1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!userfaultfd_wp(vmf->vma)) 118 return false; 119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 120 return false; 121 122 return pte_marker_uffd_wp(vmf->orig_pte); 123 } 124 125 /* 126 * A number of key systems in x86 including ioremap() rely on the assumption 127 * that high_memory defines the upper bound on direct map memory, then end 128 * of ZONE_NORMAL. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 do { 369 unsigned long addr = vma->vm_start; 370 struct vm_area_struct *next; 371 372 /* 373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 374 * be 0. This will underflow and is okay. 375 */ 376 next = mas_find(mas, ceiling - 1); 377 if (unlikely(xa_is_zero(next))) 378 next = NULL; 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 unlink_file_vma(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 /* 394 * Optimization: gather nearby vmas into one call down 395 */ 396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 397 && !is_vm_hugetlb_page(next)) { 398 vma = next; 399 next = mas_find(mas, ceiling - 1); 400 if (unlikely(xa_is_zero(next))) 401 next = NULL; 402 if (mm_wr_locked) 403 vma_start_write(vma); 404 unlink_anon_vmas(vma); 405 unlink_file_vma(vma); 406 } 407 free_pgd_range(tlb, addr, vma->vm_end, 408 floor, next ? next->vm_start : ceiling); 409 } 410 vma = next; 411 } while (vma); 412 } 413 414 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 415 { 416 spinlock_t *ptl = pmd_lock(mm, pmd); 417 418 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 419 mm_inc_nr_ptes(mm); 420 /* 421 * Ensure all pte setup (eg. pte page lock and page clearing) are 422 * visible before the pte is made visible to other CPUs by being 423 * put into page tables. 424 * 425 * The other side of the story is the pointer chasing in the page 426 * table walking code (when walking the page table without locking; 427 * ie. most of the time). Fortunately, these data accesses consist 428 * of a chain of data-dependent loads, meaning most CPUs (alpha 429 * being the notable exception) will already guarantee loads are 430 * seen in-order. See the alpha page table accessors for the 431 * smp_rmb() barriers in page table walking code. 432 */ 433 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 434 pmd_populate(mm, pmd, *pte); 435 *pte = NULL; 436 } 437 spin_unlock(ptl); 438 } 439 440 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 441 { 442 pgtable_t new = pte_alloc_one(mm); 443 if (!new) 444 return -ENOMEM; 445 446 pmd_install(mm, pmd, &new); 447 if (new) 448 pte_free(mm, new); 449 return 0; 450 } 451 452 int __pte_alloc_kernel(pmd_t *pmd) 453 { 454 pte_t *new = pte_alloc_one_kernel(&init_mm); 455 if (!new) 456 return -ENOMEM; 457 458 spin_lock(&init_mm.page_table_lock); 459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 460 smp_wmb(); /* See comment in pmd_install() */ 461 pmd_populate_kernel(&init_mm, pmd, new); 462 new = NULL; 463 } 464 spin_unlock(&init_mm.page_table_lock); 465 if (new) 466 pte_free_kernel(&init_mm, new); 467 return 0; 468 } 469 470 static inline void init_rss_vec(int *rss) 471 { 472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 473 } 474 475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 476 { 477 int i; 478 479 for (i = 0; i < NR_MM_COUNTERS; i++) 480 if (rss[i]) 481 add_mm_counter(mm, i, rss[i]); 482 } 483 484 /* 485 * This function is called to print an error when a bad pte 486 * is found. For example, we might have a PFN-mapped pte in 487 * a region that doesn't allow it. 488 * 489 * The calling function must still handle the error. 490 */ 491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 492 pte_t pte, struct page *page) 493 { 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 495 p4d_t *p4d = p4d_offset(pgd, addr); 496 pud_t *pud = pud_offset(p4d, addr); 497 pmd_t *pmd = pmd_offset(pud, addr); 498 struct address_space *mapping; 499 pgoff_t index; 500 static unsigned long resume; 501 static unsigned long nr_shown; 502 static unsigned long nr_unshown; 503 504 /* 505 * Allow a burst of 60 reports, then keep quiet for that minute; 506 * or allow a steady drip of one report per second. 507 */ 508 if (nr_shown == 60) { 509 if (time_before(jiffies, resume)) { 510 nr_unshown++; 511 return; 512 } 513 if (nr_unshown) { 514 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 515 nr_unshown); 516 nr_unshown = 0; 517 } 518 nr_shown = 0; 519 } 520 if (nr_shown++ == 0) 521 resume = jiffies + 60 * HZ; 522 523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 524 index = linear_page_index(vma, addr); 525 526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 527 current->comm, 528 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 529 if (page) 530 dump_page(page, "bad pte"); 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 534 vma->vm_file, 535 vma->vm_ops ? vma->vm_ops->fault : NULL, 536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 537 mapping ? mapping->a_ops->read_folio : NULL); 538 dump_stack(); 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 540 } 541 542 /* 543 * vm_normal_page -- This function gets the "struct page" associated with a pte. 544 * 545 * "Special" mappings do not wish to be associated with a "struct page" (either 546 * it doesn't exist, or it exists but they don't want to touch it). In this 547 * case, NULL is returned here. "Normal" mappings do have a struct page. 548 * 549 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 550 * pte bit, in which case this function is trivial. Secondly, an architecture 551 * may not have a spare pte bit, which requires a more complicated scheme, 552 * described below. 553 * 554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 555 * special mapping (even if there are underlying and valid "struct pages"). 556 * COWed pages of a VM_PFNMAP are always normal. 557 * 558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 561 * mapping will always honor the rule 562 * 563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 564 * 565 * And for normal mappings this is false. 566 * 567 * This restricts such mappings to be a linear translation from virtual address 568 * to pfn. To get around this restriction, we allow arbitrary mappings so long 569 * as the vma is not a COW mapping; in that case, we know that all ptes are 570 * special (because none can have been COWed). 571 * 572 * 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 574 * 575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 576 * page" backing, however the difference is that _all_ pages with a struct 577 * page (that is, those where pfn_valid is true) are refcounted and considered 578 * normal pages by the VM. The disadvantage is that pages are refcounted 579 * (which can be slower and simply not an option for some PFNMAP users). The 580 * advantage is that we don't have to follow the strict linearity rule of 581 * PFNMAP mappings in order to support COWable mappings. 582 * 583 */ 584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 585 pte_t pte) 586 { 587 unsigned long pfn = pte_pfn(pte); 588 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 590 if (likely(!pte_special(pte))) 591 goto check_pfn; 592 if (vma->vm_ops && vma->vm_ops->find_special_page) 593 return vma->vm_ops->find_special_page(vma, addr); 594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 595 return NULL; 596 if (is_zero_pfn(pfn)) 597 return NULL; 598 if (pte_devmap(pte)) 599 /* 600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 601 * and will have refcounts incremented on their struct pages 602 * when they are inserted into PTEs, thus they are safe to 603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 604 * do not have refcounts. Example of legacy ZONE_DEVICE is 605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 606 */ 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 648 pte_t pte) 649 { 650 struct page *page = vm_normal_page(vma, addr, pte); 651 652 if (page) 653 return page_folio(page); 654 return NULL; 655 } 656 657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 659 pmd_t pmd) 660 { 661 unsigned long pfn = pmd_pfn(pmd); 662 663 /* 664 * There is no pmd_special() but there may be special pmds, e.g. 665 * in a direct-access (dax) mapping, so let's just replicate the 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 667 */ 668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 669 if (vma->vm_flags & VM_MIXEDMAP) { 670 if (!pfn_valid(pfn)) 671 return NULL; 672 goto out; 673 } else { 674 unsigned long off; 675 off = (addr - vma->vm_start) >> PAGE_SHIFT; 676 if (pfn == vma->vm_pgoff + off) 677 return NULL; 678 if (!is_cow_mapping(vma->vm_flags)) 679 return NULL; 680 } 681 } 682 683 if (pmd_devmap(pmd)) 684 return NULL; 685 if (is_huge_zero_pmd(pmd)) 686 return NULL; 687 if (unlikely(pfn > highest_memmap_pfn)) 688 return NULL; 689 690 /* 691 * NOTE! We still have PageReserved() pages in the page tables. 692 * eg. VDSO mappings can cause them to exist. 693 */ 694 out: 695 return pfn_to_page(pfn); 696 } 697 698 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 699 unsigned long addr, pmd_t pmd) 700 { 701 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 702 703 if (page) 704 return page_folio(page); 705 return NULL; 706 } 707 #endif 708 709 static void restore_exclusive_pte(struct vm_area_struct *vma, 710 struct page *page, unsigned long address, 711 pte_t *ptep) 712 { 713 struct folio *folio = page_folio(page); 714 pte_t orig_pte; 715 pte_t pte; 716 swp_entry_t entry; 717 718 orig_pte = ptep_get(ptep); 719 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 720 if (pte_swp_soft_dirty(orig_pte)) 721 pte = pte_mksoft_dirty(pte); 722 723 entry = pte_to_swp_entry(orig_pte); 724 if (pte_swp_uffd_wp(orig_pte)) 725 pte = pte_mkuffd_wp(pte); 726 else if (is_writable_device_exclusive_entry(entry)) 727 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 728 729 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 730 PageAnonExclusive(page)), folio); 731 732 /* 733 * No need to take a page reference as one was already 734 * created when the swap entry was made. 735 */ 736 if (folio_test_anon(folio)) 737 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 738 else 739 /* 740 * Currently device exclusive access only supports anonymous 741 * memory so the entry shouldn't point to a filebacked page. 742 */ 743 WARN_ON_ONCE(1); 744 745 set_pte_at(vma->vm_mm, address, ptep, pte); 746 747 /* 748 * No need to invalidate - it was non-present before. However 749 * secondary CPUs may have mappings that need invalidating. 750 */ 751 update_mmu_cache(vma, address, ptep); 752 } 753 754 /* 755 * Tries to restore an exclusive pte if the page lock can be acquired without 756 * sleeping. 757 */ 758 static int 759 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 760 unsigned long addr) 761 { 762 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 763 struct page *page = pfn_swap_entry_to_page(entry); 764 765 if (trylock_page(page)) { 766 restore_exclusive_pte(vma, page, addr, src_pte); 767 unlock_page(page); 768 return 0; 769 } 770 771 return -EBUSY; 772 } 773 774 /* 775 * copy one vm_area from one task to the other. Assumes the page tables 776 * already present in the new task to be cleared in the whole range 777 * covered by this vma. 778 */ 779 780 static unsigned long 781 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 782 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 783 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 784 { 785 unsigned long vm_flags = dst_vma->vm_flags; 786 pte_t orig_pte = ptep_get(src_pte); 787 pte_t pte = orig_pte; 788 struct folio *folio; 789 struct page *page; 790 swp_entry_t entry = pte_to_swp_entry(orig_pte); 791 792 if (likely(!non_swap_entry(entry))) { 793 if (swap_duplicate(entry) < 0) 794 return -EIO; 795 796 /* make sure dst_mm is on swapoff's mmlist. */ 797 if (unlikely(list_empty(&dst_mm->mmlist))) { 798 spin_lock(&mmlist_lock); 799 if (list_empty(&dst_mm->mmlist)) 800 list_add(&dst_mm->mmlist, 801 &src_mm->mmlist); 802 spin_unlock(&mmlist_lock); 803 } 804 /* Mark the swap entry as shared. */ 805 if (pte_swp_exclusive(orig_pte)) { 806 pte = pte_swp_clear_exclusive(orig_pte); 807 set_pte_at(src_mm, addr, src_pte, pte); 808 } 809 rss[MM_SWAPENTS]++; 810 } else if (is_migration_entry(entry)) { 811 folio = pfn_swap_entry_folio(entry); 812 813 rss[mm_counter(folio)]++; 814 815 if (!is_readable_migration_entry(entry) && 816 is_cow_mapping(vm_flags)) { 817 /* 818 * COW mappings require pages in both parent and child 819 * to be set to read. A previously exclusive entry is 820 * now shared. 821 */ 822 entry = make_readable_migration_entry( 823 swp_offset(entry)); 824 pte = swp_entry_to_pte(entry); 825 if (pte_swp_soft_dirty(orig_pte)) 826 pte = pte_swp_mksoft_dirty(pte); 827 if (pte_swp_uffd_wp(orig_pte)) 828 pte = pte_swp_mkuffd_wp(pte); 829 set_pte_at(src_mm, addr, src_pte, pte); 830 } 831 } else if (is_device_private_entry(entry)) { 832 page = pfn_swap_entry_to_page(entry); 833 folio = page_folio(page); 834 835 /* 836 * Update rss count even for unaddressable pages, as 837 * they should treated just like normal pages in this 838 * respect. 839 * 840 * We will likely want to have some new rss counters 841 * for unaddressable pages, at some point. But for now 842 * keep things as they are. 843 */ 844 folio_get(folio); 845 rss[mm_counter(folio)]++; 846 /* Cannot fail as these pages cannot get pinned. */ 847 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 848 849 /* 850 * We do not preserve soft-dirty information, because so 851 * far, checkpoint/restore is the only feature that 852 * requires that. And checkpoint/restore does not work 853 * when a device driver is involved (you cannot easily 854 * save and restore device driver state). 855 */ 856 if (is_writable_device_private_entry(entry) && 857 is_cow_mapping(vm_flags)) { 858 entry = make_readable_device_private_entry( 859 swp_offset(entry)); 860 pte = swp_entry_to_pte(entry); 861 if (pte_swp_uffd_wp(orig_pte)) 862 pte = pte_swp_mkuffd_wp(pte); 863 set_pte_at(src_mm, addr, src_pte, pte); 864 } 865 } else if (is_device_exclusive_entry(entry)) { 866 /* 867 * Make device exclusive entries present by restoring the 868 * original entry then copying as for a present pte. Device 869 * exclusive entries currently only support private writable 870 * (ie. COW) mappings. 871 */ 872 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 873 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 874 return -EBUSY; 875 return -ENOENT; 876 } else if (is_pte_marker_entry(entry)) { 877 pte_marker marker = copy_pte_marker(entry, dst_vma); 878 879 if (marker) 880 set_pte_at(dst_mm, addr, dst_pte, 881 make_pte_marker(marker)); 882 return 0; 883 } 884 if (!userfaultfd_wp(dst_vma)) 885 pte = pte_swp_clear_uffd_wp(pte); 886 set_pte_at(dst_mm, addr, dst_pte, pte); 887 return 0; 888 } 889 890 /* 891 * Copy a present and normal page. 892 * 893 * NOTE! The usual case is that this isn't required; 894 * instead, the caller can just increase the page refcount 895 * and re-use the pte the traditional way. 896 * 897 * And if we need a pre-allocated page but don't yet have 898 * one, return a negative error to let the preallocation 899 * code know so that it can do so outside the page table 900 * lock. 901 */ 902 static inline int 903 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 904 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 905 struct folio **prealloc, struct page *page) 906 { 907 struct folio *new_folio; 908 pte_t pte; 909 910 new_folio = *prealloc; 911 if (!new_folio) 912 return -EAGAIN; 913 914 /* 915 * We have a prealloc page, all good! Take it 916 * over and copy the page & arm it. 917 */ 918 *prealloc = NULL; 919 copy_user_highpage(&new_folio->page, page, addr, src_vma); 920 __folio_mark_uptodate(new_folio); 921 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 922 folio_add_lru_vma(new_folio, dst_vma); 923 rss[MM_ANONPAGES]++; 924 925 /* All done, just insert the new page copy in the child */ 926 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 928 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 929 /* Uffd-wp needs to be delivered to dest pte as well */ 930 pte = pte_mkuffd_wp(pte); 931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 932 return 0; 933 } 934 935 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 936 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 937 pte_t pte, unsigned long addr, int nr) 938 { 939 struct mm_struct *src_mm = src_vma->vm_mm; 940 941 /* If it's a COW mapping, write protect it both processes. */ 942 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 943 wrprotect_ptes(src_mm, addr, src_pte, nr); 944 pte = pte_wrprotect(pte); 945 } 946 947 /* If it's a shared mapping, mark it clean in the child. */ 948 if (src_vma->vm_flags & VM_SHARED) 949 pte = pte_mkclean(pte); 950 pte = pte_mkold(pte); 951 952 if (!userfaultfd_wp(dst_vma)) 953 pte = pte_clear_uffd_wp(pte); 954 955 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 956 } 957 958 /* 959 * Copy one present PTE, trying to batch-process subsequent PTEs that map 960 * consecutive pages of the same folio by copying them as well. 961 * 962 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 963 * Otherwise, returns the number of copied PTEs (at least 1). 964 */ 965 static inline int 966 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 967 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 968 int max_nr, int *rss, struct folio **prealloc) 969 { 970 struct page *page; 971 struct folio *folio; 972 bool any_writable; 973 fpb_t flags = 0; 974 int err, nr; 975 976 page = vm_normal_page(src_vma, addr, pte); 977 if (unlikely(!page)) 978 goto copy_pte; 979 980 folio = page_folio(page); 981 982 /* 983 * If we likely have to copy, just don't bother with batching. Make 984 * sure that the common "small folio" case is as fast as possible 985 * by keeping the batching logic separate. 986 */ 987 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 988 if (src_vma->vm_flags & VM_SHARED) 989 flags |= FPB_IGNORE_DIRTY; 990 if (!vma_soft_dirty_enabled(src_vma)) 991 flags |= FPB_IGNORE_SOFT_DIRTY; 992 993 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 994 &any_writable, NULL, NULL); 995 folio_ref_add(folio, nr); 996 if (folio_test_anon(folio)) { 997 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 998 nr, src_vma))) { 999 folio_ref_sub(folio, nr); 1000 return -EAGAIN; 1001 } 1002 rss[MM_ANONPAGES] += nr; 1003 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1004 } else { 1005 folio_dup_file_rmap_ptes(folio, page, nr); 1006 rss[mm_counter_file(folio)] += nr; 1007 } 1008 if (any_writable) 1009 pte = pte_mkwrite(pte, src_vma); 1010 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1011 addr, nr); 1012 return nr; 1013 } 1014 1015 folio_get(folio); 1016 if (folio_test_anon(folio)) { 1017 /* 1018 * If this page may have been pinned by the parent process, 1019 * copy the page immediately for the child so that we'll always 1020 * guarantee the pinned page won't be randomly replaced in the 1021 * future. 1022 */ 1023 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1024 /* Page may be pinned, we have to copy. */ 1025 folio_put(folio); 1026 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1027 addr, rss, prealloc, page); 1028 return err ? err : 1; 1029 } 1030 rss[MM_ANONPAGES]++; 1031 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1032 } else { 1033 folio_dup_file_rmap_pte(folio, page); 1034 rss[mm_counter_file(folio)]++; 1035 } 1036 1037 copy_pte: 1038 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1039 return 1; 1040 } 1041 1042 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1043 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1044 { 1045 struct folio *new_folio; 1046 1047 if (need_zero) 1048 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1049 else 1050 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 1051 addr, false); 1052 1053 if (!new_folio) 1054 return NULL; 1055 1056 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1057 folio_put(new_folio); 1058 return NULL; 1059 } 1060 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1061 1062 return new_folio; 1063 } 1064 1065 static int 1066 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1067 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1068 unsigned long end) 1069 { 1070 struct mm_struct *dst_mm = dst_vma->vm_mm; 1071 struct mm_struct *src_mm = src_vma->vm_mm; 1072 pte_t *orig_src_pte, *orig_dst_pte; 1073 pte_t *src_pte, *dst_pte; 1074 pte_t ptent; 1075 spinlock_t *src_ptl, *dst_ptl; 1076 int progress, max_nr, ret = 0; 1077 int rss[NR_MM_COUNTERS]; 1078 swp_entry_t entry = (swp_entry_t){0}; 1079 struct folio *prealloc = NULL; 1080 int nr; 1081 1082 again: 1083 progress = 0; 1084 init_rss_vec(rss); 1085 1086 /* 1087 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1088 * error handling here, assume that exclusive mmap_lock on dst and src 1089 * protects anon from unexpected THP transitions; with shmem and file 1090 * protected by mmap_lock-less collapse skipping areas with anon_vma 1091 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1092 * can remove such assumptions later, but this is good enough for now. 1093 */ 1094 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1095 if (!dst_pte) { 1096 ret = -ENOMEM; 1097 goto out; 1098 } 1099 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1100 if (!src_pte) { 1101 pte_unmap_unlock(dst_pte, dst_ptl); 1102 /* ret == 0 */ 1103 goto out; 1104 } 1105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1106 orig_src_pte = src_pte; 1107 orig_dst_pte = dst_pte; 1108 arch_enter_lazy_mmu_mode(); 1109 1110 do { 1111 nr = 1; 1112 1113 /* 1114 * We are holding two locks at this point - either of them 1115 * could generate latencies in another task on another CPU. 1116 */ 1117 if (progress >= 32) { 1118 progress = 0; 1119 if (need_resched() || 1120 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1121 break; 1122 } 1123 ptent = ptep_get(src_pte); 1124 if (pte_none(ptent)) { 1125 progress++; 1126 continue; 1127 } 1128 if (unlikely(!pte_present(ptent))) { 1129 ret = copy_nonpresent_pte(dst_mm, src_mm, 1130 dst_pte, src_pte, 1131 dst_vma, src_vma, 1132 addr, rss); 1133 if (ret == -EIO) { 1134 entry = pte_to_swp_entry(ptep_get(src_pte)); 1135 break; 1136 } else if (ret == -EBUSY) { 1137 break; 1138 } else if (!ret) { 1139 progress += 8; 1140 continue; 1141 } 1142 ptent = ptep_get(src_pte); 1143 VM_WARN_ON_ONCE(!pte_present(ptent)); 1144 1145 /* 1146 * Device exclusive entry restored, continue by copying 1147 * the now present pte. 1148 */ 1149 WARN_ON_ONCE(ret != -ENOENT); 1150 } 1151 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1152 max_nr = (end - addr) / PAGE_SIZE; 1153 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1154 ptent, addr, max_nr, rss, &prealloc); 1155 /* 1156 * If we need a pre-allocated page for this pte, drop the 1157 * locks, allocate, and try again. 1158 */ 1159 if (unlikely(ret == -EAGAIN)) 1160 break; 1161 if (unlikely(prealloc)) { 1162 /* 1163 * pre-alloc page cannot be reused by next time so as 1164 * to strictly follow mempolicy (e.g., alloc_page_vma() 1165 * will allocate page according to address). This 1166 * could only happen if one pinned pte changed. 