1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 78 #include <trace/events/kmem.h> 79 80 #include <asm/io.h> 81 #include <asm/mmu_context.h> 82 #include <asm/pgalloc.h> 83 #include <linux/uaccess.h> 84 #include <asm/tlb.h> 85 #include <asm/tlbflush.h> 86 87 #include "pgalloc-track.h" 88 #include "internal.h" 89 #include "swap.h" 90 91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 93 #endif 94 95 #ifndef CONFIG_NUMA 96 unsigned long max_mapnr; 97 EXPORT_SYMBOL(max_mapnr); 98 99 struct page *mem_map; 100 EXPORT_SYMBOL(mem_map); 101 #endif 102 103 static vm_fault_t do_fault(struct vm_fault *vmf); 104 105 /* 106 * A number of key systems in x86 including ioremap() rely on the assumption 107 * that high_memory defines the upper bound on direct map memory, then end 108 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 109 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 110 * and ZONE_HIGHMEM. 111 */ 112 void *high_memory; 113 EXPORT_SYMBOL(high_memory); 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 #ifndef arch_faults_on_old_pte 129 static inline bool arch_faults_on_old_pte(void) 130 { 131 /* 132 * Those arches which don't have hw access flag feature need to 133 * implement their own helper. By default, "true" means pagefault 134 * will be hit on old pte. 135 */ 136 return true; 137 } 138 #endif 139 140 #ifndef arch_wants_old_prefaulted_pte 141 static inline bool arch_wants_old_prefaulted_pte(void) 142 { 143 /* 144 * Transitioning a PTE from 'old' to 'young' can be expensive on 145 * some architectures, even if it's performed in hardware. By 146 * default, "false" means prefaulted entries will be 'young'. 147 */ 148 return false; 149 } 150 #endif 151 152 static int __init disable_randmaps(char *s) 153 { 154 randomize_va_space = 0; 155 return 1; 156 } 157 __setup("norandmaps", disable_randmaps); 158 159 unsigned long zero_pfn __read_mostly; 160 EXPORT_SYMBOL(zero_pfn); 161 162 unsigned long highest_memmap_pfn __read_mostly; 163 164 /* 165 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 166 */ 167 static int __init init_zero_pfn(void) 168 { 169 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 170 return 0; 171 } 172 early_initcall(init_zero_pfn); 173 174 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 175 { 176 trace_rss_stat(mm, member, count); 177 } 178 179 #if defined(SPLIT_RSS_COUNTING) 180 181 void sync_mm_rss(struct mm_struct *mm) 182 { 183 int i; 184 185 for (i = 0; i < NR_MM_COUNTERS; i++) { 186 if (current->rss_stat.count[i]) { 187 add_mm_counter(mm, i, current->rss_stat.count[i]); 188 current->rss_stat.count[i] = 0; 189 } 190 } 191 current->rss_stat.events = 0; 192 } 193 194 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 195 { 196 struct task_struct *task = current; 197 198 if (likely(task->mm == mm)) 199 task->rss_stat.count[member] += val; 200 else 201 add_mm_counter(mm, member, val); 202 } 203 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 204 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 205 206 /* sync counter once per 64 page faults */ 207 #define TASK_RSS_EVENTS_THRESH (64) 208 static void check_sync_rss_stat(struct task_struct *task) 209 { 210 if (unlikely(task != current)) 211 return; 212 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 213 sync_mm_rss(task->mm); 214 } 215 #else /* SPLIT_RSS_COUNTING */ 216 217 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 218 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 219 220 static void check_sync_rss_stat(struct task_struct *task) 221 { 222 } 223 224 #endif /* SPLIT_RSS_COUNTING */ 225 226 /* 227 * Note: this doesn't free the actual pages themselves. That 228 * has been handled earlier when unmapping all the memory regions. 229 */ 230 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 231 unsigned long addr) 232 { 233 pgtable_t token = pmd_pgtable(*pmd); 234 pmd_clear(pmd); 235 pte_free_tlb(tlb, token, addr); 236 mm_dec_nr_ptes(tlb->mm); 237 } 238 239 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 240 unsigned long addr, unsigned long end, 241 unsigned long floor, unsigned long ceiling) 242 { 243 pmd_t *pmd; 244 unsigned long next; 245 unsigned long start; 246 247 start = addr; 248 pmd = pmd_offset(pud, addr); 249 do { 250 next = pmd_addr_end(addr, end); 251 if (pmd_none_or_clear_bad(pmd)) 252 continue; 253 free_pte_range(tlb, pmd, addr); 254 } while (pmd++, addr = next, addr != end); 255 256 start &= PUD_MASK; 257 if (start < floor) 258 return; 259 if (ceiling) { 260 ceiling &= PUD_MASK; 261 if (!ceiling) 262 return; 263 } 264 if (end - 1 > ceiling - 1) 265 return; 266 267 pmd = pmd_offset(pud, start); 268 pud_clear(pud); 269 pmd_free_tlb(tlb, pmd, start); 270 mm_dec_nr_pmds(tlb->mm); 271 } 272 273 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 274 unsigned long addr, unsigned long end, 275 unsigned long floor, unsigned long ceiling) 276 { 277 pud_t *pud; 278 unsigned long next; 279 unsigned long start; 280 281 start = addr; 282 pud = pud_offset(p4d, addr); 283 do { 284 next = pud_addr_end(addr, end); 285 if (pud_none_or_clear_bad(pud)) 286 continue; 287 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 288 } while (pud++, addr = next, addr != end); 289 290 start &= P4D_MASK; 291 if (start < floor) 292 return; 293 if (ceiling) { 294 ceiling &= P4D_MASK; 295 if (!ceiling) 296 return; 297 } 298 if (end - 1 > ceiling - 1) 299 return; 300 301 pud = pud_offset(p4d, start); 302 p4d_clear(p4d); 303 pud_free_tlb(tlb, pud, start); 304 mm_dec_nr_puds(tlb->mm); 305 } 306 307 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 308 unsigned long addr, unsigned long end, 309 unsigned long floor, unsigned long ceiling) 310 { 311 p4d_t *p4d; 312 unsigned long next; 313 unsigned long start; 314 315 start = addr; 316 p4d = p4d_offset(pgd, addr); 317 do { 318 next = p4d_addr_end(addr, end); 319 if (p4d_none_or_clear_bad(p4d)) 320 continue; 321 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 322 } while (p4d++, addr = next, addr != end); 323 324 start &= PGDIR_MASK; 325 if (start < floor) 326 return; 327 if (ceiling) { 328 ceiling &= PGDIR_MASK; 329 if (!ceiling) 330 return; 331 } 332 if (end - 1 > ceiling - 1) 333 return; 334 335 p4d = p4d_offset(pgd, start); 336 pgd_clear(pgd); 337 p4d_free_tlb(tlb, p4d, start); 338 } 339 340 /* 341 * This function frees user-level page tables of a process. 342 */ 343 void free_pgd_range(struct mmu_gather *tlb, 344 unsigned long addr, unsigned long end, 345 unsigned long floor, unsigned long ceiling) 346 { 347 pgd_t *pgd; 348 unsigned long next; 349 350 /* 351 * The next few lines have given us lots of grief... 352 * 353 * Why are we testing PMD* at this top level? Because often 354 * there will be no work to do at all, and we'd prefer not to 355 * go all the way down to the bottom just to discover that. 356 * 357 * Why all these "- 1"s? Because 0 represents both the bottom 358 * of the address space and the top of it (using -1 for the 359 * top wouldn't help much: the masks would do the wrong thing). 360 * The rule is that addr 0 and floor 0 refer to the bottom of 361 * the address space, but end 0 and ceiling 0 refer to the top 362 * Comparisons need to use "end - 1" and "ceiling - 1" (though 363 * that end 0 case should be mythical). 364 * 365 * Wherever addr is brought up or ceiling brought down, we must 366 * be careful to reject "the opposite 0" before it confuses the 367 * subsequent tests. But what about where end is brought down 368 * by PMD_SIZE below? no, end can't go down to 0 there. 369 * 370 * Whereas we round start (addr) and ceiling down, by different 371 * masks at different levels, in order to test whether a table 372 * now has no other vmas using it, so can be freed, we don't 373 * bother to round floor or end up - the tests don't need that. 374 */ 375 376 addr &= PMD_MASK; 377 if (addr < floor) { 378 addr += PMD_SIZE; 379 if (!addr) 380 return; 381 } 382 if (ceiling) { 383 ceiling &= PMD_MASK; 384 if (!ceiling) 385 return; 386 } 387 if (end - 1 > ceiling - 1) 388 end -= PMD_SIZE; 389 if (addr > end - 1) 390 return; 391 /* 392 * We add page table cache pages with PAGE_SIZE, 393 * (see pte_free_tlb()), flush the tlb if we need 394 */ 395 tlb_change_page_size(tlb, PAGE_SIZE); 396 pgd = pgd_offset(tlb->mm, addr); 397 do { 398 next = pgd_addr_end(addr, end); 399 if (pgd_none_or_clear_bad(pgd)) 400 continue; 401 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 402 } while (pgd++, addr = next, addr != end); 403 } 404 405 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 406 unsigned long floor, unsigned long ceiling) 407 { 408 while (vma) { 409 struct vm_area_struct *next = vma->vm_next; 410 unsigned long addr = vma->vm_start; 411 412 /* 413 * Hide vma from rmap and truncate_pagecache before freeing 414 * pgtables 415 */ 416 unlink_anon_vmas(vma); 417 unlink_file_vma(vma); 418 419 if (is_vm_hugetlb_page(vma)) { 420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 421 floor, next ? next->vm_start : ceiling); 422 } else { 423 /* 424 * Optimization: gather nearby vmas into one call down 425 */ 426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 427 && !is_vm_hugetlb_page(next)) { 428 vma = next; 429 next = vma->vm_next; 430 unlink_anon_vmas(vma); 431 unlink_file_vma(vma); 432 } 433 free_pgd_range(tlb, addr, vma->vm_end, 434 floor, next ? next->vm_start : ceiling); 435 } 436 vma = next; 437 } 438 } 439 440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 441 { 442 spinlock_t *ptl = pmd_lock(mm, pmd); 443 444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 445 mm_inc_nr_ptes(mm); 446 /* 447 * Ensure all pte setup (eg. pte page lock and page clearing) are 448 * visible before the pte is made visible to other CPUs by being 449 * put into page tables. 450 * 451 * The other side of the story is the pointer chasing in the page 452 * table walking code (when walking the page table without locking; 453 * ie. most of the time). Fortunately, these data accesses consist 454 * of a chain of data-dependent loads, meaning most CPUs (alpha 455 * being the notable exception) will already guarantee loads are 456 * seen in-order. See the alpha page table accessors for the 457 * smp_rmb() barriers in page table walking code. 458 */ 459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 460 pmd_populate(mm, pmd, *pte); 461 *pte = NULL; 462 } 463 spin_unlock(ptl); 464 } 465 466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 467 { 468 pgtable_t new = pte_alloc_one(mm); 469 if (!new) 470 return -ENOMEM; 471 472 pmd_install(mm, pmd, &new); 473 if (new) 474 pte_free(mm, new); 475 return 0; 476 } 477 478 int __pte_alloc_kernel(pmd_t *pmd) 479 { 480 pte_t *new = pte_alloc_one_kernel(&init_mm); 481 if (!new) 482 return -ENOMEM; 483 484 spin_lock(&init_mm.page_table_lock); 485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 486 smp_wmb(); /* See comment in pmd_install() */ 487 pmd_populate_kernel(&init_mm, pmd, new); 488 new = NULL; 489 } 490 spin_unlock(&init_mm.page_table_lock); 491 if (new) 492 pte_free_kernel(&init_mm, new); 493 return 0; 494 } 495 496 static inline void init_rss_vec(int *rss) 497 { 498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 499 } 500 501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 502 { 503 int i; 504 505 if (current->mm == mm) 506 sync_mm_rss(mm); 507 for (i = 0; i < NR_MM_COUNTERS; i++) 508 if (rss[i]) 509 add_mm_counter(mm, i, rss[i]); 510 } 511 512 /* 513 * This function is called to print an error when a bad pte 514 * is found. For example, we might have a PFN-mapped pte in 515 * a region that doesn't allow it. 516 * 517 * The calling function must still handle the error. 518 */ 519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 520 pte_t pte, struct page *page) 521 { 522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 523 p4d_t *p4d = p4d_offset(pgd, addr); 524 pud_t *pud = pud_offset(p4d, addr); 525 pmd_t *pmd = pmd_offset(pud, addr); 526 struct address_space *mapping; 527 pgoff_t index; 528 static unsigned long resume; 529 static unsigned long nr_shown; 530 static unsigned long nr_unshown; 531 532 /* 533 * Allow a burst of 60 reports, then keep quiet for that minute; 534 * or allow a steady drip of one report per second. 535 */ 536 if (nr_shown == 60) { 537 if (time_before(jiffies, resume)) { 538 nr_unshown++; 539 return; 540 } 541 if (nr_unshown) { 542 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 543 nr_unshown); 544 nr_unshown = 0; 545 } 546 nr_shown = 0; 547 } 548 if (nr_shown++ == 0) 549 resume = jiffies + 60 * HZ; 550 551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 552 index = linear_page_index(vma, addr); 553 554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 555 current->comm, 556 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 557 if (page) 558 dump_page(page, "bad pte"); 559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 562 vma->vm_file, 563 vma->vm_ops ? vma->vm_ops->fault : NULL, 564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 565 mapping ? mapping->a_ops->read_folio : NULL); 566 dump_stack(); 567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 568 } 569 570 /* 571 * vm_normal_page -- This function gets the "struct page" associated with a pte. 572 * 573 * "Special" mappings do not wish to be associated with a "struct page" (either 574 * it doesn't exist, or it exists but they don't want to touch it). In this 575 * case, NULL is returned here. "Normal" mappings do have a struct page. 576 * 577 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 578 * pte bit, in which case this function is trivial. Secondly, an architecture 579 * may not have a spare pte bit, which requires a more complicated scheme, 580 * described below. 581 * 582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 583 * special mapping (even if there are underlying and valid "struct pages"). 584 * COWed pages of a VM_PFNMAP are always normal. 585 * 586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 589 * mapping will always honor the rule 590 * 591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 592 * 593 * And for normal mappings this is false. 594 * 595 * This restricts such mappings to be a linear translation from virtual address 596 * to pfn. To get around this restriction, we allow arbitrary mappings so long 597 * as the vma is not a COW mapping; in that case, we know that all ptes are 598 * special (because none can have been COWed). 599 * 600 * 601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 602 * 603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 604 * page" backing, however the difference is that _all_ pages with a struct 605 * page (that is, those where pfn_valid is true) are refcounted and considered 606 * normal pages by the VM. The disadvantage is that pages are refcounted 607 * (which can be slower and simply not an option for some PFNMAP users). The 608 * advantage is that we don't have to follow the strict linearity rule of 609 * PFNMAP mappings in order to support COWable mappings. 610 * 611 */ 612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 613 pte_t pte) 614 { 615 unsigned long pfn = pte_pfn(pte); 616 617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 618 if (likely(!pte_special(pte))) 619 goto check_pfn; 620 if (vma->vm_ops && vma->vm_ops->find_special_page) 621 return vma->vm_ops->find_special_page(vma, addr); 622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 623 return NULL; 624 if (is_zero_pfn(pfn)) 625 return NULL; 626 if (pte_devmap(pte)) 627 return NULL; 628 629 print_bad_pte(vma, addr, pte, NULL); 630 return NULL; 631 } 632 633 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 634 635 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 636 if (vma->vm_flags & VM_MIXEDMAP) { 637 if (!pfn_valid(pfn)) 638 return NULL; 639 goto out; 640 } else { 641 unsigned long off; 642 off = (addr - vma->vm_start) >> PAGE_SHIFT; 643 if (pfn == vma->vm_pgoff + off) 644 return NULL; 645 if (!is_cow_mapping(vma->vm_flags)) 646 return NULL; 647 } 648 } 649 650 if (is_zero_pfn(pfn)) 651 return NULL; 652 653 check_pfn: 654 if (unlikely(pfn > highest_memmap_pfn)) { 655 print_bad_pte(vma, addr, pte, NULL); 656 return NULL; 657 } 658 659 /* 660 * NOTE! We still have PageReserved() pages in the page tables. 661 * eg. VDSO mappings can cause them to exist. 662 */ 663 out: 664 return pfn_to_page(pfn); 665 } 666 667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 669 pmd_t pmd) 670 { 671 unsigned long pfn = pmd_pfn(pmd); 672 673 /* 674 * There is no pmd_special() but there may be special pmds, e.g. 675 * in a direct-access (dax) mapping, so let's just replicate the 676 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 677 */ 678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 679 if (vma->vm_flags & VM_MIXEDMAP) { 680 if (!pfn_valid(pfn)) 681 return NULL; 682 goto out; 683 } else { 684 unsigned long off; 685 off = (addr - vma->vm_start) >> PAGE_SHIFT; 686 if (pfn == vma->vm_pgoff + off) 687 return NULL; 688 if (!is_cow_mapping(vma->vm_flags)) 689 return NULL; 690 } 691 } 692 693 if (pmd_devmap(pmd)) 694 return NULL; 695 if (is_huge_zero_pmd(pmd)) 696 return NULL; 697 if (unlikely(pfn > highest_memmap_pfn)) 698 return NULL; 699 700 /* 701 * NOTE! We still have PageReserved() pages in the page tables. 702 * eg. VDSO mappings can cause them to exist. 703 */ 704 out: 705 return pfn_to_page(pfn); 706 } 707 #endif 708 709 static void restore_exclusive_pte(struct vm_area_struct *vma, 710 struct page *page, unsigned long address, 711 pte_t *ptep) 712 { 713 pte_t pte; 714 swp_entry_t entry; 715 716 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 717 if (pte_swp_soft_dirty(*ptep)) 718 pte = pte_mksoft_dirty(pte); 719 720 entry = pte_to_swp_entry(*ptep); 721 if (pte_swp_uffd_wp(*ptep)) 722 pte = pte_mkuffd_wp(pte); 723 else if (is_writable_device_exclusive_entry(entry)) 724 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 725 726 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 727 728 /* 729 * No need to take a page reference as one was already 730 * created when the swap entry was made. 731 */ 732 if (PageAnon(page)) 733 page_add_anon_rmap(page, vma, address, RMAP_NONE); 734 else 735 /* 736 * Currently device exclusive access only supports anonymous 737 * memory so the entry shouldn't point to a filebacked page. 738 */ 739 WARN_ON_ONCE(!PageAnon(page)); 740 741 set_pte_at(vma->vm_mm, address, ptep, pte); 742 743 /* 744 * No need to invalidate - it was non-present before. However 745 * secondary CPUs may have mappings that need invalidating. 746 */ 747 update_mmu_cache(vma, address, ptep); 748 } 749 750 /* 751 * Tries to restore an exclusive pte if the page lock can be acquired without 752 * sleeping. 753 */ 754 static int 755 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 756 unsigned long addr) 757 { 758 swp_entry_t entry = pte_to_swp_entry(*src_pte); 759 struct page *page = pfn_swap_entry_to_page(entry); 760 761 if (trylock_page(page)) { 762 restore_exclusive_pte(vma, page, addr, src_pte); 763 unlock_page(page); 764 return 0; 765 } 766 767 return -EBUSY; 768 } 769 770 /* 771 * copy one vm_area from one task to the other. Assumes the page tables 772 * already present in the new task to be cleared in the whole range 773 * covered by this vma. 774 */ 775 776 static unsigned long 777 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 778 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 779 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 780 { 781 unsigned long vm_flags = dst_vma->vm_flags; 782 pte_t pte = *src_pte; 783 struct page *page; 784 swp_entry_t entry = pte_to_swp_entry(pte); 785 786 if (likely(!non_swap_entry(entry))) { 787 if (swap_duplicate(entry) < 0) 788 return -EIO; 789 790 /* make sure dst_mm is on swapoff's mmlist. */ 791 if (unlikely(list_empty(&dst_mm->mmlist))) { 792 spin_lock(&mmlist_lock); 793 if (list_empty(&dst_mm->mmlist)) 794 list_add(&dst_mm->mmlist, 795 &src_mm->mmlist); 796 spin_unlock(&mmlist_lock); 797 } 798 /* Mark the swap entry as shared. */ 799 if (pte_swp_exclusive(*src_pte)) { 800 pte = pte_swp_clear_exclusive(*src_pte); 801 set_pte_at(src_mm, addr, src_pte, pte); 802 } 803 rss[MM_SWAPENTS]++; 804 } else if (is_migration_entry(entry)) { 805 page = pfn_swap_entry_to_page(entry); 806 807 rss[mm_counter(page)]++; 808 809 if (!is_readable_migration_entry(entry) && 810 is_cow_mapping(vm_flags)) { 811 /* 812 * COW mappings require pages in both parent and child 813 * to be set to read. A previously exclusive entry is 814 * now shared. 815 */ 816 entry = make_readable_migration_entry( 817 swp_offset(entry)); 818 pte = swp_entry_to_pte(entry); 819 if (pte_swp_soft_dirty(*src_pte)) 820 pte = pte_swp_mksoft_dirty(pte); 821 if (pte_swp_uffd_wp(*src_pte)) 822 pte = pte_swp_mkuffd_wp(pte); 823 set_pte_at(src_mm, addr, src_pte, pte); 824 } 825 } else if (is_device_private_entry(entry)) { 826 page = pfn_swap_entry_to_page(entry); 827 828 /* 829 * Update rss count even for unaddressable pages, as 830 * they should treated just like normal pages in this 831 * respect. 832 * 833 * We will likely want to have some new rss counters 834 * for unaddressable pages, at some point. But for now 835 * keep things as they are. 836 */ 837 get_page(page); 838 rss[mm_counter(page)]++; 839 /* Cannot fail as these pages cannot get pinned. */ 840 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 841 842 /* 843 * We do not preserve soft-dirty information, because so 844 * far, checkpoint/restore is the only feature that 845 * requires that. And checkpoint/restore does not work 846 * when a device driver is involved (you cannot easily 847 * save and restore device driver state). 