xref: /linux/mm/memory.c (revision a5766f11cfd3a0c03450d99c8fe548c2940be884)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61 
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 			  unsigned long vaddr)
380 {
381 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 			"vm_flags = %lx, vaddr = %lx\n",
383 		(long long)pte_val(pte),
384 		(vma->vm_mm == current->mm ? current->comm : "???"),
385 		vma->vm_flags, vaddr);
386 	dump_stack();
387 }
388 
389 static inline int is_cow_mapping(unsigned int flags)
390 {
391 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392 }
393 
394 /*
395  * vm_normal_page -- This function gets the "struct page" associated with a pte.
396  *
397  * "Special" mappings do not wish to be associated with a "struct page" (either
398  * it doesn't exist, or it exists but they don't want to touch it). In this
399  * case, NULL is returned here. "Normal" mappings do have a struct page.
400  *
401  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402  * pte bit, in which case this function is trivial. Secondly, an architecture
403  * may not have a spare pte bit, which requires a more complicated scheme,
404  * described below.
405  *
406  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407  * special mapping (even if there are underlying and valid "struct pages").
408  * COWed pages of a VM_PFNMAP are always normal.
409  *
410  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413  * mapping will always honor the rule
414  *
415  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416  *
417  * And for normal mappings this is false.
418  *
419  * This restricts such mappings to be a linear translation from virtual address
420  * to pfn. To get around this restriction, we allow arbitrary mappings so long
421  * as the vma is not a COW mapping; in that case, we know that all ptes are
422  * special (because none can have been COWed).
423  *
424  *
425  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426  *
427  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428  * page" backing, however the difference is that _all_ pages with a struct
429  * page (that is, those where pfn_valid is true) are refcounted and considered
430  * normal pages by the VM. The disadvantage is that pages are refcounted
431  * (which can be slower and simply not an option for some PFNMAP users). The
432  * advantage is that we don't have to follow the strict linearity rule of
433  * PFNMAP mappings in order to support COWable mappings.
434  *
435  */
436 #ifdef __HAVE_ARCH_PTE_SPECIAL
437 # define HAVE_PTE_SPECIAL 1
438 #else
439 # define HAVE_PTE_SPECIAL 0
440 #endif
441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 				pte_t pte)
443 {
444 	unsigned long pfn;
445 
446 	if (HAVE_PTE_SPECIAL) {
447 		if (likely(!pte_special(pte))) {
448 			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 			return pte_page(pte);
450 		}
451 		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 		return NULL;
453 	}
454 
455 	/* !HAVE_PTE_SPECIAL case follows: */
456 
457 	pfn = pte_pfn(pte);
458 
459 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 		if (vma->vm_flags & VM_MIXEDMAP) {
461 			if (!pfn_valid(pfn))
462 				return NULL;
463 			goto out;
464 		} else {
465 			unsigned long off;
466 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
467 			if (pfn == vma->vm_pgoff + off)
468 				return NULL;
469 			if (!is_cow_mapping(vma->vm_flags))
470 				return NULL;
471 		}
472 	}
473 
474 	VM_BUG_ON(!pfn_valid(pfn));
475 
476 	/*
477 	 * NOTE! We still have PageReserved() pages in the page tables.
478 	 *
479 	 * eg. VDSO mappings can cause them to exist.
480 	 */
481 out:
482 	return pfn_to_page(pfn);
483 }
484 
485 /*
486  * copy one vm_area from one task to the other. Assumes the page tables
487  * already present in the new task to be cleared in the whole range
488  * covered by this vma.
489  */
490 
491 static inline void
492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494 		unsigned long addr, int *rss)
495 {
496 	unsigned long vm_flags = vma->vm_flags;
497 	pte_t pte = *src_pte;
498 	struct page *page;
499 
500 	/* pte contains position in swap or file, so copy. */
501 	if (unlikely(!pte_present(pte))) {
502 		if (!pte_file(pte)) {
503 			swp_entry_t entry = pte_to_swp_entry(pte);
504 
505 			swap_duplicate(entry);
506 			/* make sure dst_mm is on swapoff's mmlist. */
507 			if (unlikely(list_empty(&dst_mm->mmlist))) {
508 				spin_lock(&mmlist_lock);
509 				if (list_empty(&dst_mm->mmlist))
510 					list_add(&dst_mm->mmlist,
511 						 &src_mm->mmlist);
512 				spin_unlock(&mmlist_lock);
513 			}
514 			if (is_write_migration_entry(entry) &&
515 					is_cow_mapping(vm_flags)) {
516 				/*
517 				 * COW mappings require pages in both parent
518 				 * and child to be set to read.
519 				 */
520 				make_migration_entry_read(&entry);
521 				pte = swp_entry_to_pte(entry);
522 				set_pte_at(src_mm, addr, src_pte, pte);
523 			}
524 		}
525 		goto out_set_pte;
526 	}
527 
528 	/*
529 	 * If it's a COW mapping, write protect it both
530 	 * in the parent and the child
531 	 */
532 	if (is_cow_mapping(vm_flags)) {
533 		ptep_set_wrprotect(src_mm, addr, src_pte);
534 		pte = pte_wrprotect(pte);
535 	}
536 
537 	/*
538 	 * If it's a shared mapping, mark it clean in
539 	 * the child
540 	 */
541 	if (vm_flags & VM_SHARED)
542 		pte = pte_mkclean(pte);
543 	pte = pte_mkold(pte);
544 
545 	page = vm_normal_page(vma, addr, pte);
546 	if (page) {
547 		get_page(page);
548 		page_dup_rmap(page, vma, addr);
549 		rss[!!PageAnon(page)]++;
550 	}
551 
552 out_set_pte:
553 	set_pte_at(dst_mm, addr, dst_pte, pte);
554 }
555 
556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 		unsigned long addr, unsigned long end)
559 {
560 	pte_t *src_pte, *dst_pte;
561 	spinlock_t *src_ptl, *dst_ptl;
562 	int progress = 0;
563 	int rss[2];
564 
565 again:
566 	rss[1] = rss[0] = 0;
567 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568 	if (!dst_pte)
569 		return -ENOMEM;
570 	src_pte = pte_offset_map_nested(src_pmd, addr);
571 	src_ptl = pte_lockptr(src_mm, src_pmd);
572 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573 	arch_enter_lazy_mmu_mode();
574 
575 	do {
576 		/*
577 		 * We are holding two locks at this point - either of them
578 		 * could generate latencies in another task on another CPU.
579 		 */
580 		if (progress >= 32) {
581 			progress = 0;
582 			if (need_resched() ||
583 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584 				break;
585 		}
586 		if (pte_none(*src_pte)) {
587 			progress++;
588 			continue;
589 		}
590 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591 		progress += 8;
592 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593 
594 	arch_leave_lazy_mmu_mode();
595 	spin_unlock(src_ptl);
596 	pte_unmap_nested(src_pte - 1);
597 	add_mm_rss(dst_mm, rss[0], rss[1]);
598 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 	cond_resched();
600 	if (addr != end)
601 		goto again;
602 	return 0;
603 }
604 
605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 		unsigned long addr, unsigned long end)
608 {
609 	pmd_t *src_pmd, *dst_pmd;
610 	unsigned long next;
611 
612 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 	if (!dst_pmd)
614 		return -ENOMEM;
615 	src_pmd = pmd_offset(src_pud, addr);
616 	do {
617 		next = pmd_addr_end(addr, end);
618 		if (pmd_none_or_clear_bad(src_pmd))
619 			continue;
620 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 						vma, addr, next))
622 			return -ENOMEM;
623 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 	return 0;
625 }
626 
627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 		unsigned long addr, unsigned long end)
630 {
631 	pud_t *src_pud, *dst_pud;
632 	unsigned long next;
633 
634 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 	if (!dst_pud)
636 		return -ENOMEM;
637 	src_pud = pud_offset(src_pgd, addr);
638 	do {
639 		next = pud_addr_end(addr, end);
640 		if (pud_none_or_clear_bad(src_pud))
641 			continue;
642 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 						vma, addr, next))
644 			return -ENOMEM;
645 	} while (dst_pud++, src_pud++, addr = next, addr != end);
646 	return 0;
647 }
648 
649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 		struct vm_area_struct *vma)
651 {
652 	pgd_t *src_pgd, *dst_pgd;
653 	unsigned long next;
654 	unsigned long addr = vma->vm_start;
655 	unsigned long end = vma->vm_end;
656 	int ret;
657 
658 	/*
659 	 * Don't copy ptes where a page fault will fill them correctly.
660 	 * Fork becomes much lighter when there are big shared or private
661 	 * readonly mappings. The tradeoff is that copy_page_range is more
662 	 * efficient than faulting.
663 	 */
664 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665 		if (!vma->anon_vma)
666 			return 0;
667 	}
668 
669 	if (is_vm_hugetlb_page(vma))
670 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671 
672 	/*
673 	 * We need to invalidate the secondary MMU mappings only when
674 	 * there could be a permission downgrade on the ptes of the
675 	 * parent mm. And a permission downgrade will only happen if
676 	 * is_cow_mapping() returns true.
677 	 */
678 	if (is_cow_mapping(vma->vm_flags))
679 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
680 
681 	ret = 0;
682 	dst_pgd = pgd_offset(dst_mm, addr);
683 	src_pgd = pgd_offset(src_mm, addr);
684 	do {
685 		next = pgd_addr_end(addr, end);
686 		if (pgd_none_or_clear_bad(src_pgd))
687 			continue;
688 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
689 					    vma, addr, next))) {
690 			ret = -ENOMEM;
691 			break;
692 		}
693 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
694 
695 	if (is_cow_mapping(vma->vm_flags))
696 		mmu_notifier_invalidate_range_end(src_mm,
697 						  vma->vm_start, end);
698 	return ret;
699 }
700 
701 static unsigned long zap_pte_range(struct mmu_gather *tlb,
702 				struct vm_area_struct *vma, pmd_t *pmd,
703 				unsigned long addr, unsigned long end,
704 				long *zap_work, struct zap_details *details)
705 {
706 	struct mm_struct *mm = tlb->mm;
707 	pte_t *pte;
708 	spinlock_t *ptl;
709 	int file_rss = 0;
710 	int anon_rss = 0;
711 
712 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
713 	arch_enter_lazy_mmu_mode();
714 	do {
715 		pte_t ptent = *pte;
716 		if (pte_none(ptent)) {
717 			(*zap_work)--;
718 			continue;
719 		}
720 
721 		(*zap_work) -= PAGE_SIZE;
722 
723 		if (pte_present(ptent)) {
724 			struct page *page;
725 
726 			page = vm_normal_page(vma, addr, ptent);
727 			if (unlikely(details) && page) {
728 				/*
729 				 * unmap_shared_mapping_pages() wants to
730 				 * invalidate cache without truncating:
731 				 * unmap shared but keep private pages.
