1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif 195 196 /* 197 * If a p?d_bad entry is found while walking page tables, report 198 * the error, before resetting entry to p?d_none. Usually (but 199 * very seldom) called out from the p?d_none_or_clear_bad macros. 200 */ 201 202 void pgd_clear_bad(pgd_t *pgd) 203 { 204 pgd_ERROR(*pgd); 205 pgd_clear(pgd); 206 } 207 208 void pud_clear_bad(pud_t *pud) 209 { 210 pud_ERROR(*pud); 211 pud_clear(pud); 212 } 213 214 void pmd_clear_bad(pmd_t *pmd) 215 { 216 pmd_ERROR(*pmd); 217 pmd_clear(pmd); 218 } 219 220 /* 221 * Note: this doesn't free the actual pages themselves. That 222 * has been handled earlier when unmapping all the memory regions. 223 */ 224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 225 unsigned long addr) 226 { 227 pgtable_t token = pmd_pgtable(*pmd); 228 pmd_clear(pmd); 229 pte_free_tlb(tlb, token, addr); 230 tlb->mm->nr_ptes--; 231 } 232 233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 234 unsigned long addr, unsigned long end, 235 unsigned long floor, unsigned long ceiling) 236 { 237 pmd_t *pmd; 238 unsigned long next; 239 unsigned long start; 240 241 start = addr; 242 pmd = pmd_offset(pud, addr); 243 do { 244 next = pmd_addr_end(addr, end); 245 if (pmd_none_or_clear_bad(pmd)) 246 continue; 247 free_pte_range(tlb, pmd, addr); 248 } while (pmd++, addr = next, addr != end); 249 250 start &= PUD_MASK; 251 if (start < floor) 252 return; 253 if (ceiling) { 254 ceiling &= PUD_MASK; 255 if (!ceiling) 256 return; 257 } 258 if (end - 1 > ceiling - 1) 259 return; 260 261 pmd = pmd_offset(pud, start); 262 pud_clear(pud); 263 pmd_free_tlb(tlb, pmd, start); 264 } 265 266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 pud_t *pud; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 pud = pud_offset(pgd, addr); 276 do { 277 next = pud_addr_end(addr, end); 278 if (pud_none_or_clear_bad(pud)) 279 continue; 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 281 } while (pud++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 pud = pud_offset(pgd, start); 295 pgd_clear(pgd); 296 pud_free_tlb(tlb, pud, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 * 302 * Must be called with pagetable lock held. 303 */ 304 void free_pgd_range(struct mmu_gather *tlb, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 pgd_t *pgd; 309 unsigned long next; 310 unsigned long start; 311 312 /* 313 * The next few lines have given us lots of grief... 314 * 315 * Why are we testing PMD* at this top level? Because often 316 * there will be no work to do at all, and we'd prefer not to 317 * go all the way down to the bottom just to discover that. 318 * 319 * Why all these "- 1"s? Because 0 represents both the bottom 320 * of the address space and the top of it (using -1 for the 321 * top wouldn't help much: the masks would do the wrong thing). 322 * The rule is that addr 0 and floor 0 refer to the bottom of 323 * the address space, but end 0 and ceiling 0 refer to the top 324 * Comparisons need to use "end - 1" and "ceiling - 1" (though 325 * that end 0 case should be mythical). 326 * 327 * Wherever addr is brought up or ceiling brought down, we must 328 * be careful to reject "the opposite 0" before it confuses the 329 * subsequent tests. But what about where end is brought down 330 * by PMD_SIZE below? no, end can't go down to 0 there. 331 * 332 * Whereas we round start (addr) and ceiling down, by different 333 * masks at different levels, in order to test whether a table 334 * now has no other vmas using it, so can be freed, we don't 335 * bother to round floor or end up - the tests don't need that. 336 */ 337 338 addr &= PMD_MASK; 339 if (addr < floor) { 340 addr += PMD_SIZE; 341 if (!addr) 342 return; 343 } 344 if (ceiling) { 345 ceiling &= PMD_MASK; 346 if (!ceiling) 347 return; 348 } 349 if (end - 1 > ceiling - 1) 350 end -= PMD_SIZE; 351 if (addr > end - 1) 352 return; 353 354 start = addr; 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 365 unsigned long floor, unsigned long ceiling) 366 { 367 while (vma) { 368 struct vm_area_struct *next = vma->vm_next; 369 unsigned long addr = vma->vm_start; 370 371 /* 372 * Hide vma from rmap and truncate_pagecache before freeing 373 * pgtables 374 */ 375 unlink_anon_vmas(vma); 376 unlink_file_vma(vma); 377 378 if (is_vm_hugetlb_page(vma)) { 379 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 380 floor, next? next->vm_start: ceiling); 381 } else { 382 /* 383 * Optimization: gather nearby vmas into one call down 384 */ 385 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 386 && !is_vm_hugetlb_page(next)) { 387 vma = next; 388 next = vma->vm_next; 389 unlink_anon_vmas(vma); 390 unlink_file_vma(vma); 391 } 392 free_pgd_range(tlb, addr, vma->vm_end, 393 floor, next? next->vm_start: ceiling); 394 } 395 vma = next; 396 } 397 } 398 399 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 400 { 401 pgtable_t new = pte_alloc_one(mm, address); 402 if (!new) 403 return -ENOMEM; 404 405 /* 406 * Ensure all pte setup (eg. pte page lock and page clearing) are 407 * visible before the pte is made visible to other CPUs by being 408 * put into page tables. 409 * 410 * The other side of the story is the pointer chasing in the page 411 * table walking code (when walking the page table without locking; 412 * ie. most of the time). Fortunately, these data accesses consist 413 * of a chain of data-dependent loads, meaning most CPUs (alpha 414 * being the notable exception) will already guarantee loads are 415 * seen in-order. See the alpha page table accessors for the 416 * smp_read_barrier_depends() barriers in page table walking code. 417 */ 418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 419 420 spin_lock(&mm->page_table_lock); 421 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 422 mm->nr_ptes++; 423 pmd_populate(mm, pmd, new); 424 new = NULL; 425 } 426 spin_unlock(&mm->page_table_lock); 427 if (new) 428 pte_free(mm, new); 429 return 0; 430 } 431 432 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 433 { 434 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 435 if (!new) 436 return -ENOMEM; 437 438 smp_wmb(); /* See comment in __pte_alloc */ 439 440 spin_lock(&init_mm.page_table_lock); 441 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 442 pmd_populate_kernel(&init_mm, pmd, new); 443 new = NULL; 444 } 445 spin_unlock(&init_mm.page_table_lock); 446 if (new) 447 pte_free_kernel(&init_mm, new); 448 return 0; 449 } 450 451 static inline void init_rss_vec(int *rss) 452 { 453 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 454 } 455 456 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 457 { 458 int i; 459 460 if (current->mm == mm) 461 sync_mm_rss(current, mm); 462 for (i = 0; i < NR_MM_COUNTERS; i++) 463 if (rss[i]) 464 add_mm_counter(mm, i, rss[i]); 465 } 466 467 /* 468 * This function is called to print an error when a bad pte 469 * is found. For example, we might have a PFN-mapped pte in 470 * a region that doesn't allow it. 471 * 472 * The calling function must still handle the error. 473 */ 474 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 475 pte_t pte, struct page *page) 476 { 477 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 478 pud_t *pud = pud_offset(pgd, addr); 479 pmd_t *pmd = pmd_offset(pud, addr); 480 struct address_space *mapping; 481 pgoff_t index; 482 static unsigned long resume; 483 static unsigned long nr_shown; 484 static unsigned long nr_unshown; 485 486 /* 487 * Allow a burst of 60 reports, then keep quiet for that minute; 488 * or allow a steady drip of one report per second. 489 */ 490 if (nr_shown == 60) { 491 if (time_before(jiffies, resume)) { 492 nr_unshown++; 493 return; 494 } 495 if (nr_unshown) { 496 printk(KERN_ALERT 497 "BUG: Bad page map: %lu messages suppressed\n", 498 nr_unshown); 499 nr_unshown = 0; 500 } 501 nr_shown = 0; 502 } 503 if (nr_shown++ == 0) 504 resume = jiffies + 60 * HZ; 505 506 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 507 index = linear_page_index(vma, addr); 508 509 printk(KERN_ALERT 510 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 511 current->comm, 512 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 513 if (page) 514 dump_page(page); 515 printk(KERN_ALERT 516 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 517 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 518 /* 519 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 520 */ 521 if (vma->vm_ops) 522 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 523 (unsigned long)vma->vm_ops->fault); 524 if (vma->vm_file && vma->vm_file->f_op) 525 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 526 (unsigned long)vma->vm_file->f_op->mmap); 527 dump_stack(); 528 add_taint(TAINT_BAD_PAGE); 529 } 530 531 static inline int is_cow_mapping(unsigned int flags) 532 { 533 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 534 } 535 536 #ifndef is_zero_pfn 537 static inline int is_zero_pfn(unsigned long pfn) 538 { 539 return pfn == zero_pfn; 540 } 541 #endif 542 543 #ifndef my_zero_pfn 544 static inline unsigned long my_zero_pfn(unsigned long addr) 545 { 546 return zero_pfn; 547 } 548 #endif 549 550 /* 551 * vm_normal_page -- This function gets the "struct page" associated with a pte. 552 * 553 * "Special" mappings do not wish to be associated with a "struct page" (either 554 * it doesn't exist, or it exists but they don't want to touch it). In this 555 * case, NULL is returned here. "Normal" mappings do have a struct page. 556 * 557 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 558 * pte bit, in which case this function is trivial. Secondly, an architecture 559 * may not have a spare pte bit, which requires a more complicated scheme, 560 * described below. 561 * 562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 563 * special mapping (even if there are underlying and valid "struct pages"). 564 * COWed pages of a VM_PFNMAP are always normal. 565 * 566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 569 * mapping will always honor the rule 570 * 571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 572 * 573 * And for normal mappings this is false. 574 * 575 * This restricts such mappings to be a linear translation from virtual address 576 * to pfn. To get around this restriction, we allow arbitrary mappings so long 577 * as the vma is not a COW mapping; in that case, we know that all ptes are 578 * special (because none can have been COWed). 579 * 580 * 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 582 * 583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 584 * page" backing, however the difference is that _all_ pages with a struct 585 * page (that is, those where pfn_valid is true) are refcounted and considered 586 * normal pages by the VM. The disadvantage is that pages are refcounted 587 * (which can be slower and simply not an option for some PFNMAP users). The 588 * advantage is that we don't have to follow the strict linearity rule of 589 * PFNMAP mappings in order to support COWable mappings. 590 * 591 */ 592 #ifdef __HAVE_ARCH_PTE_SPECIAL 593 # define HAVE_PTE_SPECIAL 1 594 #else 595 # define HAVE_PTE_SPECIAL 0 596 #endif 597 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 598 pte_t pte) 599 { 600 unsigned long pfn = pte_pfn(pte); 601 602 if (HAVE_PTE_SPECIAL) { 603 if (likely(!pte_special(pte))) 604 goto check_pfn; 605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 606 return NULL; 607 if (!is_zero_pfn(pfn)) 608 print_bad_pte(vma, addr, pte, NULL); 609 return NULL; 610 } 611 612 /* !HAVE_PTE_SPECIAL case follows: */ 613 614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 615 if (vma->vm_flags & VM_MIXEDMAP) { 616 if (!pfn_valid(pfn)) 617 return NULL; 618 goto out; 619 } else { 620 unsigned long off; 621 off = (addr - vma->vm_start) >> PAGE_SHIFT; 622 if (pfn == vma->vm_pgoff + off) 623 return NULL; 624 if (!is_cow_mapping(vma->vm_flags)) 625 return NULL; 626 } 627 } 628 629 if (is_zero_pfn(pfn)) 630 return NULL; 631 check_pfn: 632 if (unlikely(pfn > highest_memmap_pfn)) { 633 print_bad_pte(vma, addr, pte, NULL); 634 return NULL; 635 } 636 637 /* 638 * NOTE! We still have PageReserved() pages in the page tables. 639 * eg. VDSO mappings can cause them to exist. 