xref: /linux/mm/memory.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (task->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, task->rss_stat.count[i]);
135 			task->rss_stat.count[i] = 0;
136 		}
137 	}
138 	task->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		__sync_task_rss_stat(task, task->mm);
161 }
162 
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165 	long val = 0;
166 
167 	/*
168 	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 	 * The caller must guarantee task->mm is not invalid.
170 	 */
171 	val = atomic_long_read(&mm->rss_stat.count[member]);
172 	/*
173 	 * counter is updated in asynchronous manner and may go to minus.
174 	 * But it's never be expected number for users.
175 	 */
176 	if (val < 0)
177 		return 0;
178 	return (unsigned long)val;
179 }
180 
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183 	__sync_task_rss_stat(task, mm);
184 }
185 #else
186 
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189 
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193 
194 #endif
195 
196 /*
197  * If a p?d_bad entry is found while walking page tables, report
198  * the error, before resetting entry to p?d_none.  Usually (but
199  * very seldom) called out from the p?d_none_or_clear_bad macros.
200  */
201 
202 void pgd_clear_bad(pgd_t *pgd)
203 {
204 	pgd_ERROR(*pgd);
205 	pgd_clear(pgd);
206 }
207 
208 void pud_clear_bad(pud_t *pud)
209 {
210 	pud_ERROR(*pud);
211 	pud_clear(pud);
212 }
213 
214 void pmd_clear_bad(pmd_t *pmd)
215 {
216 	pmd_ERROR(*pmd);
217 	pmd_clear(pmd);
218 }
219 
220 /*
221  * Note: this doesn't free the actual pages themselves. That
222  * has been handled earlier when unmapping all the memory regions.
223  */
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 			   unsigned long addr)
226 {
227 	pgtable_t token = pmd_pgtable(*pmd);
228 	pmd_clear(pmd);
229 	pte_free_tlb(tlb, token, addr);
230 	tlb->mm->nr_ptes--;
231 }
232 
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 				unsigned long addr, unsigned long end,
235 				unsigned long floor, unsigned long ceiling)
236 {
237 	pmd_t *pmd;
238 	unsigned long next;
239 	unsigned long start;
240 
241 	start = addr;
242 	pmd = pmd_offset(pud, addr);
243 	do {
244 		next = pmd_addr_end(addr, end);
245 		if (pmd_none_or_clear_bad(pmd))
246 			continue;
247 		free_pte_range(tlb, pmd, addr);
248 	} while (pmd++, addr = next, addr != end);
249 
250 	start &= PUD_MASK;
251 	if (start < floor)
252 		return;
253 	if (ceiling) {
254 		ceiling &= PUD_MASK;
255 		if (!ceiling)
256 			return;
257 	}
258 	if (end - 1 > ceiling - 1)
259 		return;
260 
261 	pmd = pmd_offset(pud, start);
262 	pud_clear(pud);
263 	pmd_free_tlb(tlb, pmd, start);
264 }
265 
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	pud_t *pud;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	pud = pud_offset(pgd, addr);
276 	do {
277 		next = pud_addr_end(addr, end);
278 		if (pud_none_or_clear_bad(pud))
279 			continue;
280 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 	} while (pud++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	pud = pud_offset(pgd, start);
295 	pgd_clear(pgd);
296 	pud_free_tlb(tlb, pud, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  *
302  * Must be called with pagetable lock held.
303  */
304 void free_pgd_range(struct mmu_gather *tlb,
305 			unsigned long addr, unsigned long end,
306 			unsigned long floor, unsigned long ceiling)
307 {
308 	pgd_t *pgd;
309 	unsigned long next;
310 	unsigned long start;
311 
312 	/*
313 	 * The next few lines have given us lots of grief...
314 	 *
315 	 * Why are we testing PMD* at this top level?  Because often
316 	 * there will be no work to do at all, and we'd prefer not to
317 	 * go all the way down to the bottom just to discover that.
318 	 *
319 	 * Why all these "- 1"s?  Because 0 represents both the bottom
320 	 * of the address space and the top of it (using -1 for the
321 	 * top wouldn't help much: the masks would do the wrong thing).
322 	 * The rule is that addr 0 and floor 0 refer to the bottom of
323 	 * the address space, but end 0 and ceiling 0 refer to the top
324 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 	 * that end 0 case should be mythical).
326 	 *
327 	 * Wherever addr is brought up or ceiling brought down, we must
328 	 * be careful to reject "the opposite 0" before it confuses the
329 	 * subsequent tests.  But what about where end is brought down
330 	 * by PMD_SIZE below? no, end can't go down to 0 there.
331 	 *
332 	 * Whereas we round start (addr) and ceiling down, by different
333 	 * masks at different levels, in order to test whether a table
334 	 * now has no other vmas using it, so can be freed, we don't
335 	 * bother to round floor or end up - the tests don't need that.
336 	 */
337 
338 	addr &= PMD_MASK;
339 	if (addr < floor) {
340 		addr += PMD_SIZE;
341 		if (!addr)
342 			return;
343 	}
344 	if (ceiling) {
345 		ceiling &= PMD_MASK;
346 		if (!ceiling)
347 			return;
348 	}
349 	if (end - 1 > ceiling - 1)
350 		end -= PMD_SIZE;
351 	if (addr > end - 1)
352 		return;
353 
354 	start = addr;
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
365 		unsigned long floor, unsigned long ceiling)
366 {
367 	while (vma) {
368 		struct vm_area_struct *next = vma->vm_next;
369 		unsigned long addr = vma->vm_start;
370 
371 		/*
372 		 * Hide vma from rmap and truncate_pagecache before freeing
373 		 * pgtables
374 		 */
375 		unlink_anon_vmas(vma);
376 		unlink_file_vma(vma);
377 
378 		if (is_vm_hugetlb_page(vma)) {
379 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
380 				floor, next? next->vm_start: ceiling);
381 		} else {
382 			/*
383 			 * Optimization: gather nearby vmas into one call down
384 			 */
385 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
386 			       && !is_vm_hugetlb_page(next)) {
387 				vma = next;
388 				next = vma->vm_next;
389 				unlink_anon_vmas(vma);
390 				unlink_file_vma(vma);
391 			}
392 			free_pgd_range(tlb, addr, vma->vm_end,
393 				floor, next? next->vm_start: ceiling);
394 		}
395 		vma = next;
396 	}
397 }
398 
399 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
400 {
401 	pgtable_t new = pte_alloc_one(mm, address);
402 	if (!new)
403 		return -ENOMEM;
404 
405 	/*
406 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 	 * visible before the pte is made visible to other CPUs by being
408 	 * put into page tables.
409 	 *
410 	 * The other side of the story is the pointer chasing in the page
411 	 * table walking code (when walking the page table without locking;
412 	 * ie. most of the time). Fortunately, these data accesses consist
413 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 	 * being the notable exception) will already guarantee loads are
415 	 * seen in-order. See the alpha page table accessors for the
416 	 * smp_read_barrier_depends() barriers in page table walking code.
417 	 */
418 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
419 
420 	spin_lock(&mm->page_table_lock);
421 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
422 		mm->nr_ptes++;
423 		pmd_populate(mm, pmd, new);
424 		new = NULL;
425 	}
426 	spin_unlock(&mm->page_table_lock);
427 	if (new)
428 		pte_free(mm, new);
429 	return 0;
430 }
431 
432 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
433 {
434 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
435 	if (!new)
436 		return -ENOMEM;
437 
438 	smp_wmb(); /* See comment in __pte_alloc */
439 
440 	spin_lock(&init_mm.page_table_lock);
441 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
442 		pmd_populate_kernel(&init_mm, pmd, new);
443 		new = NULL;
444 	}
445 	spin_unlock(&init_mm.page_table_lock);
446 	if (new)
447 		pte_free_kernel(&init_mm, new);
448 	return 0;
449 }
450 
451 static inline void init_rss_vec(int *rss)
452 {
453 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
454 }
455 
456 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
457 {
458 	int i;
459 
460 	if (current->mm == mm)
461 		sync_mm_rss(current, mm);
462 	for (i = 0; i < NR_MM_COUNTERS; i++)
463 		if (rss[i])
464 			add_mm_counter(mm, i, rss[i]);
465 }
466 
467 /*
468  * This function is called to print an error when a bad pte
469  * is found. For example, we might have a PFN-mapped pte in
470  * a region that doesn't allow it.
471  *
472  * The calling function must still handle the error.
473  */
474 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
475 			  pte_t pte, struct page *page)
476 {
477 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
478 	pud_t *pud = pud_offset(pgd, addr);
479 	pmd_t *pmd = pmd_offset(pud, addr);
480 	struct address_space *mapping;
481 	pgoff_t index;
482 	static unsigned long resume;
483 	static unsigned long nr_shown;
484 	static unsigned long nr_unshown;
485 
486 	/*
487 	 * Allow a burst of 60 reports, then keep quiet for that minute;
488 	 * or allow a steady drip of one report per second.
489 	 */
490 	if (nr_shown == 60) {
491 		if (time_before(jiffies, resume)) {
492 			nr_unshown++;
493 			return;
494 		}
495 		if (nr_unshown) {
496 			printk(KERN_ALERT
497 				"BUG: Bad page map: %lu messages suppressed\n",
498 				nr_unshown);
499 			nr_unshown = 0;
500 		}
501 		nr_shown = 0;
502 	}
503 	if (nr_shown++ == 0)
504 		resume = jiffies + 60 * HZ;
505 
506 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
507 	index = linear_page_index(vma, addr);
508 
509 	printk(KERN_ALERT
510 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
511 		current->comm,
512 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
513 	if (page)
514 		dump_page(page);
515 	printk(KERN_ALERT
516 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
517 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
518 	/*
519 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
520 	 */
521 	if (vma->vm_ops)
522 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
523 				(unsigned long)vma->vm_ops->fault);
524 	if (vma->vm_file && vma->vm_file->f_op)
525 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
526 				(unsigned long)vma->vm_file->f_op->mmap);
527 	dump_stack();
528 	add_taint(TAINT_BAD_PAGE);
529 }
530 
531 static inline int is_cow_mapping(unsigned int flags)
532 {
533 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
534 }
535 
536 #ifndef is_zero_pfn
537 static inline int is_zero_pfn(unsigned long pfn)
538 {
539 	return pfn == zero_pfn;
540 }
541 #endif
542 
543 #ifndef my_zero_pfn
544 static inline unsigned long my_zero_pfn(unsigned long addr)
545 {
546 	return zero_pfn;
547 }
548 #endif
549 
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 #ifdef __HAVE_ARCH_PTE_SPECIAL
593 # define HAVE_PTE_SPECIAL 1
594 #else
595 # define HAVE_PTE_SPECIAL 0
596 #endif
597 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
598 				pte_t pte)
599 {
600 	unsigned long pfn = pte_pfn(pte);
601 
602 	if (HAVE_PTE_SPECIAL) {
603 		if (likely(!pte_special(pte)))
604 			goto check_pfn;
605 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 			return NULL;
607 		if (!is_zero_pfn(pfn))
608 			print_bad_pte(vma, addr, pte, NULL);
609 		return NULL;
610 	}
611 
612 	/* !HAVE_PTE_SPECIAL case follows: */
613 
614 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 		if (vma->vm_flags & VM_MIXEDMAP) {
616 			if (!pfn_valid(pfn))
617 				return NULL;
618 			goto out;
619 		} else {
620 			unsigned long off;
621 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 			if (pfn == vma->vm_pgoff + off)
623 				return NULL;
624 			if (!is_cow_mapping(vma->vm_flags))
625 				return NULL;
626 		}
627 	}
628 
629 	if (is_zero_pfn(pfn))
630 		return NULL;
631 check_pfn:
632 	if (unlikely(pfn > highest_memmap_pfn)) {
633 		print_bad_pte(vma, addr, pte, NULL);
634 		return NULL;
635 	}
636 
637 	/*
638 	 * NOTE! We still have PageReserved() pages in the page tables.
639 	 * eg. VDSO mappings can cause them to exist.
640 	 */
641 out:
642 	return pfn_to_page(pfn);
643 }
644 
645 /*
646  * copy one vm_area from one task to the other. Assumes the page tables
647  * already present in the new task to be cleared in the whole range
648  * covered by this vma.
649  */
650 
651 static inline unsigned long
652 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
653 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
654 		unsigned long addr, int *rss)
655 {
656 	unsigned long vm_flags = vma->vm_flags;
657 	pte_t pte = *src_pte;
658 	struct page *page;
659 
660 	/* pte contains position in swap or file, so copy. */
661 	if (unlikely(!pte_present(pte))) {
662 		if (!pte_file(pte)) {
663 			swp_entry_t entry = pte_to_swp_entry(pte);
664 
665 			if (swap_duplicate(entry) < 0)
666 				return entry.val;
667 
668 			/* make sure dst_mm is on swapoff's mmlist. */
669 			if (unlikely(list_empty(&dst_mm->mmlist))) {
670 				spin_lock(&mmlist_lock);
671 				if (list_empty(&dst_mm->mmlist))
672 					list_add(&dst_mm->mmlist,
673 						 &src_mm->mmlist);
674 				spin_unlock(&mmlist_lock);
675 			}
676 			if (likely(!non_swap_entry(entry)))
677 				rss[MM_SWAPENTS]++;
678 			else if (is_write_migration_entry(entry) &&
679 					is_cow_mapping(vm_flags)) {
680 				/*
681 				 * COW mappings require pages in both parent
682 				 * and child to be set to read.
