xref: /linux/mm/memory.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66 
67 #include "internal.h"
68 
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73 
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77 
78 unsigned long num_physpages;
79 /*
80  * A number of key systems in x86 including ioremap() rely on the assumption
81  * that high_memory defines the upper bound on direct map memory, then end
82  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84  * and ZONE_HIGHMEM.
85  */
86 void * high_memory;
87 
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90 
91 /*
92  * Randomize the address space (stacks, mmaps, brk, etc.).
93  *
94  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95  *   as ancient (libc5 based) binaries can segfault. )
96  */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99 					1;
100 #else
101 					2;
102 #endif
103 
104 static int __init disable_randmaps(char *s)
105 {
106 	randomize_va_space = 0;
107 	return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110 
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
113 
114 /*
115  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116  */
117 static int __init init_zero_pfn(void)
118 {
119 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 	return 0;
121 }
122 core_initcall(init_zero_pfn);
123 
124 
125 #if defined(SPLIT_RSS_COUNTING)
126 
127 void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
128 {
129 	int i;
130 
131 	for (i = 0; i < NR_MM_COUNTERS; i++) {
132 		if (task->rss_stat.count[i]) {
133 			add_mm_counter(mm, i, task->rss_stat.count[i]);
134 			task->rss_stat.count[i] = 0;
135 		}
136 	}
137 	task->rss_stat.events = 0;
138 }
139 
140 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
141 {
142 	struct task_struct *task = current;
143 
144 	if (likely(task->mm == mm))
145 		task->rss_stat.count[member] += val;
146 	else
147 		add_mm_counter(mm, member, val);
148 }
149 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
150 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
151 
152 /* sync counter once per 64 page faults */
153 #define TASK_RSS_EVENTS_THRESH	(64)
154 static void check_sync_rss_stat(struct task_struct *task)
155 {
156 	if (unlikely(task != current))
157 		return;
158 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
159 		__sync_task_rss_stat(task, task->mm);
160 }
161 
162 unsigned long get_mm_counter(struct mm_struct *mm, int member)
163 {
164 	long val = 0;
165 
166 	/*
167 	 * Don't use task->mm here...for avoiding to use task_get_mm()..
168 	 * The caller must guarantee task->mm is not invalid.
169 	 */
170 	val = atomic_long_read(&mm->rss_stat.count[member]);
171 	/*
172 	 * counter is updated in asynchronous manner and may go to minus.
173 	 * But it's never be expected number for users.
174 	 */
175 	if (val < 0)
176 		return 0;
177 	return (unsigned long)val;
178 }
179 
180 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
181 {
182 	__sync_task_rss_stat(task, mm);
183 }
184 #else
185 
186 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
187 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
188 
189 static void check_sync_rss_stat(struct task_struct *task)
190 {
191 }
192 
193 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
194 {
195 }
196 #endif
197 
198 /*
199  * If a p?d_bad entry is found while walking page tables, report
200  * the error, before resetting entry to p?d_none.  Usually (but
201  * very seldom) called out from the p?d_none_or_clear_bad macros.
202  */
203 
204 void pgd_clear_bad(pgd_t *pgd)
205 {
206 	pgd_ERROR(*pgd);
207 	pgd_clear(pgd);
208 }
209 
210 void pud_clear_bad(pud_t *pud)
211 {
212 	pud_ERROR(*pud);
213 	pud_clear(pud);
214 }
215 
216 void pmd_clear_bad(pmd_t *pmd)
217 {
218 	pmd_ERROR(*pmd);
219 	pmd_clear(pmd);
220 }
221 
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 			   unsigned long addr)
228 {
229 	pgtable_t token = pmd_pgtable(*pmd);
230 	pmd_clear(pmd);
231 	pte_free_tlb(tlb, token, addr);
232 	tlb->mm->nr_ptes--;
233 }
234 
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 				unsigned long addr, unsigned long end,
237 				unsigned long floor, unsigned long ceiling)
238 {
239 	pmd_t *pmd;
240 	unsigned long next;
241 	unsigned long start;
242 
243 	start = addr;
244 	pmd = pmd_offset(pud, addr);
245 	do {
246 		next = pmd_addr_end(addr, end);
247 		if (pmd_none_or_clear_bad(pmd))
248 			continue;
249 		free_pte_range(tlb, pmd, addr);
250 	} while (pmd++, addr = next, addr != end);
251 
252 	start &= PUD_MASK;
253 	if (start < floor)
254 		return;
255 	if (ceiling) {
256 		ceiling &= PUD_MASK;
257 		if (!ceiling)
258 			return;
259 	}
260 	if (end - 1 > ceiling - 1)
261 		return;
262 
263 	pmd = pmd_offset(pud, start);
264 	pud_clear(pud);
265 	pmd_free_tlb(tlb, pmd, start);
266 }
267 
268 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
269 				unsigned long addr, unsigned long end,
270 				unsigned long floor, unsigned long ceiling)
271 {
272 	pud_t *pud;
273 	unsigned long next;
274 	unsigned long start;
275 
276 	start = addr;
277 	pud = pud_offset(pgd, addr);
278 	do {
279 		next = pud_addr_end(addr, end);
280 		if (pud_none_or_clear_bad(pud))
281 			continue;
282 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
283 	} while (pud++, addr = next, addr != end);
284 
285 	start &= PGDIR_MASK;
286 	if (start < floor)
287 		return;
288 	if (ceiling) {
289 		ceiling &= PGDIR_MASK;
290 		if (!ceiling)
291 			return;
292 	}
293 	if (end - 1 > ceiling - 1)
294 		return;
295 
296 	pud = pud_offset(pgd, start);
297 	pgd_clear(pgd);
298 	pud_free_tlb(tlb, pud, start);
299 }
300 
301 /*
302  * This function frees user-level page tables of a process.
303  *
304  * Must be called with pagetable lock held.
305  */
306 void free_pgd_range(struct mmu_gather *tlb,
307 			unsigned long addr, unsigned long end,
308 			unsigned long floor, unsigned long ceiling)
309 {
310 	pgd_t *pgd;
311 	unsigned long next;
312 	unsigned long start;
313 
314 	/*
315 	 * The next few lines have given us lots of grief...
316 	 *
317 	 * Why are we testing PMD* at this top level?  Because often
318 	 * there will be no work to do at all, and we'd prefer not to
319 	 * go all the way down to the bottom just to discover that.
320 	 *
321 	 * Why all these "- 1"s?  Because 0 represents both the bottom
322 	 * of the address space and the top of it (using -1 for the
323 	 * top wouldn't help much: the masks would do the wrong thing).
324 	 * The rule is that addr 0 and floor 0 refer to the bottom of
325 	 * the address space, but end 0 and ceiling 0 refer to the top
326 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 	 * that end 0 case should be mythical).
328 	 *
329 	 * Wherever addr is brought up or ceiling brought down, we must
330 	 * be careful to reject "the opposite 0" before it confuses the
331 	 * subsequent tests.  But what about where end is brought down
332 	 * by PMD_SIZE below? no, end can't go down to 0 there.
333 	 *
334 	 * Whereas we round start (addr) and ceiling down, by different
335 	 * masks at different levels, in order to test whether a table
336 	 * now has no other vmas using it, so can be freed, we don't
337 	 * bother to round floor or end up - the tests don't need that.
338 	 */
339 
340 	addr &= PMD_MASK;
341 	if (addr < floor) {
342 		addr += PMD_SIZE;
343 		if (!addr)
344 			return;
345 	}
346 	if (ceiling) {
347 		ceiling &= PMD_MASK;
348 		if (!ceiling)
349 			return;
350 	}
351 	if (end - 1 > ceiling - 1)
352 		end -= PMD_SIZE;
353 	if (addr > end - 1)
354 		return;
355 
356 	start = addr;
357 	pgd = pgd_offset(tlb->mm, addr);
358 	do {
359 		next = pgd_addr_end(addr, end);
360 		if (pgd_none_or_clear_bad(pgd))
361 			continue;
362 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
363 	} while (pgd++, addr = next, addr != end);
364 }
365 
366 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
367 		unsigned long floor, unsigned long ceiling)
368 {
369 	while (vma) {
370 		struct vm_area_struct *next = vma->vm_next;
371 		unsigned long addr = vma->vm_start;
372 
373 		/*
374 		 * Hide vma from rmap and truncate_pagecache before freeing
375 		 * pgtables
376 		 */
377 		unlink_anon_vmas(vma);
378 		unlink_file_vma(vma);
379 
380 		if (is_vm_hugetlb_page(vma)) {
381 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
382 				floor, next? next->vm_start: ceiling);
383 		} else {
384 			/*
385 			 * Optimization: gather nearby vmas into one call down
386 			 */
387 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
388 			       && !is_vm_hugetlb_page(next)) {
389 				vma = next;
390 				next = vma->vm_next;
391 				unlink_anon_vmas(vma);
392 				unlink_file_vma(vma);
393 			}
394 			free_pgd_range(tlb, addr, vma->vm_end,
395 				floor, next? next->vm_start: ceiling);
396 		}
397 		vma = next;
398 	}
399 }
400 
401 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
402 {
403 	pgtable_t new = pte_alloc_one(mm, address);
404 	if (!new)
405 		return -ENOMEM;
406 
407 	/*
408 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
409 	 * visible before the pte is made visible to other CPUs by being
410 	 * put into page tables.
411 	 *
412 	 * The other side of the story is the pointer chasing in the page
413 	 * table walking code (when walking the page table without locking;
414 	 * ie. most of the time). Fortunately, these data accesses consist
415 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
416 	 * being the notable exception) will already guarantee loads are
417 	 * seen in-order. See the alpha page table accessors for the
418 	 * smp_read_barrier_depends() barriers in page table walking code.
419 	 */
420 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
421 
422 	spin_lock(&mm->page_table_lock);
423 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
424 		mm->nr_ptes++;
425 		pmd_populate(mm, pmd, new);
426 		new = NULL;
427 	}
428 	spin_unlock(&mm->page_table_lock);
429 	if (new)
430 		pte_free(mm, new);
431 	return 0;
432 }
433 
434 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
435 {
436 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
437 	if (!new)
438 		return -ENOMEM;
439 
440 	smp_wmb(); /* See comment in __pte_alloc */
441 
442 	spin_lock(&init_mm.page_table_lock);
443 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
444 		pmd_populate_kernel(&init_mm, pmd, new);
445 		new = NULL;
446 	}
447 	spin_unlock(&init_mm.page_table_lock);
448 	if (new)
449 		pte_free_kernel(&init_mm, new);
450 	return 0;
451 }
452 
453 static inline void init_rss_vec(int *rss)
454 {
455 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
456 }
457 
458 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
459 {
460 	int i;
461 
462 	if (current->mm == mm)
463 		sync_mm_rss(current, mm);
464 	for (i = 0; i < NR_MM_COUNTERS; i++)
465 		if (rss[i])
466 			add_mm_counter(mm, i, rss[i]);
467 }
468 
469 /*
470  * This function is called to print an error when a bad pte
471  * is found. For example, we might have a PFN-mapped pte in
472  * a region that doesn't allow it.
473  *
474  * The calling function must still handle the error.
475  */
476 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
477 			  pte_t pte, struct page *page)
478 {
479 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
480 	pud_t *pud = pud_offset(pgd, addr);
481 	pmd_t *pmd = pmd_offset(pud, addr);
482 	struct address_space *mapping;
483 	pgoff_t index;
484 	static unsigned long resume;
485 	static unsigned long nr_shown;
486 	static unsigned long nr_unshown;
487 
488 	/*
489 	 * Allow a burst of 60 reports, then keep quiet for that minute;
490 	 * or allow a steady drip of one report per second.
491 	 */
492 	if (nr_shown == 60) {
493 		if (time_before(jiffies, resume)) {
494 			nr_unshown++;
495 			return;
496 		}
497 		if (nr_unshown) {
498 			printk(KERN_ALERT
499 				"BUG: Bad page map: %lu messages suppressed\n",
500 				nr_unshown);
501 			nr_unshown = 0;
502 		}
503 		nr_shown = 0;
504 	}
505 	if (nr_shown++ == 0)
506 		resume = jiffies + 60 * HZ;
507 
508 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
509 	index = linear_page_index(vma, addr);
510 
511 	printk(KERN_ALERT
512 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
513 		current->comm,
514 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
515 	if (page) {
516 		printk(KERN_ALERT
517 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
518 		page, (void *)page->flags, page_count(page),
519 		page_mapcount(page), page->mapping, page->index);
520 	}
521 	printk(KERN_ALERT
522 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
523 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
524 	/*
525 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
526 	 */
527 	if (vma->vm_ops)
528 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
529 				(unsigned long)vma->vm_ops->fault);
530 	if (vma->vm_file && vma->vm_file->f_op)
531 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
532 				(unsigned long)vma->vm_file->f_op->mmap);
533 	dump_stack();
534 	add_taint(TAINT_BAD_PAGE);
535 }
536 
537 static inline int is_cow_mapping(unsigned int flags)
538 {
539 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
540 }
541 
542 #ifndef is_zero_pfn
543 static inline int is_zero_pfn(unsigned long pfn)
544 {
545 	return pfn == zero_pfn;
546 }
547 #endif
548 
549 #ifndef my_zero_pfn
550 static inline unsigned long my_zero_pfn(unsigned long addr)
551 {
552 	return zero_pfn;
553 }
554 #endif
555 
556 /*
557  * vm_normal_page -- This function gets the "struct page" associated with a pte.
558  *
559  * "Special" mappings do not wish to be associated with a "struct page" (either
560  * it doesn't exist, or it exists but they don't want to touch it). In this
561  * case, NULL is returned here. "Normal" mappings do have a struct page.
562  *
563  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
564  * pte bit, in which case this function is trivial. Secondly, an architecture
565  * may not have a spare pte bit, which requires a more complicated scheme,
566  * described below.
567  *
568  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
569  * special mapping (even if there are underlying and valid "struct pages").
