1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!userfaultfd_wp(vmf->vma)) 118 return false; 119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 120 return false; 121 122 return pte_marker_uffd_wp(vmf->orig_pte); 123 } 124 125 /* 126 * A number of key systems in x86 including ioremap() rely on the assumption 127 * that high_memory defines the upper bound on direct map memory, then end 128 * of ZONE_NORMAL. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 struct unlink_vma_file_batch vb; 369 370 do { 371 unsigned long addr = vma->vm_start; 372 struct vm_area_struct *next; 373 374 /* 375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 376 * be 0. This will underflow and is okay. 377 */ 378 next = mas_find(mas, ceiling - 1); 379 if (unlikely(xa_is_zero(next))) 380 next = NULL; 381 382 /* 383 * Hide vma from rmap and truncate_pagecache before freeing 384 * pgtables 385 */ 386 if (mm_wr_locked) 387 vma_start_write(vma); 388 unlink_anon_vmas(vma); 389 390 if (is_vm_hugetlb_page(vma)) { 391 unlink_file_vma(vma); 392 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 393 floor, next ? next->vm_start : ceiling); 394 } else { 395 unlink_file_vma_batch_init(&vb); 396 unlink_file_vma_batch_add(&vb, vma); 397 398 /* 399 * Optimization: gather nearby vmas into one call down 400 */ 401 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 402 && !is_vm_hugetlb_page(next)) { 403 vma = next; 404 next = mas_find(mas, ceiling - 1); 405 if (unlikely(xa_is_zero(next))) 406 next = NULL; 407 if (mm_wr_locked) 408 vma_start_write(vma); 409 unlink_anon_vmas(vma); 410 unlink_file_vma_batch_add(&vb, vma); 411 } 412 unlink_file_vma_batch_final(&vb); 413 free_pgd_range(tlb, addr, vma->vm_end, 414 floor, next ? next->vm_start : ceiling); 415 } 416 vma = next; 417 } while (vma); 418 } 419 420 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 421 { 422 spinlock_t *ptl = pmd_lock(mm, pmd); 423 424 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 425 mm_inc_nr_ptes(mm); 426 /* 427 * Ensure all pte setup (eg. pte page lock and page clearing) are 428 * visible before the pte is made visible to other CPUs by being 429 * put into page tables. 430 * 431 * The other side of the story is the pointer chasing in the page 432 * table walking code (when walking the page table without locking; 433 * ie. most of the time). Fortunately, these data accesses consist 434 * of a chain of data-dependent loads, meaning most CPUs (alpha 435 * being the notable exception) will already guarantee loads are 436 * seen in-order. See the alpha page table accessors for the 437 * smp_rmb() barriers in page table walking code. 438 */ 439 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 440 pmd_populate(mm, pmd, *pte); 441 *pte = NULL; 442 } 443 spin_unlock(ptl); 444 } 445 446 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 447 { 448 pgtable_t new = pte_alloc_one(mm); 449 if (!new) 450 return -ENOMEM; 451 452 pmd_install(mm, pmd, &new); 453 if (new) 454 pte_free(mm, new); 455 return 0; 456 } 457 458 int __pte_alloc_kernel(pmd_t *pmd) 459 { 460 pte_t *new = pte_alloc_one_kernel(&init_mm); 461 if (!new) 462 return -ENOMEM; 463 464 spin_lock(&init_mm.page_table_lock); 465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 466 smp_wmb(); /* See comment in pmd_install() */ 467 pmd_populate_kernel(&init_mm, pmd, new); 468 new = NULL; 469 } 470 spin_unlock(&init_mm.page_table_lock); 471 if (new) 472 pte_free_kernel(&init_mm, new); 473 return 0; 474 } 475 476 static inline void init_rss_vec(int *rss) 477 { 478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 479 } 480 481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 482 { 483 int i; 484 485 for (i = 0; i < NR_MM_COUNTERS; i++) 486 if (rss[i]) 487 add_mm_counter(mm, i, rss[i]); 488 } 489 490 /* 491 * This function is called to print an error when a bad pte 492 * is found. For example, we might have a PFN-mapped pte in 493 * a region that doesn't allow it. 494 * 495 * The calling function must still handle the error. 496 */ 497 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 498 pte_t pte, struct page *page) 499 { 500 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 501 p4d_t *p4d = p4d_offset(pgd, addr); 502 pud_t *pud = pud_offset(p4d, addr); 503 pmd_t *pmd = pmd_offset(pud, addr); 504 struct address_space *mapping; 505 pgoff_t index; 506 static unsigned long resume; 507 static unsigned long nr_shown; 508 static unsigned long nr_unshown; 509 510 /* 511 * Allow a burst of 60 reports, then keep quiet for that minute; 512 * or allow a steady drip of one report per second. 513 */ 514 if (nr_shown == 60) { 515 if (time_before(jiffies, resume)) { 516 nr_unshown++; 517 return; 518 } 519 if (nr_unshown) { 520 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 521 nr_unshown); 522 nr_unshown = 0; 523 } 524 nr_shown = 0; 525 } 526 if (nr_shown++ == 0) 527 resume = jiffies + 60 * HZ; 528 529 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 530 index = linear_page_index(vma, addr); 531 532 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 533 current->comm, 534 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 535 if (page) 536 dump_page(page, "bad pte"); 537 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 538 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 539 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 540 vma->vm_file, 541 vma->vm_ops ? vma->vm_ops->fault : NULL, 542 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 543 mapping ? mapping->a_ops->read_folio : NULL); 544 dump_stack(); 545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 546 } 547 548 /* 549 * vm_normal_page -- This function gets the "struct page" associated with a pte. 550 * 551 * "Special" mappings do not wish to be associated with a "struct page" (either 552 * it doesn't exist, or it exists but they don't want to touch it). In this 553 * case, NULL is returned here. "Normal" mappings do have a struct page. 554 * 555 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 556 * pte bit, in which case this function is trivial. Secondly, an architecture 557 * may not have a spare pte bit, which requires a more complicated scheme, 558 * described below. 559 * 560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 561 * special mapping (even if there are underlying and valid "struct pages"). 562 * COWed pages of a VM_PFNMAP are always normal. 563 * 564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 567 * mapping will always honor the rule 568 * 569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 570 * 571 * And for normal mappings this is false. 572 * 573 * This restricts such mappings to be a linear translation from virtual address 574 * to pfn. To get around this restriction, we allow arbitrary mappings so long 575 * as the vma is not a COW mapping; in that case, we know that all ptes are 576 * special (because none can have been COWed). 577 * 578 * 579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 580 * 581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 582 * page" backing, however the difference is that _all_ pages with a struct 583 * page (that is, those where pfn_valid is true) are refcounted and considered 584 * normal pages by the VM. The only exception are zeropages, which are 585 * *never* refcounted. 586 * 587 * The disadvantage is that pages are refcounted (which can be slower and 588 * simply not an option for some PFNMAP users). The advantage is that we 589 * don't have to follow the strict linearity rule of PFNMAP mappings in 590 * order to support COWable mappings. 591 * 592 */ 593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 594 pte_t pte) 595 { 596 unsigned long pfn = pte_pfn(pte); 597 598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 599 if (likely(!pte_special(pte))) 600 goto check_pfn; 601 if (vma->vm_ops && vma->vm_ops->find_special_page) 602 return vma->vm_ops->find_special_page(vma, addr); 603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 604 return NULL; 605 if (is_zero_pfn(pfn)) 606 return NULL; 607 if (pte_devmap(pte)) 608 /* 609 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 610 * and will have refcounts incremented on their struct pages 611 * when they are inserted into PTEs, thus they are safe to 612 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 613 * do not have refcounts. Example of legacy ZONE_DEVICE is 614 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 615 */ 616 return NULL; 617 618 print_bad_pte(vma, addr, pte, NULL); 619 return NULL; 620 } 621 622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 623 624 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 625 if (vma->vm_flags & VM_MIXEDMAP) { 626 if (!pfn_valid(pfn)) 627 return NULL; 628 if (is_zero_pfn(pfn)) 629 return NULL; 630 goto out; 631 } else { 632 unsigned long off; 633 off = (addr - vma->vm_start) >> PAGE_SHIFT; 634 if (pfn == vma->vm_pgoff + off) 635 return NULL; 636 if (!is_cow_mapping(vma->vm_flags)) 637 return NULL; 638 } 639 } 640 641 if (is_zero_pfn(pfn)) 642 return NULL; 643 644 check_pfn: 645 if (unlikely(pfn > highest_memmap_pfn)) { 646 print_bad_pte(vma, addr, pte, NULL); 647 return NULL; 648 } 649 650 /* 651 * NOTE! We still have PageReserved() pages in the page tables. 652 * eg. VDSO mappings can cause them to exist. 653 */ 654 out: 655 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 656 return pfn_to_page(pfn); 657 } 658 659 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 660 pte_t pte) 661 { 662 struct page *page = vm_normal_page(vma, addr, pte); 663 664 if (page) 665 return page_folio(page); 666 return NULL; 667 } 668 669 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 670 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 671 pmd_t pmd) 672 { 673 unsigned long pfn = pmd_pfn(pmd); 674 675 /* Currently it's only used for huge pfnmaps */ 676 if (unlikely(pmd_special(pmd))) 677 return NULL; 678 679 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 680 if (vma->vm_flags & VM_MIXEDMAP) { 681 if (!pfn_valid(pfn)) 682 return NULL; 683 goto out; 684 } else { 685 unsigned long off; 686 off = (addr - vma->vm_start) >> PAGE_SHIFT; 687 if (pfn == vma->vm_pgoff + off) 688 return NULL; 689 if (!is_cow_mapping(vma->vm_flags)) 690 return NULL; 691 } 692 } 693 694 if (pmd_devmap(pmd)) 695 return NULL; 696 if (is_huge_zero_pmd(pmd)) 697 return NULL; 698 if (unlikely(pfn > highest_memmap_pfn)) 699 return NULL; 700 701 /* 702 * NOTE! We still have PageReserved() pages in the page tables. 703 * eg. VDSO mappings can cause them to exist. 704 */ 705 out: 706 return pfn_to_page(pfn); 707 } 708 709 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 710 unsigned long addr, pmd_t pmd) 711 { 712 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 713 714 if (page) 715 return page_folio(page); 716 return NULL; 717 } 718 #endif 719 720 static void restore_exclusive_pte(struct vm_area_struct *vma, 721 struct page *page, unsigned long address, 722 pte_t *ptep) 723 { 724 struct folio *folio = page_folio(page); 725 pte_t orig_pte; 726 pte_t pte; 727 swp_entry_t entry; 728 729 orig_pte = ptep_get(ptep); 730 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 731 if (pte_swp_soft_dirty(orig_pte)) 732 pte = pte_mksoft_dirty(pte); 733 734 entry = pte_to_swp_entry(orig_pte); 735 if (pte_swp_uffd_wp(orig_pte)) 736 pte = pte_mkuffd_wp(pte); 737 else if (is_writable_device_exclusive_entry(entry)) 738 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 739 740 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 741 PageAnonExclusive(page)), folio); 742 743 /* 744 * No need to take a page reference as one was already 745 * created when the swap entry was made. 746 */ 747 if (folio_test_anon(folio)) 748 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 749 else 750 /* 751 * Currently device exclusive access only supports anonymous 752 * memory so the entry shouldn't point to a filebacked page. 753 */ 754 WARN_ON_ONCE(1); 755 756 set_pte_at(vma->vm_mm, address, ptep, pte); 757 758 /* 759 * No need to invalidate - it was non-present before. However 760 * secondary CPUs may have mappings that need invalidating. 761 */ 762 update_mmu_cache(vma, address, ptep); 763 } 764 765 /* 766 * Tries to restore an exclusive pte if the page lock can be acquired without 767 * sleeping. 768 */ 769 static int 770 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 771 unsigned long addr) 772 { 773 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 774 struct page *page = pfn_swap_entry_to_page(entry); 775 776 if (trylock_page(page)) { 777 restore_exclusive_pte(vma, page, addr, src_pte); 778 unlock_page(page); 779 return 0; 780 } 781 782 return -EBUSY; 783 } 784 785 /* 786 * copy one vm_area from one task to the other. Assumes the page tables 787 * already present in the new task to be cleared in the whole range 788 * covered by this vma. 789 */ 790 791 static unsigned long 792 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 793 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 794 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 795 { 796 unsigned long vm_flags = dst_vma->vm_flags; 797 pte_t orig_pte = ptep_get(src_pte); 798 pte_t pte = orig_pte; 799 struct folio *folio; 800 struct page *page; 801 swp_entry_t entry = pte_to_swp_entry(orig_pte); 802 803 if (likely(!non_swap_entry(entry))) { 804 if (swap_duplicate(entry) < 0) 805 return -EIO; 806 807 /* make sure dst_mm is on swapoff's mmlist. */ 808 if (unlikely(list_empty(&dst_mm->mmlist))) { 809 spin_lock(&mmlist_lock); 810 if (list_empty(&dst_mm->mmlist)) 811 list_add(&dst_mm->mmlist, 812 &src_mm->mmlist); 813 spin_unlock(&mmlist_lock); 814 } 815 /* Mark the swap entry as shared. */ 816 if (pte_swp_exclusive(orig_pte)) { 817 pte = pte_swp_clear_exclusive(orig_pte); 818 set_pte_at(src_mm, addr, src_pte, pte); 819 } 820 rss[MM_SWAPENTS]++; 821 } else if (is_migration_entry(entry)) { 822 folio = pfn_swap_entry_folio(entry); 823 824 rss[mm_counter(folio)]++; 825 826 if (!is_readable_migration_entry(entry) && 827 is_cow_mapping(vm_flags)) { 828 /* 829 * COW mappings require pages in both parent and child 830 * to be set to read. A previously exclusive entry is 831 * now shared. 832 */ 833 entry = make_readable_migration_entry( 834 swp_offset(entry)); 835 pte = swp_entry_to_pte(entry); 836 if (pte_swp_soft_dirty(orig_pte)) 837 pte = pte_swp_mksoft_dirty(pte); 838 if (pte_swp_uffd_wp(orig_pte)) 839 pte = pte_swp_mkuffd_wp(pte); 840 set_pte_at(src_mm, addr, src_pte, pte); 841 } 842 } else if (is_device_private_entry(entry)) { 843 page = pfn_swap_entry_to_page(entry); 844 folio = page_folio(page); 845 846 /* 847 * Update rss count even for unaddressable pages, as 848 * they should treated just like normal pages in this 849 * respect. 850 * 851 * We will likely want to have some new rss counters 852 * for unaddressable pages, at some point. But for now 853 * keep things as they are. 854 */ 855 folio_get(folio); 856 rss[mm_counter(folio)]++; 857 /* Cannot fail as these pages cannot get pinned. */ 858 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 859 860 /* 861 * We do not preserve soft-dirty information, because so 862 * far, checkpoint/restore is the only feature that 863 * requires that. And checkpoint/restore does not work 864 * when a device driver is involved (you cannot easily 865 * save and restore device driver state). 866 */ 867 if (is_writable_device_private_entry(entry) && 868 is_cow_mapping(vm_flags)) { 869 entry = make_readable_device_private_entry( 870 swp_offset(entry)); 871 pte = swp_entry_to_pte(entry); 872 if (pte_swp_uffd_wp(orig_pte)) 873 pte = pte_swp_mkuffd_wp(pte); 874 set_pte_at(src_mm, addr, src_pte, pte); 875 } 876 } else if (is_device_exclusive_entry(entry)) { 877 /* 878 * Make device exclusive entries present by restoring the 879 * original entry then copying as for a present pte. Device 880 * exclusive entries currently only support private writable 881 * (ie. COW) mappings. 882 */ 883 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 884 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 885 return -EBUSY; 886 return -ENOENT; 887 } else if (is_pte_marker_entry(entry)) { 888 pte_marker marker = copy_pte_marker(entry, dst_vma); 889 890 if (marker) 891 set_pte_at(dst_mm, addr, dst_pte, 892 make_pte_marker(marker)); 893 return 0; 894 } 895 if (!userfaultfd_wp(dst_vma)) 896 pte = pte_swp_clear_uffd_wp(pte); 897 set_pte_at(dst_mm, addr, dst_pte, pte); 898 return 0; 899 } 900 901 /* 902 * Copy a present and normal page. 903 * 904 * NOTE! The usual case is that this isn't required; 905 * instead, the caller can just increase the page refcount 906 * and re-use the pte the traditional way. 907 * 908 * And if we need a pre-allocated page but don't yet have 909 * one, return a negative error to let the preallocation 910 * code know so that it can do so outside the page table 911 * lock. 912 */ 913 static inline int 914 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 915 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 916 struct folio **prealloc, struct page *page) 917 { 918 struct folio *new_folio; 919 pte_t pte; 920 921 new_folio = *prealloc; 922 if (!new_folio) 923 return -EAGAIN; 924 925 /* 926 * We have a prealloc page, all good! Take it 927 * over and copy the page & arm it. 928 */ 929 930 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 931 return -EHWPOISON; 932 933 *prealloc = NULL; 934 __folio_mark_uptodate(new_folio); 935 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 936 folio_add_lru_vma(new_folio, dst_vma); 937 rss[MM_ANONPAGES]++; 938 939 /* All done, just insert the new page copy in the child */ 940 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 941 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 942 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 943 /* Uffd-wp needs to be delivered to dest pte as well */ 944 pte = pte_mkuffd_wp(pte); 945 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 946 return 0; 947 } 948 949 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 950 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 951 pte_t pte, unsigned long addr, int nr) 952 { 953 struct mm_struct *src_mm = src_vma->vm_mm; 954 955 /* If it's a COW mapping, write protect it both processes. */ 956 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 957 wrprotect_ptes(src_mm, addr, src_pte, nr); 958 pte = pte_wrprotect(pte); 959 } 960 961 /* If it's a shared mapping, mark it clean in the child. */ 962 if (src_vma->vm_flags & VM_SHARED) 963 pte = pte_mkclean(pte); 964 pte = pte_mkold(pte); 965 966 if (!userfaultfd_wp(dst_vma)) 967 pte = pte_clear_uffd_wp(pte); 968 969 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 970 } 971 972 /* 973 * Copy one present PTE, trying to batch-process subsequent PTEs that map 974 * consecutive pages of the same folio by copying them as well. 975 * 976 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 977 * Otherwise, returns the number of copied PTEs (at least 1). 978 */ 979 static inline int 980 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 981 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 982 int max_nr, int *rss, struct folio **prealloc) 983 { 984 struct page *page; 985 struct folio *folio; 986 bool any_writable; 987 fpb_t flags = 0; 988 int err, nr; 989 990 page = vm_normal_page(src_vma, addr, pte); 991 if (unlikely(!page)) 992 goto copy_pte; 993 994 folio = page_folio(page); 995 996 /* 997 * If we likely have to copy, just don't bother with batching. Make 998 * sure that the common "small folio" case is as fast as possible 999 * by keeping the batching logic separate. 1000 */ 1001 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1002 if (src_vma->vm_flags & VM_SHARED) 1003 flags |= FPB_IGNORE_DIRTY; 1004 if (!vma_soft_dirty_enabled(src_vma)) 1005 flags |= FPB_IGNORE_SOFT_DIRTY; 1006 1007 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1008 &any_writable, NULL, NULL); 1009 folio_ref_add(folio, nr); 1010 if (folio_test_anon(folio)) { 1011 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1012 nr, src_vma))) { 1013 folio_ref_sub(folio, nr); 1014 return -EAGAIN; 1015 } 1016 rss[MM_ANONPAGES] += nr; 1017 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1018 } else { 1019 folio_dup_file_rmap_ptes(folio, page, nr); 1020 rss[mm_counter_file(folio)] += nr; 1021 } 1022 if (any_writable) 1023 pte = pte_mkwrite(pte, src_vma); 1024 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1025 addr, nr); 1026 return nr; 1027 } 1028 1029 folio_get(folio); 1030 if (folio_test_anon(folio)) { 1031 /* 1032 * If this page may have been pinned by the parent process, 1033 * copy the page immediately for the child so that we'll always 1034 * guarantee the pinned page won't be randomly replaced in the 1035 * future. 1036 */ 1037 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1038 /* Page may be pinned, we have to copy. */ 1039 folio_put(folio); 1040 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1041 addr, rss, prealloc, page); 1042 return err ? err : 1; 1043 } 1044 rss[MM_ANONPAGES]++; 1045 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1046 } else { 1047 folio_dup_file_rmap_pte(folio, page); 1048 rss[mm_counter_file(folio)]++; 1049 } 1050 1051 copy_pte: 1052 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1053 return 1; 1054 } 1055 1056 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1057 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1058 { 1059 struct folio *new_folio; 1060 1061 if (need_zero) 1062 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1063 else 1064 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 1065 addr, false); 1066 1067 if (!new_folio) 1068 return NULL; 1069 1070 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1071 folio_put(new_folio); 1072 return NULL; 1073 } 1074 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1075 1076 return new_folio; 1077 } 1078 1079 static int 1080 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1081 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1082 unsigned long end) 1083 { 1084 struct mm_struct *dst_mm = dst_vma->vm_mm; 1085 struct mm_struct *src_mm = src_vma->vm_mm; 1086 pte_t *orig_src_pte, *orig_dst_pte; 1087 pte_t *src_pte, *dst_pte; 1088 pte_t ptent; 1089 spinlock_t *src_ptl, *dst_ptl; 1090 int progress, max_nr, ret = 0; 1091 int rss[NR_MM_COUNTERS]; 1092 swp_entry_t entry = (swp_entry_t){0}; 1093 struct folio *prealloc = NULL; 1094 int nr; 1095 1096 again: 1097 progress = 0; 1098 init_rss_vec(rss); 1099 1100 /* 1101 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1102 * error handling here, assume that exclusive mmap_lock on dst and src 1103 * protects anon from unexpected THP transitions; with shmem and file 1104 * protected by mmap_lock-less collapse skipping areas with anon_vma 1105 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1106 * can remove such assumptions later, but this is good enough for now. 1107 */ 1108 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1109 if (!dst_pte) { 1110 ret = -ENOMEM; 1111 goto out; 1112 } 1113 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1114 if (!src_pte) { 1115 pte_unmap_unlock(dst_pte, dst_ptl); 1116 /* ret == 0 */ 1117 goto out; 1118 } 1119 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1120 orig_src_pte = src_pte; 1121 orig_dst_pte = dst_pte; 1122 arch_enter_lazy_mmu_mode(); 1123 1124 do { 1125 nr = 1; 1126 1127 /* 1128 * We are holding two locks at this point - either of them 1129 * could generate latencies in another task on another CPU. 1130 */ 1131 if (progress >= 32) { 1132 progress = 0; 1133 if (need_resched() || 1134 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1135 break; 1136 } 1137 ptent = ptep_get(src_pte); 1138 if (pte_none(ptent)) { 1139 progress++; 1140 continue; 1141 } 1142 if (unlikely(!pte_present(ptent))) { 1143 ret = copy_nonpresent_pte(dst_mm, src_mm, 1144 dst_pte, src_pte, 1145 dst_vma, src_vma, 1146 addr, rss); 1147 if (ret == -EIO) { 1148 entry = pte_to_swp_entry(ptep_get(src_pte)); 1149 break; 1150 } else if (ret == -EBUSY) { 1151 break; 1152 } else if (!ret) { 1153 progress += 8; 1154 continue; 1155 } 1156 ptent = ptep_get(src_pte); 1157 VM_WARN_ON_ONCE(!pte_present(ptent)); 1158 1159 /* 1160 * Device exclusive entry restored, continue by copying 1161 * the now present pte. 1162 */ 1163 WARN_ON_ONCE(ret != -ENOENT); 1164 } 1165 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1166 max_nr = (end - addr) / PAGE_SIZE; 1167 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1168 ptent, addr, max_nr, rss, &prealloc); 1169 /* 1170 * If we need a pre-allocated page for this pte, drop the 1171 * locks, allocate, and try again. 1172 * If copy failed due to hwpoison in source page, break out. 1173 */ 1174 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1175 break; 1176 if (unlikely(prealloc)) { 1177 /* 1178 * pre-alloc page cannot be reused by next time so as 1179 * to strictly follow mempolicy (e.g., alloc_page_vma() 1180 * will allocate page according to address). This 1181 * could only happen if one pinned pte changed. 