848 */ 849 if (is_writable_device_private_entry(entry) && 850 is_cow_mapping(vm_flags)) { 851 entry = make_readable_device_private_entry( 852 swp_offset(entry)); 853 pte = swp_entry_to_pte(entry); 854 if (pte_swp_uffd_wp(*src_pte)) 855 pte = pte_swp_mkuffd_wp(pte); 856 set_pte_at(src_mm, addr, src_pte, pte); 857 } 858 } else if (is_device_exclusive_entry(entry)) { 859 /* 860 * Make device exclusive entries present by restoring the 861 * original entry then copying as for a present pte. Device 862 * exclusive entries currently only support private writable 863 * (ie. COW) mappings. 864 */ 865 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 866 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 867 return -EBUSY; 868 return -ENOENT; 869 } else if (is_pte_marker_entry(entry)) { 870 /* 871 * We're copying the pgtable should only because dst_vma has 872 * uffd-wp enabled, do sanity check. 873 */ 874 WARN_ON_ONCE(!userfaultfd_wp(dst_vma)); 875 set_pte_at(dst_mm, addr, dst_pte, pte); 876 return 0; 877 } 878 if (!userfaultfd_wp(dst_vma)) 879 pte = pte_swp_clear_uffd_wp(pte); 880 set_pte_at(dst_mm, addr, dst_pte, pte); 881 return 0; 882 } 883 884 /* 885 * Copy a present and normal page. 886 * 887 * NOTE! The usual case is that this isn't required; 888 * instead, the caller can just increase the page refcount 889 * and re-use the pte the traditional way. 890 * 891 * And if we need a pre-allocated page but don't yet have 892 * one, return a negative error to let the preallocation 893 * code know so that it can do so outside the page table 894 * lock. 895 */ 896 static inline int 897 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 898 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 899 struct page **prealloc, struct page *page) 900 { 901 struct page *new_page; 902 pte_t pte; 903 904 new_page = *prealloc; 905 if (!new_page) 906 return -EAGAIN; 907 908 /* 909 * We have a prealloc page, all good! Take it 910 * over and copy the page & arm it. 911 */ 912 *prealloc = NULL; 913 copy_user_highpage(new_page, page, addr, src_vma); 914 __SetPageUptodate(new_page); 915 page_add_new_anon_rmap(new_page, dst_vma, addr); 916 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 917 rss[mm_counter(new_page)]++; 918 919 /* All done, just insert the new page copy in the child */ 920 pte = mk_pte(new_page, dst_vma->vm_page_prot); 921 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 922 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 923 /* Uffd-wp needs to be delivered to dest pte as well */ 924 pte = pte_wrprotect(pte_mkuffd_wp(pte)); 925 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 926 return 0; 927 } 928 929 /* 930 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 931 * is required to copy this pte. 932 */ 933 static inline int 934 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 935 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 936 struct page **prealloc) 937 { 938 struct mm_struct *src_mm = src_vma->vm_mm; 939 unsigned long vm_flags = src_vma->vm_flags; 940 pte_t pte = *src_pte; 941 struct page *page; 942 943 page = vm_normal_page(src_vma, addr, pte); 944 if (page && PageAnon(page)) { 945 /* 946 * If this page may have been pinned by the parent process, 947 * copy the page immediately for the child so that we'll always 948 * guarantee the pinned page won't be randomly replaced in the 949 * future. 950 */ 951 get_page(page); 952 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 953 /* Page maybe pinned, we have to copy. */ 954 put_page(page); 955 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 956 addr, rss, prealloc, page); 957 } 958 rss[mm_counter(page)]++; 959 } else if (page) { 960 get_page(page); 961 page_dup_file_rmap(page, false); 962 rss[mm_counter(page)]++; 963 } 964 965 /* 966 * If it's a COW mapping, write protect it both 967 * in the parent and the child 968 */ 969 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 970 ptep_set_wrprotect(src_mm, addr, src_pte); 971 pte = pte_wrprotect(pte); 972 } 973 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page)); 974 975 /* 976 * If it's a shared mapping, mark it clean in 977 * the child 978 */ 979 if (vm_flags & VM_SHARED) 980 pte = pte_mkclean(pte); 981 pte = pte_mkold(pte); 982 983 if (!userfaultfd_wp(dst_vma)) 984 pte = pte_clear_uffd_wp(pte); 985 986 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 987 return 0; 988 } 989 990 static inline struct page * 991 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 992 unsigned long addr) 993 { 994 struct page *new_page; 995 996 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 997 if (!new_page) 998 return NULL; 999 1000 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { 1001 put_page(new_page); 1002 return NULL; 1003 } 1004 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 1005 1006 return new_page; 1007 } 1008 1009 static int 1010 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1011 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1012 unsigned long end) 1013 { 1014 struct mm_struct *dst_mm = dst_vma->vm_mm; 1015 struct mm_struct *src_mm = src_vma->vm_mm; 1016 pte_t *orig_src_pte, *orig_dst_pte; 1017 pte_t *src_pte, *dst_pte; 1018 spinlock_t *src_ptl, *dst_ptl; 1019 int progress, ret = 0; 1020 int rss[NR_MM_COUNTERS]; 1021 swp_entry_t entry = (swp_entry_t){0}; 1022 struct page *prealloc = NULL; 1023 1024 again: 1025 progress = 0; 1026 init_rss_vec(rss); 1027 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1029 if (!dst_pte) { 1030 ret = -ENOMEM; 1031 goto out; 1032 } 1033 src_pte = pte_offset_map(src_pmd, addr); 1034 src_ptl = pte_lockptr(src_mm, src_pmd); 1035 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1036 orig_src_pte = src_pte; 1037 orig_dst_pte = dst_pte; 1038 arch_enter_lazy_mmu_mode(); 1039 1040 do { 1041 /* 1042 * We are holding two locks at this point - either of them 1043 * could generate latencies in another task on another CPU. 1044 */ 1045 if (progress >= 32) { 1046 progress = 0; 1047 if (need_resched() || 1048 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1049 break; 1050 } 1051 if (pte_none(*src_pte)) { 1052 progress++; 1053 continue; 1054 } 1055 if (unlikely(!pte_present(*src_pte))) { 1056 ret = copy_nonpresent_pte(dst_mm, src_mm, 1057 dst_pte, src_pte, 1058 dst_vma, src_vma, 1059 addr, rss); 1060 if (ret == -EIO) { 1061 entry = pte_to_swp_entry(*src_pte); 1062 break; 1063 } else if (ret == -EBUSY) { 1064 break; 1065 } else if (!ret) { 1066 progress += 8; 1067 continue; 1068 } 1069 1070 /* 1071 * Device exclusive entry restored, continue by copying 1072 * the now present pte. 1073 */ 1074 WARN_ON_ONCE(ret != -ENOENT); 1075 } 1076 /* copy_present_pte() will clear `*prealloc' if consumed */ 1077 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1078 addr, rss, &prealloc); 1079 /* 1080 * If we need a pre-allocated page for this pte, drop the 1081 * locks, allocate, and try again. 1082 */ 1083 if (unlikely(ret == -EAGAIN)) 1084 break; 1085 if (unlikely(prealloc)) { 1086 /* 1087 * pre-alloc page cannot be reused by next time so as 1088 * to strictly follow mempolicy (e.g., alloc_page_vma() 1089 * will allocate page according to address). This 1090 * could only happen if one pinned pte changed. 1091 */ 1092 put_page(prealloc); 1093 prealloc = NULL; 1094 } 1095 progress += 8; 1096 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1097 1098 arch_leave_lazy_mmu_mode(); 1099 spin_unlock(src_ptl); 1100 pte_unmap(orig_src_pte); 1101 add_mm_rss_vec(dst_mm, rss); 1102 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1103 cond_resched(); 1104 1105 if (ret == -EIO) { 1106 VM_WARN_ON_ONCE(!entry.val); 1107 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1108 ret = -ENOMEM; 1109 goto out; 1110 } 1111 entry.val = 0; 1112 } else if (ret == -EBUSY) { 1113 goto out; 1114 } else if (ret == -EAGAIN) { 1115 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1116 if (!prealloc) 1117 return -ENOMEM; 1118 } else if (ret) { 1119 VM_WARN_ON_ONCE(1); 1120 } 1121 1122 /* We've captured and resolved the error. Reset, try again. */ 1123 ret = 0; 1124 1125 if (addr != end) 1126 goto again; 1127 out: 1128 if (unlikely(prealloc)) 1129 put_page(prealloc); 1130 return ret; 1131 } 1132 1133 static inline int 1134 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1135 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1136 unsigned long end) 1137 { 1138 struct mm_struct *dst_mm = dst_vma->vm_mm; 1139 struct mm_struct *src_mm = src_vma->vm_mm; 1140 pmd_t *src_pmd, *dst_pmd; 1141 unsigned long next; 1142 1143 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1144 if (!dst_pmd) 1145 return -ENOMEM; 1146 src_pmd = pmd_offset(src_pud, addr); 1147 do { 1148 next = pmd_addr_end(addr, end); 1149 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1150 || pmd_devmap(*src_pmd)) { 1151 int err; 1152 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1153 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1154 addr, dst_vma, src_vma); 1155 if (err == -ENOMEM) 1156 return -ENOMEM; 1157 if (!err) 1158 continue; 1159 /* fall through */ 1160 } 1161 if (pmd_none_or_clear_bad(src_pmd)) 1162 continue; 1163 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1164 addr, next)) 1165 return -ENOMEM; 1166 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1167 return 0; 1168 } 1169 1170 static inline int 1171 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1172 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1173 unsigned long end) 1174 { 1175 struct mm_struct *dst_mm = dst_vma->vm_mm; 1176 struct mm_struct *src_mm = src_vma->vm_mm; 1177 pud_t *src_pud, *dst_pud; 1178 unsigned long next; 1179 1180 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1181 if (!dst_pud) 1182 return -ENOMEM; 1183 src_pud = pud_offset(src_p4d, addr); 1184 do { 1185 next = pud_addr_end(addr, end); 1186 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1187 int err; 1188 1189 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1190 err = copy_huge_pud(dst_mm, src_mm, 1191 dst_pud, src_pud, addr, src_vma); 1192 if (err == -ENOMEM) 1193 return -ENOMEM; 1194 if (!err) 1195 continue; 1196 /* fall through */ 1197 } 1198 if (pud_none_or_clear_bad(src_pud)) 1199 continue; 1200 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1201 addr, next)) 1202 return -ENOMEM; 1203 } while (dst_pud++, src_pud++, addr = next, addr != end); 1204 return 0; 1205 } 1206 1207 static inline int 1208 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1209 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1210 unsigned long end) 1211 { 1212 struct mm_struct *dst_mm = dst_vma->vm_mm; 1213 p4d_t *src_p4d, *dst_p4d; 1214 unsigned long next; 1215 1216 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1217 if (!dst_p4d) 1218 return -ENOMEM; 1219 src_p4d = p4d_offset(src_pgd, addr); 1220 do { 1221 next = p4d_addr_end(addr, end); 1222 if (p4d_none_or_clear_bad(src_p4d)) 1223 continue; 1224 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1225 addr, next)) 1226 return -ENOMEM; 1227 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1228 return 0; 1229 } 1230 1231 /* 1232 * Return true if the vma needs to copy the pgtable during this fork(). Return 1233 * false when we can speed up fork() by allowing lazy page faults later until 1234 * when the child accesses the memory range. 1235 */ 1236 static bool 1237 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1238 { 1239 /* 1240 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1241 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1242 * contains uffd-wp protection information, that's something we can't 1243 * retrieve from page cache, and skip copying will lose those info. 1244 */ 1245 if (userfaultfd_wp(dst_vma)) 1246 return true; 1247 1248 if (src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) 1249 return true; 1250 1251 if (src_vma->anon_vma) 1252 return true; 1253 1254 /* 1255 * Don't copy ptes where a page fault will fill them correctly. Fork 1256 * becomes much lighter when there are big shared or private readonly 1257 * mappings. The tradeoff is that copy_page_range is more efficient 1258 * than faulting. 1259 */ 1260 return false; 1261 } 1262 1263 int 1264 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1265 { 1266 pgd_t *src_pgd, *dst_pgd; 1267 unsigned long next; 1268 unsigned long addr = src_vma->vm_start; 1269 unsigned long end = src_vma->vm_end; 1270 struct mm_struct *dst_mm = dst_vma->vm_mm; 1271 struct mm_struct *src_mm = src_vma->vm_mm; 1272 struct mmu_notifier_range range; 1273 bool is_cow; 1274 int ret; 1275 1276 if (!vma_needs_copy(dst_vma, src_vma)) 1277 return 0; 1278 1279 if (is_vm_hugetlb_page(src_vma)) 1280 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1281 1282 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1283 /* 1284 * We do not free on error cases below as remove_vma 1285 * gets called on error from higher level routine 1286 */ 1287 ret = track_pfn_copy(src_vma); 1288 if (ret) 1289 return ret; 1290 } 1291 1292 /* 1293 * We need to invalidate the secondary MMU mappings only when 1294 * there could be a permission downgrade on the ptes of the 1295 * parent mm. And a permission downgrade will only happen if 1296 * is_cow_mapping() returns true. 1297 */ 1298 is_cow = is_cow_mapping(src_vma->vm_flags); 1299 1300 if (is_cow) { 1301 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1302 0, src_vma, src_mm, addr, end); 1303 mmu_notifier_invalidate_range_start(&range); 1304 /* 1305 * Disabling preemption is not needed for the write side, as 1306 * the read side doesn't spin, but goes to the mmap_lock. 1307 * 1308 * Use the raw variant of the seqcount_t write API to avoid 1309 * lockdep complaining about preemptibility. 1310 */ 1311 mmap_assert_write_locked(src_mm); 1312 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1313 } 1314 1315 ret = 0; 1316 dst_pgd = pgd_offset(dst_mm, addr); 1317 src_pgd = pgd_offset(src_mm, addr); 1318 do { 1319 next = pgd_addr_end(addr, end); 1320 if (pgd_none_or_clear_bad(src_pgd)) 1321 continue; 1322 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1323 addr, next))) { 1324 ret = -ENOMEM; 1325 break; 1326 } 1327 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1328 1329 if (is_cow) { 1330 raw_write_seqcount_end(&src_mm->write_protect_seq); 1331 mmu_notifier_invalidate_range_end(&range); 1332 } 1333 return ret; 1334 } 1335 1336 /* 1337 * Parameter block passed down to zap_pte_range in exceptional cases. 1338 */ 1339 struct zap_details { 1340 struct folio *single_folio; /* Locked folio to be unmapped */ 1341 bool even_cows; /* Zap COWed private pages too? */ 1342 zap_flags_t zap_flags; /* Extra flags for zapping */ 1343 }; 1344 1345 /* Whether we should zap all COWed (private) pages too */ 1346 static inline bool should_zap_cows(struct zap_details *details) 1347 { 1348 /* By default, zap all pages */ 1349 if (!details) 1350 return true; 1351 1352 /* Or, we zap COWed pages only if the caller wants to */ 1353 return details->even_cows; 1354 } 1355 1356 /* Decides whether we should zap this page with the page pointer specified */ 1357 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1358 { 1359 /* If we can make a decision without *page.. */ 1360 if (should_zap_cows(details)) 1361 return true; 1362 1363 /* E.g. the caller passes NULL for the case of a zero page */ 1364 if (!page) 1365 return true; 1366 1367 /* Otherwise we should only zap non-anon pages */ 1368 return !PageAnon(page); 1369 } 1370 1371 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1372 { 1373 if (!details) 1374 return false; 1375 1376 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1377 } 1378 1379 /* 1380 * This function makes sure that we'll replace the none pte with an uffd-wp 1381 * swap special pte marker when necessary. Must be with the pgtable lock held. 1382 */ 1383 static inline void 1384 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1385 unsigned long addr, pte_t *pte, 1386 struct zap_details *details, pte_t pteval) 1387 { 1388 if (zap_drop_file_uffd_wp(details)) 1389 return; 1390 1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1392 } 1393 1394 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 struct mm_struct *mm = tlb->mm; 1400 int force_flush = 0; 1401 int rss[NR_MM_COUNTERS]; 1402 spinlock_t *ptl; 1403 pte_t *start_pte; 1404 pte_t *pte; 1405 swp_entry_t entry; 1406 1407 tlb_change_page_size(tlb, PAGE_SIZE); 1408 again: 1409 init_rss_vec(rss); 1410 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1411 pte = start_pte; 1412 flush_tlb_batched_pending(mm); 1413 arch_enter_lazy_mmu_mode(); 1414 do { 1415 pte_t ptent = *pte; 1416 struct page *page; 1417 1418 if (pte_none(ptent)) 1419 continue; 1420 1421 if (need_resched()) 1422 break; 1423 1424 if (pte_present(ptent)) { 1425 page = vm_normal_page(vma, addr, ptent); 1426 if (unlikely(!should_zap_page(details, page))) 1427 continue; 1428 ptent = ptep_get_and_clear_full(mm, addr, pte, 1429 tlb->fullmm); 1430 tlb_remove_tlb_entry(tlb, pte, addr); 1431 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1432 ptent); 1433 if (unlikely(!page)) 1434 continue; 1435 1436 if (!PageAnon(page)) { 1437 if (pte_dirty(ptent)) { 1438 force_flush = 1; 1439 set_page_dirty(page); 1440 } 1441 if (pte_young(ptent) && 1442 likely(!(vma->vm_flags & VM_SEQ_READ))) 1443 mark_page_accessed(page); 1444 } 1445 rss[mm_counter(page)]--; 1446 page_remove_rmap(page, vma, false); 1447 if (unlikely(page_mapcount(page) < 0)) 1448 print_bad_pte(vma, addr, ptent, page); 1449 if (unlikely(__tlb_remove_page(tlb, page))) { 1450 force_flush = 1; 1451 addr += PAGE_SIZE; 1452 break; 1453 } 1454 continue; 1455 } 1456 1457 entry = pte_to_swp_entry(ptent); 1458 if (is_device_private_entry(entry) || 1459 is_device_exclusive_entry(entry)) { 1460 page = pfn_swap_entry_to_page(entry); 1461 if (unlikely(!should_zap_page(details, page))) 1462 continue; 1463 /* 1464 * Both device private/exclusive mappings should only 1465 * work with anonymous page so far, so we don't need to 1466 * consider uffd-wp bit when zap. For more information, 1467 * see zap_install_uffd_wp_if_needed(). 1468 */ 1469 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1470 rss[mm_counter(page)]--; 1471 if (is_device_private_entry(entry)) 1472 page_remove_rmap(page, vma, false); 1473 put_page(page); 1474 } else if (!non_swap_entry(entry)) { 1475 /* Genuine swap entry, hence a private anon page */ 1476 if (!should_zap_cows(details)) 1477 continue; 1478 rss[MM_SWAPENTS]--; 1479 if (unlikely(!free_swap_and_cache(entry))) 1480 print_bad_pte(vma, addr, ptent, NULL); 1481 } else if (is_migration_entry(entry)) { 1482 page = pfn_swap_entry_to_page(entry); 1483 if (!should_zap_page(details, page)) 1484 continue; 1485 rss[mm_counter(page)]--; 1486 } else if (pte_marker_entry_uffd_wp(entry)) { 1487 /* Only drop the uffd-wp marker if explicitly requested */ 1488 if (!zap_drop_file_uffd_wp(details)) 1489 continue; 1490 } else if (is_hwpoison_entry(entry) || 1491 is_swapin_error_entry(entry)) { 1492 if (!should_zap_cows(details)) 1493 continue; 1494 } else { 1495 /* We should have covered all the swap entry types */ 1496 WARN_ON_ONCE(1); 1497 } 1498 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1499 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1500 } while (pte++, addr += PAGE_SIZE, addr != end); 1501 1502 add_mm_rss_vec(mm, rss); 1503 arch_leave_lazy_mmu_mode(); 1504 1505 /* Do the actual TLB flush before dropping ptl */ 1506 if (force_flush) 1507 tlb_flush_mmu_tlbonly(tlb); 1508 pte_unmap_unlock(start_pte, ptl); 1509 1510 /* 1511 * If we forced a TLB flush (either due to running out of 1512 * batch buffers or because we needed to flush dirty TLB 1513 * entries before releasing the ptl), free the batched 1514 * memory too. Restart if we didn't do everything. 1515 */ 1516 if (force_flush) { 1517 force_flush = 0; 1518 tlb_flush_mmu(tlb); 1519 } 1520 1521 if (addr != end) { 1522 cond_resched(); 1523 goto again; 1524 } 1525 1526 return addr; 1527 } 1528 1529 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1530 struct vm_area_struct *vma, pud_t *pud, 1531 unsigned long addr, unsigned long end, 1532 struct zap_details *details) 1533 { 1534 pmd_t *pmd; 1535 unsigned long next; 1536 1537 pmd = pmd_offset(pud, addr); 1538 do { 1539 next = pmd_addr_end(addr, end); 1540 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1541 if (next - addr != HPAGE_PMD_SIZE) 1542 __split_huge_pmd(vma, pmd, addr, false, NULL); 1543 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1544 goto next; 1545 /* fall through */ 1546 } else if (details && details->single_folio && 1547 folio_test_pmd_mappable(details->single_folio) && 1548 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1549 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1550 /* 1551 * Take and drop THP pmd lock so that we cannot return 1552 * prematurely, while zap_huge_pmd() has cleared *pmd, 1553 * but not yet decremented compound_mapcount(). 