570  * COWed pages of a VM_PFNMAP are always normal.
571  *
572  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
573  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
574  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
575  * mapping will always honor the rule
576  *
577  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
578  *
579  * And for normal mappings this is false.
580  *
581  * This restricts such mappings to be a linear translation from virtual address
582  * to pfn. To get around this restriction, we allow arbitrary mappings so long
583  * as the vma is not a COW mapping; in that case, we know that all ptes are
584  * special (because none can have been COWed).
585  *
586  *
587  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
588  *
589  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
590  * page" backing, however the difference is that _all_ pages with a struct
591  * page (that is, those where pfn_valid is true) are refcounted and considered
592  * normal pages by the VM. The disadvantage is that pages are refcounted
593  * (which can be slower and simply not an option for some PFNMAP users). The
594  * advantage is that we don't have to follow the strict linearity rule of
595  * PFNMAP mappings in order to support COWable mappings.
596  *
597  */
598 #ifdef __HAVE_ARCH_PTE_SPECIAL
599 # define HAVE_PTE_SPECIAL 1
600 #else
601 # define HAVE_PTE_SPECIAL 0
602 #endif
603 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
604 				pte_t pte)
605 {
606 	unsigned long pfn = pte_pfn(pte);
607 
608 	if (HAVE_PTE_SPECIAL) {
609 		if (likely(!pte_special(pte)))
610 			goto check_pfn;
611 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
612 			return NULL;
613 		if (!is_zero_pfn(pfn))
614 			print_bad_pte(vma, addr, pte, NULL);
615 		return NULL;
616 	}
617 
618 	/* !HAVE_PTE_SPECIAL case follows: */
619 
620 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621 		if (vma->vm_flags & VM_MIXEDMAP) {
622 			if (!pfn_valid(pfn))
623 				return NULL;
624 			goto out;
625 		} else {
626 			unsigned long off;
627 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
628 			if (pfn == vma->vm_pgoff + off)
629 				return NULL;
630 			if (!is_cow_mapping(vma->vm_flags))
631 				return NULL;
632 		}
633 	}
634 
635 	if (is_zero_pfn(pfn))
636 		return NULL;
637 check_pfn:
638 	if (unlikely(pfn > highest_memmap_pfn)) {
639 		print_bad_pte(vma, addr, pte, NULL);
640 		return NULL;
641 	}
642 
643 	/*
644 	 * NOTE! We still have PageReserved() pages in the page tables.
645 	 * eg. VDSO mappings can cause them to exist.
646 	 */
647 out:
648 	return pfn_to_page(pfn);
649 }
650 
651 /*
652  * copy one vm_area from one task to the other. Assumes the page tables
653  * already present in the new task to be cleared in the whole range
654  * covered by this vma.
655  */
656 
657 static inline unsigned long
658 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
659 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
660 		unsigned long addr, int *rss)
661 {
662 	unsigned long vm_flags = vma->vm_flags;
663 	pte_t pte = *src_pte;
664 	struct page *page;
665 
666 	/* pte contains position in swap or file, so copy. */
667 	if (unlikely(!pte_present(pte))) {
668 		if (!pte_file(pte)) {
669 			swp_entry_t entry = pte_to_swp_entry(pte);
670 
671 			if (swap_duplicate(entry) < 0)
672 				return entry.val;
673 
674 			/* make sure dst_mm is on swapoff's mmlist. */
675 			if (unlikely(list_empty(&dst_mm->mmlist))) {
676 				spin_lock(&mmlist_lock);
677 				if (list_empty(&dst_mm->mmlist))
678 					list_add(&dst_mm->mmlist,
679 						 &src_mm->mmlist);
680 				spin_unlock(&mmlist_lock);
681 			}
682 			if (likely(!non_swap_entry(entry)))
683 				rss[MM_SWAPENTS]++;
684 			else if (is_write_migration_entry(entry) &&
685 					is_cow_mapping(vm_flags)) {
686 				/*
687 				 * COW mappings require pages in both parent
688 				 * and child to be set to read.
689 				 */
690 				make_migration_entry_read(&entry);
691 				pte = swp_entry_to_pte(entry);
692 				set_pte_at(src_mm, addr, src_pte, pte);
693 			}
694 		}
695 		goto out_set_pte;
696 	}
697 
698 	/*
699 	 * If it's a COW mapping, write protect it both
700 	 * in the parent and the child
701 	 */
702 	if (is_cow_mapping(vm_flags)) {
703 		ptep_set_wrprotect(src_mm, addr, src_pte);
704 		pte = pte_wrprotect(pte);
705 	}
706 
707 	/*
708 	 * If it's a shared mapping, mark it clean in
709 	 * the child
710 	 */
711 	if (vm_flags & VM_SHARED)
712 		pte = pte_mkclean(pte);
713 	pte = pte_mkold(pte);
714 
715 	page = vm_normal_page(vma, addr, pte);
716 	if (page) {
717 		get_page(page);
718 		page_dup_rmap(page);
719 		if (PageAnon(page))
720 			rss[MM_ANONPAGES]++;
721 		else
722 			rss[MM_FILEPAGES]++;
723 	}
724 
725 out_set_pte:
726 	set_pte_at(dst_mm, addr, dst_pte, pte);
727 	return 0;
728 }
729 
730 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
731 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
732 		unsigned long addr, unsigned long end)
733 {
734 	pte_t *orig_src_pte, *orig_dst_pte;
735 	pte_t *src_pte, *dst_pte;
736 	spinlock_t *src_ptl, *dst_ptl;
737 	int progress = 0;
738 	int rss[NR_MM_COUNTERS];
739 	swp_entry_t entry = (swp_entry_t){0};
740 
741 again:
742 	init_rss_vec(rss);
743 
744 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
745 	if (!dst_pte)
746 		return -ENOMEM;
747 	src_pte = pte_offset_map_nested(src_pmd, addr);
748 	src_ptl = pte_lockptr(src_mm, src_pmd);
749 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
750 	orig_src_pte = src_pte;
751 	orig_dst_pte = dst_pte;
752 	arch_enter_lazy_mmu_mode();
753 
754 	do {
755 		/*
756 		 * We are holding two locks at this point - either of them
757 		 * could generate latencies in another task on another CPU.
758 		 */
759 		if (progress >= 32) {
760 			progress = 0;
761 			if (need_resched() ||
762 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
763 				break;
764 		}
765 		if (pte_none(*src_pte)) {
766 			progress++;
767 			continue;
768 		}
769 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
770 							vma, addr, rss);
771 		if (entry.val)
772 			break;
773 		progress += 8;
774 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
775 
776 	arch_leave_lazy_mmu_mode();
777 	spin_unlock(src_ptl);
778 	pte_unmap_nested(orig_src_pte);
779 	add_mm_rss_vec(dst_mm, rss);
780 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
781 	cond_resched();
782 
783 	if (entry.val) {
784 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
785 			return -ENOMEM;
786 		progress = 0;
787 	}
788 	if (addr != end)
789 		goto again;
790 	return 0;
791 }
792 
793 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
794 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
795 		unsigned long addr, unsigned long end)
796 {
797 	pmd_t *src_pmd, *dst_pmd;
798 	unsigned long next;
799 
800 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
801 	if (!dst_pmd)
802 		return -ENOMEM;
803 	src_pmd = pmd_offset(src_pud, addr);
804 	do {
805 		next = pmd_addr_end(addr, end);
806 		if (pmd_none_or_clear_bad(src_pmd))
807 			continue;
808 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
809 						vma, addr, next))
810 			return -ENOMEM;
811 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
812 	return 0;
813 }
814 
815 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
816 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
817 		unsigned long addr, unsigned long end)
818 {
819 	pud_t *src_pud, *dst_pud;
820 	unsigned long next;
821 
822 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
823 	if (!dst_pud)
824 		return -ENOMEM;
825 	src_pud = pud_offset(src_pgd, addr);
826 	do {
827 		next = pud_addr_end(addr, end);
828 		if (pud_none_or_clear_bad(src_pud))
829 			continue;
830 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
831 						vma, addr, next))
832 			return -ENOMEM;
833 	} while (dst_pud++, src_pud++, addr = next, addr != end);
834 	return 0;
835 }
836 
837 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 		struct vm_area_struct *vma)
839 {
840 	pgd_t *src_pgd, *dst_pgd;
841 	unsigned long next;
842 	unsigned long addr = vma->vm_start;
843 	unsigned long end = vma->vm_end;
844 	int ret;
845 
846 	/*
847 	 * Don't copy ptes where a page fault will fill them correctly.
848 	 * Fork becomes much lighter when there are big shared or private
849 	 * readonly mappings. The tradeoff is that copy_page_range is more
850 	 * efficient than faulting.
851 	 */
852 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
853 		if (!vma->anon_vma)
854 			return 0;
855 	}
856 
857 	if (is_vm_hugetlb_page(vma))
858 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
859 
860 	if (unlikely(is_pfn_mapping(vma))) {
861 		/*
862 		 * We do not free on error cases below as remove_vma
863 		 * gets called on error from higher level routine
864 		 */
865 		ret = track_pfn_vma_copy(vma);
866 		if (ret)
867 			return ret;
868 	}
869 
870 	/*
871 	 * We need to invalidate the secondary MMU mappings only when
872 	 * there could be a permission downgrade on the ptes of the
873 	 * parent mm. And a permission downgrade will only happen if
874 	 * is_cow_mapping() returns true.
875 	 */
876 	if (is_cow_mapping(vma->vm_flags))
877 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
878 
879 	ret = 0;
880 	dst_pgd = pgd_offset(dst_mm, addr);
881 	src_pgd = pgd_offset(src_mm, addr);
882 	do {
883 		next = pgd_addr_end(addr, end);
884 		if (pgd_none_or_clear_bad(src_pgd))
885 			continue;
886 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
887 					    vma, addr, next))) {
888 			ret = -ENOMEM;
889 			break;
890 		}
891 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
892 
893 	if (is_cow_mapping(vma->vm_flags))
894 		mmu_notifier_invalidate_range_end(src_mm,
895 						  vma->vm_start, end);
896 	return ret;
897 }
898 
899 static unsigned long zap_pte_range(struct mmu_gather *tlb,
900 				struct vm_area_struct *vma, pmd_t *pmd,
901 				unsigned long addr, unsigned long end,
902 				long *zap_work, struct zap_details *details)
903 {
904 	struct mm_struct *mm = tlb->mm;
905 	pte_t *pte;
906 	spinlock_t *ptl;
907 	int rss[NR_MM_COUNTERS];
908 
909 	init_rss_vec(rss);
910 
911 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
912 	arch_enter_lazy_mmu_mode();
913 	do {
914 		pte_t ptent = *pte;
915 		if (pte_none(ptent)) {
916 			(*zap_work)--;
917 			continue;
918 		}
919 
920 		(*zap_work) -= PAGE_SIZE;
921 
922 		if (pte_present(ptent)) {
923 			struct page *page;
924 
925 			page = vm_normal_page(vma, addr, ptent);
926 			if (unlikely(details) && page) {
927 				/*
928 				 * unmap_shared_mapping_pages() wants to
929 				 * invalidate cache without truncating:
930 				 * unmap shared but keep private pages.
931 				 */
932 				if (details->check_mapping &&
933 				    details->check_mapping != page->mapping)
934 					continue;
935 				/*
936 				 * Each page->index must be checked when
937 				 * invalidating or truncating nonlinear.
938 				 */
939 				if (details->nonlinear_vma &&
940 				    (page->index < details->first_index ||
941 				     page->index > details->last_index))
942 					continue;
943 			}
944 			ptent = ptep_get_and_clear_full(mm, addr, pte,
945 							tlb->fullmm);
946 			tlb_remove_tlb_entry(tlb, pte, addr);
947 			if (unlikely(!page))
948 				continue;
949 			if (unlikely(details) && details->nonlinear_vma
950 			    && linear_page_index(details->nonlinear_vma,
951 						addr) != page->index)
952 				set_pte_at(mm, addr, pte,
953 					   pgoff_to_pte(page->index));
954 			if (PageAnon(page))
955 				rss[MM_ANONPAGES]--;
956 			else {
957 				if (pte_dirty(ptent))
958 					set_page_dirty(page);
959 				if (pte_young(ptent) &&
960 				    likely(!VM_SequentialReadHint(vma)))
961 					mark_page_accessed(page);
962 				rss[MM_FILEPAGES]--;
963 			}
964 			page_remove_rmap(page);
965 			if (unlikely(page_mapcount(page) < 0))
966 				print_bad_pte(vma, addr, ptent, page);
967 			tlb_remove_page(tlb, page);
968 			continue;
969 		}
970 		/*
971 		 * If details->check_mapping, we leave swap entries;
972 		 * if details->nonlinear_vma, we leave file entries.