732 				 */
733 				if (details->check_mapping &&
734 				    details->check_mapping != page->mapping)
735 					continue;
736 				/*
737 				 * Each page->index must be checked when
738 				 * invalidating or truncating nonlinear.
739 				 */
740 				if (details->nonlinear_vma &&
741 				    (page->index < details->first_index ||
742 				     page->index > details->last_index))
743 					continue;
744 			}
745 			ptent = ptep_get_and_clear_full(mm, addr, pte,
746 							tlb->fullmm);
747 			tlb_remove_tlb_entry(tlb, pte, addr);
748 			if (unlikely(!page))
749 				continue;
750 			if (unlikely(details) && details->nonlinear_vma
751 			    && linear_page_index(details->nonlinear_vma,
752 						addr) != page->index)
753 				set_pte_at(mm, addr, pte,
754 					   pgoff_to_pte(page->index));
755 			if (PageAnon(page))
756 				anon_rss--;
757 			else {
758 				if (pte_dirty(ptent))
759 					set_page_dirty(page);
760 				if (pte_young(ptent))
761 					SetPageReferenced(page);
762 				file_rss--;
763 			}
764 			page_remove_rmap(page, vma);
765 			tlb_remove_page(tlb, page);
766 			continue;
767 		}
768 		/*
769 		 * If details->check_mapping, we leave swap entries;
770 		 * if details->nonlinear_vma, we leave file entries.
771 		 */
772 		if (unlikely(details))
773 			continue;
774 		if (!pte_file(ptent))
775 			free_swap_and_cache(pte_to_swp_entry(ptent));
776 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
777 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
778 
779 	add_mm_rss(mm, file_rss, anon_rss);
780 	arch_leave_lazy_mmu_mode();
781 	pte_unmap_unlock(pte - 1, ptl);
782 
783 	return addr;
784 }
785 
786 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
787 				struct vm_area_struct *vma, pud_t *pud,
788 				unsigned long addr, unsigned long end,
789 				long *zap_work, struct zap_details *details)
790 {
791 	pmd_t *pmd;
792 	unsigned long next;
793 
794 	pmd = pmd_offset(pud, addr);
795 	do {
796 		next = pmd_addr_end(addr, end);
797 		if (pmd_none_or_clear_bad(pmd)) {
798 			(*zap_work)--;
799 			continue;
800 		}
801 		next = zap_pte_range(tlb, vma, pmd, addr, next,
802 						zap_work, details);
803 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
804 
805 	return addr;
806 }
807 
808 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
809 				struct vm_area_struct *vma, pgd_t *pgd,
810 				unsigned long addr, unsigned long end,
811 				long *zap_work, struct zap_details *details)
812 {
813 	pud_t *pud;
814 	unsigned long next;
815 
816 	pud = pud_offset(pgd, addr);
817 	do {
818 		next = pud_addr_end(addr, end);
819 		if (pud_none_or_clear_bad(pud)) {
820 			(*zap_work)--;
821 			continue;
822 		}
823 		next = zap_pmd_range(tlb, vma, pud, addr, next,
824 						zap_work, details);
825 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
826 
827 	return addr;
828 }
829 
830 static unsigned long unmap_page_range(struct mmu_gather *tlb,
831 				struct vm_area_struct *vma,
832 				unsigned long addr, unsigned long end,
833 				long *zap_work, struct zap_details *details)
834 {
835 	pgd_t *pgd;
836 	unsigned long next;
837 
838 	if (details && !details->check_mapping && !details->nonlinear_vma)
839 		details = NULL;
840 
841 	BUG_ON(addr >= end);
842 	tlb_start_vma(tlb, vma);
843 	pgd = pgd_offset(vma->vm_mm, addr);
844 	do {
845 		next = pgd_addr_end(addr, end);
846 		if (pgd_none_or_clear_bad(pgd)) {
847 			(*zap_work)--;
848 			continue;
849 		}
850 		next = zap_pud_range(tlb, vma, pgd, addr, next,
851 						zap_work, details);
852 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
853 	tlb_end_vma(tlb, vma);
854 
855 	return addr;
856 }
857 
858 #ifdef CONFIG_PREEMPT
859 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
860 #else
861 /* No preempt: go for improved straight-line efficiency */
862 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
863 #endif
864 
865 /**
866  * unmap_vmas - unmap a range of memory covered by a list of vma's
867  * @tlbp: address of the caller's struct mmu_gather
868  * @vma: the starting vma
869  * @start_addr: virtual address at which to start unmapping
870  * @end_addr: virtual address at which to end unmapping
871  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
872  * @details: details of nonlinear truncation or shared cache invalidation
873  *
874  * Returns the end address of the unmapping (restart addr if interrupted).
875  *
876  * Unmap all pages in the vma list.
877  *
878  * We aim to not hold locks for too long (for scheduling latency reasons).
879  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
880  * return the ending mmu_gather to the caller.
881  *
882  * Only addresses between `start' and `end' will be unmapped.
883  *
884  * The VMA list must be sorted in ascending virtual address order.
885  *
886  * unmap_vmas() assumes that the caller will flush the whole unmapped address
887  * range after unmap_vmas() returns.  So the only responsibility here is to
888  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
889  * drops the lock and schedules.
890  */
891 unsigned long unmap_vmas(struct mmu_gather **tlbp,
892 		struct vm_area_struct *vma, unsigned long start_addr,
893 		unsigned long end_addr, unsigned long *nr_accounted,
894 		struct zap_details *details)
895 {
896 	long zap_work = ZAP_BLOCK_SIZE;
897 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
898 	int tlb_start_valid = 0;
899 	unsigned long start = start_addr;
900 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
901 	int fullmm = (*tlbp)->fullmm;
902 	struct mm_struct *mm = vma->vm_mm;
903 
904 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
905 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
906 		unsigned long end;
907 
908 		start = max(vma->vm_start, start_addr);
909 		if (start >= vma->vm_end)
910 			continue;
911 		end = min(vma->vm_end, end_addr);
912 		if (end <= vma->vm_start)
913 			continue;
914 
915 		if (vma->vm_flags & VM_ACCOUNT)
916 			*nr_accounted += (end - start) >> PAGE_SHIFT;
917 
918 		while (start != end) {
919 			if (!tlb_start_valid) {
920 				tlb_start = start;
921 				tlb_start_valid = 1;
922 			}
923 
924 			if (unlikely(is_vm_hugetlb_page(vma))) {
925 				/*
926 				 * It is undesirable to test vma->vm_file as it
927 				 * should be non-null for valid hugetlb area.
928 				 * However, vm_file will be NULL in the error
929 				 * cleanup path of do_mmap_pgoff. When
930 				 * hugetlbfs ->mmap method fails,
931 				 * do_mmap_pgoff() nullifies vma->vm_file
932 				 * before calling this function to clean up.
933 				 * Since no pte has actually been setup, it is
934 				 * safe to do nothing in this case.
935 				 */
936 				if (vma->vm_file) {
937 					unmap_hugepage_range(vma, start, end, NULL);
938 					zap_work -= (end - start) /
939 					pages_per_huge_page(hstate_vma(vma));
940 				}
941 
942 				start = end;
943 			} else
944 				start = unmap_page_range(*tlbp, vma,
945 						start, end, &zap_work, details);
946 
947 			if (zap_work > 0) {
948 				BUG_ON(start != end);
949 				break;
950 			}
951 
952 			tlb_finish_mmu(*tlbp, tlb_start, start);
953 
954 			if (need_resched() ||
955 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
956 				if (i_mmap_lock) {
957 					*tlbp = NULL;
958 					goto out;
959 				}
960 				cond_resched();
961 			}
962 
963 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
964 			tlb_start_valid = 0;
965 			zap_work = ZAP_BLOCK_SIZE;
966 		}
967 	}
968 out:
969 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
970 	return start;	/* which is now the end (or restart) address */
971 }
972 
973 /**
974  * zap_page_range - remove user pages in a given range
975  * @vma: vm_area_struct holding the applicable pages
976  * @address: starting address of pages to zap
977  * @size: number of bytes to zap
978  * @details: details of nonlinear truncation or shared cache invalidation
979  */
980 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
981 		unsigned long size, struct zap_details *details)
982 {
983 	struct mm_struct *mm = vma->vm_mm;
984 	struct mmu_gather *tlb;
985 	unsigned long end = address + size;
986 	unsigned long nr_accounted = 0;
987 
988 	lru_add_drain();
989 	tlb = tlb_gather_mmu(mm, 0);
990 	update_hiwater_rss(mm);
991 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
992 	if (tlb)
993 		tlb_finish_mmu(tlb, address, end);
994 	return end;
995 }
996 
997 /**
998  * zap_vma_ptes - remove ptes mapping the vma
999  * @vma: vm_area_struct holding ptes to be zapped
1000  * @address: starting address of pages to zap
1001  * @size: number of bytes to zap
1002  *
1003  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1004  *
1005  * The entire address range must be fully contained within the vma.
1006  *
1007  * Returns 0 if successful.
1008  */
1009 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1010 		unsigned long size)
1011 {
1012 	if (address < vma->vm_start || address + size > vma->vm_end ||
1013 	    		!(vma->vm_flags & VM_PFNMAP))
1014 		return -1;
1015 	zap_page_range(vma, address, size, NULL);
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1019 
1020 /*
1021  * Do a quick page-table lookup for a single page.
1022  */
1023 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1024 			unsigned int flags)
1025 {
1026 	pgd_t *pgd;
1027 	pud_t *pud;
1028 	pmd_t *pmd;
1029 	pte_t *ptep, pte;
1030 	spinlock_t *ptl;
1031 	struct page *page;
1032 	struct mm_struct *mm = vma->vm_mm;
1033 
1034 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1035 	if (!IS_ERR(page)) {
1036 		BUG_ON(flags & FOLL_GET);
1037 		goto out;
1038 	}
1039 
1040 	page = NULL;
1041 	pgd = pgd_offset(mm, address);
1042 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1043 		goto no_page_table;
1044 
1045 	pud = pud_offset(pgd, address);
1046 	if (pud_none(*pud))
1047 		goto no_page_table;
1048 	if (pud_huge(*pud)) {
1049 		BUG_ON(flags & FOLL_GET);
1050 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1051 		goto out;
1052 	}
1053 	if (unlikely(pud_bad(*pud)))
1054 		goto no_page_table;
1055 
1056 	pmd = pmd_offset(pud, address);
1057 	if (pmd_none(*pmd))
1058 		goto no_page_table;
1059 	if (pmd_huge(*pmd)) {
1060 		BUG_ON(flags & FOLL_GET);
1061 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1062 		goto out;
1063 	}
1064 	if (unlikely(pmd_bad(*pmd)))
1065 		goto no_page_table;
1066 
1067 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1068 
1069 	pte = *ptep;
1070 	if (!pte_present(pte))
1071 		goto no_page;
1072 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1073 		goto unlock;
1074 	page = vm_normal_page(vma, address, pte);
1075 	if (unlikely(!page))
1076 		goto bad_page;
1077 
1078 	if (flags & FOLL_GET)
1079 		get_page(page);
1080 	if (flags & FOLL_TOUCH) {
1081 		if ((flags & FOLL_WRITE) &&
1082 		    !pte_dirty(pte) && !PageDirty(page))
1083 			set_page_dirty(page);
1084 		mark_page_accessed(page);
1085 	}
1086 unlock:
1087 	pte_unmap_unlock(ptep, ptl);
1088 out:
1089 	return page;
1090 
1091 bad_page:
1092 	pte_unmap_unlock(ptep, ptl);
1093 	return ERR_PTR(-EFAULT);
1094 
1095 no_page:
1096 	pte_unmap_unlock(ptep, ptl);
1097 	if (!pte_none(pte))
1098 		return page;
1099 	/* Fall through to ZERO_PAGE handling */
1100 no_page_table:
1101 	/*
1102 	 * When core dumping an enormous anonymous area that nobody
1103 	 * has touched so far, we don't want to allocate page tables.
