fake
2947 	 * a default GFP_KERNEL for them.
2948 	 */
2949 	return GFP_KERNEL;
2950 }
2951 
2952 /*
2953  * Notify the address space that the page is about to become writable so that
2954  * it can prohibit this or wait for the page to get into an appropriate state.
2955  *
2956  * We do this without the lock held, so that it can sleep if it needs to.
2957  */
2958 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2959 {
2960 	vm_fault_t ret;
2961 	unsigned int old_flags = vmf->flags;
2962 
2963 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2964 
2965 	if (vmf->vma->vm_file &&
2966 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2967 		return VM_FAULT_SIGBUS;
2968 
2969 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2970 	/* Restore original flags so that caller is not surprised */
2971 	vmf->flags = old_flags;
2972 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2973 		return ret;
2974 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2975 		folio_lock(folio);
2976 		if (!folio->mapping) {
2977 			folio_unlock(folio);
2978 			return 0; /* retry */
2979 		}
2980 		ret |= VM_FAULT_LOCKED;
2981 	} else
2982 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2983 	return ret;
2984 }
2985 
2986 /*
2987  * Handle dirtying of a page in shared file mapping on a write fault.
2988  *
2989  * The function expects the page to be locked and unlocks it.
2990  */
2991 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2992 {
2993 	struct vm_area_struct *vma = vmf->vma;
2994 	struct address_space *mapping;
2995 	struct folio *folio = page_folio(vmf->page);
2996 	bool dirtied;
2997 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2998 
2999 	dirtied = folio_mark_dirty(folio);
3000 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3001 	/*
3002 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3003 	 * by truncate after folio_unlock().   The address_space itself remains
3004 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3005 	 * release semantics to prevent the compiler from undoing this copying.
3006 	 */
3007 	mapping = folio_raw_mapping(folio);
3008 	folio_unlock(folio);
3009 
3010 	if (!page_mkwrite)
3011 		file_update_time(vma->vm_file);
3012 
3013 	/*
3014 	 * Throttle page dirtying rate down to writeback speed.
3015 	 *
3016 	 * mapping may be NULL here because some device drivers do not
3017 	 * set page.mapping but still dirty their pages
3018 	 *
3019 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3020 	 * is pinning the mapping, as per above.
3021 	 */
3022 	if ((dirtied || page_mkwrite) && mapping) {
3023 		struct file *fpin;
3024 
3025 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3026 		balance_dirty_pages_ratelimited(mapping);
3027 		if (fpin) {
3028 			fput(fpin);
3029 			return VM_FAULT_COMPLETED;
3030 		}
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 /*
3037  * Handle write page faults for pages that can be reused in the current vma
3038  *
3039  * This can happen either due to the mapping being with the VM_SHARED flag,
3040  * or due to us being the last reference standing to the page. In either
3041  * case, all we need to do here is to mark the page as writable and update
3042  * any related book-keeping.
3043  */
3044 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3045 	__releases(vmf->ptl)
3046 {
3047 	struct vm_area_struct *vma = vmf->vma;
3048 	pte_t entry;
3049 
3050 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3051 
3052 	if (folio) {
3053 		VM_BUG_ON(folio_test_anon(folio) &&
3054 			  !PageAnonExclusive(vmf->page));
3055 		/*
3056 		 * Clear the folio's cpupid information as the existing
3057 		 * information potentially belongs to a now completely
3058 		 * unrelated process.
3059 		 */
3060 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3061 	}
3062 
3063 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3064 	entry = pte_mkyoung(vmf->orig_pte);
3065 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3066 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3067 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3068 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3069 	count_vm_event(PGREUSE);
3070 }
3071 
3072 /*
3073  * We could add a bitflag somewhere, but for now, we know that all
3074  * vm_ops that have a ->map_pages have been audited and don't need
3075  * the mmap_lock to be held.
3076  */
3077 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3078 {
3079 	struct vm_area_struct *vma = vmf->vma;
3080 
3081 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3082 		return 0;
3083 	vma_end_read(vma);
3084 	return VM_FAULT_RETRY;
3085 }
3086 
3087 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3088 {
3089 	struct vm_area_struct *vma = vmf->vma;
3090 
3091 	if (likely(vma->anon_vma))
3092 		return 0;
3093 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3094 		vma_end_read(vma);
3095 		return VM_FAULT_RETRY;
3096 	}
3097 	if (__anon_vma_prepare(vma))
3098 		return VM_FAULT_OOM;
3099 	return 0;
3100 }
3101 
3102 /*
3103  * Handle the case of a page which we actually need to copy to a new page,
3104  * either due to COW or unsharing.
3105  *
3106  * Called with mmap_lock locked and the old page referenced, but
3107  * without the ptl held.
3108  *
3109  * High level logic flow:
3110  *
3111  * - Allocate a page, copy the content of the old page to the new one.
3112  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3113  * - Take the PTL. If the pte changed, bail out and release the allocated page
3114  * - If the pte is still the way we remember it, update the page table and all
3115  *   relevant references. This includes dropping the reference the page-table
3116  *   held to the old page, as well as updating the rmap.
3117  * - In any case, unlock the PTL and drop the reference we took to the old page.
3118  */
3119 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3120 {
3121 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3122 	struct vm_area_struct *vma = vmf->vma;
3123 	struct mm_struct *mm = vma->vm_mm;
3124 	struct folio *old_folio = NULL;
3125 	struct folio *new_folio = NULL;
3126 	pte_t entry;
3127 	int page_copied = 0;
3128 	struct mmu_notifier_range range;
3129 	vm_fault_t ret;
3130 	bool pfn_is_zero;
3131 
3132 	delayacct_wpcopy_start();
3133 
3134 	if (vmf->page)
3135 		old_folio = page_folio(vmf->page);
3136 	ret = vmf_anon_prepare(vmf);
3137 	if (unlikely(ret))
3138 		goto out;
3139 
3140 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3141 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3142 	if (!new_folio)
3143 		goto oom;
3144 
3145 	if (!pfn_is_zero) {
3146 		int err;
3147 
3148 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3149 		if (err) {
3150 			/*
3151 			 * COW failed, if the fault was solved by other,
3152 			 * it's fine. If not, userspace would re-fault on
3153 			 * the same address and we will handle the fault
3154 			 * from the second attempt.
3155 			 * The -EHWPOISON case will not be retried.
3156 			 */
3157 			folio_put(new_folio);
3158 			if (old_folio)
3159 				folio_put(old_folio);
3160 
3161 			delayacct_wpcopy_end();
3162 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3163 		}
3164 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3165 	}
3166 
3167 	__folio_mark_uptodate(new_folio);
3168 
3169 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3170 				vmf->address & PAGE_MASK,
3171 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3172 	mmu_notifier_invalidate_range_start(&range);
3173 
3174 	/*
3175 	 * Re-check the pte - we dropped the lock
3176 	 */
3177 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3178 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3179 		if (old_folio) {
3180 			if (!folio_test_anon(old_folio)) {
3181 				dec_mm_counter(mm, mm_counter_file(old_folio));
3182 				inc_mm_counter(mm, MM_ANONPAGES);
3183 			}
3184 		} else {
3185 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3186 			inc_mm_counter(mm, MM_ANONPAGES);
3187 		}
3188 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3189 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3190 		entry = pte_sw_mkyoung(entry);
3191 		if (unlikely(unshare)) {
3192 			if (pte_soft_dirty(vmf->orig_pte))
3193 				entry = pte_mksoft_dirty(entry);
3194 			if (pte_uffd_wp(vmf->orig_pte))
3195 				entry = pte_mkuffd_wp(entry);
3196 		} else {
3197 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3198 		}
3199 
3200 		/*
3201 		 * Clear the pte entry and flush it first, before updating the
3202 		 * pte with the new entry, to keep TLBs on different CPUs in
3203 		 * sync. This code used to set the new PTE then flush TLBs, but
3204 		 * that left a window where the new PTE could be loaded into
3205 		 * some TLBs while the old PTE remains in others.
3206 		 */
3207 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3208 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3209 		folio_add_lru_vma(new_folio, vma);
3210 		/*
3211 		 * We call the notify macro here because, when using secondary
3212 		 * mmu page tables (such as kvm shadow page tables), we want the
3213 		 * new page to be mapped directly into the secondary page table.
3214 		 */
3215 		BUG_ON(unshare && pte_write(entry));
3216 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3217 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3218 		if (old_folio) {
3219 			/*
3220 			 * Only after switching the pte to the new page may
3221 			 * we remove the mapcount here. Otherwise another
3222 			 * process may come and find the rmap count decremented
3223 			 * before the pte is switched to the new page, and
3224 			 * "reuse" the old page writing into it while our pte
3225 			 * here still points into it and can be read by other
3226 			 * threads.
3227 			 *
3228 			 * The critical issue is to order this
3229 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3230 			 * above. Those stores are ordered by (if nothing else,)
3231 			 * the barrier present in the atomic_add_negative
3232 			 * in folio_remove_rmap_pte();
3233 			 *
3234 			 * Then the TLB flush in ptep_clear_flush ensures that
3235 			 * no process can access the old page before the
3236 			 * decremented mapcount is visible. And the old page
3237 			 * cannot be reused until after the decremented
3238 			 * mapcount is visible. So transitively, TLBs to
3239 			 * old page will be flushed before it can be reused.
3240 			 */
3241 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3242 		}
3243 
3244 		/* Free the old page.. */
3245 		new_folio = old_folio;
3246 		page_copied = 1;
3247 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3248 	} else if (vmf->pte) {
3249 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3250 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3251 	}
3252 
3253 	mmu_notifier_invalidate_range_end(&range);
3254 
3255 	if (new_folio)
3256 		folio_put(new_folio);
3257 	if (old_folio) {
3258 		if (page_copied)
3259 			free_swap_cache(&old_folio->page);
3260 		folio_put(old_folio);
3261 	}
3262 
3263 	delayacct_wpcopy_end();
3264 	return 0;
3265 oom:
3266 	ret = VM_FAULT_OOM;
3267 out:
3268 	if (old_folio)
3269 		folio_put(old_folio);
3270 
3271 	delayacct_wpcopy_end();
3272 	return ret;
3273 }
3274 
3275 /**
3276  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3277  *			  writeable once the page is prepared
3278  *
3279  * @vmf: structure describing the fault
3280  * @folio: the folio of vmf->page
3281  *
3282  * This function handles all that is needed to finish a write page fault in a
3283  * shared mapping due to PTE being read-only once the mapped page is prepared.
3284  * It handles locking of PTE and modifying it.
3285  *
3286  * The function expects the page to be locked or other protection against
3287  * concurrent faults / writeback (such as DAX radix tree locks).
3288  *
3289  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3290  * we acquired PTE lock.
3291  */
3292 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3293 {
3294 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3295 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3296 				       &vmf->ptl);
3297 	if (!vmf->pte)
3298 		return VM_FAULT_NOPAGE;
3299 	/*
3300 	 * We might have raced with another page fault while we released the
3301 	 * pte_offset_map_lock.
3302 	 */
3303 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3304 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3305 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 		return VM_FAULT_NOPAGE;
3307 	}
3308 	wp_page_reuse(vmf, folio);
3309 	return 0;
3310 }
3311 
3312 /*
3313  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3314  * mapping
3315  */
3316 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3317 {
3318 	struct vm_area_struct *vma = vmf->vma;
3319 
3320 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3321 		vm_fault_t ret;
3322 
3323 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3324 		ret = vmf_can_call_fault(vmf);
3325 		if (ret)
3326 			return ret;
3327 
3328 		vmf->flags |= FAULT_FLAG_MKWRITE;
3329 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3330 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3331 			return ret;
3332 		return finish_mkwrite_fault(vmf, NULL);
3333 	}
3334 	wp_page_reuse(vmf, NULL);
3335 	return 0;
3336 }
3337 
3338 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3339 	__releases(vmf->ptl)
3340 {
3341 	struct vm_area_struct *vma = vmf->vma;
3342 	vm_fault_t ret = 0;
3343 
3344 	folio_get(folio);
3345 
3346 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3347 		vm_fault_t tmp;
3348 
3349 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3350 		tmp = vmf_can_call_fault(vmf);
3351 		if (tmp) {
3352 			folio_put(folio);
3353 			return tmp;
3354 		}
3355 
3356 		tmp = do_page_mkwrite(vmf, folio);
3357 		if (unlikely(!tmp || (tmp &
3358 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3359 			folio_put(folio);
3360 			return tmp;
3361 		}
3362 		tmp = finish_mkwrite_fault(vmf, folio);
3363 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3364 			folio_unlock(folio);
3365 			folio_put(folio);
3366 			return tmp;
3367 		}
3368 	} else {
3369 		wp_page_reuse(vmf, folio);
3370 		folio_lock(folio);
3371 	}
3372 	ret |= fault_dirty_shared_page(vmf);
3373 	folio_put(folio);
3374 
3375 	return ret;
3376 }
3377 
3378 static bool wp_can_reuse_anon_folio(struct folio *folio,
3379 				    struct vm_area_struct *vma)
3380 {
3381 	/*
3382 	 * We have to verify under folio lock: these early checks are
3383 	 * just an optimization to avoid locking the folio and freeing
3384 	 * the swapcache if there is little hope that we can reuse.