973 		 */
974 		if (unlikely(details))
975 			continue;
976 		if (pte_file(ptent)) {
977 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
978 				print_bad_pte(vma, addr, ptent, NULL);
979 		} else {
980 			swp_entry_t entry = pte_to_swp_entry(ptent);
981 
982 			if (!non_swap_entry(entry))
983 				rss[MM_SWAPENTS]--;
984 			if (unlikely(!free_swap_and_cache(entry)))
985 				print_bad_pte(vma, addr, ptent, NULL);
986 		}
987 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
988 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
989 
990 	add_mm_rss_vec(mm, rss);
991 	arch_leave_lazy_mmu_mode();
992 	pte_unmap_unlock(pte - 1, ptl);
993 
994 	return addr;
995 }
996 
997 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
998 				struct vm_area_struct *vma, pud_t *pud,
999 				unsigned long addr, unsigned long end,
1000 				long *zap_work, struct zap_details *details)
1001 {
1002 	pmd_t *pmd;
1003 	unsigned long next;
1004 
1005 	pmd = pmd_offset(pud, addr);
1006 	do {
1007 		next = pmd_addr_end(addr, end);
1008 		if (pmd_none_or_clear_bad(pmd)) {
1009 			(*zap_work)--;
1010 			continue;
1011 		}
1012 		next = zap_pte_range(tlb, vma, pmd, addr, next,
1013 						zap_work, details);
1014 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
1015 
1016 	return addr;
1017 }
1018 
1019 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1020 				struct vm_area_struct *vma, pgd_t *pgd,
1021 				unsigned long addr, unsigned long end,
1022 				long *zap_work, struct zap_details *details)
1023 {
1024 	pud_t *pud;
1025 	unsigned long next;
1026 
1027 	pud = pud_offset(pgd, addr);
1028 	do {
1029 		next = pud_addr_end(addr, end);
1030 		if (pud_none_or_clear_bad(pud)) {
1031 			(*zap_work)--;
1032 			continue;
1033 		}
1034 		next = zap_pmd_range(tlb, vma, pud, addr, next,
1035 						zap_work, details);
1036 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
1037 
1038 	return addr;
1039 }
1040 
1041 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1042 				struct vm_area_struct *vma,
1043 				unsigned long addr, unsigned long end,
1044 				long *zap_work, struct zap_details *details)
1045 {
1046 	pgd_t *pgd;
1047 	unsigned long next;
1048 
1049 	if (details && !details->check_mapping && !details->nonlinear_vma)
1050 		details = NULL;
1051 
1052 	BUG_ON(addr >= end);
1053 	mem_cgroup_uncharge_start();
1054 	tlb_start_vma(tlb, vma);
1055 	pgd = pgd_offset(vma->vm_mm, addr);
1056 	do {
1057 		next = pgd_addr_end(addr, end);
1058 		if (pgd_none_or_clear_bad(pgd)) {
1059 			(*zap_work)--;
1060 			continue;
1061 		}
1062 		next = zap_pud_range(tlb, vma, pgd, addr, next,
1063 						zap_work, details);
1064 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
1065 	tlb_end_vma(tlb, vma);
1066 	mem_cgroup_uncharge_end();
1067 
1068 	return addr;
1069 }
1070 
1071 #ifdef CONFIG_PREEMPT
1072 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1073 #else
1074 /* No preempt: go for improved straight-line efficiency */
1075 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1076 #endif
1077 
1078 /**
1079  * unmap_vmas - unmap a range of memory covered by a list of vma's
1080  * @tlbp: address of the caller's struct mmu_gather
1081  * @vma: the starting vma
1082  * @start_addr: virtual address at which to start unmapping
1083  * @end_addr: virtual address at which to end unmapping
1084  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1085  * @details: details of nonlinear truncation or shared cache invalidation
1086  *
1087  * Returns the end address of the unmapping (restart addr if interrupted).
1088  *
1089  * Unmap all pages in the vma list.
1090  *
1091  * We aim to not hold locks for too long (for scheduling latency reasons).
1092  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1093  * return the ending mmu_gather to the caller.
1094  *
1095  * Only addresses between `start' and `end' will be unmapped.
1096  *
1097  * The VMA list must be sorted in ascending virtual address order.
1098  *
1099  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1100  * range after unmap_vmas() returns.  So the only responsibility here is to
1101  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1102  * drops the lock and schedules.
1103  */
1104 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1105 		struct vm_area_struct *vma, unsigned long start_addr,
1106 		unsigned long end_addr, unsigned long *nr_accounted,
1107 		struct zap_details *details)
1108 {
1109 	long zap_work = ZAP_BLOCK_SIZE;
1110 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1111 	int tlb_start_valid = 0;
1112 	unsigned long start = start_addr;
1113 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1114 	int fullmm = (*tlbp)->fullmm;
1115 	struct mm_struct *mm = vma->vm_mm;
1116 
1117 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1118 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1119 		unsigned long end;
1120 
1121 		start = max(vma->vm_start, start_addr);
1122 		if (start >= vma->vm_end)
1123 			continue;
1124 		end = min(vma->vm_end, end_addr);
1125 		if (end <= vma->vm_start)
1126 			continue;
1127 
1128 		if (vma->vm_flags & VM_ACCOUNT)
1129 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1130 
1131 		if (unlikely(is_pfn_mapping(vma)))
1132 			untrack_pfn_vma(vma, 0, 0);
1133 
1134 		while (start != end) {
1135 			if (!tlb_start_valid) {
1136 				tlb_start = start;
1137 				tlb_start_valid = 1;
1138 			}
1139 
1140 			if (unlikely(is_vm_hugetlb_page(vma))) {
1141 				/*
1142 				 * It is undesirable to test vma->vm_file as it
1143 				 * should be non-null for valid hugetlb area.
1144 				 * However, vm_file will be NULL in the error
1145 				 * cleanup path of do_mmap_pgoff. When
1146 				 * hugetlbfs ->mmap method fails,
1147 				 * do_mmap_pgoff() nullifies vma->vm_file
1148 				 * before calling this function to clean up.
1149 				 * Since no pte has actually been setup, it is
1150 				 * safe to do nothing in this case.
1151 				 */
1152 				if (vma->vm_file) {
1153 					unmap_hugepage_range(vma, start, end, NULL);
1154 					zap_work -= (end - start) /
1155 					pages_per_huge_page(hstate_vma(vma));
1156 				}
1157 
1158 				start = end;
1159 			} else
1160 				start = unmap_page_range(*tlbp, vma,
1161 						start, end, &zap_work, details);
1162 
1163 			if (zap_work > 0) {
1164 				BUG_ON(start != end);
1165 				break;
1166 			}
1167 
1168 			tlb_finish_mmu(*tlbp, tlb_start, start);
1169 
1170 			if (need_resched() ||
1171 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1172 				if (i_mmap_lock) {
1173 					*tlbp = NULL;
1174 					goto out;
1175 				}
1176 				cond_resched();
1177 			}
1178 
1179 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1180 			tlb_start_valid = 0;
1181 			zap_work = ZAP_BLOCK_SIZE;
1182 		}
1183 	}
1184 out:
1185 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1186 	return start;	/* which is now the end (or restart) address */
1187 }
1188 
1189 /**
1190  * zap_page_range - remove user pages in a given range
1191  * @vma: vm_area_struct holding the applicable pages
1192  * @address: starting address of pages to zap
1193  * @size: number of bytes to zap
1194  * @details: details of nonlinear truncation or shared cache invalidation
1195  */
1196 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1197 		unsigned long size, struct zap_details *details)
1198 {
1199 	struct mm_struct *mm = vma->vm_mm;
1200 	struct mmu_gather *tlb;
1201 	unsigned long end = address + size;
1202 	unsigned long nr_accounted = 0;
1203 
1204 	lru_add_drain();
1205 	tlb = tlb_gather_mmu(mm, 0);
1206 	update_hiwater_rss(mm);
1207 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1208 	if (tlb)
1209 		tlb_finish_mmu(tlb, address, end);
1210 	return end;
1211 }
1212 
1213 /**
1214  * zap_vma_ptes - remove ptes mapping the vma
1215  * @vma: vm_area_struct holding ptes to be zapped
1216  * @address: starting address of pages to zap
1217  * @size: number of bytes to zap
1218  *
1219  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1220  *
1221  * The entire address range must be fully contained within the vma.
1222  *
1223  * Returns 0 if successful.
1224  */
1225 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1226 		unsigned long size)
1227 {
1228 	if (address < vma->vm_start || address + size > vma->vm_end ||
1229 	    		!(vma->vm_flags & VM_PFNMAP))
1230 		return -1;
1231 	zap_page_range(vma, address, size, NULL);
1232 	return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1235 
1236 /*
1237  * Do a quick page-table lookup for a single page.
1238  */
1239 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1240 			unsigned int flags)
1241 {
1242 	pgd_t *pgd;
1243 	pud_t *pud;
1244 	pmd_t *pmd;
1245 	pte_t *ptep, pte;
1246 	spinlock_t *ptl;
1247 	struct page *page;
1248 	struct mm_struct *mm = vma->vm_mm;
1249 
1250 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1251 	if (!IS_ERR(page)) {
1252 		BUG_ON(flags & FOLL_GET);
1253 		goto out;
1254 	}
1255 
1256 	page = NULL;
1257 	pgd = pgd_offset(mm, address);
1258 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1259 		goto no_page_table;
1260 
1261 	pud = pud_offset(pgd, address);
1262 	if (pud_none(*pud))
1263 		goto no_page_table;
1264 	if (pud_huge(*pud)) {
1265 		BUG_ON(flags & FOLL_GET);
1266 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1267 		goto out;
1268 	}
1269 	if (unlikely(pud_bad(*pud)))
1270 		goto no_page_table;
1271 
1272 	pmd = pmd_offset(pud, address);
1273 	if (pmd_none(*pmd))
1274 		goto no_page_table;
1275 	if (pmd_huge(*pmd)) {
1276 		BUG_ON(flags & FOLL_GET);
1277 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1278 		goto out;
1279 	}
1280 	if (unlikely(pmd_bad(*pmd)))
1281 		goto no_page_table;
1282 
1283 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1284 
1285 	pte = *ptep;
1286 	if (!pte_present(pte))
1287 		goto no_page;
1288 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1289 		goto unlock;
1290 
1291 	page = vm_normal_page(vma, address, pte);
1292 	if (unlikely(!page)) {
1293 		if ((flags & FOLL_DUMP) ||
1294 		    !is_zero_pfn(pte_pfn(pte)))
1295 			goto bad_page;
1296 		page = pte_page(pte);
1297 	}
1298 
1299 	if (flags & FOLL_GET)
1300 		get_page(page);
1301 	if (flags & FOLL_TOUCH) {
1302 		if ((flags & FOLL_WRITE) &&
1303 		    !pte_dirty(pte) && !PageDirty(page))
1304 			set_page_dirty(page);
1305 		/*
1306 		 * pte_mkyoung() would be more correct here, but atomic care
1307 		 * is needed to avoid losing the dirty bit: it is easier to use
1308 		 * mark_page_accessed().
1309 		 */
1310 		mark_page_accessed(page);
1311 	}
1312 unlock:
1313 	pte_unmap_unlock(ptep, ptl);
1314 out:
1315 	return page;
1316 
1317 bad_page:
1318 	pte_unmap_unlock(ptep, ptl);
1319 	return ERR_PTR(-EFAULT);
1320 
1321 no_page:
1322 	pte_unmap_unlock(ptep, ptl);
1323 	if (!pte_none(pte))
1324 		return page;
1325 
1326 no_page_table:
1327 	/*
1328 	 * When core dumping an enormous anonymous area that nobody
1329 	 * has touched so far, we don't want to allocate unnecessary pages or
1330 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1331 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1332 	 * But we can only make this optimization where a hole would surely
1333 	 * be zero-filled if handle_mm_fault() actually did handle it.
1334 	 */
1335 	if ((flags & FOLL_DUMP) &&
1336 	    (!vma->vm_ops || !vma->vm_ops->fault))
1337 		return ERR_PTR(-EFAULT);
1338 	return page;
1339 }
1340 
1341 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1342 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1343 		     struct page **pages, struct vm_area_struct **vmas)
1344 {
1345 	int i;
1346 	unsigned long vm_flags;
1347 
1348 	if (nr_pages <= 0)
1349 		return 0;
1350 
1351 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1352 
1353 	/*
1354 	 * Require read or write permissions.
1355 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1356 	 */
1357 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1358 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1359 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1360 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1361 	i = 0;
1362 
1363 	do {
1364 		struct vm_area_struct *vma;
1365 
1366 		vma = find_extend_vma(mm, start);
1367 		if (!vma && in_gate_area(tsk, start)) {
1368 			unsigned long pg = start & PAGE_MASK;
1369 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1370 			pgd_t *pgd;
1371 			pud_t *pud;
1372 			pmd_t *pmd;
1373 			pte_t *pte;
1374 
1375 			/* user gate pages are read-only */
1376 			if (gup_flags & FOLL_WRITE)
1377 				return i ? : -EFAULT;
1378 			if (pg > TASK_SIZE)
1379 				pgd = pgd_offset_k(pg);
1380 			else
1381 				pgd = pgd_offset_gate(mm, pg);
1382 			BUG_ON(pgd_none(*pgd));
1383 			pud = pud_offset(pgd, pg);
1384 			BUG_ON(pud_none(*pud));
1385 			pmd = pmd_offset(pud, pg);
1386 			if (pmd_none(*pmd))
1387 				return i ? : -EFAULT;
1388 			pte = pte_offset_map(pmd, pg);
1389 			if (pte_none(*pte)) {
1390 				pte_unmap(pte);
1391 				return i ? : -EFAULT;
1392 			}
1393 			if (pages) {
1394 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1395 				pages[i] = page;
1396 				if (page)
1397 					get_page(page);
1398 			}
1399 			pte_unmap(pte);
1400 			if (vmas)
1401 				vmas[i] = gate_vma;
1402 			i++;
1403 			start += PAGE_SIZE;
1404 			nr_pages--;
1405 			continue;
1406 		}
1407 
1408 		if (!vma ||
1409 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1410 		    !(vm_flags & vma->vm_flags))
1411 			return i ? : -EFAULT;
1412 
1413 		if (is_vm_hugetlb_page(vma)) {
1414 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1415 					&start, &nr_pages, i, gup_flags);
1416 			continue;
1417 		}
1418 
1419 		do {
1420 			struct page *page;
1421 			unsigned int foll_flags = gup_flags;
1422 
1423 			/*
1424 			 * If we have a pending SIGKILL, don't keep faulting
1425 			 * pages and potentially allocating memory.
1426 			 */
1427 			if (unlikely(fatal_signal_pending(current)))
1428 				return i ? i : -ERESTARTSYS;
1429 
1430 			cond_resched();
1431 			while (!(page = follow_page(vma, start, foll_flags))) {
1432 				int ret;
1433 
1434 				ret = handle_mm_fault(mm, vma, start,
1435 					(foll_flags & FOLL_WRITE) ?
