xref: /linux/mm/memory.c (revision a7a0350583ba51d8cde6180bb51d704b89a3b29e)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 		if (unlikely(xa_is_zero(next)))
378 			next = NULL;
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 		unlink_file_vma(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			/*
394 			 * Optimization: gather nearby vmas into one call down
395 			 */
396 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 			       && !is_vm_hugetlb_page(next)) {
398 				vma = next;
399 				next = mas_find(mas, ceiling - 1);
400 				if (unlikely(xa_is_zero(next)))
401 					next = NULL;
402 				if (mm_wr_locked)
403 					vma_start_write(vma);
404 				unlink_anon_vmas(vma);
405 				unlink_file_vma(vma);
406 			}
407 			free_pgd_range(tlb, addr, vma->vm_end,
408 				floor, next ? next->vm_start : ceiling);
409 		}
410 		vma = next;
411 	} while (vma);
412 }
413 
414 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
415 {
416 	spinlock_t *ptl = pmd_lock(mm, pmd);
417 
418 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
419 		mm_inc_nr_ptes(mm);
420 		/*
421 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
422 		 * visible before the pte is made visible to other CPUs by being
423 		 * put into page tables.
424 		 *
425 		 * The other side of the story is the pointer chasing in the page
426 		 * table walking code (when walking the page table without locking;
427 		 * ie. most of the time). Fortunately, these data accesses consist
428 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
429 		 * being the notable exception) will already guarantee loads are
430 		 * seen in-order. See the alpha page table accessors for the
431 		 * smp_rmb() barriers in page table walking code.
432 		 */
433 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
434 		pmd_populate(mm, pmd, *pte);
435 		*pte = NULL;
436 	}
437 	spin_unlock(ptl);
438 }
439 
440 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
441 {
442 	pgtable_t new = pte_alloc_one(mm);
443 	if (!new)
444 		return -ENOMEM;
445 
446 	pmd_install(mm, pmd, &new);
447 	if (new)
448 		pte_free(mm, new);
449 	return 0;
450 }
451 
452 int __pte_alloc_kernel(pmd_t *pmd)
453 {
454 	pte_t *new = pte_alloc_one_kernel(&init_mm);
455 	if (!new)
456 		return -ENOMEM;
457 
458 	spin_lock(&init_mm.page_table_lock);
459 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
460 		smp_wmb(); /* See comment in pmd_install() */
461 		pmd_populate_kernel(&init_mm, pmd, new);
462 		new = NULL;
463 	}
464 	spin_unlock(&init_mm.page_table_lock);
465 	if (new)
466 		pte_free_kernel(&init_mm, new);
467 	return 0;
468 }
469 
470 static inline void init_rss_vec(int *rss)
471 {
472 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 }
474 
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 {
477 	int i;
478 
479 	for (i = 0; i < NR_MM_COUNTERS; i++)
480 		if (rss[i])
481 			add_mm_counter(mm, i, rss[i]);
482 }
483 
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 			  pte_t pte, struct page *page)
493 {
494 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 	p4d_t *p4d = p4d_offset(pgd, addr);
496 	pud_t *pud = pud_offset(p4d, addr);
497 	pmd_t *pmd = pmd_offset(pud, addr);
498 	struct address_space *mapping;
499 	pgoff_t index;
500 	static unsigned long resume;
501 	static unsigned long nr_shown;
502 	static unsigned long nr_unshown;
503 
504 	/*
505 	 * Allow a burst of 60 reports, then keep quiet for that minute;
506 	 * or allow a steady drip of one report per second.
507 	 */
508 	if (nr_shown == 60) {
509 		if (time_before(jiffies, resume)) {
510 			nr_unshown++;
511 			return;
512 		}
513 		if (nr_unshown) {
514 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 				 nr_unshown);
516 			nr_unshown = 0;
517 		}
518 		nr_shown = 0;
519 	}
520 	if (nr_shown++ == 0)
521 		resume = jiffies + 60 * HZ;
522 
523 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 	index = linear_page_index(vma, addr);
525 
526 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527 		 current->comm,
528 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 	if (page)
530 		dump_page(page, "bad pte");
531 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 		 vma->vm_file,
535 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 		 mapping ? mapping->a_ops->read_folio : NULL);
538 	dump_stack();
539 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541 
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 			    pte_t pte)
586 {
587 	unsigned long pfn = pte_pfn(pte);
588 
589 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 		if (likely(!pte_special(pte)))
591 			goto check_pfn;
592 		if (vma->vm_ops && vma->vm_ops->find_special_page)
593 			return vma->vm_ops->find_special_page(vma, addr);
594 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 			return NULL;
596 		if (is_zero_pfn(pfn))
597 			return NULL;
598 		if (pte_devmap(pte))
599 		/*
600 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 		 * and will have refcounts incremented on their struct pages
602 		 * when they are inserted into PTEs, thus they are safe to
603 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 		 */
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 			    pte_t pte)
649 {
650 	struct page *page = vm_normal_page(vma, addr, pte);
651 
652 	if (page)
653 		return page_folio(page);
654 	return NULL;
655 }
656 
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 				pmd_t pmd)
660 {
661 	unsigned long pfn = pmd_pfn(pmd);
662 
663 	/*
664 	 * There is no pmd_special() but there may be special pmds, e.g.
665 	 * in a direct-access (dax) mapping, so let's just replicate the
666 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 	 */
668 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 		if (vma->vm_flags & VM_MIXEDMAP) {
670 			if (!pfn_valid(pfn))
671 				return NULL;
672 			goto out;
673 		} else {
674 			unsigned long off;
675 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 			if (pfn == vma->vm_pgoff + off)
677 				return NULL;
678 			if (!is_cow_mapping(vma->vm_flags))
679 				return NULL;
680 		}
681 	}
682 
683 	if (pmd_devmap(pmd))
684 		return NULL;
685 	if (is_huge_zero_pmd(pmd))
686 		return NULL;
687 	if (unlikely(pfn > highest_memmap_pfn))
688 		return NULL;
689 
690 	/*
691 	 * NOTE! We still have PageReserved() pages in the page tables.
692 	 * eg. VDSO mappings can cause them to exist.
693 	 */
694 out:
695 	return pfn_to_page(pfn);
696 }
697 
698 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
699 				  unsigned long addr, pmd_t pmd)
700 {
701 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
702 
703 	if (page)
704 		return page_folio(page);
705 	return NULL;
706 }
707 #endif
708 
709 static void restore_exclusive_pte(struct vm_area_struct *vma,
710 				  struct page *page, unsigned long address,
711 				  pte_t *ptep)
712 {
713 	pte_t orig_pte;
714 	pte_t pte;
715 	swp_entry_t entry;
716 
717 	orig_pte = ptep_get(ptep);
718 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
719 	if (pte_swp_soft_dirty(orig_pte))
720 		pte = pte_mksoft_dirty(pte);
721 
722 	entry = pte_to_swp_entry(orig_pte);
723 	if (pte_swp_uffd_wp(orig_pte))
724 		pte = pte_mkuffd_wp(pte);
725 	else if (is_writable_device_exclusive_entry(entry))
726 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
727 
728 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
729 
730 	/*
731 	 * No need to take a page reference as one was already
732 	 * created when the swap entry was made.
733 	 */
734 	if (PageAnon(page))
735 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
736 	else
737 		/*
738 		 * Currently device exclusive access only supports anonymous
739 		 * memory so the entry shouldn't point to a filebacked page.
740 		 */
741 		WARN_ON_ONCE(1);
742 
743 	set_pte_at(vma->vm_mm, address, ptep, pte);
744 
745 	/*
746 	 * No need to invalidate - it was non-present before. However
747 	 * secondary CPUs may have mappings that need invalidating.
748 	 */
749 	update_mmu_cache(vma, address, ptep);
750 }
751 
752 /*
753  * Tries to restore an exclusive pte if the page lock can be acquired without
754  * sleeping.
755  */
756 static int
757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 			unsigned long addr)
759 {
760 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
761 	struct page *page = pfn_swap_entry_to_page(entry);
762 
763 	if (trylock_page(page)) {
764 		restore_exclusive_pte(vma, page, addr, src_pte);
765 		unlock_page(page);
766 		return 0;
767 	}
768 
769 	return -EBUSY;
770 }
771 
772 /*
773  * copy one vm_area from one task to the other. Assumes the page tables
774  * already present in the new task to be cleared in the whole range
775  * covered by this vma.
776  */
777 
778 static unsigned long
779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
780 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
782 {
783 	unsigned long vm_flags = dst_vma->vm_flags;
784 	pte_t orig_pte = ptep_get(src_pte);
785 	pte_t pte = orig_pte;
786 	struct page *page;
787 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
788 
789 	if (likely(!non_swap_entry(entry))) {
790 		if (swap_duplicate(entry) < 0)
791 			return -EIO;
792 
793 		/* make sure dst_mm is on swapoff's mmlist. */
794 		if (unlikely(list_empty(&dst_mm->mmlist))) {
795 			spin_lock(&mmlist_lock);
796 			if (list_empty(&dst_mm->mmlist))
797 				list_add(&dst_mm->mmlist,
798 						&src_mm->mmlist);
799 			spin_unlock(&mmlist_lock);
800 		}
801 		/* Mark the swap entry as shared. */
802 		if (pte_swp_exclusive(orig_pte)) {
803 			pte = pte_swp_clear_exclusive(orig_pte);
804 			set_pte_at(src_mm, addr, src_pte, pte);
805 		}
806 		rss[MM_SWAPENTS]++;
807 	} else if (is_migration_entry(entry)) {
808 		page = pfn_swap_entry_to_page(entry);
809 
810 		rss[mm_counter(page)]++;
811 
812 		if (!is_readable_migration_entry(entry) &&
813 				is_cow_mapping(vm_flags)) {
814 			/*
815 			 * COW mappings require pages in both parent and child
816 			 * to be set to read. A previously exclusive entry is
817 			 * now shared.
818 			 */
819 			entry = make_readable_migration_entry(
820 							swp_offset(entry));
821 			pte = swp_entry_to_pte(entry);
822 			if (pte_swp_soft_dirty(orig_pte))
823 				pte = pte_swp_mksoft_dirty(pte);
824 			if (pte_swp_uffd_wp(orig_pte))
825 				pte = pte_swp_mkuffd_wp(pte);
826 			set_pte_at(src_mm, addr, src_pte, pte);
827 		}
828 	} else if (is_device_private_entry(entry)) {
829 		page = pfn_swap_entry_to_page(entry);
830 
831 		/*
832 		 * Update rss count even for unaddressable pages, as
833 		 * they should treated just like normal pages in this
834 		 * respect.
835 		 *
836 		 * We will likely want to have some new rss counters
837 		 * for unaddressable pages, at some point. But for now
838 		 * keep things as they are.
839 		 */
840 		get_page(page);
841 		rss[mm_counter(page)]++;
842 		/* Cannot fail as these pages cannot get pinned. */
843 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
844 
845 		/*
846 		 * We do not preserve soft-dirty information, because so
847 		 * far, checkpoint/restore is the only feature that
848 		 * requires that. And checkpoint/restore does not work
849 		 * when a device driver is involved (you cannot easily
850 		 * save and restore device driver state).
851 		 */
852 		if (is_writable_device_private_entry(entry) &&
853 		    is_cow_mapping(vm_flags)) {
854 			entry = make_readable_device_private_entry(
855 							swp_offset(entry));
856 			pte = swp_entry_to_pte(entry);
857 			if (pte_swp_uffd_wp(orig_pte))
858 				pte = pte_swp_mkuffd_wp(pte);
859 			set_pte_at(src_mm, addr, src_pte, pte);
860 		}
861 	} else if (is_device_exclusive_entry(entry)) {
862 		/*
863 		 * Make device exclusive entries present by restoring the
864 		 * original entry then copying as for a present pte. Device
865 		 * exclusive entries currently only support private writable
866 		 * (ie. COW) mappings.
867 		 */
868 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
869 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
870 			return -EBUSY;
871 		return -ENOENT;
872 	} else if (is_pte_marker_entry(entry)) {
873 		pte_marker marker = copy_pte_marker(entry, dst_vma);
874 
875 		if (marker)
876 			set_pte_at(dst_mm, addr, dst_pte,
877 				   make_pte_marker(marker));
878 		return 0;
879 	}
880 	if (!userfaultfd_wp(dst_vma))
881 		pte = pte_swp_clear_uffd_wp(pte);
882 	set_pte_at(dst_mm, addr, dst_pte, pte);
883 	return 0;
884 }
885 
886 /*
887  * Copy a present and normal page.
888  *
889  * NOTE! The usual case is that this isn't required;
890  * instead, the caller can just increase the page refcount
891  * and re-use the pte the traditional way.
892  *
893  * And if we need a pre-allocated page but don't yet have
894  * one, return a negative error to let the preallocation
895  * code know so that it can do so outside the page table
896  * lock.
897  */
898 static inline int
899 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
900 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
901 		  struct folio **prealloc, struct page *page)
902 {
903 	struct folio *new_folio;
904 	pte_t pte;
905 
906 	new_folio = *prealloc;
907 	if (!new_folio)
908 		return -EAGAIN;
909 
910 	/*
911 	 * We have a prealloc page, all good!  Take it
912 	 * over and copy the page & arm it.
913 	 */
914 	*prealloc = NULL;
915 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
916 	__folio_mark_uptodate(new_folio);
917 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
918 	folio_add_lru_vma(new_folio, dst_vma);
919 	rss[MM_ANONPAGES]++;
920 
921 	/* All done, just insert the new page copy in the child */
922 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
923 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
924 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
925 		/* Uffd-wp needs to be delivered to dest pte as well */
926 		pte = pte_mkuffd_wp(pte);
927 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
928 	return 0;
929 }
930 
931 /*
932  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
933  * is required to copy this pte.
934  */
935 static inline int
936 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938 		 struct folio **prealloc)
939 {
940 	struct mm_struct *src_mm = src_vma->vm_mm;
941 	unsigned long vm_flags = src_vma->vm_flags;
942 	pte_t pte = ptep_get(src_pte);
943 	struct page *page;
944 	struct folio *folio;
945 
946 	page = vm_normal_page(src_vma, addr, pte);
947 	if (page)
948 		folio = page_folio(page);
949 	if (page && folio_test_anon(folio)) {
950 		/*
951 		 * If this page may have been pinned by the parent process,
952 		 * copy the page immediately for the child so that we'll always
953 		 * guarantee the pinned page won't be randomly replaced in the
954 		 * future.
955 		 */
956 		folio_get(folio);
957 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
958 			/* Page may be pinned, we have to copy. */
959 			folio_put(folio);
960 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
961 						 addr, rss, prealloc, page);
962 		}
963 		rss[MM_ANONPAGES]++;
964 	} else if (page) {
965 		folio_get(folio);
966 		page_dup_file_rmap(page, false);
967 		rss[mm_counter_file(page)]++;
968 	}
969 
970 	/*
971 	 * If it's a COW mapping, write protect it both
972 	 * in the parent and the child
973 	 */
974 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
975 		ptep_set_wrprotect(src_mm, addr, src_pte);
976 		pte = pte_wrprotect(pte);
977 	}
978 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
979 
980 	/*
981 	 * If it's a shared mapping, mark it clean in
982 	 * the child
983 	 */
984 	if (vm_flags & VM_SHARED)
985 		pte = pte_mkclean(pte);
986 	pte = pte_mkold(pte);
987 
988 	if (!userfaultfd_wp(dst_vma))
989 		pte = pte_clear_uffd_wp(pte);
990 
991 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
992 	return 0;
993 }
994 
995 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
996 		struct vm_area_struct *vma, unsigned long addr)
997 {
998 	struct folio *new_folio;
999 
1000 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
1001 	if (!new_folio)
1002 		return NULL;
1003 
1004 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1005 		folio_put(new_folio);
1006 		return NULL;
1007 	}
1008 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1009 
1010 	return new_folio;
1011 }
1012 
1013 static int
1014 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1015 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1016 	       unsigned long end)
1017 {
1018 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1019 	struct mm_struct *src_mm = src_vma->vm_mm;
1020 	pte_t *orig_src_pte, *orig_dst_pte;
1021 	pte_t *src_pte, *dst_pte;
1022 	pte_t ptent;
1023 	spinlock_t *src_ptl, *dst_ptl;
1024 	int progress, ret = 0;
1025 	int rss[NR_MM_COUNTERS];
1026 	swp_entry_t entry = (swp_entry_t){0};
1027 	struct folio *prealloc = NULL;
1028 
1029 again:
1030 	progress = 0;
1031 	init_rss_vec(rss);
1032 
1033 	/*
1034 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1035 	 * error handling here, assume that exclusive mmap_lock on dst and src
1036 	 * protects anon from unexpected THP transitions; with shmem and file
1037 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1038 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1039 	 * can remove such assumptions later, but this is good enough for now.
1040 	 */
1041 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1042 	if (!dst_pte) {
1043 		ret = -ENOMEM;
1044 		goto out;
1045 	}
1046 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1047 	if (!src_pte) {
1048 		pte_unmap_unlock(dst_pte, dst_ptl);
1049 		/* ret == 0 */
1050 		goto out;
1051 	}
1052 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1053 	orig_src_pte = src_pte;
1054 	orig_dst_pte = dst_pte;
1055 	arch_enter_lazy_mmu_mode();
1056 
1057 	do {
1058 		/*
1059 		 * We are holding two locks at this point - either of them
1060 		 * could generate latencies in another task on another CPU.
1061 		 */
1062 		if (progress >= 32) {
1063 			progress = 0;
1064 			if (need_resched() ||
1065 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1066 				break;
1067 		}
1068 		ptent = ptep_get(src_pte);
1069 		if (pte_none(ptent)) {
1070 			progress++;
1071 			continue;
1072 		}
1073 		if (unlikely(!pte_present(ptent))) {
1074 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1075 						  dst_pte, src_pte,
1076 						  dst_vma, src_vma,
1077 						  addr, rss);
1078 			if (ret == -EIO) {
1079 				entry = pte_to_swp_entry(ptep_get(src_pte));
1080 				break;
1081 			} else if (ret == -EBUSY) {
1082 				break;
1083 			} else if (!ret) {
1084 				progress += 8;
1085 				continue;
1086 			}
1087 
1088 			/*
1089 			 * Device exclusive entry restored, continue by copying
1090 			 * the now present pte.
1091 			 */
1092 			WARN_ON_ONCE(ret != -ENOENT);
1093 		}
1094 		/* copy_present_pte() will clear `*prealloc' if consumed */
1095 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1096 				       addr, rss, &prealloc);
1097 		/*
1098 		 * If we need a pre-allocated page for this pte, drop the
1099 		 * locks, allocate, and try again.
1100 		 */
1101 		if (unlikely(ret == -EAGAIN))
1102 			break;
1103 		if (unlikely(prealloc)) {
1104 			/*
1105 			 * pre-alloc page cannot be reused by next time so as
1106 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1107 			 * will allocate page according to address).  This
1108 			 * could only happen if one pinned pte changed.
1109 			 */
1110 			folio_put(prealloc);
1111 			prealloc = NULL;
1112 		}
1113 		progress += 8;
1114 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1115 
1116 	arch_leave_lazy_mmu_mode();
1117 	pte_unmap_unlock(orig_src_pte, src_ptl);
1118 	add_mm_rss_vec(dst_mm, rss);
1119 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1120 	cond_resched();
1121 
1122 	if (ret == -EIO) {
1123 		VM_WARN_ON_ONCE(!entry.val);
1124 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1125 			ret = -ENOMEM;
1126 			goto out;
1127 		}
1128 		entry.val = 0;
1129 	} else if (ret == -EBUSY) {
1130 		goto out;
1131 	} else if (ret ==  -EAGAIN) {
1132 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1133 		if (!prealloc)
1134 			return -ENOMEM;
1135 	} else if (ret) {
1136 		VM_WARN_ON_ONCE(1);
1137 	}
1138 
1139 	/* We've captured and resolved the error. Reset, try again. */
1140 	ret = 0;
1141 
1142 	if (addr != end)
1143 		goto again;
1144 out:
1145 	if (unlikely(prealloc))
1146 		folio_put(prealloc);
1147 	return ret;
1148 }
1149 
1150 static inline int
1151 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1152 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1153 	       unsigned long end)
1154 {
1155 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1156 	struct mm_struct *src_mm = src_vma->vm_mm;
1157 	pmd_t *src_pmd, *dst_pmd;
1158 	unsigned long next;
1159 
1160 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1161 	if (!dst_pmd)
1162 		return -ENOMEM;
1163 	src_pmd = pmd_offset(src_pud, addr);
1164 	do {
1165 		next = pmd_addr_end(addr, end);
1166 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1167 			|| pmd_devmap(*src_pmd)) {
1168 			int err;
1169 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1170 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1171 					    addr, dst_vma, src_vma);
1172 			if (err == -ENOMEM)
1173 				return -ENOMEM;
1174 			if (!err)
1175 				continue;
1176 			/* fall through */
1177 		}
1178 		if (pmd_none_or_clear_bad(src_pmd))
1179 			continue;
1180 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1181 				   addr, next))
1182 			return -ENOMEM;
1183 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1184 	return 0;
1185 }
1186 
1187 static inline int
1188 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1189 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1190 	       unsigned long end)
1191 {
1192 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1193 	struct mm_struct *src_mm = src_vma->vm_mm;
1194 	pud_t *src_pud, *dst_pud;
1195 	unsigned long next;
1196 
1197 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1198 	if (!dst_pud)
1199 		return -ENOMEM;
1200 	src_pud = pud_offset(src_p4d, addr);
1201 	do {
1202 		next = pud_addr_end(addr, end);
1203 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1204 			int err;
1205 
1206 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1207 			err = copy_huge_pud(dst_mm, src_mm,
1208 					    dst_pud, src_pud, addr, src_vma);
1209 			if (err == -ENOMEM)
1210 				return -ENOMEM;
1211 			if (!err)
1212 				continue;
1213 			/* fall through */
1214 		}
1215 		if (pud_none_or_clear_bad(src_pud))
1216 			continue;
1217 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1218 				   addr, next))
1219 			return -ENOMEM;
1220 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1221 	return 0;
1222 }
1223 
1224 static inline int
1225 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1226 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1227 	       unsigned long end)
1228 {
1229 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1230 	p4d_t *src_p4d, *dst_p4d;
1231 	unsigned long next;
1232 
1233 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1234 	if (!dst_p4d)
1235 		return -ENOMEM;
1236 	src_p4d = p4d_offset(src_pgd, addr);
1237 	do {
1238 		next = p4d_addr_end(addr, end);
1239 		if (p4d_none_or_clear_bad(src_p4d))
1240 			continue;
1241 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1242 				   addr, next))
1243 			return -ENOMEM;
1244 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1245 	return 0;
1246 }
1247 
1248 /*
1249  * Return true if the vma needs to copy the pgtable during this fork().  Return
1250  * false when we can speed up fork() by allowing lazy page faults later until
1251  * when the child accesses the memory range.