1104 	 */
1105 	if (flags & FOLL_ANON) {
1106 		page = ZERO_PAGE(0);
1107 		if (flags & FOLL_GET)
1108 			get_page(page);
1109 		BUG_ON(flags & FOLL_WRITE);
1110 	}
1111 	return page;
1112 }
1113 
1114 /* Can we do the FOLL_ANON optimization? */
1115 static inline int use_zero_page(struct vm_area_struct *vma)
1116 {
1117 	/*
1118 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1119 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1120 	 * we want to get the page from the page tables to make sure
1121 	 * that we serialize and update with any other user of that
1122 	 * mapping.
1123 	 */
1124 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1125 		return 0;
1126 	/*
1127 	 * And if we have a fault routine, it's not an anonymous region.
1128 	 */
1129 	return !vma->vm_ops || !vma->vm_ops->fault;
1130 }
1131 
1132 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1133 		unsigned long start, int len, int write, int force,
1134 		struct page **pages, struct vm_area_struct **vmas)
1135 {
1136 	int i;
1137 	unsigned int vm_flags;
1138 
1139 	if (len <= 0)
1140 		return 0;
1141 	/*
1142 	 * Require read or write permissions.
1143 	 * If 'force' is set, we only require the "MAY" flags.
1144 	 */
1145 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1146 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1147 	i = 0;
1148 
1149 	do {
1150 		struct vm_area_struct *vma;
1151 		unsigned int foll_flags;
1152 
1153 		vma = find_extend_vma(mm, start);
1154 		if (!vma && in_gate_area(tsk, start)) {
1155 			unsigned long pg = start & PAGE_MASK;
1156 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1157 			pgd_t *pgd;
1158 			pud_t *pud;
1159 			pmd_t *pmd;
1160 			pte_t *pte;
1161 			if (write) /* user gate pages are read-only */
1162 				return i ? : -EFAULT;
1163 			if (pg > TASK_SIZE)
1164 				pgd = pgd_offset_k(pg);
1165 			else
1166 				pgd = pgd_offset_gate(mm, pg);
1167 			BUG_ON(pgd_none(*pgd));
1168 			pud = pud_offset(pgd, pg);
1169 			BUG_ON(pud_none(*pud));
1170 			pmd = pmd_offset(pud, pg);
1171 			if (pmd_none(*pmd))
1172 				return i ? : -EFAULT;
1173 			pte = pte_offset_map(pmd, pg);
1174 			if (pte_none(*pte)) {
1175 				pte_unmap(pte);
1176 				return i ? : -EFAULT;
1177 			}
1178 			if (pages) {
1179 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1180 				pages[i] = page;
1181 				if (page)
1182 					get_page(page);
1183 			}
1184 			pte_unmap(pte);
1185 			if (vmas)
1186 				vmas[i] = gate_vma;
1187 			i++;
1188 			start += PAGE_SIZE;
1189 			len--;
1190 			continue;
1191 		}
1192 
1193 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1194 				|| !(vm_flags & vma->vm_flags))
1195 			return i ? : -EFAULT;
1196 
1197 		if (is_vm_hugetlb_page(vma)) {
1198 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1199 						&start, &len, i, write);
1200 			continue;
1201 		}
1202 
1203 		foll_flags = FOLL_TOUCH;
1204 		if (pages)
1205 			foll_flags |= FOLL_GET;
1206 		if (!write && use_zero_page(vma))
1207 			foll_flags |= FOLL_ANON;
1208 
1209 		do {
1210 			struct page *page;
1211 
1212 			/*
1213 			 * If tsk is ooming, cut off its access to large memory
1214 			 * allocations. It has a pending SIGKILL, but it can't
1215 			 * be processed until returning to user space.
1216 			 */
1217 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1218 				return i ? i : -ENOMEM;
1219 
1220 			if (write)
1221 				foll_flags |= FOLL_WRITE;
1222 
1223 			cond_resched();
1224 			while (!(page = follow_page(vma, start, foll_flags))) {
1225 				int ret;
1226 				ret = handle_mm_fault(mm, vma, start,
1227 						foll_flags & FOLL_WRITE);
1228 				if (ret & VM_FAULT_ERROR) {
1229 					if (ret & VM_FAULT_OOM)
1230 						return i ? i : -ENOMEM;
1231 					else if (ret & VM_FAULT_SIGBUS)
1232 						return i ? i : -EFAULT;
1233 					BUG();
1234 				}
1235 				if (ret & VM_FAULT_MAJOR)
1236 					tsk->maj_flt++;
1237 				else
1238 					tsk->min_flt++;
1239 
1240 				/*
1241 				 * The VM_FAULT_WRITE bit tells us that
1242 				 * do_wp_page has broken COW when necessary,
1243 				 * even if maybe_mkwrite decided not to set
1244 				 * pte_write. We can thus safely do subsequent
1245 				 * page lookups as if they were reads.
1246 				 */
1247 				if (ret & VM_FAULT_WRITE)
1248 					foll_flags &= ~FOLL_WRITE;
1249 
1250 				cond_resched();
1251 			}
1252 			if (IS_ERR(page))
1253 				return i ? i : PTR_ERR(page);
1254 			if (pages) {
1255 				pages[i] = page;
1256 
1257 				flush_anon_page(vma, page, start);
1258 				flush_dcache_page(page);
1259 			}
1260 			if (vmas)
1261 				vmas[i] = vma;
1262 			i++;
1263 			start += PAGE_SIZE;
1264 			len--;
1265 		} while (len && start < vma->vm_end);
1266 	} while (len);
1267 	return i;
1268 }
1269 EXPORT_SYMBOL(get_user_pages);
1270 
1271 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1272 			spinlock_t **ptl)
1273 {
1274 	pgd_t * pgd = pgd_offset(mm, addr);
1275 	pud_t * pud = pud_alloc(mm, pgd, addr);
1276 	if (pud) {
1277 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1278 		if (pmd)
1279 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1280 	}
1281 	return NULL;
1282 }
1283 
1284 /*
1285  * This is the old fallback for page remapping.
1286  *
1287  * For historical reasons, it only allows reserved pages. Only
1288  * old drivers should use this, and they needed to mark their
1289  * pages reserved for the old functions anyway.
1290  */
1291 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1292 			struct page *page, pgprot_t prot)
1293 {
1294 	struct mm_struct *mm = vma->vm_mm;
1295 	int retval;
1296 	pte_t *pte;
1297 	spinlock_t *ptl;
1298 
1299 	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1300 	if (retval)
1301 		goto out;
1302 
1303 	retval = -EINVAL;
1304 	if (PageAnon(page))
1305 		goto out_uncharge;
1306 	retval = -ENOMEM;
1307 	flush_dcache_page(page);
1308 	pte = get_locked_pte(mm, addr, &ptl);
1309 	if (!pte)
1310 		goto out_uncharge;
1311 	retval = -EBUSY;
1312 	if (!pte_none(*pte))
1313 		goto out_unlock;
1314 
1315 	/* Ok, finally just insert the thing.. */
1316 	get_page(page);
1317 	inc_mm_counter(mm, file_rss);
1318 	page_add_file_rmap(page);
1319 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1320 
1321 	retval = 0;
1322 	pte_unmap_unlock(pte, ptl);
1323 	return retval;
1324 out_unlock:
1325 	pte_unmap_unlock(pte, ptl);
1326 out_uncharge:
1327 	mem_cgroup_uncharge_page(page);
1328 out:
1329 	return retval;
1330 }
1331 
1332 /**
1333  * vm_insert_page - insert single page into user vma
1334  * @vma: user vma to map to
1335  * @addr: target user address of this page
1336  * @page: source kernel page
1337  *
1338  * This allows drivers to insert individual pages they've allocated
1339  * into a user vma.
1340  *
1341  * The page has to be a nice clean _individual_ kernel allocation.
1342  * If you allocate a compound page, you need to have marked it as
1343  * such (__GFP_COMP), or manually just split the page up yourself
1344  * (see split_page()).
1345  *
1346  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1347  * took an arbitrary page protection parameter. This doesn't allow
1348  * that. Your vma protection will have to be set up correctly, which
1349  * means that if you want a shared writable mapping, you'd better
1350  * ask for a shared writable mapping!
1351  *
1352  * The page does not need to be reserved.
1353  */
1354 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1355 			struct page *page)
1356 {
1357 	if (addr < vma->vm_start || addr >= vma->vm_end)
1358 		return -EFAULT;
1359 	if (!page_count(page))
1360 		return -EINVAL;
1361 	vma->vm_flags |= VM_INSERTPAGE;
1362 	return insert_page(vma, addr, page, vma->vm_page_prot);
1363 }
1364 EXPORT_SYMBOL(vm_insert_page);
1365 
1366 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1367 			unsigned long pfn, pgprot_t prot)
1368 {
1369 	struct mm_struct *mm = vma->vm_mm;
1370 	int retval;
1371 	pte_t *pte, entry;
1372 	spinlock_t *ptl;
1373 
1374 	retval = -ENOMEM;
1375 	pte = get_locked_pte(mm, addr, &ptl);
1376 	if (!pte)
1377 		goto out;
1378 	retval = -EBUSY;
1379 	if (!pte_none(*pte))
1380 		goto out_unlock;
1381 
1382 	/* Ok, finally just insert the thing.. */
1383 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1384 	set_pte_at(mm, addr, pte, entry);
1385 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1386 
1387 	retval = 0;
1388 out_unlock:
1389 	pte_unmap_unlock(pte, ptl);
1390 out:
1391 	return retval;
1392 }
1393 
1394 /**
1395  * vm_insert_pfn - insert single pfn into user vma
1396  * @vma: user vma to map to
1397  * @addr: target user address of this page
1398  * @pfn: source kernel pfn
1399  *
1400  * Similar to vm_inert_page, this allows drivers to insert individual pages
1401  * they've allocated into a user vma. Same comments apply.
1402  *
1403  * This function should only be called from a vm_ops->fault handler, and
1404  * in that case the handler should return NULL.