640 */ 641 out: 642 return pfn_to_page(pfn); 643 } 644 645 /* 646 * copy one vm_area from one task to the other. Assumes the page tables 647 * already present in the new task to be cleared in the whole range 648 * covered by this vma. 649 */ 650 651 static inline unsigned long 652 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 653 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 654 unsigned long addr, int *rss) 655 { 656 unsigned long vm_flags = vma->vm_flags; 657 pte_t pte = *src_pte; 658 struct page *page; 659 660 /* pte contains position in swap or file, so copy. */ 661 if (unlikely(!pte_present(pte))) { 662 if (!pte_file(pte)) { 663 swp_entry_t entry = pte_to_swp_entry(pte); 664 665 if (swap_duplicate(entry) < 0) 666 return entry.val; 667 668 /* make sure dst_mm is on swapoff's mmlist. */ 669 if (unlikely(list_empty(&dst_mm->mmlist))) { 670 spin_lock(&mmlist_lock); 671 if (list_empty(&dst_mm->mmlist)) 672 list_add(&dst_mm->mmlist, 673 &src_mm->mmlist); 674 spin_unlock(&mmlist_lock); 675 } 676 if (likely(!non_swap_entry(entry))) 677 rss[MM_SWAPENTS]++; 678 else if (is_write_migration_entry(entry) && 679 is_cow_mapping(vm_flags)) { 680 /* 681 * COW mappings require pages in both parent 682 * and child to be set to read. 683 */ 684 make_migration_entry_read(&entry); 685 pte = swp_entry_to_pte(entry); 686 set_pte_at(src_mm, addr, src_pte, pte); 687 } 688 } 689 goto out_set_pte; 690 } 691 692 /* 693 * If it's a COW mapping, write protect it both 694 * in the parent and the child 695 */ 696 if (is_cow_mapping(vm_flags)) { 697 ptep_set_wrprotect(src_mm, addr, src_pte); 698 pte = pte_wrprotect(pte); 699 } 700 701 /* 702 * If it's a shared mapping, mark it clean in 703 * the child 704 */ 705 if (vm_flags & VM_SHARED) 706 pte = pte_mkclean(pte); 707 pte = pte_mkold(pte); 708 709 page = vm_normal_page(vma, addr, pte); 710 if (page) { 711 get_page(page); 712 page_dup_rmap(page); 713 if (PageAnon(page)) 714 rss[MM_ANONPAGES]++; 715 else 716 rss[MM_FILEPAGES]++; 717 } 718 719 out_set_pte: 720 set_pte_at(dst_mm, addr, dst_pte, pte); 721 return 0; 722 } 723 724 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 725 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 726 unsigned long addr, unsigned long end) 727 { 728 pte_t *orig_src_pte, *orig_dst_pte; 729 pte_t *src_pte, *dst_pte; 730 spinlock_t *src_ptl, *dst_ptl; 731 int progress = 0; 732 int rss[NR_MM_COUNTERS]; 733 swp_entry_t entry = (swp_entry_t){0}; 734 735 again: 736 init_rss_vec(rss); 737 738 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 739 if (!dst_pte) 740 return -ENOMEM; 741 src_pte = pte_offset_map_nested(src_pmd, addr); 742 src_ptl = pte_lockptr(src_mm, src_pmd); 743 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 744 orig_src_pte = src_pte; 745 orig_dst_pte = dst_pte; 746 arch_enter_lazy_mmu_mode(); 747 748 do { 749 /* 750 * We are holding two locks at this point - either of them 751 * could generate latencies in another task on another CPU. 752 */ 753 if (progress >= 32) { 754 progress = 0; 755 if (need_resched() || 756 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 757 break; 758 } 759 if (pte_none(*src_pte)) { 760 progress++; 761 continue; 762 } 763 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 764 vma, addr, rss); 765 if (entry.val) 766 break; 767 progress += 8; 768 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 769 770 arch_leave_lazy_mmu_mode(); 771 spin_unlock(src_ptl); 772 pte_unmap_nested(orig_src_pte); 773 add_mm_rss_vec(dst_mm, rss); 774 pte_unmap_unlock(orig_dst_pte, dst_ptl); 775 cond_resched(); 776 777 if (entry.val) { 778 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 779 return -ENOMEM; 780 progress = 0; 781 } 782 if (addr != end) 783 goto again; 784 return 0; 785 } 786 787 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 788 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 789 unsigned long addr, unsigned long end) 790 { 791 pmd_t *src_pmd, *dst_pmd; 792 unsigned long next; 793 794 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 795 if (!dst_pmd) 796 return -ENOMEM; 797 src_pmd = pmd_offset(src_pud, addr); 798 do { 799 next = pmd_addr_end(addr, end); 800 if (pmd_none_or_clear_bad(src_pmd)) 801 continue; 802 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 803 vma, addr, next)) 804 return -ENOMEM; 805 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 806 return 0; 807 } 808 809 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 810 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 811 unsigned long addr, unsigned long end) 812 { 813 pud_t *src_pud, *dst_pud; 814 unsigned long next; 815 816 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 817 if (!dst_pud) 818 return -ENOMEM; 819 src_pud = pud_offset(src_pgd, addr); 820 do { 821 next = pud_addr_end(addr, end); 822 if (pud_none_or_clear_bad(src_pud)) 823 continue; 824 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 825 vma, addr, next)) 826 return -ENOMEM; 827 } while (dst_pud++, src_pud++, addr = next, addr != end); 828 return 0; 829 } 830 831 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 832 struct vm_area_struct *vma) 833 { 834 pgd_t *src_pgd, *dst_pgd; 835 unsigned long next; 836 unsigned long addr = vma->vm_start; 837 unsigned long end = vma->vm_end; 838 int ret; 839 840 /* 841 * Don't copy ptes where a page fault will fill them correctly. 842 * Fork becomes much lighter when there are big shared or private 843 * readonly mappings. The tradeoff is that copy_page_range is more 844 * efficient than faulting. 845 */ 846 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 847 if (!vma->anon_vma) 848 return 0; 849 } 850 851 if (is_vm_hugetlb_page(vma)) 852 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 853 854 if (unlikely(is_pfn_mapping(vma))) { 855 /* 856 * We do not free on error cases below as remove_vma 857 * gets called on error from higher level routine 858 */ 859 ret = track_pfn_vma_copy(vma); 860 if (ret) 861 return ret; 862 } 863 864 /* 865 * We need to invalidate the secondary MMU mappings only when 866 * there could be a permission downgrade on the ptes of the 867 * parent mm. And a permission downgrade will only happen if 868 * is_cow_mapping() returns true. 869 */ 870 if (is_cow_mapping(vma->vm_flags)) 871 mmu_notifier_invalidate_range_start(src_mm, addr, end); 872 873 ret = 0; 874 dst_pgd = pgd_offset(dst_mm, addr); 875 src_pgd = pgd_offset(src_mm, addr); 876 do { 877 next = pgd_addr_end(addr, end); 878 if (pgd_none_or_clear_bad(src_pgd)) 879 continue; 880 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 881 vma, addr, next))) { 882 ret = -ENOMEM; 883 break; 884 } 885 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 886 887 if (is_cow_mapping(vma->vm_flags)) 888 mmu_notifier_invalidate_range_end(src_mm, 889 vma->vm_start, end); 890 return ret; 891 } 892 893 static unsigned long zap_pte_range(struct mmu_gather *tlb, 894 struct vm_area_struct *vma, pmd_t *pmd, 895 unsigned long addr, unsigned long end, 896 long *zap_work, struct zap_details *details) 897 { 898 struct mm_struct *mm = tlb->mm; 899 pte_t *pte; 900 spinlock_t *ptl; 901 int rss[NR_MM_COUNTERS]; 902 903 init_rss_vec(rss); 904 905 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 906 arch_enter_lazy_mmu_mode(); 907 do { 908 pte_t ptent = *pte; 909 if (pte_none(ptent)) { 910 (*zap_work)--; 911 continue; 912 } 913 914 (*zap_work) -= PAGE_SIZE; 915 916 if (pte_present(ptent)) { 917 struct page *page; 918 919 page = vm_normal_page(vma, addr, ptent); 920 if (unlikely(details) && page) { 921 /* 922 * unmap_shared_mapping_pages() wants to 923 * invalidate cache without truncating: 924 * unmap shared but keep private pages. 925 */ 926 if (details->check_mapping && 927 details->check_mapping != page->mapping) 928 continue; 929 /* 930 * Each page->index must be checked when 931 * invalidating or truncating nonlinear. 932 */ 933 if (details->nonlinear_vma && 934 (page->index < details->first_index || 935 page->index > details->last_index)) 936 continue; 937 } 938 ptent = ptep_get_and_clear_full(mm, addr, pte, 939 tlb->fullmm); 940 tlb_remove_tlb_entry(tlb, pte, addr); 941 if (unlikely(!page)) 942 continue; 943 if (unlikely(details) && details->nonlinear_vma 944 && linear_page_index(details->nonlinear_vma, 945 addr) != page->index) 946 set_pte_at(mm, addr, pte, 947 pgoff_to_pte(page->index)); 948 if (PageAnon(page)) 949 rss[MM_ANONPAGES]--; 950 else { 951 if (pte_dirty(ptent)) 952 set_page_dirty(page); 953 if (pte_young(ptent) && 954 likely(!VM_SequentialReadHint(vma))) 955 mark_page_accessed(page); 956 rss[MM_FILEPAGES]--; 957 } 958 page_remove_rmap(page); 959 if (unlikely(page_mapcount(page) < 0)) 960 print_bad_pte(vma, addr, ptent, page); 961 tlb_remove_page(tlb, page); 962 continue; 963 } 964 /* 965 * If details->check_mapping, we leave swap entries; 966 * if details->nonlinear_vma, we leave file entries. 967 */ 968 if (unlikely(details)) 969 continue; 970 if (pte_file(ptent)) { 971 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 972 print_bad_pte(vma, addr, ptent, NULL); 973 } else { 974 swp_entry_t entry = pte_to_swp_entry(ptent); 975 976 if (!non_swap_entry(entry)) 977 rss[MM_SWAPENTS]--; 978 if (unlikely(!free_swap_and_cache(entry))) 979 print_bad_pte(vma, addr, ptent, NULL); 980 } 981 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 982 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 983 984 add_mm_rss_vec(mm, rss); 985 arch_leave_lazy_mmu_mode(); 986 pte_unmap_unlock(pte - 1, ptl); 987 988 return addr; 989 } 990 991 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 992 struct vm_area_struct *vma, pud_t *pud, 993 unsigned long addr, unsigned long end, 994 long *zap_work, struct zap_details *details) 995 { 996 pmd_t *pmd; 997 unsigned long next; 998 999 pmd = pmd_offset(pud, addr); 1000 do { 1001 next = pmd_addr_end(addr, end); 1002 if (pmd_none_or_clear_bad(pmd)) { 1003 (*zap_work)--; 1004 continue; 1005 } 1006 next = zap_pte_range(tlb, vma, pmd, addr, next, 1007 zap_work, details); 1008 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1009 1010 return addr; 1011 } 1012 1013 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1014 struct vm_area_struct *vma, pgd_t *pgd, 1015 unsigned long addr, unsigned long end, 1016 long *zap_work, struct zap_details *details) 1017 { 1018 pud_t *pud; 1019 unsigned long next; 1020 1021 pud = pud_offset(pgd, addr); 1022 do { 1023 next = pud_addr_end(addr, end); 1024 if (pud_none_or_clear_bad(pud)) { 1025 (*zap_work)--; 1026 continue; 1027 } 1028 next = zap_pmd_range(tlb, vma, pud, addr, next, 1029 zap_work, details); 1030 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1031 1032 return addr; 1033 } 1034 1035 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1036 struct vm_area_struct *vma, 1037 unsigned long addr, unsigned long end, 1038 long *zap_work, struct zap_details *details) 1039 { 1040 pgd_t *pgd; 1041 unsigned long next; 1042 1043 if (details && !details->check_mapping && !details->nonlinear_vma) 1044 details = NULL; 1045 1046 BUG_ON(addr >= end); 1047 mem_cgroup_uncharge_start(); 1048 tlb_start_vma(tlb, vma); 1049 pgd = pgd_offset(vma->vm_mm, addr); 1050 do { 1051 next = pgd_addr_end(addr, end); 1052 if (pgd_none_or_clear_bad(pgd)) { 1053 (*zap_work)--; 1054 continue; 1055 } 1056 next = zap_pud_range(tlb, vma, pgd, addr, next, 1057 zap_work, details); 1058 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1059 tlb_end_vma(tlb, vma); 1060 mem_cgroup_uncharge_end(); 1061 1062 return addr; 1063 } 1064 1065 #ifdef CONFIG_PREEMPT 1066 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1067 #else 1068 /* No preempt: go for improved straight-line efficiency */ 1069 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1070 #endif 1071 1072 /** 1073 * unmap_vmas - unmap a range of memory covered by a list of vma's 1074 * @tlbp: address of the caller's struct mmu_gather 1075 * @vma: the starting vma 1076 * @start_addr: virtual address at which to start unmapping 1077 * @end_addr: virtual address at which to end unmapping 1078 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1079 * @details: details of nonlinear truncation or shared cache invalidation 1080 * 1081 * Returns the end address of the unmapping (restart addr if interrupted). 1082 * 1083 * Unmap all pages in the vma list. 1084 * 1085 * We aim to not hold locks for too long (for scheduling latency reasons). 1086 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1087 * return the ending mmu_gather to the caller. 1088 * 1089 * Only addresses between `start' and `end' will be unmapped. 