1252  */
1253 static bool
1254 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1255 {
1256 	/*
1257 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1258 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1259 	 * contains uffd-wp protection information, that's something we can't
1260 	 * retrieve from page cache, and skip copying will lose those info.
1261 	 */
1262 	if (userfaultfd_wp(dst_vma))
1263 		return true;
1264 
1265 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1266 		return true;
1267 
1268 	if (src_vma->anon_vma)
1269 		return true;
1270 
1271 	/*
1272 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1273 	 * becomes much lighter when there are big shared or private readonly
1274 	 * mappings. The tradeoff is that copy_page_range is more efficient
1275 	 * than faulting.
1276 	 */
1277 	return false;
1278 }
1279 
1280 int
1281 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1282 {
1283 	pgd_t *src_pgd, *dst_pgd;
1284 	unsigned long next;
1285 	unsigned long addr = src_vma->vm_start;
1286 	unsigned long end = src_vma->vm_end;
1287 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1288 	struct mm_struct *src_mm = src_vma->vm_mm;
1289 	struct mmu_notifier_range range;
1290 	bool is_cow;
1291 	int ret;
1292 
1293 	if (!vma_needs_copy(dst_vma, src_vma))
1294 		return 0;
1295 
1296 	if (is_vm_hugetlb_page(src_vma))
1297 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1298 
1299 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1300 		/*
1301 		 * We do not free on error cases below as remove_vma
1302 		 * gets called on error from higher level routine
1303 		 */
1304 		ret = track_pfn_copy(src_vma);
1305 		if (ret)
1306 			return ret;
1307 	}
1308 
1309 	/*
1310 	 * We need to invalidate the secondary MMU mappings only when
1311 	 * there could be a permission downgrade on the ptes of the
1312 	 * parent mm. And a permission downgrade will only happen if
1313 	 * is_cow_mapping() returns true.
1314 	 */
1315 	is_cow = is_cow_mapping(src_vma->vm_flags);
1316 
1317 	if (is_cow) {
1318 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1319 					0, src_mm, addr, end);
1320 		mmu_notifier_invalidate_range_start(&range);
1321 		/*
1322 		 * Disabling preemption is not needed for the write side, as
1323 		 * the read side doesn't spin, but goes to the mmap_lock.
1324 		 *
1325 		 * Use the raw variant of the seqcount_t write API to avoid
1326 		 * lockdep complaining about preemptibility.
1327 		 */
1328 		vma_assert_write_locked(src_vma);
1329 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1330 	}
1331 
1332 	ret = 0;
1333 	dst_pgd = pgd_offset(dst_mm, addr);
1334 	src_pgd = pgd_offset(src_mm, addr);
1335 	do {
1336 		next = pgd_addr_end(addr, end);
1337 		if (pgd_none_or_clear_bad(src_pgd))
1338 			continue;
1339 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1340 					    addr, next))) {
1341 			untrack_pfn_clear(dst_vma);
1342 			ret = -ENOMEM;
1343 			break;
1344 		}
1345 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1346 
1347 	if (is_cow) {
1348 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1349 		mmu_notifier_invalidate_range_end(&range);
1350 	}
1351 	return ret;
1352 }
1353 
1354 /* Whether we should zap all COWed (private) pages too */
1355 static inline bool should_zap_cows(struct zap_details *details)
1356 {
1357 	/* By default, zap all pages */
1358 	if (!details)
1359 		return true;
1360 
1361 	/* Or, we zap COWed pages only if the caller wants to */
1362 	return details->even_cows;
1363 }
1364 
1365 /* Decides whether we should zap this page with the page pointer specified */
1366 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1367 {
1368 	/* If we can make a decision without *page.. */
1369 	if (should_zap_cows(details))
1370 		return true;
1371 
1372 	/* E.g. the caller passes NULL for the case of a zero page */
1373 	if (!page)
1374 		return true;
1375 
1376 	/* Otherwise we should only zap non-anon pages */
1377 	return !PageAnon(page);
1378 }
1379 
1380 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1381 {
1382 	if (!details)
1383 		return false;
1384 
1385 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1386 }
1387 
1388 /*
1389  * This function makes sure that we'll replace the none pte with an uffd-wp
1390  * swap special pte marker when necessary. Must be with the pgtable lock held.
1391  */
1392 static inline void
1393 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1394 			      unsigned long addr, pte_t *pte,
1395 			      struct zap_details *details, pte_t pteval)
1396 {
1397 	/* Zap on anonymous always means dropping everything */
1398 	if (vma_is_anonymous(vma))
1399 		return;
1400 
1401 	if (zap_drop_file_uffd_wp(details))
1402 		return;
1403 
1404 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1405 }
1406 
1407 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1408 				struct vm_area_struct *vma, pmd_t *pmd,
1409 				unsigned long addr, unsigned long end,
1410 				struct zap_details *details)
1411 {
1412 	struct mm_struct *mm = tlb->mm;
1413 	int force_flush = 0;
1414 	int rss[NR_MM_COUNTERS];
1415 	spinlock_t *ptl;
1416 	pte_t *start_pte;
1417 	pte_t *pte;
1418 	swp_entry_t entry;
1419 
1420 	tlb_change_page_size(tlb, PAGE_SIZE);
1421 	init_rss_vec(rss);
1422 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1423 	if (!pte)
1424 		return addr;
1425 
1426 	flush_tlb_batched_pending(mm);
1427 	arch_enter_lazy_mmu_mode();
1428 	do {
1429 		pte_t ptent = ptep_get(pte);
1430 		struct page *page;
1431 
1432 		if (pte_none(ptent))
1433 			continue;
1434 
1435 		if (need_resched())
1436 			break;
1437 
1438 		if (pte_present(ptent)) {
1439 			unsigned int delay_rmap;
1440 
1441 			page = vm_normal_page(vma, addr, ptent);
1442 			if (unlikely(!should_zap_page(details, page)))
1443 				continue;
1444 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1445 							tlb->fullmm);
1446 			arch_check_zapped_pte(vma, ptent);
1447 			tlb_remove_tlb_entry(tlb, pte, addr);
1448 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1449 						      ptent);
1450 			if (unlikely(!page)) {
1451 				ksm_might_unmap_zero_page(mm, ptent);
1452 				continue;
1453 			}
1454 
1455 			delay_rmap = 0;
1456 			if (!PageAnon(page)) {
1457 				if (pte_dirty(ptent)) {
1458 					set_page_dirty(page);
1459 					if (tlb_delay_rmap(tlb)) {
1460 						delay_rmap = 1;
1461 						force_flush = 1;
1462 					}
1463 				}
1464 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1465 					mark_page_accessed(page);
1466 			}
1467 			rss[mm_counter(page)]--;
1468 			if (!delay_rmap) {
1469 				page_remove_rmap(page, vma, false);
1470 				if (unlikely(page_mapcount(page) < 0))
1471 					print_bad_pte(vma, addr, ptent, page);
1472 			}
1473 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1474 				force_flush = 1;
1475 				addr += PAGE_SIZE;
1476 				break;
1477 			}
1478 			continue;
1479 		}
1480 
1481 		entry = pte_to_swp_entry(ptent);
1482 		if (is_device_private_entry(entry) ||
1483 		    is_device_exclusive_entry(entry)) {
1484 			page = pfn_swap_entry_to_page(entry);
1485 			if (unlikely(!should_zap_page(details, page)))
1486 				continue;
1487 			/*
1488 			 * Both device private/exclusive mappings should only
1489 			 * work with anonymous page so far, so we don't need to
1490 			 * consider uffd-wp bit when zap. For more information,
1491 			 * see zap_install_uffd_wp_if_needed().
1492 			 */
1493 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1494 			rss[mm_counter(page)]--;
1495 			if (is_device_private_entry(entry))
1496 				page_remove_rmap(page, vma, false);
1497 			put_page(page);
1498 		} else if (!non_swap_entry(entry)) {
1499 			/* Genuine swap entry, hence a private anon page */
1500 			if (!should_zap_cows(details))
1501 				continue;
1502 			rss[MM_SWAPENTS]--;
1503 			if (unlikely(!free_swap_and_cache(entry)))
1504 				print_bad_pte(vma, addr, ptent, NULL);
1505 		} else if (is_migration_entry(entry)) {
1506 			page = pfn_swap_entry_to_page(entry);
1507 			if (!should_zap_page(details, page))
1508 				continue;
1509 			rss[mm_counter(page)]--;
1510 		} else if (pte_marker_entry_uffd_wp(entry)) {
1511 			/*
1512 			 * For anon: always drop the marker; for file: only
1513 			 * drop the marker if explicitly requested.
1514 			 */
1515 			if (!vma_is_anonymous(vma) &&
1516 			    !zap_drop_file_uffd_wp(details))
1517 				continue;
1518 		} else if (is_hwpoison_entry(entry) ||
1519 			   is_poisoned_swp_entry(entry)) {
1520 			if (!should_zap_cows(details))
1521 				continue;
1522 		} else {
1523 			/* We should have covered all the swap entry types */
1524 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1525 			WARN_ON_ONCE(1);
1526 		}
1527 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1528 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1529 	} while (pte++, addr += PAGE_SIZE, addr != end);
1530 
1531 	add_mm_rss_vec(mm, rss);
1532 	arch_leave_lazy_mmu_mode();
1533 
1534 	/* Do the actual TLB flush before dropping ptl */
1535 	if (force_flush) {
1536 		tlb_flush_mmu_tlbonly(tlb);
1537 		tlb_flush_rmaps(tlb, vma);
1538 	}
1539 	pte_unmap_unlock(start_pte, ptl);
1540 
1541 	/*
1542 	 * If we forced a TLB flush (either due to running out of
1543 	 * batch buffers or because we needed to flush dirty TLB
1544 	 * entries before releasing the ptl), free the batched
1545 	 * memory too. Come back again if we didn't do everything.
1546 	 */
1547 	if (force_flush)
1548 		tlb_flush_mmu(tlb);
1549 
1550 	return addr;
1551 }
1552 
1553 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1554 				struct vm_area_struct *vma, pud_t *pud,
1555 				unsigned long addr, unsigned long end,
1556 				struct zap_details *details)
1557 {
1558 	pmd_t *pmd;
1559 	unsigned long next;
1560 
1561 	pmd = pmd_offset(pud, addr);
1562 	do {
1563 		next = pmd_addr_end(addr, end);
1564 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1565 			if (next - addr != HPAGE_PMD_SIZE)
1566 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1567 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1568 				addr = next;
1569 				continue;
1570 			}
1571 			/* fall through */
1572 		} else if (details && details->single_folio &&
1573 			   folio_test_pmd_mappable(details->single_folio) &&
1574 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1575 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1576 			/*
1577 			 * Take and drop THP pmd lock so that we cannot return
1578 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1579 			 * but not yet decremented compound_mapcount().
1580 			 */
1581 			spin_unlock(ptl);
1582 		}
1583 		if (pmd_none(*pmd)) {
1584 			addr = next;
1585 			continue;
1586 		}
1587 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1588 		if (addr != next)
1589 			pmd--;
1590 	} while (pmd++, cond_resched(), addr != end);
1591 
1592 	return addr;
1593 }
1594 
1595 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1596 				struct vm_area_struct *vma, p4d_t *p4d,
1597 				unsigned long addr, unsigned long end,
1598 				struct zap_details *details)
1599 {
1600 	pud_t *pud;
1601 	unsigned long next;
1602 
1603 	pud = pud_offset(p4d, addr);
1604 	do {
1605 		next = pud_addr_end(addr, end);
1606 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1607 			if (next - addr != HPAGE_PUD_SIZE) {
1608 				mmap_assert_locked(tlb->mm);
1609 				split_huge_pud(vma, pud, addr);
1610 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1611 				goto next;
1612 			/* fall through */
1613 		}
1614 		if (pud_none_or_clear_bad(pud))
1615 			continue;
1616 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1617 next:
1618 		cond_resched();
1619 	} while (pud++, addr = next, addr != end);
1620 
1621 	return addr;
1622 }
1623 
1624 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1625 				struct vm_area_struct *vma, pgd_t *pgd,
1626 				unsigned long addr, unsigned long end,
1627 				struct zap_details *details)
1628 {
1629 	p4d_t *p4d;
1630 	unsigned long next;
1631 
1632 	p4d = p4d_offset(pgd, addr);
1633 	do {
1634 		next = p4d_addr_end(addr, end);
1635 		if (p4d_none_or_clear_bad(p4d))
1636 			continue;
1637 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1638 	} while (p4d++, addr = next, addr != end);
1639 
1640 	return addr;
1641 }
1642 
1643 void unmap_page_range(struct mmu_gather *tlb,
1644 			     struct vm_area_struct *vma,
1645 			     unsigned long addr, unsigned long end,
1646 			     struct zap_details *details)
1647 {
1648 	pgd_t *pgd;
1649 	unsigned long next;
1650 
1651 	BUG_ON(addr >= end);
1652 	tlb_start_vma(tlb, vma);
1653 	pgd = pgd_offset(vma->vm_mm, addr);
1654 	do {
1655 		next = pgd_addr_end(addr, end);
1656 		if (pgd_none_or_clear_bad(pgd))
1657 			continue;
1658 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1659 	} while (pgd++, addr = next, addr != end);
1660 	tlb_end_vma(tlb, vma);
1661 }
1662 
1663 
1664 static void unmap_single_vma(struct mmu_gather *tlb,
1665 		struct vm_area_struct *vma, unsigned long start_addr,
1666 		unsigned long end_addr,
1667 		struct zap_details *details, bool mm_wr_locked)
1668 {
1669 	unsigned long start = max(vma->vm_start, start_addr);
1670 	unsigned long end;
1671 
1672 	if (start >= vma->vm_end)
1673 		return;
1674 	end = min(vma->vm_end, end_addr);
1675 	if (end <= vma->vm_start)
1676 		return;
1677 
1678 	if (vma->vm_file)
1679 		uprobe_munmap(vma, start, end);
1680 
1681 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1682 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1683 
1684 	if (start != end) {
1685 		if (unlikely(is_vm_hugetlb_page(vma))) {
1686 			/*
1687 			 * It is undesirable to test vma->vm_file as it
1688 			 * should be non-null for valid hugetlb area.
1689 			 * However, vm_file will be NULL in the error
1690 			 * cleanup path of mmap_region. When
1691 			 * hugetlbfs ->mmap method fails,
1692 			 * mmap_region() nullifies vma->vm_file
1693 			 * before calling this function to clean up.
1694 			 * Since no pte has actually been setup, it is
1695 			 * safe to do nothing in this case.
1696 			 */
1697 			if (vma->vm_file) {
1698 				zap_flags_t zap_flags = details ?
1699 				    details->zap_flags : 0;
1700 				__unmap_hugepage_range(tlb, vma, start, end,
1701 							     NULL, zap_flags);
1702 			}
1703 		} else
1704 			unmap_page_range(tlb, vma, start, end, details);
1705 	}
1706 }
1707 
1708 /**
1709  * unmap_vmas - unmap a range of memory covered by a list of vma's
1710  * @tlb: address of the caller's struct mmu_gather
1711  * @mas: the maple state
1712  * @vma: the starting vma
1713  * @start_addr: virtual address at which to start unmapping
1714  * @end_addr: virtual address at which to end unmapping
1715  * @tree_end: The maximum index to check
1716  * @mm_wr_locked: lock flag
1717  *
1718  * Unmap all pages in the vma list.
1719  *
1720  * Only addresses between `start' and `end' will be unmapped.
1721  *
1722  * The VMA list must be sorted in ascending virtual address order.
1723  *
1724  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1725  * range after unmap_vmas() returns.  So the only responsibility here is to
1726  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1727  * drops the lock and schedules.
1728  */
1729 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1730 		struct vm_area_struct *vma, unsigned long start_addr,
1731 		unsigned long end_addr, unsigned long tree_end,
1732 		bool mm_wr_locked)
1733 {
1734 	struct mmu_notifier_range range;
1735 	struct zap_details details = {
1736 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1737 		/* Careful - we need to zap private pages too! */
1738 		.even_cows = true,
1739 	};
1740 
1741 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1742 				start_addr, end_addr);
1743 	mmu_notifier_invalidate_range_start(&range);
1744 	do {
1745 		unsigned long start = start_addr;
1746 		unsigned long end = end_addr;
1747 		hugetlb_zap_begin(vma, &start, &end);
1748 		unmap_single_vma(tlb, vma, start, end, &details,
1749 				 mm_wr_locked);
1750 		hugetlb_zap_end(vma, &details);
1751 		vma = mas_find(mas, tree_end - 1);
1752 	} while (vma && likely(!xa_is_zero(vma)));
1753 	mmu_notifier_invalidate_range_end(&range);
1754 }
1755 
1756 /**
1757  * zap_page_range_single - remove user pages in a given range
1758  * @vma: vm_area_struct holding the applicable pages
1759  * @address: starting address of pages to zap
1760  * @size: number of bytes to zap
1761  * @details: details of shared cache invalidation
1762  *
1763  * The range must fit into one VMA.
1764  */
1765 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1766 		unsigned long size, struct zap_details *details)
1767 {
1768 	const unsigned long end = address + size;
1769 	struct mmu_notifier_range range;
1770 	struct mmu_gather tlb;
1771 
1772 	lru_add_drain();
1773 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1774 				address, end);
1775 	hugetlb_zap_begin(vma, &range.start, &range.end);
1776 	tlb_gather_mmu(&tlb, vma->vm_mm);
1777 	update_hiwater_rss(vma->vm_mm);
1778 	mmu_notifier_invalidate_range_start(&range);
1779 	/*
1780 	 * unmap 'address-end' not 'range.start-range.end' as range
1781 	 * could have been expanded for hugetlb pmd sharing.
1782 	 */
1783 	unmap_single_vma(&tlb, vma, address, end, details, false);
1784 	mmu_notifier_invalidate_range_end(&range);
1785 	tlb_finish_mmu(&tlb);
1786 	hugetlb_zap_end(vma, details);
1787 }
1788 
1789 /**
1790  * zap_vma_ptes - remove ptes mapping the vma
1791  * @vma: vm_area_struct holding ptes to be zapped
1792  * @address: starting address of pages to zap
1793  * @size: number of bytes to zap
1794  *
1795  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1796  *
1797  * The entire address range must be fully contained within the vma.
1798  *
1799  */
1800 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1801 		unsigned long size)
1802 {
1803 	if (!range_in_vma(vma, address, address + size) ||
1804 	    		!(vma->vm_flags & VM_PFNMAP))
1805 		return;
1806 
1807 	zap_page_range_single(vma, address, size, NULL);
1808 }
1809 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1810 
1811 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1812 {
1813 	pgd_t *pgd;
1814 	p4d_t *p4d;
1815 	pud_t *pud;
1816 	pmd_t *pmd;
1817 
1818 	pgd = pgd_offset(mm, addr);
1819 	p4d = p4d_alloc(mm, pgd, addr);
1820 	if (!p4d)
1821 		return NULL;
1822 	pud = pud_alloc(mm, p4d, addr);
1823 	if (!pud)
1824 		return NULL;
1825 	pmd = pmd_alloc(mm, pud, addr);
1826 	if (!pmd)
1827 		return NULL;
1828 
1829 	VM_BUG_ON(pmd_trans_huge(*pmd));
1830 	return pmd;
1831 }
1832 
1833 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1834 			spinlock_t **ptl)
1835 {
1836 	pmd_t *pmd = walk_to_pmd(mm, addr);
1837 
1838 	if (!pmd)
1839 		return NULL;
1840 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1841 }
1842 
1843 static int validate_page_before_insert(struct page *page)
1844 {
1845 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1846 		return -EINVAL;
1847 	flush_dcache_page(page);
1848 	return 0;
1849 }
1850 
1851 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1852 			unsigned long addr, struct page *page, pgprot_t prot)
1853 {
1854 	if (!pte_none(ptep_get(pte)))
1855 		return -EBUSY;
1856 	/* Ok, finally just insert the thing.. */
1857 	get_page(page);
1858 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1859 	page_add_file_rmap(page, vma, false);
1860 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1861 	return 0;
1862 }
1863 
1864 /*
1865  * This is the old fallback for page remapping.
1866  *
1867  * For historical reasons, it only allows reserved pages. Only
1868  * old drivers should use this, and they needed to mark their
1869  * pages reserved for the old functions anyway.
1870  */
1871 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1872 			struct page *page, pgprot_t prot)
1873 {
1874 	int retval;
1875 	pte_t *pte;
1876 	spinlock_t *ptl;
1877 
1878 	retval = validate_page_before_insert(page);
1879 	if (retval)
1880 		goto out;
1881 	retval = -ENOMEM;
1882 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1883 	if (!pte)
1884 		goto out;
1885 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1886 	pte_unmap_unlock(pte, ptl);
1887 out:
1888 	return retval;
1889 }
1890 
1891 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1892 			unsigned long addr, struct page *page, pgprot_t prot)
1893 {
1894 	int err;
1895 
1896 	if (!page_count(page))
1897 		return -EINVAL;
1898 	err = validate_page_before_insert(page);
1899 	if (err)
1900 		return err;
1901 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1902 }
1903 
1904 /* insert_pages() amortizes the cost of spinlock operations
1905  * when inserting pages in a loop.