1182 */ 1183 folio_put(prealloc); 1184 prealloc = NULL; 1185 } 1186 nr = ret; 1187 progress += 8 * nr; 1188 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1189 addr != end); 1190 1191 arch_leave_lazy_mmu_mode(); 1192 pte_unmap_unlock(orig_src_pte, src_ptl); 1193 add_mm_rss_vec(dst_mm, rss); 1194 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1195 cond_resched(); 1196 1197 if (ret == -EIO) { 1198 VM_WARN_ON_ONCE(!entry.val); 1199 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1200 ret = -ENOMEM; 1201 goto out; 1202 } 1203 entry.val = 0; 1204 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1205 goto out; 1206 } else if (ret == -EAGAIN) { 1207 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1208 if (!prealloc) 1209 return -ENOMEM; 1210 } else if (ret < 0) { 1211 VM_WARN_ON_ONCE(1); 1212 } 1213 1214 /* We've captured and resolved the error. Reset, try again. */ 1215 ret = 0; 1216 1217 if (addr != end) 1218 goto again; 1219 out: 1220 if (unlikely(prealloc)) 1221 folio_put(prealloc); 1222 return ret; 1223 } 1224 1225 static inline int 1226 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1227 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1228 unsigned long end) 1229 { 1230 struct mm_struct *dst_mm = dst_vma->vm_mm; 1231 struct mm_struct *src_mm = src_vma->vm_mm; 1232 pmd_t *src_pmd, *dst_pmd; 1233 unsigned long next; 1234 1235 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1236 if (!dst_pmd) 1237 return -ENOMEM; 1238 src_pmd = pmd_offset(src_pud, addr); 1239 do { 1240 next = pmd_addr_end(addr, end); 1241 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1242 || pmd_devmap(*src_pmd)) { 1243 int err; 1244 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1245 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1246 addr, dst_vma, src_vma); 1247 if (err == -ENOMEM) 1248 return -ENOMEM; 1249 if (!err) 1250 continue; 1251 /* fall through */ 1252 } 1253 if (pmd_none_or_clear_bad(src_pmd)) 1254 continue; 1255 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1256 addr, next)) 1257 return -ENOMEM; 1258 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1259 return 0; 1260 } 1261 1262 static inline int 1263 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1264 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1265 unsigned long end) 1266 { 1267 struct mm_struct *dst_mm = dst_vma->vm_mm; 1268 struct mm_struct *src_mm = src_vma->vm_mm; 1269 pud_t *src_pud, *dst_pud; 1270 unsigned long next; 1271 1272 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1273 if (!dst_pud) 1274 return -ENOMEM; 1275 src_pud = pud_offset(src_p4d, addr); 1276 do { 1277 next = pud_addr_end(addr, end); 1278 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1279 int err; 1280 1281 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1282 err = copy_huge_pud(dst_mm, src_mm, 1283 dst_pud, src_pud, addr, src_vma); 1284 if (err == -ENOMEM) 1285 return -ENOMEM; 1286 if (!err) 1287 continue; 1288 /* fall through */ 1289 } 1290 if (pud_none_or_clear_bad(src_pud)) 1291 continue; 1292 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1293 addr, next)) 1294 return -ENOMEM; 1295 } while (dst_pud++, src_pud++, addr = next, addr != end); 1296 return 0; 1297 } 1298 1299 static inline int 1300 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1301 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1302 unsigned long end) 1303 { 1304 struct mm_struct *dst_mm = dst_vma->vm_mm; 1305 p4d_t *src_p4d, *dst_p4d; 1306 unsigned long next; 1307 1308 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1309 if (!dst_p4d) 1310 return -ENOMEM; 1311 src_p4d = p4d_offset(src_pgd, addr); 1312 do { 1313 next = p4d_addr_end(addr, end); 1314 if (p4d_none_or_clear_bad(src_p4d)) 1315 continue; 1316 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1317 addr, next)) 1318 return -ENOMEM; 1319 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1320 return 0; 1321 } 1322 1323 /* 1324 * Return true if the vma needs to copy the pgtable during this fork(). Return 1325 * false when we can speed up fork() by allowing lazy page faults later until 1326 * when the child accesses the memory range. 1327 */ 1328 static bool 1329 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1330 { 1331 /* 1332 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1333 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1334 * contains uffd-wp protection information, that's something we can't 1335 * retrieve from page cache, and skip copying will lose those info. 1336 */ 1337 if (userfaultfd_wp(dst_vma)) 1338 return true; 1339 1340 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1341 return true; 1342 1343 if (src_vma->anon_vma) 1344 return true; 1345 1346 /* 1347 * Don't copy ptes where a page fault will fill them correctly. Fork 1348 * becomes much lighter when there are big shared or private readonly 1349 * mappings. The tradeoff is that copy_page_range is more efficient 1350 * than faulting. 1351 */ 1352 return false; 1353 } 1354 1355 int 1356 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1357 { 1358 pgd_t *src_pgd, *dst_pgd; 1359 unsigned long next; 1360 unsigned long addr = src_vma->vm_start; 1361 unsigned long end = src_vma->vm_end; 1362 struct mm_struct *dst_mm = dst_vma->vm_mm; 1363 struct mm_struct *src_mm = src_vma->vm_mm; 1364 struct mmu_notifier_range range; 1365 bool is_cow; 1366 int ret; 1367 1368 if (!vma_needs_copy(dst_vma, src_vma)) 1369 return 0; 1370 1371 if (is_vm_hugetlb_page(src_vma)) 1372 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1373 1374 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1375 /* 1376 * We do not free on error cases below as remove_vma 1377 * gets called on error from higher level routine 1378 */ 1379 ret = track_pfn_copy(src_vma); 1380 if (ret) 1381 return ret; 1382 } 1383 1384 /* 1385 * We need to invalidate the secondary MMU mappings only when 1386 * there could be a permission downgrade on the ptes of the 1387 * parent mm. And a permission downgrade will only happen if 1388 * is_cow_mapping() returns true. 1389 */ 1390 is_cow = is_cow_mapping(src_vma->vm_flags); 1391 1392 if (is_cow) { 1393 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1394 0, src_mm, addr, end); 1395 mmu_notifier_invalidate_range_start(&range); 1396 /* 1397 * Disabling preemption is not needed for the write side, as 1398 * the read side doesn't spin, but goes to the mmap_lock. 1399 * 1400 * Use the raw variant of the seqcount_t write API to avoid 1401 * lockdep complaining about preemptibility. 1402 */ 1403 vma_assert_write_locked(src_vma); 1404 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1405 } 1406 1407 ret = 0; 1408 dst_pgd = pgd_offset(dst_mm, addr); 1409 src_pgd = pgd_offset(src_mm, addr); 1410 do { 1411 next = pgd_addr_end(addr, end); 1412 if (pgd_none_or_clear_bad(src_pgd)) 1413 continue; 1414 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1415 addr, next))) { 1416 untrack_pfn_clear(dst_vma); 1417 ret = -ENOMEM; 1418 break; 1419 } 1420 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1421 1422 if (is_cow) { 1423 raw_write_seqcount_end(&src_mm->write_protect_seq); 1424 mmu_notifier_invalidate_range_end(&range); 1425 } 1426 return ret; 1427 } 1428 1429 /* Whether we should zap all COWed (private) pages too */ 1430 static inline bool should_zap_cows(struct zap_details *details) 1431 { 1432 /* By default, zap all pages */ 1433 if (!details) 1434 return true; 1435 1436 /* Or, we zap COWed pages only if the caller wants to */ 1437 return details->even_cows; 1438 } 1439 1440 /* Decides whether we should zap this folio with the folio pointer specified */ 1441 static inline bool should_zap_folio(struct zap_details *details, 1442 struct folio *folio) 1443 { 1444 /* If we can make a decision without *folio.. */ 1445 if (should_zap_cows(details)) 1446 return true; 1447 1448 /* Otherwise we should only zap non-anon folios */ 1449 return !folio_test_anon(folio); 1450 } 1451 1452 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1453 { 1454 if (!details) 1455 return false; 1456 1457 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1458 } 1459 1460 /* 1461 * This function makes sure that we'll replace the none pte with an uffd-wp 1462 * swap special pte marker when necessary. Must be with the pgtable lock held. 1463 */ 1464 static inline void 1465 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1466 unsigned long addr, pte_t *pte, int nr, 1467 struct zap_details *details, pte_t pteval) 1468 { 1469 /* Zap on anonymous always means dropping everything */ 1470 if (vma_is_anonymous(vma)) 1471 return; 1472 1473 if (zap_drop_file_uffd_wp(details)) 1474 return; 1475 1476 for (;;) { 1477 /* the PFN in the PTE is irrelevant. */ 1478 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1479 if (--nr == 0) 1480 break; 1481 pte++; 1482 addr += PAGE_SIZE; 1483 } 1484 } 1485 1486 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1487 struct vm_area_struct *vma, struct folio *folio, 1488 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1489 unsigned long addr, struct zap_details *details, int *rss, 1490 bool *force_flush, bool *force_break) 1491 { 1492 struct mm_struct *mm = tlb->mm; 1493 bool delay_rmap = false; 1494 1495 if (!folio_test_anon(folio)) { 1496 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1497 if (pte_dirty(ptent)) { 1498 folio_mark_dirty(folio); 1499 if (tlb_delay_rmap(tlb)) { 1500 delay_rmap = true; 1501 *force_flush = true; 1502 } 1503 } 1504 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1505 folio_mark_accessed(folio); 1506 rss[mm_counter(folio)] -= nr; 1507 } else { 1508 /* We don't need up-to-date accessed/dirty bits. */ 1509 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1510 rss[MM_ANONPAGES] -= nr; 1511 } 1512 /* Checking a single PTE in a batch is sufficient. */ 1513 arch_check_zapped_pte(vma, ptent); 1514 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1515 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1516 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1517 ptent); 1518 1519 if (!delay_rmap) { 1520 folio_remove_rmap_ptes(folio, page, nr, vma); 1521 1522 if (unlikely(folio_mapcount(folio) < 0)) 1523 print_bad_pte(vma, addr, ptent, page); 1524 } 1525 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1526 *force_flush = true; 1527 *force_break = true; 1528 } 1529 } 1530 1531 /* 1532 * Zap or skip at least one present PTE, trying to batch-process subsequent 1533 * PTEs that map consecutive pages of the same folio. 1534 * 1535 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1536 */ 1537 static inline int zap_present_ptes(struct mmu_gather *tlb, 1538 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1539 unsigned int max_nr, unsigned long addr, 1540 struct zap_details *details, int *rss, bool *force_flush, 1541 bool *force_break) 1542 { 1543 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1544 struct mm_struct *mm = tlb->mm; 1545 struct folio *folio; 1546 struct page *page; 1547 int nr; 1548 1549 page = vm_normal_page(vma, addr, ptent); 1550 if (!page) { 1551 /* We don't need up-to-date accessed/dirty bits. */ 1552 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1553 arch_check_zapped_pte(vma, ptent); 1554 tlb_remove_tlb_entry(tlb, pte, addr); 1555 if (userfaultfd_pte_wp(vma, ptent)) 1556 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1557 details, ptent); 1558 ksm_might_unmap_zero_page(mm, ptent); 1559 return 1; 1560 } 1561 1562 folio = page_folio(page); 1563 if (unlikely(!should_zap_folio(details, folio))) 1564 return 1; 1565 1566 /* 1567 * Make sure that the common "small folio" case is as fast as possible 1568 * by keeping the batching logic separate. 1569 */ 1570 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1571 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1572 NULL, NULL, NULL); 1573 1574 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1575 addr, details, rss, force_flush, 1576 force_break); 1577 return nr; 1578 } 1579 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1580 details, rss, force_flush, force_break); 1581 return 1; 1582 } 1583 1584 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1585 struct vm_area_struct *vma, pmd_t *pmd, 1586 unsigned long addr, unsigned long end, 1587 struct zap_details *details) 1588 { 1589 bool force_flush = false, force_break = false; 1590 struct mm_struct *mm = tlb->mm; 1591 int rss[NR_MM_COUNTERS]; 1592 spinlock_t *ptl; 1593 pte_t *start_pte; 1594 pte_t *pte; 1595 swp_entry_t entry; 1596 int nr; 1597 1598 tlb_change_page_size(tlb, PAGE_SIZE); 1599 init_rss_vec(rss); 1600 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1601 if (!pte) 1602 return addr; 1603 1604 flush_tlb_batched_pending(mm); 1605 arch_enter_lazy_mmu_mode(); 1606 do { 1607 pte_t ptent = ptep_get(pte); 1608 struct folio *folio; 1609 struct page *page; 1610 int max_nr; 1611 1612 nr = 1; 1613 if (pte_none(ptent)) 1614 continue; 1615 1616 if (need_resched()) 1617 break; 1618 1619 if (pte_present(ptent)) { 1620 max_nr = (end - addr) / PAGE_SIZE; 1621 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1622 addr, details, rss, &force_flush, 1623 &force_break); 1624 if (unlikely(force_break)) { 1625 addr += nr * PAGE_SIZE; 1626 break; 1627 } 1628 continue; 1629 } 1630 1631 entry = pte_to_swp_entry(ptent); 1632 if (is_device_private_entry(entry) || 1633 is_device_exclusive_entry(entry)) { 1634 page = pfn_swap_entry_to_page(entry); 1635 folio = page_folio(page); 1636 if (unlikely(!should_zap_folio(details, folio))) 1637 continue; 1638 /* 1639 * Both device private/exclusive mappings should only 1640 * work with anonymous page so far, so we don't need to 1641 * consider uffd-wp bit when zap. For more information, 1642 * see zap_install_uffd_wp_if_needed(). 1643 */ 1644 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1645 rss[mm_counter(folio)]--; 1646 if (is_device_private_entry(entry)) 1647 folio_remove_rmap_pte(folio, page, vma); 1648 folio_put(folio); 1649 } else if (!non_swap_entry(entry)) { 1650 max_nr = (end - addr) / PAGE_SIZE; 1651 nr = swap_pte_batch(pte, max_nr, ptent); 1652 /* Genuine swap entries, hence a private anon pages */ 1653 if (!should_zap_cows(details)) 1654 continue; 1655 rss[MM_SWAPENTS] -= nr; 1656 free_swap_and_cache_nr(entry, nr); 1657 } else if (is_migration_entry(entry)) { 1658 folio = pfn_swap_entry_folio(entry); 1659 if (!should_zap_folio(details, folio)) 1660 continue; 1661 rss[mm_counter(folio)]--; 1662 } else if (pte_marker_entry_uffd_wp(entry)) { 1663 /* 1664 * For anon: always drop the marker; for file: only 1665 * drop the marker if explicitly requested. 1666 */ 1667 if (!vma_is_anonymous(vma) && 1668 !zap_drop_file_uffd_wp(details)) 1669 continue; 1670 } else if (is_hwpoison_entry(entry) || 1671 is_poisoned_swp_entry(entry)) { 1672 if (!should_zap_cows(details)) 1673 continue; 1674 } else { 1675 /* We should have covered all the swap entry types */ 1676 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1677 WARN_ON_ONCE(1); 1678 } 1679 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1680 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1681 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1682 1683 add_mm_rss_vec(mm, rss); 1684 arch_leave_lazy_mmu_mode(); 1685 1686 /* Do the actual TLB flush before dropping ptl */ 1687 if (force_flush) { 1688 tlb_flush_mmu_tlbonly(tlb); 1689 tlb_flush_rmaps(tlb, vma); 1690 } 1691 pte_unmap_unlock(start_pte, ptl); 1692 1693 /* 1694 * If we forced a TLB flush (either due to running out of 1695 * batch buffers or because we needed to flush dirty TLB 1696 * entries before releasing the ptl), free the batched 1697 * memory too. Come back again if we didn't do everything. 1698 */ 1699 if (force_flush) 1700 tlb_flush_mmu(tlb); 1701 1702 return addr; 1703 } 1704 1705 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1706 struct vm_area_struct *vma, pud_t *pud, 1707 unsigned long addr, unsigned long end, 1708 struct zap_details *details) 1709 { 1710 pmd_t *pmd; 1711 unsigned long next; 1712 1713 pmd = pmd_offset(pud, addr); 1714 do { 1715 next = pmd_addr_end(addr, end); 1716 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1717 if (next - addr != HPAGE_PMD_SIZE) 1718 __split_huge_pmd(vma, pmd, addr, false, NULL); 1719 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1720 addr = next; 1721 continue; 1722 } 1723 /* fall through */ 1724 } else if (details && details->single_folio && 1725 folio_test_pmd_mappable(details->single_folio) && 1726 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1727 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1728 /* 1729 * Take and drop THP pmd lock so that we cannot return 1730 * prematurely, while zap_huge_pmd() has cleared *pmd, 1731 * but not yet decremented compound_mapcount(). 1732 */ 1733 spin_unlock(ptl); 1734 } 1735 if (pmd_none(*pmd)) { 1736 addr = next; 1737 continue; 1738 } 1739 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1740 if (addr != next) 1741 pmd--; 1742 } while (pmd++, cond_resched(), addr != end); 1743 1744 return addr; 1745 } 1746 1747 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1748 struct vm_area_struct *vma, p4d_t *p4d, 1749 unsigned long addr, unsigned long end, 1750 struct zap_details *details) 1751 { 1752 pud_t *pud; 1753 unsigned long next; 1754 1755 pud = pud_offset(p4d, addr); 1756 do { 1757 next = pud_addr_end(addr, end); 1758 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1759 if (next - addr != HPAGE_PUD_SIZE) { 1760 mmap_assert_locked(tlb->mm); 1761 split_huge_pud(vma, pud, addr); 1762 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1763 goto next; 1764 /* fall through */ 1765 } 1766 if (pud_none_or_clear_bad(pud)) 1767 continue; 1768 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1769 next: 1770 cond_resched(); 1771 } while (pud++, addr = next, addr != end); 1772 1773 return addr; 1774 } 1775 1776 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1777 struct vm_area_struct *vma, pgd_t *pgd, 1778 unsigned long addr, unsigned long end, 1779 struct zap_details *details) 1780 { 1781 p4d_t *p4d; 1782 unsigned long next; 1783 1784 p4d = p4d_offset(pgd, addr); 1785 do { 1786 next = p4d_addr_end(addr, end); 1787 if (p4d_none_or_clear_bad(p4d)) 1788 continue; 1789 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1790 } while (p4d++, addr = next, addr != end); 1791 1792 return addr; 1793 } 1794 1795 void unmap_page_range(struct mmu_gather *tlb, 1796 struct vm_area_struct *vma, 1797 unsigned long addr, unsigned long end, 1798 struct zap_details *details) 1799 { 1800 pgd_t *pgd; 1801 unsigned long next; 1802 1803 BUG_ON(addr >= end); 1804 tlb_start_vma(tlb, vma); 1805 pgd = pgd_offset(vma->vm_mm, addr); 1806 do { 1807 next = pgd_addr_end(addr, end); 1808 if (pgd_none_or_clear_bad(pgd)) 1809 continue; 1810 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1811 } while (pgd++, addr = next, addr != end); 1812 tlb_end_vma(tlb, vma); 1813 } 1814 1815 1816 static void unmap_single_vma(struct mmu_gather *tlb, 1817 struct vm_area_struct *vma, unsigned long start_addr, 1818 unsigned long end_addr, 1819 struct zap_details *details, bool mm_wr_locked) 1820 { 1821 unsigned long start = max(vma->vm_start, start_addr); 1822 unsigned long end; 1823 1824 if (start >= vma->vm_end) 1825 return; 1826 end = min(vma->vm_end, end_addr); 1827 if (end <= vma->vm_start) 1828 return; 1829 1830 if (vma->vm_file) 1831 uprobe_munmap(vma, start, end); 1832 1833 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1834 untrack_pfn(vma, 0, 0, mm_wr_locked); 1835 1836 if (start != end) { 1837 if (unlikely(is_vm_hugetlb_page(vma))) { 1838 /* 1839 * It is undesirable to test vma->vm_file as it 1840 * should be non-null for valid hugetlb area. 1841 * However, vm_file will be NULL in the error 1842 * cleanup path of mmap_region. When 1843 * hugetlbfs ->mmap method fails, 1844 * mmap_region() nullifies vma->vm_file 1845 * before calling this function to clean up. 1846 * Since no pte has actually been setup, it is 1847 * safe to do nothing in this case. 1848 */ 1849 if (vma->vm_file) { 1850 zap_flags_t zap_flags = details ? 1851 details->zap_flags : 0; 1852 __unmap_hugepage_range(tlb, vma, start, end, 1853 NULL, zap_flags); 1854 } 1855 } else 1856 unmap_page_range(tlb, vma, start, end, details); 1857 } 1858 } 1859 1860 /** 1861 * unmap_vmas - unmap a range of memory covered by a list of vma's 1862 * @tlb: address of the caller's struct mmu_gather 1863 * @mas: the maple state 1864 * @vma: the starting vma 1865 * @start_addr: virtual address at which to start unmapping 1866 * @end_addr: virtual address at which to end unmapping 1867 * @tree_end: The maximum index to check 1868 * @mm_wr_locked: lock flag 1869 * 1870 * Unmap all pages in the vma list. 1871 * 1872 * Only addresses between `start' and `end' will be unmapped. 1873 * 1874 * The VMA list must be sorted in ascending virtual address order. 1875 * 1876 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1877 * range after unmap_vmas() returns. So the only responsibility here is to 1878 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1879 * drops the lock and schedules. 1880 */ 1881 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1882 struct vm_area_struct *vma, unsigned long start_addr, 1883 unsigned long end_addr, unsigned long tree_end, 1884 bool mm_wr_locked) 1885 { 1886 struct mmu_notifier_range range; 1887 struct zap_details details = { 1888 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1889 /* Careful - we need to zap private pages too! */ 1890 .even_cows = true, 1891 }; 1892 1893 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1894 start_addr, end_addr); 1895 mmu_notifier_invalidate_range_start(&range); 1896 do { 1897 unsigned long start = start_addr; 1898 unsigned long end = end_addr; 1899 hugetlb_zap_begin(vma, &start, &end); 1900 unmap_single_vma(tlb, vma, start, end, &details, 1901 mm_wr_locked); 1902 hugetlb_zap_end(vma, &details); 1903 vma = mas_find(mas, tree_end - 1); 1904 } while (vma && likely(!xa_is_zero(vma))); 1905 mmu_notifier_invalidate_range_end(&range); 1906 } 1907 1908 /** 1909 * zap_page_range_single - remove user pages in a given range 1910 * @vma: vm_area_struct holding the applicable pages 1911 * @address: starting address of pages to zap 1912 * @size: number of bytes to zap 1913 * @details: details of shared cache invalidation 1914 * 1915 * The range must fit into one VMA. 1916 */ 1917 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1918 unsigned long size, struct zap_details *details) 1919 { 1920 const unsigned long end = address + size; 1921 struct mmu_notifier_range range; 1922 struct mmu_gather tlb; 1923 1924 lru_add_drain(); 1925 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1926 address, end); 1927 hugetlb_zap_begin(vma, &range.start, &range.end); 1928 tlb_gather_mmu(&tlb, vma->vm_mm); 1929 update_hiwater_rss(vma->vm_mm); 1930 mmu_notifier_invalidate_range_start(&range); 1931 /* 1932 * unmap 'address-end' not 'range.start-range.end' as range 1933 * could have been expanded for hugetlb pmd sharing. 1934 */ 1935 unmap_single_vma(&tlb, vma, address, end, details, false); 1936 mmu_notifier_invalidate_range_end(&range); 1937 tlb_finish_mmu(&tlb); 1938 hugetlb_zap_end(vma, details); 1939 } 1940 1941 /** 1942 * zap_vma_ptes - remove ptes mapping the vma 1943 * @vma: vm_area_struct holding ptes to be zapped 1944 * @address: starting address of pages to zap 1945 * @size: number of bytes to zap 1946 * 1947 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1948 * 1949 * The entire address range must be fully contained within the vma. 1950 * 1951 */ 1952 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1953 unsigned long size) 1954 { 1955 if (!range_in_vma(vma, address, address + size) || 1956 !(vma->vm_flags & VM_PFNMAP)) 1957 return; 1958 1959 zap_page_range_single(vma, address, size, NULL); 1960 } 1961 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1962 1963 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1964 { 1965 pgd_t *pgd; 1966 p4d_t *p4d; 1967 pud_t *pud; 1968 pmd_t *pmd; 1969 1970 pgd = pgd_offset(mm, addr); 1971 p4d = p4d_alloc(mm, pgd, addr); 1972 if (!p4d) 1973 return NULL; 1974 pud = pud_alloc(mm, p4d, addr); 1975 if (!pud) 1976 return NULL; 1977 pmd = pmd_alloc(mm, pud, addr); 1978 if (!pmd) 1979 return NULL; 1980 1981 VM_BUG_ON(pmd_trans_huge(*pmd)); 1982 return pmd; 1983 } 1984 1985 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1986 spinlock_t **ptl) 1987 { 1988 pmd_t *pmd = walk_to_pmd(mm, addr); 1989 1990 if (!pmd) 1991 return NULL; 1992 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1993 } 1994 1995 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 1996 { 1997 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 1998 /* 1999 * Whoever wants to forbid the zeropage after some zeropages 2000 * might already have been mapped has to scan the page tables and 2001 * bail out on any zeropages. Zeropages in COW mappings can 2002 * be unshared using FAULT_FLAG_UNSHARE faults. 2003 */ 2004 if (mm_forbids_zeropage(vma->vm_mm)) 2005 return false; 2006 /* zeropages in COW mappings are common and unproblematic. */ 2007 if (is_cow_mapping(vma->vm_flags)) 2008 return true; 2009 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2010 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2011 return true; 2012 /* 2013 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2014 * find the shared zeropage and longterm-pin it, which would 2015 * be problematic as soon as the zeropage gets replaced by a different 2016 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2017 * now differ to what GUP looked up. FSDAX is incompatible to 2018 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2019 * check_vma_flags). 