3385 	 *
3386 	 * KSM doesn't necessarily raise the folio refcount.
3387 	 */
3388 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3389 		return false;
3390 	if (!folio_test_lru(folio))
3391 		/*
3392 		 * We cannot easily detect+handle references from
3393 		 * remote LRU caches or references to LRU folios.
3394 		 */
3395 		lru_add_drain();
3396 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3397 		return false;
3398 	if (!folio_trylock(folio))
3399 		return false;
3400 	if (folio_test_swapcache(folio))
3401 		folio_free_swap(folio);
3402 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3403 		folio_unlock(folio);
3404 		return false;
3405 	}
3406 	/*
3407 	 * Ok, we've got the only folio reference from our mapping
3408 	 * and the folio is locked, it's dark out, and we're wearing
3409 	 * sunglasses. Hit it.
3410 	 */
3411 	folio_move_anon_rmap(folio, vma);
3412 	folio_unlock(folio);
3413 	return true;
3414 }
3415 
3416 /*
3417  * This routine handles present pages, when
3418  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3419  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3420  *   (FAULT_FLAG_UNSHARE)
3421  *
3422  * It is done by copying the page to a new address and decrementing the
3423  * shared-page counter for the old page.
3424  *
3425  * Note that this routine assumes that the protection checks have been
3426  * done by the caller (the low-level page fault routine in most cases).
3427  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3428  * done any necessary COW.
3429  *
3430  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3431  * though the page will change only once the write actually happens. This
3432  * avoids a few races, and potentially makes it more efficient.
3433  *
3434  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3435  * but allow concurrent faults), with pte both mapped and locked.
3436  * We return with mmap_lock still held, but pte unmapped and unlocked.
3437  */
3438 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3439 	__releases(vmf->ptl)
3440 {
3441 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3442 	struct vm_area_struct *vma = vmf->vma;
3443 	struct folio *folio = NULL;
3444 	pte_t pte;
3445 
3446 	if (likely(!unshare)) {
3447 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3448 			if (!userfaultfd_wp_async(vma)) {
3449 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3450 				return handle_userfault(vmf, VM_UFFD_WP);
3451 			}
3452 
3453 			/*
3454 			 * Nothing needed (cache flush, TLB invalidations,
3455 			 * etc.) because we're only removing the uffd-wp bit,
3456 			 * which is completely invisible to the user.
3457 			 */
3458 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3459 
3460 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3461 			/*
3462 			 * Update this to be prepared for following up CoW
3463 			 * handling
3464 			 */
3465 			vmf->orig_pte = pte;
3466 		}
3467 
3468 		/*
3469 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3470 		 * is flushed in this case before copying.
3471 		 */
3472 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3473 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3474 			flush_tlb_page(vmf->vma, vmf->address);
3475 	}
3476 
3477 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3478 
3479 	if (vmf->page)
3480 		folio = page_folio(vmf->page);
3481 
3482 	/*
3483 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3484 	 * FAULT_FLAG_WRITE set at this point.
3485 	 */
3486 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3487 		/*
3488 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3489 		 * VM_PFNMAP VMA.
3490 		 *
3491 		 * We should not cow pages in a shared writeable mapping.
3492 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3493 		 */
3494 		if (!vmf->page)
3495 			return wp_pfn_shared(vmf);
3496 		return wp_page_shared(vmf, folio);
3497 	}
3498 
3499 	/*
3500 	 * Private mapping: create an exclusive anonymous page copy if reuse
3501 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3502 	 *
3503 	 * If we encounter a page that is marked exclusive, we must reuse
3504 	 * the page without further checks.
3505 	 */
3506 	if (folio && folio_test_anon(folio) &&
3507 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3508 		if (!PageAnonExclusive(vmf->page))
3509 			SetPageAnonExclusive(vmf->page);
3510 		if (unlikely(unshare)) {
3511 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3512 			return 0;
3513 		}
3514 		wp_page_reuse(vmf, folio);
3515 		return 0;
3516 	}
3517 	/*
3518 	 * Ok, we need to copy. Oh, well..
3519 	 */
3520 	if (folio)
3521 		folio_get(folio);
3522 
3523 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3524 #ifdef CONFIG_KSM
3525 	if (folio && folio_test_ksm(folio))
3526 		count_vm_event(COW_KSM);
3527 #endif
3528 	return wp_page_copy(vmf);
3529 }
3530 
3531 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3532 		unsigned long start_addr, unsigned long end_addr,
3533 		struct zap_details *details)
3534 {
3535 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3536 }
3537 
3538 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3539 					    pgoff_t first_index,
3540 					    pgoff_t last_index,
3541 					    struct zap_details *details)
3542 {
3543 	struct vm_area_struct *vma;
3544 	pgoff_t vba, vea, zba, zea;
3545 
3546 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3547 		vba = vma->vm_pgoff;
3548 		vea = vba + vma_pages(vma) - 1;
3549 		zba = max(first_index, vba);
3550 		zea = min(last_index, vea);
3551 
3552 		unmap_mapping_range_vma(vma,
3553 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3554 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3555 				details);
3556 	}
3557 }
3558 
3559 /**
3560  * unmap_mapping_folio() - Unmap single folio from processes.
3561  * @folio: The locked folio to be unmapped.
3562  *
3563  * Unmap this folio from any userspace process which still has it mmaped.
3564  * Typically, for efficiency, the range of nearby pages has already been
3565  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3566  * truncation or invalidation holds the lock on a folio, it may find that
3567  * the page has been remapped again: and then uses unmap_mapping_folio()
3568  * to unmap it finally.
3569  */
3570 void unmap_mapping_folio(struct folio *folio)
3571 {
3572 	struct address_space *mapping = folio->mapping;
3573 	struct zap_details details = { };
3574 	pgoff_t	first_index;
3575 	pgoff_t	last_index;
3576 
3577 	VM_BUG_ON(!folio_test_locked(folio));
3578 
3579 	first_index = folio->index;
3580 	last_index = folio_next_index(folio) - 1;
3581 
3582 	details.even_cows = false;
3583 	details.single_folio = folio;
3584 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3585 
3586 	i_mmap_lock_read(mapping);
3587 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3588 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3589 					 last_index, &details);
3590 	i_mmap_unlock_read(mapping);
3591 }
3592 
3593 /**
3594  * unmap_mapping_pages() - Unmap pages from processes.
3595  * @mapping: The address space containing pages to be unmapped.
3596  * @start: Index of first page to be unmapped.
3597  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3598  * @even_cows: Whether to unmap even private COWed pages.
3599  *
3600  * Unmap the pages in this address space from any userspace process which
3601  * has them mmaped.  Generally, you want to remove COWed pages as well when
3602  * a file is being truncated, but not when invalidating pages from the page
3603  * cache.
3604  */
3605 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3606 		pgoff_t nr, bool even_cows)
3607 {
3608 	struct zap_details details = { };
3609 	pgoff_t	first_index = start;
3610 	pgoff_t	last_index = start + nr - 1;
3611 
3612 	details.even_cows = even_cows;
3613 	if (last_index < first_index)
3614 		last_index = ULONG_MAX;
3615 
3616 	i_mmap_lock_read(mapping);
3617 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3618 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3619 					 last_index, &details);
3620 	i_mmap_unlock_read(mapping);
3621 }
3622 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3623 
3624 /**
3625  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3626  * address_space corresponding to the specified byte range in the underlying
3627  * file.
3628  *
3629  * @mapping: the address space containing mmaps to be unmapped.
3630  * @holebegin: byte in first page to unmap, relative to the start of
3631  * the underlying file.  This will be rounded down to a PAGE_SIZE
3632  * boundary.  Note that this is different from truncate_pagecache(), which
3633  * must keep the partial page.  In contrast, we must get rid of
3634  * partial pages.
3635  * @holelen: size of prospective hole in bytes.  This will be rounded
3636  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3637  * end of the file.
3638  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3639  * but 0 when invalidating pagecache, don't throw away private data.
3640  */
3641 void unmap_mapping_range(struct address_space *mapping,
3642 		loff_t const holebegin, loff_t const holelen, int even_cows)
3643 {
3644 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3645 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3646 
3647 	/* Check for overflow. */
3648 	if (sizeof(holelen) > sizeof(hlen)) {
3649 		long long holeend =
3650 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3651 		if (holeend & ~(long long)ULONG_MAX)
3652 			hlen = ULONG_MAX - hba + 1;
3653 	}
3654 
3655 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3656 }
3657 EXPORT_SYMBOL(unmap_mapping_range);
3658 
3659 /*
3660  * Restore a potential device exclusive pte to a working pte entry
3661  */
3662 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3663 {
3664 	struct folio *folio = page_folio(vmf->page);
3665 	struct vm_area_struct *vma = vmf->vma;
3666 	struct mmu_notifier_range range;
3667 	vm_fault_t ret;
3668 
3669 	/*
3670 	 * We need a reference to lock the folio because we don't hold
3671 	 * the PTL so a racing thread can remove the device-exclusive
3672 	 * entry and unmap it. If the folio is free the entry must
3673 	 * have been removed already. If it happens to have already
3674 	 * been re-allocated after being freed all we do is lock and
3675 	 * unlock it.
3676 	 */
3677 	if (!folio_try_get(folio))
3678 		return 0;
3679 
3680 	ret = folio_lock_or_retry(folio, vmf);
3681 	if (ret) {
3682 		folio_put(folio);
3683 		return ret;
3684 	}
3685 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3686 				vma->vm_mm, vmf->address & PAGE_MASK,
3687 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3688 	mmu_notifier_invalidate_range_start(&range);
3689 
3690 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3691 				&vmf->ptl);
3692 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3693 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3694 
3695 	if (vmf->pte)
3696 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3697 	folio_unlock(folio);
3698 	folio_put(folio);
3699 
3700 	mmu_notifier_invalidate_range_end(&range);
3701 	return 0;
3702 }
3703 
3704 static inline bool should_try_to_free_swap(struct folio *folio,
3705 					   struct vm_area_struct *vma,
3706 					   unsigned int fault_flags)
3707 {
3708 	if (!folio_test_swapcache(folio))
3709 		return false;
3710 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3711 	    folio_test_mlocked(folio))
3712 		return true;
3713 	/*
3714 	 * If we want to map a page that's in the swapcache writable, we
3715 	 * have to detect via the refcount if we're really the exclusive
3716 	 * user. Try freeing the swapcache to get rid of the swapcache
3717 	 * reference only in case it's likely that we'll be the exlusive user.
3718 	 */
3719 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3720 		folio_ref_count(folio) == 2;
3721 }
3722 
3723 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3724 {
3725 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3726 				       vmf->address, &vmf->ptl);
3727 	if (!vmf->pte)
3728 		return 0;
3729 	/*
3730 	 * Be careful so that we will only recover a special uffd-wp pte into a
3731 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3732 	 *
3733 	 * This should also cover the case where e.g. the pte changed
3734 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3735 	 * So is_pte_marker() check is not enough to safely drop the pte.
3736 	 */
3737 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3738 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3739 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3740 	return 0;
3741 }
3742 
3743 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3744 {
3745 	if (vma_is_anonymous(vmf->vma))
3746 		return do_anonymous_page(vmf);
3747 	else
3748 		return do_fault(vmf);
3749 }
3750 
3751 /*
3752  * This is actually a page-missing access, but with uffd-wp special pte
3753  * installed.  It means this pte was wr-protected before being unmapped.
3754  */
3755 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3756 {
3757 	/*
3758 	 * Just in case there're leftover special ptes even after the region
3759 	 * got unregistered - we can simply clear them.
3760 	 */
3761 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3762 		return pte_marker_clear(vmf);
3763 
3764 	return do_pte_missing(vmf);
3765 }
3766 
3767 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3768 {
3769 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3770 	unsigned long marker = pte_marker_get(entry);
3771 
3772 	/*
3773 	 * PTE markers should never be empty.  If anything weird happened,
3774 	 * the best thing to do is to kill the process along with its mm.
3775 	 */
3776 	if (WARN_ON_ONCE(!marker))
3777 		return VM_FAULT_SIGBUS;
3778 
3779 	/* Higher priority than uffd-wp when data corrupted */
3780 	if (marker & PTE_MARKER_POISONED)
3781 		return VM_FAULT_HWPOISON;
3782 
3783 	if (pte_marker_entry_uffd_wp(entry))
3784 		return pte_marker_handle_uffd_wp(vmf);
3785 
3786 	/* This is an unknown pte marker */
3787 	return VM_FAULT_SIGBUS;
3788 }
3789 
3790 /*
3791  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3792  * but allow concurrent faults), and pte mapped but not yet locked.
3793  * We return with pte unmapped and unlocked.
3794  *
3795  * We return with the mmap_lock locked or unlocked in the same cases
3796  * as does filemap_fault().
