1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 60 #include <asm/io.h> 61 #include <asm/pgalloc.h> 62 #include <asm/uaccess.h> 63 #include <asm/tlb.h> 64 #include <asm/tlbflush.h> 65 #include <asm/pgtable.h> 66 67 #include "internal.h" 68 69 #ifndef CONFIG_NEED_MULTIPLE_NODES 70 /* use the per-pgdat data instead for discontigmem - mbligh */ 71 unsigned long max_mapnr; 72 struct page *mem_map; 73 74 EXPORT_SYMBOL(max_mapnr); 75 EXPORT_SYMBOL(mem_map); 76 #endif 77 78 unsigned long num_physpages; 79 /* 80 * A number of key systems in x86 including ioremap() rely on the assumption 81 * that high_memory defines the upper bound on direct map memory, then end 82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 84 * and ZONE_HIGHMEM. 85 */ 86 void * high_memory; 87 88 EXPORT_SYMBOL(num_physpages); 89 EXPORT_SYMBOL(high_memory); 90 91 /* 92 * Randomize the address space (stacks, mmaps, brk, etc.). 93 * 94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 95 * as ancient (libc5 based) binaries can segfault. ) 96 */ 97 int randomize_va_space __read_mostly = 98 #ifdef CONFIG_COMPAT_BRK 99 1; 100 #else 101 2; 102 #endif 103 104 static int __init disable_randmaps(char *s) 105 { 106 randomize_va_space = 0; 107 return 1; 108 } 109 __setup("norandmaps", disable_randmaps); 110 111 unsigned long zero_pfn __read_mostly; 112 unsigned long highest_memmap_pfn __read_mostly; 113 114 /* 115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 116 */ 117 static int __init init_zero_pfn(void) 118 { 119 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 120 return 0; 121 } 122 core_initcall(init_zero_pfn); 123 124 125 #if defined(SPLIT_RSS_COUNTING) 126 127 void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 128 { 129 int i; 130 131 for (i = 0; i < NR_MM_COUNTERS; i++) { 132 if (task->rss_stat.count[i]) { 133 add_mm_counter(mm, i, task->rss_stat.count[i]); 134 task->rss_stat.count[i] = 0; 135 } 136 } 137 task->rss_stat.events = 0; 138 } 139 140 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 141 { 142 struct task_struct *task = current; 143 144 if (likely(task->mm == mm)) 145 task->rss_stat.count[member] += val; 146 else 147 add_mm_counter(mm, member, val); 148 } 149 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 150 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 151 152 /* sync counter once per 64 page faults */ 153 #define TASK_RSS_EVENTS_THRESH (64) 154 static void check_sync_rss_stat(struct task_struct *task) 155 { 156 if (unlikely(task != current)) 157 return; 158 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 159 __sync_task_rss_stat(task, task->mm); 160 } 161 162 unsigned long get_mm_counter(struct mm_struct *mm, int member) 163 { 164 long val = 0; 165 166 /* 167 * Don't use task->mm here...for avoiding to use task_get_mm().. 168 * The caller must guarantee task->mm is not invalid. 169 */ 170 val = atomic_long_read(&mm->rss_stat.count[member]); 171 /* 172 * counter is updated in asynchronous manner and may go to minus. 173 * But it's never be expected number for users. 174 */ 175 if (val < 0) 176 return 0; 177 return (unsigned long)val; 178 } 179 180 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 181 { 182 __sync_task_rss_stat(task, mm); 183 } 184 #else 185 186 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 187 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 188 189 static void check_sync_rss_stat(struct task_struct *task) 190 { 191 } 192 193 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 194 { 195 } 196 #endif 197 198 /* 199 * If a p?d_bad entry is found while walking page tables, report 200 * the error, before resetting entry to p?d_none. Usually (but 201 * very seldom) called out from the p?d_none_or_clear_bad macros. 202 */ 203 204 void pgd_clear_bad(pgd_t *pgd) 205 { 206 pgd_ERROR(*pgd); 207 pgd_clear(pgd); 208 } 209 210 void pud_clear_bad(pud_t *pud) 211 { 212 pud_ERROR(*pud); 213 pud_clear(pud); 214 } 215 216 void pmd_clear_bad(pmd_t *pmd) 217 { 218 pmd_ERROR(*pmd); 219 pmd_clear(pmd); 220 } 221 222 /* 223 * Note: this doesn't free the actual pages themselves. That 224 * has been handled earlier when unmapping all the memory regions. 225 */ 226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 227 unsigned long addr) 228 { 229 pgtable_t token = pmd_pgtable(*pmd); 230 pmd_clear(pmd); 231 pte_free_tlb(tlb, token, addr); 232 tlb->mm->nr_ptes--; 233 } 234 235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 236 unsigned long addr, unsigned long end, 237 unsigned long floor, unsigned long ceiling) 238 { 239 pmd_t *pmd; 240 unsigned long next; 241 unsigned long start; 242 243 start = addr; 244 pmd = pmd_offset(pud, addr); 245 do { 246 next = pmd_addr_end(addr, end); 247 if (pmd_none_or_clear_bad(pmd)) 248 continue; 249 free_pte_range(tlb, pmd, addr); 250 } while (pmd++, addr = next, addr != end); 251 252 start &= PUD_MASK; 253 if (start < floor) 254 return; 255 if (ceiling) { 256 ceiling &= PUD_MASK; 257 if (!ceiling) 258 return; 259 } 260 if (end - 1 > ceiling - 1) 261 return; 262 263 pmd = pmd_offset(pud, start); 264 pud_clear(pud); 265 pmd_free_tlb(tlb, pmd, start); 266 } 267 268 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 269 unsigned long addr, unsigned long end, 270 unsigned long floor, unsigned long ceiling) 271 { 272 pud_t *pud; 273 unsigned long next; 274 unsigned long start; 275 276 start = addr; 277 pud = pud_offset(pgd, addr); 278 do { 279 next = pud_addr_end(addr, end); 280 if (pud_none_or_clear_bad(pud)) 281 continue; 282 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 283 } while (pud++, addr = next, addr != end); 284 285 start &= PGDIR_MASK; 286 if (start < floor) 287 return; 288 if (ceiling) { 289 ceiling &= PGDIR_MASK; 290 if (!ceiling) 291 return; 292 } 293 if (end - 1 > ceiling - 1) 294 return; 295 296 pud = pud_offset(pgd, start); 297 pgd_clear(pgd); 298 pud_free_tlb(tlb, pud, start); 299 } 300 301 /* 302 * This function frees user-level page tables of a process. 303 * 304 * Must be called with pagetable lock held. 305 */ 306 void free_pgd_range(struct mmu_gather *tlb, 307 unsigned long addr, unsigned long end, 308 unsigned long floor, unsigned long ceiling) 309 { 310 pgd_t *pgd; 311 unsigned long next; 312 unsigned long start; 313 314 /* 315 * The next few lines have given us lots of grief... 316 * 317 * Why are we testing PMD* at this top level? Because often 318 * there will be no work to do at all, and we'd prefer not to 319 * go all the way down to the bottom just to discover that. 320 * 321 * Why all these "- 1"s? Because 0 represents both the bottom 322 * of the address space and the top of it (using -1 for the 323 * top wouldn't help much: the masks would do the wrong thing). 324 * The rule is that addr 0 and floor 0 refer to the bottom of 325 * the address space, but end 0 and ceiling 0 refer to the top 326 * Comparisons need to use "end - 1" and "ceiling - 1" (though 327 * that end 0 case should be mythical). 328 * 329 * Wherever addr is brought up or ceiling brought down, we must 330 * be careful to reject "the opposite 0" before it confuses the 331 * subsequent tests. But what about where end is brought down 332 * by PMD_SIZE below? no, end can't go down to 0 there. 333 * 334 * Whereas we round start (addr) and ceiling down, by different 335 * masks at different levels, in order to test whether a table 336 * now has no other vmas using it, so can be freed, we don't 337 * bother to round floor or end up - the tests don't need that. 338 */ 339 340 addr &= PMD_MASK; 341 if (addr < floor) { 342 addr += PMD_SIZE; 343 if (!addr) 344 return; 345 } 346 if (ceiling) { 347 ceiling &= PMD_MASK; 348 if (!ceiling) 349 return; 350 } 351 if (end - 1 > ceiling - 1) 352 end -= PMD_SIZE; 353 if (addr > end - 1) 354 return; 355 356 start = addr; 357 pgd = pgd_offset(tlb->mm, addr); 358 do { 359 next = pgd_addr_end(addr, end); 360 if (pgd_none_or_clear_bad(pgd)) 361 continue; 362 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 363 } while (pgd++, addr = next, addr != end); 364 } 365 366 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 367 unsigned long floor, unsigned long ceiling) 368 { 369 while (vma) { 370 struct vm_area_struct *next = vma->vm_next; 371 unsigned long addr = vma->vm_start; 372 373 /* 374 * Hide vma from rmap and truncate_pagecache before freeing 375 * pgtables 376 */ 377 unlink_anon_vmas(vma); 378 unlink_file_vma(vma); 379 380 if (is_vm_hugetlb_page(vma)) { 381 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 382 floor, next? next->vm_start: ceiling); 383 } else { 384 /* 385 * Optimization: gather nearby vmas into one call down 386 */ 387 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 388 && !is_vm_hugetlb_page(next)) { 389 vma = next; 390 next = vma->vm_next; 391 unlink_anon_vmas(vma); 392 unlink_file_vma(vma); 393 } 394 free_pgd_range(tlb, addr, vma->vm_end, 395 floor, next? next->vm_start: ceiling); 396 } 397 vma = next; 398 } 399 } 400 401 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 402 { 403 pgtable_t new = pte_alloc_one(mm, address); 404 if (!new) 405 return -ENOMEM; 406 407 /* 408 * Ensure all pte setup (eg. pte page lock and page clearing) are 409 * visible before the pte is made visible to other CPUs by being 410 * put into page tables. 411 * 412 * The other side of the story is the pointer chasing in the page 413 * table walking code (when walking the page table without locking; 414 * ie. most of the time). Fortunately, these data accesses consist 415 * of a chain of data-dependent loads, meaning most CPUs (alpha 416 * being the notable exception) will already guarantee loads are 417 * seen in-order. See the alpha page table accessors for the 418 * smp_read_barrier_depends() barriers in page table walking code. 419 */ 420 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 421 422 spin_lock(&mm->page_table_lock); 423 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 424 mm->nr_ptes++; 425 pmd_populate(mm, pmd, new); 426 new = NULL; 427 } 428 spin_unlock(&mm->page_table_lock); 429 if (new) 430 pte_free(mm, new); 431 return 0; 432 } 433 434 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 435 { 436 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 437 if (!new) 438 return -ENOMEM; 439 440 smp_wmb(); /* See comment in __pte_alloc */ 441 442 spin_lock(&init_mm.page_table_lock); 443 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 444 pmd_populate_kernel(&init_mm, pmd, new); 445 new = NULL; 446 } 447 spin_unlock(&init_mm.page_table_lock); 448 if (new) 449 pte_free_kernel(&init_mm, new); 450 return 0; 451 } 452 453 static inline void init_rss_vec(int *rss) 454 { 455 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 456 } 457 458 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 459 { 460 int i; 461 462 if (current->mm == mm) 463 sync_mm_rss(current, mm); 464 for (i = 0; i < NR_MM_COUNTERS; i++) 465 if (rss[i]) 466 add_mm_counter(mm, i, rss[i]); 467 } 468 469 /* 470 * This function is called to print an error when a bad pte 471 * is found. For example, we might have a PFN-mapped pte in 472 * a region that doesn't allow it. 473 * 474 * The calling function must still handle the error. 475 */ 476 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 477 pte_t pte, struct page *page) 478 { 479 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 480 pud_t *pud = pud_offset(pgd, addr); 481 pmd_t *pmd = pmd_offset(pud, addr); 482 struct address_space *mapping; 483 pgoff_t index; 484 static unsigned long resume; 485 static unsigned long nr_shown; 486 static unsigned long nr_unshown; 487 488 /* 489 * Allow a burst of 60 reports, then keep quiet for that minute; 490 * or allow a steady drip of one report per second. 491 */ 492 if (nr_shown == 60) { 493 if (time_before(jiffies, resume)) { 494 nr_unshown++; 495 return; 496 } 497 if (nr_unshown) { 498 printk(KERN_ALERT 499 "BUG: Bad page map: %lu messages suppressed\n", 500 nr_unshown); 501 nr_unshown = 0; 502 } 503 nr_shown = 0; 504 } 505 if (nr_shown++ == 0) 506 resume = jiffies + 60 * HZ; 507 508 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 509 index = linear_page_index(vma, addr); 510 511 printk(KERN_ALERT 512 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 513 current->comm, 514 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 515 if (page) { 516 printk(KERN_ALERT 517 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 518 page, (void *)page->flags, page_count(page), 519 page_mapcount(page), page->mapping, page->index); 520 } 521 printk(KERN_ALERT 522 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 523 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 524 /* 525 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 526 */ 527 if (vma->vm_ops) 528 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 529 (unsigned long)vma->vm_ops->fault); 530 if (vma->vm_file && vma->vm_file->f_op) 531 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 532 (unsigned long)vma->vm_file->f_op->mmap); 533 dump_stack(); 534 add_taint(TAINT_BAD_PAGE); 535 } 536 537 static inline int is_cow_mapping(unsigned int flags) 538 { 539 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 540 } 541 542 #ifndef is_zero_pfn 543 static inline int is_zero_pfn(unsigned long pfn) 544 { 545 return pfn == zero_pfn; 546 } 547 #endif 548 549 #ifndef my_zero_pfn 550 static inline unsigned long my_zero_pfn(unsigned long addr) 551 { 552 return zero_pfn; 553 } 554 #endif 555 556 /* 557 * vm_normal_page -- This function gets the "struct page" associated with a pte. 558 * 559 * "Special" mappings do not wish to be associated with a "struct page" (either 560 * it doesn't exist, or it exists but they don't want to touch it). In this 561 * case, NULL is returned here. "Normal" mappings do have a struct page. 562 * 563 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 564 * pte bit, in which case this function is trivial. Secondly, an architecture 565 * may not have a spare pte bit, which requires a more complicated scheme, 566 * described below. 