1405  *
1406  * vma cannot be a COW mapping.
1407  *
1408  * As this is called only for pages that do not currently exist, we
1409  * do not need to flush old virtual caches or the TLB.
1410  */
1411 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1412 			unsigned long pfn)
1413 {
1414 	/*
1415 	 * Technically, architectures with pte_special can avoid all these
1416 	 * restrictions (same for remap_pfn_range).  However we would like
1417 	 * consistency in testing and feature parity among all, so we should
1418 	 * try to keep these invariants in place for everybody.
1419 	 */
1420 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1421 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1422 						(VM_PFNMAP|VM_MIXEDMAP));
1423 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1424 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1425 
1426 	if (addr < vma->vm_start || addr >= vma->vm_end)
1427 		return -EFAULT;
1428 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1429 }
1430 EXPORT_SYMBOL(vm_insert_pfn);
1431 
1432 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1433 			unsigned long pfn)
1434 {
1435 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1436 
1437 	if (addr < vma->vm_start || addr >= vma->vm_end)
1438 		return -EFAULT;
1439 
1440 	/*
1441 	 * If we don't have pte special, then we have to use the pfn_valid()
1442 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1443 	 * refcount the page if pfn_valid is true (hence insert_page rather
1444 	 * than insert_pfn).
1445 	 */
1446 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1447 		struct page *page;
1448 
1449 		page = pfn_to_page(pfn);
1450 		return insert_page(vma, addr, page, vma->vm_page_prot);
1451 	}
1452 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1453 }
1454 EXPORT_SYMBOL(vm_insert_mixed);
1455 
1456 /*
1457  * maps a range of physical memory into the requested pages. the old
1458  * mappings are removed. any references to nonexistent pages results
1459  * in null mappings (currently treated as "copy-on-access")
1460  */
1461 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1462 			unsigned long addr, unsigned long end,
1463 			unsigned long pfn, pgprot_t prot)
1464 {
1465 	pte_t *pte;
1466 	spinlock_t *ptl;
1467 
1468 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1469 	if (!pte)
1470 		return -ENOMEM;
1471 	arch_enter_lazy_mmu_mode();
1472 	do {
1473 		BUG_ON(!pte_none(*pte));
1474 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1475 		pfn++;
1476 	} while (pte++, addr += PAGE_SIZE, addr != end);
1477 	arch_leave_lazy_mmu_mode();
1478 	pte_unmap_unlock(pte - 1, ptl);
1479 	return 0;
1480 }
1481 
1482 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1483 			unsigned long addr, unsigned long end,
1484 			unsigned long pfn, pgprot_t prot)
1485 {
1486 	pmd_t *pmd;
1487 	unsigned long next;
1488 
1489 	pfn -= addr >> PAGE_SHIFT;
1490 	pmd = pmd_alloc(mm, pud, addr);
1491 	if (!pmd)
1492 		return -ENOMEM;
1493 	do {
1494 		next = pmd_addr_end(addr, end);
1495 		if (remap_pte_range(mm, pmd, addr, next,
1496 				pfn + (addr >> PAGE_SHIFT), prot))
1497 			return -ENOMEM;
1498 	} while (pmd++, addr = next, addr != end);
1499 	return 0;
1500 }
1501 
1502 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1503 			unsigned long addr, unsigned long end,
1504 			unsigned long pfn, pgprot_t prot)
1505 {
1506 	pud_t *pud;
1507 	unsigned long next;
1508 
1509 	pfn -= addr >> PAGE_SHIFT;
1510 	pud = pud_alloc(mm, pgd, addr);
1511 	if (!pud)
1512 		return -ENOMEM;
1513 	do {
1514 		next = pud_addr_end(addr, end);
1515 		if (remap_pmd_range(mm, pud, addr, next,
1516 				pfn + (addr >> PAGE_SHIFT), prot))
1517 			return -ENOMEM;
1518 	} while (pud++, addr = next, addr != end);
1519 	return 0;
1520 }
1521 
1522 /**
1523  * remap_pfn_range - remap kernel memory to userspace
1524  * @vma: user vma to map to
1525  * @addr: target user address to start at
1526  * @pfn: physical address of kernel memory
1527  * @size: size of map area
1528  * @prot: page protection flags for this mapping
1529  *
1530  *  Note: this is only safe if the mm semaphore is held when called.
1531  */
1532 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1533 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1534 {
1535 	pgd_t *pgd;
1536 	unsigned long next;
1537 	unsigned long end = addr + PAGE_ALIGN(size);
1538 	struct mm_struct *mm = vma->vm_mm;
1539 	int err;
1540 
1541 	/*
1542 	 * Physically remapped pages are special. Tell the
1543 	 * rest of the world about it:
1544 	 *   VM_IO tells people not to look at these pages
1545 	 *	(accesses can have side effects).
1546 	 *   VM_RESERVED is specified all over the place, because
1547 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1548 	 *	in 2.6 the LRU scan won't even find its pages, so this
1549 	 *	flag means no more than count its pages in reserved_vm,
1550 	 * 	and omit it from core dump, even when VM_IO turned off.
1551 	 *   VM_PFNMAP tells the core MM that the base pages are just
1552 	 *	raw PFN mappings, and do not have a "struct page" associated
1553 	 *	with them.
1554 	 *
1555 	 * There's a horrible special case to handle copy-on-write
1556 	 * behaviour that some programs depend on. We mark the "original"
1557 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1558 	 */
1559 	if (is_cow_mapping(vma->vm_flags)) {
1560 		if (addr != vma->vm_start || end != vma->vm_end)
1561 			return -EINVAL;
1562 		vma->vm_pgoff = pfn;
1563 	}
1564 
1565 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1566 
1567 	BUG_ON(addr >= end);
1568 	pfn -= addr >> PAGE_SHIFT;
1569 	pgd = pgd_offset(mm, addr);
1570 	flush_cache_range(vma, addr, end);
1571 	do {
1572 		next = pgd_addr_end(addr, end);
1573 		err = remap_pud_range(mm, pgd, addr, next,
1574 				pfn + (addr >> PAGE_SHIFT), prot);
1575 		if (err)
1576 			break;
1577 	} while (pgd++, addr = next, addr != end);
1578 	return err;
1579 }
1580 EXPORT_SYMBOL(remap_pfn_range);
1581 
1582 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1583 				     unsigned long addr, unsigned long end,
1584 				     pte_fn_t fn, void *data)
1585 {
1586 	pte_t *pte;
1587 	int err;
1588 	pgtable_t token;
1589 	spinlock_t *uninitialized_var(ptl);
1590 
1591 	pte = (mm == &init_mm) ?
1592 		pte_alloc_kernel(pmd, addr) :
1593 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1594 	if (!pte)
1595 		return -ENOMEM;
1596 
1597 	BUG_ON(pmd_huge(*pmd));
1598 
1599 	token = pmd_pgtable(*pmd);
1600 
1601 	do {
1602 		err = fn(pte, token, addr, data);
1603 		if (err)
1604 			break;
1605 	} while (pte++, addr += PAGE_SIZE, addr != end);
1606 
1607 	if (mm != &init_mm)
1608 		pte_unmap_unlock(pte-1, ptl);
1609 	return err;
1610 }
1611 
1612 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1613 				     unsigned long addr, unsigned long end,
1614 				     pte_fn_t fn, void *data)
1615 {
1616 	pmd_t *pmd;
1617 	unsigned long next;
1618 	int err;
1619 
1620 	BUG_ON(pud_huge(*pud));
1621 
1622 	pmd = pmd_alloc(mm, pud, addr);
1623 	if (!pmd)
1624 		return -ENOMEM;
1625 	do {
1626 		next = pmd_addr_end(addr, end);
1627 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1628 		if (err)
1629 			break;
1630 	} while (pmd++, addr = next, addr != end);
1631 	return err;
1632 }
1633 
1634 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1635 				     unsigned long addr, unsigned long end,
1636 				     pte_fn_t fn, void *data)
1637 {
1638 	pud_t *pud;
1639 	unsigned long next;
1640 	int err;
1641 
1642 	pud = pud_alloc(mm, pgd, addr);
1643 	if (!pud)
1644 		return -ENOMEM;
1645 	do {
1646 		next = pud_addr_end(addr, end);
1647 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1648 		if (err)
1649 			break;
1650 	} while (pud++, addr = next, addr != end);
1651 	return err;
1652 }
1653 
1654 /*
1655  * Scan a region of virtual memory, filling in page tables as necessary
1656  * and calling a provided function on each leaf page table.
1657  */
1658 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1659 			unsigned long size, pte_fn_t fn, void *data)
1660 {
1661 	pgd_t *pgd;
1662 	unsigned long next;
1663 	unsigned long start = addr, end = addr + size;
1664 	int err;
1665 
1666 	BUG_ON(addr >= end);
1667 	mmu_notifier_invalidate_range_start(mm, start, end);
1668 	pgd = pgd_offset(mm, addr);
1669 	do {
1670 		next = pgd_addr_end(addr, end);
1671 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1672 		if (err)
1673 			break;
1674 	} while (pgd++, addr = next, addr != end);
1675 	mmu_notifier_invalidate_range_end(mm, start, end);
1676 	return err;
1677 }
1678 EXPORT_SYMBOL_GPL(apply_to_page_range);
1679 
1680 /*
1681  * handle_pte_fault chooses page fault handler according to an entry
1682  * which was read non-atomically.  Before making any commitment, on
1683  * those architectures or configurations (e.g. i386 with PAE) which
1684  * might give a mix of unmatched parts, do_swap_page and do_file_page
1685  * must check under lock before unmapping the pte and proceeding
1686  * (but do_wp_page is only called after already making such a check;
1687  * and do_anonymous_page and do_no_page can safely check later on).
1688  */
1689 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1690 				pte_t *page_table, pte_t orig_pte)
1691 {
1692 	int same = 1;
1693 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1694 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1695 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1696 		spin_lock(ptl);
1697 		same = pte_same(*page_table, orig_pte);
1698 		spin_unlock(ptl);
1699 	}
1700 #endif
1701 	pte_unmap(page_table);
1702 	return same;
1703 }
1704 
1705 /*
1706  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1707  * servicing faults for write access.  In the normal case, do always want
1708  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1709  * that do not have writing enabled, when used by access_process_vm.
1710  */
1711 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1712 {
1713 	if (likely(vma->vm_flags & VM_WRITE))
1714 		pte = pte_mkwrite(pte);
1715 	return pte;
1716 }
1717 
1718 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1719 {
1720 	/*
1721 	 * If the source page was a PFN mapping, we don't have
1722 	 * a "struct page" for it. We do a best-effort copy by
1723 	 * just copying from the original user address. If that
1724 	 * fails, we just zero-fill it. Live with it.