1436 					FAULT_FLAG_WRITE : 0);
1437 
1438 				if (ret & VM_FAULT_ERROR) {
1439 					if (ret & VM_FAULT_OOM)
1440 						return i ? i : -ENOMEM;
1441 					if (ret &
1442 					    (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1443 						return i ? i : -EFAULT;
1444 					BUG();
1445 				}
1446 				if (ret & VM_FAULT_MAJOR)
1447 					tsk->maj_flt++;
1448 				else
1449 					tsk->min_flt++;
1450 
1451 				/*
1452 				 * The VM_FAULT_WRITE bit tells us that
1453 				 * do_wp_page has broken COW when necessary,
1454 				 * even if maybe_mkwrite decided not to set
1455 				 * pte_write. We can thus safely do subsequent
1456 				 * page lookups as if they were reads. But only
1457 				 * do so when looping for pte_write is futile:
1458 				 * in some cases userspace may also be wanting
1459 				 * to write to the gotten user page, which a
1460 				 * read fault here might prevent (a readonly
1461 				 * page might get reCOWed by userspace write).
1462 				 */
1463 				if ((ret & VM_FAULT_WRITE) &&
1464 				    !(vma->vm_flags & VM_WRITE))
1465 					foll_flags &= ~FOLL_WRITE;
1466 
1467 				cond_resched();
1468 			}
1469 			if (IS_ERR(page))
1470 				return i ? i : PTR_ERR(page);
1471 			if (pages) {
1472 				pages[i] = page;
1473 
1474 				flush_anon_page(vma, page, start);
1475 				flush_dcache_page(page);
1476 			}
1477 			if (vmas)
1478 				vmas[i] = vma;
1479 			i++;
1480 			start += PAGE_SIZE;
1481 			nr_pages--;
1482 		} while (nr_pages && start < vma->vm_end);
1483 	} while (nr_pages);
1484 	return i;
1485 }
1486 
1487 /**
1488  * get_user_pages() - pin user pages in memory
1489  * @tsk:	task_struct of target task
1490  * @mm:		mm_struct of target mm
1491  * @start:	starting user address
1492  * @nr_pages:	number of pages from start to pin
1493  * @write:	whether pages will be written to by the caller
1494  * @force:	whether to force write access even if user mapping is
1495  *		readonly. This will result in the page being COWed even
1496  *		in MAP_SHARED mappings. You do not want this.
1497  * @pages:	array that receives pointers to the pages pinned.
1498  *		Should be at least nr_pages long. Or NULL, if caller
1499  *		only intends to ensure the pages are faulted in.
1500  * @vmas:	array of pointers to vmas corresponding to each page.
1501  *		Or NULL if the caller does not require them.
1502  *
1503  * Returns number of pages pinned. This may be fewer than the number
1504  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1505  * were pinned, returns -errno. Each page returned must be released
1506  * with a put_page() call when it is finished with. vmas will only
1507  * remain valid while mmap_sem is held.
1508  *
1509  * Must be called with mmap_sem held for read or write.
1510  *
1511  * get_user_pages walks a process's page tables and takes a reference to
1512  * each struct page that each user address corresponds to at a given
1513  * instant. That is, it takes the page that would be accessed if a user
1514  * thread accesses the given user virtual address at that instant.
1515  *
1516  * This does not guarantee that the page exists in the user mappings when
1517  * get_user_pages returns, and there may even be a completely different
1518  * page there in some cases (eg. if mmapped pagecache has been invalidated
1519  * and subsequently re faulted). However it does guarantee that the page
1520  * won't be freed completely. And mostly callers simply care that the page
1521  * contains data that was valid *at some point in time*. Typically, an IO
1522  * or similar operation cannot guarantee anything stronger anyway because
1523  * locks can't be held over the syscall boundary.
1524  *
1525  * If write=0, the page must not be written to. If the page is written to,
1526  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1527  * after the page is finished with, and before put_page is called.
1528  *
1529  * get_user_pages is typically used for fewer-copy IO operations, to get a
1530  * handle on the memory by some means other than accesses via the user virtual
1531  * addresses. The pages may be submitted for DMA to devices or accessed via
1532  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1533  * use the correct cache flushing APIs.
1534  *
1535  * See also get_user_pages_fast, for performance critical applications.
1536  */
1537 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1538 		unsigned long start, int nr_pages, int write, int force,
1539 		struct page **pages, struct vm_area_struct **vmas)
1540 {
1541 	int flags = FOLL_TOUCH;
1542 
1543 	if (pages)
1544 		flags |= FOLL_GET;
1545 	if (write)
1546 		flags |= FOLL_WRITE;
1547 	if (force)
1548 		flags |= FOLL_FORCE;
1549 
1550 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1551 }
1552 EXPORT_SYMBOL(get_user_pages);
1553 
1554 /**
1555  * get_dump_page() - pin user page in memory while writing it to core dump
1556  * @addr: user address
1557  *
1558  * Returns struct page pointer of user page pinned for dump,
1559  * to be freed afterwards by page_cache_release() or put_page().
1560  *
1561  * Returns NULL on any kind of failure - a hole must then be inserted into
1562  * the corefile, to preserve alignment with its headers; and also returns
1563  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1564  * allowing a hole to be left in the corefile to save diskspace.
1565  *
1566  * Called without mmap_sem, but after all other threads have been killed.
1567  */
1568 #ifdef CONFIG_ELF_CORE
1569 struct page *get_dump_page(unsigned long addr)
1570 {
1571 	struct vm_area_struct *vma;
1572 	struct page *page;
1573 
1574 	if (__get_user_pages(current, current->mm, addr, 1,
1575 			FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1576 		return NULL;
1577 	flush_cache_page(vma, addr, page_to_pfn(page));
1578 	return page;
1579 }
1580 #endif /* CONFIG_ELF_CORE */
1581 
1582 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1583 			spinlock_t **ptl)
1584 {
1585 	pgd_t * pgd = pgd_offset(mm, addr);
1586 	pud_t * pud = pud_alloc(mm, pgd, addr);
1587 	if (pud) {
1588 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1589 		if (pmd)
1590 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1591 	}
1592 	return NULL;
1593 }
1594 
1595 /*
1596  * This is the old fallback for page remapping.
1597  *
1598  * For historical reasons, it only allows reserved pages. Only
1599  * old drivers should use this, and they needed to mark their
1600  * pages reserved for the old functions anyway.
1601  */
1602 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1603 			struct page *page, pgprot_t prot)
1604 {
1605 	struct mm_struct *mm = vma->vm_mm;
1606 	int retval;
1607 	pte_t *pte;
1608 	spinlock_t *ptl;
1609 
1610 	retval = -EINVAL;
1611 	if (PageAnon(page))
1612 		goto out;
1613 	retval = -ENOMEM;
1614 	flush_dcache_page(page);
1615 	pte = get_locked_pte(mm, addr, &ptl);
1616 	if (!pte)
1617 		goto out;
1618 	retval = -EBUSY;
1619 	if (!pte_none(*pte))
1620 		goto out_unlock;
1621 
1622 	/* Ok, finally just insert the thing.. */
1623 	get_page(page);
1624 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1625 	page_add_file_rmap(page);
1626 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1627 
1628 	retval = 0;
1629 	pte_unmap_unlock(pte, ptl);
1630 	return retval;
1631 out_unlock:
1632 	pte_unmap_unlock(pte, ptl);
1633 out:
1634 	return retval;
1635 }
1636 
1637 /**
1638  * vm_insert_page - insert single page into user vma
1639  * @vma: user vma to map to
1640  * @addr: target user address of this page
1641  * @page: source kernel page
1642  *
1643  * This allows drivers to insert individual pages they've allocated
1644  * into a user vma.
1645  *
1646  * The page has to be a nice clean _individual_ kernel allocation.
1647  * If you allocate a compound page, you need to have marked it as
1648  * such (__GFP_COMP), or manually just split the page up yourself
1649  * (see split_page()).
1650  *
1651  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1652  * took an arbitrary page protection parameter. This doesn't allow
1653  * that. Your vma protection will have to be set up correctly, which
1654  * means that if you want a shared writable mapping, you'd better
1655  * ask for a shared writable mapping!
1656  *
1657  * The page does not need to be reserved.
1658  */
1659 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1660 			struct page *page)
1661 {
1662 	if (addr < vma->vm_start || addr >= vma->vm_end)
1663 		return -EFAULT;
1664 	if (!page_count(page))
1665 		return -EINVAL;
1666 	vma->vm_flags |= VM_INSERTPAGE;
1667 	return insert_page(vma, addr, page, vma->vm_page_prot);
1668 }
1669 EXPORT_SYMBOL(vm_insert_page);
1670 
1671 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1672 			unsigned long pfn, pgprot_t prot)
1673 {
1674 	struct mm_struct *mm = vma->vm_mm;
1675 	int retval;
1676 	pte_t *pte, entry;
1677 	spinlock_t *ptl;
1678 
1679 	retval = -ENOMEM;
1680 	pte = get_locked_pte(mm, addr, &ptl);
1681 	if (!pte)
1682 		goto out;
1683 	retval = -EBUSY;
1684 	if (!pte_none(*pte))
1685 		goto out_unlock;
1686 
1687 	/* Ok, finally just insert the thing.. */
1688 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1689 	set_pte_at(mm, addr, pte, entry);
1690 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1691 
1692 	retval = 0;
1693 out_unlock:
1694 	pte_unmap_unlock(pte, ptl);
1695 out:
1696 	return retval;
1697 }
1698 
1699 /**
1700  * vm_insert_pfn - insert single pfn into user vma
1701  * @vma: user vma to map to
1702  * @addr: target user address of this page
1703  * @pfn: source kernel pfn
1704  *
1705  * Similar to vm_inert_page, this allows drivers to insert individual pages
1706  * they've allocated into a user vma. Same comments apply.
1707  *
1708  * This function should only be called from a vm_ops->fault handler, and
1709  * in that case the handler should return NULL.
1710  *
1711  * vma cannot be a COW mapping.
1712  *
1713  * As this is called only for pages that do not currently exist, we
1714  * do not need to flush old virtual caches or the TLB.
1715  */
1716 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1717 			unsigned long pfn)
1718 {
1719 	int ret;
1720 	pgprot_t pgprot = vma->vm_page_prot;
1721 	/*
1722 	 * Technically, architectures with pte_special can avoid all these
1723 	 * restrictions (same for remap_pfn_range).  However we would like
1724 	 * consistency in testing and feature parity among all, so we should
1725 	 * try to keep these invariants in place for everybody.
1726 	 */
1727 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1728 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1729 						(VM_PFNMAP|VM_MIXEDMAP));
1730 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1731 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1732 
1733 	if (addr < vma->vm_start || addr >= vma->vm_end)
1734 		return -EFAULT;
1735 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1736 		return -EINVAL;
1737 
1738 	ret = insert_pfn(vma, addr, pfn, pgprot);
1739 
1740 	if (ret)
1741 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1742 
1743 	return ret;
1744 }
1745 EXPORT_SYMBOL(vm_insert_pfn);
1746 
1747 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1748 			unsigned long pfn)
1749 {
1750 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1751 
1752 	if (addr < vma->vm_start || addr >= vma->vm_end)
1753 		return -EFAULT;
1754 
1755 	/*
1756 	 * If we don't have pte special, then we have to use the pfn_valid()
1757 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1758 	 * refcount the page if pfn_valid is true (hence insert_page rather
1759 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1760 	 * without pte special, it would there be refcounted as a normal page.
1761 	 */
1762 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1763 		struct page *page;
1764 
1765 		page = pfn_to_page(pfn);
1766 		return insert_page(vma, addr, page, vma->vm_page_prot);
1767 	}
1768 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1769 }
1770 EXPORT_SYMBOL(vm_insert_mixed);
1771 
1772 /*
1773  * maps a range of physical memory into the requested pages. the old
1774  * mappings are removed. any references to nonexistent pages results
1775  * in null mappings (currently treated as "copy-on-access")
1776  */
1777 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1778 			unsigned long addr, unsigned long end,
1779 			unsigned long pfn, pgprot_t prot)
1780 {
1781 	pte_t *pte;
1782 	spinlock_t *ptl;
1783 
1784 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1785 	if (!pte)
1786 		return -ENOMEM;
1787 	arch_enter_lazy_mmu_mode();
1788 	do {
1789 		BUG_ON(!pte_none(*pte));
1790 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1791 		pfn++;
1792 	} while (pte++, addr += PAGE_SIZE, addr != end);
1793 	arch_leave_lazy_mmu_mode();
1794 	pte_unmap_unlock(pte - 1, ptl);
1795 	return 0;
1796 }
1797 
1798 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1799 			unsigned long addr, unsigned long end,
1800 			unsigned long pfn, pgprot_t prot)
1801 {
1802 	pmd_t *pmd;
1803 	unsigned long next;
1804 
1805 	pfn -= addr >> PAGE_SHIFT;
1806 	pmd = pmd_alloc(mm, pud, addr);
1807 	if (!pmd)
1808 		return -ENOMEM;
1809 	do {
1810 		next = pmd_addr_end(addr, end);
1811 		if (remap_pte_range(mm, pmd, addr, next,
1812 				pfn + (addr >> PAGE_SHIFT), prot))
1813 			return -ENOMEM;
1814 	} while (pmd++, addr = next, addr != end);
1815 	return 0;
1816 }
1817 
1818 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1819 			unsigned long addr, unsigned long end,
1820 			unsigned long pfn, pgprot_t prot)
1821 {
1822 	pud_t *pud;
1823 	unsigned long next;
1824 
1825 	pfn -= addr >> PAGE_SHIFT;
1826 	pud = pud_alloc(mm, pgd, addr);
1827 	if (!pud)
1828 		return -ENOMEM;
1829 	do {
1830 		next = pud_addr_end(addr, end);
1831 		if (remap_pmd_range(mm, pud, addr, next,
1832 				pfn + (addr >> PAGE_SHIFT), prot))
1833 			return -ENOMEM;
1834 	} while (pud++, addr = next, addr != end);
1835 	return 0;
1836 }
1837 
1838 /**
1839  * remap_pfn_range - remap kernel memory to userspace
1840  * @vma: user vma to map to
1841  * @addr: target user address to start at
1842  * @pfn: physical address of kernel memory
1843  * @size: size of map area
1844  * @prot: page protection flags for this mapping
1845  *
1846  *  Note: this is only safe if the mm semaphore is held when called.