683 				 */
684 				make_migration_entry_read(&entry);
685 				pte = swp_entry_to_pte(entry);
686 				set_pte_at(src_mm, addr, src_pte, pte);
687 			}
688 		}
689 		goto out_set_pte;
690 	}
691 
692 	/*
693 	 * If it's a COW mapping, write protect it both
694 	 * in the parent and the child
695 	 */
696 	if (is_cow_mapping(vm_flags)) {
697 		ptep_set_wrprotect(src_mm, addr, src_pte);
698 		pte = pte_wrprotect(pte);
699 	}
700 
701 	/*
702 	 * If it's a shared mapping, mark it clean in
703 	 * the child
704 	 */
705 	if (vm_flags & VM_SHARED)
706 		pte = pte_mkclean(pte);
707 	pte = pte_mkold(pte);
708 
709 	page = vm_normal_page(vma, addr, pte);
710 	if (page) {
711 		get_page(page);
712 		page_dup_rmap(page);
713 		if (PageAnon(page))
714 			rss[MM_ANONPAGES]++;
715 		else
716 			rss[MM_FILEPAGES]++;
717 	}
718 
719 out_set_pte:
720 	set_pte_at(dst_mm, addr, dst_pte, pte);
721 	return 0;
722 }
723 
724 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
725 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
726 		unsigned long addr, unsigned long end)
727 {
728 	pte_t *orig_src_pte, *orig_dst_pte;
729 	pte_t *src_pte, *dst_pte;
730 	spinlock_t *src_ptl, *dst_ptl;
731 	int progress = 0;
732 	int rss[NR_MM_COUNTERS];
733 	swp_entry_t entry = (swp_entry_t){0};
734 
735 again:
736 	init_rss_vec(rss);
737 
738 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
739 	if (!dst_pte)
740 		return -ENOMEM;
741 	src_pte = pte_offset_map_nested(src_pmd, addr);
742 	src_ptl = pte_lockptr(src_mm, src_pmd);
743 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
744 	orig_src_pte = src_pte;
745 	orig_dst_pte = dst_pte;
746 	arch_enter_lazy_mmu_mode();
747 
748 	do {
749 		/*
750 		 * We are holding two locks at this point - either of them
751 		 * could generate latencies in another task on another CPU.
752 		 */
753 		if (progress >= 32) {
754 			progress = 0;
755 			if (need_resched() ||
756 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
757 				break;
758 		}
759 		if (pte_none(*src_pte)) {
760 			progress++;
761 			continue;
762 		}
763 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
764 							vma, addr, rss);
765 		if (entry.val)
766 			break;
767 		progress += 8;
768 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
769 
770 	arch_leave_lazy_mmu_mode();
771 	spin_unlock(src_ptl);
772 	pte_unmap_nested(orig_src_pte);
773 	add_mm_rss_vec(dst_mm, rss);
774 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
775 	cond_resched();
776 
777 	if (entry.val) {
778 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
779 			return -ENOMEM;
780 		progress = 0;
781 	}
782 	if (addr != end)
783 		goto again;
784 	return 0;
785 }
786 
787 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
788 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
789 		unsigned long addr, unsigned long end)
790 {
791 	pmd_t *src_pmd, *dst_pmd;
792 	unsigned long next;
793 
794 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
795 	if (!dst_pmd)
796 		return -ENOMEM;
797 	src_pmd = pmd_offset(src_pud, addr);
798 	do {
799 		next = pmd_addr_end(addr, end);
800 		if (pmd_none_or_clear_bad(src_pmd))
801 			continue;
802 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
803 						vma, addr, next))
804 			return -ENOMEM;
805 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
806 	return 0;
807 }
808 
809 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
810 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
811 		unsigned long addr, unsigned long end)
812 {
813 	pud_t *src_pud, *dst_pud;
814 	unsigned long next;
815 
816 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
817 	if (!dst_pud)
818 		return -ENOMEM;
819 	src_pud = pud_offset(src_pgd, addr);
820 	do {
821 		next = pud_addr_end(addr, end);
822 		if (pud_none_or_clear_bad(src_pud))
823 			continue;
824 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
825 						vma, addr, next))
826 			return -ENOMEM;
827 	} while (dst_pud++, src_pud++, addr = next, addr != end);
828 	return 0;
829 }
830 
831 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
832 		struct vm_area_struct *vma)
833 {
834 	pgd_t *src_pgd, *dst_pgd;
835 	unsigned long next;
836 	unsigned long addr = vma->vm_start;
837 	unsigned long end = vma->vm_end;
838 	int ret;
839 
840 	/*
841 	 * Don't copy ptes where a page fault will fill them correctly.
842 	 * Fork becomes much lighter when there are big shared or private
843 	 * readonly mappings. The tradeoff is that copy_page_range is more
844 	 * efficient than faulting.
845 	 */
846 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
847 		if (!vma->anon_vma)
848 			return 0;
849 	}
850 
851 	if (is_vm_hugetlb_page(vma))
852 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
853 
854 	if (unlikely(is_pfn_mapping(vma))) {
855 		/*
856 		 * We do not free on error cases below as remove_vma
857 		 * gets called on error from higher level routine
858 		 */
859 		ret = track_pfn_vma_copy(vma);
860 		if (ret)
861 			return ret;
862 	}
863 
864 	/*
865 	 * We need to invalidate the secondary MMU mappings only when
866 	 * there could be a permission downgrade on the ptes of the
867 	 * parent mm. And a permission downgrade will only happen if
868 	 * is_cow_mapping() returns true.
869 	 */
870 	if (is_cow_mapping(vma->vm_flags))
871 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
872 
873 	ret = 0;
874 	dst_pgd = pgd_offset(dst_mm, addr);
875 	src_pgd = pgd_offset(src_mm, addr);
876 	do {
877 		next = pgd_addr_end(addr, end);
878 		if (pgd_none_or_clear_bad(src_pgd))
879 			continue;
880 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
881 					    vma, addr, next))) {
882 			ret = -ENOMEM;
883 			break;
884 		}
885 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
886 
887 	if (is_cow_mapping(vma->vm_flags))
888 		mmu_notifier_invalidate_range_end(src_mm,
889 						  vma->vm_start, end);
890 	return ret;
891 }
892 
893 static unsigned long zap_pte_range(struct mmu_gather *tlb,
894 				struct vm_area_struct *vma, pmd_t *pmd,
895 				unsigned long addr, unsigned long end,
896 				long *zap_work, struct zap_details *details)
897 {
898 	struct mm_struct *mm = tlb->mm;
899 	pte_t *pte;
900 	spinlock_t *ptl;
901 	int rss[NR_MM_COUNTERS];
902 
903 	init_rss_vec(rss);
904 
905 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
906 	arch_enter_lazy_mmu_mode();
907 	do {
908 		pte_t ptent = *pte;
909 		if (pte_none(ptent)) {
910 			(*zap_work)--;
911 			continue;
912 		}
913 
914 		(*zap_work) -= PAGE_SIZE;
915 
916 		if (pte_present(ptent)) {
917 			struct page *page;
918 
919 			page = vm_normal_page(vma, addr, ptent);
920 			if (unlikely(details) && page) {
921 				/*
922 				 * unmap_shared_mapping_pages() wants to
923 				 * invalidate cache without truncating:
924 				 * unmap shared but keep private pages.
925 				 */
926 				if (details->check_mapping &&
927 				    details->check_mapping != page->mapping)
928 					continue;
929 				/*
930 				 * Each page->index must be checked when
931 				 * invalidating or truncating nonlinear.
932 				 */
933 				if (details->nonlinear_vma &&
934 				    (page->index < details->first_index ||
935 				     page->index > details->last_index))
936 					continue;
937 			}
938 			ptent = ptep_get_and_clear_full(mm, addr, pte,
939 							tlb->fullmm);
940 			tlb_remove_tlb_entry(tlb, pte, addr);
941 			if (unlikely(!page))
942 				continue;
943 			if (unlikely(details) && details->nonlinear_vma
944 			    && linear_page_index(details->nonlinear_vma,
945 						addr) != page->index)
946 				set_pte_at(mm, addr, pte,
947 					   pgoff_to_pte(page->index));
948 			if (PageAnon(page))
949 				rss[MM_ANONPAGES]--;
950 			else {
951 				if (pte_dirty(ptent))
952 					set_page_dirty(page);
953 				if (pte_young(ptent) &&
954 				    likely(!VM_SequentialReadHint(vma)))
955 					mark_page_accessed(page);
956 				rss[MM_FILEPAGES]--;
957 			}
958 			page_remove_rmap(page);
959 			if (unlikely(page_mapcount(page) < 0))
960 				print_bad_pte(vma, addr, ptent, page);
961 			tlb_remove_page(tlb, page);
962 			continue;
963 		}
964 		/*
965 		 * If details->check_mapping, we leave swap entries;
966 		 * if details->nonlinear_vma, we leave file entries.
967 		 */
968 		if (unlikely(details))
969 			continue;
970 		if (pte_file(ptent)) {
971 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
972 				print_bad_pte(vma, addr, ptent, NULL);
973 		} else {
974 			swp_entry_t entry = pte_to_swp_entry(ptent);
975 
976 			if (!non_swap_entry(entry))
977 				rss[MM_SWAPENTS]--;
978 			if (unlikely(!free_swap_and_cache(entry)))
979 				print_bad_pte(vma, addr, ptent, NULL);
980 		}
981 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
982 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
983 
984 	add_mm_rss_vec(mm, rss);
985 	arch_leave_lazy_mmu_mode();
986 	pte_unmap_unlock(pte - 1, ptl);
987 
988 	return addr;
989 }
990 
991 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
992 				struct vm_area_struct *vma, pud_t *pud,
993 				unsigned long addr, unsigned long end,
994 				long *zap_work, struct zap_details *details)
995 {
996 	pmd_t *pmd;
997 	unsigned long next;
998 
999 	pmd = pmd_offset(pud, addr);
1000 	do {
1001 		next = pmd_addr_end(addr, end);
1002 		if (pmd_none_or_clear_bad(pmd)) {
1003 			(*zap_work)--;
1004 			continue;
1005 		}
1006 		next = zap_pte_range(tlb, vma, pmd, addr, next,
1007 						zap_work, details);
1008 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
1009 
1010 	return addr;
1011 }
1012 
1013 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1014 				struct vm_area_struct *vma, pgd_t *pgd,
1015 				unsigned long addr, unsigned long end,
1016 				long *zap_work, struct zap_details *details)
1017 {
1018 	pud_t *pud;
1019 	unsigned long next;
1020 
1021 	pud = pud_offset(pgd, addr);
1022 	do {
1023 		next = pud_addr_end(addr, end);
1024 		if (pud_none_or_clear_bad(pud)) {
1025 			(*zap_work)--;
1026 			continue;
1027 		}
1028 		next = zap_pmd_range(tlb, vma, pud, addr, next,
1029 						zap_work, details);
1030 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
1031 
1032 	return addr;
1033 }
1034 
1035 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1036 				struct vm_area_struct *vma,
1037 				unsigned long addr, unsigned long end,
1038 				long *zap_work, struct zap_details *details)
1039 {
1040 	pgd_t *pgd;
1041 	unsigned long next;
1042 
1043 	if (details && !details->check_mapping && !details->nonlinear_vma)
1044 		details = NULL;
1045 
1046 	BUG_ON(addr >= end);
1047 	mem_cgroup_uncharge_start();
1048 	tlb_start_vma(tlb, vma);
1049 	pgd = pgd_offset(vma->vm_mm, addr);
1050 	do {
1051 		next = pgd_addr_end(addr, end);
1052 		if (pgd_none_or_clear_bad(pgd)) {
1053 			(*zap_work)--;
1054 			continue;
1055 		}
1056 		next = zap_pud_range(tlb, vma, pgd, addr, next,
1057 						zap_work, details);
1058 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
1059 	tlb_end_vma(tlb, vma);
1060 	mem_cgroup_uncharge_end();
1061 
1062 	return addr;
1063 }
1064 
1065 #ifdef CONFIG_PREEMPT
1066 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1067 #else
1068 /* No preempt: go for improved straight-line efficiency */
1069 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1070 #endif
1071 
1072 /**
1073  * unmap_vmas - unmap a range of memory covered by a list of vma's
1074  * @tlbp: address of the caller's struct mmu_gather
1075  * @vma: the starting vma
1076  * @start_addr: virtual address at which to start unmapping
1077  * @end_addr: virtual address at which to end unmapping
1078  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1079  * @details: details of nonlinear truncation or shared cache invalidation
1080  *
1081  * Returns the end address of the unmapping (restart addr if interrupted).
1082  *
1083  * Unmap all pages in the vma list.
1084  *
1085  * We aim to not hold locks for too long (for scheduling latency reasons).
1086  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1087  * return the ending mmu_gather to the caller.
1088  *
1089  * Only addresses between `start' and `end' will be unmapped.
1090  *
1091  * The VMA list must be sorted in ascending virtual address order.
1092  *
1093  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1094  * range after unmap_vmas() returns.  So the only responsibility here is to
1095  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1096  * drops the lock and schedules.