1167 */ 1168 folio_put(prealloc); 1169 prealloc = NULL; 1170 } 1171 nr = ret; 1172 progress += 8 * nr; 1173 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1174 addr != end); 1175 1176 arch_leave_lazy_mmu_mode(); 1177 pte_unmap_unlock(orig_src_pte, src_ptl); 1178 add_mm_rss_vec(dst_mm, rss); 1179 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1180 cond_resched(); 1181 1182 if (ret == -EIO) { 1183 VM_WARN_ON_ONCE(!entry.val); 1184 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1185 ret = -ENOMEM; 1186 goto out; 1187 } 1188 entry.val = 0; 1189 } else if (ret == -EBUSY) { 1190 goto out; 1191 } else if (ret == -EAGAIN) { 1192 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1193 if (!prealloc) 1194 return -ENOMEM; 1195 } else if (ret < 0) { 1196 VM_WARN_ON_ONCE(1); 1197 } 1198 1199 /* We've captured and resolved the error. Reset, try again. */ 1200 ret = 0; 1201 1202 if (addr != end) 1203 goto again; 1204 out: 1205 if (unlikely(prealloc)) 1206 folio_put(prealloc); 1207 return ret; 1208 } 1209 1210 static inline int 1211 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1212 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1213 unsigned long end) 1214 { 1215 struct mm_struct *dst_mm = dst_vma->vm_mm; 1216 struct mm_struct *src_mm = src_vma->vm_mm; 1217 pmd_t *src_pmd, *dst_pmd; 1218 unsigned long next; 1219 1220 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1221 if (!dst_pmd) 1222 return -ENOMEM; 1223 src_pmd = pmd_offset(src_pud, addr); 1224 do { 1225 next = pmd_addr_end(addr, end); 1226 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1227 || pmd_devmap(*src_pmd)) { 1228 int err; 1229 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1230 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1231 addr, dst_vma, src_vma); 1232 if (err == -ENOMEM) 1233 return -ENOMEM; 1234 if (!err) 1235 continue; 1236 /* fall through */ 1237 } 1238 if (pmd_none_or_clear_bad(src_pmd)) 1239 continue; 1240 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1241 addr, next)) 1242 return -ENOMEM; 1243 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1244 return 0; 1245 } 1246 1247 static inline int 1248 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1249 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1250 unsigned long end) 1251 { 1252 struct mm_struct *dst_mm = dst_vma->vm_mm; 1253 struct mm_struct *src_mm = src_vma->vm_mm; 1254 pud_t *src_pud, *dst_pud; 1255 unsigned long next; 1256 1257 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1258 if (!dst_pud) 1259 return -ENOMEM; 1260 src_pud = pud_offset(src_p4d, addr); 1261 do { 1262 next = pud_addr_end(addr, end); 1263 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1264 int err; 1265 1266 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1267 err = copy_huge_pud(dst_mm, src_mm, 1268 dst_pud, src_pud, addr, src_vma); 1269 if (err == -ENOMEM) 1270 return -ENOMEM; 1271 if (!err) 1272 continue; 1273 /* fall through */ 1274 } 1275 if (pud_none_or_clear_bad(src_pud)) 1276 continue; 1277 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1278 addr, next)) 1279 return -ENOMEM; 1280 } while (dst_pud++, src_pud++, addr = next, addr != end); 1281 return 0; 1282 } 1283 1284 static inline int 1285 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1286 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1287 unsigned long end) 1288 { 1289 struct mm_struct *dst_mm = dst_vma->vm_mm; 1290 p4d_t *src_p4d, *dst_p4d; 1291 unsigned long next; 1292 1293 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1294 if (!dst_p4d) 1295 return -ENOMEM; 1296 src_p4d = p4d_offset(src_pgd, addr); 1297 do { 1298 next = p4d_addr_end(addr, end); 1299 if (p4d_none_or_clear_bad(src_p4d)) 1300 continue; 1301 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1302 addr, next)) 1303 return -ENOMEM; 1304 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1305 return 0; 1306 } 1307 1308 /* 1309 * Return true if the vma needs to copy the pgtable during this fork(). Return 1310 * false when we can speed up fork() by allowing lazy page faults later until 1311 * when the child accesses the memory range. 1312 */ 1313 static bool 1314 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1315 { 1316 /* 1317 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1318 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1319 * contains uffd-wp protection information, that's something we can't 1320 * retrieve from page cache, and skip copying will lose those info. 1321 */ 1322 if (userfaultfd_wp(dst_vma)) 1323 return true; 1324 1325 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1326 return true; 1327 1328 if (src_vma->anon_vma) 1329 return true; 1330 1331 /* 1332 * Don't copy ptes where a page fault will fill them correctly. Fork 1333 * becomes much lighter when there are big shared or private readonly 1334 * mappings. The tradeoff is that copy_page_range is more efficient 1335 * than faulting. 1336 */ 1337 return false; 1338 } 1339 1340 int 1341 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1342 { 1343 pgd_t *src_pgd, *dst_pgd; 1344 unsigned long next; 1345 unsigned long addr = src_vma->vm_start; 1346 unsigned long end = src_vma->vm_end; 1347 struct mm_struct *dst_mm = dst_vma->vm_mm; 1348 struct mm_struct *src_mm = src_vma->vm_mm; 1349 struct mmu_notifier_range range; 1350 bool is_cow; 1351 int ret; 1352 1353 if (!vma_needs_copy(dst_vma, src_vma)) 1354 return 0; 1355 1356 if (is_vm_hugetlb_page(src_vma)) 1357 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1358 1359 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1360 /* 1361 * We do not free on error cases below as remove_vma 1362 * gets called on error from higher level routine 1363 */ 1364 ret = track_pfn_copy(src_vma); 1365 if (ret) 1366 return ret; 1367 } 1368 1369 /* 1370 * We need to invalidate the secondary MMU mappings only when 1371 * there could be a permission downgrade on the ptes of the 1372 * parent mm. And a permission downgrade will only happen if 1373 * is_cow_mapping() returns true. 1374 */ 1375 is_cow = is_cow_mapping(src_vma->vm_flags); 1376 1377 if (is_cow) { 1378 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1379 0, src_mm, addr, end); 1380 mmu_notifier_invalidate_range_start(&range); 1381 /* 1382 * Disabling preemption is not needed for the write side, as 1383 * the read side doesn't spin, but goes to the mmap_lock. 1384 * 1385 * Use the raw variant of the seqcount_t write API to avoid 1386 * lockdep complaining about preemptibility. 1387 */ 1388 vma_assert_write_locked(src_vma); 1389 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1390 } 1391 1392 ret = 0; 1393 dst_pgd = pgd_offset(dst_mm, addr); 1394 src_pgd = pgd_offset(src_mm, addr); 1395 do { 1396 next = pgd_addr_end(addr, end); 1397 if (pgd_none_or_clear_bad(src_pgd)) 1398 continue; 1399 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1400 addr, next))) { 1401 untrack_pfn_clear(dst_vma); 1402 ret = -ENOMEM; 1403 break; 1404 } 1405 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1406 1407 if (is_cow) { 1408 raw_write_seqcount_end(&src_mm->write_protect_seq); 1409 mmu_notifier_invalidate_range_end(&range); 1410 } 1411 return ret; 1412 } 1413 1414 /* Whether we should zap all COWed (private) pages too */ 1415 static inline bool should_zap_cows(struct zap_details *details) 1416 { 1417 /* By default, zap all pages */ 1418 if (!details) 1419 return true; 1420 1421 /* Or, we zap COWed pages only if the caller wants to */ 1422 return details->even_cows; 1423 } 1424 1425 /* Decides whether we should zap this folio with the folio pointer specified */ 1426 static inline bool should_zap_folio(struct zap_details *details, 1427 struct folio *folio) 1428 { 1429 /* If we can make a decision without *folio.. */ 1430 if (should_zap_cows(details)) 1431 return true; 1432 1433 /* Otherwise we should only zap non-anon folios */ 1434 return !folio_test_anon(folio); 1435 } 1436 1437 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1438 { 1439 if (!details) 1440 return false; 1441 1442 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1443 } 1444 1445 /* 1446 * This function makes sure that we'll replace the none pte with an uffd-wp 1447 * swap special pte marker when necessary. Must be with the pgtable lock held. 1448 */ 1449 static inline void 1450 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1451 unsigned long addr, pte_t *pte, int nr, 1452 struct zap_details *details, pte_t pteval) 1453 { 1454 /* Zap on anonymous always means dropping everything */ 1455 if (vma_is_anonymous(vma)) 1456 return; 1457 1458 if (zap_drop_file_uffd_wp(details)) 1459 return; 1460 1461 for (;;) { 1462 /* the PFN in the PTE is irrelevant. */ 1463 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1464 if (--nr == 0) 1465 break; 1466 pte++; 1467 addr += PAGE_SIZE; 1468 } 1469 } 1470 1471 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1472 struct vm_area_struct *vma, struct folio *folio, 1473 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1474 unsigned long addr, struct zap_details *details, int *rss, 1475 bool *force_flush, bool *force_break) 1476 { 1477 struct mm_struct *mm = tlb->mm; 1478 bool delay_rmap = false; 1479 1480 if (!folio_test_anon(folio)) { 1481 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1482 if (pte_dirty(ptent)) { 1483 folio_mark_dirty(folio); 1484 if (tlb_delay_rmap(tlb)) { 1485 delay_rmap = true; 1486 *force_flush = true; 1487 } 1488 } 1489 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1490 folio_mark_accessed(folio); 1491 rss[mm_counter(folio)] -= nr; 1492 } else { 1493 /* We don't need up-to-date accessed/dirty bits. */ 1494 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1495 rss[MM_ANONPAGES] -= nr; 1496 } 1497 /* Checking a single PTE in a batch is sufficient. */ 1498 arch_check_zapped_pte(vma, ptent); 1499 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1500 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1501 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1502 ptent); 1503 1504 if (!delay_rmap) { 1505 folio_remove_rmap_ptes(folio, page, nr, vma); 1506 1507 if (unlikely(folio_mapcount(folio) < 0)) 1508 print_bad_pte(vma, addr, ptent, page); 1509 } 1510 1511 if (want_init_mlocked_on_free() && folio_test_mlocked(folio) && 1512 !delay_rmap && folio_test_anon(folio)) { 1513 kernel_init_pages(page, folio_nr_pages(folio)); 1514 } 1515 1516 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1517 *force_flush = true; 1518 *force_break = true; 1519 } 1520 } 1521 1522 /* 1523 * Zap or skip at least one present PTE, trying to batch-process subsequent 1524 * PTEs that map consecutive pages of the same folio. 1525 * 1526 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1527 */ 1528 static inline int zap_present_ptes(struct mmu_gather *tlb, 1529 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1530 unsigned int max_nr, unsigned long addr, 1531 struct zap_details *details, int *rss, bool *force_flush, 1532 bool *force_break) 1533 { 1534 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1535 struct mm_struct *mm = tlb->mm; 1536 struct folio *folio; 1537 struct page *page; 1538 int nr; 1539 1540 page = vm_normal_page(vma, addr, ptent); 1541 if (!page) { 1542 /* We don't need up-to-date accessed/dirty bits. */ 1543 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1544 arch_check_zapped_pte(vma, ptent); 1545 tlb_remove_tlb_entry(tlb, pte, addr); 1546 if (userfaultfd_pte_wp(vma, ptent)) 1547 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1548 details, ptent); 1549 ksm_might_unmap_zero_page(mm, ptent); 1550 return 1; 1551 } 1552 1553 folio = page_folio(page); 1554 if (unlikely(!should_zap_folio(details, folio))) 1555 return 1; 1556 1557 /* 1558 * Make sure that the common "small folio" case is as fast as possible 1559 * by keeping the batching logic separate. 1560 */ 1561 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1562 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1563 NULL, NULL, NULL); 1564 1565 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1566 addr, details, rss, force_flush, 1567 force_break); 1568 return nr; 1569 } 1570 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1571 details, rss, force_flush, force_break); 1572 return 1; 1573 } 1574 1575 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1576 struct vm_area_struct *vma, pmd_t *pmd, 1577 unsigned long addr, unsigned long end, 1578 struct zap_details *details) 1579 { 1580 bool force_flush = false, force_break = false; 1581 struct mm_struct *mm = tlb->mm; 1582 int rss[NR_MM_COUNTERS]; 1583 spinlock_t *ptl; 1584 pte_t *start_pte; 1585 pte_t *pte; 1586 swp_entry_t entry; 1587 int nr; 1588 1589 tlb_change_page_size(tlb, PAGE_SIZE); 1590 init_rss_vec(rss); 1591 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1592 if (!pte) 1593 return addr; 1594 1595 flush_tlb_batched_pending(mm); 1596 arch_enter_lazy_mmu_mode(); 1597 do { 1598 pte_t ptent = ptep_get(pte); 1599 struct folio *folio; 1600 struct page *page; 1601 int max_nr; 1602 1603 nr = 1; 1604 if (pte_none(ptent)) 1605 continue; 1606 1607 if (need_resched()) 1608 break; 1609 1610 if (pte_present(ptent)) { 1611 max_nr = (end - addr) / PAGE_SIZE; 1612 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1613 addr, details, rss, &force_flush, 1614 &force_break); 1615 if (unlikely(force_break)) { 1616 addr += nr * PAGE_SIZE; 1617 break; 1618 } 1619 continue; 1620 } 1621 1622 entry = pte_to_swp_entry(ptent); 1623 if (is_device_private_entry(entry) || 1624 is_device_exclusive_entry(entry)) { 1625 page = pfn_swap_entry_to_page(entry); 1626 folio = page_folio(page); 1627 if (unlikely(!should_zap_folio(details, folio))) 1628 continue; 1629 /* 1630 * Both device private/exclusive mappings should only 1631 * work with anonymous page so far, so we don't need to 1632 * consider uffd-wp bit when zap. For more information, 1633 * see zap_install_uffd_wp_if_needed(). 1634 */ 1635 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1636 rss[mm_counter(folio)]--; 1637 if (is_device_private_entry(entry)) 1638 folio_remove_rmap_pte(folio, page, vma); 1639 folio_put(folio); 1640 } else if (!non_swap_entry(entry)) { 1641 max_nr = (end - addr) / PAGE_SIZE; 1642 nr = swap_pte_batch(pte, max_nr, ptent); 1643 /* Genuine swap entries, hence a private anon pages */ 1644 if (!should_zap_cows(details)) 1645 continue; 1646 rss[MM_SWAPENTS] -= nr; 1647 free_swap_and_cache_nr(entry, nr); 1648 } else if (is_migration_entry(entry)) { 1649 folio = pfn_swap_entry_folio(entry); 1650 if (!should_zap_folio(details, folio)) 1651 continue; 1652 rss[mm_counter(folio)]--; 1653 } else if (pte_marker_entry_uffd_wp(entry)) { 1654 /* 1655 * For anon: always drop the marker; for file: only 1656 * drop the marker if explicitly requested. 1657 */ 1658 if (!vma_is_anonymous(vma) && 1659 !zap_drop_file_uffd_wp(details)) 1660 continue; 1661 } else if (is_hwpoison_entry(entry) || 1662 is_poisoned_swp_entry(entry)) { 1663 if (!should_zap_cows(details)) 1664 continue; 1665 } else { 1666 /* We should have covered all the swap entry types */ 1667 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1668 WARN_ON_ONCE(1); 1669 } 1670 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1671 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1672 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1673 1674 add_mm_rss_vec(mm, rss); 1675 arch_leave_lazy_mmu_mode(); 1676 1677 /* Do the actual TLB flush before dropping ptl */ 1678 if (force_flush) { 1679 tlb_flush_mmu_tlbonly(tlb); 1680 tlb_flush_rmaps(tlb, vma); 1681 } 1682 pte_unmap_unlock(start_pte, ptl); 1683 1684 /* 1685 * If we forced a TLB flush (either due to running out of 1686 * batch buffers or because we needed to flush dirty TLB 1687 * entries before releasing the ptl), free the batched 1688 * memory too. Come back again if we didn't do everything. 1689 */ 1690 if (force_flush) 1691 tlb_flush_mmu(tlb); 1692 1693 return addr; 1694 } 1695 1696 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1697 struct vm_area_struct *vma, pud_t *pud, 1698 unsigned long addr, unsigned long end, 1699 struct zap_details *details) 1700 { 1701 pmd_t *pmd; 1702 unsigned long next; 1703 1704 pmd = pmd_offset(pud, addr); 1705 do { 1706 next = pmd_addr_end(addr, end); 1707 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1708 if (next - addr != HPAGE_PMD_SIZE) 1709 __split_huge_pmd(vma, pmd, addr, false, NULL); 1710 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1711 addr = next; 1712 continue; 1713 } 1714 /* fall through */ 1715 } else if (details && details->single_folio && 1716 folio_test_pmd_mappable(details->single_folio) && 1717 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1718 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1719 /* 1720 * Take and drop THP pmd lock so that we cannot return 1721 * prematurely, while zap_huge_pmd() has cleared *pmd, 1722 * but not yet decremented compound_mapcount(). 1723 */ 1724 spin_unlock(ptl); 1725 } 1726 if (pmd_none(*pmd)) { 1727 addr = next; 1728 continue; 1729 } 1730 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1731 if (addr != next) 1732 pmd--; 1733 } while (pmd++, cond_resched(), addr != end); 1734 1735 return addr; 1736 } 1737 1738 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1739 struct vm_area_struct *vma, p4d_t *p4d, 1740 unsigned long addr, unsigned long end, 1741 struct zap_details *details) 1742 { 1743 pud_t *pud; 1744 unsigned long next; 1745 1746 pud = pud_offset(p4d, addr); 1747 do { 1748 next = pud_addr_end(addr, end); 1749 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1750 if (next - addr != HPAGE_PUD_SIZE) { 1751 mmap_assert_locked(tlb->mm); 1752 split_huge_pud(vma, pud, addr); 1753 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1754 goto next; 1755 /* fall through */ 1756 } 1757 if (pud_none_or_clear_bad(pud)) 1758 continue; 1759 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1760 next: 1761 cond_resched(); 1762 } while (pud++, addr = next, addr != end); 1763 1764 return addr; 1765 } 1766 1767 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1768 struct vm_area_struct *vma, pgd_t *pgd, 1769 unsigned long addr, unsigned long end, 1770 struct zap_details *details) 1771 { 1772 p4d_t *p4d; 1773 unsigned long next; 1774 1775 p4d = p4d_offset(pgd, addr); 1776 do { 1777 next = p4d_addr_end(addr, end); 1778 if (p4d_none_or_clear_bad(p4d)) 1779 continue; 1780 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1781 } while (p4d++, addr = next, addr != end); 1782 1783 return addr; 1784 } 1785 1786 void unmap_page_range(struct mmu_gather *tlb, 1787 struct vm_area_struct *vma, 1788 unsigned long addr, unsigned long end, 1789 struct zap_details *details) 1790 { 1791 pgd_t *pgd; 1792 unsigned long next; 1793 1794 BUG_ON(addr >= end); 1795 tlb_start_vma(tlb, vma); 1796 pgd = pgd_offset(vma->vm_mm, addr); 1797 do { 1798 next = pgd_addr_end(addr, end); 1799 if (pgd_none_or_clear_bad(pgd)) 1800 continue; 1801 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1802 } while (pgd++, addr = next, addr != end); 1803 tlb_end_vma(tlb, vma); 1804 } 1805 1806 1807 static void unmap_single_vma(struct mmu_gather *tlb, 1808 struct vm_area_struct *vma, unsigned long start_addr, 1809 unsigned long end_addr, 1810 struct zap_details *details, bool mm_wr_locked) 1811 { 1812 unsigned long start = max(vma->vm_start, start_addr); 1813 unsigned long end; 1814 1815 if (start >= vma->vm_end) 1816 return; 1817 end = min(vma->vm_end, end_addr); 1818 if (end <= vma->vm_start) 1819 return; 1820 1821 if (vma->vm_file) 1822 uprobe_munmap(vma, start, end); 1823 1824 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1825 untrack_pfn(vma, 0, 0, mm_wr_locked); 1826 1827 if (start != end) { 1828 if (unlikely(is_vm_hugetlb_page(vma))) { 1829 /* 1830 * It is undesirable to test vma->vm_file as it 1831 * should be non-null for valid hugetlb area. 1832 * However, vm_file will be NULL in the error 1833 * cleanup path of mmap_region. When 1834 * hugetlbfs ->mmap method fails, 1835 * mmap_region() nullifies vma->vm_file 1836 * before calling this function to clean up. 1837 * Since no pte has actually been setup, it is 1838 * safe to do nothing in this case. 1839 */ 1840 if (vma->vm_file) { 1841 zap_flags_t zap_flags = details ? 1842 details->zap_flags : 0; 1843 __unmap_hugepage_range(tlb, vma, start, end, 1844 NULL, zap_flags); 1845 } 1846 } else 1847 unmap_page_range(tlb, vma, start, end, details); 1848 } 1849 } 1850 1851 /** 1852 * unmap_vmas - unmap a range of memory covered by a list of vma's 1853 * @tlb: address of the caller's struct mmu_gather 1854 * @mas: the maple state 1855 * @vma: the starting vma 1856 * @start_addr: virtual address at which to start unmapping 1857 * @end_addr: virtual address at which to end unmapping 1858 * @tree_end: The maximum index to check 1859 * @mm_wr_locked: lock flag 1860 * 1861 * Unmap all pages in the vma list. 1862 * 1863 * Only addresses between `start' and `end' will be unmapped. 1864 * 1865 * The VMA list must be sorted in ascending virtual address order. 1866 * 1867 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1868 * range after unmap_vmas() returns. So the only responsibility here is to 1869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1870 * drops the lock and schedules. 1871 */ 1872 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1873 struct vm_area_struct *vma, unsigned long start_addr, 1874 unsigned long end_addr, unsigned long tree_end, 1875 bool mm_wr_locked) 1876 { 1877 struct mmu_notifier_range range; 1878 struct zap_details details = { 1879 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1880 /* Careful - we need to zap private pages too! */ 1881 .even_cows = true, 1882 }; 1883 1884 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1885 start_addr, end_addr); 1886 mmu_notifier_invalidate_range_start(&range); 1887 do { 1888 unsigned long start = start_addr; 1889 unsigned long end = end_addr; 1890 hugetlb_zap_begin(vma, &start, &end); 1891 unmap_single_vma(tlb, vma, start, end, &details, 1892 mm_wr_locked); 1893 hugetlb_zap_end(vma, &details); 1894 vma = mas_find(mas, tree_end - 1); 1895 } while (vma && likely(!xa_is_zero(vma))); 1896 mmu_notifier_invalidate_range_end(&range); 1897 } 1898 1899 /** 1900 * zap_page_range_single - remove user pages in a given range 1901 * @vma: vm_area_struct holding the applicable pages 1902 * @address: starting address of pages to zap 1903 * @size: number of bytes to zap 1904 * @details: details of shared cache invalidation 1905 * 1906 * The range must fit into one VMA. 1907 */ 1908 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1909 unsigned long size, struct zap_details *details) 1910 { 1911 const unsigned long end = address + size; 1912 struct mmu_notifier_range range; 1913 struct mmu_gather tlb; 1914 1915 lru_add_drain(); 1916 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1917 address, end); 1918 hugetlb_zap_begin(vma, &range.start, &range.end); 1919 tlb_gather_mmu(&tlb, vma->vm_mm); 1920 update_hiwater_rss(vma->vm_mm); 1921 mmu_notifier_invalidate_range_start(&range); 1922 /* 1923 * unmap 'address-end' not 'range.start-range.end' as range 1924 * could have been expanded for hugetlb pmd sharing. 