3797  */
3798 vm_fault_t do_swap_page(struct vm_fault *vmf)
3799 {
3800 	struct vm_area_struct *vma = vmf->vma;
3801 	struct folio *swapcache, *folio = NULL;
3802 	struct page *page;
3803 	struct swap_info_struct *si = NULL;
3804 	rmap_t rmap_flags = RMAP_NONE;
3805 	bool need_clear_cache = false;
3806 	bool exclusive = false;
3807 	swp_entry_t entry;
3808 	pte_t pte;
3809 	vm_fault_t ret = 0;
3810 	void *shadow = NULL;
3811 
3812 	if (!pte_unmap_same(vmf))
3813 		goto out;
3814 
3815 	entry = pte_to_swp_entry(vmf->orig_pte);
3816 	if (unlikely(non_swap_entry(entry))) {
3817 		if (is_migration_entry(entry)) {
3818 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3819 					     vmf->address);
3820 		} else if (is_device_exclusive_entry(entry)) {
3821 			vmf->page = pfn_swap_entry_to_page(entry);
3822 			ret = remove_device_exclusive_entry(vmf);
3823 		} else if (is_device_private_entry(entry)) {
3824 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3825 				/*
3826 				 * migrate_to_ram is not yet ready to operate
3827 				 * under VMA lock.
3828 				 */
3829 				vma_end_read(vma);
3830 				ret = VM_FAULT_RETRY;
3831 				goto out;
3832 			}
3833 
3834 			vmf->page = pfn_swap_entry_to_page(entry);
3835 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3836 					vmf->address, &vmf->ptl);
3837 			if (unlikely(!vmf->pte ||
3838 				     !pte_same(ptep_get(vmf->pte),
3839 							vmf->orig_pte)))
3840 				goto unlock;
3841 
3842 			/*
3843 			 * Get a page reference while we know the page can't be
3844 			 * freed.
3845 			 */
3846 			get_page(vmf->page);
3847 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3848 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3849 			put_page(vmf->page);
3850 		} else if (is_hwpoison_entry(entry)) {
3851 			ret = VM_FAULT_HWPOISON;
3852 		} else if (is_pte_marker_entry(entry)) {
3853 			ret = handle_pte_marker(vmf);
3854 		} else {
3855 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3856 			ret = VM_FAULT_SIGBUS;
3857 		}
3858 		goto out;
3859 	}
3860 
3861 	/* Prevent swapoff from happening to us. */
3862 	si = get_swap_device(entry);
3863 	if (unlikely(!si))
3864 		goto out;
3865 
3866 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3867 	if (folio)
3868 		page = folio_file_page(folio, swp_offset(entry));
3869 	swapcache = folio;
3870 
3871 	if (!folio) {
3872 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3873 		    __swap_count(entry) == 1) {
3874 			/*
3875 			 * Prevent parallel swapin from proceeding with
3876 			 * the cache flag. Otherwise, another thread may
3877 			 * finish swapin first, free the entry, and swapout
3878 			 * reusing the same entry. It's undetectable as
3879 			 * pte_same() returns true due to entry reuse.
3880 			 */
3881 			if (swapcache_prepare(entry)) {
3882 				/* Relax a bit to prevent rapid repeated page faults */
3883 				schedule_timeout_uninterruptible(1);
3884 				goto out;
3885 			}
3886 			need_clear_cache = true;
3887 
3888 			/* skip swapcache */
3889 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3890 						vma, vmf->address, false);
3891 			page = &folio->page;
3892 			if (folio) {
3893 				__folio_set_locked(folio);
3894 				__folio_set_swapbacked(folio);
3895 
3896 				if (mem_cgroup_swapin_charge_folio(folio,
3897 							vma->vm_mm, GFP_KERNEL,
3898 							entry)) {
3899 					ret = VM_FAULT_OOM;
3900 					goto out_page;
3901 				}
3902 				mem_cgroup_swapin_uncharge_swap(entry);
3903 
3904 				shadow = get_shadow_from_swap_cache(entry);
3905 				if (shadow)
3906 					workingset_refault(folio, shadow);
3907 
3908 				folio_add_lru(folio);
3909 
3910 				/* To provide entry to swap_read_folio() */
3911 				folio->swap = entry;
3912 				swap_read_folio(folio, true, NULL);
3913 				folio->private = NULL;
3914 			}
3915 		} else {
3916 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3917 						vmf);
3918 			if (page)
3919 				folio = page_folio(page);
3920 			swapcache = folio;
3921 		}
3922 
3923 		if (!folio) {
3924 			/*
3925 			 * Back out if somebody else faulted in this pte
3926 			 * while we released the pte lock.
3927 			 */
3928 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3929 					vmf->address, &vmf->ptl);
3930 			if (likely(vmf->pte &&
3931 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3932 				ret = VM_FAULT_OOM;
3933 			goto unlock;
3934 		}
3935 
3936 		/* Had to read the page from swap area: Major fault */
3937 		ret = VM_FAULT_MAJOR;
3938 		count_vm_event(PGMAJFAULT);
3939 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3940 	} else if (PageHWPoison(page)) {
3941 		/*
3942 		 * hwpoisoned dirty swapcache pages are kept for killing
3943 		 * owner processes (which may be unknown at hwpoison time)
3944 		 */
3945 		ret = VM_FAULT_HWPOISON;
3946 		goto out_release;
3947 	}
3948 
3949 	ret |= folio_lock_or_retry(folio, vmf);
3950 	if (ret & VM_FAULT_RETRY)
3951 		goto out_release;
3952 
3953 	if (swapcache) {
3954 		/*
3955 		 * Make sure folio_free_swap() or swapoff did not release the
3956 		 * swapcache from under us.  The page pin, and pte_same test
3957 		 * below, are not enough to exclude that.  Even if it is still
3958 		 * swapcache, we need to check that the page's swap has not
3959 		 * changed.
3960 		 */
3961 		if (unlikely(!folio_test_swapcache(folio) ||
3962 			     page_swap_entry(page).val != entry.val))
3963 			goto out_page;
3964 
3965 		/*
3966 		 * KSM sometimes has to copy on read faults, for example, if
3967 		 * page->index of !PageKSM() pages would be nonlinear inside the
3968 		 * anon VMA -- PageKSM() is lost on actual swapout.
3969 		 */
3970 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
3971 		if (unlikely(!folio)) {
3972 			ret = VM_FAULT_OOM;
3973 			folio = swapcache;
3974 			goto out_page;
3975 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
3976 			ret = VM_FAULT_HWPOISON;
3977 			folio = swapcache;
3978 			goto out_page;
3979 		}
3980 		if (folio != swapcache)
3981 			page = folio_page(folio, 0);
3982 
3983 		/*
3984 		 * If we want to map a page that's in the swapcache writable, we
3985 		 * have to detect via the refcount if we're really the exclusive
3986 		 * owner. Try removing the extra reference from the local LRU
3987 		 * caches if required.
3988 		 */
3989 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3990 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3991 			lru_add_drain();
3992 	}
3993 
3994 	folio_throttle_swaprate(folio, GFP_KERNEL);
3995 
3996 	/*
3997 	 * Back out if somebody else already faulted in this pte.
3998 	 */
3999 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4000 			&vmf->ptl);
4001 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4002 		goto out_nomap;
4003 
4004 	if (unlikely(!folio_test_uptodate(folio))) {
4005 		ret = VM_FAULT_SIGBUS;
4006 		goto out_nomap;
4007 	}
4008 
4009 	/*
4010 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4011 	 * must never point at an anonymous page in the swapcache that is
4012 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4013 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4014 	 * check after taking the PT lock and making sure that nobody
4015 	 * concurrently faulted in this page and set PG_anon_exclusive.
4016 	 */
4017 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4018 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4019 
4020 	/*
4021 	 * Check under PT lock (to protect against concurrent fork() sharing
4022 	 * the swap entry concurrently) for certainly exclusive pages.
4023 	 */
4024 	if (!folio_test_ksm(folio)) {
4025 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4026 		if (folio != swapcache) {
4027 			/*
4028 			 * We have a fresh page that is not exposed to the
4029 			 * swapcache -> certainly exclusive.
4030 			 */
4031 			exclusive = true;
4032 		} else if (exclusive && folio_test_writeback(folio) &&
4033 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4034 			/*
4035 			 * This is tricky: not all swap backends support
4036 			 * concurrent page modifications while under writeback.
4037 			 *
4038 			 * So if we stumble over such a page in the swapcache
4039 			 * we must not set the page exclusive, otherwise we can
4040 			 * map it writable without further checks and modify it
4041 			 * while still under writeback.
4042 			 *
4043 			 * For these problematic swap backends, simply drop the
4044 			 * exclusive marker: this is perfectly fine as we start
4045 			 * writeback only if we fully unmapped the page and
4046 			 * there are no unexpected references on the page after
4047 			 * unmapping succeeded. After fully unmapped, no
4048 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4049 			 * appear, so dropping the exclusive marker and mapping
4050 			 * it only R/O is fine.
4051 			 */
4052 			exclusive = false;
4053 		}
4054 	}
4055 
4056 	/*
4057 	 * Some architectures may have to restore extra metadata to the page
4058 	 * when reading from swap. This metadata may be indexed by swap entry
4059 	 * so this must be called before swap_free().
4060 	 */
4061 	arch_swap_restore(entry, folio);
4062 
4063 	/*
4064 	 * Remove the swap entry and conditionally try to free up the swapcache.
4065 	 * We're already holding a reference on the page but haven't mapped it
4066 	 * yet.
4067 	 */
4068 	swap_free(entry);
4069 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4070 		folio_free_swap(folio);
4071 
4072 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4073 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4074 	pte = mk_pte(page, vma->vm_page_prot);
4075 
4076 	/*
4077 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4078 	 * certainly not shared either because we just allocated them without
4079 	 * exposing them to the swapcache or because the swap entry indicates
4080 	 * exclusivity.
4081 	 */
4082 	if (!folio_test_ksm(folio) &&
4083 	    (exclusive || folio_ref_count(folio) == 1)) {
4084 		if (vmf->flags & FAULT_FLAG_WRITE) {
4085 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4086 			vmf->flags &= ~FAULT_FLAG_WRITE;
4087 		}
4088 		rmap_flags |= RMAP_EXCLUSIVE;
4089 	}
4090 	flush_icache_page(vma, page);
4091 	if (pte_swp_soft_dirty(vmf->orig_pte))
4092 		pte = pte_mksoft_dirty(pte);
4093 	if (pte_swp_uffd_wp(vmf->orig_pte))
4094 		pte = pte_mkuffd_wp(pte);
4095 	vmf->orig_pte = pte;
4096 
4097 	/* ksm created a completely new copy */
4098 	if (unlikely(folio != swapcache && swapcache)) {
4099 		folio_add_new_anon_rmap(folio, vma, vmf->address);
4100 		folio_add_lru_vma(folio, vma);
4101 	} else {
4102 		folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4103 					rmap_flags);
4104 	}
4105 
4106 	VM_BUG_ON(!folio_test_anon(folio) ||
4107 			(pte_write(pte) && !PageAnonExclusive(page)));
4108 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4109 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4110 
4111 	folio_unlock(folio);
4112 	if (folio != swapcache && swapcache) {
4113 		/*
4114 		 * Hold the lock to avoid the swap entry to be reused
4115 		 * until we take the PT lock for the pte_same() check
4116 		 * (to avoid false positives from pte_same). For
4117 		 * further safety release the lock after the swap_free
4118 		 * so that the swap count won't change under a
4119 		 * parallel locked swapcache.
4120 		 */
4121 		folio_unlock(swapcache);
4122 		folio_put(swapcache);
4123 	}
4124 
4125 	if (vmf->flags & FAULT_FLAG_WRITE) {
4126 		ret |= do_wp_page(vmf);
4127 		if (ret & VM_FAULT_ERROR)
4128 			ret &= VM_FAULT_ERROR;
4129 		goto out;
4130 	}
4131 
4132 	/* No need to invalidate - it was non-present before */
4133 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4134 unlock:
4135 	if (vmf->pte)
4136 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4137 out:
4138 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4139 	if (need_clear_cache)
4140 		swapcache_clear(si, entry);
4141 	if (si)
4142 		put_swap_device(si);
4143 	return ret;
4144 out_nomap:
4145 	if (vmf->pte)
4146 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4147 out_page:
4148 	folio_unlock(folio);
4149 out_release:
4150 	folio_put(folio);
4151 	if (folio != swapcache && swapcache) {
4152 		folio_unlock(swapcache);
4153 		folio_put(swapcache);
4154 	}
4155 	if (need_clear_cache)
4156 		swapcache_clear(si, entry);
4157 	if (si)
4158 		put_swap_device(si);
4159 	return ret;
4160 }
4161 
4162 static bool pte_range_none(pte_t *pte, int nr_pages)
4163 {
4164 	int i;
4165 
4166 	for (i = 0; i < nr_pages; i++) {
4167 		if (!pte_none(ptep_get_lockless(pte + i)))
4168 			return false;
4169 	}
4170 
4171 	return true;
4172 }
4173 
4174 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4175 {
4176 	struct vm_area_struct *vma = vmf->vma;
4177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4178 	unsigned long orders;
4179 	struct folio *folio;
4180 	unsigned long addr;
4181 	pte_t *pte;
4182 	gfp_t gfp;
4183 	int order;
4184 
4185 	/*
4186 	 * If uffd is active for the vma we need per-page fault fidelity to
4187 	 * maintain the uffd semantics.