1097  */
1098 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1099 		struct vm_area_struct *vma, unsigned long start_addr,
1100 		unsigned long end_addr, unsigned long *nr_accounted,
1101 		struct zap_details *details)
1102 {
1103 	long zap_work = ZAP_BLOCK_SIZE;
1104 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1105 	int tlb_start_valid = 0;
1106 	unsigned long start = start_addr;
1107 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1108 	int fullmm = (*tlbp)->fullmm;
1109 	struct mm_struct *mm = vma->vm_mm;
1110 
1111 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1112 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1113 		unsigned long end;
1114 
1115 		start = max(vma->vm_start, start_addr);
1116 		if (start >= vma->vm_end)
1117 			continue;
1118 		end = min(vma->vm_end, end_addr);
1119 		if (end <= vma->vm_start)
1120 			continue;
1121 
1122 		if (vma->vm_flags & VM_ACCOUNT)
1123 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1124 
1125 		if (unlikely(is_pfn_mapping(vma)))
1126 			untrack_pfn_vma(vma, 0, 0);
1127 
1128 		while (start != end) {
1129 			if (!tlb_start_valid) {
1130 				tlb_start = start;
1131 				tlb_start_valid = 1;
1132 			}
1133 
1134 			if (unlikely(is_vm_hugetlb_page(vma))) {
1135 				/*
1136 				 * It is undesirable to test vma->vm_file as it
1137 				 * should be non-null for valid hugetlb area.
1138 				 * However, vm_file will be NULL in the error
1139 				 * cleanup path of do_mmap_pgoff. When
1140 				 * hugetlbfs ->mmap method fails,
1141 				 * do_mmap_pgoff() nullifies vma->vm_file
1142 				 * before calling this function to clean up.
1143 				 * Since no pte has actually been setup, it is
1144 				 * safe to do nothing in this case.
1145 				 */
1146 				if (vma->vm_file) {
1147 					unmap_hugepage_range(vma, start, end, NULL);
1148 					zap_work -= (end - start) /
1149 					pages_per_huge_page(hstate_vma(vma));
1150 				}
1151 
1152 				start = end;
1153 			} else
1154 				start = unmap_page_range(*tlbp, vma,
1155 						start, end, &zap_work, details);
1156 
1157 			if (zap_work > 0) {
1158 				BUG_ON(start != end);
1159 				break;
1160 			}
1161 
1162 			tlb_finish_mmu(*tlbp, tlb_start, start);
1163 
1164 			if (need_resched() ||
1165 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1166 				if (i_mmap_lock) {
1167 					*tlbp = NULL;
1168 					goto out;
1169 				}
1170 				cond_resched();
1171 			}
1172 
1173 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1174 			tlb_start_valid = 0;
1175 			zap_work = ZAP_BLOCK_SIZE;
1176 		}
1177 	}
1178 out:
1179 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1180 	return start;	/* which is now the end (or restart) address */
1181 }
1182 
1183 /**
1184  * zap_page_range - remove user pages in a given range
1185  * @vma: vm_area_struct holding the applicable pages
1186  * @address: starting address of pages to zap
1187  * @size: number of bytes to zap
1188  * @details: details of nonlinear truncation or shared cache invalidation
1189  */
1190 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1191 		unsigned long size, struct zap_details *details)
1192 {
1193 	struct mm_struct *mm = vma->vm_mm;
1194 	struct mmu_gather *tlb;
1195 	unsigned long end = address + size;
1196 	unsigned long nr_accounted = 0;
1197 
1198 	lru_add_drain();
1199 	tlb = tlb_gather_mmu(mm, 0);
1200 	update_hiwater_rss(mm);
1201 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1202 	if (tlb)
1203 		tlb_finish_mmu(tlb, address, end);
1204 	return end;
1205 }
1206 
1207 /**
1208  * zap_vma_ptes - remove ptes mapping the vma
1209  * @vma: vm_area_struct holding ptes to be zapped
1210  * @address: starting address of pages to zap
1211  * @size: number of bytes to zap
1212  *
1213  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1214  *
1215  * The entire address range must be fully contained within the vma.
1216  *
1217  * Returns 0 if successful.
1218  */
1219 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1220 		unsigned long size)
1221 {
1222 	if (address < vma->vm_start || address + size > vma->vm_end ||
1223 	    		!(vma->vm_flags & VM_PFNMAP))
1224 		return -1;
1225 	zap_page_range(vma, address, size, NULL);
1226 	return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1229 
1230 /*
1231  * Do a quick page-table lookup for a single page.
1232  */
1233 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1234 			unsigned int flags)
1235 {
1236 	pgd_t *pgd;
1237 	pud_t *pud;
1238 	pmd_t *pmd;
1239 	pte_t *ptep, pte;
1240 	spinlock_t *ptl;
1241 	struct page *page;
1242 	struct mm_struct *mm = vma->vm_mm;
1243 
1244 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1245 	if (!IS_ERR(page)) {
1246 		BUG_ON(flags & FOLL_GET);
1247 		goto out;
1248 	}
1249 
1250 	page = NULL;
1251 	pgd = pgd_offset(mm, address);
1252 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1253 		goto no_page_table;
1254 
1255 	pud = pud_offset(pgd, address);
1256 	if (pud_none(*pud))
1257 		goto no_page_table;
1258 	if (pud_huge(*pud)) {
1259 		BUG_ON(flags & FOLL_GET);
1260 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1261 		goto out;
1262 	}
1263 	if (unlikely(pud_bad(*pud)))
1264 		goto no_page_table;
1265 
1266 	pmd = pmd_offset(pud, address);
1267 	if (pmd_none(*pmd))
1268 		goto no_page_table;
1269 	if (pmd_huge(*pmd)) {
1270 		BUG_ON(flags & FOLL_GET);
1271 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1272 		goto out;
1273 	}
1274 	if (unlikely(pmd_bad(*pmd)))
1275 		goto no_page_table;
1276 
1277 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1278 
1279 	pte = *ptep;
1280 	if (!pte_present(pte))
1281 		goto no_page;
1282 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1283 		goto unlock;
1284 
1285 	page = vm_normal_page(vma, address, pte);
1286 	if (unlikely(!page)) {
1287 		if ((flags & FOLL_DUMP) ||
1288 		    !is_zero_pfn(pte_pfn(pte)))
1289 			goto bad_page;
1290 		page = pte_page(pte);
1291 	}
1292 
1293 	if (flags & FOLL_GET)
1294 		get_page(page);
1295 	if (flags & FOLL_TOUCH) {
1296 		if ((flags & FOLL_WRITE) &&
1297 		    !pte_dirty(pte) && !PageDirty(page))
1298 			set_page_dirty(page);
1299 		/*
1300 		 * pte_mkyoung() would be more correct here, but atomic care
1301 		 * is needed to avoid losing the dirty bit: it is easier to use
1302 		 * mark_page_accessed().
1303 		 */
1304 		mark_page_accessed(page);
1305 	}
1306 unlock:
1307 	pte_unmap_unlock(ptep, ptl);
1308 out:
1309 	return page;
1310 
1311 bad_page:
1312 	pte_unmap_unlock(ptep, ptl);
1313 	return ERR_PTR(-EFAULT);
1314 
1315 no_page:
1316 	pte_unmap_unlock(ptep, ptl);
1317 	if (!pte_none(pte))
1318 		return page;
1319 
1320 no_page_table:
1321 	/*
1322 	 * When core dumping an enormous anonymous area that nobody
1323 	 * has touched so far, we don't want to allocate unnecessary pages or
1324 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1325 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1326 	 * But we can only make this optimization where a hole would surely
1327 	 * be zero-filled if handle_mm_fault() actually did handle it.
1328 	 */
1329 	if ((flags & FOLL_DUMP) &&
1330 	    (!vma->vm_ops || !vma->vm_ops->fault))
1331 		return ERR_PTR(-EFAULT);
1332 	return page;
1333 }
1334 
1335 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1336 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1337 		     struct page **pages, struct vm_area_struct **vmas)
1338 {
1339 	int i;
1340 	unsigned long vm_flags;
1341 
1342 	if (nr_pages <= 0)
1343 		return 0;
1344 
1345 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1346 
1347 	/*
1348 	 * Require read or write permissions.
1349 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1350 	 */
1351 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1352 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1353 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1354 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1355 	i = 0;
1356 
1357 	do {
1358 		struct vm_area_struct *vma;
1359 
1360 		vma = find_extend_vma(mm, start);
1361 		if (!vma && in_gate_area(tsk, start)) {
1362 			unsigned long pg = start & PAGE_MASK;
1363 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1364 			pgd_t *pgd;
1365 			pud_t *pud;
1366 			pmd_t *pmd;
1367 			pte_t *pte;
1368 
1369 			/* user gate pages are read-only */
1370 			if (gup_flags & FOLL_WRITE)
1371 				return i ? : -EFAULT;
1372 			if (pg > TASK_SIZE)
1373 				pgd = pgd_offset_k(pg);
1374 			else
1375 				pgd = pgd_offset_gate(mm, pg);
1376 			BUG_ON(pgd_none(*pgd));
1377 			pud = pud_offset(pgd, pg);
1378 			BUG_ON(pud_none(*pud));
1379 			pmd = pmd_offset(pud, pg);
1380 			if (pmd_none(*pmd))
1381 				return i ? : -EFAULT;
1382 			pte = pte_offset_map(pmd, pg);
1383 			if (pte_none(*pte)) {
1384 				pte_unmap(pte);
1385 				return i ? : -EFAULT;
1386 			}
1387 			if (pages) {
1388 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1389 				pages[i] = page;
1390 				if (page)
1391 					get_page(page);
1392 			}
1393 			pte_unmap(pte);
1394 			if (vmas)
1395 				vmas[i] = gate_vma;
1396 			i++;
1397 			start += PAGE_SIZE;
1398 			nr_pages--;
1399 			continue;
1400 		}
1401 
1402 		if (!vma ||
1403 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1404 		    !(vm_flags & vma->vm_flags))
1405 			return i ? : -EFAULT;
1406 
1407 		if (is_vm_hugetlb_page(vma)) {
1408 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1409 					&start, &nr_pages, i, gup_flags);
1410 			continue;
1411 		}
1412 
1413 		do {
1414 			struct page *page;
1415 			unsigned int foll_flags = gup_flags;
1416 
1417 			/*
1418 			 * If we have a pending SIGKILL, don't keep faulting
1419 			 * pages and potentially allocating memory.
1420 			 */
1421 			if (unlikely(fatal_signal_pending(current)))
1422 				return i ? i : -ERESTARTSYS;
1423 
1424 			cond_resched();
1425 			while (!(page = follow_page(vma, start, foll_flags))) {
1426 				int ret;
1427 
1428 				ret = handle_mm_fault(mm, vma, start,
1429 					(foll_flags & FOLL_WRITE) ?
1430 					FAULT_FLAG_WRITE : 0);
1431 
1432 				if (ret & VM_FAULT_ERROR) {
1433 					if (ret & VM_FAULT_OOM)
1434 						return i ? i : -ENOMEM;
1435 					if (ret &
1436 					    (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1437 						return i ? i : -EFAULT;
1438 					BUG();
1439 				}
1440 				if (ret & VM_FAULT_MAJOR)
1441 					tsk->maj_flt++;
1442 				else
1443 					tsk->min_flt++;
1444 
1445 				/*
1446 				 * The VM_FAULT_WRITE bit tells us that
1447 				 * do_wp_page has broken COW when necessary,
1448 				 * even if maybe_mkwrite decided not to set
1449 				 * pte_write. We can thus safely do subsequent
1450 				 * page lookups as if they were reads. But only
1451 				 * do so when looping for pte_write is futile:
1452 				 * in some cases userspace may also be wanting
1453 				 * to write to the gotten user page, which a
1454 				 * read fault here might prevent (a readonly
1455 				 * page might get reCOWed by userspace write).
1456 				 */
1457 				if ((ret & VM_FAULT_WRITE) &&
1458 				    !(vma->vm_flags & VM_WRITE))
1459 					foll_flags &= ~FOLL_WRITE;
1460 
1461 				cond_resched();
1462 			}
1463 			if (IS_ERR(page))
1464 				return i ? i : PTR_ERR(page);
1465 			if (pages) {
1466 				pages[i] = page;
1467 
1468 				flush_anon_page(vma, page, start);
1469 				flush_dcache_page(page);
1470 			}
1471 			if (vmas)
1472 				vmas[i] = vma;
1473 			i++;
1474 			start += PAGE_SIZE;
1475 			nr_pages--;
1476 		} while (nr_pages && start < vma->vm_end);
1477 	} while (nr_pages);
1478 	return i;
1479 }
1480 
1481 /**
1482  * get_user_pages() - pin user pages in memory
1483  * @tsk:	task_struct of target task
1484  * @mm:		mm_struct of target mm
1485  * @start:	starting user address
1486  * @nr_pages:	number of pages from start to pin
1487  * @write:	whether pages will be written to by the caller
1488  * @force:	whether to force write access even if user mapping is
1489  *		readonly. This will result in the page being COWed even
1490  *		in MAP_SHARED mappings. You do not want this.
1491  * @pages:	array that receives pointers to the pages pinned.
1492  *		Should be at least nr_pages long. Or NULL, if caller
1493  *		only intends to ensure the pages are faulted in.
1494  * @vmas:	array of pointers to vmas corresponding to each page.
1495  *		Or NULL if the caller does not require them.
1496  *
1497  * Returns number of pages pinned. This may be fewer than the number
1498  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1499  * were pinned, returns -errno. Each page returned must be released
1500  * with a put_page() call when it is finished with. vmas will only
1501  * remain valid while mmap_sem is held.