1554 */ 1555 spin_unlock(ptl); 1556 } 1557 1558 /* 1559 * Here there can be other concurrent MADV_DONTNEED or 1560 * trans huge page faults running, and if the pmd is 1561 * none or trans huge it can change under us. This is 1562 * because MADV_DONTNEED holds the mmap_lock in read 1563 * mode. 1564 */ 1565 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1566 goto next; 1567 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1568 next: 1569 cond_resched(); 1570 } while (pmd++, addr = next, addr != end); 1571 1572 return addr; 1573 } 1574 1575 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1576 struct vm_area_struct *vma, p4d_t *p4d, 1577 unsigned long addr, unsigned long end, 1578 struct zap_details *details) 1579 { 1580 pud_t *pud; 1581 unsigned long next; 1582 1583 pud = pud_offset(p4d, addr); 1584 do { 1585 next = pud_addr_end(addr, end); 1586 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1587 if (next - addr != HPAGE_PUD_SIZE) { 1588 mmap_assert_locked(tlb->mm); 1589 split_huge_pud(vma, pud, addr); 1590 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1591 goto next; 1592 /* fall through */ 1593 } 1594 if (pud_none_or_clear_bad(pud)) 1595 continue; 1596 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1597 next: 1598 cond_resched(); 1599 } while (pud++, addr = next, addr != end); 1600 1601 return addr; 1602 } 1603 1604 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1605 struct vm_area_struct *vma, pgd_t *pgd, 1606 unsigned long addr, unsigned long end, 1607 struct zap_details *details) 1608 { 1609 p4d_t *p4d; 1610 unsigned long next; 1611 1612 p4d = p4d_offset(pgd, addr); 1613 do { 1614 next = p4d_addr_end(addr, end); 1615 if (p4d_none_or_clear_bad(p4d)) 1616 continue; 1617 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1618 } while (p4d++, addr = next, addr != end); 1619 1620 return addr; 1621 } 1622 1623 void unmap_page_range(struct mmu_gather *tlb, 1624 struct vm_area_struct *vma, 1625 unsigned long addr, unsigned long end, 1626 struct zap_details *details) 1627 { 1628 pgd_t *pgd; 1629 unsigned long next; 1630 1631 BUG_ON(addr >= end); 1632 tlb_start_vma(tlb, vma); 1633 pgd = pgd_offset(vma->vm_mm, addr); 1634 do { 1635 next = pgd_addr_end(addr, end); 1636 if (pgd_none_or_clear_bad(pgd)) 1637 continue; 1638 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1639 } while (pgd++, addr = next, addr != end); 1640 tlb_end_vma(tlb, vma); 1641 } 1642 1643 1644 static void unmap_single_vma(struct mmu_gather *tlb, 1645 struct vm_area_struct *vma, unsigned long start_addr, 1646 unsigned long end_addr, 1647 struct zap_details *details) 1648 { 1649 unsigned long start = max(vma->vm_start, start_addr); 1650 unsigned long end; 1651 1652 if (start >= vma->vm_end) 1653 return; 1654 end = min(vma->vm_end, end_addr); 1655 if (end <= vma->vm_start) 1656 return; 1657 1658 if (vma->vm_file) 1659 uprobe_munmap(vma, start, end); 1660 1661 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1662 untrack_pfn(vma, 0, 0); 1663 1664 if (start != end) { 1665 if (unlikely(is_vm_hugetlb_page(vma))) { 1666 /* 1667 * It is undesirable to test vma->vm_file as it 1668 * should be non-null for valid hugetlb area. 1669 * However, vm_file will be NULL in the error 1670 * cleanup path of mmap_region. When 1671 * hugetlbfs ->mmap method fails, 1672 * mmap_region() nullifies vma->vm_file 1673 * before calling this function to clean up. 1674 * Since no pte has actually been setup, it is 1675 * safe to do nothing in this case. 1676 */ 1677 if (vma->vm_file) { 1678 zap_flags_t zap_flags = details ? 1679 details->zap_flags : 0; 1680 i_mmap_lock_write(vma->vm_file->f_mapping); 1681 __unmap_hugepage_range_final(tlb, vma, start, end, 1682 NULL, zap_flags); 1683 i_mmap_unlock_write(vma->vm_file->f_mapping); 1684 } 1685 } else 1686 unmap_page_range(tlb, vma, start, end, details); 1687 } 1688 } 1689 1690 /** 1691 * unmap_vmas - unmap a range of memory covered by a list of vma's 1692 * @tlb: address of the caller's struct mmu_gather 1693 * @vma: the starting vma 1694 * @start_addr: virtual address at which to start unmapping 1695 * @end_addr: virtual address at which to end unmapping 1696 * 1697 * Unmap all pages in the vma list. 1698 * 1699 * Only addresses between `start' and `end' will be unmapped. 1700 * 1701 * The VMA list must be sorted in ascending virtual address order. 1702 * 1703 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1704 * range after unmap_vmas() returns. So the only responsibility here is to 1705 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1706 * drops the lock and schedules. 1707 */ 1708 void unmap_vmas(struct mmu_gather *tlb, 1709 struct vm_area_struct *vma, unsigned long start_addr, 1710 unsigned long end_addr) 1711 { 1712 struct mmu_notifier_range range; 1713 struct zap_details details = { 1714 .zap_flags = ZAP_FLAG_DROP_MARKER, 1715 /* Careful - we need to zap private pages too! */ 1716 .even_cows = true, 1717 }; 1718 1719 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1720 start_addr, end_addr); 1721 mmu_notifier_invalidate_range_start(&range); 1722 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1723 unmap_single_vma(tlb, vma, start_addr, end_addr, &details); 1724 mmu_notifier_invalidate_range_end(&range); 1725 } 1726 1727 /** 1728 * zap_page_range - remove user pages in a given range 1729 * @vma: vm_area_struct holding the applicable pages 1730 * @start: starting address of pages to zap 1731 * @size: number of bytes to zap 1732 * 1733 * Caller must protect the VMA list 1734 */ 1735 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1736 unsigned long size) 1737 { 1738 struct mmu_notifier_range range; 1739 struct mmu_gather tlb; 1740 1741 lru_add_drain(); 1742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1743 start, start + size); 1744 tlb_gather_mmu(&tlb, vma->vm_mm); 1745 update_hiwater_rss(vma->vm_mm); 1746 mmu_notifier_invalidate_range_start(&range); 1747 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1748 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1749 mmu_notifier_invalidate_range_end(&range); 1750 tlb_finish_mmu(&tlb); 1751 } 1752 1753 /** 1754 * zap_page_range_single - remove user pages in a given range 1755 * @vma: vm_area_struct holding the applicable pages 1756 * @address: starting address of pages to zap 1757 * @size: number of bytes to zap 1758 * @details: details of shared cache invalidation 1759 * 1760 * The range must fit into one VMA. 1761 */ 1762 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1763 unsigned long size, struct zap_details *details) 1764 { 1765 struct mmu_notifier_range range; 1766 struct mmu_gather tlb; 1767 1768 lru_add_drain(); 1769 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1770 address, address + size); 1771 tlb_gather_mmu(&tlb, vma->vm_mm); 1772 update_hiwater_rss(vma->vm_mm); 1773 mmu_notifier_invalidate_range_start(&range); 1774 unmap_single_vma(&tlb, vma, address, range.end, details); 1775 mmu_notifier_invalidate_range_end(&range); 1776 tlb_finish_mmu(&tlb); 1777 } 1778 1779 /** 1780 * zap_vma_ptes - remove ptes mapping the vma 1781 * @vma: vm_area_struct holding ptes to be zapped 1782 * @address: starting address of pages to zap 1783 * @size: number of bytes to zap 1784 * 1785 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1786 * 1787 * The entire address range must be fully contained within the vma. 1788 * 1789 */ 1790 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1791 unsigned long size) 1792 { 1793 if (!range_in_vma(vma, address, address + size) || 1794 !(vma->vm_flags & VM_PFNMAP)) 1795 return; 1796 1797 zap_page_range_single(vma, address, size, NULL); 1798 } 1799 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1800 1801 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1802 { 1803 pgd_t *pgd; 1804 p4d_t *p4d; 1805 pud_t *pud; 1806 pmd_t *pmd; 1807 1808 pgd = pgd_offset(mm, addr); 1809 p4d = p4d_alloc(mm, pgd, addr); 1810 if (!p4d) 1811 return NULL; 1812 pud = pud_alloc(mm, p4d, addr); 1813 if (!pud) 1814 return NULL; 1815 pmd = pmd_alloc(mm, pud, addr); 1816 if (!pmd) 1817 return NULL; 1818 1819 VM_BUG_ON(pmd_trans_huge(*pmd)); 1820 return pmd; 1821 } 1822 1823 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1824 spinlock_t **ptl) 1825 { 1826 pmd_t *pmd = walk_to_pmd(mm, addr); 1827 1828 if (!pmd) 1829 return NULL; 1830 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1831 } 1832 1833 static int validate_page_before_insert(struct page *page) 1834 { 1835 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1836 return -EINVAL; 1837 flush_dcache_page(page); 1838 return 0; 1839 } 1840 1841 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1842 unsigned long addr, struct page *page, pgprot_t prot) 1843 { 1844 if (!pte_none(*pte)) 1845 return -EBUSY; 1846 /* Ok, finally just insert the thing.. */ 1847 get_page(page); 1848 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 1849 page_add_file_rmap(page, vma, false); 1850 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1851 return 0; 1852 } 1853 1854 /* 1855 * This is the old fallback for page remapping. 1856 * 1857 * For historical reasons, it only allows reserved pages. Only 1858 * old drivers should use this, and they needed to mark their 1859 * pages reserved for the old functions anyway. 1860 */ 1861 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1862 struct page *page, pgprot_t prot) 1863 { 1864 int retval; 1865 pte_t *pte; 1866 spinlock_t *ptl; 1867 1868 retval = validate_page_before_insert(page); 1869 if (retval) 1870 goto out; 1871 retval = -ENOMEM; 1872 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1873 if (!pte) 1874 goto out; 1875 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1876 pte_unmap_unlock(pte, ptl); 1877 out: 1878 return retval; 1879 } 1880 1881 #ifdef pte_index 1882 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1883 unsigned long addr, struct page *page, pgprot_t prot) 1884 { 1885 int err; 1886 1887 if (!page_count(page)) 1888 return -EINVAL; 1889 err = validate_page_before_insert(page); 1890 if (err) 1891 return err; 1892 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1893 } 1894 1895 /* insert_pages() amortizes the cost of spinlock operations 1896 * when inserting pages in a loop. Arch *must* define pte_index. 1897 */ 1898 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1899 struct page **pages, unsigned long *num, pgprot_t prot) 1900 { 1901 pmd_t *pmd = NULL; 1902 pte_t *start_pte, *pte; 1903 spinlock_t *pte_lock; 1904 struct mm_struct *const mm = vma->vm_mm; 1905 unsigned long curr_page_idx = 0; 1906 unsigned long remaining_pages_total = *num; 1907 unsigned long pages_to_write_in_pmd; 1908 int ret; 1909 more: 1910 ret = -EFAULT; 1911 pmd = walk_to_pmd(mm, addr); 1912 if (!pmd) 1913 goto out; 1914 1915 pages_to_write_in_pmd = min_t(unsigned long, 1916 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1917 1918 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1919 ret = -ENOMEM; 1920 if (pte_alloc(mm, pmd)) 1921 goto out; 1922 1923 while (pages_to_write_in_pmd) { 1924 int pte_idx = 0; 1925 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1926 1927 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1928 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1929 int err = insert_page_in_batch_locked(vma, pte, 1930 addr, pages[curr_page_idx], prot); 1931 if (unlikely(err)) { 1932 pte_unmap_unlock(start_pte, pte_lock); 1933 ret = err; 1934 remaining_pages_total -= pte_idx; 1935 goto out; 1936 } 1937 addr += PAGE_SIZE; 1938 ++curr_page_idx; 1939 } 1940 pte_unmap_unlock(start_pte, pte_lock); 1941 pages_to_write_in_pmd -= batch_size; 1942 remaining_pages_total -= batch_size; 1943 } 1944 if (remaining_pages_total) 1945 goto more; 1946 ret = 0; 1947 out: 1948 *num = remaining_pages_total; 1949 return ret; 1950 } 1951 #endif /* ifdef pte_index */ 1952 1953 /** 1954 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1955 * @vma: user vma to map to 1956 * @addr: target start user address of these pages 1957 * @pages: source kernel pages 1958 * @num: in: number of pages to map. out: number of pages that were *not* 1959 * mapped. (0 means all pages were successfully mapped). 1960 * 1961 * Preferred over vm_insert_page() when inserting multiple pages. 1962 * 1963 * In case of error, we may have mapped a subset of the provided 1964 * pages. It is the caller's responsibility to account for this case. 1965 * 1966 * The same restrictions apply as in vm_insert_page(). 1967 */ 1968 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1969 struct page **pages, unsigned long *num) 1970 { 1971 #ifdef pte_index 1972 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1973 1974 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1975 return -EFAULT; 1976 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1977 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1978 BUG_ON(vma->vm_flags & VM_PFNMAP); 1979 vma->vm_flags |= VM_MIXEDMAP; 1980 } 1981 /* Defer page refcount checking till we're about to map that page. */ 1982 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1983 #else 1984 unsigned long idx = 0, pgcount = *num; 1985 int err = -EINVAL; 1986 1987 for (; idx < pgcount; ++idx) { 1988 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1989 if (err) 1990 break; 1991 } 1992 *num = pgcount - idx; 1993 return err; 1994 #endif /* ifdef pte_index */ 1995 } 1996 EXPORT_SYMBOL(vm_insert_pages); 1997 1998 /** 1999 * vm_insert_page - insert single page into user vma 2000 * @vma: user vma to map to 2001 * @addr: target user address of this page 2002 * @page: source kernel page 2003 * 2004 * This allows drivers to insert individual pages they've allocated 2005 * into a user vma. 2006 * 2007 * The page has to be a nice clean _individual_ kernel allocation. 2008 * If you allocate a compound page, you need to have marked it as 2009 * such (__GFP_COMP), or manually just split the page up yourself 2010 * (see split_page()). 2011 * 2012 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2013 * took an arbitrary page protection parameter. This doesn't allow 2014 * that. Your vma protection will have to be set up correctly, which 2015 * means that if you want a shared writable mapping, you'd better 2016 * ask for a shared writable mapping! 2017 * 2018 * The page does not need to be reserved. 2019 * 2020 * Usually this function is called from f_op->mmap() handler 2021 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2022 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2023 * function from other places, for example from page-fault handler. 2024 * 2025 * Return: %0 on success, negative error code otherwise. 2026 */ 2027 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2028 struct page *page) 2029 { 2030 if (addr < vma->vm_start || addr >= vma->vm_end) 2031 return -EFAULT; 2032 if (!page_count(page)) 2033 return -EINVAL; 2034 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2035 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2036 BUG_ON(vma->vm_flags & VM_PFNMAP); 2037 vma->vm_flags |= VM_MIXEDMAP; 2038 } 2039 return insert_page(vma, addr, page, vma->vm_page_prot); 2040 } 2041 EXPORT_SYMBOL(vm_insert_page); 2042 2043 /* 2044 * __vm_map_pages - maps range of kernel pages into user vma 2045 * @vma: user vma to map to 2046 * @pages: pointer to array of source kernel pages 2047 * @num: number of pages in page array 2048 * @offset: user's requested vm_pgoff 2049 * 2050 * This allows drivers to map range of kernel pages into a user vma. 2051 * 2052 * Return: 0 on success and error code otherwise. 2053 */ 2054 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2055 unsigned long num, unsigned long offset) 2056 { 2057 unsigned long count = vma_pages(vma); 2058 unsigned long uaddr = vma->vm_start; 2059 int ret, i; 2060 2061 /* Fail if the user requested offset is beyond the end of the object */ 2062 if (offset >= num) 2063 return -ENXIO; 2064 2065 /* Fail if the user requested size exceeds available object size */ 2066 if (count > num - offset) 2067 return -ENXIO; 2068 2069 for (i = 0; i < count; i++) { 2070 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2071 if (ret < 0) 2072 return ret; 2073 uaddr += PAGE_SIZE; 2074 } 2075 2076 return 0; 2077 } 2078 2079 /** 2080 * vm_map_pages - maps range of kernel pages starts with non zero offset 2081 * @vma: user vma to map to 2082 * @pages: pointer to array of source kernel pages 2083 * @num: number of pages in page array 2084 * 2085 * Maps an object consisting of @num pages, catering for the user's 2086 * requested vm_pgoff 2087 * 2088 * If we fail to insert any page into the vma, the function will return 2089 * immediately leaving any previously inserted pages present. Callers 2090 * from the mmap handler may immediately return the error as their caller 2091 * will destroy the vma, removing any successfully inserted pages. Other 2092 * callers should make their own arrangements for calling unmap_region(). 2093 * 2094 * Context: Process context. Called by mmap handlers. 2095 * Return: 0 on success and error code otherwise. 2096 */ 2097 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2098 unsigned long num) 2099 { 2100 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2101 } 2102 EXPORT_SYMBOL(vm_map_pages); 2103 2104 /** 2105 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2106 * @vma: user vma to map to 2107 * @pages: pointer to array of source kernel pages 2108 * @num: number of pages in page array 2109 * 2110 * Similar to vm_map_pages(), except that it explicitly sets the offset 2111 * to 0. This function is intended for the drivers that did not consider 2112 * vm_pgoff. 2113 * 2114 * Context: Process context. Called by mmap handlers. 2115 * Return: 0 on success and error code otherwise. 2116 */ 2117 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2118 unsigned long num) 2119 { 2120 return __vm_map_pages(vma, pages, num, 0); 2121 } 2122 EXPORT_SYMBOL(vm_map_pages_zero); 2123 2124 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2125 pfn_t pfn, pgprot_t prot, bool mkwrite) 2126 { 2127 struct mm_struct *mm = vma->vm_mm; 2128 pte_t *pte, entry; 2129 spinlock_t *ptl; 2130 2131 pte = get_locked_pte(mm, addr, &ptl); 2132 if (!pte) 2133 return VM_FAULT_OOM; 2134 if (!pte_none(*pte)) { 2135 if (mkwrite) { 2136 /* 2137 * For read faults on private mappings the PFN passed 2138 * in may not match the PFN we have mapped if the 2139 * mapped PFN is a writeable COW page. In the mkwrite 2140 * case we are creating a writable PTE for a shared 2141 * mapping and we expect the PFNs to match. If they 2142 * don't match, we are likely racing with block 2143 * allocation and mapping invalidation so just skip the 2144 * update. 2145 */ 2146 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2147 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2148 goto out_unlock; 2149 } 2150 entry = pte_mkyoung(*pte); 2151 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2152 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2153 update_mmu_cache(vma, addr, pte); 2154 } 2155 goto out_unlock; 2156 } 2157 2158 /* Ok, finally just insert the thing.. */ 2159 if (pfn_t_devmap(pfn)) 2160 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2161 else 2162 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2163 2164 if (mkwrite) { 2165 entry = pte_mkyoung(entry); 2166 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2167 } 2168 2169 set_pte_at(mm, addr, pte, entry); 2170 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2171 2172 out_unlock: 2173 pte_unmap_unlock(pte, ptl); 2174 return VM_FAULT_NOPAGE; 2175 } 2176 2177 /** 2178 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2179 * @vma: user vma to map to 2180 * @addr: target user address of this page 2181 * @pfn: source kernel pfn 2182 * @pgprot: pgprot flags for the inserted page 2183 * 2184 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2185 * to override pgprot on a per-page basis. 2186 * 2187 * This only makes sense for IO mappings, and it makes no sense for 2188 * COW mappings. In general, using multiple vmas is preferable; 2189 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2190 * impractical. 2191 * 2192 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2193 * a value of @pgprot different from that of @vma->vm_page_prot. 2194 * 2195 * Context: Process context. May allocate using %GFP_KERNEL. 2196 * Return: vm_fault_t value. 2197 */ 2198 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2199 unsigned long pfn, pgprot_t pgprot) 2200 { 2201 /* 2202 * Technically, architectures with pte_special can avoid all these 2203 * restrictions (same for remap_pfn_range). However we would like 2204 * consistency in testing and feature parity among all, so we should 2205 * try to keep these invariants in place for everybody. 2206 */ 2207 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2208 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2209 (VM_PFNMAP|VM_MIXEDMAP)); 2210 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2211 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2212 2213 if (addr < vma->vm_start || addr >= vma->vm_end) 2214 return VM_FAULT_SIGBUS; 2215 2216 if (!pfn_modify_allowed(pfn, pgprot)) 2217 return VM_FAULT_SIGBUS; 2218 2219 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2220 2221 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2222 false); 2223 } 2224 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2225 2226 /** 2227 * vmf_insert_pfn - insert single pfn into user vma 2228 * @vma: user vma to map to 2229 * @addr: target user address of this page 2230 * @pfn: source kernel pfn 2231 * 2232 * Similar to vm_insert_page, this allows drivers to insert individual pages 2233 * they've allocated into a user vma. Same comments apply. 2234 * 2235 * This function should only be called from a vm_ops->fault handler, and 2236 * in that case the handler should return the result of this function. 2237 * 2238 * vma cannot be a COW mapping. 2239 * 2240 * As this is called only for pages that do not currently exist, we 2241 * do not need to flush old virtual caches or the TLB. 2242 * 2243 * Context: Process context. May allocate using %GFP_KERNEL. 2244 * Return: vm_fault_t value. 