1925 */ 1926 unmap_single_vma(&tlb, vma, address, end, details, false); 1927 mmu_notifier_invalidate_range_end(&range); 1928 tlb_finish_mmu(&tlb); 1929 hugetlb_zap_end(vma, details); 1930 } 1931 1932 /** 1933 * zap_vma_ptes - remove ptes mapping the vma 1934 * @vma: vm_area_struct holding ptes to be zapped 1935 * @address: starting address of pages to zap 1936 * @size: number of bytes to zap 1937 * 1938 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1939 * 1940 * The entire address range must be fully contained within the vma. 1941 * 1942 */ 1943 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1944 unsigned long size) 1945 { 1946 if (!range_in_vma(vma, address, address + size) || 1947 !(vma->vm_flags & VM_PFNMAP)) 1948 return; 1949 1950 zap_page_range_single(vma, address, size, NULL); 1951 } 1952 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1953 1954 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1955 { 1956 pgd_t *pgd; 1957 p4d_t *p4d; 1958 pud_t *pud; 1959 pmd_t *pmd; 1960 1961 pgd = pgd_offset(mm, addr); 1962 p4d = p4d_alloc(mm, pgd, addr); 1963 if (!p4d) 1964 return NULL; 1965 pud = pud_alloc(mm, p4d, addr); 1966 if (!pud) 1967 return NULL; 1968 pmd = pmd_alloc(mm, pud, addr); 1969 if (!pmd) 1970 return NULL; 1971 1972 VM_BUG_ON(pmd_trans_huge(*pmd)); 1973 return pmd; 1974 } 1975 1976 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1977 spinlock_t **ptl) 1978 { 1979 pmd_t *pmd = walk_to_pmd(mm, addr); 1980 1981 if (!pmd) 1982 return NULL; 1983 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1984 } 1985 1986 static int validate_page_before_insert(struct page *page) 1987 { 1988 struct folio *folio = page_folio(page); 1989 1990 if (folio_test_anon(folio) || folio_test_slab(folio) || 1991 page_has_type(page)) 1992 return -EINVAL; 1993 flush_dcache_folio(folio); 1994 return 0; 1995 } 1996 1997 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1998 unsigned long addr, struct page *page, pgprot_t prot) 1999 { 2000 struct folio *folio = page_folio(page); 2001 2002 if (!pte_none(ptep_get(pte))) 2003 return -EBUSY; 2004 /* Ok, finally just insert the thing.. */ 2005 folio_get(folio); 2006 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2007 folio_add_file_rmap_pte(folio, page, vma); 2008 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 2009 return 0; 2010 } 2011 2012 /* 2013 * This is the old fallback for page remapping. 2014 * 2015 * For historical reasons, it only allows reserved pages. Only 2016 * old drivers should use this, and they needed to mark their 2017 * pages reserved for the old functions anyway. 2018 */ 2019 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2020 struct page *page, pgprot_t prot) 2021 { 2022 int retval; 2023 pte_t *pte; 2024 spinlock_t *ptl; 2025 2026 retval = validate_page_before_insert(page); 2027 if (retval) 2028 goto out; 2029 retval = -ENOMEM; 2030 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2031 if (!pte) 2032 goto out; 2033 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2034 pte_unmap_unlock(pte, ptl); 2035 out: 2036 return retval; 2037 } 2038 2039 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2040 unsigned long addr, struct page *page, pgprot_t prot) 2041 { 2042 int err; 2043 2044 if (!page_count(page)) 2045 return -EINVAL; 2046 err = validate_page_before_insert(page); 2047 if (err) 2048 return err; 2049 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2050 } 2051 2052 /* insert_pages() amortizes the cost of spinlock operations 2053 * when inserting pages in a loop. 2054 */ 2055 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2056 struct page **pages, unsigned long *num, pgprot_t prot) 2057 { 2058 pmd_t *pmd = NULL; 2059 pte_t *start_pte, *pte; 2060 spinlock_t *pte_lock; 2061 struct mm_struct *const mm = vma->vm_mm; 2062 unsigned long curr_page_idx = 0; 2063 unsigned long remaining_pages_total = *num; 2064 unsigned long pages_to_write_in_pmd; 2065 int ret; 2066 more: 2067 ret = -EFAULT; 2068 pmd = walk_to_pmd(mm, addr); 2069 if (!pmd) 2070 goto out; 2071 2072 pages_to_write_in_pmd = min_t(unsigned long, 2073 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2074 2075 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2076 ret = -ENOMEM; 2077 if (pte_alloc(mm, pmd)) 2078 goto out; 2079 2080 while (pages_to_write_in_pmd) { 2081 int pte_idx = 0; 2082 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2083 2084 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2085 if (!start_pte) { 2086 ret = -EFAULT; 2087 goto out; 2088 } 2089 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2090 int err = insert_page_in_batch_locked(vma, pte, 2091 addr, pages[curr_page_idx], prot); 2092 if (unlikely(err)) { 2093 pte_unmap_unlock(start_pte, pte_lock); 2094 ret = err; 2095 remaining_pages_total -= pte_idx; 2096 goto out; 2097 } 2098 addr += PAGE_SIZE; 2099 ++curr_page_idx; 2100 } 2101 pte_unmap_unlock(start_pte, pte_lock); 2102 pages_to_write_in_pmd -= batch_size; 2103 remaining_pages_total -= batch_size; 2104 } 2105 if (remaining_pages_total) 2106 goto more; 2107 ret = 0; 2108 out: 2109 *num = remaining_pages_total; 2110 return ret; 2111 } 2112 2113 /** 2114 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2115 * @vma: user vma to map to 2116 * @addr: target start user address of these pages 2117 * @pages: source kernel pages 2118 * @num: in: number of pages to map. out: number of pages that were *not* 2119 * mapped. (0 means all pages were successfully mapped). 2120 * 2121 * Preferred over vm_insert_page() when inserting multiple pages. 2122 * 2123 * In case of error, we may have mapped a subset of the provided 2124 * pages. It is the caller's responsibility to account for this case. 2125 * 2126 * The same restrictions apply as in vm_insert_page(). 2127 */ 2128 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2129 struct page **pages, unsigned long *num) 2130 { 2131 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2132 2133 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2134 return -EFAULT; 2135 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2136 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2137 BUG_ON(vma->vm_flags & VM_PFNMAP); 2138 vm_flags_set(vma, VM_MIXEDMAP); 2139 } 2140 /* Defer page refcount checking till we're about to map that page. */ 2141 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2142 } 2143 EXPORT_SYMBOL(vm_insert_pages); 2144 2145 /** 2146 * vm_insert_page - insert single page into user vma 2147 * @vma: user vma to map to 2148 * @addr: target user address of this page 2149 * @page: source kernel page 2150 * 2151 * This allows drivers to insert individual pages they've allocated 2152 * into a user vma. 2153 * 2154 * The page has to be a nice clean _individual_ kernel allocation. 2155 * If you allocate a compound page, you need to have marked it as 2156 * such (__GFP_COMP), or manually just split the page up yourself 2157 * (see split_page()). 2158 * 2159 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2160 * took an arbitrary page protection parameter. This doesn't allow 2161 * that. Your vma protection will have to be set up correctly, which 2162 * means that if you want a shared writable mapping, you'd better 2163 * ask for a shared writable mapping! 2164 * 2165 * The page does not need to be reserved. 2166 * 2167 * Usually this function is called from f_op->mmap() handler 2168 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2169 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2170 * function from other places, for example from page-fault handler. 2171 * 2172 * Return: %0 on success, negative error code otherwise. 2173 */ 2174 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2175 struct page *page) 2176 { 2177 if (addr < vma->vm_start || addr >= vma->vm_end) 2178 return -EFAULT; 2179 if (!page_count(page)) 2180 return -EINVAL; 2181 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2182 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2183 BUG_ON(vma->vm_flags & VM_PFNMAP); 2184 vm_flags_set(vma, VM_MIXEDMAP); 2185 } 2186 return insert_page(vma, addr, page, vma->vm_page_prot); 2187 } 2188 EXPORT_SYMBOL(vm_insert_page); 2189 2190 /* 2191 * __vm_map_pages - maps range of kernel pages into user vma 2192 * @vma: user vma to map to 2193 * @pages: pointer to array of source kernel pages 2194 * @num: number of pages in page array 2195 * @offset: user's requested vm_pgoff 2196 * 2197 * This allows drivers to map range of kernel pages into a user vma. 2198 * 2199 * Return: 0 on success and error code otherwise. 2200 */ 2201 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2202 unsigned long num, unsigned long offset) 2203 { 2204 unsigned long count = vma_pages(vma); 2205 unsigned long uaddr = vma->vm_start; 2206 int ret, i; 2207 2208 /* Fail if the user requested offset is beyond the end of the object */ 2209 if (offset >= num) 2210 return -ENXIO; 2211 2212 /* Fail if the user requested size exceeds available object size */ 2213 if (count > num - offset) 2214 return -ENXIO; 2215 2216 for (i = 0; i < count; i++) { 2217 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2218 if (ret < 0) 2219 return ret; 2220 uaddr += PAGE_SIZE; 2221 } 2222 2223 return 0; 2224 } 2225 2226 /** 2227 * vm_map_pages - maps range of kernel pages starts with non zero offset 2228 * @vma: user vma to map to 2229 * @pages: pointer to array of source kernel pages 2230 * @num: number of pages in page array 2231 * 2232 * Maps an object consisting of @num pages, catering for the user's 2233 * requested vm_pgoff 2234 * 2235 * If we fail to insert any page into the vma, the function will return 2236 * immediately leaving any previously inserted pages present. Callers 2237 * from the mmap handler may immediately return the error as their caller 2238 * will destroy the vma, removing any successfully inserted pages. Other 2239 * callers should make their own arrangements for calling unmap_region(). 2240 * 2241 * Context: Process context. Called by mmap handlers. 2242 * Return: 0 on success and error code otherwise. 2243 */ 2244 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2245 unsigned long num) 2246 { 2247 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2248 } 2249 EXPORT_SYMBOL(vm_map_pages); 2250 2251 /** 2252 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2253 * @vma: user vma to map to 2254 * @pages: pointer to array of source kernel pages 2255 * @num: number of pages in page array 2256 * 2257 * Similar to vm_map_pages(), except that it explicitly sets the offset 2258 * to 0. This function is intended for the drivers that did not consider 2259 * vm_pgoff. 2260 * 2261 * Context: Process context. Called by mmap handlers. 2262 * Return: 0 on success and error code otherwise. 2263 */ 2264 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2265 unsigned long num) 2266 { 2267 return __vm_map_pages(vma, pages, num, 0); 2268 } 2269 EXPORT_SYMBOL(vm_map_pages_zero); 2270 2271 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2272 pfn_t pfn, pgprot_t prot, bool mkwrite) 2273 { 2274 struct mm_struct *mm = vma->vm_mm; 2275 pte_t *pte, entry; 2276 spinlock_t *ptl; 2277 2278 pte = get_locked_pte(mm, addr, &ptl); 2279 if (!pte) 2280 return VM_FAULT_OOM; 2281 entry = ptep_get(pte); 2282 if (!pte_none(entry)) { 2283 if (mkwrite) { 2284 /* 2285 * For read faults on private mappings the PFN passed 2286 * in may not match the PFN we have mapped if the 2287 * mapped PFN is a writeable COW page. In the mkwrite 2288 * case we are creating a writable PTE for a shared 2289 * mapping and we expect the PFNs to match. If they 2290 * don't match, we are likely racing with block 2291 * allocation and mapping invalidation so just skip the 2292 * update. 2293 */ 2294 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2295 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2296 goto out_unlock; 2297 } 2298 entry = pte_mkyoung(entry); 2299 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2300 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2301 update_mmu_cache(vma, addr, pte); 2302 } 2303 goto out_unlock; 2304 } 2305 2306 /* Ok, finally just insert the thing.. */ 2307 if (pfn_t_devmap(pfn)) 2308 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2309 else 2310 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2311 2312 if (mkwrite) { 2313 entry = pte_mkyoung(entry); 2314 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2315 } 2316 2317 set_pte_at(mm, addr, pte, entry); 2318 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2319 2320 out_unlock: 2321 pte_unmap_unlock(pte, ptl); 2322 return VM_FAULT_NOPAGE; 2323 } 2324 2325 /** 2326 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2327 * @vma: user vma to map to 2328 * @addr: target user address of this page 2329 * @pfn: source kernel pfn 2330 * @pgprot: pgprot flags for the inserted page 2331 * 2332 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2333 * to override pgprot on a per-page basis. 2334 * 2335 * This only makes sense for IO mappings, and it makes no sense for 2336 * COW mappings. In general, using multiple vmas is preferable; 2337 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2338 * impractical. 2339 * 2340 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2341 * caching- and encryption bits different than those of @vma->vm_page_prot, 2342 * because the caching- or encryption mode may not be known at mmap() time. 2343 * 2344 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2345 * to set caching and encryption bits for those vmas (except for COW pages). 2346 * This is ensured by core vm only modifying these page table entries using 2347 * functions that don't touch caching- or encryption bits, using pte_modify() 2348 * if needed. (See for example mprotect()). 2349 * 2350 * Also when new page-table entries are created, this is only done using the 2351 * fault() callback, and never using the value of vma->vm_page_prot, 2352 * except for page-table entries that point to anonymous pages as the result 2353 * of COW. 2354 * 2355 * Context: Process context. May allocate using %GFP_KERNEL. 2356 * Return: vm_fault_t value. 2357 */ 2358 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2359 unsigned long pfn, pgprot_t pgprot) 2360 { 2361 /* 2362 * Technically, architectures with pte_special can avoid all these 2363 * restrictions (same for remap_pfn_range). However we would like 2364 * consistency in testing and feature parity among all, so we should 2365 * try to keep these invariants in place for everybody. 2366 */ 2367 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2368 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2369 (VM_PFNMAP|VM_MIXEDMAP)); 2370 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2371 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2372 2373 if (addr < vma->vm_start || addr >= vma->vm_end) 2374 return VM_FAULT_SIGBUS; 2375 2376 if (!pfn_modify_allowed(pfn, pgprot)) 2377 return VM_FAULT_SIGBUS; 2378 2379 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2380 2381 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2382 false); 2383 } 2384 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2385 2386 /** 2387 * vmf_insert_pfn - insert single pfn into user vma 2388 * @vma: user vma to map to 2389 * @addr: target user address of this page 2390 * @pfn: source kernel pfn 2391 * 2392 * Similar to vm_insert_page, this allows drivers to insert individual pages 2393 * they've allocated into a user vma. Same comments apply. 2394 * 2395 * This function should only be called from a vm_ops->fault handler, and 2396 * in that case the handler should return the result of this function. 2397 * 2398 * vma cannot be a COW mapping. 2399 * 2400 * As this is called only for pages that do not currently exist, we 2401 * do not need to flush old virtual caches or the TLB. 2402 * 2403 * Context: Process context. May allocate using %GFP_KERNEL. 2404 * Return: vm_fault_t value. 2405 */ 2406 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2407 unsigned long pfn) 2408 { 2409 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2410 } 2411 EXPORT_SYMBOL(vmf_insert_pfn); 2412 2413 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2414 { 2415 /* these checks mirror the abort conditions in vm_normal_page */ 2416 if (vma->vm_flags & VM_MIXEDMAP) 2417 return true; 2418 if (pfn_t_devmap(pfn)) 2419 return true; 2420 if (pfn_t_special(pfn)) 2421 return true; 2422 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2423 return true; 2424 return false; 2425 } 2426 2427 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2428 unsigned long addr, pfn_t pfn, bool mkwrite) 2429 { 2430 pgprot_t pgprot = vma->vm_page_prot; 2431 int err; 2432 2433 BUG_ON(!vm_mixed_ok(vma, pfn)); 2434 2435 if (addr < vma->vm_start || addr >= vma->vm_end) 2436 return VM_FAULT_SIGBUS; 2437 2438 track_pfn_insert(vma, &pgprot, pfn); 2439 2440 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2441 return VM_FAULT_SIGBUS; 2442 2443 /* 2444 * If we don't have pte special, then we have to use the pfn_valid() 2445 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2446 * refcount the page if pfn_valid is true (hence insert_page rather 2447 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2448 * without pte special, it would there be refcounted as a normal page. 2449 */ 2450 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2451 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2452 struct page *page; 2453 2454 /* 2455 * At this point we are committed to insert_page() 2456 * regardless of whether the caller specified flags that 2457 * result in pfn_t_has_page() == false. 2458 */ 2459 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2460 err = insert_page(vma, addr, page, pgprot); 2461 } else { 2462 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2463 } 2464 2465 if (err == -ENOMEM) 2466 return VM_FAULT_OOM; 2467 if (err < 0 && err != -EBUSY) 2468 return VM_FAULT_SIGBUS; 2469 2470 return VM_FAULT_NOPAGE; 2471 } 2472 2473 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2474 pfn_t pfn) 2475 { 2476 return __vm_insert_mixed(vma, addr, pfn, false); 2477 } 2478 EXPORT_SYMBOL(vmf_insert_mixed); 2479 2480 /* 2481 * If the insertion of PTE failed because someone else already added a 2482 * different entry in the mean time, we treat that as success as we assume 2483 * the same entry was actually inserted. 2484 */ 2485 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2486 unsigned long addr, pfn_t pfn) 2487 { 2488 return __vm_insert_mixed(vma, addr, pfn, true); 2489 } 2490 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2491 2492 /* 2493 * maps a range of physical memory into the requested pages. the old 2494 * mappings are removed. any references to nonexistent pages results 2495 * in null mappings (currently treated as "copy-on-access") 2496 */ 2497 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2498 unsigned long addr, unsigned long end, 2499 unsigned long pfn, pgprot_t prot) 2500 { 2501 pte_t *pte, *mapped_pte; 2502 spinlock_t *ptl; 2503 int err = 0; 2504 2505 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2506 if (!pte) 2507 return -ENOMEM; 2508 arch_enter_lazy_mmu_mode(); 2509 do { 2510 BUG_ON(!pte_none(ptep_get(pte))); 2511 if (!pfn_modify_allowed(pfn, prot)) { 2512 err = -EACCES; 2513 break; 2514 } 2515 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2516 pfn++; 2517 } while (pte++, addr += PAGE_SIZE, addr != end); 2518 arch_leave_lazy_mmu_mode(); 2519 pte_unmap_unlock(mapped_pte, ptl); 2520 return err; 2521 } 2522 2523 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2524 unsigned long addr, unsigned long end, 2525 unsigned long pfn, pgprot_t prot) 2526 { 2527 pmd_t *pmd; 2528 unsigned long next; 2529 int err; 2530 2531 pfn -= addr >> PAGE_SHIFT; 2532 pmd = pmd_alloc(mm, pud, addr); 2533 if (!pmd) 2534 return -ENOMEM; 2535 VM_BUG_ON(pmd_trans_huge(*pmd)); 2536 do { 2537 next = pmd_addr_end(addr, end); 2538 err = remap_pte_range(mm, pmd, addr, next, 2539 pfn + (addr >> PAGE_SHIFT), prot); 2540 if (err) 2541 return err; 2542 } while (pmd++, addr = next, addr != end); 2543 return 0; 2544 } 2545 2546 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2547 unsigned long addr, unsigned long end, 2548 unsigned long pfn, pgprot_t prot) 2549 { 2550 pud_t *pud; 2551 unsigned long next; 2552 int err; 2553 2554 pfn -= addr >> PAGE_SHIFT; 2555 pud = pud_alloc(mm, p4d, addr); 2556 if (!pud) 2557 return -ENOMEM; 2558 do { 2559 next = pud_addr_end(addr, end); 2560 err = remap_pmd_range(mm, pud, addr, next, 2561 pfn + (addr >> PAGE_SHIFT), prot); 2562 if (err) 2563 return err; 2564 } while (pud++, addr = next, addr != end); 2565 return 0; 2566 } 2567 2568 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2569 unsigned long addr, unsigned long end, 2570 unsigned long pfn, pgprot_t prot) 2571 { 2572 p4d_t *p4d; 2573 unsigned long next; 2574 int err; 2575 2576 pfn -= addr >> PAGE_SHIFT; 2577 p4d = p4d_alloc(mm, pgd, addr); 2578 if (!p4d) 2579 return -ENOMEM; 2580 do { 2581 next = p4d_addr_end(addr, end); 2582 err = remap_pud_range(mm, p4d, addr, next, 2583 pfn + (addr >> PAGE_SHIFT), prot); 2584 if (err) 2585 return err; 2586 } while (p4d++, addr = next, addr != end); 2587 return 0; 2588 } 2589 2590 /* 2591 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2592 * must have pre-validated the caching bits of the pgprot_t. 2593 */ 2594 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2595 unsigned long pfn, unsigned long size, pgprot_t prot) 2596 { 2597 pgd_t *pgd; 2598 unsigned long next; 2599 unsigned long end = addr + PAGE_ALIGN(size); 2600 struct mm_struct *mm = vma->vm_mm; 2601 int err; 2602 2603 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2604 return -EINVAL; 2605 2606 /* 2607 * Physically remapped pages are special. Tell the 2608 * rest of the world about it: 2609 * VM_IO tells people not to look at these pages 2610 * (accesses can have side effects). 2611 * VM_PFNMAP tells the core MM that the base pages are just 2612 * raw PFN mappings, and do not have a "struct page" associated 2613 * with them. 2614 * VM_DONTEXPAND 2615 * Disable vma merging and expanding with mremap(). 2616 * VM_DONTDUMP 2617 * Omit vma from core dump, even when VM_IO turned off. 2618 * 2619 * There's a horrible special case to handle copy-on-write 2620 * behaviour that some programs depend on. We mark the "original" 2621 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2622 * See vm_normal_page() for details. 2623 */ 2624 if (is_cow_mapping(vma->vm_flags)) { 2625 if (addr != vma->vm_start || end != vma->vm_end) 2626 return -EINVAL; 2627 vma->vm_pgoff = pfn; 2628 } 2629 2630 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2631 2632 BUG_ON(addr >= end); 2633 pfn -= addr >> PAGE_SHIFT; 2634 pgd = pgd_offset(mm, addr); 2635 flush_cache_range(vma, addr, end); 2636 do { 2637 next = pgd_addr_end(addr, end); 2638 err = remap_p4d_range(mm, pgd, addr, next, 2639 pfn + (addr >> PAGE_SHIFT), prot); 2640 if (err) 2641 return err; 2642 } while (pgd++, addr = next, addr != end); 2643 2644 return 0; 2645 } 2646 2647 /** 2648 * remap_pfn_range - remap kernel memory to userspace 2649 * @vma: user vma to map to 2650 * @addr: target page aligned user address to start at 2651 * @pfn: page frame number of kernel physical memory address 2652 * @size: size of mapping area 2653 * @prot: page protection flags for this mapping 2654 * 2655 * Note: this is only safe if the mm semaphore is held when called. 