567 * 568 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 569 * special mapping (even if there are underlying and valid "struct pages"). 570 * COWed pages of a VM_PFNMAP are always normal. 571 * 572 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 573 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 574 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 575 * mapping will always honor the rule 576 * 577 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 578 * 579 * And for normal mappings this is false. 580 * 581 * This restricts such mappings to be a linear translation from virtual address 582 * to pfn. To get around this restriction, we allow arbitrary mappings so long 583 * as the vma is not a COW mapping; in that case, we know that all ptes are 584 * special (because none can have been COWed). 585 * 586 * 587 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 588 * 589 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 590 * page" backing, however the difference is that _all_ pages with a struct 591 * page (that is, those where pfn_valid is true) are refcounted and considered 592 * normal pages by the VM. The disadvantage is that pages are refcounted 593 * (which can be slower and simply not an option for some PFNMAP users). The 594 * advantage is that we don't have to follow the strict linearity rule of 595 * PFNMAP mappings in order to support COWable mappings. 596 * 597 */ 598 #ifdef __HAVE_ARCH_PTE_SPECIAL 599 # define HAVE_PTE_SPECIAL 1 600 #else 601 # define HAVE_PTE_SPECIAL 0 602 #endif 603 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 604 pte_t pte) 605 { 606 unsigned long pfn = pte_pfn(pte); 607 608 if (HAVE_PTE_SPECIAL) { 609 if (likely(!pte_special(pte))) 610 goto check_pfn; 611 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 612 return NULL; 613 if (!is_zero_pfn(pfn)) 614 print_bad_pte(vma, addr, pte, NULL); 615 return NULL; 616 } 617 618 /* !HAVE_PTE_SPECIAL case follows: */ 619 620 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 621 if (vma->vm_flags & VM_MIXEDMAP) { 622 if (!pfn_valid(pfn)) 623 return NULL; 624 goto out; 625 } else { 626 unsigned long off; 627 off = (addr - vma->vm_start) >> PAGE_SHIFT; 628 if (pfn == vma->vm_pgoff + off) 629 return NULL; 630 if (!is_cow_mapping(vma->vm_flags)) 631 return NULL; 632 } 633 } 634 635 if (is_zero_pfn(pfn)) 636 return NULL; 637 check_pfn: 638 if (unlikely(pfn > highest_memmap_pfn)) { 639 print_bad_pte(vma, addr, pte, NULL); 640 return NULL; 641 } 642 643 /* 644 * NOTE! We still have PageReserved() pages in the page tables. 645 * eg. VDSO mappings can cause them to exist. 646 */ 647 out: 648 return pfn_to_page(pfn); 649 } 650 651 /* 652 * copy one vm_area from one task to the other. Assumes the page tables 653 * already present in the new task to be cleared in the whole range 654 * covered by this vma. 655 */ 656 657 static inline unsigned long 658 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 659 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 660 unsigned long addr, int *rss) 661 { 662 unsigned long vm_flags = vma->vm_flags; 663 pte_t pte = *src_pte; 664 struct page *page; 665 666 /* pte contains position in swap or file, so copy. */ 667 if (unlikely(!pte_present(pte))) { 668 if (!pte_file(pte)) { 669 swp_entry_t entry = pte_to_swp_entry(pte); 670 671 if (swap_duplicate(entry) < 0) 672 return entry.val; 673 674 /* make sure dst_mm is on swapoff's mmlist. */ 675 if (unlikely(list_empty(&dst_mm->mmlist))) { 676 spin_lock(&mmlist_lock); 677 if (list_empty(&dst_mm->mmlist)) 678 list_add(&dst_mm->mmlist, 679 &src_mm->mmlist); 680 spin_unlock(&mmlist_lock); 681 } 682 if (likely(!non_swap_entry(entry))) 683 rss[MM_SWAPENTS]++; 684 else if (is_write_migration_entry(entry) && 685 is_cow_mapping(vm_flags)) { 686 /* 687 * COW mappings require pages in both parent 688 * and child to be set to read. 689 */ 690 make_migration_entry_read(&entry); 691 pte = swp_entry_to_pte(entry); 692 set_pte_at(src_mm, addr, src_pte, pte); 693 } 694 } 695 goto out_set_pte; 696 } 697 698 /* 699 * If it's a COW mapping, write protect it both 700 * in the parent and the child 701 */ 702 if (is_cow_mapping(vm_flags)) { 703 ptep_set_wrprotect(src_mm, addr, src_pte); 704 pte = pte_wrprotect(pte); 705 } 706 707 /* 708 * If it's a shared mapping, mark it clean in 709 * the child 710 */ 711 if (vm_flags & VM_SHARED) 712 pte = pte_mkclean(pte); 713 pte = pte_mkold(pte); 714 715 page = vm_normal_page(vma, addr, pte); 716 if (page) { 717 get_page(page); 718 page_dup_rmap(page); 719 if (PageAnon(page)) 720 rss[MM_ANONPAGES]++; 721 else 722 rss[MM_FILEPAGES]++; 723 } 724 725 out_set_pte: 726 set_pte_at(dst_mm, addr, dst_pte, pte); 727 return 0; 728 } 729 730 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 731 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 732 unsigned long addr, unsigned long end) 733 { 734 pte_t *orig_src_pte, *orig_dst_pte; 735 pte_t *src_pte, *dst_pte; 736 spinlock_t *src_ptl, *dst_ptl; 737 int progress = 0; 738 int rss[NR_MM_COUNTERS]; 739 swp_entry_t entry = (swp_entry_t){0}; 740 741 again: 742 init_rss_vec(rss); 743 744 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 745 if (!dst_pte) 746 return -ENOMEM; 747 src_pte = pte_offset_map_nested(src_pmd, addr); 748 src_ptl = pte_lockptr(src_mm, src_pmd); 749 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 750 orig_src_pte = src_pte; 751 orig_dst_pte = dst_pte; 752 arch_enter_lazy_mmu_mode(); 753 754 do { 755 /* 756 * We are holding two locks at this point - either of them 757 * could generate latencies in another task on another CPU. 758 */ 759 if (progress >= 32) { 760 progress = 0; 761 if (need_resched() || 762 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 763 break; 764 } 765 if (pte_none(*src_pte)) { 766 progress++; 767 continue; 768 } 769 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 770 vma, addr, rss); 771 if (entry.val) 772 break; 773 progress += 8; 774 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 775 776 arch_leave_lazy_mmu_mode(); 777 spin_unlock(src_ptl); 778 pte_unmap_nested(orig_src_pte); 779 add_mm_rss_vec(dst_mm, rss); 780 pte_unmap_unlock(orig_dst_pte, dst_ptl); 781 cond_resched(); 782 783 if (entry.val) { 784 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 785 return -ENOMEM; 786 progress = 0; 787 } 788 if (addr != end) 789 goto again; 790 return 0; 791 } 792 793 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 794 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 795 unsigned long addr, unsigned long end) 796 { 797 pmd_t *src_pmd, *dst_pmd; 798 unsigned long next; 799 800 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 801 if (!dst_pmd) 802 return -ENOMEM; 803 src_pmd = pmd_offset(src_pud, addr); 804 do { 805 next = pmd_addr_end(addr, end); 806 if (pmd_none_or_clear_bad(src_pmd)) 807 continue; 808 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 809 vma, addr, next)) 810 return -ENOMEM; 811 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 812 return 0; 813 } 814 815 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 816 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 817 unsigned long addr, unsigned long end) 818 { 819 pud_t *src_pud, *dst_pud; 820 unsigned long next; 821 822 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 823 if (!dst_pud) 824 return -ENOMEM; 825 src_pud = pud_offset(src_pgd, addr); 826 do { 827 next = pud_addr_end(addr, end); 828 if (pud_none_or_clear_bad(src_pud)) 829 continue; 830 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 831 vma, addr, next)) 832 return -ENOMEM; 833 } while (dst_pud++, src_pud++, addr = next, addr != end); 834 return 0; 835 } 836 837 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 838 struct vm_area_struct *vma) 839 { 840 pgd_t *src_pgd, *dst_pgd; 841 unsigned long next; 842 unsigned long addr = vma->vm_start; 843 unsigned long end = vma->vm_end; 844 int ret; 845 846 /* 847 * Don't copy ptes where a page fault will fill them correctly. 848 * Fork becomes much lighter when there are big shared or private 849 * readonly mappings. The tradeoff is that copy_page_range is more 850 * efficient than faulting. 851 */ 852 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 853 if (!vma->anon_vma) 854 return 0; 855 } 856 857 if (is_vm_hugetlb_page(vma)) 858 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 859 860 if (unlikely(is_pfn_mapping(vma))) { 861 /* 862 * We do not free on error cases below as remove_vma 863 * gets called on error from higher level routine 864 */ 865 ret = track_pfn_vma_copy(vma); 866 if (ret) 867 return ret; 868 } 869 870 /* 871 * We need to invalidate the secondary MMU mappings only when 872 * there could be a permission downgrade on the ptes of the 873 * parent mm. And a permission downgrade will only happen if 874 * is_cow_mapping() returns true. 875 */ 876 if (is_cow_mapping(vma->vm_flags)) 877 mmu_notifier_invalidate_range_start(src_mm, addr, end); 878 879 ret = 0; 880 dst_pgd = pgd_offset(dst_mm, addr); 881 src_pgd = pgd_offset(src_mm, addr); 882 do { 883 next = pgd_addr_end(addr, end); 884 if (pgd_none_or_clear_bad(src_pgd)) 885 continue; 886 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 887 vma, addr, next))) { 888 ret = -ENOMEM; 889 break; 890 } 891 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 892 893 if (is_cow_mapping(vma->vm_flags)) 894 mmu_notifier_invalidate_range_end(src_mm, 895 vma->vm_start, end); 896 return ret; 897 } 898 899 static unsigned long zap_pte_range(struct mmu_gather *tlb, 900 struct vm_area_struct *vma, pmd_t *pmd, 901 unsigned long addr, unsigned long end, 902 long *zap_work, struct zap_details *details) 903 { 904 struct mm_struct *mm = tlb->mm; 905 pte_t *pte; 906 spinlock_t *ptl; 907 int rss[NR_MM_COUNTERS]; 908 909 init_rss_vec(rss); 910 911 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 912 arch_enter_lazy_mmu_mode(); 913 do { 914 pte_t ptent = *pte; 915 if (pte_none(ptent)) { 916 (*zap_work)--; 917 continue; 918 } 919 920 (*zap_work) -= PAGE_SIZE; 921 922 if (pte_present(ptent)) { 923 struct page *page; 924 925 page = vm_normal_page(vma, addr, ptent); 926 if (unlikely(details) && page) { 927 /* 928 * unmap_shared_mapping_pages() wants to 929 * invalidate cache without truncating: 930 * unmap shared but keep private pages. 931 */ 932 if (details->check_mapping && 933 details->check_mapping != page->mapping) 934 continue; 935 /* 936 * Each page->index must be checked when 937 * invalidating or truncating nonlinear. 938 */ 939 if (details->nonlinear_vma && 940 (page->index < details->first_index || 941 page->index > details->last_index)) 942 continue; 943 } 944 ptent = ptep_get_and_clear_full(mm, addr, pte, 945 tlb->fullmm); 946 tlb_remove_tlb_entry(tlb, pte, addr); 947 if (unlikely(!page)) 948 continue; 949 if (unlikely(details) && details->nonlinear_vma 950 && linear_page_index(details->nonlinear_vma, 951 addr) != page->index) 952 set_pte_at(mm, addr, pte, 953 pgoff_to_pte(page->index)); 954 if (PageAnon(page)) 955 rss[MM_ANONPAGES]--; 956 else { 957 if (pte_dirty(ptent)) 958 set_page_dirty(page); 959 if (pte_young(ptent) && 960 likely(!VM_SequentialReadHint(vma))) 961 mark_page_accessed(page); 962 rss[MM_FILEPAGES]--; 963 } 964 page_remove_rmap(page); 965 if (unlikely(page_mapcount(page) < 0)) 966 print_bad_pte(vma, addr, ptent, page); 967 tlb_remove_page(tlb, page); 968 continue; 969 } 970 /* 971 * If details->check_mapping, we leave swap entries; 972 * if details->nonlinear_vma, we leave file entries. 