2245 */ 2246 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2247 unsigned long pfn) 2248 { 2249 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2250 } 2251 EXPORT_SYMBOL(vmf_insert_pfn); 2252 2253 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2254 { 2255 /* these checks mirror the abort conditions in vm_normal_page */ 2256 if (vma->vm_flags & VM_MIXEDMAP) 2257 return true; 2258 if (pfn_t_devmap(pfn)) 2259 return true; 2260 if (pfn_t_special(pfn)) 2261 return true; 2262 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2263 return true; 2264 return false; 2265 } 2266 2267 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2268 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2269 bool mkwrite) 2270 { 2271 int err; 2272 2273 BUG_ON(!vm_mixed_ok(vma, pfn)); 2274 2275 if (addr < vma->vm_start || addr >= vma->vm_end) 2276 return VM_FAULT_SIGBUS; 2277 2278 track_pfn_insert(vma, &pgprot, pfn); 2279 2280 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2281 return VM_FAULT_SIGBUS; 2282 2283 /* 2284 * If we don't have pte special, then we have to use the pfn_valid() 2285 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2286 * refcount the page if pfn_valid is true (hence insert_page rather 2287 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2288 * without pte special, it would there be refcounted as a normal page. 2289 */ 2290 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2291 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2292 struct page *page; 2293 2294 /* 2295 * At this point we are committed to insert_page() 2296 * regardless of whether the caller specified flags that 2297 * result in pfn_t_has_page() == false. 2298 */ 2299 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2300 err = insert_page(vma, addr, page, pgprot); 2301 } else { 2302 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2303 } 2304 2305 if (err == -ENOMEM) 2306 return VM_FAULT_OOM; 2307 if (err < 0 && err != -EBUSY) 2308 return VM_FAULT_SIGBUS; 2309 2310 return VM_FAULT_NOPAGE; 2311 } 2312 2313 /** 2314 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2315 * @vma: user vma to map to 2316 * @addr: target user address of this page 2317 * @pfn: source kernel pfn 2318 * @pgprot: pgprot flags for the inserted page 2319 * 2320 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2321 * to override pgprot on a per-page basis. 2322 * 2323 * Typically this function should be used by drivers to set caching- and 2324 * encryption bits different than those of @vma->vm_page_prot, because 2325 * the caching- or encryption mode may not be known at mmap() time. 2326 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2327 * to set caching and encryption bits for those vmas (except for COW pages). 2328 * This is ensured by core vm only modifying these page table entries using 2329 * functions that don't touch caching- or encryption bits, using pte_modify() 2330 * if needed. (See for example mprotect()). 2331 * Also when new page-table entries are created, this is only done using the 2332 * fault() callback, and never using the value of vma->vm_page_prot, 2333 * except for page-table entries that point to anonymous pages as the result 2334 * of COW. 2335 * 2336 * Context: Process context. May allocate using %GFP_KERNEL. 2337 * Return: vm_fault_t value. 2338 */ 2339 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2340 pfn_t pfn, pgprot_t pgprot) 2341 { 2342 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2343 } 2344 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2345 2346 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2347 pfn_t pfn) 2348 { 2349 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2350 } 2351 EXPORT_SYMBOL(vmf_insert_mixed); 2352 2353 /* 2354 * If the insertion of PTE failed because someone else already added a 2355 * different entry in the mean time, we treat that as success as we assume 2356 * the same entry was actually inserted. 2357 */ 2358 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2359 unsigned long addr, pfn_t pfn) 2360 { 2361 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2362 } 2363 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2364 2365 /* 2366 * maps a range of physical memory into the requested pages. the old 2367 * mappings are removed. any references to nonexistent pages results 2368 * in null mappings (currently treated as "copy-on-access") 2369 */ 2370 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2371 unsigned long addr, unsigned long end, 2372 unsigned long pfn, pgprot_t prot) 2373 { 2374 pte_t *pte, *mapped_pte; 2375 spinlock_t *ptl; 2376 int err = 0; 2377 2378 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2379 if (!pte) 2380 return -ENOMEM; 2381 arch_enter_lazy_mmu_mode(); 2382 do { 2383 BUG_ON(!pte_none(*pte)); 2384 if (!pfn_modify_allowed(pfn, prot)) { 2385 err = -EACCES; 2386 break; 2387 } 2388 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2389 pfn++; 2390 } while (pte++, addr += PAGE_SIZE, addr != end); 2391 arch_leave_lazy_mmu_mode(); 2392 pte_unmap_unlock(mapped_pte, ptl); 2393 return err; 2394 } 2395 2396 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2397 unsigned long addr, unsigned long end, 2398 unsigned long pfn, pgprot_t prot) 2399 { 2400 pmd_t *pmd; 2401 unsigned long next; 2402 int err; 2403 2404 pfn -= addr >> PAGE_SHIFT; 2405 pmd = pmd_alloc(mm, pud, addr); 2406 if (!pmd) 2407 return -ENOMEM; 2408 VM_BUG_ON(pmd_trans_huge(*pmd)); 2409 do { 2410 next = pmd_addr_end(addr, end); 2411 err = remap_pte_range(mm, pmd, addr, next, 2412 pfn + (addr >> PAGE_SHIFT), prot); 2413 if (err) 2414 return err; 2415 } while (pmd++, addr = next, addr != end); 2416 return 0; 2417 } 2418 2419 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2420 unsigned long addr, unsigned long end, 2421 unsigned long pfn, pgprot_t prot) 2422 { 2423 pud_t *pud; 2424 unsigned long next; 2425 int err; 2426 2427 pfn -= addr >> PAGE_SHIFT; 2428 pud = pud_alloc(mm, p4d, addr); 2429 if (!pud) 2430 return -ENOMEM; 2431 do { 2432 next = pud_addr_end(addr, end); 2433 err = remap_pmd_range(mm, pud, addr, next, 2434 pfn + (addr >> PAGE_SHIFT), prot); 2435 if (err) 2436 return err; 2437 } while (pud++, addr = next, addr != end); 2438 return 0; 2439 } 2440 2441 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2442 unsigned long addr, unsigned long end, 2443 unsigned long pfn, pgprot_t prot) 2444 { 2445 p4d_t *p4d; 2446 unsigned long next; 2447 int err; 2448 2449 pfn -= addr >> PAGE_SHIFT; 2450 p4d = p4d_alloc(mm, pgd, addr); 2451 if (!p4d) 2452 return -ENOMEM; 2453 do { 2454 next = p4d_addr_end(addr, end); 2455 err = remap_pud_range(mm, p4d, addr, next, 2456 pfn + (addr >> PAGE_SHIFT), prot); 2457 if (err) 2458 return err; 2459 } while (p4d++, addr = next, addr != end); 2460 return 0; 2461 } 2462 2463 /* 2464 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2465 * must have pre-validated the caching bits of the pgprot_t. 2466 */ 2467 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2468 unsigned long pfn, unsigned long size, pgprot_t prot) 2469 { 2470 pgd_t *pgd; 2471 unsigned long next; 2472 unsigned long end = addr + PAGE_ALIGN(size); 2473 struct mm_struct *mm = vma->vm_mm; 2474 int err; 2475 2476 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2477 return -EINVAL; 2478 2479 /* 2480 * Physically remapped pages are special. Tell the 2481 * rest of the world about it: 2482 * VM_IO tells people not to look at these pages 2483 * (accesses can have side effects). 2484 * VM_PFNMAP tells the core MM that the base pages are just 2485 * raw PFN mappings, and do not have a "struct page" associated 2486 * with them. 2487 * VM_DONTEXPAND 2488 * Disable vma merging and expanding with mremap(). 2489 * VM_DONTDUMP 2490 * Omit vma from core dump, even when VM_IO turned off. 2491 * 2492 * There's a horrible special case to handle copy-on-write 2493 * behaviour that some programs depend on. We mark the "original" 2494 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2495 * See vm_normal_page() for details. 2496 */ 2497 if (is_cow_mapping(vma->vm_flags)) { 2498 if (addr != vma->vm_start || end != vma->vm_end) 2499 return -EINVAL; 2500 vma->vm_pgoff = pfn; 2501 } 2502 2503 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2504 2505 BUG_ON(addr >= end); 2506 pfn -= addr >> PAGE_SHIFT; 2507 pgd = pgd_offset(mm, addr); 2508 flush_cache_range(vma, addr, end); 2509 do { 2510 next = pgd_addr_end(addr, end); 2511 err = remap_p4d_range(mm, pgd, addr, next, 2512 pfn + (addr >> PAGE_SHIFT), prot); 2513 if (err) 2514 return err; 2515 } while (pgd++, addr = next, addr != end); 2516 2517 return 0; 2518 } 2519 2520 /** 2521 * remap_pfn_range - remap kernel memory to userspace 2522 * @vma: user vma to map to 2523 * @addr: target page aligned user address to start at 2524 * @pfn: page frame number of kernel physical memory address 2525 * @size: size of mapping area 2526 * @prot: page protection flags for this mapping 2527 * 2528 * Note: this is only safe if the mm semaphore is held when called. 2529 * 2530 * Return: %0 on success, negative error code otherwise. 2531 */ 2532 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2533 unsigned long pfn, unsigned long size, pgprot_t prot) 2534 { 2535 int err; 2536 2537 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2538 if (err) 2539 return -EINVAL; 2540 2541 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2542 if (err) 2543 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2544 return err; 2545 } 2546 EXPORT_SYMBOL(remap_pfn_range); 2547 2548 /** 2549 * vm_iomap_memory - remap memory to userspace 2550 * @vma: user vma to map to 2551 * @start: start of the physical memory to be mapped 2552 * @len: size of area 2553 * 2554 * This is a simplified io_remap_pfn_range() for common driver use. The 2555 * driver just needs to give us the physical memory range to be mapped, 2556 * we'll figure out the rest from the vma information. 2557 * 2558 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2559 * whatever write-combining details or similar. 2560 * 2561 * Return: %0 on success, negative error code otherwise. 2562 */ 2563 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2564 { 2565 unsigned long vm_len, pfn, pages; 2566 2567 /* Check that the physical memory area passed in looks valid */ 2568 if (start + len < start) 2569 return -EINVAL; 2570 /* 2571 * You *really* shouldn't map things that aren't page-aligned, 2572 * but we've historically allowed it because IO memory might 2573 * just have smaller alignment. 2574 */ 2575 len += start & ~PAGE_MASK; 2576 pfn = start >> PAGE_SHIFT; 2577 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2578 if (pfn + pages < pfn) 2579 return -EINVAL; 2580 2581 /* We start the mapping 'vm_pgoff' pages into the area */ 2582 if (vma->vm_pgoff > pages) 2583 return -EINVAL; 2584 pfn += vma->vm_pgoff; 2585 pages -= vma->vm_pgoff; 2586 2587 /* Can we fit all of the mapping? */ 2588 vm_len = vma->vm_end - vma->vm_start; 2589 if (vm_len >> PAGE_SHIFT > pages) 2590 return -EINVAL; 2591 2592 /* Ok, let it rip */ 2593 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2594 } 2595 EXPORT_SYMBOL(vm_iomap_memory); 2596 2597 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2598 unsigned long addr, unsigned long end, 2599 pte_fn_t fn, void *data, bool create, 2600 pgtbl_mod_mask *mask) 2601 { 2602 pte_t *pte, *mapped_pte; 2603 int err = 0; 2604 spinlock_t *ptl; 2605 2606 if (create) { 2607 mapped_pte = pte = (mm == &init_mm) ? 2608 pte_alloc_kernel_track(pmd, addr, mask) : 2609 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2610 if (!pte) 2611 return -ENOMEM; 2612 } else { 2613 mapped_pte = pte = (mm == &init_mm) ? 2614 pte_offset_kernel(pmd, addr) : 2615 pte_offset_map_lock(mm, pmd, addr, &ptl); 2616 } 2617 2618 BUG_ON(pmd_huge(*pmd)); 2619 2620 arch_enter_lazy_mmu_mode(); 2621 2622 if (fn) { 2623 do { 2624 if (create || !pte_none(*pte)) { 2625 err = fn(pte++, addr, data); 2626 if (err) 2627 break; 2628 } 2629 } while (addr += PAGE_SIZE, addr != end); 2630 } 2631 *mask |= PGTBL_PTE_MODIFIED; 2632 2633 arch_leave_lazy_mmu_mode(); 2634 2635 if (mm != &init_mm) 2636 pte_unmap_unlock(mapped_pte, ptl); 2637 return err; 2638 } 2639 2640 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2641 unsigned long addr, unsigned long end, 2642 pte_fn_t fn, void *data, bool create, 2643 pgtbl_mod_mask *mask) 2644 { 2645 pmd_t *pmd; 2646 unsigned long next; 2647 int err = 0; 2648 2649 BUG_ON(pud_huge(*pud)); 2650 2651 if (create) { 2652 pmd = pmd_alloc_track(mm, pud, addr, mask); 2653 if (!pmd) 2654 return -ENOMEM; 2655 } else { 2656 pmd = pmd_offset(pud, addr); 2657 } 2658 do { 2659 next = pmd_addr_end(addr, end); 2660 if (pmd_none(*pmd) && !create) 2661 continue; 2662 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2663 return -EINVAL; 2664 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2665 if (!create) 2666 continue; 2667 pmd_clear_bad(pmd); 2668 } 2669 err = apply_to_pte_range(mm, pmd, addr, next, 2670 fn, data, create, mask); 2671 if (err) 2672 break; 2673 } while (pmd++, addr = next, addr != end); 2674 2675 return err; 2676 } 2677 2678 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2679 unsigned long addr, unsigned long end, 2680 pte_fn_t fn, void *data, bool create, 2681 pgtbl_mod_mask *mask) 2682 { 2683 pud_t *pud; 2684 unsigned long next; 2685 int err = 0; 2686 2687 if (create) { 2688 pud = pud_alloc_track(mm, p4d, addr, mask); 2689 if (!pud) 2690 return -ENOMEM; 2691 } else { 2692 pud = pud_offset(p4d, addr); 2693 } 2694 do { 2695 next = pud_addr_end(addr, end); 2696 if (pud_none(*pud) && !create) 2697 continue; 2698 if (WARN_ON_ONCE(pud_leaf(*pud))) 2699 return -EINVAL; 2700 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2701 if (!create) 2702 continue; 2703 pud_clear_bad(pud); 2704 } 2705 err = apply_to_pmd_range(mm, pud, addr, next, 2706 fn, data, create, mask); 2707 if (err) 2708 break; 2709 } while (pud++, addr = next, addr != end); 2710 2711 return err; 2712 } 2713 2714 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2715 unsigned long addr, unsigned long end, 2716 pte_fn_t fn, void *data, bool create, 2717 pgtbl_mod_mask *mask) 2718 { 2719 p4d_t *p4d; 2720 unsigned long next; 2721 int err = 0; 2722 2723 if (create) { 2724 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2725 if (!p4d) 2726 return -ENOMEM; 2727 } else { 2728 p4d = p4d_offset(pgd, addr); 2729 } 2730 do { 2731 next = p4d_addr_end(addr, end); 2732 if (p4d_none(*p4d) && !create) 2733 continue; 2734 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2735 return -EINVAL; 2736 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2737 if (!create) 2738 continue; 2739 p4d_clear_bad(p4d); 2740 } 2741 err = apply_to_pud_range(mm, p4d, addr, next, 2742 fn, data, create, mask); 2743 if (err) 2744 break; 2745 } while (p4d++, addr = next, addr != end); 2746 2747 return err; 2748 } 2749 2750 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2751 unsigned long size, pte_fn_t fn, 2752 void *data, bool create) 2753 { 2754 pgd_t *pgd; 2755 unsigned long start = addr, next; 2756 unsigned long end = addr + size; 2757 pgtbl_mod_mask mask = 0; 2758 int err = 0; 2759 2760 if (WARN_ON(addr >= end)) 2761 return -EINVAL; 2762 2763 pgd = pgd_offset(mm, addr); 2764 do { 2765 next = pgd_addr_end(addr, end); 2766 if (pgd_none(*pgd) && !create) 2767 continue; 2768 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2769 return -EINVAL; 2770 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2771 if (!create) 2772 continue; 2773 pgd_clear_bad(pgd); 2774 } 2775 err = apply_to_p4d_range(mm, pgd, addr, next, 2776 fn, data, create, &mask); 2777 if (err) 2778 break; 2779 } while (pgd++, addr = next, addr != end); 2780 2781 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2782 arch_sync_kernel_mappings(start, start + size); 2783 2784 return err; 2785 } 2786 2787 /* 2788 * Scan a region of virtual memory, filling in page tables as necessary 2789 * and calling a provided function on each leaf page table. 2790 */ 2791 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2792 unsigned long size, pte_fn_t fn, void *data) 2793 { 2794 return __apply_to_page_range(mm, addr, size, fn, data, true); 2795 } 2796 EXPORT_SYMBOL_GPL(apply_to_page_range); 2797 2798 /* 2799 * Scan a region of virtual memory, calling a provided function on 2800 * each leaf page table where it exists. 2801 * 2802 * Unlike apply_to_page_range, this does _not_ fill in page tables 2803 * where they are absent. 2804 */ 2805 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2806 unsigned long size, pte_fn_t fn, void *data) 2807 { 2808 return __apply_to_page_range(mm, addr, size, fn, data, false); 2809 } 2810 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2811 2812 /* 2813 * handle_pte_fault chooses page fault handler according to an entry which was 2814 * read non-atomically. Before making any commitment, on those architectures 2815 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2816 * parts, do_swap_page must check under lock before unmapping the pte and 2817 * proceeding (but do_wp_page is only called after already making such a check; 2818 * and do_anonymous_page can safely check later on). 2819 */ 2820 static inline int pte_unmap_same(struct vm_fault *vmf) 2821 { 2822 int same = 1; 2823 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2824 if (sizeof(pte_t) > sizeof(unsigned long)) { 2825 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2826 spin_lock(ptl); 2827 same = pte_same(*vmf->pte, vmf->orig_pte); 2828 spin_unlock(ptl); 2829 } 2830 #endif 2831 pte_unmap(vmf->pte); 2832 vmf->pte = NULL; 2833 return same; 2834 } 2835 2836 static inline bool __wp_page_copy_user(struct page *dst, struct page *src, 2837 struct vm_fault *vmf) 2838 { 2839 bool ret; 2840 void *kaddr; 2841 void __user *uaddr; 2842 bool locked = false; 2843 struct vm_area_struct *vma = vmf->vma; 2844 struct mm_struct *mm = vma->vm_mm; 2845 unsigned long addr = vmf->address; 2846 2847 if (likely(src)) { 2848 copy_user_highpage(dst, src, addr, vma); 2849 return true; 2850 } 2851 2852 /* 2853 * If the source page was a PFN mapping, we don't have 2854 * a "struct page" for it. We do a best-effort copy by 2855 * just copying from the original user address. If that 2856 * fails, we just zero-fill it. Live with it. 2857 */ 2858 kaddr = kmap_atomic(dst); 2859 uaddr = (void __user *)(addr & PAGE_MASK); 2860 2861 /* 2862 * On architectures with software "accessed" bits, we would 2863 * take a double page fault, so mark it accessed here. 2864 */ 2865 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2866 pte_t entry; 2867 2868 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2869 locked = true; 2870 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2871 /* 2872 * Other thread has already handled the fault 2873 * and update local tlb only 2874 */ 2875 update_mmu_tlb(vma, addr, vmf->pte); 2876 ret = false; 2877 goto pte_unlock; 2878 } 2879 2880 entry = pte_mkyoung(vmf->orig_pte); 2881 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2882 update_mmu_cache(vma, addr, vmf->pte); 2883 } 2884 2885 /* 2886 * This really shouldn't fail, because the page is there 2887 * in the page tables. But it might just be unreadable, 2888 * in which case we just give up and fill the result with 2889 * zeroes. 2890 */ 2891 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2892 if (locked) 2893 goto warn; 2894 2895 /* Re-validate under PTL if the page is still mapped */ 2896 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2897 locked = true; 2898 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2899 /* The PTE changed under us, update local tlb */ 2900 update_mmu_tlb(vma, addr, vmf->pte); 2901 ret = false; 2902 goto pte_unlock; 2903 } 2904 2905 /* 2906 * The same page can be mapped back since last copy attempt. 2907 * Try to copy again under PTL. 2908 */ 2909 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2910 /* 2911 * Give a warn in case there can be some obscure 2912 * use-case 2913 */ 2914 warn: 2915 WARN_ON_ONCE(1); 2916 clear_page(kaddr); 2917 } 2918 } 2919 2920 ret = true; 2921 2922 pte_unlock: 2923 if (locked) 2924 pte_unmap_unlock(vmf->pte, vmf->ptl); 2925 kunmap_atomic(kaddr); 2926 flush_dcache_page(dst); 2927 2928 return ret; 2929 } 2930 2931 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2932 { 2933 struct file *vm_file = vma->vm_file; 2934 2935 if (vm_file) 2936 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2937 2938 /* 2939 * Special mappings (e.g. VDSO) do not have any file so fake 2940 * a default GFP_KERNEL for them. 2941 */ 2942 return GFP_KERNEL; 2943 } 2944 2945 /* 2946 * Notify the address space that the page is about to become writable so that 2947 * it can prohibit this or wait for the page to get into an appropriate state. 2948 * 2949 * We do this without the lock held, so that it can sleep if it needs to. 2950 */ 2951 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2952 { 2953 vm_fault_t ret; 2954 struct page *page = vmf->page; 2955 unsigned int old_flags = vmf->flags; 2956 2957 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2958 2959 if (vmf->vma->vm_file && 2960 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2961 return VM_FAULT_SIGBUS; 2962 2963 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2964 /* Restore original flags so that caller is not surprised */ 2965 vmf->flags = old_flags; 2966 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2967 return ret; 2968 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2969 lock_page(page); 2970 if (!page->mapping) { 2971 unlock_page(page); 2972 return 0; /* retry */ 2973 } 2974 ret |= VM_FAULT_LOCKED; 2975 } else 2976 VM_BUG_ON_PAGE(!PageLocked(page), page); 2977 return ret; 2978 } 2979 2980 /* 2981 * Handle dirtying of a page in shared file mapping on a write fault. 