1090 * 1091 * The VMA list must be sorted in ascending virtual address order. 1092 * 1093 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1094 * range after unmap_vmas() returns. So the only responsibility here is to 1095 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1096 * drops the lock and schedules. 1097 */ 1098 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1099 struct vm_area_struct *vma, unsigned long start_addr, 1100 unsigned long end_addr, unsigned long *nr_accounted, 1101 struct zap_details *details) 1102 { 1103 long zap_work = ZAP_BLOCK_SIZE; 1104 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1105 int tlb_start_valid = 0; 1106 unsigned long start = start_addr; 1107 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1108 int fullmm = (*tlbp)->fullmm; 1109 struct mm_struct *mm = vma->vm_mm; 1110 1111 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1112 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1113 unsigned long end; 1114 1115 start = max(vma->vm_start, start_addr); 1116 if (start >= vma->vm_end) 1117 continue; 1118 end = min(vma->vm_end, end_addr); 1119 if (end <= vma->vm_start) 1120 continue; 1121 1122 if (vma->vm_flags & VM_ACCOUNT) 1123 *nr_accounted += (end - start) >> PAGE_SHIFT; 1124 1125 if (unlikely(is_pfn_mapping(vma))) 1126 untrack_pfn_vma(vma, 0, 0); 1127 1128 while (start != end) { 1129 if (!tlb_start_valid) { 1130 tlb_start = start; 1131 tlb_start_valid = 1; 1132 } 1133 1134 if (unlikely(is_vm_hugetlb_page(vma))) { 1135 /* 1136 * It is undesirable to test vma->vm_file as it 1137 * should be non-null for valid hugetlb area. 1138 * However, vm_file will be NULL in the error 1139 * cleanup path of do_mmap_pgoff. When 1140 * hugetlbfs ->mmap method fails, 1141 * do_mmap_pgoff() nullifies vma->vm_file 1142 * before calling this function to clean up. 1143 * Since no pte has actually been setup, it is 1144 * safe to do nothing in this case. 1145 */ 1146 if (vma->vm_file) { 1147 unmap_hugepage_range(vma, start, end, NULL); 1148 zap_work -= (end - start) / 1149 pages_per_huge_page(hstate_vma(vma)); 1150 } 1151 1152 start = end; 1153 } else 1154 start = unmap_page_range(*tlbp, vma, 1155 start, end, &zap_work, details); 1156 1157 if (zap_work > 0) { 1158 BUG_ON(start != end); 1159 break; 1160 } 1161 1162 tlb_finish_mmu(*tlbp, tlb_start, start); 1163 1164 if (need_resched() || 1165 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1166 if (i_mmap_lock) { 1167 *tlbp = NULL; 1168 goto out; 1169 } 1170 cond_resched(); 1171 } 1172 1173 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1174 tlb_start_valid = 0; 1175 zap_work = ZAP_BLOCK_SIZE; 1176 } 1177 } 1178 out: 1179 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1180 return start; /* which is now the end (or restart) address */ 1181 } 1182 1183 /** 1184 * zap_page_range - remove user pages in a given range 1185 * @vma: vm_area_struct holding the applicable pages 1186 * @address: starting address of pages to zap 1187 * @size: number of bytes to zap 1188 * @details: details of nonlinear truncation or shared cache invalidation 1189 */ 1190 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1191 unsigned long size, struct zap_details *details) 1192 { 1193 struct mm_struct *mm = vma->vm_mm; 1194 struct mmu_gather *tlb; 1195 unsigned long end = address + size; 1196 unsigned long nr_accounted = 0; 1197 1198 lru_add_drain(); 1199 tlb = tlb_gather_mmu(mm, 0); 1200 update_hiwater_rss(mm); 1201 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1202 if (tlb) 1203 tlb_finish_mmu(tlb, address, end); 1204 return end; 1205 } 1206 1207 /** 1208 * zap_vma_ptes - remove ptes mapping the vma 1209 * @vma: vm_area_struct holding ptes to be zapped 1210 * @address: starting address of pages to zap 1211 * @size: number of bytes to zap 1212 * 1213 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1214 * 1215 * The entire address range must be fully contained within the vma. 1216 * 1217 * Returns 0 if successful. 1218 */ 1219 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1220 unsigned long size) 1221 { 1222 if (address < vma->vm_start || address + size > vma->vm_end || 1223 !(vma->vm_flags & VM_PFNMAP)) 1224 return -1; 1225 zap_page_range(vma, address, size, NULL); 1226 return 0; 1227 } 1228 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1229 1230 /* 1231 * Do a quick page-table lookup for a single page. 1232 */ 1233 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1234 unsigned int flags) 1235 { 1236 pgd_t *pgd; 1237 pud_t *pud; 1238 pmd_t *pmd; 1239 pte_t *ptep, pte; 1240 spinlock_t *ptl; 1241 struct page *page; 1242 struct mm_struct *mm = vma->vm_mm; 1243 1244 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1245 if (!IS_ERR(page)) { 1246 BUG_ON(flags & FOLL_GET); 1247 goto out; 1248 } 1249 1250 page = NULL; 1251 pgd = pgd_offset(mm, address); 1252 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1253 goto no_page_table; 1254 1255 pud = pud_offset(pgd, address); 1256 if (pud_none(*pud)) 1257 goto no_page_table; 1258 if (pud_huge(*pud)) { 1259 BUG_ON(flags & FOLL_GET); 1260 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1261 goto out; 1262 } 1263 if (unlikely(pud_bad(*pud))) 1264 goto no_page_table; 1265 1266 pmd = pmd_offset(pud, address); 1267 if (pmd_none(*pmd)) 1268 goto no_page_table; 1269 if (pmd_huge(*pmd)) { 1270 BUG_ON(flags & FOLL_GET); 1271 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1272 goto out; 1273 } 1274 if (unlikely(pmd_bad(*pmd))) 1275 goto no_page_table; 1276 1277 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1278 1279 pte = *ptep; 1280 if (!pte_present(pte)) 1281 goto no_page; 1282 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1283 goto unlock; 1284 1285 page = vm_normal_page(vma, address, pte); 1286 if (unlikely(!page)) { 1287 if ((flags & FOLL_DUMP) || 1288 !is_zero_pfn(pte_pfn(pte))) 1289 goto bad_page; 1290 page = pte_page(pte); 1291 } 1292 1293 if (flags & FOLL_GET) 1294 get_page(page); 1295 if (flags & FOLL_TOUCH) { 1296 if ((flags & FOLL_WRITE) && 1297 !pte_dirty(pte) && !PageDirty(page)) 1298 set_page_dirty(page); 1299 /* 1300 * pte_mkyoung() would be more correct here, but atomic care 1301 * is needed to avoid losing the dirty bit: it is easier to use 1302 * mark_page_accessed(). 1303 */ 1304 mark_page_accessed(page); 1305 } 1306 unlock: 1307 pte_unmap_unlock(ptep, ptl); 1308 out: 1309 return page; 1310 1311 bad_page: 1312 pte_unmap_unlock(ptep, ptl); 1313 return ERR_PTR(-EFAULT); 1314 1315 no_page: 1316 pte_unmap_unlock(ptep, ptl); 1317 if (!pte_none(pte)) 1318 return page; 1319 1320 no_page_table: 1321 /* 1322 * When core dumping an enormous anonymous area that nobody 1323 * has touched so far, we don't want to allocate unnecessary pages or 1324 * page tables. Return error instead of NULL to skip handle_mm_fault, 1325 * then get_dump_page() will return NULL to leave a hole in the dump. 1326 * But we can only make this optimization where a hole would surely 1327 * be zero-filled if handle_mm_fault() actually did handle it. 1328 */ 1329 if ((flags & FOLL_DUMP) && 1330 (!vma->vm_ops || !vma->vm_ops->fault)) 1331 return ERR_PTR(-EFAULT); 1332 return page; 1333 } 1334 1335 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1336 unsigned long start, int nr_pages, unsigned int gup_flags, 1337 struct page **pages, struct vm_area_struct **vmas) 1338 { 1339 int i; 1340 unsigned long vm_flags; 1341 1342 if (nr_pages <= 0) 1343 return 0; 1344 1345 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1346 1347 /* 1348 * Require read or write permissions. 1349 * If FOLL_FORCE is set, we only require the "MAY" flags. 1350 */ 1351 vm_flags = (gup_flags & FOLL_WRITE) ? 1352 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1353 vm_flags &= (gup_flags & FOLL_FORCE) ? 1354 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1355 i = 0; 1356 1357 do { 1358 struct vm_area_struct *vma; 1359 1360 vma = find_extend_vma(mm, start); 1361 if (!vma && in_gate_area(tsk, start)) { 1362 unsigned long pg = start & PAGE_MASK; 1363 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1364 pgd_t *pgd; 1365 pud_t *pud; 1366 pmd_t *pmd; 1367 pte_t *pte; 1368 1369 /* user gate pages are read-only */ 1370 if (gup_flags & FOLL_WRITE) 1371 return i ? : -EFAULT; 1372 if (pg > TASK_SIZE) 1373 pgd = pgd_offset_k(pg); 1374 else 1375 pgd = pgd_offset_gate(mm, pg); 1376 BUG_ON(pgd_none(*pgd)); 1377 pud = pud_offset(pgd, pg); 1378 BUG_ON(pud_none(*pud)); 1379 pmd = pmd_offset(pud, pg); 1380 if (pmd_none(*pmd)) 1381 return i ? : -EFAULT; 1382 pte = pte_offset_map(pmd, pg); 1383 if (pte_none(*pte)) { 1384 pte_unmap(pte); 1385 return i ? : -EFAULT; 1386 } 1387 if (pages) { 1388 struct page *page = vm_normal_page(gate_vma, start, *pte); 1389 pages[i] = page; 1390 if (page) 1391 get_page(page); 1392 } 1393 pte_unmap(pte); 1394 if (vmas) 1395 vmas[i] = gate_vma; 1396 i++; 1397 start += PAGE_SIZE; 1398 nr_pages--; 1399 continue; 1400 } 1401 1402 if (!vma || 1403 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1404 !(vm_flags & vma->vm_flags)) 1405 return i ? : -EFAULT; 1406 1407 if (is_vm_hugetlb_page(vma)) { 1408 i = follow_hugetlb_page(mm, vma, pages, vmas, 1409 &start, &nr_pages, i, gup_flags); 1410 continue; 1411 } 1412 1413 do { 1414 struct page *page; 1415 unsigned int foll_flags = gup_flags; 1416 1417 /* 1418 * If we have a pending SIGKILL, don't keep faulting 1419 * pages and potentially allocating memory. 1420 */ 1421 if (unlikely(fatal_signal_pending(current))) 1422 return i ? i : -ERESTARTSYS; 1423 1424 cond_resched(); 1425 while (!(page = follow_page(vma, start, foll_flags))) { 1426 int ret; 1427 1428 ret = handle_mm_fault(mm, vma, start, 1429 (foll_flags & FOLL_WRITE) ? 1430 FAULT_FLAG_WRITE : 0); 1431 1432 if (ret & VM_FAULT_ERROR) { 1433 if (ret & VM_FAULT_OOM) 1434 return i ? i : -ENOMEM; 1435 if (ret & 1436 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) 1437 return i ? i : -EFAULT; 1438 BUG(); 1439 } 1440 if (ret & VM_FAULT_MAJOR) 1441 tsk->maj_flt++; 1442 else 1443 tsk->min_flt++; 1444 1445 /* 1446 * The VM_FAULT_WRITE bit tells us that 1447 * do_wp_page has broken COW when necessary, 1448 * even if maybe_mkwrite decided not to set 1449 * pte_write. We can thus safely do subsequent 1450 * page lookups as if they were reads. But only 1451 * do so when looping for pte_write is futile: 1452 * in some cases userspace may also be wanting 1453 * to write to the gotten user page, which a 1454 * read fault here might prevent (a readonly 1455 * page might get reCOWed by userspace write). 1456 */ 1457 if ((ret & VM_FAULT_WRITE) && 1458 !(vma->vm_flags & VM_WRITE)) 1459 foll_flags &= ~FOLL_WRITE; 1460 1461 cond_resched(); 1462 } 1463 if (IS_ERR(page)) 1464 return i ? i : PTR_ERR(page); 1465 if (pages) { 1466 pages[i] = page; 1467 1468 flush_anon_page(vma, page, start); 1469 flush_dcache_page(page); 1470 } 1471 if (vmas) 1472 vmas[i] = vma; 1473 i++; 1474 start += PAGE_SIZE; 1475 nr_pages--; 1476 } while (nr_pages && start < vma->vm_end); 1477 } while (nr_pages); 1478 return i; 1479 } 1480 1481 /** 1482 * get_user_pages() - pin user pages in memory 1483 * @tsk: task_struct of target task 1484 * @mm: mm_struct of target mm 1485 * @start: starting user address 1486 * @nr_pages: number of pages from start to pin 1487 * @write: whether pages will be written to by the caller 1488 * @force: whether to force write access even if user mapping is 1489 * readonly. This will result in the page being COWed even 1490 * in MAP_SHARED mappings. You do not want this. 1491 * @pages: array that receives pointers to the pages pinned. 1492 * Should be at least nr_pages long. Or NULL, if caller 1493 * only intends to ensure the pages are faulted in. 1494 * @vmas: array of pointers to vmas corresponding to each page. 1495 * Or NULL if the caller does not require them. 1496 * 1497 * Returns number of pages pinned. This may be fewer than the number 1498 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1499 * were pinned, returns -errno. Each page returned must be released 1500 * with a put_page() call when it is finished with. vmas will only 1501 * remain valid while mmap_sem is held. 1502 * 1503 * Must be called with mmap_sem held for read or write. 1504 * 1505 * get_user_pages walks a process's page tables and takes a reference to 1506 * each struct page that each user address corresponds to at a given 1507 * instant. That is, it takes the page that would be accessed if a user 1508 * thread accesses the given user virtual address at that instant. 