1847  */
1848 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1849 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1850 {
1851 	pgd_t *pgd;
1852 	unsigned long next;
1853 	unsigned long end = addr + PAGE_ALIGN(size);
1854 	struct mm_struct *mm = vma->vm_mm;
1855 	int err;
1856 
1857 	/*
1858 	 * Physically remapped pages are special. Tell the
1859 	 * rest of the world about it:
1860 	 *   VM_IO tells people not to look at these pages
1861 	 *	(accesses can have side effects).
1862 	 *   VM_RESERVED is specified all over the place, because
1863 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1864 	 *	in 2.6 the LRU scan won't even find its pages, so this
1865 	 *	flag means no more than count its pages in reserved_vm,
1866 	 * 	and omit it from core dump, even when VM_IO turned off.
1867 	 *   VM_PFNMAP tells the core MM that the base pages are just
1868 	 *	raw PFN mappings, and do not have a "struct page" associated
1869 	 *	with them.
1870 	 *
1871 	 * There's a horrible special case to handle copy-on-write
1872 	 * behaviour that some programs depend on. We mark the "original"
1873 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1874 	 */
1875 	if (addr == vma->vm_start && end == vma->vm_end) {
1876 		vma->vm_pgoff = pfn;
1877 		vma->vm_flags |= VM_PFN_AT_MMAP;
1878 	} else if (is_cow_mapping(vma->vm_flags))
1879 		return -EINVAL;
1880 
1881 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1882 
1883 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1884 	if (err) {
1885 		/*
1886 		 * To indicate that track_pfn related cleanup is not
1887 		 * needed from higher level routine calling unmap_vmas
1888 		 */
1889 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1890 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1891 		return -EINVAL;
1892 	}
1893 
1894 	BUG_ON(addr >= end);
1895 	pfn -= addr >> PAGE_SHIFT;
1896 	pgd = pgd_offset(mm, addr);
1897 	flush_cache_range(vma, addr, end);
1898 	do {
1899 		next = pgd_addr_end(addr, end);
1900 		err = remap_pud_range(mm, pgd, addr, next,
1901 				pfn + (addr >> PAGE_SHIFT), prot);
1902 		if (err)
1903 			break;
1904 	} while (pgd++, addr = next, addr != end);
1905 
1906 	if (err)
1907 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1908 
1909 	return err;
1910 }
1911 EXPORT_SYMBOL(remap_pfn_range);
1912 
1913 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1914 				     unsigned long addr, unsigned long end,
1915 				     pte_fn_t fn, void *data)
1916 {
1917 	pte_t *pte;
1918 	int err;
1919 	pgtable_t token;
1920 	spinlock_t *uninitialized_var(ptl);
1921 
1922 	pte = (mm == &init_mm) ?
1923 		pte_alloc_kernel(pmd, addr) :
1924 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1925 	if (!pte)
1926 		return -ENOMEM;
1927 
1928 	BUG_ON(pmd_huge(*pmd));
1929 
1930 	arch_enter_lazy_mmu_mode();
1931 
1932 	token = pmd_pgtable(*pmd);
1933 
1934 	do {
1935 		err = fn(pte++, token, addr, data);
1936 		if (err)
1937 			break;
1938 	} while (addr += PAGE_SIZE, addr != end);
1939 
1940 	arch_leave_lazy_mmu_mode();
1941 
1942 	if (mm != &init_mm)
1943 		pte_unmap_unlock(pte-1, ptl);
1944 	return err;
1945 }
1946 
1947 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1948 				     unsigned long addr, unsigned long end,
1949 				     pte_fn_t fn, void *data)
1950 {
1951 	pmd_t *pmd;
1952 	unsigned long next;
1953 	int err;
1954 
1955 	BUG_ON(pud_huge(*pud));
1956 
1957 	pmd = pmd_alloc(mm, pud, addr);
1958 	if (!pmd)
1959 		return -ENOMEM;
1960 	do {
1961 		next = pmd_addr_end(addr, end);
1962 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1963 		if (err)
1964 			break;
1965 	} while (pmd++, addr = next, addr != end);
1966 	return err;
1967 }
1968 
1969 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1970 				     unsigned long addr, unsigned long end,
1971 				     pte_fn_t fn, void *data)
1972 {
1973 	pud_t *pud;
1974 	unsigned long next;
1975 	int err;
1976 
1977 	pud = pud_alloc(mm, pgd, addr);
1978 	if (!pud)
1979 		return -ENOMEM;
1980 	do {
1981 		next = pud_addr_end(addr, end);
1982 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1983 		if (err)
1984 			break;
1985 	} while (pud++, addr = next, addr != end);
1986 	return err;
1987 }
1988 
1989 /*
1990  * Scan a region of virtual memory, filling in page tables as necessary
1991  * and calling a provided function on each leaf page table.
1992  */
1993 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1994 			unsigned long size, pte_fn_t fn, void *data)
1995 {
1996 	pgd_t *pgd;
1997 	unsigned long next;
1998 	unsigned long start = addr, end = addr + size;
1999 	int err;
2000 
2001 	BUG_ON(addr >= end);
2002 	mmu_notifier_invalidate_range_start(mm, start, end);
2003 	pgd = pgd_offset(mm, addr);
2004 	do {
2005 		next = pgd_addr_end(addr, end);
2006 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2007 		if (err)
2008 			break;
2009 	} while (pgd++, addr = next, addr != end);
2010 	mmu_notifier_invalidate_range_end(mm, start, end);
2011 	return err;
2012 }
2013 EXPORT_SYMBOL_GPL(apply_to_page_range);
2014 
2015 /*
2016  * handle_pte_fault chooses page fault handler according to an entry
2017  * which was read non-atomically.  Before making any commitment, on
2018  * those architectures or configurations (e.g. i386 with PAE) which
2019  * might give a mix of unmatched parts, do_swap_page and do_file_page
2020  * must check under lock before unmapping the pte and proceeding
2021  * (but do_wp_page is only called after already making such a check;
2022  * and do_anonymous_page and do_no_page can safely check later on).
2023  */
2024 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2025 				pte_t *page_table, pte_t orig_pte)
2026 {
2027 	int same = 1;
2028 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2029 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2030 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2031 		spin_lock(ptl);
2032 		same = pte_same(*page_table, orig_pte);
2033 		spin_unlock(ptl);
2034 	}
2035 #endif
2036 	pte_unmap(page_table);
2037 	return same;
2038 }
2039 
2040 /*
2041  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
2042  * servicing faults for write access.  In the normal case, do always want
2043  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
2044  * that do not have writing enabled, when used by access_process_vm.
2045  */
2046 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2047 {
2048 	if (likely(vma->vm_flags & VM_WRITE))
2049 		pte = pte_mkwrite(pte);
2050 	return pte;
2051 }
2052 
2053 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2054 {
2055 	/*
2056 	 * If the source page was a PFN mapping, we don't have
2057 	 * a "struct page" for it. We do a best-effort copy by
2058 	 * just copying from the original user address. If that
2059 	 * fails, we just zero-fill it. Live with it.
2060 	 */
2061 	if (unlikely(!src)) {
2062 		void *kaddr = kmap_atomic(dst, KM_USER0);
2063 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2064 
2065 		/*
2066 		 * This really shouldn't fail, because the page is there
2067 		 * in the page tables. But it might just be unreadable,
2068 		 * in which case we just give up and fill the result with
2069 		 * zeroes.
2070 		 */
2071 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2072 			memset(kaddr, 0, PAGE_SIZE);
2073 		kunmap_atomic(kaddr, KM_USER0);
2074 		flush_dcache_page(dst);
2075 	} else
2076 		copy_user_highpage(dst, src, va, vma);
2077 }
2078 
2079 /*
2080  * This routine handles present pages, when users try to write
2081  * to a shared page. It is done by copying the page to a new address
2082  * and decrementing the shared-page counter for the old page.
2083  *
2084  * Note that this routine assumes that the protection checks have been
2085  * done by the caller (the low-level page fault routine in most cases).
2086  * Thus we can safely just mark it writable once we've done any necessary
2087  * COW.
2088  *
2089  * We also mark the page dirty at this point even though the page will
2090  * change only once the write actually happens. This avoids a few races,
2091  * and potentially makes it more efficient.
2092  *
2093  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2094  * but allow concurrent faults), with pte both mapped and locked.
2095  * We return with mmap_sem still held, but pte unmapped and unlocked.
2096  */
2097 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2098 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2099 		spinlock_t *ptl, pte_t orig_pte)
2100 {
2101 	struct page *old_page, *new_page;
2102 	pte_t entry;
2103 	int reuse = 0, ret = 0;
2104 	int page_mkwrite = 0;
2105 	struct page *dirty_page = NULL;
2106 
2107 	old_page = vm_normal_page(vma, address, orig_pte);
2108 	if (!old_page) {
2109 		/*
2110 		 * VM_MIXEDMAP !pfn_valid() case
2111 		 *
2112 		 * We should not cow pages in a shared writeable mapping.
2113 		 * Just mark the pages writable as we can't do any dirty
2114 		 * accounting on raw pfn maps.
2115 		 */
2116 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2117 				     (VM_WRITE|VM_SHARED))
2118 			goto reuse;
2119 		goto gotten;
2120 	}
2121 
2122 	/*
2123 	 * Take out anonymous pages first, anonymous shared vmas are
2124 	 * not dirty accountable.
2125 	 */
2126 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2127 		if (!trylock_page(old_page)) {
2128 			page_cache_get(old_page);
2129 			pte_unmap_unlock(page_table, ptl);
2130 			lock_page(old_page);
2131 			page_table = pte_offset_map_lock(mm, pmd, address,
2132 							 &ptl);
2133 			if (!pte_same(*page_table, orig_pte)) {
2134 				unlock_page(old_page);
2135 				page_cache_release(old_page);
2136 				goto unlock;
2137 			}
2138 			page_cache_release(old_page);
2139 		}
2140 		reuse = reuse_swap_page(old_page);
2141 		if (reuse)
2142 			/*
2143 			 * The page is all ours.  Move it to our anon_vma so
2144 			 * the rmap code will not search our parent or siblings.
2145 			 * Protected against the rmap code by the page lock.
2146 			 */
2147 			page_move_anon_rmap(old_page, vma, address);
2148 		unlock_page(old_page);
2149 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2150 					(VM_WRITE|VM_SHARED))) {
2151 		/*
2152 		 * Only catch write-faults on shared writable pages,
2153 		 * read-only shared pages can get COWed by
2154 		 * get_user_pages(.write=1, .force=1).
2155 		 */
2156 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2157 			struct vm_fault vmf;
2158 			int tmp;
2159 
2160 			vmf.virtual_address = (void __user *)(address &
2161 								PAGE_MASK);
2162 			vmf.pgoff = old_page->index;
2163 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2164 			vmf.page = old_page;
2165 
2166 			/*
2167 			 * Notify the address space that the page is about to
2168 			 * become writable so that it can prohibit this or wait
2169 			 * for the page to get into an appropriate state.
2170 			 *
2171 			 * We do this without the lock held, so that it can
2172 			 * sleep if it needs to.
2173 			 */
2174 			page_cache_get(old_page);
2175 			pte_unmap_unlock(page_table, ptl);
2176 
2177 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2178 			if (unlikely(tmp &
2179 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2180 				ret = tmp;
2181 				goto unwritable_page;
2182 			}
2183 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2184 				lock_page(old_page);
2185 				if (!old_page->mapping) {
2186 					ret = 0; /* retry the fault */
2187 					unlock_page(old_page);
2188 					goto unwritable_page;
2189 				}
2190 			} else
2191 				VM_BUG_ON(!PageLocked(old_page));
2192 
2193 			/*
2194 			 * Since we dropped the lock we need to revalidate
2195 			 * the PTE as someone else may have changed it.  If
2196 			 * they did, we just return, as we can count on the
2197 			 * MMU to tell us if they didn't also make it writable.
2198 			 */
2199 			page_table = pte_offset_map_lock(mm, pmd, address,
2200 							 &ptl);
2201 			if (!pte_same(*page_table, orig_pte)) {
2202 				unlock_page(old_page);
2203 				page_cache_release(old_page);
2204 				goto unlock;
2205 			}
2206 
2207 			page_mkwrite = 1;
2208 		}
2209 		dirty_page = old_page;
2210 		get_page(dirty_page);
2211 		reuse = 1;
2212 	}
2213 
2214 	if (reuse) {
2215 reuse:
2216 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2217 		entry = pte_mkyoung(orig_pte);
2218 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2219 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2220 			update_mmu_cache(vma, address, page_table);
2221 		ret |= VM_FAULT_WRITE;
2222 		goto unlock;
2223 	}
2224 
2225 	/*
2226 	 * Ok, we need to copy. Oh, well..
2227 	 */
2228 	page_cache_get(old_page);
2229 gotten:
2230 	pte_unmap_unlock(page_table, ptl);
2231 
2232 	if (unlikely(anon_vma_prepare(vma)))
2233 		goto oom;
2234 
2235 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2236 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2237 		if (!new_page)
2238 			goto oom;
2239 	} else {
2240 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2241 		if (!new_page)
2242 			goto oom;
2243 		cow_user_page(new_page, old_page, address, vma);
2244 	}
2245 	__SetPageUptodate(new_page);
2246 
2247 	/*
2248 	 * Don't let another task, with possibly unlocked vma,
2249 	 * keep the mlocked page.