2982 * 2983 * The function expects the page to be locked and unlocks it. 2984 */ 2985 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2986 { 2987 struct vm_area_struct *vma = vmf->vma; 2988 struct address_space *mapping; 2989 struct page *page = vmf->page; 2990 bool dirtied; 2991 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2992 2993 dirtied = set_page_dirty(page); 2994 VM_BUG_ON_PAGE(PageAnon(page), page); 2995 /* 2996 * Take a local copy of the address_space - page.mapping may be zeroed 2997 * by truncate after unlock_page(). The address_space itself remains 2998 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2999 * release semantics to prevent the compiler from undoing this copying. 3000 */ 3001 mapping = page_rmapping(page); 3002 unlock_page(page); 3003 3004 if (!page_mkwrite) 3005 file_update_time(vma->vm_file); 3006 3007 /* 3008 * Throttle page dirtying rate down to writeback speed. 3009 * 3010 * mapping may be NULL here because some device drivers do not 3011 * set page.mapping but still dirty their pages 3012 * 3013 * Drop the mmap_lock before waiting on IO, if we can. The file 3014 * is pinning the mapping, as per above. 3015 */ 3016 if ((dirtied || page_mkwrite) && mapping) { 3017 struct file *fpin; 3018 3019 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3020 balance_dirty_pages_ratelimited(mapping); 3021 if (fpin) { 3022 fput(fpin); 3023 return VM_FAULT_RETRY; 3024 } 3025 } 3026 3027 return 0; 3028 } 3029 3030 /* 3031 * Handle write page faults for pages that can be reused in the current vma 3032 * 3033 * This can happen either due to the mapping being with the VM_SHARED flag, 3034 * or due to us being the last reference standing to the page. In either 3035 * case, all we need to do here is to mark the page as writable and update 3036 * any related book-keeping. 3037 */ 3038 static inline void wp_page_reuse(struct vm_fault *vmf) 3039 __releases(vmf->ptl) 3040 { 3041 struct vm_area_struct *vma = vmf->vma; 3042 struct page *page = vmf->page; 3043 pte_t entry; 3044 3045 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3046 VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page)); 3047 3048 /* 3049 * Clear the pages cpupid information as the existing 3050 * information potentially belongs to a now completely 3051 * unrelated process. 3052 */ 3053 if (page) 3054 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3055 3056 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3057 entry = pte_mkyoung(vmf->orig_pte); 3058 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3059 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3060 update_mmu_cache(vma, vmf->address, vmf->pte); 3061 pte_unmap_unlock(vmf->pte, vmf->ptl); 3062 count_vm_event(PGREUSE); 3063 } 3064 3065 /* 3066 * Handle the case of a page which we actually need to copy to a new page, 3067 * either due to COW or unsharing. 3068 * 3069 * Called with mmap_lock locked and the old page referenced, but 3070 * without the ptl held. 3071 * 3072 * High level logic flow: 3073 * 3074 * - Allocate a page, copy the content of the old page to the new one. 3075 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3076 * - Take the PTL. If the pte changed, bail out and release the allocated page 3077 * - If the pte is still the way we remember it, update the page table and all 3078 * relevant references. This includes dropping the reference the page-table 3079 * held to the old page, as well as updating the rmap. 3080 * - In any case, unlock the PTL and drop the reference we took to the old page. 3081 */ 3082 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3083 { 3084 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3085 struct vm_area_struct *vma = vmf->vma; 3086 struct mm_struct *mm = vma->vm_mm; 3087 struct page *old_page = vmf->page; 3088 struct page *new_page = NULL; 3089 pte_t entry; 3090 int page_copied = 0; 3091 struct mmu_notifier_range range; 3092 3093 delayacct_wpcopy_start(); 3094 3095 if (unlikely(anon_vma_prepare(vma))) 3096 goto oom; 3097 3098 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3099 new_page = alloc_zeroed_user_highpage_movable(vma, 3100 vmf->address); 3101 if (!new_page) 3102 goto oom; 3103 } else { 3104 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3105 vmf->address); 3106 if (!new_page) 3107 goto oom; 3108 3109 if (!__wp_page_copy_user(new_page, old_page, vmf)) { 3110 /* 3111 * COW failed, if the fault was solved by other, 3112 * it's fine. If not, userspace would re-fault on 3113 * the same address and we will handle the fault 3114 * from the second attempt. 3115 */ 3116 put_page(new_page); 3117 if (old_page) 3118 put_page(old_page); 3119 3120 delayacct_wpcopy_end(); 3121 return 0; 3122 } 3123 } 3124 3125 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) 3126 goto oom_free_new; 3127 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3128 3129 __SetPageUptodate(new_page); 3130 3131 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3132 vmf->address & PAGE_MASK, 3133 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3134 mmu_notifier_invalidate_range_start(&range); 3135 3136 /* 3137 * Re-check the pte - we dropped the lock 3138 */ 3139 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3140 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3141 if (old_page) { 3142 if (!PageAnon(old_page)) { 3143 dec_mm_counter_fast(mm, 3144 mm_counter_file(old_page)); 3145 inc_mm_counter_fast(mm, MM_ANONPAGES); 3146 } 3147 } else { 3148 inc_mm_counter_fast(mm, MM_ANONPAGES); 3149 } 3150 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3151 entry = mk_pte(new_page, vma->vm_page_prot); 3152 entry = pte_sw_mkyoung(entry); 3153 if (unlikely(unshare)) { 3154 if (pte_soft_dirty(vmf->orig_pte)) 3155 entry = pte_mksoft_dirty(entry); 3156 if (pte_uffd_wp(vmf->orig_pte)) 3157 entry = pte_mkuffd_wp(entry); 3158 } else { 3159 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3160 } 3161 3162 /* 3163 * Clear the pte entry and flush it first, before updating the 3164 * pte with the new entry, to keep TLBs on different CPUs in 3165 * sync. This code used to set the new PTE then flush TLBs, but 3166 * that left a window where the new PTE could be loaded into 3167 * some TLBs while the old PTE remains in others. 3168 */ 3169 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3170 page_add_new_anon_rmap(new_page, vma, vmf->address); 3171 lru_cache_add_inactive_or_unevictable(new_page, vma); 3172 /* 3173 * We call the notify macro here because, when using secondary 3174 * mmu page tables (such as kvm shadow page tables), we want the 3175 * new page to be mapped directly into the secondary page table. 3176 */ 3177 BUG_ON(unshare && pte_write(entry)); 3178 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3179 update_mmu_cache(vma, vmf->address, vmf->pte); 3180 if (old_page) { 3181 /* 3182 * Only after switching the pte to the new page may 3183 * we remove the mapcount here. Otherwise another 3184 * process may come and find the rmap count decremented 3185 * before the pte is switched to the new page, and 3186 * "reuse" the old page writing into it while our pte 3187 * here still points into it and can be read by other 3188 * threads. 3189 * 3190 * The critical issue is to order this 3191 * page_remove_rmap with the ptp_clear_flush above. 3192 * Those stores are ordered by (if nothing else,) 3193 * the barrier present in the atomic_add_negative 3194 * in page_remove_rmap. 3195 * 3196 * Then the TLB flush in ptep_clear_flush ensures that 3197 * no process can access the old page before the 3198 * decremented mapcount is visible. And the old page 3199 * cannot be reused until after the decremented 3200 * mapcount is visible. So transitively, TLBs to 3201 * old page will be flushed before it can be reused. 3202 */ 3203 page_remove_rmap(old_page, vma, false); 3204 } 3205 3206 /* Free the old page.. */ 3207 new_page = old_page; 3208 page_copied = 1; 3209 } else { 3210 update_mmu_tlb(vma, vmf->address, vmf->pte); 3211 } 3212 3213 if (new_page) 3214 put_page(new_page); 3215 3216 pte_unmap_unlock(vmf->pte, vmf->ptl); 3217 /* 3218 * No need to double call mmu_notifier->invalidate_range() callback as 3219 * the above ptep_clear_flush_notify() did already call it. 3220 */ 3221 mmu_notifier_invalidate_range_only_end(&range); 3222 if (old_page) { 3223 if (page_copied) 3224 free_swap_cache(old_page); 3225 put_page(old_page); 3226 } 3227 3228 delayacct_wpcopy_end(); 3229 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0; 3230 oom_free_new: 3231 put_page(new_page); 3232 oom: 3233 if (old_page) 3234 put_page(old_page); 3235 3236 delayacct_wpcopy_end(); 3237 return VM_FAULT_OOM; 3238 } 3239 3240 /** 3241 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3242 * writeable once the page is prepared 3243 * 3244 * @vmf: structure describing the fault 3245 * 3246 * This function handles all that is needed to finish a write page fault in a 3247 * shared mapping due to PTE being read-only once the mapped page is prepared. 3248 * It handles locking of PTE and modifying it. 3249 * 3250 * The function expects the page to be locked or other protection against 3251 * concurrent faults / writeback (such as DAX radix tree locks). 3252 * 3253 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3254 * we acquired PTE lock. 3255 */ 3256 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3257 { 3258 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3259 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3260 &vmf->ptl); 3261 /* 3262 * We might have raced with another page fault while we released the 3263 * pte_offset_map_lock. 3264 */ 3265 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3266 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3267 pte_unmap_unlock(vmf->pte, vmf->ptl); 3268 return VM_FAULT_NOPAGE; 3269 } 3270 wp_page_reuse(vmf); 3271 return 0; 3272 } 3273 3274 /* 3275 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3276 * mapping 3277 */ 3278 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3279 { 3280 struct vm_area_struct *vma = vmf->vma; 3281 3282 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3283 vm_fault_t ret; 3284 3285 pte_unmap_unlock(vmf->pte, vmf->ptl); 3286 vmf->flags |= FAULT_FLAG_MKWRITE; 3287 ret = vma->vm_ops->pfn_mkwrite(vmf); 3288 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3289 return ret; 3290 return finish_mkwrite_fault(vmf); 3291 } 3292 wp_page_reuse(vmf); 3293 return VM_FAULT_WRITE; 3294 } 3295 3296 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3297 __releases(vmf->ptl) 3298 { 3299 struct vm_area_struct *vma = vmf->vma; 3300 vm_fault_t ret = VM_FAULT_WRITE; 3301 3302 get_page(vmf->page); 3303 3304 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3305 vm_fault_t tmp; 3306 3307 pte_unmap_unlock(vmf->pte, vmf->ptl); 3308 tmp = do_page_mkwrite(vmf); 3309 if (unlikely(!tmp || (tmp & 3310 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3311 put_page(vmf->page); 3312 return tmp; 3313 } 3314 tmp = finish_mkwrite_fault(vmf); 3315 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3316 unlock_page(vmf->page); 3317 put_page(vmf->page); 3318 return tmp; 3319 } 3320 } else { 3321 wp_page_reuse(vmf); 3322 lock_page(vmf->page); 3323 } 3324 ret |= fault_dirty_shared_page(vmf); 3325 put_page(vmf->page); 3326 3327 return ret; 3328 } 3329 3330 /* 3331 * This routine handles present pages, when 3332 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3333 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3334 * (FAULT_FLAG_UNSHARE) 3335 * 3336 * It is done by copying the page to a new address and decrementing the 3337 * shared-page counter for the old page. 3338 * 3339 * Note that this routine assumes that the protection checks have been 3340 * done by the caller (the low-level page fault routine in most cases). 3341 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3342 * done any necessary COW. 3343 * 3344 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3345 * though the page will change only once the write actually happens. This 3346 * avoids a few races, and potentially makes it more efficient. 3347 * 3348 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3349 * but allow concurrent faults), with pte both mapped and locked. 3350 * We return with mmap_lock still held, but pte unmapped and unlocked. 3351 */ 3352 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3353 __releases(vmf->ptl) 3354 { 3355 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3356 struct vm_area_struct *vma = vmf->vma; 3357 3358 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE)); 3359 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE)); 3360 3361 if (likely(!unshare)) { 3362 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3363 pte_unmap_unlock(vmf->pte, vmf->ptl); 3364 return handle_userfault(vmf, VM_UFFD_WP); 3365 } 3366 3367 /* 3368 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3369 * is flushed in this case before copying. 3370 */ 3371 if (unlikely(userfaultfd_wp(vmf->vma) && 3372 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3373 flush_tlb_page(vmf->vma, vmf->address); 3374 } 3375 3376 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3377 if (!vmf->page) { 3378 if (unlikely(unshare)) { 3379 /* No anonymous page -> nothing to do. */ 3380 pte_unmap_unlock(vmf->pte, vmf->ptl); 3381 return 0; 3382 } 3383 3384 /* 3385 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3386 * VM_PFNMAP VMA. 3387 * 3388 * We should not cow pages in a shared writeable mapping. 3389 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3390 */ 3391 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3392 (VM_WRITE|VM_SHARED)) 3393 return wp_pfn_shared(vmf); 3394 3395 pte_unmap_unlock(vmf->pte, vmf->ptl); 3396 return wp_page_copy(vmf); 3397 } 3398 3399 /* 3400 * Take out anonymous pages first, anonymous shared vmas are 3401 * not dirty accountable. 3402 */ 3403 if (PageAnon(vmf->page)) { 3404 struct page *page = vmf->page; 3405 3406 /* 3407 * If the page is exclusive to this process we must reuse the 3408 * page without further checks. 3409 */ 3410 if (PageAnonExclusive(page)) 3411 goto reuse; 3412 3413 /* 3414 * We have to verify under page lock: these early checks are 3415 * just an optimization to avoid locking the page and freeing 3416 * the swapcache if there is little hope that we can reuse. 3417 * 3418 * PageKsm() doesn't necessarily raise the page refcount. 3419 */ 3420 if (PageKsm(page) || page_count(page) > 3) 3421 goto copy; 3422 if (!PageLRU(page)) 3423 /* 3424 * Note: We cannot easily detect+handle references from 3425 * remote LRU pagevecs or references to PageLRU() pages. 3426 */ 3427 lru_add_drain(); 3428 if (page_count(page) > 1 + PageSwapCache(page)) 3429 goto copy; 3430 if (!trylock_page(page)) 3431 goto copy; 3432 if (PageSwapCache(page)) 3433 try_to_free_swap(page); 3434 if (PageKsm(page) || page_count(page) != 1) { 3435 unlock_page(page); 3436 goto copy; 3437 } 3438 /* 3439 * Ok, we've got the only page reference from our mapping 3440 * and the page is locked, it's dark out, and we're wearing 3441 * sunglasses. Hit it. 3442 */ 3443 page_move_anon_rmap(page, vma); 3444 unlock_page(page); 3445 reuse: 3446 if (unlikely(unshare)) { 3447 pte_unmap_unlock(vmf->pte, vmf->ptl); 3448 return 0; 3449 } 3450 wp_page_reuse(vmf); 3451 return VM_FAULT_WRITE; 3452 } else if (unshare) { 3453 /* No anonymous page -> nothing to do. */ 3454 pte_unmap_unlock(vmf->pte, vmf->ptl); 3455 return 0; 3456 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3457 (VM_WRITE|VM_SHARED))) { 3458 return wp_page_shared(vmf); 3459 } 3460 copy: 3461 /* 3462 * Ok, we need to copy. Oh, well.. 3463 */ 3464 get_page(vmf->page); 3465 3466 pte_unmap_unlock(vmf->pte, vmf->ptl); 3467 #ifdef CONFIG_KSM 3468 if (PageKsm(vmf->page)) 3469 count_vm_event(COW_KSM); 3470 #endif 3471 return wp_page_copy(vmf); 3472 } 3473 3474 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3475 unsigned long start_addr, unsigned long end_addr, 3476 struct zap_details *details) 3477 { 3478 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3479 } 3480 3481 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3482 pgoff_t first_index, 3483 pgoff_t last_index, 3484 struct zap_details *details) 3485 { 3486 struct vm_area_struct *vma; 3487 pgoff_t vba, vea, zba, zea; 3488 3489 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3490 vba = vma->vm_pgoff; 3491 vea = vba + vma_pages(vma) - 1; 3492 zba = max(first_index, vba); 3493 zea = min(last_index, vea); 3494 3495 unmap_mapping_range_vma(vma, 3496 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3497 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3498 details); 3499 } 3500 } 3501 3502 /** 3503 * unmap_mapping_folio() - Unmap single folio from processes. 3504 * @folio: The locked folio to be unmapped. 3505 * 3506 * Unmap this folio from any userspace process which still has it mmaped. 3507 * Typically, for efficiency, the range of nearby pages has already been 3508 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3509 * truncation or invalidation holds the lock on a folio, it may find that 3510 * the page has been remapped again: and then uses unmap_mapping_folio() 3511 * to unmap it finally. 3512 */ 3513 void unmap_mapping_folio(struct folio *folio) 3514 { 3515 struct address_space *mapping = folio->mapping; 3516 struct zap_details details = { }; 3517 pgoff_t first_index; 3518 pgoff_t last_index; 3519 3520 VM_BUG_ON(!folio_test_locked(folio)); 3521 3522 first_index = folio->index; 3523 last_index = folio->index + folio_nr_pages(folio) - 1; 3524 3525 details.even_cows = false; 3526 details.single_folio = folio; 3527 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3528 3529 i_mmap_lock_read(mapping); 3530 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3531 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3532 last_index, &details); 3533 i_mmap_unlock_read(mapping); 3534 } 3535 3536 /** 3537 * unmap_mapping_pages() - Unmap pages from processes. 3538 * @mapping: The address space containing pages to be unmapped. 3539 * @start: Index of first page to be unmapped. 3540 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3541 * @even_cows: Whether to unmap even private COWed pages. 3542 * 3543 * Unmap the pages in this address space from any userspace process which 3544 * has them mmaped. Generally, you want to remove COWed pages as well when 3545 * a file is being truncated, but not when invalidating pages from the page 3546 * cache. 3547 */ 3548 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3549 pgoff_t nr, bool even_cows) 3550 { 3551 struct zap_details details = { }; 3552 pgoff_t first_index = start; 3553 pgoff_t last_index = start + nr - 1; 3554 3555 details.even_cows = even_cows; 3556 if (last_index < first_index) 3557 last_index = ULONG_MAX; 3558 3559 i_mmap_lock_read(mapping); 3560 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3561 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3562 last_index, &details); 3563 i_mmap_unlock_read(mapping); 3564 } 3565 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3566 3567 /** 3568 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3569 * address_space corresponding to the specified byte range in the underlying 3570 * file. 3571 * 3572 * @mapping: the address space containing mmaps to be unmapped. 3573 * @holebegin: byte in first page to unmap, relative to the start of 3574 * the underlying file. This will be rounded down to a PAGE_SIZE 3575 * boundary. Note that this is different from truncate_pagecache(), which 3576 * must keep the partial page. In contrast, we must get rid of 3577 * partial pages. 3578 * @holelen: size of prospective hole in bytes. This will be rounded 3579 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3580 * end of the file. 3581 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3582 * but 0 when invalidating pagecache, don't throw away private data. 3583 */ 3584 void unmap_mapping_range(struct address_space *mapping, 3585 loff_t const holebegin, loff_t const holelen, int even_cows) 3586 { 3587 pgoff_t hba = holebegin >> PAGE_SHIFT; 3588 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3589 3590 /* Check for overflow. */ 3591 if (sizeof(holelen) > sizeof(hlen)) { 3592 long long holeend = 3593 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3594 if (holeend & ~(long long)ULONG_MAX) 3595 hlen = ULONG_MAX - hba + 1; 3596 } 3597 3598 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3599 } 3600 EXPORT_SYMBOL(unmap_mapping_range); 3601 3602 /* 3603 * Restore a potential device exclusive pte to a working pte entry 3604 */ 3605 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3606 { 3607 struct page *page = vmf->page; 3608 struct vm_area_struct *vma = vmf->vma; 3609 struct mmu_notifier_range range; 3610 3611 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) 3612 return VM_FAULT_RETRY; 3613 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 3614 vma->vm_mm, vmf->address & PAGE_MASK, 3615 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3616 mmu_notifier_invalidate_range_start(&range); 3617 3618 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3619 &vmf->ptl); 3620 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3621 restore_exclusive_pte(vma, page, vmf->address, vmf->pte); 3622 3623 pte_unmap_unlock(vmf->pte, vmf->ptl); 3624 unlock_page(page); 3625 3626 mmu_notifier_invalidate_range_end(&range); 3627 return 0; 3628 } 3629 3630 static inline bool should_try_to_free_swap(struct page *page, 3631 struct vm_area_struct *vma, 3632 unsigned int fault_flags) 3633 { 3634 if (!PageSwapCache(page)) 3635 return false; 3636 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || 3637 PageMlocked(page)) 3638 return true; 3639 /* 3640 * If we want to map a page that's in the swapcache writable, we 3641 * have to detect via the refcount if we're really the exclusive 3642 * user. Try freeing the swapcache to get rid of the swapcache 3643 * reference only in case it's likely that we'll be the exlusive user. 3644 */ 3645 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) && 3646 page_count(page) == 2; 3647 } 3648 3649 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3650 { 3651 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3652 vmf->address, &vmf->ptl); 3653 /* 3654 * Be careful so that we will only recover a special uffd-wp pte into a 3655 * none pte. Otherwise it means the pte could have changed, so retry. 