4188 	 */
4189 	if (unlikely(userfaultfd_armed(vma)))
4190 		goto fallback;
4191 
4192 	/*
4193 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4194 	 * for this vma. Then filter out the orders that can't be allocated over
4195 	 * the faulting address and still be fully contained in the vma.
4196 	 */
4197 	orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4198 					  BIT(PMD_ORDER) - 1);
4199 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4200 
4201 	if (!orders)
4202 		goto fallback;
4203 
4204 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4205 	if (!pte)
4206 		return ERR_PTR(-EAGAIN);
4207 
4208 	/*
4209 	 * Find the highest order where the aligned range is completely
4210 	 * pte_none(). Note that all remaining orders will be completely
4211 	 * pte_none().
4212 	 */
4213 	order = highest_order(orders);
4214 	while (orders) {
4215 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4216 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4217 			break;
4218 		order = next_order(&orders, order);
4219 	}
4220 
4221 	pte_unmap(pte);
4222 
4223 	/* Try allocating the highest of the remaining orders. */
4224 	gfp = vma_thp_gfp_mask(vma);
4225 	while (orders) {
4226 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4227 		folio = vma_alloc_folio(gfp, order, vma, addr, true);
4228 		if (folio) {
4229 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4230 				folio_put(folio);
4231 				goto next;
4232 			}
4233 			folio_throttle_swaprate(folio, gfp);
4234 			clear_huge_page(&folio->page, vmf->address, 1 << order);
4235 			return folio;
4236 		}
4237 next:
4238 		order = next_order(&orders, order);
4239 	}
4240 
4241 fallback:
4242 #endif
4243 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4244 }
4245 
4246 /*
4247  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4248  * but allow concurrent faults), and pte mapped but not yet locked.
4249  * We return with mmap_lock still held, but pte unmapped and unlocked.
4250  */
4251 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4252 {
4253 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4254 	struct vm_area_struct *vma = vmf->vma;
4255 	unsigned long addr = vmf->address;
4256 	struct folio *folio;
4257 	vm_fault_t ret = 0;
4258 	int nr_pages = 1;
4259 	pte_t entry;
4260 	int i;
4261 
4262 	/* File mapping without ->vm_ops ? */
4263 	if (vma->vm_flags & VM_SHARED)
4264 		return VM_FAULT_SIGBUS;
4265 
4266 	/*
4267 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4268 	 * be distinguished from a transient failure of pte_offset_map().
4269 	 */
4270 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4271 		return VM_FAULT_OOM;
4272 
4273 	/* Use the zero-page for reads */
4274 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4275 			!mm_forbids_zeropage(vma->vm_mm)) {
4276 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4277 						vma->vm_page_prot));
4278 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4279 				vmf->address, &vmf->ptl);
4280 		if (!vmf->pte)
4281 			goto unlock;
4282 		if (vmf_pte_changed(vmf)) {
4283 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4284 			goto unlock;
4285 		}
4286 		ret = check_stable_address_space(vma->vm_mm);
4287 		if (ret)
4288 			goto unlock;
4289 		/* Deliver the page fault to userland, check inside PT lock */
4290 		if (userfaultfd_missing(vma)) {
4291 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4292 			return handle_userfault(vmf, VM_UFFD_MISSING);
4293 		}
4294 		goto setpte;
4295 	}
4296 
4297 	/* Allocate our own private page. */
4298 	if (unlikely(anon_vma_prepare(vma)))
4299 		goto oom;
4300 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4301 	folio = alloc_anon_folio(vmf);
4302 	if (IS_ERR(folio))
4303 		return 0;
4304 	if (!folio)
4305 		goto oom;
4306 
4307 	nr_pages = folio_nr_pages(folio);
4308 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4309 
4310 	/*
4311 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4312 	 * preceding stores to the page contents become visible before
4313 	 * the set_pte_at() write.
4314 	 */
4315 	__folio_mark_uptodate(folio);
4316 
4317 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4318 	entry = pte_sw_mkyoung(entry);
4319 	if (vma->vm_flags & VM_WRITE)
4320 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4321 
4322 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4323 	if (!vmf->pte)
4324 		goto release;
4325 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4326 		update_mmu_tlb(vma, addr, vmf->pte);
4327 		goto release;
4328 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4329 		for (i = 0; i < nr_pages; i++)
4330 			update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4331 		goto release;
4332 	}
4333 
4334 	ret = check_stable_address_space(vma->vm_mm);
4335 	if (ret)
4336 		goto release;
4337 
4338 	/* Deliver the page fault to userland, check inside PT lock */
4339 	if (userfaultfd_missing(vma)) {
4340 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4341 		folio_put(folio);
4342 		return handle_userfault(vmf, VM_UFFD_MISSING);
4343 	}
4344 
4345 	folio_ref_add(folio, nr_pages - 1);
4346 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4347 	folio_add_new_anon_rmap(folio, vma, addr);
4348 	folio_add_lru_vma(folio, vma);
4349 setpte:
4350 	if (uffd_wp)
4351 		entry = pte_mkuffd_wp(entry);
4352 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4353 
4354 	/* No need to invalidate - it was non-present before */
4355 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4356 unlock:
4357 	if (vmf->pte)
4358 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4359 	return ret;
4360 release:
4361 	folio_put(folio);
4362 	goto unlock;
4363 oom:
4364 	return VM_FAULT_OOM;
4365 }
4366 
4367 /*
4368  * The mmap_lock must have been held on entry, and may have been
4369  * released depending on flags and vma->vm_ops->fault() return value.
4370  * See filemap_fault() and __lock_page_retry().
4371  */
4372 static vm_fault_t __do_fault(struct vm_fault *vmf)
4373 {
4374 	struct vm_area_struct *vma = vmf->vma;
4375 	struct folio *folio;
4376 	vm_fault_t ret;
4377 
4378 	/*
4379 	 * Preallocate pte before we take page_lock because this might lead to
4380 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4381 	 *				lock_page(A)
4382 	 *				SetPageWriteback(A)
4383 	 *				unlock_page(A)
4384 	 * lock_page(B)
4385 	 *				lock_page(B)
4386 	 * pte_alloc_one
4387 	 *   shrink_page_list
4388 	 *     wait_on_page_writeback(A)
4389 	 *				SetPageWriteback(B)
4390 	 *				unlock_page(B)
4391 	 *				# flush A, B to clear the writeback
4392 	 */
4393 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4394 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4395 		if (!vmf->prealloc_pte)
4396 			return VM_FAULT_OOM;
4397 	}
4398 
4399 	ret = vma->vm_ops->fault(vmf);
4400 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4401 			    VM_FAULT_DONE_COW)))
4402 		return ret;
4403 
4404 	folio = page_folio(vmf->page);
4405 	if (unlikely(PageHWPoison(vmf->page))) {
4406 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4407 		if (ret & VM_FAULT_LOCKED) {
4408 			if (page_mapped(vmf->page))
4409 				unmap_mapping_folio(folio);
4410 			/* Retry if a clean folio was removed from the cache. */
4411 			if (mapping_evict_folio(folio->mapping, folio))
4412 				poisonret = VM_FAULT_NOPAGE;
4413 			folio_unlock(folio);
4414 		}
4415 		folio_put(folio);
4416 		vmf->page = NULL;
4417 		return poisonret;
4418 	}
4419 
4420 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4421 		folio_lock(folio);
4422 	else
4423 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4424 
4425 	return ret;
4426 }
4427 
4428 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4429 static void deposit_prealloc_pte(struct vm_fault *vmf)
4430 {
4431 	struct vm_area_struct *vma = vmf->vma;
4432 
4433 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4434 	/*
4435 	 * We are going to consume the prealloc table,
4436 	 * count that as nr_ptes.
4437 	 */
4438 	mm_inc_nr_ptes(vma->vm_mm);
4439 	vmf->prealloc_pte = NULL;
4440 }
4441 
4442 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4443 {
4444 	struct folio *folio = page_folio(page);
4445 	struct vm_area_struct *vma = vmf->vma;
4446 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4447 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4448 	pmd_t entry;
4449 	vm_fault_t ret = VM_FAULT_FALLBACK;
4450 
4451 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4452 		return ret;
4453 
4454 	if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4455 		return ret;
4456 
4457 	/*
4458 	 * Just backoff if any subpage of a THP is corrupted otherwise
4459 	 * the corrupted page may mapped by PMD silently to escape the
4460 	 * check.  This kind of THP just can be PTE mapped.  Access to
4461 	 * the corrupted subpage should trigger SIGBUS as expected.
4462 	 */
4463 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4464 		return ret;
4465 
4466 	/*
4467 	 * Archs like ppc64 need additional space to store information
4468 	 * related to pte entry. Use the preallocated table for that.
4469 	 */
4470 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4471 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4472 		if (!vmf->prealloc_pte)
4473 			return VM_FAULT_OOM;
4474 	}
4475 
4476 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4477 	if (unlikely(!pmd_none(*vmf->pmd)))
4478 		goto out;
4479 
4480 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4481 
4482 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4483 	if (write)
4484 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4485 
4486 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4487 	folio_add_file_rmap_pmd(folio, page, vma);
4488 
4489 	/*
4490 	 * deposit and withdraw with pmd lock held
4491 	 */
4492 	if (arch_needs_pgtable_deposit())
4493 		deposit_prealloc_pte(vmf);
4494 
4495 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4496 
4497 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4498 
4499 	/* fault is handled */
4500 	ret = 0;
4501 	count_vm_event(THP_FILE_MAPPED);
4502 out:
4503 	spin_unlock(vmf->ptl);
4504 	return ret;
4505 }
4506 #else
4507 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4508 {
4509 	return VM_FAULT_FALLBACK;
4510 }
4511 #endif
4512 
4513 /**
4514  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4515  * @vmf: Fault decription.
4516  * @folio: The folio that contains @page.
4517  * @page: The first page to create a PTE for.
4518  * @nr: The number of PTEs to create.
4519  * @addr: The first address to create a PTE for.
4520  */
4521 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4522 		struct page *page, unsigned int nr, unsigned long addr)
4523 {
4524 	struct vm_area_struct *vma = vmf->vma;
4525 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4526 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4527 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4528 	pte_t entry;
4529 
4530 	flush_icache_pages(vma, page, nr);
4531 	entry = mk_pte(page, vma->vm_page_prot);
4532 
4533 	if (prefault && arch_wants_old_prefaulted_pte())
4534 		entry = pte_mkold(entry);
4535 	else
4536 		entry = pte_sw_mkyoung(entry);
4537 
4538 	if (write)
4539 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4540 	if (unlikely(uffd_wp))
4541 		entry = pte_mkuffd_wp(entry);
4542 	/* copy-on-write page */
4543 	if (write && !(vma->vm_flags & VM_SHARED)) {
4544 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4545 		VM_BUG_ON_FOLIO(nr != 1, folio);
4546 		folio_add_new_anon_rmap(folio, vma, addr);
4547 		folio_add_lru_vma(folio, vma);
4548 	} else {
4549 		add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr);
4550 		folio_add_file_rmap_ptes(folio, page, nr, vma);
4551 	}
4552 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4553 
4554 	/* no need to invalidate: a not-present page won't be cached */
4555 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4556 }
4557 
4558 static bool vmf_pte_changed(struct vm_fault *vmf)
4559 {
4560 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4561 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4562 
4563 	return !pte_none(ptep_get(vmf->pte));
4564 }
4565 
4566 /**
4567  * finish_fault - finish page fault once we have prepared the page to fault
4568  *
4569  * @vmf: structure describing the fault
4570  *
4571  * This function handles all that is needed to finish a page fault once the
4572  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4573  * given page, adds reverse page mapping, handles memcg charges and LRU
4574  * addition.
4575  *
4576  * The function expects the page to be locked and on success it consumes a
4577  * reference of a page being mapped (for the PTE which maps it).
4578  *
4579  * Return: %0 on success, %VM_FAULT_ code in case of error.
4580  */
4581 vm_fault_t finish_fault(struct vm_fault *vmf)
4582 {
4583 	struct vm_area_struct *vma = vmf->vma;
4584 	struct page *page;
4585 	vm_fault_t ret;
4586 
4587 	/* Did we COW the page? */
4588 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4589 		page = vmf->cow_page;
4590 	else
4591 		page = vmf->page;
4592 
4593 	/*
4594 	 * check even for read faults because we might have lost our CoWed
4595 	 * page
4596 	 */
4597 	if (!(vma->vm_flags & VM_SHARED)) {
4598 		ret = check_stable_address_space(vma->vm_mm);
4599 		if (ret)
4600 			return ret;
4601 	}
4602 
4603 	if (pmd_none(*vmf->pmd)) {
4604 		if (PageTransCompound(page)) {
4605 			ret = do_set_pmd(vmf, page);
4606 			if (ret != VM_FAULT_FALLBACK)
4607 				return ret;
4608 		}
4609 
4610 		if (vmf->prealloc_pte)
4611 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4612 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4613 			return VM_FAULT_OOM;
4614 	}
4615 
4616 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4617 				      vmf->address, &vmf->ptl);
4618 	if (!vmf->pte)
4619 		return VM_FAULT_NOPAGE;
4620 
4621 	/* Re-check under ptl */
4622 	if (likely(!vmf_pte_changed(vmf))) {
4623 		struct folio *folio = page_folio(page);
4624 
4625 		set_pte_range(vmf, folio, page, 1, vmf->address);
4626 		ret = 0;
4627 	} else {
4628 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4629 		ret = VM_FAULT_NOPAGE;
4630 	}
4631 
4632 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4633 	return ret;
4634 }
4635 
4636 static unsigned long fault_around_pages __read_mostly =
4637 	65536 >> PAGE_SHIFT;
4638 
4639 #ifdef CONFIG_DEBUG_FS
4640 static int fault_around_bytes_get(void *data, u64 *val)
4641 {
4642 	*val = fault_around_pages << PAGE_SHIFT;
4643 	return 0;
4644 }
4645 
4646 /*
4647  * fault_around_bytes must be rounded down to the nearest page order as it's
4648  * what do_fault_around() expects to see.