1906  */
1907 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1908 			struct page **pages, unsigned long *num, pgprot_t prot)
1909 {
1910 	pmd_t *pmd = NULL;
1911 	pte_t *start_pte, *pte;
1912 	spinlock_t *pte_lock;
1913 	struct mm_struct *const mm = vma->vm_mm;
1914 	unsigned long curr_page_idx = 0;
1915 	unsigned long remaining_pages_total = *num;
1916 	unsigned long pages_to_write_in_pmd;
1917 	int ret;
1918 more:
1919 	ret = -EFAULT;
1920 	pmd = walk_to_pmd(mm, addr);
1921 	if (!pmd)
1922 		goto out;
1923 
1924 	pages_to_write_in_pmd = min_t(unsigned long,
1925 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1926 
1927 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1928 	ret = -ENOMEM;
1929 	if (pte_alloc(mm, pmd))
1930 		goto out;
1931 
1932 	while (pages_to_write_in_pmd) {
1933 		int pte_idx = 0;
1934 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1935 
1936 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1937 		if (!start_pte) {
1938 			ret = -EFAULT;
1939 			goto out;
1940 		}
1941 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1942 			int err = insert_page_in_batch_locked(vma, pte,
1943 				addr, pages[curr_page_idx], prot);
1944 			if (unlikely(err)) {
1945 				pte_unmap_unlock(start_pte, pte_lock);
1946 				ret = err;
1947 				remaining_pages_total -= pte_idx;
1948 				goto out;
1949 			}
1950 			addr += PAGE_SIZE;
1951 			++curr_page_idx;
1952 		}
1953 		pte_unmap_unlock(start_pte, pte_lock);
1954 		pages_to_write_in_pmd -= batch_size;
1955 		remaining_pages_total -= batch_size;
1956 	}
1957 	if (remaining_pages_total)
1958 		goto more;
1959 	ret = 0;
1960 out:
1961 	*num = remaining_pages_total;
1962 	return ret;
1963 }
1964 
1965 /**
1966  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1967  * @vma: user vma to map to
1968  * @addr: target start user address of these pages
1969  * @pages: source kernel pages
1970  * @num: in: number of pages to map. out: number of pages that were *not*
1971  * mapped. (0 means all pages were successfully mapped).
1972  *
1973  * Preferred over vm_insert_page() when inserting multiple pages.
1974  *
1975  * In case of error, we may have mapped a subset of the provided
1976  * pages. It is the caller's responsibility to account for this case.
1977  *
1978  * The same restrictions apply as in vm_insert_page().
1979  */
1980 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1981 			struct page **pages, unsigned long *num)
1982 {
1983 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1984 
1985 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1986 		return -EFAULT;
1987 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1988 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1989 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1990 		vm_flags_set(vma, VM_MIXEDMAP);
1991 	}
1992 	/* Defer page refcount checking till we're about to map that page. */
1993 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1994 }
1995 EXPORT_SYMBOL(vm_insert_pages);
1996 
1997 /**
1998  * vm_insert_page - insert single page into user vma
1999  * @vma: user vma to map to
2000  * @addr: target user address of this page
2001  * @page: source kernel page
2002  *
2003  * This allows drivers to insert individual pages they've allocated
2004  * into a user vma.
2005  *
2006  * The page has to be a nice clean _individual_ kernel allocation.
2007  * If you allocate a compound page, you need to have marked it as
2008  * such (__GFP_COMP), or manually just split the page up yourself
2009  * (see split_page()).
2010  *
2011  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2012  * took an arbitrary page protection parameter. This doesn't allow
2013  * that. Your vma protection will have to be set up correctly, which
2014  * means that if you want a shared writable mapping, you'd better
2015  * ask for a shared writable mapping!
2016  *
2017  * The page does not need to be reserved.
2018  *
2019  * Usually this function is called from f_op->mmap() handler
2020  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2021  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2022  * function from other places, for example from page-fault handler.
2023  *
2024  * Return: %0 on success, negative error code otherwise.
2025  */
2026 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2027 			struct page *page)
2028 {
2029 	if (addr < vma->vm_start || addr >= vma->vm_end)
2030 		return -EFAULT;
2031 	if (!page_count(page))
2032 		return -EINVAL;
2033 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2034 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2035 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2036 		vm_flags_set(vma, VM_MIXEDMAP);
2037 	}
2038 	return insert_page(vma, addr, page, vma->vm_page_prot);
2039 }
2040 EXPORT_SYMBOL(vm_insert_page);
2041 
2042 /*
2043  * __vm_map_pages - maps range of kernel pages into user vma
2044  * @vma: user vma to map to
2045  * @pages: pointer to array of source kernel pages
2046  * @num: number of pages in page array
2047  * @offset: user's requested vm_pgoff
2048  *
2049  * This allows drivers to map range of kernel pages into a user vma.
2050  *
2051  * Return: 0 on success and error code otherwise.
2052  */
2053 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2054 				unsigned long num, unsigned long offset)
2055 {
2056 	unsigned long count = vma_pages(vma);
2057 	unsigned long uaddr = vma->vm_start;
2058 	int ret, i;
2059 
2060 	/* Fail if the user requested offset is beyond the end of the object */
2061 	if (offset >= num)
2062 		return -ENXIO;
2063 
2064 	/* Fail if the user requested size exceeds available object size */
2065 	if (count > num - offset)
2066 		return -ENXIO;
2067 
2068 	for (i = 0; i < count; i++) {
2069 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2070 		if (ret < 0)
2071 			return ret;
2072 		uaddr += PAGE_SIZE;
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 /**
2079  * vm_map_pages - maps range of kernel pages starts with non zero offset
2080  * @vma: user vma to map to
2081  * @pages: pointer to array of source kernel pages
2082  * @num: number of pages in page array
2083  *
2084  * Maps an object consisting of @num pages, catering for the user's
2085  * requested vm_pgoff
2086  *
2087  * If we fail to insert any page into the vma, the function will return
2088  * immediately leaving any previously inserted pages present.  Callers
2089  * from the mmap handler may immediately return the error as their caller
2090  * will destroy the vma, removing any successfully inserted pages. Other
2091  * callers should make their own arrangements for calling unmap_region().
2092  *
2093  * Context: Process context. Called by mmap handlers.
2094  * Return: 0 on success and error code otherwise.
2095  */
2096 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2097 				unsigned long num)
2098 {
2099 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2100 }
2101 EXPORT_SYMBOL(vm_map_pages);
2102 
2103 /**
2104  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2105  * @vma: user vma to map to
2106  * @pages: pointer to array of source kernel pages
2107  * @num: number of pages in page array
2108  *
2109  * Similar to vm_map_pages(), except that it explicitly sets the offset
2110  * to 0. This function is intended for the drivers that did not consider
2111  * vm_pgoff.
2112  *
2113  * Context: Process context. Called by mmap handlers.
2114  * Return: 0 on success and error code otherwise.
2115  */
2116 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2117 				unsigned long num)
2118 {
2119 	return __vm_map_pages(vma, pages, num, 0);
2120 }
2121 EXPORT_SYMBOL(vm_map_pages_zero);
2122 
2123 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2124 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2125 {
2126 	struct mm_struct *mm = vma->vm_mm;
2127 	pte_t *pte, entry;
2128 	spinlock_t *ptl;
2129 
2130 	pte = get_locked_pte(mm, addr, &ptl);
2131 	if (!pte)
2132 		return VM_FAULT_OOM;
2133 	entry = ptep_get(pte);
2134 	if (!pte_none(entry)) {
2135 		if (mkwrite) {
2136 			/*
2137 			 * For read faults on private mappings the PFN passed
2138 			 * in may not match the PFN we have mapped if the
2139 			 * mapped PFN is a writeable COW page.  In the mkwrite
2140 			 * case we are creating a writable PTE for a shared
2141 			 * mapping and we expect the PFNs to match. If they
2142 			 * don't match, we are likely racing with block
2143 			 * allocation and mapping invalidation so just skip the
2144 			 * update.
2145 			 */
2146 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2147 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2148 				goto out_unlock;
2149 			}
2150 			entry = pte_mkyoung(entry);
2151 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2152 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2153 				update_mmu_cache(vma, addr, pte);
2154 		}
2155 		goto out_unlock;
2156 	}
2157 
2158 	/* Ok, finally just insert the thing.. */
2159 	if (pfn_t_devmap(pfn))
2160 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2161 	else
2162 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2163 
2164 	if (mkwrite) {
2165 		entry = pte_mkyoung(entry);
2166 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 	}
2168 
2169 	set_pte_at(mm, addr, pte, entry);
2170 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2171 
2172 out_unlock:
2173 	pte_unmap_unlock(pte, ptl);
2174 	return VM_FAULT_NOPAGE;
2175 }
2176 
2177 /**
2178  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2179  * @vma: user vma to map to
2180  * @addr: target user address of this page
2181  * @pfn: source kernel pfn
2182  * @pgprot: pgprot flags for the inserted page
2183  *
2184  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2185  * to override pgprot on a per-page basis.
2186  *
2187  * This only makes sense for IO mappings, and it makes no sense for
2188  * COW mappings.  In general, using multiple vmas is preferable;
2189  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2190  * impractical.
2191  *
2192  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2193  * caching- and encryption bits different than those of @vma->vm_page_prot,
2194  * because the caching- or encryption mode may not be known at mmap() time.
2195  *
2196  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2197  * to set caching and encryption bits for those vmas (except for COW pages).
2198  * This is ensured by core vm only modifying these page table entries using
2199  * functions that don't touch caching- or encryption bits, using pte_modify()
2200  * if needed. (See for example mprotect()).
2201  *
2202  * Also when new page-table entries are created, this is only done using the
2203  * fault() callback, and never using the value of vma->vm_page_prot,
2204  * except for page-table entries that point to anonymous pages as the result
2205  * of COW.
2206  *
2207  * Context: Process context.  May allocate using %GFP_KERNEL.
2208  * Return: vm_fault_t value.
2209  */
2210 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2211 			unsigned long pfn, pgprot_t pgprot)
2212 {
2213 	/*
2214 	 * Technically, architectures with pte_special can avoid all these
2215 	 * restrictions (same for remap_pfn_range).  However we would like
2216 	 * consistency in testing and feature parity among all, so we should
2217 	 * try to keep these invariants in place for everybody.
2218 	 */
2219 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2220 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2221 						(VM_PFNMAP|VM_MIXEDMAP));
2222 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2223 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2224 
2225 	if (addr < vma->vm_start || addr >= vma->vm_end)
2226 		return VM_FAULT_SIGBUS;
2227 
2228 	if (!pfn_modify_allowed(pfn, pgprot))
2229 		return VM_FAULT_SIGBUS;
2230 
2231 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2232 
2233 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2234 			false);
2235 }
2236 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2237 
2238 /**
2239  * vmf_insert_pfn - insert single pfn into user vma
2240  * @vma: user vma to map to
2241  * @addr: target user address of this page
2242  * @pfn: source kernel pfn
2243  *
2244  * Similar to vm_insert_page, this allows drivers to insert individual pages
2245  * they've allocated into a user vma. Same comments apply.
2246  *
2247  * This function should only be called from a vm_ops->fault handler, and
2248  * in that case the handler should return the result of this function.
2249  *
2250  * vma cannot be a COW mapping.
2251  *
2252  * As this is called only for pages that do not currently exist, we
2253  * do not need to flush old virtual caches or the TLB.
2254  *
2255  * Context: Process context.  May allocate using %GFP_KERNEL.
2256  * Return: vm_fault_t value.
2257  */
2258 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2259 			unsigned long pfn)
2260 {
2261 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2262 }
2263 EXPORT_SYMBOL(vmf_insert_pfn);
2264 
2265 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2266 {
2267 	/* these checks mirror the abort conditions in vm_normal_page */
2268 	if (vma->vm_flags & VM_MIXEDMAP)
2269 		return true;
2270 	if (pfn_t_devmap(pfn))
2271 		return true;
2272 	if (pfn_t_special(pfn))
2273 		return true;
2274 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2275 		return true;
2276 	return false;
2277 }
2278 
2279 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2280 		unsigned long addr, pfn_t pfn, bool mkwrite)
2281 {
2282 	pgprot_t pgprot = vma->vm_page_prot;
2283 	int err;
2284 
2285 	BUG_ON(!vm_mixed_ok(vma, pfn));
2286 
2287 	if (addr < vma->vm_start || addr >= vma->vm_end)
2288 		return VM_FAULT_SIGBUS;
2289 
2290 	track_pfn_insert(vma, &pgprot, pfn);
2291 
2292 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2293 		return VM_FAULT_SIGBUS;
2294 
2295 	/*
2296 	 * If we don't have pte special, then we have to use the pfn_valid()
2297 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2298 	 * refcount the page if pfn_valid is true (hence insert_page rather
2299 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2300 	 * without pte special, it would there be refcounted as a normal page.
2301 	 */
2302 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2303 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2304 		struct page *page;
2305 
2306 		/*
2307 		 * At this point we are committed to insert_page()
2308 		 * regardless of whether the caller specified flags that
2309 		 * result in pfn_t_has_page() == false.
2310 		 */
2311 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2312 		err = insert_page(vma, addr, page, pgprot);
2313 	} else {
2314 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2315 	}
2316 
2317 	if (err == -ENOMEM)
2318 		return VM_FAULT_OOM;
2319 	if (err < 0 && err != -EBUSY)
2320 		return VM_FAULT_SIGBUS;
2321 
2322 	return VM_FAULT_NOPAGE;
2323 }
2324 
2325 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2326 		pfn_t pfn)
2327 {
2328 	return __vm_insert_mixed(vma, addr, pfn, false);
2329 }
2330 EXPORT_SYMBOL(vmf_insert_mixed);
2331 
2332 /*
2333  *  If the insertion of PTE failed because someone else already added a
2334  *  different entry in the mean time, we treat that as success as we assume
2335  *  the same entry was actually inserted.
2336  */
2337 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2338 		unsigned long addr, pfn_t pfn)
2339 {
2340 	return __vm_insert_mixed(vma, addr, pfn, true);
2341 }
2342 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2343 
2344 /*
2345  * maps a range of physical memory into the requested pages. the old
2346  * mappings are removed. any references to nonexistent pages results
2347  * in null mappings (currently treated as "copy-on-access")
2348  */
2349 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2350 			unsigned long addr, unsigned long end,
2351 			unsigned long pfn, pgprot_t prot)
2352 {
2353 	pte_t *pte, *mapped_pte;
2354 	spinlock_t *ptl;
2355 	int err = 0;
2356 
2357 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2358 	if (!pte)
2359 		return -ENOMEM;
2360 	arch_enter_lazy_mmu_mode();
2361 	do {
2362 		BUG_ON(!pte_none(ptep_get(pte)));
2363 		if (!pfn_modify_allowed(pfn, prot)) {
2364 			err = -EACCES;
2365 			break;
2366 		}
2367 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2368 		pfn++;
2369 	} while (pte++, addr += PAGE_SIZE, addr != end);
2370 	arch_leave_lazy_mmu_mode();
2371 	pte_unmap_unlock(mapped_pte, ptl);
2372 	return err;
2373 }
2374 
2375 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2376 			unsigned long addr, unsigned long end,
2377 			unsigned long pfn, pgprot_t prot)
2378 {
2379 	pmd_t *pmd;
2380 	unsigned long next;
2381 	int err;
2382 
2383 	pfn -= addr >> PAGE_SHIFT;
2384 	pmd = pmd_alloc(mm, pud, addr);
2385 	if (!pmd)
2386 		return -ENOMEM;
2387 	VM_BUG_ON(pmd_trans_huge(*pmd));
2388 	do {
2389 		next = pmd_addr_end(addr, end);
2390 		err = remap_pte_range(mm, pmd, addr, next,
2391 				pfn + (addr >> PAGE_SHIFT), prot);
2392 		if (err)
2393 			return err;
2394 	} while (pmd++, addr = next, addr != end);
2395 	return 0;
2396 }
2397 
2398 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2399 			unsigned long addr, unsigned long end,
2400 			unsigned long pfn, pgprot_t prot)
2401 {
2402 	pud_t *pud;
2403 	unsigned long next;
2404 	int err;
2405 
2406 	pfn -= addr >> PAGE_SHIFT;
2407 	pud = pud_alloc(mm, p4d, addr);
2408 	if (!pud)
2409 		return -ENOMEM;
2410 	do {
2411 		next = pud_addr_end(addr, end);
2412 		err = remap_pmd_range(mm, pud, addr, next,
2413 				pfn + (addr >> PAGE_SHIFT), prot);
2414 		if (err)
2415 			return err;
2416 	} while (pud++, addr = next, addr != end);
2417 	return 0;
2418 }
2419 
2420 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2421 			unsigned long addr, unsigned long end,
2422 			unsigned long pfn, pgprot_t prot)
2423 {
2424 	p4d_t *p4d;
2425 	unsigned long next;
2426 	int err;
2427 
2428 	pfn -= addr >> PAGE_SHIFT;
2429 	p4d = p4d_alloc(mm, pgd, addr);
2430 	if (!p4d)
2431 		return -ENOMEM;
2432 	do {
2433 		next = p4d_addr_end(addr, end);
2434 		err = remap_pud_range(mm, p4d, addr, next,
2435 				pfn + (addr >> PAGE_SHIFT), prot);
2436 		if (err)
2437 			return err;
2438 	} while (p4d++, addr = next, addr != end);
2439 	return 0;
2440 }
2441 
2442 /*
2443  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2444  * must have pre-validated the caching bits of the pgprot_t.
2445  */
2446 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2447 		unsigned long pfn, unsigned long size, pgprot_t prot)
2448 {
2449 	pgd_t *pgd;
2450 	unsigned long next;
2451 	unsigned long end = addr + PAGE_ALIGN(size);
2452 	struct mm_struct *mm = vma->vm_mm;
2453 	int err;
2454 
2455 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2456 		return -EINVAL;
2457 
2458 	/*
2459 	 * Physically remapped pages are special. Tell the
2460 	 * rest of the world about it:
2461 	 *   VM_IO tells people not to look at these pages
2462 	 *	(accesses can have side effects).
2463 	 *   VM_PFNMAP tells the core MM that the base pages are just
2464 	 *	raw PFN mappings, and do not have a "struct page" associated
2465 	 *	with them.
2466 	 *   VM_DONTEXPAND
2467 	 *      Disable vma merging and expanding with mremap().
2468 	 *   VM_DONTDUMP
2469 	 *      Omit vma from core dump, even when VM_IO turned off.
2470 	 *
2471 	 * There's a horrible special case to handle copy-on-write
2472 	 * behaviour that some programs depend on. We mark the "original"
2473 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2474 	 * See vm_normal_page() for details.
2475 	 */
2476 	if (is_cow_mapping(vma->vm_flags)) {
2477 		if (addr != vma->vm_start || end != vma->vm_end)
2478 			return -EINVAL;
2479 		vma->vm_pgoff = pfn;
2480 	}
2481 
2482 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2483 
2484 	BUG_ON(addr >= end);
2485 	pfn -= addr >> PAGE_SHIFT;
2486 	pgd = pgd_offset(mm, addr);
2487 	flush_cache_range(vma, addr, end);
2488 	do {
2489 		next = pgd_addr_end(addr, end);
2490 		err = remap_p4d_range(mm, pgd, addr, next,
2491 				pfn + (addr >> PAGE_SHIFT), prot);
2492 		if (err)
2493 			return err;
2494 	} while (pgd++, addr = next, addr != end);
2495 
2496 	return 0;
2497 }
2498 
2499 /**
2500  * remap_pfn_range - remap kernel memory to userspace
2501  * @vma: user vma to map to
2502  * @addr: target page aligned user address to start at
2503  * @pfn: page frame number of kernel physical memory address
2504  * @size: size of mapping area
2505  * @prot: page protection flags for this mapping
2506  *
2507  * Note: this is only safe if the mm semaphore is held when called.
2508  *
2509  * Return: %0 on success, negative error code otherwise.
2510  */
2511 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2512 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2513 {
2514 	int err;
2515 
2516 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2517 	if (err)
2518 		return -EINVAL;
2519 
2520 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2521 	if (err)
2522 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2523 	return err;
2524 }
2525 EXPORT_SYMBOL(remap_pfn_range);
2526 
2527 /**
2528  * vm_iomap_memory - remap memory to userspace
2529  * @vma: user vma to map to
2530  * @start: start of the physical memory to be mapped
2531  * @len: size of area
2532  *
2533  * This is a simplified io_remap_pfn_range() for common driver use. The
2534  * driver just needs to give us the physical memory range to be mapped,
2535  * we'll figure out the rest from the vma information.
2536  *
2537  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2538  * whatever write-combining details or similar.
2539  *
2540  * Return: %0 on success, negative error code otherwise.
2541  */
2542 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2543 {
2544 	unsigned long vm_len, pfn, pages;
2545 
2546 	/* Check that the physical memory area passed in looks valid */
2547 	if (start + len < start)
2548 		return -EINVAL;
2549 	/*
2550 	 * You *really* shouldn't map things that aren't page-aligned,
2551 	 * but we've historically allowed it because IO memory might
2552 	 * just have smaller alignment.
2553 	 */
2554 	len += start & ~PAGE_MASK;
2555 	pfn = start >> PAGE_SHIFT;
2556 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2557 	if (pfn + pages < pfn)
2558 		return -EINVAL;
2559 
2560 	/* We start the mapping 'vm_pgoff' pages into the area */
2561 	if (vma->vm_pgoff > pages)
2562 		return -EINVAL;
2563 	pfn += vma->vm_pgoff;
2564 	pages -= vma->vm_pgoff;
2565 
2566 	/* Can we fit all of the mapping? */
2567 	vm_len = vma->vm_end - vma->vm_start;
2568 	if (vm_len >> PAGE_SHIFT > pages)
2569 		return -EINVAL;
2570 
2571 	/* Ok, let it rip */
2572 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2573 }
2574 EXPORT_SYMBOL(vm_iomap_memory);
2575 
2576 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2577 				     unsigned long addr, unsigned long end,
2578 				     pte_fn_t fn, void *data, bool create,
2579 				     pgtbl_mod_mask *mask)
2580 {
2581 	pte_t *pte, *mapped_pte;
2582 	int err = 0;
2583 	spinlock_t *ptl;
2584 
2585 	if (create) {
2586 		mapped_pte = pte = (mm == &init_mm) ?
