1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/pfn_t.h> 54 #include <linux/writeback.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/kallsyms.h> 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 #include <linux/gfp.h> 61 #include <linux/migrate.h> 62 #include <linux/string.h> 63 #include <linux/dma-debug.h> 64 #include <linux/debugfs.h> 65 #include <linux/userfaultfd_k.h> 66 67 #include <asm/io.h> 68 #include <asm/mmu_context.h> 69 #include <asm/pgalloc.h> 70 #include <asm/uaccess.h> 71 #include <asm/tlb.h> 72 #include <asm/tlbflush.h> 73 #include <asm/pgtable.h> 74 75 #include "internal.h" 76 77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 79 #endif 80 81 #ifndef CONFIG_NEED_MULTIPLE_NODES 82 /* use the per-pgdat data instead for discontigmem - mbligh */ 83 unsigned long max_mapnr; 84 struct page *mem_map; 85 86 EXPORT_SYMBOL(max_mapnr); 87 EXPORT_SYMBOL(mem_map); 88 #endif 89 90 /* 91 * A number of key systems in x86 including ioremap() rely on the assumption 92 * that high_memory defines the upper bound on direct map memory, then end 93 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 95 * and ZONE_HIGHMEM. 96 */ 97 void * high_memory; 98 99 EXPORT_SYMBOL(high_memory); 100 101 /* 102 * Randomize the address space (stacks, mmaps, brk, etc.). 103 * 104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 105 * as ancient (libc5 based) binaries can segfault. ) 106 */ 107 int randomize_va_space __read_mostly = 108 #ifdef CONFIG_COMPAT_BRK 109 1; 110 #else 111 2; 112 #endif 113 114 static int __init disable_randmaps(char *s) 115 { 116 randomize_va_space = 0; 117 return 1; 118 } 119 __setup("norandmaps", disable_randmaps); 120 121 unsigned long zero_pfn __read_mostly; 122 unsigned long highest_memmap_pfn __read_mostly; 123 124 EXPORT_SYMBOL(zero_pfn); 125 126 /* 127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 128 */ 129 static int __init init_zero_pfn(void) 130 { 131 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 132 return 0; 133 } 134 core_initcall(init_zero_pfn); 135 136 137 #if defined(SPLIT_RSS_COUNTING) 138 139 void sync_mm_rss(struct mm_struct *mm) 140 { 141 int i; 142 143 for (i = 0; i < NR_MM_COUNTERS; i++) { 144 if (current->rss_stat.count[i]) { 145 add_mm_counter(mm, i, current->rss_stat.count[i]); 146 current->rss_stat.count[i] = 0; 147 } 148 } 149 current->rss_stat.events = 0; 150 } 151 152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 153 { 154 struct task_struct *task = current; 155 156 if (likely(task->mm == mm)) 157 task->rss_stat.count[member] += val; 158 else 159 add_mm_counter(mm, member, val); 160 } 161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 163 164 /* sync counter once per 64 page faults */ 165 #define TASK_RSS_EVENTS_THRESH (64) 166 static void check_sync_rss_stat(struct task_struct *task) 167 { 168 if (unlikely(task != current)) 169 return; 170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 171 sync_mm_rss(task->mm); 172 } 173 #else /* SPLIT_RSS_COUNTING */ 174 175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 177 178 static void check_sync_rss_stat(struct task_struct *task) 179 { 180 } 181 182 #endif /* SPLIT_RSS_COUNTING */ 183 184 #ifdef HAVE_GENERIC_MMU_GATHER 185 186 static bool tlb_next_batch(struct mmu_gather *tlb) 187 { 188 struct mmu_gather_batch *batch; 189 190 batch = tlb->active; 191 if (batch->next) { 192 tlb->active = batch->next; 193 return true; 194 } 195 196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 197 return false; 198 199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 200 if (!batch) 201 return false; 202 203 tlb->batch_count++; 204 batch->next = NULL; 205 batch->nr = 0; 206 batch->max = MAX_GATHER_BATCH; 207 208 tlb->active->next = batch; 209 tlb->active = batch; 210 211 return true; 212 } 213 214 /* tlb_gather_mmu 215 * Called to initialize an (on-stack) mmu_gather structure for page-table 216 * tear-down from @mm. The @fullmm argument is used when @mm is without 217 * users and we're going to destroy the full address space (exit/execve). 218 */ 219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 220 { 221 tlb->mm = mm; 222 223 /* Is it from 0 to ~0? */ 224 tlb->fullmm = !(start | (end+1)); 225 tlb->need_flush_all = 0; 226 tlb->local.next = NULL; 227 tlb->local.nr = 0; 228 tlb->local.max = ARRAY_SIZE(tlb->__pages); 229 tlb->active = &tlb->local; 230 tlb->batch_count = 0; 231 232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 233 tlb->batch = NULL; 234 #endif 235 236 __tlb_reset_range(tlb); 237 } 238 239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 240 { 241 if (!tlb->end) 242 return; 243 244 tlb_flush(tlb); 245 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 247 tlb_table_flush(tlb); 248 #endif 249 __tlb_reset_range(tlb); 250 } 251 252 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 253 { 254 struct mmu_gather_batch *batch; 255 256 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 257 free_pages_and_swap_cache(batch->pages, batch->nr); 258 batch->nr = 0; 259 } 260 tlb->active = &tlb->local; 261 } 262 263 void tlb_flush_mmu(struct mmu_gather *tlb) 264 { 265 tlb_flush_mmu_tlbonly(tlb); 266 tlb_flush_mmu_free(tlb); 267 } 268 269 /* tlb_finish_mmu 270 * Called at the end of the shootdown operation to free up any resources 271 * that were required. 272 */ 273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 274 { 275 struct mmu_gather_batch *batch, *next; 276 277 tlb_flush_mmu(tlb); 278 279 /* keep the page table cache within bounds */ 280 check_pgt_cache(); 281 282 for (batch = tlb->local.next; batch; batch = next) { 283 next = batch->next; 284 free_pages((unsigned long)batch, 0); 285 } 286 tlb->local.next = NULL; 287 } 288 289 /* __tlb_remove_page 290 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 291 * handling the additional races in SMP caused by other CPUs caching valid 292 * mappings in their TLBs. Returns the number of free page slots left. 293 * When out of page slots we must call tlb_flush_mmu(). 294 */ 295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 296 { 297 struct mmu_gather_batch *batch; 298 299 VM_BUG_ON(!tlb->end); 300 301 batch = tlb->active; 302 batch->pages[batch->nr++] = page; 303 if (batch->nr == batch->max) { 304 if (!tlb_next_batch(tlb)) 305 return 0; 306 batch = tlb->active; 307 } 308 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 309 310 return batch->max - batch->nr; 311 } 312 313 #endif /* HAVE_GENERIC_MMU_GATHER */ 314 315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 316 317 /* 318 * See the comment near struct mmu_table_batch. 319 */ 320 321 static void tlb_remove_table_smp_sync(void *arg) 322 { 323 /* Simply deliver the interrupt */ 324 } 325 326 static void tlb_remove_table_one(void *table) 327 { 328 /* 329 * This isn't an RCU grace period and hence the page-tables cannot be 330 * assumed to be actually RCU-freed. 331 * 332 * It is however sufficient for software page-table walkers that rely on 333 * IRQ disabling. See the comment near struct mmu_table_batch. 334 */ 335 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 336 __tlb_remove_table(table); 337 } 338 339 static void tlb_remove_table_rcu(struct rcu_head *head) 340 { 341 struct mmu_table_batch *batch; 342 int i; 343 344 batch = container_of(head, struct mmu_table_batch, rcu); 345 346 for (i = 0; i < batch->nr; i++) 347 __tlb_remove_table(batch->tables[i]); 348 349 free_page((unsigned long)batch); 350 } 351 352 void tlb_table_flush(struct mmu_gather *tlb) 353 { 354 struct mmu_table_batch **batch = &tlb->batch; 355 356 if (*batch) { 357 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 358 *batch = NULL; 359 } 360 } 361 362 void tlb_remove_table(struct mmu_gather *tlb, void *table) 363 { 364 struct mmu_table_batch **batch = &tlb->batch; 365 366 /* 367 * When there's less then two users of this mm there cannot be a 368 * concurrent page-table walk. 369 */ 370 if (atomic_read(&tlb->mm->mm_users) < 2) { 371 __tlb_remove_table(table); 372 return; 373 } 374 375 if (*batch == NULL) { 376 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 377 if (*batch == NULL) { 378 tlb_remove_table_one(table); 379 return; 380 } 381 (*batch)->nr = 0; 382 } 383 (*batch)->tables[(*batch)->nr++] = table; 384 if ((*batch)->nr == MAX_TABLE_BATCH) 385 tlb_table_flush(tlb); 386 } 387 388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 389 390 /* 391 * Note: this doesn't free the actual pages themselves. That 392 * has been handled earlier when unmapping all the memory regions. 393 */ 394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 395 unsigned long addr) 396 { 397 pgtable_t token = pmd_pgtable(*pmd); 398 pmd_clear(pmd); 399 pte_free_tlb(tlb, token, addr); 400 atomic_long_dec(&tlb->mm->nr_ptes); 401 } 402 403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 404 unsigned long addr, unsigned long end, 405 unsigned long floor, unsigned long ceiling) 406 { 407 pmd_t *pmd; 408 unsigned long next; 409 unsigned long start; 410 411 start = addr; 412 pmd = pmd_offset(pud, addr); 413 do { 414 next = pmd_addr_end(addr, end); 415 if (pmd_none_or_clear_bad(pmd)) 416 continue; 417 free_pte_range(tlb, pmd, addr); 418 } while (pmd++, addr = next, addr != end); 419 420 start &= PUD_MASK; 421 if (start < floor) 422 return; 423 if (ceiling) { 424 ceiling &= PUD_MASK; 425 if (!ceiling) 426 return; 427 } 428 if (end - 1 > ceiling - 1) 429 return; 430 431 pmd = pmd_offset(pud, start); 432 pud_clear(pud); 433 pmd_free_tlb(tlb, pmd, start); 434 mm_dec_nr_pmds(tlb->mm); 435 } 436 437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 438 unsigned long addr, unsigned long end, 439 unsigned long floor, unsigned long ceiling) 440 { 441 pud_t *pud; 442 unsigned long next; 443 unsigned long start; 444 445 start = addr; 446 pud = pud_offset(pgd, addr); 447 do { 448 next = pud_addr_end(addr, end); 449 if (pud_none_or_clear_bad(pud)) 450 continue; 451 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 452 } while (pud++, addr = next, addr != end); 453 454 start &= PGDIR_MASK; 455 if (start < floor) 456 return; 457 if (ceiling) { 458 ceiling &= PGDIR_MASK; 459 if (!ceiling) 460 return; 461 } 462 if (end - 1 > ceiling - 1) 463 return; 464 465 pud = pud_offset(pgd, start); 466 pgd_clear(pgd); 467 pud_free_tlb(tlb, pud, start); 468 } 469 470 /* 471 * This function frees user-level page tables of a process. 472 */ 473 void free_pgd_range(struct mmu_gather *tlb, 474 unsigned long addr, unsigned long end, 475 unsigned long floor, unsigned long ceiling) 476 { 477 pgd_t *pgd; 478 unsigned long next; 479 480 /* 481 * The next few lines have given us lots of grief... 482 * 483 * Why are we testing PMD* at this top level? Because often 484 * there will be no work to do at all, and we'd prefer not to 485 * go all the way down to the bottom just to discover that. 486 * 487 * Why all these "- 1"s? Because 0 represents both the bottom 488 * of the address space and the top of it (using -1 for the 489 * top wouldn't help much: the masks would do the wrong thing). 490 * The rule is that addr 0 and floor 0 refer to the bottom of 491 * the address space, but end 0 and ceiling 0 refer to the top 492 * Comparisons need to use "end - 1" and "ceiling - 1" (though 493 * that end 0 case should be mythical). 494 * 495 * Wherever addr is brought up or ceiling brought down, we must 496 * be careful to reject "the opposite 0" before it confuses the 497 * subsequent tests. But what about where end is brought down 498 * by PMD_SIZE below? no, end can't go down to 0 there. 499 * 500 * Whereas we round start (addr) and ceiling down, by different 501 * masks at different levels, in order to test whether a table 502 * now has no other vmas using it, so can be freed, we don't 503 * bother to round floor or end up - the tests don't need that. 504 */ 505 506 addr &= PMD_MASK; 507 if (addr < floor) { 508 addr += PMD_SIZE; 509 if (!addr) 510 return; 511 } 512 if (ceiling) { 513 ceiling &= PMD_MASK; 514 if (!ceiling) 515 return; 516 } 517 if (end - 1 > ceiling - 1) 518 end -= PMD_SIZE; 519 if (addr > end - 1) 520 return; 521 522 pgd = pgd_offset(tlb->mm, addr); 523 do { 524 next = pgd_addr_end(addr, end); 525 if (pgd_none_or_clear_bad(pgd)) 526 continue; 527 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 528 } while (pgd++, addr = next, addr != end); 529 } 530 531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 532 unsigned long floor, unsigned long ceiling) 533 { 534 while (vma) { 535 struct vm_area_struct *next = vma->vm_next; 536 unsigned long addr = vma->vm_start; 537 538 /* 539 * Hide vma from rmap and truncate_pagecache before freeing 540 * pgtables 541 */ 542 unlink_anon_vmas(vma); 543 unlink_file_vma(vma); 544 545 if (is_vm_hugetlb_page(vma)) { 546 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 547 floor, next? next->vm_start: ceiling); 548 } else { 549 /* 550 * Optimization: gather nearby vmas into one call down 551 */ 552 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 553 && !is_vm_hugetlb_page(next)) { 554 vma = next; 555 next = vma->vm_next; 556 unlink_anon_vmas(vma); 557 unlink_file_vma(vma); 558 } 559 free_pgd_range(tlb, addr, vma->vm_end, 560 floor, next? next->vm_start: ceiling); 561 } 562 vma = next; 563 } 564 } 565 566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 567 { 568 spinlock_t *ptl; 569 pgtable_t new = pte_alloc_one(mm, address); 570 if (!new) 571 return -ENOMEM; 572 573 /* 574 * Ensure all pte setup (eg. pte page lock and page clearing) are 575 * visible before the pte is made visible to other CPUs by being 576 * put into page tables. 