3656 */ 3657 if (is_pte_marker(*vmf->pte)) 3658 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3659 pte_unmap_unlock(vmf->pte, vmf->ptl); 3660 return 0; 3661 } 3662 3663 /* 3664 * This is actually a page-missing access, but with uffd-wp special pte 3665 * installed. It means this pte was wr-protected before being unmapped. 3666 */ 3667 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3668 { 3669 /* 3670 * Just in case there're leftover special ptes even after the region 3671 * got unregistered - we can simply clear them. We can also do that 3672 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp 3673 * ranges, but it should be more efficient to be done lazily here. 3674 */ 3675 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) 3676 return pte_marker_clear(vmf); 3677 3678 /* do_fault() can handle pte markers too like none pte */ 3679 return do_fault(vmf); 3680 } 3681 3682 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3683 { 3684 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3685 unsigned long marker = pte_marker_get(entry); 3686 3687 /* 3688 * PTE markers should always be with file-backed memories, and the 3689 * marker should never be empty. If anything weird happened, the best 3690 * thing to do is to kill the process along with its mm. 3691 */ 3692 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker)) 3693 return VM_FAULT_SIGBUS; 3694 3695 if (pte_marker_entry_uffd_wp(entry)) 3696 return pte_marker_handle_uffd_wp(vmf); 3697 3698 /* This is an unknown pte marker */ 3699 return VM_FAULT_SIGBUS; 3700 } 3701 3702 /* 3703 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3704 * but allow concurrent faults), and pte mapped but not yet locked. 3705 * We return with pte unmapped and unlocked. 3706 * 3707 * We return with the mmap_lock locked or unlocked in the same cases 3708 * as does filemap_fault(). 3709 */ 3710 vm_fault_t do_swap_page(struct vm_fault *vmf) 3711 { 3712 struct vm_area_struct *vma = vmf->vma; 3713 struct page *page = NULL, *swapcache; 3714 struct swap_info_struct *si = NULL; 3715 rmap_t rmap_flags = RMAP_NONE; 3716 bool exclusive = false; 3717 swp_entry_t entry; 3718 pte_t pte; 3719 int locked; 3720 vm_fault_t ret = 0; 3721 void *shadow = NULL; 3722 3723 if (!pte_unmap_same(vmf)) 3724 goto out; 3725 3726 entry = pte_to_swp_entry(vmf->orig_pte); 3727 if (unlikely(non_swap_entry(entry))) { 3728 if (is_migration_entry(entry)) { 3729 migration_entry_wait(vma->vm_mm, vmf->pmd, 3730 vmf->address); 3731 } else if (is_device_exclusive_entry(entry)) { 3732 vmf->page = pfn_swap_entry_to_page(entry); 3733 ret = remove_device_exclusive_entry(vmf); 3734 } else if (is_device_private_entry(entry)) { 3735 vmf->page = pfn_swap_entry_to_page(entry); 3736 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3737 } else if (is_hwpoison_entry(entry)) { 3738 ret = VM_FAULT_HWPOISON; 3739 } else if (is_swapin_error_entry(entry)) { 3740 ret = VM_FAULT_SIGBUS; 3741 } else if (is_pte_marker_entry(entry)) { 3742 ret = handle_pte_marker(vmf); 3743 } else { 3744 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3745 ret = VM_FAULT_SIGBUS; 3746 } 3747 goto out; 3748 } 3749 3750 /* Prevent swapoff from happening to us. */ 3751 si = get_swap_device(entry); 3752 if (unlikely(!si)) 3753 goto out; 3754 3755 page = lookup_swap_cache(entry, vma, vmf->address); 3756 swapcache = page; 3757 3758 if (!page) { 3759 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3760 __swap_count(entry) == 1) { 3761 /* skip swapcache */ 3762 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3763 vmf->address); 3764 if (page) { 3765 __SetPageLocked(page); 3766 __SetPageSwapBacked(page); 3767 3768 if (mem_cgroup_swapin_charge_page(page, 3769 vma->vm_mm, GFP_KERNEL, entry)) { 3770 ret = VM_FAULT_OOM; 3771 goto out_page; 3772 } 3773 mem_cgroup_swapin_uncharge_swap(entry); 3774 3775 shadow = get_shadow_from_swap_cache(entry); 3776 if (shadow) 3777 workingset_refault(page_folio(page), 3778 shadow); 3779 3780 lru_cache_add(page); 3781 3782 /* To provide entry to swap_readpage() */ 3783 set_page_private(page, entry.val); 3784 swap_readpage(page, true, NULL); 3785 set_page_private(page, 0); 3786 } 3787 } else { 3788 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3789 vmf); 3790 swapcache = page; 3791 } 3792 3793 if (!page) { 3794 /* 3795 * Back out if somebody else faulted in this pte 3796 * while we released the pte lock. 3797 */ 3798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3799 vmf->address, &vmf->ptl); 3800 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3801 ret = VM_FAULT_OOM; 3802 goto unlock; 3803 } 3804 3805 /* Had to read the page from swap area: Major fault */ 3806 ret = VM_FAULT_MAJOR; 3807 count_vm_event(PGMAJFAULT); 3808 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3809 } else if (PageHWPoison(page)) { 3810 /* 3811 * hwpoisoned dirty swapcache pages are kept for killing 3812 * owner processes (which may be unknown at hwpoison time) 3813 */ 3814 ret = VM_FAULT_HWPOISON; 3815 goto out_release; 3816 } 3817 3818 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3819 3820 if (!locked) { 3821 ret |= VM_FAULT_RETRY; 3822 goto out_release; 3823 } 3824 3825 if (swapcache) { 3826 /* 3827 * Make sure try_to_free_swap or swapoff did not release the 3828 * swapcache from under us. The page pin, and pte_same test 3829 * below, are not enough to exclude that. Even if it is still 3830 * swapcache, we need to check that the page's swap has not 3831 * changed. 3832 */ 3833 if (unlikely(!PageSwapCache(page) || 3834 page_private(page) != entry.val)) 3835 goto out_page; 3836 3837 /* 3838 * KSM sometimes has to copy on read faults, for example, if 3839 * page->index of !PageKSM() pages would be nonlinear inside the 3840 * anon VMA -- PageKSM() is lost on actual swapout. 3841 */ 3842 page = ksm_might_need_to_copy(page, vma, vmf->address); 3843 if (unlikely(!page)) { 3844 ret = VM_FAULT_OOM; 3845 page = swapcache; 3846 goto out_page; 3847 } 3848 3849 /* 3850 * If we want to map a page that's in the swapcache writable, we 3851 * have to detect via the refcount if we're really the exclusive 3852 * owner. Try removing the extra reference from the local LRU 3853 * pagevecs if required. 3854 */ 3855 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache && 3856 !PageKsm(page) && !PageLRU(page)) 3857 lru_add_drain(); 3858 } 3859 3860 cgroup_throttle_swaprate(page, GFP_KERNEL); 3861 3862 /* 3863 * Back out if somebody else already faulted in this pte. 3864 */ 3865 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3866 &vmf->ptl); 3867 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3868 goto out_nomap; 3869 3870 if (unlikely(!PageUptodate(page))) { 3871 ret = VM_FAULT_SIGBUS; 3872 goto out_nomap; 3873 } 3874 3875 /* 3876 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3877 * must never point at an anonymous page in the swapcache that is 3878 * PG_anon_exclusive. Sanity check that this holds and especially, that 3879 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3880 * check after taking the PT lock and making sure that nobody 3881 * concurrently faulted in this page and set PG_anon_exclusive. 3882 */ 3883 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 3884 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 3885 3886 /* 3887 * Check under PT lock (to protect against concurrent fork() sharing 3888 * the swap entry concurrently) for certainly exclusive pages. 3889 */ 3890 if (!PageKsm(page)) { 3891 /* 3892 * Note that pte_swp_exclusive() == false for architectures 3893 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE. 3894 */ 3895 exclusive = pte_swp_exclusive(vmf->orig_pte); 3896 if (page != swapcache) { 3897 /* 3898 * We have a fresh page that is not exposed to the 3899 * swapcache -> certainly exclusive. 3900 */ 3901 exclusive = true; 3902 } else if (exclusive && PageWriteback(page) && 3903 data_race(si->flags & SWP_STABLE_WRITES)) { 3904 /* 3905 * This is tricky: not all swap backends support 3906 * concurrent page modifications while under writeback. 3907 * 3908 * So if we stumble over such a page in the swapcache 3909 * we must not set the page exclusive, otherwise we can 3910 * map it writable without further checks and modify it 3911 * while still under writeback. 3912 * 3913 * For these problematic swap backends, simply drop the 3914 * exclusive marker: this is perfectly fine as we start 3915 * writeback only if we fully unmapped the page and 3916 * there are no unexpected references on the page after 3917 * unmapping succeeded. After fully unmapped, no 3918 * further GUP references (FOLL_GET and FOLL_PIN) can 3919 * appear, so dropping the exclusive marker and mapping 3920 * it only R/O is fine. 3921 */ 3922 exclusive = false; 3923 } 3924 } 3925 3926 /* 3927 * Remove the swap entry and conditionally try to free up the swapcache. 3928 * We're already holding a reference on the page but haven't mapped it 3929 * yet. 3930 */ 3931 swap_free(entry); 3932 if (should_try_to_free_swap(page, vma, vmf->flags)) 3933 try_to_free_swap(page); 3934 3935 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3936 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3937 pte = mk_pte(page, vma->vm_page_prot); 3938 3939 /* 3940 * Same logic as in do_wp_page(); however, optimize for pages that are 3941 * certainly not shared either because we just allocated them without 3942 * exposing them to the swapcache or because the swap entry indicates 3943 * exclusivity. 3944 */ 3945 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) { 3946 if (vmf->flags & FAULT_FLAG_WRITE) { 3947 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3948 vmf->flags &= ~FAULT_FLAG_WRITE; 3949 ret |= VM_FAULT_WRITE; 3950 } 3951 rmap_flags |= RMAP_EXCLUSIVE; 3952 } 3953 flush_icache_page(vma, page); 3954 if (pte_swp_soft_dirty(vmf->orig_pte)) 3955 pte = pte_mksoft_dirty(pte); 3956 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3957 pte = pte_mkuffd_wp(pte); 3958 pte = pte_wrprotect(pte); 3959 } 3960 vmf->orig_pte = pte; 3961 3962 /* ksm created a completely new copy */ 3963 if (unlikely(page != swapcache && swapcache)) { 3964 page_add_new_anon_rmap(page, vma, vmf->address); 3965 lru_cache_add_inactive_or_unevictable(page, vma); 3966 } else { 3967 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3968 } 3969 3970 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page))); 3971 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3972 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3973 3974 unlock_page(page); 3975 if (page != swapcache && swapcache) { 3976 /* 3977 * Hold the lock to avoid the swap entry to be reused 3978 * until we take the PT lock for the pte_same() check 3979 * (to avoid false positives from pte_same). For 3980 * further safety release the lock after the swap_free 3981 * so that the swap count won't change under a 3982 * parallel locked swapcache. 3983 */ 3984 unlock_page(swapcache); 3985 put_page(swapcache); 3986 } 3987 3988 if (vmf->flags & FAULT_FLAG_WRITE) { 3989 ret |= do_wp_page(vmf); 3990 if (ret & VM_FAULT_ERROR) 3991 ret &= VM_FAULT_ERROR; 3992 goto out; 3993 } 3994 3995 /* No need to invalidate - it was non-present before */ 3996 update_mmu_cache(vma, vmf->address, vmf->pte); 3997 unlock: 3998 pte_unmap_unlock(vmf->pte, vmf->ptl); 3999 out: 4000 if (si) 4001 put_swap_device(si); 4002 return ret; 4003 out_nomap: 4004 pte_unmap_unlock(vmf->pte, vmf->ptl); 4005 out_page: 4006 unlock_page(page); 4007 out_release: 4008 put_page(page); 4009 if (page != swapcache && swapcache) { 4010 unlock_page(swapcache); 4011 put_page(swapcache); 4012 } 4013 if (si) 4014 put_swap_device(si); 4015 return ret; 4016 } 4017 4018 /* 4019 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4020 * but allow concurrent faults), and pte mapped but not yet locked. 4021 * We return with mmap_lock still held, but pte unmapped and unlocked. 4022 */ 4023 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4024 { 4025 struct vm_area_struct *vma = vmf->vma; 4026 struct page *page; 4027 vm_fault_t ret = 0; 4028 pte_t entry; 4029 4030 /* File mapping without ->vm_ops ? */ 4031 if (vma->vm_flags & VM_SHARED) 4032 return VM_FAULT_SIGBUS; 4033 4034 /* 4035 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4036 * pte_offset_map() on pmds where a huge pmd might be created 4037 * from a different thread. 4038 * 4039 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 4040 * parallel threads are excluded by other means. 4041 * 4042 * Here we only have mmap_read_lock(mm). 4043 */ 4044 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4045 return VM_FAULT_OOM; 4046 4047 /* See comment in handle_pte_fault() */ 4048 if (unlikely(pmd_trans_unstable(vmf->pmd))) 4049 return 0; 4050 4051 /* Use the zero-page for reads */ 4052 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4053 !mm_forbids_zeropage(vma->vm_mm)) { 4054 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4055 vma->vm_page_prot)); 4056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4057 vmf->address, &vmf->ptl); 4058 if (!pte_none(*vmf->pte)) { 4059 update_mmu_tlb(vma, vmf->address, vmf->pte); 4060 goto unlock; 4061 } 4062 ret = check_stable_address_space(vma->vm_mm); 4063 if (ret) 4064 goto unlock; 4065 /* Deliver the page fault to userland, check inside PT lock */ 4066 if (userfaultfd_missing(vma)) { 4067 pte_unmap_unlock(vmf->pte, vmf->ptl); 4068 return handle_userfault(vmf, VM_UFFD_MISSING); 4069 } 4070 goto setpte; 4071 } 4072 4073 /* Allocate our own private page. */ 4074 if (unlikely(anon_vma_prepare(vma))) 4075 goto oom; 4076 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 4077 if (!page) 4078 goto oom; 4079 4080 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 4081 goto oom_free_page; 4082 cgroup_throttle_swaprate(page, GFP_KERNEL); 4083 4084 /* 4085 * The memory barrier inside __SetPageUptodate makes sure that 4086 * preceding stores to the page contents become visible before 4087 * the set_pte_at() write. 4088 */ 4089 __SetPageUptodate(page); 4090 4091 entry = mk_pte(page, vma->vm_page_prot); 4092 entry = pte_sw_mkyoung(entry); 4093 if (vma->vm_flags & VM_WRITE) 4094 entry = pte_mkwrite(pte_mkdirty(entry)); 4095 4096 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4097 &vmf->ptl); 4098 if (!pte_none(*vmf->pte)) { 4099 update_mmu_cache(vma, vmf->address, vmf->pte); 4100 goto release; 4101 } 4102 4103 ret = check_stable_address_space(vma->vm_mm); 4104 if (ret) 4105 goto release; 4106 4107 /* Deliver the page fault to userland, check inside PT lock */ 4108 if (userfaultfd_missing(vma)) { 4109 pte_unmap_unlock(vmf->pte, vmf->ptl); 4110 put_page(page); 4111 return handle_userfault(vmf, VM_UFFD_MISSING); 4112 } 4113 4114 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4115 page_add_new_anon_rmap(page, vma, vmf->address); 4116 lru_cache_add_inactive_or_unevictable(page, vma); 4117 setpte: 4118 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4119 4120 /* No need to invalidate - it was non-present before */ 4121 update_mmu_cache(vma, vmf->address, vmf->pte); 4122 unlock: 4123 pte_unmap_unlock(vmf->pte, vmf->ptl); 4124 return ret; 4125 release: 4126 put_page(page); 4127 goto unlock; 4128 oom_free_page: 4129 put_page(page); 4130 oom: 4131 return VM_FAULT_OOM; 4132 } 4133 4134 /* 4135 * The mmap_lock must have been held on entry, and may have been 4136 * released depending on flags and vma->vm_ops->fault() return value. 4137 * See filemap_fault() and __lock_page_retry(). 4138 */ 4139 static vm_fault_t __do_fault(struct vm_fault *vmf) 4140 { 4141 struct vm_area_struct *vma = vmf->vma; 4142 vm_fault_t ret; 4143 4144 /* 4145 * Preallocate pte before we take page_lock because this might lead to 4146 * deadlocks for memcg reclaim which waits for pages under writeback: 4147 * lock_page(A) 4148 * SetPageWriteback(A) 4149 * unlock_page(A) 4150 * lock_page(B) 4151 * lock_page(B) 4152 * pte_alloc_one 4153 * shrink_page_list 4154 * wait_on_page_writeback(A) 4155 * SetPageWriteback(B) 4156 * unlock_page(B) 4157 * # flush A, B to clear the writeback 4158 */ 4159 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4160 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4161 if (!vmf->prealloc_pte) 4162 return VM_FAULT_OOM; 4163 } 4164 4165 ret = vma->vm_ops->fault(vmf); 4166 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4167 VM_FAULT_DONE_COW))) 4168 return ret; 4169 4170 if (unlikely(PageHWPoison(vmf->page))) { 4171 struct page *page = vmf->page; 4172 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4173 if (ret & VM_FAULT_LOCKED) { 4174 if (page_mapped(page)) 4175 unmap_mapping_pages(page_mapping(page), 4176 page->index, 1, false); 4177 /* Retry if a clean page was removed from the cache. */ 4178 if (invalidate_inode_page(page)) 4179 poisonret = VM_FAULT_NOPAGE; 4180 unlock_page(page); 4181 } 4182 put_page(page); 4183 vmf->page = NULL; 4184 return poisonret; 4185 } 4186 4187 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4188 lock_page(vmf->page); 4189 else 4190 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4191 4192 return ret; 4193 } 4194 4195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4196 static void deposit_prealloc_pte(struct vm_fault *vmf) 4197 { 4198 struct vm_area_struct *vma = vmf->vma; 4199 4200 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4201 /* 4202 * We are going to consume the prealloc table, 4203 * count that as nr_ptes. 4204 */ 4205 mm_inc_nr_ptes(vma->vm_mm); 4206 vmf->prealloc_pte = NULL; 4207 } 4208 4209 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4210 { 4211 struct vm_area_struct *vma = vmf->vma; 4212 bool write = vmf->flags & FAULT_FLAG_WRITE; 4213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4214 pmd_t entry; 4215 int i; 4216 vm_fault_t ret = VM_FAULT_FALLBACK; 4217 4218 if (!transhuge_vma_suitable(vma, haddr)) 4219 return ret; 4220 4221 page = compound_head(page); 4222 if (compound_order(page) != HPAGE_PMD_ORDER) 4223 return ret; 4224 4225 /* 4226 * Just backoff if any subpage of a THP is corrupted otherwise 4227 * the corrupted page may mapped by PMD silently to escape the 4228 * check. This kind of THP just can be PTE mapped. Access to 4229 * the corrupted subpage should trigger SIGBUS as expected. 4230 */ 4231 if (unlikely(PageHasHWPoisoned(page))) 4232 return ret; 4233 4234 /* 4235 * Archs like ppc64 need additional space to store information 4236 * related to pte entry. Use the preallocated table for that. 4237 */ 4238 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4239 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4240 if (!vmf->prealloc_pte) 4241 return VM_FAULT_OOM; 4242 } 4243 4244 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4245 if (unlikely(!pmd_none(*vmf->pmd))) 4246 goto out; 4247 4248 for (i = 0; i < HPAGE_PMD_NR; i++) 4249 flush_icache_page(vma, page + i); 4250 4251 entry = mk_huge_pmd(page, vma->vm_page_prot); 4252 if (write) 4253 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4254 4255 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4256 page_add_file_rmap(page, vma, true); 4257 4258 /* 4259 * deposit and withdraw with pmd lock held 4260 */ 4261 if (arch_needs_pgtable_deposit()) 4262 deposit_prealloc_pte(vmf); 4263 4264 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4265 4266 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4267 4268 /* fault is handled */ 4269 ret = 0; 4270 count_vm_event(THP_FILE_MAPPED); 4271 out: 4272 spin_unlock(vmf->ptl); 4273 return ret; 4274 } 4275 #else 4276 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4277 { 4278 return VM_FAULT_FALLBACK; 4279 } 4280 #endif 4281 4282 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4283 { 4284 struct vm_area_struct *vma = vmf->vma; 4285 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); 4286 bool write = vmf->flags & FAULT_FLAG_WRITE; 4287 bool prefault = vmf->address != addr; 4288 pte_t entry; 4289 4290 flush_icache_page(vma, page); 4291 entry = mk_pte(page, vma->vm_page_prot); 4292 4293 if (prefault && arch_wants_old_prefaulted_pte()) 4294 entry = pte_mkold(entry); 4295 else 4296 entry = pte_sw_mkyoung(entry); 4297 4298 if (write) 4299 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4300 if (unlikely(uffd_wp)) 4301 entry = pte_mkuffd_wp(pte_wrprotect(entry)); 4302 /* copy-on-write page */ 4303 if (write && !