1509 * 1510 * This does not guarantee that the page exists in the user mappings when 1511 * get_user_pages returns, and there may even be a completely different 1512 * page there in some cases (eg. if mmapped pagecache has been invalidated 1513 * and subsequently re faulted). However it does guarantee that the page 1514 * won't be freed completely. And mostly callers simply care that the page 1515 * contains data that was valid *at some point in time*. Typically, an IO 1516 * or similar operation cannot guarantee anything stronger anyway because 1517 * locks can't be held over the syscall boundary. 1518 * 1519 * If write=0, the page must not be written to. If the page is written to, 1520 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1521 * after the page is finished with, and before put_page is called. 1522 * 1523 * get_user_pages is typically used for fewer-copy IO operations, to get a 1524 * handle on the memory by some means other than accesses via the user virtual 1525 * addresses. The pages may be submitted for DMA to devices or accessed via 1526 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1527 * use the correct cache flushing APIs. 1528 * 1529 * See also get_user_pages_fast, for performance critical applications. 1530 */ 1531 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1532 unsigned long start, int nr_pages, int write, int force, 1533 struct page **pages, struct vm_area_struct **vmas) 1534 { 1535 int flags = FOLL_TOUCH; 1536 1537 if (pages) 1538 flags |= FOLL_GET; 1539 if (write) 1540 flags |= FOLL_WRITE; 1541 if (force) 1542 flags |= FOLL_FORCE; 1543 1544 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 1545 } 1546 EXPORT_SYMBOL(get_user_pages); 1547 1548 /** 1549 * get_dump_page() - pin user page in memory while writing it to core dump 1550 * @addr: user address 1551 * 1552 * Returns struct page pointer of user page pinned for dump, 1553 * to be freed afterwards by page_cache_release() or put_page(). 1554 * 1555 * Returns NULL on any kind of failure - a hole must then be inserted into 1556 * the corefile, to preserve alignment with its headers; and also returns 1557 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1558 * allowing a hole to be left in the corefile to save diskspace. 1559 * 1560 * Called without mmap_sem, but after all other threads have been killed. 1561 */ 1562 #ifdef CONFIG_ELF_CORE 1563 struct page *get_dump_page(unsigned long addr) 1564 { 1565 struct vm_area_struct *vma; 1566 struct page *page; 1567 1568 if (__get_user_pages(current, current->mm, addr, 1, 1569 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) 1570 return NULL; 1571 flush_cache_page(vma, addr, page_to_pfn(page)); 1572 return page; 1573 } 1574 #endif /* CONFIG_ELF_CORE */ 1575 1576 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1577 spinlock_t **ptl) 1578 { 1579 pgd_t * pgd = pgd_offset(mm, addr); 1580 pud_t * pud = pud_alloc(mm, pgd, addr); 1581 if (pud) { 1582 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1583 if (pmd) 1584 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1585 } 1586 return NULL; 1587 } 1588 1589 /* 1590 * This is the old fallback for page remapping. 1591 * 1592 * For historical reasons, it only allows reserved pages. Only 1593 * old drivers should use this, and they needed to mark their 1594 * pages reserved for the old functions anyway. 1595 */ 1596 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1597 struct page *page, pgprot_t prot) 1598 { 1599 struct mm_struct *mm = vma->vm_mm; 1600 int retval; 1601 pte_t *pte; 1602 spinlock_t *ptl; 1603 1604 retval = -EINVAL; 1605 if (PageAnon(page)) 1606 goto out; 1607 retval = -ENOMEM; 1608 flush_dcache_page(page); 1609 pte = get_locked_pte(mm, addr, &ptl); 1610 if (!pte) 1611 goto out; 1612 retval = -EBUSY; 1613 if (!pte_none(*pte)) 1614 goto out_unlock; 1615 1616 /* Ok, finally just insert the thing.. */ 1617 get_page(page); 1618 inc_mm_counter_fast(mm, MM_FILEPAGES); 1619 page_add_file_rmap(page); 1620 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1621 1622 retval = 0; 1623 pte_unmap_unlock(pte, ptl); 1624 return retval; 1625 out_unlock: 1626 pte_unmap_unlock(pte, ptl); 1627 out: 1628 return retval; 1629 } 1630 1631 /** 1632 * vm_insert_page - insert single page into user vma 1633 * @vma: user vma to map to 1634 * @addr: target user address of this page 1635 * @page: source kernel page 1636 * 1637 * This allows drivers to insert individual pages they've allocated 1638 * into a user vma. 1639 * 1640 * The page has to be a nice clean _individual_ kernel allocation. 1641 * If you allocate a compound page, you need to have marked it as 1642 * such (__GFP_COMP), or manually just split the page up yourself 1643 * (see split_page()). 1644 * 1645 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1646 * took an arbitrary page protection parameter. This doesn't allow 1647 * that. Your vma protection will have to be set up correctly, which 1648 * means that if you want a shared writable mapping, you'd better 1649 * ask for a shared writable mapping! 1650 * 1651 * The page does not need to be reserved. 1652 */ 1653 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1654 struct page *page) 1655 { 1656 if (addr < vma->vm_start || addr >= vma->vm_end) 1657 return -EFAULT; 1658 if (!page_count(page)) 1659 return -EINVAL; 1660 vma->vm_flags |= VM_INSERTPAGE; 1661 return insert_page(vma, addr, page, vma->vm_page_prot); 1662 } 1663 EXPORT_SYMBOL(vm_insert_page); 1664 1665 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1666 unsigned long pfn, pgprot_t prot) 1667 { 1668 struct mm_struct *mm = vma->vm_mm; 1669 int retval; 1670 pte_t *pte, entry; 1671 spinlock_t *ptl; 1672 1673 retval = -ENOMEM; 1674 pte = get_locked_pte(mm, addr, &ptl); 1675 if (!pte) 1676 goto out; 1677 retval = -EBUSY; 1678 if (!pte_none(*pte)) 1679 goto out_unlock; 1680 1681 /* Ok, finally just insert the thing.. */ 1682 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1683 set_pte_at(mm, addr, pte, entry); 1684 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1685 1686 retval = 0; 1687 out_unlock: 1688 pte_unmap_unlock(pte, ptl); 1689 out: 1690 return retval; 1691 } 1692 1693 /** 1694 * vm_insert_pfn - insert single pfn into user vma 1695 * @vma: user vma to map to 1696 * @addr: target user address of this page 1697 * @pfn: source kernel pfn 1698 * 1699 * Similar to vm_inert_page, this allows drivers to insert individual pages 1700 * they've allocated into a user vma. Same comments apply. 1701 * 1702 * This function should only be called from a vm_ops->fault handler, and 1703 * in that case the handler should return NULL. 1704 * 1705 * vma cannot be a COW mapping. 1706 * 1707 * As this is called only for pages that do not currently exist, we 1708 * do not need to flush old virtual caches or the TLB. 1709 */ 1710 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1711 unsigned long pfn) 1712 { 1713 int ret; 1714 pgprot_t pgprot = vma->vm_page_prot; 1715 /* 1716 * Technically, architectures with pte_special can avoid all these 1717 * restrictions (same for remap_pfn_range). However we would like 1718 * consistency in testing and feature parity among all, so we should 1719 * try to keep these invariants in place for everybody. 1720 */ 1721 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1722 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1723 (VM_PFNMAP|VM_MIXEDMAP)); 1724 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1725 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1726 1727 if (addr < vma->vm_start || addr >= vma->vm_end) 1728 return -EFAULT; 1729 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1730 return -EINVAL; 1731 1732 ret = insert_pfn(vma, addr, pfn, pgprot); 1733 1734 if (ret) 1735 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1736 1737 return ret; 1738 } 1739 EXPORT_SYMBOL(vm_insert_pfn); 1740 1741 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1742 unsigned long pfn) 1743 { 1744 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1745 1746 if (addr < vma->vm_start || addr >= vma->vm_end) 1747 return -EFAULT; 1748 1749 /* 1750 * If we don't have pte special, then we have to use the pfn_valid() 1751 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1752 * refcount the page if pfn_valid is true (hence insert_page rather 1753 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1754 * without pte special, it would there be refcounted as a normal page. 1755 */ 1756 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1757 struct page *page; 1758 1759 page = pfn_to_page(pfn); 1760 return insert_page(vma, addr, page, vma->vm_page_prot); 1761 } 1762 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1763 } 1764 EXPORT_SYMBOL(vm_insert_mixed); 1765 1766 /* 1767 * maps a range of physical memory into the requested pages. the old 1768 * mappings are removed. any references to nonexistent pages results 1769 * in null mappings (currently treated as "copy-on-access") 1770 */ 1771 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1772 unsigned long addr, unsigned long end, 1773 unsigned long pfn, pgprot_t prot) 1774 { 1775 pte_t *pte; 1776 spinlock_t *ptl; 1777 1778 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1779 if (!pte) 1780 return -ENOMEM; 1781 arch_enter_lazy_mmu_mode(); 1782 do { 1783 BUG_ON(!pte_none(*pte)); 1784 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1785 pfn++; 1786 } while (pte++, addr += PAGE_SIZE, addr != end); 1787 arch_leave_lazy_mmu_mode(); 1788 pte_unmap_unlock(pte - 1, ptl); 1789 return 0; 1790 } 1791 1792 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1793 unsigned long addr, unsigned long end, 1794 unsigned long pfn, pgprot_t prot) 1795 { 1796 pmd_t *pmd; 1797 unsigned long next; 1798 1799 pfn -= addr >> PAGE_SHIFT; 1800 pmd = pmd_alloc(mm, pud, addr); 1801 if (!pmd) 1802 return -ENOMEM; 1803 do { 1804 next = pmd_addr_end(addr, end); 1805 if (remap_pte_range(mm, pmd, addr, next, 1806 pfn + (addr >> PAGE_SHIFT), prot)) 1807 return -ENOMEM; 1808 } while (pmd++, addr = next, addr != end); 1809 return 0; 1810 } 1811 1812 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1813 unsigned long addr, unsigned long end, 1814 unsigned long pfn, pgprot_t prot) 1815 { 1816 pud_t *pud; 1817 unsigned long next; 1818 1819 pfn -= addr >> PAGE_SHIFT; 1820 pud = pud_alloc(mm, pgd, addr); 1821 if (!pud) 1822 return -ENOMEM; 1823 do { 1824 next = pud_addr_end(addr, end); 1825 if (remap_pmd_range(mm, pud, addr, next, 1826 pfn + (addr >> PAGE_SHIFT), prot)) 1827 return -ENOMEM; 1828 } while (pud++, addr = next, addr != end); 1829 return 0; 1830 } 1831 1832 /** 1833 * remap_pfn_range - remap kernel memory to userspace 1834 * @vma: user vma to map to 1835 * @addr: target user address to start at 1836 * @pfn: physical address of kernel memory 1837 * @size: size of map area 1838 * @prot: page protection flags for this mapping 1839 * 1840 * Note: this is only safe if the mm semaphore is held when called. 1841 */ 1842 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1843 unsigned long pfn, unsigned long size, pgprot_t prot) 1844 { 1845 pgd_t *pgd; 1846 unsigned long next; 1847 unsigned long end = addr + PAGE_ALIGN(size); 1848 struct mm_struct *mm = vma->vm_mm; 1849 int err; 1850 1851 /* 1852 * Physically remapped pages are special. Tell the 1853 * rest of the world about it: 1854 * VM_IO tells people not to look at these pages 1855 * (accesses can have side effects). 