2587 			pte_alloc_kernel_track(pmd, addr, mask) :
2588 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2589 		if (!pte)
2590 			return -ENOMEM;
2591 	} else {
2592 		mapped_pte = pte = (mm == &init_mm) ?
2593 			pte_offset_kernel(pmd, addr) :
2594 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2595 		if (!pte)
2596 			return -EINVAL;
2597 	}
2598 
2599 	arch_enter_lazy_mmu_mode();
2600 
2601 	if (fn) {
2602 		do {
2603 			if (create || !pte_none(ptep_get(pte))) {
2604 				err = fn(pte++, addr, data);
2605 				if (err)
2606 					break;
2607 			}
2608 		} while (addr += PAGE_SIZE, addr != end);
2609 	}
2610 	*mask |= PGTBL_PTE_MODIFIED;
2611 
2612 	arch_leave_lazy_mmu_mode();
2613 
2614 	if (mm != &init_mm)
2615 		pte_unmap_unlock(mapped_pte, ptl);
2616 	return err;
2617 }
2618 
2619 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2620 				     unsigned long addr, unsigned long end,
2621 				     pte_fn_t fn, void *data, bool create,
2622 				     pgtbl_mod_mask *mask)
2623 {
2624 	pmd_t *pmd;
2625 	unsigned long next;
2626 	int err = 0;
2627 
2628 	BUG_ON(pud_huge(*pud));
2629 
2630 	if (create) {
2631 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2632 		if (!pmd)
2633 			return -ENOMEM;
2634 	} else {
2635 		pmd = pmd_offset(pud, addr);
2636 	}
2637 	do {
2638 		next = pmd_addr_end(addr, end);
2639 		if (pmd_none(*pmd) && !create)
2640 			continue;
2641 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2642 			return -EINVAL;
2643 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2644 			if (!create)
2645 				continue;
2646 			pmd_clear_bad(pmd);
2647 		}
2648 		err = apply_to_pte_range(mm, pmd, addr, next,
2649 					 fn, data, create, mask);
2650 		if (err)
2651 			break;
2652 	} while (pmd++, addr = next, addr != end);
2653 
2654 	return err;
2655 }
2656 
2657 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2658 				     unsigned long addr, unsigned long end,
2659 				     pte_fn_t fn, void *data, bool create,
2660 				     pgtbl_mod_mask *mask)
2661 {
2662 	pud_t *pud;
2663 	unsigned long next;
2664 	int err = 0;
2665 
2666 	if (create) {
2667 		pud = pud_alloc_track(mm, p4d, addr, mask);
2668 		if (!pud)
2669 			return -ENOMEM;
2670 	} else {
2671 		pud = pud_offset(p4d, addr);
2672 	}
2673 	do {
2674 		next = pud_addr_end(addr, end);
2675 		if (pud_none(*pud) && !create)
2676 			continue;
2677 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2678 			return -EINVAL;
2679 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2680 			if (!create)
2681 				continue;
2682 			pud_clear_bad(pud);
2683 		}
2684 		err = apply_to_pmd_range(mm, pud, addr, next,
2685 					 fn, data, create, mask);
2686 		if (err)
2687 			break;
2688 	} while (pud++, addr = next, addr != end);
2689 
2690 	return err;
2691 }
2692 
2693 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2694 				     unsigned long addr, unsigned long end,
2695 				     pte_fn_t fn, void *data, bool create,
2696 				     pgtbl_mod_mask *mask)
2697 {
2698 	p4d_t *p4d;
2699 	unsigned long next;
2700 	int err = 0;
2701 
2702 	if (create) {
2703 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2704 		if (!p4d)
2705 			return -ENOMEM;
2706 	} else {
2707 		p4d = p4d_offset(pgd, addr);
2708 	}
2709 	do {
2710 		next = p4d_addr_end(addr, end);
2711 		if (p4d_none(*p4d) && !create)
2712 			continue;
2713 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2714 			return -EINVAL;
2715 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2716 			if (!create)
2717 				continue;
2718 			p4d_clear_bad(p4d);
2719 		}
2720 		err = apply_to_pud_range(mm, p4d, addr, next,
2721 					 fn, data, create, mask);
2722 		if (err)
2723 			break;
2724 	} while (p4d++, addr = next, addr != end);
2725 
2726 	return err;
2727 }
2728 
2729 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2730 				 unsigned long size, pte_fn_t fn,
2731 				 void *data, bool create)
2732 {
2733 	pgd_t *pgd;
2734 	unsigned long start = addr, next;
2735 	unsigned long end = addr + size;
2736 	pgtbl_mod_mask mask = 0;
2737 	int err = 0;
2738 
2739 	if (WARN_ON(addr >= end))
2740 		return -EINVAL;
2741 
2742 	pgd = pgd_offset(mm, addr);
2743 	do {
2744 		next = pgd_addr_end(addr, end);
2745 		if (pgd_none(*pgd) && !create)
2746 			continue;
2747 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2748 			return -EINVAL;
2749 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2750 			if (!create)
2751 				continue;
2752 			pgd_clear_bad(pgd);
2753 		}
2754 		err = apply_to_p4d_range(mm, pgd, addr, next,
2755 					 fn, data, create, &mask);
2756 		if (err)
2757 			break;
2758 	} while (pgd++, addr = next, addr != end);
2759 
2760 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2761 		arch_sync_kernel_mappings(start, start + size);
2762 
2763 	return err;
2764 }
2765 
2766 /*
2767  * Scan a region of virtual memory, filling in page tables as necessary
2768  * and calling a provided function on each leaf page table.
2769  */
2770 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2771 			unsigned long size, pte_fn_t fn, void *data)
2772 {
2773 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2774 }
2775 EXPORT_SYMBOL_GPL(apply_to_page_range);
2776 
2777 /*
2778  * Scan a region of virtual memory, calling a provided function on
2779  * each leaf page table where it exists.
2780  *
2781  * Unlike apply_to_page_range, this does _not_ fill in page tables
2782  * where they are absent.
2783  */
2784 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2785 				 unsigned long size, pte_fn_t fn, void *data)
2786 {
2787 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2788 }
2789 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2790 
2791 /*
2792  * handle_pte_fault chooses page fault handler according to an entry which was
2793  * read non-atomically.  Before making any commitment, on those architectures
2794  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2795  * parts, do_swap_page must check under lock before unmapping the pte and
2796  * proceeding (but do_wp_page is only called after already making such a check;
2797  * and do_anonymous_page can safely check later on).
2798  */
2799 static inline int pte_unmap_same(struct vm_fault *vmf)
2800 {
2801 	int same = 1;
2802 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2803 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2804 		spin_lock(vmf->ptl);
2805 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2806 		spin_unlock(vmf->ptl);
2807 	}
2808 #endif
2809 	pte_unmap(vmf->pte);
2810 	vmf->pte = NULL;
2811 	return same;
2812 }
2813 
2814 /*
2815  * Return:
2816  *	0:		copied succeeded
2817  *	-EHWPOISON:	copy failed due to hwpoison in source page
2818  *	-EAGAIN:	copied failed (some other reason)
2819  */
2820 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2821 				      struct vm_fault *vmf)
2822 {
2823 	int ret;
2824 	void *kaddr;
2825 	void __user *uaddr;
2826 	struct vm_area_struct *vma = vmf->vma;
2827 	struct mm_struct *mm = vma->vm_mm;
2828 	unsigned long addr = vmf->address;
2829 
2830 	if (likely(src)) {
2831 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2832 			memory_failure_queue(page_to_pfn(src), 0);
2833 			return -EHWPOISON;
2834 		}
2835 		return 0;
2836 	}
2837 
2838 	/*
2839 	 * If the source page was a PFN mapping, we don't have
2840 	 * a "struct page" for it. We do a best-effort copy by
2841 	 * just copying from the original user address. If that
2842 	 * fails, we just zero-fill it. Live with it.
2843 	 */
2844 	kaddr = kmap_atomic(dst);
2845 	uaddr = (void __user *)(addr & PAGE_MASK);
2846 
2847 	/*
2848 	 * On architectures with software "accessed" bits, we would
2849 	 * take a double page fault, so mark it accessed here.
2850 	 */
2851 	vmf->pte = NULL;
2852 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2853 		pte_t entry;
2854 
2855 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2856 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2857 			/*
2858 			 * Other thread has already handled the fault
2859 			 * and update local tlb only
2860 			 */
2861 			if (vmf->pte)
2862 				update_mmu_tlb(vma, addr, vmf->pte);
2863 			ret = -EAGAIN;
2864 			goto pte_unlock;
2865 		}
2866 
2867 		entry = pte_mkyoung(vmf->orig_pte);
2868 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2869 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2870 	}
2871 
2872 	/*
2873 	 * This really shouldn't fail, because the page is there
2874 	 * in the page tables. But it might just be unreadable,
2875 	 * in which case we just give up and fill the result with
2876 	 * zeroes.
2877 	 */
2878 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2879 		if (vmf->pte)
2880 			goto warn;
2881 
2882 		/* Re-validate under PTL if the page is still mapped */
2883 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2884 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2885 			/* The PTE changed under us, update local tlb */
2886 			if (vmf->pte)
2887 				update_mmu_tlb(vma, addr, vmf->pte);
2888 			ret = -EAGAIN;
2889 			goto pte_unlock;
2890 		}
2891 
2892 		/*
2893 		 * The same page can be mapped back since last copy attempt.
2894 		 * Try to copy again under PTL.
2895 		 */
2896 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2897 			/*
2898 			 * Give a warn in case there can be some obscure
2899 			 * use-case
2900 			 */
2901 warn:
2902 			WARN_ON_ONCE(1);
2903 			clear_page(kaddr);
2904 		}
2905 	}
2906 
2907 	ret = 0;
2908 
2909 pte_unlock:
2910 	if (vmf->pte)
2911 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2912 	kunmap_atomic(kaddr);
2913 	flush_dcache_page(dst);
2914 
2915 	return ret;
2916 }
2917 
2918 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2919 {
2920 	struct file *vm_file = vma->vm_file;
2921 
2922 	if (vm_file)
2923 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2924 
2925 	/*
2926 	 * Special mappings (e.g. VDSO) do not have any file so fake
2927 	 * a default GFP_KERNEL for them.
2928 	 */
2929 	return GFP_KERNEL;
2930 }
2931 
2932 /*
2933  * Notify the address space that the page is about to become writable so that
2934  * it can prohibit this or wait for the page to get into an appropriate state.
2935  *
2936  * We do this without the lock held, so that it can sleep if it needs to.
2937  */
2938 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2939 {
2940 	vm_fault_t ret;
2941 	unsigned int old_flags = vmf->flags;
2942 
2943 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2944 
2945 	if (vmf->vma->vm_file &&
2946 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2947 		return VM_FAULT_SIGBUS;
2948 
2949 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2950 	/* Restore original flags so that caller is not surprised */
2951 	vmf->flags = old_flags;
2952 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2953 		return ret;
2954 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2955 		folio_lock(folio);
2956 		if (!folio->mapping) {
2957 			folio_unlock(folio);
2958 			return 0; /* retry */
2959 		}
2960 		ret |= VM_FAULT_LOCKED;
2961 	} else
2962 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2963 	return ret;
2964 }
2965 
2966 /*
2967  * Handle dirtying of a page in shared file mapping on a write fault.
2968  *
2969  * The function expects the page to be locked and unlocks it.
2970  */
2971 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2972 {
2973 	struct vm_area_struct *vma = vmf->vma;
2974 	struct address_space *mapping;
2975 	struct folio *folio = page_folio(vmf->page);
2976 	bool dirtied;
2977 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2978 
2979 	dirtied = folio_mark_dirty(folio);
2980 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2981 	/*
2982 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2983 	 * by truncate after folio_unlock().   The address_space itself remains
2984 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2985 	 * release semantics to prevent the compiler from undoing this copying.
2986 	 */
2987 	mapping = folio_raw_mapping(folio);
2988 	folio_unlock(folio);
2989 
2990 	if (!page_mkwrite)
2991 		file_update_time(vma->vm_file);
2992 
2993 	/*
2994 	 * Throttle page dirtying rate down to writeback speed.
2995 	 *
2996 	 * mapping may be NULL here because some device drivers do not
2997 	 * set page.mapping but still dirty their pages
2998 	 *
2999 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3000 	 * is pinning the mapping, as per above.
3001 	 */
3002 	if ((dirtied || page_mkwrite) && mapping) {
3003 		struct file *fpin;
3004 
3005 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3006 		balance_dirty_pages_ratelimited(mapping);
3007 		if (fpin) {
3008 			fput(fpin);
3009 			return VM_FAULT_COMPLETED;
3010 		}
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 /*
3017  * Handle write page faults for pages that can be reused in the current vma
3018  *
3019  * This can happen either due to the mapping being with the VM_SHARED flag,
3020  * or due to us being the last reference standing to the page. In either
3021  * case, all we need to do here is to mark the page as writable and update
3022  * any related book-keeping.
3023  */
3024 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3025 	__releases(vmf->ptl)
3026 {
3027 	struct vm_area_struct *vma = vmf->vma;
3028 	pte_t entry;
3029 
3030 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3031 
3032 	if (folio) {
3033 		VM_BUG_ON(folio_test_anon(folio) &&
3034 			  !PageAnonExclusive(vmf->page));
3035 		/*
3036 		 * Clear the folio's cpupid information as the existing
3037 		 * information potentially belongs to a now completely
3038 		 * unrelated process.
3039 		 */
3040 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3041 	}
3042 
3043 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3044 	entry = pte_mkyoung(vmf->orig_pte);
3045 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3046 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3047 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3048 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3049 	count_vm_event(PGREUSE);
3050 }
3051 
3052 /*
3053  * We could add a bitflag somewhere, but for now, we know that all
3054  * vm_ops that have a ->map_pages have been audited and don't need
3055  * the mmap_lock to be held.
3056  */
3057 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3058 {
3059 	struct vm_area_struct *vma = vmf->vma;
3060 
3061 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3062 		return 0;
3063 	vma_end_read(vma);
3064 	return VM_FAULT_RETRY;
3065 }
3066 
3067 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3068 {
3069 	struct vm_area_struct *vma = vmf->vma;
3070 
3071 	if (likely(vma->anon_vma))
3072 		return 0;
3073 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3074 		vma_end_read(vma);
3075 		return VM_FAULT_RETRY;
3076 	}
3077 	if (__anon_vma_prepare(vma))
3078 		return VM_FAULT_OOM;
3079 	return 0;
3080 }
3081 
3082 /*
3083  * Handle the case of a page which we actually need to copy to a new page,
3084  * either due to COW or unsharing.
3085  *
3086  * Called with mmap_lock locked and the old page referenced, but
3087  * without the ptl held.
3088  *
3089  * High level logic flow:
3090  *
3091  * - Allocate a page, copy the content of the old page to the new one.
3092  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3093  * - Take the PTL. If the pte changed, bail out and release the allocated page
3094  * - If the pte is still the way we remember it, update the page table and all
3095  *   relevant references. This includes dropping the reference the page-table
3096  *   held to the old page, as well as updating the rmap.
3097  * - In any case, unlock the PTL and drop the reference we took to the old page.
3098  */
3099 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3100 {
3101 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3102 	struct vm_area_struct *vma = vmf->vma;
3103 	struct mm_struct *mm = vma->vm_mm;
3104 	struct folio *old_folio = NULL;
3105 	struct folio *new_folio = NULL;
3106 	pte_t entry;
3107 	int page_copied = 0;
3108 	struct mmu_notifier_range range;
3109 	vm_fault_t ret;
3110 
3111 	delayacct_wpcopy_start();
3112 
3113 	if (vmf->page)
3114 		old_folio = page_folio(vmf->page);
3115 	ret = vmf_anon_prepare(vmf);
3116 	if (unlikely(ret))
3117 		goto out;
3118 
3119 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3120 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3121 		if (!new_folio)
3122 			goto oom;
3123 	} else {
3124 		int err;
3125 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3126 				vmf->address, false);
3127 		if (!new_folio)
3128 			goto oom;
3129 
3130 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3131 		if (err) {
3132 			/*
3133 			 * COW failed, if the fault was solved by other,
3134 			 * it's fine. If not, userspace would re-fault on
3135 			 * the same address and we will handle the fault
3136 			 * from the second attempt.
3137 			 * The -EHWPOISON case will not be retried.
3138 			 */
3139 			folio_put(new_folio);
3140 			if (old_folio)
3141 				folio_put(old_folio);
3142 
3143 			delayacct_wpcopy_end();
3144 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3145 		}
3146 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3147 	}
3148 
3149 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3150 		goto oom_free_new;
3151 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3152 
3153 	__folio_mark_uptodate(new_folio);
3154 
3155 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3156 				vmf->address & PAGE_MASK,
3157 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3158 	mmu_notifier_invalidate_range_start(&range);
3159 
3160 	/*
3161 	 * Re-check the pte - we dropped the lock
3162 	 */
3163 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3164 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3165 		if (old_folio) {
3166 			if (!folio_test_anon(old_folio)) {
3167 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3168 				inc_mm_counter(mm, MM_ANONPAGES);
3169 			}
3170 		} else {
3171 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3172 			inc_mm_counter(mm, MM_ANONPAGES);
3173 		}
3174 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3175 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3176 		entry = pte_sw_mkyoung(entry);
3177 		if (unlikely(unshare)) {
3178 			if (pte_soft_dirty(vmf->orig_pte))
3179 				entry = pte_mksoft_dirty(entry);
3180 			if (pte_uffd_wp(vmf->orig_pte))
3181 				entry = pte_mkuffd_wp(entry);
3182 		} else {
3183 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3184 		}
3185 
3186 		/*
3187 		 * Clear the pte entry and flush it first, before updating the
3188 		 * pte with the new entry, to keep TLBs on different CPUs in
3189 		 * sync. This code used to set the new PTE then flush TLBs, but
3190 		 * that left a window where the new PTE could be loaded into
3191 		 * some TLBs while the old PTE remains in others.
3192 		 */
3193 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3194 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3195 		folio_add_lru_vma(new_folio, vma);
3196 		/*
3197 		 * We call the notify macro here because, when using secondary
3198 		 * mmu page tables (such as kvm shadow page tables), we want the
3199 		 * new page to be mapped directly into the secondary page table.
3200 		 */
3201 		BUG_ON(unshare && pte_write(entry));
3202 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3203 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3204 		if (old_folio) {
3205 			/*
3206 			 * Only after switching the pte to the new page may
3207 			 * we remove the mapcount here. Otherwise another
3208 			 * process may come and find the rmap count decremented
3209 			 * before the pte is switched to the new page, and
3210 			 * "reuse" the old page writing into it while our pte
3211 			 * here still points into it and can be read by other
3212 			 * threads.
3213 			 *
3214 			 * The critical issue is to order this
3215 			 * page_remove_rmap with the ptp_clear_flush above.
3216 			 * Those stores are ordered by (if nothing else,)
3217 			 * the barrier present in the atomic_add_negative
3218 			 * in page_remove_rmap.
3219 			 *
3220 			 * Then the TLB flush in ptep_clear_flush ensures that
3221 			 * no process can access the old page before the
3222 			 * decremented mapcount is visible. And the old page
3223 			 * cannot be reused until after the decremented
3224 			 * mapcount is visible. So transitively, TLBs to
3225 			 * old page will be flushed before it can be reused.
3226 			 */
3227 			page_remove_rmap(vmf->page, vma, false);
3228 		}
3229 
3230 		/* Free the old page.. */
3231 		new_folio = old_folio;
3232 		page_copied = 1;
3233 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3234 	} else if (vmf->pte) {
3235 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3236 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3237 	}
3238 
3239 	mmu_notifier_invalidate_range_end(&range);
3240 
3241 	if (new_folio)
3242 		folio_put(new_folio);
3243 	if (old_folio) {
3244 		if (page_copied)
3245 			free_swap_cache(&old_folio->page);
3246 		folio_put(old_folio);
3247 	}
3248 
3249 	delayacct_wpcopy_end();
3250 	return 0;
3251 oom_free_new:
3252 	folio_put(new_folio);
3253 oom:
3254 	ret = VM_FAULT_OOM;
3255 out:
3256 	if (old_folio)
3257 		folio_put(old_folio);
3258 
3259 	delayacct_wpcopy_end();
3260 	return ret;
3261 }
3262 
3263 /**
3264  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3265  *			  writeable once the page is prepared
3266  *
3267  * @vmf: structure describing the fault
3268  * @folio: the folio of vmf->page
3269  *
3270  * This function handles all that is needed to finish a write page fault in a
3271  * shared mapping due to PTE being read-only once the mapped page is prepared.
3272  * It handles locking of PTE and modifying it.
3273  *
3274  * The function expects the page to be locked or other protection against
3275  * concurrent faults / writeback (such as DAX radix tree locks).
3276  *
3277  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3278  * we acquired PTE lock.
3279  */
3280 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3281 {
3282 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3283 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3284 				       &vmf->ptl);
3285 	if (!vmf->pte)
3286 		return VM_FAULT_NOPAGE;
3287 	/*
3288 	 * We might have raced with another page fault while we released the
3289 	 * pte_offset_map_lock.