2656 * 2657 * Return: %0 on success, negative error code otherwise. 2658 */ 2659 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2660 unsigned long pfn, unsigned long size, pgprot_t prot) 2661 { 2662 int err; 2663 2664 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2665 if (err) 2666 return -EINVAL; 2667 2668 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2669 if (err) 2670 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2671 return err; 2672 } 2673 EXPORT_SYMBOL(remap_pfn_range); 2674 2675 /** 2676 * vm_iomap_memory - remap memory to userspace 2677 * @vma: user vma to map to 2678 * @start: start of the physical memory to be mapped 2679 * @len: size of area 2680 * 2681 * This is a simplified io_remap_pfn_range() for common driver use. The 2682 * driver just needs to give us the physical memory range to be mapped, 2683 * we'll figure out the rest from the vma information. 2684 * 2685 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2686 * whatever write-combining details or similar. 2687 * 2688 * Return: %0 on success, negative error code otherwise. 2689 */ 2690 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2691 { 2692 unsigned long vm_len, pfn, pages; 2693 2694 /* Check that the physical memory area passed in looks valid */ 2695 if (start + len < start) 2696 return -EINVAL; 2697 /* 2698 * You *really* shouldn't map things that aren't page-aligned, 2699 * but we've historically allowed it because IO memory might 2700 * just have smaller alignment. 2701 */ 2702 len += start & ~PAGE_MASK; 2703 pfn = start >> PAGE_SHIFT; 2704 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2705 if (pfn + pages < pfn) 2706 return -EINVAL; 2707 2708 /* We start the mapping 'vm_pgoff' pages into the area */ 2709 if (vma->vm_pgoff > pages) 2710 return -EINVAL; 2711 pfn += vma->vm_pgoff; 2712 pages -= vma->vm_pgoff; 2713 2714 /* Can we fit all of the mapping? */ 2715 vm_len = vma->vm_end - vma->vm_start; 2716 if (vm_len >> PAGE_SHIFT > pages) 2717 return -EINVAL; 2718 2719 /* Ok, let it rip */ 2720 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2721 } 2722 EXPORT_SYMBOL(vm_iomap_memory); 2723 2724 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2725 unsigned long addr, unsigned long end, 2726 pte_fn_t fn, void *data, bool create, 2727 pgtbl_mod_mask *mask) 2728 { 2729 pte_t *pte, *mapped_pte; 2730 int err = 0; 2731 spinlock_t *ptl; 2732 2733 if (create) { 2734 mapped_pte = pte = (mm == &init_mm) ? 2735 pte_alloc_kernel_track(pmd, addr, mask) : 2736 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2737 if (!pte) 2738 return -ENOMEM; 2739 } else { 2740 mapped_pte = pte = (mm == &init_mm) ? 2741 pte_offset_kernel(pmd, addr) : 2742 pte_offset_map_lock(mm, pmd, addr, &ptl); 2743 if (!pte) 2744 return -EINVAL; 2745 } 2746 2747 arch_enter_lazy_mmu_mode(); 2748 2749 if (fn) { 2750 do { 2751 if (create || !pte_none(ptep_get(pte))) { 2752 err = fn(pte++, addr, data); 2753 if (err) 2754 break; 2755 } 2756 } while (addr += PAGE_SIZE, addr != end); 2757 } 2758 *mask |= PGTBL_PTE_MODIFIED; 2759 2760 arch_leave_lazy_mmu_mode(); 2761 2762 if (mm != &init_mm) 2763 pte_unmap_unlock(mapped_pte, ptl); 2764 return err; 2765 } 2766 2767 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2768 unsigned long addr, unsigned long end, 2769 pte_fn_t fn, void *data, bool create, 2770 pgtbl_mod_mask *mask) 2771 { 2772 pmd_t *pmd; 2773 unsigned long next; 2774 int err = 0; 2775 2776 BUG_ON(pud_leaf(*pud)); 2777 2778 if (create) { 2779 pmd = pmd_alloc_track(mm, pud, addr, mask); 2780 if (!pmd) 2781 return -ENOMEM; 2782 } else { 2783 pmd = pmd_offset(pud, addr); 2784 } 2785 do { 2786 next = pmd_addr_end(addr, end); 2787 if (pmd_none(*pmd) && !create) 2788 continue; 2789 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2790 return -EINVAL; 2791 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2792 if (!create) 2793 continue; 2794 pmd_clear_bad(pmd); 2795 } 2796 err = apply_to_pte_range(mm, pmd, addr, next, 2797 fn, data, create, mask); 2798 if (err) 2799 break; 2800 } while (pmd++, addr = next, addr != end); 2801 2802 return err; 2803 } 2804 2805 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2806 unsigned long addr, unsigned long end, 2807 pte_fn_t fn, void *data, bool create, 2808 pgtbl_mod_mask *mask) 2809 { 2810 pud_t *pud; 2811 unsigned long next; 2812 int err = 0; 2813 2814 if (create) { 2815 pud = pud_alloc_track(mm, p4d, addr, mask); 2816 if (!pud) 2817 return -ENOMEM; 2818 } else { 2819 pud = pud_offset(p4d, addr); 2820 } 2821 do { 2822 next = pud_addr_end(addr, end); 2823 if (pud_none(*pud) && !create) 2824 continue; 2825 if (WARN_ON_ONCE(pud_leaf(*pud))) 2826 return -EINVAL; 2827 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2828 if (!create) 2829 continue; 2830 pud_clear_bad(pud); 2831 } 2832 err = apply_to_pmd_range(mm, pud, addr, next, 2833 fn, data, create, mask); 2834 if (err) 2835 break; 2836 } while (pud++, addr = next, addr != end); 2837 2838 return err; 2839 } 2840 2841 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2842 unsigned long addr, unsigned long end, 2843 pte_fn_t fn, void *data, bool create, 2844 pgtbl_mod_mask *mask) 2845 { 2846 p4d_t *p4d; 2847 unsigned long next; 2848 int err = 0; 2849 2850 if (create) { 2851 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2852 if (!p4d) 2853 return -ENOMEM; 2854 } else { 2855 p4d = p4d_offset(pgd, addr); 2856 } 2857 do { 2858 next = p4d_addr_end(addr, end); 2859 if (p4d_none(*p4d) && !create) 2860 continue; 2861 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2862 return -EINVAL; 2863 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2864 if (!create) 2865 continue; 2866 p4d_clear_bad(p4d); 2867 } 2868 err = apply_to_pud_range(mm, p4d, addr, next, 2869 fn, data, create, mask); 2870 if (err) 2871 break; 2872 } while (p4d++, addr = next, addr != end); 2873 2874 return err; 2875 } 2876 2877 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2878 unsigned long size, pte_fn_t fn, 2879 void *data, bool create) 2880 { 2881 pgd_t *pgd; 2882 unsigned long start = addr, next; 2883 unsigned long end = addr + size; 2884 pgtbl_mod_mask mask = 0; 2885 int err = 0; 2886 2887 if (WARN_ON(addr >= end)) 2888 return -EINVAL; 2889 2890 pgd = pgd_offset(mm, addr); 2891 do { 2892 next = pgd_addr_end(addr, end); 2893 if (pgd_none(*pgd) && !create) 2894 continue; 2895 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2896 return -EINVAL; 2897 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2898 if (!create) 2899 continue; 2900 pgd_clear_bad(pgd); 2901 } 2902 err = apply_to_p4d_range(mm, pgd, addr, next, 2903 fn, data, create, &mask); 2904 if (err) 2905 break; 2906 } while (pgd++, addr = next, addr != end); 2907 2908 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2909 arch_sync_kernel_mappings(start, start + size); 2910 2911 return err; 2912 } 2913 2914 /* 2915 * Scan a region of virtual memory, filling in page tables as necessary 2916 * and calling a provided function on each leaf page table. 2917 */ 2918 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2919 unsigned long size, pte_fn_t fn, void *data) 2920 { 2921 return __apply_to_page_range(mm, addr, size, fn, data, true); 2922 } 2923 EXPORT_SYMBOL_GPL(apply_to_page_range); 2924 2925 /* 2926 * Scan a region of virtual memory, calling a provided function on 2927 * each leaf page table where it exists. 2928 * 2929 * Unlike apply_to_page_range, this does _not_ fill in page tables 2930 * where they are absent. 2931 */ 2932 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2933 unsigned long size, pte_fn_t fn, void *data) 2934 { 2935 return __apply_to_page_range(mm, addr, size, fn, data, false); 2936 } 2937 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2938 2939 /* 2940 * handle_pte_fault chooses page fault handler according to an entry which was 2941 * read non-atomically. Before making any commitment, on those architectures 2942 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2943 * parts, do_swap_page must check under lock before unmapping the pte and 2944 * proceeding (but do_wp_page is only called after already making such a check; 2945 * and do_anonymous_page can safely check later on). 2946 */ 2947 static inline int pte_unmap_same(struct vm_fault *vmf) 2948 { 2949 int same = 1; 2950 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2951 if (sizeof(pte_t) > sizeof(unsigned long)) { 2952 spin_lock(vmf->ptl); 2953 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2954 spin_unlock(vmf->ptl); 2955 } 2956 #endif 2957 pte_unmap(vmf->pte); 2958 vmf->pte = NULL; 2959 return same; 2960 } 2961 2962 /* 2963 * Return: 2964 * 0: copied succeeded 2965 * -EHWPOISON: copy failed due to hwpoison in source page 2966 * -EAGAIN: copied failed (some other reason) 2967 */ 2968 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2969 struct vm_fault *vmf) 2970 { 2971 int ret; 2972 void *kaddr; 2973 void __user *uaddr; 2974 struct vm_area_struct *vma = vmf->vma; 2975 struct mm_struct *mm = vma->vm_mm; 2976 unsigned long addr = vmf->address; 2977 2978 if (likely(src)) { 2979 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2980 memory_failure_queue(page_to_pfn(src), 0); 2981 return -EHWPOISON; 2982 } 2983 return 0; 2984 } 2985 2986 /* 2987 * If the source page was a PFN mapping, we don't have 2988 * a "struct page" for it. We do a best-effort copy by 2989 * just copying from the original user address. If that 2990 * fails, we just zero-fill it. Live with it. 2991 */ 2992 kaddr = kmap_local_page(dst); 2993 pagefault_disable(); 2994 uaddr = (void __user *)(addr & PAGE_MASK); 2995 2996 /* 2997 * On architectures with software "accessed" bits, we would 2998 * take a double page fault, so mark it accessed here. 2999 */ 3000 vmf->pte = NULL; 3001 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3002 pte_t entry; 3003 3004 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3005 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3006 /* 3007 * Other thread has already handled the fault 3008 * and update local tlb only 3009 */ 3010 if (vmf->pte) 3011 update_mmu_tlb(vma, addr, vmf->pte); 3012 ret = -EAGAIN; 3013 goto pte_unlock; 3014 } 3015 3016 entry = pte_mkyoung(vmf->orig_pte); 3017 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3018 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3019 } 3020 3021 /* 3022 * This really shouldn't fail, because the page is there 3023 * in the page tables. But it might just be unreadable, 3024 * in which case we just give up and fill the result with 3025 * zeroes. 3026 */ 3027 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3028 if (vmf->pte) 3029 goto warn; 3030 3031 /* Re-validate under PTL if the page is still mapped */ 3032 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3033 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3034 /* The PTE changed under us, update local tlb */ 3035 if (vmf->pte) 3036 update_mmu_tlb(vma, addr, vmf->pte); 3037 ret = -EAGAIN; 3038 goto pte_unlock; 3039 } 3040 3041 /* 3042 * The same page can be mapped back since last copy attempt. 3043 * Try to copy again under PTL. 3044 */ 3045 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3046 /* 3047 * Give a warn in case there can be some obscure 3048 * use-case 3049 */ 3050 warn: 3051 WARN_ON_ONCE(1); 3052 clear_page(kaddr); 3053 } 3054 } 3055 3056 ret = 0; 3057 3058 pte_unlock: 3059 if (vmf->pte) 3060 pte_unmap_unlock(vmf->pte, vmf->ptl); 3061 pagefault_enable(); 3062 kunmap_local(kaddr); 3063 flush_dcache_page(dst); 3064 3065 return ret; 3066 } 3067 3068 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3069 { 3070 struct file *vm_file = vma->vm_file; 3071 3072 if (vm_file) 3073 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3074 3075 /* 3076 * Special mappings (e.g. VDSO) do not have any file so fake 3077 * a default GFP_KERNEL for them. 3078 */ 3079 return GFP_KERNEL; 3080 } 3081 3082 /* 3083 * Notify the address space that the page is about to become writable so that 3084 * it can prohibit this or wait for the page to get into an appropriate state. 3085 * 3086 * We do this without the lock held, so that it can sleep if it needs to. 3087 */ 3088 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3089 { 3090 vm_fault_t ret; 3091 unsigned int old_flags = vmf->flags; 3092 3093 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3094 3095 if (vmf->vma->vm_file && 3096 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3097 return VM_FAULT_SIGBUS; 3098 3099 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3100 /* Restore original flags so that caller is not surprised */ 3101 vmf->flags = old_flags; 3102 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3103 return ret; 3104 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3105 folio_lock(folio); 3106 if (!folio->mapping) { 3107 folio_unlock(folio); 3108 return 0; /* retry */ 3109 } 3110 ret |= VM_FAULT_LOCKED; 3111 } else 3112 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3113 return ret; 3114 } 3115 3116 /* 3117 * Handle dirtying of a page in shared file mapping on a write fault. 3118 * 3119 * The function expects the page to be locked and unlocks it. 3120 */ 3121 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3122 { 3123 struct vm_area_struct *vma = vmf->vma; 3124 struct address_space *mapping; 3125 struct folio *folio = page_folio(vmf->page); 3126 bool dirtied; 3127 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3128 3129 dirtied = folio_mark_dirty(folio); 3130 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3131 /* 3132 * Take a local copy of the address_space - folio.mapping may be zeroed 3133 * by truncate after folio_unlock(). The address_space itself remains 3134 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3135 * release semantics to prevent the compiler from undoing this copying. 3136 */ 3137 mapping = folio_raw_mapping(folio); 3138 folio_unlock(folio); 3139 3140 if (!page_mkwrite) 3141 file_update_time(vma->vm_file); 3142 3143 /* 3144 * Throttle page dirtying rate down to writeback speed. 3145 * 3146 * mapping may be NULL here because some device drivers do not 3147 * set page.mapping but still dirty their pages 3148 * 3149 * Drop the mmap_lock before waiting on IO, if we can. The file 3150 * is pinning the mapping, as per above. 3151 */ 3152 if ((dirtied || page_mkwrite) && mapping) { 3153 struct file *fpin; 3154 3155 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3156 balance_dirty_pages_ratelimited(mapping); 3157 if (fpin) { 3158 fput(fpin); 3159 return VM_FAULT_COMPLETED; 3160 } 3161 } 3162 3163 return 0; 3164 } 3165 3166 /* 3167 * Handle write page faults for pages that can be reused in the current vma 3168 * 3169 * This can happen either due to the mapping being with the VM_SHARED flag, 3170 * or due to us being the last reference standing to the page. In either 3171 * case, all we need to do here is to mark the page as writable and update 3172 * any related book-keeping. 3173 */ 3174 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3175 __releases(vmf->ptl) 3176 { 3177 struct vm_area_struct *vma = vmf->vma; 3178 pte_t entry; 3179 3180 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3181 3182 if (folio) { 3183 VM_BUG_ON(folio_test_anon(folio) && 3184 !PageAnonExclusive(vmf->page)); 3185 /* 3186 * Clear the folio's cpupid information as the existing 3187 * information potentially belongs to a now completely 3188 * unrelated process. 3189 */ 3190 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3191 } 3192 3193 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3194 entry = pte_mkyoung(vmf->orig_pte); 3195 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3196 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3197 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3198 pte_unmap_unlock(vmf->pte, vmf->ptl); 3199 count_vm_event(PGREUSE); 3200 } 3201 3202 /* 3203 * We could add a bitflag somewhere, but for now, we know that all 3204 * vm_ops that have a ->map_pages have been audited and don't need 3205 * the mmap_lock to be held. 3206 */ 3207 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3208 { 3209 struct vm_area_struct *vma = vmf->vma; 3210 3211 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3212 return 0; 3213 vma_end_read(vma); 3214 return VM_FAULT_RETRY; 3215 } 3216 3217 /** 3218 * vmf_anon_prepare - Prepare to handle an anonymous fault. 3219 * @vmf: The vm_fault descriptor passed from the fault handler. 3220 * 3221 * When preparing to insert an anonymous page into a VMA from a 3222 * fault handler, call this function rather than anon_vma_prepare(). 3223 * If this vma does not already have an associated anon_vma and we are 3224 * only protected by the per-VMA lock, the caller must retry with the 3225 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3226 * determine if this VMA can share its anon_vma, and that's not safe to 3227 * do with only the per-VMA lock held for this VMA. 3228 * 3229 * Return: 0 if fault handling can proceed. Any other value should be 3230 * returned to the caller. 3231 */ 3232 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 3233 { 3234 struct vm_area_struct *vma = vmf->vma; 3235 vm_fault_t ret = 0; 3236 3237 if (likely(vma->anon_vma)) 3238 return 0; 3239 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3240 if (!mmap_read_trylock(vma->vm_mm)) { 3241 vma_end_read(vma); 3242 return VM_FAULT_RETRY; 3243 } 3244 } 3245 if (__anon_vma_prepare(vma)) 3246 ret = VM_FAULT_OOM; 3247 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3248 mmap_read_unlock(vma->vm_mm); 3249 return ret; 3250 } 3251 3252 /* 3253 * Handle the case of a page which we actually need to copy to a new page, 3254 * either due to COW or unsharing. 3255 * 3256 * Called with mmap_lock locked and the old page referenced, but 3257 * without the ptl held. 3258 * 3259 * High level logic flow: 3260 * 3261 * - Allocate a page, copy the content of the old page to the new one. 3262 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3263 * - Take the PTL. If the pte changed, bail out and release the allocated page 3264 * - If the pte is still the way we remember it, update the page table and all 3265 * relevant references. This includes dropping the reference the page-table 3266 * held to the old page, as well as updating the rmap. 3267 * - In any case, unlock the PTL and drop the reference we took to the old page. 3268 */ 3269 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3270 { 3271 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3272 struct vm_area_struct *vma = vmf->vma; 3273 struct mm_struct *mm = vma->vm_mm; 3274 struct folio *old_folio = NULL; 3275 struct folio *new_folio = NULL; 3276 pte_t entry; 3277 int page_copied = 0; 3278 struct mmu_notifier_range range; 3279 vm_fault_t ret; 3280 bool pfn_is_zero; 3281 3282 delayacct_wpcopy_start(); 3283 3284 if (vmf->page) 3285 old_folio = page_folio(vmf->page); 3286 ret = vmf_anon_prepare(vmf); 3287 if (unlikely(ret)) 3288 goto out; 3289 3290 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3291 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3292 if (!new_folio) 3293 goto oom; 3294 3295 if (!pfn_is_zero) { 3296 int err; 3297 3298 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3299 if (err) { 3300 /* 3301 * COW failed, if the fault was solved by other, 3302 * it's fine. If not, userspace would re-fault on 3303 * the same address and we will handle the fault 3304 * from the second attempt. 3305 * The -EHWPOISON case will not be retried. 3306 */ 3307 folio_put(new_folio); 3308 if (old_folio) 3309 folio_put(old_folio); 3310 3311 delayacct_wpcopy_end(); 3312 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3313 } 3314 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3315 } 3316 3317 __folio_mark_uptodate(new_folio); 3318 3319 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3320 vmf->address & PAGE_MASK, 3321 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3322 mmu_notifier_invalidate_range_start(&range); 3323 3324 /* 3325 * Re-check the pte - we dropped the lock 3326 */ 3327 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3328 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3329 if (old_folio) { 3330 if (!folio_test_anon(old_folio)) { 3331 dec_mm_counter(mm, mm_counter_file(old_folio)); 3332 inc_mm_counter(mm, MM_ANONPAGES); 3333 } 3334 } else { 3335 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3336 inc_mm_counter(mm, MM_ANONPAGES); 3337 } 3338 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3339 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3340 entry = pte_sw_mkyoung(entry); 3341 if (unlikely(unshare)) { 3342 if (pte_soft_dirty(vmf->orig_pte)) 3343 entry = pte_mksoft_dirty(entry); 3344 if (pte_uffd_wp(vmf->orig_pte)) 3345 entry = pte_mkuffd_wp(entry); 3346 } else { 3347 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3348 } 3349 3350 /* 3351 * Clear the pte entry and flush it first, before updating the 3352 * pte with the new entry, to keep TLBs on different CPUs in 3353 * sync. This code used to set the new PTE then flush TLBs, but 3354 * that left a window where the new PTE could be loaded into 3355 * some TLBs while the old PTE remains in others. 3356 */ 3357 ptep_clear_flush(vma, vmf->address, vmf->pte); 3358 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3359 folio_add_lru_vma(new_folio, vma); 3360 /* 3361 * We call the notify macro here because, when using secondary 3362 * mmu page tables (such as kvm shadow page tables), we want the 3363 * new page to be mapped directly into the secondary page table. 3364 */ 3365 BUG_ON(unshare && pte_write(entry)); 3366 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3367 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3368 if (old_folio) { 3369 /* 3370 * Only after switching the pte to the new page may 3371 * we remove the mapcount here. Otherwise another 3372 * process may come and find the rmap count decremented 3373 * before the pte is switched to the new page, and 3374 * "reuse" the old page writing into it while our pte 3375 * here still points into it and can be read by other 3376 * threads. 3377 * 3378 * The critical issue is to order this 3379 * folio_remove_rmap_pte() with the ptp_clear_flush 3380 * above. Those stores are ordered by (if nothing else,) 3381 * the barrier present in the atomic_add_negative 3382 * in folio_remove_rmap_pte(); 3383 * 3384 * Then the TLB flush in ptep_clear_flush ensures that 3385 * no process can access the old page before the 3386 * decremented mapcount is visible. And the old page 3387 * cannot be reused until after the decremented 3388 * mapcount is visible. So transitively, TLBs to 3389 * old page will be flushed before it can be reused. 3390 */ 3391 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3392 } 3393 3394 /* Free the old page.. */ 3395 new_folio = old_folio; 3396 page_copied = 1; 3397 pte_unmap_unlock(vmf->pte, vmf->ptl); 3398 } else if (vmf->pte) { 3399 update_mmu_tlb(vma, vmf->address, vmf->pte); 3400 pte_unmap_unlock(vmf->pte, vmf->ptl); 3401 } 3402 3403 mmu_notifier_invalidate_range_end(&range); 3404 3405 if (new_folio) 3406 folio_put(new_folio); 3407 if (old_folio) { 3408 if (page_copied) 3409 free_swap_cache(old_folio); 3410 folio_put(old_folio); 3411 } 3412 3413 delayacct_wpcopy_end(); 3414 return 0; 3415 oom: 3416 ret = VM_FAULT_OOM; 3417 out: 3418 if (old_folio) 3419 folio_put(old_folio); 3420 3421 delayacct_wpcopy_end(); 3422 return ret; 3423 } 3424 3425 /** 3426 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3427 * writeable once the page is prepared 3428 * 3429 * @vmf: structure describing the fault 3430 * @folio: the folio of vmf->page 3431 * 3432 * This function handles all that is needed to finish a write page fault in a 3433 * shared mapping due to PTE being read-only once the mapped page is prepared. 