1725 	 */
1726 	if (unlikely(!src)) {
1727 		void *kaddr = kmap_atomic(dst, KM_USER0);
1728 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1729 
1730 		/*
1731 		 * This really shouldn't fail, because the page is there
1732 		 * in the page tables. But it might just be unreadable,
1733 		 * in which case we just give up and fill the result with
1734 		 * zeroes.
1735 		 */
1736 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1737 			memset(kaddr, 0, PAGE_SIZE);
1738 		kunmap_atomic(kaddr, KM_USER0);
1739 		flush_dcache_page(dst);
1740 	} else
1741 		copy_user_highpage(dst, src, va, vma);
1742 }
1743 
1744 /*
1745  * This routine handles present pages, when users try to write
1746  * to a shared page. It is done by copying the page to a new address
1747  * and decrementing the shared-page counter for the old page.
1748  *
1749  * Note that this routine assumes that the protection checks have been
1750  * done by the caller (the low-level page fault routine in most cases).
1751  * Thus we can safely just mark it writable once we've done any necessary
1752  * COW.
1753  *
1754  * We also mark the page dirty at this point even though the page will
1755  * change only once the write actually happens. This avoids a few races,
1756  * and potentially makes it more efficient.
1757  *
1758  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1759  * but allow concurrent faults), with pte both mapped and locked.
1760  * We return with mmap_sem still held, but pte unmapped and unlocked.
1761  */
1762 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1763 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1764 		spinlock_t *ptl, pte_t orig_pte)
1765 {
1766 	struct page *old_page, *new_page;
1767 	pte_t entry;
1768 	int reuse = 0, ret = 0;
1769 	int page_mkwrite = 0;
1770 	struct page *dirty_page = NULL;
1771 
1772 	old_page = vm_normal_page(vma, address, orig_pte);
1773 	if (!old_page) {
1774 		/*
1775 		 * VM_MIXEDMAP !pfn_valid() case
1776 		 *
1777 		 * We should not cow pages in a shared writeable mapping.
1778 		 * Just mark the pages writable as we can't do any dirty
1779 		 * accounting on raw pfn maps.
1780 		 */
1781 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1782 				     (VM_WRITE|VM_SHARED))
1783 			goto reuse;
1784 		goto gotten;
1785 	}
1786 
1787 	/*
1788 	 * Take out anonymous pages first, anonymous shared vmas are
1789 	 * not dirty accountable.
1790 	 */
1791 	if (PageAnon(old_page)) {
1792 		if (trylock_page(old_page)) {
1793 			reuse = can_share_swap_page(old_page);
1794 			unlock_page(old_page);
1795 		}
1796 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1797 					(VM_WRITE|VM_SHARED))) {
1798 		/*
1799 		 * Only catch write-faults on shared writable pages,
1800 		 * read-only shared pages can get COWed by
1801 		 * get_user_pages(.write=1, .force=1).
1802 		 */
1803 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1804 			/*
1805 			 * Notify the address space that the page is about to
1806 			 * become writable so that it can prohibit this or wait
1807 			 * for the page to get into an appropriate state.
1808 			 *
1809 			 * We do this without the lock held, so that it can
1810 			 * sleep if it needs to.
1811 			 */
1812 			page_cache_get(old_page);
1813 			pte_unmap_unlock(page_table, ptl);
1814 
1815 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1816 				goto unwritable_page;
1817 
1818 			/*
1819 			 * Since we dropped the lock we need to revalidate
1820 			 * the PTE as someone else may have changed it.  If
1821 			 * they did, we just return, as we can count on the
1822 			 * MMU to tell us if they didn't also make it writable.
1823 			 */
1824 			page_table = pte_offset_map_lock(mm, pmd, address,
1825 							 &ptl);
1826 			page_cache_release(old_page);
1827 			if (!pte_same(*page_table, orig_pte))
1828 				goto unlock;
1829 
1830 			page_mkwrite = 1;
1831 		}
1832 		dirty_page = old_page;
1833 		get_page(dirty_page);
1834 		reuse = 1;
1835 	}
1836 
1837 	if (reuse) {
1838 reuse:
1839 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1840 		entry = pte_mkyoung(orig_pte);
1841 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1842 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1843 			update_mmu_cache(vma, address, entry);
1844 		ret |= VM_FAULT_WRITE;
1845 		goto unlock;
1846 	}
1847 
1848 	/*
1849 	 * Ok, we need to copy. Oh, well..
1850 	 */
1851 	page_cache_get(old_page);
1852 gotten:
1853 	pte_unmap_unlock(page_table, ptl);
1854 
1855 	if (unlikely(anon_vma_prepare(vma)))
1856 		goto oom;
1857 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1858 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1859 	if (!new_page)
1860 		goto oom;
1861 	cow_user_page(new_page, old_page, address, vma);
1862 	__SetPageUptodate(new_page);
1863 
1864 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1865 		goto oom_free_new;
1866 
1867 	/*
1868 	 * Re-check the pte - we dropped the lock
1869 	 */
1870 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1871 	if (likely(pte_same(*page_table, orig_pte))) {
1872 		if (old_page) {
1873 			if (!PageAnon(old_page)) {
1874 				dec_mm_counter(mm, file_rss);
1875 				inc_mm_counter(mm, anon_rss);
1876 			}
1877 		} else
1878 			inc_mm_counter(mm, anon_rss);
1879 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1880 		entry = mk_pte(new_page, vma->vm_page_prot);
1881 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1882 		/*
1883 		 * Clear the pte entry and flush it first, before updating the
1884 		 * pte with the new entry. This will avoid a race condition
1885 		 * seen in the presence of one thread doing SMC and another
1886 		 * thread doing COW.
1887 		 */
1888 		ptep_clear_flush_notify(vma, address, page_table);
1889 		set_pte_at(mm, address, page_table, entry);
1890 		update_mmu_cache(vma, address, entry);
1891 		lru_cache_add_active(new_page);
1892 		page_add_new_anon_rmap(new_page, vma, address);
1893 
1894 		if (old_page) {
1895 			/*
1896 			 * Only after switching the pte to the new page may
1897 			 * we remove the mapcount here. Otherwise another
1898 			 * process may come and find the rmap count decremented
1899 			 * before the pte is switched to the new page, and
1900 			 * "reuse" the old page writing into it while our pte
1901 			 * here still points into it and can be read by other
1902 			 * threads.
1903 			 *
1904 			 * The critical issue is to order this
1905 			 * page_remove_rmap with the ptp_clear_flush above.
1906 			 * Those stores are ordered by (if nothing else,)
1907 			 * the barrier present in the atomic_add_negative
1908 			 * in page_remove_rmap.
1909 			 *
1910 			 * Then the TLB flush in ptep_clear_flush ensures that
1911 			 * no process can access the old page before the
1912 			 * decremented mapcount is visible. And the old page
1913 			 * cannot be reused until after the decremented
1914 			 * mapcount is visible. So transitively, TLBs to
1915 			 * old page will be flushed before it can be reused.
1916 			 */
1917 			page_remove_rmap(old_page, vma);
1918 		}
1919 
1920 		/* Free the old page.. */
1921 		new_page = old_page;
1922 		ret |= VM_FAULT_WRITE;
1923 	} else
1924 		mem_cgroup_uncharge_page(new_page);
1925 
1926 	if (new_page)
1927 		page_cache_release(new_page);
1928 	if (old_page)
1929 		page_cache_release(old_page);
1930 unlock:
1931 	pte_unmap_unlock(page_table, ptl);
1932 	if (dirty_page) {
1933 		if (vma->vm_file)
1934 			file_update_time(vma->vm_file);
1935 
1936 		/*
1937 		 * Yes, Virginia, this is actually required to prevent a race
1938 		 * with clear_page_dirty_for_io() from clearing the page dirty
1939 		 * bit after it clear all dirty ptes, but before a racing
1940 		 * do_wp_page installs a dirty pte.
1941 		 *
1942 		 * do_no_page is protected similarly.
1943 		 */
1944 		wait_on_page_locked(dirty_page);
1945 		set_page_dirty_balance(dirty_page, page_mkwrite);
1946 		put_page(dirty_page);
1947 	}
1948 	return ret;
1949 oom_free_new:
1950 	page_cache_release(new_page);
1951 oom:
1952 	if (old_page)
1953 		page_cache_release(old_page);
1954 	return VM_FAULT_OOM;
1955 
1956 unwritable_page:
1957 	page_cache_release(old_page);
1958 	return VM_FAULT_SIGBUS;
1959 }
1960 
1961 /*
1962  * Helper functions for unmap_mapping_range().
1963  *
1964  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1965  *
1966  * We have to restart searching the prio_tree whenever we drop the lock,
1967  * since the iterator is only valid while the lock is held, and anyway
1968  * a later vma might be split and reinserted earlier while lock dropped.
1969  *
1970  * The list of nonlinear vmas could be handled more efficiently, using
1971  * a placeholder, but handle it in the same way until a need is shown.
1972  * It is important to search the prio_tree before nonlinear list: a vma
1973  * may become nonlinear and be shifted from prio_tree to nonlinear list
1974  * while the lock is dropped; but never shifted from list to prio_tree.
1975  *
1976  * In order to make forward progress despite restarting the search,
1977  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1978  * quickly skip it next time around.  Since the prio_tree search only
1979  * shows us those vmas affected by unmapping the range in question, we
1980  * can't efficiently keep all vmas in step with mapping->truncate_count:
1981  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1982  * mapping->truncate_count and vma->vm_truncate_count are protected by
1983  * i_mmap_lock.
1984  *
1985  * In order to make forward progress despite repeatedly restarting some
1986  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1987  * and restart from that address when we reach that vma again.  It might
1988  * have been split or merged, shrunk or extended, but never shifted: so
1989  * restart_addr remains valid so long as it remains in the vma's range.
1990  * unmap_mapping_range forces truncate_count to leap over page-aligned
1991  * values so we can save vma's restart_addr in its truncate_count field.
1992  */
1993 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1994 
1995 static void reset_vma_truncate_counts(struct address_space *mapping)
1996 {
1997 	struct vm_area_struct *vma;
1998 	struct prio_tree_iter iter;
1999 
2000 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2001 		vma->vm_truncate_count = 0;
2002 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2003 		vma->vm_truncate_count = 0;
2004 }
2005 
2006 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2007 		unsigned long start_addr, unsigned long end_addr,
2008 		struct zap_details *details)
2009 {
2010 	unsigned long restart_addr;
2011 	int need_break;
2012 
2013 	/*
2014 	 * files that support invalidating or truncating portions of the
2015 	 * file from under mmaped areas must have their ->fault function
2016 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2017 	 * This provides synchronisation against concurrent unmapping here.