1502  *
1503  * Must be called with mmap_sem held for read or write.
1504  *
1505  * get_user_pages walks a process's page tables and takes a reference to
1506  * each struct page that each user address corresponds to at a given
1507  * instant. That is, it takes the page that would be accessed if a user
1508  * thread accesses the given user virtual address at that instant.
1509  *
1510  * This does not guarantee that the page exists in the user mappings when
1511  * get_user_pages returns, and there may even be a completely different
1512  * page there in some cases (eg. if mmapped pagecache has been invalidated
1513  * and subsequently re faulted). However it does guarantee that the page
1514  * won't be freed completely. And mostly callers simply care that the page
1515  * contains data that was valid *at some point in time*. Typically, an IO
1516  * or similar operation cannot guarantee anything stronger anyway because
1517  * locks can't be held over the syscall boundary.
1518  *
1519  * If write=0, the page must not be written to. If the page is written to,
1520  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1521  * after the page is finished with, and before put_page is called.
1522  *
1523  * get_user_pages is typically used for fewer-copy IO operations, to get a
1524  * handle on the memory by some means other than accesses via the user virtual
1525  * addresses. The pages may be submitted for DMA to devices or accessed via
1526  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1527  * use the correct cache flushing APIs.
1528  *
1529  * See also get_user_pages_fast, for performance critical applications.
1530  */
1531 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1532 		unsigned long start, int nr_pages, int write, int force,
1533 		struct page **pages, struct vm_area_struct **vmas)
1534 {
1535 	int flags = FOLL_TOUCH;
1536 
1537 	if (pages)
1538 		flags |= FOLL_GET;
1539 	if (write)
1540 		flags |= FOLL_WRITE;
1541 	if (force)
1542 		flags |= FOLL_FORCE;
1543 
1544 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1545 }
1546 EXPORT_SYMBOL(get_user_pages);
1547 
1548 /**
1549  * get_dump_page() - pin user page in memory while writing it to core dump
1550  * @addr: user address
1551  *
1552  * Returns struct page pointer of user page pinned for dump,
1553  * to be freed afterwards by page_cache_release() or put_page().
1554  *
1555  * Returns NULL on any kind of failure - a hole must then be inserted into
1556  * the corefile, to preserve alignment with its headers; and also returns
1557  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1558  * allowing a hole to be left in the corefile to save diskspace.
1559  *
1560  * Called without mmap_sem, but after all other threads have been killed.
1561  */
1562 #ifdef CONFIG_ELF_CORE
1563 struct page *get_dump_page(unsigned long addr)
1564 {
1565 	struct vm_area_struct *vma;
1566 	struct page *page;
1567 
1568 	if (__get_user_pages(current, current->mm, addr, 1,
1569 			FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1570 		return NULL;
1571 	flush_cache_page(vma, addr, page_to_pfn(page));
1572 	return page;
1573 }
1574 #endif /* CONFIG_ELF_CORE */
1575 
1576 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1577 			spinlock_t **ptl)
1578 {
1579 	pgd_t * pgd = pgd_offset(mm, addr);
1580 	pud_t * pud = pud_alloc(mm, pgd, addr);
1581 	if (pud) {
1582 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1583 		if (pmd)
1584 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1585 	}
1586 	return NULL;
1587 }
1588 
1589 /*
1590  * This is the old fallback for page remapping.
1591  *
1592  * For historical reasons, it only allows reserved pages. Only
1593  * old drivers should use this, and they needed to mark their
1594  * pages reserved for the old functions anyway.
1595  */
1596 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1597 			struct page *page, pgprot_t prot)
1598 {
1599 	struct mm_struct *mm = vma->vm_mm;
1600 	int retval;
1601 	pte_t *pte;
1602 	spinlock_t *ptl;
1603 
1604 	retval = -EINVAL;
1605 	if (PageAnon(page))
1606 		goto out;
1607 	retval = -ENOMEM;
1608 	flush_dcache_page(page);
1609 	pte = get_locked_pte(mm, addr, &ptl);
1610 	if (!pte)
1611 		goto out;
1612 	retval = -EBUSY;
1613 	if (!pte_none(*pte))
1614 		goto out_unlock;
1615 
1616 	/* Ok, finally just insert the thing.. */
1617 	get_page(page);
1618 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1619 	page_add_file_rmap(page);
1620 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1621 
1622 	retval = 0;
1623 	pte_unmap_unlock(pte, ptl);
1624 	return retval;
1625 out_unlock:
1626 	pte_unmap_unlock(pte, ptl);
1627 out:
1628 	return retval;
1629 }
1630 
1631 /**
1632  * vm_insert_page - insert single page into user vma
1633  * @vma: user vma to map to
1634  * @addr: target user address of this page
1635  * @page: source kernel page
1636  *
1637  * This allows drivers to insert individual pages they've allocated
1638  * into a user vma.
1639  *
1640  * The page has to be a nice clean _individual_ kernel allocation.
1641  * If you allocate a compound page, you need to have marked it as
1642  * such (__GFP_COMP), or manually just split the page up yourself
1643  * (see split_page()).
1644  *
1645  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1646  * took an arbitrary page protection parameter. This doesn't allow
1647  * that. Your vma protection will have to be set up correctly, which
1648  * means that if you want a shared writable mapping, you'd better
1649  * ask for a shared writable mapping!
1650  *
1651  * The page does not need to be reserved.
1652  */
1653 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1654 			struct page *page)
1655 {
1656 	if (addr < vma->vm_start || addr >= vma->vm_end)
1657 		return -EFAULT;
1658 	if (!page_count(page))
1659 		return -EINVAL;
1660 	vma->vm_flags |= VM_INSERTPAGE;
1661 	return insert_page(vma, addr, page, vma->vm_page_prot);
1662 }
1663 EXPORT_SYMBOL(vm_insert_page);
1664 
1665 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1666 			unsigned long pfn, pgprot_t prot)
1667 {
1668 	struct mm_struct *mm = vma->vm_mm;
1669 	int retval;
1670 	pte_t *pte, entry;
1671 	spinlock_t *ptl;
1672 
1673 	retval = -ENOMEM;
1674 	pte = get_locked_pte(mm, addr, &ptl);
1675 	if (!pte)
1676 		goto out;
1677 	retval = -EBUSY;
1678 	if (!pte_none(*pte))
1679 		goto out_unlock;
1680 
1681 	/* Ok, finally just insert the thing.. */
1682 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1683 	set_pte_at(mm, addr, pte, entry);
1684 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1685 
1686 	retval = 0;
1687 out_unlock:
1688 	pte_unmap_unlock(pte, ptl);
1689 out:
1690 	return retval;
1691 }
1692 
1693 /**
1694  * vm_insert_pfn - insert single pfn into user vma
1695  * @vma: user vma to map to
1696  * @addr: target user address of this page
1697  * @pfn: source kernel pfn
1698  *
1699  * Similar to vm_inert_page, this allows drivers to insert individual pages
1700  * they've allocated into a user vma. Same comments apply.
1701  *
1702  * This function should only be called from a vm_ops->fault handler, and
1703  * in that case the handler should return NULL.
1704  *
1705  * vma cannot be a COW mapping.
1706  *
1707  * As this is called only for pages that do not currently exist, we
1708  * do not need to flush old virtual caches or the TLB.
1709  */
1710 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1711 			unsigned long pfn)
1712 {
1713 	int ret;
1714 	pgprot_t pgprot = vma->vm_page_prot;
1715 	/*
1716 	 * Technically, architectures with pte_special can avoid all these
1717 	 * restrictions (same for remap_pfn_range).  However we would like
1718 	 * consistency in testing and feature parity among all, so we should
1719 	 * try to keep these invariants in place for everybody.
1720 	 */
1721 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1722 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1723 						(VM_PFNMAP|VM_MIXEDMAP));
1724 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1725 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1726 
1727 	if (addr < vma->vm_start || addr >= vma->vm_end)
1728 		return -EFAULT;
1729 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1730 		return -EINVAL;
1731 
1732 	ret = insert_pfn(vma, addr, pfn, pgprot);
1733 
1734 	if (ret)
1735 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1736 
1737 	return ret;
1738 }
1739 EXPORT_SYMBOL(vm_insert_pfn);
1740 
1741 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1742 			unsigned long pfn)
1743 {
1744 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1745 
1746 	if (addr < vma->vm_start || addr >= vma->vm_end)
1747 		return -EFAULT;
1748 
1749 	/*
1750 	 * If we don't have pte special, then we have to use the pfn_valid()
1751 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1752 	 * refcount the page if pfn_valid is true (hence insert_page rather
1753 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1754 	 * without pte special, it would there be refcounted as a normal page.
1755 	 */
1756 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1757 		struct page *page;
1758 
1759 		page = pfn_to_page(pfn);
1760 		return insert_page(vma, addr, page, vma->vm_page_prot);
1761 	}
1762 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1763 }
1764 EXPORT_SYMBOL(vm_insert_mixed);
1765 
1766 /*
1767  * maps a range of physical memory into the requested pages. the old
1768  * mappings are removed. any references to nonexistent pages results
1769  * in null mappings (currently treated as "copy-on-access")
1770  */
1771 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1772 			unsigned long addr, unsigned long end,
1773 			unsigned long pfn, pgprot_t prot)
1774 {
1775 	pte_t *pte;
1776 	spinlock_t *ptl;
1777 
1778 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1779 	if (!pte)
1780 		return -ENOMEM;
1781 	arch_enter_lazy_mmu_mode();
1782 	do {
1783 		BUG_ON(!pte_none(*pte));
1784 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1785 		pfn++;
1786 	} while (pte++, addr += PAGE_SIZE, addr != end);
1787 	arch_leave_lazy_mmu_mode();
1788 	pte_unmap_unlock(pte - 1, ptl);
1789 	return 0;
1790 }
1791 
1792 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1793 			unsigned long addr, unsigned long end,
1794 			unsigned long pfn, pgprot_t prot)
1795 {
1796 	pmd_t *pmd;
1797 	unsigned long next;
1798 
1799 	pfn -= addr >> PAGE_SHIFT;
1800 	pmd = pmd_alloc(mm, pud, addr);
1801 	if (!pmd)
1802 		return -ENOMEM;
1803 	do {
1804 		next = pmd_addr_end(addr, end);
1805 		if (remap_pte_range(mm, pmd, addr, next,
1806 				pfn + (addr >> PAGE_SHIFT), prot))
1807 			return -ENOMEM;
1808 	} while (pmd++, addr = next, addr != end);
1809 	return 0;
1810 }
1811 
1812 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1813 			unsigned long addr, unsigned long end,
1814 			unsigned long pfn, pgprot_t prot)
1815 {
1816 	pud_t *pud;
1817 	unsigned long next;
1818 
1819 	pfn -= addr >> PAGE_SHIFT;
1820 	pud = pud_alloc(mm, pgd, addr);
1821 	if (!pud)
1822 		return -ENOMEM;
1823 	do {
1824 		next = pud_addr_end(addr, end);
1825 		if (remap_pmd_range(mm, pud, addr, next,
1826 				pfn + (addr >> PAGE_SHIFT), prot))
1827 			return -ENOMEM;
1828 	} while (pud++, addr = next, addr != end);
1829 	return 0;
1830 }
1831 
1832 /**
1833  * remap_pfn_range - remap kernel memory to userspace
1834  * @vma: user vma to map to
1835  * @addr: target user address to start at
1836  * @pfn: physical address of kernel memory
1837  * @size: size of map area
1838  * @prot: page protection flags for this mapping
1839  *
1840  *  Note: this is only safe if the mm semaphore is held when called.
1841  */
1842 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1843 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1844 {
1845 	pgd_t *pgd;
1846 	unsigned long next;
1847 	unsigned long end = addr + PAGE_ALIGN(size);
1848 	struct mm_struct *mm = vma->vm_mm;
1849 	int err;
1850 
1851 	/*
1852 	 * Physically remapped pages are special. Tell the
1853 	 * rest of the world about it:
1854 	 *   VM_IO tells people not to look at these pages
1855 	 *	(accesses can have side effects).
1856 	 *   VM_RESERVED is specified all over the place, because
1857 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1858 	 *	in 2.6 the LRU scan won't even find its pages, so this
1859 	 *	flag means no more than count its pages in reserved_vm,
1860 	 * 	and omit it from core dump, even when VM_IO turned off.
1861 	 *   VM_PFNMAP tells the core MM that the base pages are just
1862 	 *	raw PFN mappings, and do not have a "struct page" associated
1863 	 *	with them.