973 */ 974 if (unlikely(details)) 975 continue; 976 if (pte_file(ptent)) { 977 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 978 print_bad_pte(vma, addr, ptent, NULL); 979 } else { 980 swp_entry_t entry = pte_to_swp_entry(ptent); 981 982 if (!non_swap_entry(entry)) 983 rss[MM_SWAPENTS]--; 984 if (unlikely(!free_swap_and_cache(entry))) 985 print_bad_pte(vma, addr, ptent, NULL); 986 } 987 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 988 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 989 990 add_mm_rss_vec(mm, rss); 991 arch_leave_lazy_mmu_mode(); 992 pte_unmap_unlock(pte - 1, ptl); 993 994 return addr; 995 } 996 997 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 998 struct vm_area_struct *vma, pud_t *pud, 999 unsigned long addr, unsigned long end, 1000 long *zap_work, struct zap_details *details) 1001 { 1002 pmd_t *pmd; 1003 unsigned long next; 1004 1005 pmd = pmd_offset(pud, addr); 1006 do { 1007 next = pmd_addr_end(addr, end); 1008 if (pmd_none_or_clear_bad(pmd)) { 1009 (*zap_work)--; 1010 continue; 1011 } 1012 next = zap_pte_range(tlb, vma, pmd, addr, next, 1013 zap_work, details); 1014 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1015 1016 return addr; 1017 } 1018 1019 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1020 struct vm_area_struct *vma, pgd_t *pgd, 1021 unsigned long addr, unsigned long end, 1022 long *zap_work, struct zap_details *details) 1023 { 1024 pud_t *pud; 1025 unsigned long next; 1026 1027 pud = pud_offset(pgd, addr); 1028 do { 1029 next = pud_addr_end(addr, end); 1030 if (pud_none_or_clear_bad(pud)) { 1031 (*zap_work)--; 1032 continue; 1033 } 1034 next = zap_pmd_range(tlb, vma, pud, addr, next, 1035 zap_work, details); 1036 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1037 1038 return addr; 1039 } 1040 1041 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1042 struct vm_area_struct *vma, 1043 unsigned long addr, unsigned long end, 1044 long *zap_work, struct zap_details *details) 1045 { 1046 pgd_t *pgd; 1047 unsigned long next; 1048 1049 if (details && !details->check_mapping && !details->nonlinear_vma) 1050 details = NULL; 1051 1052 BUG_ON(addr >= end); 1053 mem_cgroup_uncharge_start(); 1054 tlb_start_vma(tlb, vma); 1055 pgd = pgd_offset(vma->vm_mm, addr); 1056 do { 1057 next = pgd_addr_end(addr, end); 1058 if (pgd_none_or_clear_bad(pgd)) { 1059 (*zap_work)--; 1060 continue; 1061 } 1062 next = zap_pud_range(tlb, vma, pgd, addr, next, 1063 zap_work, details); 1064 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1065 tlb_end_vma(tlb, vma); 1066 mem_cgroup_uncharge_end(); 1067 1068 return addr; 1069 } 1070 1071 #ifdef CONFIG_PREEMPT 1072 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1073 #else 1074 /* No preempt: go for improved straight-line efficiency */ 1075 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1076 #endif 1077 1078 /** 1079 * unmap_vmas - unmap a range of memory covered by a list of vma's 1080 * @tlbp: address of the caller's struct mmu_gather 1081 * @vma: the starting vma 1082 * @start_addr: virtual address at which to start unmapping 1083 * @end_addr: virtual address at which to end unmapping 1084 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1085 * @details: details of nonlinear truncation or shared cache invalidation 1086 * 1087 * Returns the end address of the unmapping (restart addr if interrupted). 1088 * 1089 * Unmap all pages in the vma list. 1090 * 1091 * We aim to not hold locks for too long (for scheduling latency reasons). 1092 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1093 * return the ending mmu_gather to the caller. 1094 * 1095 * Only addresses between `start' and `end' will be unmapped. 1096 * 1097 * The VMA list must be sorted in ascending virtual address order. 1098 * 1099 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1100 * range after unmap_vmas() returns. So the only responsibility here is to 1101 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1102 * drops the lock and schedules. 1103 */ 1104 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1105 struct vm_area_struct *vma, unsigned long start_addr, 1106 unsigned long end_addr, unsigned long *nr_accounted, 1107 struct zap_details *details) 1108 { 1109 long zap_work = ZAP_BLOCK_SIZE; 1110 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1111 int tlb_start_valid = 0; 1112 unsigned long start = start_addr; 1113 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1114 int fullmm = (*tlbp)->fullmm; 1115 struct mm_struct *mm = vma->vm_mm; 1116 1117 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1118 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1119 unsigned long end; 1120 1121 start = max(vma->vm_start, start_addr); 1122 if (start >= vma->vm_end) 1123 continue; 1124 end = min(vma->vm_end, end_addr); 1125 if (end <= vma->vm_start) 1126 continue; 1127 1128 if (vma->vm_flags & VM_ACCOUNT) 1129 *nr_accounted += (end - start) >> PAGE_SHIFT; 1130 1131 if (unlikely(is_pfn_mapping(vma))) 1132 untrack_pfn_vma(vma, 0, 0); 1133 1134 while (start != end) { 1135 if (!tlb_start_valid) { 1136 tlb_start = start; 1137 tlb_start_valid = 1; 1138 } 1139 1140 if (unlikely(is_vm_hugetlb_page(vma))) { 1141 /* 1142 * It is undesirable to test vma->vm_file as it 1143 * should be non-null for valid hugetlb area. 1144 * However, vm_file will be NULL in the error 1145 * cleanup path of do_mmap_pgoff. When 1146 * hugetlbfs ->mmap method fails, 1147 * do_mmap_pgoff() nullifies vma->vm_file 1148 * before calling this function to clean up. 1149 * Since no pte has actually been setup, it is 1150 * safe to do nothing in this case. 1151 */ 1152 if (vma->vm_file) { 1153 unmap_hugepage_range(vma, start, end, NULL); 1154 zap_work -= (end - start) / 1155 pages_per_huge_page(hstate_vma(vma)); 1156 } 1157 1158 start = end; 1159 } else 1160 start = unmap_page_range(*tlbp, vma, 1161 start, end, &zap_work, details); 1162 1163 if (zap_work > 0) { 1164 BUG_ON(start != end); 1165 break; 1166 } 1167 1168 tlb_finish_mmu(*tlbp, tlb_start, start); 1169 1170 if (need_resched() || 1171 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1172 if (i_mmap_lock) { 1173 *tlbp = NULL; 1174 goto out; 1175 } 1176 cond_resched(); 1177 } 1178 1179 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1180 tlb_start_valid = 0; 1181 zap_work = ZAP_BLOCK_SIZE; 1182 } 1183 } 1184 out: 1185 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1186 return start; /* which is now the end (or restart) address */ 1187 } 1188 1189 /** 1190 * zap_page_range - remove user pages in a given range 1191 * @vma: vm_area_struct holding the applicable pages 1192 * @address: starting address of pages to zap 1193 * @size: number of bytes to zap 1194 * @details: details of nonlinear truncation or shared cache invalidation 1195 */ 1196 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1197 unsigned long size, struct zap_details *details) 1198 { 1199 struct mm_struct *mm = vma->vm_mm; 1200 struct mmu_gather *tlb; 1201 unsigned long end = address + size; 1202 unsigned long nr_accounted = 0; 1203 1204 lru_add_drain(); 1205 tlb = tlb_gather_mmu(mm, 0); 1206 update_hiwater_rss(mm); 1207 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1208 if (tlb) 1209 tlb_finish_mmu(tlb, address, end); 1210 return end; 1211 } 1212 1213 /** 1214 * zap_vma_ptes - remove ptes mapping the vma 1215 * @vma: vm_area_struct holding ptes to be zapped 1216 * @address: starting address of pages to zap 1217 * @size: number of bytes to zap 1218 * 1219 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1220 * 1221 * The entire address range must be fully contained within the vma. 1222 * 1223 * Returns 0 if successful. 1224 */ 1225 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1226 unsigned long size) 1227 { 1228 if (address < vma->vm_start || address + size > vma->vm_end || 1229 !(vma->vm_flags & VM_PFNMAP)) 1230 return -1; 1231 zap_page_range(vma, address, size, NULL); 1232 return 0; 1233 } 1234 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1235 1236 /* 1237 * Do a quick page-table lookup for a single page. 1238 */ 1239 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1240 unsigned int flags) 1241 { 1242 pgd_t *pgd; 1243 pud_t *pud; 1244 pmd_t *pmd; 1245 pte_t *ptep, pte; 1246 spinlock_t *ptl; 1247 struct page *page; 1248 struct mm_struct *mm = vma->vm_mm; 1249 1250 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1251 if (!IS_ERR(page)) { 1252 BUG_ON(flags & FOLL_GET); 1253 goto out; 1254 } 1255 1256 page = NULL; 1257 pgd = pgd_offset(mm, address); 1258 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1259 goto no_page_table; 1260 1261 pud = pud_offset(pgd, address); 1262 if (pud_none(*pud)) 1263 goto no_page_table; 1264 if (pud_huge(*pud)) { 1265 BUG_ON(flags & FOLL_GET); 1266 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1267 goto out; 1268 } 1269 if (unlikely(pud_bad(*pud))) 1270 goto no_page_table; 1271 1272 pmd = pmd_offset(pud, address); 1273 if (pmd_none(*pmd)) 1274 goto no_page_table; 1275 if (pmd_huge(*pmd)) { 1276 BUG_ON(flags & FOLL_GET); 1277 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1278 goto out; 1279 } 1280 if (unlikely(pmd_bad(*pmd))) 1281 goto no_page_table; 1282 1283 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1284 1285 pte = *ptep; 1286 if (!pte_present(pte)) 1287 goto no_page; 1288 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1289 goto unlock; 1290 1291 page = vm_normal_page(vma, address, pte); 1292 if (unlikely(!page)) { 1293 if ((flags & FOLL_DUMP) || 1294 !is_zero_pfn(pte_pfn(pte))) 1295 goto bad_page; 1296 page = pte_page(pte); 1297 } 1298 1299 if (flags & FOLL_GET) 1300 get_page(page); 1301 if (flags & FOLL_TOUCH) { 1302 if ((flags & FOLL_WRITE) && 1303 !pte_dirty(pte) && !PageDirty(page)) 1304 set_page_dirty(page); 1305 /* 1306 * pte_mkyoung() would be more correct here, but atomic care 1307 * is needed to avoid losing the dirty bit: it is easier to use 1308 * mark_page_accessed(). 1309 */ 1310 mark_page_accessed(page); 1311 } 1312 unlock: 1313 pte_unmap_unlock(ptep, ptl); 1314 out: 1315 return page; 1316 1317 bad_page: 1318 pte_unmap_unlock(ptep, ptl); 1319 return ERR_PTR(-EFAULT); 1320 1321 no_page: 1322 pte_unmap_unlock(ptep, ptl); 1323 if (!pte_none(pte)) 1324 return page; 1325 1326 no_page_table: 1327 /* 1328 * When core dumping an enormous anonymous area that nobody 1329 * has touched so far, we don't want to allocate unnecessary pages or 1330 * page tables. Return error instead of NULL to skip handle_mm_fault, 1331 * then get_dump_page() will return NULL to leave a hole in the dump. 1332 * But we can only make this optimization where a hole would surely 1333 * be zero-filled if handle_mm_fault() actually did handle it. 1334 */ 1335 if ((flags & FOLL_DUMP) && 1336 (!vma->vm_ops || !vma->vm_ops->fault)) 1337 return ERR_PTR(-EFAULT); 1338 return page; 1339 } 1340 1341 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1342 unsigned long start, int nr_pages, unsigned int gup_flags, 1343 struct page **pages, struct vm_area_struct **vmas) 1344 { 1345 int i; 1346 unsigned long vm_flags; 1347 1348 if (nr_pages <= 0) 1349 return 0; 1350 1351 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1352 1353 /* 1354 * Require read or write permissions. 1355 * If FOLL_FORCE is set, we only require the "MAY" flags. 1356 */ 1357 vm_flags = (gup_flags & FOLL_WRITE) ? 1358 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1359 vm_flags &= (gup_flags & FOLL_FORCE) ? 1360 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1361 i = 0; 1362 1363 do { 1364 struct vm_area_struct *vma; 1365 1366 vma = find_extend_vma(mm, start); 1367 if (!vma && in_gate_area(tsk, start)) { 1368 unsigned long pg = start & PAGE_MASK; 1369 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1370 pgd_t *pgd; 1371 pud_t *pud; 1372 pmd_t *pmd; 1373 pte_t *pte; 1374 1375 /* user gate pages are read-only */ 1376 if (gup_flags & FOLL_WRITE) 1377 return i ? : -EFAULT; 1378 if (pg > TASK_SIZE) 1379 pgd = pgd_offset_k(pg); 1380 else 1381 pgd = pgd_offset_gate(mm, pg); 1382 BUG_ON(pgd_none(*pgd)); 1383 pud = pud_offset(pgd, pg); 1384 BUG_ON(pud_none(*pud)); 1385 pmd = pmd_offset(pud, pg); 1386 if (pmd_none(*pmd)) 1387 return i ? : -EFAULT; 1388 pte = pte_offset_map(pmd, pg); 1389 if (pte_none(*pte)) { 1390 pte_unmap(pte); 1391 return i ? : -EFAULT; 1392 } 1393 if (pages) { 1394 struct page *page = vm_normal_page(gate_vma, start, *pte); 1395 pages[i] = page; 1396 if (page) 1397 get_page(page); 1398 } 1399 pte_unmap(pte); 1400 if (vmas) 1401 vmas[i] = gate_vma; 1402 i++; 1403 start += PAGE_SIZE; 1404 nr_pages--; 1405 continue; 1406 } 1407 1408 if (!vma || 1409 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1410 !(vm_flags & vma->vm_flags)) 1411 return i ? : -EFAULT; 1412 1413 if (is_vm_hugetlb_page(vma)) { 1414 i = follow_hugetlb_page(mm, vma, pages, vmas, 1415 &start, &nr_pages, i, gup_flags); 1416 continue; 1417 } 1418 1419 do { 1420 struct page *page; 1421 unsigned int foll_flags = gup_flags; 1422 1423 /* 1424 * If we have a pending SIGKILL, don't keep faulting 1425 * pages and potentially allocating memory. 1426 */ 1427 if (unlikely(fatal_signal_pending(current))) 1428 return i ? i : -ERESTARTSYS; 1429 1430 cond_resched(); 1431 while (!