2020 */ 2021 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2022 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2023 } 2024 2025 static int validate_page_before_insert(struct vm_area_struct *vma, 2026 struct page *page) 2027 { 2028 struct folio *folio = page_folio(page); 2029 2030 if (!folio_ref_count(folio)) 2031 return -EINVAL; 2032 if (unlikely(is_zero_folio(folio))) { 2033 if (!vm_mixed_zeropage_allowed(vma)) 2034 return -EINVAL; 2035 return 0; 2036 } 2037 if (folio_test_anon(folio) || folio_test_slab(folio) || 2038 page_has_type(page)) 2039 return -EINVAL; 2040 flush_dcache_folio(folio); 2041 return 0; 2042 } 2043 2044 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2045 unsigned long addr, struct page *page, pgprot_t prot) 2046 { 2047 struct folio *folio = page_folio(page); 2048 pte_t pteval; 2049 2050 if (!pte_none(ptep_get(pte))) 2051 return -EBUSY; 2052 /* Ok, finally just insert the thing.. */ 2053 pteval = mk_pte(page, prot); 2054 if (unlikely(is_zero_folio(folio))) { 2055 pteval = pte_mkspecial(pteval); 2056 } else { 2057 folio_get(folio); 2058 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2059 folio_add_file_rmap_pte(folio, page, vma); 2060 } 2061 set_pte_at(vma->vm_mm, addr, pte, pteval); 2062 return 0; 2063 } 2064 2065 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2066 struct page *page, pgprot_t prot) 2067 { 2068 int retval; 2069 pte_t *pte; 2070 spinlock_t *ptl; 2071 2072 retval = validate_page_before_insert(vma, page); 2073 if (retval) 2074 goto out; 2075 retval = -ENOMEM; 2076 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2077 if (!pte) 2078 goto out; 2079 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2080 pte_unmap_unlock(pte, ptl); 2081 out: 2082 return retval; 2083 } 2084 2085 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2086 unsigned long addr, struct page *page, pgprot_t prot) 2087 { 2088 int err; 2089 2090 err = validate_page_before_insert(vma, page); 2091 if (err) 2092 return err; 2093 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2094 } 2095 2096 /* insert_pages() amortizes the cost of spinlock operations 2097 * when inserting pages in a loop. 2098 */ 2099 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2100 struct page **pages, unsigned long *num, pgprot_t prot) 2101 { 2102 pmd_t *pmd = NULL; 2103 pte_t *start_pte, *pte; 2104 spinlock_t *pte_lock; 2105 struct mm_struct *const mm = vma->vm_mm; 2106 unsigned long curr_page_idx = 0; 2107 unsigned long remaining_pages_total = *num; 2108 unsigned long pages_to_write_in_pmd; 2109 int ret; 2110 more: 2111 ret = -EFAULT; 2112 pmd = walk_to_pmd(mm, addr); 2113 if (!pmd) 2114 goto out; 2115 2116 pages_to_write_in_pmd = min_t(unsigned long, 2117 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2118 2119 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2120 ret = -ENOMEM; 2121 if (pte_alloc(mm, pmd)) 2122 goto out; 2123 2124 while (pages_to_write_in_pmd) { 2125 int pte_idx = 0; 2126 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2127 2128 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2129 if (!start_pte) { 2130 ret = -EFAULT; 2131 goto out; 2132 } 2133 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2134 int err = insert_page_in_batch_locked(vma, pte, 2135 addr, pages[curr_page_idx], prot); 2136 if (unlikely(err)) { 2137 pte_unmap_unlock(start_pte, pte_lock); 2138 ret = err; 2139 remaining_pages_total -= pte_idx; 2140 goto out; 2141 } 2142 addr += PAGE_SIZE; 2143 ++curr_page_idx; 2144 } 2145 pte_unmap_unlock(start_pte, pte_lock); 2146 pages_to_write_in_pmd -= batch_size; 2147 remaining_pages_total -= batch_size; 2148 } 2149 if (remaining_pages_total) 2150 goto more; 2151 ret = 0; 2152 out: 2153 *num = remaining_pages_total; 2154 return ret; 2155 } 2156 2157 /** 2158 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2159 * @vma: user vma to map to 2160 * @addr: target start user address of these pages 2161 * @pages: source kernel pages 2162 * @num: in: number of pages to map. out: number of pages that were *not* 2163 * mapped. (0 means all pages were successfully mapped). 2164 * 2165 * Preferred over vm_insert_page() when inserting multiple pages. 2166 * 2167 * In case of error, we may have mapped a subset of the provided 2168 * pages. It is the caller's responsibility to account for this case. 2169 * 2170 * The same restrictions apply as in vm_insert_page(). 2171 */ 2172 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2173 struct page **pages, unsigned long *num) 2174 { 2175 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2176 2177 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2178 return -EFAULT; 2179 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2180 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2181 BUG_ON(vma->vm_flags & VM_PFNMAP); 2182 vm_flags_set(vma, VM_MIXEDMAP); 2183 } 2184 /* Defer page refcount checking till we're about to map that page. */ 2185 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2186 } 2187 EXPORT_SYMBOL(vm_insert_pages); 2188 2189 /** 2190 * vm_insert_page - insert single page into user vma 2191 * @vma: user vma to map to 2192 * @addr: target user address of this page 2193 * @page: source kernel page 2194 * 2195 * This allows drivers to insert individual pages they've allocated 2196 * into a user vma. The zeropage is supported in some VMAs, 2197 * see vm_mixed_zeropage_allowed(). 2198 * 2199 * The page has to be a nice clean _individual_ kernel allocation. 2200 * If you allocate a compound page, you need to have marked it as 2201 * such (__GFP_COMP), or manually just split the page up yourself 2202 * (see split_page()). 2203 * 2204 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2205 * took an arbitrary page protection parameter. This doesn't allow 2206 * that. Your vma protection will have to be set up correctly, which 2207 * means that if you want a shared writable mapping, you'd better 2208 * ask for a shared writable mapping! 2209 * 2210 * The page does not need to be reserved. 2211 * 2212 * Usually this function is called from f_op->mmap() handler 2213 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2214 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2215 * function from other places, for example from page-fault handler. 2216 * 2217 * Return: %0 on success, negative error code otherwise. 2218 */ 2219 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2220 struct page *page) 2221 { 2222 if (addr < vma->vm_start || addr >= vma->vm_end) 2223 return -EFAULT; 2224 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2225 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2226 BUG_ON(vma->vm_flags & VM_PFNMAP); 2227 vm_flags_set(vma, VM_MIXEDMAP); 2228 } 2229 return insert_page(vma, addr, page, vma->vm_page_prot); 2230 } 2231 EXPORT_SYMBOL(vm_insert_page); 2232 2233 /* 2234 * __vm_map_pages - maps range of kernel pages into user vma 2235 * @vma: user vma to map to 2236 * @pages: pointer to array of source kernel pages 2237 * @num: number of pages in page array 2238 * @offset: user's requested vm_pgoff 2239 * 2240 * This allows drivers to map range of kernel pages into a user vma. 2241 * The zeropage is supported in some VMAs, see 2242 * vm_mixed_zeropage_allowed(). 2243 * 2244 * Return: 0 on success and error code otherwise. 2245 */ 2246 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2247 unsigned long num, unsigned long offset) 2248 { 2249 unsigned long count = vma_pages(vma); 2250 unsigned long uaddr = vma->vm_start; 2251 int ret, i; 2252 2253 /* Fail if the user requested offset is beyond the end of the object */ 2254 if (offset >= num) 2255 return -ENXIO; 2256 2257 /* Fail if the user requested size exceeds available object size */ 2258 if (count > num - offset) 2259 return -ENXIO; 2260 2261 for (i = 0; i < count; i++) { 2262 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2263 if (ret < 0) 2264 return ret; 2265 uaddr += PAGE_SIZE; 2266 } 2267 2268 return 0; 2269 } 2270 2271 /** 2272 * vm_map_pages - maps range of kernel pages starts with non zero offset 2273 * @vma: user vma to map to 2274 * @pages: pointer to array of source kernel pages 2275 * @num: number of pages in page array 2276 * 2277 * Maps an object consisting of @num pages, catering for the user's 2278 * requested vm_pgoff 2279 * 2280 * If we fail to insert any page into the vma, the function will return 2281 * immediately leaving any previously inserted pages present. Callers 2282 * from the mmap handler may immediately return the error as their caller 2283 * will destroy the vma, removing any successfully inserted pages. Other 2284 * callers should make their own arrangements for calling unmap_region(). 2285 * 2286 * Context: Process context. Called by mmap handlers. 2287 * Return: 0 on success and error code otherwise. 2288 */ 2289 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2290 unsigned long num) 2291 { 2292 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2293 } 2294 EXPORT_SYMBOL(vm_map_pages); 2295 2296 /** 2297 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2298 * @vma: user vma to map to 2299 * @pages: pointer to array of source kernel pages 2300 * @num: number of pages in page array 2301 * 2302 * Similar to vm_map_pages(), except that it explicitly sets the offset 2303 * to 0. This function is intended for the drivers that did not consider 2304 * vm_pgoff. 2305 * 2306 * Context: Process context. Called by mmap handlers. 2307 * Return: 0 on success and error code otherwise. 2308 */ 2309 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2310 unsigned long num) 2311 { 2312 return __vm_map_pages(vma, pages, num, 0); 2313 } 2314 EXPORT_SYMBOL(vm_map_pages_zero); 2315 2316 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2317 pfn_t pfn, pgprot_t prot, bool mkwrite) 2318 { 2319 struct mm_struct *mm = vma->vm_mm; 2320 pte_t *pte, entry; 2321 spinlock_t *ptl; 2322 2323 pte = get_locked_pte(mm, addr, &ptl); 2324 if (!pte) 2325 return VM_FAULT_OOM; 2326 entry = ptep_get(pte); 2327 if (!pte_none(entry)) { 2328 if (mkwrite) { 2329 /* 2330 * For read faults on private mappings the PFN passed 2331 * in may not match the PFN we have mapped if the 2332 * mapped PFN is a writeable COW page. In the mkwrite 2333 * case we are creating a writable PTE for a shared 2334 * mapping and we expect the PFNs to match. If they 2335 * don't match, we are likely racing with block 2336 * allocation and mapping invalidation so just skip the 2337 * update. 2338 */ 2339 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2340 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2341 goto out_unlock; 2342 } 2343 entry = pte_mkyoung(entry); 2344 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2345 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2346 update_mmu_cache(vma, addr, pte); 2347 } 2348 goto out_unlock; 2349 } 2350 2351 /* Ok, finally just insert the thing.. */ 2352 if (pfn_t_devmap(pfn)) 2353 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2354 else 2355 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2356 2357 if (mkwrite) { 2358 entry = pte_mkyoung(entry); 2359 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2360 } 2361 2362 set_pte_at(mm, addr, pte, entry); 2363 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2364 2365 out_unlock: 2366 pte_unmap_unlock(pte, ptl); 2367 return VM_FAULT_NOPAGE; 2368 } 2369 2370 /** 2371 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2372 * @vma: user vma to map to 2373 * @addr: target user address of this page 2374 * @pfn: source kernel pfn 2375 * @pgprot: pgprot flags for the inserted page 2376 * 2377 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2378 * to override pgprot on a per-page basis. 2379 * 2380 * This only makes sense for IO mappings, and it makes no sense for 2381 * COW mappings. In general, using multiple vmas is preferable; 2382 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2383 * impractical. 2384 * 2385 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2386 * caching- and encryption bits different than those of @vma->vm_page_prot, 2387 * because the caching- or encryption mode may not be known at mmap() time. 2388 * 2389 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2390 * to set caching and encryption bits for those vmas (except for COW pages). 2391 * This is ensured by core vm only modifying these page table entries using 2392 * functions that don't touch caching- or encryption bits, using pte_modify() 2393 * if needed. (See for example mprotect()). 2394 * 2395 * Also when new page-table entries are created, this is only done using the 2396 * fault() callback, and never using the value of vma->vm_page_prot, 2397 * except for page-table entries that point to anonymous pages as the result 2398 * of COW. 2399 * 2400 * Context: Process context. May allocate using %GFP_KERNEL. 2401 * Return: vm_fault_t value. 2402 */ 2403 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2404 unsigned long pfn, pgprot_t pgprot) 2405 { 2406 /* 2407 * Technically, architectures with pte_special can avoid all these 2408 * restrictions (same for remap_pfn_range). However we would like 2409 * consistency in testing and feature parity among all, so we should 2410 * try to keep these invariants in place for everybody. 2411 */ 2412 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2413 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2414 (VM_PFNMAP|VM_MIXEDMAP)); 2415 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2416 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2417 2418 if (addr < vma->vm_start || addr >= vma->vm_end) 2419 return VM_FAULT_SIGBUS; 2420 2421 if (!pfn_modify_allowed(pfn, pgprot)) 2422 return VM_FAULT_SIGBUS; 2423 2424 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2425 2426 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2427 false); 2428 } 2429 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2430 2431 /** 2432 * vmf_insert_pfn - insert single pfn into user vma 2433 * @vma: user vma to map to 2434 * @addr: target user address of this page 2435 * @pfn: source kernel pfn 2436 * 2437 * Similar to vm_insert_page, this allows drivers to insert individual pages 2438 * they've allocated into a user vma. Same comments apply. 2439 * 2440 * This function should only be called from a vm_ops->fault handler, and 2441 * in that case the handler should return the result of this function. 2442 * 2443 * vma cannot be a COW mapping. 2444 * 2445 * As this is called only for pages that do not currently exist, we 2446 * do not need to flush old virtual caches or the TLB. 2447 * 2448 * Context: Process context. May allocate using %GFP_KERNEL. 2449 * Return: vm_fault_t value. 2450 */ 2451 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2452 unsigned long pfn) 2453 { 2454 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2455 } 2456 EXPORT_SYMBOL(vmf_insert_pfn); 2457 2458 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2459 { 2460 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2461 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2462 return false; 2463 /* these checks mirror the abort conditions in vm_normal_page */ 2464 if (vma->vm_flags & VM_MIXEDMAP) 2465 return true; 2466 if (pfn_t_devmap(pfn)) 2467 return true; 2468 if (pfn_t_special(pfn)) 2469 return true; 2470 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2471 return true; 2472 return false; 2473 } 2474 2475 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2476 unsigned long addr, pfn_t pfn, bool mkwrite) 2477 { 2478 pgprot_t pgprot = vma->vm_page_prot; 2479 int err; 2480 2481 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2482 return VM_FAULT_SIGBUS; 2483 2484 if (addr < vma->vm_start || addr >= vma->vm_end) 2485 return VM_FAULT_SIGBUS; 2486 2487 track_pfn_insert(vma, &pgprot, pfn); 2488 2489 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2490 return VM_FAULT_SIGBUS; 2491 2492 /* 2493 * If we don't have pte special, then we have to use the pfn_valid() 2494 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2495 * refcount the page if pfn_valid is true (hence insert_page rather 2496 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2497 * without pte special, it would there be refcounted as a normal page. 2498 */ 2499 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2500 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2501 struct page *page; 2502 2503 /* 2504 * At this point we are committed to insert_page() 2505 * regardless of whether the caller specified flags that 2506 * result in pfn_t_has_page() == false. 2507 */ 2508 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2509 err = insert_page(vma, addr, page, pgprot); 2510 } else { 2511 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2512 } 2513 2514 if (err == -ENOMEM) 2515 return VM_FAULT_OOM; 2516 if (err < 0 && err != -EBUSY) 2517 return VM_FAULT_SIGBUS; 2518 2519 return VM_FAULT_NOPAGE; 2520 } 2521 2522 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2523 pfn_t pfn) 2524 { 2525 return __vm_insert_mixed(vma, addr, pfn, false); 2526 } 2527 EXPORT_SYMBOL(vmf_insert_mixed); 2528 2529 /* 2530 * If the insertion of PTE failed because someone else already added a 2531 * different entry in the mean time, we treat that as success as we assume 2532 * the same entry was actually inserted. 2533 */ 2534 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2535 unsigned long addr, pfn_t pfn) 2536 { 2537 return __vm_insert_mixed(vma, addr, pfn, true); 2538 } 2539 2540 /* 2541 * maps a range of physical memory into the requested pages. the old 2542 * mappings are removed. any references to nonexistent pages results 2543 * in null mappings (currently treated as "copy-on-access") 2544 */ 2545 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2546 unsigned long addr, unsigned long end, 2547 unsigned long pfn, pgprot_t prot) 2548 { 2549 pte_t *pte, *mapped_pte; 2550 spinlock_t *ptl; 2551 int err = 0; 2552 2553 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2554 if (!pte) 2555 return -ENOMEM; 2556 arch_enter_lazy_mmu_mode(); 2557 do { 2558 BUG_ON(!pte_none(ptep_get(pte))); 2559 if (!pfn_modify_allowed(pfn, prot)) { 2560 err = -EACCES; 2561 break; 2562 } 2563 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2564 pfn++; 2565 } while (pte++, addr += PAGE_SIZE, addr != end); 2566 arch_leave_lazy_mmu_mode(); 2567 pte_unmap_unlock(mapped_pte, ptl); 2568 return err; 2569 } 2570 2571 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2572 unsigned long addr, unsigned long end, 2573 unsigned long pfn, pgprot_t prot) 2574 { 2575 pmd_t *pmd; 2576 unsigned long next; 2577 int err; 2578 2579 pfn -= addr >> PAGE_SHIFT; 2580 pmd = pmd_alloc(mm, pud, addr); 2581 if (!pmd) 2582 return -ENOMEM; 2583 VM_BUG_ON(pmd_trans_huge(*pmd)); 2584 do { 2585 next = pmd_addr_end(addr, end); 2586 err = remap_pte_range(mm, pmd, addr, next, 2587 pfn + (addr >> PAGE_SHIFT), prot); 2588 if (err) 2589 return err; 2590 } while (pmd++, addr = next, addr != end); 2591 return 0; 2592 } 2593 2594 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2595 unsigned long addr, unsigned long end, 2596 unsigned long pfn, pgprot_t prot) 2597 { 2598 pud_t *pud; 2599 unsigned long next; 2600 int err; 2601 2602 pfn -= addr >> PAGE_SHIFT; 2603 pud = pud_alloc(mm, p4d, addr); 2604 if (!pud) 2605 return -ENOMEM; 2606 do { 2607 next = pud_addr_end(addr, end); 2608 err = remap_pmd_range(mm, pud, addr, next, 2609 pfn + (addr >> PAGE_SHIFT), prot); 2610 if (err) 2611 return err; 2612 } while (pud++, addr = next, addr != end); 2613 return 0; 2614 } 2615 2616 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2617 unsigned long addr, unsigned long end, 2618 unsigned long pfn, pgprot_t prot) 2619 { 2620 p4d_t *p4d; 2621 unsigned long next; 2622 int err; 2623 2624 pfn -= addr >> PAGE_SHIFT; 2625 p4d = p4d_alloc(mm, pgd, addr); 2626 if (!p4d) 2627 return -ENOMEM; 2628 do { 2629 next = p4d_addr_end(addr, end); 2630 err = remap_pud_range(mm, p4d, addr, next, 2631 pfn + (addr >> PAGE_SHIFT), prot); 2632 if (err) 2633 return err; 2634 } while (p4d++, addr = next, addr != end); 2635 return 0; 2636 } 2637 2638 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2639 unsigned long pfn, unsigned long size, pgprot_t prot) 2640 { 2641 pgd_t *pgd; 2642 unsigned long next; 2643 unsigned long end = addr + PAGE_ALIGN(size); 2644 struct mm_struct *mm = vma->vm_mm; 2645 int err; 2646 2647 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2648 return -EINVAL; 2649 2650 /* 2651 * Physically remapped pages are special. Tell the 2652 * rest of the world about it: 2653 * VM_IO tells people not to look at these pages 2654 * (accesses can have side effects). 2655 * VM_PFNMAP tells the core MM that the base pages are just 2656 * raw PFN mappings, and do not have a "struct page" associated 2657 * with them. 2658 * VM_DONTEXPAND 2659 * Disable vma merging and expanding with mremap(). 2660 * VM_DONTDUMP 2661 * Omit vma from core dump, even when VM_IO turned off. 2662 * 2663 * There's a horrible special case to handle copy-on-write 2664 * behaviour that some programs depend on. We mark the "original" 2665 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2666 * See vm_normal_page() for details. 2667 */ 2668 if (is_cow_mapping(vma->vm_flags)) { 2669 if (addr != vma->vm_start || end != vma->vm_end) 2670 return -EINVAL; 2671 vma->vm_pgoff = pfn; 2672 } 2673 2674 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2675 2676 BUG_ON(addr >= end); 2677 pfn -= addr >> PAGE_SHIFT; 2678 pgd = pgd_offset(mm, addr); 2679 flush_cache_range(vma, addr, end); 2680 do { 2681 next = pgd_addr_end(addr, end); 2682 err = remap_p4d_range(mm, pgd, addr, next, 2683 pfn + (addr >> PAGE_SHIFT), prot); 2684 if (err) 2685 return err; 2686 } while (pgd++, addr = next, addr != end); 2687 2688 return 0; 2689 } 2690 2691 /* 2692 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2693 * must have pre-validated the caching bits of the pgprot_t. 2694 */ 2695 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2696 unsigned long pfn, unsigned long size, pgprot_t prot) 2697 { 2698 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2699 2700 if (!error) 2701 return 0; 2702 2703 /* 2704 * A partial pfn range mapping is dangerous: it does not 2705 * maintain page reference counts, and callers may free 2706 * pages due to the error. So zap it early. 2707 */ 2708 zap_page_range_single(vma, addr, size, NULL); 2709 return error; 2710 } 2711 2712 /** 2713 * remap_pfn_range - remap kernel memory to userspace 2714 * @vma: user vma to map to 2715 * @addr: target page aligned user address to start at 2716 * @pfn: page frame number of kernel physical memory address 2717 * @size: size of mapping area 2718 * @prot: page protection flags for this mapping 2719 * 2720 * Note: this is only safe if the mm semaphore is held when called. 2721 * 2722 * Return: %0 on success, negative error code otherwise. 2723 */ 2724 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2725 unsigned long pfn, unsigned long size, pgprot_t prot) 2726 { 2727 int err; 2728 2729 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2730 if (err) 2731 return -EINVAL; 2732 2733 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2734 if (err) 2735 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2736 return err; 2737 } 2738 EXPORT_SYMBOL(remap_pfn_range); 2739 2740 /** 2741 * vm_iomap_memory - remap memory to userspace 2742 * @vma: user vma to map to 2743 * @start: start of the physical memory to be mapped 2744 * @len: size of area 2745 * 2746 * This is a simplified io_remap_pfn_range() for common driver use. The 2747 * driver just needs to give us the physical memory range to be mapped, 2748 * we'll figure out the rest from the vma information. 2749 * 2750 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2751 * whatever write-combining details or similar. 2752 * 2753 * Return: %0 on success, negative error code otherwise. 2754 */ 2755 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2756 { 2757 unsigned long vm_len, pfn, pages; 2758 2759 /* Check that the physical memory area passed in looks valid */ 2760 if (start + len < start) 2761 return -EINVAL; 2762 /* 2763 * You *really* shouldn't map things that aren't page-aligned, 2764 * but we've historically allowed it because IO memory might 2765 * just have smaller alignment. 2766 */ 2767 len += start & ~PAGE_MASK; 2768 pfn = start >> PAGE_SHIFT; 2769 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2770 if (pfn + pages < pfn) 2771 return -EINVAL; 2772 2773 /* We start the mapping 'vm_pgoff' pages into the area */ 2774 if (vma->vm_pgoff > pages) 2775 return -EINVAL; 2776 pfn += vma->vm_pgoff; 2777 pages -= vma->vm_pgoff; 2778 2779 /* Can we fit all of the mapping? */ 2780 vm_len = vma->vm_end - vma->vm_start; 2781 if (vm_len >> PAGE_SHIFT > pages) 2782 return -EINVAL; 2783 2784 /* Ok, let it rip */ 2785 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2786 } 2787 EXPORT_SYMBOL(vm_iomap_memory); 2788 2789 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2790 unsigned long addr, unsigned long end, 2791 pte_fn_t fn, void *data, bool create, 2792 pgtbl_mod_mask *mask) 2793 { 2794 pte_t *pte, *mapped_pte; 2795 int err = 0; 2796 spinlock_t *ptl; 2797 2798 if (create) { 2799 mapped_pte = pte = (mm == &init_mm) ? 