577 * 578 * The other side of the story is the pointer chasing in the page 579 * table walking code (when walking the page table without locking; 580 * ie. most of the time). Fortunately, these data accesses consist 581 * of a chain of data-dependent loads, meaning most CPUs (alpha 582 * being the notable exception) will already guarantee loads are 583 * seen in-order. See the alpha page table accessors for the 584 * smp_read_barrier_depends() barriers in page table walking code. 585 */ 586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 587 588 ptl = pmd_lock(mm, pmd); 589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 590 atomic_long_inc(&mm->nr_ptes); 591 pmd_populate(mm, pmd, new); 592 new = NULL; 593 } 594 spin_unlock(ptl); 595 if (new) 596 pte_free(mm, new); 597 return 0; 598 } 599 600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 601 { 602 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 603 if (!new) 604 return -ENOMEM; 605 606 smp_wmb(); /* See comment in __pte_alloc */ 607 608 spin_lock(&init_mm.page_table_lock); 609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 610 pmd_populate_kernel(&init_mm, pmd, new); 611 new = NULL; 612 } 613 spin_unlock(&init_mm.page_table_lock); 614 if (new) 615 pte_free_kernel(&init_mm, new); 616 return 0; 617 } 618 619 static inline void init_rss_vec(int *rss) 620 { 621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 622 } 623 624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 625 { 626 int i; 627 628 if (current->mm == mm) 629 sync_mm_rss(mm); 630 for (i = 0; i < NR_MM_COUNTERS; i++) 631 if (rss[i]) 632 add_mm_counter(mm, i, rss[i]); 633 } 634 635 /* 636 * This function is called to print an error when a bad pte 637 * is found. For example, we might have a PFN-mapped pte in 638 * a region that doesn't allow it. 639 * 640 * The calling function must still handle the error. 641 */ 642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 643 pte_t pte, struct page *page) 644 { 645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 646 pud_t *pud = pud_offset(pgd, addr); 647 pmd_t *pmd = pmd_offset(pud, addr); 648 struct address_space *mapping; 649 pgoff_t index; 650 static unsigned long resume; 651 static unsigned long nr_shown; 652 static unsigned long nr_unshown; 653 654 /* 655 * Allow a burst of 60 reports, then keep quiet for that minute; 656 * or allow a steady drip of one report per second. 657 */ 658 if (nr_shown == 60) { 659 if (time_before(jiffies, resume)) { 660 nr_unshown++; 661 return; 662 } 663 if (nr_unshown) { 664 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 665 nr_unshown); 666 nr_unshown = 0; 667 } 668 nr_shown = 0; 669 } 670 if (nr_shown++ == 0) 671 resume = jiffies + 60 * HZ; 672 673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 674 index = linear_page_index(vma, addr); 675 676 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 677 current->comm, 678 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 679 if (page) 680 dump_page(page, "bad pte"); 681 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 682 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 683 /* 684 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 685 */ 686 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 687 vma->vm_file, 688 vma->vm_ops ? vma->vm_ops->fault : NULL, 689 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 690 mapping ? mapping->a_ops->readpage : NULL); 691 dump_stack(); 692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 693 } 694 695 /* 696 * vm_normal_page -- This function gets the "struct page" associated with a pte. 697 * 698 * "Special" mappings do not wish to be associated with a "struct page" (either 699 * it doesn't exist, or it exists but they don't want to touch it). In this 700 * case, NULL is returned here. "Normal" mappings do have a struct page. 701 * 702 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 703 * pte bit, in which case this function is trivial. Secondly, an architecture 704 * may not have a spare pte bit, which requires a more complicated scheme, 705 * described below. 706 * 707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 708 * special mapping (even if there are underlying and valid "struct pages"). 709 * COWed pages of a VM_PFNMAP are always normal. 710 * 711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 714 * mapping will always honor the rule 715 * 716 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 717 * 718 * And for normal mappings this is false. 719 * 720 * This restricts such mappings to be a linear translation from virtual address 721 * to pfn. To get around this restriction, we allow arbitrary mappings so long 722 * as the vma is not a COW mapping; in that case, we know that all ptes are 723 * special (because none can have been COWed). 724 * 725 * 726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 727 * 728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 729 * page" backing, however the difference is that _all_ pages with a struct 730 * page (that is, those where pfn_valid is true) are refcounted and considered 731 * normal pages by the VM. The disadvantage is that pages are refcounted 732 * (which can be slower and simply not an option for some PFNMAP users). The 733 * advantage is that we don't have to follow the strict linearity rule of 734 * PFNMAP mappings in order to support COWable mappings. 735 * 736 */ 737 #ifdef __HAVE_ARCH_PTE_SPECIAL 738 # define HAVE_PTE_SPECIAL 1 739 #else 740 # define HAVE_PTE_SPECIAL 0 741 #endif 742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 743 pte_t pte) 744 { 745 unsigned long pfn = pte_pfn(pte); 746 747 if (HAVE_PTE_SPECIAL) { 748 if (likely(!pte_special(pte))) 749 goto check_pfn; 750 if (vma->vm_ops && vma->vm_ops->find_special_page) 751 return vma->vm_ops->find_special_page(vma, addr); 752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 753 return NULL; 754 if (!is_zero_pfn(pfn)) 755 print_bad_pte(vma, addr, pte, NULL); 756 return NULL; 757 } 758 759 /* !HAVE_PTE_SPECIAL case follows: */ 760 761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 762 if (vma->vm_flags & VM_MIXEDMAP) { 763 if (!pfn_valid(pfn)) 764 return NULL; 765 goto out; 766 } else { 767 unsigned long off; 768 off = (addr - vma->vm_start) >> PAGE_SHIFT; 769 if (pfn == vma->vm_pgoff + off) 770 return NULL; 771 if (!is_cow_mapping(vma->vm_flags)) 772 return NULL; 773 } 774 } 775 776 if (is_zero_pfn(pfn)) 777 return NULL; 778 check_pfn: 779 if (unlikely(pfn > highest_memmap_pfn)) { 780 print_bad_pte(vma, addr, pte, NULL); 781 return NULL; 782 } 783 784 /* 785 * NOTE! We still have PageReserved() pages in the page tables. 786 * eg. VDSO mappings can cause them to exist. 787 */ 788 out: 789 return pfn_to_page(pfn); 790 } 791 792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 794 pmd_t pmd) 795 { 796 unsigned long pfn = pmd_pfn(pmd); 797 798 /* 799 * There is no pmd_special() but there may be special pmds, e.g. 800 * in a direct-access (dax) mapping, so let's just replicate the 801 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 802 */ 803 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 804 if (vma->vm_flags & VM_MIXEDMAP) { 805 if (!pfn_valid(pfn)) 806 return NULL; 807 goto out; 808 } else { 809 unsigned long off; 810 off = (addr - vma->vm_start) >> PAGE_SHIFT; 811 if (pfn == vma->vm_pgoff + off) 812 return NULL; 813 if (!is_cow_mapping(vma->vm_flags)) 814 return NULL; 815 } 816 } 817 818 if (is_zero_pfn(pfn)) 819 return NULL; 820 if (unlikely(pfn > highest_memmap_pfn)) 821 return NULL; 822 823 /* 824 * NOTE! We still have PageReserved() pages in the page tables. 825 * eg. VDSO mappings can cause them to exist. 826 */ 827 out: 828 return pfn_to_page(pfn); 829 } 830 #endif 831 832 /* 833 * copy one vm_area from one task to the other. Assumes the page tables 834 * already present in the new task to be cleared in the whole range 835 * covered by this vma. 836 */ 837 838 static inline unsigned long 839 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 840 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 841 unsigned long addr, int *rss) 842 { 843 unsigned long vm_flags = vma->vm_flags; 844 pte_t pte = *src_pte; 845 struct page *page; 846 847 /* pte contains position in swap or file, so copy. */ 848 if (unlikely(!pte_present(pte))) { 849 swp_entry_t entry = pte_to_swp_entry(pte); 850 851 if (likely(!non_swap_entry(entry))) { 852 if (swap_duplicate(entry) < 0) 853 return entry.val; 854 855 /* make sure dst_mm is on swapoff's mmlist. */ 856 if (unlikely(list_empty(&dst_mm->mmlist))) { 857 spin_lock(&mmlist_lock); 858 if (list_empty(&dst_mm->mmlist)) 859 list_add(&dst_mm->mmlist, 860 &src_mm->mmlist); 861 spin_unlock(&mmlist_lock); 862 } 863 rss[MM_SWAPENTS]++; 864 } else if (is_migration_entry(entry)) { 865 page = migration_entry_to_page(entry); 866 867 rss[mm_counter(page)]++; 868 869 if (is_write_migration_entry(entry) && 870 is_cow_mapping(vm_flags)) { 871 /* 872 * COW mappings require pages in both 873 * parent and child to be set to read. 874 */ 875 make_migration_entry_read(&entry); 876 pte = swp_entry_to_pte(entry); 877 if (pte_swp_soft_dirty(*src_pte)) 878 pte = pte_swp_mksoft_dirty(pte); 879 set_pte_at(src_mm, addr, src_pte, pte); 880 } 881 } 882 goto out_set_pte; 883 } 884 885 /* 886 * If it's a COW mapping, write protect it both 887 * in the parent and the child 888 */ 889 if (is_cow_mapping(vm_flags)) { 890 ptep_set_wrprotect(src_mm, addr, src_pte); 891 pte = pte_wrprotect(pte); 892 } 893 894 /* 895 * If it's a shared mapping, mark it clean in 896 * the child 897 */ 898 if (vm_flags & VM_SHARED) 899 pte = pte_mkclean(pte); 900 pte = pte_mkold(pte); 901 902 page = vm_normal_page(vma, addr, pte); 903 if (page) { 904 get_page(page); 905 page_dup_rmap(page, false); 906 rss[mm_counter(page)]++; 907 } 908 909 out_set_pte: 910 set_pte_at(dst_mm, addr, dst_pte, pte); 911 return 0; 912 } 913 914 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 915 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 916 unsigned long addr, unsigned long end) 917 { 918 pte_t *orig_src_pte, *orig_dst_pte; 919 pte_t *src_pte, *dst_pte; 920 spinlock_t *src_ptl, *dst_ptl; 921 int progress = 0; 922 int rss[NR_MM_COUNTERS]; 923 swp_entry_t entry = (swp_entry_t){0}; 924 925 again: 926 init_rss_vec(rss); 927 928 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 929 if (!dst_pte) 930 return -ENOMEM; 931 src_pte = pte_offset_map(src_pmd, addr); 932 src_ptl = pte_lockptr(src_mm, src_pmd); 933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 934 orig_src_pte = src_pte; 935 orig_dst_pte = dst_pte; 936 arch_enter_lazy_mmu_mode(); 937 938 do { 939 /* 940 * We are holding two locks at this point - either of them 941 * could generate latencies in another task on another CPU. 942 */ 943 if (progress >= 32) { 944 progress = 0; 945 if (need_resched() || 946 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 947 break; 948 } 949 if (pte_none(*src_pte)) { 950 progress++; 951 continue; 952 } 953 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 954 vma, addr, rss); 955 if (entry.val) 956 break; 957 progress += 8; 958 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 959 960 arch_leave_lazy_mmu_mode(); 961 spin_unlock(src_ptl); 962 pte_unmap(orig_src_pte); 963 add_mm_rss_vec(dst_mm, rss); 964 pte_unmap_unlock(orig_dst_pte, dst_ptl); 965 cond_resched(); 966 967 if (entry.val) { 968 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 969 return -ENOMEM; 970 progress = 0; 971 } 972 if (addr != end) 973 goto again; 974 return 0; 975 } 976 977 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 978 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 979 unsigned long addr, unsigned long end) 980 { 981 pmd_t *src_pmd, *dst_pmd; 982 unsigned long next; 983 984 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 985 if (!dst_pmd) 986 return -ENOMEM; 987 src_pmd = pmd_offset(src_pud, addr); 988 do { 989 next = pmd_addr_end(addr, end); 990 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 991 int err; 992 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 993 err = copy_huge_pmd(dst_mm, src_mm, 994 dst_pmd, src_pmd, addr, vma); 995 if (err == -ENOMEM) 996 return -ENOMEM; 997 if (!err) 998 continue; 999 /* fall through */ 1000 } 1001 if (pmd_none_or_clear_bad(src_pmd)) 1002 continue; 1003 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1004 vma, addr, next)) 1005 return -ENOMEM; 1006 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1007 return 0; 1008 } 1009 1010 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1011 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1012 unsigned long addr, unsigned long end) 1013 { 1014 pud_t *src_pud, *dst_pud; 1015 unsigned long next; 1016 1017 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1018 if (!dst_pud) 1019 return -ENOMEM; 1020 src_pud = pud_offset(src_pgd, addr); 1021 do { 1022 next = pud_addr_end(addr, end); 1023 if (pud_none_or_clear_bad(src_pud)) 1024 continue; 1025 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1026 vma, addr, next)) 1027 return -ENOMEM; 1028 } while (dst_pud++, src_pud++, addr = next, addr != end); 1029 return 0; 1030 } 1031 1032 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1033 struct vm_area_struct *vma) 1034 { 1035 pgd_t *src_pgd, *dst_pgd; 1036 unsigned long next; 1037 unsigned long addr = vma->vm_start; 1038 unsigned long end = vma->vm_end; 1039 unsigned long mmun_start; /* For mmu_notifiers */ 1040 unsigned long mmun_end; /* For mmu_notifiers */ 1041 bool is_cow; 1042 int ret; 1043 1044 /* 1045 * Don't copy ptes where a page fault will fill them correctly. 