1856 * VM_RESERVED is specified all over the place, because 1857 * in 2.4 it kept swapout's vma scan off this vma; but 1858 * in 2.6 the LRU scan won't even find its pages, so this 1859 * flag means no more than count its pages in reserved_vm, 1860 * and omit it from core dump, even when VM_IO turned off. 1861 * VM_PFNMAP tells the core MM that the base pages are just 1862 * raw PFN mappings, and do not have a "struct page" associated 1863 * with them. 1864 * 1865 * There's a horrible special case to handle copy-on-write 1866 * behaviour that some programs depend on. We mark the "original" 1867 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1868 */ 1869 if (addr == vma->vm_start && end == vma->vm_end) { 1870 vma->vm_pgoff = pfn; 1871 vma->vm_flags |= VM_PFN_AT_MMAP; 1872 } else if (is_cow_mapping(vma->vm_flags)) 1873 return -EINVAL; 1874 1875 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1876 1877 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1878 if (err) { 1879 /* 1880 * To indicate that track_pfn related cleanup is not 1881 * needed from higher level routine calling unmap_vmas 1882 */ 1883 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1884 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1885 return -EINVAL; 1886 } 1887 1888 BUG_ON(addr >= end); 1889 pfn -= addr >> PAGE_SHIFT; 1890 pgd = pgd_offset(mm, addr); 1891 flush_cache_range(vma, addr, end); 1892 do { 1893 next = pgd_addr_end(addr, end); 1894 err = remap_pud_range(mm, pgd, addr, next, 1895 pfn + (addr >> PAGE_SHIFT), prot); 1896 if (err) 1897 break; 1898 } while (pgd++, addr = next, addr != end); 1899 1900 if (err) 1901 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1902 1903 return err; 1904 } 1905 EXPORT_SYMBOL(remap_pfn_range); 1906 1907 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1908 unsigned long addr, unsigned long end, 1909 pte_fn_t fn, void *data) 1910 { 1911 pte_t *pte; 1912 int err; 1913 pgtable_t token; 1914 spinlock_t *uninitialized_var(ptl); 1915 1916 pte = (mm == &init_mm) ? 1917 pte_alloc_kernel(pmd, addr) : 1918 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1919 if (!pte) 1920 return -ENOMEM; 1921 1922 BUG_ON(pmd_huge(*pmd)); 1923 1924 arch_enter_lazy_mmu_mode(); 1925 1926 token = pmd_pgtable(*pmd); 1927 1928 do { 1929 err = fn(pte++, token, addr, data); 1930 if (err) 1931 break; 1932 } while (addr += PAGE_SIZE, addr != end); 1933 1934 arch_leave_lazy_mmu_mode(); 1935 1936 if (mm != &init_mm) 1937 pte_unmap_unlock(pte-1, ptl); 1938 return err; 1939 } 1940 1941 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1942 unsigned long addr, unsigned long end, 1943 pte_fn_t fn, void *data) 1944 { 1945 pmd_t *pmd; 1946 unsigned long next; 1947 int err; 1948 1949 BUG_ON(pud_huge(*pud)); 1950 1951 pmd = pmd_alloc(mm, pud, addr); 1952 if (!pmd) 1953 return -ENOMEM; 1954 do { 1955 next = pmd_addr_end(addr, end); 1956 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1957 if (err) 1958 break; 1959 } while (pmd++, addr = next, addr != end); 1960 return err; 1961 } 1962 1963 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1964 unsigned long addr, unsigned long end, 1965 pte_fn_t fn, void *data) 1966 { 1967 pud_t *pud; 1968 unsigned long next; 1969 int err; 1970 1971 pud = pud_alloc(mm, pgd, addr); 1972 if (!pud) 1973 return -ENOMEM; 1974 do { 1975 next = pud_addr_end(addr, end); 1976 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1977 if (err) 1978 break; 1979 } while (pud++, addr = next, addr != end); 1980 return err; 1981 } 1982 1983 /* 1984 * Scan a region of virtual memory, filling in page tables as necessary 1985 * and calling a provided function on each leaf page table. 1986 */ 1987 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1988 unsigned long size, pte_fn_t fn, void *data) 1989 { 1990 pgd_t *pgd; 1991 unsigned long next; 1992 unsigned long start = addr, end = addr + size; 1993 int err; 1994 1995 BUG_ON(addr >= end); 1996 mmu_notifier_invalidate_range_start(mm, start, end); 1997 pgd = pgd_offset(mm, addr); 1998 do { 1999 next = pgd_addr_end(addr, end); 2000 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2001 if (err) 2002 break; 2003 } while (pgd++, addr = next, addr != end); 2004 mmu_notifier_invalidate_range_end(mm, start, end); 2005 return err; 2006 } 2007 EXPORT_SYMBOL_GPL(apply_to_page_range); 2008 2009 /* 2010 * handle_pte_fault chooses page fault handler according to an entry 2011 * which was read non-atomically. Before making any commitment, on 2012 * those architectures or configurations (e.g. i386 with PAE) which 2013 * might give a mix of unmatched parts, do_swap_page and do_file_page 2014 * must check under lock before unmapping the pte and proceeding 2015 * (but do_wp_page is only called after already making such a check; 2016 * and do_anonymous_page and do_no_page can safely check later on). 2017 */ 2018 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2019 pte_t *page_table, pte_t orig_pte) 2020 { 2021 int same = 1; 2022 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2023 if (sizeof(pte_t) > sizeof(unsigned long)) { 2024 spinlock_t *ptl = pte_lockptr(mm, pmd); 2025 spin_lock(ptl); 2026 same = pte_same(*page_table, orig_pte); 2027 spin_unlock(ptl); 2028 } 2029 #endif 2030 pte_unmap(page_table); 2031 return same; 2032 } 2033 2034 /* 2035 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 2036 * servicing faults for write access. In the normal case, do always want 2037 * pte_mkwrite. But get_user_pages can cause write faults for mappings 2038 * that do not have writing enabled, when used by access_process_vm. 2039 */ 2040 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 2041 { 2042 if (likely(vma->vm_flags & VM_WRITE)) 2043 pte = pte_mkwrite(pte); 2044 return pte; 2045 } 2046 2047 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2048 { 2049 /* 2050 * If the source page was a PFN mapping, we don't have 2051 * a "struct page" for it. We do a best-effort copy by 2052 * just copying from the original user address. If that 2053 * fails, we just zero-fill it. Live with it. 2054 */ 2055 if (unlikely(!src)) { 2056 void *kaddr = kmap_atomic(dst, KM_USER0); 2057 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2058 2059 /* 2060 * This really shouldn't fail, because the page is there 2061 * in the page tables. But it might just be unreadable, 2062 * in which case we just give up and fill the result with 2063 * zeroes. 2064 */ 2065 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2066 memset(kaddr, 0, PAGE_SIZE); 2067 kunmap_atomic(kaddr, KM_USER0); 2068 flush_dcache_page(dst); 2069 } else 2070 copy_user_highpage(dst, src, va, vma); 2071 } 2072 2073 /* 2074 * This routine handles present pages, when users try to write 2075 * to a shared page. It is done by copying the page to a new address 2076 * and decrementing the shared-page counter for the old page. 2077 * 2078 * Note that this routine assumes that the protection checks have been 2079 * done by the caller (the low-level page fault routine in most cases). 2080 * Thus we can safely just mark it writable once we've done any necessary 2081 * COW. 2082 * 2083 * We also mark the page dirty at this point even though the page will 2084 * change only once the write actually happens. This avoids a few races, 2085 * and potentially makes it more efficient. 2086 * 2087 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2088 * but allow concurrent faults), with pte both mapped and locked. 2089 * We return with mmap_sem still held, but pte unmapped and unlocked. 2090 */ 2091 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2092 unsigned long address, pte_t *page_table, pmd_t *pmd, 2093 spinlock_t *ptl, pte_t orig_pte) 2094 { 2095 struct page *old_page, *new_page; 2096 pte_t entry; 2097 int reuse = 0, ret = 0; 2098 int page_mkwrite = 0; 2099 struct page *dirty_page = NULL; 2100 2101 old_page = vm_normal_page(vma, address, orig_pte); 2102 if (!old_page) { 2103 /* 2104 * VM_MIXEDMAP !pfn_valid() case 2105 * 2106 * We should not cow pages in a shared writeable mapping. 2107 * Just mark the pages writable as we can't do any dirty 2108 * accounting on raw pfn maps. 2109 */ 2110 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2111 (VM_WRITE|VM_SHARED)) 2112 goto reuse; 2113 goto gotten; 2114 } 2115 2116 /* 2117 * Take out anonymous pages first, anonymous shared vmas are 2118 * not dirty accountable. 2119 */ 2120 if (PageAnon(old_page) && !PageKsm(old_page)) { 2121 if (!trylock_page(old_page)) { 2122 page_cache_get(old_page); 2123 pte_unmap_unlock(page_table, ptl); 2124 lock_page(old_page); 2125 page_table = pte_offset_map_lock(mm, pmd, address, 2126 &ptl); 2127 if (!pte_same(*page_table, orig_pte)) { 2128 unlock_page(old_page); 2129 page_cache_release(old_page); 2130 goto unlock; 2131 } 2132 page_cache_release(old_page); 2133 } 2134 reuse = reuse_swap_page(old_page); 2135 if (reuse) 2136 /* 2137 * The page is all ours. Move it to our anon_vma so 2138 * the rmap code will not search our parent or siblings. 2139 * Protected against the rmap code by the page lock. 2140 */ 2141 page_move_anon_rmap(old_page, vma, address); 2142 unlock_page(old_page); 2143 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2144 (VM_WRITE|VM_SHARED))) { 2145 /* 2146 * Only catch write-faults on shared writable pages, 2147 * read-only shared pages can get COWed by 2148 * get_user_pages(.write=1, .force=1). 2149 */ 2150 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2151 struct vm_fault vmf; 2152 int tmp; 2153 2154 vmf.virtual_address = (void __user *)(address & 2155 PAGE_MASK); 2156 vmf.pgoff = old_page->index; 2157 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2158 vmf.page = old_page; 2159 2160 /* 2161 * Notify the address space that the page is about to 2162 * become writable so that it can prohibit this or wait 2163 * for the page to get into an appropriate state. 2164 * 2165 * We do this without the lock held, so that it can 2166 * sleep if it needs to. 2167 */ 2168 page_cache_get(old_page); 2169 pte_unmap_unlock(page_table, ptl); 2170 2171 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2172 if (unlikely(tmp & 2173 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2174 ret = tmp; 2175 goto unwritable_page; 2176 } 2177 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2178 lock_page(old_page); 2179 if (!old_page->mapping) { 2180 ret = 0; /* retry the fault */ 2181 unlock_page(old_page); 2182 goto unwritable_page; 2183 } 2184 } else 2185 VM_BUG_ON(!PageLocked(old_page)); 2186 2187 /* 2188 * Since we dropped the lock we need to revalidate 2189 * the PTE as someone else may have changed it. If 2190 * they did, we just return, as we can count on the 2191 * MMU to tell us if they didn't also make it writable. 2192 */ 2193 page_table = pte_offset_map_lock(mm, pmd, address, 2194 &ptl); 2195 if (!pte_same(*page_table, orig_pte)) { 2196 unlock_page(old_page); 2197 page_cache_release(old_page); 2198 goto unlock; 2199 } 2200 2201 page_mkwrite = 1; 2202 } 2203 dirty_page = old_page; 2204 get_page(dirty_page); 2205 reuse = 1; 2206 } 2207 2208 if (reuse) { 2209 reuse: 2210 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2211 entry = pte_mkyoung(orig_pte); 2212 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2213 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2214 update_mmu_cache(vma, address, page_table); 2215 ret |= VM_FAULT_WRITE; 2216 goto unlock; 2217 } 2218 2219 /* 2220 * Ok, we need to copy. Oh, well.. 2221 */ 2222 page_cache_get(old_page); 2223 gotten: 2224 pte_unmap_unlock(page_table, ptl); 2225 2226 if (unlikely(anon_vma_prepare(vma))) 2227 goto oom; 2228 2229 if (is_zero_pfn(pte_pfn(orig_pte))) { 2230 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2231 if (!new_page) 2232 goto oom; 2233 } else { 2234 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2235 if (!new_page) 2236 goto oom; 2237 cow_user_page(new_page, old_page, address, vma); 2238 } 2239 __SetPageUptodate(new_page); 2240 2241 /* 2242 * Don't let another task, with possibly unlocked vma, 2243 * keep the mlocked page. 2244 */ 2245 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2246 lock_page(old_page); /* for LRU manipulation */ 2247 clear_page_mlock(old_page); 2248 unlock_page(old_page); 2249 } 2250 2251 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2252 goto oom_free_new; 2253 2254 /* 2255 * Re-check the pte - we dropped the lock 2256 */ 2257 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2258 if (likely(pte_same(*page_table, orig_pte))) { 2259 if (old_page) { 2260 if (!PageAnon(old_page)) { 2261 dec_mm_counter_fast(mm, MM_FILEPAGES); 2262 inc_mm_counter_fast(mm, MM_ANONPAGES); 2263 } 2264 } else 2265 inc_mm_counter_fast(mm, MM_ANONPAGES); 2266 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2267 entry = mk_pte(new_page, vma->vm_page_prot); 2268 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2269 /* 2270 * Clear the pte entry and flush it first, before updating the 2271 * pte with the new entry. This will avoid a race condition 2272 * seen in the presence of one thread doing SMC and another 2273 * thread doing COW. 2274 */ 2275 ptep_clear_flush(vma, address, page_table); 2276 page_add_new_anon_rmap(new_page, vma, address); 2277 /* 2278 * We call the notify macro here because, when using secondary 2279 * mmu page tables (such as kvm shadow page tables), we want the 2280 * new page to be mapped directly into the secondary page table. 