3434 * It handles locking of PTE and modifying it. 3435 * 3436 * The function expects the page to be locked or other protection against 3437 * concurrent faults / writeback (such as DAX radix tree locks). 3438 * 3439 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3440 * we acquired PTE lock. 3441 */ 3442 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3443 { 3444 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3445 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3446 &vmf->ptl); 3447 if (!vmf->pte) 3448 return VM_FAULT_NOPAGE; 3449 /* 3450 * We might have raced with another page fault while we released the 3451 * pte_offset_map_lock. 3452 */ 3453 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3454 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3455 pte_unmap_unlock(vmf->pte, vmf->ptl); 3456 return VM_FAULT_NOPAGE; 3457 } 3458 wp_page_reuse(vmf, folio); 3459 return 0; 3460 } 3461 3462 /* 3463 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3464 * mapping 3465 */ 3466 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3467 { 3468 struct vm_area_struct *vma = vmf->vma; 3469 3470 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3471 vm_fault_t ret; 3472 3473 pte_unmap_unlock(vmf->pte, vmf->ptl); 3474 ret = vmf_can_call_fault(vmf); 3475 if (ret) 3476 return ret; 3477 3478 vmf->flags |= FAULT_FLAG_MKWRITE; 3479 ret = vma->vm_ops->pfn_mkwrite(vmf); 3480 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3481 return ret; 3482 return finish_mkwrite_fault(vmf, NULL); 3483 } 3484 wp_page_reuse(vmf, NULL); 3485 return 0; 3486 } 3487 3488 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3489 __releases(vmf->ptl) 3490 { 3491 struct vm_area_struct *vma = vmf->vma; 3492 vm_fault_t ret = 0; 3493 3494 folio_get(folio); 3495 3496 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3497 vm_fault_t tmp; 3498 3499 pte_unmap_unlock(vmf->pte, vmf->ptl); 3500 tmp = vmf_can_call_fault(vmf); 3501 if (tmp) { 3502 folio_put(folio); 3503 return tmp; 3504 } 3505 3506 tmp = do_page_mkwrite(vmf, folio); 3507 if (unlikely(!tmp || (tmp & 3508 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3509 folio_put(folio); 3510 return tmp; 3511 } 3512 tmp = finish_mkwrite_fault(vmf, folio); 3513 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3514 folio_unlock(folio); 3515 folio_put(folio); 3516 return tmp; 3517 } 3518 } else { 3519 wp_page_reuse(vmf, folio); 3520 folio_lock(folio); 3521 } 3522 ret |= fault_dirty_shared_page(vmf); 3523 folio_put(folio); 3524 3525 return ret; 3526 } 3527 3528 static bool wp_can_reuse_anon_folio(struct folio *folio, 3529 struct vm_area_struct *vma) 3530 { 3531 /* 3532 * We could currently only reuse a subpage of a large folio if no 3533 * other subpages of the large folios are still mapped. However, 3534 * let's just consistently not reuse subpages even if we could 3535 * reuse in that scenario, and give back a large folio a bit 3536 * sooner. 3537 */ 3538 if (folio_test_large(folio)) 3539 return false; 3540 3541 /* 3542 * We have to verify under folio lock: these early checks are 3543 * just an optimization to avoid locking the folio and freeing 3544 * the swapcache if there is little hope that we can reuse. 3545 * 3546 * KSM doesn't necessarily raise the folio refcount. 3547 */ 3548 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3549 return false; 3550 if (!folio_test_lru(folio)) 3551 /* 3552 * We cannot easily detect+handle references from 3553 * remote LRU caches or references to LRU folios. 3554 */ 3555 lru_add_drain(); 3556 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3557 return false; 3558 if (!folio_trylock(folio)) 3559 return false; 3560 if (folio_test_swapcache(folio)) 3561 folio_free_swap(folio); 3562 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3563 folio_unlock(folio); 3564 return false; 3565 } 3566 /* 3567 * Ok, we've got the only folio reference from our mapping 3568 * and the folio is locked, it's dark out, and we're wearing 3569 * sunglasses. Hit it. 3570 */ 3571 folio_move_anon_rmap(folio, vma); 3572 folio_unlock(folio); 3573 return true; 3574 } 3575 3576 /* 3577 * This routine handles present pages, when 3578 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3579 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3580 * (FAULT_FLAG_UNSHARE) 3581 * 3582 * It is done by copying the page to a new address and decrementing the 3583 * shared-page counter for the old page. 3584 * 3585 * Note that this routine assumes that the protection checks have been 3586 * done by the caller (the low-level page fault routine in most cases). 3587 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3588 * done any necessary COW. 3589 * 3590 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3591 * though the page will change only once the write actually happens. This 3592 * avoids a few races, and potentially makes it more efficient. 3593 * 3594 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3595 * but allow concurrent faults), with pte both mapped and locked. 3596 * We return with mmap_lock still held, but pte unmapped and unlocked. 3597 */ 3598 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3599 __releases(vmf->ptl) 3600 { 3601 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3602 struct vm_area_struct *vma = vmf->vma; 3603 struct folio *folio = NULL; 3604 pte_t pte; 3605 3606 if (likely(!unshare)) { 3607 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3608 if (!userfaultfd_wp_async(vma)) { 3609 pte_unmap_unlock(vmf->pte, vmf->ptl); 3610 return handle_userfault(vmf, VM_UFFD_WP); 3611 } 3612 3613 /* 3614 * Nothing needed (cache flush, TLB invalidations, 3615 * etc.) because we're only removing the uffd-wp bit, 3616 * which is completely invisible to the user. 3617 */ 3618 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3619 3620 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3621 /* 3622 * Update this to be prepared for following up CoW 3623 * handling 3624 */ 3625 vmf->orig_pte = pte; 3626 } 3627 3628 /* 3629 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3630 * is flushed in this case before copying. 3631 */ 3632 if (unlikely(userfaultfd_wp(vmf->vma) && 3633 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3634 flush_tlb_page(vmf->vma, vmf->address); 3635 } 3636 3637 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3638 3639 if (vmf->page) 3640 folio = page_folio(vmf->page); 3641 3642 /* 3643 * Shared mapping: we are guaranteed to have VM_WRITE and 3644 * FAULT_FLAG_WRITE set at this point. 3645 */ 3646 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3647 /* 3648 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3649 * VM_PFNMAP VMA. 3650 * 3651 * We should not cow pages in a shared writeable mapping. 3652 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3653 */ 3654 if (!vmf->page) 3655 return wp_pfn_shared(vmf); 3656 return wp_page_shared(vmf, folio); 3657 } 3658 3659 /* 3660 * Private mapping: create an exclusive anonymous page copy if reuse 3661 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3662 * 3663 * If we encounter a page that is marked exclusive, we must reuse 3664 * the page without further checks. 3665 */ 3666 if (folio && folio_test_anon(folio) && 3667 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3668 if (!PageAnonExclusive(vmf->page)) 3669 SetPageAnonExclusive(vmf->page); 3670 if (unlikely(unshare)) { 3671 pte_unmap_unlock(vmf->pte, vmf->ptl); 3672 return 0; 3673 } 3674 wp_page_reuse(vmf, folio); 3675 return 0; 3676 } 3677 /* 3678 * Ok, we need to copy. Oh, well.. 3679 */ 3680 if (folio) 3681 folio_get(folio); 3682 3683 pte_unmap_unlock(vmf->pte, vmf->ptl); 3684 #ifdef CONFIG_KSM 3685 if (folio && folio_test_ksm(folio)) 3686 count_vm_event(COW_KSM); 3687 #endif 3688 return wp_page_copy(vmf); 3689 } 3690 3691 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3692 unsigned long start_addr, unsigned long end_addr, 3693 struct zap_details *details) 3694 { 3695 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3696 } 3697 3698 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3699 pgoff_t first_index, 3700 pgoff_t last_index, 3701 struct zap_details *details) 3702 { 3703 struct vm_area_struct *vma; 3704 pgoff_t vba, vea, zba, zea; 3705 3706 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3707 vba = vma->vm_pgoff; 3708 vea = vba + vma_pages(vma) - 1; 3709 zba = max(first_index, vba); 3710 zea = min(last_index, vea); 3711 3712 unmap_mapping_range_vma(vma, 3713 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3714 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3715 details); 3716 } 3717 } 3718 3719 /** 3720 * unmap_mapping_folio() - Unmap single folio from processes. 3721 * @folio: The locked folio to be unmapped. 3722 * 3723 * Unmap this folio from any userspace process which still has it mmaped. 3724 * Typically, for efficiency, the range of nearby pages has already been 3725 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3726 * truncation or invalidation holds the lock on a folio, it may find that 3727 * the page has been remapped again: and then uses unmap_mapping_folio() 3728 * to unmap it finally. 3729 */ 3730 void unmap_mapping_folio(struct folio *folio) 3731 { 3732 struct address_space *mapping = folio->mapping; 3733 struct zap_details details = { }; 3734 pgoff_t first_index; 3735 pgoff_t last_index; 3736 3737 VM_BUG_ON(!folio_test_locked(folio)); 3738 3739 first_index = folio->index; 3740 last_index = folio_next_index(folio) - 1; 3741 3742 details.even_cows = false; 3743 details.single_folio = folio; 3744 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3745 3746 i_mmap_lock_read(mapping); 3747 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3748 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3749 last_index, &details); 3750 i_mmap_unlock_read(mapping); 3751 } 3752 3753 /** 3754 * unmap_mapping_pages() - Unmap pages from processes. 3755 * @mapping: The address space containing pages to be unmapped. 3756 * @start: Index of first page to be unmapped. 3757 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3758 * @even_cows: Whether to unmap even private COWed pages. 3759 * 3760 * Unmap the pages in this address space from any userspace process which 3761 * has them mmaped. Generally, you want to remove COWed pages as well when 3762 * a file is being truncated, but not when invalidating pages from the page 3763 * cache. 3764 */ 3765 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3766 pgoff_t nr, bool even_cows) 3767 { 3768 struct zap_details details = { }; 3769 pgoff_t first_index = start; 3770 pgoff_t last_index = start + nr - 1; 3771 3772 details.even_cows = even_cows; 3773 if (last_index < first_index) 3774 last_index = ULONG_MAX; 3775 3776 i_mmap_lock_read(mapping); 3777 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3778 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3779 last_index, &details); 3780 i_mmap_unlock_read(mapping); 3781 } 3782 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3783 3784 /** 3785 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3786 * address_space corresponding to the specified byte range in the underlying 3787 * file. 3788 * 3789 * @mapping: the address space containing mmaps to be unmapped. 3790 * @holebegin: byte in first page to unmap, relative to the start of 3791 * the underlying file. This will be rounded down to a PAGE_SIZE 3792 * boundary. Note that this is different from truncate_pagecache(), which 3793 * must keep the partial page. In contrast, we must get rid of 3794 * partial pages. 3795 * @holelen: size of prospective hole in bytes. This will be rounded 3796 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3797 * end of the file. 3798 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3799 * but 0 when invalidating pagecache, don't throw away private data. 3800 */ 3801 void unmap_mapping_range(struct address_space *mapping, 3802 loff_t const holebegin, loff_t const holelen, int even_cows) 3803 { 3804 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3805 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3806 3807 /* Check for overflow. */ 3808 if (sizeof(holelen) > sizeof(hlen)) { 3809 long long holeend = 3810 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3811 if (holeend & ~(long long)ULONG_MAX) 3812 hlen = ULONG_MAX - hba + 1; 3813 } 3814 3815 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3816 } 3817 EXPORT_SYMBOL(unmap_mapping_range); 3818 3819 /* 3820 * Restore a potential device exclusive pte to a working pte entry 3821 */ 3822 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3823 { 3824 struct folio *folio = page_folio(vmf->page); 3825 struct vm_area_struct *vma = vmf->vma; 3826 struct mmu_notifier_range range; 3827 vm_fault_t ret; 3828 3829 /* 3830 * We need a reference to lock the folio because we don't hold 3831 * the PTL so a racing thread can remove the device-exclusive 3832 * entry and unmap it. If the folio is free the entry must 3833 * have been removed already. If it happens to have already 3834 * been re-allocated after being freed all we do is lock and 3835 * unlock it. 3836 */ 3837 if (!folio_try_get(folio)) 3838 return 0; 3839 3840 ret = folio_lock_or_retry(folio, vmf); 3841 if (ret) { 3842 folio_put(folio); 3843 return ret; 3844 } 3845 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3846 vma->vm_mm, vmf->address & PAGE_MASK, 3847 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3848 mmu_notifier_invalidate_range_start(&range); 3849 3850 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3851 &vmf->ptl); 3852 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3853 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3854 3855 if (vmf->pte) 3856 pte_unmap_unlock(vmf->pte, vmf->ptl); 3857 folio_unlock(folio); 3858 folio_put(folio); 3859 3860 mmu_notifier_invalidate_range_end(&range); 3861 return 0; 3862 } 3863 3864 static inline bool should_try_to_free_swap(struct folio *folio, 3865 struct vm_area_struct *vma, 3866 unsigned int fault_flags) 3867 { 3868 if (!folio_test_swapcache(folio)) 3869 return false; 3870 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3871 folio_test_mlocked(folio)) 3872 return true; 3873 /* 3874 * If we want to map a page that's in the swapcache writable, we 3875 * have to detect via the refcount if we're really the exclusive 3876 * user. Try freeing the swapcache to get rid of the swapcache 3877 * reference only in case it's likely that we'll be the exlusive user. 3878 */ 3879 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3880 folio_ref_count(folio) == 2; 3881 } 3882 3883 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3884 { 3885 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3886 vmf->address, &vmf->ptl); 3887 if (!vmf->pte) 3888 return 0; 3889 /* 3890 * Be careful so that we will only recover a special uffd-wp pte into a 3891 * none pte. Otherwise it means the pte could have changed, so retry. 3892 * 3893 * This should also cover the case where e.g. the pte changed 3894 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3895 * So is_pte_marker() check is not enough to safely drop the pte. 3896 */ 3897 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3898 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3899 pte_unmap_unlock(vmf->pte, vmf->ptl); 3900 return 0; 3901 } 3902 3903 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3904 { 3905 if (vma_is_anonymous(vmf->vma)) 3906 return do_anonymous_page(vmf); 3907 else 3908 return do_fault(vmf); 3909 } 3910 3911 /* 3912 * This is actually a page-missing access, but with uffd-wp special pte 3913 * installed. It means this pte was wr-protected before being unmapped. 3914 */ 3915 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3916 { 3917 /* 3918 * Just in case there're leftover special ptes even after the region 3919 * got unregistered - we can simply clear them. 3920 */ 3921 if (unlikely(!userfaultfd_wp(vmf->vma))) 3922 return pte_marker_clear(vmf); 3923 3924 return do_pte_missing(vmf); 3925 } 3926 3927 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3928 { 3929 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3930 unsigned long marker = pte_marker_get(entry); 3931 3932 /* 3933 * PTE markers should never be empty. If anything weird happened, 3934 * the best thing to do is to kill the process along with its mm. 3935 */ 3936 if (WARN_ON_ONCE(!marker)) 3937 return VM_FAULT_SIGBUS; 3938 3939 /* Higher priority than uffd-wp when data corrupted */ 3940 if (marker & PTE_MARKER_POISONED) 3941 return VM_FAULT_HWPOISON; 3942 3943 if (pte_marker_entry_uffd_wp(entry)) 3944 return pte_marker_handle_uffd_wp(vmf); 3945 3946 /* This is an unknown pte marker */ 3947 return VM_FAULT_SIGBUS; 3948 } 3949 3950 /* 3951 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3952 * but allow concurrent faults), and pte mapped but not yet locked. 3953 * We return with pte unmapped and unlocked. 3954 * 3955 * We return with the mmap_lock locked or unlocked in the same cases 3956 * as does filemap_fault(). 3957 */ 3958 vm_fault_t do_swap_page(struct vm_fault *vmf) 3959 { 3960 struct vm_area_struct *vma = vmf->vma; 3961 struct folio *swapcache, *folio = NULL; 3962 struct page *page; 3963 struct swap_info_struct *si = NULL; 3964 rmap_t rmap_flags = RMAP_NONE; 3965 bool need_clear_cache = false; 3966 bool exclusive = false; 3967 swp_entry_t entry; 3968 pte_t pte; 3969 vm_fault_t ret = 0; 3970 void *shadow = NULL; 3971 3972 if (!pte_unmap_same(vmf)) 3973 goto out; 3974 3975 entry = pte_to_swp_entry(vmf->orig_pte); 3976 if (unlikely(non_swap_entry(entry))) { 3977 if (is_migration_entry(entry)) { 3978 migration_entry_wait(vma->vm_mm, vmf->pmd, 3979 vmf->address); 3980 } else if (is_device_exclusive_entry(entry)) { 3981 vmf->page = pfn_swap_entry_to_page(entry); 3982 ret = remove_device_exclusive_entry(vmf); 3983 } else if (is_device_private_entry(entry)) { 3984 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3985 /* 3986 * migrate_to_ram is not yet ready to operate 3987 * under VMA lock. 3988 */ 3989 vma_end_read(vma); 3990 ret = VM_FAULT_RETRY; 3991 goto out; 3992 } 3993 3994 vmf->page = pfn_swap_entry_to_page(entry); 3995 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3996 vmf->address, &vmf->ptl); 3997 if (unlikely(!vmf->pte || 3998 !pte_same(ptep_get(vmf->pte), 3999 vmf->orig_pte))) 4000 goto unlock; 4001 4002 /* 4003 * Get a page reference while we know the page can't be 4004 * freed. 4005 */ 4006 get_page(vmf->page); 4007 pte_unmap_unlock(vmf->pte, vmf->ptl); 4008 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4009 put_page(vmf->page); 4010 } else if (is_hwpoison_entry(entry)) { 4011 ret = VM_FAULT_HWPOISON; 4012 } else if (is_pte_marker_entry(entry)) { 4013 ret = handle_pte_marker(vmf); 4014 } else { 4015 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4016 ret = VM_FAULT_SIGBUS; 4017 } 4018 goto out; 4019 } 4020 4021 /* Prevent swapoff from happening to us. */ 4022 si = get_swap_device(entry); 4023 if (unlikely(!si)) 4024 goto out; 4025 4026 folio = swap_cache_get_folio(entry, vma, vmf->address); 4027 if (folio) 4028 page = folio_file_page(folio, swp_offset(entry)); 4029 swapcache = folio; 4030 4031 if (!folio) { 4032 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4033 __swap_count(entry) == 1) { 4034 /* 4035 * Prevent parallel swapin from proceeding with 4036 * the cache flag. Otherwise, another thread may 4037 * finish swapin first, free the entry, and swapout 4038 * reusing the same entry. It's undetectable as 4039 * pte_same() returns true due to entry reuse. 4040 */ 4041 if (swapcache_prepare(entry)) { 4042 /* Relax a bit to prevent rapid repeated page faults */ 4043 schedule_timeout_uninterruptible(1); 4044 goto out; 4045 } 4046 need_clear_cache = true; 4047 4048 /* skip swapcache */ 4049 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 4050 vma, vmf->address, false); 4051 page = &folio->page; 4052 if (folio) { 4053 __folio_set_locked(folio); 4054 __folio_set_swapbacked(folio); 4055 4056 if (mem_cgroup_swapin_charge_folio(folio, 4057 vma->vm_mm, GFP_KERNEL, 4058 entry)) { 4059 ret = VM_FAULT_OOM; 4060 goto out_page; 4061 } 4062 mem_cgroup_swapin_uncharge_swap(entry); 4063 4064 shadow = get_shadow_from_swap_cache(entry); 4065 if (shadow) 4066 workingset_refault(folio, shadow); 4067 4068 folio_add_lru(folio); 4069 4070 /* To provide entry to swap_read_folio() */ 4071 folio->swap = entry; 4072 swap_read_folio(folio, true, NULL); 4073 folio->private = NULL; 4074 } 4075 } else { 4076 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4077 vmf); 4078 if (page) 4079 folio = page_folio(page); 4080 swapcache = folio; 4081 } 4082 4083 if (!folio) { 4084 /* 4085 * Back out if somebody else faulted in this pte 4086 * while we released the pte lock. 4087 */ 4088 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4089 vmf->address, &vmf->ptl); 4090 if (likely(vmf->pte && 4091 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4092 ret = VM_FAULT_OOM; 4093 goto unlock; 4094 } 4095 4096 /* Had to read the page from swap area: Major fault */ 4097 ret = VM_FAULT_MAJOR; 4098 count_vm_event(PGMAJFAULT); 4099 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4100 } else if (PageHWPoison(page)) { 4101 /* 4102 * hwpoisoned dirty swapcache pages are kept for killing 4103 * owner processes (which may be unknown at hwpoison time) 4104 */ 4105 ret = VM_FAULT_HWPOISON; 4106 goto out_release; 4107 } 4108 4109 ret |= folio_lock_or_retry(folio, vmf); 4110 if (ret & VM_FAULT_RETRY) 4111 goto out_release; 4112 4113 if (swapcache) { 4114 /* 4115 * Make sure folio_free_swap() or swapoff did not release the 4116 * swapcache from under us. The page pin, and pte_same test 4117 * below, are not enough to exclude that. Even if it is still 4118 * swapcache, we need to check that the page's swap has not 4119 * changed. 4120 */ 4121 if (unlikely(!folio_test_swapcache(folio) || 4122 page_swap_entry(page).val != entry.val)) 4123 goto out_page; 4124 4125 /* 4126 * KSM sometimes has to copy on read faults, for example, if 4127 * page->index of !PageKSM() pages would be nonlinear inside the 4128 * anon VMA -- PageKSM() is lost on actual swapout. 4129 */ 4130 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4131 if (unlikely(!folio)) { 4132 ret = VM_FAULT_OOM; 4133 folio = swapcache; 4134 goto out_page; 4135 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4136 ret = VM_FAULT_HWPOISON; 4137 folio = swapcache; 4138 goto out_page; 4139 } 4140 if (folio != swapcache) 4141 page = folio_page(folio, 0); 4142 4143 /* 4144 * If we want to map a page that's in the swapcache writable, we 4145 * have to detect via the refcount if we're really the exclusive 4146 * owner. Try removing the extra reference from the local LRU 4147 * caches if required. 