1046 * Fork becomes much lighter when there are big shared or private 1047 * readonly mappings. The tradeoff is that copy_page_range is more 1048 * efficient than faulting. 1049 */ 1050 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1051 !vma->anon_vma) 1052 return 0; 1053 1054 if (is_vm_hugetlb_page(vma)) 1055 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1056 1057 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1058 /* 1059 * We do not free on error cases below as remove_vma 1060 * gets called on error from higher level routine 1061 */ 1062 ret = track_pfn_copy(vma); 1063 if (ret) 1064 return ret; 1065 } 1066 1067 /* 1068 * We need to invalidate the secondary MMU mappings only when 1069 * there could be a permission downgrade on the ptes of the 1070 * parent mm. And a permission downgrade will only happen if 1071 * is_cow_mapping() returns true. 1072 */ 1073 is_cow = is_cow_mapping(vma->vm_flags); 1074 mmun_start = addr; 1075 mmun_end = end; 1076 if (is_cow) 1077 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1078 mmun_end); 1079 1080 ret = 0; 1081 dst_pgd = pgd_offset(dst_mm, addr); 1082 src_pgd = pgd_offset(src_mm, addr); 1083 do { 1084 next = pgd_addr_end(addr, end); 1085 if (pgd_none_or_clear_bad(src_pgd)) 1086 continue; 1087 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1088 vma, addr, next))) { 1089 ret = -ENOMEM; 1090 break; 1091 } 1092 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1093 1094 if (is_cow) 1095 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1096 return ret; 1097 } 1098 1099 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1100 struct vm_area_struct *vma, pmd_t *pmd, 1101 unsigned long addr, unsigned long end, 1102 struct zap_details *details) 1103 { 1104 struct mm_struct *mm = tlb->mm; 1105 int force_flush = 0; 1106 int rss[NR_MM_COUNTERS]; 1107 spinlock_t *ptl; 1108 pte_t *start_pte; 1109 pte_t *pte; 1110 swp_entry_t entry; 1111 1112 again: 1113 init_rss_vec(rss); 1114 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1115 pte = start_pte; 1116 arch_enter_lazy_mmu_mode(); 1117 do { 1118 pte_t ptent = *pte; 1119 if (pte_none(ptent)) { 1120 continue; 1121 } 1122 1123 if (pte_present(ptent)) { 1124 struct page *page; 1125 1126 page = vm_normal_page(vma, addr, ptent); 1127 if (unlikely(details) && page) { 1128 /* 1129 * unmap_shared_mapping_pages() wants to 1130 * invalidate cache without truncating: 1131 * unmap shared but keep private pages. 1132 */ 1133 if (details->check_mapping && 1134 details->check_mapping != page->mapping) 1135 continue; 1136 } 1137 ptent = ptep_get_and_clear_full(mm, addr, pte, 1138 tlb->fullmm); 1139 tlb_remove_tlb_entry(tlb, pte, addr); 1140 if (unlikely(!page)) 1141 continue; 1142 1143 if (!PageAnon(page)) { 1144 if (pte_dirty(ptent)) { 1145 /* 1146 * oom_reaper cannot tear down dirty 1147 * pages 1148 */ 1149 if (unlikely(details && details->ignore_dirty)) 1150 continue; 1151 force_flush = 1; 1152 set_page_dirty(page); 1153 } 1154 if (pte_young(ptent) && 1155 likely(!(vma->vm_flags & VM_SEQ_READ))) 1156 mark_page_accessed(page); 1157 } 1158 rss[mm_counter(page)]--; 1159 page_remove_rmap(page, false); 1160 if (unlikely(page_mapcount(page) < 0)) 1161 print_bad_pte(vma, addr, ptent, page); 1162 if (unlikely(!__tlb_remove_page(tlb, page))) { 1163 force_flush = 1; 1164 addr += PAGE_SIZE; 1165 break; 1166 } 1167 continue; 1168 } 1169 /* only check swap_entries if explicitly asked for in details */ 1170 if (unlikely(details && !details->check_swap_entries)) 1171 continue; 1172 1173 entry = pte_to_swp_entry(ptent); 1174 if (!non_swap_entry(entry)) 1175 rss[MM_SWAPENTS]--; 1176 else if (is_migration_entry(entry)) { 1177 struct page *page; 1178 1179 page = migration_entry_to_page(entry); 1180 rss[mm_counter(page)]--; 1181 } 1182 if (unlikely(!free_swap_and_cache(entry))) 1183 print_bad_pte(vma, addr, ptent, NULL); 1184 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1185 } while (pte++, addr += PAGE_SIZE, addr != end); 1186 1187 add_mm_rss_vec(mm, rss); 1188 arch_leave_lazy_mmu_mode(); 1189 1190 /* Do the actual TLB flush before dropping ptl */ 1191 if (force_flush) 1192 tlb_flush_mmu_tlbonly(tlb); 1193 pte_unmap_unlock(start_pte, ptl); 1194 1195 /* 1196 * If we forced a TLB flush (either due to running out of 1197 * batch buffers or because we needed to flush dirty TLB 1198 * entries before releasing the ptl), free the batched 1199 * memory too. Restart if we didn't do everything. 1200 */ 1201 if (force_flush) { 1202 force_flush = 0; 1203 tlb_flush_mmu_free(tlb); 1204 1205 if (addr != end) 1206 goto again; 1207 } 1208 1209 return addr; 1210 } 1211 1212 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1213 struct vm_area_struct *vma, pud_t *pud, 1214 unsigned long addr, unsigned long end, 1215 struct zap_details *details) 1216 { 1217 pmd_t *pmd; 1218 unsigned long next; 1219 1220 pmd = pmd_offset(pud, addr); 1221 do { 1222 next = pmd_addr_end(addr, end); 1223 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1224 if (next - addr != HPAGE_PMD_SIZE) { 1225 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1226 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1227 split_huge_pmd(vma, pmd, addr); 1228 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1229 goto next; 1230 /* fall through */ 1231 } 1232 /* 1233 * Here there can be other concurrent MADV_DONTNEED or 1234 * trans huge page faults running, and if the pmd is 1235 * none or trans huge it can change under us. This is 1236 * because MADV_DONTNEED holds the mmap_sem in read 1237 * mode. 1238 */ 1239 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1240 goto next; 1241 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1242 next: 1243 cond_resched(); 1244 } while (pmd++, addr = next, addr != end); 1245 1246 return addr; 1247 } 1248 1249 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1250 struct vm_area_struct *vma, pgd_t *pgd, 1251 unsigned long addr, unsigned long end, 1252 struct zap_details *details) 1253 { 1254 pud_t *pud; 1255 unsigned long next; 1256 1257 pud = pud_offset(pgd, addr); 1258 do { 1259 next = pud_addr_end(addr, end); 1260 if (pud_none_or_clear_bad(pud)) 1261 continue; 1262 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1263 } while (pud++, addr = next, addr != end); 1264 1265 return addr; 1266 } 1267 1268 void unmap_page_range(struct mmu_gather *tlb, 1269 struct vm_area_struct *vma, 1270 unsigned long addr, unsigned long end, 1271 struct zap_details *details) 1272 { 1273 pgd_t *pgd; 1274 unsigned long next; 1275 1276 BUG_ON(addr >= end); 1277 tlb_start_vma(tlb, vma); 1278 pgd = pgd_offset(vma->vm_mm, addr); 1279 do { 1280 next = pgd_addr_end(addr, end); 1281 if (pgd_none_or_clear_bad(pgd)) 1282 continue; 1283 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1284 } while (pgd++, addr = next, addr != end); 1285 tlb_end_vma(tlb, vma); 1286 } 1287 1288 1289 static void unmap_single_vma(struct mmu_gather *tlb, 1290 struct vm_area_struct *vma, unsigned long start_addr, 1291 unsigned long end_addr, 1292 struct zap_details *details) 1293 { 1294 unsigned long start = max(vma->vm_start, start_addr); 1295 unsigned long end; 1296 1297 if (start >= vma->vm_end) 1298 return; 1299 end = min(vma->vm_end, end_addr); 1300 if (end <= vma->vm_start) 1301 return; 1302 1303 if (vma->vm_file) 1304 uprobe_munmap(vma, start, end); 1305 1306 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1307 untrack_pfn(vma, 0, 0); 1308 1309 if (start != end) { 1310 if (unlikely(is_vm_hugetlb_page(vma))) { 1311 /* 1312 * It is undesirable to test vma->vm_file as it 1313 * should be non-null for valid hugetlb area. 1314 * However, vm_file will be NULL in the error 1315 * cleanup path of mmap_region. When 1316 * hugetlbfs ->mmap method fails, 1317 * mmap_region() nullifies vma->vm_file 1318 * before calling this function to clean up. 1319 * Since no pte has actually been setup, it is 1320 * safe to do nothing in this case. 1321 */ 1322 if (vma->vm_file) { 1323 i_mmap_lock_write(vma->vm_file->f_mapping); 1324 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1325 i_mmap_unlock_write(vma->vm_file->f_mapping); 1326 } 1327 } else 1328 unmap_page_range(tlb, vma, start, end, details); 1329 } 1330 } 1331 1332 /** 1333 * unmap_vmas - unmap a range of memory covered by a list of vma's 1334 * @tlb: address of the caller's struct mmu_gather 1335 * @vma: the starting vma 1336 * @start_addr: virtual address at which to start unmapping 1337 * @end_addr: virtual address at which to end unmapping 1338 * 1339 * Unmap all pages in the vma list. 1340 * 1341 * Only addresses between `start' and `end' will be unmapped. 1342 * 1343 * The VMA list must be sorted in ascending virtual address order. 1344 * 1345 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1346 * range after unmap_vmas() returns. So the only responsibility here is to 1347 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1348 * drops the lock and schedules. 1349 */ 1350 void unmap_vmas(struct mmu_gather *tlb, 1351 struct vm_area_struct *vma, unsigned long start_addr, 1352 unsigned long end_addr) 1353 { 1354 struct mm_struct *mm = vma->vm_mm; 1355 1356 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1357 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1358 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1359 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1360 } 1361 1362 /** 1363 * zap_page_range - remove user pages in a given range 1364 * @vma: vm_area_struct holding the applicable pages 1365 * @start: starting address of pages to zap 1366 * @size: number of bytes to zap 1367 * @details: details of shared cache invalidation 1368 * 1369 * Caller must protect the VMA list 1370 */ 1371 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1372 unsigned long size, struct zap_details *details) 1373 { 1374 struct mm_struct *mm = vma->vm_mm; 1375 struct mmu_gather tlb; 1376 unsigned long end = start + size; 1377 1378 lru_add_drain(); 1379 tlb_gather_mmu(&tlb, mm, start, end); 1380 update_hiwater_rss(mm); 1381 mmu_notifier_invalidate_range_start(mm, start, end); 1382 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1383 unmap_single_vma(&tlb, vma, start, end, details); 1384 mmu_notifier_invalidate_range_end(mm, start, end); 1385 tlb_finish_mmu(&tlb, start, end); 1386 } 1387 1388 /** 1389 * zap_page_range_single - remove user pages in a given range 1390 * @vma: vm_area_struct holding the applicable pages 1391 * @address: starting address of pages to zap 1392 * @size: number of bytes to zap 1393 * @details: details of shared cache invalidation 1394 * 1395 * The range must fit into one VMA. 1396 */ 1397 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1398 unsigned long size, struct zap_details *details) 1399 { 1400 struct mm_struct *mm = vma->vm_mm; 1401 struct mmu_gather tlb; 1402 unsigned long end = address + size; 1403 1404 lru_add_drain(); 1405 tlb_gather_mmu(&tlb, mm, address, end); 1406 update_hiwater_rss(mm); 1407 mmu_notifier_invalidate_range_start(mm, address, end); 1408 unmap_single_vma(&tlb, vma, address, end, details); 1409 mmu_notifier_invalidate_range_end(mm, address, end); 1410 tlb_finish_mmu(&tlb, address, end); 1411 } 1412 1413 /** 1414 * zap_vma_ptes - remove ptes mapping the vma 1415 * @vma: vm_area_struct holding ptes to be zapped 1416 * @address: starting address of pages to zap 1417 * @size: number of bytes to zap 1418 * 1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1420 * 1421 * The entire address range must be fully contained within the vma. 1422 * 1423 * Returns 0 if successful. 1424 */ 1425 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1426 unsigned long size) 1427 { 1428 if (address < vma->vm_start || address + size > vma->vm_end || 1429 !