2281 */ 2282 set_pte_at_notify(mm, address, page_table, entry); 2283 update_mmu_cache(vma, address, page_table); 2284 if (old_page) { 2285 /* 2286 * Only after switching the pte to the new page may 2287 * we remove the mapcount here. Otherwise another 2288 * process may come and find the rmap count decremented 2289 * before the pte is switched to the new page, and 2290 * "reuse" the old page writing into it while our pte 2291 * here still points into it and can be read by other 2292 * threads. 2293 * 2294 * The critical issue is to order this 2295 * page_remove_rmap with the ptp_clear_flush above. 2296 * Those stores are ordered by (if nothing else,) 2297 * the barrier present in the atomic_add_negative 2298 * in page_remove_rmap. 2299 * 2300 * Then the TLB flush in ptep_clear_flush ensures that 2301 * no process can access the old page before the 2302 * decremented mapcount is visible. And the old page 2303 * cannot be reused until after the decremented 2304 * mapcount is visible. So transitively, TLBs to 2305 * old page will be flushed before it can be reused. 2306 */ 2307 page_remove_rmap(old_page); 2308 } 2309 2310 /* Free the old page.. */ 2311 new_page = old_page; 2312 ret |= VM_FAULT_WRITE; 2313 } else 2314 mem_cgroup_uncharge_page(new_page); 2315 2316 if (new_page) 2317 page_cache_release(new_page); 2318 if (old_page) 2319 page_cache_release(old_page); 2320 unlock: 2321 pte_unmap_unlock(page_table, ptl); 2322 if (dirty_page) { 2323 /* 2324 * Yes, Virginia, this is actually required to prevent a race 2325 * with clear_page_dirty_for_io() from clearing the page dirty 2326 * bit after it clear all dirty ptes, but before a racing 2327 * do_wp_page installs a dirty pte. 2328 * 2329 * do_no_page is protected similarly. 2330 */ 2331 if (!page_mkwrite) { 2332 wait_on_page_locked(dirty_page); 2333 set_page_dirty_balance(dirty_page, page_mkwrite); 2334 } 2335 put_page(dirty_page); 2336 if (page_mkwrite) { 2337 struct address_space *mapping = dirty_page->mapping; 2338 2339 set_page_dirty(dirty_page); 2340 unlock_page(dirty_page); 2341 page_cache_release(dirty_page); 2342 if (mapping) { 2343 /* 2344 * Some device drivers do not set page.mapping 2345 * but still dirty their pages 2346 */ 2347 balance_dirty_pages_ratelimited(mapping); 2348 } 2349 } 2350 2351 /* file_update_time outside page_lock */ 2352 if (vma->vm_file) 2353 file_update_time(vma->vm_file); 2354 } 2355 return ret; 2356 oom_free_new: 2357 page_cache_release(new_page); 2358 oom: 2359 if (old_page) { 2360 if (page_mkwrite) { 2361 unlock_page(old_page); 2362 page_cache_release(old_page); 2363 } 2364 page_cache_release(old_page); 2365 } 2366 return VM_FAULT_OOM; 2367 2368 unwritable_page: 2369 page_cache_release(old_page); 2370 return ret; 2371 } 2372 2373 /* 2374 * Helper functions for unmap_mapping_range(). 2375 * 2376 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2377 * 2378 * We have to restart searching the prio_tree whenever we drop the lock, 2379 * since the iterator is only valid while the lock is held, and anyway 2380 * a later vma might be split and reinserted earlier while lock dropped. 2381 * 2382 * The list of nonlinear vmas could be handled more efficiently, using 2383 * a placeholder, but handle it in the same way until a need is shown. 2384 * It is important to search the prio_tree before nonlinear list: a vma 2385 * may become nonlinear and be shifted from prio_tree to nonlinear list 2386 * while the lock is dropped; but never shifted from list to prio_tree. 2387 * 2388 * In order to make forward progress despite restarting the search, 2389 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2390 * quickly skip it next time around. Since the prio_tree search only 2391 * shows us those vmas affected by unmapping the range in question, we 2392 * can't efficiently keep all vmas in step with mapping->truncate_count: 2393 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2394 * mapping->truncate_count and vma->vm_truncate_count are protected by 2395 * i_mmap_lock. 2396 * 2397 * In order to make forward progress despite repeatedly restarting some 2398 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2399 * and restart from that address when we reach that vma again. It might 2400 * have been split or merged, shrunk or extended, but never shifted: so 2401 * restart_addr remains valid so long as it remains in the vma's range. 2402 * unmap_mapping_range forces truncate_count to leap over page-aligned 2403 * values so we can save vma's restart_addr in its truncate_count field. 2404 */ 2405 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2406 2407 static void reset_vma_truncate_counts(struct address_space *mapping) 2408 { 2409 struct vm_area_struct *vma; 2410 struct prio_tree_iter iter; 2411 2412 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2413 vma->vm_truncate_count = 0; 2414 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2415 vma->vm_truncate_count = 0; 2416 } 2417 2418 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2419 unsigned long start_addr, unsigned long end_addr, 2420 struct zap_details *details) 2421 { 2422 unsigned long restart_addr; 2423 int need_break; 2424 2425 /* 2426 * files that support invalidating or truncating portions of the 2427 * file from under mmaped areas must have their ->fault function 2428 * return a locked page (and set VM_FAULT_LOCKED in the return). 2429 * This provides synchronisation against concurrent unmapping here. 2430 */ 2431 2432 again: 2433 restart_addr = vma->vm_truncate_count; 2434 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2435 start_addr = restart_addr; 2436 if (start_addr >= end_addr) { 2437 /* Top of vma has been split off since last time */ 2438 vma->vm_truncate_count = details->truncate_count; 2439 return 0; 2440 } 2441 } 2442 2443 restart_addr = zap_page_range(vma, start_addr, 2444 end_addr - start_addr, details); 2445 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2446 2447 if (restart_addr >= end_addr) { 2448 /* We have now completed this vma: mark it so */ 2449 vma->vm_truncate_count = details->truncate_count; 2450 if (!need_break) 2451 return 0; 2452 } else { 2453 /* Note restart_addr in vma's truncate_count field */ 2454 vma->vm_truncate_count = restart_addr; 2455 if (!need_break) 2456 goto again; 2457 } 2458 2459 spin_unlock(details->i_mmap_lock); 2460 cond_resched(); 2461 spin_lock(details->i_mmap_lock); 2462 return -EINTR; 2463 } 2464 2465 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2466 struct zap_details *details) 2467 { 2468 struct vm_area_struct *vma; 2469 struct prio_tree_iter iter; 2470 pgoff_t vba, vea, zba, zea; 2471 2472 restart: 2473 vma_prio_tree_foreach(vma, &iter, root, 2474 details->first_index, details->last_index) { 2475 /* Skip quickly over those we have already dealt with */ 2476 if (vma->vm_truncate_count == details->truncate_count) 2477 continue; 2478 2479 vba = vma->vm_pgoff; 2480 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2481 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2482 zba = details->first_index; 2483 if (zba < vba) 2484 zba = vba; 2485 zea = details->last_index; 2486 if (zea > vea) 2487 zea = vea; 2488 2489 if (unmap_mapping_range_vma(vma, 2490 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2491 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2492 details) < 0) 2493 goto restart; 2494 } 2495 } 2496 2497 static inline void unmap_mapping_range_list(struct list_head *head, 2498 struct zap_details *details) 2499 { 2500 struct vm_area_struct *vma; 2501 2502 /* 2503 * In nonlinear VMAs there is no correspondence between virtual address 2504 * offset and file offset. So we must perform an exhaustive search 2505 * across *all* the pages in each nonlinear VMA, not just the pages 2506 * whose virtual address lies outside the file truncation point. 2507 */ 2508 restart: 2509 list_for_each_entry(vma, head, shared.vm_set.list) { 2510 /* Skip quickly over those we have already dealt with */ 2511 if (vma->vm_truncate_count == details->truncate_count) 2512 continue; 2513 details->nonlinear_vma = vma; 2514 if (unmap_mapping_range_vma(vma, vma->vm_start, 2515 vma->vm_end, details) < 0) 2516 goto restart; 2517 } 2518 } 2519 2520 /** 2521 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2522 * @mapping: the address space containing mmaps to be unmapped. 2523 * @holebegin: byte in first page to unmap, relative to the start of 2524 * the underlying file. This will be rounded down to a PAGE_SIZE 2525 * boundary. Note that this is different from truncate_pagecache(), which 2526 * must keep the partial page. In contrast, we must get rid of 2527 * partial pages. 2528 * @holelen: size of prospective hole in bytes. This will be rounded 2529 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2530 * end of the file. 2531 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2532 * but 0 when invalidating pagecache, don't throw away private data. 2533 */ 2534 void unmap_mapping_range(struct address_space *mapping, 2535 loff_t const holebegin, loff_t const holelen, int even_cows) 2536 { 2537 struct zap_details details; 2538 pgoff_t hba = holebegin >> PAGE_SHIFT; 2539 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2540 2541 /* Check for overflow. */ 2542 if (sizeof(holelen) > sizeof(hlen)) { 2543 long long holeend = 2544 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2545 if (holeend & ~(long long)ULONG_MAX) 2546 hlen = ULONG_MAX - hba + 1; 2547 } 2548 2549 details.check_mapping = even_cows? NULL: mapping; 2550 details.nonlinear_vma = NULL; 2551 details.first_index = hba; 2552 details.last_index = hba + hlen - 1; 2553 if (details.last_index < details.first_index) 2554 details.last_index = ULONG_MAX; 2555 details.i_mmap_lock = &mapping->i_mmap_lock; 2556 2557 spin_lock(&mapping->i_mmap_lock); 2558 2559 /* Protect against endless unmapping loops */ 2560 mapping->truncate_count++; 2561 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2562 if (mapping->truncate_count == 0) 2563 reset_vma_truncate_counts(mapping); 2564 mapping->truncate_count++; 2565 } 2566 details.truncate_count = mapping->truncate_count; 2567 2568 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2569 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2570 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2571 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2572 spin_unlock(&mapping->i_mmap_lock); 2573 } 2574 EXPORT_SYMBOL(unmap_mapping_range); 2575 2576 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2577 { 2578 struct address_space *mapping = inode->i_mapping; 2579 2580 /* 2581 * If the underlying filesystem is not going to provide 2582 * a way to truncate a range of blocks (punch a hole) - 2583 * we should return failure right now. 2584 */ 2585 if (!inode->i_op->truncate_range) 2586 return -ENOSYS; 2587 2588 mutex_lock(&inode->i_mutex); 2589 down_write(&inode->i_alloc_sem); 2590 unmap_mapping_range(mapping, offset, (end - offset), 1); 2591 truncate_inode_pages_range(mapping, offset, end); 2592 unmap_mapping_range(mapping, offset, (end - offset), 1); 2593 inode->i_op->truncate_range(inode, offset, end); 2594 up_write(&inode->i_alloc_sem); 2595 mutex_unlock(&inode->i_mutex); 2596 2597 return 0; 2598 } 2599 2600 /* 2601 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2602 * but allow concurrent faults), and pte mapped but not yet locked. 2603 * We return with mmap_sem still held, but pte unmapped and unlocked. 