4148 */ 4149 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4150 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4151 lru_add_drain(); 4152 } 4153 4154 folio_throttle_swaprate(folio, GFP_KERNEL); 4155 4156 /* 4157 * Back out if somebody else already faulted in this pte. 4158 */ 4159 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4160 &vmf->ptl); 4161 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4162 goto out_nomap; 4163 4164 if (unlikely(!folio_test_uptodate(folio))) { 4165 ret = VM_FAULT_SIGBUS; 4166 goto out_nomap; 4167 } 4168 4169 /* 4170 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4171 * must never point at an anonymous page in the swapcache that is 4172 * PG_anon_exclusive. Sanity check that this holds and especially, that 4173 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4174 * check after taking the PT lock and making sure that nobody 4175 * concurrently faulted in this page and set PG_anon_exclusive. 4176 */ 4177 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4178 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4179 4180 /* 4181 * Check under PT lock (to protect against concurrent fork() sharing 4182 * the swap entry concurrently) for certainly exclusive pages. 4183 */ 4184 if (!folio_test_ksm(folio)) { 4185 exclusive = pte_swp_exclusive(vmf->orig_pte); 4186 if (folio != swapcache) { 4187 /* 4188 * We have a fresh page that is not exposed to the 4189 * swapcache -> certainly exclusive. 4190 */ 4191 exclusive = true; 4192 } else if (exclusive && folio_test_writeback(folio) && 4193 data_race(si->flags & SWP_STABLE_WRITES)) { 4194 /* 4195 * This is tricky: not all swap backends support 4196 * concurrent page modifications while under writeback. 4197 * 4198 * So if we stumble over such a page in the swapcache 4199 * we must not set the page exclusive, otherwise we can 4200 * map it writable without further checks and modify it 4201 * while still under writeback. 4202 * 4203 * For these problematic swap backends, simply drop the 4204 * exclusive marker: this is perfectly fine as we start 4205 * writeback only if we fully unmapped the page and 4206 * there are no unexpected references on the page after 4207 * unmapping succeeded. After fully unmapped, no 4208 * further GUP references (FOLL_GET and FOLL_PIN) can 4209 * appear, so dropping the exclusive marker and mapping 4210 * it only R/O is fine. 4211 */ 4212 exclusive = false; 4213 } 4214 } 4215 4216 /* 4217 * Some architectures may have to restore extra metadata to the page 4218 * when reading from swap. This metadata may be indexed by swap entry 4219 * so this must be called before swap_free(). 4220 */ 4221 arch_swap_restore(folio_swap(entry, folio), folio); 4222 4223 /* 4224 * Remove the swap entry and conditionally try to free up the swapcache. 4225 * We're already holding a reference on the page but haven't mapped it 4226 * yet. 4227 */ 4228 swap_free(entry); 4229 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4230 folio_free_swap(folio); 4231 4232 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4233 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 4234 pte = mk_pte(page, vma->vm_page_prot); 4235 4236 /* 4237 * Same logic as in do_wp_page(); however, optimize for pages that are 4238 * certainly not shared either because we just allocated them without 4239 * exposing them to the swapcache or because the swap entry indicates 4240 * exclusivity. 4241 */ 4242 if (!folio_test_ksm(folio) && 4243 (exclusive || folio_ref_count(folio) == 1)) { 4244 if (vmf->flags & FAULT_FLAG_WRITE) { 4245 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4246 vmf->flags &= ~FAULT_FLAG_WRITE; 4247 } 4248 rmap_flags |= RMAP_EXCLUSIVE; 4249 } 4250 flush_icache_page(vma, page); 4251 if (pte_swp_soft_dirty(vmf->orig_pte)) 4252 pte = pte_mksoft_dirty(pte); 4253 if (pte_swp_uffd_wp(vmf->orig_pte)) 4254 pte = pte_mkuffd_wp(pte); 4255 vmf->orig_pte = pte; 4256 4257 /* ksm created a completely new copy */ 4258 if (unlikely(folio != swapcache && swapcache)) { 4259 folio_add_new_anon_rmap(folio, vma, vmf->address); 4260 folio_add_lru_vma(folio, vma); 4261 } else { 4262 folio_add_anon_rmap_pte(folio, page, vma, vmf->address, 4263 rmap_flags); 4264 } 4265 4266 VM_BUG_ON(!folio_test_anon(folio) || 4267 (pte_write(pte) && !PageAnonExclusive(page))); 4268 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4269 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4270 4271 folio_unlock(folio); 4272 if (folio != swapcache && swapcache) { 4273 /* 4274 * Hold the lock to avoid the swap entry to be reused 4275 * until we take the PT lock for the pte_same() check 4276 * (to avoid false positives from pte_same). For 4277 * further safety release the lock after the swap_free 4278 * so that the swap count won't change under a 4279 * parallel locked swapcache. 4280 */ 4281 folio_unlock(swapcache); 4282 folio_put(swapcache); 4283 } 4284 4285 if (vmf->flags & FAULT_FLAG_WRITE) { 4286 ret |= do_wp_page(vmf); 4287 if (ret & VM_FAULT_ERROR) 4288 ret &= VM_FAULT_ERROR; 4289 goto out; 4290 } 4291 4292 /* No need to invalidate - it was non-present before */ 4293 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4294 unlock: 4295 if (vmf->pte) 4296 pte_unmap_unlock(vmf->pte, vmf->ptl); 4297 out: 4298 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4299 if (need_clear_cache) 4300 swapcache_clear(si, entry); 4301 if (si) 4302 put_swap_device(si); 4303 return ret; 4304 out_nomap: 4305 if (vmf->pte) 4306 pte_unmap_unlock(vmf->pte, vmf->ptl); 4307 out_page: 4308 folio_unlock(folio); 4309 out_release: 4310 folio_put(folio); 4311 if (folio != swapcache && swapcache) { 4312 folio_unlock(swapcache); 4313 folio_put(swapcache); 4314 } 4315 if (need_clear_cache) 4316 swapcache_clear(si, entry); 4317 if (si) 4318 put_swap_device(si); 4319 return ret; 4320 } 4321 4322 static bool pte_range_none(pte_t *pte, int nr_pages) 4323 { 4324 int i; 4325 4326 for (i = 0; i < nr_pages; i++) { 4327 if (!pte_none(ptep_get_lockless(pte + i))) 4328 return false; 4329 } 4330 4331 return true; 4332 } 4333 4334 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4335 { 4336 struct vm_area_struct *vma = vmf->vma; 4337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4338 unsigned long orders; 4339 struct folio *folio; 4340 unsigned long addr; 4341 pte_t *pte; 4342 gfp_t gfp; 4343 int order; 4344 4345 /* 4346 * If uffd is active for the vma we need per-page fault fidelity to 4347 * maintain the uffd semantics. 4348 */ 4349 if (unlikely(userfaultfd_armed(vma))) 4350 goto fallback; 4351 4352 /* 4353 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4354 * for this vma. Then filter out the orders that can't be allocated over 4355 * the faulting address and still be fully contained in the vma. 4356 */ 4357 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4358 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4359 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4360 4361 if (!orders) 4362 goto fallback; 4363 4364 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4365 if (!pte) 4366 return ERR_PTR(-EAGAIN); 4367 4368 /* 4369 * Find the highest order where the aligned range is completely 4370 * pte_none(). Note that all remaining orders will be completely 4371 * pte_none(). 4372 */ 4373 order = highest_order(orders); 4374 while (orders) { 4375 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4376 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4377 break; 4378 order = next_order(&orders, order); 4379 } 4380 4381 pte_unmap(pte); 4382 4383 if (!orders) 4384 goto fallback; 4385 4386 /* Try allocating the highest of the remaining orders. */ 4387 gfp = vma_thp_gfp_mask(vma); 4388 while (orders) { 4389 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4390 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4391 if (folio) { 4392 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4393 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4394 folio_put(folio); 4395 goto next; 4396 } 4397 folio_throttle_swaprate(folio, gfp); 4398 clear_huge_page(&folio->page, vmf->address, 1 << order); 4399 return folio; 4400 } 4401 next: 4402 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4403 order = next_order(&orders, order); 4404 } 4405 4406 fallback: 4407 #endif 4408 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4409 } 4410 4411 /* 4412 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4413 * but allow concurrent faults), and pte mapped but not yet locked. 4414 * We return with mmap_lock still held, but pte unmapped and unlocked. 4415 */ 4416 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4417 { 4418 struct vm_area_struct *vma = vmf->vma; 4419 unsigned long addr = vmf->address; 4420 struct folio *folio; 4421 vm_fault_t ret = 0; 4422 int nr_pages = 1; 4423 pte_t entry; 4424 int i; 4425 4426 /* File mapping without ->vm_ops ? */ 4427 if (vma->vm_flags & VM_SHARED) 4428 return VM_FAULT_SIGBUS; 4429 4430 /* 4431 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4432 * be distinguished from a transient failure of pte_offset_map(). 4433 */ 4434 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4435 return VM_FAULT_OOM; 4436 4437 /* Use the zero-page for reads */ 4438 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4439 !mm_forbids_zeropage(vma->vm_mm)) { 4440 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4441 vma->vm_page_prot)); 4442 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4443 vmf->address, &vmf->ptl); 4444 if (!vmf->pte) 4445 goto unlock; 4446 if (vmf_pte_changed(vmf)) { 4447 update_mmu_tlb(vma, vmf->address, vmf->pte); 4448 goto unlock; 4449 } 4450 ret = check_stable_address_space(vma->vm_mm); 4451 if (ret) 4452 goto unlock; 4453 /* Deliver the page fault to userland, check inside PT lock */ 4454 if (userfaultfd_missing(vma)) { 4455 pte_unmap_unlock(vmf->pte, vmf->ptl); 4456 return handle_userfault(vmf, VM_UFFD_MISSING); 4457 } 4458 goto setpte; 4459 } 4460 4461 /* Allocate our own private page. */ 4462 ret = vmf_anon_prepare(vmf); 4463 if (ret) 4464 return ret; 4465 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4466 folio = alloc_anon_folio(vmf); 4467 if (IS_ERR(folio)) 4468 return 0; 4469 if (!folio) 4470 goto oom; 4471 4472 nr_pages = folio_nr_pages(folio); 4473 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4474 4475 /* 4476 * The memory barrier inside __folio_mark_uptodate makes sure that 4477 * preceding stores to the page contents become visible before 4478 * the set_pte_at() write. 4479 */ 4480 __folio_mark_uptodate(folio); 4481 4482 entry = mk_pte(&folio->page, vma->vm_page_prot); 4483 entry = pte_sw_mkyoung(entry); 4484 if (vma->vm_flags & VM_WRITE) 4485 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4486 4487 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4488 if (!vmf->pte) 4489 goto release; 4490 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4491 update_mmu_tlb(vma, addr, vmf->pte); 4492 goto release; 4493 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4494 for (i = 0; i < nr_pages; i++) 4495 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i); 4496 goto release; 4497 } 4498 4499 ret = check_stable_address_space(vma->vm_mm); 4500 if (ret) 4501 goto release; 4502 4503 /* Deliver the page fault to userland, check inside PT lock */ 4504 if (userfaultfd_missing(vma)) { 4505 pte_unmap_unlock(vmf->pte, vmf->ptl); 4506 folio_put(folio); 4507 return handle_userfault(vmf, VM_UFFD_MISSING); 4508 } 4509 4510 folio_ref_add(folio, nr_pages - 1); 4511 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4513 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4514 #endif 4515 folio_add_new_anon_rmap(folio, vma, addr); 4516 folio_add_lru_vma(folio, vma); 4517 setpte: 4518 if (vmf_orig_pte_uffd_wp(vmf)) 4519 entry = pte_mkuffd_wp(entry); 4520 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4521 4522 /* No need to invalidate - it was non-present before */ 4523 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4524 unlock: 4525 if (vmf->pte) 4526 pte_unmap_unlock(vmf->pte, vmf->ptl); 4527 return ret; 4528 release: 4529 folio_put(folio); 4530 goto unlock; 4531 oom: 4532 return VM_FAULT_OOM; 4533 } 4534 4535 /* 4536 * The mmap_lock must have been held on entry, and may have been 4537 * released depending on flags and vma->vm_ops->fault() return value. 4538 * See filemap_fault() and __lock_page_retry(). 4539 */ 4540 static vm_fault_t __do_fault(struct vm_fault *vmf) 4541 { 4542 struct vm_area_struct *vma = vmf->vma; 4543 struct folio *folio; 4544 vm_fault_t ret; 4545 4546 /* 4547 * Preallocate pte before we take page_lock because this might lead to 4548 * deadlocks for memcg reclaim which waits for pages under writeback: 4549 * lock_page(A) 4550 * SetPageWriteback(A) 4551 * unlock_page(A) 4552 * lock_page(B) 4553 * lock_page(B) 4554 * pte_alloc_one 4555 * shrink_page_list 4556 * wait_on_page_writeback(A) 4557 * SetPageWriteback(B) 4558 * unlock_page(B) 4559 * # flush A, B to clear the writeback 4560 */ 4561 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4562 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4563 if (!vmf->prealloc_pte) 4564 return VM_FAULT_OOM; 4565 } 4566 4567 ret = vma->vm_ops->fault(vmf); 4568 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4569 VM_FAULT_DONE_COW))) 4570 return ret; 4571 4572 folio = page_folio(vmf->page); 4573 if (unlikely(PageHWPoison(vmf->page))) { 4574 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4575 if (ret & VM_FAULT_LOCKED) { 4576 if (page_mapped(vmf->page)) 4577 unmap_mapping_folio(folio); 4578 /* Retry if a clean folio was removed from the cache. */ 4579 if (mapping_evict_folio(folio->mapping, folio)) 4580 poisonret = VM_FAULT_NOPAGE; 4581 folio_unlock(folio); 4582 } 4583 folio_put(folio); 4584 vmf->page = NULL; 4585 return poisonret; 4586 } 4587 4588 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4589 folio_lock(folio); 4590 else 4591 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4592 4593 return ret; 4594 } 4595 4596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4597 static void deposit_prealloc_pte(struct vm_fault *vmf) 4598 { 4599 struct vm_area_struct *vma = vmf->vma; 4600 4601 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4602 /* 4603 * We are going to consume the prealloc table, 4604 * count that as nr_ptes. 4605 */ 4606 mm_inc_nr_ptes(vma->vm_mm); 4607 vmf->prealloc_pte = NULL; 4608 } 4609 4610 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4611 { 4612 struct folio *folio = page_folio(page); 4613 struct vm_area_struct *vma = vmf->vma; 4614 bool write = vmf->flags & FAULT_FLAG_WRITE; 4615 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4616 pmd_t entry; 4617 vm_fault_t ret = VM_FAULT_FALLBACK; 4618 4619 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4620 return ret; 4621 4622 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER) 4623 return ret; 4624 4625 /* 4626 * Just backoff if any subpage of a THP is corrupted otherwise 4627 * the corrupted page may mapped by PMD silently to escape the 4628 * check. This kind of THP just can be PTE mapped. Access to 4629 * the corrupted subpage should trigger SIGBUS as expected. 4630 */ 4631 if (unlikely(folio_test_has_hwpoisoned(folio))) 4632 return ret; 4633 4634 /* 4635 * Archs like ppc64 need additional space to store information 4636 * related to pte entry. Use the preallocated table for that. 4637 */ 4638 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4639 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4640 if (!vmf->prealloc_pte) 4641 return VM_FAULT_OOM; 4642 } 4643 4644 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4645 if (unlikely(!pmd_none(*vmf->pmd))) 4646 goto out; 4647 4648 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4649 4650 entry = mk_huge_pmd(page, vma->vm_page_prot); 4651 if (write) 4652 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4653 4654 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 4655 folio_add_file_rmap_pmd(folio, page, vma); 4656 4657 /* 4658 * deposit and withdraw with pmd lock held 4659 */ 4660 if (arch_needs_pgtable_deposit()) 4661 deposit_prealloc_pte(vmf); 4662 4663 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4664 4665 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4666 4667 /* fault is handled */ 4668 ret = 0; 4669 count_vm_event(THP_FILE_MAPPED); 4670 out: 4671 spin_unlock(vmf->ptl); 4672 return ret; 4673 } 4674 #else 4675 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4676 { 4677 return VM_FAULT_FALLBACK; 4678 } 4679 #endif 4680 4681 /** 4682 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4683 * @vmf: Fault decription. 4684 * @folio: The folio that contains @page. 4685 * @page: The first page to create a PTE for. 4686 * @nr: The number of PTEs to create. 4687 * @addr: The first address to create a PTE for. 4688 */ 4689 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4690 struct page *page, unsigned int nr, unsigned long addr) 4691 { 4692 struct vm_area_struct *vma = vmf->vma; 4693 bool write = vmf->flags & FAULT_FLAG_WRITE; 4694 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4695 pte_t entry; 4696 4697 flush_icache_pages(vma, page, nr); 4698 entry = mk_pte(page, vma->vm_page_prot); 4699 4700 if (prefault && arch_wants_old_prefaulted_pte()) 4701 entry = pte_mkold(entry); 4702 else 4703 entry = pte_sw_mkyoung(entry); 4704 4705 if (write) 4706 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4707 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 4708 entry = pte_mkuffd_wp(entry); 4709 /* copy-on-write page */ 4710 if (write && !(vma->vm_flags & VM_SHARED)) { 4711 VM_BUG_ON_FOLIO(nr != 1, folio); 4712 folio_add_new_anon_rmap(folio, vma, addr); 4713 folio_add_lru_vma(folio, vma); 4714 } else { 4715 folio_add_file_rmap_ptes(folio, page, nr, vma); 4716 } 4717 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4718 4719 /* no need to invalidate: a not-present page won't be cached */ 4720 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4721 } 4722 4723 static bool vmf_pte_changed(struct vm_fault *vmf) 4724 { 4725 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4726 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4727 4728 return !pte_none(ptep_get(vmf->pte)); 4729 } 4730 4731 /** 4732 * finish_fault - finish page fault once we have prepared the page to fault 4733 * 4734 * @vmf: structure describing the fault 4735 * 4736 * This function handles all that is needed to finish a page fault once the 4737 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4738 * given page, adds reverse page mapping, handles memcg charges and LRU 4739 * addition. 4740 * 4741 * The function expects the page to be locked and on success it consumes a 4742 * reference of a page being mapped (for the PTE which maps it). 4743 * 4744 * Return: %0 on success, %VM_FAULT_ code in case of error. 4745 */ 4746 vm_fault_t finish_fault(struct vm_fault *vmf) 4747 { 4748 struct vm_area_struct *vma = vmf->vma; 4749 struct page *page; 4750 vm_fault_t ret; 4751 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 4752 !(vma->vm_flags & VM_SHARED); 4753 4754 /* Did we COW the page? */ 4755 if (is_cow) 4756 page = vmf->cow_page; 4757 else 4758 page = vmf->page; 4759 4760 /* 4761 * check even for read faults because we might have lost our CoWed 4762 * page 4763 */ 4764 if (!(vma->vm_flags & VM_SHARED)) { 4765 ret = check_stable_address_space(vma->vm_mm); 4766 if (ret) 4767 return ret; 4768 } 4769 4770 if (pmd_none(*vmf->pmd)) { 4771 if (PageTransCompound(page)) { 4772 ret = do_set_pmd(vmf, page); 4773 if (ret != VM_FAULT_FALLBACK) 4774 return ret; 4775 } 4776 4777 if (vmf->prealloc_pte) 4778 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4779 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4780 return VM_FAULT_OOM; 4781 } 4782 4783 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4784 vmf->address, &vmf->ptl); 4785 if (!vmf->pte) 4786 return VM_FAULT_NOPAGE; 4787 4788 /* Re-check under ptl */ 4789 if (likely(!vmf_pte_changed(vmf))) { 4790 struct folio *folio = page_folio(page); 4791 int type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 4792 4793 set_pte_range(vmf, folio, page, 1, vmf->address); 4794 add_mm_counter(vma->vm_mm, type, 1); 4795 ret = 0; 4796 } else { 4797 update_mmu_tlb(vma, vmf->address, vmf->pte); 4798 ret = VM_FAULT_NOPAGE; 4799 } 4800 4801 pte_unmap_unlock(vmf->pte, vmf->ptl); 4802 return ret; 4803 } 4804 4805 static unsigned long fault_around_pages __read_mostly = 4806 65536 >> PAGE_SHIFT; 4807 4808 #ifdef CONFIG_DEBUG_FS 4809 static int fault_around_bytes_get(void *data, u64 *val) 4810 { 4811 *val = fault_around_pages << PAGE_SHIFT; 4812 return 0; 4813 } 4814 4815 /* 4816 * fault_around_bytes must be rounded down to the nearest page order as it's 4817 * what do_fault_around() expects to see. 4818 */ 4819 static int fault_around_bytes_set(void *data, u64 val) 4820 { 4821 if (val / PAGE_SIZE > PTRS_PER_PTE) 4822 return -EINVAL; 4823 4824 /* 4825 * The minimum value is 1 page, however this results in no fault-around 4826 * at all. See should_fault_around(). 4827 */ 4828 val = max(val, PAGE_SIZE); 4829 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 4830 4831 return 0; 4832 } 4833 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4834 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4835 4836 static int __init fault_around_debugfs(void) 4837 { 4838 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4839 &fault_around_bytes_fops); 4840 return 0; 4841 } 4842 late_initcall(fault_around_debugfs); 4843 #endif 4844 4845 /* 4846 * do_fault_around() tries to map few pages around the fault address. The hope 4847 * is that the pages will be needed soon and this will lower the number of 4848 * faults to handle. 4849 * 4850 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4851 * not ready to be mapped: not up-to-date, locked, etc. 4852 * 4853 * This function doesn't cross VMA or page table boundaries, in order to call 4854 * map_pages() and acquire a PTE lock only once. 4855 * 4856 * fault_around_pages defines how many pages we'll try to map. 4857 * do_fault_around() expects it to be set to a power of two less than or equal 4858 * to PTRS_PER_PTE. 4859 * 4860 * The virtual address of the area that we map is naturally aligned to 4861 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4862 * (and therefore to page order). This way it's easier to guarantee 4863 * that we don't cross page table boundaries. 