(vma->vm_flags & VM_PFNMAP)) 1430 return -1; 1431 zap_page_range_single(vma, address, size, NULL); 1432 return 0; 1433 } 1434 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1435 1436 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1437 spinlock_t **ptl) 1438 { 1439 pgd_t * pgd = pgd_offset(mm, addr); 1440 pud_t * pud = pud_alloc(mm, pgd, addr); 1441 if (pud) { 1442 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1443 if (pmd) { 1444 VM_BUG_ON(pmd_trans_huge(*pmd)); 1445 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1446 } 1447 } 1448 return NULL; 1449 } 1450 1451 /* 1452 * This is the old fallback for page remapping. 1453 * 1454 * For historical reasons, it only allows reserved pages. Only 1455 * old drivers should use this, and they needed to mark their 1456 * pages reserved for the old functions anyway. 1457 */ 1458 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1459 struct page *page, pgprot_t prot) 1460 { 1461 struct mm_struct *mm = vma->vm_mm; 1462 int retval; 1463 pte_t *pte; 1464 spinlock_t *ptl; 1465 1466 retval = -EINVAL; 1467 if (PageAnon(page)) 1468 goto out; 1469 retval = -ENOMEM; 1470 flush_dcache_page(page); 1471 pte = get_locked_pte(mm, addr, &ptl); 1472 if (!pte) 1473 goto out; 1474 retval = -EBUSY; 1475 if (!pte_none(*pte)) 1476 goto out_unlock; 1477 1478 /* Ok, finally just insert the thing.. */ 1479 get_page(page); 1480 inc_mm_counter_fast(mm, mm_counter_file(page)); 1481 page_add_file_rmap(page); 1482 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1483 1484 retval = 0; 1485 pte_unmap_unlock(pte, ptl); 1486 return retval; 1487 out_unlock: 1488 pte_unmap_unlock(pte, ptl); 1489 out: 1490 return retval; 1491 } 1492 1493 /** 1494 * vm_insert_page - insert single page into user vma 1495 * @vma: user vma to map to 1496 * @addr: target user address of this page 1497 * @page: source kernel page 1498 * 1499 * This allows drivers to insert individual pages they've allocated 1500 * into a user vma. 1501 * 1502 * The page has to be a nice clean _individual_ kernel allocation. 1503 * If you allocate a compound page, you need to have marked it as 1504 * such (__GFP_COMP), or manually just split the page up yourself 1505 * (see split_page()). 1506 * 1507 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1508 * took an arbitrary page protection parameter. This doesn't allow 1509 * that. Your vma protection will have to be set up correctly, which 1510 * means that if you want a shared writable mapping, you'd better 1511 * ask for a shared writable mapping! 1512 * 1513 * The page does not need to be reserved. 1514 * 1515 * Usually this function is called from f_op->mmap() handler 1516 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1517 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1518 * function from other places, for example from page-fault handler. 1519 */ 1520 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1521 struct page *page) 1522 { 1523 if (addr < vma->vm_start || addr >= vma->vm_end) 1524 return -EFAULT; 1525 if (!page_count(page)) 1526 return -EINVAL; 1527 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1528 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1529 BUG_ON(vma->vm_flags & VM_PFNMAP); 1530 vma->vm_flags |= VM_MIXEDMAP; 1531 } 1532 return insert_page(vma, addr, page, vma->vm_page_prot); 1533 } 1534 EXPORT_SYMBOL(vm_insert_page); 1535 1536 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1537 pfn_t pfn, pgprot_t prot) 1538 { 1539 struct mm_struct *mm = vma->vm_mm; 1540 int retval; 1541 pte_t *pte, entry; 1542 spinlock_t *ptl; 1543 1544 retval = -ENOMEM; 1545 pte = get_locked_pte(mm, addr, &ptl); 1546 if (!pte) 1547 goto out; 1548 retval = -EBUSY; 1549 if (!pte_none(*pte)) 1550 goto out_unlock; 1551 1552 /* Ok, finally just insert the thing.. */ 1553 if (pfn_t_devmap(pfn)) 1554 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1555 else 1556 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1557 set_pte_at(mm, addr, pte, entry); 1558 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1559 1560 retval = 0; 1561 out_unlock: 1562 pte_unmap_unlock(pte, ptl); 1563 out: 1564 return retval; 1565 } 1566 1567 /** 1568 * vm_insert_pfn - insert single pfn into user vma 1569 * @vma: user vma to map to 1570 * @addr: target user address of this page 1571 * @pfn: source kernel pfn 1572 * 1573 * Similar to vm_insert_page, this allows drivers to insert individual pages 1574 * they've allocated into a user vma. Same comments apply. 1575 * 1576 * This function should only be called from a vm_ops->fault handler, and 1577 * in that case the handler should return NULL. 1578 * 1579 * vma cannot be a COW mapping. 1580 * 1581 * As this is called only for pages that do not currently exist, we 1582 * do not need to flush old virtual caches or the TLB. 1583 */ 1584 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1585 unsigned long pfn) 1586 { 1587 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1588 } 1589 EXPORT_SYMBOL(vm_insert_pfn); 1590 1591 /** 1592 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1593 * @vma: user vma to map to 1594 * @addr: target user address of this page 1595 * @pfn: source kernel pfn 1596 * @pgprot: pgprot flags for the inserted page 1597 * 1598 * This is exactly like vm_insert_pfn, except that it allows drivers to 1599 * to override pgprot on a per-page basis. 1600 * 1601 * This only makes sense for IO mappings, and it makes no sense for 1602 * cow mappings. In general, using multiple vmas is preferable; 1603 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1604 * impractical. 1605 */ 1606 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1607 unsigned long pfn, pgprot_t pgprot) 1608 { 1609 int ret; 1610 /* 1611 * Technically, architectures with pte_special can avoid all these 1612 * restrictions (same for remap_pfn_range). However we would like 1613 * consistency in testing and feature parity among all, so we should 1614 * try to keep these invariants in place for everybody. 1615 */ 1616 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1617 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1618 (VM_PFNMAP|VM_MIXEDMAP)); 1619 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1620 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1621 1622 if (addr < vma->vm_start || addr >= vma->vm_end) 1623 return -EFAULT; 1624 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) 1625 return -EINVAL; 1626 1627 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1628 1629 return ret; 1630 } 1631 EXPORT_SYMBOL(vm_insert_pfn_prot); 1632 1633 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1634 pfn_t pfn) 1635 { 1636 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1637 1638 if (addr < vma->vm_start || addr >= vma->vm_end) 1639 return -EFAULT; 1640 1641 /* 1642 * If we don't have pte special, then we have to use the pfn_valid() 1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1644 * refcount the page if pfn_valid is true (hence insert_page rather 1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1646 * without pte special, it would there be refcounted as a normal page. 1647 */ 1648 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1649 struct page *page; 1650 1651 /* 1652 * At this point we are committed to insert_page() 1653 * regardless of whether the caller specified flags that 1654 * result in pfn_t_has_page() == false. 1655 */ 1656 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1657 return insert_page(vma, addr, page, vma->vm_page_prot); 1658 } 1659 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1660 } 1661 EXPORT_SYMBOL(vm_insert_mixed); 1662 1663 /* 1664 * maps a range of physical memory into the requested pages. the old 1665 * mappings are removed. any references to nonexistent pages results 1666 * in null mappings (currently treated as "copy-on-access") 1667 */ 1668 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1669 unsigned long addr, unsigned long end, 1670 unsigned long pfn, pgprot_t prot) 1671 { 1672 pte_t *pte; 1673 spinlock_t *ptl; 1674 1675 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1676 if (!pte) 1677 return -ENOMEM; 1678 arch_enter_lazy_mmu_mode(); 1679 do { 1680 BUG_ON(!pte_none(*pte)); 1681 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1682 pfn++; 1683 } while (pte++, addr += PAGE_SIZE, addr != end); 1684 arch_leave_lazy_mmu_mode(); 1685 pte_unmap_unlock(pte - 1, ptl); 1686 return 0; 1687 } 1688 1689 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1690 unsigned long addr, unsigned long end, 1691 unsigned long pfn, pgprot_t prot) 1692 { 1693 pmd_t *pmd; 1694 unsigned long next; 1695 1696 pfn -= addr >> PAGE_SHIFT; 1697 pmd = pmd_alloc(mm, pud, addr); 1698 if (!pmd) 1699 return -ENOMEM; 1700 VM_BUG_ON(pmd_trans_huge(*pmd)); 1701 do { 1702 next = pmd_addr_end(addr, end); 1703 if (remap_pte_range(mm, pmd, addr, next, 1704 pfn + (addr >> PAGE_SHIFT), prot)) 1705 return -ENOMEM; 1706 } while (pmd++, addr = next, addr != end); 1707 return 0; 1708 } 1709 1710 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1711 unsigned long addr, unsigned long end, 1712 unsigned long pfn, pgprot_t prot) 1713 { 1714 pud_t *pud; 1715 unsigned long next; 1716 1717 pfn -= addr >> PAGE_SHIFT; 1718 pud = pud_alloc(mm, pgd, addr); 1719 if (!pud) 1720 return -ENOMEM; 1721 do { 1722 next = pud_addr_end(addr, end); 1723 if (remap_pmd_range(mm, pud, addr, next, 1724 pfn + (addr >> PAGE_SHIFT), prot)) 1725 return -ENOMEM; 1726 } while (pud++, addr = next, addr != end); 1727 return 0; 1728 } 1729 1730 /** 1731 * remap_pfn_range - remap kernel memory to userspace 1732 * @vma: user vma to map to 1733 * @addr: target user address to start at 1734 * @pfn: physical address of kernel memory 1735 * @size: size of map area 1736 * @prot: page protection flags for this mapping 1737 * 1738 * Note: this is only safe if the mm semaphore is held when called. 1739 */ 1740 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1741 unsigned long pfn, unsigned long size, pgprot_t prot) 1742 { 1743 pgd_t *pgd; 1744 unsigned long next; 1745 unsigned long end = addr + PAGE_ALIGN(size); 1746 struct mm_struct *mm = vma->vm_mm; 1747 int err; 1748 1749 /* 1750 * Physically remapped pages are special. Tell the 1751 * rest of the world about it: 1752 * VM_IO tells people not to look at these pages 1753 * (accesses can have side effects). 1754 * VM_PFNMAP tells the core MM that the base pages are just 1755 * raw PFN mappings, and do not have a "struct page" associated 1756 * with them. 1757 * VM_DONTEXPAND 1758 * Disable vma merging and expanding with mremap(). 1759 * VM_DONTDUMP 1760 * Omit vma from core dump, even when VM_IO turned off. 1761 * 1762 * There's a horrible special case to handle copy-on-write 1763 * behaviour that some programs depend on. We mark the "original" 1764 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1765 * See vm_normal_page() for details. 1766 */ 1767 if (is_cow_mapping(vma->vm_flags)) { 1768 if (addr != vma->vm_start || end != vma->vm_end) 1769 return -EINVAL; 1770 vma->vm_pgoff = pfn; 1771 } 1772 1773 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1774 if (err) 1775 return -EINVAL; 1776 1777 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1778 1779 BUG_ON(addr >= end); 1780 pfn -= addr >> PAGE_SHIFT; 1781 pgd = pgd_offset(mm, addr); 1782 flush_cache_range(vma, addr, end); 1783 do { 1784 next = pgd_addr_end(addr, end); 1785 err = remap_pud_range(mm, pgd, addr, next, 1786 pfn + (addr >> PAGE_SHIFT), prot); 1787 if (err) 1788 break; 1789 } while (pgd++, addr = next, addr != end); 1790 1791 if (err) 1792 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1793 1794 return err; 1795 } 1796 EXPORT_SYMBOL(remap_pfn_range); 1797 1798 /** 1799 * vm_iomap_memory - remap memory to userspace 1800 * @vma: user vma to map to 1801 * @start: start of area 1802 * @len: size of area 1803 * 1804 * This is a simplified io_remap_pfn_range() for common driver use. The 1805 * driver just needs to give us the physical memory range to be mapped, 1806 * we'll figure out the rest from the vma information. 1807 * 1808 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1809 * whatever write-combining details or similar. 1810 */ 1811 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1812 { 1813 unsigned long vm_len, pfn, pages; 1814 1815 /* Check that the physical memory area passed in looks valid */ 1816 if (start + len < start) 1817 return -EINVAL; 1818 /* 1819 * You *really* shouldn't map things that aren't page-aligned, 1820 * but we've historically allowed it because IO memory might 1821 * just have smaller alignment. 