2800 pte_alloc_kernel_track(pmd, addr, mask) : 2801 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2802 if (!pte) 2803 return -ENOMEM; 2804 } else { 2805 mapped_pte = pte = (mm == &init_mm) ? 2806 pte_offset_kernel(pmd, addr) : 2807 pte_offset_map_lock(mm, pmd, addr, &ptl); 2808 if (!pte) 2809 return -EINVAL; 2810 } 2811 2812 arch_enter_lazy_mmu_mode(); 2813 2814 if (fn) { 2815 do { 2816 if (create || !pte_none(ptep_get(pte))) { 2817 err = fn(pte++, addr, data); 2818 if (err) 2819 break; 2820 } 2821 } while (addr += PAGE_SIZE, addr != end); 2822 } 2823 *mask |= PGTBL_PTE_MODIFIED; 2824 2825 arch_leave_lazy_mmu_mode(); 2826 2827 if (mm != &init_mm) 2828 pte_unmap_unlock(mapped_pte, ptl); 2829 return err; 2830 } 2831 2832 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2833 unsigned long addr, unsigned long end, 2834 pte_fn_t fn, void *data, bool create, 2835 pgtbl_mod_mask *mask) 2836 { 2837 pmd_t *pmd; 2838 unsigned long next; 2839 int err = 0; 2840 2841 BUG_ON(pud_leaf(*pud)); 2842 2843 if (create) { 2844 pmd = pmd_alloc_track(mm, pud, addr, mask); 2845 if (!pmd) 2846 return -ENOMEM; 2847 } else { 2848 pmd = pmd_offset(pud, addr); 2849 } 2850 do { 2851 next = pmd_addr_end(addr, end); 2852 if (pmd_none(*pmd) && !create) 2853 continue; 2854 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2855 return -EINVAL; 2856 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2857 if (!create) 2858 continue; 2859 pmd_clear_bad(pmd); 2860 } 2861 err = apply_to_pte_range(mm, pmd, addr, next, 2862 fn, data, create, mask); 2863 if (err) 2864 break; 2865 } while (pmd++, addr = next, addr != end); 2866 2867 return err; 2868 } 2869 2870 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2871 unsigned long addr, unsigned long end, 2872 pte_fn_t fn, void *data, bool create, 2873 pgtbl_mod_mask *mask) 2874 { 2875 pud_t *pud; 2876 unsigned long next; 2877 int err = 0; 2878 2879 if (create) { 2880 pud = pud_alloc_track(mm, p4d, addr, mask); 2881 if (!pud) 2882 return -ENOMEM; 2883 } else { 2884 pud = pud_offset(p4d, addr); 2885 } 2886 do { 2887 next = pud_addr_end(addr, end); 2888 if (pud_none(*pud) && !create) 2889 continue; 2890 if (WARN_ON_ONCE(pud_leaf(*pud))) 2891 return -EINVAL; 2892 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2893 if (!create) 2894 continue; 2895 pud_clear_bad(pud); 2896 } 2897 err = apply_to_pmd_range(mm, pud, addr, next, 2898 fn, data, create, mask); 2899 if (err) 2900 break; 2901 } while (pud++, addr = next, addr != end); 2902 2903 return err; 2904 } 2905 2906 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2907 unsigned long addr, unsigned long end, 2908 pte_fn_t fn, void *data, bool create, 2909 pgtbl_mod_mask *mask) 2910 { 2911 p4d_t *p4d; 2912 unsigned long next; 2913 int err = 0; 2914 2915 if (create) { 2916 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2917 if (!p4d) 2918 return -ENOMEM; 2919 } else { 2920 p4d = p4d_offset(pgd, addr); 2921 } 2922 do { 2923 next = p4d_addr_end(addr, end); 2924 if (p4d_none(*p4d) && !create) 2925 continue; 2926 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2927 return -EINVAL; 2928 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2929 if (!create) 2930 continue; 2931 p4d_clear_bad(p4d); 2932 } 2933 err = apply_to_pud_range(mm, p4d, addr, next, 2934 fn, data, create, mask); 2935 if (err) 2936 break; 2937 } while (p4d++, addr = next, addr != end); 2938 2939 return err; 2940 } 2941 2942 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2943 unsigned long size, pte_fn_t fn, 2944 void *data, bool create) 2945 { 2946 pgd_t *pgd; 2947 unsigned long start = addr, next; 2948 unsigned long end = addr + size; 2949 pgtbl_mod_mask mask = 0; 2950 int err = 0; 2951 2952 if (WARN_ON(addr >= end)) 2953 return -EINVAL; 2954 2955 pgd = pgd_offset(mm, addr); 2956 do { 2957 next = pgd_addr_end(addr, end); 2958 if (pgd_none(*pgd) && !create) 2959 continue; 2960 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2961 return -EINVAL; 2962 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2963 if (!create) 2964 continue; 2965 pgd_clear_bad(pgd); 2966 } 2967 err = apply_to_p4d_range(mm, pgd, addr, next, 2968 fn, data, create, &mask); 2969 if (err) 2970 break; 2971 } while (pgd++, addr = next, addr != end); 2972 2973 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2974 arch_sync_kernel_mappings(start, start + size); 2975 2976 return err; 2977 } 2978 2979 /* 2980 * Scan a region of virtual memory, filling in page tables as necessary 2981 * and calling a provided function on each leaf page table. 2982 */ 2983 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2984 unsigned long size, pte_fn_t fn, void *data) 2985 { 2986 return __apply_to_page_range(mm, addr, size, fn, data, true); 2987 } 2988 EXPORT_SYMBOL_GPL(apply_to_page_range); 2989 2990 /* 2991 * Scan a region of virtual memory, calling a provided function on 2992 * each leaf page table where it exists. 2993 * 2994 * Unlike apply_to_page_range, this does _not_ fill in page tables 2995 * where they are absent. 2996 */ 2997 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2998 unsigned long size, pte_fn_t fn, void *data) 2999 { 3000 return __apply_to_page_range(mm, addr, size, fn, data, false); 3001 } 3002 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 3003 3004 /* 3005 * handle_pte_fault chooses page fault handler according to an entry which was 3006 * read non-atomically. Before making any commitment, on those architectures 3007 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3008 * parts, do_swap_page must check under lock before unmapping the pte and 3009 * proceeding (but do_wp_page is only called after already making such a check; 3010 * and do_anonymous_page can safely check later on). 3011 */ 3012 static inline int pte_unmap_same(struct vm_fault *vmf) 3013 { 3014 int same = 1; 3015 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3016 if (sizeof(pte_t) > sizeof(unsigned long)) { 3017 spin_lock(vmf->ptl); 3018 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3019 spin_unlock(vmf->ptl); 3020 } 3021 #endif 3022 pte_unmap(vmf->pte); 3023 vmf->pte = NULL; 3024 return same; 3025 } 3026 3027 /* 3028 * Return: 3029 * 0: copied succeeded 3030 * -EHWPOISON: copy failed due to hwpoison in source page 3031 * -EAGAIN: copied failed (some other reason) 3032 */ 3033 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3034 struct vm_fault *vmf) 3035 { 3036 int ret; 3037 void *kaddr; 3038 void __user *uaddr; 3039 struct vm_area_struct *vma = vmf->vma; 3040 struct mm_struct *mm = vma->vm_mm; 3041 unsigned long addr = vmf->address; 3042 3043 if (likely(src)) { 3044 if (copy_mc_user_highpage(dst, src, addr, vma)) 3045 return -EHWPOISON; 3046 return 0; 3047 } 3048 3049 /* 3050 * If the source page was a PFN mapping, we don't have 3051 * a "struct page" for it. We do a best-effort copy by 3052 * just copying from the original user address. If that 3053 * fails, we just zero-fill it. Live with it. 3054 */ 3055 kaddr = kmap_local_page(dst); 3056 pagefault_disable(); 3057 uaddr = (void __user *)(addr & PAGE_MASK); 3058 3059 /* 3060 * On architectures with software "accessed" bits, we would 3061 * take a double page fault, so mark it accessed here. 3062 */ 3063 vmf->pte = NULL; 3064 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3065 pte_t entry; 3066 3067 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3068 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3069 /* 3070 * Other thread has already handled the fault 3071 * and update local tlb only 3072 */ 3073 if (vmf->pte) 3074 update_mmu_tlb(vma, addr, vmf->pte); 3075 ret = -EAGAIN; 3076 goto pte_unlock; 3077 } 3078 3079 entry = pte_mkyoung(vmf->orig_pte); 3080 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3081 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3082 } 3083 3084 /* 3085 * This really shouldn't fail, because the page is there 3086 * in the page tables. But it might just be unreadable, 3087 * in which case we just give up and fill the result with 3088 * zeroes. 3089 */ 3090 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3091 if (vmf->pte) 3092 goto warn; 3093 3094 /* Re-validate under PTL if the page is still mapped */ 3095 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3096 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3097 /* The PTE changed under us, update local tlb */ 3098 if (vmf->pte) 3099 update_mmu_tlb(vma, addr, vmf->pte); 3100 ret = -EAGAIN; 3101 goto pte_unlock; 3102 } 3103 3104 /* 3105 * The same page can be mapped back since last copy attempt. 3106 * Try to copy again under PTL. 3107 */ 3108 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3109 /* 3110 * Give a warn in case there can be some obscure 3111 * use-case 3112 */ 3113 warn: 3114 WARN_ON_ONCE(1); 3115 clear_page(kaddr); 3116 } 3117 } 3118 3119 ret = 0; 3120 3121 pte_unlock: 3122 if (vmf->pte) 3123 pte_unmap_unlock(vmf->pte, vmf->ptl); 3124 pagefault_enable(); 3125 kunmap_local(kaddr); 3126 flush_dcache_page(dst); 3127 3128 return ret; 3129 } 3130 3131 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3132 { 3133 struct file *vm_file = vma->vm_file; 3134 3135 if (vm_file) 3136 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3137 3138 /* 3139 * Special mappings (e.g. VDSO) do not have any file so fake 3140 * a default GFP_KERNEL for them. 3141 */ 3142 return GFP_KERNEL; 3143 } 3144 3145 /* 3146 * Notify the address space that the page is about to become writable so that 3147 * it can prohibit this or wait for the page to get into an appropriate state. 3148 * 3149 * We do this without the lock held, so that it can sleep if it needs to. 3150 */ 3151 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3152 { 3153 vm_fault_t ret; 3154 unsigned int old_flags = vmf->flags; 3155 3156 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3157 3158 if (vmf->vma->vm_file && 3159 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3160 return VM_FAULT_SIGBUS; 3161 3162 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3163 /* Restore original flags so that caller is not surprised */ 3164 vmf->flags = old_flags; 3165 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3166 return ret; 3167 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3168 folio_lock(folio); 3169 if (!folio->mapping) { 3170 folio_unlock(folio); 3171 return 0; /* retry */ 3172 } 3173 ret |= VM_FAULT_LOCKED; 3174 } else 3175 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3176 return ret; 3177 } 3178 3179 /* 3180 * Handle dirtying of a page in shared file mapping on a write fault. 3181 * 3182 * The function expects the page to be locked and unlocks it. 3183 */ 3184 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3185 { 3186 struct vm_area_struct *vma = vmf->vma; 3187 struct address_space *mapping; 3188 struct folio *folio = page_folio(vmf->page); 3189 bool dirtied; 3190 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3191 3192 dirtied = folio_mark_dirty(folio); 3193 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3194 /* 3195 * Take a local copy of the address_space - folio.mapping may be zeroed 3196 * by truncate after folio_unlock(). The address_space itself remains 3197 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3198 * release semantics to prevent the compiler from undoing this copying. 3199 */ 3200 mapping = folio_raw_mapping(folio); 3201 folio_unlock(folio); 3202 3203 if (!page_mkwrite) 3204 file_update_time(vma->vm_file); 3205 3206 /* 3207 * Throttle page dirtying rate down to writeback speed. 3208 * 3209 * mapping may be NULL here because some device drivers do not 3210 * set page.mapping but still dirty their pages 3211 * 3212 * Drop the mmap_lock before waiting on IO, if we can. The file 3213 * is pinning the mapping, as per above. 3214 */ 3215 if ((dirtied || page_mkwrite) && mapping) { 3216 struct file *fpin; 3217 3218 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3219 balance_dirty_pages_ratelimited(mapping); 3220 if (fpin) { 3221 fput(fpin); 3222 return VM_FAULT_COMPLETED; 3223 } 3224 } 3225 3226 return 0; 3227 } 3228 3229 /* 3230 * Handle write page faults for pages that can be reused in the current vma 3231 * 3232 * This can happen either due to the mapping being with the VM_SHARED flag, 3233 * or due to us being the last reference standing to the page. In either 3234 * case, all we need to do here is to mark the page as writable and update 3235 * any related book-keeping. 3236 */ 3237 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3238 __releases(vmf->ptl) 3239 { 3240 struct vm_area_struct *vma = vmf->vma; 3241 pte_t entry; 3242 3243 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3244 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3245 3246 if (folio) { 3247 VM_BUG_ON(folio_test_anon(folio) && 3248 !PageAnonExclusive(vmf->page)); 3249 /* 3250 * Clear the folio's cpupid information as the existing 3251 * information potentially belongs to a now completely 3252 * unrelated process. 3253 */ 3254 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3255 } 3256 3257 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3258 entry = pte_mkyoung(vmf->orig_pte); 3259 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3260 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3261 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3262 pte_unmap_unlock(vmf->pte, vmf->ptl); 3263 count_vm_event(PGREUSE); 3264 } 3265 3266 /* 3267 * We could add a bitflag somewhere, but for now, we know that all 3268 * vm_ops that have a ->map_pages have been audited and don't need 3269 * the mmap_lock to be held. 3270 */ 3271 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3272 { 3273 struct vm_area_struct *vma = vmf->vma; 3274 3275 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3276 return 0; 3277 vma_end_read(vma); 3278 return VM_FAULT_RETRY; 3279 } 3280 3281 /** 3282 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3283 * @vmf: The vm_fault descriptor passed from the fault handler. 3284 * 3285 * When preparing to insert an anonymous page into a VMA from a 3286 * fault handler, call this function rather than anon_vma_prepare(). 3287 * If this vma does not already have an associated anon_vma and we are 3288 * only protected by the per-VMA lock, the caller must retry with the 3289 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3290 * determine if this VMA can share its anon_vma, and that's not safe to 3291 * do with only the per-VMA lock held for this VMA. 3292 * 3293 * Return: 0 if fault handling can proceed. Any other value should be 3294 * returned to the caller. 3295 */ 3296 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3297 { 3298 struct vm_area_struct *vma = vmf->vma; 3299 vm_fault_t ret = 0; 3300 3301 if (likely(vma->anon_vma)) 3302 return 0; 3303 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3304 if (!mmap_read_trylock(vma->vm_mm)) 3305 return VM_FAULT_RETRY; 3306 } 3307 if (__anon_vma_prepare(vma)) 3308 ret = VM_FAULT_OOM; 3309 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3310 mmap_read_unlock(vma->vm_mm); 3311 return ret; 3312 } 3313 3314 /* 3315 * Handle the case of a page which we actually need to copy to a new page, 3316 * either due to COW or unsharing. 3317 * 3318 * Called with mmap_lock locked and the old page referenced, but 3319 * without the ptl held. 3320 * 3321 * High level logic flow: 3322 * 3323 * - Allocate a page, copy the content of the old page to the new one. 3324 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3325 * - Take the PTL. If the pte changed, bail out and release the allocated page 3326 * - If the pte is still the way we remember it, update the page table and all 3327 * relevant references. This includes dropping the reference the page-table 3328 * held to the old page, as well as updating the rmap. 3329 * - In any case, unlock the PTL and drop the reference we took to the old page. 3330 */ 3331 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3332 { 3333 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3334 struct vm_area_struct *vma = vmf->vma; 3335 struct mm_struct *mm = vma->vm_mm; 3336 struct folio *old_folio = NULL; 3337 struct folio *new_folio = NULL; 3338 pte_t entry; 3339 int page_copied = 0; 3340 struct mmu_notifier_range range; 3341 vm_fault_t ret; 3342 bool pfn_is_zero; 3343 3344 delayacct_wpcopy_start(); 3345 3346 if (vmf->page) 3347 old_folio = page_folio(vmf->page); 3348 ret = vmf_anon_prepare(vmf); 3349 if (unlikely(ret)) 3350 goto out; 3351 3352 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3353 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3354 if (!new_folio) 3355 goto oom; 3356 3357 if (!pfn_is_zero) { 3358 int err; 3359 3360 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3361 if (err) { 3362 /* 3363 * COW failed, if the fault was solved by other, 3364 * it's fine. If not, userspace would re-fault on 3365 * the same address and we will handle the fault 3366 * from the second attempt. 3367 * The -EHWPOISON case will not be retried. 3368 */ 3369 folio_put(new_folio); 3370 if (old_folio) 3371 folio_put(old_folio); 3372 3373 delayacct_wpcopy_end(); 3374 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3375 } 3376 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3377 } 3378 3379 __folio_mark_uptodate(new_folio); 3380 3381 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3382 vmf->address & PAGE_MASK, 3383 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3384 mmu_notifier_invalidate_range_start(&range); 3385 3386 /* 3387 * Re-check the pte - we dropped the lock 3388 */ 3389 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3390 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3391 if (old_folio) { 3392 if (!folio_test_anon(old_folio)) { 3393 dec_mm_counter(mm, mm_counter_file(old_folio)); 3394 inc_mm_counter(mm, MM_ANONPAGES); 3395 } 3396 } else { 3397 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3398 inc_mm_counter(mm, MM_ANONPAGES); 3399 } 3400 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3401 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3402 entry = pte_sw_mkyoung(entry); 3403 if (unlikely(unshare)) { 3404 if (pte_soft_dirty(vmf->orig_pte)) 3405 entry = pte_mksoft_dirty(entry); 3406 if (pte_uffd_wp(vmf->orig_pte)) 3407 entry = pte_mkuffd_wp(entry); 3408 } else { 3409 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3410 } 3411 3412 /* 3413 * Clear the pte entry and flush it first, before updating the 3414 * pte with the new entry, to keep TLBs on different CPUs in 3415 * sync. This code used to set the new PTE then flush TLBs, but 3416 * that left a window where the new PTE could be loaded into 3417 * some TLBs while the old PTE remains in others. 3418 */ 3419 ptep_clear_flush(vma, vmf->address, vmf->pte); 3420 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3421 folio_add_lru_vma(new_folio, vma); 3422 BUG_ON(unshare && pte_write(entry)); 3423 set_pte_at(mm, vmf->address, vmf->pte, entry); 3424 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3425 if (old_folio) { 3426 /* 3427 * Only after switching the pte to the new page may 3428 * we remove the mapcount here. Otherwise another 3429 * process may come and find the rmap count decremented 3430 * before the pte is switched to the new page, and 3431 * "reuse" the old page writing into it while our pte 3432 * here still points into it and can be read by other 3433 * threads. 3434 * 3435 * The critical issue is to order this 3436 * folio_remove_rmap_pte() with the ptp_clear_flush 3437 * above. Those stores are ordered by (if nothing else,) 3438 * the barrier present in the atomic_add_negative 3439 * in folio_remove_rmap_pte(); 3440 * 3441 * Then the TLB flush in ptep_clear_flush ensures that 3442 * no process can access the old page before the 3443 * decremented mapcount is visible. And the old page 3444 * cannot be reused until after the decremented 3445 * mapcount is visible. So transitively, TLBs to 3446 * old page will be flushed before it can be reused. 3447 */ 3448 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3449 } 3450 3451 /* Free the old page.. */ 3452 new_folio = old_folio; 3453 page_copied = 1; 3454 pte_unmap_unlock(vmf->pte, vmf->ptl); 3455 } else if (vmf->pte) { 3456 update_mmu_tlb(vma, vmf->address, vmf->pte); 3457 pte_unmap_unlock(vmf->pte, vmf->ptl); 3458 } 3459 3460 mmu_notifier_invalidate_range_end(&range); 3461 3462 if (new_folio) 3463 folio_put(new_folio); 3464 if (old_folio) { 3465 if (page_copied) 3466 free_swap_cache(old_folio); 3467 folio_put(old_folio); 3468 } 3469 3470 delayacct_wpcopy_end(); 3471 return 0; 3472 oom: 3473 ret = VM_FAULT_OOM; 3474 out: 3475 if (old_folio) 3476 folio_put(old_folio); 3477 3478 delayacct_wpcopy_end(); 3479 return ret; 3480 } 3481 3482 /** 3483 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3484 * writeable once the page is prepared 3485 * 3486 * @vmf: structure describing the fault 3487 * @folio: the folio of vmf->page 3488 * 3489 * This function handles all that is needed to finish a write page fault in a 3490 * shared mapping due to PTE being read-only once the mapped page is prepared. 3491 * It handles locking of PTE and modifying it. 3492 * 3493 * The function expects the page to be locked or other protection against 3494 * concurrent faults / writeback (such as DAX radix tree locks). 3495 * 3496 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3497 * we acquired PTE lock. 3498 */ 3499 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3500 { 3501 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3502 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3503 &vmf->ptl); 3504 if (!vmf->pte) 3505 return VM_FAULT_NOPAGE; 3506 /* 3507 * We might have raced with another page fault while we released the 3508 * pte_offset_map_lock. 3509 */ 3510 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3511 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3512 pte_unmap_unlock(vmf->pte, vmf->ptl); 3513 return VM_FAULT_NOPAGE; 3514 } 3515 wp_page_reuse(vmf, folio); 3516 return 0; 3517 } 3518 3519 /* 3520 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3521 * mapping 3522 */ 3523 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3524 { 3525 struct vm_area_struct *vma = vmf->vma; 3526 3527 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3528 vm_fault_t ret; 3529 3530 pte_unmap_unlock(vmf->pte, vmf->ptl); 3531 ret = vmf_can_call_fault(vmf); 3532 if (ret) 3533 return ret; 3534 3535 vmf->flags |= FAULT_FLAG_MKWRITE; 3536 ret = vma->vm_ops->pfn_mkwrite(vmf); 3537 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3538 return ret; 3539 return finish_mkwrite_fault(vmf, NULL); 3540 } 3541 wp_page_reuse(vmf, NULL); 3542 return 0; 3543 } 3544 3545 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3546 __releases(vmf->ptl) 3547 { 3548 struct vm_area_struct *vma = vmf->vma; 3549 vm_fault_t ret = 0; 3550 3551 folio_get(folio); 3552 3553 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3554 vm_fault_t tmp; 3555 3556 pte_unmap_unlock(vmf->pte, vmf->ptl); 3557 tmp = vmf_can_call_fault(vmf); 3558 if (tmp) { 3559 folio_put(folio); 3560 return tmp; 3561 } 3562 3563 tmp = do_page_mkwrite(vmf, folio); 3564 if (unlikely(!tmp || (tmp & 3565 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3566 folio_put(folio); 3567 return tmp; 3568 } 3569 tmp = finish_mkwrite_fault(vmf, folio); 3570 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3571 folio_unlock(folio); 3572 folio_put(folio); 3573 return tmp; 3574 } 3575 } else { 3576 wp_page_reuse(vmf, folio); 3577 folio_lock(folio); 3578 } 3579 ret |= fault_dirty_shared_page(vmf); 3580 folio_put(folio); 3581 3582 return ret; 3583 } 3584 3585 static bool wp_can_reuse_anon_folio(struct folio *folio, 3586 struct vm_area_struct *vma) 3587 { 3588 /* 3589 * We could currently only reuse a subpage of a large folio if no 3590 * other subpages of the large folios are still mapped. However, 3591 * let's just consistently not reuse subpages even if we could 3592 * reuse in that scenario, and give back a large folio a bit 3593 * sooner. 3594 */ 3595 if (folio_test_large(folio)) 3596 return false; 3597 3598 /* 3599 * We have to verify under folio lock: these early checks are 3600 * just an optimization to avoid locking the folio and freeing 3601 * the swapcache if there is little hope that we can reuse. 3602 * 3603 * KSM doesn't necessarily raise the folio refcount. 3604 */ 3605 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3606 return false; 3607 if (!folio_test_lru(folio)) 3608 /* 3609 * We cannot easily detect+handle references from 3610 * remote LRU caches or references to LRU folios. 3611 */ 3612 lru_add_drain(); 3613 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3614 return false; 3615 if (!folio_trylock(folio)) 3616 return false; 3617 if (folio_test_swapcache(folio)) 3618 folio_free_swap(folio); 3619 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3620 folio_unlock(folio); 3621 return false; 3622 } 3623 /* 3624 * Ok, we've got the only folio reference from our mapping 3625 * and the folio is locked, it's dark out, and we're wearing 3626 * sunglasses. Hit it. 3627 */ 3628 folio_move_anon_rmap(folio, vma); 3629 folio_unlock(folio); 3630 return true; 3631 } 3632 3633 /* 3634 * This routine handles present pages, when 3635 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3636 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3637 * (FAULT_FLAG_UNSHARE) 3638 * 3639 * It is done by copying the page to a new address and decrementing the 3640 * shared-page counter for the old page. 3641 * 3642 * Note that this routine assumes that the protection checks have been 3643 * done by the caller (the low-level page fault routine in most cases). 