1864 	 *
1865 	 * There's a horrible special case to handle copy-on-write
1866 	 * behaviour that some programs depend on. We mark the "original"
1867 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1868 	 */
1869 	if (addr == vma->vm_start && end == vma->vm_end) {
1870 		vma->vm_pgoff = pfn;
1871 		vma->vm_flags |= VM_PFN_AT_MMAP;
1872 	} else if (is_cow_mapping(vma->vm_flags))
1873 		return -EINVAL;
1874 
1875 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1876 
1877 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1878 	if (err) {
1879 		/*
1880 		 * To indicate that track_pfn related cleanup is not
1881 		 * needed from higher level routine calling unmap_vmas
1882 		 */
1883 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1884 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1885 		return -EINVAL;
1886 	}
1887 
1888 	BUG_ON(addr >= end);
1889 	pfn -= addr >> PAGE_SHIFT;
1890 	pgd = pgd_offset(mm, addr);
1891 	flush_cache_range(vma, addr, end);
1892 	do {
1893 		next = pgd_addr_end(addr, end);
1894 		err = remap_pud_range(mm, pgd, addr, next,
1895 				pfn + (addr >> PAGE_SHIFT), prot);
1896 		if (err)
1897 			break;
1898 	} while (pgd++, addr = next, addr != end);
1899 
1900 	if (err)
1901 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1902 
1903 	return err;
1904 }
1905 EXPORT_SYMBOL(remap_pfn_range);
1906 
1907 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1908 				     unsigned long addr, unsigned long end,
1909 				     pte_fn_t fn, void *data)
1910 {
1911 	pte_t *pte;
1912 	int err;
1913 	pgtable_t token;
1914 	spinlock_t *uninitialized_var(ptl);
1915 
1916 	pte = (mm == &init_mm) ?
1917 		pte_alloc_kernel(pmd, addr) :
1918 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1919 	if (!pte)
1920 		return -ENOMEM;
1921 
1922 	BUG_ON(pmd_huge(*pmd));
1923 
1924 	arch_enter_lazy_mmu_mode();
1925 
1926 	token = pmd_pgtable(*pmd);
1927 
1928 	do {
1929 		err = fn(pte++, token, addr, data);
1930 		if (err)
1931 			break;
1932 	} while (addr += PAGE_SIZE, addr != end);
1933 
1934 	arch_leave_lazy_mmu_mode();
1935 
1936 	if (mm != &init_mm)
1937 		pte_unmap_unlock(pte-1, ptl);
1938 	return err;
1939 }
1940 
1941 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1942 				     unsigned long addr, unsigned long end,
1943 				     pte_fn_t fn, void *data)
1944 {
1945 	pmd_t *pmd;
1946 	unsigned long next;
1947 	int err;
1948 
1949 	BUG_ON(pud_huge(*pud));
1950 
1951 	pmd = pmd_alloc(mm, pud, addr);
1952 	if (!pmd)
1953 		return -ENOMEM;
1954 	do {
1955 		next = pmd_addr_end(addr, end);
1956 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1957 		if (err)
1958 			break;
1959 	} while (pmd++, addr = next, addr != end);
1960 	return err;
1961 }
1962 
1963 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1964 				     unsigned long addr, unsigned long end,
1965 				     pte_fn_t fn, void *data)
1966 {
1967 	pud_t *pud;
1968 	unsigned long next;
1969 	int err;
1970 
1971 	pud = pud_alloc(mm, pgd, addr);
1972 	if (!pud)
1973 		return -ENOMEM;
1974 	do {
1975 		next = pud_addr_end(addr, end);
1976 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1977 		if (err)
1978 			break;
1979 	} while (pud++, addr = next, addr != end);
1980 	return err;
1981 }
1982 
1983 /*
1984  * Scan a region of virtual memory, filling in page tables as necessary
1985  * and calling a provided function on each leaf page table.
1986  */
1987 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1988 			unsigned long size, pte_fn_t fn, void *data)
1989 {
1990 	pgd_t *pgd;
1991 	unsigned long next;
1992 	unsigned long start = addr, end = addr + size;
1993 	int err;
1994 
1995 	BUG_ON(addr >= end);
1996 	mmu_notifier_invalidate_range_start(mm, start, end);
1997 	pgd = pgd_offset(mm, addr);
1998 	do {
1999 		next = pgd_addr_end(addr, end);
2000 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2001 		if (err)
2002 			break;
2003 	} while (pgd++, addr = next, addr != end);
2004 	mmu_notifier_invalidate_range_end(mm, start, end);
2005 	return err;
2006 }
2007 EXPORT_SYMBOL_GPL(apply_to_page_range);
2008 
2009 /*
2010  * handle_pte_fault chooses page fault handler according to an entry
2011  * which was read non-atomically.  Before making any commitment, on
2012  * those architectures or configurations (e.g. i386 with PAE) which
2013  * might give a mix of unmatched parts, do_swap_page and do_file_page
2014  * must check under lock before unmapping the pte and proceeding
2015  * (but do_wp_page is only called after already making such a check;
2016  * and do_anonymous_page and do_no_page can safely check later on).
2017  */
2018 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2019 				pte_t *page_table, pte_t orig_pte)
2020 {
2021 	int same = 1;
2022 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2023 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2024 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2025 		spin_lock(ptl);
2026 		same = pte_same(*page_table, orig_pte);
2027 		spin_unlock(ptl);
2028 	}
2029 #endif
2030 	pte_unmap(page_table);
2031 	return same;
2032 }
2033 
2034 /*
2035  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
2036  * servicing faults for write access.  In the normal case, do always want
2037  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
2038  * that do not have writing enabled, when used by access_process_vm.
2039  */
2040 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2041 {
2042 	if (likely(vma->vm_flags & VM_WRITE))
2043 		pte = pte_mkwrite(pte);
2044 	return pte;
2045 }
2046 
2047 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2048 {
2049 	/*
2050 	 * If the source page was a PFN mapping, we don't have
2051 	 * a "struct page" for it. We do a best-effort copy by
2052 	 * just copying from the original user address. If that
2053 	 * fails, we just zero-fill it. Live with it.
2054 	 */
2055 	if (unlikely(!src)) {
2056 		void *kaddr = kmap_atomic(dst, KM_USER0);
2057 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2058 
2059 		/*
2060 		 * This really shouldn't fail, because the page is there
2061 		 * in the page tables. But it might just be unreadable,
2062 		 * in which case we just give up and fill the result with
2063 		 * zeroes.
2064 		 */
2065 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2066 			memset(kaddr, 0, PAGE_SIZE);
2067 		kunmap_atomic(kaddr, KM_USER0);
2068 		flush_dcache_page(dst);
2069 	} else
2070 		copy_user_highpage(dst, src, va, vma);
2071 }
2072 
2073 /*
2074  * This routine handles present pages, when users try to write
2075  * to a shared page. It is done by copying the page to a new address
2076  * and decrementing the shared-page counter for the old page.
2077  *
2078  * Note that this routine assumes that the protection checks have been
2079  * done by the caller (the low-level page fault routine in most cases).
2080  * Thus we can safely just mark it writable once we've done any necessary
2081  * COW.
2082  *
2083  * We also mark the page dirty at this point even though the page will
2084  * change only once the write actually happens. This avoids a few races,
2085  * and potentially makes it more efficient.
2086  *
2087  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2088  * but allow concurrent faults), with pte both mapped and locked.
2089  * We return with mmap_sem still held, but pte unmapped and unlocked.
2090  */
2091 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2092 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2093 		spinlock_t *ptl, pte_t orig_pte)
2094 {
2095 	struct page *old_page, *new_page;
2096 	pte_t entry;
2097 	int reuse = 0, ret = 0;
2098 	int page_mkwrite = 0;
2099 	struct page *dirty_page = NULL;
2100 
2101 	old_page = vm_normal_page(vma, address, orig_pte);
2102 	if (!old_page) {
2103 		/*
2104 		 * VM_MIXEDMAP !pfn_valid() case
2105 		 *
2106 		 * We should not cow pages in a shared writeable mapping.
2107 		 * Just mark the pages writable as we can't do any dirty
2108 		 * accounting on raw pfn maps.
2109 		 */
2110 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2111 				     (VM_WRITE|VM_SHARED))
2112 			goto reuse;
2113 		goto gotten;
2114 	}
2115 
2116 	/*
2117 	 * Take out anonymous pages first, anonymous shared vmas are
2118 	 * not dirty accountable.
2119 	 */
2120 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2121 		if (!trylock_page(old_page)) {
2122 			page_cache_get(old_page);
2123 			pte_unmap_unlock(page_table, ptl);
2124 			lock_page(old_page);
2125 			page_table = pte_offset_map_lock(mm, pmd, address,
2126 							 &ptl);
2127 			if (!pte_same(*page_table, orig_pte)) {
2128 				unlock_page(old_page);
2129 				page_cache_release(old_page);
2130 				goto unlock;
2131 			}
2132 			page_cache_release(old_page);
2133 		}
2134 		reuse = reuse_swap_page(old_page);
2135 		if (reuse)
2136 			/*
2137 			 * The page is all ours.  Move it to our anon_vma so
2138 			 * the rmap code will not search our parent or siblings.
2139 			 * Protected against the rmap code by the page lock.
2140 			 */
2141 			page_move_anon_rmap(old_page, vma, address);
2142 		unlock_page(old_page);
2143 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2144 					(VM_WRITE|VM_SHARED))) {
2145 		/*
2146 		 * Only catch write-faults on shared writable pages,
2147 		 * read-only shared pages can get COWed by
2148 		 * get_user_pages(.write=1, .force=1).
2149 		 */
2150 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2151 			struct vm_fault vmf;
2152 			int tmp;
2153 
2154 			vmf.virtual_address = (void __user *)(address &
2155 								PAGE_MASK);
2156 			vmf.pgoff = old_page->index;
2157 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2158 			vmf.page = old_page;
2159 
2160 			/*
2161 			 * Notify the address space that the page is about to
2162 			 * become writable so that it can prohibit this or wait
2163 			 * for the page to get into an appropriate state.
2164 			 *
2165 			 * We do this without the lock held, so that it can
2166 			 * sleep if it needs to.
2167 			 */
2168 			page_cache_get(old_page);
2169 			pte_unmap_unlock(page_table, ptl);
2170 
2171 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2172 			if (unlikely(tmp &
2173 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2174 				ret = tmp;
2175 				goto unwritable_page;
2176 			}
2177 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2178 				lock_page(old_page);
2179 				if (!old_page->mapping) {
2180 					ret = 0; /* retry the fault */
2181 					unlock_page(old_page);
2182 					goto unwritable_page;
2183 				}
2184 			} else
2185 				VM_BUG_ON(!PageLocked(old_page));
2186 
2187 			/*
2188 			 * Since we dropped the lock we need to revalidate
2189 			 * the PTE as someone else may have changed it.  If
2190 			 * they did, we just return, as we can count on the
2191 			 * MMU to tell us if they didn't also make it writable.
2192 			 */
2193 			page_table = pte_offset_map_lock(mm, pmd, address,
2194 							 &ptl);
2195 			if (!pte_same(*page_table, orig_pte)) {
2196 				unlock_page(old_page);
2197 				page_cache_release(old_page);
2198 				goto unlock;
2199 			}
2200 
2201 			page_mkwrite = 1;
2202 		}
2203 		dirty_page = old_page;
2204 		get_page(dirty_page);
2205 		reuse = 1;
2206 	}
2207 
2208 	if (reuse) {
2209 reuse:
2210 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2211 		entry = pte_mkyoung(orig_pte);
2212 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2213 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2214 			update_mmu_cache(vma, address, page_table);
2215 		ret |= VM_FAULT_WRITE;
2216 		goto unlock;
2217 	}
2218 
2219 	/*
2220 	 * Ok, we need to copy. Oh, well..
2221 	 */
2222 	page_cache_get(old_page);
2223 gotten:
2224 	pte_unmap_unlock(page_table, ptl);
2225 
2226 	if (unlikely(anon_vma_prepare(vma)))
2227 		goto oom;
2228 
2229 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2230 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2231 		if (!new_page)
2232 			goto oom;
2233 	} else {
2234 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2235 		if (!new_page)
2236 			goto oom;
2237 		cow_user_page(new_page, old_page, address, vma);
2238 	}
2239 	__SetPageUptodate(new_page);
2240 
2241 	/*
2242 	 * Don't let another task, with possibly unlocked vma,
2243 	 * keep the mlocked page.
2244 	 */
2245 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2246 		lock_page(old_page);	/* for LRU manipulation */
2247 		clear_page_mlock(old_page);
2248 		unlock_page(old_page);
2249 	}
2250 
2251 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2252 		goto oom_free_new;
2253 
2254 	/*
2255 	 * Re-check the pte - we dropped the lock
2256 	 */
2257 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2258 	if (likely(pte_same(*page_table, orig_pte))) {
2259 		if (old_page) {
2260 			if (!PageAnon(old_page)) {
2261 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2262 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2263 			}
2264 		} else
2265 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2266 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2267 		entry = mk_pte(new_page, vma->vm_page_prot);
2268 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2269 		/*
2270 		 * Clear the pte entry and flush it first, before updating the
2271 		 * pte with the new entry. This will avoid a race condition
2272 		 * seen in the presence of one thread doing SMC and another
2273 		 * thread doing COW.
2274 		 */
2275 		ptep_clear_flush(vma, address, page_table);
2276 		page_add_new_anon_rmap(new_page, vma, address);
2277 		/*
2278 		 * We call the notify macro here because, when using secondary
2279 		 * mmu page tables (such as kvm shadow page tables), we want the
2280 		 * new page to be mapped directly into the secondary page table.
2281 		 */
2282 		set_pte_at_notify(mm, address, page_table, entry);
2283 		update_mmu_cache(vma, address, page_table);
2284 		if (old_page) {
2285 			/*
2286 			 * Only after switching the pte to the new page may
2287 			 * we remove the mapcount here. Otherwise another
2288 			 * process may come and find the rmap count decremented
2289 			 * before the pte is switched to the new page, and
2290 			 * "reuse" the old page writing into it while our pte
2291 			 * here still points into it and can be read by other
2292 			 * threads.