3290 	 */
3291 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3292 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3293 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 		return VM_FAULT_NOPAGE;
3295 	}
3296 	wp_page_reuse(vmf, folio);
3297 	return 0;
3298 }
3299 
3300 /*
3301  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3302  * mapping
3303  */
3304 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3305 {
3306 	struct vm_area_struct *vma = vmf->vma;
3307 
3308 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3309 		vm_fault_t ret;
3310 
3311 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3312 		ret = vmf_can_call_fault(vmf);
3313 		if (ret)
3314 			return ret;
3315 
3316 		vmf->flags |= FAULT_FLAG_MKWRITE;
3317 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3318 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3319 			return ret;
3320 		return finish_mkwrite_fault(vmf, NULL);
3321 	}
3322 	wp_page_reuse(vmf, NULL);
3323 	return 0;
3324 }
3325 
3326 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3327 	__releases(vmf->ptl)
3328 {
3329 	struct vm_area_struct *vma = vmf->vma;
3330 	vm_fault_t ret = 0;
3331 
3332 	folio_get(folio);
3333 
3334 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3335 		vm_fault_t tmp;
3336 
3337 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3338 		tmp = vmf_can_call_fault(vmf);
3339 		if (tmp) {
3340 			folio_put(folio);
3341 			return tmp;
3342 		}
3343 
3344 		tmp = do_page_mkwrite(vmf, folio);
3345 		if (unlikely(!tmp || (tmp &
3346 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3347 			folio_put(folio);
3348 			return tmp;
3349 		}
3350 		tmp = finish_mkwrite_fault(vmf, folio);
3351 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3352 			folio_unlock(folio);
3353 			folio_put(folio);
3354 			return tmp;
3355 		}
3356 	} else {
3357 		wp_page_reuse(vmf, folio);
3358 		folio_lock(folio);
3359 	}
3360 	ret |= fault_dirty_shared_page(vmf);
3361 	folio_put(folio);
3362 
3363 	return ret;
3364 }
3365 
3366 static bool wp_can_reuse_anon_folio(struct folio *folio,
3367 				    struct vm_area_struct *vma)
3368 {
3369 	/*
3370 	 * We have to verify under folio lock: these early checks are
3371 	 * just an optimization to avoid locking the folio and freeing
3372 	 * the swapcache if there is little hope that we can reuse.
3373 	 *
3374 	 * KSM doesn't necessarily raise the folio refcount.
3375 	 */
3376 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3377 		return false;
3378 	if (!folio_test_lru(folio))
3379 		/*
3380 		 * We cannot easily detect+handle references from
3381 		 * remote LRU caches or references to LRU folios.
3382 		 */
3383 		lru_add_drain();
3384 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3385 		return false;
3386 	if (!folio_trylock(folio))
3387 		return false;
3388 	if (folio_test_swapcache(folio))
3389 		folio_free_swap(folio);
3390 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3391 		folio_unlock(folio);
3392 		return false;
3393 	}
3394 	/*
3395 	 * Ok, we've got the only folio reference from our mapping
3396 	 * and the folio is locked, it's dark out, and we're wearing
3397 	 * sunglasses. Hit it.
3398 	 */
3399 	folio_move_anon_rmap(folio, vma);
3400 	folio_unlock(folio);
3401 	return true;
3402 }
3403 
3404 /*
3405  * This routine handles present pages, when
3406  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3407  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3408  *   (FAULT_FLAG_UNSHARE)
3409  *
3410  * It is done by copying the page to a new address and decrementing the
3411  * shared-page counter for the old page.
3412  *
3413  * Note that this routine assumes that the protection checks have been
3414  * done by the caller (the low-level page fault routine in most cases).
3415  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3416  * done any necessary COW.
3417  *
3418  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3419  * though the page will change only once the write actually happens. This
3420  * avoids a few races, and potentially makes it more efficient.
3421  *
3422  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3423  * but allow concurrent faults), with pte both mapped and locked.
3424  * We return with mmap_lock still held, but pte unmapped and unlocked.
3425  */
3426 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3427 	__releases(vmf->ptl)
3428 {
3429 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3430 	struct vm_area_struct *vma = vmf->vma;
3431 	struct folio *folio = NULL;
3432 	pte_t pte;
3433 
3434 	if (likely(!unshare)) {
3435 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3436 			if (!userfaultfd_wp_async(vma)) {
3437 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3438 				return handle_userfault(vmf, VM_UFFD_WP);
3439 			}
3440 
3441 			/*
3442 			 * Nothing needed (cache flush, TLB invalidations,
3443 			 * etc.) because we're only removing the uffd-wp bit,
3444 			 * which is completely invisible to the user.
3445 			 */
3446 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3447 
3448 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3449 			/*
3450 			 * Update this to be prepared for following up CoW
3451 			 * handling
3452 			 */
3453 			vmf->orig_pte = pte;
3454 		}
3455 
3456 		/*
3457 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3458 		 * is flushed in this case before copying.
3459 		 */
3460 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3461 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3462 			flush_tlb_page(vmf->vma, vmf->address);
3463 	}
3464 
3465 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3466 
3467 	if (vmf->page)
3468 		folio = page_folio(vmf->page);
3469 
3470 	/*
3471 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3472 	 * FAULT_FLAG_WRITE set at this point.
3473 	 */
3474 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3475 		/*
3476 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3477 		 * VM_PFNMAP VMA.
3478 		 *
3479 		 * We should not cow pages in a shared writeable mapping.
3480 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3481 		 */
3482 		if (!vmf->page)
3483 			return wp_pfn_shared(vmf);
3484 		return wp_page_shared(vmf, folio);
3485 	}
3486 
3487 	/*
3488 	 * Private mapping: create an exclusive anonymous page copy if reuse
3489 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3490 	 *
3491 	 * If we encounter a page that is marked exclusive, we must reuse
3492 	 * the page without further checks.
3493 	 */
3494 	if (folio && folio_test_anon(folio) &&
3495 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3496 		if (!PageAnonExclusive(vmf->page))
3497 			SetPageAnonExclusive(vmf->page);
3498 		if (unlikely(unshare)) {
3499 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3500 			return 0;
3501 		}
3502 		wp_page_reuse(vmf, folio);
3503 		return 0;
3504 	}
3505 	/*
3506 	 * Ok, we need to copy. Oh, well..
3507 	 */
3508 	if (folio)
3509 		folio_get(folio);
3510 
3511 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3512 #ifdef CONFIG_KSM
3513 	if (folio && folio_test_ksm(folio))
3514 		count_vm_event(COW_KSM);
3515 #endif
3516 	return wp_page_copy(vmf);
3517 }
3518 
3519 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3520 		unsigned long start_addr, unsigned long end_addr,
3521 		struct zap_details *details)
3522 {
3523 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3524 }
3525 
3526 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3527 					    pgoff_t first_index,
3528 					    pgoff_t last_index,
3529 					    struct zap_details *details)
3530 {
3531 	struct vm_area_struct *vma;
3532 	pgoff_t vba, vea, zba, zea;
3533 
3534 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3535 		vba = vma->vm_pgoff;
3536 		vea = vba + vma_pages(vma) - 1;
3537 		zba = max(first_index, vba);
3538 		zea = min(last_index, vea);
3539 
3540 		unmap_mapping_range_vma(vma,
3541 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3542 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3543 				details);
3544 	}
3545 }
3546 
3547 /**
3548  * unmap_mapping_folio() - Unmap single folio from processes.
3549  * @folio: The locked folio to be unmapped.
3550  *
3551  * Unmap this folio from any userspace process which still has it mmaped.
3552  * Typically, for efficiency, the range of nearby pages has already been
3553  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3554  * truncation or invalidation holds the lock on a folio, it may find that
3555  * the page has been remapped again: and then uses unmap_mapping_folio()
3556  * to unmap it finally.
3557  */
3558 void unmap_mapping_folio(struct folio *folio)
3559 {
3560 	struct address_space *mapping = folio->mapping;
3561 	struct zap_details details = { };
3562 	pgoff_t	first_index;
3563 	pgoff_t	last_index;
3564 
3565 	VM_BUG_ON(!folio_test_locked(folio));
3566 
3567 	first_index = folio->index;
3568 	last_index = folio_next_index(folio) - 1;
3569 
3570 	details.even_cows = false;
3571 	details.single_folio = folio;
3572 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3573 
3574 	i_mmap_lock_read(mapping);
3575 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3576 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3577 					 last_index, &details);
3578 	i_mmap_unlock_read(mapping);
3579 }
3580 
3581 /**
3582  * unmap_mapping_pages() - Unmap pages from processes.
3583  * @mapping: The address space containing pages to be unmapped.
3584  * @start: Index of first page to be unmapped.
3585  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3586  * @even_cows: Whether to unmap even private COWed pages.
3587  *
3588  * Unmap the pages in this address space from any userspace process which
3589  * has them mmaped.  Generally, you want to remove COWed pages as well when
3590  * a file is being truncated, but not when invalidating pages from the page
3591  * cache.
3592  */
3593 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3594 		pgoff_t nr, bool even_cows)
3595 {
3596 	struct zap_details details = { };
3597 	pgoff_t	first_index = start;
3598 	pgoff_t	last_index = start + nr - 1;
3599 
3600 	details.even_cows = even_cows;
3601 	if (last_index < first_index)
3602 		last_index = ULONG_MAX;
3603 
3604 	i_mmap_lock_read(mapping);
3605 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3606 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3607 					 last_index, &details);
3608 	i_mmap_unlock_read(mapping);
3609 }
3610 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3611 
3612 /**
3613  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3614  * address_space corresponding to the specified byte range in the underlying
3615  * file.
3616  *
3617  * @mapping: the address space containing mmaps to be unmapped.
3618  * @holebegin: byte in first page to unmap, relative to the start of
3619  * the underlying file.  This will be rounded down to a PAGE_SIZE
3620  * boundary.  Note that this is different from truncate_pagecache(), which
3621  * must keep the partial page.  In contrast, we must get rid of
3622  * partial pages.
3623  * @holelen: size of prospective hole in bytes.  This will be rounded
3624  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3625  * end of the file.
3626  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3627  * but 0 when invalidating pagecache, don't throw away private data.
3628  */
3629 void unmap_mapping_range(struct address_space *mapping,
3630 		loff_t const holebegin, loff_t const holelen, int even_cows)
3631 {
3632 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3633 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3634 
3635 	/* Check for overflow. */
3636 	if (sizeof(holelen) > sizeof(hlen)) {
3637 		long long holeend =
3638 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3639 		if (holeend & ~(long long)ULONG_MAX)
3640 			hlen = ULONG_MAX - hba + 1;
3641 	}
3642 
3643 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3644 }
3645 EXPORT_SYMBOL(unmap_mapping_range);
3646 
3647 /*
3648  * Restore a potential device exclusive pte to a working pte entry
3649  */
3650 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3651 {
3652 	struct folio *folio = page_folio(vmf->page);
3653 	struct vm_area_struct *vma = vmf->vma;
3654 	struct mmu_notifier_range range;
3655 	vm_fault_t ret;
3656 
3657 	/*
3658 	 * We need a reference to lock the folio because we don't hold
3659 	 * the PTL so a racing thread can remove the device-exclusive
3660 	 * entry and unmap it. If the folio is free the entry must
3661 	 * have been removed already. If it happens to have already
3662 	 * been re-allocated after being freed all we do is lock and
3663 	 * unlock it.
3664 	 */
3665 	if (!folio_try_get(folio))
3666 		return 0;
3667 
3668 	ret = folio_lock_or_retry(folio, vmf);
3669 	if (ret) {
3670 		folio_put(folio);
3671 		return ret;
3672 	}
3673 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3674 				vma->vm_mm, vmf->address & PAGE_MASK,
3675 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3676 	mmu_notifier_invalidate_range_start(&range);
3677 
3678 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3679 				&vmf->ptl);
3680 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3681 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3682 
3683 	if (vmf->pte)
3684 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3685 	folio_unlock(folio);
3686 	folio_put(folio);
3687 
3688 	mmu_notifier_invalidate_range_end(&range);
3689 	return 0;
3690 }
3691 
3692 static inline bool should_try_to_free_swap(struct folio *folio,
3693 					   struct vm_area_struct *vma,
3694 					   unsigned int fault_flags)
3695 {
3696 	if (!folio_test_swapcache(folio))
3697 		return false;
3698 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3699 	    folio_test_mlocked(folio))
3700 		return true;
3701 	/*
3702 	 * If we want to map a page that's in the swapcache writable, we
3703 	 * have to detect via the refcount if we're really the exclusive
3704 	 * user. Try freeing the swapcache to get rid of the swapcache
3705 	 * reference only in case it's likely that we'll be the exlusive user.
3706 	 */
3707 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3708 		folio_ref_count(folio) == 2;
3709 }
3710 
3711 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3712 {
3713 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3714 				       vmf->address, &vmf->ptl);
3715 	if (!vmf->pte)
3716 		return 0;
3717 	/*
3718 	 * Be careful so that we will only recover a special uffd-wp pte into a
3719 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3720 	 *
3721 	 * This should also cover the case where e.g. the pte changed
3722 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3723 	 * So is_pte_marker() check is not enough to safely drop the pte.
3724 	 */
3725 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3726 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3727 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3728 	return 0;
3729 }
3730 
3731 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3732 {
3733 	if (vma_is_anonymous(vmf->vma))
3734 		return do_anonymous_page(vmf);
3735 	else
3736 		return do_fault(vmf);
3737 }
3738 
3739 /*
3740  * This is actually a page-missing access, but with uffd-wp special pte
3741  * installed.  It means this pte was wr-protected before being unmapped.
3742  */
3743 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3744 {
3745 	/*
3746 	 * Just in case there're leftover special ptes even after the region
3747 	 * got unregistered - we can simply clear them.
3748 	 */
3749 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3750 		return pte_marker_clear(vmf);
3751 
3752 	return do_pte_missing(vmf);
3753 }
3754 
3755 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3756 {
3757 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3758 	unsigned long marker = pte_marker_get(entry);
3759 
3760 	/*
3761 	 * PTE markers should never be empty.  If anything weird happened,
3762 	 * the best thing to do is to kill the process along with its mm.
3763 	 */
3764 	if (WARN_ON_ONCE(!marker))
3765 		return VM_FAULT_SIGBUS;
3766 
3767 	/* Higher priority than uffd-wp when data corrupted */
3768 	if (marker & PTE_MARKER_POISONED)
3769 		return VM_FAULT_HWPOISON;
3770 
3771 	if (pte_marker_entry_uffd_wp(entry))
3772 		return pte_marker_handle_uffd_wp(vmf);
3773 
3774 	/* This is an unknown pte marker */
3775 	return VM_FAULT_SIGBUS;
3776 }
3777 
3778 /*
3779  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3780  * but allow concurrent faults), and pte mapped but not yet locked.
3781  * We return with pte unmapped and unlocked.
3782  *
3783  * We return with the mmap_lock locked or unlocked in the same cases
3784  * as does filemap_fault().
3785  */
3786 vm_fault_t do_swap_page(struct vm_fault *vmf)
3787 {
3788 	struct vm_area_struct *vma = vmf->vma;
3789 	struct folio *swapcache, *folio = NULL;
3790 	struct page *page;
3791 	struct swap_info_struct *si = NULL;
3792 	rmap_t rmap_flags = RMAP_NONE;
3793 	bool exclusive = false;
3794 	swp_entry_t entry;
3795 	pte_t pte;
3796 	vm_fault_t ret = 0;
3797 	void *shadow = NULL;
3798 
3799 	if (!pte_unmap_same(vmf))
3800 		goto out;
3801 
3802 	entry = pte_to_swp_entry(vmf->orig_pte);
3803 	if (unlikely(non_swap_entry(entry))) {
3804 		if (is_migration_entry(entry)) {
3805 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3806 					     vmf->address);
3807 		} else if (is_device_exclusive_entry(entry)) {
3808 			vmf->page = pfn_swap_entry_to_page(entry);
3809 			ret = remove_device_exclusive_entry(vmf);
3810 		} else if (is_device_private_entry(entry)) {
3811 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3812 				/*
3813 				 * migrate_to_ram is not yet ready to operate
3814 				 * under VMA lock.
3815 				 */
3816 				vma_end_read(vma);
3817 				ret = VM_FAULT_RETRY;
3818 				goto out;
3819 			}
3820 
3821 			vmf->page = pfn_swap_entry_to_page(entry);
3822 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3823 					vmf->address, &vmf->ptl);
3824 			if (unlikely(!vmf->pte ||
3825 				     !pte_same(ptep_get(vmf->pte),
3826 							vmf->orig_pte)))
3827 				goto unlock;
3828 
3829 			/*
3830 			 * Get a page reference while we know the page can't be
3831 			 * freed.
3832 			 */
3833 			get_page(vmf->page);
3834 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3835 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3836 			put_page(vmf->page);
3837 		} else if (is_hwpoison_entry(entry)) {
3838 			ret = VM_FAULT_HWPOISON;
3839 		} else if (is_pte_marker_entry(entry)) {
3840 			ret = handle_pte_marker(vmf);
3841 		} else {
3842 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3843 			ret = VM_FAULT_SIGBUS;
3844 		}
3845 		goto out;
3846 	}
3847 
3848 	/* Prevent swapoff from happening to us. */
3849 	si = get_swap_device(entry);
3850 	if (unlikely(!si))
3851 		goto out;
3852 
3853 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3854 	if (folio)
3855 		page = folio_file_page(folio, swp_offset(entry));
3856 	swapcache = folio;
3857 
3858 	if (!folio) {
3859 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3860 		    __swap_count(entry) == 1) {
3861 			/* skip swapcache */
3862 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3863 						vma, vmf->address, false);
3864 			page = &folio->page;
3865 			if (folio) {
3866 				__folio_set_locked(folio);
3867 				__folio_set_swapbacked(folio);
3868 
3869 				if (mem_cgroup_swapin_charge_folio(folio,
3870 							vma->vm_mm, GFP_KERNEL,
3871 							entry)) {
3872 					ret = VM_FAULT_OOM;
3873 					goto out_page;
3874 				}
3875 				mem_cgroup_swapin_uncharge_swap(entry);
3876 
3877 				shadow = get_shadow_from_swap_cache(entry);
3878 				if (shadow)
3879 					workingset_refault(folio, shadow);
3880 
3881 				folio_add_lru(folio);
3882 
3883 				/* To provide entry to swap_readpage() */
3884 				folio->swap = entry;
3885 				swap_readpage(page, true, NULL);
3886 				folio->private = NULL;
3887 			}
3888 		} else {
3889 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3890 						vmf);
3891 			if (page)
3892 				folio = page_folio(page);
3893 			swapcache = folio;
3894 		}
3895 
3896 		if (!folio) {
3897 			/*
3898 			 * Back out if somebody else faulted in this pte
3899 			 * while we released the pte lock.
3900 			 */
3901 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3902 					vmf->address, &vmf->ptl);
3903 			if (likely(vmf->pte &&
3904 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3905 				ret = VM_FAULT_OOM;
3906 			goto unlock;
3907 		}
3908 
3909 		/* Had to read the page from swap area: Major fault */
3910 		ret = VM_FAULT_MAJOR;
3911 		count_vm_event(PGMAJFAULT);
3912 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3913 	} else if (PageHWPoison(page)) {
3914 		/*
3915 		 * hwpoisoned dirty swapcache pages are kept for killing
3916 		 * owner processes (which may be unknown at hwpoison time)
3917 		 */
3918 		ret = VM_FAULT_HWPOISON;
3919 		goto out_release;
3920 	}
3921 
3922 	ret |= folio_lock_or_retry(folio, vmf);
3923 	if (ret & VM_FAULT_RETRY)
3924 		goto out_release;
3925 
3926 	if (swapcache) {
3927 		/*
3928 		 * Make sure folio_free_swap() or swapoff did not release the
3929 		 * swapcache from under us.  The page pin, and pte_same test
3930 		 * below, are not enough to exclude that.  Even if it is still
3931 		 * swapcache, we need to check that the page's swap has not
3932 		 * changed.
3933 		 */
3934 		if (unlikely(!folio_test_swapcache(folio) ||
3935 			     page_swap_entry(page).val != entry.val))
3936 			goto out_page;
3937 
3938 		/*
3939 		 * KSM sometimes has to copy on read faults, for example, if
3940 		 * page->index of !PageKSM() pages would be nonlinear inside the
3941 		 * anon VMA -- PageKSM() is lost on actual swapout.
3942 		 */
3943 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3944 		if (unlikely(!page)) {
3945 			ret = VM_FAULT_OOM;
3946 			goto out_page;
3947 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3948 			ret = VM_FAULT_HWPOISON;
3949 			goto out_page;
3950 		}
3951 		folio = page_folio(page);
3952 
3953 		/*
3954 		 * If we want to map a page that's in the swapcache writable, we
3955 		 * have to detect via the refcount if we're really the exclusive
3956 		 * owner. Try removing the extra reference from the local LRU
3957 		 * caches if required.
3958 		 */
3959 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3960 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3961 			lru_add_drain();
3962 	}
3963 
3964 	folio_throttle_swaprate(folio, GFP_KERNEL);
3965 
3966 	/*
3967 	 * Back out if somebody else already faulted in this pte.
3968 	 */
3969 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3970 			&vmf->ptl);
3971 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3972 		goto out_nomap;
3973 
3974 	if (unlikely(!folio_test_uptodate(folio))) {
3975 		ret = VM_FAULT_SIGBUS;
3976 		goto out_nomap;
3977 	}
3978 
3979 	/*
3980 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3981 	 * must never point at an anonymous page in the swapcache that is
3982 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3983 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3984 	 * check after taking the PT lock and making sure that nobody
3985 	 * concurrently faulted in this page and set PG_anon_exclusive.
3986 	 */
3987 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3988 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3989 
3990 	/*
3991 	 * Check under PT lock (to protect against concurrent fork() sharing
3992 	 * the swap entry concurrently) for certainly exclusive pages.
3993 	 */
3994 	if (!folio_test_ksm(folio)) {
3995 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3996 		if (folio != swapcache) {
3997 			/*
3998 			 * We have a fresh page that is not exposed to the
3999 			 * swapcache -> certainly exclusive.
4000 			 */
4001 			exclusive = true;
4002 		} else if (exclusive && folio_test_writeback(folio) &&
4003 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4004 			/*
4005 			 * This is tricky: not all swap backends support
4006 			 * concurrent page modifications while under writeback.
4007 			 *
4008 			 * So if we stumble over such a page in the swapcache
4009 			 * we must not set the page exclusive, otherwise we can
4010 			 * map it writable without further checks and modify it
4011 			 * while still under writeback.
4012 			 *
4013 			 * For these problematic swap backends, simply drop the
4014 			 * exclusive marker: this is perfectly fine as we start
4015 			 * writeback only if we fully unmapped the page and
4016 			 * there are no unexpected references on the page after
4017 			 * unmapping succeeded. After fully unmapped, no
4018 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4019 			 * appear, so dropping the exclusive marker and mapping
4020 			 * it only R/O is fine.