(page = follow_page(vma, start, foll_flags))) { 1432 int ret; 1433 1434 ret = handle_mm_fault(mm, vma, start, 1435 (foll_flags & FOLL_WRITE) ? 1436 FAULT_FLAG_WRITE : 0); 1437 1438 if (ret & VM_FAULT_ERROR) { 1439 if (ret & VM_FAULT_OOM) 1440 return i ? i : -ENOMEM; 1441 if (ret & 1442 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) 1443 return i ? i : -EFAULT; 1444 BUG(); 1445 } 1446 if (ret & VM_FAULT_MAJOR) 1447 tsk->maj_flt++; 1448 else 1449 tsk->min_flt++; 1450 1451 /* 1452 * The VM_FAULT_WRITE bit tells us that 1453 * do_wp_page has broken COW when necessary, 1454 * even if maybe_mkwrite decided not to set 1455 * pte_write. We can thus safely do subsequent 1456 * page lookups as if they were reads. But only 1457 * do so when looping for pte_write is futile: 1458 * in some cases userspace may also be wanting 1459 * to write to the gotten user page, which a 1460 * read fault here might prevent (a readonly 1461 * page might get reCOWed by userspace write). 1462 */ 1463 if ((ret & VM_FAULT_WRITE) && 1464 !(vma->vm_flags & VM_WRITE)) 1465 foll_flags &= ~FOLL_WRITE; 1466 1467 cond_resched(); 1468 } 1469 if (IS_ERR(page)) 1470 return i ? i : PTR_ERR(page); 1471 if (pages) { 1472 pages[i] = page; 1473 1474 flush_anon_page(vma, page, start); 1475 flush_dcache_page(page); 1476 } 1477 if (vmas) 1478 vmas[i] = vma; 1479 i++; 1480 start += PAGE_SIZE; 1481 nr_pages--; 1482 } while (nr_pages && start < vma->vm_end); 1483 } while (nr_pages); 1484 return i; 1485 } 1486 1487 /** 1488 * get_user_pages() - pin user pages in memory 1489 * @tsk: task_struct of target task 1490 * @mm: mm_struct of target mm 1491 * @start: starting user address 1492 * @nr_pages: number of pages from start to pin 1493 * @write: whether pages will be written to by the caller 1494 * @force: whether to force write access even if user mapping is 1495 * readonly. This will result in the page being COWed even 1496 * in MAP_SHARED mappings. You do not want this. 1497 * @pages: array that receives pointers to the pages pinned. 1498 * Should be at least nr_pages long. Or NULL, if caller 1499 * only intends to ensure the pages are faulted in. 1500 * @vmas: array of pointers to vmas corresponding to each page. 1501 * Or NULL if the caller does not require them. 1502 * 1503 * Returns number of pages pinned. This may be fewer than the number 1504 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1505 * were pinned, returns -errno. Each page returned must be released 1506 * with a put_page() call when it is finished with. vmas will only 1507 * remain valid while mmap_sem is held. 1508 * 1509 * Must be called with mmap_sem held for read or write. 1510 * 1511 * get_user_pages walks a process's page tables and takes a reference to 1512 * each struct page that each user address corresponds to at a given 1513 * instant. That is, it takes the page that would be accessed if a user 1514 * thread accesses the given user virtual address at that instant. 1515 * 1516 * This does not guarantee that the page exists in the user mappings when 1517 * get_user_pages returns, and there may even be a completely different 1518 * page there in some cases (eg. if mmapped pagecache has been invalidated 1519 * and subsequently re faulted). However it does guarantee that the page 1520 * won't be freed completely. And mostly callers simply care that the page 1521 * contains data that was valid *at some point in time*. Typically, an IO 1522 * or similar operation cannot guarantee anything stronger anyway because 1523 * locks can't be held over the syscall boundary. 1524 * 1525 * If write=0, the page must not be written to. If the page is written to, 1526 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1527 * after the page is finished with, and before put_page is called. 1528 * 1529 * get_user_pages is typically used for fewer-copy IO operations, to get a 1530 * handle on the memory by some means other than accesses via the user virtual 1531 * addresses. The pages may be submitted for DMA to devices or accessed via 1532 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1533 * use the correct cache flushing APIs. 1534 * 1535 * See also get_user_pages_fast, for performance critical applications. 1536 */ 1537 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1538 unsigned long start, int nr_pages, int write, int force, 1539 struct page **pages, struct vm_area_struct **vmas) 1540 { 1541 int flags = FOLL_TOUCH; 1542 1543 if (pages) 1544 flags |= FOLL_GET; 1545 if (write) 1546 flags |= FOLL_WRITE; 1547 if (force) 1548 flags |= FOLL_FORCE; 1549 1550 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 1551 } 1552 EXPORT_SYMBOL(get_user_pages); 1553 1554 /** 1555 * get_dump_page() - pin user page in memory while writing it to core dump 1556 * @addr: user address 1557 * 1558 * Returns struct page pointer of user page pinned for dump, 1559 * to be freed afterwards by page_cache_release() or put_page(). 1560 * 1561 * Returns NULL on any kind of failure - a hole must then be inserted into 1562 * the corefile, to preserve alignment with its headers; and also returns 1563 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1564 * allowing a hole to be left in the corefile to save diskspace. 1565 * 1566 * Called without mmap_sem, but after all other threads have been killed. 1567 */ 1568 #ifdef CONFIG_ELF_CORE 1569 struct page *get_dump_page(unsigned long addr) 1570 { 1571 struct vm_area_struct *vma; 1572 struct page *page; 1573 1574 if (__get_user_pages(current, current->mm, addr, 1, 1575 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) 1576 return NULL; 1577 flush_cache_page(vma, addr, page_to_pfn(page)); 1578 return page; 1579 } 1580 #endif /* CONFIG_ELF_CORE */ 1581 1582 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1583 spinlock_t **ptl) 1584 { 1585 pgd_t * pgd = pgd_offset(mm, addr); 1586 pud_t * pud = pud_alloc(mm, pgd, addr); 1587 if (pud) { 1588 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1589 if (pmd) 1590 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1591 } 1592 return NULL; 1593 } 1594 1595 /* 1596 * This is the old fallback for page remapping. 1597 * 1598 * For historical reasons, it only allows reserved pages. Only 1599 * old drivers should use this, and they needed to mark their 1600 * pages reserved for the old functions anyway. 1601 */ 1602 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1603 struct page *page, pgprot_t prot) 1604 { 1605 struct mm_struct *mm = vma->vm_mm; 1606 int retval; 1607 pte_t *pte; 1608 spinlock_t *ptl; 1609 1610 retval = -EINVAL; 1611 if (PageAnon(page)) 1612 goto out; 1613 retval = -ENOMEM; 1614 flush_dcache_page(page); 1615 pte = get_locked_pte(mm, addr, &ptl); 1616 if (!pte) 1617 goto out; 1618 retval = -EBUSY; 1619 if (!pte_none(*pte)) 1620 goto out_unlock; 1621 1622 /* Ok, finally just insert the thing.. */ 1623 get_page(page); 1624 inc_mm_counter_fast(mm, MM_FILEPAGES); 1625 page_add_file_rmap(page); 1626 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1627 1628 retval = 0; 1629 pte_unmap_unlock(pte, ptl); 1630 return retval; 1631 out_unlock: 1632 pte_unmap_unlock(pte, ptl); 1633 out: 1634 return retval; 1635 } 1636 1637 /** 1638 * vm_insert_page - insert single page into user vma 1639 * @vma: user vma to map to 1640 * @addr: target user address of this page 1641 * @page: source kernel page 1642 * 1643 * This allows drivers to insert individual pages they've allocated 1644 * into a user vma. 1645 * 1646 * The page has to be a nice clean _individual_ kernel allocation. 1647 * If you allocate a compound page, you need to have marked it as 1648 * such (__GFP_COMP), or manually just split the page up yourself 1649 * (see split_page()). 1650 * 1651 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1652 * took an arbitrary page protection parameter. This doesn't allow 1653 * that. Your vma protection will have to be set up correctly, which 1654 * means that if you want a shared writable mapping, you'd better 1655 * ask for a shared writable mapping! 1656 * 1657 * The page does not need to be reserved. 1658 */ 1659 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1660 struct page *page) 1661 { 1662 if (addr < vma->vm_start || addr >= vma->vm_end) 1663 return -EFAULT; 1664 if (!page_count(page)) 1665 return -EINVAL; 1666 vma->vm_flags |= VM_INSERTPAGE; 1667 return insert_page(vma, addr, page, vma->vm_page_prot); 1668 } 1669 EXPORT_SYMBOL(vm_insert_page); 1670 1671 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1672 unsigned long pfn, pgprot_t prot) 1673 { 1674 struct mm_struct *mm = vma->vm_mm; 1675 int retval; 1676 pte_t *pte, entry; 1677 spinlock_t *ptl; 1678 1679 retval = -ENOMEM; 1680 pte = get_locked_pte(mm, addr, &ptl); 1681 if (!pte) 1682 goto out; 1683 retval = -EBUSY; 1684 if (!pte_none(*pte)) 1685 goto out_unlock; 1686 1687 /* Ok, finally just insert the thing.. */ 1688 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1689 set_pte_at(mm, addr, pte, entry); 1690 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1691 1692 retval = 0; 1693 out_unlock: 1694 pte_unmap_unlock(pte, ptl); 1695 out: 1696 return retval; 1697 } 1698 1699 /** 1700 * vm_insert_pfn - insert single pfn into user vma 1701 * @vma: user vma to map to 1702 * @addr: target user address of this page 1703 * @pfn: source kernel pfn 1704 * 1705 * Similar to vm_inert_page, this allows drivers to insert individual pages 1706 * they've allocated into a user vma. Same comments apply. 1707 * 1708 * This function should only be called from a vm_ops->fault handler, and 1709 * in that case the handler should return NULL. 1710 * 1711 * vma cannot be a COW mapping. 1712 * 1713 * As this is called only for pages that do not currently exist, we 1714 * do not need to flush old virtual caches or the TLB. 1715 */ 1716 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1717 unsigned long pfn) 1718 { 1719 int ret; 1720 pgprot_t pgprot = vma->vm_page_prot; 1721 /* 1722 * Technically, architectures with pte_special can avoid all these 1723 * restrictions (same for remap_pfn_range). However we would like 1724 * consistency in testing and feature parity among all, so we should 1725 * try to keep these invariants in place for everybody. 1726 */ 1727 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1728 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1729 (VM_PFNMAP|VM_MIXEDMAP)); 1730 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1731 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1732 1733 if (addr < vma->vm_start || addr >= vma->vm_end) 1734 return -EFAULT; 1735 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1736 return -EINVAL; 1737 1738 ret = insert_pfn(vma, addr, pfn, pgprot); 1739 1740 if (ret) 1741 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1742 1743 return ret; 1744 } 1745 EXPORT_SYMBOL(vm_insert_pfn); 1746 1747 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1748 unsigned long pfn) 1749 { 1750 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1751 1752 if (addr < vma->vm_start || addr >= vma->vm_end) 1753 return -EFAULT; 1754 1755 /* 1756 * If we don't have pte special, then we have to use the pfn_valid() 1757 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1758 * refcount the page if pfn_valid is true (hence insert_page rather 1759 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1760 * without pte special, it would there be refcounted as a normal page. 1761 */ 1762 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1763 struct page *page; 1764 1765 page = pfn_to_page(pfn); 1766 return insert_page(vma, addr, page, vma->vm_page_prot); 1767 } 1768 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1769 } 1770 EXPORT_SYMBOL(vm_insert_mixed); 1771 1772 /* 1773 * maps a range of physical memory into the requested pages. the old 1774 * mappings are removed. any references to nonexistent pages results 1775 * in null mappings (currently treated as "copy-on-access") 1776 */ 1777 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1778 unsigned long addr, unsigned long end, 1779 unsigned long pfn, pgprot_t prot) 1780 { 1781 pte_t *pte; 1782 spinlock_t *ptl; 1783 1784 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1785 if (!pte) 1786 return -ENOMEM; 1787 arch_enter_lazy_mmu_mode(); 1788 do { 1789 BUG_ON(!pte_none(*pte)); 1790 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1791 pfn++; 1792 } while (pte++, addr += PAGE_SIZE, addr != end); 1793 arch_leave_lazy_mmu_mode(); 1794 pte_unmap_unlock(pte - 1, ptl); 1795 return 0; 1796 } 1797 1798 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1799 unsigned long addr, unsigned long end, 1800 unsigned long pfn, pgprot_t prot) 1801 { 1802 pmd_t *pmd; 1803 unsigned long next; 1804 1805 pfn -= addr >> PAGE_SHIFT; 1806 pmd = pmd_alloc(mm, pud, addr); 1807 if (!pmd) 1808 return -ENOMEM; 1809 do { 1810 next = pmd_addr_end(addr, end); 1811 if (remap_pte_range(mm, pmd, addr, next, 1812 pfn + (addr >> PAGE_SHIFT), prot)) 1813 return -ENOMEM; 1814 } while (pmd++, addr = next, addr != end); 1815 return 0; 1816 } 1817 1818 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1819 unsigned long addr, unsigned long end, 1820 unsigned long pfn, pgprot_t prot) 1821 { 1822 pud_t *pud; 1823 unsigned long next; 1824 1825 pfn -= addr >> PAGE_SHIFT; 1826 pud = pud_alloc(mm, pgd, addr); 1827 if (!pud) 1828 return -ENOMEM; 1829 do { 1830 next = pud_addr_end(addr, end); 1831 if (remap_pmd_range(mm, pud, addr, next, 1832 pfn + (addr >> PAGE_SHIFT), prot)) 1833 return -ENOMEM; 1834 } while (pud++, addr = next, addr != end); 1835 return 0; 1836 } 1837 1838 /** 1839 * remap_pfn_range - remap kernel memory to userspace 1840 * @vma: user vma to map to 1841 * @addr: target user address to start at 1842 * @pfn: physical address of kernel memory 1843 * @size: size of map area 1844 * @prot: page protection flags for this mapping 1845 * 1846 * Note: this is only safe if the mm semaphore is held when called. 