(vma->vm_flags & VM_SHARED)) { 4304 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4305 page_add_new_anon_rmap(page, vma, addr); 4306 lru_cache_add_inactive_or_unevictable(page, vma); 4307 } else { 4308 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 4309 page_add_file_rmap(page, vma, false); 4310 } 4311 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4312 } 4313 4314 static bool vmf_pte_changed(struct vm_fault *vmf) 4315 { 4316 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4317 return !pte_same(*vmf->pte, vmf->orig_pte); 4318 4319 return !pte_none(*vmf->pte); 4320 } 4321 4322 /** 4323 * finish_fault - finish page fault once we have prepared the page to fault 4324 * 4325 * @vmf: structure describing the fault 4326 * 4327 * This function handles all that is needed to finish a page fault once the 4328 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4329 * given page, adds reverse page mapping, handles memcg charges and LRU 4330 * addition. 4331 * 4332 * The function expects the page to be locked and on success it consumes a 4333 * reference of a page being mapped (for the PTE which maps it). 4334 * 4335 * Return: %0 on success, %VM_FAULT_ code in case of error. 4336 */ 4337 vm_fault_t finish_fault(struct vm_fault *vmf) 4338 { 4339 struct vm_area_struct *vma = vmf->vma; 4340 struct page *page; 4341 vm_fault_t ret; 4342 4343 /* Did we COW the page? */ 4344 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4345 page = vmf->cow_page; 4346 else 4347 page = vmf->page; 4348 4349 /* 4350 * check even for read faults because we might have lost our CoWed 4351 * page 4352 */ 4353 if (!(vma->vm_flags & VM_SHARED)) { 4354 ret = check_stable_address_space(vma->vm_mm); 4355 if (ret) 4356 return ret; 4357 } 4358 4359 if (pmd_none(*vmf->pmd)) { 4360 if (PageTransCompound(page)) { 4361 ret = do_set_pmd(vmf, page); 4362 if (ret != VM_FAULT_FALLBACK) 4363 return ret; 4364 } 4365 4366 if (vmf->prealloc_pte) 4367 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4368 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4369 return VM_FAULT_OOM; 4370 } 4371 4372 /* See comment in handle_pte_fault() */ 4373 if (pmd_devmap_trans_unstable(vmf->pmd)) 4374 return 0; 4375 4376 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4377 vmf->address, &vmf->ptl); 4378 ret = 0; 4379 /* Re-check under ptl */ 4380 if (likely(!vmf_pte_changed(vmf))) 4381 do_set_pte(vmf, page, vmf->address); 4382 else 4383 ret = VM_FAULT_NOPAGE; 4384 4385 update_mmu_tlb(vma, vmf->address, vmf->pte); 4386 pte_unmap_unlock(vmf->pte, vmf->ptl); 4387 return ret; 4388 } 4389 4390 static unsigned long fault_around_bytes __read_mostly = 4391 rounddown_pow_of_two(65536); 4392 4393 #ifdef CONFIG_DEBUG_FS 4394 static int fault_around_bytes_get(void *data, u64 *val) 4395 { 4396 *val = fault_around_bytes; 4397 return 0; 4398 } 4399 4400 /* 4401 * fault_around_bytes must be rounded down to the nearest page order as it's 4402 * what do_fault_around() expects to see. 4403 */ 4404 static int fault_around_bytes_set(void *data, u64 val) 4405 { 4406 if (val / PAGE_SIZE > PTRS_PER_PTE) 4407 return -EINVAL; 4408 if (val > PAGE_SIZE) 4409 fault_around_bytes = rounddown_pow_of_two(val); 4410 else 4411 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4412 return 0; 4413 } 4414 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4415 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4416 4417 static int __init fault_around_debugfs(void) 4418 { 4419 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4420 &fault_around_bytes_fops); 4421 return 0; 4422 } 4423 late_initcall(fault_around_debugfs); 4424 #endif 4425 4426 /* 4427 * do_fault_around() tries to map few pages around the fault address. The hope 4428 * is that the pages will be needed soon and this will lower the number of 4429 * faults to handle. 4430 * 4431 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4432 * not ready to be mapped: not up-to-date, locked, etc. 4433 * 4434 * This function is called with the page table lock taken. In the split ptlock 4435 * case the page table lock only protects only those entries which belong to 4436 * the page table corresponding to the fault address. 4437 * 4438 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4439 * only once. 4440 * 4441 * fault_around_bytes defines how many bytes we'll try to map. 4442 * do_fault_around() expects it to be set to a power of two less than or equal 4443 * to PTRS_PER_PTE. 4444 * 4445 * The virtual address of the area that we map is naturally aligned to 4446 * fault_around_bytes rounded down to the machine page size 4447 * (and therefore to page order). This way it's easier to guarantee 4448 * that we don't cross page table boundaries. 4449 */ 4450 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4451 { 4452 unsigned long address = vmf->address, nr_pages, mask; 4453 pgoff_t start_pgoff = vmf->pgoff; 4454 pgoff_t end_pgoff; 4455 int off; 4456 4457 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4458 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4459 4460 address = max(address & mask, vmf->vma->vm_start); 4461 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4462 start_pgoff -= off; 4463 4464 /* 4465 * end_pgoff is either the end of the page table, the end of 4466 * the vma or nr_pages from start_pgoff, depending what is nearest. 4467 */ 4468 end_pgoff = start_pgoff - 4469 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4470 PTRS_PER_PTE - 1; 4471 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4472 start_pgoff + nr_pages - 1); 4473 4474 if (pmd_none(*vmf->pmd)) { 4475 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4476 if (!vmf->prealloc_pte) 4477 return VM_FAULT_OOM; 4478 } 4479 4480 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4481 } 4482 4483 /* Return true if we should do read fault-around, false otherwise */ 4484 static inline bool should_fault_around(struct vm_fault *vmf) 4485 { 4486 /* No ->map_pages? No way to fault around... */ 4487 if (!vmf->vma->vm_ops->map_pages) 4488 return false; 4489 4490 if (uffd_disable_fault_around(vmf->vma)) 4491 return false; 4492 4493 return fault_around_bytes >> PAGE_SHIFT > 1; 4494 } 4495 4496 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4497 { 4498 vm_fault_t ret = 0; 4499 4500 /* 4501 * Let's call ->map_pages() first and use ->fault() as fallback 4502 * if page by the offset is not ready to be mapped (cold cache or 4503 * something). 4504 */ 4505 if (should_fault_around(vmf)) { 4506 ret = do_fault_around(vmf); 4507 if (ret) 4508 return ret; 4509 } 4510 4511 ret = __do_fault(vmf); 4512 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4513 return ret; 4514 4515 ret |= finish_fault(vmf); 4516 unlock_page(vmf->page); 4517 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4518 put_page(vmf->page); 4519 return ret; 4520 } 4521 4522 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4523 { 4524 struct vm_area_struct *vma = vmf->vma; 4525 vm_fault_t ret; 4526 4527 if (unlikely(anon_vma_prepare(vma))) 4528 return VM_FAULT_OOM; 4529 4530 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4531 if (!vmf->cow_page) 4532 return VM_FAULT_OOM; 4533 4534 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4535 GFP_KERNEL)) { 4536 put_page(vmf->cow_page); 4537 return VM_FAULT_OOM; 4538 } 4539 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4540 4541 ret = __do_fault(vmf); 4542 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4543 goto uncharge_out; 4544 if (ret & VM_FAULT_DONE_COW) 4545 return ret; 4546 4547 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4548 __SetPageUptodate(vmf->cow_page); 4549 4550 ret |= finish_fault(vmf); 4551 unlock_page(vmf->page); 4552 put_page(vmf->page); 4553 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4554 goto uncharge_out; 4555 return ret; 4556 uncharge_out: 4557 put_page(vmf->cow_page); 4558 return ret; 4559 } 4560 4561 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4562 { 4563 struct vm_area_struct *vma = vmf->vma; 4564 vm_fault_t ret, tmp; 4565 4566 ret = __do_fault(vmf); 4567 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4568 return ret; 4569 4570 /* 4571 * Check if the backing address space wants to know that the page is 4572 * about to become writable 4573 */ 4574 if (vma->vm_ops->page_mkwrite) { 4575 unlock_page(vmf->page); 4576 tmp = do_page_mkwrite(vmf); 4577 if (unlikely(!tmp || 4578 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4579 put_page(vmf->page); 4580 return tmp; 4581 } 4582 } 4583 4584 ret |= finish_fault(vmf); 4585 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4586 VM_FAULT_RETRY))) { 4587 unlock_page(vmf->page); 4588 put_page(vmf->page); 4589 return ret; 4590 } 4591 4592 ret |= fault_dirty_shared_page(vmf); 4593 return ret; 4594 } 4595 4596 /* 4597 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4598 * but allow concurrent faults). 4599 * The mmap_lock may have been released depending on flags and our 4600 * return value. See filemap_fault() and __folio_lock_or_retry(). 4601 * If mmap_lock is released, vma may become invalid (for example 4602 * by other thread calling munmap()). 4603 */ 4604 static vm_fault_t do_fault(struct vm_fault *vmf) 4605 { 4606 struct vm_area_struct *vma = vmf->vma; 4607 struct mm_struct *vm_mm = vma->vm_mm; 4608 vm_fault_t ret; 4609 4610 /* 4611 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4612 */ 4613 if (!vma->vm_ops->fault) { 4614 /* 4615 * If we find a migration pmd entry or a none pmd entry, which 4616 * should never happen, return SIGBUS 4617 */ 4618 if (unlikely(!pmd_present(*vmf->pmd))) 4619 ret = VM_FAULT_SIGBUS; 4620 else { 4621 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4622 vmf->pmd, 4623 vmf->address, 4624 &vmf->ptl); 4625 /* 4626 * Make sure this is not a temporary clearing of pte 4627 * by holding ptl and checking again. A R/M/W update 4628 * of pte involves: take ptl, clearing the pte so that 4629 * we don't have concurrent modification by hardware 4630 * followed by an update. 4631 */ 4632 if (unlikely(pte_none(*vmf->pte))) 4633 ret = VM_FAULT_SIGBUS; 4634 else 4635 ret = VM_FAULT_NOPAGE; 4636 4637 pte_unmap_unlock(vmf->pte, vmf->ptl); 4638 } 4639 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4640 ret = do_read_fault(vmf); 4641 else if (!(vma->vm_flags & VM_SHARED)) 4642 ret = do_cow_fault(vmf); 4643 else 4644 ret = do_shared_fault(vmf); 4645 4646 /* preallocated pagetable is unused: free it */ 4647 if (vmf->prealloc_pte) { 4648 pte_free(vm_mm, vmf->prealloc_pte); 4649 vmf->prealloc_pte = NULL; 4650 } 4651 return ret; 4652 } 4653 4654 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4655 unsigned long addr, int page_nid, int *flags) 4656 { 4657 get_page(page); 4658 4659 count_vm_numa_event(NUMA_HINT_FAULTS); 4660 if (page_nid == numa_node_id()) { 4661 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4662 *flags |= TNF_FAULT_LOCAL; 4663 } 4664 4665 return mpol_misplaced(page, vma, addr); 4666 } 4667 4668 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4669 { 4670 struct vm_area_struct *vma = vmf->vma; 4671 struct page *page = NULL; 4672 int page_nid = NUMA_NO_NODE; 4673 int last_cpupid; 4674 int target_nid; 4675 pte_t pte, old_pte; 4676 bool was_writable = pte_savedwrite(vmf->orig_pte); 4677 int flags = 0; 4678 4679 /* 4680 * The "pte" at this point cannot be used safely without 4681 * validation through pte_unmap_same(). It's of NUMA type but 4682 * the pfn may be screwed if the read is non atomic. 4683 */ 4684 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4685 spin_lock(vmf->ptl); 4686 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4687 pte_unmap_unlock(vmf->pte, vmf->ptl); 4688 goto out; 4689 } 4690 4691 /* Get the normal PTE */ 4692 old_pte = ptep_get(vmf->pte); 4693 pte = pte_modify(old_pte, vma->vm_page_prot); 4694 4695 page = vm_normal_page(vma, vmf->address, pte); 4696 if (!page) 4697 goto out_map; 4698 4699 /* TODO: handle PTE-mapped THP */ 4700 if (PageCompound(page)) 4701 goto out_map; 4702 4703 /* 4704 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4705 * much anyway since they can be in shared cache state. This misses 4706 * the case where a mapping is writable but the process never writes 4707 * to it but pte_write gets cleared during protection updates and 4708 * pte_dirty has unpredictable behaviour between PTE scan updates, 4709 * background writeback, dirty balancing and application behaviour. 4710 */ 4711 if (!was_writable) 4712 flags |= TNF_NO_GROUP; 4713 4714 /* 4715 * Flag if the page is shared between multiple address spaces. This 4716 * is later used when determining whether to group tasks together 4717 */ 4718 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4719 flags |= TNF_SHARED; 4720 4721 last_cpupid = page_cpupid_last(page); 4722 page_nid = page_to_nid(page); 4723 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4724 &flags); 4725 if (target_nid == NUMA_NO_NODE) { 4726 put_page(page); 4727 goto out_map; 4728 } 4729 pte_unmap_unlock(vmf->pte, vmf->ptl); 4730 4731 /* Migrate to the requested node */ 4732 if (migrate_misplaced_page(page, vma, target_nid)) { 4733 page_nid = target_nid; 4734 flags |= TNF_MIGRATED; 4735 } else { 4736 flags |= TNF_MIGRATE_FAIL; 4737 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4738 spin_lock(vmf->ptl); 4739 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4740 pte_unmap_unlock(vmf->pte, vmf->ptl); 4741 goto out; 4742 } 4743 goto out_map; 4744 } 4745 4746 out: 4747 if (page_nid != NUMA_NO_NODE) 4748 task_numa_fault(last_cpupid, page_nid, 1, flags); 4749 return 0; 4750 out_map: 4751 /* 4752 * Make it present again, depending on how arch implements 4753 * non-accessible ptes, some can allow access by kernel mode. 4754 */ 4755 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4756 pte = pte_modify(old_pte, vma->vm_page_prot); 4757 pte = pte_mkyoung(pte); 4758 if (was_writable) 4759 pte = pte_mkwrite(pte); 4760 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4761 update_mmu_cache(vma, vmf->address, vmf->pte); 4762 pte_unmap_unlock(vmf->pte, vmf->ptl); 4763 goto out; 4764 } 4765 4766 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4767 { 4768 if (vma_is_anonymous(vmf->vma)) 4769 return do_huge_pmd_anonymous_page(vmf); 4770 if (vmf->vma->vm_ops->huge_fault) 4771 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4772 return VM_FAULT_FALLBACK; 4773 } 4774 4775 /* `inline' is required to avoid gcc 4.1.2 build error */ 4776 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4777 { 4778 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4779 4780 if (vma_is_anonymous(vmf->vma)) { 4781 if (likely(!unshare) && 4782 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4783 return handle_userfault(vmf, VM_UFFD_WP); 4784 return do_huge_pmd_wp_page(vmf); 4785 } 4786 if (vmf->vma->vm_ops->huge_fault) { 4787 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4788 4789 if (!(ret & VM_FAULT_FALLBACK)) 4790 return ret; 4791 } 4792 4793 /* COW or write-notify handled on pte level: split pmd. */ 4794 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4795 4796 return VM_FAULT_FALLBACK; 4797 } 4798 4799 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4800 { 4801 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4802 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4803 /* No support for anonymous transparent PUD pages yet */ 4804 if (vma_is_anonymous(vmf->vma)) 4805 goto split; 4806 if (vmf->vma->vm_ops->huge_fault) { 4807 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4808 4809 if (!(ret & VM_FAULT_FALLBACK)) 4810 return ret; 4811 } 4812 split: 4813 /* COW or write-notify not handled on PUD level: split pud.*/ 4814 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4815 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4816 return VM_FAULT_FALLBACK; 4817 } 4818 4819 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4820 { 4821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4822 /* No support for anonymous transparent PUD pages yet */ 4823 if (vma_is_anonymous(vmf->vma)) 4824 return VM_FAULT_FALLBACK; 4825 if (vmf->vma->vm_ops->huge_fault) 4826 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4828 return VM_FAULT_FALLBACK; 4829 } 4830 4831 /* 4832 * These routines also need to handle stuff like marking pages dirty 4833 * and/or accessed for architectures that don't do it in hardware (most 4834 * RISC architectures). The early dirtying is also good on the i386. 4835 * 4836 * There is also a hook called "update_mmu_cache()" that architectures 4837 * with external mmu caches can use to update those (ie the Sparc or 4838 * PowerPC hashed page tables that act as extended TLBs). 4839 * 4840 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4841 * concurrent faults). 4842 * 4843 * The mmap_lock may have been released depending on flags and our return value. 4844 * See filemap_fault() and __folio_lock_or_retry(). 4845 */ 4846 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4847 { 4848 pte_t entry; 4849 4850 if (unlikely(pmd_none(*vmf->pmd))) { 4851 /* 4852 * Leave __pte_alloc() until later: because vm_ops->fault may 4853 * want to allocate huge page, and if we expose page table 4854 * for an instant, it will be difficult to retract from 4855 * concurrent faults and from rmap lookups. 4856 */ 4857 vmf->pte = NULL; 4858 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4859 } else { 4860 /* 4861 * If a huge pmd materialized under us just retry later. Use 4862 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4863 * of pmd_trans_huge() to ensure the pmd didn't become 4864 * pmd_trans_huge under us and then back to pmd_none, as a 4865 * result of MADV_DONTNEED running immediately after a huge pmd 4866 * fault in a different thread of this mm, in turn leading to a 4867 * misleading pmd_trans_huge() retval. All we have to ensure is 4868 * that it is a regular pmd that we can walk with 4869 * pte_offset_map() and we can do that through an atomic read 4870 * in C, which is what pmd_trans_unstable() provides. 4871 */ 4872 if (pmd_devmap_trans_unstable(vmf->pmd)) 4873 return 0; 4874 /* 4875 * A regular pmd is established and it can't morph into a huge 4876 * pmd from under us anymore at this point because we hold the 4877 * mmap_lock read mode and khugepaged takes it in write mode. 4878 * So now it's safe to run pte_offset_map(). 4879 */ 4880 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4881 vmf->orig_pte = *vmf->pte; 4882 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4883 4884 /* 4885 * some architectures can have larger ptes than wordsize, 4886 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4887 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4888 * accesses. The code below just needs a consistent view 4889 * for the ifs and we later double check anyway with the 4890 * ptl lock held. So here a barrier will do. 4891 */ 4892 barrier(); 4893 if (pte_none(vmf->orig_pte)) { 4894 pte_unmap(vmf->pte); 4895 vmf->pte = NULL; 4896 } 4897 } 4898 4899 if (!vmf->pte) { 4900 if (vma_is_anonymous(vmf->vma)) 4901 return do_anonymous_page(vmf); 4902 else 4903 return do_fault(vmf); 4904 } 4905 4906 if (!pte_present(vmf->orig_pte)) 4907 return do_swap_page(vmf); 4908 4909 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4910 return do_numa_page(vmf); 4911 4912 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4913 spin_lock(vmf->ptl); 4914 entry = vmf->orig_pte; 4915 if (unlikely(!pte_same(*vmf->pte, entry))) { 4916 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4917 goto unlock; 4918 } 4919 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4920 if (!pte_write(entry)) 4921 return do_wp_page(vmf); 4922 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4923 entry = pte_mkdirty(entry); 4924 } 4925 entry = pte_mkyoung(entry); 4926 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4927 vmf->flags & FAULT_FLAG_WRITE)) { 4928 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4929 } else { 4930 /* Skip spurious TLB flush for retried page fault */ 4931 if (vmf->flags & FAULT_FLAG_TRIED) 4932 goto unlock; 4933 /* 4934 * This is needed only for protection faults but the arch code 4935 * is not yet telling us if this is a protection fault or not. 4936 * This still avoids useless tlb flushes for .text page faults 4937 * with threads. 4938 */ 4939 if (vmf->flags & FAULT_FLAG_WRITE) 4940 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4941 } 4942 unlock: 4943 pte_unmap_unlock(vmf->pte, vmf->ptl); 4944 return 0; 4945 } 4946 4947 /* 4948 * By the time we get here, we already hold the mm semaphore 4949 * 4950 * The mmap_lock may have been released depending on flags and our 4951 * return value. See filemap_fault() and __folio_lock_or_retry(). 4952 */ 4953 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4954 unsigned long address, unsigned int flags) 4955 { 4956 struct vm_fault vmf = { 4957 .vma = vma, 4958 .address = address & PAGE_MASK, 4959 .real_address = address, 4960 .flags = flags, 4961 .pgoff = linear_page_index(vma, address), 4962 .gfp_mask = __get_fault_gfp_mask(vma), 4963 }; 4964 struct mm_struct *mm = vma->vm_mm; 4965 pgd_t *pgd; 4966 p4d_t *p4d; 4967 vm_fault_t ret; 4968 4969 pgd = pgd_offset(mm, address); 4970 p4d = p4d_alloc(mm, pgd, address); 4971 if (!p4d) 4972 return VM_FAULT_OOM; 4973 4974 vmf.pud = pud_alloc(mm, p4d, address); 4975 if (!vmf.pud) 4976 return VM_FAULT_OOM; 4977 retry_pud: 4978 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4979 ret = create_huge_pud(&vmf); 4980 if (!(ret & VM_FAULT_FALLBACK)) 4981 return ret; 4982 } else { 4983 pud_t orig_pud = *vmf.pud; 4984 4985 barrier(); 4986 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4987 4988 /* 4989 * TODO once we support anonymous PUDs: NUMA case and 4990 * FAULT_FLAG_UNSHARE handling. 4991 */ 4992 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 4993 ret = wp_huge_pud(&vmf, orig_pud); 4994 if (!