4021 			 */
4022 			exclusive = false;
4023 		}
4024 	}
4025 
4026 	/*
4027 	 * Some architectures may have to restore extra metadata to the page
4028 	 * when reading from swap. This metadata may be indexed by swap entry
4029 	 * so this must be called before swap_free().
4030 	 */
4031 	arch_swap_restore(entry, folio);
4032 
4033 	/*
4034 	 * Remove the swap entry and conditionally try to free up the swapcache.
4035 	 * We're already holding a reference on the page but haven't mapped it
4036 	 * yet.
4037 	 */
4038 	swap_free(entry);
4039 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4040 		folio_free_swap(folio);
4041 
4042 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4043 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4044 	pte = mk_pte(page, vma->vm_page_prot);
4045 
4046 	/*
4047 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4048 	 * certainly not shared either because we just allocated them without
4049 	 * exposing them to the swapcache or because the swap entry indicates
4050 	 * exclusivity.
4051 	 */
4052 	if (!folio_test_ksm(folio) &&
4053 	    (exclusive || folio_ref_count(folio) == 1)) {
4054 		if (vmf->flags & FAULT_FLAG_WRITE) {
4055 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4056 			vmf->flags &= ~FAULT_FLAG_WRITE;
4057 		}
4058 		rmap_flags |= RMAP_EXCLUSIVE;
4059 	}
4060 	flush_icache_page(vma, page);
4061 	if (pte_swp_soft_dirty(vmf->orig_pte))
4062 		pte = pte_mksoft_dirty(pte);
4063 	if (pte_swp_uffd_wp(vmf->orig_pte))
4064 		pte = pte_mkuffd_wp(pte);
4065 	vmf->orig_pte = pte;
4066 
4067 	/* ksm created a completely new copy */
4068 	if (unlikely(folio != swapcache && swapcache)) {
4069 		page_add_new_anon_rmap(page, vma, vmf->address);
4070 		folio_add_lru_vma(folio, vma);
4071 	} else {
4072 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4073 	}
4074 
4075 	VM_BUG_ON(!folio_test_anon(folio) ||
4076 			(pte_write(pte) && !PageAnonExclusive(page)));
4077 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4078 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4079 
4080 	folio_unlock(folio);
4081 	if (folio != swapcache && swapcache) {
4082 		/*
4083 		 * Hold the lock to avoid the swap entry to be reused
4084 		 * until we take the PT lock for the pte_same() check
4085 		 * (to avoid false positives from pte_same). For
4086 		 * further safety release the lock after the swap_free
4087 		 * so that the swap count won't change under a
4088 		 * parallel locked swapcache.
4089 		 */
4090 		folio_unlock(swapcache);
4091 		folio_put(swapcache);
4092 	}
4093 
4094 	if (vmf->flags & FAULT_FLAG_WRITE) {
4095 		ret |= do_wp_page(vmf);
4096 		if (ret & VM_FAULT_ERROR)
4097 			ret &= VM_FAULT_ERROR;
4098 		goto out;
4099 	}
4100 
4101 	/* No need to invalidate - it was non-present before */
4102 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4103 unlock:
4104 	if (vmf->pte)
4105 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4106 out:
4107 	if (si)
4108 		put_swap_device(si);
4109 	return ret;
4110 out_nomap:
4111 	if (vmf->pte)
4112 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4113 out_page:
4114 	folio_unlock(folio);
4115 out_release:
4116 	folio_put(folio);
4117 	if (folio != swapcache && swapcache) {
4118 		folio_unlock(swapcache);
4119 		folio_put(swapcache);
4120 	}
4121 	if (si)
4122 		put_swap_device(si);
4123 	return ret;
4124 }
4125 
4126 /*
4127  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4128  * but allow concurrent faults), and pte mapped but not yet locked.
4129  * We return with mmap_lock still held, but pte unmapped and unlocked.
4130  */
4131 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4132 {
4133 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4134 	struct vm_area_struct *vma = vmf->vma;
4135 	struct folio *folio;
4136 	vm_fault_t ret = 0;
4137 	pte_t entry;
4138 
4139 	/* File mapping without ->vm_ops ? */
4140 	if (vma->vm_flags & VM_SHARED)
4141 		return VM_FAULT_SIGBUS;
4142 
4143 	/*
4144 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4145 	 * be distinguished from a transient failure of pte_offset_map().
4146 	 */
4147 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4148 		return VM_FAULT_OOM;
4149 
4150 	/* Use the zero-page for reads */
4151 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4152 			!mm_forbids_zeropage(vma->vm_mm)) {
4153 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4154 						vma->vm_page_prot));
4155 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4156 				vmf->address, &vmf->ptl);
4157 		if (!vmf->pte)
4158 			goto unlock;
4159 		if (vmf_pte_changed(vmf)) {
4160 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4161 			goto unlock;
4162 		}
4163 		ret = check_stable_address_space(vma->vm_mm);
4164 		if (ret)
4165 			goto unlock;
4166 		/* Deliver the page fault to userland, check inside PT lock */
4167 		if (userfaultfd_missing(vma)) {
4168 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4169 			return handle_userfault(vmf, VM_UFFD_MISSING);
4170 		}
4171 		goto setpte;
4172 	}
4173 
4174 	/* Allocate our own private page. */
4175 	if (unlikely(anon_vma_prepare(vma)))
4176 		goto oom;
4177 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4178 	if (!folio)
4179 		goto oom;
4180 
4181 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4182 		goto oom_free_page;
4183 	folio_throttle_swaprate(folio, GFP_KERNEL);
4184 
4185 	/*
4186 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4187 	 * preceding stores to the page contents become visible before
4188 	 * the set_pte_at() write.
4189 	 */
4190 	__folio_mark_uptodate(folio);
4191 
4192 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4193 	entry = pte_sw_mkyoung(entry);
4194 	if (vma->vm_flags & VM_WRITE)
4195 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4196 
4197 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4198 			&vmf->ptl);
4199 	if (!vmf->pte)
4200 		goto release;
4201 	if (vmf_pte_changed(vmf)) {
4202 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4203 		goto release;
4204 	}
4205 
4206 	ret = check_stable_address_space(vma->vm_mm);
4207 	if (ret)
4208 		goto release;
4209 
4210 	/* Deliver the page fault to userland, check inside PT lock */
4211 	if (userfaultfd_missing(vma)) {
4212 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4213 		folio_put(folio);
4214 		return handle_userfault(vmf, VM_UFFD_MISSING);
4215 	}
4216 
4217 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4218 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4219 	folio_add_lru_vma(folio, vma);
4220 setpte:
4221 	if (uffd_wp)
4222 		entry = pte_mkuffd_wp(entry);
4223 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4224 
4225 	/* No need to invalidate - it was non-present before */
4226 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4227 unlock:
4228 	if (vmf->pte)
4229 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4230 	return ret;
4231 release:
4232 	folio_put(folio);
4233 	goto unlock;
4234 oom_free_page:
4235 	folio_put(folio);
4236 oom:
4237 	return VM_FAULT_OOM;
4238 }
4239 
4240 /*
4241  * The mmap_lock must have been held on entry, and may have been
4242  * released depending on flags and vma->vm_ops->fault() return value.
4243  * See filemap_fault() and __lock_page_retry().
4244  */
4245 static vm_fault_t __do_fault(struct vm_fault *vmf)
4246 {
4247 	struct vm_area_struct *vma = vmf->vma;
4248 	struct folio *folio;
4249 	vm_fault_t ret;
4250 
4251 	/*
4252 	 * Preallocate pte before we take page_lock because this might lead to
4253 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4254 	 *				lock_page(A)
4255 	 *				SetPageWriteback(A)
4256 	 *				unlock_page(A)
4257 	 * lock_page(B)
4258 	 *				lock_page(B)
4259 	 * pte_alloc_one
4260 	 *   shrink_page_list
4261 	 *     wait_on_page_writeback(A)
4262 	 *				SetPageWriteback(B)
4263 	 *				unlock_page(B)
4264 	 *				# flush A, B to clear the writeback
4265 	 */
4266 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4267 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4268 		if (!vmf->prealloc_pte)
4269 			return VM_FAULT_OOM;
4270 	}
4271 
4272 	ret = vma->vm_ops->fault(vmf);
4273 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4274 			    VM_FAULT_DONE_COW)))
4275 		return ret;
4276 
4277 	folio = page_folio(vmf->page);
4278 	if (unlikely(PageHWPoison(vmf->page))) {
4279 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4280 		if (ret & VM_FAULT_LOCKED) {
4281 			if (page_mapped(vmf->page))
4282 				unmap_mapping_folio(folio);
4283 			/* Retry if a clean folio was removed from the cache. */
4284 			if (mapping_evict_folio(folio->mapping, folio))
4285 				poisonret = VM_FAULT_NOPAGE;
4286 			folio_unlock(folio);
4287 		}
4288 		folio_put(folio);
4289 		vmf->page = NULL;
4290 		return poisonret;
4291 	}
4292 
4293 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4294 		folio_lock(folio);
4295 	else
4296 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4297 
4298 	return ret;
4299 }
4300 
4301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4302 static void deposit_prealloc_pte(struct vm_fault *vmf)
4303 {
4304 	struct vm_area_struct *vma = vmf->vma;
4305 
4306 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4307 	/*
4308 	 * We are going to consume the prealloc table,
4309 	 * count that as nr_ptes.
4310 	 */
4311 	mm_inc_nr_ptes(vma->vm_mm);
4312 	vmf->prealloc_pte = NULL;
4313 }
4314 
4315 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4316 {
4317 	struct vm_area_struct *vma = vmf->vma;
4318 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4319 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4320 	pmd_t entry;
4321 	vm_fault_t ret = VM_FAULT_FALLBACK;
4322 
4323 	if (!transhuge_vma_suitable(vma, haddr))
4324 		return ret;
4325 
4326 	page = compound_head(page);
4327 	if (compound_order(page) != HPAGE_PMD_ORDER)
4328 		return ret;
4329 
4330 	/*
4331 	 * Just backoff if any subpage of a THP is corrupted otherwise
4332 	 * the corrupted page may mapped by PMD silently to escape the
4333 	 * check.  This kind of THP just can be PTE mapped.  Access to
4334 	 * the corrupted subpage should trigger SIGBUS as expected.
4335 	 */
4336 	if (unlikely(PageHasHWPoisoned(page)))
4337 		return ret;
4338 
4339 	/*
4340 	 * Archs like ppc64 need additional space to store information
4341 	 * related to pte entry. Use the preallocated table for that.
4342 	 */
4343 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4344 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4345 		if (!vmf->prealloc_pte)
4346 			return VM_FAULT_OOM;
4347 	}
4348 
4349 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4350 	if (unlikely(!pmd_none(*vmf->pmd)))
4351 		goto out;
4352 
4353 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4354 
4355 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4356 	if (write)
4357 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4358 
4359 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4360 	page_add_file_rmap(page, vma, true);
4361 
4362 	/*
4363 	 * deposit and withdraw with pmd lock held
4364 	 */
4365 	if (arch_needs_pgtable_deposit())
4366 		deposit_prealloc_pte(vmf);
4367 
4368 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4369 
4370 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4371 
4372 	/* fault is handled */
4373 	ret = 0;
4374 	count_vm_event(THP_FILE_MAPPED);
4375 out:
4376 	spin_unlock(vmf->ptl);
4377 	return ret;
4378 }
4379 #else
4380 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4381 {
4382 	return VM_FAULT_FALLBACK;
4383 }
4384 #endif
4385 
4386 /**
4387  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4388  * @vmf: Fault decription.
4389  * @folio: The folio that contains @page.
4390  * @page: The first page to create a PTE for.
4391  * @nr: The number of PTEs to create.
4392  * @addr: The first address to create a PTE for.
4393  */
4394 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4395 		struct page *page, unsigned int nr, unsigned long addr)
4396 {
4397 	struct vm_area_struct *vma = vmf->vma;
4398 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4399 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4400 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4401 	pte_t entry;
4402 
4403 	flush_icache_pages(vma, page, nr);
4404 	entry = mk_pte(page, vma->vm_page_prot);
4405 
4406 	if (prefault && arch_wants_old_prefaulted_pte())
4407 		entry = pte_mkold(entry);
4408 	else
4409 		entry = pte_sw_mkyoung(entry);
4410 
4411 	if (write)
4412 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4413 	if (unlikely(uffd_wp))
4414 		entry = pte_mkuffd_wp(entry);
4415 	/* copy-on-write page */
4416 	if (write && !(vma->vm_flags & VM_SHARED)) {
4417 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4418 		VM_BUG_ON_FOLIO(nr != 1, folio);
4419 		folio_add_new_anon_rmap(folio, vma, addr);
4420 		folio_add_lru_vma(folio, vma);
4421 	} else {
4422 		add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4423 		folio_add_file_rmap_range(folio, page, nr, vma, false);
4424 	}
4425 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4426 
4427 	/* no need to invalidate: a not-present page won't be cached */
4428 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4429 }
4430 
4431 static bool vmf_pte_changed(struct vm_fault *vmf)
4432 {
4433 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4434 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4435 
4436 	return !pte_none(ptep_get(vmf->pte));
4437 }
4438 
4439 /**
4440  * finish_fault - finish page fault once we have prepared the page to fault
4441  *
4442  * @vmf: structure describing the fault
4443  *
4444  * This function handles all that is needed to finish a page fault once the
4445  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4446  * given page, adds reverse page mapping, handles memcg charges and LRU
4447  * addition.
4448  *
4449  * The function expects the page to be locked and on success it consumes a
4450  * reference of a page being mapped (for the PTE which maps it).
4451  *
4452  * Return: %0 on success, %VM_FAULT_ code in case of error.
4453  */
4454 vm_fault_t finish_fault(struct vm_fault *vmf)
4455 {
4456 	struct vm_area_struct *vma = vmf->vma;
4457 	struct page *page;
4458 	vm_fault_t ret;
4459 
4460 	/* Did we COW the page? */
4461 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4462 		page = vmf->cow_page;
4463 	else
4464 		page = vmf->page;
4465 
4466 	/*
4467 	 * check even for read faults because we might have lost our CoWed
4468 	 * page
4469 	 */
4470 	if (!(vma->vm_flags & VM_SHARED)) {
4471 		ret = check_stable_address_space(vma->vm_mm);
4472 		if (ret)
4473 			return ret;
4474 	}
4475 
4476 	if (pmd_none(*vmf->pmd)) {
4477 		if (PageTransCompound(page)) {
4478 			ret = do_set_pmd(vmf, page);
4479 			if (ret != VM_FAULT_FALLBACK)
4480 				return ret;
4481 		}
4482 
4483 		if (vmf->prealloc_pte)
4484 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4485 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4486 			return VM_FAULT_OOM;
4487 	}
4488 
4489 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4490 				      vmf->address, &vmf->ptl);
4491 	if (!vmf->pte)
4492 		return VM_FAULT_NOPAGE;
4493 
4494 	/* Re-check under ptl */
4495 	if (likely(!vmf_pte_changed(vmf))) {
4496 		struct folio *folio = page_folio(page);
4497 
4498 		set_pte_range(vmf, folio, page, 1, vmf->address);
4499 		ret = 0;
4500 	} else {
4501 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4502 		ret = VM_FAULT_NOPAGE;
4503 	}
4504 
4505 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4506 	return ret;
4507 }
4508 
4509 static unsigned long fault_around_pages __read_mostly =
4510 	65536 >> PAGE_SHIFT;
4511 
4512 #ifdef CONFIG_DEBUG_FS
4513 static int fault_around_bytes_get(void *data, u64 *val)
4514 {
4515 	*val = fault_around_pages << PAGE_SHIFT;
4516 	return 0;
4517 }
4518 
4519 /*
4520  * fault_around_bytes must be rounded down to the nearest page order as it's
4521  * what do_fault_around() expects to see.
4522  */
4523 static int fault_around_bytes_set(void *data, u64 val)
4524 {
4525 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4526 		return -EINVAL;
4527 
4528 	/*
4529 	 * The minimum value is 1 page, however this results in no fault-around
4530 	 * at all. See should_fault_around().
4531 	 */
4532 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4533 
4534 	return 0;
4535 }
4536 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4537 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4538 
4539 static int __init fault_around_debugfs(void)
4540 {
4541 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4542 				   &fault_around_bytes_fops);
4543 	return 0;
4544 }
4545 late_initcall(fault_around_debugfs);
4546 #endif
4547 
4548 /*
4549  * do_fault_around() tries to map few pages around the fault address. The hope
4550  * is that the pages will be needed soon and this will lower the number of
4551  * faults to handle.
4552  *
4553  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4554  * not ready to be mapped: not up-to-date, locked, etc.
4555  *
4556  * This function doesn't cross VMA or page table boundaries, in order to call
4557  * map_pages() and acquire a PTE lock only once.
4558  *
4559  * fault_around_pages defines how many pages we'll try to map.
4560  * do_fault_around() expects it to be set to a power of two less than or equal
4561  * to PTRS_PER_PTE.
4562  *
4563  * The virtual address of the area that we map is naturally aligned to
4564  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4565  * (and therefore to page order).  This way it's easier to guarantee
4566  * that we don't cross page table boundaries.
4567  */
4568 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4569 {
4570 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4571 	pgoff_t pte_off = pte_index(vmf->address);
4572 	/* The page offset of vmf->address within the VMA. */
4573 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4574 	pgoff_t from_pte, to_pte;
4575 	vm_fault_t ret;
4576 
4577 	/* The PTE offset of the start address, clamped to the VMA. */
4578 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4579 		       pte_off - min(pte_off, vma_off));
4580 
4581 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4582 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4583 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4584 
4585 	if (pmd_none(*vmf->pmd)) {
4586 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4587 		if (!vmf->prealloc_pte)
4588 			return VM_FAULT_OOM;
4589 	}
4590 
4591 	rcu_read_lock();
4592 	ret = vmf->vma->vm_ops->map_pages(vmf,
4593 			vmf->pgoff + from_pte - pte_off,
4594 			vmf->pgoff + to_pte - pte_off);
4595 	rcu_read_unlock();
4596 
4597 	return ret;
4598 }
4599 
4600 /* Return true if we should do read fault-around, false otherwise */
4601 static inline bool should_fault_around(struct vm_fault *vmf)
4602 {
4603 	/* No ->map_pages?  No way to fault around... */
4604 	if (!vmf->vma->vm_ops->map_pages)
4605 		return false;
4606 
4607 	if (uffd_disable_fault_around(vmf->vma))
4608 		return false;
4609 
4610 	/* A single page implies no faulting 'around' at all. */
4611 	return fault_around_pages > 1;
4612 }
4613 
4614 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4615 {
4616 	vm_fault_t ret = 0;
4617 	struct folio *folio;
4618 
4619 	/*
4620 	 * Let's call ->map_pages() first and use ->fault() as fallback
4621 	 * if page by the offset is not ready to be mapped (cold cache or
4622 	 * something).
4623 	 */
4624 	if (should_fault_around(vmf)) {
4625 		ret = do_fault_around(vmf);
4626 		if (ret)
4627 			return ret;
4628 	}
4629 
4630 	ret = vmf_can_call_fault(vmf);
4631 	if (ret)
4632 		return ret;
4633 
4634 	ret = __do_fault(vmf);
4635 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4636 		return ret;
4637 
4638 	ret |= finish_fault(vmf);
4639 	folio = page_folio(vmf->page);
4640 	folio_unlock(folio);
4641 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4642 		folio_put(folio);
4643 	return ret;
4644 }
4645 
4646 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4647 {
4648 	struct vm_area_struct *vma = vmf->vma;
4649 	vm_fault_t ret;
4650 
4651 	ret = vmf_can_call_fault(vmf);
4652 	if (!ret)
4653 		ret = vmf_anon_prepare(vmf);
4654 	if (ret)
4655 		return ret;
4656 
4657 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4658 	if (!vmf->cow_page)
4659 		return VM_FAULT_OOM;
4660 
4661 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4662 				GFP_KERNEL)) {
4663 		put_page(vmf->cow_page);
4664 		return VM_FAULT_OOM;
4665 	}
4666 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4667 
4668 	ret = __do_fault(vmf);
4669 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4670 		goto uncharge_out;
4671 	if (ret & VM_FAULT_DONE_COW)
4672 		return ret;
4673 
4674 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4675 	__SetPageUptodate(vmf->cow_page);
4676 
4677 	ret |= finish_fault(vmf);
4678 	unlock_page(vmf->page);
4679 	put_page(vmf->page);
4680 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4681 		goto uncharge_out;
4682 	return ret;
4683 uncharge_out:
4684 	put_page(vmf->cow_page);
4685 	return ret;
4686 }
4687 
4688 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4689 {
4690 	struct vm_area_struct *vma = vmf->vma;
4691 	vm_fault_t ret, tmp;
4692 	struct folio *folio;
4693 
4694 	ret = vmf_can_call_fault(vmf);
4695 	if (ret)
4696 		return ret;
4697 
4698 	ret = __do_fault(vmf);
4699 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4700 		return ret;
4701 
4702 	folio = page_folio(vmf->page);
4703 
4704 	/*
4705 	 * Check if the backing address space wants to know that the page is
4706 	 * about to become writable
4707 	 */
4708 	if (vma->vm_ops->page_mkwrite) {
4709 		folio_unlock(folio);
4710 		tmp = do_page_mkwrite(vmf, folio);
4711 		if (unlikely(!tmp ||
4712 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4713 			folio_put(folio);
4714 			return tmp;
4715 		}
4716 	}
4717 
4718 	ret |= finish_fault(vmf);
4719 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4720 					VM_FAULT_RETRY))) {
4721 		folio_unlock(folio);
4722 		folio_put(folio);
4723 		return ret;
4724 	}
4725 
4726 	ret |= fault_dirty_shared_page(vmf);
4727 	return ret;
4728 }
4729 
4730 /*
4731  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4732  * but allow concurrent faults).
4733  * The mmap_lock may have been released depending on flags and our
4734  * return value.  See filemap_fault() and __folio_lock_or_retry().
4735  * If mmap_lock is released, vma may become invalid (for example
4736  * by other thread calling munmap()).