4864 */ 4865 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4866 { 4867 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4868 pgoff_t pte_off = pte_index(vmf->address); 4869 /* The page offset of vmf->address within the VMA. */ 4870 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4871 pgoff_t from_pte, to_pte; 4872 vm_fault_t ret; 4873 4874 /* The PTE offset of the start address, clamped to the VMA. */ 4875 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4876 pte_off - min(pte_off, vma_off)); 4877 4878 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4879 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4880 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4881 4882 if (pmd_none(*vmf->pmd)) { 4883 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4884 if (!vmf->prealloc_pte) 4885 return VM_FAULT_OOM; 4886 } 4887 4888 rcu_read_lock(); 4889 ret = vmf->vma->vm_ops->map_pages(vmf, 4890 vmf->pgoff + from_pte - pte_off, 4891 vmf->pgoff + to_pte - pte_off); 4892 rcu_read_unlock(); 4893 4894 return ret; 4895 } 4896 4897 /* Return true if we should do read fault-around, false otherwise */ 4898 static inline bool should_fault_around(struct vm_fault *vmf) 4899 { 4900 /* No ->map_pages? No way to fault around... */ 4901 if (!vmf->vma->vm_ops->map_pages) 4902 return false; 4903 4904 if (uffd_disable_fault_around(vmf->vma)) 4905 return false; 4906 4907 /* A single page implies no faulting 'around' at all. */ 4908 return fault_around_pages > 1; 4909 } 4910 4911 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4912 { 4913 vm_fault_t ret = 0; 4914 struct folio *folio; 4915 4916 /* 4917 * Let's call ->map_pages() first and use ->fault() as fallback 4918 * if page by the offset is not ready to be mapped (cold cache or 4919 * something). 4920 */ 4921 if (should_fault_around(vmf)) { 4922 ret = do_fault_around(vmf); 4923 if (ret) 4924 return ret; 4925 } 4926 4927 ret = vmf_can_call_fault(vmf); 4928 if (ret) 4929 return ret; 4930 4931 ret = __do_fault(vmf); 4932 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4933 return ret; 4934 4935 ret |= finish_fault(vmf); 4936 folio = page_folio(vmf->page); 4937 folio_unlock(folio); 4938 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4939 folio_put(folio); 4940 return ret; 4941 } 4942 4943 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4944 { 4945 struct vm_area_struct *vma = vmf->vma; 4946 struct folio *folio; 4947 vm_fault_t ret; 4948 4949 ret = vmf_can_call_fault(vmf); 4950 if (!ret) 4951 ret = vmf_anon_prepare(vmf); 4952 if (ret) 4953 return ret; 4954 4955 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 4956 if (!folio) 4957 return VM_FAULT_OOM; 4958 4959 vmf->cow_page = &folio->page; 4960 4961 ret = __do_fault(vmf); 4962 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4963 goto uncharge_out; 4964 if (ret & VM_FAULT_DONE_COW) 4965 return ret; 4966 4967 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4968 __folio_mark_uptodate(folio); 4969 4970 ret |= finish_fault(vmf); 4971 unlock_page(vmf->page); 4972 put_page(vmf->page); 4973 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4974 goto uncharge_out; 4975 return ret; 4976 uncharge_out: 4977 folio_put(folio); 4978 return ret; 4979 } 4980 4981 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4982 { 4983 struct vm_area_struct *vma = vmf->vma; 4984 vm_fault_t ret, tmp; 4985 struct folio *folio; 4986 4987 ret = vmf_can_call_fault(vmf); 4988 if (ret) 4989 return ret; 4990 4991 ret = __do_fault(vmf); 4992 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4993 return ret; 4994 4995 folio = page_folio(vmf->page); 4996 4997 /* 4998 * Check if the backing address space wants to know that the page is 4999 * about to become writable 5000 */ 5001 if (vma->vm_ops->page_mkwrite) { 5002 folio_unlock(folio); 5003 tmp = do_page_mkwrite(vmf, folio); 5004 if (unlikely(!tmp || 5005 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5006 folio_put(folio); 5007 return tmp; 5008 } 5009 } 5010 5011 ret |= finish_fault(vmf); 5012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5013 VM_FAULT_RETRY))) { 5014 folio_unlock(folio); 5015 folio_put(folio); 5016 return ret; 5017 } 5018 5019 ret |= fault_dirty_shared_page(vmf); 5020 return ret; 5021 } 5022 5023 /* 5024 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5025 * but allow concurrent faults). 5026 * The mmap_lock may have been released depending on flags and our 5027 * return value. See filemap_fault() and __folio_lock_or_retry(). 5028 * If mmap_lock is released, vma may become invalid (for example 5029 * by other thread calling munmap()). 5030 */ 5031 static vm_fault_t do_fault(struct vm_fault *vmf) 5032 { 5033 struct vm_area_struct *vma = vmf->vma; 5034 struct mm_struct *vm_mm = vma->vm_mm; 5035 vm_fault_t ret; 5036 5037 /* 5038 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5039 */ 5040 if (!vma->vm_ops->fault) { 5041 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5042 vmf->address, &vmf->ptl); 5043 if (unlikely(!vmf->pte)) 5044 ret = VM_FAULT_SIGBUS; 5045 else { 5046 /* 5047 * Make sure this is not a temporary clearing of pte 5048 * by holding ptl and checking again. A R/M/W update 5049 * of pte involves: take ptl, clearing the pte so that 5050 * we don't have concurrent modification by hardware 5051 * followed by an update. 5052 */ 5053 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5054 ret = VM_FAULT_SIGBUS; 5055 else 5056 ret = VM_FAULT_NOPAGE; 5057 5058 pte_unmap_unlock(vmf->pte, vmf->ptl); 5059 } 5060 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5061 ret = do_read_fault(vmf); 5062 else if (!(vma->vm_flags & VM_SHARED)) 5063 ret = do_cow_fault(vmf); 5064 else 5065 ret = do_shared_fault(vmf); 5066 5067 /* preallocated pagetable is unused: free it */ 5068 if (vmf->prealloc_pte) { 5069 pte_free(vm_mm, vmf->prealloc_pte); 5070 vmf->prealloc_pte = NULL; 5071 } 5072 return ret; 5073 } 5074 5075 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf, 5076 unsigned long addr, int page_nid, int *flags) 5077 { 5078 struct vm_area_struct *vma = vmf->vma; 5079 5080 folio_get(folio); 5081 5082 /* Record the current PID acceesing VMA */ 5083 vma_set_access_pid_bit(vma); 5084 5085 count_vm_numa_event(NUMA_HINT_FAULTS); 5086 if (page_nid == numa_node_id()) { 5087 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5088 *flags |= TNF_FAULT_LOCAL; 5089 } 5090 5091 return mpol_misplaced(folio, vmf, addr); 5092 } 5093 5094 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5095 unsigned long fault_addr, pte_t *fault_pte, 5096 bool writable) 5097 { 5098 pte_t pte, old_pte; 5099 5100 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5101 pte = pte_modify(old_pte, vma->vm_page_prot); 5102 pte = pte_mkyoung(pte); 5103 if (writable) 5104 pte = pte_mkwrite(pte, vma); 5105 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5106 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5107 } 5108 5109 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5110 struct folio *folio, pte_t fault_pte, 5111 bool ignore_writable, bool pte_write_upgrade) 5112 { 5113 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5114 unsigned long start = max(vmf->address - nr * PAGE_SIZE, vma->vm_start); 5115 unsigned long end = min(vmf->address + (folio_nr_pages(folio) - nr) * PAGE_SIZE, vma->vm_end); 5116 pte_t *start_ptep = vmf->pte - (vmf->address - start) / PAGE_SIZE; 5117 unsigned long addr; 5118 5119 /* Restore all PTEs' mapping of the large folio */ 5120 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5121 pte_t ptent = ptep_get(start_ptep); 5122 bool writable = false; 5123 5124 if (!pte_present(ptent) || !pte_protnone(ptent)) 5125 continue; 5126 5127 if (pfn_folio(pte_pfn(ptent)) != folio) 5128 continue; 5129 5130 if (!ignore_writable) { 5131 ptent = pte_modify(ptent, vma->vm_page_prot); 5132 writable = pte_write(ptent); 5133 if (!writable && pte_write_upgrade && 5134 can_change_pte_writable(vma, addr, ptent)) 5135 writable = true; 5136 } 5137 5138 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5139 } 5140 } 5141 5142 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5143 { 5144 struct vm_area_struct *vma = vmf->vma; 5145 struct folio *folio = NULL; 5146 int nid = NUMA_NO_NODE; 5147 bool writable = false, ignore_writable = false; 5148 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5149 int last_cpupid; 5150 int target_nid; 5151 pte_t pte, old_pte; 5152 int flags = 0, nr_pages; 5153 5154 /* 5155 * The pte cannot be used safely until we verify, while holding the page 5156 * table lock, that its contents have not changed during fault handling. 5157 */ 5158 spin_lock(vmf->ptl); 5159 /* Read the live PTE from the page tables: */ 5160 old_pte = ptep_get(vmf->pte); 5161 5162 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5163 pte_unmap_unlock(vmf->pte, vmf->ptl); 5164 goto out; 5165 } 5166 5167 pte = pte_modify(old_pte, vma->vm_page_prot); 5168 5169 /* 5170 * Detect now whether the PTE could be writable; this information 5171 * is only valid while holding the PT lock. 5172 */ 5173 writable = pte_write(pte); 5174 if (!writable && pte_write_upgrade && 5175 can_change_pte_writable(vma, vmf->address, pte)) 5176 writable = true; 5177 5178 folio = vm_normal_folio(vma, vmf->address, pte); 5179 if (!folio || folio_is_zone_device(folio)) 5180 goto out_map; 5181 5182 /* 5183 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5184 * much anyway since they can be in shared cache state. This misses 5185 * the case where a mapping is writable but the process never writes 5186 * to it but pte_write gets cleared during protection updates and 5187 * pte_dirty has unpredictable behaviour between PTE scan updates, 5188 * background writeback, dirty balancing and application behaviour. 5189 */ 5190 if (!writable) 5191 flags |= TNF_NO_GROUP; 5192 5193 /* 5194 * Flag if the folio is shared between multiple address spaces. This 5195 * is later used when determining whether to group tasks together 5196 */ 5197 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5198 flags |= TNF_SHARED; 5199 5200 nid = folio_nid(folio); 5201 nr_pages = folio_nr_pages(folio); 5202 /* 5203 * For memory tiering mode, cpupid of slow memory page is used 5204 * to record page access time. So use default value. 5205 */ 5206 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 5207 !node_is_toptier(nid)) 5208 last_cpupid = (-1 & LAST_CPUPID_MASK); 5209 else 5210 last_cpupid = folio_last_cpupid(folio); 5211 target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags); 5212 if (target_nid == NUMA_NO_NODE) { 5213 folio_put(folio); 5214 goto out_map; 5215 } 5216 pte_unmap_unlock(vmf->pte, vmf->ptl); 5217 writable = false; 5218 ignore_writable = true; 5219 5220 /* Migrate to the requested node */ 5221 if (migrate_misplaced_folio(folio, vma, target_nid)) { 5222 nid = target_nid; 5223 flags |= TNF_MIGRATED; 5224 } else { 5225 flags |= TNF_MIGRATE_FAIL; 5226 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5227 vmf->address, &vmf->ptl); 5228 if (unlikely(!vmf->pte)) 5229 goto out; 5230 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5231 pte_unmap_unlock(vmf->pte, vmf->ptl); 5232 goto out; 5233 } 5234 goto out_map; 5235 } 5236 5237 out: 5238 if (nid != NUMA_NO_NODE) 5239 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5240 return 0; 5241 out_map: 5242 /* 5243 * Make it present again, depending on how arch implements 5244 * non-accessible ptes, some can allow access by kernel mode. 5245 */ 5246 if (folio && folio_test_large(folio)) 5247 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5248 pte_write_upgrade); 5249 else 5250 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5251 writable); 5252 pte_unmap_unlock(vmf->pte, vmf->ptl); 5253 goto out; 5254 } 5255 5256 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5257 { 5258 struct vm_area_struct *vma = vmf->vma; 5259 if (vma_is_anonymous(vma)) 5260 return do_huge_pmd_anonymous_page(vmf); 5261 if (vma->vm_ops->huge_fault) 5262 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5263 return VM_FAULT_FALLBACK; 5264 } 5265 5266 /* `inline' is required to avoid gcc 4.1.2 build error */ 5267 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5268 { 5269 struct vm_area_struct *vma = vmf->vma; 5270 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5271 vm_fault_t ret; 5272 5273 if (vma_is_anonymous(vma)) { 5274 if (likely(!unshare) && 5275 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5276 if (userfaultfd_wp_async(vmf->vma)) 5277 goto split; 5278 return handle_userfault(vmf, VM_UFFD_WP); 5279 } 5280 return do_huge_pmd_wp_page(vmf); 5281 } 5282 5283 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5284 if (vma->vm_ops->huge_fault) { 5285 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5286 if (!(ret & VM_FAULT_FALLBACK)) 5287 return ret; 5288 } 5289 } 5290 5291 split: 5292 /* COW or write-notify handled on pte level: split pmd. */ 5293 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5294 5295 return VM_FAULT_FALLBACK; 5296 } 5297 5298 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5299 { 5300 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5301 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5302 struct vm_area_struct *vma = vmf->vma; 5303 /* No support for anonymous transparent PUD pages yet */ 5304 if (vma_is_anonymous(vma)) 5305 return VM_FAULT_FALLBACK; 5306 if (vma->vm_ops->huge_fault) 5307 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5308 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5309 return VM_FAULT_FALLBACK; 5310 } 5311 5312 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5313 { 5314 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5315 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5316 struct vm_area_struct *vma = vmf->vma; 5317 vm_fault_t ret; 5318 5319 /* No support for anonymous transparent PUD pages yet */ 5320 if (vma_is_anonymous(vma)) 5321 goto split; 5322 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5323 if (vma->vm_ops->huge_fault) { 5324 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5325 if (!(ret & VM_FAULT_FALLBACK)) 5326 return ret; 5327 } 5328 } 5329 split: 5330 /* COW or write-notify not handled on PUD level: split pud.*/ 5331 __split_huge_pud(vma, vmf->pud, vmf->address); 5332 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5333 return VM_FAULT_FALLBACK; 5334 } 5335 5336 /* 5337 * These routines also need to handle stuff like marking pages dirty 5338 * and/or accessed for architectures that don't do it in hardware (most 5339 * RISC architectures). The early dirtying is also good on the i386. 5340 * 5341 * There is also a hook called "update_mmu_cache()" that architectures 5342 * with external mmu caches can use to update those (ie the Sparc or 5343 * PowerPC hashed page tables that act as extended TLBs). 5344 * 5345 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5346 * concurrent faults). 5347 * 5348 * The mmap_lock may have been released depending on flags and our return value. 5349 * See filemap_fault() and __folio_lock_or_retry(). 5350 */ 5351 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5352 { 5353 pte_t entry; 5354 5355 if (unlikely(pmd_none(*vmf->pmd))) { 5356 /* 5357 * Leave __pte_alloc() until later: because vm_ops->fault may 5358 * want to allocate huge page, and if we expose page table 5359 * for an instant, it will be difficult to retract from 5360 * concurrent faults and from rmap lookups. 5361 */ 5362 vmf->pte = NULL; 5363 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5364 } else { 5365 /* 5366 * A regular pmd is established and it can't morph into a huge 5367 * pmd by anon khugepaged, since that takes mmap_lock in write 5368 * mode; but shmem or file collapse to THP could still morph 5369 * it into a huge pmd: just retry later if so. 5370 */ 5371 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5372 vmf->address, &vmf->ptl); 5373 if (unlikely(!vmf->pte)) 5374 return 0; 5375 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5376 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5377 5378 if (pte_none(vmf->orig_pte)) { 5379 pte_unmap(vmf->pte); 5380 vmf->pte = NULL; 5381 } 5382 } 5383 5384 if (!vmf->pte) 5385 return do_pte_missing(vmf); 5386 5387 if (!pte_present(vmf->orig_pte)) 5388 return do_swap_page(vmf); 5389 5390 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5391 return do_numa_page(vmf); 5392 5393 spin_lock(vmf->ptl); 5394 entry = vmf->orig_pte; 5395 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5396 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5397 goto unlock; 5398 } 5399 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5400 if (!pte_write(entry)) 5401 return do_wp_page(vmf); 5402 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5403 entry = pte_mkdirty(entry); 5404 } 5405 entry = pte_mkyoung(entry); 5406 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5407 vmf->flags & FAULT_FLAG_WRITE)) { 5408 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5409 vmf->pte, 1); 5410 } else { 5411 /* Skip spurious TLB flush for retried page fault */ 5412 if (vmf->flags & FAULT_FLAG_TRIED) 5413 goto unlock; 5414 /* 5415 * This is needed only for protection faults but the arch code 5416 * is not yet telling us if this is a protection fault or not. 5417 * This still avoids useless tlb flushes for .text page faults 5418 * with threads. 5419 */ 5420 if (vmf->flags & FAULT_FLAG_WRITE) 5421 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5422 vmf->pte); 5423 } 5424 unlock: 5425 pte_unmap_unlock(vmf->pte, vmf->ptl); 5426 return 0; 5427 } 5428 5429 /* 5430 * On entry, we hold either the VMA lock or the mmap_lock 5431 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5432 * the result, the mmap_lock is not held on exit. See filemap_fault() 5433 * and __folio_lock_or_retry(). 5434 */ 5435 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5436 unsigned long address, unsigned int flags) 5437 { 5438 struct vm_fault vmf = { 5439 .vma = vma, 5440 .address = address & PAGE_MASK, 5441 .real_address = address, 5442 .flags = flags, 5443 .pgoff = linear_page_index(vma, address), 5444 .gfp_mask = __get_fault_gfp_mask(vma), 5445 }; 5446 struct mm_struct *mm = vma->vm_mm; 5447 unsigned long vm_flags = vma->vm_flags; 5448 pgd_t *pgd; 5449 p4d_t *p4d; 5450 vm_fault_t ret; 5451 5452 pgd = pgd_offset(mm, address); 5453 p4d = p4d_alloc(mm, pgd, address); 5454 if (!p4d) 5455 return VM_FAULT_OOM; 5456 5457 vmf.pud = pud_alloc(mm, p4d, address); 5458 if (!vmf.pud) 5459 return VM_FAULT_OOM; 5460 retry_pud: 5461 if (pud_none(*vmf.pud) && 5462 thp_vma_allowable_order(vma, vm_flags, 5463 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5464 ret = create_huge_pud(&vmf); 5465 if (!(ret & VM_FAULT_FALLBACK)) 5466 return ret; 5467 } else { 5468 pud_t orig_pud = *vmf.pud; 5469 5470 barrier(); 5471 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5472 5473 /* 5474 * TODO once we support anonymous PUDs: NUMA case and 5475 * FAULT_FLAG_UNSHARE handling. 5476 */ 5477 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5478 ret = wp_huge_pud(&vmf, orig_pud); 5479 if (!(ret & VM_FAULT_FALLBACK)) 5480 return ret; 5481 } else { 5482 huge_pud_set_accessed(&vmf, orig_pud); 5483 return 0; 5484 } 5485 } 5486 } 5487 5488 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5489 if (!vmf.pmd) 5490 return VM_FAULT_OOM; 5491 5492 /* Huge pud page fault raced with pmd_alloc? */ 5493 if (pud_trans_unstable(vmf.pud)) 5494 goto retry_pud; 5495 5496 if (pmd_none(*vmf.pmd) && 5497 thp_vma_allowable_order(vma, vm_flags, 5498 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 5499 ret = create_huge_pmd(&vmf); 5500 if (!(ret & VM_FAULT_FALLBACK)) 5501 return ret; 5502 } else { 5503 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5504 5505 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5506 VM_BUG_ON(thp_migration_supported() && 5507 !is_pmd_migration_entry(vmf.orig_pmd)); 5508 if (is_pmd_migration_entry(vmf.orig_pmd)) 5509 pmd_migration_entry_wait(mm, vmf.pmd); 5510 return 0; 5511 } 5512 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5513 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5514 return do_huge_pmd_numa_page(&vmf); 5515 5516 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5517 !pmd_write(vmf.orig_pmd)) { 5518 ret = wp_huge_pmd(&vmf); 5519 if (!(ret & VM_FAULT_FALLBACK)) 5520 return ret; 5521 } else { 5522 huge_pmd_set_accessed(&vmf); 5523 return 0; 5524 } 5525 } 5526 } 5527 5528 return handle_pte_fault(&vmf); 5529 } 5530 5531 /** 5532 * mm_account_fault - Do page fault accounting 5533 * @mm: mm from which memcg should be extracted. It can be NULL. 5534 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5535 * of perf event counters, but we'll still do the per-task accounting to 5536 * the task who triggered this page fault. 5537 * @address: the faulted address. 5538 * @flags: the fault flags. 5539 * @ret: the fault retcode. 5540 * 5541 * This will take care of most of the page fault accounting. Meanwhile, it 5542 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5543 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5544 * still be in per-arch page fault handlers at the entry of page fault. 5545 */ 5546 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5547 unsigned long address, unsigned int flags, 5548 vm_fault_t ret) 5549 { 5550 bool major; 5551 5552 /* Incomplete faults will be accounted upon completion. */ 5553 if (ret & VM_FAULT_RETRY) 5554 return; 5555 5556 /* 5557 * To preserve the behavior of older kernels, PGFAULT counters record 5558 * both successful and failed faults, as opposed to perf counters, 5559 * which ignore failed cases. 5560 */ 5561 count_vm_event(PGFAULT); 5562 count_memcg_event_mm(mm, PGFAULT); 5563 5564 /* 5565 * Do not account for unsuccessful faults (e.g. when the address wasn't 5566 * valid). That includes arch_vma_access_permitted() failing before 5567 * reaching here. So this is not a "this many hardware page faults" 5568 * counter. We should use the hw profiling for that. 5569 */ 5570 if (ret & VM_FAULT_ERROR) 5571 return; 5572 5573 /* 5574 * We define the fault as a major fault when the final successful fault 5575 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5576 * handle it immediately previously). 5577 */ 5578 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5579 5580 if (major) 5581 current->maj_flt++; 5582 else 5583 current->min_flt++; 5584 5585 /* 5586 * If the fault is done for GUP, regs will be NULL. We only do the 5587 * accounting for the per thread fault counters who triggered the 5588 * fault, and we skip the perf event updates. 5589 */ 5590 if (!regs) 5591 return; 5592 5593 if (major) 5594 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5595 else 5596 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5597 } 5598 5599 #ifdef CONFIG_LRU_GEN 5600 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5601 { 5602 /* the LRU algorithm only applies to accesses with recency */ 5603 current->in_lru_fault = vma_has_recency(vma); 5604 } 5605 5606 static void lru_gen_exit_fault(void) 5607 { 5608 current->in_lru_fault = false; 5609 } 5610 #else 5611 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5612 { 5613 } 5614 5615 static void lru_gen_exit_fault(void) 5616 { 5617 } 5618 #endif /* CONFIG_LRU_GEN */ 5619 5620 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5621 unsigned int *flags) 5622 { 5623 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5624 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5625 return VM_FAULT_SIGSEGV; 5626 /* 5627 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5628 * just treat it like an ordinary read-fault otherwise. 5629 */ 5630 if (!is_cow_mapping(vma->vm_flags)) 5631 *flags &= ~FAULT_FLAG_UNSHARE; 5632 } else if (*flags & FAULT_FLAG_WRITE) { 5633 /* Write faults on read-only mappings are impossible ... */ 5634 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5635 return VM_FAULT_SIGSEGV; 5636 /* ... and FOLL_FORCE only applies to COW mappings. */ 5637 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5638 !is_cow_mapping(vma->vm_flags))) 5639 return VM_FAULT_SIGSEGV; 5640 } 5641 #ifdef CONFIG_PER_VMA_LOCK 5642 /* 5643 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5644 * the assumption that lock is dropped on VM_FAULT_RETRY. 