1847 */ 1848 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1849 unsigned long pfn, unsigned long size, pgprot_t prot) 1850 { 1851 pgd_t *pgd; 1852 unsigned long next; 1853 unsigned long end = addr + PAGE_ALIGN(size); 1854 struct mm_struct *mm = vma->vm_mm; 1855 int err; 1856 1857 /* 1858 * Physically remapped pages are special. Tell the 1859 * rest of the world about it: 1860 * VM_IO tells people not to look at these pages 1861 * (accesses can have side effects). 1862 * VM_RESERVED is specified all over the place, because 1863 * in 2.4 it kept swapout's vma scan off this vma; but 1864 * in 2.6 the LRU scan won't even find its pages, so this 1865 * flag means no more than count its pages in reserved_vm, 1866 * and omit it from core dump, even when VM_IO turned off. 1867 * VM_PFNMAP tells the core MM that the base pages are just 1868 * raw PFN mappings, and do not have a "struct page" associated 1869 * with them. 1870 * 1871 * There's a horrible special case to handle copy-on-write 1872 * behaviour that some programs depend on. We mark the "original" 1873 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1874 */ 1875 if (addr == vma->vm_start && end == vma->vm_end) { 1876 vma->vm_pgoff = pfn; 1877 vma->vm_flags |= VM_PFN_AT_MMAP; 1878 } else if (is_cow_mapping(vma->vm_flags)) 1879 return -EINVAL; 1880 1881 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1882 1883 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1884 if (err) { 1885 /* 1886 * To indicate that track_pfn related cleanup is not 1887 * needed from higher level routine calling unmap_vmas 1888 */ 1889 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1890 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1891 return -EINVAL; 1892 } 1893 1894 BUG_ON(addr >= end); 1895 pfn -= addr >> PAGE_SHIFT; 1896 pgd = pgd_offset(mm, addr); 1897 flush_cache_range(vma, addr, end); 1898 do { 1899 next = pgd_addr_end(addr, end); 1900 err = remap_pud_range(mm, pgd, addr, next, 1901 pfn + (addr >> PAGE_SHIFT), prot); 1902 if (err) 1903 break; 1904 } while (pgd++, addr = next, addr != end); 1905 1906 if (err) 1907 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1908 1909 return err; 1910 } 1911 EXPORT_SYMBOL(remap_pfn_range); 1912 1913 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1914 unsigned long addr, unsigned long end, 1915 pte_fn_t fn, void *data) 1916 { 1917 pte_t *pte; 1918 int err; 1919 pgtable_t token; 1920 spinlock_t *uninitialized_var(ptl); 1921 1922 pte = (mm == &init_mm) ? 1923 pte_alloc_kernel(pmd, addr) : 1924 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1925 if (!pte) 1926 return -ENOMEM; 1927 1928 BUG_ON(pmd_huge(*pmd)); 1929 1930 arch_enter_lazy_mmu_mode(); 1931 1932 token = pmd_pgtable(*pmd); 1933 1934 do { 1935 err = fn(pte++, token, addr, data); 1936 if (err) 1937 break; 1938 } while (addr += PAGE_SIZE, addr != end); 1939 1940 arch_leave_lazy_mmu_mode(); 1941 1942 if (mm != &init_mm) 1943 pte_unmap_unlock(pte-1, ptl); 1944 return err; 1945 } 1946 1947 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1948 unsigned long addr, unsigned long end, 1949 pte_fn_t fn, void *data) 1950 { 1951 pmd_t *pmd; 1952 unsigned long next; 1953 int err; 1954 1955 BUG_ON(pud_huge(*pud)); 1956 1957 pmd = pmd_alloc(mm, pud, addr); 1958 if (!pmd) 1959 return -ENOMEM; 1960 do { 1961 next = pmd_addr_end(addr, end); 1962 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1963 if (err) 1964 break; 1965 } while (pmd++, addr = next, addr != end); 1966 return err; 1967 } 1968 1969 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1970 unsigned long addr, unsigned long end, 1971 pte_fn_t fn, void *data) 1972 { 1973 pud_t *pud; 1974 unsigned long next; 1975 int err; 1976 1977 pud = pud_alloc(mm, pgd, addr); 1978 if (!pud) 1979 return -ENOMEM; 1980 do { 1981 next = pud_addr_end(addr, end); 1982 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1983 if (err) 1984 break; 1985 } while (pud++, addr = next, addr != end); 1986 return err; 1987 } 1988 1989 /* 1990 * Scan a region of virtual memory, filling in page tables as necessary 1991 * and calling a provided function on each leaf page table. 1992 */ 1993 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1994 unsigned long size, pte_fn_t fn, void *data) 1995 { 1996 pgd_t *pgd; 1997 unsigned long next; 1998 unsigned long start = addr, end = addr + size; 1999 int err; 2000 2001 BUG_ON(addr >= end); 2002 mmu_notifier_invalidate_range_start(mm, start, end); 2003 pgd = pgd_offset(mm, addr); 2004 do { 2005 next = pgd_addr_end(addr, end); 2006 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2007 if (err) 2008 break; 2009 } while (pgd++, addr = next, addr != end); 2010 mmu_notifier_invalidate_range_end(mm, start, end); 2011 return err; 2012 } 2013 EXPORT_SYMBOL_GPL(apply_to_page_range); 2014 2015 /* 2016 * handle_pte_fault chooses page fault handler according to an entry 2017 * which was read non-atomically. Before making any commitment, on 2018 * those architectures or configurations (e.g. i386 with PAE) which 2019 * might give a mix of unmatched parts, do_swap_page and do_file_page 2020 * must check under lock before unmapping the pte and proceeding 2021 * (but do_wp_page is only called after already making such a check; 2022 * and do_anonymous_page and do_no_page can safely check later on). 2023 */ 2024 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2025 pte_t *page_table, pte_t orig_pte) 2026 { 2027 int same = 1; 2028 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2029 if (sizeof(pte_t) > sizeof(unsigned long)) { 2030 spinlock_t *ptl = pte_lockptr(mm, pmd); 2031 spin_lock(ptl); 2032 same = pte_same(*page_table, orig_pte); 2033 spin_unlock(ptl); 2034 } 2035 #endif 2036 pte_unmap(page_table); 2037 return same; 2038 } 2039 2040 /* 2041 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 2042 * servicing faults for write access. In the normal case, do always want 2043 * pte_mkwrite. But get_user_pages can cause write faults for mappings 2044 * that do not have writing enabled, when used by access_process_vm. 2045 */ 2046 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 2047 { 2048 if (likely(vma->vm_flags & VM_WRITE)) 2049 pte = pte_mkwrite(pte); 2050 return pte; 2051 } 2052 2053 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2054 { 2055 /* 2056 * If the source page was a PFN mapping, we don't have 2057 * a "struct page" for it. We do a best-effort copy by 2058 * just copying from the original user address. If that 2059 * fails, we just zero-fill it. Live with it. 2060 */ 2061 if (unlikely(!src)) { 2062 void *kaddr = kmap_atomic(dst, KM_USER0); 2063 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2064 2065 /* 2066 * This really shouldn't fail, because the page is there 2067 * in the page tables. But it might just be unreadable, 2068 * in which case we just give up and fill the result with 2069 * zeroes. 2070 */ 2071 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2072 memset(kaddr, 0, PAGE_SIZE); 2073 kunmap_atomic(kaddr, KM_USER0); 2074 flush_dcache_page(dst); 2075 } else 2076 copy_user_highpage(dst, src, va, vma); 2077 } 2078 2079 /* 2080 * This routine handles present pages, when users try to write 2081 * to a shared page. It is done by copying the page to a new address 2082 * and decrementing the shared-page counter for the old page. 2083 * 2084 * Note that this routine assumes that the protection checks have been 2085 * done by the caller (the low-level page fault routine in most cases). 2086 * Thus we can safely just mark it writable once we've done any necessary 2087 * COW. 2088 * 2089 * We also mark the page dirty at this point even though the page will 2090 * change only once the write actually happens. This avoids a few races, 2091 * and potentially makes it more efficient. 2092 * 2093 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2094 * but allow concurrent faults), with pte both mapped and locked. 2095 * We return with mmap_sem still held, but pte unmapped and unlocked. 2096 */ 2097 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2098 unsigned long address, pte_t *page_table, pmd_t *pmd, 2099 spinlock_t *ptl, pte_t orig_pte) 2100 { 2101 struct page *old_page, *new_page; 2102 pte_t entry; 2103 int reuse = 0, ret = 0; 2104 int page_mkwrite = 0; 2105 struct page *dirty_page = NULL; 2106 2107 old_page = vm_normal_page(vma, address, orig_pte); 2108 if (!old_page) { 2109 /* 2110 * VM_MIXEDMAP !pfn_valid() case 2111 * 2112 * We should not cow pages in a shared writeable mapping. 2113 * Just mark the pages writable as we can't do any dirty 2114 * accounting on raw pfn maps. 2115 */ 2116 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2117 (VM_WRITE|VM_SHARED)) 2118 goto reuse; 2119 goto gotten; 2120 } 2121 2122 /* 2123 * Take out anonymous pages first, anonymous shared vmas are 2124 * not dirty accountable. 2125 */ 2126 if (PageAnon(old_page) && !PageKsm(old_page)) { 2127 if (!trylock_page(old_page)) { 2128 page_cache_get(old_page); 2129 pte_unmap_unlock(page_table, ptl); 2130 lock_page(old_page); 2131 page_table = pte_offset_map_lock(mm, pmd, address, 2132 &ptl); 2133 if (!pte_same(*page_table, orig_pte)) { 2134 unlock_page(old_page); 2135 page_cache_release(old_page); 2136 goto unlock; 2137 } 2138 page_cache_release(old_page); 2139 } 2140 reuse = reuse_swap_page(old_page); 2141 if (reuse) 2142 /* 2143 * The page is all ours. Move it to our anon_vma so 2144 * the rmap code will not search our parent or siblings. 2145 * Protected against the rmap code by the page lock. 2146 */ 2147 page_move_anon_rmap(old_page, vma, address); 2148 unlock_page(old_page); 2149 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2150 (VM_WRITE|VM_SHARED))) { 2151 /* 2152 * Only catch write-faults on shared writable pages, 2153 * read-only shared pages can get COWed by 2154 * get_user_pages(.write=1, .force=1). 2155 */ 2156 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2157 struct vm_fault vmf; 2158 int tmp; 2159 2160 vmf.virtual_address = (void __user *)(address & 2161 PAGE_MASK); 2162 vmf.pgoff = old_page->index; 2163 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2164 vmf.page = old_page; 2165 2166 /* 2167 * Notify the address space that the page is about to 2168 * become writable so that it can prohibit this or wait 2169 * for the page to get into an appropriate state. 2170 * 2171 * We do this without the lock held, so that it can 2172 * sleep if it needs to. 2173 */ 2174 page_cache_get(old_page); 2175 pte_unmap_unlock(page_table, ptl); 2176 2177 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2178 if (unlikely(tmp & 2179 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2180 ret = tmp; 2181 goto unwritable_page; 2182 } 2183 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2184 lock_page(old_page); 2185 if (!old_page->mapping) { 2186 ret = 0; /* retry the fault */ 2187 unlock_page(old_page); 2188 goto unwritable_page; 2189 } 2190 } else 2191 VM_BUG_ON(!PageLocked(old_page)); 2192 2193 /* 2194 * Since we dropped the lock we need to revalidate 2195 * the PTE as someone else may have changed it. If 2196 * they did, we just return, as we can count on the 2197 * MMU to tell us if they didn't also make it writable. 