2018 	 */
2019 
2020 again:
2021 	restart_addr = vma->vm_truncate_count;
2022 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2023 		start_addr = restart_addr;
2024 		if (start_addr >= end_addr) {
2025 			/* Top of vma has been split off since last time */
2026 			vma->vm_truncate_count = details->truncate_count;
2027 			return 0;
2028 		}
2029 	}
2030 
2031 	restart_addr = zap_page_range(vma, start_addr,
2032 					end_addr - start_addr, details);
2033 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2034 
2035 	if (restart_addr >= end_addr) {
2036 		/* We have now completed this vma: mark it so */
2037 		vma->vm_truncate_count = details->truncate_count;
2038 		if (!need_break)
2039 			return 0;
2040 	} else {
2041 		/* Note restart_addr in vma's truncate_count field */
2042 		vma->vm_truncate_count = restart_addr;
2043 		if (!need_break)
2044 			goto again;
2045 	}
2046 
2047 	spin_unlock(details->i_mmap_lock);
2048 	cond_resched();
2049 	spin_lock(details->i_mmap_lock);
2050 	return -EINTR;
2051 }
2052 
2053 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2054 					    struct zap_details *details)
2055 {
2056 	struct vm_area_struct *vma;
2057 	struct prio_tree_iter iter;
2058 	pgoff_t vba, vea, zba, zea;
2059 
2060 restart:
2061 	vma_prio_tree_foreach(vma, &iter, root,
2062 			details->first_index, details->last_index) {
2063 		/* Skip quickly over those we have already dealt with */
2064 		if (vma->vm_truncate_count == details->truncate_count)
2065 			continue;
2066 
2067 		vba = vma->vm_pgoff;
2068 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2069 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2070 		zba = details->first_index;
2071 		if (zba < vba)
2072 			zba = vba;
2073 		zea = details->last_index;
2074 		if (zea > vea)
2075 			zea = vea;
2076 
2077 		if (unmap_mapping_range_vma(vma,
2078 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2079 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2080 				details) < 0)
2081 			goto restart;
2082 	}
2083 }
2084 
2085 static inline void unmap_mapping_range_list(struct list_head *head,
2086 					    struct zap_details *details)
2087 {
2088 	struct vm_area_struct *vma;
2089 
2090 	/*
2091 	 * In nonlinear VMAs there is no correspondence between virtual address
2092 	 * offset and file offset.  So we must perform an exhaustive search
2093 	 * across *all* the pages in each nonlinear VMA, not just the pages
2094 	 * whose virtual address lies outside the file truncation point.
2095 	 */
2096 restart:
2097 	list_for_each_entry(vma, head, shared.vm_set.list) {
2098 		/* Skip quickly over those we have already dealt with */
2099 		if (vma->vm_truncate_count == details->truncate_count)
2100 			continue;
2101 		details->nonlinear_vma = vma;
2102 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2103 					vma->vm_end, details) < 0)
2104 			goto restart;
2105 	}
2106 }
2107 
2108 /**
2109  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2110  * @mapping: the address space containing mmaps to be unmapped.
2111  * @holebegin: byte in first page to unmap, relative to the start of
2112  * the underlying file.  This will be rounded down to a PAGE_SIZE
2113  * boundary.  Note that this is different from vmtruncate(), which
2114  * must keep the partial page.  In contrast, we must get rid of
2115  * partial pages.
2116  * @holelen: size of prospective hole in bytes.  This will be rounded
2117  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2118  * end of the file.
2119  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2120  * but 0 when invalidating pagecache, don't throw away private data.
2121  */
2122 void unmap_mapping_range(struct address_space *mapping,
2123 		loff_t const holebegin, loff_t const holelen, int even_cows)
2124 {
2125 	struct zap_details details;
2126 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2127 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2128 
2129 	/* Check for overflow. */
2130 	if (sizeof(holelen) > sizeof(hlen)) {
2131 		long long holeend =
2132 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2133 		if (holeend & ~(long long)ULONG_MAX)
2134 			hlen = ULONG_MAX - hba + 1;
2135 	}
2136 
2137 	details.check_mapping = even_cows? NULL: mapping;
2138 	details.nonlinear_vma = NULL;
2139 	details.first_index = hba;
2140 	details.last_index = hba + hlen - 1;
2141 	if (details.last_index < details.first_index)
2142 		details.last_index = ULONG_MAX;
2143 	details.i_mmap_lock = &mapping->i_mmap_lock;
2144 
2145 	spin_lock(&mapping->i_mmap_lock);
2146 
2147 	/* Protect against endless unmapping loops */
2148 	mapping->truncate_count++;
2149 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2150 		if (mapping->truncate_count == 0)
2151 			reset_vma_truncate_counts(mapping);
2152 		mapping->truncate_count++;
2153 	}
2154 	details.truncate_count = mapping->truncate_count;
2155 
2156 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2157 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2158 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2159 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2160 	spin_unlock(&mapping->i_mmap_lock);
2161 }
2162 EXPORT_SYMBOL(unmap_mapping_range);
2163 
2164 /**
2165  * vmtruncate - unmap mappings "freed" by truncate() syscall
2166  * @inode: inode of the file used
2167  * @offset: file offset to start truncating
2168  *
2169  * NOTE! We have to be ready to update the memory sharing
2170  * between the file and the memory map for a potential last
2171  * incomplete page.  Ugly, but necessary.
2172  */
2173 int vmtruncate(struct inode * inode, loff_t offset)
2174 {
2175 	if (inode->i_size < offset) {
2176 		unsigned long limit;
2177 
2178 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2179 		if (limit != RLIM_INFINITY && offset > limit)
2180 			goto out_sig;
2181 		if (offset > inode->i_sb->s_maxbytes)
2182 			goto out_big;
2183 		i_size_write(inode, offset);
2184 	} else {
2185 		struct address_space *mapping = inode->i_mapping;
2186 
2187 		/*
2188 		 * truncation of in-use swapfiles is disallowed - it would
2189 		 * cause subsequent swapout to scribble on the now-freed
2190 		 * blocks.
2191 		 */
2192 		if (IS_SWAPFILE(inode))
2193 			return -ETXTBSY;
2194 		i_size_write(inode, offset);
2195 
2196 		/*
2197 		 * unmap_mapping_range is called twice, first simply for
2198 		 * efficiency so that truncate_inode_pages does fewer
2199 		 * single-page unmaps.  However after this first call, and
2200 		 * before truncate_inode_pages finishes, it is possible for
2201 		 * private pages to be COWed, which remain after
2202 		 * truncate_inode_pages finishes, hence the second
2203 		 * unmap_mapping_range call must be made for correctness.
2204 		 */
2205 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2206 		truncate_inode_pages(mapping, offset);
2207 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2208 	}
2209 
2210 	if (inode->i_op && inode->i_op->truncate)
2211 		inode->i_op->truncate(inode);
2212 	return 0;
2213 
2214 out_sig:
2215 	send_sig(SIGXFSZ, current, 0);
2216 out_big:
2217 	return -EFBIG;
2218 }
2219 EXPORT_SYMBOL(vmtruncate);
2220 
2221 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2222 {
2223 	struct address_space *mapping = inode->i_mapping;
2224 
2225 	/*
2226 	 * If the underlying filesystem is not going to provide
2227 	 * a way to truncate a range of blocks (punch a hole) -
2228 	 * we should return failure right now.
2229 	 */
2230 	if (!inode->i_op || !inode->i_op->truncate_range)
2231 		return -ENOSYS;
2232 
2233 	mutex_lock(&inode->i_mutex);
2234 	down_write(&inode->i_alloc_sem);
2235 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2236 	truncate_inode_pages_range(mapping, offset, end);
2237 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2238 	inode->i_op->truncate_range(inode, offset, end);
2239 	up_write(&inode->i_alloc_sem);
2240 	mutex_unlock(&inode->i_mutex);
2241 
2242 	return 0;
2243 }
2244 
2245 /*
2246  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2247  * but allow concurrent faults), and pte mapped but not yet locked.
2248  * We return with mmap_sem still held, but pte unmapped and unlocked.
2249  */
2250 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2251 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2252 		int write_access, pte_t orig_pte)
2253 {
2254 	spinlock_t *ptl;
2255 	struct page *page;
2256 	swp_entry_t entry;
2257 	pte_t pte;
2258 	int ret = 0;
2259 
2260 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2261 		goto out;
2262 
2263 	entry = pte_to_swp_entry(orig_pte);
2264 	if (is_migration_entry(entry)) {
2265 		migration_entry_wait(mm, pmd, address);
2266 		goto out;
2267 	}
2268 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2269 	page = lookup_swap_cache(entry);
2270 	if (!page) {
2271 		grab_swap_token(); /* Contend for token _before_ read-in */
2272 		page = swapin_readahead(entry,
2273 					GFP_HIGHUSER_MOVABLE, vma, address);
2274 		if (!page) {
2275 			/*
2276 			 * Back out if somebody else faulted in this pte
2277 			 * while we released the pte lock.
2278 			 */
2279 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2280 			if (likely(pte_same(*page_table, orig_pte)))
2281 				ret = VM_FAULT_OOM;
2282 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2283 			goto unlock;
2284 		}
2285 
2286 		/* Had to read the page from swap area: Major fault */
2287 		ret = VM_FAULT_MAJOR;
2288 		count_vm_event(PGMAJFAULT);
2289 	}
2290 
2291 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2292 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2293 		ret = VM_FAULT_OOM;
2294 		goto out;
2295 	}
2296 
2297 	mark_page_accessed(page);
2298 	lock_page(page);
2299 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2300 
2301 	/*
2302 	 * Back out if somebody else already faulted in this pte.
2303 	 */
2304 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2305 	if (unlikely(!pte_same(*page_table, orig_pte)))
2306 		goto out_nomap;
2307 
2308 	if (unlikely(!PageUptodate(page))) {
2309 		ret = VM_FAULT_SIGBUS;
2310 		goto out_nomap;
2311 	}
2312 
2313 	/* The page isn't present yet, go ahead with the fault. */
2314 
2315 	inc_mm_counter(mm, anon_rss);
2316 	pte = mk_pte(page, vma->vm_page_prot);
2317 	if (write_access && can_share_swap_page(page)) {
2318 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2319 		write_access = 0;
2320 	}
2321 
2322 	flush_icache_page(vma, page);
2323 	set_pte_at(mm, address, page_table, pte);
2324 	page_add_anon_rmap(page, vma, address);
2325 
2326 	swap_free(entry);
2327 	if (vm_swap_full())
2328 		remove_exclusive_swap_page(page);
2329 	unlock_page(page);
2330 
2331 	if (write_access) {
2332 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2333 		if (ret & VM_FAULT_ERROR)
2334 			ret &= VM_FAULT_ERROR;
2335 		goto out;
2336 	}
2337 
2338 	/* No need to invalidate - it was non-present before */
2339 	update_mmu_cache(vma, address, pte);
2340 unlock:
2341 	pte_unmap_unlock(page_table, ptl);
2342 out:
2343 	return ret;
2344 out_nomap:
2345 	mem_cgroup_uncharge_page(page);
2346 	pte_unmap_unlock(page_table, ptl);
2347 	unlock_page(page);
2348 	page_cache_release(page);
2349 	return ret;
2350 }
2351 
2352 /*
2353  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2354  * but allow concurrent faults), and pte mapped but not yet locked.