4649  */
4650 static int fault_around_bytes_set(void *data, u64 val)
4651 {
4652 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4653 		return -EINVAL;
4654 
4655 	/*
4656 	 * The minimum value is 1 page, however this results in no fault-around
4657 	 * at all. See should_fault_around().
4658 	 */
4659 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4660 
4661 	return 0;
4662 }
4663 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4664 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4665 
4666 static int __init fault_around_debugfs(void)
4667 {
4668 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4669 				   &fault_around_bytes_fops);
4670 	return 0;
4671 }
4672 late_initcall(fault_around_debugfs);
4673 #endif
4674 
4675 /*
4676  * do_fault_around() tries to map few pages around the fault address. The hope
4677  * is that the pages will be needed soon and this will lower the number of
4678  * faults to handle.
4679  *
4680  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4681  * not ready to be mapped: not up-to-date, locked, etc.
4682  *
4683  * This function doesn't cross VMA or page table boundaries, in order to call
4684  * map_pages() and acquire a PTE lock only once.
4685  *
4686  * fault_around_pages defines how many pages we'll try to map.
4687  * do_fault_around() expects it to be set to a power of two less than or equal
4688  * to PTRS_PER_PTE.
4689  *
4690  * The virtual address of the area that we map is naturally aligned to
4691  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4692  * (and therefore to page order).  This way it's easier to guarantee
4693  * that we don't cross page table boundaries.
4694  */
4695 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4696 {
4697 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4698 	pgoff_t pte_off = pte_index(vmf->address);
4699 	/* The page offset of vmf->address within the VMA. */
4700 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4701 	pgoff_t from_pte, to_pte;
4702 	vm_fault_t ret;
4703 
4704 	/* The PTE offset of the start address, clamped to the VMA. */
4705 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4706 		       pte_off - min(pte_off, vma_off));
4707 
4708 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4709 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4710 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4711 
4712 	if (pmd_none(*vmf->pmd)) {
4713 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4714 		if (!vmf->prealloc_pte)
4715 			return VM_FAULT_OOM;
4716 	}
4717 
4718 	rcu_read_lock();
4719 	ret = vmf->vma->vm_ops->map_pages(vmf,
4720 			vmf->pgoff + from_pte - pte_off,
4721 			vmf->pgoff + to_pte - pte_off);
4722 	rcu_read_unlock();
4723 
4724 	return ret;
4725 }
4726 
4727 /* Return true if we should do read fault-around, false otherwise */
4728 static inline bool should_fault_around(struct vm_fault *vmf)
4729 {
4730 	/* No ->map_pages?  No way to fault around... */
4731 	if (!vmf->vma->vm_ops->map_pages)
4732 		return false;
4733 
4734 	if (uffd_disable_fault_around(vmf->vma))
4735 		return false;
4736 
4737 	/* A single page implies no faulting 'around' at all. */
4738 	return fault_around_pages > 1;
4739 }
4740 
4741 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4742 {
4743 	vm_fault_t ret = 0;
4744 	struct folio *folio;
4745 
4746 	/*
4747 	 * Let's call ->map_pages() first and use ->fault() as fallback
4748 	 * if page by the offset is not ready to be mapped (cold cache or
4749 	 * something).
4750 	 */
4751 	if (should_fault_around(vmf)) {
4752 		ret = do_fault_around(vmf);
4753 		if (ret)
4754 			return ret;
4755 	}
4756 
4757 	ret = vmf_can_call_fault(vmf);
4758 	if (ret)
4759 		return ret;
4760 
4761 	ret = __do_fault(vmf);
4762 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4763 		return ret;
4764 
4765 	ret |= finish_fault(vmf);
4766 	folio = page_folio(vmf->page);
4767 	folio_unlock(folio);
4768 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4769 		folio_put(folio);
4770 	return ret;
4771 }
4772 
4773 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4774 {
4775 	struct vm_area_struct *vma = vmf->vma;
4776 	struct folio *folio;
4777 	vm_fault_t ret;
4778 
4779 	ret = vmf_can_call_fault(vmf);
4780 	if (!ret)
4781 		ret = vmf_anon_prepare(vmf);
4782 	if (ret)
4783 		return ret;
4784 
4785 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4786 	if (!folio)
4787 		return VM_FAULT_OOM;
4788 
4789 	vmf->cow_page = &folio->page;
4790 
4791 	ret = __do_fault(vmf);
4792 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4793 		goto uncharge_out;
4794 	if (ret & VM_FAULT_DONE_COW)
4795 		return ret;
4796 
4797 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4798 	__folio_mark_uptodate(folio);
4799 
4800 	ret |= finish_fault(vmf);
4801 	unlock_page(vmf->page);
4802 	put_page(vmf->page);
4803 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4804 		goto uncharge_out;
4805 	return ret;
4806 uncharge_out:
4807 	folio_put(folio);
4808 	return ret;
4809 }
4810 
4811 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4812 {
4813 	struct vm_area_struct *vma = vmf->vma;
4814 	vm_fault_t ret, tmp;
4815 	struct folio *folio;
4816 
4817 	ret = vmf_can_call_fault(vmf);
4818 	if (ret)
4819 		return ret;
4820 
4821 	ret = __do_fault(vmf);
4822 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4823 		return ret;
4824 
4825 	folio = page_folio(vmf->page);
4826 
4827 	/*
4828 	 * Check if the backing address space wants to know that the page is
4829 	 * about to become writable
4830 	 */
4831 	if (vma->vm_ops->page_mkwrite) {
4832 		folio_unlock(folio);
4833 		tmp = do_page_mkwrite(vmf, folio);
4834 		if (unlikely(!tmp ||
4835 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4836 			folio_put(folio);
4837 			return tmp;
4838 		}
4839 	}
4840 
4841 	ret |= finish_fault(vmf);
4842 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4843 					VM_FAULT_RETRY))) {
4844 		folio_unlock(folio);
4845 		folio_put(folio);
4846 		return ret;
4847 	}
4848 
4849 	ret |= fault_dirty_shared_page(vmf);
4850 	return ret;
4851 }
4852 
4853 /*
4854  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4855  * but allow concurrent faults).
4856  * The mmap_lock may have been released depending on flags and our
4857  * return value.  See filemap_fault() and __folio_lock_or_retry().
4858  * If mmap_lock is released, vma may become invalid (for example
4859  * by other thread calling munmap()).
4860  */
4861 static vm_fault_t do_fault(struct vm_fault *vmf)
4862 {
4863 	struct vm_area_struct *vma = vmf->vma;
4864 	struct mm_struct *vm_mm = vma->vm_mm;
4865 	vm_fault_t ret;
4866 
4867 	/*
4868 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4869 	 */
4870 	if (!vma->vm_ops->fault) {
4871 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4872 					       vmf->address, &vmf->ptl);
4873 		if (unlikely(!vmf->pte))
4874 			ret = VM_FAULT_SIGBUS;
4875 		else {
4876 			/*
4877 			 * Make sure this is not a temporary clearing of pte
4878 			 * by holding ptl and checking again. A R/M/W update
4879 			 * of pte involves: take ptl, clearing the pte so that
4880 			 * we don't have concurrent modification by hardware
4881 			 * followed by an update.
4882 			 */
4883 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4884 				ret = VM_FAULT_SIGBUS;
4885 			else
4886 				ret = VM_FAULT_NOPAGE;
4887 
4888 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4889 		}
4890 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4891 		ret = do_read_fault(vmf);
4892 	else if (!(vma->vm_flags & VM_SHARED))
4893 		ret = do_cow_fault(vmf);
4894 	else
4895 		ret = do_shared_fault(vmf);
4896 
4897 	/* preallocated pagetable is unused: free it */
4898 	if (vmf->prealloc_pte) {
4899 		pte_free(vm_mm, vmf->prealloc_pte);
4900 		vmf->prealloc_pte = NULL;
4901 	}
4902 	return ret;
4903 }
4904 
4905 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
4906 		      unsigned long addr, int page_nid, int *flags)
4907 {
4908 	folio_get(folio);
4909 
4910 	/* Record the current PID acceesing VMA */
4911 	vma_set_access_pid_bit(vma);
4912 
4913 	count_vm_numa_event(NUMA_HINT_FAULTS);
4914 	if (page_nid == numa_node_id()) {
4915 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4916 		*flags |= TNF_FAULT_LOCAL;
4917 	}
4918 
4919 	return mpol_misplaced(folio, vma, addr);
4920 }
4921 
4922 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4923 {
4924 	struct vm_area_struct *vma = vmf->vma;
4925 	struct folio *folio = NULL;
4926 	int nid = NUMA_NO_NODE;
4927 	bool writable = false;
4928 	int last_cpupid;
4929 	int target_nid;
4930 	pte_t pte, old_pte;
4931 	int flags = 0;
4932 
4933 	/*
4934 	 * The "pte" at this point cannot be used safely without
4935 	 * validation through pte_unmap_same(). It's of NUMA type but
4936 	 * the pfn may be screwed if the read is non atomic.
4937 	 */
4938 	spin_lock(vmf->ptl);
4939 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4940 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4941 		goto out;
4942 	}
4943 
4944 	/* Get the normal PTE  */
4945 	old_pte = ptep_get(vmf->pte);
4946 	pte = pte_modify(old_pte, vma->vm_page_prot);
4947 
4948 	/*
4949 	 * Detect now whether the PTE could be writable; this information
4950 	 * is only valid while holding the PT lock.
4951 	 */
4952 	writable = pte_write(pte);
4953 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4954 	    can_change_pte_writable(vma, vmf->address, pte))
4955 		writable = true;
4956 
4957 	folio = vm_normal_folio(vma, vmf->address, pte);
4958 	if (!folio || folio_is_zone_device(folio))
4959 		goto out_map;
4960 
4961 	/* TODO: handle PTE-mapped THP */
4962 	if (folio_test_large(folio))
4963 		goto out_map;
4964 
4965 	/*
4966 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4967 	 * much anyway since they can be in shared cache state. This misses
4968 	 * the case where a mapping is writable but the process never writes
4969 	 * to it but pte_write gets cleared during protection updates and
4970 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4971 	 * background writeback, dirty balancing and application behaviour.
4972 	 */
4973 	if (!writable)
4974 		flags |= TNF_NO_GROUP;
4975 
4976 	/*
4977 	 * Flag if the folio is shared between multiple address spaces. This
4978 	 * is later used when determining whether to group tasks together
4979 	 */
4980 	if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
4981 		flags |= TNF_SHARED;
4982 
4983 	nid = folio_nid(folio);
4984 	/*
4985 	 * For memory tiering mode, cpupid of slow memory page is used
4986 	 * to record page access time.  So use default value.
4987 	 */
4988 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4989 	    !node_is_toptier(nid))
4990 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4991 	else
4992 		last_cpupid = folio_last_cpupid(folio);
4993 	target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
4994 	if (target_nid == NUMA_NO_NODE) {
4995 		folio_put(folio);
4996 		goto out_map;
4997 	}
4998 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4999 	writable = false;
5000 
5001 	/* Migrate to the requested node */
5002 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
5003 		nid = target_nid;
5004 		flags |= TNF_MIGRATED;
5005 	} else {
5006 		flags |= TNF_MIGRATE_FAIL;
5007 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5008 					       vmf->address, &vmf->ptl);
5009 		if (unlikely(!vmf->pte))
5010 			goto out;
5011 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5012 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5013 			goto out;
5014 		}
5015 		goto out_map;
5016 	}
5017 
5018 out:
5019 	if (nid != NUMA_NO_NODE)
5020 		task_numa_fault(last_cpupid, nid, 1, flags);
5021 	return 0;
5022 out_map:
5023 	/*
5024 	 * Make it present again, depending on how arch implements
5025 	 * non-accessible ptes, some can allow access by kernel mode.