2198 */ 2199 page_table = pte_offset_map_lock(mm, pmd, address, 2200 &ptl); 2201 if (!pte_same(*page_table, orig_pte)) { 2202 unlock_page(old_page); 2203 page_cache_release(old_page); 2204 goto unlock; 2205 } 2206 2207 page_mkwrite = 1; 2208 } 2209 dirty_page = old_page; 2210 get_page(dirty_page); 2211 reuse = 1; 2212 } 2213 2214 if (reuse) { 2215 reuse: 2216 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2217 entry = pte_mkyoung(orig_pte); 2218 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2219 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2220 update_mmu_cache(vma, address, page_table); 2221 ret |= VM_FAULT_WRITE; 2222 goto unlock; 2223 } 2224 2225 /* 2226 * Ok, we need to copy. Oh, well.. 2227 */ 2228 page_cache_get(old_page); 2229 gotten: 2230 pte_unmap_unlock(page_table, ptl); 2231 2232 if (unlikely(anon_vma_prepare(vma))) 2233 goto oom; 2234 2235 if (is_zero_pfn(pte_pfn(orig_pte))) { 2236 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2237 if (!new_page) 2238 goto oom; 2239 } else { 2240 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2241 if (!new_page) 2242 goto oom; 2243 cow_user_page(new_page, old_page, address, vma); 2244 } 2245 __SetPageUptodate(new_page); 2246 2247 /* 2248 * Don't let another task, with possibly unlocked vma, 2249 * keep the mlocked page. 2250 */ 2251 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2252 lock_page(old_page); /* for LRU manipulation */ 2253 clear_page_mlock(old_page); 2254 unlock_page(old_page); 2255 } 2256 2257 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2258 goto oom_free_new; 2259 2260 /* 2261 * Re-check the pte - we dropped the lock 2262 */ 2263 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2264 if (likely(pte_same(*page_table, orig_pte))) { 2265 if (old_page) { 2266 if (!PageAnon(old_page)) { 2267 dec_mm_counter_fast(mm, MM_FILEPAGES); 2268 inc_mm_counter_fast(mm, MM_ANONPAGES); 2269 } 2270 } else 2271 inc_mm_counter_fast(mm, MM_ANONPAGES); 2272 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2273 entry = mk_pte(new_page, vma->vm_page_prot); 2274 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2275 /* 2276 * Clear the pte entry and flush it first, before updating the 2277 * pte with the new entry. This will avoid a race condition 2278 * seen in the presence of one thread doing SMC and another 2279 * thread doing COW. 2280 */ 2281 ptep_clear_flush(vma, address, page_table); 2282 page_add_new_anon_rmap(new_page, vma, address); 2283 /* 2284 * We call the notify macro here because, when using secondary 2285 * mmu page tables (such as kvm shadow page tables), we want the 2286 * new page to be mapped directly into the secondary page table. 2287 */ 2288 set_pte_at_notify(mm, address, page_table, entry); 2289 update_mmu_cache(vma, address, page_table); 2290 if (old_page) { 2291 /* 2292 * Only after switching the pte to the new page may 2293 * we remove the mapcount here. Otherwise another 2294 * process may come and find the rmap count decremented 2295 * before the pte is switched to the new page, and 2296 * "reuse" the old page writing into it while our pte 2297 * here still points into it and can be read by other 2298 * threads. 2299 * 2300 * The critical issue is to order this 2301 * page_remove_rmap with the ptp_clear_flush above. 2302 * Those stores are ordered by (if nothing else,) 2303 * the barrier present in the atomic_add_negative 2304 * in page_remove_rmap. 2305 * 2306 * Then the TLB flush in ptep_clear_flush ensures that 2307 * no process can access the old page before the 2308 * decremented mapcount is visible. And the old page 2309 * cannot be reused until after the decremented 2310 * mapcount is visible. So transitively, TLBs to 2311 * old page will be flushed before it can be reused. 2312 */ 2313 page_remove_rmap(old_page); 2314 } 2315 2316 /* Free the old page.. */ 2317 new_page = old_page; 2318 ret |= VM_FAULT_WRITE; 2319 } else 2320 mem_cgroup_uncharge_page(new_page); 2321 2322 if (new_page) 2323 page_cache_release(new_page); 2324 if (old_page) 2325 page_cache_release(old_page); 2326 unlock: 2327 pte_unmap_unlock(page_table, ptl); 2328 if (dirty_page) { 2329 /* 2330 * Yes, Virginia, this is actually required to prevent a race 2331 * with clear_page_dirty_for_io() from clearing the page dirty 2332 * bit after it clear all dirty ptes, but before a racing 2333 * do_wp_page installs a dirty pte. 2334 * 2335 * do_no_page is protected similarly. 2336 */ 2337 if (!page_mkwrite) { 2338 wait_on_page_locked(dirty_page); 2339 set_page_dirty_balance(dirty_page, page_mkwrite); 2340 } 2341 put_page(dirty_page); 2342 if (page_mkwrite) { 2343 struct address_space *mapping = dirty_page->mapping; 2344 2345 set_page_dirty(dirty_page); 2346 unlock_page(dirty_page); 2347 page_cache_release(dirty_page); 2348 if (mapping) { 2349 /* 2350 * Some device drivers do not set page.mapping 2351 * but still dirty their pages 2352 */ 2353 balance_dirty_pages_ratelimited(mapping); 2354 } 2355 } 2356 2357 /* file_update_time outside page_lock */ 2358 if (vma->vm_file) 2359 file_update_time(vma->vm_file); 2360 } 2361 return ret; 2362 oom_free_new: 2363 page_cache_release(new_page); 2364 oom: 2365 if (old_page) { 2366 if (page_mkwrite) { 2367 unlock_page(old_page); 2368 page_cache_release(old_page); 2369 } 2370 page_cache_release(old_page); 2371 } 2372 return VM_FAULT_OOM; 2373 2374 unwritable_page: 2375 page_cache_release(old_page); 2376 return ret; 2377 } 2378 2379 /* 2380 * Helper functions for unmap_mapping_range(). 2381 * 2382 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2383 * 2384 * We have to restart searching the prio_tree whenever we drop the lock, 2385 * since the iterator is only valid while the lock is held, and anyway 2386 * a later vma might be split and reinserted earlier while lock dropped. 2387 * 2388 * The list of nonlinear vmas could be handled more efficiently, using 2389 * a placeholder, but handle it in the same way until a need is shown. 2390 * It is important to search the prio_tree before nonlinear list: a vma 2391 * may become nonlinear and be shifted from prio_tree to nonlinear list 2392 * while the lock is dropped; but never shifted from list to prio_tree. 2393 * 2394 * In order to make forward progress despite restarting the search, 2395 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2396 * quickly skip it next time around. Since the prio_tree search only 2397 * shows us those vmas affected by unmapping the range in question, we 2398 * can't efficiently keep all vmas in step with mapping->truncate_count: 2399 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2400 * mapping->truncate_count and vma->vm_truncate_count are protected by 2401 * i_mmap_lock. 2402 * 2403 * In order to make forward progress despite repeatedly restarting some 2404 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2405 * and restart from that address when we reach that vma again. It might 2406 * have been split or merged, shrunk or extended, but never shifted: so 2407 * restart_addr remains valid so long as it remains in the vma's range. 2408 * unmap_mapping_range forces truncate_count to leap over page-aligned 2409 * values so we can save vma's restart_addr in its truncate_count field. 2410 */ 2411 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2412 2413 static void reset_vma_truncate_counts(struct address_space *mapping) 2414 { 2415 struct vm_area_struct *vma; 2416 struct prio_tree_iter iter; 2417 2418 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2419 vma->vm_truncate_count = 0; 2420 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2421 vma->vm_truncate_count = 0; 2422 } 2423 2424 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2425 unsigned long start_addr, unsigned long end_addr, 2426 struct zap_details *details) 2427 { 2428 unsigned long restart_addr; 2429 int need_break; 2430 2431 /* 2432 * files that support invalidating or truncating portions of the 2433 * file from under mmaped areas must have their ->fault function 2434 * return a locked page (and set VM_FAULT_LOCKED in the return). 2435 * This provides synchronisation against concurrent unmapping here. 2436 */ 2437 2438 again: 2439 restart_addr = vma->vm_truncate_count; 2440 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2441 start_addr = restart_addr; 2442 if (start_addr >= end_addr) { 2443 /* Top of vma has been split off since last time */ 2444 vma->vm_truncate_count = details->truncate_count; 2445 return 0; 2446 } 2447 } 2448 2449 restart_addr = zap_page_range(vma, start_addr, 2450 end_addr - start_addr, details); 2451 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2452 2453 if (restart_addr >= end_addr) { 2454 /* We have now completed this vma: mark it so */ 2455 vma->vm_truncate_count = details->truncate_count; 2456 if (!need_break) 2457 return 0; 2458 } else { 2459 /* Note restart_addr in vma's truncate_count field */ 2460 vma->vm_truncate_count = restart_addr; 2461 if (!need_break) 2462 goto again; 2463 } 2464 2465 spin_unlock(details->i_mmap_lock); 2466 cond_resched(); 2467 spin_lock(details->i_mmap_lock); 2468 return -EINTR; 2469 } 2470 2471 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2472 struct zap_details *details) 2473 { 2474 struct vm_area_struct *vma; 2475 struct prio_tree_iter iter; 2476 pgoff_t vba, vea, zba, zea; 2477 2478 restart: 2479 vma_prio_tree_foreach(vma, &iter, root, 2480 details->first_index, details->last_index) { 2481 /* Skip quickly over those we have already dealt with */ 2482 if (vma->vm_truncate_count == details->truncate_count) 2483 continue; 2484 2485 vba = vma->vm_pgoff; 2486 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2487 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2488 zba = details->first_index; 2489 if (zba < vba) 2490 zba = vba; 2491 zea = details->last_index; 2492 if (zea > vea) 2493 zea = vea; 2494 2495 if (unmap_mapping_range_vma(vma, 2496 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2497 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2498 details) < 0) 2499 goto restart; 2500 } 2501 } 2502 2503 static inline void unmap_mapping_range_list(struct list_head *head, 2504 struct zap_details *details) 2505 { 2506 struct vm_area_struct *vma; 2507 2508 /* 2509 * In nonlinear VMAs there is no correspondence between virtual address 2510 * offset and file offset. So we must perform an exhaustive search 2511 * across *all* the pages in each nonlinear VMA, not just the pages 2512 * whose virtual address lies outside the file truncation point. 2513 */ 2514 restart: 2515 list_for_each_entry(vma, head, shared.vm_set.list) { 2516 /* Skip quickly over those we have already dealt with */ 2517 if (vma->vm_truncate_count == details->truncate_count) 2518 continue; 2519 details->nonlinear_vma = vma; 2520 if (unmap_mapping_range_vma(vma, vma->vm_start, 2521 vma->vm_end, details) < 0) 2522 goto restart; 2523 } 2524 } 2525 2526 /** 2527 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2528 * @mapping: the address space containing mmaps to be unmapped. 2529 * @holebegin: byte in first page to unmap, relative to the start of 2530 * the underlying file. This will be rounded down to a PAGE_SIZE 2531 * boundary. Note that this is different from truncate_pagecache(), which 2532 * must keep the partial page. In contrast, we must get rid of 2533 * partial pages. 2534 * @holelen: size of prospective hole in bytes. This will be rounded 2535 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2536 * end of the file. 2537 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2538 * but 0 when invalidating pagecache, don't throw away private data. 2539 */ 2540 void unmap_mapping_range(struct address_space *mapping, 2541 loff_t const holebegin, loff_t const holelen, int even_cows) 2542 { 2543 struct zap_details details; 2544 pgoff_t hba = holebegin >> PAGE_SHIFT; 2545 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2546 2547 /* Check for overflow. */ 2548 if (sizeof(holelen) > sizeof(hlen)) { 2549 long long holeend = 2550 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2551 if (holeend & ~(long long)ULONG_MAX) 2552 hlen = ULONG_MAX - hba + 1; 2553 } 2554 2555 details.check_mapping = even_cows? NULL: mapping; 2556 details.nonlinear_vma = NULL; 2557 details.first_index = hba; 2558 details.last_index = hba + hlen - 1; 2559 if (details.last_index < details.first_index) 2560 details.last_index = ULONG_MAX; 2561 details.i_mmap_lock = &mapping->i_mmap_lock; 2562 2563 spin_lock(&mapping->i_mmap_lock); 2564 2565 /* Protect against endless unmapping loops */ 2566 mapping->truncate_count++; 2567 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2568 if (mapping->truncate_count == 0) 2569 reset_vma_truncate_counts(mapping); 2570 mapping->truncate_count++; 2571 } 2572 details.truncate_count = mapping->truncate_count; 2573 2574 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2575 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2576 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2577 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2578 spin_unlock(&mapping->i_mmap_lock); 2579 } 2580 EXPORT_SYMBOL(unmap_mapping_range); 2581 2582 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2583 { 2584 struct address_space *mapping = inode->i_mapping; 2585 2586 /* 2587 * If the underlying filesystem is not going to provide 2588 * a way to truncate a range of blocks (punch a hole) - 2589 * we should return failure right now. 2590 */ 2591 if (!inode->i_op->truncate_range) 2592 return -ENOSYS; 2593 2594 mutex_lock(&inode->i_mutex); 2595 down_write(&inode->i_alloc_sem); 2596 unmap_mapping_range(mapping, offset, (end - offset), 1); 2597 truncate_inode_pages_range(mapping, offset, end); 2598 unmap_mapping_range(mapping, offset, (end - offset), 1); 2599 inode->i_op->truncate_range(inode, offset, end); 2600 up_write(&inode->i_alloc_sem); 2601 mutex_unlock(&inode->i_mutex); 2602 2603 return 0; 2604 } 2605 2606 /* 2607 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2608 * but allow concurrent faults), and pte mapped but not yet locked. 