4737  */
4738 static vm_fault_t do_fault(struct vm_fault *vmf)
4739 {
4740 	struct vm_area_struct *vma = vmf->vma;
4741 	struct mm_struct *vm_mm = vma->vm_mm;
4742 	vm_fault_t ret;
4743 
4744 	/*
4745 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4746 	 */
4747 	if (!vma->vm_ops->fault) {
4748 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4749 					       vmf->address, &vmf->ptl);
4750 		if (unlikely(!vmf->pte))
4751 			ret = VM_FAULT_SIGBUS;
4752 		else {
4753 			/*
4754 			 * Make sure this is not a temporary clearing of pte
4755 			 * by holding ptl and checking again. A R/M/W update
4756 			 * of pte involves: take ptl, clearing the pte so that
4757 			 * we don't have concurrent modification by hardware
4758 			 * followed by an update.
4759 			 */
4760 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4761 				ret = VM_FAULT_SIGBUS;
4762 			else
4763 				ret = VM_FAULT_NOPAGE;
4764 
4765 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4766 		}
4767 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4768 		ret = do_read_fault(vmf);
4769 	else if (!(vma->vm_flags & VM_SHARED))
4770 		ret = do_cow_fault(vmf);
4771 	else
4772 		ret = do_shared_fault(vmf);
4773 
4774 	/* preallocated pagetable is unused: free it */
4775 	if (vmf->prealloc_pte) {
4776 		pte_free(vm_mm, vmf->prealloc_pte);
4777 		vmf->prealloc_pte = NULL;
4778 	}
4779 	return ret;
4780 }
4781 
4782 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
4783 		      unsigned long addr, int page_nid, int *flags)
4784 {
4785 	folio_get(folio);
4786 
4787 	/* Record the current PID acceesing VMA */
4788 	vma_set_access_pid_bit(vma);
4789 
4790 	count_vm_numa_event(NUMA_HINT_FAULTS);
4791 	if (page_nid == numa_node_id()) {
4792 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4793 		*flags |= TNF_FAULT_LOCAL;
4794 	}
4795 
4796 	return mpol_misplaced(folio, vma, addr);
4797 }
4798 
4799 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4800 {
4801 	struct vm_area_struct *vma = vmf->vma;
4802 	struct folio *folio = NULL;
4803 	int nid = NUMA_NO_NODE;
4804 	bool writable = false;
4805 	int last_cpupid;
4806 	int target_nid;
4807 	pte_t pte, old_pte;
4808 	int flags = 0;
4809 
4810 	/*
4811 	 * The "pte" at this point cannot be used safely without
4812 	 * validation through pte_unmap_same(). It's of NUMA type but
4813 	 * the pfn may be screwed if the read is non atomic.
4814 	 */
4815 	spin_lock(vmf->ptl);
4816 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4817 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4818 		goto out;
4819 	}
4820 
4821 	/* Get the normal PTE  */
4822 	old_pte = ptep_get(vmf->pte);
4823 	pte = pte_modify(old_pte, vma->vm_page_prot);
4824 
4825 	/*
4826 	 * Detect now whether the PTE could be writable; this information
4827 	 * is only valid while holding the PT lock.
4828 	 */
4829 	writable = pte_write(pte);
4830 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4831 	    can_change_pte_writable(vma, vmf->address, pte))
4832 		writable = true;
4833 
4834 	folio = vm_normal_folio(vma, vmf->address, pte);
4835 	if (!folio || folio_is_zone_device(folio))
4836 		goto out_map;
4837 
4838 	/* TODO: handle PTE-mapped THP */
4839 	if (folio_test_large(folio))
4840 		goto out_map;
4841 
4842 	/*
4843 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4844 	 * much anyway since they can be in shared cache state. This misses
4845 	 * the case where a mapping is writable but the process never writes
4846 	 * to it but pte_write gets cleared during protection updates and
4847 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4848 	 * background writeback, dirty balancing and application behaviour.
4849 	 */
4850 	if (!writable)
4851 		flags |= TNF_NO_GROUP;
4852 
4853 	/*
4854 	 * Flag if the folio is shared between multiple address spaces. This
4855 	 * is later used when determining whether to group tasks together
4856 	 */
4857 	if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
4858 		flags |= TNF_SHARED;
4859 
4860 	nid = folio_nid(folio);
4861 	/*
4862 	 * For memory tiering mode, cpupid of slow memory page is used
4863 	 * to record page access time.  So use default value.
4864 	 */
4865 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4866 	    !node_is_toptier(nid))
4867 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4868 	else
4869 		last_cpupid = folio_last_cpupid(folio);
4870 	target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
4871 	if (target_nid == NUMA_NO_NODE) {
4872 		folio_put(folio);
4873 		goto out_map;
4874 	}
4875 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4876 	writable = false;
4877 
4878 	/* Migrate to the requested node */
4879 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
4880 		nid = target_nid;
4881 		flags |= TNF_MIGRATED;
4882 	} else {
4883 		flags |= TNF_MIGRATE_FAIL;
4884 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4885 					       vmf->address, &vmf->ptl);
4886 		if (unlikely(!vmf->pte))
4887 			goto out;
4888 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4889 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4890 			goto out;
4891 		}
4892 		goto out_map;
4893 	}
4894 
4895 out:
4896 	if (nid != NUMA_NO_NODE)
4897 		task_numa_fault(last_cpupid, nid, 1, flags);
4898 	return 0;
4899 out_map:
4900 	/*
4901 	 * Make it present again, depending on how arch implements
4902 	 * non-accessible ptes, some can allow access by kernel mode.
4903 	 */
4904 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4905 	pte = pte_modify(old_pte, vma->vm_page_prot);
4906 	pte = pte_mkyoung(pte);
4907 	if (writable)
4908 		pte = pte_mkwrite(pte, vma);
4909 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4910 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4911 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4912 	goto out;
4913 }
4914 
4915 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4916 {
4917 	struct vm_area_struct *vma = vmf->vma;
4918 	if (vma_is_anonymous(vma))
4919 		return do_huge_pmd_anonymous_page(vmf);
4920 	if (vma->vm_ops->huge_fault)
4921 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4922 	return VM_FAULT_FALLBACK;
4923 }
4924 
4925 /* `inline' is required to avoid gcc 4.1.2 build error */
4926 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4927 {
4928 	struct vm_area_struct *vma = vmf->vma;
4929 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4930 	vm_fault_t ret;
4931 
4932 	if (vma_is_anonymous(vma)) {
4933 		if (likely(!unshare) &&
4934 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
4935 			if (userfaultfd_wp_async(vmf->vma))
4936 				goto split;
4937 			return handle_userfault(vmf, VM_UFFD_WP);
4938 		}
4939 		return do_huge_pmd_wp_page(vmf);
4940 	}
4941 
4942 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4943 		if (vma->vm_ops->huge_fault) {
4944 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4945 			if (!(ret & VM_FAULT_FALLBACK))
4946 				return ret;
4947 		}
4948 	}
4949 
4950 split:
4951 	/* COW or write-notify handled on pte level: split pmd. */
4952 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4953 
4954 	return VM_FAULT_FALLBACK;
4955 }
4956 
4957 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4958 {
4959 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4960 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4961 	struct vm_area_struct *vma = vmf->vma;
4962 	/* No support for anonymous transparent PUD pages yet */
4963 	if (vma_is_anonymous(vma))
4964 		return VM_FAULT_FALLBACK;
4965 	if (vma->vm_ops->huge_fault)
4966 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4968 	return VM_FAULT_FALLBACK;
4969 }
4970 
4971 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4972 {
4973 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4974 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4975 	struct vm_area_struct *vma = vmf->vma;
4976 	vm_fault_t ret;
4977 
4978 	/* No support for anonymous transparent PUD pages yet */
4979 	if (vma_is_anonymous(vma))
4980 		goto split;
4981 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4982 		if (vma->vm_ops->huge_fault) {
4983 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4984 			if (!(ret & VM_FAULT_FALLBACK))
4985 				return ret;
4986 		}
4987 	}
4988 split:
4989 	/* COW or write-notify not handled on PUD level: split pud.*/
4990 	__split_huge_pud(vma, vmf->pud, vmf->address);
4991 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4992 	return VM_FAULT_FALLBACK;
4993 }
4994 
4995 /*
4996  * These routines also need to handle stuff like marking pages dirty
4997  * and/or accessed for architectures that don't do it in hardware (most
4998  * RISC architectures).  The early dirtying is also good on the i386.
4999  *
5000  * There is also a hook called "update_mmu_cache()" that architectures
5001  * with external mmu caches can use to update those (ie the Sparc or
5002  * PowerPC hashed page tables that act as extended TLBs).
5003  *
5004  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5005  * concurrent faults).
5006  *
5007  * The mmap_lock may have been released depending on flags and our return value.
5008  * See filemap_fault() and __folio_lock_or_retry().
5009  */
5010 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5011 {
5012 	pte_t entry;
5013 
5014 	if (unlikely(pmd_none(*vmf->pmd))) {
5015 		/*
5016 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5017 		 * want to allocate huge page, and if we expose page table
5018 		 * for an instant, it will be difficult to retract from
5019 		 * concurrent faults and from rmap lookups.
5020 		 */
5021 		vmf->pte = NULL;
5022 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5023 	} else {
5024 		/*
5025 		 * A regular pmd is established and it can't morph into a huge
5026 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5027 		 * mode; but shmem or file collapse to THP could still morph
5028 		 * it into a huge pmd: just retry later if so.
5029 		 */
5030 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5031 						 vmf->address, &vmf->ptl);
5032 		if (unlikely(!vmf->pte))
5033 			return 0;
5034 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5035 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5036 
5037 		if (pte_none(vmf->orig_pte)) {
5038 			pte_unmap(vmf->pte);
5039 			vmf->pte = NULL;
5040 		}
5041 	}
5042 
5043 	if (!vmf->pte)
5044 		return do_pte_missing(vmf);
5045 
5046 	if (!pte_present(vmf->orig_pte))
5047 		return do_swap_page(vmf);
5048 
5049 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5050 		return do_numa_page(vmf);
5051 
5052 	spin_lock(vmf->ptl);
5053 	entry = vmf->orig_pte;
5054 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5055 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5056 		goto unlock;
5057 	}
5058 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5059 		if (!pte_write(entry))
5060 			return do_wp_page(vmf);
5061 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5062 			entry = pte_mkdirty(entry);
5063 	}
5064 	entry = pte_mkyoung(entry);
5065 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5066 				vmf->flags & FAULT_FLAG_WRITE)) {
5067 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5068 				vmf->pte, 1);
5069 	} else {
5070 		/* Skip spurious TLB flush for retried page fault */
5071 		if (vmf->flags & FAULT_FLAG_TRIED)
5072 			goto unlock;
5073 		/*
5074 		 * This is needed only for protection faults but the arch code
5075 		 * is not yet telling us if this is a protection fault or not.
5076 		 * This still avoids useless tlb flushes for .text page faults
5077 		 * with threads.
5078 		 */
5079 		if (vmf->flags & FAULT_FLAG_WRITE)
5080 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5081 						     vmf->pte);
5082 	}
5083 unlock:
5084 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5085 	return 0;
5086 }
5087 
5088 /*
5089  * On entry, we hold either the VMA lock or the mmap_lock
5090  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5091  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5092  * and __folio_lock_or_retry().
5093  */
5094 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5095 		unsigned long address, unsigned int flags)
5096 {
5097 	struct vm_fault vmf = {
5098 		.vma = vma,
5099 		.address = address & PAGE_MASK,
5100 		.real_address = address,
5101 		.flags = flags,
5102 		.pgoff = linear_page_index(vma, address),
5103 		.gfp_mask = __get_fault_gfp_mask(vma),
5104 	};
5105 	struct mm_struct *mm = vma->vm_mm;
5106 	unsigned long vm_flags = vma->vm_flags;
5107 	pgd_t *pgd;
5108 	p4d_t *p4d;
5109 	vm_fault_t ret;
5110 
5111 	pgd = pgd_offset(mm, address);
5112 	p4d = p4d_alloc(mm, pgd, address);
5113 	if (!p4d)
5114 		return VM_FAULT_OOM;
5115 
5116 	vmf.pud = pud_alloc(mm, p4d, address);
5117 	if (!vmf.pud)
5118 		return VM_FAULT_OOM;
5119 retry_pud:
5120 	if (pud_none(*vmf.pud) &&
5121 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5122 		ret = create_huge_pud(&vmf);
5123 		if (!(ret & VM_FAULT_FALLBACK))
5124 			return ret;
5125 	} else {
5126 		pud_t orig_pud = *vmf.pud;
5127 
5128 		barrier();
5129 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5130 
5131 			/*
5132 			 * TODO once we support anonymous PUDs: NUMA case and
5133 			 * FAULT_FLAG_UNSHARE handling.
5134 			 */
5135 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5136 				ret = wp_huge_pud(&vmf, orig_pud);
5137 				if (!(ret & VM_FAULT_FALLBACK))
5138 					return ret;
5139 			} else {
5140 				huge_pud_set_accessed(&vmf, orig_pud);
5141 				return 0;
5142 			}
5143 		}
5144 	}
5145 
5146 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5147 	if (!vmf.pmd)
5148 		return VM_FAULT_OOM;
5149 
5150 	/* Huge pud page fault raced with pmd_alloc? */
5151 	if (pud_trans_unstable(vmf.pud))
5152 		goto retry_pud;
5153 
5154 	if (pmd_none(*vmf.pmd) &&
5155 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5156 		ret = create_huge_pmd(&vmf);
5157 		if (!(ret & VM_FAULT_FALLBACK))
5158 			return ret;
5159 	} else {
5160 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5161 
5162 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5163 			VM_BUG_ON(thp_migration_supported() &&
5164 					  !is_pmd_migration_entry(vmf.orig_pmd));
5165 			if (is_pmd_migration_entry(vmf.orig_pmd))
5166 				pmd_migration_entry_wait(mm, vmf.pmd);
5167 			return 0;
5168 		}
5169 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5170 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5171 				return do_huge_pmd_numa_page(&vmf);
5172 
5173 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5174 			    !pmd_write(vmf.orig_pmd)) {
5175 				ret = wp_huge_pmd(&vmf);
5176 				if (!(ret & VM_FAULT_FALLBACK))
5177 					return ret;
5178 			} else {
5179 				huge_pmd_set_accessed(&vmf);
5180 				return 0;
5181 			}
5182 		}
5183 	}
5184 
5185 	return handle_pte_fault(&vmf);
5186 }
5187 
5188 /**
5189  * mm_account_fault - Do page fault accounting
5190  * @mm: mm from which memcg should be extracted. It can be NULL.
5191  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5192  *        of perf event counters, but we'll still do the per-task accounting to
5193  *        the task who triggered this page fault.
5194  * @address: the faulted address.
5195  * @flags: the fault flags.
5196  * @ret: the fault retcode.
5197  *
5198  * This will take care of most of the page fault accounting.  Meanwhile, it
5199  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5200  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5201  * still be in per-arch page fault handlers at the entry of page fault.
5202  */
5203 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5204 				    unsigned long address, unsigned int flags,
5205 				    vm_fault_t ret)
5206 {
5207 	bool major;
5208 
5209 	/* Incomplete faults will be accounted upon completion. */
5210 	if (ret & VM_FAULT_RETRY)
5211 		return;
5212 
5213 	/*
5214 	 * To preserve the behavior of older kernels, PGFAULT counters record
5215 	 * both successful and failed faults, as opposed to perf counters,
5216 	 * which ignore failed cases.
5217 	 */
5218 	count_vm_event(PGFAULT);
5219 	count_memcg_event_mm(mm, PGFAULT);
5220 
5221 	/*
5222 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5223 	 * valid).  That includes arch_vma_access_permitted() failing before
5224 	 * reaching here. So this is not a "this many hardware page faults"
5225 	 * counter.  We should use the hw profiling for that.
5226 	 */
5227 	if (ret & VM_FAULT_ERROR)
5228 		return;
5229 
5230 	/*
5231 	 * We define the fault as a major fault when the final successful fault
5232 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5233 	 * handle it immediately previously).
5234 	 */
5235 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5236 
5237 	if (major)
5238 		current->maj_flt++;
5239 	else
5240 		current->min_flt++;
5241 
5242 	/*
5243 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5244 	 * accounting for the per thread fault counters who triggered the
5245 	 * fault, and we skip the perf event updates.
5246 	 */
5247 	if (!regs)
5248 		return;
5249 
5250 	if (major)
5251 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5252 	else
5253 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5254 }
5255 
5256 #ifdef CONFIG_LRU_GEN
5257 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5258 {
5259 	/* the LRU algorithm only applies to accesses with recency */
5260 	current->in_lru_fault = vma_has_recency(vma);
5261 }
5262 
5263 static void lru_gen_exit_fault(void)
5264 {
5265 	current->in_lru_fault = false;
5266 }
5267 #else
5268 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5269 {
5270 }
5271 
5272 static void lru_gen_exit_fault(void)
5273 {
5274 }
5275 #endif /* CONFIG_LRU_GEN */
5276 
5277 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5278 				       unsigned int *flags)
5279 {
5280 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5281 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5282 			return VM_FAULT_SIGSEGV;
5283 		/*
5284 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5285 		 * just treat it like an ordinary read-fault otherwise.
5286 		 */
5287 		if (!is_cow_mapping(vma->vm_flags))
5288 			*flags &= ~FAULT_FLAG_UNSHARE;
5289 	} else if (*flags & FAULT_FLAG_WRITE) {
5290 		/* Write faults on read-only mappings are impossible ... */
5291 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5292 			return VM_FAULT_SIGSEGV;
5293 		/* ... and FOLL_FORCE only applies to COW mappings. */
5294 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5295 				 !is_cow_mapping(vma->vm_flags)))
5296 			return VM_FAULT_SIGSEGV;
5297 	}
5298 #ifdef CONFIG_PER_VMA_LOCK
5299 	/*
5300 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5301 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5302 	 */
5303 	if (WARN_ON_ONCE((*flags &
5304 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5305 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5306 		return VM_FAULT_SIGSEGV;
5307 #endif
5308 
5309 	return 0;
5310 }
5311 
5312 /*
5313  * By the time we get here, we already hold the mm semaphore
5314  *
5315  * The mmap_lock may have been released depending on flags and our
5316  * return value.  See filemap_fault() and __folio_lock_or_retry().
5317  */
5318 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5319 			   unsigned int flags, struct pt_regs *regs)
5320 {
5321 	/* If the fault handler drops the mmap_lock, vma may be freed */
5322 	struct mm_struct *mm = vma->vm_mm;
5323 	vm_fault_t ret;
5324 
5325 	__set_current_state(TASK_RUNNING);
5326 
5327 	ret = sanitize_fault_flags(vma, &flags);
5328 	if (ret)
5329 		goto out;
5330 
5331 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5332 					    flags & FAULT_FLAG_INSTRUCTION,
5333 					    flags & FAULT_FLAG_REMOTE)) {
5334 		ret = VM_FAULT_SIGSEGV;
5335 		goto out;
5336 	}
5337 
5338 	/*
5339 	 * Enable the memcg OOM handling for faults triggered in user
5340 	 * space.  Kernel faults are handled more gracefully.
5341 	 */
5342 	if (flags & FAULT_FLAG_USER)
5343 		mem_cgroup_enter_user_fault();
5344 
5345 	lru_gen_enter_fault(vma);
5346 
5347 	if (unlikely(is_vm_hugetlb_page(vma)))
5348 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5349 	else
5350 		ret = __handle_mm_fault(vma, address, flags);
5351 
5352 	lru_gen_exit_fault();
5353 
5354 	if (flags & FAULT_FLAG_USER) {
5355 		mem_cgroup_exit_user_fault();
5356 		/*
5357 		 * The task may have entered a memcg OOM situation but
5358 		 * if the allocation error was handled gracefully (no
5359 		 * VM_FAULT_OOM), there is no need to kill anything.
5360 		 * Just clean up the OOM state peacefully.
5361 		 */
5362 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5363 			mem_cgroup_oom_synchronize(false);
5364 	}
5365 out:
5366 	mm_account_fault(mm, regs, address, flags, ret);
5367 
5368 	return ret;
5369 }
5370 EXPORT_SYMBOL_GPL(handle_mm_fault);
5371 
5372 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5373 #include <linux/extable.h>
5374 
5375 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5376 {
5377 	if (likely(mmap_read_trylock(mm)))
5378 		return true;
5379 
5380 	if (regs && !user_mode(regs)) {
5381 		unsigned long ip = instruction_pointer(regs);
5382 		if (!search_exception_tables(ip))
5383 			return false;
5384 	}
5385 
5386 	return !mmap_read_lock_killable(mm);
5387 }
5388 
5389 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5390 {
5391 	/*
5392 	 * We don't have this operation yet.
5393 	 *
5394 	 * It should be easy enough to do: it's basically a
5395 	 *    atomic_long_try_cmpxchg_acquire()
5396 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5397 	 * it also needs the proper lockdep magic etc.
5398 	 */
5399 	return false;
5400 }
5401 
5402 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5403 {
5404 	mmap_read_unlock(mm);
5405 	if (regs && !user_mode(regs)) {
5406 		unsigned long ip = instruction_pointer(regs);
5407 		if (!search_exception_tables(ip))
5408 			return false;
5409 	}
5410 	return !mmap_write_lock_killable(mm);
5411 }
5412 
5413 /*
5414  * Helper for page fault handling.
5415  *
5416  * This is kind of equivalend to "mmap_read_lock()" followed
5417  * by "find_extend_vma()", except it's a lot more careful about
5418  * the locking (and will drop the lock on failure).
5419  *
5420  * For example, if we have a kernel bug that causes a page
5421  * fault, we don't want to just use mmap_read_lock() to get
5422  * the mm lock, because that would deadlock if the bug were
5423  * to happen while we're holding the mm lock for writing.
5424  *
5425  * So this checks the exception tables on kernel faults in
5426  * order to only do this all for instructions that are actually
5427  * expected to fault.
5428  *
5429  * We can also actually take the mm lock for writing if we
5430  * need to extend the vma, which helps the VM layer a lot.
5431  */
5432 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5433 			unsigned long addr, struct pt_regs *regs)
5434 {
5435 	struct vm_area_struct *vma;
5436 
5437 	if (!get_mmap_lock_carefully(mm, regs))
5438 		return NULL;
5439 
5440 	vma = find_vma(mm, addr);
5441 	if (likely(vma && (vma->vm_start <= addr)))
5442 		return vma;
5443 
5444 	/*
5445 	 * Well, dang. We might still be successful, but only
5446 	 * if we can extend a vma to do so.