2250 	 */
2251 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2252 		lock_page(old_page);	/* for LRU manipulation */
2253 		clear_page_mlock(old_page);
2254 		unlock_page(old_page);
2255 	}
2256 
2257 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2258 		goto oom_free_new;
2259 
2260 	/*
2261 	 * Re-check the pte - we dropped the lock
2262 	 */
2263 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2264 	if (likely(pte_same(*page_table, orig_pte))) {
2265 		if (old_page) {
2266 			if (!PageAnon(old_page)) {
2267 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2268 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2269 			}
2270 		} else
2271 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2272 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2273 		entry = mk_pte(new_page, vma->vm_page_prot);
2274 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2275 		/*
2276 		 * Clear the pte entry and flush it first, before updating the
2277 		 * pte with the new entry. This will avoid a race condition
2278 		 * seen in the presence of one thread doing SMC and another
2279 		 * thread doing COW.
2280 		 */
2281 		ptep_clear_flush(vma, address, page_table);
2282 		page_add_new_anon_rmap(new_page, vma, address);
2283 		/*
2284 		 * We call the notify macro here because, when using secondary
2285 		 * mmu page tables (such as kvm shadow page tables), we want the
2286 		 * new page to be mapped directly into the secondary page table.
2287 		 */
2288 		set_pte_at_notify(mm, address, page_table, entry);
2289 		update_mmu_cache(vma, address, page_table);
2290 		if (old_page) {
2291 			/*
2292 			 * Only after switching the pte to the new page may
2293 			 * we remove the mapcount here. Otherwise another
2294 			 * process may come and find the rmap count decremented
2295 			 * before the pte is switched to the new page, and
2296 			 * "reuse" the old page writing into it while our pte
2297 			 * here still points into it and can be read by other
2298 			 * threads.
2299 			 *
2300 			 * The critical issue is to order this
2301 			 * page_remove_rmap with the ptp_clear_flush above.
2302 			 * Those stores are ordered by (if nothing else,)
2303 			 * the barrier present in the atomic_add_negative
2304 			 * in page_remove_rmap.
2305 			 *
2306 			 * Then the TLB flush in ptep_clear_flush ensures that
2307 			 * no process can access the old page before the
2308 			 * decremented mapcount is visible. And the old page
2309 			 * cannot be reused until after the decremented
2310 			 * mapcount is visible. So transitively, TLBs to
2311 			 * old page will be flushed before it can be reused.
2312 			 */
2313 			page_remove_rmap(old_page);
2314 		}
2315 
2316 		/* Free the old page.. */
2317 		new_page = old_page;
2318 		ret |= VM_FAULT_WRITE;
2319 	} else
2320 		mem_cgroup_uncharge_page(new_page);
2321 
2322 	if (new_page)
2323 		page_cache_release(new_page);
2324 	if (old_page)
2325 		page_cache_release(old_page);
2326 unlock:
2327 	pte_unmap_unlock(page_table, ptl);
2328 	if (dirty_page) {
2329 		/*
2330 		 * Yes, Virginia, this is actually required to prevent a race
2331 		 * with clear_page_dirty_for_io() from clearing the page dirty
2332 		 * bit after it clear all dirty ptes, but before a racing
2333 		 * do_wp_page installs a dirty pte.
2334 		 *
2335 		 * do_no_page is protected similarly.
2336 		 */
2337 		if (!page_mkwrite) {
2338 			wait_on_page_locked(dirty_page);
2339 			set_page_dirty_balance(dirty_page, page_mkwrite);
2340 		}
2341 		put_page(dirty_page);
2342 		if (page_mkwrite) {
2343 			struct address_space *mapping = dirty_page->mapping;
2344 
2345 			set_page_dirty(dirty_page);
2346 			unlock_page(dirty_page);
2347 			page_cache_release(dirty_page);
2348 			if (mapping)	{
2349 				/*
2350 				 * Some device drivers do not set page.mapping
2351 				 * but still dirty their pages
2352 				 */
2353 				balance_dirty_pages_ratelimited(mapping);
2354 			}
2355 		}
2356 
2357 		/* file_update_time outside page_lock */
2358 		if (vma->vm_file)
2359 			file_update_time(vma->vm_file);
2360 	}
2361 	return ret;
2362 oom_free_new:
2363 	page_cache_release(new_page);
2364 oom:
2365 	if (old_page) {
2366 		if (page_mkwrite) {
2367 			unlock_page(old_page);
2368 			page_cache_release(old_page);
2369 		}
2370 		page_cache_release(old_page);
2371 	}
2372 	return VM_FAULT_OOM;
2373 
2374 unwritable_page:
2375 	page_cache_release(old_page);
2376 	return ret;
2377 }
2378 
2379 /*
2380  * Helper functions for unmap_mapping_range().
2381  *
2382  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2383  *
2384  * We have to restart searching the prio_tree whenever we drop the lock,
2385  * since the iterator is only valid while the lock is held, and anyway
2386  * a later vma might be split and reinserted earlier while lock dropped.
2387  *
2388  * The list of nonlinear vmas could be handled more efficiently, using
2389  * a placeholder, but handle it in the same way until a need is shown.
2390  * It is important to search the prio_tree before nonlinear list: a vma
2391  * may become nonlinear and be shifted from prio_tree to nonlinear list
2392  * while the lock is dropped; but never shifted from list to prio_tree.
2393  *
2394  * In order to make forward progress despite restarting the search,
2395  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2396  * quickly skip it next time around.  Since the prio_tree search only
2397  * shows us those vmas affected by unmapping the range in question, we
2398  * can't efficiently keep all vmas in step with mapping->truncate_count:
2399  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2400  * mapping->truncate_count and vma->vm_truncate_count are protected by
2401  * i_mmap_lock.
2402  *
2403  * In order to make forward progress despite repeatedly restarting some
2404  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2405  * and restart from that address when we reach that vma again.  It might
2406  * have been split or merged, shrunk or extended, but never shifted: so
2407  * restart_addr remains valid so long as it remains in the vma's range.
2408  * unmap_mapping_range forces truncate_count to leap over page-aligned
2409  * values so we can save vma's restart_addr in its truncate_count field.
2410  */
2411 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2412 
2413 static void reset_vma_truncate_counts(struct address_space *mapping)
2414 {
2415 	struct vm_area_struct *vma;
2416 	struct prio_tree_iter iter;
2417 
2418 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2419 		vma->vm_truncate_count = 0;
2420 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2421 		vma->vm_truncate_count = 0;
2422 }
2423 
2424 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2425 		unsigned long start_addr, unsigned long end_addr,
2426 		struct zap_details *details)
2427 {
2428 	unsigned long restart_addr;
2429 	int need_break;
2430 
2431 	/*
2432 	 * files that support invalidating or truncating portions of the
2433 	 * file from under mmaped areas must have their ->fault function
2434 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2435 	 * This provides synchronisation against concurrent unmapping here.
2436 	 */
2437 
2438 again:
2439 	restart_addr = vma->vm_truncate_count;
2440 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2441 		start_addr = restart_addr;
2442 		if (start_addr >= end_addr) {
2443 			/* Top of vma has been split off since last time */
2444 			vma->vm_truncate_count = details->truncate_count;
2445 			return 0;
2446 		}
2447 	}
2448 
2449 	restart_addr = zap_page_range(vma, start_addr,
2450 					end_addr - start_addr, details);
2451 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2452 
2453 	if (restart_addr >= end_addr) {
2454 		/* We have now completed this vma: mark it so */
2455 		vma->vm_truncate_count = details->truncate_count;
2456 		if (!need_break)
2457 			return 0;
2458 	} else {
2459 		/* Note restart_addr in vma's truncate_count field */
2460 		vma->vm_truncate_count = restart_addr;
2461 		if (!need_break)
2462 			goto again;
2463 	}
2464 
2465 	spin_unlock(details->i_mmap_lock);
2466 	cond_resched();
2467 	spin_lock(details->i_mmap_lock);
2468 	return -EINTR;
2469 }
2470 
2471 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2472 					    struct zap_details *details)
2473 {
2474 	struct vm_area_struct *vma;
2475 	struct prio_tree_iter iter;
2476 	pgoff_t vba, vea, zba, zea;
2477 
2478 restart:
2479 	vma_prio_tree_foreach(vma, &iter, root,
2480 			details->first_index, details->last_index) {
2481 		/* Skip quickly over those we have already dealt with */
2482 		if (vma->vm_truncate_count == details->truncate_count)
2483 			continue;
2484 
2485 		vba = vma->vm_pgoff;
2486 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2487 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2488 		zba = details->first_index;
2489 		if (zba < vba)
2490 			zba = vba;
2491 		zea = details->last_index;
2492 		if (zea > vea)
2493 			zea = vea;
2494 
2495 		if (unmap_mapping_range_vma(vma,
2496 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2497 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2498 				details) < 0)
2499 			goto restart;
2500 	}
2501 }
2502 
2503 static inline void unmap_mapping_range_list(struct list_head *head,
2504 					    struct zap_details *details)
2505 {
2506 	struct vm_area_struct *vma;
2507 
2508 	/*
2509 	 * In nonlinear VMAs there is no correspondence between virtual address
2510 	 * offset and file offset.  So we must perform an exhaustive search
2511 	 * across *all* the pages in each nonlinear VMA, not just the pages
2512 	 * whose virtual address lies outside the file truncation point.
2513 	 */
2514 restart:
2515 	list_for_each_entry(vma, head, shared.vm_set.list) {
2516 		/* Skip quickly over those we have already dealt with */
2517 		if (vma->vm_truncate_count == details->truncate_count)
2518 			continue;
2519 		details->nonlinear_vma = vma;
2520 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2521 					vma->vm_end, details) < 0)
2522 			goto restart;
2523 	}
2524 }
2525 
2526 /**
2527  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2528  * @mapping: the address space containing mmaps to be unmapped.
2529  * @holebegin: byte in first page to unmap, relative to the start of
2530  * the underlying file.  This will be rounded down to a PAGE_SIZE
2531  * boundary.  Note that this is different from truncate_pagecache(), which
2532  * must keep the partial page.  In contrast, we must get rid of
2533  * partial pages.
2534  * @holelen: size of prospective hole in bytes.  This will be rounded
2535  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2536  * end of the file.
2537  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2538  * but 0 when invalidating pagecache, don't throw away private data.
2539  */
2540 void unmap_mapping_range(struct address_space *mapping,
2541 		loff_t const holebegin, loff_t const holelen, int even_cows)
2542 {
2543 	struct zap_details details;
2544 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2545 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2546 
2547 	/* Check for overflow. */
2548 	if (sizeof(holelen) > sizeof(hlen)) {
2549 		long long holeend =
2550 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2551 		if (holeend & ~(long long)ULONG_MAX)
2552 			hlen = ULONG_MAX - hba + 1;
2553 	}
2554 
2555 	details.check_mapping = even_cows? NULL: mapping;
2556 	details.nonlinear_vma = NULL;
2557 	details.first_index = hba;
2558 	details.last_index = hba + hlen - 1;
2559 	if (details.last_index < details.first_index)
2560 		details.last_index = ULONG_MAX;
2561 	details.i_mmap_lock = &mapping->i_mmap_lock;
2562 
2563 	spin_lock(&mapping->i_mmap_lock);
2564 
2565 	/* Protect against endless unmapping loops */
2566 	mapping->truncate_count++;
2567 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2568 		if (mapping->truncate_count == 0)
2569 			reset_vma_truncate_counts(mapping);
2570 		mapping->truncate_count++;
2571 	}
2572 	details.truncate_count = mapping->truncate_count;
2573 
2574 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2575 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2576 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2577 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2578 	spin_unlock(&mapping->i_mmap_lock);
2579 }
2580 EXPORT_SYMBOL(unmap_mapping_range);
2581 
2582 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2583 {
2584 	struct address_space *mapping = inode->i_mapping;
2585 
2586 	/*
2587 	 * If the underlying filesystem is not going to provide
2588 	 * a way to truncate a range of blocks (punch a hole) -
2589 	 * we should return failure right now.
2590 	 */
2591 	if (!inode->i_op->truncate_range)
2592 		return -ENOSYS;
2593 
2594 	mutex_lock(&inode->i_mutex);
2595 	down_write(&inode->i_alloc_sem);
2596 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2597 	truncate_inode_pages_range(mapping, offset, end);
2598 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2599 	inode->i_op->truncate_range(inode, offset, end);
2600 	up_write(&inode->i_alloc_sem);
2601 	mutex_unlock(&inode->i_mutex);
2602 
2603 	return 0;
2604 }
2605 
2606 /*
2607  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2608  * but allow concurrent faults), and pte mapped but not yet locked.
2609  * We return with mmap_sem still held, but pte unmapped and unlocked.
2610  */
2611 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2612 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2613 		unsigned int flags, pte_t orig_pte)
2614 {
2615 	spinlock_t *ptl;
2616 	struct page *page;
2617 	swp_entry_t entry;
2618 	pte_t pte;
2619 	struct mem_cgroup *ptr = NULL;
2620 	int ret = 0;
2621 
2622 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2623 		goto out;
2624 
2625 	entry = pte_to_swp_entry(orig_pte);
2626 	if (unlikely(non_swap_entry(entry))) {
2627 		if (is_migration_entry(entry)) {
2628 			migration_entry_wait(mm, pmd, address);
2629 		} else if (is_hwpoison_entry(entry)) {
2630 			ret = VM_FAULT_HWPOISON;
2631 		} else {
2632 			print_bad_pte(vma, address, orig_pte, NULL);
2633 			ret = VM_FAULT_SIGBUS;
2634 		}
2635 		goto out;
2636 	}
2637 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2638 	page = lookup_swap_cache(entry);
2639 	if (!page) {
2640 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2641 		page = swapin_readahead(entry,
2642 					GFP_HIGHUSER_MOVABLE, vma, address);
2643 		if (!page) {
2644 			/*
2645 			 * Back out if somebody else faulted in this pte
2646 			 * while we released the pte lock.