1822 */ 1823 len += start & ~PAGE_MASK; 1824 pfn = start >> PAGE_SHIFT; 1825 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1826 if (pfn + pages < pfn) 1827 return -EINVAL; 1828 1829 /* We start the mapping 'vm_pgoff' pages into the area */ 1830 if (vma->vm_pgoff > pages) 1831 return -EINVAL; 1832 pfn += vma->vm_pgoff; 1833 pages -= vma->vm_pgoff; 1834 1835 /* Can we fit all of the mapping? */ 1836 vm_len = vma->vm_end - vma->vm_start; 1837 if (vm_len >> PAGE_SHIFT > pages) 1838 return -EINVAL; 1839 1840 /* Ok, let it rip */ 1841 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1842 } 1843 EXPORT_SYMBOL(vm_iomap_memory); 1844 1845 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1846 unsigned long addr, unsigned long end, 1847 pte_fn_t fn, void *data) 1848 { 1849 pte_t *pte; 1850 int err; 1851 pgtable_t token; 1852 spinlock_t *uninitialized_var(ptl); 1853 1854 pte = (mm == &init_mm) ? 1855 pte_alloc_kernel(pmd, addr) : 1856 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1857 if (!pte) 1858 return -ENOMEM; 1859 1860 BUG_ON(pmd_huge(*pmd)); 1861 1862 arch_enter_lazy_mmu_mode(); 1863 1864 token = pmd_pgtable(*pmd); 1865 1866 do { 1867 err = fn(pte++, token, addr, data); 1868 if (err) 1869 break; 1870 } while (addr += PAGE_SIZE, addr != end); 1871 1872 arch_leave_lazy_mmu_mode(); 1873 1874 if (mm != &init_mm) 1875 pte_unmap_unlock(pte-1, ptl); 1876 return err; 1877 } 1878 1879 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1880 unsigned long addr, unsigned long end, 1881 pte_fn_t fn, void *data) 1882 { 1883 pmd_t *pmd; 1884 unsigned long next; 1885 int err; 1886 1887 BUG_ON(pud_huge(*pud)); 1888 1889 pmd = pmd_alloc(mm, pud, addr); 1890 if (!pmd) 1891 return -ENOMEM; 1892 do { 1893 next = pmd_addr_end(addr, end); 1894 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1895 if (err) 1896 break; 1897 } while (pmd++, addr = next, addr != end); 1898 return err; 1899 } 1900 1901 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1902 unsigned long addr, unsigned long end, 1903 pte_fn_t fn, void *data) 1904 { 1905 pud_t *pud; 1906 unsigned long next; 1907 int err; 1908 1909 pud = pud_alloc(mm, pgd, addr); 1910 if (!pud) 1911 return -ENOMEM; 1912 do { 1913 next = pud_addr_end(addr, end); 1914 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1915 if (err) 1916 break; 1917 } while (pud++, addr = next, addr != end); 1918 return err; 1919 } 1920 1921 /* 1922 * Scan a region of virtual memory, filling in page tables as necessary 1923 * and calling a provided function on each leaf page table. 1924 */ 1925 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1926 unsigned long size, pte_fn_t fn, void *data) 1927 { 1928 pgd_t *pgd; 1929 unsigned long next; 1930 unsigned long end = addr + size; 1931 int err; 1932 1933 if (WARN_ON(addr >= end)) 1934 return -EINVAL; 1935 1936 pgd = pgd_offset(mm, addr); 1937 do { 1938 next = pgd_addr_end(addr, end); 1939 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1940 if (err) 1941 break; 1942 } while (pgd++, addr = next, addr != end); 1943 1944 return err; 1945 } 1946 EXPORT_SYMBOL_GPL(apply_to_page_range); 1947 1948 /* 1949 * handle_pte_fault chooses page fault handler according to an entry which was 1950 * read non-atomically. Before making any commitment, on those architectures 1951 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1952 * parts, do_swap_page must check under lock before unmapping the pte and 1953 * proceeding (but do_wp_page is only called after already making such a check; 1954 * and do_anonymous_page can safely check later on). 1955 */ 1956 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1957 pte_t *page_table, pte_t orig_pte) 1958 { 1959 int same = 1; 1960 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1961 if (sizeof(pte_t) > sizeof(unsigned long)) { 1962 spinlock_t *ptl = pte_lockptr(mm, pmd); 1963 spin_lock(ptl); 1964 same = pte_same(*page_table, orig_pte); 1965 spin_unlock(ptl); 1966 } 1967 #endif 1968 pte_unmap(page_table); 1969 return same; 1970 } 1971 1972 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1973 { 1974 debug_dma_assert_idle(src); 1975 1976 /* 1977 * If the source page was a PFN mapping, we don't have 1978 * a "struct page" for it. We do a best-effort copy by 1979 * just copying from the original user address. If that 1980 * fails, we just zero-fill it. Live with it. 1981 */ 1982 if (unlikely(!src)) { 1983 void *kaddr = kmap_atomic(dst); 1984 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1985 1986 /* 1987 * This really shouldn't fail, because the page is there 1988 * in the page tables. But it might just be unreadable, 1989 * in which case we just give up and fill the result with 1990 * zeroes. 1991 */ 1992 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1993 clear_page(kaddr); 1994 kunmap_atomic(kaddr); 1995 flush_dcache_page(dst); 1996 } else 1997 copy_user_highpage(dst, src, va, vma); 1998 } 1999 2000 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2001 { 2002 struct file *vm_file = vma->vm_file; 2003 2004 if (vm_file) 2005 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2006 2007 /* 2008 * Special mappings (e.g. VDSO) do not have any file so fake 2009 * a default GFP_KERNEL for them. 2010 */ 2011 return GFP_KERNEL; 2012 } 2013 2014 /* 2015 * Notify the address space that the page is about to become writable so that 2016 * it can prohibit this or wait for the page to get into an appropriate state. 2017 * 2018 * We do this without the lock held, so that it can sleep if it needs to. 2019 */ 2020 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2021 unsigned long address) 2022 { 2023 struct vm_fault vmf; 2024 int ret; 2025 2026 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2027 vmf.pgoff = page->index; 2028 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2029 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2030 vmf.page = page; 2031 vmf.cow_page = NULL; 2032 2033 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2034 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2035 return ret; 2036 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2037 lock_page(page); 2038 if (!page->mapping) { 2039 unlock_page(page); 2040 return 0; /* retry */ 2041 } 2042 ret |= VM_FAULT_LOCKED; 2043 } else 2044 VM_BUG_ON_PAGE(!PageLocked(page), page); 2045 return ret; 2046 } 2047 2048 /* 2049 * Handle write page faults for pages that can be reused in the current vma 2050 * 2051 * This can happen either due to the mapping being with the VM_SHARED flag, 2052 * or due to us being the last reference standing to the page. In either 2053 * case, all we need to do here is to mark the page as writable and update 2054 * any related book-keeping. 2055 */ 2056 static inline int wp_page_reuse(struct mm_struct *mm, 2057 struct vm_area_struct *vma, unsigned long address, 2058 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2059 struct page *page, int page_mkwrite, 2060 int dirty_shared) 2061 __releases(ptl) 2062 { 2063 pte_t entry; 2064 /* 2065 * Clear the pages cpupid information as the existing 2066 * information potentially belongs to a now completely 2067 * unrelated process. 2068 */ 2069 if (page) 2070 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2071 2072 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2073 entry = pte_mkyoung(orig_pte); 2074 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2075 if (ptep_set_access_flags(vma, address, page_table, entry, 1)) 2076 update_mmu_cache(vma, address, page_table); 2077 pte_unmap_unlock(page_table, ptl); 2078 2079 if (dirty_shared) { 2080 struct address_space *mapping; 2081 int dirtied; 2082 2083 if (!page_mkwrite) 2084 lock_page(page); 2085 2086 dirtied = set_page_dirty(page); 2087 VM_BUG_ON_PAGE(PageAnon(page), page); 2088 mapping = page->mapping; 2089 unlock_page(page); 2090 put_page(page); 2091 2092 if ((dirtied || page_mkwrite) && mapping) { 2093 /* 2094 * Some device drivers do not set page.mapping 2095 * but still dirty their pages 2096 */ 2097 balance_dirty_pages_ratelimited(mapping); 2098 } 2099 2100 if (!page_mkwrite) 2101 file_update_time(vma->vm_file); 2102 } 2103 2104 return VM_FAULT_WRITE; 2105 } 2106 2107 /* 2108 * Handle the case of a page which we actually need to copy to a new page. 2109 * 2110 * Called with mmap_sem locked and the old page referenced, but 2111 * without the ptl held. 2112 * 2113 * High level logic flow: 2114 * 2115 * - Allocate a page, copy the content of the old page to the new one. 2116 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2117 * - Take the PTL. If the pte changed, bail out and release the allocated page 2118 * - If the pte is still the way we remember it, update the page table and all 2119 * relevant references. This includes dropping the reference the page-table 2120 * held to the old page, as well as updating the rmap. 2121 * - In any case, unlock the PTL and drop the reference we took to the old page. 2122 */ 2123 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, 2124 unsigned long address, pte_t *page_table, pmd_t *pmd, 2125 pte_t orig_pte, struct page *old_page) 2126 { 2127 struct page *new_page = NULL; 2128 spinlock_t *ptl = NULL; 2129 pte_t entry; 2130 int page_copied = 0; 2131 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ 2132 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ 2133 struct mem_cgroup *memcg; 2134 2135 if (unlikely(anon_vma_prepare(vma))) 2136 goto oom; 2137 2138 if (is_zero_pfn(pte_pfn(orig_pte))) { 2139 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2140 if (!new_page) 2141 goto oom; 2142 } else { 2143 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2144 if (!new_page) 2145 goto oom; 2146 cow_user_page(new_page, old_page, address, vma); 2147 } 2148 2149 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2150 goto oom_free_new; 2151 2152 __SetPageUptodate(new_page); 2153 2154 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2155 2156 /* 2157 * Re-check the pte - we dropped the lock 2158 */ 2159 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2160 if (likely(pte_same(*page_table, orig_pte))) { 2161 if (old_page) { 2162 if (!PageAnon(old_page)) { 2163 dec_mm_counter_fast(mm, 2164 mm_counter_file(old_page)); 2165 inc_mm_counter_fast(mm, MM_ANONPAGES); 2166 } 2167 } else { 2168 inc_mm_counter_fast(mm, MM_ANONPAGES); 2169 } 2170 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2171 entry = mk_pte(new_page, vma->vm_page_prot); 2172 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2173 /* 2174 * Clear the pte entry and flush it first, before updating the 2175 * pte with the new entry. This will avoid a race condition 2176 * seen in the presence of one thread doing SMC and another 2177 * thread doing COW. 2178 */ 2179 ptep_clear_flush_notify(vma, address, page_table); 2180 page_add_new_anon_rmap(new_page, vma, address, false); 2181 mem_cgroup_commit_charge(new_page, memcg, false, false); 2182 lru_cache_add_active_or_unevictable(new_page, vma); 2183 /* 2184 * We call the notify macro here because, when using secondary 2185 * mmu page tables (such as kvm shadow page tables), we want the 2186 * new page to be mapped directly into the secondary page table. 2187 */ 2188 set_pte_at_notify(mm, address, page_table, entry); 2189 update_mmu_cache(vma, address, page_table); 2190 if (old_page) { 2191 /* 2192 * Only after switching the pte to the new page may 2193 * we remove the mapcount here. Otherwise another 2194 * process may come and find the rmap count decremented 2195 * before the pte is switched to the new page, and 2196 * "reuse" the old page writing into it while our pte 2197 * here still points into it and can be read by other 2198 * threads. 2199 * 2200 * The critical issue is to order this 2201 * page_remove_rmap with the ptp_clear_flush above. 2202 * Those stores are ordered by (if nothing else,) 2203 * the barrier present in the atomic_add_negative 2204 * in page_remove_rmap. 2205 * 2206 * Then the TLB flush in ptep_clear_flush ensures that 2207 * no process can access the old page before the 2208 * decremented mapcount is visible. And the old page 2209 * cannot be reused until after the decremented 2210 * mapcount is visible. So transitively, TLBs to 2211 * old page will be flushed before it can be reused. 