2355  * We return with mmap_sem still held, but pte unmapped and unlocked.
2356  */
2357 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2358 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2359 		int write_access)
2360 {
2361 	struct page *page;
2362 	spinlock_t *ptl;
2363 	pte_t entry;
2364 
2365 	/* Allocate our own private page. */
2366 	pte_unmap(page_table);
2367 
2368 	if (unlikely(anon_vma_prepare(vma)))
2369 		goto oom;
2370 	page = alloc_zeroed_user_highpage_movable(vma, address);
2371 	if (!page)
2372 		goto oom;
2373 	__SetPageUptodate(page);
2374 
2375 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2376 		goto oom_free_page;
2377 
2378 	entry = mk_pte(page, vma->vm_page_prot);
2379 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2380 
2381 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2382 	if (!pte_none(*page_table))
2383 		goto release;
2384 	inc_mm_counter(mm, anon_rss);
2385 	lru_cache_add_active(page);
2386 	page_add_new_anon_rmap(page, vma, address);
2387 	set_pte_at(mm, address, page_table, entry);
2388 
2389 	/* No need to invalidate - it was non-present before */
2390 	update_mmu_cache(vma, address, entry);
2391 unlock:
2392 	pte_unmap_unlock(page_table, ptl);
2393 	return 0;
2394 release:
2395 	mem_cgroup_uncharge_page(page);
2396 	page_cache_release(page);
2397 	goto unlock;
2398 oom_free_page:
2399 	page_cache_release(page);
2400 oom:
2401 	return VM_FAULT_OOM;
2402 }
2403 
2404 /*
2405  * __do_fault() tries to create a new page mapping. It aggressively
2406  * tries to share with existing pages, but makes a separate copy if
2407  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2408  * the next page fault.
2409  *
2410  * As this is called only for pages that do not currently exist, we
2411  * do not need to flush old virtual caches or the TLB.
2412  *
2413  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2414  * but allow concurrent faults), and pte neither mapped nor locked.
2415  * We return with mmap_sem still held, but pte unmapped and unlocked.
2416  */
2417 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2418 		unsigned long address, pmd_t *pmd,
2419 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2420 {
2421 	pte_t *page_table;
2422 	spinlock_t *ptl;
2423 	struct page *page;
2424 	pte_t entry;
2425 	int anon = 0;
2426 	struct page *dirty_page = NULL;
2427 	struct vm_fault vmf;
2428 	int ret;
2429 	int page_mkwrite = 0;
2430 
2431 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2432 	vmf.pgoff = pgoff;
2433 	vmf.flags = flags;
2434 	vmf.page = NULL;
2435 
2436 	ret = vma->vm_ops->fault(vma, &vmf);
2437 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2438 		return ret;
2439 
2440 	/*
2441 	 * For consistency in subsequent calls, make the faulted page always
2442 	 * locked.
2443 	 */
2444 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2445 		lock_page(vmf.page);
2446 	else
2447 		VM_BUG_ON(!PageLocked(vmf.page));
2448 
2449 	/*
2450 	 * Should we do an early C-O-W break?
2451 	 */
2452 	page = vmf.page;
2453 	if (flags & FAULT_FLAG_WRITE) {
2454 		if (!(vma->vm_flags & VM_SHARED)) {
2455 			anon = 1;
2456 			if (unlikely(anon_vma_prepare(vma))) {
2457 				ret = VM_FAULT_OOM;
2458 				goto out;
2459 			}
2460 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2461 						vma, address);
2462 			if (!page) {
2463 				ret = VM_FAULT_OOM;
2464 				goto out;
2465 			}
2466 			copy_user_highpage(page, vmf.page, address, vma);
2467 			__SetPageUptodate(page);
2468 		} else {
2469 			/*
2470 			 * If the page will be shareable, see if the backing
2471 			 * address space wants to know that the page is about
2472 			 * to become writable
2473 			 */
2474 			if (vma->vm_ops->page_mkwrite) {
2475 				unlock_page(page);
2476 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2477 					ret = VM_FAULT_SIGBUS;
2478 					anon = 1; /* no anon but release vmf.page */
2479 					goto out_unlocked;
2480 				}
2481 				lock_page(page);
2482 				/*
2483 				 * XXX: this is not quite right (racy vs
2484 				 * invalidate) to unlock and relock the page
2485 				 * like this, however a better fix requires
2486 				 * reworking page_mkwrite locking API, which
2487 				 * is better done later.
2488 				 */
2489 				if (!page->mapping) {
2490 					ret = 0;
2491 					anon = 1; /* no anon but release vmf.page */
2492 					goto out;
2493 				}
2494 				page_mkwrite = 1;
2495 			}
2496 		}
2497 
2498 	}
2499 
2500 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2501 		ret = VM_FAULT_OOM;
2502 		goto out;
2503 	}
2504 
2505 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2506 
2507 	/*
2508 	 * This silly early PAGE_DIRTY setting removes a race
2509 	 * due to the bad i386 page protection. But it's valid
2510 	 * for other architectures too.
2511 	 *
2512 	 * Note that if write_access is true, we either now have
2513 	 * an exclusive copy of the page, or this is a shared mapping,
2514 	 * so we can make it writable and dirty to avoid having to
2515 	 * handle that later.
2516 	 */
2517 	/* Only go through if we didn't race with anybody else... */
2518 	if (likely(pte_same(*page_table, orig_pte))) {
2519 		flush_icache_page(vma, page);
2520 		entry = mk_pte(page, vma->vm_page_prot);
2521 		if (flags & FAULT_FLAG_WRITE)
2522 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2523 		set_pte_at(mm, address, page_table, entry);
2524 		if (anon) {
2525                         inc_mm_counter(mm, anon_rss);
2526                         lru_cache_add_active(page);
2527                         page_add_new_anon_rmap(page, vma, address);
2528 		} else {
2529 			inc_mm_counter(mm, file_rss);
2530 			page_add_file_rmap(page);
2531 			if (flags & FAULT_FLAG_WRITE) {
2532 				dirty_page = page;
2533 				get_page(dirty_page);
2534 			}
2535 		}
2536 
2537 		/* no need to invalidate: a not-present page won't be cached */
2538 		update_mmu_cache(vma, address, entry);
2539 	} else {
2540 		mem_cgroup_uncharge_page(page);
2541 		if (anon)
2542 			page_cache_release(page);
2543 		else
2544 			anon = 1; /* no anon but release faulted_page */
2545 	}
2546 
2547 	pte_unmap_unlock(page_table, ptl);
2548 
2549 out:
2550 	unlock_page(vmf.page);
2551 out_unlocked:
2552 	if (anon)
2553 		page_cache_release(vmf.page);
2554 	else if (dirty_page) {
2555 		if (vma->vm_file)
2556 			file_update_time(vma->vm_file);
2557 
2558 		set_page_dirty_balance(dirty_page, page_mkwrite);
2559 		put_page(dirty_page);
2560 	}
2561 
2562 	return ret;
2563 }
2564 
2565 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2566 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2567 		int write_access, pte_t orig_pte)
2568 {
2569 	pgoff_t pgoff = (((address & PAGE_MASK)
2570 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2571 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2572 
2573 	pte_unmap(page_table);
2574 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2575 }
2576 
2577 /*
2578  * Fault of a previously existing named mapping. Repopulate the pte
2579  * from the encoded file_pte if possible. This enables swappable
2580  * nonlinear vmas.
2581  *
2582  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2583  * but allow concurrent faults), and pte mapped but not yet locked.
2584  * We return with mmap_sem still held, but pte unmapped and unlocked.
2585  */
2586 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2587 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2588 		int write_access, pte_t orig_pte)
2589 {
2590 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2591 				(write_access ? FAULT_FLAG_WRITE : 0);
2592 	pgoff_t pgoff;
2593 
2594 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2595 		return 0;
2596 
2597 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2598 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2599 		/*
2600 		 * Page table corrupted: show pte and kill process.
2601 		 */
2602 		print_bad_pte(vma, orig_pte, address);
2603 		return VM_FAULT_OOM;
2604 	}
2605 
2606 	pgoff = pte_to_pgoff(orig_pte);
2607 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2608 }
2609 
2610 /*
2611  * These routines also need to handle stuff like marking pages dirty
2612  * and/or accessed for architectures that don't do it in hardware (most
2613  * RISC architectures).  The early dirtying is also good on the i386.
2614  *
2615  * There is also a hook called "update_mmu_cache()" that architectures
2616  * with external mmu caches can use to update those (ie the Sparc or
2617  * PowerPC hashed page tables that act as extended TLBs).
2618  *
2619  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2620  * but allow concurrent faults), and pte mapped but not yet locked.
2621  * We return with mmap_sem still held, but pte unmapped and unlocked.
2622  */
2623 static inline int handle_pte_fault(struct mm_struct *mm,
2624 		struct vm_area_struct *vma, unsigned long address,
2625 		pte_t *pte, pmd_t *pmd, int write_access)
2626 {
2627 	pte_t entry;
2628 	spinlock_t *ptl;
2629 
2630 	entry = *pte;
2631 	if (!pte_present(entry)) {
2632 		if (pte_none(entry)) {
2633 			if (vma->vm_ops) {
2634 				if (likely(vma->vm_ops->fault))
2635 					return do_linear_fault(mm, vma, address,
2636 						pte, pmd, write_access, entry);
2637 			}
2638 			return do_anonymous_page(mm, vma, address,
2639 						 pte, pmd, write_access);
2640 		}
2641 		if (pte_file(entry))
2642 			return do_nonlinear_fault(mm, vma, address,
2643 					pte, pmd, write_access, entry);
2644 		return do_swap_page(mm, vma, address,
2645 					pte, pmd, write_access, entry);
2646 	}
2647 
2648 	ptl = pte_lockptr(mm, pmd);
2649 	spin_lock(ptl);
2650 	if (unlikely(!pte_same(*pte, entry)))
2651 		goto unlock;
2652 	if (write_access) {
2653 		if (!pte_write(entry))
2654 			return do_wp_page(mm, vma, address,
2655 					pte, pmd, ptl, entry);
2656 		entry = pte_mkdirty(entry);
2657 	}
2658 	entry = pte_mkyoung(entry);
2659 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2660 		update_mmu_cache(vma, address, entry);
2661 	} else {
2662 		/*
2663 		 * This is needed only for protection faults but the arch code
2664 		 * is not yet telling us if this is a protection fault or not.
2665 		 * This still avoids useless tlb flushes for .text page faults
2666 		 * with threads.