3644 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3645 * done any necessary COW. 3646 * 3647 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3648 * though the page will change only once the write actually happens. This 3649 * avoids a few races, and potentially makes it more efficient. 3650 * 3651 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3652 * but allow concurrent faults), with pte both mapped and locked. 3653 * We return with mmap_lock still held, but pte unmapped and unlocked. 3654 */ 3655 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3656 __releases(vmf->ptl) 3657 { 3658 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3659 struct vm_area_struct *vma = vmf->vma; 3660 struct folio *folio = NULL; 3661 pte_t pte; 3662 3663 if (likely(!unshare)) { 3664 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3665 if (!userfaultfd_wp_async(vma)) { 3666 pte_unmap_unlock(vmf->pte, vmf->ptl); 3667 return handle_userfault(vmf, VM_UFFD_WP); 3668 } 3669 3670 /* 3671 * Nothing needed (cache flush, TLB invalidations, 3672 * etc.) because we're only removing the uffd-wp bit, 3673 * which is completely invisible to the user. 3674 */ 3675 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3676 3677 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3678 /* 3679 * Update this to be prepared for following up CoW 3680 * handling 3681 */ 3682 vmf->orig_pte = pte; 3683 } 3684 3685 /* 3686 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3687 * is flushed in this case before copying. 3688 */ 3689 if (unlikely(userfaultfd_wp(vmf->vma) && 3690 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3691 flush_tlb_page(vmf->vma, vmf->address); 3692 } 3693 3694 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3695 3696 if (vmf->page) 3697 folio = page_folio(vmf->page); 3698 3699 /* 3700 * Shared mapping: we are guaranteed to have VM_WRITE and 3701 * FAULT_FLAG_WRITE set at this point. 3702 */ 3703 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3704 /* 3705 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3706 * VM_PFNMAP VMA. 3707 * 3708 * We should not cow pages in a shared writeable mapping. 3709 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3710 */ 3711 if (!vmf->page) 3712 return wp_pfn_shared(vmf); 3713 return wp_page_shared(vmf, folio); 3714 } 3715 3716 /* 3717 * Private mapping: create an exclusive anonymous page copy if reuse 3718 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3719 * 3720 * If we encounter a page that is marked exclusive, we must reuse 3721 * the page without further checks. 3722 */ 3723 if (folio && folio_test_anon(folio) && 3724 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3725 if (!PageAnonExclusive(vmf->page)) 3726 SetPageAnonExclusive(vmf->page); 3727 if (unlikely(unshare)) { 3728 pte_unmap_unlock(vmf->pte, vmf->ptl); 3729 return 0; 3730 } 3731 wp_page_reuse(vmf, folio); 3732 return 0; 3733 } 3734 /* 3735 * Ok, we need to copy. Oh, well.. 3736 */ 3737 if (folio) 3738 folio_get(folio); 3739 3740 pte_unmap_unlock(vmf->pte, vmf->ptl); 3741 #ifdef CONFIG_KSM 3742 if (folio && folio_test_ksm(folio)) 3743 count_vm_event(COW_KSM); 3744 #endif 3745 return wp_page_copy(vmf); 3746 } 3747 3748 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3749 unsigned long start_addr, unsigned long end_addr, 3750 struct zap_details *details) 3751 { 3752 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3753 } 3754 3755 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3756 pgoff_t first_index, 3757 pgoff_t last_index, 3758 struct zap_details *details) 3759 { 3760 struct vm_area_struct *vma; 3761 pgoff_t vba, vea, zba, zea; 3762 3763 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3764 vba = vma->vm_pgoff; 3765 vea = vba + vma_pages(vma) - 1; 3766 zba = max(first_index, vba); 3767 zea = min(last_index, vea); 3768 3769 unmap_mapping_range_vma(vma, 3770 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3771 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3772 details); 3773 } 3774 } 3775 3776 /** 3777 * unmap_mapping_folio() - Unmap single folio from processes. 3778 * @folio: The locked folio to be unmapped. 3779 * 3780 * Unmap this folio from any userspace process which still has it mmaped. 3781 * Typically, for efficiency, the range of nearby pages has already been 3782 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3783 * truncation or invalidation holds the lock on a folio, it may find that 3784 * the page has been remapped again: and then uses unmap_mapping_folio() 3785 * to unmap it finally. 3786 */ 3787 void unmap_mapping_folio(struct folio *folio) 3788 { 3789 struct address_space *mapping = folio->mapping; 3790 struct zap_details details = { }; 3791 pgoff_t first_index; 3792 pgoff_t last_index; 3793 3794 VM_BUG_ON(!folio_test_locked(folio)); 3795 3796 first_index = folio->index; 3797 last_index = folio_next_index(folio) - 1; 3798 3799 details.even_cows = false; 3800 details.single_folio = folio; 3801 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3802 3803 i_mmap_lock_read(mapping); 3804 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3805 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3806 last_index, &details); 3807 i_mmap_unlock_read(mapping); 3808 } 3809 3810 /** 3811 * unmap_mapping_pages() - Unmap pages from processes. 3812 * @mapping: The address space containing pages to be unmapped. 3813 * @start: Index of first page to be unmapped. 3814 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3815 * @even_cows: Whether to unmap even private COWed pages. 3816 * 3817 * Unmap the pages in this address space from any userspace process which 3818 * has them mmaped. Generally, you want to remove COWed pages as well when 3819 * a file is being truncated, but not when invalidating pages from the page 3820 * cache. 3821 */ 3822 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3823 pgoff_t nr, bool even_cows) 3824 { 3825 struct zap_details details = { }; 3826 pgoff_t first_index = start; 3827 pgoff_t last_index = start + nr - 1; 3828 3829 details.even_cows = even_cows; 3830 if (last_index < first_index) 3831 last_index = ULONG_MAX; 3832 3833 i_mmap_lock_read(mapping); 3834 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3835 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3836 last_index, &details); 3837 i_mmap_unlock_read(mapping); 3838 } 3839 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3840 3841 /** 3842 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3843 * address_space corresponding to the specified byte range in the underlying 3844 * file. 3845 * 3846 * @mapping: the address space containing mmaps to be unmapped. 3847 * @holebegin: byte in first page to unmap, relative to the start of 3848 * the underlying file. This will be rounded down to a PAGE_SIZE 3849 * boundary. Note that this is different from truncate_pagecache(), which 3850 * must keep the partial page. In contrast, we must get rid of 3851 * partial pages. 3852 * @holelen: size of prospective hole in bytes. This will be rounded 3853 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3854 * end of the file. 3855 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3856 * but 0 when invalidating pagecache, don't throw away private data. 3857 */ 3858 void unmap_mapping_range(struct address_space *mapping, 3859 loff_t const holebegin, loff_t const holelen, int even_cows) 3860 { 3861 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3862 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3863 3864 /* Check for overflow. */ 3865 if (sizeof(holelen) > sizeof(hlen)) { 3866 long long holeend = 3867 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3868 if (holeend & ~(long long)ULONG_MAX) 3869 hlen = ULONG_MAX - hba + 1; 3870 } 3871 3872 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3873 } 3874 EXPORT_SYMBOL(unmap_mapping_range); 3875 3876 /* 3877 * Restore a potential device exclusive pte to a working pte entry 3878 */ 3879 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3880 { 3881 struct folio *folio = page_folio(vmf->page); 3882 struct vm_area_struct *vma = vmf->vma; 3883 struct mmu_notifier_range range; 3884 vm_fault_t ret; 3885 3886 /* 3887 * We need a reference to lock the folio because we don't hold 3888 * the PTL so a racing thread can remove the device-exclusive 3889 * entry and unmap it. If the folio is free the entry must 3890 * have been removed already. If it happens to have already 3891 * been re-allocated after being freed all we do is lock and 3892 * unlock it. 3893 */ 3894 if (!folio_try_get(folio)) 3895 return 0; 3896 3897 ret = folio_lock_or_retry(folio, vmf); 3898 if (ret) { 3899 folio_put(folio); 3900 return ret; 3901 } 3902 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3903 vma->vm_mm, vmf->address & PAGE_MASK, 3904 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3905 mmu_notifier_invalidate_range_start(&range); 3906 3907 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3908 &vmf->ptl); 3909 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3910 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3911 3912 if (vmf->pte) 3913 pte_unmap_unlock(vmf->pte, vmf->ptl); 3914 folio_unlock(folio); 3915 folio_put(folio); 3916 3917 mmu_notifier_invalidate_range_end(&range); 3918 return 0; 3919 } 3920 3921 static inline bool should_try_to_free_swap(struct folio *folio, 3922 struct vm_area_struct *vma, 3923 unsigned int fault_flags) 3924 { 3925 if (!folio_test_swapcache(folio)) 3926 return false; 3927 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3928 folio_test_mlocked(folio)) 3929 return true; 3930 /* 3931 * If we want to map a page that's in the swapcache writable, we 3932 * have to detect via the refcount if we're really the exclusive 3933 * user. Try freeing the swapcache to get rid of the swapcache 3934 * reference only in case it's likely that we'll be the exlusive user. 3935 */ 3936 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3937 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 3938 } 3939 3940 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3941 { 3942 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3943 vmf->address, &vmf->ptl); 3944 if (!vmf->pte) 3945 return 0; 3946 /* 3947 * Be careful so that we will only recover a special uffd-wp pte into a 3948 * none pte. Otherwise it means the pte could have changed, so retry. 3949 * 3950 * This should also cover the case where e.g. the pte changed 3951 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3952 * So is_pte_marker() check is not enough to safely drop the pte. 3953 */ 3954 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3955 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3956 pte_unmap_unlock(vmf->pte, vmf->ptl); 3957 return 0; 3958 } 3959 3960 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3961 { 3962 if (vma_is_anonymous(vmf->vma)) 3963 return do_anonymous_page(vmf); 3964 else 3965 return do_fault(vmf); 3966 } 3967 3968 /* 3969 * This is actually a page-missing access, but with uffd-wp special pte 3970 * installed. It means this pte was wr-protected before being unmapped. 3971 */ 3972 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3973 { 3974 /* 3975 * Just in case there're leftover special ptes even after the region 3976 * got unregistered - we can simply clear them. 3977 */ 3978 if (unlikely(!userfaultfd_wp(vmf->vma))) 3979 return pte_marker_clear(vmf); 3980 3981 return do_pte_missing(vmf); 3982 } 3983 3984 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3985 { 3986 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3987 unsigned long marker = pte_marker_get(entry); 3988 3989 /* 3990 * PTE markers should never be empty. If anything weird happened, 3991 * the best thing to do is to kill the process along with its mm. 3992 */ 3993 if (WARN_ON_ONCE(!marker)) 3994 return VM_FAULT_SIGBUS; 3995 3996 /* Higher priority than uffd-wp when data corrupted */ 3997 if (marker & PTE_MARKER_POISONED) 3998 return VM_FAULT_HWPOISON; 3999 4000 if (pte_marker_entry_uffd_wp(entry)) 4001 return pte_marker_handle_uffd_wp(vmf); 4002 4003 /* This is an unknown pte marker */ 4004 return VM_FAULT_SIGBUS; 4005 } 4006 4007 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4008 { 4009 struct vm_area_struct *vma = vmf->vma; 4010 struct folio *folio; 4011 swp_entry_t entry; 4012 4013 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 4014 vmf->address, false); 4015 if (!folio) 4016 return NULL; 4017 4018 entry = pte_to_swp_entry(vmf->orig_pte); 4019 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4020 GFP_KERNEL, entry)) { 4021 folio_put(folio); 4022 return NULL; 4023 } 4024 4025 return folio; 4026 } 4027 4028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4029 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4030 { 4031 struct swap_info_struct *si = swp_swap_info(entry); 4032 pgoff_t offset = swp_offset(entry); 4033 int i; 4034 4035 /* 4036 * While allocating a large folio and doing swap_read_folio, which is 4037 * the case the being faulted pte doesn't have swapcache. We need to 4038 * ensure all PTEs have no cache as well, otherwise, we might go to 4039 * swap devices while the content is in swapcache. 4040 */ 4041 for (i = 0; i < max_nr; i++) { 4042 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4043 return i; 4044 } 4045 4046 return i; 4047 } 4048 4049 /* 4050 * Check if the PTEs within a range are contiguous swap entries 4051 * and have consistent swapcache, zeromap. 4052 */ 4053 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4054 { 4055 unsigned long addr; 4056 swp_entry_t entry; 4057 int idx; 4058 pte_t pte; 4059 4060 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4061 idx = (vmf->address - addr) / PAGE_SIZE; 4062 pte = ptep_get(ptep); 4063 4064 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4065 return false; 4066 entry = pte_to_swp_entry(pte); 4067 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4068 return false; 4069 4070 /* 4071 * swap_read_folio() can't handle the case a large folio is hybridly 4072 * from different backends. And they are likely corner cases. Similar 4073 * things might be added once zswap support large folios. 4074 */ 4075 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4076 return false; 4077 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4078 return false; 4079 4080 return true; 4081 } 4082 4083 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4084 unsigned long addr, 4085 unsigned long orders) 4086 { 4087 int order, nr; 4088 4089 order = highest_order(orders); 4090 4091 /* 4092 * To swap in a THP with nr pages, we require that its first swap_offset 4093 * is aligned with that number, as it was when the THP was swapped out. 4094 * This helps filter out most invalid entries. 4095 */ 4096 while (orders) { 4097 nr = 1 << order; 4098 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4099 break; 4100 order = next_order(&orders, order); 4101 } 4102 4103 return orders; 4104 } 4105 4106 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4107 { 4108 struct vm_area_struct *vma = vmf->vma; 4109 unsigned long orders; 4110 struct folio *folio; 4111 unsigned long addr; 4112 swp_entry_t entry; 4113 spinlock_t *ptl; 4114 pte_t *pte; 4115 gfp_t gfp; 4116 int order; 4117 4118 /* 4119 * If uffd is active for the vma we need per-page fault fidelity to 4120 * maintain the uffd semantics. 4121 */ 4122 if (unlikely(userfaultfd_armed(vma))) 4123 goto fallback; 4124 4125 /* 4126 * A large swapped out folio could be partially or fully in zswap. We 4127 * lack handling for such cases, so fallback to swapping in order-0 4128 * folio. 4129 */ 4130 if (!zswap_never_enabled()) 4131 goto fallback; 4132 4133 entry = pte_to_swp_entry(vmf->orig_pte); 4134 /* 4135 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4136 * and suitable for swapping THP. 4137 */ 4138 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4139 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4140 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4141 orders = thp_swap_suitable_orders(swp_offset(entry), 4142 vmf->address, orders); 4143 4144 if (!orders) 4145 goto fallback; 4146 4147 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4148 vmf->address & PMD_MASK, &ptl); 4149 if (unlikely(!pte)) 4150 goto fallback; 4151 4152 /* 4153 * For do_swap_page, find the highest order where the aligned range is 4154 * completely swap entries with contiguous swap offsets. 4155 */ 4156 order = highest_order(orders); 4157 while (orders) { 4158 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4159 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4160 break; 4161 order = next_order(&orders, order); 4162 } 4163 4164 pte_unmap_unlock(pte, ptl); 4165 4166 /* Try allocating the highest of the remaining orders. */ 4167 gfp = vma_thp_gfp_mask(vma); 4168 while (orders) { 4169 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4170 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4171 if (folio) { 4172 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4173 gfp, entry)) 4174 return folio; 4175 folio_put(folio); 4176 } 4177 order = next_order(&orders, order); 4178 } 4179 4180 fallback: 4181 return __alloc_swap_folio(vmf); 4182 } 4183 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4184 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4185 { 4186 return __alloc_swap_folio(vmf); 4187 } 4188 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4189 4190 /* 4191 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4192 * but allow concurrent faults), and pte mapped but not yet locked. 4193 * We return with pte unmapped and unlocked. 4194 * 4195 * We return with the mmap_lock locked or unlocked in the same cases 4196 * as does filemap_fault(). 4197 */ 4198 vm_fault_t do_swap_page(struct vm_fault *vmf) 4199 { 4200 struct vm_area_struct *vma = vmf->vma; 4201 struct folio *swapcache, *folio = NULL; 4202 struct page *page; 4203 struct swap_info_struct *si = NULL; 4204 rmap_t rmap_flags = RMAP_NONE; 4205 bool need_clear_cache = false; 4206 bool exclusive = false; 4207 swp_entry_t entry; 4208 pte_t pte; 4209 vm_fault_t ret = 0; 4210 void *shadow = NULL; 4211 int nr_pages; 4212 unsigned long page_idx; 4213 unsigned long address; 4214 pte_t *ptep; 4215 4216 if (!pte_unmap_same(vmf)) 4217 goto out; 4218 4219 entry = pte_to_swp_entry(vmf->orig_pte); 4220 if (unlikely(non_swap_entry(entry))) { 4221 if (is_migration_entry(entry)) { 4222 migration_entry_wait(vma->vm_mm, vmf->pmd, 4223 vmf->address); 4224 } else if (is_device_exclusive_entry(entry)) { 4225 vmf->page = pfn_swap_entry_to_page(entry); 4226 ret = remove_device_exclusive_entry(vmf); 4227 } else if (is_device_private_entry(entry)) { 4228 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4229 /* 4230 * migrate_to_ram is not yet ready to operate 4231 * under VMA lock. 4232 */ 4233 vma_end_read(vma); 4234 ret = VM_FAULT_RETRY; 4235 goto out; 4236 } 4237 4238 vmf->page = pfn_swap_entry_to_page(entry); 4239 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4240 vmf->address, &vmf->ptl); 4241 if (unlikely(!vmf->pte || 4242 !pte_same(ptep_get(vmf->pte), 4243 vmf->orig_pte))) 4244 goto unlock; 4245 4246 /* 4247 * Get a page reference while we know the page can't be 4248 * freed. 4249 */ 4250 get_page(vmf->page); 4251 pte_unmap_unlock(vmf->pte, vmf->ptl); 4252 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4253 put_page(vmf->page); 4254 } else if (is_hwpoison_entry(entry)) { 4255 ret = VM_FAULT_HWPOISON; 4256 } else if (is_pte_marker_entry(entry)) { 4257 ret = handle_pte_marker(vmf); 4258 } else { 4259 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4260 ret = VM_FAULT_SIGBUS; 4261 } 4262 goto out; 4263 } 4264 4265 /* Prevent swapoff from happening to us. */ 4266 si = get_swap_device(entry); 4267 if (unlikely(!si)) 4268 goto out; 4269 4270 folio = swap_cache_get_folio(entry, vma, vmf->address); 4271 if (folio) 4272 page = folio_file_page(folio, swp_offset(entry)); 4273 swapcache = folio; 4274 4275 if (!folio) { 4276 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4277 __swap_count(entry) == 1) { 4278 /* skip swapcache */ 4279 folio = alloc_swap_folio(vmf); 4280 if (folio) { 4281 __folio_set_locked(folio); 4282 __folio_set_swapbacked(folio); 4283 4284 nr_pages = folio_nr_pages(folio); 4285 if (folio_test_large(folio)) 4286 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4287 /* 4288 * Prevent parallel swapin from proceeding with 4289 * the cache flag. Otherwise, another thread 4290 * may finish swapin first, free the entry, and 4291 * swapout reusing the same entry. It's 4292 * undetectable as pte_same() returns true due 4293 * to entry reuse. 4294 */ 4295 if (swapcache_prepare(entry, nr_pages)) { 4296 /* 4297 * Relax a bit to prevent rapid 4298 * repeated page faults. 4299 */ 4300 schedule_timeout_uninterruptible(1); 4301 goto out_page; 4302 } 4303 need_clear_cache = true; 4304 4305 mem_cgroup_swapin_uncharge_swap(entry, nr_pages); 4306 4307 shadow = get_shadow_from_swap_cache(entry); 4308 if (shadow) 4309 workingset_refault(folio, shadow); 4310 4311 folio_add_lru(folio); 4312 4313 /* To provide entry to swap_read_folio() */ 4314 folio->swap = entry; 4315 swap_read_folio(folio, NULL); 4316 folio->private = NULL; 4317 } 4318 } else { 4319 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4320 vmf); 4321 swapcache = folio; 4322 } 4323 4324 if (!folio) { 4325 /* 4326 * Back out if somebody else faulted in this pte 4327 * while we released the pte lock. 4328 */ 4329 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4330 vmf->address, &vmf->ptl); 4331 if (likely(vmf->pte && 4332 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4333 ret = VM_FAULT_OOM; 4334 goto unlock; 4335 } 4336 4337 /* Had to read the page from swap area: Major fault */ 4338 ret = VM_FAULT_MAJOR; 4339 count_vm_event(PGMAJFAULT); 4340 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4341 page = folio_file_page(folio, swp_offset(entry)); 4342 } else if (PageHWPoison(page)) { 4343 /* 4344 * hwpoisoned dirty swapcache pages are kept for killing 4345 * owner processes (which may be unknown at hwpoison time) 4346 */ 4347 ret = VM_FAULT_HWPOISON; 4348 goto out_release; 4349 } 4350 4351 ret |= folio_lock_or_retry(folio, vmf); 4352 if (ret & VM_FAULT_RETRY) 4353 goto out_release; 4354 4355 if (swapcache) { 4356 /* 4357 * Make sure folio_free_swap() or swapoff did not release the 4358 * swapcache from under us. The page pin, and pte_same test 4359 * below, are not enough to exclude that. Even if it is still 4360 * swapcache, we need to check that the page's swap has not 4361 * changed. 4362 */ 4363 if (unlikely(!folio_test_swapcache(folio) || 4364 page_swap_entry(page).val != entry.val)) 4365 goto out_page; 4366 4367 /* 4368 * KSM sometimes has to copy on read faults, for example, if 4369 * page->index of !PageKSM() pages would be nonlinear inside the 4370 * anon VMA -- PageKSM() is lost on actual swapout. 4371 */ 4372 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4373 if (unlikely(!folio)) { 4374 ret = VM_FAULT_OOM; 4375 folio = swapcache; 4376 goto out_page; 4377 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4378 ret = VM_FAULT_HWPOISON; 4379 folio = swapcache; 4380 goto out_page; 4381 } 4382 if (folio != swapcache) 4383 page = folio_page(folio, 0); 4384 4385 /* 4386 * If we want to map a page that's in the swapcache writable, we 4387 * have to detect via the refcount if we're really the exclusive 4388 * owner. Try removing the extra reference from the local LRU 4389 * caches if required. 4390 */ 4391 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4392 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4393 lru_add_drain(); 4394 } 4395 4396 folio_throttle_swaprate(folio, GFP_KERNEL); 4397 4398 /* 4399 * Back out if somebody else already faulted in this pte. 4400 */ 4401 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4402 &vmf->ptl); 4403 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4404 goto out_nomap; 4405 4406 if (unlikely(!folio_test_uptodate(folio))) { 4407 ret = VM_FAULT_SIGBUS; 4408 goto out_nomap; 4409 } 4410 4411 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4412 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4413 unsigned long nr = folio_nr_pages(folio); 4414 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4415 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4416 pte_t *folio_ptep = vmf->pte - idx; 4417 pte_t folio_pte = ptep_get(folio_ptep); 4418 4419 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4420 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4421 goto out_nomap; 4422 4423 page_idx = idx; 4424 address = folio_start; 4425 ptep = folio_ptep; 4426 goto check_folio; 4427 } 4428 4429 nr_pages = 1; 4430 page_idx = 0; 4431 address = vmf->address; 4432 ptep = vmf->pte; 4433 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4434 int nr = folio_nr_pages(folio); 4435 unsigned long idx = folio_page_idx(folio, page); 4436 unsigned long folio_start = address - idx * PAGE_SIZE; 4437 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4438 pte_t *folio_ptep; 4439 pte_t folio_pte; 4440 4441 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4442 goto check_folio; 4443 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4444 goto check_folio; 4445 4446 folio_ptep = vmf->pte - idx; 4447 folio_pte = ptep_get(folio_ptep); 4448 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4449 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4450 goto check_folio; 4451 4452 page_idx = idx; 4453 address = folio_start; 4454 ptep = folio_ptep; 4455 nr_pages = nr; 4456 entry = folio->swap; 4457 page = &folio->page; 4458 } 4459 4460 check_folio: 4461 /* 4462 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4463 * must never point at an anonymous page in the swapcache that is 4464 * PG_anon_exclusive. Sanity check that this holds and especially, that 4465 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4466 * check after taking the PT lock and making sure that nobody 4467 * concurrently faulted in this page and set PG_anon_exclusive. 