(ret & VM_FAULT_FALLBACK)) 4995 return ret; 4996 } else { 4997 huge_pud_set_accessed(&vmf, orig_pud); 4998 return 0; 4999 } 5000 } 5001 } 5002 5003 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5004 if (!vmf.pmd) 5005 return VM_FAULT_OOM; 5006 5007 /* Huge pud page fault raced with pmd_alloc? */ 5008 if (pud_trans_unstable(vmf.pud)) 5009 goto retry_pud; 5010 5011 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 5012 ret = create_huge_pmd(&vmf); 5013 if (!(ret & VM_FAULT_FALLBACK)) 5014 return ret; 5015 } else { 5016 vmf.orig_pmd = *vmf.pmd; 5017 5018 barrier(); 5019 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5020 VM_BUG_ON(thp_migration_supported() && 5021 !is_pmd_migration_entry(vmf.orig_pmd)); 5022 if (is_pmd_migration_entry(vmf.orig_pmd)) 5023 pmd_migration_entry_wait(mm, vmf.pmd); 5024 return 0; 5025 } 5026 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5027 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5028 return do_huge_pmd_numa_page(&vmf); 5029 5030 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5031 !pmd_write(vmf.orig_pmd)) { 5032 ret = wp_huge_pmd(&vmf); 5033 if (!(ret & VM_FAULT_FALLBACK)) 5034 return ret; 5035 } else { 5036 huge_pmd_set_accessed(&vmf); 5037 return 0; 5038 } 5039 } 5040 } 5041 5042 return handle_pte_fault(&vmf); 5043 } 5044 5045 /** 5046 * mm_account_fault - Do page fault accounting 5047 * 5048 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5049 * of perf event counters, but we'll still do the per-task accounting to 5050 * the task who triggered this page fault. 5051 * @address: the faulted address. 5052 * @flags: the fault flags. 5053 * @ret: the fault retcode. 5054 * 5055 * This will take care of most of the page fault accounting. Meanwhile, it 5056 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5057 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5058 * still be in per-arch page fault handlers at the entry of page fault. 5059 */ 5060 static inline void mm_account_fault(struct pt_regs *regs, 5061 unsigned long address, unsigned int flags, 5062 vm_fault_t ret) 5063 { 5064 bool major; 5065 5066 /* 5067 * We don't do accounting for some specific faults: 5068 * 5069 * - Unsuccessful faults (e.g. when the address wasn't valid). That 5070 * includes arch_vma_access_permitted() failing before reaching here. 5071 * So this is not a "this many hardware page faults" counter. We 5072 * should use the hw profiling for that. 5073 * 5074 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 5075 * once they're completed. 5076 */ 5077 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 5078 return; 5079 5080 /* 5081 * We define the fault as a major fault when the final successful fault 5082 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5083 * handle it immediately previously). 5084 */ 5085 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5086 5087 if (major) 5088 current->maj_flt++; 5089 else 5090 current->min_flt++; 5091 5092 /* 5093 * If the fault is done for GUP, regs will be NULL. We only do the 5094 * accounting for the per thread fault counters who triggered the 5095 * fault, and we skip the perf event updates. 5096 */ 5097 if (!regs) 5098 return; 5099 5100 if (major) 5101 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5102 else 5103 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5104 } 5105 5106 /* 5107 * By the time we get here, we already hold the mm semaphore 5108 * 5109 * The mmap_lock may have been released depending on flags and our 5110 * return value. See filemap_fault() and __folio_lock_or_retry(). 5111 */ 5112 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5113 unsigned int flags, struct pt_regs *regs) 5114 { 5115 vm_fault_t ret; 5116 5117 __set_current_state(TASK_RUNNING); 5118 5119 count_vm_event(PGFAULT); 5120 count_memcg_event_mm(vma->vm_mm, PGFAULT); 5121 5122 /* do counter updates before entering really critical section. */ 5123 check_sync_rss_stat(current); 5124 5125 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5126 flags & FAULT_FLAG_INSTRUCTION, 5127 flags & FAULT_FLAG_REMOTE)) 5128 return VM_FAULT_SIGSEGV; 5129 5130 /* 5131 * Enable the memcg OOM handling for faults triggered in user 5132 * space. Kernel faults are handled more gracefully. 5133 */ 5134 if (flags & FAULT_FLAG_USER) 5135 mem_cgroup_enter_user_fault(); 5136 5137 if (unlikely(is_vm_hugetlb_page(vma))) 5138 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5139 else 5140 ret = __handle_mm_fault(vma, address, flags); 5141 5142 if (flags & FAULT_FLAG_USER) { 5143 mem_cgroup_exit_user_fault(); 5144 /* 5145 * The task may have entered a memcg OOM situation but 5146 * if the allocation error was handled gracefully (no 5147 * VM_FAULT_OOM), there is no need to kill anything. 5148 * Just clean up the OOM state peacefully. 5149 */ 5150 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5151 mem_cgroup_oom_synchronize(false); 5152 } 5153 5154 mm_account_fault(regs, address, flags, ret); 5155 5156 return ret; 5157 } 5158 EXPORT_SYMBOL_GPL(handle_mm_fault); 5159 5160 #ifndef __PAGETABLE_P4D_FOLDED 5161 /* 5162 * Allocate p4d page table. 5163 * We've already handled the fast-path in-line. 5164 */ 5165 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5166 { 5167 p4d_t *new = p4d_alloc_one(mm, address); 5168 if (!new) 5169 return -ENOMEM; 5170 5171 spin_lock(&mm->page_table_lock); 5172 if (pgd_present(*pgd)) { /* Another has populated it */ 5173 p4d_free(mm, new); 5174 } else { 5175 smp_wmb(); /* See comment in pmd_install() */ 5176 pgd_populate(mm, pgd, new); 5177 } 5178 spin_unlock(&mm->page_table_lock); 5179 return 0; 5180 } 5181 #endif /* __PAGETABLE_P4D_FOLDED */ 5182 5183 #ifndef __PAGETABLE_PUD_FOLDED 5184 /* 5185 * Allocate page upper directory. 5186 * We've already handled the fast-path in-line. 5187 */ 5188 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5189 { 5190 pud_t *new = pud_alloc_one(mm, address); 5191 if (!new) 5192 return -ENOMEM; 5193 5194 spin_lock(&mm->page_table_lock); 5195 if (!p4d_present(*p4d)) { 5196 mm_inc_nr_puds(mm); 5197 smp_wmb(); /* See comment in pmd_install() */ 5198 p4d_populate(mm, p4d, new); 5199 } else /* Another has populated it */ 5200 pud_free(mm, new); 5201 spin_unlock(&mm->page_table_lock); 5202 return 0; 5203 } 5204 #endif /* __PAGETABLE_PUD_FOLDED */ 5205 5206 #ifndef __PAGETABLE_PMD_FOLDED 5207 /* 5208 * Allocate page middle directory. 5209 * We've already handled the fast-path in-line. 5210 */ 5211 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5212 { 5213 spinlock_t *ptl; 5214 pmd_t *new = pmd_alloc_one(mm, address); 5215 if (!new) 5216 return -ENOMEM; 5217 5218 ptl = pud_lock(mm, pud); 5219 if (!pud_present(*pud)) { 5220 mm_inc_nr_pmds(mm); 5221 smp_wmb(); /* See comment in pmd_install() */ 5222 pud_populate(mm, pud, new); 5223 } else { /* Another has populated it */ 5224 pmd_free(mm, new); 5225 } 5226 spin_unlock(ptl); 5227 return 0; 5228 } 5229 #endif /* __PAGETABLE_PMD_FOLDED */ 5230 5231 /** 5232 * follow_pte - look up PTE at a user virtual address 5233 * @mm: the mm_struct of the target address space 5234 * @address: user virtual address 5235 * @ptepp: location to store found PTE 5236 * @ptlp: location to store the lock for the PTE 5237 * 5238 * On a successful return, the pointer to the PTE is stored in @ptepp; 5239 * the corresponding lock is taken and its location is stored in @ptlp. 5240 * The contents of the PTE are only stable until @ptlp is released; 5241 * any further use, if any, must be protected against invalidation 5242 * with MMU notifiers. 5243 * 5244 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5245 * should be taken for read. 5246 * 5247 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5248 * it is not a good general-purpose API. 5249 * 5250 * Return: zero on success, -ve otherwise. 5251 */ 5252 int follow_pte(struct mm_struct *mm, unsigned long address, 5253 pte_t **ptepp, spinlock_t **ptlp) 5254 { 5255 pgd_t *pgd; 5256 p4d_t *p4d; 5257 pud_t *pud; 5258 pmd_t *pmd; 5259 pte_t *ptep; 5260 5261 pgd = pgd_offset(mm, address); 5262 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5263 goto out; 5264 5265 p4d = p4d_offset(pgd, address); 5266 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5267 goto out; 5268 5269 pud = pud_offset(p4d, address); 5270 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5271 goto out; 5272 5273 pmd = pmd_offset(pud, address); 5274 VM_BUG_ON(pmd_trans_huge(*pmd)); 5275 5276 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5277 goto out; 5278 5279 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5280 if (!pte_present(*ptep)) 5281 goto unlock; 5282 *ptepp = ptep; 5283 return 0; 5284 unlock: 5285 pte_unmap_unlock(ptep, *ptlp); 5286 out: 5287 return -EINVAL; 5288 } 5289 EXPORT_SYMBOL_GPL(follow_pte); 5290 5291 /** 5292 * follow_pfn - look up PFN at a user virtual address 5293 * @vma: memory mapping 5294 * @address: user virtual address 5295 * @pfn: location to store found PFN 5296 * 5297 * Only IO mappings and raw PFN mappings are allowed. 5298 * 5299 * This function does not allow the caller to read the permissions 5300 * of the PTE. Do not use it. 5301 * 5302 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5303 */ 5304 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5305 unsigned long *pfn) 5306 { 5307 int ret = -EINVAL; 5308 spinlock_t *ptl; 5309 pte_t *ptep; 5310 5311 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5312 return ret; 5313 5314 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5315 if (ret) 5316 return ret; 5317 *pfn = pte_pfn(*ptep); 5318 pte_unmap_unlock(ptep, ptl); 5319 return 0; 5320 } 5321 EXPORT_SYMBOL(follow_pfn); 5322 5323 #ifdef CONFIG_HAVE_IOREMAP_PROT 5324 int follow_phys(struct vm_area_struct *vma, 5325 unsigned long address, unsigned int flags, 5326 unsigned long *prot, resource_size_t *phys) 5327 { 5328 int ret = -EINVAL; 5329 pte_t *ptep, pte; 5330 spinlock_t *ptl; 5331 5332 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5333 goto out; 5334 5335 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5336 goto out; 5337 pte = *ptep; 5338 5339 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5340 goto unlock; 5341 5342 *prot = pgprot_val(pte_pgprot(pte)); 5343 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5344 5345 ret = 0; 5346 unlock: 5347 pte_unmap_unlock(ptep, ptl); 5348 out: 5349 return ret; 5350 } 5351 5352 /** 5353 * generic_access_phys - generic implementation for iomem mmap access 5354 * @vma: the vma to access 5355 * @addr: userspace address, not relative offset within @vma 5356 * @buf: buffer to read/write 5357 * @len: length of transfer 5358 * @write: set to FOLL_WRITE when writing, otherwise reading 5359 * 5360 * This is a generic implementation for &vm_operations_struct.access for an 5361 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5362 * not page based. 5363 */ 5364 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5365 void *buf, int len, int write) 5366 { 5367 resource_size_t phys_addr; 5368 unsigned long prot = 0; 5369 void __iomem *maddr; 5370 pte_t *ptep, pte; 5371 spinlock_t *ptl; 5372 int offset = offset_in_page(addr); 5373 int ret = -EINVAL; 5374 5375 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5376 return -EINVAL; 5377 5378 retry: 5379 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5380 return -EINVAL; 5381 pte = *ptep; 5382 pte_unmap_unlock(ptep, ptl); 5383 5384 prot = pgprot_val(pte_pgprot(pte)); 5385 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5386 5387 if ((write & FOLL_WRITE) && !pte_write(pte)) 5388 return -EINVAL; 5389 5390 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5391 if (!maddr) 5392 return -ENOMEM; 5393 5394 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5395 goto out_unmap; 5396 5397 if (!pte_same(pte, *ptep)) { 5398 pte_unmap_unlock(ptep, ptl); 5399 iounmap(maddr); 5400 5401 goto retry; 5402 } 5403 5404 if (write) 5405 memcpy_toio(maddr + offset, buf, len); 5406 else 5407 memcpy_fromio(buf, maddr + offset, len); 5408 ret = len; 5409 pte_unmap_unlock(ptep, ptl); 5410 out_unmap: 5411 iounmap(maddr); 5412 5413 return ret; 5414 } 5415 EXPORT_SYMBOL_GPL(generic_access_phys); 5416 #endif 5417 5418 /* 5419 * Access another process' address space as given in mm. 5420 */ 5421 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5422 int len, unsigned int gup_flags) 5423 { 5424 struct vm_area_struct *vma; 5425 void *old_buf = buf; 5426 int write = gup_flags & FOLL_WRITE; 5427 5428 if (mmap_read_lock_killable(mm)) 5429 return 0; 5430 5431 /* ignore errors, just check how much was successfully transferred */ 5432 while (len) { 5433 int bytes, ret, offset; 5434 void *maddr; 5435 struct page *page = NULL; 5436 5437 ret = get_user_pages_remote(mm, addr, 1, 5438 gup_flags, &page, &vma, NULL); 5439 if (ret <= 0) { 5440 #ifndef CONFIG_HAVE_IOREMAP_PROT 5441 break; 5442 #else 5443 /* 5444 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5445 * we can access using slightly different code. 5446 */ 5447 vma = vma_lookup(mm, addr); 5448 if (!vma) 5449 break; 5450 if (vma->vm_ops && vma->vm_ops->access) 5451 ret = vma->vm_ops->access(vma, addr, buf, 5452 len, write); 5453 if (ret <= 0) 5454 break; 5455 bytes = ret; 5456 #endif 5457 } else { 5458 bytes = len; 5459 offset = addr & (PAGE_SIZE-1); 5460 if (bytes > PAGE_SIZE-offset) 5461 bytes = PAGE_SIZE-offset; 5462 5463 maddr = kmap(page); 5464 if (write) { 5465 copy_to_user_page(vma, page, addr, 5466 maddr + offset, buf, bytes); 5467 set_page_dirty_lock(page); 5468 } else { 5469 copy_from_user_page(vma, page, addr, 5470 buf, maddr + offset, bytes); 5471 } 5472 kunmap(page); 5473 put_page(page); 5474 } 5475 len -= bytes; 5476 buf += bytes; 5477 addr += bytes; 5478 } 5479 mmap_read_unlock(mm); 5480 5481 return buf - old_buf; 5482 } 5483 5484 /** 5485 * access_remote_vm - access another process' address space 5486 * @mm: the mm_struct of the target address space 5487 * @addr: start address to access 5488 * @buf: source or destination buffer 5489 * @len: number of bytes to transfer 5490 * @gup_flags: flags modifying lookup behaviour 5491 * 5492 * The caller must hold a reference on @mm. 5493 * 5494 * Return: number of bytes copied from source to destination. 5495 */ 5496 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5497 void *buf, int len, unsigned int gup_flags) 5498 { 5499 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5500 } 5501 5502 /* 5503 * Access another process' address space. 5504 * Source/target buffer must be kernel space, 5505 * Do not walk the page table directly, use get_user_pages 5506 */ 5507 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5508 void *buf, int len, unsigned int gup_flags) 5509 { 5510 struct mm_struct *mm; 5511 int ret; 5512 5513 mm = get_task_mm(tsk); 5514 if (!mm) 5515 return 0; 5516 5517 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5518 5519 mmput(mm); 5520 5521 return ret; 5522 } 5523 EXPORT_SYMBOL_GPL(access_process_vm); 5524 5525 /* 5526 * Print the name of a VMA. 5527 */ 5528 void print_vma_addr(char *prefix, unsigned long ip) 5529 { 5530 struct mm_struct *mm = current->mm; 5531 struct vm_area_struct *vma; 5532 5533 /* 5534 * we might be running from an atomic context so we cannot sleep 5535 */ 5536 if (!mmap_read_trylock(mm)) 5537 return; 5538 5539 vma = find_vma(mm, ip); 5540 if (vma && vma->vm_file) { 5541 struct file *f = vma->vm_file; 5542 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5543 if (buf) { 5544 char *p; 5545 5546 p = file_path(f, buf, PAGE_SIZE); 5547 if (IS_ERR(p)) 5548 p = "?"; 5549 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5550 vma->vm_start, 5551 vma->vm_end - vma->vm_start); 5552 free_page((unsigned long)buf); 5553 } 5554 } 5555 mmap_read_unlock(mm); 5556 } 5557 5558 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5559 void __might_fault(const char *file, int line) 5560 { 5561 if (pagefault_disabled()) 5562 return; 5563 __might_sleep(file, line); 5564 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5565 if (current->mm) 5566 might_lock_read(¤t->mm->mmap_lock); 5567 #endif 5568 } 5569 EXPORT_SYMBOL(__might_fault); 5570 #endif 5571 5572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5573 /* 5574 * Process all subpages of the specified huge page with the specified 5575 * operation. The target subpage will be processed last to keep its 5576 * cache lines hot. 5577 */ 5578 static inline void process_huge_page( 5579 unsigned long addr_hint, unsigned int pages_per_huge_page, 5580 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5581 void *arg) 5582 { 5583 int i, n, base, l; 5584 unsigned long addr = addr_hint & 5585 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5586 5587 /* Process target subpage last to keep its cache lines hot */ 5588 might_sleep(); 5589 n = (addr_hint - addr) / PAGE_SIZE; 5590 if (2 * n <= pages_per_huge_page) { 5591 /* If target subpage in first half of huge page */ 5592 base = 0; 5593 l = n; 5594 /* Process subpages at the end of huge page */ 5595 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5596 cond_resched(); 5597 process_subpage(addr + i * PAGE_SIZE, i, arg); 5598 } 5599 } else { 5600 /* If target subpage in second half of huge page */ 5601 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5602 l = pages_per_huge_page - n; 5603 /* Process subpages at the begin of huge page */ 5604 for (i = 0; i < base; i++) { 5605 cond_resched(); 5606 process_subpage(addr + i * PAGE_SIZE, i, arg); 5607 } 5608 } 5609 /* 5610 * Process remaining subpages in left-right-left-right pattern 5611 * towards the target subpage 5612 */ 5613 for (i = 0; i < l; i++) { 5614 int left_idx = base + i; 5615 int right_idx = base + 2 * l - 1 - i; 5616 5617 cond_resched(); 5618 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5619 cond_resched(); 5620 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5621 } 5622 } 5623 5624 static void clear_gigantic_page(struct page *page, 5625 unsigned long addr, 5626 unsigned int pages_per_huge_page) 5627 { 5628 int i; 5629 struct page *p = page; 5630 5631 might_sleep(); 5632 for (i = 0; i < pages_per_huge_page; 5633 i++, p = mem_map_next(p, page, i)) { 5634 cond_resched(); 5635 clear_user_highpage(p, addr + i * PAGE_SIZE); 5636 } 5637 } 5638 5639 static void clear_subpage(unsigned long addr, int idx, void *arg) 5640 { 5641 struct page *page = arg; 5642 5643 clear_user_highpage(page + idx, addr); 5644 } 5645 5646 void clear_huge_page(struct page *page, 5647 unsigned long addr_hint, unsigned int pages_per_huge_page) 5648 { 5649 unsigned long addr = addr_hint & 5650 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5651 5652 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5653 clear_gigantic_page(page, addr, pages_per_huge_page); 5654 return; 5655 } 5656 5657 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5658 } 5659 5660 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5661 unsigned long addr, 5662 struct vm_area_struct *vma, 5663 unsigned int pages_per_huge_page) 5664 { 5665 int i; 5666 struct page *dst_base = dst; 5667 struct page *src_base = src; 5668 5669 for (i = 0; i < pages_per_huge_page; ) { 5670 cond_resched(); 5671 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5672 5673 i++; 5674 dst = mem_map_next(dst, dst_base, i); 5675 src = mem_map_next(src, src_base, i); 5676 } 5677 } 5678 5679 struct copy_subpage_arg { 5680 struct page *dst; 5681 struct page *src; 5682 struct vm_area_struct *vma; 5683 }; 5684 5685 static void copy_subpage(unsigned long addr, int idx, void *arg) 5686 { 5687 struct copy_subpage_arg *copy_arg = arg; 5688 5689 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5690 addr, copy_arg->vma); 5691 } 5692 5693 void copy_user_huge_page(struct page *dst, struct page *src, 5694 unsigned long addr_hint, struct vm_area_struct *vma, 5695 unsigned int pages_per_huge_page) 5696 { 5697 unsigned long addr = addr_hint & 5698 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5699 struct copy_subpage_arg arg = { 5700 .dst = dst, 5701 .src = src, 5702 .vma = vma, 5703 }; 5704 5705 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5706 copy_user_gigantic_page(dst, src, addr, vma, 5707 pages_per_huge_page); 5708 return; 5709 } 5710 5711 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5712 } 5713 5714 long copy_huge_page_from_user(struct page *dst_page, 5715 const void __user *usr_src, 5716 unsigned int pages_per_huge_page, 5717 bool allow_pagefault) 5718 { 5719 void *page_kaddr; 5720 unsigned long i, rc = 0; 5721 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5722 struct page *subpage = dst_page; 5723 5724 for (i = 0; i < pages_per_huge_page; 5725 i++, subpage = mem_map_next(subpage, dst_page, i)) { 5726 if (allow_pagefault) 5727 page_kaddr = kmap(subpage); 5728 else 5729 page_kaddr = kmap_atomic(subpage); 5730 rc = copy_from_user(page_kaddr, 5731 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5732 if (allow_pagefault) 5733 kunmap(subpage); 5734 else 5735 kunmap_atomic(page_kaddr); 5736 5737 ret_val -= (PAGE_SIZE - rc); 5738 if (rc) 5739 break; 5740 5741 flush_dcache_page(subpage); 5742 5743 cond_resched(); 5744 } 5745 return ret_val; 5746 } 5747 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5748 5749 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5750 5751 static struct kmem_cache *page_ptl_cachep; 5752 5753 void __init ptlock_cache_init(void) 5754 { 5755 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5756 SLAB_PANIC, NULL); 5757 } 5758 5759 bool ptlock_alloc(struct page *page) 5760 { 5761 spinlock_t *ptl; 5762 5763 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5764 if (!ptl) 5765 return false; 5766 page->ptl = ptl; 5767 return true; 5768 } 5769 5770 void ptlock_free(struct page *page) 5771 { 5772 kmem_cache_free(page_ptl_cachep, page->ptl); 5773 } 5774 #endif 5775