5026 	 */
5027 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5028 	pte = pte_modify(old_pte, vma->vm_page_prot);
5029 	pte = pte_mkyoung(pte);
5030 	if (writable)
5031 		pte = pte_mkwrite(pte, vma);
5032 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5033 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
5034 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5035 	goto out;
5036 }
5037 
5038 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5039 {
5040 	struct vm_area_struct *vma = vmf->vma;
5041 	if (vma_is_anonymous(vma))
5042 		return do_huge_pmd_anonymous_page(vmf);
5043 	if (vma->vm_ops->huge_fault)
5044 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5045 	return VM_FAULT_FALLBACK;
5046 }
5047 
5048 /* `inline' is required to avoid gcc 4.1.2 build error */
5049 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5050 {
5051 	struct vm_area_struct *vma = vmf->vma;
5052 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5053 	vm_fault_t ret;
5054 
5055 	if (vma_is_anonymous(vma)) {
5056 		if (likely(!unshare) &&
5057 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5058 			if (userfaultfd_wp_async(vmf->vma))
5059 				goto split;
5060 			return handle_userfault(vmf, VM_UFFD_WP);
5061 		}
5062 		return do_huge_pmd_wp_page(vmf);
5063 	}
5064 
5065 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5066 		if (vma->vm_ops->huge_fault) {
5067 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5068 			if (!(ret & VM_FAULT_FALLBACK))
5069 				return ret;
5070 		}
5071 	}
5072 
5073 split:
5074 	/* COW or write-notify handled on pte level: split pmd. */
5075 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5076 
5077 	return VM_FAULT_FALLBACK;
5078 }
5079 
5080 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5081 {
5082 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5083 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5084 	struct vm_area_struct *vma = vmf->vma;
5085 	/* No support for anonymous transparent PUD pages yet */
5086 	if (vma_is_anonymous(vma))
5087 		return VM_FAULT_FALLBACK;
5088 	if (vma->vm_ops->huge_fault)
5089 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5090 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5091 	return VM_FAULT_FALLBACK;
5092 }
5093 
5094 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5095 {
5096 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5097 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5098 	struct vm_area_struct *vma = vmf->vma;
5099 	vm_fault_t ret;
5100 
5101 	/* No support for anonymous transparent PUD pages yet */
5102 	if (vma_is_anonymous(vma))
5103 		goto split;
5104 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5105 		if (vma->vm_ops->huge_fault) {
5106 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5107 			if (!(ret & VM_FAULT_FALLBACK))
5108 				return ret;
5109 		}
5110 	}
5111 split:
5112 	/* COW or write-notify not handled on PUD level: split pud.*/
5113 	__split_huge_pud(vma, vmf->pud, vmf->address);
5114 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5115 	return VM_FAULT_FALLBACK;
5116 }
5117 
5118 /*
5119  * These routines also need to handle stuff like marking pages dirty
5120  * and/or accessed for architectures that don't do it in hardware (most
5121  * RISC architectures).  The early dirtying is also good on the i386.
5122  *
5123  * There is also a hook called "update_mmu_cache()" that architectures
5124  * with external mmu caches can use to update those (ie the Sparc or
5125  * PowerPC hashed page tables that act as extended TLBs).
5126  *
5127  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5128  * concurrent faults).
5129  *
5130  * The mmap_lock may have been released depending on flags and our return value.
5131  * See filemap_fault() and __folio_lock_or_retry().
5132  */
5133 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5134 {
5135 	pte_t entry;
5136 
5137 	if (unlikely(pmd_none(*vmf->pmd))) {
5138 		/*
5139 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5140 		 * want to allocate huge page, and if we expose page table
5141 		 * for an instant, it will be difficult to retract from
5142 		 * concurrent faults and from rmap lookups.
5143 		 */
5144 		vmf->pte = NULL;
5145 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5146 	} else {
5147 		/*
5148 		 * A regular pmd is established and it can't morph into a huge
5149 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5150 		 * mode; but shmem or file collapse to THP could still morph
5151 		 * it into a huge pmd: just retry later if so.
5152 		 */
5153 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5154 						 vmf->address, &vmf->ptl);
5155 		if (unlikely(!vmf->pte))
5156 			return 0;
5157 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5158 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5159 
5160 		if (pte_none(vmf->orig_pte)) {
5161 			pte_unmap(vmf->pte);
5162 			vmf->pte = NULL;
5163 		}
5164 	}
5165 
5166 	if (!vmf->pte)
5167 		return do_pte_missing(vmf);
5168 
5169 	if (!pte_present(vmf->orig_pte))
5170 		return do_swap_page(vmf);
5171 
5172 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5173 		return do_numa_page(vmf);
5174 
5175 	spin_lock(vmf->ptl);
5176 	entry = vmf->orig_pte;
5177 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5178 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5179 		goto unlock;
5180 	}
5181 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5182 		if (!pte_write(entry))
5183 			return do_wp_page(vmf);
5184 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5185 			entry = pte_mkdirty(entry);
5186 	}
5187 	entry = pte_mkyoung(entry);
5188 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5189 				vmf->flags & FAULT_FLAG_WRITE)) {
5190 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5191 				vmf->pte, 1);
5192 	} else {
5193 		/* Skip spurious TLB flush for retried page fault */
5194 		if (vmf->flags & FAULT_FLAG_TRIED)
5195 			goto unlock;
5196 		/*
5197 		 * This is needed only for protection faults but the arch code
5198 		 * is not yet telling us if this is a protection fault or not.
5199 		 * This still avoids useless tlb flushes for .text page faults
5200 		 * with threads.
5201 		 */
5202 		if (vmf->flags & FAULT_FLAG_WRITE)
5203 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5204 						     vmf->pte);
5205 	}
5206 unlock:
5207 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5208 	return 0;
5209 }
5210 
5211 /*
5212  * On entry, we hold either the VMA lock or the mmap_lock
5213  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5214  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5215  * and __folio_lock_or_retry().
5216  */
5217 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5218 		unsigned long address, unsigned int flags)
5219 {
5220 	struct vm_fault vmf = {
5221 		.vma = vma,
5222 		.address = address & PAGE_MASK,
5223 		.real_address = address,
5224 		.flags = flags,
5225 		.pgoff = linear_page_index(vma, address),
5226 		.gfp_mask = __get_fault_gfp_mask(vma),
5227 	};
5228 	struct mm_struct *mm = vma->vm_mm;
5229 	unsigned long vm_flags = vma->vm_flags;
5230 	pgd_t *pgd;
5231 	p4d_t *p4d;
5232 	vm_fault_t ret;
5233 
5234 	pgd = pgd_offset(mm, address);
5235 	p4d = p4d_alloc(mm, pgd, address);
5236 	if (!p4d)
5237 		return VM_FAULT_OOM;
5238 
5239 	vmf.pud = pud_alloc(mm, p4d, address);
5240 	if (!vmf.pud)
5241 		return VM_FAULT_OOM;
5242 retry_pud:
5243 	if (pud_none(*vmf.pud) &&
5244 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
5245 		ret = create_huge_pud(&vmf);
5246 		if (!(ret & VM_FAULT_FALLBACK))
5247 			return ret;
5248 	} else {
5249 		pud_t orig_pud = *vmf.pud;
5250 
5251 		barrier();
5252 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5253 
5254 			/*
5255 			 * TODO once we support anonymous PUDs: NUMA case and
5256 			 * FAULT_FLAG_UNSHARE handling.
5257 			 */
5258 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5259 				ret = wp_huge_pud(&vmf, orig_pud);
5260 				if (!(ret & VM_FAULT_FALLBACK))
5261 					return ret;
5262 			} else {
5263 				huge_pud_set_accessed(&vmf, orig_pud);
5264 				return 0;
5265 			}
5266 		}
5267 	}
5268 
5269 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5270 	if (!vmf.pmd)
5271 		return VM_FAULT_OOM;
5272 
5273 	/* Huge pud page fault raced with pmd_alloc? */
5274 	if (pud_trans_unstable(vmf.pud))
5275 		goto retry_pud;
5276 
5277 	if (pmd_none(*vmf.pmd) &&
5278 	    thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
5279 		ret = create_huge_pmd(&vmf);
5280 		if (!(ret & VM_FAULT_FALLBACK))
5281 			return ret;
5282 	} else {
5283 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5284 
5285 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5286 			VM_BUG_ON(thp_migration_supported() &&
5287 					  !is_pmd_migration_entry(vmf.orig_pmd));
5288 			if (is_pmd_migration_entry(vmf.orig_pmd))
5289 				pmd_migration_entry_wait(mm, vmf.pmd);
5290 			return 0;
5291 		}
5292 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5293 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5294 				return do_huge_pmd_numa_page(&vmf);
5295 
5296 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5297 			    !pmd_write(vmf.orig_pmd)) {
5298 				ret = wp_huge_pmd(&vmf);
5299 				if (!(ret & VM_FAULT_FALLBACK))
5300 					return ret;
5301 			} else {
5302 				huge_pmd_set_accessed(&vmf);
5303 				return 0;
5304 			}
5305 		}
5306 	}
5307 
5308 	return handle_pte_fault(&vmf);
5309 }
5310 
5311 /**
5312  * mm_account_fault - Do page fault accounting
5313  * @mm: mm from which memcg should be extracted. It can be NULL.
5314  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5315  *        of perf event counters, but we'll still do the per-task accounting to
5316  *        the task who triggered this page fault.
5317  * @address: the faulted address.
5318  * @flags: the fault flags.
5319  * @ret: the fault retcode.
5320  *
5321  * This will take care of most of the page fault accounting.  Meanwhile, it
5322  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5323  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5324  * still be in per-arch page fault handlers at the entry of page fault.
5325  */
5326 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5327 				    unsigned long address, unsigned int flags,
5328 				    vm_fault_t ret)
5329 {
5330 	bool major;
5331 
5332 	/* Incomplete faults will be accounted upon completion. */
5333 	if (ret & VM_FAULT_RETRY)
5334 		return;
5335 
5336 	/*
5337 	 * To preserve the behavior of older kernels, PGFAULT counters record
5338 	 * both successful and failed faults, as opposed to perf counters,
5339 	 * which ignore failed cases.
5340 	 */
5341 	count_vm_event(PGFAULT);
5342 	count_memcg_event_mm(mm, PGFAULT);
5343 
5344 	/*
5345 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5346 	 * valid).  That includes arch_vma_access_permitted() failing before
5347 	 * reaching here. So this is not a "this many hardware page faults"
5348 	 * counter.  We should use the hw profiling for that.
5349 	 */
5350 	if (ret & VM_FAULT_ERROR)
5351 		return;
5352 
5353 	/*
5354 	 * We define the fault as a major fault when the final successful fault
5355 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5356 	 * handle it immediately previously).
5357 	 */
5358 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5359 
5360 	if (major)
5361 		current->maj_flt++;
5362 	else
5363 		current->min_flt++;
5364 
5365 	/*
5366 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5367 	 * accounting for the per thread fault counters who triggered the
5368 	 * fault, and we skip the perf event updates.
5369 	 */
5370 	if (!regs)
5371 		return;
5372 
5373 	if (major)
5374 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5375 	else
5376 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5377 }
5378 
5379 #ifdef CONFIG_LRU_GEN
5380 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5381 {
5382 	/* the LRU algorithm only applies to accesses with recency */
5383 	current->in_lru_fault = vma_has_recency(vma);
5384 }
5385 
5386 static void lru_gen_exit_fault(void)
5387 {
5388 	current->in_lru_fault = false;
5389 }
5390 #else
5391 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5392 {
5393 }
5394 
5395 static void lru_gen_exit_fault(void)
5396 {
5397 }
5398 #endif /* CONFIG_LRU_GEN */
5399 
5400 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5401 				       unsigned int *flags)
5402 {
5403 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5404 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5405 			return VM_FAULT_SIGSEGV;
5406 		/*
5407 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5408 		 * just treat it like an ordinary read-fault otherwise.
5409 		 */
5410 		if (!is_cow_mapping(vma->vm_flags))
5411 			*flags &= ~FAULT_FLAG_UNSHARE;
5412 	} else if (*flags & FAULT_FLAG_WRITE) {
5413 		/* Write faults on read-only mappings are impossible ... */
5414 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5415 			return VM_FAULT_SIGSEGV;
5416 		/* ... and FOLL_FORCE only applies to COW mappings. */
5417 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5418 				 !is_cow_mapping(vma->vm_flags)))
5419 			return VM_FAULT_SIGSEGV;
5420 	}
5421 #ifdef CONFIG_PER_VMA_LOCK
5422 	/*
5423 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5424 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5425 	 */
5426 	if (WARN_ON_ONCE((*flags &
5427 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5428 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5429 		return VM_FAULT_SIGSEGV;
5430 #endif
5431 
5432 	return 0;
5433 }
5434 
5435 /*
5436  * By the time we get here, we already hold the mm semaphore
5437  *
5438  * The mmap_lock may have been released depending on flags and our
5439  * return value.  See filemap_fault() and __folio_lock_or_retry().