2293 			 *
2294 			 * The critical issue is to order this
2295 			 * page_remove_rmap with the ptp_clear_flush above.
2296 			 * Those stores are ordered by (if nothing else,)
2297 			 * the barrier present in the atomic_add_negative
2298 			 * in page_remove_rmap.
2299 			 *
2300 			 * Then the TLB flush in ptep_clear_flush ensures that
2301 			 * no process can access the old page before the
2302 			 * decremented mapcount is visible. And the old page
2303 			 * cannot be reused until after the decremented
2304 			 * mapcount is visible. So transitively, TLBs to
2305 			 * old page will be flushed before it can be reused.
2306 			 */
2307 			page_remove_rmap(old_page);
2308 		}
2309 
2310 		/* Free the old page.. */
2311 		new_page = old_page;
2312 		ret |= VM_FAULT_WRITE;
2313 	} else
2314 		mem_cgroup_uncharge_page(new_page);
2315 
2316 	if (new_page)
2317 		page_cache_release(new_page);
2318 	if (old_page)
2319 		page_cache_release(old_page);
2320 unlock:
2321 	pte_unmap_unlock(page_table, ptl);
2322 	if (dirty_page) {
2323 		/*
2324 		 * Yes, Virginia, this is actually required to prevent a race
2325 		 * with clear_page_dirty_for_io() from clearing the page dirty
2326 		 * bit after it clear all dirty ptes, but before a racing
2327 		 * do_wp_page installs a dirty pte.
2328 		 *
2329 		 * do_no_page is protected similarly.
2330 		 */
2331 		if (!page_mkwrite) {
2332 			wait_on_page_locked(dirty_page);
2333 			set_page_dirty_balance(dirty_page, page_mkwrite);
2334 		}
2335 		put_page(dirty_page);
2336 		if (page_mkwrite) {
2337 			struct address_space *mapping = dirty_page->mapping;
2338 
2339 			set_page_dirty(dirty_page);
2340 			unlock_page(dirty_page);
2341 			page_cache_release(dirty_page);
2342 			if (mapping)	{
2343 				/*
2344 				 * Some device drivers do not set page.mapping
2345 				 * but still dirty their pages
2346 				 */
2347 				balance_dirty_pages_ratelimited(mapping);
2348 			}
2349 		}
2350 
2351 		/* file_update_time outside page_lock */
2352 		if (vma->vm_file)
2353 			file_update_time(vma->vm_file);
2354 	}
2355 	return ret;
2356 oom_free_new:
2357 	page_cache_release(new_page);
2358 oom:
2359 	if (old_page) {
2360 		if (page_mkwrite) {
2361 			unlock_page(old_page);
2362 			page_cache_release(old_page);
2363 		}
2364 		page_cache_release(old_page);
2365 	}
2366 	return VM_FAULT_OOM;
2367 
2368 unwritable_page:
2369 	page_cache_release(old_page);
2370 	return ret;
2371 }
2372 
2373 /*
2374  * Helper functions for unmap_mapping_range().
2375  *
2376  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2377  *
2378  * We have to restart searching the prio_tree whenever we drop the lock,
2379  * since the iterator is only valid while the lock is held, and anyway
2380  * a later vma might be split and reinserted earlier while lock dropped.
2381  *
2382  * The list of nonlinear vmas could be handled more efficiently, using
2383  * a placeholder, but handle it in the same way until a need is shown.
2384  * It is important to search the prio_tree before nonlinear list: a vma
2385  * may become nonlinear and be shifted from prio_tree to nonlinear list
2386  * while the lock is dropped; but never shifted from list to prio_tree.
2387  *
2388  * In order to make forward progress despite restarting the search,
2389  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2390  * quickly skip it next time around.  Since the prio_tree search only
2391  * shows us those vmas affected by unmapping the range in question, we
2392  * can't efficiently keep all vmas in step with mapping->truncate_count:
2393  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2394  * mapping->truncate_count and vma->vm_truncate_count are protected by
2395  * i_mmap_lock.
2396  *
2397  * In order to make forward progress despite repeatedly restarting some
2398  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2399  * and restart from that address when we reach that vma again.  It might
2400  * have been split or merged, shrunk or extended, but never shifted: so
2401  * restart_addr remains valid so long as it remains in the vma's range.
2402  * unmap_mapping_range forces truncate_count to leap over page-aligned
2403  * values so we can save vma's restart_addr in its truncate_count field.
2404  */
2405 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2406 
2407 static void reset_vma_truncate_counts(struct address_space *mapping)
2408 {
2409 	struct vm_area_struct *vma;
2410 	struct prio_tree_iter iter;
2411 
2412 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2413 		vma->vm_truncate_count = 0;
2414 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2415 		vma->vm_truncate_count = 0;
2416 }
2417 
2418 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2419 		unsigned long start_addr, unsigned long end_addr,
2420 		struct zap_details *details)
2421 {
2422 	unsigned long restart_addr;
2423 	int need_break;
2424 
2425 	/*
2426 	 * files that support invalidating or truncating portions of the
2427 	 * file from under mmaped areas must have their ->fault function
2428 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2429 	 * This provides synchronisation against concurrent unmapping here.
2430 	 */
2431 
2432 again:
2433 	restart_addr = vma->vm_truncate_count;
2434 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2435 		start_addr = restart_addr;
2436 		if (start_addr >= end_addr) {
2437 			/* Top of vma has been split off since last time */
2438 			vma->vm_truncate_count = details->truncate_count;
2439 			return 0;
2440 		}
2441 	}
2442 
2443 	restart_addr = zap_page_range(vma, start_addr,
2444 					end_addr - start_addr, details);
2445 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2446 
2447 	if (restart_addr >= end_addr) {
2448 		/* We have now completed this vma: mark it so */
2449 		vma->vm_truncate_count = details->truncate_count;
2450 		if (!need_break)
2451 			return 0;
2452 	} else {
2453 		/* Note restart_addr in vma's truncate_count field */
2454 		vma->vm_truncate_count = restart_addr;
2455 		if (!need_break)
2456 			goto again;
2457 	}
2458 
2459 	spin_unlock(details->i_mmap_lock);
2460 	cond_resched();
2461 	spin_lock(details->i_mmap_lock);
2462 	return -EINTR;
2463 }
2464 
2465 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2466 					    struct zap_details *details)
2467 {
2468 	struct vm_area_struct *vma;
2469 	struct prio_tree_iter iter;
2470 	pgoff_t vba, vea, zba, zea;
2471 
2472 restart:
2473 	vma_prio_tree_foreach(vma, &iter, root,
2474 			details->first_index, details->last_index) {
2475 		/* Skip quickly over those we have already dealt with */
2476 		if (vma->vm_truncate_count == details->truncate_count)
2477 			continue;
2478 
2479 		vba = vma->vm_pgoff;
2480 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2481 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2482 		zba = details->first_index;
2483 		if (zba < vba)
2484 			zba = vba;
2485 		zea = details->last_index;
2486 		if (zea > vea)
2487 			zea = vea;
2488 
2489 		if (unmap_mapping_range_vma(vma,
2490 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2491 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2492 				details) < 0)
2493 			goto restart;
2494 	}
2495 }
2496 
2497 static inline void unmap_mapping_range_list(struct list_head *head,
2498 					    struct zap_details *details)
2499 {
2500 	struct vm_area_struct *vma;
2501 
2502 	/*
2503 	 * In nonlinear VMAs there is no correspondence between virtual address
2504 	 * offset and file offset.  So we must perform an exhaustive search
2505 	 * across *all* the pages in each nonlinear VMA, not just the pages
2506 	 * whose virtual address lies outside the file truncation point.
2507 	 */
2508 restart:
2509 	list_for_each_entry(vma, head, shared.vm_set.list) {
2510 		/* Skip quickly over those we have already dealt with */
2511 		if (vma->vm_truncate_count == details->truncate_count)
2512 			continue;
2513 		details->nonlinear_vma = vma;
2514 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2515 					vma->vm_end, details) < 0)
2516 			goto restart;
2517 	}
2518 }
2519 
2520 /**
2521  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2522  * @mapping: the address space containing mmaps to be unmapped.
2523  * @holebegin: byte in first page to unmap, relative to the start of
2524  * the underlying file.  This will be rounded down to a PAGE_SIZE
2525  * boundary.  Note that this is different from truncate_pagecache(), which
2526  * must keep the partial page.  In contrast, we must get rid of
2527  * partial pages.
2528  * @holelen: size of prospective hole in bytes.  This will be rounded
2529  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2530  * end of the file.
2531  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2532  * but 0 when invalidating pagecache, don't throw away private data.
2533  */
2534 void unmap_mapping_range(struct address_space *mapping,
2535 		loff_t const holebegin, loff_t const holelen, int even_cows)
2536 {
2537 	struct zap_details details;
2538 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2539 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2540 
2541 	/* Check for overflow. */
2542 	if (sizeof(holelen) > sizeof(hlen)) {
2543 		long long holeend =
2544 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2545 		if (holeend & ~(long long)ULONG_MAX)
2546 			hlen = ULONG_MAX - hba + 1;
2547 	}
2548 
2549 	details.check_mapping = even_cows? NULL: mapping;
2550 	details.nonlinear_vma = NULL;
2551 	details.first_index = hba;
2552 	details.last_index = hba + hlen - 1;
2553 	if (details.last_index < details.first_index)
2554 		details.last_index = ULONG_MAX;
2555 	details.i_mmap_lock = &mapping->i_mmap_lock;
2556 
2557 	spin_lock(&mapping->i_mmap_lock);
2558 
2559 	/* Protect against endless unmapping loops */
2560 	mapping->truncate_count++;
2561 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2562 		if (mapping->truncate_count == 0)
2563 			reset_vma_truncate_counts(mapping);
2564 		mapping->truncate_count++;
2565 	}
2566 	details.truncate_count = mapping->truncate_count;
2567 
2568 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2569 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2570 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2571 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2572 	spin_unlock(&mapping->i_mmap_lock);
2573 }
2574 EXPORT_SYMBOL(unmap_mapping_range);
2575 
2576 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2577 {
2578 	struct address_space *mapping = inode->i_mapping;
2579 
2580 	/*
2581 	 * If the underlying filesystem is not going to provide
2582 	 * a way to truncate a range of blocks (punch a hole) -
2583 	 * we should return failure right now.
2584 	 */
2585 	if (!inode->i_op->truncate_range)
2586 		return -ENOSYS;
2587 
2588 	mutex_lock(&inode->i_mutex);
2589 	down_write(&inode->i_alloc_sem);
2590 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2591 	truncate_inode_pages_range(mapping, offset, end);
2592 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2593 	inode->i_op->truncate_range(inode, offset, end);
2594 	up_write(&inode->i_alloc_sem);
2595 	mutex_unlock(&inode->i_mutex);
2596 
2597 	return 0;
2598 }
2599 
2600 /*
2601  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2602  * but allow concurrent faults), and pte mapped but not yet locked.
2603  * We return with mmap_sem still held, but pte unmapped and unlocked.
2604  */
2605 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2606 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2607 		unsigned int flags, pte_t orig_pte)
2608 {
2609 	spinlock_t *ptl;
2610 	struct page *page;
2611 	swp_entry_t entry;
2612 	pte_t pte;
2613 	struct mem_cgroup *ptr = NULL;
2614 	int ret = 0;
2615 
2616 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2617 		goto out;
2618 
2619 	entry = pte_to_swp_entry(orig_pte);
2620 	if (unlikely(non_swap_entry(entry))) {
2621 		if (is_migration_entry(entry)) {
2622 			migration_entry_wait(mm, pmd, address);
2623 		} else if (is_hwpoison_entry(entry)) {
2624 			ret = VM_FAULT_HWPOISON;
2625 		} else {
2626 			print_bad_pte(vma, address, orig_pte, NULL);
2627 			ret = VM_FAULT_SIGBUS;
2628 		}
2629 		goto out;
2630 	}
2631 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2632 	page = lookup_swap_cache(entry);
2633 	if (!page) {
2634 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2635 		page = swapin_readahead(entry,
2636 					GFP_HIGHUSER_MOVABLE, vma, address);
2637 		if (!page) {
2638 			/*
2639 			 * Back out if somebody else faulted in this pte
2640 			 * while we released the pte lock.
2641 			 */
2642 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2643 			if (likely(pte_same(*page_table, orig_pte)))
2644 				ret = VM_FAULT_OOM;
2645 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2646 			goto unlock;
2647 		}
2648 
2649 		/* Had to read the page from swap area: Major fault */
2650 		ret = VM_FAULT_MAJOR;
2651 		count_vm_event(PGMAJFAULT);
2652 	} else if (PageHWPoison(page)) {
2653 		/*
2654 		 * hwpoisoned dirty swapcache pages are kept for killing
2655 		 * owner processes (which may be unknown at hwpoison time)
2656 		 */
2657 		ret = VM_FAULT_HWPOISON;
2658 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2659 		goto out_release;
2660 	}
2661 
2662 	lock_page(page);
2663 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2664 
2665 	page = ksm_might_need_to_copy(page, vma, address);
2666 	if (!page) {
2667 		ret = VM_FAULT_OOM;
2668 		goto out;
2669 	}
2670 
2671 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2672 		ret = VM_FAULT_OOM;
2673 		goto out_page;
2674 	}
2675 
2676 	/*
2677 	 * Back out if somebody else already faulted in this pte.