2212 */ 2213 page_remove_rmap(old_page, false); 2214 } 2215 2216 /* Free the old page.. */ 2217 new_page = old_page; 2218 page_copied = 1; 2219 } else { 2220 mem_cgroup_cancel_charge(new_page, memcg, false); 2221 } 2222 2223 if (new_page) 2224 put_page(new_page); 2225 2226 pte_unmap_unlock(page_table, ptl); 2227 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2228 if (old_page) { 2229 /* 2230 * Don't let another task, with possibly unlocked vma, 2231 * keep the mlocked page. 2232 */ 2233 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2234 lock_page(old_page); /* LRU manipulation */ 2235 if (PageMlocked(old_page)) 2236 munlock_vma_page(old_page); 2237 unlock_page(old_page); 2238 } 2239 put_page(old_page); 2240 } 2241 return page_copied ? VM_FAULT_WRITE : 0; 2242 oom_free_new: 2243 put_page(new_page); 2244 oom: 2245 if (old_page) 2246 put_page(old_page); 2247 return VM_FAULT_OOM; 2248 } 2249 2250 /* 2251 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2252 * mapping 2253 */ 2254 static int wp_pfn_shared(struct mm_struct *mm, 2255 struct vm_area_struct *vma, unsigned long address, 2256 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2257 pmd_t *pmd) 2258 { 2259 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2260 struct vm_fault vmf = { 2261 .page = NULL, 2262 .pgoff = linear_page_index(vma, address), 2263 .virtual_address = (void __user *)(address & PAGE_MASK), 2264 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2265 }; 2266 int ret; 2267 2268 pte_unmap_unlock(page_table, ptl); 2269 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2270 if (ret & VM_FAULT_ERROR) 2271 return ret; 2272 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2273 /* 2274 * We might have raced with another page fault while we 2275 * released the pte_offset_map_lock. 2276 */ 2277 if (!pte_same(*page_table, orig_pte)) { 2278 pte_unmap_unlock(page_table, ptl); 2279 return 0; 2280 } 2281 } 2282 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, 2283 NULL, 0, 0); 2284 } 2285 2286 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, 2287 unsigned long address, pte_t *page_table, 2288 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, 2289 struct page *old_page) 2290 __releases(ptl) 2291 { 2292 int page_mkwrite = 0; 2293 2294 get_page(old_page); 2295 2296 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2297 int tmp; 2298 2299 pte_unmap_unlock(page_table, ptl); 2300 tmp = do_page_mkwrite(vma, old_page, address); 2301 if (unlikely(!tmp || (tmp & 2302 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2303 put_page(old_page); 2304 return tmp; 2305 } 2306 /* 2307 * Since we dropped the lock we need to revalidate 2308 * the PTE as someone else may have changed it. If 2309 * they did, we just return, as we can count on the 2310 * MMU to tell us if they didn't also make it writable. 2311 */ 2312 page_table = pte_offset_map_lock(mm, pmd, address, 2313 &ptl); 2314 if (!pte_same(*page_table, orig_pte)) { 2315 unlock_page(old_page); 2316 pte_unmap_unlock(page_table, ptl); 2317 put_page(old_page); 2318 return 0; 2319 } 2320 page_mkwrite = 1; 2321 } 2322 2323 return wp_page_reuse(mm, vma, address, page_table, ptl, 2324 orig_pte, old_page, page_mkwrite, 1); 2325 } 2326 2327 /* 2328 * This routine handles present pages, when users try to write 2329 * to a shared page. It is done by copying the page to a new address 2330 * and decrementing the shared-page counter for the old page. 2331 * 2332 * Note that this routine assumes that the protection checks have been 2333 * done by the caller (the low-level page fault routine in most cases). 2334 * Thus we can safely just mark it writable once we've done any necessary 2335 * COW. 2336 * 2337 * We also mark the page dirty at this point even though the page will 2338 * change only once the write actually happens. This avoids a few races, 2339 * and potentially makes it more efficient. 2340 * 2341 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2342 * but allow concurrent faults), with pte both mapped and locked. 2343 * We return with mmap_sem still held, but pte unmapped and unlocked. 2344 */ 2345 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2346 unsigned long address, pte_t *page_table, pmd_t *pmd, 2347 spinlock_t *ptl, pte_t orig_pte) 2348 __releases(ptl) 2349 { 2350 struct page *old_page; 2351 2352 old_page = vm_normal_page(vma, address, orig_pte); 2353 if (!old_page) { 2354 /* 2355 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2356 * VM_PFNMAP VMA. 2357 * 2358 * We should not cow pages in a shared writeable mapping. 2359 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2360 */ 2361 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2362 (VM_WRITE|VM_SHARED)) 2363 return wp_pfn_shared(mm, vma, address, page_table, ptl, 2364 orig_pte, pmd); 2365 2366 pte_unmap_unlock(page_table, ptl); 2367 return wp_page_copy(mm, vma, address, page_table, pmd, 2368 orig_pte, old_page); 2369 } 2370 2371 /* 2372 * Take out anonymous pages first, anonymous shared vmas are 2373 * not dirty accountable. 2374 */ 2375 if (PageAnon(old_page) && !PageKsm(old_page)) { 2376 int total_mapcount; 2377 if (!trylock_page(old_page)) { 2378 get_page(old_page); 2379 pte_unmap_unlock(page_table, ptl); 2380 lock_page(old_page); 2381 page_table = pte_offset_map_lock(mm, pmd, address, 2382 &ptl); 2383 if (!pte_same(*page_table, orig_pte)) { 2384 unlock_page(old_page); 2385 pte_unmap_unlock(page_table, ptl); 2386 put_page(old_page); 2387 return 0; 2388 } 2389 put_page(old_page); 2390 } 2391 if (reuse_swap_page(old_page, &total_mapcount)) { 2392 if (total_mapcount == 1) { 2393 /* 2394 * The page is all ours. Move it to 2395 * our anon_vma so the rmap code will 2396 * not search our parent or siblings. 2397 * Protected against the rmap code by 2398 * the page lock. 2399 */ 2400 page_move_anon_rmap(compound_head(old_page), 2401 vma, address); 2402 } 2403 unlock_page(old_page); 2404 return wp_page_reuse(mm, vma, address, page_table, ptl, 2405 orig_pte, old_page, 0, 0); 2406 } 2407 unlock_page(old_page); 2408 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2409 (VM_WRITE|VM_SHARED))) { 2410 return wp_page_shared(mm, vma, address, page_table, pmd, 2411 ptl, orig_pte, old_page); 2412 } 2413 2414 /* 2415 * Ok, we need to copy. Oh, well.. 2416 */ 2417 get_page(old_page); 2418 2419 pte_unmap_unlock(page_table, ptl); 2420 return wp_page_copy(mm, vma, address, page_table, pmd, 2421 orig_pte, old_page); 2422 } 2423 2424 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2425 unsigned long start_addr, unsigned long end_addr, 2426 struct zap_details *details) 2427 { 2428 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2429 } 2430 2431 static inline void unmap_mapping_range_tree(struct rb_root *root, 2432 struct zap_details *details) 2433 { 2434 struct vm_area_struct *vma; 2435 pgoff_t vba, vea, zba, zea; 2436 2437 vma_interval_tree_foreach(vma, root, 2438 details->first_index, details->last_index) { 2439 2440 vba = vma->vm_pgoff; 2441 vea = vba + vma_pages(vma) - 1; 2442 zba = details->first_index; 2443 if (zba < vba) 2444 zba = vba; 2445 zea = details->last_index; 2446 if (zea > vea) 2447 zea = vea; 2448 2449 unmap_mapping_range_vma(vma, 2450 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2451 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2452 details); 2453 } 2454 } 2455 2456 /** 2457 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2458 * address_space corresponding to the specified page range in the underlying 2459 * file. 2460 * 2461 * @mapping: the address space containing mmaps to be unmapped. 2462 * @holebegin: byte in first page to unmap, relative to the start of 2463 * the underlying file. This will be rounded down to a PAGE_SIZE 2464 * boundary. Note that this is different from truncate_pagecache(), which 2465 * must keep the partial page. In contrast, we must get rid of 2466 * partial pages. 2467 * @holelen: size of prospective hole in bytes. This will be rounded 2468 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2469 * end of the file. 2470 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2471 * but 0 when invalidating pagecache, don't throw away private data. 2472 */ 2473 void unmap_mapping_range(struct address_space *mapping, 2474 loff_t const holebegin, loff_t const holelen, int even_cows) 2475 { 2476 struct zap_details details = { }; 2477 pgoff_t hba = holebegin >> PAGE_SHIFT; 2478 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2479 2480 /* Check for overflow. */ 2481 if (sizeof(holelen) > sizeof(hlen)) { 2482 long long holeend = 2483 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2484 if (holeend & ~(long long)ULONG_MAX) 2485 hlen = ULONG_MAX - hba + 1; 2486 } 2487 2488 details.check_mapping = even_cows? NULL: mapping; 2489 details.first_index = hba; 2490 details.last_index = hba + hlen - 1; 2491 if (details.last_index < details.first_index) 2492 details.last_index = ULONG_MAX; 2493 2494 2495 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */ 2496 i_mmap_lock_write(mapping); 2497 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2498 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2499 i_mmap_unlock_write(mapping); 2500 } 2501 EXPORT_SYMBOL(unmap_mapping_range); 2502 2503 /* 2504 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2505 * but allow concurrent faults), and pte mapped but not yet locked. 2506 * We return with pte unmapped and unlocked. 2507 * 2508 * We return with the mmap_sem locked or unlocked in the same cases 2509 * as does filemap_fault(). 2510 */ 2511 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2512 unsigned long address, pte_t *page_table, pmd_t *pmd, 2513 unsigned int flags, pte_t orig_pte) 2514 { 2515 spinlock_t *ptl; 2516 struct page *page, *swapcache; 2517 struct mem_cgroup *memcg; 2518 swp_entry_t entry; 2519 pte_t pte; 2520 int locked; 2521 int exclusive = 0; 2522 int ret = 0; 2523 2524 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2525 goto out; 2526 2527 entry = pte_to_swp_entry(orig_pte); 2528 if (unlikely(non_swap_entry(entry))) { 2529 if (is_migration_entry(entry)) { 2530 migration_entry_wait(mm, pmd, address); 2531 } else if (is_hwpoison_entry(entry)) { 2532 ret = VM_FAULT_HWPOISON; 2533 } else { 2534 print_bad_pte(vma, address, orig_pte, NULL); 2535 ret = VM_FAULT_SIGBUS; 2536 } 2537 goto out; 2538 } 2539 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2540 page = lookup_swap_cache(entry); 2541 if (!page) { 2542 page = swapin_readahead(entry, 2543 GFP_HIGHUSER_MOVABLE, vma, address); 2544 if (!page) { 2545 /* 2546 * Back out if somebody else faulted in this pte 2547 * while we released the pte lock. 2548 */ 2549 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2550 if (likely(pte_same(*page_table, orig_pte))) 2551 ret = VM_FAULT_OOM; 2552 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2553 goto unlock; 2554 } 2555 2556 /* Had to read the page from swap area: Major fault */ 2557 ret = VM_FAULT_MAJOR; 2558 count_vm_event(PGMAJFAULT); 2559 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2560 } else if (PageHWPoison(page)) { 2561 /* 2562 * hwpoisoned dirty swapcache pages are kept for killing 2563 * owner processes (which may be unknown at hwpoison time) 2564 */ 2565 ret = VM_FAULT_HWPOISON; 2566 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2567 swapcache = page; 2568 goto out_release; 2569 } 2570 2571 swapcache = page; 2572 locked = lock_page_or_retry(page, mm, flags); 2573 2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2575 if (!locked) { 2576 ret |= VM_FAULT_RETRY; 2577 goto out_release; 2578 } 2579 2580 /* 2581 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2582 * release the swapcache from under us. The page pin, and pte_same 2583 * test below, are not enough to exclude that. Even if it is still 2584 * swapcache, we need to check that the page's swap has not changed. 2585 */ 2586 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2587 goto out_page; 2588 2589 page = ksm_might_need_to_copy(page, vma, address); 2590 if (unlikely(!page)) { 2591 ret = VM_FAULT_OOM; 2592 page = swapcache; 2593 goto out_page; 2594 } 2595 2596 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) { 2597 ret = VM_FAULT_OOM; 2598 goto out_page; 2599 } 2600 2601 /* 2602 * Back out if somebody else already faulted in this pte. 2603 */ 2604 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2605 if (unlikely(!pte_same(*page_table, orig_pte))) 2606 goto out_nomap; 2607 2608 if (unlikely(!PageUptodate(page))) { 2609 ret = VM_FAULT_SIGBUS; 2610 goto out_nomap; 2611 } 2612 2613 /* 2614 * The page isn't present yet, go ahead with the fault. 2615 * 2616 * Be careful about the sequence of operations here. 2617 * To get its accounting right, reuse_swap_page() must be called 2618 * while the page is counted on swap but not yet in mapcount i.e. 2619 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2620 * must be called after the swap_free(), or it will never succeed. 2621 */ 2622 2623 inc_mm_counter_fast(mm, MM_ANONPAGES); 2624 dec_mm_counter_fast(mm, MM_SWAPENTS); 2625 pte = mk_pte(page, vma->vm_page_prot); 2626 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2627 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2628 flags &= ~FAULT_FLAG_WRITE; 2629 ret |= VM_FAULT_WRITE; 2630 exclusive = RMAP_EXCLUSIVE; 2631 } 2632 flush_icache_page(vma, page); 2633 if (pte_swp_soft_dirty(orig_pte)) 2634 pte = pte_mksoft_dirty(pte); 2635 set_pte_at(mm, address, page_table, pte); 2636 if (page == swapcache) { 2637 do_page_add_anon_rmap(page, vma, address, exclusive); 2638 mem_cgroup_commit_charge(page, memcg, true, false); 2639 } else { /* ksm created a completely new copy */ 2640 page_add_new_anon_rmap(page, vma, address, false); 2641 mem_cgroup_commit_charge(page, memcg, false, false); 2642 lru_cache_add_active_or_unevictable(page, vma); 2643 } 2644 2645 swap_free(entry); 2646 if (mem_cgroup_swap_full(page) || 2647 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2648 try_to_free_swap(page); 2649 unlock_page(page); 2650 if (page != swapcache) { 2651 /* 2652 * Hold the lock to avoid the swap entry to be reused 2653 * until we take the PT lock for the pte_same() check 2654 * (to avoid false positives from pte_same). For 2655 * further safety release the lock after the swap_free 2656 * so that the swap count won't change under a 2657 * parallel locked swapcache. 