5440  */
5441 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5442 			   unsigned int flags, struct pt_regs *regs)
5443 {
5444 	/* If the fault handler drops the mmap_lock, vma may be freed */
5445 	struct mm_struct *mm = vma->vm_mm;
5446 	vm_fault_t ret;
5447 
5448 	__set_current_state(TASK_RUNNING);
5449 
5450 	ret = sanitize_fault_flags(vma, &flags);
5451 	if (ret)
5452 		goto out;
5453 
5454 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5455 					    flags & FAULT_FLAG_INSTRUCTION,
5456 					    flags & FAULT_FLAG_REMOTE)) {
5457 		ret = VM_FAULT_SIGSEGV;
5458 		goto out;
5459 	}
5460 
5461 	/*
5462 	 * Enable the memcg OOM handling for faults triggered in user
5463 	 * space.  Kernel faults are handled more gracefully.
5464 	 */
5465 	if (flags & FAULT_FLAG_USER)
5466 		mem_cgroup_enter_user_fault();
5467 
5468 	lru_gen_enter_fault(vma);
5469 
5470 	if (unlikely(is_vm_hugetlb_page(vma)))
5471 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5472 	else
5473 		ret = __handle_mm_fault(vma, address, flags);
5474 
5475 	lru_gen_exit_fault();
5476 
5477 	if (flags & FAULT_FLAG_USER) {
5478 		mem_cgroup_exit_user_fault();
5479 		/*
5480 		 * The task may have entered a memcg OOM situation but
5481 		 * if the allocation error was handled gracefully (no
5482 		 * VM_FAULT_OOM), there is no need to kill anything.
5483 		 * Just clean up the OOM state peacefully.
5484 		 */
5485 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5486 			mem_cgroup_oom_synchronize(false);
5487 	}
5488 out:
5489 	mm_account_fault(mm, regs, address, flags, ret);
5490 
5491 	return ret;
5492 }
5493 EXPORT_SYMBOL_GPL(handle_mm_fault);
5494 
5495 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5496 #include <linux/extable.h>
5497 
5498 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5499 {
5500 	if (likely(mmap_read_trylock(mm)))
5501 		return true;
5502 
5503 	if (regs && !user_mode(regs)) {
5504 		unsigned long ip = exception_ip(regs);
5505 		if (!search_exception_tables(ip))
5506 			return false;
5507 	}
5508 
5509 	return !mmap_read_lock_killable(mm);
5510 }
5511 
5512 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5513 {
5514 	/*
5515 	 * We don't have this operation yet.
5516 	 *
5517 	 * It should be easy enough to do: it's basically a
5518 	 *    atomic_long_try_cmpxchg_acquire()
5519 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5520 	 * it also needs the proper lockdep magic etc.
5521 	 */
5522 	return false;
5523 }
5524 
5525 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5526 {
5527 	mmap_read_unlock(mm);
5528 	if (regs && !user_mode(regs)) {
5529 		unsigned long ip = exception_ip(regs);
5530 		if (!search_exception_tables(ip))
5531 			return false;
5532 	}
5533 	return !mmap_write_lock_killable(mm);
5534 }
5535 
5536 /*
5537  * Helper for page fault handling.
5538  *
5539  * This is kind of equivalend to "mmap_read_lock()" followed
5540  * by "find_extend_vma()", except it's a lot more careful about
5541  * the locking (and will drop the lock on failure).
5542  *
5543  * For example, if we have a kernel bug that causes a page
5544  * fault, we don't want to just use mmap_read_lock() to get
5545  * the mm lock, because that would deadlock if the bug were
5546  * to happen while we're holding the mm lock for writing.
5547  *
5548  * So this checks the exception tables on kernel faults in
5549  * order to only do this all for instructions that are actually
5550  * expected to fault.
5551  *
5552  * We can also actually take the mm lock for writing if we
5553  * need to extend the vma, which helps the VM layer a lot.
5554  */
5555 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5556 			unsigned long addr, struct pt_regs *regs)
5557 {
5558 	struct vm_area_struct *vma;
5559 
5560 	if (!get_mmap_lock_carefully(mm, regs))
5561 		return NULL;
5562 
5563 	vma = find_vma(mm, addr);
5564 	if (likely(vma && (vma->vm_start <= addr)))
5565 		return vma;
5566 
5567 	/*
5568 	 * Well, dang. We might still be successful, but only
5569 	 * if we can extend a vma to do so.
5570 	 */
5571 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5572 		mmap_read_unlock(mm);
5573 		return NULL;
5574 	}
5575 
5576 	/*
5577 	 * We can try to upgrade the mmap lock atomically,
5578 	 * in which case we can continue to use the vma
5579 	 * we already looked up.
5580 	 *
5581 	 * Otherwise we'll have to drop the mmap lock and
5582 	 * re-take it, and also look up the vma again,
5583 	 * re-checking it.
5584 	 */
5585 	if (!mmap_upgrade_trylock(mm)) {
5586 		if (!upgrade_mmap_lock_carefully(mm, regs))
5587 			return NULL;
5588 
5589 		vma = find_vma(mm, addr);
5590 		if (!vma)
5591 			goto fail;
5592 		if (vma->vm_start <= addr)
5593 			goto success;
5594 		if (!(vma->vm_flags & VM_GROWSDOWN))
5595 			goto fail;
5596 	}
5597 
5598 	if (expand_stack_locked(vma, addr))
5599 		goto fail;
5600 
5601 success:
5602 	mmap_write_downgrade(mm);
5603 	return vma;
5604 
5605 fail:
5606 	mmap_write_unlock(mm);
5607 	return NULL;
5608 }
5609 #endif
5610 
5611 #ifdef CONFIG_PER_VMA_LOCK
5612 /*
5613  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5614  * stable and not isolated. If the VMA is not found or is being modified the
5615  * function returns NULL.
5616  */
5617 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5618 					  unsigned long address)
5619 {
5620 	MA_STATE(mas, &mm->mm_mt, address, address);
5621 	struct vm_area_struct *vma;
5622 
5623 	rcu_read_lock();
5624 retry:
5625 	vma = mas_walk(&mas);
5626 	if (!vma)
5627 		goto inval;
5628 
5629 	if (!vma_start_read(vma))
5630 		goto inval;
5631 
5632 	/*
5633 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5634 	 * This check must happen after vma_start_read(); otherwise, a
5635 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5636 	 * from its anon_vma.
5637 	 */
5638 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5639 		goto inval_end_read;
5640 
5641 	/* Check since vm_start/vm_end might change before we lock the VMA */
5642 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5643 		goto inval_end_read;
5644 
5645 	/* Check if the VMA got isolated after we found it */
5646 	if (vma->detached) {
5647 		vma_end_read(vma);
5648 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5649 		/* The area was replaced with another one */
5650 		goto retry;
5651 	}
5652 
5653 	rcu_read_unlock();
5654 	return vma;
5655 
5656 inval_end_read:
5657 	vma_end_read(vma);
5658 inval:
5659 	rcu_read_unlock();
5660 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5661 	return NULL;
5662 }
5663 #endif /* CONFIG_PER_VMA_LOCK */
5664 
5665 #ifndef __PAGETABLE_P4D_FOLDED
5666 /*
5667  * Allocate p4d page table.
5668  * We've already handled the fast-path in-line.
5669  */
5670 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5671 {
5672 	p4d_t *new = p4d_alloc_one(mm, address);
5673 	if (!new)
5674 		return -ENOMEM;
5675 
5676 	spin_lock(&mm->page_table_lock);
5677 	if (pgd_present(*pgd)) {	/* Another has populated it */
5678 		p4d_free(mm, new);
5679 	} else {
5680 		smp_wmb(); /* See comment in pmd_install() */
5681 		pgd_populate(mm, pgd, new);
5682 	}
5683 	spin_unlock(&mm->page_table_lock);
5684 	return 0;
5685 }
5686 #endif /* __PAGETABLE_P4D_FOLDED */
5687 
5688 #ifndef __PAGETABLE_PUD_FOLDED
5689 /*
5690  * Allocate page upper directory.
5691  * We've already handled the fast-path in-line.
5692  */
5693 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5694 {
5695 	pud_t *new = pud_alloc_one(mm, address);
5696 	if (!new)
5697 		return -ENOMEM;
5698 
5699 	spin_lock(&mm->page_table_lock);
5700 	if (!p4d_present(*p4d)) {
5701 		mm_inc_nr_puds(mm);
5702 		smp_wmb(); /* See comment in pmd_install() */
5703 		p4d_populate(mm, p4d, new);
5704 	} else	/* Another has populated it */
5705 		pud_free(mm, new);
5706 	spin_unlock(&mm->page_table_lock);
5707 	return 0;
5708 }
5709 #endif /* __PAGETABLE_PUD_FOLDED */
5710 
5711 #ifndef __PAGETABLE_PMD_FOLDED
5712 /*
5713  * Allocate page middle directory.
5714  * We've already handled the fast-path in-line.
5715  */
5716 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5717 {
5718 	spinlock_t *ptl;
5719 	pmd_t *new = pmd_alloc_one(mm, address);
5720 	if (!new)
5721 		return -ENOMEM;
5722 
5723 	ptl = pud_lock(mm, pud);
5724 	if (!pud_present(*pud)) {
5725 		mm_inc_nr_pmds(mm);
5726 		smp_wmb(); /* See comment in pmd_install() */
5727 		pud_populate(mm, pud, new);
5728 	} else {	/* Another has populated it */
5729 		pmd_free(mm, new);
5730 	}
5731 	spin_unlock(ptl);
5732 	return 0;
5733 }
5734 #endif /* __PAGETABLE_PMD_FOLDED */
5735 
5736 /**
5737  * follow_pte - look up PTE at a user virtual address
5738  * @mm: the mm_struct of the target address space
5739  * @address: user virtual address
5740  * @ptepp: location to store found PTE
5741  * @ptlp: location to store the lock for the PTE
5742  *
5743  * On a successful return, the pointer to the PTE is stored in @ptepp;
5744  * the corresponding lock is taken and its location is stored in @ptlp.
5745  * The contents of the PTE are only stable until @ptlp is released;
5746  * any further use, if any, must be protected against invalidation
5747  * with MMU notifiers.
5748  *
5749  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5750  * should be taken for read.
5751  *
5752  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5753  * it is not a good general-purpose API.
5754  *
5755  * Return: zero on success, -ve otherwise.
5756  */
5757 int follow_pte(struct mm_struct *mm, unsigned long address,
5758 	       pte_t **ptepp, spinlock_t **ptlp)
5759 {
5760 	pgd_t *pgd;
5761 	p4d_t *p4d;
5762 	pud_t *pud;
5763 	pmd_t *pmd;
5764 	pte_t *ptep;
5765 
5766 	pgd = pgd_offset(mm, address);
5767 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5768 		goto out;
5769 
5770 	p4d = p4d_offset(pgd, address);
5771 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5772 		goto out;
5773 
5774 	pud = pud_offset(p4d, address);
5775 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5776 		goto out;
5777 
5778 	pmd = pmd_offset(pud, address);
5779 	VM_BUG_ON(pmd_trans_huge(*pmd));
5780 
5781 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5782 	if (!ptep)
5783 		goto out;
5784 	if (!pte_present(ptep_get(ptep)))
5785 		goto unlock;
5786 	*ptepp = ptep;
5787 	return 0;
5788 unlock:
5789 	pte_unmap_unlock(ptep, *ptlp);
5790 out:
5791 	return -EINVAL;
5792 }
5793 EXPORT_SYMBOL_GPL(follow_pte);
5794 
5795 /**
5796  * follow_pfn - look up PFN at a user virtual address
5797  * @vma: memory mapping
5798  * @address: user virtual address
5799  * @pfn: location to store found PFN
5800  *
5801  * Only IO mappings and raw PFN mappings are allowed.
5802  *
5803  * This function does not allow the caller to read the permissions
5804  * of the PTE.  Do not use it.
5805  *
5806  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5807  */
5808 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5809 	unsigned long *pfn)
5810 {
5811 	int ret = -EINVAL;
5812 	spinlock_t *ptl;
5813 	pte_t *ptep;
5814 
5815 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5816 		return ret;
5817 
5818 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5819 	if (ret)
5820 		return ret;
5821 	*pfn = pte_pfn(ptep_get(ptep));
5822 	pte_unmap_unlock(ptep, ptl);
5823 	return 0;
5824 }
5825 EXPORT_SYMBOL(follow_pfn);
5826 
5827 #ifdef CONFIG_HAVE_IOREMAP_PROT
5828 int follow_phys(struct vm_area_struct *vma,
5829 		unsigned long address, unsigned int flags,
5830 		unsigned long *prot, resource_size_t *phys)
5831 {
5832 	int ret = -EINVAL;
5833 	pte_t *ptep, pte;
5834 	spinlock_t *ptl;
5835 
5836 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5837 		goto out;
5838 
5839 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5840 		goto out;
5841 	pte = ptep_get(ptep);
5842 
5843 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5844 		goto unlock;
5845 
5846 	*prot = pgprot_val(pte_pgprot(pte));
5847 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5848 
5849 	ret = 0;
5850 unlock:
5851 	pte_unmap_unlock(ptep, ptl);
5852 out:
5853 	return ret;
5854 }
5855 
5856 /**
5857  * generic_access_phys - generic implementation for iomem mmap access
5858  * @vma: the vma to access
5859  * @addr: userspace address, not relative offset within @vma
5860  * @buf: buffer to read/write
5861  * @len: length of transfer
5862  * @write: set to FOLL_WRITE when writing, otherwise reading
5863  *
5864  * This is a generic implementation for &vm_operations_struct.access for an
5865  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5866  * not page based.