4468 */ 4469 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4470 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4471 4472 /* 4473 * Check under PT lock (to protect against concurrent fork() sharing 4474 * the swap entry concurrently) for certainly exclusive pages. 4475 */ 4476 if (!folio_test_ksm(folio)) { 4477 exclusive = pte_swp_exclusive(vmf->orig_pte); 4478 if (folio != swapcache) { 4479 /* 4480 * We have a fresh page that is not exposed to the 4481 * swapcache -> certainly exclusive. 4482 */ 4483 exclusive = true; 4484 } else if (exclusive && folio_test_writeback(folio) && 4485 data_race(si->flags & SWP_STABLE_WRITES)) { 4486 /* 4487 * This is tricky: not all swap backends support 4488 * concurrent page modifications while under writeback. 4489 * 4490 * So if we stumble over such a page in the swapcache 4491 * we must not set the page exclusive, otherwise we can 4492 * map it writable without further checks and modify it 4493 * while still under writeback. 4494 * 4495 * For these problematic swap backends, simply drop the 4496 * exclusive marker: this is perfectly fine as we start 4497 * writeback only if we fully unmapped the page and 4498 * there are no unexpected references on the page after 4499 * unmapping succeeded. After fully unmapped, no 4500 * further GUP references (FOLL_GET and FOLL_PIN) can 4501 * appear, so dropping the exclusive marker and mapping 4502 * it only R/O is fine. 4503 */ 4504 exclusive = false; 4505 } 4506 } 4507 4508 /* 4509 * Some architectures may have to restore extra metadata to the page 4510 * when reading from swap. This metadata may be indexed by swap entry 4511 * so this must be called before swap_free(). 4512 */ 4513 arch_swap_restore(folio_swap(entry, folio), folio); 4514 4515 /* 4516 * Remove the swap entry and conditionally try to free up the swapcache. 4517 * We're already holding a reference on the page but haven't mapped it 4518 * yet. 4519 */ 4520 swap_free_nr(entry, nr_pages); 4521 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4522 folio_free_swap(folio); 4523 4524 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4525 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4526 pte = mk_pte(page, vma->vm_page_prot); 4527 if (pte_swp_soft_dirty(vmf->orig_pte)) 4528 pte = pte_mksoft_dirty(pte); 4529 if (pte_swp_uffd_wp(vmf->orig_pte)) 4530 pte = pte_mkuffd_wp(pte); 4531 4532 /* 4533 * Same logic as in do_wp_page(); however, optimize for pages that are 4534 * certainly not shared either because we just allocated them without 4535 * exposing them to the swapcache or because the swap entry indicates 4536 * exclusivity. 4537 */ 4538 if (!folio_test_ksm(folio) && 4539 (exclusive || folio_ref_count(folio) == 1)) { 4540 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4541 !pte_needs_soft_dirty_wp(vma, pte)) { 4542 pte = pte_mkwrite(pte, vma); 4543 if (vmf->flags & FAULT_FLAG_WRITE) { 4544 pte = pte_mkdirty(pte); 4545 vmf->flags &= ~FAULT_FLAG_WRITE; 4546 } 4547 } 4548 rmap_flags |= RMAP_EXCLUSIVE; 4549 } 4550 folio_ref_add(folio, nr_pages - 1); 4551 flush_icache_pages(vma, page, nr_pages); 4552 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4553 4554 /* ksm created a completely new copy */ 4555 if (unlikely(folio != swapcache && swapcache)) { 4556 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4557 folio_add_lru_vma(folio, vma); 4558 } else if (!folio_test_anon(folio)) { 4559 /* 4560 * We currently only expect small !anon folios which are either 4561 * fully exclusive or fully shared, or new allocated large 4562 * folios which are fully exclusive. If we ever get large 4563 * folios within swapcache here, we have to be careful. 4564 */ 4565 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4566 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4567 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4568 } else { 4569 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4570 rmap_flags); 4571 } 4572 4573 VM_BUG_ON(!folio_test_anon(folio) || 4574 (pte_write(pte) && !PageAnonExclusive(page))); 4575 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4576 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4577 pte, pte, nr_pages); 4578 4579 folio_unlock(folio); 4580 if (folio != swapcache && swapcache) { 4581 /* 4582 * Hold the lock to avoid the swap entry to be reused 4583 * until we take the PT lock for the pte_same() check 4584 * (to avoid false positives from pte_same). For 4585 * further safety release the lock after the swap_free 4586 * so that the swap count won't change under a 4587 * parallel locked swapcache. 4588 */ 4589 folio_unlock(swapcache); 4590 folio_put(swapcache); 4591 } 4592 4593 if (vmf->flags & FAULT_FLAG_WRITE) { 4594 ret |= do_wp_page(vmf); 4595 if (ret & VM_FAULT_ERROR) 4596 ret &= VM_FAULT_ERROR; 4597 goto out; 4598 } 4599 4600 /* No need to invalidate - it was non-present before */ 4601 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4602 unlock: 4603 if (vmf->pte) 4604 pte_unmap_unlock(vmf->pte, vmf->ptl); 4605 out: 4606 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4607 if (need_clear_cache) 4608 swapcache_clear(si, entry, nr_pages); 4609 if (si) 4610 put_swap_device(si); 4611 return ret; 4612 out_nomap: 4613 if (vmf->pte) 4614 pte_unmap_unlock(vmf->pte, vmf->ptl); 4615 out_page: 4616 folio_unlock(folio); 4617 out_release: 4618 folio_put(folio); 4619 if (folio != swapcache && swapcache) { 4620 folio_unlock(swapcache); 4621 folio_put(swapcache); 4622 } 4623 if (need_clear_cache) 4624 swapcache_clear(si, entry, nr_pages); 4625 if (si) 4626 put_swap_device(si); 4627 return ret; 4628 } 4629 4630 static bool pte_range_none(pte_t *pte, int nr_pages) 4631 { 4632 int i; 4633 4634 for (i = 0; i < nr_pages; i++) { 4635 if (!pte_none(ptep_get_lockless(pte + i))) 4636 return false; 4637 } 4638 4639 return true; 4640 } 4641 4642 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4643 { 4644 struct vm_area_struct *vma = vmf->vma; 4645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4646 unsigned long orders; 4647 struct folio *folio; 4648 unsigned long addr; 4649 pte_t *pte; 4650 gfp_t gfp; 4651 int order; 4652 4653 /* 4654 * If uffd is active for the vma we need per-page fault fidelity to 4655 * maintain the uffd semantics. 4656 */ 4657 if (unlikely(userfaultfd_armed(vma))) 4658 goto fallback; 4659 4660 /* 4661 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4662 * for this vma. Then filter out the orders that can't be allocated over 4663 * the faulting address and still be fully contained in the vma. 4664 */ 4665 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4666 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4667 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4668 4669 if (!orders) 4670 goto fallback; 4671 4672 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4673 if (!pte) 4674 return ERR_PTR(-EAGAIN); 4675 4676 /* 4677 * Find the highest order where the aligned range is completely 4678 * pte_none(). Note that all remaining orders will be completely 4679 * pte_none(). 4680 */ 4681 order = highest_order(orders); 4682 while (orders) { 4683 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4684 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4685 break; 4686 order = next_order(&orders, order); 4687 } 4688 4689 pte_unmap(pte); 4690 4691 if (!orders) 4692 goto fallback; 4693 4694 /* Try allocating the highest of the remaining orders. */ 4695 gfp = vma_thp_gfp_mask(vma); 4696 while (orders) { 4697 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4698 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4699 if (folio) { 4700 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4701 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4702 folio_put(folio); 4703 goto next; 4704 } 4705 folio_throttle_swaprate(folio, gfp); 4706 folio_zero_user(folio, vmf->address); 4707 return folio; 4708 } 4709 next: 4710 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4711 order = next_order(&orders, order); 4712 } 4713 4714 fallback: 4715 #endif 4716 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4717 } 4718 4719 /* 4720 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4721 * but allow concurrent faults), and pte mapped but not yet locked. 4722 * We return with mmap_lock still held, but pte unmapped and unlocked. 4723 */ 4724 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4725 { 4726 struct vm_area_struct *vma = vmf->vma; 4727 unsigned long addr = vmf->address; 4728 struct folio *folio; 4729 vm_fault_t ret = 0; 4730 int nr_pages = 1; 4731 pte_t entry; 4732 4733 /* File mapping without ->vm_ops ? */ 4734 if (vma->vm_flags & VM_SHARED) 4735 return VM_FAULT_SIGBUS; 4736 4737 /* 4738 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4739 * be distinguished from a transient failure of pte_offset_map(). 4740 */ 4741 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4742 return VM_FAULT_OOM; 4743 4744 /* Use the zero-page for reads */ 4745 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4746 !mm_forbids_zeropage(vma->vm_mm)) { 4747 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4748 vma->vm_page_prot)); 4749 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4750 vmf->address, &vmf->ptl); 4751 if (!vmf->pte) 4752 goto unlock; 4753 if (vmf_pte_changed(vmf)) { 4754 update_mmu_tlb(vma, vmf->address, vmf->pte); 4755 goto unlock; 4756 } 4757 ret = check_stable_address_space(vma->vm_mm); 4758 if (ret) 4759 goto unlock; 4760 /* Deliver the page fault to userland, check inside PT lock */ 4761 if (userfaultfd_missing(vma)) { 4762 pte_unmap_unlock(vmf->pte, vmf->ptl); 4763 return handle_userfault(vmf, VM_UFFD_MISSING); 4764 } 4765 goto setpte; 4766 } 4767 4768 /* Allocate our own private page. */ 4769 ret = vmf_anon_prepare(vmf); 4770 if (ret) 4771 return ret; 4772 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4773 folio = alloc_anon_folio(vmf); 4774 if (IS_ERR(folio)) 4775 return 0; 4776 if (!folio) 4777 goto oom; 4778 4779 nr_pages = folio_nr_pages(folio); 4780 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4781 4782 /* 4783 * The memory barrier inside __folio_mark_uptodate makes sure that 4784 * preceding stores to the page contents become visible before 4785 * the set_pte_at() write. 4786 */ 4787 __folio_mark_uptodate(folio); 4788 4789 entry = mk_pte(&folio->page, vma->vm_page_prot); 4790 entry = pte_sw_mkyoung(entry); 4791 if (vma->vm_flags & VM_WRITE) 4792 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4793 4794 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4795 if (!vmf->pte) 4796 goto release; 4797 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4798 update_mmu_tlb(vma, addr, vmf->pte); 4799 goto release; 4800 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4801 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 4802 goto release; 4803 } 4804 4805 ret = check_stable_address_space(vma->vm_mm); 4806 if (ret) 4807 goto release; 4808 4809 /* Deliver the page fault to userland, check inside PT lock */ 4810 if (userfaultfd_missing(vma)) { 4811 pte_unmap_unlock(vmf->pte, vmf->ptl); 4812 folio_put(folio); 4813 return handle_userfault(vmf, VM_UFFD_MISSING); 4814 } 4815 4816 folio_ref_add(folio, nr_pages - 1); 4817 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4818 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4819 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 4820 folio_add_lru_vma(folio, vma); 4821 setpte: 4822 if (vmf_orig_pte_uffd_wp(vmf)) 4823 entry = pte_mkuffd_wp(entry); 4824 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4825 4826 /* No need to invalidate - it was non-present before */ 4827 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4828 unlock: 4829 if (vmf->pte) 4830 pte_unmap_unlock(vmf->pte, vmf->ptl); 4831 return ret; 4832 release: 4833 folio_put(folio); 4834 goto unlock; 4835 oom: 4836 return VM_FAULT_OOM; 4837 } 4838 4839 /* 4840 * The mmap_lock must have been held on entry, and may have been 4841 * released depending on flags and vma->vm_ops->fault() return value. 4842 * See filemap_fault() and __lock_page_retry(). 4843 */ 4844 static vm_fault_t __do_fault(struct vm_fault *vmf) 4845 { 4846 struct vm_area_struct *vma = vmf->vma; 4847 struct folio *folio; 4848 vm_fault_t ret; 4849 4850 /* 4851 * Preallocate pte before we take page_lock because this might lead to 4852 * deadlocks for memcg reclaim which waits for pages under writeback: 4853 * lock_page(A) 4854 * SetPageWriteback(A) 4855 * unlock_page(A) 4856 * lock_page(B) 4857 * lock_page(B) 4858 * pte_alloc_one 4859 * shrink_folio_list 4860 * wait_on_page_writeback(A) 4861 * SetPageWriteback(B) 4862 * unlock_page(B) 4863 * # flush A, B to clear the writeback 4864 */ 4865 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4866 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4867 if (!vmf->prealloc_pte) 4868 return VM_FAULT_OOM; 4869 } 4870 4871 ret = vma->vm_ops->fault(vmf); 4872 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4873 VM_FAULT_DONE_COW))) 4874 return ret; 4875 4876 folio = page_folio(vmf->page); 4877 if (unlikely(PageHWPoison(vmf->page))) { 4878 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4879 if (ret & VM_FAULT_LOCKED) { 4880 if (page_mapped(vmf->page)) 4881 unmap_mapping_folio(folio); 4882 /* Retry if a clean folio was removed from the cache. */ 4883 if (mapping_evict_folio(folio->mapping, folio)) 4884 poisonret = VM_FAULT_NOPAGE; 4885 folio_unlock(folio); 4886 } 4887 folio_put(folio); 4888 vmf->page = NULL; 4889 return poisonret; 4890 } 4891 4892 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4893 folio_lock(folio); 4894 else 4895 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4896 4897 return ret; 4898 } 4899 4900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4901 static void deposit_prealloc_pte(struct vm_fault *vmf) 4902 { 4903 struct vm_area_struct *vma = vmf->vma; 4904 4905 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4906 /* 4907 * We are going to consume the prealloc table, 4908 * count that as nr_ptes. 4909 */ 4910 mm_inc_nr_ptes(vma->vm_mm); 4911 vmf->prealloc_pte = NULL; 4912 } 4913 4914 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4915 { 4916 struct folio *folio = page_folio(page); 4917 struct vm_area_struct *vma = vmf->vma; 4918 bool write = vmf->flags & FAULT_FLAG_WRITE; 4919 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4920 pmd_t entry; 4921 vm_fault_t ret = VM_FAULT_FALLBACK; 4922 4923 /* 4924 * It is too late to allocate a small folio, we already have a large 4925 * folio in the pagecache: especially s390 KVM cannot tolerate any 4926 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 4927 * PMD mappings if THPs are disabled. 4928 */ 4929 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 4930 return ret; 4931 4932 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4933 return ret; 4934 4935 if (folio_order(folio) != HPAGE_PMD_ORDER) 4936 return ret; 4937 page = &folio->page; 4938 4939 /* 4940 * Just backoff if any subpage of a THP is corrupted otherwise 4941 * the corrupted page may mapped by PMD silently to escape the 4942 * check. This kind of THP just can be PTE mapped. Access to 4943 * the corrupted subpage should trigger SIGBUS as expected. 4944 */ 4945 if (unlikely(folio_test_has_hwpoisoned(folio))) 4946 return ret; 4947 4948 /* 4949 * Archs like ppc64 need additional space to store information 4950 * related to pte entry. Use the preallocated table for that. 4951 */ 4952 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4953 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4954 if (!vmf->prealloc_pte) 4955 return VM_FAULT_OOM; 4956 } 4957 4958 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4959 if (unlikely(!pmd_none(*vmf->pmd))) 4960 goto out; 4961 4962 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4963 4964 entry = mk_huge_pmd(page, vma->vm_page_prot); 4965 if (write) 4966 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4967 4968 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 4969 folio_add_file_rmap_pmd(folio, page, vma); 4970 4971 /* 4972 * deposit and withdraw with pmd lock held 4973 */ 4974 if (arch_needs_pgtable_deposit()) 4975 deposit_prealloc_pte(vmf); 4976 4977 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4978 4979 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4980 4981 /* fault is handled */ 4982 ret = 0; 4983 count_vm_event(THP_FILE_MAPPED); 4984 out: 4985 spin_unlock(vmf->ptl); 4986 return ret; 4987 } 4988 #else 4989 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4990 { 4991 return VM_FAULT_FALLBACK; 4992 } 4993 #endif 4994 4995 /** 4996 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4997 * @vmf: Fault decription. 4998 * @folio: The folio that contains @page. 4999 * @page: The first page to create a PTE for. 5000 * @nr: The number of PTEs to create. 5001 * @addr: The first address to create a PTE for. 5002 */ 5003 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5004 struct page *page, unsigned int nr, unsigned long addr) 5005 { 5006 struct vm_area_struct *vma = vmf->vma; 5007 bool write = vmf->flags & FAULT_FLAG_WRITE; 5008 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5009 pte_t entry; 5010 5011 flush_icache_pages(vma, page, nr); 5012 entry = mk_pte(page, vma->vm_page_prot); 5013 5014 if (prefault && arch_wants_old_prefaulted_pte()) 5015 entry = pte_mkold(entry); 5016 else 5017 entry = pte_sw_mkyoung(entry); 5018 5019 if (write) 5020 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5021 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5022 entry = pte_mkuffd_wp(entry); 5023 /* copy-on-write page */ 5024 if (write && !(vma->vm_flags & VM_SHARED)) { 5025 VM_BUG_ON_FOLIO(nr != 1, folio); 5026 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5027 folio_add_lru_vma(folio, vma); 5028 } else { 5029 folio_add_file_rmap_ptes(folio, page, nr, vma); 5030 } 5031 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5032 5033 /* no need to invalidate: a not-present page won't be cached */ 5034 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5035 } 5036 5037 static bool vmf_pte_changed(struct vm_fault *vmf) 5038 { 5039 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5040 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5041 5042 return !pte_none(ptep_get(vmf->pte)); 5043 } 5044 5045 /** 5046 * finish_fault - finish page fault once we have prepared the page to fault 5047 * 5048 * @vmf: structure describing the fault 5049 * 5050 * This function handles all that is needed to finish a page fault once the 5051 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5052 * given page, adds reverse page mapping, handles memcg charges and LRU 5053 * addition. 5054 * 5055 * The function expects the page to be locked and on success it consumes a 5056 * reference of a page being mapped (for the PTE which maps it). 5057 * 5058 * Return: %0 on success, %VM_FAULT_ code in case of error. 5059 */ 5060 vm_fault_t finish_fault(struct vm_fault *vmf) 5061 { 5062 struct vm_area_struct *vma = vmf->vma; 5063 struct page *page; 5064 struct folio *folio; 5065 vm_fault_t ret; 5066 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5067 !(vma->vm_flags & VM_SHARED); 5068 int type, nr_pages; 5069 unsigned long addr = vmf->address; 5070 5071 /* Did we COW the page? */ 5072 if (is_cow) 5073 page = vmf->cow_page; 5074 else 5075 page = vmf->page; 5076 5077 /* 5078 * check even for read faults because we might have lost our CoWed 5079 * page 5080 */ 5081 if (!(vma->vm_flags & VM_SHARED)) { 5082 ret = check_stable_address_space(vma->vm_mm); 5083 if (ret) 5084 return ret; 5085 } 5086 5087 if (pmd_none(*vmf->pmd)) { 5088 if (PageTransCompound(page)) { 5089 ret = do_set_pmd(vmf, page); 5090 if (ret != VM_FAULT_FALLBACK) 5091 return ret; 5092 } 5093 5094 if (vmf->prealloc_pte) 5095 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5096 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5097 return VM_FAULT_OOM; 5098 } 5099 5100 folio = page_folio(page); 5101 nr_pages = folio_nr_pages(folio); 5102 5103 /* 5104 * Using per-page fault to maintain the uffd semantics, and same 5105 * approach also applies to non-anonymous-shmem faults to avoid 5106 * inflating the RSS of the process. 5107 */ 5108 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) { 5109 nr_pages = 1; 5110 } else if (nr_pages > 1) { 5111 pgoff_t idx = folio_page_idx(folio, page); 5112 /* The page offset of vmf->address within the VMA. */ 5113 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5114 /* The index of the entry in the pagetable for fault page. */ 5115 pgoff_t pte_off = pte_index(vmf->address); 5116 5117 /* 5118 * Fallback to per-page fault in case the folio size in page 5119 * cache beyond the VMA limits and PMD pagetable limits. 5120 */ 5121 if (unlikely(vma_off < idx || 5122 vma_off + (nr_pages - idx) > vma_pages(vma) || 5123 pte_off < idx || 5124 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5125 nr_pages = 1; 5126 } else { 5127 /* Now we can set mappings for the whole large folio. */ 5128 addr = vmf->address - idx * PAGE_SIZE; 5129 page = &folio->page; 5130 } 5131 } 5132 5133 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5134 addr, &vmf->ptl); 5135 if (!vmf->pte) 5136 return VM_FAULT_NOPAGE; 5137 5138 /* Re-check under ptl */ 5139 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5140 update_mmu_tlb(vma, addr, vmf->pte); 5141 ret = VM_FAULT_NOPAGE; 5142 goto unlock; 5143 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5144 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5145 ret = VM_FAULT_NOPAGE; 5146 goto unlock; 5147 } 5148 5149 folio_ref_add(folio, nr_pages - 1); 5150 set_pte_range(vmf, folio, page, nr_pages, addr); 5151 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5152 add_mm_counter(vma->vm_mm, type, nr_pages); 5153 ret = 0; 5154 5155 unlock: 5156 pte_unmap_unlock(vmf->pte, vmf->ptl); 5157 return ret; 5158 } 5159 5160 static unsigned long fault_around_pages __read_mostly = 5161 65536 >> PAGE_SHIFT; 5162 5163 #ifdef CONFIG_DEBUG_FS 5164 static int fault_around_bytes_get(void *data, u64 *val) 5165 { 5166 *val = fault_around_pages << PAGE_SHIFT; 5167 return 0; 5168 } 5169 5170 /* 5171 * fault_around_bytes must be rounded down to the nearest page order as it's 5172 * what do_fault_around() expects to see. 5173 */ 5174 static int fault_around_bytes_set(void *data, u64 val) 5175 { 5176 if (val / PAGE_SIZE > PTRS_PER_PTE) 5177 return -EINVAL; 5178 5179 /* 5180 * The minimum value is 1 page, however this results in no fault-around 5181 * at all. See should_fault_around(). 5182 */ 5183 val = max(val, PAGE_SIZE); 5184 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5185 5186 return 0; 5187 } 5188 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5189 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5190 5191 static int __init fault_around_debugfs(void) 5192 { 5193 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5194 &fault_around_bytes_fops); 5195 return 0; 5196 } 5197 late_initcall(fault_around_debugfs); 5198 #endif 5199 5200 /* 5201 * do_fault_around() tries to map few pages around the fault address. The hope 5202 * is that the pages will be needed soon and this will lower the number of 5203 * faults to handle. 5204 * 5205 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5206 * not ready to be mapped: not up-to-date, locked, etc. 5207 * 5208 * This function doesn't cross VMA or page table boundaries, in order to call 5209 * map_pages() and acquire a PTE lock only once. 5210 * 5211 * fault_around_pages defines how many pages we'll try to map. 5212 * do_fault_around() expects it to be set to a power of two less than or equal 5213 * to PTRS_PER_PTE. 5214 * 5215 * The virtual address of the area that we map is naturally aligned to 5216 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5217 * (and therefore to page order). This way it's easier to guarantee 5218 * that we don't cross page table boundaries. 