5447 	 */
5448 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5449 		mmap_read_unlock(mm);
5450 		return NULL;
5451 	}
5452 
5453 	/*
5454 	 * We can try to upgrade the mmap lock atomically,
5455 	 * in which case we can continue to use the vma
5456 	 * we already looked up.
5457 	 *
5458 	 * Otherwise we'll have to drop the mmap lock and
5459 	 * re-take it, and also look up the vma again,
5460 	 * re-checking it.
5461 	 */
5462 	if (!mmap_upgrade_trylock(mm)) {
5463 		if (!upgrade_mmap_lock_carefully(mm, regs))
5464 			return NULL;
5465 
5466 		vma = find_vma(mm, addr);
5467 		if (!vma)
5468 			goto fail;
5469 		if (vma->vm_start <= addr)
5470 			goto success;
5471 		if (!(vma->vm_flags & VM_GROWSDOWN))
5472 			goto fail;
5473 	}
5474 
5475 	if (expand_stack_locked(vma, addr))
5476 		goto fail;
5477 
5478 success:
5479 	mmap_write_downgrade(mm);
5480 	return vma;
5481 
5482 fail:
5483 	mmap_write_unlock(mm);
5484 	return NULL;
5485 }
5486 #endif
5487 
5488 #ifdef CONFIG_PER_VMA_LOCK
5489 /*
5490  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5491  * stable and not isolated. If the VMA is not found or is being modified the
5492  * function returns NULL.
5493  */
5494 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5495 					  unsigned long address)
5496 {
5497 	MA_STATE(mas, &mm->mm_mt, address, address);
5498 	struct vm_area_struct *vma;
5499 
5500 	rcu_read_lock();
5501 retry:
5502 	vma = mas_walk(&mas);
5503 	if (!vma)
5504 		goto inval;
5505 
5506 	if (!vma_start_read(vma))
5507 		goto inval;
5508 
5509 	/*
5510 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5511 	 * This check must happen after vma_start_read(); otherwise, a
5512 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5513 	 * from its anon_vma.
5514 	 */
5515 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5516 		goto inval_end_read;
5517 
5518 	/* Check since vm_start/vm_end might change before we lock the VMA */
5519 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5520 		goto inval_end_read;
5521 
5522 	/* Check if the VMA got isolated after we found it */
5523 	if (vma->detached) {
5524 		vma_end_read(vma);
5525 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5526 		/* The area was replaced with another one */
5527 		goto retry;
5528 	}
5529 
5530 	rcu_read_unlock();
5531 	return vma;
5532 
5533 inval_end_read:
5534 	vma_end_read(vma);
5535 inval:
5536 	rcu_read_unlock();
5537 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5538 	return NULL;
5539 }
5540 #endif /* CONFIG_PER_VMA_LOCK */
5541 
5542 #ifndef __PAGETABLE_P4D_FOLDED
5543 /*
5544  * Allocate p4d page table.
5545  * We've already handled the fast-path in-line.
5546  */
5547 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5548 {
5549 	p4d_t *new = p4d_alloc_one(mm, address);
5550 	if (!new)
5551 		return -ENOMEM;
5552 
5553 	spin_lock(&mm->page_table_lock);
5554 	if (pgd_present(*pgd)) {	/* Another has populated it */
5555 		p4d_free(mm, new);
5556 	} else {
5557 		smp_wmb(); /* See comment in pmd_install() */
5558 		pgd_populate(mm, pgd, new);
5559 	}
5560 	spin_unlock(&mm->page_table_lock);
5561 	return 0;
5562 }
5563 #endif /* __PAGETABLE_P4D_FOLDED */
5564 
5565 #ifndef __PAGETABLE_PUD_FOLDED
5566 /*
5567  * Allocate page upper directory.
5568  * We've already handled the fast-path in-line.
5569  */
5570 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5571 {
5572 	pud_t *new = pud_alloc_one(mm, address);
5573 	if (!new)
5574 		return -ENOMEM;
5575 
5576 	spin_lock(&mm->page_table_lock);
5577 	if (!p4d_present(*p4d)) {
5578 		mm_inc_nr_puds(mm);
5579 		smp_wmb(); /* See comment in pmd_install() */
5580 		p4d_populate(mm, p4d, new);
5581 	} else	/* Another has populated it */
5582 		pud_free(mm, new);
5583 	spin_unlock(&mm->page_table_lock);
5584 	return 0;
5585 }
5586 #endif /* __PAGETABLE_PUD_FOLDED */
5587 
5588 #ifndef __PAGETABLE_PMD_FOLDED
5589 /*
5590  * Allocate page middle directory.
5591  * We've already handled the fast-path in-line.
5592  */
5593 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5594 {
5595 	spinlock_t *ptl;
5596 	pmd_t *new = pmd_alloc_one(mm, address);
5597 	if (!new)
5598 		return -ENOMEM;
5599 
5600 	ptl = pud_lock(mm, pud);
5601 	if (!pud_present(*pud)) {
5602 		mm_inc_nr_pmds(mm);
5603 		smp_wmb(); /* See comment in pmd_install() */
5604 		pud_populate(mm, pud, new);
5605 	} else {	/* Another has populated it */
5606 		pmd_free(mm, new);
5607 	}
5608 	spin_unlock(ptl);
5609 	return 0;
5610 }
5611 #endif /* __PAGETABLE_PMD_FOLDED */
5612 
5613 /**
5614  * follow_pte - look up PTE at a user virtual address
5615  * @mm: the mm_struct of the target address space
5616  * @address: user virtual address
5617  * @ptepp: location to store found PTE
5618  * @ptlp: location to store the lock for the PTE
5619  *
5620  * On a successful return, the pointer to the PTE is stored in @ptepp;
5621  * the corresponding lock is taken and its location is stored in @ptlp.
5622  * The contents of the PTE are only stable until @ptlp is released;
5623  * any further use, if any, must be protected against invalidation
5624  * with MMU notifiers.
5625  *
5626  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5627  * should be taken for read.
5628  *
5629  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5630  * it is not a good general-purpose API.
5631  *
5632  * Return: zero on success, -ve otherwise.
5633  */
5634 int follow_pte(struct mm_struct *mm, unsigned long address,
5635 	       pte_t **ptepp, spinlock_t **ptlp)
5636 {
5637 	pgd_t *pgd;
5638 	p4d_t *p4d;
5639 	pud_t *pud;
5640 	pmd_t *pmd;
5641 	pte_t *ptep;
5642 
5643 	pgd = pgd_offset(mm, address);
5644 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5645 		goto out;
5646 
5647 	p4d = p4d_offset(pgd, address);
5648 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5649 		goto out;
5650 
5651 	pud = pud_offset(p4d, address);
5652 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5653 		goto out;
5654 
5655 	pmd = pmd_offset(pud, address);
5656 	VM_BUG_ON(pmd_trans_huge(*pmd));
5657 
5658 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5659 	if (!ptep)
5660 		goto out;
5661 	if (!pte_present(ptep_get(ptep)))
5662 		goto unlock;
5663 	*ptepp = ptep;
5664 	return 0;
5665 unlock:
5666 	pte_unmap_unlock(ptep, *ptlp);
5667 out:
5668 	return -EINVAL;
5669 }
5670 EXPORT_SYMBOL_GPL(follow_pte);
5671 
5672 /**
5673  * follow_pfn - look up PFN at a user virtual address
5674  * @vma: memory mapping
5675  * @address: user virtual address
5676  * @pfn: location to store found PFN
5677  *
5678  * Only IO mappings and raw PFN mappings are allowed.
5679  *
5680  * This function does not allow the caller to read the permissions
5681  * of the PTE.  Do not use it.
5682  *
5683  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5684  */
5685 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5686 	unsigned long *pfn)
5687 {
5688 	int ret = -EINVAL;
5689 	spinlock_t *ptl;
5690 	pte_t *ptep;
5691 
5692 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5693 		return ret;
5694 
5695 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5696 	if (ret)
5697 		return ret;
5698 	*pfn = pte_pfn(ptep_get(ptep));
5699 	pte_unmap_unlock(ptep, ptl);
5700 	return 0;
5701 }
5702 EXPORT_SYMBOL(follow_pfn);
5703 
5704 #ifdef CONFIG_HAVE_IOREMAP_PROT
5705 int follow_phys(struct vm_area_struct *vma,
5706 		unsigned long address, unsigned int flags,
5707 		unsigned long *prot, resource_size_t *phys)
5708 {
5709 	int ret = -EINVAL;
5710 	pte_t *ptep, pte;
5711 	spinlock_t *ptl;
5712 
5713 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5714 		goto out;
5715 
5716 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5717 		goto out;
5718 	pte = ptep_get(ptep);
5719 
5720 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5721 		goto unlock;
5722 
5723 	*prot = pgprot_val(pte_pgprot(pte));
5724 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5725 
5726 	ret = 0;
5727 unlock:
5728 	pte_unmap_unlock(ptep, ptl);
5729 out:
5730 	return ret;
5731 }
5732 
5733 /**
5734  * generic_access_phys - generic implementation for iomem mmap access
5735  * @vma: the vma to access
5736  * @addr: userspace address, not relative offset within @vma
5737  * @buf: buffer to read/write
5738  * @len: length of transfer
5739  * @write: set to FOLL_WRITE when writing, otherwise reading
5740  *
5741  * This is a generic implementation for &vm_operations_struct.access for an
5742  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5743  * not page based.
5744  */
5745 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5746 			void *buf, int len, int write)
5747 {
5748 	resource_size_t phys_addr;
5749 	unsigned long prot = 0;
5750 	void __iomem *maddr;
5751 	pte_t *ptep, pte;
5752 	spinlock_t *ptl;
5753 	int offset = offset_in_page(addr);
5754 	int ret = -EINVAL;
5755 
5756 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5757 		return -EINVAL;
5758 
5759 retry:
5760 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5761 		return -EINVAL;
5762 	pte = ptep_get(ptep);
5763 	pte_unmap_unlock(ptep, ptl);
5764 
5765 	prot = pgprot_val(pte_pgprot(pte));
5766 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5767 
5768 	if ((write & FOLL_WRITE) && !pte_write(pte))
5769 		return -EINVAL;
5770 
5771 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5772 	if (!maddr)
5773 		return -ENOMEM;
5774 
5775 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5776 		goto out_unmap;
5777 
5778 	if (!pte_same(pte, ptep_get(ptep))) {
5779 		pte_unmap_unlock(ptep, ptl);
5780 		iounmap(maddr);
5781 
5782 		goto retry;
5783 	}
5784 
5785 	if (write)
5786 		memcpy_toio(maddr + offset, buf, len);
5787 	else
5788 		memcpy_fromio(buf, maddr + offset, len);
5789 	ret = len;
5790 	pte_unmap_unlock(ptep, ptl);
5791 out_unmap:
5792 	iounmap(maddr);
5793 
5794 	return ret;
5795 }
5796 EXPORT_SYMBOL_GPL(generic_access_phys);
5797 #endif
5798 
5799 /*
5800  * Access another process' address space as given in mm.
5801  */
5802 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5803 			      void *buf, int len, unsigned int gup_flags)
5804 {
5805 	void *old_buf = buf;
5806 	int write = gup_flags & FOLL_WRITE;
5807 
5808 	if (mmap_read_lock_killable(mm))
5809 		return 0;
5810 
5811 	/* Untag the address before looking up the VMA */
5812 	addr = untagged_addr_remote(mm, addr);
5813 
5814 	/* Avoid triggering the temporary warning in __get_user_pages */
5815 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5816 		return 0;
5817 
5818 	/* ignore errors, just check how much was successfully transferred */
5819 	while (len) {
5820 		int bytes, offset;
5821 		void *maddr;
5822 		struct vm_area_struct *vma = NULL;
5823 		struct page *page = get_user_page_vma_remote(mm, addr,
5824 							     gup_flags, &vma);
5825 
5826 		if (IS_ERR(page)) {
5827 			/* We might need to expand the stack to access it */
5828 			vma = vma_lookup(mm, addr);
5829 			if (!vma) {
5830 				vma = expand_stack(mm, addr);
5831 
5832 				/* mmap_lock was dropped on failure */
5833 				if (!vma)
5834 					return buf - old_buf;
5835 
5836 				/* Try again if stack expansion worked */
5837 				continue;
5838 			}
5839 
5840 			/*
5841 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5842 			 * we can access using slightly different code.
5843 			 */
5844 			bytes = 0;
5845 #ifdef CONFIG_HAVE_IOREMAP_PROT
5846 			if (vma->vm_ops && vma->vm_ops->access)
5847 				bytes = vma->vm_ops->access(vma, addr, buf,
5848 							    len, write);
5849 #endif
5850 			if (bytes <= 0)
5851 				break;
5852 		} else {
5853 			bytes = len;
5854 			offset = addr & (PAGE_SIZE-1);
5855 			if (bytes > PAGE_SIZE-offset)
5856 				bytes = PAGE_SIZE-offset;
5857 
5858 			maddr = kmap(page);
5859 			if (write) {
5860 				copy_to_user_page(vma, page, addr,
5861 						  maddr + offset, buf, bytes);
5862 				set_page_dirty_lock(page);
5863 			} else {
5864 				copy_from_user_page(vma, page, addr,
5865 						    buf, maddr + offset, bytes);
5866 			}
5867 			kunmap(page);
5868 			put_page(page);
5869 		}
5870 		len -= bytes;
5871 		buf += bytes;
5872 		addr += bytes;
5873 	}
5874 	mmap_read_unlock(mm);
5875 
5876 	return buf - old_buf;
5877 }
5878 
5879 /**
5880  * access_remote_vm - access another process' address space
5881  * @mm:		the mm_struct of the target address space
5882  * @addr:	start address to access
5883  * @buf:	source or destination buffer
5884  * @len:	number of bytes to transfer
5885  * @gup_flags:	flags modifying lookup behaviour
5886  *
5887  * The caller must hold a reference on @mm.
5888  *
5889  * Return: number of bytes copied from source to destination.
5890  */
5891 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5892 		void *buf, int len, unsigned int gup_flags)
5893 {
5894 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5895 }
5896 
5897 /*
5898  * Access another process' address space.
5899  * Source/target buffer must be kernel space,
5900  * Do not walk the page table directly, use get_user_pages
5901  */
5902 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5903 		void *buf, int len, unsigned int gup_flags)
5904 {
5905 	struct mm_struct *mm;
5906 	int ret;
5907 
5908 	mm = get_task_mm(tsk);
5909 	if (!mm)
5910 		return 0;
5911 
5912 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5913 
5914 	mmput(mm);
5915 
5916 	return ret;
5917 }
5918 EXPORT_SYMBOL_GPL(access_process_vm);
5919 
5920 /*
5921  * Print the name of a VMA.
5922  */
5923 void print_vma_addr(char *prefix, unsigned long ip)
5924 {
5925 	struct mm_struct *mm = current->mm;
5926 	struct vm_area_struct *vma;
5927 
5928 	/*
5929 	 * we might be running from an atomic context so we cannot sleep
5930 	 */
5931 	if (!mmap_read_trylock(mm))
5932 		return;
5933 
5934 	vma = find_vma(mm, ip);
5935 	if (vma && vma->vm_file) {
5936 		struct file *f = vma->vm_file;
5937 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5938 		if (buf) {
5939 			char *p;
5940 
5941 			p = file_path(f, buf, PAGE_SIZE);
5942 			if (IS_ERR(p))
5943 				p = "?";
5944 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5945 					vma->vm_start,
5946 					vma->vm_end - vma->vm_start);
5947 			free_page((unsigned long)buf);
5948 		}
5949 	}
5950 	mmap_read_unlock(mm);
5951 }
5952 
5953 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5954 void __might_fault(const char *file, int line)
5955 {
5956 	if (pagefault_disabled())
5957 		return;
5958 	__might_sleep(file, line);
5959 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5960 	if (current->mm)
5961 		might_lock_read(&current->mm->mmap_lock);
5962 #endif
5963 }
5964 EXPORT_SYMBOL(__might_fault);
5965 #endif
5966 
5967 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5968 /*
5969  * Process all subpages of the specified huge page with the specified
5970  * operation.  The target subpage will be processed last to keep its
5971  * cache lines hot.
5972  */
5973 static inline int process_huge_page(
5974 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5975 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5976 	void *arg)
5977 {
5978 	int i, n, base, l, ret;
5979 	unsigned long addr = addr_hint &
5980 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5981 
5982 	/* Process target subpage last to keep its cache lines hot */
5983 	might_sleep();
5984 	n = (addr_hint - addr) / PAGE_SIZE;
5985 	if (2 * n <= pages_per_huge_page) {
5986 		/* If target subpage in first half of huge page */
5987 		base = 0;
5988 		l = n;
5989 		/* Process subpages at the end of huge page */
5990 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5991 			cond_resched();
5992 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5993 			if (ret)
5994 				return ret;
5995 		}
5996 	} else {
5997 		/* If target subpage in second half of huge page */
5998 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5999 		l = pages_per_huge_page - n;
6000 		/* Process subpages at the begin of huge page */
6001 		for (i = 0; i < base; i++) {
6002 			cond_resched();
6003 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6004 			if (ret)
6005 				return ret;
6006 		}
6007 	}
6008 	/*
6009 	 * Process remaining subpages in left-right-left-right pattern
6010 	 * towards the target subpage
6011 	 */
6012 	for (i = 0; i < l; i++) {
6013 		int left_idx = base + i;
6014 		int right_idx = base + 2 * l - 1 - i;
6015 
6016 		cond_resched();
6017 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6018 		if (ret)
6019 			return ret;
6020 		cond_resched();
6021 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6022 		if (ret)
6023 			return ret;
6024 	}
6025 	return 0;
6026 }
6027 
6028 static void clear_gigantic_page(struct page *page,
6029 				unsigned long addr,
6030 				unsigned int pages_per_huge_page)
6031 {
6032 	int i;
6033 	struct page *p;
6034 
6035 	might_sleep();
6036 	for (i = 0; i < pages_per_huge_page; i++) {
6037 		p = nth_page(page, i);
6038 		cond_resched();
6039 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6040 	}
6041 }
6042 
6043 static int clear_subpage(unsigned long addr, int idx, void *arg)
6044 {
6045 	struct page *page = arg;
6046 
6047 	clear_user_highpage(page + idx, addr);
6048 	return 0;
6049 }
6050 
6051 void clear_huge_page(struct page *page,
6052 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6053 {
6054 	unsigned long addr = addr_hint &
6055 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6056 
6057 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6058 		clear_gigantic_page(page, addr, pages_per_huge_page);
6059 		return;
6060 	}
6061 
6062 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6063 }
6064 
6065 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6066 				     unsigned long addr,
6067 				     struct vm_area_struct *vma,
6068 				     unsigned int pages_per_huge_page)
6069 {
6070 	int i;
6071 	struct page *dst_page;
6072 	struct page *src_page;
6073 
6074 	for (i = 0; i < pages_per_huge_page; i++) {
6075 		dst_page = folio_page(dst, i);
6076 		src_page = folio_page(src, i);
6077 
6078 		cond_resched();
6079 		if (copy_mc_user_highpage(dst_page, src_page,
6080 					  addr + i*PAGE_SIZE, vma)) {
6081 			memory_failure_queue(page_to_pfn(src_page), 0);
6082 			return -EHWPOISON;
6083 		}
6084 	}
6085 	return 0;
6086 }
6087 
6088 struct copy_subpage_arg {
6089 	struct page *dst;
6090 	struct page *src;
6091 	struct vm_area_struct *vma;
6092 };
6093 
6094 static int copy_subpage(unsigned long addr, int idx, void *arg)
6095 {
6096 	struct copy_subpage_arg *copy_arg = arg;
6097 
6098 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6099 				  addr, copy_arg->vma)) {
6100 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6101 		return -EHWPOISON;
6102 	}
6103 	return 0;
6104 }
6105 
6106 int copy_user_large_folio(struct folio *dst, struct folio *src,
6107 			  unsigned long addr_hint, struct vm_area_struct *vma)
6108 {
6109 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6110 	unsigned long addr = addr_hint &
6111 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6112 	struct copy_subpage_arg arg = {
6113 		.dst = &dst->page,
6114 		.src = &src->page,
6115 		.vma = vma,
6116 	};
6117 
6118 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6119 		return copy_user_gigantic_page(dst, src, addr, vma,
6120 					       pages_per_huge_page);
6121 
6122 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6123 }
6124 
6125 long copy_folio_from_user(struct folio *dst_folio,
6126 			   const void __user *usr_src,
6127 			   bool allow_pagefault)
6128 {
6129 	void *kaddr;
6130 	unsigned long i, rc = 0;
6131 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6132 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6133 	struct page *subpage;
6134 
6135 	for (i = 0; i < nr_pages; i++) {
6136 		subpage = folio_page(dst_folio, i);
6137 		kaddr = kmap_local_page(subpage);
6138 		if (!allow_pagefault)
6139 			pagefault_disable();
6140 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6141 		if (!allow_pagefault)
6142 			pagefault_enable();
6143 		kunmap_local(kaddr);
6144 
6145 		ret_val -= (PAGE_SIZE - rc);
6146 		if (rc)
6147 			break;
6148 
6149 		flush_dcache_page(subpage);
6150 
6151 		cond_resched();
6152 	}
6153 	return ret_val;
6154 }
6155 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6156 
6157 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6158 
6159 static struct kmem_cache *page_ptl_cachep;
6160 
6161 void __init ptlock_cache_init(void)
6162 {
6163 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6164 			SLAB_PANIC, NULL);
6165 }
6166 
6167 bool ptlock_alloc(struct ptdesc *ptdesc)
6168 {
6169 	spinlock_t *ptl;
6170 
6171 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6172 	if (!ptl)
6173 		return false;
6174 	ptdesc->ptl = ptl;
6175 	return true;
6176 }
6177 
6178 void ptlock_free(struct ptdesc *ptdesc)
6179 {
6180 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6181 }
6182 #endif
6183