2647 			 */
2648 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2649 			if (likely(pte_same(*page_table, orig_pte)))
2650 				ret = VM_FAULT_OOM;
2651 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2652 			goto unlock;
2653 		}
2654 
2655 		/* Had to read the page from swap area: Major fault */
2656 		ret = VM_FAULT_MAJOR;
2657 		count_vm_event(PGMAJFAULT);
2658 	} else if (PageHWPoison(page)) {
2659 		/*
2660 		 * hwpoisoned dirty swapcache pages are kept for killing
2661 		 * owner processes (which may be unknown at hwpoison time)
2662 		 */
2663 		ret = VM_FAULT_HWPOISON;
2664 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2665 		goto out_release;
2666 	}
2667 
2668 	lock_page(page);
2669 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2670 
2671 	page = ksm_might_need_to_copy(page, vma, address);
2672 	if (!page) {
2673 		ret = VM_FAULT_OOM;
2674 		goto out;
2675 	}
2676 
2677 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2678 		ret = VM_FAULT_OOM;
2679 		goto out_page;
2680 	}
2681 
2682 	/*
2683 	 * Back out if somebody else already faulted in this pte.
2684 	 */
2685 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2686 	if (unlikely(!pte_same(*page_table, orig_pte)))
2687 		goto out_nomap;
2688 
2689 	if (unlikely(!PageUptodate(page))) {
2690 		ret = VM_FAULT_SIGBUS;
2691 		goto out_nomap;
2692 	}
2693 
2694 	/*
2695 	 * The page isn't present yet, go ahead with the fault.
2696 	 *
2697 	 * Be careful about the sequence of operations here.
2698 	 * To get its accounting right, reuse_swap_page() must be called
2699 	 * while the page is counted on swap but not yet in mapcount i.e.
2700 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2701 	 * must be called after the swap_free(), or it will never succeed.
2702 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2703 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2704 	 * in page->private. In this case, a record in swap_cgroup  is silently
2705 	 * discarded at swap_free().
2706 	 */
2707 
2708 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2709 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2710 	pte = mk_pte(page, vma->vm_page_prot);
2711 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2712 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2713 		flags &= ~FAULT_FLAG_WRITE;
2714 	}
2715 	flush_icache_page(vma, page);
2716 	set_pte_at(mm, address, page_table, pte);
2717 	page_add_anon_rmap(page, vma, address);
2718 	/* It's better to call commit-charge after rmap is established */
2719 	mem_cgroup_commit_charge_swapin(page, ptr);
2720 
2721 	swap_free(entry);
2722 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2723 		try_to_free_swap(page);
2724 	unlock_page(page);
2725 
2726 	if (flags & FAULT_FLAG_WRITE) {
2727 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2728 		if (ret & VM_FAULT_ERROR)
2729 			ret &= VM_FAULT_ERROR;
2730 		goto out;
2731 	}
2732 
2733 	/* No need to invalidate - it was non-present before */
2734 	update_mmu_cache(vma, address, page_table);
2735 unlock:
2736 	pte_unmap_unlock(page_table, ptl);
2737 out:
2738 	return ret;
2739 out_nomap:
2740 	mem_cgroup_cancel_charge_swapin(ptr);
2741 	pte_unmap_unlock(page_table, ptl);
2742 out_page:
2743 	unlock_page(page);
2744 out_release:
2745 	page_cache_release(page);
2746 	return ret;
2747 }
2748 
2749 /*
2750  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2751  * but allow concurrent faults), and pte mapped but not yet locked.
2752  * We return with mmap_sem still held, but pte unmapped and unlocked.
2753  */
2754 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2755 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2756 		unsigned int flags)
2757 {
2758 	struct page *page;
2759 	spinlock_t *ptl;
2760 	pte_t entry;
2761 
2762 	if (!(flags & FAULT_FLAG_WRITE)) {
2763 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2764 						vma->vm_page_prot));
2765 		ptl = pte_lockptr(mm, pmd);
2766 		spin_lock(ptl);
2767 		if (!pte_none(*page_table))
2768 			goto unlock;
2769 		goto setpte;
2770 	}
2771 
2772 	/* Allocate our own private page. */
2773 	pte_unmap(page_table);
2774 
2775 	if (unlikely(anon_vma_prepare(vma)))
2776 		goto oom;
2777 	page = alloc_zeroed_user_highpage_movable(vma, address);
2778 	if (!page)
2779 		goto oom;
2780 	__SetPageUptodate(page);
2781 
2782 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2783 		goto oom_free_page;
2784 
2785 	entry = mk_pte(page, vma->vm_page_prot);
2786 	if (vma->vm_flags & VM_WRITE)
2787 		entry = pte_mkwrite(pte_mkdirty(entry));
2788 
2789 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2790 	if (!pte_none(*page_table))
2791 		goto release;
2792 
2793 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2794 	page_add_new_anon_rmap(page, vma, address);
2795 setpte:
2796 	set_pte_at(mm, address, page_table, entry);
2797 
2798 	/* No need to invalidate - it was non-present before */
2799 	update_mmu_cache(vma, address, page_table);
2800 unlock:
2801 	pte_unmap_unlock(page_table, ptl);
2802 	return 0;
2803 release:
2804 	mem_cgroup_uncharge_page(page);
2805 	page_cache_release(page);
2806 	goto unlock;
2807 oom_free_page:
2808 	page_cache_release(page);
2809 oom:
2810 	return VM_FAULT_OOM;
2811 }
2812 
2813 /*
2814  * __do_fault() tries to create a new page mapping. It aggressively
2815  * tries to share with existing pages, but makes a separate copy if
2816  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2817  * the next page fault.
2818  *
2819  * As this is called only for pages that do not currently exist, we
2820  * do not need to flush old virtual caches or the TLB.
2821  *
2822  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2823  * but allow concurrent faults), and pte neither mapped nor locked.
2824  * We return with mmap_sem still held, but pte unmapped and unlocked.
2825  */
2826 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2827 		unsigned long address, pmd_t *pmd,
2828 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2829 {
2830 	pte_t *page_table;
2831 	spinlock_t *ptl;
2832 	struct page *page;
2833 	pte_t entry;
2834 	int anon = 0;
2835 	int charged = 0;
2836 	struct page *dirty_page = NULL;
2837 	struct vm_fault vmf;
2838 	int ret;
2839 	int page_mkwrite = 0;
2840 
2841 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2842 	vmf.pgoff = pgoff;
2843 	vmf.flags = flags;
2844 	vmf.page = NULL;
2845 
2846 	ret = vma->vm_ops->fault(vma, &vmf);
2847 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2848 		return ret;
2849 
2850 	if (unlikely(PageHWPoison(vmf.page))) {
2851 		if (ret & VM_FAULT_LOCKED)
2852 			unlock_page(vmf.page);
2853 		return VM_FAULT_HWPOISON;
2854 	}
2855 
2856 	/*
2857 	 * For consistency in subsequent calls, make the faulted page always
2858 	 * locked.
2859 	 */
2860 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2861 		lock_page(vmf.page);
2862 	else
2863 		VM_BUG_ON(!PageLocked(vmf.page));
2864 
2865 	/*
2866 	 * Should we do an early C-O-W break?
2867 	 */
2868 	page = vmf.page;
2869 	if (flags & FAULT_FLAG_WRITE) {
2870 		if (!(vma->vm_flags & VM_SHARED)) {
2871 			anon = 1;
2872 			if (unlikely(anon_vma_prepare(vma))) {
2873 				ret = VM_FAULT_OOM;
2874 				goto out;
2875 			}
2876 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2877 						vma, address);
2878 			if (!page) {
2879 				ret = VM_FAULT_OOM;
2880 				goto out;
2881 			}
2882 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2883 				ret = VM_FAULT_OOM;
2884 				page_cache_release(page);
2885 				goto out;
2886 			}
2887 			charged = 1;
2888 			/*
2889 			 * Don't let another task, with possibly unlocked vma,
2890 			 * keep the mlocked page.
2891 			 */
2892 			if (vma->vm_flags & VM_LOCKED)
2893 				clear_page_mlock(vmf.page);
2894 			copy_user_highpage(page, vmf.page, address, vma);
2895 			__SetPageUptodate(page);
2896 		} else {
2897 			/*
2898 			 * If the page will be shareable, see if the backing
2899 			 * address space wants to know that the page is about
2900 			 * to become writable
2901 			 */
2902 			if (vma->vm_ops->page_mkwrite) {
2903 				int tmp;
2904 
2905 				unlock_page(page);
2906 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2907 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2908 				if (unlikely(tmp &
2909 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2910 					ret = tmp;
2911 					goto unwritable_page;
2912 				}
2913 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2914 					lock_page(page);
2915 					if (!page->mapping) {
2916 						ret = 0; /* retry the fault */
2917 						unlock_page(page);
2918 						goto unwritable_page;
2919 					}
2920 				} else
2921 					VM_BUG_ON(!PageLocked(page));
2922 				page_mkwrite = 1;
2923 			}
2924 		}
2925 
2926 	}
2927 
2928 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2929 
2930 	/*
2931 	 * This silly early PAGE_DIRTY setting removes a race
2932 	 * due to the bad i386 page protection. But it's valid
2933 	 * for other architectures too.
2934 	 *
2935 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2936 	 * an exclusive copy of the page, or this is a shared mapping,
2937 	 * so we can make it writable and dirty to avoid having to
2938 	 * handle that later.
2939 	 */
2940 	/* Only go through if we didn't race with anybody else... */
2941 	if (likely(pte_same(*page_table, orig_pte))) {
2942 		flush_icache_page(vma, page);
2943 		entry = mk_pte(page, vma->vm_page_prot);
2944 		if (flags & FAULT_FLAG_WRITE)
2945 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2946 		if (anon) {
2947 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2948 			page_add_new_anon_rmap(page, vma, address);
2949 		} else {
2950 			inc_mm_counter_fast(mm, MM_FILEPAGES);
2951 			page_add_file_rmap(page);
2952 			if (flags & FAULT_FLAG_WRITE) {
2953 				dirty_page = page;
2954 				get_page(dirty_page);
2955 			}
2956 		}
2957 		set_pte_at(mm, address, page_table, entry);
2958 
2959 		/* no need to invalidate: a not-present page won't be cached */
2960 		update_mmu_cache(vma, address, page_table);
2961 	} else {
2962 		if (charged)
2963 			mem_cgroup_uncharge_page(page);
2964 		if (anon)
2965 			page_cache_release(page);
2966 		else
2967 			anon = 1; /* no anon but release faulted_page */
2968 	}
2969 
2970 	pte_unmap_unlock(page_table, ptl);
2971 
2972 out:
2973 	if (dirty_page) {
2974 		struct address_space *mapping = page->mapping;
2975 
2976 		if (set_page_dirty(dirty_page))
2977 			page_mkwrite = 1;
2978 		unlock_page(dirty_page);
2979 		put_page(dirty_page);
2980 		if (page_mkwrite && mapping) {
2981 			/*
2982 			 * Some device drivers do not set page.mapping but still
2983 			 * dirty their pages
2984 			 */
2985 			balance_dirty_pages_ratelimited(mapping);
2986 		}
2987 
2988 		/* file_update_time outside page_lock */
2989 		if (vma->vm_file)
2990 			file_update_time(vma->vm_file);
2991 	} else {
2992 		unlock_page(vmf.page);
2993 		if (anon)
2994 			page_cache_release(vmf.page);
2995 	}
2996 
2997 	return ret;
2998 
2999 unwritable_page:
3000 	page_cache_release(page);
3001 	return ret;
3002 }
3003 
3004 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3005 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3006 		unsigned int flags, pte_t orig_pte)
3007 {
3008 	pgoff_t pgoff = (((address & PAGE_MASK)
3009 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3010 
3011 	pte_unmap(page_table);
3012 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3013 }
3014 
3015 /*
3016  * Fault of a previously existing named mapping. Repopulate the pte
3017  * from the encoded file_pte if possible. This enables swappable
3018  * nonlinear vmas.
3019  *
3020  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3021  * but allow concurrent faults), and pte mapped but not yet locked.
3022  * We return with mmap_sem still held, but pte unmapped and unlocked.
3023  */
3024 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3025 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3026 		unsigned int flags, pte_t orig_pte)
3027 {
3028 	pgoff_t pgoff;
3029 
3030 	flags |= FAULT_FLAG_NONLINEAR;
3031 
3032 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3033 		return 0;
3034 
3035 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3036 		/*
3037 		 * Page table corrupted: show pte and kill process.
3038 		 */
3039 		print_bad_pte(vma, address, orig_pte, NULL);
3040 		return VM_FAULT_SIGBUS;
3041 	}
3042 
3043 	pgoff = pte_to_pgoff(orig_pte);
3044 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3045 }
3046 
3047 /*
3048  * These routines also need to handle stuff like marking pages dirty
3049  * and/or accessed for architectures that don't do it in hardware (most
3050  * RISC architectures).  The early dirtying is also good on the i386.
3051  *
3052  * There is also a hook called "update_mmu_cache()" that architectures
3053  * with external mmu caches can use to update those (ie the Sparc or
3054  * PowerPC hashed page tables that act as extended TLBs).
3055  *
3056  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3057  * but allow concurrent faults), and pte mapped but not yet locked.
3058  * We return with mmap_sem still held, but pte unmapped and unlocked.