2609 * We return with mmap_sem still held, but pte unmapped and unlocked. 2610 */ 2611 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2612 unsigned long address, pte_t *page_table, pmd_t *pmd, 2613 unsigned int flags, pte_t orig_pte) 2614 { 2615 spinlock_t *ptl; 2616 struct page *page; 2617 swp_entry_t entry; 2618 pte_t pte; 2619 struct mem_cgroup *ptr = NULL; 2620 int ret = 0; 2621 2622 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2623 goto out; 2624 2625 entry = pte_to_swp_entry(orig_pte); 2626 if (unlikely(non_swap_entry(entry))) { 2627 if (is_migration_entry(entry)) { 2628 migration_entry_wait(mm, pmd, address); 2629 } else if (is_hwpoison_entry(entry)) { 2630 ret = VM_FAULT_HWPOISON; 2631 } else { 2632 print_bad_pte(vma, address, orig_pte, NULL); 2633 ret = VM_FAULT_SIGBUS; 2634 } 2635 goto out; 2636 } 2637 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2638 page = lookup_swap_cache(entry); 2639 if (!page) { 2640 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2641 page = swapin_readahead(entry, 2642 GFP_HIGHUSER_MOVABLE, vma, address); 2643 if (!page) { 2644 /* 2645 * Back out if somebody else faulted in this pte 2646 * while we released the pte lock. 2647 */ 2648 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2649 if (likely(pte_same(*page_table, orig_pte))) 2650 ret = VM_FAULT_OOM; 2651 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2652 goto unlock; 2653 } 2654 2655 /* Had to read the page from swap area: Major fault */ 2656 ret = VM_FAULT_MAJOR; 2657 count_vm_event(PGMAJFAULT); 2658 } else if (PageHWPoison(page)) { 2659 /* 2660 * hwpoisoned dirty swapcache pages are kept for killing 2661 * owner processes (which may be unknown at hwpoison time) 2662 */ 2663 ret = VM_FAULT_HWPOISON; 2664 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2665 goto out_release; 2666 } 2667 2668 lock_page(page); 2669 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2670 2671 page = ksm_might_need_to_copy(page, vma, address); 2672 if (!page) { 2673 ret = VM_FAULT_OOM; 2674 goto out; 2675 } 2676 2677 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2678 ret = VM_FAULT_OOM; 2679 goto out_page; 2680 } 2681 2682 /* 2683 * Back out if somebody else already faulted in this pte. 2684 */ 2685 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2686 if (unlikely(!pte_same(*page_table, orig_pte))) 2687 goto out_nomap; 2688 2689 if (unlikely(!PageUptodate(page))) { 2690 ret = VM_FAULT_SIGBUS; 2691 goto out_nomap; 2692 } 2693 2694 /* 2695 * The page isn't present yet, go ahead with the fault. 2696 * 2697 * Be careful about the sequence of operations here. 2698 * To get its accounting right, reuse_swap_page() must be called 2699 * while the page is counted on swap but not yet in mapcount i.e. 2700 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2701 * must be called after the swap_free(), or it will never succeed. 2702 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2703 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2704 * in page->private. In this case, a record in swap_cgroup is silently 2705 * discarded at swap_free(). 2706 */ 2707 2708 inc_mm_counter_fast(mm, MM_ANONPAGES); 2709 dec_mm_counter_fast(mm, MM_SWAPENTS); 2710 pte = mk_pte(page, vma->vm_page_prot); 2711 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2712 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2713 flags &= ~FAULT_FLAG_WRITE; 2714 } 2715 flush_icache_page(vma, page); 2716 set_pte_at(mm, address, page_table, pte); 2717 page_add_anon_rmap(page, vma, address); 2718 /* It's better to call commit-charge after rmap is established */ 2719 mem_cgroup_commit_charge_swapin(page, ptr); 2720 2721 swap_free(entry); 2722 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2723 try_to_free_swap(page); 2724 unlock_page(page); 2725 2726 if (flags & FAULT_FLAG_WRITE) { 2727 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2728 if (ret & VM_FAULT_ERROR) 2729 ret &= VM_FAULT_ERROR; 2730 goto out; 2731 } 2732 2733 /* No need to invalidate - it was non-present before */ 2734 update_mmu_cache(vma, address, page_table); 2735 unlock: 2736 pte_unmap_unlock(page_table, ptl); 2737 out: 2738 return ret; 2739 out_nomap: 2740 mem_cgroup_cancel_charge_swapin(ptr); 2741 pte_unmap_unlock(page_table, ptl); 2742 out_page: 2743 unlock_page(page); 2744 out_release: 2745 page_cache_release(page); 2746 return ret; 2747 } 2748 2749 /* 2750 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2751 * but allow concurrent faults), and pte mapped but not yet locked. 2752 * We return with mmap_sem still held, but pte unmapped and unlocked. 2753 */ 2754 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2755 unsigned long address, pte_t *page_table, pmd_t *pmd, 2756 unsigned int flags) 2757 { 2758 struct page *page; 2759 spinlock_t *ptl; 2760 pte_t entry; 2761 2762 if (!(flags & FAULT_FLAG_WRITE)) { 2763 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2764 vma->vm_page_prot)); 2765 ptl = pte_lockptr(mm, pmd); 2766 spin_lock(ptl); 2767 if (!pte_none(*page_table)) 2768 goto unlock; 2769 goto setpte; 2770 } 2771 2772 /* Allocate our own private page. */ 2773 pte_unmap(page_table); 2774 2775 if (unlikely(anon_vma_prepare(vma))) 2776 goto oom; 2777 page = alloc_zeroed_user_highpage_movable(vma, address); 2778 if (!page) 2779 goto oom; 2780 __SetPageUptodate(page); 2781 2782 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2783 goto oom_free_page; 2784 2785 entry = mk_pte(page, vma->vm_page_prot); 2786 if (vma->vm_flags & VM_WRITE) 2787 entry = pte_mkwrite(pte_mkdirty(entry)); 2788 2789 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2790 if (!pte_none(*page_table)) 2791 goto release; 2792 2793 inc_mm_counter_fast(mm, MM_ANONPAGES); 2794 page_add_new_anon_rmap(page, vma, address); 2795 setpte: 2796 set_pte_at(mm, address, page_table, entry); 2797 2798 /* No need to invalidate - it was non-present before */ 2799 update_mmu_cache(vma, address, page_table); 2800 unlock: 2801 pte_unmap_unlock(page_table, ptl); 2802 return 0; 2803 release: 2804 mem_cgroup_uncharge_page(page); 2805 page_cache_release(page); 2806 goto unlock; 2807 oom_free_page: 2808 page_cache_release(page); 2809 oom: 2810 return VM_FAULT_OOM; 2811 } 2812 2813 /* 2814 * __do_fault() tries to create a new page mapping. It aggressively 2815 * tries to share with existing pages, but makes a separate copy if 2816 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2817 * the next page fault. 2818 * 2819 * As this is called only for pages that do not currently exist, we 2820 * do not need to flush old virtual caches or the TLB. 2821 * 2822 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2823 * but allow concurrent faults), and pte neither mapped nor locked. 2824 * We return with mmap_sem still held, but pte unmapped and unlocked. 2825 */ 2826 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2827 unsigned long address, pmd_t *pmd, 2828 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2829 { 2830 pte_t *page_table; 2831 spinlock_t *ptl; 2832 struct page *page; 2833 pte_t entry; 2834 int anon = 0; 2835 int charged = 0; 2836 struct page *dirty_page = NULL; 2837 struct vm_fault vmf; 2838 int ret; 2839 int page_mkwrite = 0; 2840 2841 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2842 vmf.pgoff = pgoff; 2843 vmf.flags = flags; 2844 vmf.page = NULL; 2845 2846 ret = vma->vm_ops->fault(vma, &vmf); 2847 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2848 return ret; 2849 2850 if (unlikely(PageHWPoison(vmf.page))) { 2851 if (ret & VM_FAULT_LOCKED) 2852 unlock_page(vmf.page); 2853 return VM_FAULT_HWPOISON; 2854 } 2855 2856 /* 2857 * For consistency in subsequent calls, make the faulted page always 2858 * locked. 2859 */ 2860 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2861 lock_page(vmf.page); 2862 else 2863 VM_BUG_ON(!PageLocked(vmf.page)); 2864 2865 /* 2866 * Should we do an early C-O-W break? 2867 */ 2868 page = vmf.page; 2869 if (flags & FAULT_FLAG_WRITE) { 2870 if (!(vma->vm_flags & VM_SHARED)) { 2871 anon = 1; 2872 if (unlikely(anon_vma_prepare(vma))) { 2873 ret = VM_FAULT_OOM; 2874 goto out; 2875 } 2876 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2877 vma, address); 2878 if (!page) { 2879 ret = VM_FAULT_OOM; 2880 goto out; 2881 } 2882 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2883 ret = VM_FAULT_OOM; 2884 page_cache_release(page); 2885 goto out; 2886 } 2887 charged = 1; 2888 /* 2889 * Don't let another task, with possibly unlocked vma, 2890 * keep the mlocked page. 2891 */ 2892 if (vma->vm_flags & VM_LOCKED) 2893 clear_page_mlock(vmf.page); 2894 copy_user_highpage(page, vmf.page, address, vma); 2895 __SetPageUptodate(page); 2896 } else { 2897 /* 2898 * If the page will be shareable, see if the backing 2899 * address space wants to know that the page is about 2900 * to become writable 2901 */ 2902 if (vma->vm_ops->page_mkwrite) { 2903 int tmp; 2904 2905 unlock_page(page); 2906 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2907 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2908 if (unlikely(tmp & 2909 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2910 ret = tmp; 2911 goto unwritable_page; 2912 } 2913 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2914 lock_page(page); 2915 if (!page->mapping) { 2916 ret = 0; /* retry the fault */ 2917 unlock_page(page); 2918 goto unwritable_page; 2919 } 2920 } else 2921 VM_BUG_ON(!PageLocked(page)); 2922 page_mkwrite = 1; 2923 } 2924 } 2925 2926 } 2927 2928 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2929 2930 /* 2931 * This silly early PAGE_DIRTY setting removes a race 2932 * due to the bad i386 page protection. But it's valid 2933 * for other architectures too. 2934 * 2935 * Note that if FAULT_FLAG_WRITE is set, we either now have 2936 * an exclusive copy of the page, or this is a shared mapping, 2937 * so we can make it writable and dirty to avoid having to 2938 * handle that later. 2939 */ 2940 /* Only go through if we didn't race with anybody else... */ 2941 if (likely(pte_same(*page_table, orig_pte))) { 2942 flush_icache_page(vma, page); 2943 entry = mk_pte(page, vma->vm_page_prot); 2944 if (flags & FAULT_FLAG_WRITE) 2945 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2946 if (anon) { 2947 inc_mm_counter_fast(mm, MM_ANONPAGES); 2948 page_add_new_anon_rmap(page, vma, address); 2949 } else { 2950 inc_mm_counter_fast(mm, MM_FILEPAGES); 2951 page_add_file_rmap(page); 2952 if (flags & FAULT_FLAG_WRITE) { 2953 dirty_page = page; 2954 get_page(dirty_page); 2955 } 2956 } 2957 set_pte_at(mm, address, page_table, entry); 2958 2959 /* no need to invalidate: a not-present page won't be cached */ 2960 update_mmu_cache(vma, address, page_table); 2961 } else { 2962 if (charged) 2963 mem_cgroup_uncharge_page(page); 2964 if (anon) 2965 page_cache_release(page); 2966 else 2967 anon = 1; /* no anon but release faulted_page */ 2968 } 2969 2970 pte_unmap_unlock(page_table, ptl); 2971 2972 out: 2973 if (dirty_page) { 2974 struct address_space *mapping = page->mapping; 2975 2976 if (set_page_dirty(dirty_page)) 2977 page_mkwrite = 1; 2978 unlock_page(dirty_page); 2979 put_page(dirty_page); 2980 if (page_mkwrite && mapping) { 2981 /* 2982 * Some device drivers do not set page.mapping but still 2983 * dirty their pages 2984 */ 2985 balance_dirty_pages_ratelimited(mapping); 2986 } 2987 2988 /* file_update_time outside page_lock */ 2989 if (vma->vm_file) 2990 file_update_time(vma->vm_file); 2991 } else { 2992 unlock_page(vmf.page); 2993 if (anon) 2994 page_cache_release(vmf.page); 2995 } 2996 2997 return ret; 2998 2999 unwritable_page: 3000 page_cache_release(page); 3001 return ret; 3002 } 3003 3004 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3005 unsigned long address, pte_t *page_table, pmd_t *pmd, 3006 unsigned int flags, pte_t orig_pte) 3007 { 3008 pgoff_t pgoff = (((address & PAGE_MASK) 3009 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3010 3011 pte_unmap(page_table); 3012 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3013 } 3014 3015 /* 3016 * Fault of a previously existing named mapping. Repopulate the pte 3017 * from the encoded file_pte if possible. This enables swappable 3018 * nonlinear vmas. 3019 * 3020 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3021 * but allow concurrent faults), and pte mapped but not yet locked. 3022 * We return with mmap_sem still held, but pte unmapped and unlocked. 3023 */ 3024 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3025 unsigned long address, pte_t *page_table, pmd_t *pmd, 3026 unsigned int flags, pte_t orig_pte) 3027 { 3028 pgoff_t pgoff; 3029 3030 flags |= FAULT_FLAG_NONLINEAR; 3031 3032 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3033 return 0; 3034 3035 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3036 /* 3037 * Page table corrupted: show pte and kill process. 