2604 */ 2605 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2606 unsigned long address, pte_t *page_table, pmd_t *pmd, 2607 unsigned int flags, pte_t orig_pte) 2608 { 2609 spinlock_t *ptl; 2610 struct page *page; 2611 swp_entry_t entry; 2612 pte_t pte; 2613 struct mem_cgroup *ptr = NULL; 2614 int ret = 0; 2615 2616 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2617 goto out; 2618 2619 entry = pte_to_swp_entry(orig_pte); 2620 if (unlikely(non_swap_entry(entry))) { 2621 if (is_migration_entry(entry)) { 2622 migration_entry_wait(mm, pmd, address); 2623 } else if (is_hwpoison_entry(entry)) { 2624 ret = VM_FAULT_HWPOISON; 2625 } else { 2626 print_bad_pte(vma, address, orig_pte, NULL); 2627 ret = VM_FAULT_SIGBUS; 2628 } 2629 goto out; 2630 } 2631 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2632 page = lookup_swap_cache(entry); 2633 if (!page) { 2634 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2635 page = swapin_readahead(entry, 2636 GFP_HIGHUSER_MOVABLE, vma, address); 2637 if (!page) { 2638 /* 2639 * Back out if somebody else faulted in this pte 2640 * while we released the pte lock. 2641 */ 2642 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2643 if (likely(pte_same(*page_table, orig_pte))) 2644 ret = VM_FAULT_OOM; 2645 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2646 goto unlock; 2647 } 2648 2649 /* Had to read the page from swap area: Major fault */ 2650 ret = VM_FAULT_MAJOR; 2651 count_vm_event(PGMAJFAULT); 2652 } else if (PageHWPoison(page)) { 2653 /* 2654 * hwpoisoned dirty swapcache pages are kept for killing 2655 * owner processes (which may be unknown at hwpoison time) 2656 */ 2657 ret = VM_FAULT_HWPOISON; 2658 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2659 goto out_release; 2660 } 2661 2662 lock_page(page); 2663 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2664 2665 page = ksm_might_need_to_copy(page, vma, address); 2666 if (!page) { 2667 ret = VM_FAULT_OOM; 2668 goto out; 2669 } 2670 2671 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2672 ret = VM_FAULT_OOM; 2673 goto out_page; 2674 } 2675 2676 /* 2677 * Back out if somebody else already faulted in this pte. 2678 */ 2679 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2680 if (unlikely(!pte_same(*page_table, orig_pte))) 2681 goto out_nomap; 2682 2683 if (unlikely(!PageUptodate(page))) { 2684 ret = VM_FAULT_SIGBUS; 2685 goto out_nomap; 2686 } 2687 2688 /* 2689 * The page isn't present yet, go ahead with the fault. 2690 * 2691 * Be careful about the sequence of operations here. 2692 * To get its accounting right, reuse_swap_page() must be called 2693 * while the page is counted on swap but not yet in mapcount i.e. 2694 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2695 * must be called after the swap_free(), or it will never succeed. 2696 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2697 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2698 * in page->private. In this case, a record in swap_cgroup is silently 2699 * discarded at swap_free(). 2700 */ 2701 2702 inc_mm_counter_fast(mm, MM_ANONPAGES); 2703 dec_mm_counter_fast(mm, MM_SWAPENTS); 2704 pte = mk_pte(page, vma->vm_page_prot); 2705 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2706 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2707 flags &= ~FAULT_FLAG_WRITE; 2708 } 2709 flush_icache_page(vma, page); 2710 set_pte_at(mm, address, page_table, pte); 2711 page_add_anon_rmap(page, vma, address); 2712 /* It's better to call commit-charge after rmap is established */ 2713 mem_cgroup_commit_charge_swapin(page, ptr); 2714 2715 swap_free(entry); 2716 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2717 try_to_free_swap(page); 2718 unlock_page(page); 2719 2720 if (flags & FAULT_FLAG_WRITE) { 2721 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2722 if (ret & VM_FAULT_ERROR) 2723 ret &= VM_FAULT_ERROR; 2724 goto out; 2725 } 2726 2727 /* No need to invalidate - it was non-present before */ 2728 update_mmu_cache(vma, address, page_table); 2729 unlock: 2730 pte_unmap_unlock(page_table, ptl); 2731 out: 2732 return ret; 2733 out_nomap: 2734 mem_cgroup_cancel_charge_swapin(ptr); 2735 pte_unmap_unlock(page_table, ptl); 2736 out_page: 2737 unlock_page(page); 2738 out_release: 2739 page_cache_release(page); 2740 return ret; 2741 } 2742 2743 /* 2744 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2745 * but allow concurrent faults), and pte mapped but not yet locked. 2746 * We return with mmap_sem still held, but pte unmapped and unlocked. 2747 */ 2748 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2749 unsigned long address, pte_t *page_table, pmd_t *pmd, 2750 unsigned int flags) 2751 { 2752 struct page *page; 2753 spinlock_t *ptl; 2754 pte_t entry; 2755 2756 if (!(flags & FAULT_FLAG_WRITE)) { 2757 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2758 vma->vm_page_prot)); 2759 ptl = pte_lockptr(mm, pmd); 2760 spin_lock(ptl); 2761 if (!pte_none(*page_table)) 2762 goto unlock; 2763 goto setpte; 2764 } 2765 2766 /* Allocate our own private page. */ 2767 pte_unmap(page_table); 2768 2769 if (unlikely(anon_vma_prepare(vma))) 2770 goto oom; 2771 page = alloc_zeroed_user_highpage_movable(vma, address); 2772 if (!page) 2773 goto oom; 2774 __SetPageUptodate(page); 2775 2776 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2777 goto oom_free_page; 2778 2779 entry = mk_pte(page, vma->vm_page_prot); 2780 if (vma->vm_flags & VM_WRITE) 2781 entry = pte_mkwrite(pte_mkdirty(entry)); 2782 2783 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2784 if (!pte_none(*page_table)) 2785 goto release; 2786 2787 inc_mm_counter_fast(mm, MM_ANONPAGES); 2788 page_add_new_anon_rmap(page, vma, address); 2789 setpte: 2790 set_pte_at(mm, address, page_table, entry); 2791 2792 /* No need to invalidate - it was non-present before */ 2793 update_mmu_cache(vma, address, page_table); 2794 unlock: 2795 pte_unmap_unlock(page_table, ptl); 2796 return 0; 2797 release: 2798 mem_cgroup_uncharge_page(page); 2799 page_cache_release(page); 2800 goto unlock; 2801 oom_free_page: 2802 page_cache_release(page); 2803 oom: 2804 return VM_FAULT_OOM; 2805 } 2806 2807 /* 2808 * __do_fault() tries to create a new page mapping. It aggressively 2809 * tries to share with existing pages, but makes a separate copy if 2810 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2811 * the next page fault. 2812 * 2813 * As this is called only for pages that do not currently exist, we 2814 * do not need to flush old virtual caches or the TLB. 2815 * 2816 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2817 * but allow concurrent faults), and pte neither mapped nor locked. 2818 * We return with mmap_sem still held, but pte unmapped and unlocked. 2819 */ 2820 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2821 unsigned long address, pmd_t *pmd, 2822 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2823 { 2824 pte_t *page_table; 2825 spinlock_t *ptl; 2826 struct page *page; 2827 pte_t entry; 2828 int anon = 0; 2829 int charged = 0; 2830 struct page *dirty_page = NULL; 2831 struct vm_fault vmf; 2832 int ret; 2833 int page_mkwrite = 0; 2834 2835 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2836 vmf.pgoff = pgoff; 2837 vmf.flags = flags; 2838 vmf.page = NULL; 2839 2840 ret = vma->vm_ops->fault(vma, &vmf); 2841 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2842 return ret; 2843 2844 if (unlikely(PageHWPoison(vmf.page))) { 2845 if (ret & VM_FAULT_LOCKED) 2846 unlock_page(vmf.page); 2847 return VM_FAULT_HWPOISON; 2848 } 2849 2850 /* 2851 * For consistency in subsequent calls, make the faulted page always 2852 * locked. 2853 */ 2854 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2855 lock_page(vmf.page); 2856 else 2857 VM_BUG_ON(!PageLocked(vmf.page)); 2858 2859 /* 2860 * Should we do an early C-O-W break? 2861 */ 2862 page = vmf.page; 2863 if (flags & FAULT_FLAG_WRITE) { 2864 if (!(vma->vm_flags & VM_SHARED)) { 2865 anon = 1; 2866 if (unlikely(anon_vma_prepare(vma))) { 2867 ret = VM_FAULT_OOM; 2868 goto out; 2869 } 2870 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2871 vma, address); 2872 if (!page) { 2873 ret = VM_FAULT_OOM; 2874 goto out; 2875 } 2876 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2877 ret = VM_FAULT_OOM; 2878 page_cache_release(page); 2879 goto out; 2880 } 2881 charged = 1; 2882 /* 2883 * Don't let another task, with possibly unlocked vma, 2884 * keep the mlocked page. 2885 */ 2886 if (vma->vm_flags & VM_LOCKED) 2887 clear_page_mlock(vmf.page); 2888 copy_user_highpage(page, vmf.page, address, vma); 2889 __SetPageUptodate(page); 2890 } else { 2891 /* 2892 * If the page will be shareable, see if the backing 2893 * address space wants to know that the page is about 2894 * to become writable 2895 */ 2896 if (vma->vm_ops->page_mkwrite) { 2897 int tmp; 2898 2899 unlock_page(page); 2900 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2901 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2902 if (unlikely(tmp & 2903 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2904 ret = tmp; 2905 goto unwritable_page; 2906 } 2907 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2908 lock_page(page); 2909 if (!page->mapping) { 2910 ret = 0; /* retry the fault */ 2911 unlock_page(page); 2912 goto unwritable_page; 2913 } 2914 } else 2915 VM_BUG_ON(!PageLocked(page)); 2916 page_mkwrite = 1; 2917 } 2918 } 2919 2920 } 2921 2922 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2923 2924 /* 2925 * This silly early PAGE_DIRTY setting removes a race 2926 * due to the bad i386 page protection. But it's valid 2927 * for other architectures too. 2928 * 2929 * Note that if FAULT_FLAG_WRITE is set, we either now have 2930 * an exclusive copy of the page, or this is a shared mapping, 2931 * so we can make it writable and dirty to avoid having to 2932 * handle that later. 2933 */ 2934 /* Only go through if we didn't race with anybody else... */ 2935 if (likely(pte_same(*page_table, orig_pte))) { 2936 flush_icache_page(vma, page); 2937 entry = mk_pte(page, vma->vm_page_prot); 2938 if (flags & FAULT_FLAG_WRITE) 2939 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2940 if (anon) { 2941 inc_mm_counter_fast(mm, MM_ANONPAGES); 2942 page_add_new_anon_rmap(page, vma, address); 2943 } else { 2944 inc_mm_counter_fast(mm, MM_FILEPAGES); 2945 page_add_file_rmap(page); 2946 if (flags & FAULT_FLAG_WRITE) { 2947 dirty_page = page; 2948 get_page(dirty_page); 2949 } 2950 } 2951 set_pte_at(mm, address, page_table, entry); 2952 2953 /* no need to invalidate: a not-present page won't be cached */ 2954 update_mmu_cache(vma, address, page_table); 2955 } else { 2956 if (charged) 2957 mem_cgroup_uncharge_page(page); 2958 if (anon) 2959 page_cache_release(page); 2960 else 2961 anon = 1; /* no anon but release faulted_page */ 2962 } 2963 2964 pte_unmap_unlock(page_table, ptl); 2965 2966 out: 2967 if (dirty_page) { 2968 struct address_space *mapping = page->mapping; 2969 2970 if (set_page_dirty(dirty_page)) 2971 page_mkwrite = 1; 2972 unlock_page(dirty_page); 2973 put_page(dirty_page); 2974 if (page_mkwrite && mapping) { 2975 /* 2976 * Some device drivers do not set page.mapping but still 2977 * dirty their pages 2978 */ 2979 balance_dirty_pages_ratelimited(mapping); 2980 } 2981 2982 /* file_update_time outside page_lock */ 2983 if (vma->vm_file) 2984 file_update_time(vma->vm_file); 2985 } else { 2986 unlock_page(vmf.page); 2987 if (anon) 2988 page_cache_release(vmf.page); 2989 } 2990 2991 return ret; 2992 2993 unwritable_page: 2994 page_cache_release(page); 2995 return ret; 2996 } 2997 2998 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2999 unsigned long address, pte_t *page_table, pmd_t *pmd, 3000 unsigned int flags, pte_t orig_pte) 3001 { 3002 pgoff_t pgoff = (((address & PAGE_MASK) 3003 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3004 3005 pte_unmap(page_table); 3006 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3007 } 3008 3009 /* 3010 * Fault of a previously existing named mapping. Repopulate the pte 3011 * from the encoded file_pte if possible. This enables swappable 3012 * nonlinear vmas. 3013 * 3014 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3015 * but allow concurrent faults), and pte mapped but not yet locked. 3016 * We return with mmap_sem still held, but pte unmapped and unlocked. 3017 */ 3018 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3019 unsigned long address, pte_t *page_table, pmd_t *pmd, 3020 unsigned int flags, pte_t orig_pte) 3021 { 3022 pgoff_t pgoff; 3023 3024 flags |= FAULT_FLAG_NONLINEAR; 3025 3026 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3027 return 0; 3028 3029 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3030 /* 3031 * Page table corrupted: show pte and kill process. 3032 */ 3033 print_bad_pte(vma, address, orig_pte, NULL); 3034 return VM_FAULT_SIGBUS; 3035 } 3036 3037 pgoff = pte_to_pgoff(orig_pte); 3038 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3039 } 3040 3041 /* 3042 * These routines also need to handle stuff like marking pages dirty 3043 * and/or accessed for architectures that don't do it in hardware (most 3044 * RISC architectures). The early dirtying is also good on the i386. 