5867  */
5868 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5869 			void *buf, int len, int write)
5870 {
5871 	resource_size_t phys_addr;
5872 	unsigned long prot = 0;
5873 	void __iomem *maddr;
5874 	pte_t *ptep, pte;
5875 	spinlock_t *ptl;
5876 	int offset = offset_in_page(addr);
5877 	int ret = -EINVAL;
5878 
5879 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5880 		return -EINVAL;
5881 
5882 retry:
5883 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5884 		return -EINVAL;
5885 	pte = ptep_get(ptep);
5886 	pte_unmap_unlock(ptep, ptl);
5887 
5888 	prot = pgprot_val(pte_pgprot(pte));
5889 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5890 
5891 	if ((write & FOLL_WRITE) && !pte_write(pte))
5892 		return -EINVAL;
5893 
5894 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5895 	if (!maddr)
5896 		return -ENOMEM;
5897 
5898 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5899 		goto out_unmap;
5900 
5901 	if (!pte_same(pte, ptep_get(ptep))) {
5902 		pte_unmap_unlock(ptep, ptl);
5903 		iounmap(maddr);
5904 
5905 		goto retry;
5906 	}
5907 
5908 	if (write)
5909 		memcpy_toio(maddr + offset, buf, len);
5910 	else
5911 		memcpy_fromio(buf, maddr + offset, len);
5912 	ret = len;
5913 	pte_unmap_unlock(ptep, ptl);
5914 out_unmap:
5915 	iounmap(maddr);
5916 
5917 	return ret;
5918 }
5919 EXPORT_SYMBOL_GPL(generic_access_phys);
5920 #endif
5921 
5922 /*
5923  * Access another process' address space as given in mm.
5924  */
5925 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5926 			      void *buf, int len, unsigned int gup_flags)
5927 {
5928 	void *old_buf = buf;
5929 	int write = gup_flags & FOLL_WRITE;
5930 
5931 	if (mmap_read_lock_killable(mm))
5932 		return 0;
5933 
5934 	/* Untag the address before looking up the VMA */
5935 	addr = untagged_addr_remote(mm, addr);
5936 
5937 	/* Avoid triggering the temporary warning in __get_user_pages */
5938 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5939 		return 0;
5940 
5941 	/* ignore errors, just check how much was successfully transferred */
5942 	while (len) {
5943 		int bytes, offset;
5944 		void *maddr;
5945 		struct vm_area_struct *vma = NULL;
5946 		struct page *page = get_user_page_vma_remote(mm, addr,
5947 							     gup_flags, &vma);
5948 
5949 		if (IS_ERR(page)) {
5950 			/* We might need to expand the stack to access it */
5951 			vma = vma_lookup(mm, addr);
5952 			if (!vma) {
5953 				vma = expand_stack(mm, addr);
5954 
5955 				/* mmap_lock was dropped on failure */
5956 				if (!vma)
5957 					return buf - old_buf;
5958 
5959 				/* Try again if stack expansion worked */
5960 				continue;
5961 			}
5962 
5963 			/*
5964 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5965 			 * we can access using slightly different code.
5966 			 */
5967 			bytes = 0;
5968 #ifdef CONFIG_HAVE_IOREMAP_PROT
5969 			if (vma->vm_ops && vma->vm_ops->access)
5970 				bytes = vma->vm_ops->access(vma, addr, buf,
5971 							    len, write);
5972 #endif
5973 			if (bytes <= 0)
5974 				break;
5975 		} else {
5976 			bytes = len;
5977 			offset = addr & (PAGE_SIZE-1);
5978 			if (bytes > PAGE_SIZE-offset)
5979 				bytes = PAGE_SIZE-offset;
5980 
5981 			maddr = kmap_local_page(page);
5982 			if (write) {
5983 				copy_to_user_page(vma, page, addr,
5984 						  maddr + offset, buf, bytes);
5985 				set_page_dirty_lock(page);
5986 			} else {
5987 				copy_from_user_page(vma, page, addr,
5988 						    buf, maddr + offset, bytes);
5989 			}
5990 			unmap_and_put_page(page, maddr);
5991 		}
5992 		len -= bytes;
5993 		buf += bytes;
5994 		addr += bytes;
5995 	}
5996 	mmap_read_unlock(mm);
5997 
5998 	return buf - old_buf;
5999 }
6000 
6001 /**
6002  * access_remote_vm - access another process' address space
6003  * @mm:		the mm_struct of the target address space
6004  * @addr:	start address to access
6005  * @buf:	source or destination buffer
6006  * @len:	number of bytes to transfer
6007  * @gup_flags:	flags modifying lookup behaviour
6008  *
6009  * The caller must hold a reference on @mm.
6010  *
6011  * Return: number of bytes copied from source to destination.
6012  */
6013 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6014 		void *buf, int len, unsigned int gup_flags)
6015 {
6016 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6017 }
6018 
6019 /*
6020  * Access another process' address space.
6021  * Source/target buffer must be kernel space,
6022  * Do not walk the page table directly, use get_user_pages
6023  */
6024 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6025 		void *buf, int len, unsigned int gup_flags)
6026 {
6027 	struct mm_struct *mm;
6028 	int ret;
6029 
6030 	mm = get_task_mm(tsk);
6031 	if (!mm)
6032 		return 0;
6033 
6034 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6035 
6036 	mmput(mm);
6037 
6038 	return ret;
6039 }
6040 EXPORT_SYMBOL_GPL(access_process_vm);
6041 
6042 /*
6043  * Print the name of a VMA.
6044  */
6045 void print_vma_addr(char *prefix, unsigned long ip)
6046 {
6047 	struct mm_struct *mm = current->mm;
6048 	struct vm_area_struct *vma;
6049 
6050 	/*
6051 	 * we might be running from an atomic context so we cannot sleep
6052 	 */
6053 	if (!mmap_read_trylock(mm))
6054 		return;
6055 
6056 	vma = find_vma(mm, ip);
6057 	if (vma && vma->vm_file) {
6058 		struct file *f = vma->vm_file;
6059 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
6060 		if (buf) {
6061 			char *p;
6062 
6063 			p = file_path(f, buf, PAGE_SIZE);
6064 			if (IS_ERR(p))
6065 				p = "?";
6066 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
6067 					vma->vm_start,
6068 					vma->vm_end - vma->vm_start);
6069 			free_page((unsigned long)buf);
6070 		}
6071 	}
6072 	mmap_read_unlock(mm);
6073 }
6074 
6075 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6076 void __might_fault(const char *file, int line)
6077 {
6078 	if (pagefault_disabled())
6079 		return;
6080 	__might_sleep(file, line);
6081 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6082 	if (current->mm)
6083 		might_lock_read(&current->mm->mmap_lock);
6084 #endif
6085 }
6086 EXPORT_SYMBOL(__might_fault);
6087 #endif
6088 
6089 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6090 /*
6091  * Process all subpages of the specified huge page with the specified
6092  * operation.  The target subpage will be processed last to keep its
6093  * cache lines hot.
6094  */
6095 static inline int process_huge_page(
6096 	unsigned long addr_hint, unsigned int pages_per_huge_page,
6097 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6098 	void *arg)
6099 {
6100 	int i, n, base, l, ret;
6101 	unsigned long addr = addr_hint &
6102 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6103 
6104 	/* Process target subpage last to keep its cache lines hot */
6105 	might_sleep();
6106 	n = (addr_hint - addr) / PAGE_SIZE;
6107 	if (2 * n <= pages_per_huge_page) {
6108 		/* If target subpage in first half of huge page */
6109 		base = 0;
6110 		l = n;
6111 		/* Process subpages at the end of huge page */
6112 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6113 			cond_resched();
6114 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6115 			if (ret)
6116 				return ret;
6117 		}
6118 	} else {
6119 		/* If target subpage in second half of huge page */
6120 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6121 		l = pages_per_huge_page - n;
6122 		/* Process subpages at the begin of huge page */
6123 		for (i = 0; i < base; i++) {
6124 			cond_resched();
6125 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6126 			if (ret)
6127 				return ret;
6128 		}
6129 	}
6130 	/*
6131 	 * Process remaining subpages in left-right-left-right pattern
6132 	 * towards the target subpage
6133 	 */
6134 	for (i = 0; i < l; i++) {
6135 		int left_idx = base + i;
6136 		int right_idx = base + 2 * l - 1 - i;
6137 
6138 		cond_resched();
6139 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6140 		if (ret)
6141 			return ret;
6142 		cond_resched();
6143 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6144 		if (ret)
6145 			return ret;
6146 	}
6147 	return 0;
6148 }
6149 
6150 static void clear_gigantic_page(struct page *page,
6151 				unsigned long addr,
6152 				unsigned int pages_per_huge_page)
6153 {
6154 	int i;
6155 	struct page *p;
6156 
6157 	might_sleep();
6158 	for (i = 0; i < pages_per_huge_page; i++) {
6159 		p = nth_page(page, i);
6160 		cond_resched();
6161 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6162 	}
6163 }
6164 
6165 static int clear_subpage(unsigned long addr, int idx, void *arg)
6166 {
6167 	struct page *page = arg;
6168 
6169 	clear_user_highpage(nth_page(page, idx), addr);
6170 	return 0;
6171 }
6172 
6173 void clear_huge_page(struct page *page,
6174 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6175 {
6176 	unsigned long addr = addr_hint &
6177 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6178 
6179 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6180 		clear_gigantic_page(page, addr, pages_per_huge_page);
6181 		return;
6182 	}
6183 
6184 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6185 }
6186 
6187 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6188 				     unsigned long addr,
6189 				     struct vm_area_struct *vma,
6190 				     unsigned int pages_per_huge_page)
6191 {
6192 	int i;
6193 	struct page *dst_page;
6194 	struct page *src_page;
6195 
6196 	for (i = 0; i < pages_per_huge_page; i++) {
6197 		dst_page = folio_page(dst, i);
6198 		src_page = folio_page(src, i);
6199 
6200 		cond_resched();
6201 		if (copy_mc_user_highpage(dst_page, src_page,
6202 					  addr + i*PAGE_SIZE, vma)) {
6203 			memory_failure_queue(page_to_pfn(src_page), 0);
6204 			return -EHWPOISON;
6205 		}
6206 	}
6207 	return 0;
6208 }
6209 
6210 struct copy_subpage_arg {
6211 	struct page *dst;
6212 	struct page *src;
6213 	struct vm_area_struct *vma;
6214 };
6215 
6216 static int copy_subpage(unsigned long addr, int idx, void *arg)
6217 {
6218 	struct copy_subpage_arg *copy_arg = arg;
6219 	struct page *dst = nth_page(copy_arg->dst, idx);
6220 	struct page *src = nth_page(copy_arg->src, idx);
6221 
6222 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6223 		memory_failure_queue(page_to_pfn(src), 0);
6224 		return -EHWPOISON;
6225 	}
6226 	return 0;
6227 }
6228 
6229 int copy_user_large_folio(struct folio *dst, struct folio *src,
6230 			  unsigned long addr_hint, struct vm_area_struct *vma)
6231 {
6232 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6233 	unsigned long addr = addr_hint &
6234 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6235 	struct copy_subpage_arg arg = {
6236 		.dst = &dst->page,
6237 		.src = &src->page,
6238 		.vma = vma,
6239 	};
6240 
6241 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6242 		return copy_user_gigantic_page(dst, src, addr, vma,
6243 					       pages_per_huge_page);
6244 
6245 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6246 }
6247 
6248 long copy_folio_from_user(struct folio *dst_folio,
6249 			   const void __user *usr_src,
6250 			   bool allow_pagefault)
6251 {
6252 	void *kaddr;
6253 	unsigned long i, rc = 0;
6254 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6255 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6256 	struct page *subpage;
6257 
6258 	for (i = 0; i < nr_pages; i++) {
6259 		subpage = folio_page(dst_folio, i);
6260 		kaddr = kmap_local_page(subpage);
6261 		if (!allow_pagefault)
6262 			pagefault_disable();
6263 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6264 		if (!allow_pagefault)
6265 			pagefault_enable();
6266 		kunmap_local(kaddr);
6267 
6268 		ret_val -= (PAGE_SIZE - rc);
6269 		if (rc)
6270 			break;
6271 
6272 		flush_dcache_page(subpage);
6273 
6274 		cond_resched();
6275 	}
6276 	return ret_val;
6277 }
6278 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6279 
6280 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6281 
6282 static struct kmem_cache *page_ptl_cachep;
6283 
6284 void __init ptlock_cache_init(void)
6285 {
6286 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6287 			SLAB_PANIC, NULL);
6288 }
6289 
6290 bool ptlock_alloc(struct ptdesc *ptdesc)
6291 {
6292 	spinlock_t *ptl;
6293 
6294 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6295 	if (!ptl)
6296 		return false;
6297 	ptdesc->ptl = ptl;
6298 	return true;
6299 }
6300 
6301 void ptlock_free(struct ptdesc *ptdesc)
6302 {
6303 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6304 }
6305 #endif
6306