2667 		 */
2668 		if (write_access)
2669 			flush_tlb_page(vma, address);
2670 	}
2671 unlock:
2672 	pte_unmap_unlock(pte, ptl);
2673 	return 0;
2674 }
2675 
2676 /*
2677  * By the time we get here, we already hold the mm semaphore
2678  */
2679 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2680 		unsigned long address, int write_access)
2681 {
2682 	pgd_t *pgd;
2683 	pud_t *pud;
2684 	pmd_t *pmd;
2685 	pte_t *pte;
2686 
2687 	__set_current_state(TASK_RUNNING);
2688 
2689 	count_vm_event(PGFAULT);
2690 
2691 	if (unlikely(is_vm_hugetlb_page(vma)))
2692 		return hugetlb_fault(mm, vma, address, write_access);
2693 
2694 	pgd = pgd_offset(mm, address);
2695 	pud = pud_alloc(mm, pgd, address);
2696 	if (!pud)
2697 		return VM_FAULT_OOM;
2698 	pmd = pmd_alloc(mm, pud, address);
2699 	if (!pmd)
2700 		return VM_FAULT_OOM;
2701 	pte = pte_alloc_map(mm, pmd, address);
2702 	if (!pte)
2703 		return VM_FAULT_OOM;
2704 
2705 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2706 }
2707 
2708 #ifndef __PAGETABLE_PUD_FOLDED
2709 /*
2710  * Allocate page upper directory.
2711  * We've already handled the fast-path in-line.
2712  */
2713 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2714 {
2715 	pud_t *new = pud_alloc_one(mm, address);
2716 	if (!new)
2717 		return -ENOMEM;
2718 
2719 	smp_wmb(); /* See comment in __pte_alloc */
2720 
2721 	spin_lock(&mm->page_table_lock);
2722 	if (pgd_present(*pgd))		/* Another has populated it */
2723 		pud_free(mm, new);
2724 	else
2725 		pgd_populate(mm, pgd, new);
2726 	spin_unlock(&mm->page_table_lock);
2727 	return 0;
2728 }
2729 #endif /* __PAGETABLE_PUD_FOLDED */
2730 
2731 #ifndef __PAGETABLE_PMD_FOLDED
2732 /*
2733  * Allocate page middle directory.
2734  * We've already handled the fast-path in-line.
2735  */
2736 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2737 {
2738 	pmd_t *new = pmd_alloc_one(mm, address);
2739 	if (!new)
2740 		return -ENOMEM;
2741 
2742 	smp_wmb(); /* See comment in __pte_alloc */
2743 
2744 	spin_lock(&mm->page_table_lock);
2745 #ifndef __ARCH_HAS_4LEVEL_HACK
2746 	if (pud_present(*pud))		/* Another has populated it */
2747 		pmd_free(mm, new);
2748 	else
2749 		pud_populate(mm, pud, new);
2750 #else
2751 	if (pgd_present(*pud))		/* Another has populated it */
2752 		pmd_free(mm, new);
2753 	else
2754 		pgd_populate(mm, pud, new);
2755 #endif /* __ARCH_HAS_4LEVEL_HACK */
2756 	spin_unlock(&mm->page_table_lock);
2757 	return 0;
2758 }
2759 #endif /* __PAGETABLE_PMD_FOLDED */
2760 
2761 int make_pages_present(unsigned long addr, unsigned long end)
2762 {
2763 	int ret, len, write;
2764 	struct vm_area_struct * vma;
2765 
2766 	vma = find_vma(current->mm, addr);
2767 	if (!vma)
2768 		return -ENOMEM;
2769 	write = (vma->vm_flags & VM_WRITE) != 0;
2770 	BUG_ON(addr >= end);
2771 	BUG_ON(end > vma->vm_end);
2772 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2773 	ret = get_user_pages(current, current->mm, addr,
2774 			len, write, 0, NULL, NULL);
2775 	if (ret < 0) {
2776 		/*
2777 		   SUS require strange return value to mlock
2778 		    - invalid addr generate to ENOMEM.
2779 		    - out of memory should generate EAGAIN.
2780 		*/
2781 		if (ret == -EFAULT)
2782 			ret = -ENOMEM;
2783 		else if (ret == -ENOMEM)
2784 			ret = -EAGAIN;
2785 		return ret;
2786 	}
2787 	return ret == len ? 0 : -ENOMEM;
2788 }
2789 
2790 #if !defined(__HAVE_ARCH_GATE_AREA)
2791 
2792 #if defined(AT_SYSINFO_EHDR)
2793 static struct vm_area_struct gate_vma;
2794 
2795 static int __init gate_vma_init(void)
2796 {
2797 	gate_vma.vm_mm = NULL;
2798 	gate_vma.vm_start = FIXADDR_USER_START;
2799 	gate_vma.vm_end = FIXADDR_USER_END;
2800 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2801 	gate_vma.vm_page_prot = __P101;
2802 	/*
2803 	 * Make sure the vDSO gets into every core dump.
2804 	 * Dumping its contents makes post-mortem fully interpretable later
2805 	 * without matching up the same kernel and hardware config to see
2806 	 * what PC values meant.
2807 	 */
2808 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2809 	return 0;
2810 }
2811 __initcall(gate_vma_init);
2812 #endif
2813 
2814 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2815 {
2816 #ifdef AT_SYSINFO_EHDR
2817 	return &gate_vma;
2818 #else
2819 	return NULL;
2820 #endif
2821 }
2822 
2823 int in_gate_area_no_task(unsigned long addr)
2824 {
2825 #ifdef AT_SYSINFO_EHDR
2826 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2827 		return 1;
2828 #endif
2829 	return 0;
2830 }
2831 
2832 #endif	/* __HAVE_ARCH_GATE_AREA */
2833 
2834 #ifdef CONFIG_HAVE_IOREMAP_PROT
2835 static resource_size_t follow_phys(struct vm_area_struct *vma,
2836 			unsigned long address, unsigned int flags,
2837 			unsigned long *prot)
2838 {
2839 	pgd_t *pgd;
2840 	pud_t *pud;
2841 	pmd_t *pmd;
2842 	pte_t *ptep, pte;
2843 	spinlock_t *ptl;
2844 	resource_size_t phys_addr = 0;
2845 	struct mm_struct *mm = vma->vm_mm;
2846 
2847 	VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2848 
2849 	pgd = pgd_offset(mm, address);
2850 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2851 		goto no_page_table;
2852 
2853 	pud = pud_offset(pgd, address);
2854 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2855 		goto no_page_table;
2856 
2857 	pmd = pmd_offset(pud, address);
2858 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2859 		goto no_page_table;
2860 
2861 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2862 	if (pmd_huge(*pmd))
2863 		goto no_page_table;
2864 
2865 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2866 	if (!ptep)
2867 		goto out;
2868 
2869 	pte = *ptep;
2870 	if (!pte_present(pte))
2871 		goto unlock;
2872 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2873 		goto unlock;
2874 	phys_addr = pte_pfn(pte);
2875 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2876 
2877 	*prot = pgprot_val(pte_pgprot(pte));
2878 
2879 unlock:
2880 	pte_unmap_unlock(ptep, ptl);
2881 out:
2882 	return phys_addr;
2883 no_page_table:
2884 	return 0;
2885 }
2886 
2887 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2888 			void *buf, int len, int write)
2889 {
2890 	resource_size_t phys_addr;
2891 	unsigned long prot = 0;
2892 	void *maddr;
2893 	int offset = addr & (PAGE_SIZE-1);
2894 
2895 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2896 		return -EINVAL;
2897 
2898 	phys_addr = follow_phys(vma, addr, write, &prot);
2899 
2900 	if (!phys_addr)
2901 		return -EINVAL;
2902 
2903 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2904 	if (write)
2905 		memcpy_toio(maddr + offset, buf, len);
2906 	else
2907 		memcpy_fromio(buf, maddr + offset, len);
2908 	iounmap(maddr);
2909 
2910 	return len;
2911 }
2912 #endif
2913 
2914 /*
2915  * Access another process' address space.
2916  * Source/target buffer must be kernel space,
2917  * Do not walk the page table directly, use get_user_pages
2918  */
2919 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2920 {
2921 	struct mm_struct *mm;
2922 	struct vm_area_struct *vma;
2923 	void *old_buf = buf;
2924 
2925 	mm = get_task_mm(tsk);
2926 	if (!mm)
2927 		return 0;
2928 
2929 	down_read(&mm->mmap_sem);
2930 	/* ignore errors, just check how much was successfully transferred */
2931 	while (len) {
2932 		int bytes, ret, offset;
2933 		void *maddr;
2934 		struct page *page = NULL;
2935 
2936 		ret = get_user_pages(tsk, mm, addr, 1,
2937 				write, 1, &page, &vma);
2938 		if (ret <= 0) {
2939 			/*
2940 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2941 			 * we can access using slightly different code.
2942 			 */
2943 #ifdef CONFIG_HAVE_IOREMAP_PROT
2944 			vma = find_vma(mm, addr);
2945 			if (!vma)
2946 				break;
2947 			if (vma->vm_ops && vma->vm_ops->access)
2948 				ret = vma->vm_ops->access(vma, addr, buf,
2949 							  len, write);
2950 			if (ret <= 0)
2951 #endif
2952 				break;
2953 			bytes = ret;
2954 		} else {
2955 			bytes = len;
2956 			offset = addr & (PAGE_SIZE-1);
2957 			if (bytes > PAGE_SIZE-offset)
2958 				bytes = PAGE_SIZE-offset;
2959 
2960 			maddr = kmap(page);
2961 			if (write) {
2962 				copy_to_user_page(vma, page, addr,
2963 						  maddr + offset, buf, bytes);
2964 				set_page_dirty_lock(page);
2965 			} else {
2966 				copy_from_user_page(vma, page, addr,
2967 						    buf, maddr + offset, bytes);
2968 			}
2969 			kunmap(page);
2970 			page_cache_release(page);
2971 		}
2972 		len -= bytes;
2973 		buf += bytes;
2974 		addr += bytes;
2975 	}
2976 	up_read(&mm->mmap_sem);
2977 	mmput(mm);
2978 
2979 	return buf - old_buf;
2980 }
2981 
2982 /*
2983  * Print the name of a VMA.
2984  */
2985 void print_vma_addr(char *prefix, unsigned long ip)
2986 {
2987 	struct mm_struct *mm = current->mm;
2988 	struct vm_area_struct *vma;
2989 
2990 	/*
2991 	 * Do not print if we are in atomic
2992 	 * contexts (in exception stacks, etc.):
2993 	 */
2994 	if (preempt_count())
2995 		return;
2996 
2997 	down_read(&mm->mmap_sem);
2998 	vma = find_vma(mm, ip);
2999 	if (vma && vma->vm_file) {
3000 		struct file *f = vma->vm_file;
3001 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3002 		if (buf) {
3003 			char *p, *s;
3004 
3005 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3006 			if (IS_ERR(p))
3007 				p = "?";
3008 			s = strrchr(p, '/');
3009 			if (s)
3010 				p = s+1;
3011 			printk("%s%s[%lx+%lx]", prefix, p,
3012 					vma->vm_start,
3013 					vma->vm_end - vma->vm_start);
3014 			free_page((unsigned long)buf);
3015 		}
3016 	}
3017 	up_read(&current->mm->mmap_sem);
3018 }
3019