2678 	 */
2679 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2680 	if (unlikely(!pte_same(*page_table, orig_pte)))
2681 		goto out_nomap;
2682 
2683 	if (unlikely(!PageUptodate(page))) {
2684 		ret = VM_FAULT_SIGBUS;
2685 		goto out_nomap;
2686 	}
2687 
2688 	/*
2689 	 * The page isn't present yet, go ahead with the fault.
2690 	 *
2691 	 * Be careful about the sequence of operations here.
2692 	 * To get its accounting right, reuse_swap_page() must be called
2693 	 * while the page is counted on swap but not yet in mapcount i.e.
2694 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2695 	 * must be called after the swap_free(), or it will never succeed.
2696 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2697 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2698 	 * in page->private. In this case, a record in swap_cgroup  is silently
2699 	 * discarded at swap_free().
2700 	 */
2701 
2702 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2703 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2704 	pte = mk_pte(page, vma->vm_page_prot);
2705 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2706 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2707 		flags &= ~FAULT_FLAG_WRITE;
2708 	}
2709 	flush_icache_page(vma, page);
2710 	set_pte_at(mm, address, page_table, pte);
2711 	page_add_anon_rmap(page, vma, address);
2712 	/* It's better to call commit-charge after rmap is established */
2713 	mem_cgroup_commit_charge_swapin(page, ptr);
2714 
2715 	swap_free(entry);
2716 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2717 		try_to_free_swap(page);
2718 	unlock_page(page);
2719 
2720 	if (flags & FAULT_FLAG_WRITE) {
2721 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2722 		if (ret & VM_FAULT_ERROR)
2723 			ret &= VM_FAULT_ERROR;
2724 		goto out;
2725 	}
2726 
2727 	/* No need to invalidate - it was non-present before */
2728 	update_mmu_cache(vma, address, page_table);
2729 unlock:
2730 	pte_unmap_unlock(page_table, ptl);
2731 out:
2732 	return ret;
2733 out_nomap:
2734 	mem_cgroup_cancel_charge_swapin(ptr);
2735 	pte_unmap_unlock(page_table, ptl);
2736 out_page:
2737 	unlock_page(page);
2738 out_release:
2739 	page_cache_release(page);
2740 	return ret;
2741 }
2742 
2743 /*
2744  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2745  * but allow concurrent faults), and pte mapped but not yet locked.
2746  * We return with mmap_sem still held, but pte unmapped and unlocked.
2747  */
2748 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2749 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2750 		unsigned int flags)
2751 {
2752 	struct page *page;
2753 	spinlock_t *ptl;
2754 	pte_t entry;
2755 
2756 	if (!(flags & FAULT_FLAG_WRITE)) {
2757 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2758 						vma->vm_page_prot));
2759 		ptl = pte_lockptr(mm, pmd);
2760 		spin_lock(ptl);
2761 		if (!pte_none(*page_table))
2762 			goto unlock;
2763 		goto setpte;
2764 	}
2765 
2766 	/* Allocate our own private page. */
2767 	pte_unmap(page_table);
2768 
2769 	if (unlikely(anon_vma_prepare(vma)))
2770 		goto oom;
2771 	page = alloc_zeroed_user_highpage_movable(vma, address);
2772 	if (!page)
2773 		goto oom;
2774 	__SetPageUptodate(page);
2775 
2776 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2777 		goto oom_free_page;
2778 
2779 	entry = mk_pte(page, vma->vm_page_prot);
2780 	if (vma->vm_flags & VM_WRITE)
2781 		entry = pte_mkwrite(pte_mkdirty(entry));
2782 
2783 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2784 	if (!pte_none(*page_table))
2785 		goto release;
2786 
2787 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2788 	page_add_new_anon_rmap(page, vma, address);
2789 setpte:
2790 	set_pte_at(mm, address, page_table, entry);
2791 
2792 	/* No need to invalidate - it was non-present before */
2793 	update_mmu_cache(vma, address, page_table);
2794 unlock:
2795 	pte_unmap_unlock(page_table, ptl);
2796 	return 0;
2797 release:
2798 	mem_cgroup_uncharge_page(page);
2799 	page_cache_release(page);
2800 	goto unlock;
2801 oom_free_page:
2802 	page_cache_release(page);
2803 oom:
2804 	return VM_FAULT_OOM;
2805 }
2806 
2807 /*
2808  * __do_fault() tries to create a new page mapping. It aggressively
2809  * tries to share with existing pages, but makes a separate copy if
2810  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2811  * the next page fault.
2812  *
2813  * As this is called only for pages that do not currently exist, we
2814  * do not need to flush old virtual caches or the TLB.
2815  *
2816  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2817  * but allow concurrent faults), and pte neither mapped nor locked.
2818  * We return with mmap_sem still held, but pte unmapped and unlocked.
2819  */
2820 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2821 		unsigned long address, pmd_t *pmd,
2822 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2823 {
2824 	pte_t *page_table;
2825 	spinlock_t *ptl;
2826 	struct page *page;
2827 	pte_t entry;
2828 	int anon = 0;
2829 	int charged = 0;
2830 	struct page *dirty_page = NULL;
2831 	struct vm_fault vmf;
2832 	int ret;
2833 	int page_mkwrite = 0;
2834 
2835 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2836 	vmf.pgoff = pgoff;
2837 	vmf.flags = flags;
2838 	vmf.page = NULL;
2839 
2840 	ret = vma->vm_ops->fault(vma, &vmf);
2841 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2842 		return ret;
2843 
2844 	if (unlikely(PageHWPoison(vmf.page))) {
2845 		if (ret & VM_FAULT_LOCKED)
2846 			unlock_page(vmf.page);
2847 		return VM_FAULT_HWPOISON;
2848 	}
2849 
2850 	/*
2851 	 * For consistency in subsequent calls, make the faulted page always
2852 	 * locked.
2853 	 */
2854 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2855 		lock_page(vmf.page);
2856 	else
2857 		VM_BUG_ON(!PageLocked(vmf.page));
2858 
2859 	/*
2860 	 * Should we do an early C-O-W break?
2861 	 */
2862 	page = vmf.page;
2863 	if (flags & FAULT_FLAG_WRITE) {
2864 		if (!(vma->vm_flags & VM_SHARED)) {
2865 			anon = 1;
2866 			if (unlikely(anon_vma_prepare(vma))) {
2867 				ret = VM_FAULT_OOM;
2868 				goto out;
2869 			}
2870 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2871 						vma, address);
2872 			if (!page) {
2873 				ret = VM_FAULT_OOM;
2874 				goto out;
2875 			}
2876 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2877 				ret = VM_FAULT_OOM;
2878 				page_cache_release(page);
2879 				goto out;
2880 			}
2881 			charged = 1;
2882 			/*
2883 			 * Don't let another task, with possibly unlocked vma,
2884 			 * keep the mlocked page.
2885 			 */
2886 			if (vma->vm_flags & VM_LOCKED)
2887 				clear_page_mlock(vmf.page);
2888 			copy_user_highpage(page, vmf.page, address, vma);
2889 			__SetPageUptodate(page);
2890 		} else {
2891 			/*
2892 			 * If the page will be shareable, see if the backing
2893 			 * address space wants to know that the page is about
2894 			 * to become writable
2895 			 */
2896 			if (vma->vm_ops->page_mkwrite) {
2897 				int tmp;
2898 
2899 				unlock_page(page);
2900 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2901 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2902 				if (unlikely(tmp &
2903 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2904 					ret = tmp;
2905 					goto unwritable_page;
2906 				}
2907 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2908 					lock_page(page);
2909 					if (!page->mapping) {
2910 						ret = 0; /* retry the fault */
2911 						unlock_page(page);
2912 						goto unwritable_page;
2913 					}
2914 				} else
2915 					VM_BUG_ON(!PageLocked(page));
2916 				page_mkwrite = 1;
2917 			}
2918 		}
2919 
2920 	}
2921 
2922 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2923 
2924 	/*
2925 	 * This silly early PAGE_DIRTY setting removes a race
2926 	 * due to the bad i386 page protection. But it's valid
2927 	 * for other architectures too.
2928 	 *
2929 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2930 	 * an exclusive copy of the page, or this is a shared mapping,
2931 	 * so we can make it writable and dirty to avoid having to
2932 	 * handle that later.
2933 	 */
2934 	/* Only go through if we didn't race with anybody else... */
2935 	if (likely(pte_same(*page_table, orig_pte))) {
2936 		flush_icache_page(vma, page);
2937 		entry = mk_pte(page, vma->vm_page_prot);
2938 		if (flags & FAULT_FLAG_WRITE)
2939 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2940 		if (anon) {
2941 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2942 			page_add_new_anon_rmap(page, vma, address);
2943 		} else {
2944 			inc_mm_counter_fast(mm, MM_FILEPAGES);
2945 			page_add_file_rmap(page);
2946 			if (flags & FAULT_FLAG_WRITE) {
2947 				dirty_page = page;
2948 				get_page(dirty_page);
2949 			}
2950 		}
2951 		set_pte_at(mm, address, page_table, entry);
2952 
2953 		/* no need to invalidate: a not-present page won't be cached */
2954 		update_mmu_cache(vma, address, page_table);
2955 	} else {
2956 		if (charged)
2957 			mem_cgroup_uncharge_page(page);
2958 		if (anon)
2959 			page_cache_release(page);
2960 		else
2961 			anon = 1; /* no anon but release faulted_page */
2962 	}
2963 
2964 	pte_unmap_unlock(page_table, ptl);
2965 
2966 out:
2967 	if (dirty_page) {
2968 		struct address_space *mapping = page->mapping;
2969 
2970 		if (set_page_dirty(dirty_page))
2971 			page_mkwrite = 1;
2972 		unlock_page(dirty_page);
2973 		put_page(dirty_page);
2974 		if (page_mkwrite && mapping) {
2975 			/*
2976 			 * Some device drivers do not set page.mapping but still
2977 			 * dirty their pages
2978 			 */
2979 			balance_dirty_pages_ratelimited(mapping);
2980 		}
2981 
2982 		/* file_update_time outside page_lock */
2983 		if (vma->vm_file)
2984 			file_update_time(vma->vm_file);
2985 	} else {
2986 		unlock_page(vmf.page);
2987 		if (anon)
2988 			page_cache_release(vmf.page);
2989 	}
2990 
2991 	return ret;
2992 
2993 unwritable_page:
2994 	page_cache_release(page);
2995 	return ret;
2996 }
2997 
2998 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2999 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3000 		unsigned int flags, pte_t orig_pte)
3001 {
3002 	pgoff_t pgoff = (((address & PAGE_MASK)
3003 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3004 
3005 	pte_unmap(page_table);
3006 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3007 }
3008 
3009 /*
3010  * Fault of a previously existing named mapping. Repopulate the pte
3011  * from the encoded file_pte if possible. This enables swappable
3012  * nonlinear vmas.
3013  *
3014  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3015  * but allow concurrent faults), and pte mapped but not yet locked.
3016  * We return with mmap_sem still held, but pte unmapped and unlocked.
3017  */
3018 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3019 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3020 		unsigned int flags, pte_t orig_pte)
3021 {
3022 	pgoff_t pgoff;
3023 
3024 	flags |= FAULT_FLAG_NONLINEAR;
3025 
3026 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3027 		return 0;
3028 
3029 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3030 		/*
3031 		 * Page table corrupted: show pte and kill process.
3032 		 */
3033 		print_bad_pte(vma, address, orig_pte, NULL);
3034 		return VM_FAULT_SIGBUS;
3035 	}
3036 
3037 	pgoff = pte_to_pgoff(orig_pte);
3038 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3039 }
3040 
3041 /*
3042  * These routines also need to handle stuff like marking pages dirty
3043  * and/or accessed for architectures that don't do it in hardware (most
3044  * RISC architectures).  The early dirtying is also good on the i386.
3045  *
3046  * There is also a hook called "update_mmu_cache()" that architectures
3047  * with external mmu caches can use to update those (ie the Sparc or
3048  * PowerPC hashed page tables that act as extended TLBs).
3049  *
3050  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3051  * but allow concurrent faults), and pte mapped but not yet locked.
3052  * We return with mmap_sem still held, but pte unmapped and unlocked.
3053  */
3054 static inline int handle_pte_fault(struct mm_struct *mm,
3055 		struct vm_area_struct *vma, unsigned long address,
3056 		pte_t *pte, pmd_t *pmd, unsigned int flags)
3057 {
3058 	pte_t entry;
3059 	spinlock_t *ptl;
3060 
3061 	entry = *pte;
3062 	if (!pte_present(entry)) {
3063 		if (pte_none(entry)) {
3064 			if (vma->vm_ops) {
3065 				if (likely(vma->vm_ops->fault))
3066 					return do_linear_fault(mm, vma, address,
3067 						pte, pmd, flags, entry);
3068 			}
3069 			return do_anonymous_page(mm, vma, address,
3070 						 pte, pmd, flags);
3071 		}
3072 		if (pte_file(entry))
3073 			return do_nonlinear_fault(mm, vma, address,
3074 					pte, pmd, flags, entry);
3075 		return do_swap_page(mm, vma, address,
3076 					pte, pmd, flags, entry);
3077 	}
3078 
3079 	ptl = pte_lockptr(mm, pmd);
3080 	spin_lock(ptl);
3081 	if (unlikely(!pte_same(*pte, entry)))
3082 		goto unlock;
3083 	if (flags & FAULT_FLAG_WRITE) {
3084 		if (!pte_write(entry))
3085 			return do_wp_page(mm, vma, address,
3086 					pte, pmd, ptl, entry);
3087 		entry = pte_mkdirty(entry);
3088 	}
3089 	entry = pte_mkyoung(entry);
3090 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3091 		update_mmu_cache(vma, address, pte);
3092 	} else {
3093 		/*
3094 		 * This is needed only for protection faults but the arch code
3095 		 * is not yet telling us if this is a protection fault or not.