2658 */ 2659 unlock_page(swapcache); 2660 put_page(swapcache); 2661 } 2662 2663 if (flags & FAULT_FLAG_WRITE) { 2664 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2665 if (ret & VM_FAULT_ERROR) 2666 ret &= VM_FAULT_ERROR; 2667 goto out; 2668 } 2669 2670 /* No need to invalidate - it was non-present before */ 2671 update_mmu_cache(vma, address, page_table); 2672 unlock: 2673 pte_unmap_unlock(page_table, ptl); 2674 out: 2675 return ret; 2676 out_nomap: 2677 mem_cgroup_cancel_charge(page, memcg, false); 2678 pte_unmap_unlock(page_table, ptl); 2679 out_page: 2680 unlock_page(page); 2681 out_release: 2682 put_page(page); 2683 if (page != swapcache) { 2684 unlock_page(swapcache); 2685 put_page(swapcache); 2686 } 2687 return ret; 2688 } 2689 2690 /* 2691 * This is like a special single-page "expand_{down|up}wards()", 2692 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2693 * doesn't hit another vma. 2694 */ 2695 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2696 { 2697 address &= PAGE_MASK; 2698 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2699 struct vm_area_struct *prev = vma->vm_prev; 2700 2701 /* 2702 * Is there a mapping abutting this one below? 2703 * 2704 * That's only ok if it's the same stack mapping 2705 * that has gotten split.. 2706 */ 2707 if (prev && prev->vm_end == address) 2708 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2709 2710 return expand_downwards(vma, address - PAGE_SIZE); 2711 } 2712 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2713 struct vm_area_struct *next = vma->vm_next; 2714 2715 /* As VM_GROWSDOWN but s/below/above/ */ 2716 if (next && next->vm_start == address + PAGE_SIZE) 2717 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2718 2719 return expand_upwards(vma, address + PAGE_SIZE); 2720 } 2721 return 0; 2722 } 2723 2724 /* 2725 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2726 * but allow concurrent faults), and pte mapped but not yet locked. 2727 * We return with mmap_sem still held, but pte unmapped and unlocked. 2728 */ 2729 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2730 unsigned long address, pte_t *page_table, pmd_t *pmd, 2731 unsigned int flags) 2732 { 2733 struct mem_cgroup *memcg; 2734 struct page *page; 2735 spinlock_t *ptl; 2736 pte_t entry; 2737 2738 pte_unmap(page_table); 2739 2740 /* File mapping without ->vm_ops ? */ 2741 if (vma->vm_flags & VM_SHARED) 2742 return VM_FAULT_SIGBUS; 2743 2744 /* Check if we need to add a guard page to the stack */ 2745 if (check_stack_guard_page(vma, address) < 0) 2746 return VM_FAULT_SIGSEGV; 2747 2748 /* Use the zero-page for reads */ 2749 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2750 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2751 vma->vm_page_prot)); 2752 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2753 if (!pte_none(*page_table)) 2754 goto unlock; 2755 /* Deliver the page fault to userland, check inside PT lock */ 2756 if (userfaultfd_missing(vma)) { 2757 pte_unmap_unlock(page_table, ptl); 2758 return handle_userfault(vma, address, flags, 2759 VM_UFFD_MISSING); 2760 } 2761 goto setpte; 2762 } 2763 2764 /* Allocate our own private page. */ 2765 if (unlikely(anon_vma_prepare(vma))) 2766 goto oom; 2767 page = alloc_zeroed_user_highpage_movable(vma, address); 2768 if (!page) 2769 goto oom; 2770 2771 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) 2772 goto oom_free_page; 2773 2774 /* 2775 * The memory barrier inside __SetPageUptodate makes sure that 2776 * preceeding stores to the page contents become visible before 2777 * the set_pte_at() write. 2778 */ 2779 __SetPageUptodate(page); 2780 2781 entry = mk_pte(page, vma->vm_page_prot); 2782 if (vma->vm_flags & VM_WRITE) 2783 entry = pte_mkwrite(pte_mkdirty(entry)); 2784 2785 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2786 if (!pte_none(*page_table)) 2787 goto release; 2788 2789 /* Deliver the page fault to userland, check inside PT lock */ 2790 if (userfaultfd_missing(vma)) { 2791 pte_unmap_unlock(page_table, ptl); 2792 mem_cgroup_cancel_charge(page, memcg, false); 2793 put_page(page); 2794 return handle_userfault(vma, address, flags, 2795 VM_UFFD_MISSING); 2796 } 2797 2798 inc_mm_counter_fast(mm, MM_ANONPAGES); 2799 page_add_new_anon_rmap(page, vma, address, false); 2800 mem_cgroup_commit_charge(page, memcg, false, false); 2801 lru_cache_add_active_or_unevictable(page, vma); 2802 setpte: 2803 set_pte_at(mm, address, page_table, entry); 2804 2805 /* No need to invalidate - it was non-present before */ 2806 update_mmu_cache(vma, address, page_table); 2807 unlock: 2808 pte_unmap_unlock(page_table, ptl); 2809 return 0; 2810 release: 2811 mem_cgroup_cancel_charge(page, memcg, false); 2812 put_page(page); 2813 goto unlock; 2814 oom_free_page: 2815 put_page(page); 2816 oom: 2817 return VM_FAULT_OOM; 2818 } 2819 2820 /* 2821 * The mmap_sem must have been held on entry, and may have been 2822 * released depending on flags and vma->vm_ops->fault() return value. 2823 * See filemap_fault() and __lock_page_retry(). 2824 */ 2825 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2826 pgoff_t pgoff, unsigned int flags, 2827 struct page *cow_page, struct page **page) 2828 { 2829 struct vm_fault vmf; 2830 int ret; 2831 2832 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2833 vmf.pgoff = pgoff; 2834 vmf.flags = flags; 2835 vmf.page = NULL; 2836 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2837 vmf.cow_page = cow_page; 2838 2839 ret = vma->vm_ops->fault(vma, &vmf); 2840 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2841 return ret; 2842 if (!vmf.page) 2843 goto out; 2844 2845 if (unlikely(PageHWPoison(vmf.page))) { 2846 if (ret & VM_FAULT_LOCKED) 2847 unlock_page(vmf.page); 2848 put_page(vmf.page); 2849 return VM_FAULT_HWPOISON; 2850 } 2851 2852 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2853 lock_page(vmf.page); 2854 else 2855 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2856 2857 out: 2858 *page = vmf.page; 2859 return ret; 2860 } 2861 2862 /** 2863 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2864 * 2865 * @vma: virtual memory area 2866 * @address: user virtual address 2867 * @page: page to map 2868 * @pte: pointer to target page table entry 2869 * @write: true, if new entry is writable 2870 * @anon: true, if it's anonymous page 2871 * 2872 * Caller must hold page table lock relevant for @pte. 2873 * 2874 * Target users are page handler itself and implementations of 2875 * vm_ops->map_pages. 2876 */ 2877 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2878 struct page *page, pte_t *pte, bool write, bool anon) 2879 { 2880 pte_t entry; 2881 2882 flush_icache_page(vma, page); 2883 entry = mk_pte(page, vma->vm_page_prot); 2884 if (write) 2885 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2886 if (anon) { 2887 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2888 page_add_new_anon_rmap(page, vma, address, false); 2889 } else { 2890 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 2891 page_add_file_rmap(page); 2892 } 2893 set_pte_at(vma->vm_mm, address, pte, entry); 2894 2895 /* no need to invalidate: a not-present page won't be cached */ 2896 update_mmu_cache(vma, address, pte); 2897 } 2898 2899 static unsigned long fault_around_bytes __read_mostly = 2900 rounddown_pow_of_two(65536); 2901 2902 #ifdef CONFIG_DEBUG_FS 2903 static int fault_around_bytes_get(void *data, u64 *val) 2904 { 2905 *val = fault_around_bytes; 2906 return 0; 2907 } 2908 2909 /* 2910 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2911 * rounded down to nearest page order. It's what do_fault_around() expects to 2912 * see. 2913 */ 2914 static int fault_around_bytes_set(void *data, u64 val) 2915 { 2916 if (val / PAGE_SIZE > PTRS_PER_PTE) 2917 return -EINVAL; 2918 if (val > PAGE_SIZE) 2919 fault_around_bytes = rounddown_pow_of_two(val); 2920 else 2921 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2922 return 0; 2923 } 2924 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2925 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2926 2927 static int __init fault_around_debugfs(void) 2928 { 2929 void *ret; 2930 2931 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2932 &fault_around_bytes_fops); 2933 if (!ret) 2934 pr_warn("Failed to create fault_around_bytes in debugfs"); 2935 return 0; 2936 } 2937 late_initcall(fault_around_debugfs); 2938 #endif 2939 2940 /* 2941 * do_fault_around() tries to map few pages around the fault address. The hope 2942 * is that the pages will be needed soon and this will lower the number of 2943 * faults to handle. 2944 * 2945 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2946 * not ready to be mapped: not up-to-date, locked, etc. 2947 * 2948 * This function is called with the page table lock taken. In the split ptlock 2949 * case the page table lock only protects only those entries which belong to 2950 * the page table corresponding to the fault address. 2951 * 2952 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2953 * only once. 2954 * 2955 * fault_around_pages() defines how many pages we'll try to map. 2956 * do_fault_around() expects it to return a power of two less than or equal to 2957 * PTRS_PER_PTE. 2958 * 2959 * The virtual address of the area that we map is naturally aligned to the 2960 * fault_around_pages() value (and therefore to page order). This way it's 2961 * easier to guarantee that we don't cross page table boundaries. 2962 */ 2963 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2964 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2965 { 2966 unsigned long start_addr, nr_pages, mask; 2967 pgoff_t max_pgoff; 2968 struct vm_fault vmf; 2969 int off; 2970 2971 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2972 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2973 2974 start_addr = max(address & mask, vma->vm_start); 2975 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2976 pte -= off; 2977 pgoff -= off; 2978 2979 /* 2980 * max_pgoff is either end of page table or end of vma 2981 * or fault_around_pages() from pgoff, depending what is nearest. 2982 */ 2983 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2984 PTRS_PER_PTE - 1; 2985 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2986 pgoff + nr_pages - 1); 2987 2988 /* Check if it makes any sense to call ->map_pages */ 2989 while (!pte_none(*pte)) { 2990 if (++pgoff > max_pgoff) 2991 return; 2992 start_addr += PAGE_SIZE; 2993 if (start_addr >= vma->vm_end) 2994 return; 2995 pte++; 2996 } 2997 2998 vmf.virtual_address = (void __user *) start_addr; 2999 vmf.pte = pte; 3000 vmf.pgoff = pgoff; 3001 vmf.max_pgoff = max_pgoff; 3002 vmf.flags = flags; 3003 vmf.gfp_mask = __get_fault_gfp_mask(vma); 3004 vma->vm_ops->map_pages(vma, &vmf); 3005 } 3006 3007 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3008 unsigned long address, pmd_t *pmd, 3009 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3010 { 3011 struct page *fault_page; 3012 spinlock_t *ptl; 3013 pte_t *pte; 3014 int ret = 0; 3015 3016 /* 3017 * Let's call ->map_pages() first and use ->fault() as fallback 3018 * if page by the offset is not ready to be mapped (cold cache or 3019 * something). 3020 */ 3021 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3022 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3023 do_fault_around(vma, address, pte, pgoff, flags); 3024 if (!pte_same(*pte, orig_pte)) 3025 goto unlock_out; 3026 pte_unmap_unlock(pte, ptl); 3027 } 3028 3029 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3030 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3031 return ret; 3032 3033 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3034 if (unlikely(!pte_same(*pte, orig_pte))) { 3035 pte_unmap_unlock(pte, ptl); 3036 unlock_page(fault_page); 3037 put_page(fault_page); 3038 return ret; 3039 } 3040 do_set_pte(vma, address, fault_page, pte, false, false); 3041 unlock_page(fault_page); 3042 unlock_out: 3043 pte_unmap_unlock(pte, ptl); 3044 return ret; 3045 } 3046 3047 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3048 unsigned long address, pmd_t *pmd, 3049 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3050 { 3051 struct page *fault_page, *new_page; 3052 struct mem_cgroup *memcg; 3053 spinlock_t *ptl; 3054 pte_t *pte; 3055 int ret; 3056 3057 if (unlikely(anon_vma_prepare(vma))) 3058 return VM_FAULT_OOM; 3059 3060 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3061 if (!new_page) 3062 return VM_FAULT_OOM; 3063 3064 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) { 3065 put_page(new_page); 3066 return VM_FAULT_OOM; 3067 } 3068 3069 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page); 3070 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3071 goto uncharge_out; 3072 3073 if (fault_page) 3074 copy_user_highpage(new_page, fault_page, address, vma); 3075 __SetPageUptodate(new_page); 3076 3077 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3078 if (unlikely(!pte_same(*pte, orig_pte))) { 3079 pte_unmap_unlock(pte, ptl); 3080 if (fault_page) { 3081 unlock_page(fault_page); 3082 put_page(fault_page); 3083 } else { 3084 /* 3085 * The fault handler has no page to lock, so it holds 3086 * i_mmap_lock for read to protect against truncate. 