3038 */ 3039 print_bad_pte(vma, address, orig_pte, NULL); 3040 return VM_FAULT_SIGBUS; 3041 } 3042 3043 pgoff = pte_to_pgoff(orig_pte); 3044 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3045 } 3046 3047 /* 3048 * These routines also need to handle stuff like marking pages dirty 3049 * and/or accessed for architectures that don't do it in hardware (most 3050 * RISC architectures). The early dirtying is also good on the i386. 3051 * 3052 * There is also a hook called "update_mmu_cache()" that architectures 3053 * with external mmu caches can use to update those (ie the Sparc or 3054 * PowerPC hashed page tables that act as extended TLBs). 3055 * 3056 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3057 * but allow concurrent faults), and pte mapped but not yet locked. 3058 * We return with mmap_sem still held, but pte unmapped and unlocked. 3059 */ 3060 static inline int handle_pte_fault(struct mm_struct *mm, 3061 struct vm_area_struct *vma, unsigned long address, 3062 pte_t *pte, pmd_t *pmd, unsigned int flags) 3063 { 3064 pte_t entry; 3065 spinlock_t *ptl; 3066 3067 entry = *pte; 3068 if (!pte_present(entry)) { 3069 if (pte_none(entry)) { 3070 if (vma->vm_ops) { 3071 if (likely(vma->vm_ops->fault)) 3072 return do_linear_fault(mm, vma, address, 3073 pte, pmd, flags, entry); 3074 } 3075 return do_anonymous_page(mm, vma, address, 3076 pte, pmd, flags); 3077 } 3078 if (pte_file(entry)) 3079 return do_nonlinear_fault(mm, vma, address, 3080 pte, pmd, flags, entry); 3081 return do_swap_page(mm, vma, address, 3082 pte, pmd, flags, entry); 3083 } 3084 3085 ptl = pte_lockptr(mm, pmd); 3086 spin_lock(ptl); 3087 if (unlikely(!pte_same(*pte, entry))) 3088 goto unlock; 3089 if (flags & FAULT_FLAG_WRITE) { 3090 if (!pte_write(entry)) 3091 return do_wp_page(mm, vma, address, 3092 pte, pmd, ptl, entry); 3093 entry = pte_mkdirty(entry); 3094 } 3095 entry = pte_mkyoung(entry); 3096 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3097 update_mmu_cache(vma, address, pte); 3098 } else { 3099 /* 3100 * This is needed only for protection faults but the arch code 3101 * is not yet telling us if this is a protection fault or not. 3102 * This still avoids useless tlb flushes for .text page faults 3103 * with threads. 3104 */ 3105 if (flags & FAULT_FLAG_WRITE) 3106 flush_tlb_page(vma, address); 3107 } 3108 unlock: 3109 pte_unmap_unlock(pte, ptl); 3110 return 0; 3111 } 3112 3113 /* 3114 * By the time we get here, we already hold the mm semaphore 3115 */ 3116 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3117 unsigned long address, unsigned int flags) 3118 { 3119 pgd_t *pgd; 3120 pud_t *pud; 3121 pmd_t *pmd; 3122 pte_t *pte; 3123 3124 __set_current_state(TASK_RUNNING); 3125 3126 count_vm_event(PGFAULT); 3127 3128 /* do counter updates before entering really critical section. */ 3129 check_sync_rss_stat(current); 3130 3131 if (unlikely(is_vm_hugetlb_page(vma))) 3132 return hugetlb_fault(mm, vma, address, flags); 3133 3134 pgd = pgd_offset(mm, address); 3135 pud = pud_alloc(mm, pgd, address); 3136 if (!pud) 3137 return VM_FAULT_OOM; 3138 pmd = pmd_alloc(mm, pud, address); 3139 if (!pmd) 3140 return VM_FAULT_OOM; 3141 pte = pte_alloc_map(mm, pmd, address); 3142 if (!pte) 3143 return VM_FAULT_OOM; 3144 3145 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3146 } 3147 3148 #ifndef __PAGETABLE_PUD_FOLDED 3149 /* 3150 * Allocate page upper directory. 3151 * We've already handled the fast-path in-line. 3152 */ 3153 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3154 { 3155 pud_t *new = pud_alloc_one(mm, address); 3156 if (!new) 3157 return -ENOMEM; 3158 3159 smp_wmb(); /* See comment in __pte_alloc */ 3160 3161 spin_lock(&mm->page_table_lock); 3162 if (pgd_present(*pgd)) /* Another has populated it */ 3163 pud_free(mm, new); 3164 else 3165 pgd_populate(mm, pgd, new); 3166 spin_unlock(&mm->page_table_lock); 3167 return 0; 3168 } 3169 #endif /* __PAGETABLE_PUD_FOLDED */ 3170 3171 #ifndef __PAGETABLE_PMD_FOLDED 3172 /* 3173 * Allocate page middle directory. 3174 * We've already handled the fast-path in-line. 3175 */ 3176 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3177 { 3178 pmd_t *new = pmd_alloc_one(mm, address); 3179 if (!new) 3180 return -ENOMEM; 3181 3182 smp_wmb(); /* See comment in __pte_alloc */ 3183 3184 spin_lock(&mm->page_table_lock); 3185 #ifndef __ARCH_HAS_4LEVEL_HACK 3186 if (pud_present(*pud)) /* Another has populated it */ 3187 pmd_free(mm, new); 3188 else 3189 pud_populate(mm, pud, new); 3190 #else 3191 if (pgd_present(*pud)) /* Another has populated it */ 3192 pmd_free(mm, new); 3193 else 3194 pgd_populate(mm, pud, new); 3195 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3196 spin_unlock(&mm->page_table_lock); 3197 return 0; 3198 } 3199 #endif /* __PAGETABLE_PMD_FOLDED */ 3200 3201 int make_pages_present(unsigned long addr, unsigned long end) 3202 { 3203 int ret, len, write; 3204 struct vm_area_struct * vma; 3205 3206 vma = find_vma(current->mm, addr); 3207 if (!vma) 3208 return -ENOMEM; 3209 write = (vma->vm_flags & VM_WRITE) != 0; 3210 BUG_ON(addr >= end); 3211 BUG_ON(end > vma->vm_end); 3212 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3213 ret = get_user_pages(current, current->mm, addr, 3214 len, write, 0, NULL, NULL); 3215 if (ret < 0) 3216 return ret; 3217 return ret == len ? 0 : -EFAULT; 3218 } 3219 3220 #if !defined(__HAVE_ARCH_GATE_AREA) 3221 3222 #if defined(AT_SYSINFO_EHDR) 3223 static struct vm_area_struct gate_vma; 3224 3225 static int __init gate_vma_init(void) 3226 { 3227 gate_vma.vm_mm = NULL; 3228 gate_vma.vm_start = FIXADDR_USER_START; 3229 gate_vma.vm_end = FIXADDR_USER_END; 3230 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3231 gate_vma.vm_page_prot = __P101; 3232 /* 3233 * Make sure the vDSO gets into every core dump. 3234 * Dumping its contents makes post-mortem fully interpretable later 3235 * without matching up the same kernel and hardware config to see 3236 * what PC values meant. 3237 */ 3238 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3239 return 0; 3240 } 3241 __initcall(gate_vma_init); 3242 #endif 3243 3244 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3245 { 3246 #ifdef AT_SYSINFO_EHDR 3247 return &gate_vma; 3248 #else 3249 return NULL; 3250 #endif 3251 } 3252 3253 int in_gate_area_no_task(unsigned long addr) 3254 { 3255 #ifdef AT_SYSINFO_EHDR 3256 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3257 return 1; 3258 #endif 3259 return 0; 3260 } 3261 3262 #endif /* __HAVE_ARCH_GATE_AREA */ 3263 3264 static int follow_pte(struct mm_struct *mm, unsigned long address, 3265 pte_t **ptepp, spinlock_t **ptlp) 3266 { 3267 pgd_t *pgd; 3268 pud_t *pud; 3269 pmd_t *pmd; 3270 pte_t *ptep; 3271 3272 pgd = pgd_offset(mm, address); 3273 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3274 goto out; 3275 3276 pud = pud_offset(pgd, address); 3277 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3278 goto out; 3279 3280 pmd = pmd_offset(pud, address); 3281 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3282 goto out; 3283 3284 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3285 if (pmd_huge(*pmd)) 3286 goto out; 3287 3288 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3289 if (!ptep) 3290 goto out; 3291 if (!pte_present(*ptep)) 3292 goto unlock; 3293 *ptepp = ptep; 3294 return 0; 3295 unlock: 3296 pte_unmap_unlock(ptep, *ptlp); 3297 out: 3298 return -EINVAL; 3299 } 3300 3301 /** 3302 * follow_pfn - look up PFN at a user virtual address 3303 * @vma: memory mapping 3304 * @address: user virtual address 3305 * @pfn: location to store found PFN 3306 * 3307 * Only IO mappings and raw PFN mappings are allowed. 3308 * 3309 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3310 */ 3311 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3312 unsigned long *pfn) 3313 { 3314 int ret = -EINVAL; 3315 spinlock_t *ptl; 3316 pte_t *ptep; 3317 3318 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3319 return ret; 3320 3321 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3322 if (ret) 3323 return ret; 3324 *pfn = pte_pfn(*ptep); 3325 pte_unmap_unlock(ptep, ptl); 3326 return 0; 3327 } 3328 EXPORT_SYMBOL(follow_pfn); 3329 3330 #ifdef CONFIG_HAVE_IOREMAP_PROT 3331 int follow_phys(struct vm_area_struct *vma, 3332 unsigned long address, unsigned int flags, 3333 unsigned long *prot, resource_size_t *phys) 3334 { 3335 int ret = -EINVAL; 3336 pte_t *ptep, pte; 3337 spinlock_t *ptl; 3338 3339 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3340 goto out; 3341 3342 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3343 goto out; 3344 pte = *ptep; 3345 3346 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3347 goto unlock; 3348 3349 *prot = pgprot_val(pte_pgprot(pte)); 3350 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3351 3352 ret = 0; 3353 unlock: 3354 pte_unmap_unlock(ptep, ptl); 3355 out: 3356 return ret; 3357 } 3358 3359 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3360 void *buf, int len, int write) 3361 { 3362 resource_size_t phys_addr; 3363 unsigned long prot = 0; 3364 void __iomem *maddr; 3365 int offset = addr & (PAGE_SIZE-1); 3366 3367 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3368 return -EINVAL; 3369 3370 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3371 if (write) 3372 memcpy_toio(maddr + offset, buf, len); 3373 else 3374 memcpy_fromio(buf, maddr + offset, len); 3375 iounmap(maddr); 3376 3377 return len; 3378 } 3379 #endif 3380 3381 /* 3382 * Access another process' address space. 3383 * Source/target buffer must be kernel space, 3384 * Do not walk the page table directly, use get_user_pages 3385 */ 3386 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3387 { 3388 struct mm_struct *mm; 3389 struct vm_area_struct *vma; 3390 void *old_buf = buf; 3391 3392 mm = get_task_mm(tsk); 3393 if (!mm) 3394 return 0; 3395 3396 down_read(&mm->mmap_sem); 3397 /* ignore errors, just check how much was successfully transferred */ 3398 while (len) { 3399 int bytes, ret, offset; 3400 void *maddr; 3401 struct page *page = NULL; 3402 3403 ret = get_user_pages(tsk, mm, addr, 1, 3404 write, 1, &page, &vma); 3405 if (ret <= 0) { 3406 /* 3407 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3408 * we can access using slightly different code. 3409 */ 3410 #ifdef CONFIG_HAVE_IOREMAP_PROT 3411 vma = find_vma(mm, addr); 3412 if (!vma) 3413 break; 3414 if (vma->vm_ops && vma->vm_ops->access) 3415 ret = vma->vm_ops->access(vma, addr, buf, 3416 len, write); 3417 if (ret <= 0) 3418 #endif 3419 break; 3420 bytes = ret; 3421 } else { 3422 bytes = len; 3423 offset = addr & (PAGE_SIZE-1); 3424 if (bytes > PAGE_SIZE-offset) 3425 bytes = PAGE_SIZE-offset; 3426 3427 maddr = kmap(page); 3428 if (write) { 3429 copy_to_user_page(vma, page, addr, 3430 maddr + offset, buf, bytes); 3431 set_page_dirty_lock(page); 3432 } else { 3433 copy_from_user_page(vma, page, addr, 3434 buf, maddr + offset, bytes); 3435 } 3436 kunmap(page); 3437 page_cache_release(page); 3438 } 3439 len -= bytes; 3440 buf += bytes; 3441 addr += bytes; 3442 } 3443 up_read(&mm->mmap_sem); 3444 mmput(mm); 3445 3446 return buf - old_buf; 3447 } 3448 3449 /* 3450 * Print the name of a VMA. 3451 */ 3452 void print_vma_addr(char *prefix, unsigned long ip) 3453 { 3454 struct mm_struct *mm = current->mm; 3455 struct vm_area_struct *vma; 3456 3457 /* 3458 * Do not print if we are in atomic 3459 * contexts (in exception stacks, etc.): 3460 */ 3461 if (preempt_count()) 3462 return; 3463 3464 down_read(&mm->mmap_sem); 3465 vma = find_vma(mm, ip); 3466 if (vma && vma->vm_file) { 3467 struct file *f = vma->vm_file; 3468 char *buf = (char *)__get_free_page(GFP_KERNEL); 3469 if (buf) { 3470 char *p, *s; 3471 3472 p = d_path(&f->f_path, buf, PAGE_SIZE); 3473 if (IS_ERR(p)) 3474 p = "?"; 3475 s = strrchr(p, '/'); 3476 if (s) 3477 p = s+1; 3478 printk("%s%s[%lx+%lx]", prefix, p, 3479 vma->vm_start, 3480 vma->vm_end - vma->vm_start); 3481 free_page((unsigned long)buf); 3482 } 3483 } 3484 up_read(¤t->mm->mmap_sem); 3485 } 3486 3487 #ifdef CONFIG_PROVE_LOCKING 3488 void might_fault(void) 3489 { 3490 /* 3491 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3492 * holding the mmap_sem, this is safe because kernel memory doesn't 3493 * get paged out, therefore we'll never actually fault, and the 3494 * below annotations will generate false positives. 3495 */ 3496 if (segment_eq(get_fs(), KERNEL_DS)) 3497 return; 3498 3499 might_sleep(); 3500 /* 3501 * it would be nicer only to annotate paths which are not under 3502 * pagefault_disable, however that requires a larger audit and 3503 * providing helpers like get_user_atomic. 3504 */ 3505 if (!in_atomic() && current->mm) 3506 might_lock_read(¤t->mm->mmap_sem); 3507 } 3508 EXPORT_SYMBOL(might_fault); 3509 #endif 3510