5219 */ 5220 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5221 { 5222 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5223 pgoff_t pte_off = pte_index(vmf->address); 5224 /* The page offset of vmf->address within the VMA. */ 5225 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5226 pgoff_t from_pte, to_pte; 5227 vm_fault_t ret; 5228 5229 /* The PTE offset of the start address, clamped to the VMA. */ 5230 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5231 pte_off - min(pte_off, vma_off)); 5232 5233 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5234 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5235 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5236 5237 if (pmd_none(*vmf->pmd)) { 5238 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5239 if (!vmf->prealloc_pte) 5240 return VM_FAULT_OOM; 5241 } 5242 5243 rcu_read_lock(); 5244 ret = vmf->vma->vm_ops->map_pages(vmf, 5245 vmf->pgoff + from_pte - pte_off, 5246 vmf->pgoff + to_pte - pte_off); 5247 rcu_read_unlock(); 5248 5249 return ret; 5250 } 5251 5252 /* Return true if we should do read fault-around, false otherwise */ 5253 static inline bool should_fault_around(struct vm_fault *vmf) 5254 { 5255 /* No ->map_pages? No way to fault around... */ 5256 if (!vmf->vma->vm_ops->map_pages) 5257 return false; 5258 5259 if (uffd_disable_fault_around(vmf->vma)) 5260 return false; 5261 5262 /* A single page implies no faulting 'around' at all. */ 5263 return fault_around_pages > 1; 5264 } 5265 5266 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5267 { 5268 vm_fault_t ret = 0; 5269 struct folio *folio; 5270 5271 /* 5272 * Let's call ->map_pages() first and use ->fault() as fallback 5273 * if page by the offset is not ready to be mapped (cold cache or 5274 * something). 5275 */ 5276 if (should_fault_around(vmf)) { 5277 ret = do_fault_around(vmf); 5278 if (ret) 5279 return ret; 5280 } 5281 5282 ret = vmf_can_call_fault(vmf); 5283 if (ret) 5284 return ret; 5285 5286 ret = __do_fault(vmf); 5287 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5288 return ret; 5289 5290 ret |= finish_fault(vmf); 5291 folio = page_folio(vmf->page); 5292 folio_unlock(folio); 5293 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5294 folio_put(folio); 5295 return ret; 5296 } 5297 5298 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5299 { 5300 struct vm_area_struct *vma = vmf->vma; 5301 struct folio *folio; 5302 vm_fault_t ret; 5303 5304 ret = vmf_can_call_fault(vmf); 5305 if (!ret) 5306 ret = vmf_anon_prepare(vmf); 5307 if (ret) 5308 return ret; 5309 5310 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5311 if (!folio) 5312 return VM_FAULT_OOM; 5313 5314 vmf->cow_page = &folio->page; 5315 5316 ret = __do_fault(vmf); 5317 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5318 goto uncharge_out; 5319 if (ret & VM_FAULT_DONE_COW) 5320 return ret; 5321 5322 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5323 ret = VM_FAULT_HWPOISON; 5324 goto unlock; 5325 } 5326 __folio_mark_uptodate(folio); 5327 5328 ret |= finish_fault(vmf); 5329 unlock: 5330 unlock_page(vmf->page); 5331 put_page(vmf->page); 5332 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5333 goto uncharge_out; 5334 return ret; 5335 uncharge_out: 5336 folio_put(folio); 5337 return ret; 5338 } 5339 5340 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5341 { 5342 struct vm_area_struct *vma = vmf->vma; 5343 vm_fault_t ret, tmp; 5344 struct folio *folio; 5345 5346 ret = vmf_can_call_fault(vmf); 5347 if (ret) 5348 return ret; 5349 5350 ret = __do_fault(vmf); 5351 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5352 return ret; 5353 5354 folio = page_folio(vmf->page); 5355 5356 /* 5357 * Check if the backing address space wants to know that the page is 5358 * about to become writable 5359 */ 5360 if (vma->vm_ops->page_mkwrite) { 5361 folio_unlock(folio); 5362 tmp = do_page_mkwrite(vmf, folio); 5363 if (unlikely(!tmp || 5364 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5365 folio_put(folio); 5366 return tmp; 5367 } 5368 } 5369 5370 ret |= finish_fault(vmf); 5371 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5372 VM_FAULT_RETRY))) { 5373 folio_unlock(folio); 5374 folio_put(folio); 5375 return ret; 5376 } 5377 5378 ret |= fault_dirty_shared_page(vmf); 5379 return ret; 5380 } 5381 5382 /* 5383 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5384 * but allow concurrent faults). 5385 * The mmap_lock may have been released depending on flags and our 5386 * return value. See filemap_fault() and __folio_lock_or_retry(). 5387 * If mmap_lock is released, vma may become invalid (for example 5388 * by other thread calling munmap()). 5389 */ 5390 static vm_fault_t do_fault(struct vm_fault *vmf) 5391 { 5392 struct vm_area_struct *vma = vmf->vma; 5393 struct mm_struct *vm_mm = vma->vm_mm; 5394 vm_fault_t ret; 5395 5396 /* 5397 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5398 */ 5399 if (!vma->vm_ops->fault) { 5400 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5401 vmf->address, &vmf->ptl); 5402 if (unlikely(!vmf->pte)) 5403 ret = VM_FAULT_SIGBUS; 5404 else { 5405 /* 5406 * Make sure this is not a temporary clearing of pte 5407 * by holding ptl and checking again. A R/M/W update 5408 * of pte involves: take ptl, clearing the pte so that 5409 * we don't have concurrent modification by hardware 5410 * followed by an update. 5411 */ 5412 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5413 ret = VM_FAULT_SIGBUS; 5414 else 5415 ret = VM_FAULT_NOPAGE; 5416 5417 pte_unmap_unlock(vmf->pte, vmf->ptl); 5418 } 5419 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5420 ret = do_read_fault(vmf); 5421 else if (!(vma->vm_flags & VM_SHARED)) 5422 ret = do_cow_fault(vmf); 5423 else 5424 ret = do_shared_fault(vmf); 5425 5426 /* preallocated pagetable is unused: free it */ 5427 if (vmf->prealloc_pte) { 5428 pte_free(vm_mm, vmf->prealloc_pte); 5429 vmf->prealloc_pte = NULL; 5430 } 5431 return ret; 5432 } 5433 5434 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5435 unsigned long addr, int *flags, 5436 bool writable, int *last_cpupid) 5437 { 5438 struct vm_area_struct *vma = vmf->vma; 5439 5440 /* 5441 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5442 * much anyway since they can be in shared cache state. This misses 5443 * the case where a mapping is writable but the process never writes 5444 * to it but pte_write gets cleared during protection updates and 5445 * pte_dirty has unpredictable behaviour between PTE scan updates, 5446 * background writeback, dirty balancing and application behaviour. 5447 */ 5448 if (!writable) 5449 *flags |= TNF_NO_GROUP; 5450 5451 /* 5452 * Flag if the folio is shared between multiple address spaces. This 5453 * is later used when determining whether to group tasks together 5454 */ 5455 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5456 *flags |= TNF_SHARED; 5457 /* 5458 * For memory tiering mode, cpupid of slow memory page is used 5459 * to record page access time. So use default value. 5460 */ 5461 if (folio_use_access_time(folio)) 5462 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5463 else 5464 *last_cpupid = folio_last_cpupid(folio); 5465 5466 /* Record the current PID acceesing VMA */ 5467 vma_set_access_pid_bit(vma); 5468 5469 count_vm_numa_event(NUMA_HINT_FAULTS); 5470 #ifdef CONFIG_NUMA_BALANCING 5471 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5472 #endif 5473 if (folio_nid(folio) == numa_node_id()) { 5474 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5475 *flags |= TNF_FAULT_LOCAL; 5476 } 5477 5478 return mpol_misplaced(folio, vmf, addr); 5479 } 5480 5481 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5482 unsigned long fault_addr, pte_t *fault_pte, 5483 bool writable) 5484 { 5485 pte_t pte, old_pte; 5486 5487 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5488 pte = pte_modify(old_pte, vma->vm_page_prot); 5489 pte = pte_mkyoung(pte); 5490 if (writable) 5491 pte = pte_mkwrite(pte, vma); 5492 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5493 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5494 } 5495 5496 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5497 struct folio *folio, pte_t fault_pte, 5498 bool ignore_writable, bool pte_write_upgrade) 5499 { 5500 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5501 unsigned long start, end, addr = vmf->address; 5502 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5503 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5504 pte_t *start_ptep; 5505 5506 /* Stay within the VMA and within the page table. */ 5507 start = max3(addr_start, pt_start, vma->vm_start); 5508 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5509 vma->vm_end); 5510 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5511 5512 /* Restore all PTEs' mapping of the large folio */ 5513 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5514 pte_t ptent = ptep_get(start_ptep); 5515 bool writable = false; 5516 5517 if (!pte_present(ptent) || !pte_protnone(ptent)) 5518 continue; 5519 5520 if (pfn_folio(pte_pfn(ptent)) != folio) 5521 continue; 5522 5523 if (!ignore_writable) { 5524 ptent = pte_modify(ptent, vma->vm_page_prot); 5525 writable = pte_write(ptent); 5526 if (!writable && pte_write_upgrade && 5527 can_change_pte_writable(vma, addr, ptent)) 5528 writable = true; 5529 } 5530 5531 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5532 } 5533 } 5534 5535 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5536 { 5537 struct vm_area_struct *vma = vmf->vma; 5538 struct folio *folio = NULL; 5539 int nid = NUMA_NO_NODE; 5540 bool writable = false, ignore_writable = false; 5541 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5542 int last_cpupid; 5543 int target_nid; 5544 pte_t pte, old_pte; 5545 int flags = 0, nr_pages; 5546 5547 /* 5548 * The pte cannot be used safely until we verify, while holding the page 5549 * table lock, that its contents have not changed during fault handling. 5550 */ 5551 spin_lock(vmf->ptl); 5552 /* Read the live PTE from the page tables: */ 5553 old_pte = ptep_get(vmf->pte); 5554 5555 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5556 pte_unmap_unlock(vmf->pte, vmf->ptl); 5557 return 0; 5558 } 5559 5560 pte = pte_modify(old_pte, vma->vm_page_prot); 5561 5562 /* 5563 * Detect now whether the PTE could be writable; this information 5564 * is only valid while holding the PT lock. 5565 */ 5566 writable = pte_write(pte); 5567 if (!writable && pte_write_upgrade && 5568 can_change_pte_writable(vma, vmf->address, pte)) 5569 writable = true; 5570 5571 folio = vm_normal_folio(vma, vmf->address, pte); 5572 if (!folio || folio_is_zone_device(folio)) 5573 goto out_map; 5574 5575 nid = folio_nid(folio); 5576 nr_pages = folio_nr_pages(folio); 5577 5578 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5579 writable, &last_cpupid); 5580 if (target_nid == NUMA_NO_NODE) 5581 goto out_map; 5582 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5583 flags |= TNF_MIGRATE_FAIL; 5584 goto out_map; 5585 } 5586 /* The folio is isolated and isolation code holds a folio reference. */ 5587 pte_unmap_unlock(vmf->pte, vmf->ptl); 5588 writable = false; 5589 ignore_writable = true; 5590 5591 /* Migrate to the requested node */ 5592 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 5593 nid = target_nid; 5594 flags |= TNF_MIGRATED; 5595 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5596 return 0; 5597 } 5598 5599 flags |= TNF_MIGRATE_FAIL; 5600 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5601 vmf->address, &vmf->ptl); 5602 if (unlikely(!vmf->pte)) 5603 return 0; 5604 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5605 pte_unmap_unlock(vmf->pte, vmf->ptl); 5606 return 0; 5607 } 5608 out_map: 5609 /* 5610 * Make it present again, depending on how arch implements 5611 * non-accessible ptes, some can allow access by kernel mode. 5612 */ 5613 if (folio && folio_test_large(folio)) 5614 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5615 pte_write_upgrade); 5616 else 5617 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5618 writable); 5619 pte_unmap_unlock(vmf->pte, vmf->ptl); 5620 5621 if (nid != NUMA_NO_NODE) 5622 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5623 return 0; 5624 } 5625 5626 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5627 { 5628 struct vm_area_struct *vma = vmf->vma; 5629 if (vma_is_anonymous(vma)) 5630 return do_huge_pmd_anonymous_page(vmf); 5631 if (vma->vm_ops->huge_fault) 5632 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5633 return VM_FAULT_FALLBACK; 5634 } 5635 5636 /* `inline' is required to avoid gcc 4.1.2 build error */ 5637 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5638 { 5639 struct vm_area_struct *vma = vmf->vma; 5640 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5641 vm_fault_t ret; 5642 5643 if (vma_is_anonymous(vma)) { 5644 if (likely(!unshare) && 5645 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5646 if (userfaultfd_wp_async(vmf->vma)) 5647 goto split; 5648 return handle_userfault(vmf, VM_UFFD_WP); 5649 } 5650 return do_huge_pmd_wp_page(vmf); 5651 } 5652 5653 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5654 if (vma->vm_ops->huge_fault) { 5655 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5656 if (!(ret & VM_FAULT_FALLBACK)) 5657 return ret; 5658 } 5659 } 5660 5661 split: 5662 /* COW or write-notify handled on pte level: split pmd. */ 5663 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5664 5665 return VM_FAULT_FALLBACK; 5666 } 5667 5668 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5669 { 5670 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5671 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5672 struct vm_area_struct *vma = vmf->vma; 5673 /* No support for anonymous transparent PUD pages yet */ 5674 if (vma_is_anonymous(vma)) 5675 return VM_FAULT_FALLBACK; 5676 if (vma->vm_ops->huge_fault) 5677 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5678 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5679 return VM_FAULT_FALLBACK; 5680 } 5681 5682 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5683 { 5684 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5685 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5686 struct vm_area_struct *vma = vmf->vma; 5687 vm_fault_t ret; 5688 5689 /* No support for anonymous transparent PUD pages yet */ 5690 if (vma_is_anonymous(vma)) 5691 goto split; 5692 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5693 if (vma->vm_ops->huge_fault) { 5694 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5695 if (!(ret & VM_FAULT_FALLBACK)) 5696 return ret; 5697 } 5698 } 5699 split: 5700 /* COW or write-notify not handled on PUD level: split pud.*/ 5701 __split_huge_pud(vma, vmf->pud, vmf->address); 5702 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5703 return VM_FAULT_FALLBACK; 5704 } 5705 5706 /* 5707 * These routines also need to handle stuff like marking pages dirty 5708 * and/or accessed for architectures that don't do it in hardware (most 5709 * RISC architectures). The early dirtying is also good on the i386. 5710 * 5711 * There is also a hook called "update_mmu_cache()" that architectures 5712 * with external mmu caches can use to update those (ie the Sparc or 5713 * PowerPC hashed page tables that act as extended TLBs). 5714 * 5715 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5716 * concurrent faults). 5717 * 5718 * The mmap_lock may have been released depending on flags and our return value. 5719 * See filemap_fault() and __folio_lock_or_retry(). 5720 */ 5721 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5722 { 5723 pte_t entry; 5724 5725 if (unlikely(pmd_none(*vmf->pmd))) { 5726 /* 5727 * Leave __pte_alloc() until later: because vm_ops->fault may 5728 * want to allocate huge page, and if we expose page table 5729 * for an instant, it will be difficult to retract from 5730 * concurrent faults and from rmap lookups. 5731 */ 5732 vmf->pte = NULL; 5733 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5734 } else { 5735 /* 5736 * A regular pmd is established and it can't morph into a huge 5737 * pmd by anon khugepaged, since that takes mmap_lock in write 5738 * mode; but shmem or file collapse to THP could still morph 5739 * it into a huge pmd: just retry later if so. 5740 */ 5741 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5742 vmf->address, &vmf->ptl); 5743 if (unlikely(!vmf->pte)) 5744 return 0; 5745 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5746 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5747 5748 if (pte_none(vmf->orig_pte)) { 5749 pte_unmap(vmf->pte); 5750 vmf->pte = NULL; 5751 } 5752 } 5753 5754 if (!vmf->pte) 5755 return do_pte_missing(vmf); 5756 5757 if (!pte_present(vmf->orig_pte)) 5758 return do_swap_page(vmf); 5759 5760 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5761 return do_numa_page(vmf); 5762 5763 spin_lock(vmf->ptl); 5764 entry = vmf->orig_pte; 5765 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5766 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5767 goto unlock; 5768 } 5769 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5770 if (!pte_write(entry)) 5771 return do_wp_page(vmf); 5772 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5773 entry = pte_mkdirty(entry); 5774 } 5775 entry = pte_mkyoung(entry); 5776 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5777 vmf->flags & FAULT_FLAG_WRITE)) { 5778 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5779 vmf->pte, 1); 5780 } else { 5781 /* Skip spurious TLB flush for retried page fault */ 5782 if (vmf->flags & FAULT_FLAG_TRIED) 5783 goto unlock; 5784 /* 5785 * This is needed only for protection faults but the arch code 5786 * is not yet telling us if this is a protection fault or not. 5787 * This still avoids useless tlb flushes for .text page faults 5788 * with threads. 5789 */ 5790 if (vmf->flags & FAULT_FLAG_WRITE) 5791 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5792 vmf->pte); 5793 } 5794 unlock: 5795 pte_unmap_unlock(vmf->pte, vmf->ptl); 5796 return 0; 5797 } 5798 5799 /* 5800 * On entry, we hold either the VMA lock or the mmap_lock 5801 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5802 * the result, the mmap_lock is not held on exit. See filemap_fault() 5803 * and __folio_lock_or_retry(). 5804 */ 5805 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5806 unsigned long address, unsigned int flags) 5807 { 5808 struct vm_fault vmf = { 5809 .vma = vma, 5810 .address = address & PAGE_MASK, 5811 .real_address = address, 5812 .flags = flags, 5813 .pgoff = linear_page_index(vma, address), 5814 .gfp_mask = __get_fault_gfp_mask(vma), 5815 }; 5816 struct mm_struct *mm = vma->vm_mm; 5817 unsigned long vm_flags = vma->vm_flags; 5818 pgd_t *pgd; 5819 p4d_t *p4d; 5820 vm_fault_t ret; 5821 5822 pgd = pgd_offset(mm, address); 5823 p4d = p4d_alloc(mm, pgd, address); 5824 if (!p4d) 5825 return VM_FAULT_OOM; 5826 5827 vmf.pud = pud_alloc(mm, p4d, address); 5828 if (!vmf.pud) 5829 return VM_FAULT_OOM; 5830 retry_pud: 5831 if (pud_none(*vmf.pud) && 5832 thp_vma_allowable_order(vma, vm_flags, 5833 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5834 ret = create_huge_pud(&vmf); 5835 if (!(ret & VM_FAULT_FALLBACK)) 5836 return ret; 5837 } else { 5838 pud_t orig_pud = *vmf.pud; 5839 5840 barrier(); 5841 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5842 5843 /* 5844 * TODO once we support anonymous PUDs: NUMA case and 5845 * FAULT_FLAG_UNSHARE handling. 5846 */ 5847 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5848 ret = wp_huge_pud(&vmf, orig_pud); 5849 if (!(ret & VM_FAULT_FALLBACK)) 5850 return ret; 5851 } else { 5852 huge_pud_set_accessed(&vmf, orig_pud); 5853 return 0; 5854 } 5855 } 5856 } 5857 5858 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5859 if (!vmf.pmd) 5860 return VM_FAULT_OOM; 5861 5862 /* Huge pud page fault raced with pmd_alloc? */ 5863 if (pud_trans_unstable(vmf.pud)) 5864 goto retry_pud; 5865 5866 if (pmd_none(*vmf.pmd) && 5867 thp_vma_allowable_order(vma, vm_flags, 5868 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 5869 ret = create_huge_pmd(&vmf); 5870 if (!(ret & VM_FAULT_FALLBACK)) 5871 return ret; 5872 } else { 5873 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5874 5875 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5876 VM_BUG_ON(thp_migration_supported() && 5877 !is_pmd_migration_entry(vmf.orig_pmd)); 5878 if (is_pmd_migration_entry(vmf.orig_pmd)) 5879 pmd_migration_entry_wait(mm, vmf.pmd); 5880 return 0; 5881 } 5882 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5883 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5884 return do_huge_pmd_numa_page(&vmf); 5885 5886 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5887 !pmd_write(vmf.orig_pmd)) { 5888 ret = wp_huge_pmd(&vmf); 5889 if (!(ret & VM_FAULT_FALLBACK)) 5890 return ret; 5891 } else { 5892 huge_pmd_set_accessed(&vmf); 5893 return 0; 5894 } 5895 } 5896 } 5897 5898 return handle_pte_fault(&vmf); 5899 } 5900 5901 /** 5902 * mm_account_fault - Do page fault accounting 5903 * @mm: mm from which memcg should be extracted. It can be NULL. 5904 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5905 * of perf event counters, but we'll still do the per-task accounting to 5906 * the task who triggered this page fault. 5907 * @address: the faulted address. 5908 * @flags: the fault flags. 5909 * @ret: the fault retcode. 5910 * 5911 * This will take care of most of the page fault accounting. Meanwhile, it 5912 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5913 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5914 * still be in per-arch page fault handlers at the entry of page fault. 5915 */ 5916 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5917 unsigned long address, unsigned int flags, 5918 vm_fault_t ret) 5919 { 5920 bool major; 5921 5922 /* Incomplete faults will be accounted upon completion. */ 5923 if (ret & VM_FAULT_RETRY) 5924 return; 5925 5926 /* 5927 * To preserve the behavior of older kernels, PGFAULT counters record 5928 * both successful and failed faults, as opposed to perf counters, 5929 * which ignore failed cases. 5930 */ 5931 count_vm_event(PGFAULT); 5932 count_memcg_event_mm(mm, PGFAULT); 5933 5934 /* 5935 * Do not account for unsuccessful faults (e.g. when the address wasn't 5936 * valid). That includes arch_vma_access_permitted() failing before 5937 * reaching here. So this is not a "this many hardware page faults" 5938 * counter. We should use the hw profiling for that. 5939 */ 5940 if (ret & VM_FAULT_ERROR) 5941 return; 5942 5943 /* 5944 * We define the fault as a major fault when the final successful fault 5945 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5946 * handle it immediately previously). 5947 */ 5948 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5949 5950 if (major) 5951 current->maj_flt++; 5952 else 5953 current->min_flt++; 5954 5955 /* 5956 * If the fault is done for GUP, regs will be NULL. We only do the 5957 * accounting for the per thread fault counters who triggered the 5958 * fault, and we skip the perf event updates. 5959 */ 5960 if (!regs) 5961 return; 5962 5963 if (major) 5964 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5965 else 5966 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5967 } 5968 5969 #ifdef CONFIG_LRU_GEN 5970 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5971 { 5972 /* the LRU algorithm only applies to accesses with recency */ 5973 current->in_lru_fault = vma_has_recency(vma); 5974 } 5975 5976 static void lru_gen_exit_fault(void) 5977 { 5978 current->in_lru_fault = false; 5979 } 5980 #else 5981 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5982 { 5983 } 5984 5985 static void lru_gen_exit_fault(void) 5986 { 5987 } 5988 #endif /* CONFIG_LRU_GEN */ 5989 5990 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5991 unsigned int *flags) 5992 { 5993 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5994 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5995 return VM_FAULT_SIGSEGV; 5996 /* 5997 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5998 * just treat it like an ordinary read-fault otherwise. 5999 */ 6000 if (!is_cow_mapping(vma->vm_flags)) 6001 *flags &= ~FAULT_FLAG_UNSHARE; 6002 } else if (*flags & FAULT_FLAG_WRITE) { 6003 /* Write faults on read-only mappings are impossible ... */ 6004 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6005 return VM_FAULT_SIGSEGV; 6006 /* ... and FOLL_FORCE only applies to COW mappings. */ 6007 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6008 !is_cow_mapping(vma->vm_flags))) 6009 return VM_FAULT_SIGSEGV; 6010 } 6011 #ifdef CONFIG_PER_VMA_LOCK 6012 /* 6013 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6014 * the assumption that lock is dropped on VM_FAULT_RETRY. 6015 */ 6016 if (WARN_ON_ONCE((*flags & 6017 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6018 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6019 return VM_FAULT_SIGSEGV; 6020 #endif 6021 6022 return 0; 6023 } 6024 6025 /* 6026 * By the time we get here, we already hold the mm semaphore 6027 * 6028 * The mmap_lock may have been released depending on flags and our 6029 * return value. See filemap_fault() and __folio_lock_or_retry(). 