3096 		 * This still avoids useless tlb flushes for .text page faults
3097 		 * with threads.
3098 		 */
3099 		if (flags & FAULT_FLAG_WRITE)
3100 			flush_tlb_page(vma, address);
3101 	}
3102 unlock:
3103 	pte_unmap_unlock(pte, ptl);
3104 	return 0;
3105 }
3106 
3107 /*
3108  * By the time we get here, we already hold the mm semaphore
3109  */
3110 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3111 		unsigned long address, unsigned int flags)
3112 {
3113 	pgd_t *pgd;
3114 	pud_t *pud;
3115 	pmd_t *pmd;
3116 	pte_t *pte;
3117 
3118 	__set_current_state(TASK_RUNNING);
3119 
3120 	count_vm_event(PGFAULT);
3121 
3122 	/* do counter updates before entering really critical section. */
3123 	check_sync_rss_stat(current);
3124 
3125 	if (unlikely(is_vm_hugetlb_page(vma)))
3126 		return hugetlb_fault(mm, vma, address, flags);
3127 
3128 	pgd = pgd_offset(mm, address);
3129 	pud = pud_alloc(mm, pgd, address);
3130 	if (!pud)
3131 		return VM_FAULT_OOM;
3132 	pmd = pmd_alloc(mm, pud, address);
3133 	if (!pmd)
3134 		return VM_FAULT_OOM;
3135 	pte = pte_alloc_map(mm, pmd, address);
3136 	if (!pte)
3137 		return VM_FAULT_OOM;
3138 
3139 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3140 }
3141 
3142 #ifndef __PAGETABLE_PUD_FOLDED
3143 /*
3144  * Allocate page upper directory.
3145  * We've already handled the fast-path in-line.
3146  */
3147 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3148 {
3149 	pud_t *new = pud_alloc_one(mm, address);
3150 	if (!new)
3151 		return -ENOMEM;
3152 
3153 	smp_wmb(); /* See comment in __pte_alloc */
3154 
3155 	spin_lock(&mm->page_table_lock);
3156 	if (pgd_present(*pgd))		/* Another has populated it */
3157 		pud_free(mm, new);
3158 	else
3159 		pgd_populate(mm, pgd, new);
3160 	spin_unlock(&mm->page_table_lock);
3161 	return 0;
3162 }
3163 #endif /* __PAGETABLE_PUD_FOLDED */
3164 
3165 #ifndef __PAGETABLE_PMD_FOLDED
3166 /*
3167  * Allocate page middle directory.
3168  * We've already handled the fast-path in-line.
3169  */
3170 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3171 {
3172 	pmd_t *new = pmd_alloc_one(mm, address);
3173 	if (!new)
3174 		return -ENOMEM;
3175 
3176 	smp_wmb(); /* See comment in __pte_alloc */
3177 
3178 	spin_lock(&mm->page_table_lock);
3179 #ifndef __ARCH_HAS_4LEVEL_HACK
3180 	if (pud_present(*pud))		/* Another has populated it */
3181 		pmd_free(mm, new);
3182 	else
3183 		pud_populate(mm, pud, new);
3184 #else
3185 	if (pgd_present(*pud))		/* Another has populated it */
3186 		pmd_free(mm, new);
3187 	else
3188 		pgd_populate(mm, pud, new);
3189 #endif /* __ARCH_HAS_4LEVEL_HACK */
3190 	spin_unlock(&mm->page_table_lock);
3191 	return 0;
3192 }
3193 #endif /* __PAGETABLE_PMD_FOLDED */
3194 
3195 int make_pages_present(unsigned long addr, unsigned long end)
3196 {
3197 	int ret, len, write;
3198 	struct vm_area_struct * vma;
3199 
3200 	vma = find_vma(current->mm, addr);
3201 	if (!vma)
3202 		return -ENOMEM;
3203 	write = (vma->vm_flags & VM_WRITE) != 0;
3204 	BUG_ON(addr >= end);
3205 	BUG_ON(end > vma->vm_end);
3206 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3207 	ret = get_user_pages(current, current->mm, addr,
3208 			len, write, 0, NULL, NULL);
3209 	if (ret < 0)
3210 		return ret;
3211 	return ret == len ? 0 : -EFAULT;
3212 }
3213 
3214 #if !defined(__HAVE_ARCH_GATE_AREA)
3215 
3216 #if defined(AT_SYSINFO_EHDR)
3217 static struct vm_area_struct gate_vma;
3218 
3219 static int __init gate_vma_init(void)
3220 {
3221 	gate_vma.vm_mm = NULL;
3222 	gate_vma.vm_start = FIXADDR_USER_START;
3223 	gate_vma.vm_end = FIXADDR_USER_END;
3224 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3225 	gate_vma.vm_page_prot = __P101;
3226 	/*
3227 	 * Make sure the vDSO gets into every core dump.
3228 	 * Dumping its contents makes post-mortem fully interpretable later
3229 	 * without matching up the same kernel and hardware config to see
3230 	 * what PC values meant.
3231 	 */
3232 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3233 	return 0;
3234 }
3235 __initcall(gate_vma_init);
3236 #endif
3237 
3238 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3239 {
3240 #ifdef AT_SYSINFO_EHDR
3241 	return &gate_vma;
3242 #else
3243 	return NULL;
3244 #endif
3245 }
3246 
3247 int in_gate_area_no_task(unsigned long addr)
3248 {
3249 #ifdef AT_SYSINFO_EHDR
3250 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3251 		return 1;
3252 #endif
3253 	return 0;
3254 }
3255 
3256 #endif	/* __HAVE_ARCH_GATE_AREA */
3257 
3258 static int follow_pte(struct mm_struct *mm, unsigned long address,
3259 		pte_t **ptepp, spinlock_t **ptlp)
3260 {
3261 	pgd_t *pgd;
3262 	pud_t *pud;
3263 	pmd_t *pmd;
3264 	pte_t *ptep;
3265 
3266 	pgd = pgd_offset(mm, address);
3267 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3268 		goto out;
3269 
3270 	pud = pud_offset(pgd, address);
3271 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3272 		goto out;
3273 
3274 	pmd = pmd_offset(pud, address);
3275 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3276 		goto out;
3277 
3278 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3279 	if (pmd_huge(*pmd))
3280 		goto out;
3281 
3282 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3283 	if (!ptep)
3284 		goto out;
3285 	if (!pte_present(*ptep))
3286 		goto unlock;
3287 	*ptepp = ptep;
3288 	return 0;
3289 unlock:
3290 	pte_unmap_unlock(ptep, *ptlp);
3291 out:
3292 	return -EINVAL;
3293 }
3294 
3295 /**
3296  * follow_pfn - look up PFN at a user virtual address
3297  * @vma: memory mapping
3298  * @address: user virtual address
3299  * @pfn: location to store found PFN
3300  *
3301  * Only IO mappings and raw PFN mappings are allowed.
3302  *
3303  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3304  */
3305 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3306 	unsigned long *pfn)
3307 {
3308 	int ret = -EINVAL;
3309 	spinlock_t *ptl;
3310 	pte_t *ptep;
3311 
3312 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3313 		return ret;
3314 
3315 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3316 	if (ret)
3317 		return ret;
3318 	*pfn = pte_pfn(*ptep);
3319 	pte_unmap_unlock(ptep, ptl);
3320 	return 0;
3321 }
3322 EXPORT_SYMBOL(follow_pfn);
3323 
3324 #ifdef CONFIG_HAVE_IOREMAP_PROT
3325 int follow_phys(struct vm_area_struct *vma,
3326 		unsigned long address, unsigned int flags,
3327 		unsigned long *prot, resource_size_t *phys)
3328 {
3329 	int ret = -EINVAL;
3330 	pte_t *ptep, pte;
3331 	spinlock_t *ptl;
3332 
3333 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3334 		goto out;
3335 
3336 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3337 		goto out;
3338 	pte = *ptep;
3339 
3340 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3341 		goto unlock;
3342 
3343 	*prot = pgprot_val(pte_pgprot(pte));
3344 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3345 
3346 	ret = 0;
3347 unlock:
3348 	pte_unmap_unlock(ptep, ptl);
3349 out:
3350 	return ret;
3351 }
3352 
3353 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3354 			void *buf, int len, int write)
3355 {
3356 	resource_size_t phys_addr;
3357 	unsigned long prot = 0;
3358 	void __iomem *maddr;
3359 	int offset = addr & (PAGE_SIZE-1);
3360 
3361 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3362 		return -EINVAL;
3363 
3364 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3365 	if (write)
3366 		memcpy_toio(maddr + offset, buf, len);
3367 	else
3368 		memcpy_fromio(buf, maddr + offset, len);
3369 	iounmap(maddr);
3370 
3371 	return len;
3372 }
3373 #endif
3374 
3375 /*
3376  * Access another process' address space.
3377  * Source/target buffer must be kernel space,
3378  * Do not walk the page table directly, use get_user_pages
3379  */
3380 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3381 {
3382 	struct mm_struct *mm;
3383 	struct vm_area_struct *vma;
3384 	void *old_buf = buf;
3385 
3386 	mm = get_task_mm(tsk);
3387 	if (!mm)
3388 		return 0;
3389 
3390 	down_read(&mm->mmap_sem);
3391 	/* ignore errors, just check how much was successfully transferred */
3392 	while (len) {
3393 		int bytes, ret, offset;
3394 		void *maddr;
3395 		struct page *page = NULL;
3396 
3397 		ret = get_user_pages(tsk, mm, addr, 1,
3398 				write, 1, &page, &vma);
3399 		if (ret <= 0) {
3400 			/*
3401 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3402 			 * we can access using slightly different code.
3403 			 */
3404 #ifdef CONFIG_HAVE_IOREMAP_PROT
3405 			vma = find_vma(mm, addr);
3406 			if (!vma)
3407 				break;
3408 			if (vma->vm_ops && vma->vm_ops->access)
3409 				ret = vma->vm_ops->access(vma, addr, buf,
3410 							  len, write);
3411 			if (ret <= 0)
3412 #endif
3413 				break;
3414 			bytes = ret;
3415 		} else {
3416 			bytes = len;
3417 			offset = addr & (PAGE_SIZE-1);
3418 			if (bytes > PAGE_SIZE-offset)
3419 				bytes = PAGE_SIZE-offset;
3420 
3421 			maddr = kmap(page);
3422 			if (write) {
3423 				copy_to_user_page(vma, page, addr,
3424 						  maddr + offset, buf, bytes);
3425 				set_page_dirty_lock(page);
3426 			} else {
3427 				copy_from_user_page(vma, page, addr,
3428 						    buf, maddr + offset, bytes);
3429 			}
3430 			kunmap(page);
3431 			page_cache_release(page);
3432 		}
3433 		len -= bytes;
3434 		buf += bytes;
3435 		addr += bytes;
3436 	}
3437 	up_read(&mm->mmap_sem);
3438 	mmput(mm);
3439 
3440 	return buf - old_buf;
3441 }
3442 
3443 /*
3444  * Print the name of a VMA.
3445  */
3446 void print_vma_addr(char *prefix, unsigned long ip)
3447 {
3448 	struct mm_struct *mm = current->mm;
3449 	struct vm_area_struct *vma;
3450 
3451 	/*
3452 	 * Do not print if we are in atomic
3453 	 * contexts (in exception stacks, etc.):
3454 	 */
3455 	if (preempt_count())
3456 		return;
3457 
3458 	down_read(&mm->mmap_sem);
3459 	vma = find_vma(mm, ip);
3460 	if (vma && vma->vm_file) {
3461 		struct file *f = vma->vm_file;
3462 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3463 		if (buf) {
3464 			char *p, *s;
3465 
3466 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3467 			if (IS_ERR(p))
3468 				p = "?";
3469 			s = strrchr(p, '/');
3470 			if (s)
3471 				p = s+1;
3472 			printk("%s%s[%lx+%lx]", prefix, p,
3473 					vma->vm_start,
3474 					vma->vm_end - vma->vm_start);
3475 			free_page((unsigned long)buf);
3476 		}
3477 	}
3478 	up_read(&current->mm->mmap_sem);
3479 }
3480 
3481 #ifdef CONFIG_PROVE_LOCKING
3482 void might_fault(void)
3483 {
3484 	/*
3485 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3486 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3487 	 * get paged out, therefore we'll never actually fault, and the
3488 	 * below annotations will generate false positives.
3489 	 */
3490 	if (segment_eq(get_fs(), KERNEL_DS))
3491 		return;
3492 
3493 	might_sleep();
3494 	/*
3495 	 * it would be nicer only to annotate paths which are not under
3496 	 * pagefault_disable, however that requires a larger audit and
3497 	 * providing helpers like get_user_atomic.
3498 	 */
3499 	if (!in_atomic() && current->mm)
3500 		might_lock_read(&current->mm->mmap_sem);
3501 }
3502 EXPORT_SYMBOL(might_fault);
3503 #endif
3504