3059  */
3060 static inline int handle_pte_fault(struct mm_struct *mm,
3061 		struct vm_area_struct *vma, unsigned long address,
3062 		pte_t *pte, pmd_t *pmd, unsigned int flags)
3063 {
3064 	pte_t entry;
3065 	spinlock_t *ptl;
3066 
3067 	entry = *pte;
3068 	if (!pte_present(entry)) {
3069 		if (pte_none(entry)) {
3070 			if (vma->vm_ops) {
3071 				if (likely(vma->vm_ops->fault))
3072 					return do_linear_fault(mm, vma, address,
3073 						pte, pmd, flags, entry);
3074 			}
3075 			return do_anonymous_page(mm, vma, address,
3076 						 pte, pmd, flags);
3077 		}
3078 		if (pte_file(entry))
3079 			return do_nonlinear_fault(mm, vma, address,
3080 					pte, pmd, flags, entry);
3081 		return do_swap_page(mm, vma, address,
3082 					pte, pmd, flags, entry);
3083 	}
3084 
3085 	ptl = pte_lockptr(mm, pmd);
3086 	spin_lock(ptl);
3087 	if (unlikely(!pte_same(*pte, entry)))
3088 		goto unlock;
3089 	if (flags & FAULT_FLAG_WRITE) {
3090 		if (!pte_write(entry))
3091 			return do_wp_page(mm, vma, address,
3092 					pte, pmd, ptl, entry);
3093 		entry = pte_mkdirty(entry);
3094 	}
3095 	entry = pte_mkyoung(entry);
3096 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3097 		update_mmu_cache(vma, address, pte);
3098 	} else {
3099 		/*
3100 		 * This is needed only for protection faults but the arch code
3101 		 * is not yet telling us if this is a protection fault or not.
3102 		 * This still avoids useless tlb flushes for .text page faults
3103 		 * with threads.
3104 		 */
3105 		if (flags & FAULT_FLAG_WRITE)
3106 			flush_tlb_page(vma, address);
3107 	}
3108 unlock:
3109 	pte_unmap_unlock(pte, ptl);
3110 	return 0;
3111 }
3112 
3113 /*
3114  * By the time we get here, we already hold the mm semaphore
3115  */
3116 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3117 		unsigned long address, unsigned int flags)
3118 {
3119 	pgd_t *pgd;
3120 	pud_t *pud;
3121 	pmd_t *pmd;
3122 	pte_t *pte;
3123 
3124 	__set_current_state(TASK_RUNNING);
3125 
3126 	count_vm_event(PGFAULT);
3127 
3128 	/* do counter updates before entering really critical section. */
3129 	check_sync_rss_stat(current);
3130 
3131 	if (unlikely(is_vm_hugetlb_page(vma)))
3132 		return hugetlb_fault(mm, vma, address, flags);
3133 
3134 	pgd = pgd_offset(mm, address);
3135 	pud = pud_alloc(mm, pgd, address);
3136 	if (!pud)
3137 		return VM_FAULT_OOM;
3138 	pmd = pmd_alloc(mm, pud, address);
3139 	if (!pmd)
3140 		return VM_FAULT_OOM;
3141 	pte = pte_alloc_map(mm, pmd, address);
3142 	if (!pte)
3143 		return VM_FAULT_OOM;
3144 
3145 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3146 }
3147 
3148 #ifndef __PAGETABLE_PUD_FOLDED
3149 /*
3150  * Allocate page upper directory.
3151  * We've already handled the fast-path in-line.
3152  */
3153 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3154 {
3155 	pud_t *new = pud_alloc_one(mm, address);
3156 	if (!new)
3157 		return -ENOMEM;
3158 
3159 	smp_wmb(); /* See comment in __pte_alloc */
3160 
3161 	spin_lock(&mm->page_table_lock);
3162 	if (pgd_present(*pgd))		/* Another has populated it */
3163 		pud_free(mm, new);
3164 	else
3165 		pgd_populate(mm, pgd, new);
3166 	spin_unlock(&mm->page_table_lock);
3167 	return 0;
3168 }
3169 #endif /* __PAGETABLE_PUD_FOLDED */
3170 
3171 #ifndef __PAGETABLE_PMD_FOLDED
3172 /*
3173  * Allocate page middle directory.
3174  * We've already handled the fast-path in-line.
3175  */
3176 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3177 {
3178 	pmd_t *new = pmd_alloc_one(mm, address);
3179 	if (!new)
3180 		return -ENOMEM;
3181 
3182 	smp_wmb(); /* See comment in __pte_alloc */
3183 
3184 	spin_lock(&mm->page_table_lock);
3185 #ifndef __ARCH_HAS_4LEVEL_HACK
3186 	if (pud_present(*pud))		/* Another has populated it */
3187 		pmd_free(mm, new);
3188 	else
3189 		pud_populate(mm, pud, new);
3190 #else
3191 	if (pgd_present(*pud))		/* Another has populated it */
3192 		pmd_free(mm, new);
3193 	else
3194 		pgd_populate(mm, pud, new);
3195 #endif /* __ARCH_HAS_4LEVEL_HACK */
3196 	spin_unlock(&mm->page_table_lock);
3197 	return 0;
3198 }
3199 #endif /* __PAGETABLE_PMD_FOLDED */
3200 
3201 int make_pages_present(unsigned long addr, unsigned long end)
3202 {
3203 	int ret, len, write;
3204 	struct vm_area_struct * vma;
3205 
3206 	vma = find_vma(current->mm, addr);
3207 	if (!vma)
3208 		return -ENOMEM;
3209 	write = (vma->vm_flags & VM_WRITE) != 0;
3210 	BUG_ON(addr >= end);
3211 	BUG_ON(end > vma->vm_end);
3212 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3213 	ret = get_user_pages(current, current->mm, addr,
3214 			len, write, 0, NULL, NULL);
3215 	if (ret < 0)
3216 		return ret;
3217 	return ret == len ? 0 : -EFAULT;
3218 }
3219 
3220 #if !defined(__HAVE_ARCH_GATE_AREA)
3221 
3222 #if defined(AT_SYSINFO_EHDR)
3223 static struct vm_area_struct gate_vma;
3224 
3225 static int __init gate_vma_init(void)
3226 {
3227 	gate_vma.vm_mm = NULL;
3228 	gate_vma.vm_start = FIXADDR_USER_START;
3229 	gate_vma.vm_end = FIXADDR_USER_END;
3230 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3231 	gate_vma.vm_page_prot = __P101;
3232 	/*
3233 	 * Make sure the vDSO gets into every core dump.
3234 	 * Dumping its contents makes post-mortem fully interpretable later
3235 	 * without matching up the same kernel and hardware config to see
3236 	 * what PC values meant.
3237 	 */
3238 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3239 	return 0;
3240 }
3241 __initcall(gate_vma_init);
3242 #endif
3243 
3244 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3245 {
3246 #ifdef AT_SYSINFO_EHDR
3247 	return &gate_vma;
3248 #else
3249 	return NULL;
3250 #endif
3251 }
3252 
3253 int in_gate_area_no_task(unsigned long addr)
3254 {
3255 #ifdef AT_SYSINFO_EHDR
3256 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3257 		return 1;
3258 #endif
3259 	return 0;
3260 }
3261 
3262 #endif	/* __HAVE_ARCH_GATE_AREA */
3263 
3264 static int follow_pte(struct mm_struct *mm, unsigned long address,
3265 		pte_t **ptepp, spinlock_t **ptlp)
3266 {
3267 	pgd_t *pgd;
3268 	pud_t *pud;
3269 	pmd_t *pmd;
3270 	pte_t *ptep;
3271 
3272 	pgd = pgd_offset(mm, address);
3273 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3274 		goto out;
3275 
3276 	pud = pud_offset(pgd, address);
3277 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3278 		goto out;
3279 
3280 	pmd = pmd_offset(pud, address);
3281 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3282 		goto out;
3283 
3284 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3285 	if (pmd_huge(*pmd))
3286 		goto out;
3287 
3288 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3289 	if (!ptep)
3290 		goto out;
3291 	if (!pte_present(*ptep))
3292 		goto unlock;
3293 	*ptepp = ptep;
3294 	return 0;
3295 unlock:
3296 	pte_unmap_unlock(ptep, *ptlp);
3297 out:
3298 	return -EINVAL;
3299 }
3300 
3301 /**
3302  * follow_pfn - look up PFN at a user virtual address
3303  * @vma: memory mapping
3304  * @address: user virtual address
3305  * @pfn: location to store found PFN
3306  *
3307  * Only IO mappings and raw PFN mappings are allowed.
3308  *
3309  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3310  */
3311 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3312 	unsigned long *pfn)
3313 {
3314 	int ret = -EINVAL;
3315 	spinlock_t *ptl;
3316 	pte_t *ptep;
3317 
3318 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3319 		return ret;
3320 
3321 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3322 	if (ret)
3323 		return ret;
3324 	*pfn = pte_pfn(*ptep);
3325 	pte_unmap_unlock(ptep, ptl);
3326 	return 0;
3327 }
3328 EXPORT_SYMBOL(follow_pfn);
3329 
3330 #ifdef CONFIG_HAVE_IOREMAP_PROT
3331 int follow_phys(struct vm_area_struct *vma,
3332 		unsigned long address, unsigned int flags,
3333 		unsigned long *prot, resource_size_t *phys)
3334 {
3335 	int ret = -EINVAL;
3336 	pte_t *ptep, pte;
3337 	spinlock_t *ptl;
3338 
3339 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3340 		goto out;
3341 
3342 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3343 		goto out;
3344 	pte = *ptep;
3345 
3346 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3347 		goto unlock;
3348 
3349 	*prot = pgprot_val(pte_pgprot(pte));
3350 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3351 
3352 	ret = 0;
3353 unlock:
3354 	pte_unmap_unlock(ptep, ptl);
3355 out:
3356 	return ret;
3357 }
3358 
3359 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3360 			void *buf, int len, int write)
3361 {
3362 	resource_size_t phys_addr;
3363 	unsigned long prot = 0;
3364 	void __iomem *maddr;
3365 	int offset = addr & (PAGE_SIZE-1);
3366 
3367 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3368 		return -EINVAL;
3369 
3370 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3371 	if (write)
3372 		memcpy_toio(maddr + offset, buf, len);
3373 	else
3374 		memcpy_fromio(buf, maddr + offset, len);
3375 	iounmap(maddr);
3376 
3377 	return len;
3378 }
3379 #endif
3380 
3381 /*
3382  * Access another process' address space.
3383  * Source/target buffer must be kernel space,
3384  * Do not walk the page table directly, use get_user_pages
3385  */
3386 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3387 {
3388 	struct mm_struct *mm;
3389 	struct vm_area_struct *vma;
3390 	void *old_buf = buf;
3391 
3392 	mm = get_task_mm(tsk);
3393 	if (!mm)
3394 		return 0;
3395 
3396 	down_read(&mm->mmap_sem);
3397 	/* ignore errors, just check how much was successfully transferred */
3398 	while (len) {
3399 		int bytes, ret, offset;
3400 		void *maddr;
3401 		struct page *page = NULL;
3402 
3403 		ret = get_user_pages(tsk, mm, addr, 1,
3404 				write, 1, &page, &vma);
3405 		if (ret <= 0) {
3406 			/*
3407 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3408 			 * we can access using slightly different code.
3409 			 */
3410 #ifdef CONFIG_HAVE_IOREMAP_PROT
3411 			vma = find_vma(mm, addr);
3412 			if (!vma)
3413 				break;
3414 			if (vma->vm_ops && vma->vm_ops->access)
3415 				ret = vma->vm_ops->access(vma, addr, buf,
3416 							  len, write);
3417 			if (ret <= 0)
3418 #endif
3419 				break;
3420 			bytes = ret;
3421 		} else {
3422 			bytes = len;
3423 			offset = addr & (PAGE_SIZE-1);
3424 			if (bytes > PAGE_SIZE-offset)
3425 				bytes = PAGE_SIZE-offset;
3426 
3427 			maddr = kmap(page);
3428 			if (write) {
3429 				copy_to_user_page(vma, page, addr,
3430 						  maddr + offset, buf, bytes);
3431 				set_page_dirty_lock(page);
3432 			} else {
3433 				copy_from_user_page(vma, page, addr,
3434 						    buf, maddr + offset, bytes);
3435 			}
3436 			kunmap(page);
3437 			page_cache_release(page);
3438 		}
3439 		len -= bytes;
3440 		buf += bytes;
3441 		addr += bytes;
3442 	}
3443 	up_read(&mm->mmap_sem);
3444 	mmput(mm);
3445 
3446 	return buf - old_buf;
3447 }
3448 
3449 /*
3450  * Print the name of a VMA.
3451  */
3452 void print_vma_addr(char *prefix, unsigned long ip)
3453 {
3454 	struct mm_struct *mm = current->mm;
3455 	struct vm_area_struct *vma;
3456 
3457 	/*
3458 	 * Do not print if we are in atomic
3459 	 * contexts (in exception stacks, etc.):
3460 	 */
3461 	if (preempt_count())
3462 		return;
3463 
3464 	down_read(&mm->mmap_sem);
3465 	vma = find_vma(mm, ip);
3466 	if (vma && vma->vm_file) {
3467 		struct file *f = vma->vm_file;
3468 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3469 		if (buf) {
3470 			char *p, *s;
3471 
3472 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3473 			if (IS_ERR(p))
3474 				p = "?";
3475 			s = strrchr(p, '/');
3476 			if (s)
3477 				p = s+1;
3478 			printk("%s%s[%lx+%lx]", prefix, p,
3479 					vma->vm_start,
3480 					vma->vm_end - vma->vm_start);
3481 			free_page((unsigned long)buf);
3482 		}
3483 	}
3484 	up_read(&current->mm->mmap_sem);
3485 }
3486 
3487 #ifdef CONFIG_PROVE_LOCKING
3488 void might_fault(void)
3489 {
3490 	/*
3491 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3492 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3493 	 * get paged out, therefore we'll never actually fault, and the
3494 	 * below annotations will generate false positives.
3495 	 */
3496 	if (segment_eq(get_fs(), KERNEL_DS))
3497 		return;
3498 
3499 	might_sleep();
3500 	/*
3501 	 * it would be nicer only to annotate paths which are not under
3502 	 * pagefault_disable, however that requires a larger audit and
3503 	 * providing helpers like get_user_atomic.
3504 	 */
3505 	if (!in_atomic() && current->mm)
3506 		might_lock_read(&current->mm->mmap_sem);
3507 }
3508 EXPORT_SYMBOL(might_fault);
3509 #endif
3510