6030 */ 6031 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6032 unsigned int flags, struct pt_regs *regs) 6033 { 6034 /* If the fault handler drops the mmap_lock, vma may be freed */ 6035 struct mm_struct *mm = vma->vm_mm; 6036 vm_fault_t ret; 6037 bool is_droppable; 6038 6039 __set_current_state(TASK_RUNNING); 6040 6041 ret = sanitize_fault_flags(vma, &flags); 6042 if (ret) 6043 goto out; 6044 6045 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6046 flags & FAULT_FLAG_INSTRUCTION, 6047 flags & FAULT_FLAG_REMOTE)) { 6048 ret = VM_FAULT_SIGSEGV; 6049 goto out; 6050 } 6051 6052 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6053 6054 /* 6055 * Enable the memcg OOM handling for faults triggered in user 6056 * space. Kernel faults are handled more gracefully. 6057 */ 6058 if (flags & FAULT_FLAG_USER) 6059 mem_cgroup_enter_user_fault(); 6060 6061 lru_gen_enter_fault(vma); 6062 6063 if (unlikely(is_vm_hugetlb_page(vma))) 6064 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6065 else 6066 ret = __handle_mm_fault(vma, address, flags); 6067 6068 /* 6069 * Warning: It is no longer safe to dereference vma-> after this point, 6070 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6071 * vma might be destroyed from underneath us. 6072 */ 6073 6074 lru_gen_exit_fault(); 6075 6076 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6077 if (is_droppable) 6078 ret &= ~VM_FAULT_OOM; 6079 6080 if (flags & FAULT_FLAG_USER) { 6081 mem_cgroup_exit_user_fault(); 6082 /* 6083 * The task may have entered a memcg OOM situation but 6084 * if the allocation error was handled gracefully (no 6085 * VM_FAULT_OOM), there is no need to kill anything. 6086 * Just clean up the OOM state peacefully. 6087 */ 6088 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6089 mem_cgroup_oom_synchronize(false); 6090 } 6091 out: 6092 mm_account_fault(mm, regs, address, flags, ret); 6093 6094 return ret; 6095 } 6096 EXPORT_SYMBOL_GPL(handle_mm_fault); 6097 6098 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6099 #include <linux/extable.h> 6100 6101 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6102 { 6103 if (likely(mmap_read_trylock(mm))) 6104 return true; 6105 6106 if (regs && !user_mode(regs)) { 6107 unsigned long ip = exception_ip(regs); 6108 if (!search_exception_tables(ip)) 6109 return false; 6110 } 6111 6112 return !mmap_read_lock_killable(mm); 6113 } 6114 6115 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6116 { 6117 /* 6118 * We don't have this operation yet. 6119 * 6120 * It should be easy enough to do: it's basically a 6121 * atomic_long_try_cmpxchg_acquire() 6122 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6123 * it also needs the proper lockdep magic etc. 6124 */ 6125 return false; 6126 } 6127 6128 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6129 { 6130 mmap_read_unlock(mm); 6131 if (regs && !user_mode(regs)) { 6132 unsigned long ip = exception_ip(regs); 6133 if (!search_exception_tables(ip)) 6134 return false; 6135 } 6136 return !mmap_write_lock_killable(mm); 6137 } 6138 6139 /* 6140 * Helper for page fault handling. 6141 * 6142 * This is kind of equivalend to "mmap_read_lock()" followed 6143 * by "find_extend_vma()", except it's a lot more careful about 6144 * the locking (and will drop the lock on failure). 6145 * 6146 * For example, if we have a kernel bug that causes a page 6147 * fault, we don't want to just use mmap_read_lock() to get 6148 * the mm lock, because that would deadlock if the bug were 6149 * to happen while we're holding the mm lock for writing. 6150 * 6151 * So this checks the exception tables on kernel faults in 6152 * order to only do this all for instructions that are actually 6153 * expected to fault. 6154 * 6155 * We can also actually take the mm lock for writing if we 6156 * need to extend the vma, which helps the VM layer a lot. 6157 */ 6158 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6159 unsigned long addr, struct pt_regs *regs) 6160 { 6161 struct vm_area_struct *vma; 6162 6163 if (!get_mmap_lock_carefully(mm, regs)) 6164 return NULL; 6165 6166 vma = find_vma(mm, addr); 6167 if (likely(vma && (vma->vm_start <= addr))) 6168 return vma; 6169 6170 /* 6171 * Well, dang. We might still be successful, but only 6172 * if we can extend a vma to do so. 6173 */ 6174 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6175 mmap_read_unlock(mm); 6176 return NULL; 6177 } 6178 6179 /* 6180 * We can try to upgrade the mmap lock atomically, 6181 * in which case we can continue to use the vma 6182 * we already looked up. 6183 * 6184 * Otherwise we'll have to drop the mmap lock and 6185 * re-take it, and also look up the vma again, 6186 * re-checking it. 6187 */ 6188 if (!mmap_upgrade_trylock(mm)) { 6189 if (!upgrade_mmap_lock_carefully(mm, regs)) 6190 return NULL; 6191 6192 vma = find_vma(mm, addr); 6193 if (!vma) 6194 goto fail; 6195 if (vma->vm_start <= addr) 6196 goto success; 6197 if (!(vma->vm_flags & VM_GROWSDOWN)) 6198 goto fail; 6199 } 6200 6201 if (expand_stack_locked(vma, addr)) 6202 goto fail; 6203 6204 success: 6205 mmap_write_downgrade(mm); 6206 return vma; 6207 6208 fail: 6209 mmap_write_unlock(mm); 6210 return NULL; 6211 } 6212 #endif 6213 6214 #ifdef CONFIG_PER_VMA_LOCK 6215 /* 6216 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6217 * stable and not isolated. If the VMA is not found or is being modified the 6218 * function returns NULL. 6219 */ 6220 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6221 unsigned long address) 6222 { 6223 MA_STATE(mas, &mm->mm_mt, address, address); 6224 struct vm_area_struct *vma; 6225 6226 rcu_read_lock(); 6227 retry: 6228 vma = mas_walk(&mas); 6229 if (!vma) 6230 goto inval; 6231 6232 if (!vma_start_read(vma)) 6233 goto inval; 6234 6235 /* Check if the VMA got isolated after we found it */ 6236 if (vma->detached) { 6237 vma_end_read(vma); 6238 count_vm_vma_lock_event(VMA_LOCK_MISS); 6239 /* The area was replaced with another one */ 6240 goto retry; 6241 } 6242 /* 6243 * At this point, we have a stable reference to a VMA: The VMA is 6244 * locked and we know it hasn't already been isolated. 6245 * From here on, we can access the VMA without worrying about which 6246 * fields are accessible for RCU readers. 6247 */ 6248 6249 /* Check since vm_start/vm_end might change before we lock the VMA */ 6250 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6251 goto inval_end_read; 6252 6253 rcu_read_unlock(); 6254 return vma; 6255 6256 inval_end_read: 6257 vma_end_read(vma); 6258 inval: 6259 rcu_read_unlock(); 6260 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6261 return NULL; 6262 } 6263 #endif /* CONFIG_PER_VMA_LOCK */ 6264 6265 #ifndef __PAGETABLE_P4D_FOLDED 6266 /* 6267 * Allocate p4d page table. 6268 * We've already handled the fast-path in-line. 6269 */ 6270 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6271 { 6272 p4d_t *new = p4d_alloc_one(mm, address); 6273 if (!new) 6274 return -ENOMEM; 6275 6276 spin_lock(&mm->page_table_lock); 6277 if (pgd_present(*pgd)) { /* Another has populated it */ 6278 p4d_free(mm, new); 6279 } else { 6280 smp_wmb(); /* See comment in pmd_install() */ 6281 pgd_populate(mm, pgd, new); 6282 } 6283 spin_unlock(&mm->page_table_lock); 6284 return 0; 6285 } 6286 #endif /* __PAGETABLE_P4D_FOLDED */ 6287 6288 #ifndef __PAGETABLE_PUD_FOLDED 6289 /* 6290 * Allocate page upper directory. 6291 * We've already handled the fast-path in-line. 6292 */ 6293 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6294 { 6295 pud_t *new = pud_alloc_one(mm, address); 6296 if (!new) 6297 return -ENOMEM; 6298 6299 spin_lock(&mm->page_table_lock); 6300 if (!p4d_present(*p4d)) { 6301 mm_inc_nr_puds(mm); 6302 smp_wmb(); /* See comment in pmd_install() */ 6303 p4d_populate(mm, p4d, new); 6304 } else /* Another has populated it */ 6305 pud_free(mm, new); 6306 spin_unlock(&mm->page_table_lock); 6307 return 0; 6308 } 6309 #endif /* __PAGETABLE_PUD_FOLDED */ 6310 6311 #ifndef __PAGETABLE_PMD_FOLDED 6312 /* 6313 * Allocate page middle directory. 6314 * We've already handled the fast-path in-line. 6315 */ 6316 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6317 { 6318 spinlock_t *ptl; 6319 pmd_t *new = pmd_alloc_one(mm, address); 6320 if (!new) 6321 return -ENOMEM; 6322 6323 ptl = pud_lock(mm, pud); 6324 if (!pud_present(*pud)) { 6325 mm_inc_nr_pmds(mm); 6326 smp_wmb(); /* See comment in pmd_install() */ 6327 pud_populate(mm, pud, new); 6328 } else { /* Another has populated it */ 6329 pmd_free(mm, new); 6330 } 6331 spin_unlock(ptl); 6332 return 0; 6333 } 6334 #endif /* __PAGETABLE_PMD_FOLDED */ 6335 6336 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6337 spinlock_t *lock, pte_t *ptep, 6338 pgprot_t pgprot, unsigned long pfn_base, 6339 unsigned long addr_mask, bool writable, 6340 bool special) 6341 { 6342 args->lock = lock; 6343 args->ptep = ptep; 6344 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6345 args->pgprot = pgprot; 6346 args->writable = writable; 6347 args->special = special; 6348 } 6349 6350 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6351 { 6352 #ifdef CONFIG_LOCKDEP 6353 struct file *file = vma->vm_file; 6354 struct address_space *mapping = file ? file->f_mapping : NULL; 6355 6356 if (mapping) 6357 lockdep_assert(lockdep_is_held(&vma->vm_file->f_mapping->i_mmap_rwsem) || 6358 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6359 else 6360 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6361 #endif 6362 } 6363 6364 /** 6365 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6366 * @args: Pointer to struct @follow_pfnmap_args 6367 * 6368 * The caller needs to setup args->vma and args->address to point to the 6369 * virtual address as the target of such lookup. On a successful return, 6370 * the results will be put into other output fields. 6371 * 6372 * After the caller finished using the fields, the caller must invoke 6373 * another follow_pfnmap_end() to proper releases the locks and resources 6374 * of such look up request. 6375 * 6376 * During the start() and end() calls, the results in @args will be valid 6377 * as proper locks will be held. After the end() is called, all the fields 6378 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6379 * use of such information after end() may require proper synchronizations 6380 * by the caller with page table updates, otherwise it can create a 6381 * security bug. 6382 * 6383 * If the PTE maps a refcounted page, callers are responsible to protect 6384 * against invalidation with MMU notifiers; otherwise access to the PFN at 6385 * a later point in time can trigger use-after-free. 6386 * 6387 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6388 * should be taken for read, and the mmap semaphore cannot be released 6389 * before the end() is invoked. 6390 * 6391 * This function must not be used to modify PTE content. 6392 * 6393 * Return: zero on success, negative otherwise. 6394 */ 6395 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6396 { 6397 struct vm_area_struct *vma = args->vma; 6398 unsigned long address = args->address; 6399 struct mm_struct *mm = vma->vm_mm; 6400 spinlock_t *lock; 6401 pgd_t *pgdp; 6402 p4d_t *p4dp, p4d; 6403 pud_t *pudp, pud; 6404 pmd_t *pmdp, pmd; 6405 pte_t *ptep, pte; 6406 6407 pfnmap_lockdep_assert(vma); 6408 6409 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6410 goto out; 6411 6412 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6413 goto out; 6414 retry: 6415 pgdp = pgd_offset(mm, address); 6416 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6417 goto out; 6418 6419 p4dp = p4d_offset(pgdp, address); 6420 p4d = READ_ONCE(*p4dp); 6421 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6422 goto out; 6423 6424 pudp = pud_offset(p4dp, address); 6425 pud = READ_ONCE(*pudp); 6426 if (pud_none(pud)) 6427 goto out; 6428 if (pud_leaf(pud)) { 6429 lock = pud_lock(mm, pudp); 6430 if (!unlikely(pud_leaf(pud))) { 6431 spin_unlock(lock); 6432 goto retry; 6433 } 6434 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6435 pud_pfn(pud), PUD_MASK, pud_write(pud), 6436 pud_special(pud)); 6437 return 0; 6438 } 6439 6440 pmdp = pmd_offset(pudp, address); 6441 pmd = pmdp_get_lockless(pmdp); 6442 if (pmd_leaf(pmd)) { 6443 lock = pmd_lock(mm, pmdp); 6444 if (!unlikely(pmd_leaf(pmd))) { 6445 spin_unlock(lock); 6446 goto retry; 6447 } 6448 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6449 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6450 pmd_special(pmd)); 6451 return 0; 6452 } 6453 6454 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6455 if (!ptep) 6456 goto out; 6457 pte = ptep_get(ptep); 6458 if (!pte_present(pte)) 6459 goto unlock; 6460 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6461 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6462 pte_special(pte)); 6463 return 0; 6464 unlock: 6465 pte_unmap_unlock(ptep, lock); 6466 out: 6467 return -EINVAL; 6468 } 6469 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6470 6471 /** 6472 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6473 * @args: Pointer to struct @follow_pfnmap_args 6474 * 6475 * Must be used in pair of follow_pfnmap_start(). See the start() function 6476 * above for more information. 6477 */ 6478 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6479 { 6480 if (args->lock) 6481 spin_unlock(args->lock); 6482 if (args->ptep) 6483 pte_unmap(args->ptep); 6484 } 6485 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6486 6487 #ifdef CONFIG_HAVE_IOREMAP_PROT 6488 /** 6489 * generic_access_phys - generic implementation for iomem mmap access 6490 * @vma: the vma to access 6491 * @addr: userspace address, not relative offset within @vma 6492 * @buf: buffer to read/write 6493 * @len: length of transfer 6494 * @write: set to FOLL_WRITE when writing, otherwise reading 6495 * 6496 * This is a generic implementation for &vm_operations_struct.access for an 6497 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6498 * not page based. 6499 */ 6500 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6501 void *buf, int len, int write) 6502 { 6503 resource_size_t phys_addr; 6504 unsigned long prot = 0; 6505 void __iomem *maddr; 6506 int offset = offset_in_page(addr); 6507 int ret = -EINVAL; 6508 bool writable; 6509 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6510 6511 retry: 6512 if (follow_pfnmap_start(&args)) 6513 return -EINVAL; 6514 prot = pgprot_val(args.pgprot); 6515 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6516 writable = args.writable; 6517 follow_pfnmap_end(&args); 6518 6519 if ((write & FOLL_WRITE) && !writable) 6520 return -EINVAL; 6521 6522 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6523 if (!maddr) 6524 return -ENOMEM; 6525 6526 if (follow_pfnmap_start(&args)) 6527 goto out_unmap; 6528 6529 if ((prot != pgprot_val(args.pgprot)) || 6530 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6531 (writable != args.writable)) { 6532 follow_pfnmap_end(&args); 6533 iounmap(maddr); 6534 goto retry; 6535 } 6536 6537 if (write) 6538 memcpy_toio(maddr + offset, buf, len); 6539 else 6540 memcpy_fromio(buf, maddr + offset, len); 6541 ret = len; 6542 follow_pfnmap_end(&args); 6543 out_unmap: 6544 iounmap(maddr); 6545 6546 return ret; 6547 } 6548 EXPORT_SYMBOL_GPL(generic_access_phys); 6549 #endif 6550 6551 /* 6552 * Access another process' address space as given in mm. 6553 */ 6554 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6555 void *buf, int len, unsigned int gup_flags) 6556 { 6557 void *old_buf = buf; 6558 int write = gup_flags & FOLL_WRITE; 6559 6560 if (mmap_read_lock_killable(mm)) 6561 return 0; 6562 6563 /* Untag the address before looking up the VMA */ 6564 addr = untagged_addr_remote(mm, addr); 6565 6566 /* Avoid triggering the temporary warning in __get_user_pages */ 6567 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6568 return 0; 6569 6570 /* ignore errors, just check how much was successfully transferred */ 6571 while (len) { 6572 int bytes, offset; 6573 void *maddr; 6574 struct vm_area_struct *vma = NULL; 6575 struct page *page = get_user_page_vma_remote(mm, addr, 6576 gup_flags, &vma); 6577 6578 if (IS_ERR(page)) { 6579 /* We might need to expand the stack to access it */ 6580 vma = vma_lookup(mm, addr); 6581 if (!vma) { 6582 vma = expand_stack(mm, addr); 6583 6584 /* mmap_lock was dropped on failure */ 6585 if (!vma) 6586 return buf - old_buf; 6587 6588 /* Try again if stack expansion worked */ 6589 continue; 6590 } 6591 6592 /* 6593 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6594 * we can access using slightly different code. 6595 */ 6596 bytes = 0; 6597 #ifdef CONFIG_HAVE_IOREMAP_PROT 6598 if (vma->vm_ops && vma->vm_ops->access) 6599 bytes = vma->vm_ops->access(vma, addr, buf, 6600 len, write); 6601 #endif 6602 if (bytes <= 0) 6603 break; 6604 } else { 6605 bytes = len; 6606 offset = addr & (PAGE_SIZE-1); 6607 if (bytes > PAGE_SIZE-offset) 6608 bytes = PAGE_SIZE-offset; 6609 6610 maddr = kmap_local_page(page); 6611 if (write) { 6612 copy_to_user_page(vma, page, addr, 6613 maddr + offset, buf, bytes); 6614 set_page_dirty_lock(page); 6615 } else { 6616 copy_from_user_page(vma, page, addr, 6617 buf, maddr + offset, bytes); 6618 } 6619 unmap_and_put_page(page, maddr); 6620 } 6621 len -= bytes; 6622 buf += bytes; 6623 addr += bytes; 6624 } 6625 mmap_read_unlock(mm); 6626 6627 return buf - old_buf; 6628 } 6629 6630 /** 6631 * access_remote_vm - access another process' address space 6632 * @mm: the mm_struct of the target address space 6633 * @addr: start address to access 6634 * @buf: source or destination buffer 6635 * @len: number of bytes to transfer 6636 * @gup_flags: flags modifying lookup behaviour 6637 * 6638 * The caller must hold a reference on @mm. 6639 * 6640 * Return: number of bytes copied from source to destination. 6641 */ 6642 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6643 void *buf, int len, unsigned int gup_flags) 6644 { 6645 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6646 } 6647 6648 /* 6649 * Access another process' address space. 6650 * Source/target buffer must be kernel space, 6651 * Do not walk the page table directly, use get_user_pages 6652 */ 6653 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6654 void *buf, int len, unsigned int gup_flags) 6655 { 6656 struct mm_struct *mm; 6657 int ret; 6658 6659 mm = get_task_mm(tsk); 6660 if (!mm) 6661 return 0; 6662 6663 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6664 6665 mmput(mm); 6666 6667 return ret; 6668 } 6669 EXPORT_SYMBOL_GPL(access_process_vm); 6670 6671 /* 6672 * Print the name of a VMA. 6673 */ 6674 void print_vma_addr(char *prefix, unsigned long ip) 6675 { 6676 struct mm_struct *mm = current->mm; 6677 struct vm_area_struct *vma; 6678 6679 /* 6680 * we might be running from an atomic context so we cannot sleep 6681 */ 6682 if (!mmap_read_trylock(mm)) 6683 return; 6684 6685 vma = vma_lookup(mm, ip); 6686 if (vma && vma->vm_file) { 6687 struct file *f = vma->vm_file; 6688 ip -= vma->vm_start; 6689 ip += vma->vm_pgoff << PAGE_SHIFT; 6690 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6691 vma->vm_start, 6692 vma->vm_end - vma->vm_start); 6693 } 6694 mmap_read_unlock(mm); 6695 } 6696 6697 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6698 void __might_fault(const char *file, int line) 6699 { 6700 if (pagefault_disabled()) 6701 return; 6702 __might_sleep(file, line); 6703 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6704 if (current->mm) 6705 might_lock_read(¤t->mm->mmap_lock); 6706 #endif 6707 } 6708 EXPORT_SYMBOL(__might_fault); 6709 #endif 6710 6711 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6712 /* 6713 * Process all subpages of the specified huge page with the specified 6714 * operation. The target subpage will be processed last to keep its 6715 * cache lines hot. 6716 */ 6717 static inline int process_huge_page( 6718 unsigned long addr_hint, unsigned int nr_pages, 6719 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6720 void *arg) 6721 { 6722 int i, n, base, l, ret; 6723 unsigned long addr = addr_hint & 6724 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6725 6726 /* Process target subpage last to keep its cache lines hot */ 6727 might_sleep(); 6728 n = (addr_hint - addr) / PAGE_SIZE; 6729 if (2 * n <= nr_pages) { 6730 /* If target subpage in first half of huge page */ 6731 base = 0; 6732 l = n; 6733 /* Process subpages at the end of huge page */ 6734 for (i = nr_pages - 1; i >= 2 * n; i--) { 6735 cond_resched(); 6736 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6737 if (ret) 6738 return ret; 6739 } 6740 } else { 6741 /* If target subpage in second half of huge page */ 6742 base = nr_pages - 2 * (nr_pages - n); 6743 l = nr_pages - n; 6744 /* Process subpages at the begin of huge page */ 6745 for (i = 0; i < base; i++) { 6746 cond_resched(); 6747 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6748 if (ret) 6749 return ret; 6750 } 6751 } 6752 /* 6753 * Process remaining subpages in left-right-left-right pattern 6754 * towards the target subpage 6755 */ 6756 for (i = 0; i < l; i++) { 6757 int left_idx = base + i; 6758 int right_idx = base + 2 * l - 1 - i; 6759 6760 cond_resched(); 6761 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6762 if (ret) 6763 return ret; 6764 cond_resched(); 6765 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6766 if (ret) 6767 return ret; 6768 } 6769 return 0; 6770 } 6771 6772 static void clear_gigantic_page(struct folio *folio, unsigned long addr, 6773 unsigned int nr_pages) 6774 { 6775 int i; 6776 6777 might_sleep(); 6778 for (i = 0; i < nr_pages; i++) { 6779 cond_resched(); 6780 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 6781 } 6782 } 6783 6784 static int clear_subpage(unsigned long addr, int idx, void *arg) 6785 { 6786 struct folio *folio = arg; 6787 6788 clear_user_highpage(folio_page(folio, idx), addr); 6789 return 0; 6790 } 6791 6792 /** 6793 * folio_zero_user - Zero a folio which will be mapped to userspace. 6794 * @folio: The folio to zero. 6795 * @addr_hint: The address will be accessed or the base address if uncelar. 6796 */ 6797 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 6798 { 6799 unsigned int nr_pages = folio_nr_pages(folio); 6800 6801 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6802 clear_gigantic_page(folio, addr_hint, nr_pages); 6803 else 6804 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 6805 } 6806 6807 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6808 unsigned long addr, 6809 struct vm_area_struct *vma, 6810 unsigned int nr_pages) 6811 { 6812 int i; 6813 struct page *dst_page; 6814 struct page *src_page; 6815 6816 for (i = 0; i < nr_pages; i++) { 6817 dst_page = folio_page(dst, i); 6818 src_page = folio_page(src, i); 6819 6820 cond_resched(); 6821 if (copy_mc_user_highpage(dst_page, src_page, 6822 addr + i*PAGE_SIZE, vma)) 6823 return -EHWPOISON; 6824 } 6825 return 0; 6826 } 6827 6828 struct copy_subpage_arg { 6829 struct folio *dst; 6830 struct folio *src; 6831 struct vm_area_struct *vma; 6832 }; 6833 6834 static int copy_subpage(unsigned long addr, int idx, void *arg) 6835 { 6836 struct copy_subpage_arg *copy_arg = arg; 6837 struct page *dst = folio_page(copy_arg->dst, idx); 6838 struct page *src = folio_page(copy_arg->src, idx); 6839 6840 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 6841 return -EHWPOISON; 6842 return 0; 6843 } 6844 6845 int copy_user_large_folio(struct folio *dst, struct folio *src, 6846 unsigned long addr_hint, struct vm_area_struct *vma) 6847 { 6848 unsigned int nr_pages = folio_nr_pages(dst); 6849 struct copy_subpage_arg arg = { 6850 .dst = dst, 6851 .src = src, 6852 .vma = vma, 6853 }; 6854 6855 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 6856 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 6857 6858 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 6859 } 6860 6861 long copy_folio_from_user(struct folio *dst_folio, 6862 const void __user *usr_src, 6863 bool allow_pagefault) 6864 { 6865 void *kaddr; 6866 unsigned long i, rc = 0; 6867 unsigned int nr_pages = folio_nr_pages(dst_folio); 6868 unsigned long ret_val = nr_pages * PAGE_SIZE; 6869 struct page *subpage; 6870 6871 for (i = 0; i < nr_pages; i++) { 6872 subpage = folio_page(dst_folio, i); 6873 kaddr = kmap_local_page(subpage); 6874 if (!allow_pagefault) 6875 pagefault_disable(); 6876 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6877 if (!allow_pagefault) 6878 pagefault_enable(); 6879 kunmap_local(kaddr); 6880 6881 ret_val -= (PAGE_SIZE - rc); 6882 if (rc) 6883 break; 6884 6885 flush_dcache_page(subpage); 6886 6887 cond_resched(); 6888 } 6889 return ret_val; 6890 } 6891 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6892 6893 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 6894 6895 static struct kmem_cache *page_ptl_cachep; 6896 6897 void __init ptlock_cache_init(void) 6898 { 6899 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6900 SLAB_PANIC, NULL); 6901 } 6902 6903 bool ptlock_alloc(struct ptdesc *ptdesc) 6904 { 6905 spinlock_t *ptl; 6906 6907 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6908 if (!ptl) 6909 return false; 6910 ptdesc->ptl = ptl; 6911 return true; 6912 } 6913 6914 void ptlock_free(struct ptdesc *ptdesc) 6915 { 6916 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6917 } 6918 #endif 6919 6920 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 6921 { 6922 if (is_vm_hugetlb_page(vma)) 6923 hugetlb_vma_lock_read(vma); 6924 } 6925 6926 void vma_pgtable_walk_end(struct vm_area_struct *vma) 6927 { 6928 if (is_vm_hugetlb_page(vma)) 6929 hugetlb_vma_unlock_read(vma); 6930 } 6931