5645 */ 5646 if (WARN_ON_ONCE((*flags & 5647 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5648 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5649 return VM_FAULT_SIGSEGV; 5650 #endif 5651 5652 return 0; 5653 } 5654 5655 /* 5656 * By the time we get here, we already hold the mm semaphore 5657 * 5658 * The mmap_lock may have been released depending on flags and our 5659 * return value. See filemap_fault() and __folio_lock_or_retry(). 5660 */ 5661 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5662 unsigned int flags, struct pt_regs *regs) 5663 { 5664 /* If the fault handler drops the mmap_lock, vma may be freed */ 5665 struct mm_struct *mm = vma->vm_mm; 5666 vm_fault_t ret; 5667 5668 __set_current_state(TASK_RUNNING); 5669 5670 ret = sanitize_fault_flags(vma, &flags); 5671 if (ret) 5672 goto out; 5673 5674 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5675 flags & FAULT_FLAG_INSTRUCTION, 5676 flags & FAULT_FLAG_REMOTE)) { 5677 ret = VM_FAULT_SIGSEGV; 5678 goto out; 5679 } 5680 5681 /* 5682 * Enable the memcg OOM handling for faults triggered in user 5683 * space. Kernel faults are handled more gracefully. 5684 */ 5685 if (flags & FAULT_FLAG_USER) 5686 mem_cgroup_enter_user_fault(); 5687 5688 lru_gen_enter_fault(vma); 5689 5690 if (unlikely(is_vm_hugetlb_page(vma))) 5691 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5692 else 5693 ret = __handle_mm_fault(vma, address, flags); 5694 5695 lru_gen_exit_fault(); 5696 5697 if (flags & FAULT_FLAG_USER) { 5698 mem_cgroup_exit_user_fault(); 5699 /* 5700 * The task may have entered a memcg OOM situation but 5701 * if the allocation error was handled gracefully (no 5702 * VM_FAULT_OOM), there is no need to kill anything. 5703 * Just clean up the OOM state peacefully. 5704 */ 5705 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5706 mem_cgroup_oom_synchronize(false); 5707 } 5708 out: 5709 mm_account_fault(mm, regs, address, flags, ret); 5710 5711 return ret; 5712 } 5713 EXPORT_SYMBOL_GPL(handle_mm_fault); 5714 5715 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5716 #include <linux/extable.h> 5717 5718 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5719 { 5720 if (likely(mmap_read_trylock(mm))) 5721 return true; 5722 5723 if (regs && !user_mode(regs)) { 5724 unsigned long ip = exception_ip(regs); 5725 if (!search_exception_tables(ip)) 5726 return false; 5727 } 5728 5729 return !mmap_read_lock_killable(mm); 5730 } 5731 5732 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5733 { 5734 /* 5735 * We don't have this operation yet. 5736 * 5737 * It should be easy enough to do: it's basically a 5738 * atomic_long_try_cmpxchg_acquire() 5739 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5740 * it also needs the proper lockdep magic etc. 5741 */ 5742 return false; 5743 } 5744 5745 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5746 { 5747 mmap_read_unlock(mm); 5748 if (regs && !user_mode(regs)) { 5749 unsigned long ip = exception_ip(regs); 5750 if (!search_exception_tables(ip)) 5751 return false; 5752 } 5753 return !mmap_write_lock_killable(mm); 5754 } 5755 5756 /* 5757 * Helper for page fault handling. 5758 * 5759 * This is kind of equivalend to "mmap_read_lock()" followed 5760 * by "find_extend_vma()", except it's a lot more careful about 5761 * the locking (and will drop the lock on failure). 5762 * 5763 * For example, if we have a kernel bug that causes a page 5764 * fault, we don't want to just use mmap_read_lock() to get 5765 * the mm lock, because that would deadlock if the bug were 5766 * to happen while we're holding the mm lock for writing. 5767 * 5768 * So this checks the exception tables on kernel faults in 5769 * order to only do this all for instructions that are actually 5770 * expected to fault. 5771 * 5772 * We can also actually take the mm lock for writing if we 5773 * need to extend the vma, which helps the VM layer a lot. 5774 */ 5775 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5776 unsigned long addr, struct pt_regs *regs) 5777 { 5778 struct vm_area_struct *vma; 5779 5780 if (!get_mmap_lock_carefully(mm, regs)) 5781 return NULL; 5782 5783 vma = find_vma(mm, addr); 5784 if (likely(vma && (vma->vm_start <= addr))) 5785 return vma; 5786 5787 /* 5788 * Well, dang. We might still be successful, but only 5789 * if we can extend a vma to do so. 5790 */ 5791 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5792 mmap_read_unlock(mm); 5793 return NULL; 5794 } 5795 5796 /* 5797 * We can try to upgrade the mmap lock atomically, 5798 * in which case we can continue to use the vma 5799 * we already looked up. 5800 * 5801 * Otherwise we'll have to drop the mmap lock and 5802 * re-take it, and also look up the vma again, 5803 * re-checking it. 5804 */ 5805 if (!mmap_upgrade_trylock(mm)) { 5806 if (!upgrade_mmap_lock_carefully(mm, regs)) 5807 return NULL; 5808 5809 vma = find_vma(mm, addr); 5810 if (!vma) 5811 goto fail; 5812 if (vma->vm_start <= addr) 5813 goto success; 5814 if (!(vma->vm_flags & VM_GROWSDOWN)) 5815 goto fail; 5816 } 5817 5818 if (expand_stack_locked(vma, addr)) 5819 goto fail; 5820 5821 success: 5822 mmap_write_downgrade(mm); 5823 return vma; 5824 5825 fail: 5826 mmap_write_unlock(mm); 5827 return NULL; 5828 } 5829 #endif 5830 5831 #ifdef CONFIG_PER_VMA_LOCK 5832 /* 5833 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5834 * stable and not isolated. If the VMA is not found or is being modified the 5835 * function returns NULL. 5836 */ 5837 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5838 unsigned long address) 5839 { 5840 MA_STATE(mas, &mm->mm_mt, address, address); 5841 struct vm_area_struct *vma; 5842 5843 rcu_read_lock(); 5844 retry: 5845 vma = mas_walk(&mas); 5846 if (!vma) 5847 goto inval; 5848 5849 if (!vma_start_read(vma)) 5850 goto inval; 5851 5852 /* Check since vm_start/vm_end might change before we lock the VMA */ 5853 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5854 goto inval_end_read; 5855 5856 /* Check if the VMA got isolated after we found it */ 5857 if (vma->detached) { 5858 vma_end_read(vma); 5859 count_vm_vma_lock_event(VMA_LOCK_MISS); 5860 /* The area was replaced with another one */ 5861 goto retry; 5862 } 5863 5864 rcu_read_unlock(); 5865 return vma; 5866 5867 inval_end_read: 5868 vma_end_read(vma); 5869 inval: 5870 rcu_read_unlock(); 5871 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5872 return NULL; 5873 } 5874 #endif /* CONFIG_PER_VMA_LOCK */ 5875 5876 #ifndef __PAGETABLE_P4D_FOLDED 5877 /* 5878 * Allocate p4d page table. 5879 * We've already handled the fast-path in-line. 5880 */ 5881 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5882 { 5883 p4d_t *new = p4d_alloc_one(mm, address); 5884 if (!new) 5885 return -ENOMEM; 5886 5887 spin_lock(&mm->page_table_lock); 5888 if (pgd_present(*pgd)) { /* Another has populated it */ 5889 p4d_free(mm, new); 5890 } else { 5891 smp_wmb(); /* See comment in pmd_install() */ 5892 pgd_populate(mm, pgd, new); 5893 } 5894 spin_unlock(&mm->page_table_lock); 5895 return 0; 5896 } 5897 #endif /* __PAGETABLE_P4D_FOLDED */ 5898 5899 #ifndef __PAGETABLE_PUD_FOLDED 5900 /* 5901 * Allocate page upper directory. 5902 * We've already handled the fast-path in-line. 5903 */ 5904 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5905 { 5906 pud_t *new = pud_alloc_one(mm, address); 5907 if (!new) 5908 return -ENOMEM; 5909 5910 spin_lock(&mm->page_table_lock); 5911 if (!p4d_present(*p4d)) { 5912 mm_inc_nr_puds(mm); 5913 smp_wmb(); /* See comment in pmd_install() */ 5914 p4d_populate(mm, p4d, new); 5915 } else /* Another has populated it */ 5916 pud_free(mm, new); 5917 spin_unlock(&mm->page_table_lock); 5918 return 0; 5919 } 5920 #endif /* __PAGETABLE_PUD_FOLDED */ 5921 5922 #ifndef __PAGETABLE_PMD_FOLDED 5923 /* 5924 * Allocate page middle directory. 5925 * We've already handled the fast-path in-line. 5926 */ 5927 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5928 { 5929 spinlock_t *ptl; 5930 pmd_t *new = pmd_alloc_one(mm, address); 5931 if (!new) 5932 return -ENOMEM; 5933 5934 ptl = pud_lock(mm, pud); 5935 if (!pud_present(*pud)) { 5936 mm_inc_nr_pmds(mm); 5937 smp_wmb(); /* See comment in pmd_install() */ 5938 pud_populate(mm, pud, new); 5939 } else { /* Another has populated it */ 5940 pmd_free(mm, new); 5941 } 5942 spin_unlock(ptl); 5943 return 0; 5944 } 5945 #endif /* __PAGETABLE_PMD_FOLDED */ 5946 5947 /** 5948 * follow_pte - look up PTE at a user virtual address 5949 * @vma: the memory mapping 5950 * @address: user virtual address 5951 * @ptepp: location to store found PTE 5952 * @ptlp: location to store the lock for the PTE 5953 * 5954 * On a successful return, the pointer to the PTE is stored in @ptepp; 5955 * the corresponding lock is taken and its location is stored in @ptlp. 5956 * 5957 * The contents of the PTE are only stable until @ptlp is released using 5958 * pte_unmap_unlock(). This function will fail if the PTE is non-present. 5959 * Present PTEs may include PTEs that map refcounted pages, such as 5960 * anonymous folios in COW mappings. 5961 * 5962 * Callers must be careful when relying on PTE content after 5963 * pte_unmap_unlock(). Especially if the PTE maps a refcounted page, 5964 * callers must protect against invalidation with MMU notifiers; otherwise 5965 * access to the PFN at a later point in time can trigger use-after-free. 5966 * 5967 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5968 * should be taken for read. 5969 * 5970 * This function must not be used to modify PTE content. 5971 * 5972 * Return: zero on success, -ve otherwise. 5973 */ 5974 int follow_pte(struct vm_area_struct *vma, unsigned long address, 5975 pte_t **ptepp, spinlock_t **ptlp) 5976 { 5977 struct mm_struct *mm = vma->vm_mm; 5978 pgd_t *pgd; 5979 p4d_t *p4d; 5980 pud_t *pud; 5981 pmd_t *pmd; 5982 pte_t *ptep; 5983 5984 mmap_assert_locked(mm); 5985 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5986 goto out; 5987 5988 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5989 goto out; 5990 5991 pgd = pgd_offset(mm, address); 5992 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5993 goto out; 5994 5995 p4d = p4d_offset(pgd, address); 5996 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5997 goto out; 5998 5999 pud = pud_offset(p4d, address); 6000 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 6001 goto out; 6002 6003 pmd = pmd_offset(pud, address); 6004 VM_BUG_ON(pmd_trans_huge(*pmd)); 6005 6006 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 6007 if (!ptep) 6008 goto out; 6009 if (!pte_present(ptep_get(ptep))) 6010 goto unlock; 6011 *ptepp = ptep; 6012 return 0; 6013 unlock: 6014 pte_unmap_unlock(ptep, *ptlp); 6015 out: 6016 return -EINVAL; 6017 } 6018 EXPORT_SYMBOL_GPL(follow_pte); 6019 6020 #ifdef CONFIG_HAVE_IOREMAP_PROT 6021 /** 6022 * generic_access_phys - generic implementation for iomem mmap access 6023 * @vma: the vma to access 6024 * @addr: userspace address, not relative offset within @vma 6025 * @buf: buffer to read/write 6026 * @len: length of transfer 6027 * @write: set to FOLL_WRITE when writing, otherwise reading 6028 * 6029 * This is a generic implementation for &vm_operations_struct.access for an 6030 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6031 * not page based. 6032 */ 6033 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6034 void *buf, int len, int write) 6035 { 6036 resource_size_t phys_addr; 6037 unsigned long prot = 0; 6038 void __iomem *maddr; 6039 pte_t *ptep, pte; 6040 spinlock_t *ptl; 6041 int offset = offset_in_page(addr); 6042 int ret = -EINVAL; 6043 6044 retry: 6045 if (follow_pte(vma, addr, &ptep, &ptl)) 6046 return -EINVAL; 6047 pte = ptep_get(ptep); 6048 pte_unmap_unlock(ptep, ptl); 6049 6050 prot = pgprot_val(pte_pgprot(pte)); 6051 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 6052 6053 if ((write & FOLL_WRITE) && !pte_write(pte)) 6054 return -EINVAL; 6055 6056 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6057 if (!maddr) 6058 return -ENOMEM; 6059 6060 if (follow_pte(vma, addr, &ptep, &ptl)) 6061 goto out_unmap; 6062 6063 if (!pte_same(pte, ptep_get(ptep))) { 6064 pte_unmap_unlock(ptep, ptl); 6065 iounmap(maddr); 6066 6067 goto retry; 6068 } 6069 6070 if (write) 6071 memcpy_toio(maddr + offset, buf, len); 6072 else 6073 memcpy_fromio(buf, maddr + offset, len); 6074 ret = len; 6075 pte_unmap_unlock(ptep, ptl); 6076 out_unmap: 6077 iounmap(maddr); 6078 6079 return ret; 6080 } 6081 EXPORT_SYMBOL_GPL(generic_access_phys); 6082 #endif 6083 6084 /* 6085 * Access another process' address space as given in mm. 6086 */ 6087 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6088 void *buf, int len, unsigned int gup_flags) 6089 { 6090 void *old_buf = buf; 6091 int write = gup_flags & FOLL_WRITE; 6092 6093 if (mmap_read_lock_killable(mm)) 6094 return 0; 6095 6096 /* Untag the address before looking up the VMA */ 6097 addr = untagged_addr_remote(mm, addr); 6098 6099 /* Avoid triggering the temporary warning in __get_user_pages */ 6100 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6101 return 0; 6102 6103 /* ignore errors, just check how much was successfully transferred */ 6104 while (len) { 6105 int bytes, offset; 6106 void *maddr; 6107 struct vm_area_struct *vma = NULL; 6108 struct page *page = get_user_page_vma_remote(mm, addr, 6109 gup_flags, &vma); 6110 6111 if (IS_ERR(page)) { 6112 /* We might need to expand the stack to access it */ 6113 vma = vma_lookup(mm, addr); 6114 if (!vma) { 6115 vma = expand_stack(mm, addr); 6116 6117 /* mmap_lock was dropped on failure */ 6118 if (!vma) 6119 return buf - old_buf; 6120 6121 /* Try again if stack expansion worked */ 6122 continue; 6123 } 6124 6125 /* 6126 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6127 * we can access using slightly different code. 6128 */ 6129 bytes = 0; 6130 #ifdef CONFIG_HAVE_IOREMAP_PROT 6131 if (vma->vm_ops && vma->vm_ops->access) 6132 bytes = vma->vm_ops->access(vma, addr, buf, 6133 len, write); 6134 #endif 6135 if (bytes <= 0) 6136 break; 6137 } else { 6138 bytes = len; 6139 offset = addr & (PAGE_SIZE-1); 6140 if (bytes > PAGE_SIZE-offset) 6141 bytes = PAGE_SIZE-offset; 6142 6143 maddr = kmap_local_page(page); 6144 if (write) { 6145 copy_to_user_page(vma, page, addr, 6146 maddr + offset, buf, bytes); 6147 set_page_dirty_lock(page); 6148 } else { 6149 copy_from_user_page(vma, page, addr, 6150 buf, maddr + offset, bytes); 6151 } 6152 unmap_and_put_page(page, maddr); 6153 } 6154 len -= bytes; 6155 buf += bytes; 6156 addr += bytes; 6157 } 6158 mmap_read_unlock(mm); 6159 6160 return buf - old_buf; 6161 } 6162 6163 /** 6164 * access_remote_vm - access another process' address space 6165 * @mm: the mm_struct of the target address space 6166 * @addr: start address to access 6167 * @buf: source or destination buffer 6168 * @len: number of bytes to transfer 6169 * @gup_flags: flags modifying lookup behaviour 6170 * 6171 * The caller must hold a reference on @mm. 6172 * 6173 * Return: number of bytes copied from source to destination. 6174 */ 6175 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6176 void *buf, int len, unsigned int gup_flags) 6177 { 6178 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6179 } 6180 6181 /* 6182 * Access another process' address space. 6183 * Source/target buffer must be kernel space, 6184 * Do not walk the page table directly, use get_user_pages 6185 */ 6186 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6187 void *buf, int len, unsigned int gup_flags) 6188 { 6189 struct mm_struct *mm; 6190 int ret; 6191 6192 mm = get_task_mm(tsk); 6193 if (!mm) 6194 return 0; 6195 6196 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6197 6198 mmput(mm); 6199 6200 return ret; 6201 } 6202 EXPORT_SYMBOL_GPL(access_process_vm); 6203 6204 /* 6205 * Print the name of a VMA. 6206 */ 6207 void print_vma_addr(char *prefix, unsigned long ip) 6208 { 6209 struct mm_struct *mm = current->mm; 6210 struct vm_area_struct *vma; 6211 6212 /* 6213 * we might be running from an atomic context so we cannot sleep 6214 */ 6215 if (!mmap_read_trylock(mm)) 6216 return; 6217 6218 vma = find_vma(mm, ip); 6219 if (vma && vma->vm_file) { 6220 struct file *f = vma->vm_file; 6221 char *buf = (char *)__get_free_page(GFP_NOWAIT); 6222 if (buf) { 6223 char *p; 6224 6225 p = file_path(f, buf, PAGE_SIZE); 6226 if (IS_ERR(p)) 6227 p = "?"; 6228 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 6229 vma->vm_start, 6230 vma->vm_end - vma->vm_start); 6231 free_page((unsigned long)buf); 6232 } 6233 } 6234 mmap_read_unlock(mm); 6235 } 6236 6237 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6238 void __might_fault(const char *file, int line) 6239 { 6240 if (pagefault_disabled()) 6241 return; 6242 __might_sleep(file, line); 6243 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6244 if (current->mm) 6245 might_lock_read(¤t->mm->mmap_lock); 6246 #endif 6247 } 6248 EXPORT_SYMBOL(__might_fault); 6249 #endif 6250 6251 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6252 /* 6253 * Process all subpages of the specified huge page with the specified 6254 * operation. The target subpage will be processed last to keep its 6255 * cache lines hot. 6256 */ 6257 static inline int process_huge_page( 6258 unsigned long addr_hint, unsigned int pages_per_huge_page, 6259 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6260 void *arg) 6261 { 6262 int i, n, base, l, ret; 6263 unsigned long addr = addr_hint & 6264 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6265 6266 /* Process target subpage last to keep its cache lines hot */ 6267 might_sleep(); 6268 n = (addr_hint - addr) / PAGE_SIZE; 6269 if (2 * n <= pages_per_huge_page) { 6270 /* If target subpage in first half of huge page */ 6271 base = 0; 6272 l = n; 6273 /* Process subpages at the end of huge page */ 6274 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 6275 cond_resched(); 6276 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6277 if (ret) 6278 return ret; 6279 } 6280 } else { 6281 /* If target subpage in second half of huge page */ 6282 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 6283 l = pages_per_huge_page - n; 6284 /* Process subpages at the begin of huge page */ 6285 for (i = 0; i < base; i++) { 6286 cond_resched(); 6287 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6288 if (ret) 6289 return ret; 6290 } 6291 } 6292 /* 6293 * Process remaining subpages in left-right-left-right pattern 6294 * towards the target subpage 6295 */ 6296 for (i = 0; i < l; i++) { 6297 int left_idx = base + i; 6298 int right_idx = base + 2 * l - 1 - i; 6299 6300 cond_resched(); 6301 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6302 if (ret) 6303 return ret; 6304 cond_resched(); 6305 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6306 if (ret) 6307 return ret; 6308 } 6309 return 0; 6310 } 6311 6312 static void clear_gigantic_page(struct page *page, 6313 unsigned long addr, 6314 unsigned int pages_per_huge_page) 6315 { 6316 int i; 6317 struct page *p; 6318 6319 might_sleep(); 6320 for (i = 0; i < pages_per_huge_page; i++) { 6321 p = nth_page(page, i); 6322 cond_resched(); 6323 clear_user_highpage(p, addr + i * PAGE_SIZE); 6324 } 6325 } 6326 6327 static int clear_subpage(unsigned long addr, int idx, void *arg) 6328 { 6329 struct page *page = arg; 6330 6331 clear_user_highpage(nth_page(page, idx), addr); 6332 return 0; 6333 } 6334 6335 void clear_huge_page(struct page *page, 6336 unsigned long addr_hint, unsigned int pages_per_huge_page) 6337 { 6338 unsigned long addr = addr_hint & 6339 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6340 6341 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6342 clear_gigantic_page(page, addr, pages_per_huge_page); 6343 return; 6344 } 6345 6346 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6347 } 6348 6349 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6350 unsigned long addr, 6351 struct vm_area_struct *vma, 6352 unsigned int pages_per_huge_page) 6353 { 6354 int i; 6355 struct page *dst_page; 6356 struct page *src_page; 6357 6358 for (i = 0; i < pages_per_huge_page; i++) { 6359 dst_page = folio_page(dst, i); 6360 src_page = folio_page(src, i); 6361 6362 cond_resched(); 6363 if (copy_mc_user_highpage(dst_page, src_page, 6364 addr + i*PAGE_SIZE, vma)) { 6365 memory_failure_queue(page_to_pfn(src_page), 0); 6366 return -EHWPOISON; 6367 } 6368 } 6369 return 0; 6370 } 6371 6372 struct copy_subpage_arg { 6373 struct page *dst; 6374 struct page *src; 6375 struct vm_area_struct *vma; 6376 }; 6377 6378 static int copy_subpage(unsigned long addr, int idx, void *arg) 6379 { 6380 struct copy_subpage_arg *copy_arg = arg; 6381 struct page *dst = nth_page(copy_arg->dst, idx); 6382 struct page *src = nth_page(copy_arg->src, idx); 6383 6384 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) { 6385 memory_failure_queue(page_to_pfn(src), 0); 6386 return -EHWPOISON; 6387 } 6388 return 0; 6389 } 6390 6391 int copy_user_large_folio(struct folio *dst, struct folio *src, 6392 unsigned long addr_hint, struct vm_area_struct *vma) 6393 { 6394 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6395 unsigned long addr = addr_hint & 6396 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6397 struct copy_subpage_arg arg = { 6398 .dst = &dst->page, 6399 .src = &src->page, 6400 .vma = vma, 6401 }; 6402 6403 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6404 return copy_user_gigantic_page(dst, src, addr, vma, 6405 pages_per_huge_page); 6406 6407 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6408 } 6409 6410 long copy_folio_from_user(struct folio *dst_folio, 6411 const void __user *usr_src, 6412 bool allow_pagefault) 6413 { 6414 void *kaddr; 6415 unsigned long i, rc = 0; 6416 unsigned int nr_pages = folio_nr_pages(dst_folio); 6417 unsigned long ret_val = nr_pages * PAGE_SIZE; 6418 struct page *subpage; 6419 6420 for (i = 0; i < nr_pages; i++) { 6421 subpage = folio_page(dst_folio, i); 6422 kaddr = kmap_local_page(subpage); 6423 if (!allow_pagefault) 6424 pagefault_disable(); 6425 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6426 if (!allow_pagefault) 6427 pagefault_enable(); 6428 kunmap_local(kaddr); 6429 6430 ret_val -= (PAGE_SIZE - rc); 6431 if (rc) 6432 break; 6433 6434 flush_dcache_page(subpage); 6435 6436 cond_resched(); 6437 } 6438 return ret_val; 6439 } 6440 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6441 6442 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6443 6444 static struct kmem_cache *page_ptl_cachep; 6445 6446 void __init ptlock_cache_init(void) 6447 { 6448 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6449 SLAB_PANIC, NULL); 6450 } 6451 6452 bool ptlock_alloc(struct ptdesc *ptdesc) 6453 { 6454 spinlock_t *ptl; 6455 6456 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6457 if (!ptl) 6458 return false; 6459 ptdesc->ptl = ptl; 6460 return true; 6461 } 6462 6463 void ptlock_free(struct ptdesc *ptdesc) 6464 { 6465 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6466 } 6467 #endif 6468 6469 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 6470 { 6471 if (is_vm_hugetlb_page(vma)) 6472 hugetlb_vma_lock_read(vma); 6473 } 6474 6475 void vma_pgtable_walk_end(struct vm_area_struct *vma) 6476 { 6477 if (is_vm_hugetlb_page(vma)) 6478 hugetlb_vma_unlock_read(vma); 6479 } 6480