3045 * 3046 * There is also a hook called "update_mmu_cache()" that architectures 3047 * with external mmu caches can use to update those (ie the Sparc or 3048 * PowerPC hashed page tables that act as extended TLBs). 3049 * 3050 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3051 * but allow concurrent faults), and pte mapped but not yet locked. 3052 * We return with mmap_sem still held, but pte unmapped and unlocked. 3053 */ 3054 static inline int handle_pte_fault(struct mm_struct *mm, 3055 struct vm_area_struct *vma, unsigned long address, 3056 pte_t *pte, pmd_t *pmd, unsigned int flags) 3057 { 3058 pte_t entry; 3059 spinlock_t *ptl; 3060 3061 entry = *pte; 3062 if (!pte_present(entry)) { 3063 if (pte_none(entry)) { 3064 if (vma->vm_ops) { 3065 if (likely(vma->vm_ops->fault)) 3066 return do_linear_fault(mm, vma, address, 3067 pte, pmd, flags, entry); 3068 } 3069 return do_anonymous_page(mm, vma, address, 3070 pte, pmd, flags); 3071 } 3072 if (pte_file(entry)) 3073 return do_nonlinear_fault(mm, vma, address, 3074 pte, pmd, flags, entry); 3075 return do_swap_page(mm, vma, address, 3076 pte, pmd, flags, entry); 3077 } 3078 3079 ptl = pte_lockptr(mm, pmd); 3080 spin_lock(ptl); 3081 if (unlikely(!pte_same(*pte, entry))) 3082 goto unlock; 3083 if (flags & FAULT_FLAG_WRITE) { 3084 if (!pte_write(entry)) 3085 return do_wp_page(mm, vma, address, 3086 pte, pmd, ptl, entry); 3087 entry = pte_mkdirty(entry); 3088 } 3089 entry = pte_mkyoung(entry); 3090 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3091 update_mmu_cache(vma, address, pte); 3092 } else { 3093 /* 3094 * This is needed only for protection faults but the arch code 3095 * is not yet telling us if this is a protection fault or not. 3096 * This still avoids useless tlb flushes for .text page faults 3097 * with threads. 3098 */ 3099 if (flags & FAULT_FLAG_WRITE) 3100 flush_tlb_page(vma, address); 3101 } 3102 unlock: 3103 pte_unmap_unlock(pte, ptl); 3104 return 0; 3105 } 3106 3107 /* 3108 * By the time we get here, we already hold the mm semaphore 3109 */ 3110 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3111 unsigned long address, unsigned int flags) 3112 { 3113 pgd_t *pgd; 3114 pud_t *pud; 3115 pmd_t *pmd; 3116 pte_t *pte; 3117 3118 __set_current_state(TASK_RUNNING); 3119 3120 count_vm_event(PGFAULT); 3121 3122 /* do counter updates before entering really critical section. */ 3123 check_sync_rss_stat(current); 3124 3125 if (unlikely(is_vm_hugetlb_page(vma))) 3126 return hugetlb_fault(mm, vma, address, flags); 3127 3128 pgd = pgd_offset(mm, address); 3129 pud = pud_alloc(mm, pgd, address); 3130 if (!pud) 3131 return VM_FAULT_OOM; 3132 pmd = pmd_alloc(mm, pud, address); 3133 if (!pmd) 3134 return VM_FAULT_OOM; 3135 pte = pte_alloc_map(mm, pmd, address); 3136 if (!pte) 3137 return VM_FAULT_OOM; 3138 3139 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3140 } 3141 3142 #ifndef __PAGETABLE_PUD_FOLDED 3143 /* 3144 * Allocate page upper directory. 3145 * We've already handled the fast-path in-line. 3146 */ 3147 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3148 { 3149 pud_t *new = pud_alloc_one(mm, address); 3150 if (!new) 3151 return -ENOMEM; 3152 3153 smp_wmb(); /* See comment in __pte_alloc */ 3154 3155 spin_lock(&mm->page_table_lock); 3156 if (pgd_present(*pgd)) /* Another has populated it */ 3157 pud_free(mm, new); 3158 else 3159 pgd_populate(mm, pgd, new); 3160 spin_unlock(&mm->page_table_lock); 3161 return 0; 3162 } 3163 #endif /* __PAGETABLE_PUD_FOLDED */ 3164 3165 #ifndef __PAGETABLE_PMD_FOLDED 3166 /* 3167 * Allocate page middle directory. 3168 * We've already handled the fast-path in-line. 3169 */ 3170 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3171 { 3172 pmd_t *new = pmd_alloc_one(mm, address); 3173 if (!new) 3174 return -ENOMEM; 3175 3176 smp_wmb(); /* See comment in __pte_alloc */ 3177 3178 spin_lock(&mm->page_table_lock); 3179 #ifndef __ARCH_HAS_4LEVEL_HACK 3180 if (pud_present(*pud)) /* Another has populated it */ 3181 pmd_free(mm, new); 3182 else 3183 pud_populate(mm, pud, new); 3184 #else 3185 if (pgd_present(*pud)) /* Another has populated it */ 3186 pmd_free(mm, new); 3187 else 3188 pgd_populate(mm, pud, new); 3189 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3190 spin_unlock(&mm->page_table_lock); 3191 return 0; 3192 } 3193 #endif /* __PAGETABLE_PMD_FOLDED */ 3194 3195 int make_pages_present(unsigned long addr, unsigned long end) 3196 { 3197 int ret, len, write; 3198 struct vm_area_struct * vma; 3199 3200 vma = find_vma(current->mm, addr); 3201 if (!vma) 3202 return -ENOMEM; 3203 write = (vma->vm_flags & VM_WRITE) != 0; 3204 BUG_ON(addr >= end); 3205 BUG_ON(end > vma->vm_end); 3206 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3207 ret = get_user_pages(current, current->mm, addr, 3208 len, write, 0, NULL, NULL); 3209 if (ret < 0) 3210 return ret; 3211 return ret == len ? 0 : -EFAULT; 3212 } 3213 3214 #if !defined(__HAVE_ARCH_GATE_AREA) 3215 3216 #if defined(AT_SYSINFO_EHDR) 3217 static struct vm_area_struct gate_vma; 3218 3219 static int __init gate_vma_init(void) 3220 { 3221 gate_vma.vm_mm = NULL; 3222 gate_vma.vm_start = FIXADDR_USER_START; 3223 gate_vma.vm_end = FIXADDR_USER_END; 3224 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3225 gate_vma.vm_page_prot = __P101; 3226 /* 3227 * Make sure the vDSO gets into every core dump. 3228 * Dumping its contents makes post-mortem fully interpretable later 3229 * without matching up the same kernel and hardware config to see 3230 * what PC values meant. 3231 */ 3232 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3233 return 0; 3234 } 3235 __initcall(gate_vma_init); 3236 #endif 3237 3238 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3239 { 3240 #ifdef AT_SYSINFO_EHDR 3241 return &gate_vma; 3242 #else 3243 return NULL; 3244 #endif 3245 } 3246 3247 int in_gate_area_no_task(unsigned long addr) 3248 { 3249 #ifdef AT_SYSINFO_EHDR 3250 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3251 return 1; 3252 #endif 3253 return 0; 3254 } 3255 3256 #endif /* __HAVE_ARCH_GATE_AREA */ 3257 3258 static int follow_pte(struct mm_struct *mm, unsigned long address, 3259 pte_t **ptepp, spinlock_t **ptlp) 3260 { 3261 pgd_t *pgd; 3262 pud_t *pud; 3263 pmd_t *pmd; 3264 pte_t *ptep; 3265 3266 pgd = pgd_offset(mm, address); 3267 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3268 goto out; 3269 3270 pud = pud_offset(pgd, address); 3271 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3272 goto out; 3273 3274 pmd = pmd_offset(pud, address); 3275 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3276 goto out; 3277 3278 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3279 if (pmd_huge(*pmd)) 3280 goto out; 3281 3282 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3283 if (!ptep) 3284 goto out; 3285 if (!pte_present(*ptep)) 3286 goto unlock; 3287 *ptepp = ptep; 3288 return 0; 3289 unlock: 3290 pte_unmap_unlock(ptep, *ptlp); 3291 out: 3292 return -EINVAL; 3293 } 3294 3295 /** 3296 * follow_pfn - look up PFN at a user virtual address 3297 * @vma: memory mapping 3298 * @address: user virtual address 3299 * @pfn: location to store found PFN 3300 * 3301 * Only IO mappings and raw PFN mappings are allowed. 3302 * 3303 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3304 */ 3305 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3306 unsigned long *pfn) 3307 { 3308 int ret = -EINVAL; 3309 spinlock_t *ptl; 3310 pte_t *ptep; 3311 3312 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3313 return ret; 3314 3315 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3316 if (ret) 3317 return ret; 3318 *pfn = pte_pfn(*ptep); 3319 pte_unmap_unlock(ptep, ptl); 3320 return 0; 3321 } 3322 EXPORT_SYMBOL(follow_pfn); 3323 3324 #ifdef CONFIG_HAVE_IOREMAP_PROT 3325 int follow_phys(struct vm_area_struct *vma, 3326 unsigned long address, unsigned int flags, 3327 unsigned long *prot, resource_size_t *phys) 3328 { 3329 int ret = -EINVAL; 3330 pte_t *ptep, pte; 3331 spinlock_t *ptl; 3332 3333 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3334 goto out; 3335 3336 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3337 goto out; 3338 pte = *ptep; 3339 3340 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3341 goto unlock; 3342 3343 *prot = pgprot_val(pte_pgprot(pte)); 3344 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3345 3346 ret = 0; 3347 unlock: 3348 pte_unmap_unlock(ptep, ptl); 3349 out: 3350 return ret; 3351 } 3352 3353 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3354 void *buf, int len, int write) 3355 { 3356 resource_size_t phys_addr; 3357 unsigned long prot = 0; 3358 void __iomem *maddr; 3359 int offset = addr & (PAGE_SIZE-1); 3360 3361 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3362 return -EINVAL; 3363 3364 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3365 if (write) 3366 memcpy_toio(maddr + offset, buf, len); 3367 else 3368 memcpy_fromio(buf, maddr + offset, len); 3369 iounmap(maddr); 3370 3371 return len; 3372 } 3373 #endif 3374 3375 /* 3376 * Access another process' address space. 3377 * Source/target buffer must be kernel space, 3378 * Do not walk the page table directly, use get_user_pages 3379 */ 3380 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3381 { 3382 struct mm_struct *mm; 3383 struct vm_area_struct *vma; 3384 void *old_buf = buf; 3385 3386 mm = get_task_mm(tsk); 3387 if (!mm) 3388 return 0; 3389 3390 down_read(&mm->mmap_sem); 3391 /* ignore errors, just check how much was successfully transferred */ 3392 while (len) { 3393 int bytes, ret, offset; 3394 void *maddr; 3395 struct page *page = NULL; 3396 3397 ret = get_user_pages(tsk, mm, addr, 1, 3398 write, 1, &page, &vma); 3399 if (ret <= 0) { 3400 /* 3401 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3402 * we can access using slightly different code. 3403 */ 3404 #ifdef CONFIG_HAVE_IOREMAP_PROT 3405 vma = find_vma(mm, addr); 3406 if (!vma) 3407 break; 3408 if (vma->vm_ops && vma->vm_ops->access) 3409 ret = vma->vm_ops->access(vma, addr, buf, 3410 len, write); 3411 if (ret <= 0) 3412 #endif 3413 break; 3414 bytes = ret; 3415 } else { 3416 bytes = len; 3417 offset = addr & (PAGE_SIZE-1); 3418 if (bytes > PAGE_SIZE-offset) 3419 bytes = PAGE_SIZE-offset; 3420 3421 maddr = kmap(page); 3422 if (write) { 3423 copy_to_user_page(vma, page, addr, 3424 maddr + offset, buf, bytes); 3425 set_page_dirty_lock(page); 3426 } else { 3427 copy_from_user_page(vma, page, addr, 3428 buf, maddr + offset, bytes); 3429 } 3430 kunmap(page); 3431 page_cache_release(page); 3432 } 3433 len -= bytes; 3434 buf += bytes; 3435 addr += bytes; 3436 } 3437 up_read(&mm->mmap_sem); 3438 mmput(mm); 3439 3440 return buf - old_buf; 3441 } 3442 3443 /* 3444 * Print the name of a VMA. 3445 */ 3446 void print_vma_addr(char *prefix, unsigned long ip) 3447 { 3448 struct mm_struct *mm = current->mm; 3449 struct vm_area_struct *vma; 3450 3451 /* 3452 * Do not print if we are in atomic 3453 * contexts (in exception stacks, etc.): 3454 */ 3455 if (preempt_count()) 3456 return; 3457 3458 down_read(&mm->mmap_sem); 3459 vma = find_vma(mm, ip); 3460 if (vma && vma->vm_file) { 3461 struct file *f = vma->vm_file; 3462 char *buf = (char *)__get_free_page(GFP_KERNEL); 3463 if (buf) { 3464 char *p, *s; 3465 3466 p = d_path(&f->f_path, buf, PAGE_SIZE); 3467 if (IS_ERR(p)) 3468 p = "?"; 3469 s = strrchr(p, '/'); 3470 if (s) 3471 p = s+1; 3472 printk("%s%s[%lx+%lx]", prefix, p, 3473 vma->vm_start, 3474 vma->vm_end - vma->vm_start); 3475 free_page((unsigned long)buf); 3476 } 3477 } 3478 up_read(¤t->mm->mmap_sem); 3479 } 3480 3481 #ifdef CONFIG_PROVE_LOCKING 3482 void might_fault(void) 3483 { 3484 /* 3485 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3486 * holding the mmap_sem, this is safe because kernel memory doesn't 3487 * get paged out, therefore we'll never actually fault, and the 3488 * below annotations will generate false positives. 3489 */ 3490 if (segment_eq(get_fs(), KERNEL_DS)) 3491 return; 3492 3493 might_sleep(); 3494 /* 3495 * it would be nicer only to annotate paths which are not under 3496 * pagefault_disable, however that requires a larger audit and 3497 * providing helpers like get_user_atomic. 3498 */ 3499 if (!in_atomic() && current->mm) 3500 might_lock_read(¤t->mm->mmap_sem); 3501 } 3502 EXPORT_SYMBOL(might_fault); 3503 #endif 3504