3087 */ 3088 i_mmap_unlock_read(vma->vm_file->f_mapping); 3089 } 3090 goto uncharge_out; 3091 } 3092 do_set_pte(vma, address, new_page, pte, true, true); 3093 mem_cgroup_commit_charge(new_page, memcg, false, false); 3094 lru_cache_add_active_or_unevictable(new_page, vma); 3095 pte_unmap_unlock(pte, ptl); 3096 if (fault_page) { 3097 unlock_page(fault_page); 3098 put_page(fault_page); 3099 } else { 3100 /* 3101 * The fault handler has no page to lock, so it holds 3102 * i_mmap_lock for read to protect against truncate. 3103 */ 3104 i_mmap_unlock_read(vma->vm_file->f_mapping); 3105 } 3106 return ret; 3107 uncharge_out: 3108 mem_cgroup_cancel_charge(new_page, memcg, false); 3109 put_page(new_page); 3110 return ret; 3111 } 3112 3113 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3114 unsigned long address, pmd_t *pmd, 3115 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3116 { 3117 struct page *fault_page; 3118 struct address_space *mapping; 3119 spinlock_t *ptl; 3120 pte_t *pte; 3121 int dirtied = 0; 3122 int ret, tmp; 3123 3124 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3125 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3126 return ret; 3127 3128 /* 3129 * Check if the backing address space wants to know that the page is 3130 * about to become writable 3131 */ 3132 if (vma->vm_ops->page_mkwrite) { 3133 unlock_page(fault_page); 3134 tmp = do_page_mkwrite(vma, fault_page, address); 3135 if (unlikely(!tmp || 3136 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3137 put_page(fault_page); 3138 return tmp; 3139 } 3140 } 3141 3142 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3143 if (unlikely(!pte_same(*pte, orig_pte))) { 3144 pte_unmap_unlock(pte, ptl); 3145 unlock_page(fault_page); 3146 put_page(fault_page); 3147 return ret; 3148 } 3149 do_set_pte(vma, address, fault_page, pte, true, false); 3150 pte_unmap_unlock(pte, ptl); 3151 3152 if (set_page_dirty(fault_page)) 3153 dirtied = 1; 3154 /* 3155 * Take a local copy of the address_space - page.mapping may be zeroed 3156 * by truncate after unlock_page(). The address_space itself remains 3157 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3158 * release semantics to prevent the compiler from undoing this copying. 3159 */ 3160 mapping = page_rmapping(fault_page); 3161 unlock_page(fault_page); 3162 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3163 /* 3164 * Some device drivers do not set page.mapping but still 3165 * dirty their pages 3166 */ 3167 balance_dirty_pages_ratelimited(mapping); 3168 } 3169 3170 if (!vma->vm_ops->page_mkwrite) 3171 file_update_time(vma->vm_file); 3172 3173 return ret; 3174 } 3175 3176 /* 3177 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3178 * but allow concurrent faults). 3179 * The mmap_sem may have been released depending on flags and our 3180 * return value. See filemap_fault() and __lock_page_or_retry(). 3181 */ 3182 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3183 unsigned long address, pte_t *page_table, pmd_t *pmd, 3184 unsigned int flags, pte_t orig_pte) 3185 { 3186 pgoff_t pgoff = linear_page_index(vma, address); 3187 3188 pte_unmap(page_table); 3189 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3190 if (!vma->vm_ops->fault) 3191 return VM_FAULT_SIGBUS; 3192 if (!(flags & FAULT_FLAG_WRITE)) 3193 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3194 orig_pte); 3195 if (!(vma->vm_flags & VM_SHARED)) 3196 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3197 orig_pte); 3198 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3199 } 3200 3201 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3202 unsigned long addr, int page_nid, 3203 int *flags) 3204 { 3205 get_page(page); 3206 3207 count_vm_numa_event(NUMA_HINT_FAULTS); 3208 if (page_nid == numa_node_id()) { 3209 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3210 *flags |= TNF_FAULT_LOCAL; 3211 } 3212 3213 return mpol_misplaced(page, vma, addr); 3214 } 3215 3216 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3217 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3218 { 3219 struct page *page = NULL; 3220 spinlock_t *ptl; 3221 int page_nid = -1; 3222 int last_cpupid; 3223 int target_nid; 3224 bool migrated = false; 3225 bool was_writable = pte_write(pte); 3226 int flags = 0; 3227 3228 /* A PROT_NONE fault should not end up here */ 3229 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 3230 3231 /* 3232 * The "pte" at this point cannot be used safely without 3233 * validation through pte_unmap_same(). It's of NUMA type but 3234 * the pfn may be screwed if the read is non atomic. 3235 * 3236 * We can safely just do a "set_pte_at()", because the old 3237 * page table entry is not accessible, so there would be no 3238 * concurrent hardware modifications to the PTE. 3239 */ 3240 ptl = pte_lockptr(mm, pmd); 3241 spin_lock(ptl); 3242 if (unlikely(!pte_same(*ptep, pte))) { 3243 pte_unmap_unlock(ptep, ptl); 3244 goto out; 3245 } 3246 3247 /* Make it present again */ 3248 pte = pte_modify(pte, vma->vm_page_prot); 3249 pte = pte_mkyoung(pte); 3250 if (was_writable) 3251 pte = pte_mkwrite(pte); 3252 set_pte_at(mm, addr, ptep, pte); 3253 update_mmu_cache(vma, addr, ptep); 3254 3255 page = vm_normal_page(vma, addr, pte); 3256 if (!page) { 3257 pte_unmap_unlock(ptep, ptl); 3258 return 0; 3259 } 3260 3261 /* TODO: handle PTE-mapped THP */ 3262 if (PageCompound(page)) { 3263 pte_unmap_unlock(ptep, ptl); 3264 return 0; 3265 } 3266 3267 /* 3268 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3269 * much anyway since they can be in shared cache state. This misses 3270 * the case where a mapping is writable but the process never writes 3271 * to it but pte_write gets cleared during protection updates and 3272 * pte_dirty has unpredictable behaviour between PTE scan updates, 3273 * background writeback, dirty balancing and application behaviour. 3274 */ 3275 if (!(vma->vm_flags & VM_WRITE)) 3276 flags |= TNF_NO_GROUP; 3277 3278 /* 3279 * Flag if the page is shared between multiple address spaces. This 3280 * is later used when determining whether to group tasks together 3281 */ 3282 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3283 flags |= TNF_SHARED; 3284 3285 last_cpupid = page_cpupid_last(page); 3286 page_nid = page_to_nid(page); 3287 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3288 pte_unmap_unlock(ptep, ptl); 3289 if (target_nid == -1) { 3290 put_page(page); 3291 goto out; 3292 } 3293 3294 /* Migrate to the requested node */ 3295 migrated = migrate_misplaced_page(page, vma, target_nid); 3296 if (migrated) { 3297 page_nid = target_nid; 3298 flags |= TNF_MIGRATED; 3299 } else 3300 flags |= TNF_MIGRATE_FAIL; 3301 3302 out: 3303 if (page_nid != -1) 3304 task_numa_fault(last_cpupid, page_nid, 1, flags); 3305 return 0; 3306 } 3307 3308 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3309 unsigned long address, pmd_t *pmd, unsigned int flags) 3310 { 3311 if (vma_is_anonymous(vma)) 3312 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags); 3313 if (vma->vm_ops->pmd_fault) 3314 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3315 return VM_FAULT_FALLBACK; 3316 } 3317 3318 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3319 unsigned long address, pmd_t *pmd, pmd_t orig_pmd, 3320 unsigned int flags) 3321 { 3322 if (vma_is_anonymous(vma)) 3323 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd); 3324 if (vma->vm_ops->pmd_fault) 3325 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3326 return VM_FAULT_FALLBACK; 3327 } 3328 3329 /* 3330 * These routines also need to handle stuff like marking pages dirty 3331 * and/or accessed for architectures that don't do it in hardware (most 3332 * RISC architectures). The early dirtying is also good on the i386. 3333 * 3334 * There is also a hook called "update_mmu_cache()" that architectures 3335 * with external mmu caches can use to update those (ie the Sparc or 3336 * PowerPC hashed page tables that act as extended TLBs). 3337 * 3338 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3339 * but allow concurrent faults), and pte mapped but not yet locked. 3340 * We return with pte unmapped and unlocked. 3341 * 3342 * The mmap_sem may have been released depending on flags and our 3343 * return value. See filemap_fault() and __lock_page_or_retry(). 3344 */ 3345 static int handle_pte_fault(struct mm_struct *mm, 3346 struct vm_area_struct *vma, unsigned long address, 3347 pte_t *pte, pmd_t *pmd, unsigned int flags) 3348 { 3349 pte_t entry; 3350 spinlock_t *ptl; 3351 3352 /* 3353 * some architectures can have larger ptes than wordsize, 3354 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3355 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3356 * The code below just needs a consistent view for the ifs and 3357 * we later double check anyway with the ptl lock held. So here 3358 * a barrier will do. 3359 */ 3360 entry = *pte; 3361 barrier(); 3362 if (!pte_present(entry)) { 3363 if (pte_none(entry)) { 3364 if (vma_is_anonymous(vma)) 3365 return do_anonymous_page(mm, vma, address, 3366 pte, pmd, flags); 3367 else 3368 return do_fault(mm, vma, address, pte, pmd, 3369 flags, entry); 3370 } 3371 return do_swap_page(mm, vma, address, 3372 pte, pmd, flags, entry); 3373 } 3374 3375 if (pte_protnone(entry)) 3376 return do_numa_page(mm, vma, address, entry, pte, pmd); 3377 3378 ptl = pte_lockptr(mm, pmd); 3379 spin_lock(ptl); 3380 if (unlikely(!pte_same(*pte, entry))) 3381 goto unlock; 3382 if (flags & FAULT_FLAG_WRITE) { 3383 if (!pte_write(entry)) 3384 return do_wp_page(mm, vma, address, 3385 pte, pmd, ptl, entry); 3386 entry = pte_mkdirty(entry); 3387 } 3388 entry = pte_mkyoung(entry); 3389 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3390 update_mmu_cache(vma, address, pte); 3391 } else { 3392 /* 3393 * This is needed only for protection faults but the arch code 3394 * is not yet telling us if this is a protection fault or not. 3395 * This still avoids useless tlb flushes for .text page faults 3396 * with threads. 3397 */ 3398 if (flags & FAULT_FLAG_WRITE) 3399 flush_tlb_fix_spurious_fault(vma, address); 3400 } 3401 unlock: 3402 pte_unmap_unlock(pte, ptl); 3403 return 0; 3404 } 3405 3406 /* 3407 * By the time we get here, we already hold the mm semaphore 3408 * 3409 * The mmap_sem may have been released depending on flags and our 3410 * return value. See filemap_fault() and __lock_page_or_retry(). 3411 */ 3412 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3413 unsigned long address, unsigned int flags) 3414 { 3415 pgd_t *pgd; 3416 pud_t *pud; 3417 pmd_t *pmd; 3418 pte_t *pte; 3419 3420 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3421 flags & FAULT_FLAG_INSTRUCTION, 3422 flags & FAULT_FLAG_REMOTE)) 3423 return VM_FAULT_SIGSEGV; 3424 3425 if (unlikely(is_vm_hugetlb_page(vma))) 3426 return hugetlb_fault(mm, vma, address, flags); 3427 3428 pgd = pgd_offset(mm, address); 3429 pud = pud_alloc(mm, pgd, address); 3430 if (!pud) 3431 return VM_FAULT_OOM; 3432 pmd = pmd_alloc(mm, pud, address); 3433 if (!pmd) 3434 return VM_FAULT_OOM; 3435 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3436 int ret = create_huge_pmd(mm, vma, address, pmd, flags); 3437 if (!(ret & VM_FAULT_FALLBACK)) 3438 return ret; 3439 } else { 3440 pmd_t orig_pmd = *pmd; 3441 int ret; 3442 3443 barrier(); 3444 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3445 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3446 3447 if (pmd_protnone(orig_pmd)) 3448 return do_huge_pmd_numa_page(mm, vma, address, 3449 orig_pmd, pmd); 3450 3451 if (dirty && !pmd_write(orig_pmd)) { 3452 ret = wp_huge_pmd(mm, vma, address, pmd, 3453 orig_pmd, flags); 3454 if (!(ret & VM_FAULT_FALLBACK)) 3455 return ret; 3456 } else { 3457 huge_pmd_set_accessed(mm, vma, address, pmd, 3458 orig_pmd, dirty); 3459 return 0; 3460 } 3461 } 3462 } 3463 3464 /* 3465 * Use pte_alloc() instead of pte_alloc_map, because we can't 3466 * run pte_offset_map on the pmd, if an huge pmd could 3467 * materialize from under us from a different thread. 3468 */ 3469 if (unlikely(pte_alloc(mm, pmd, address))) 3470 return VM_FAULT_OOM; 3471 /* 3472 * If a huge pmd materialized under us just retry later. Use 3473 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 3474 * didn't become pmd_trans_huge under us and then back to pmd_none, as 3475 * a result of MADV_DONTNEED running immediately after a huge pmd fault 3476 * in a different thread of this mm, in turn leading to a misleading 3477 * pmd_trans_huge() retval. All we have to ensure is that it is a 3478 * regular pmd that we can walk with pte_offset_map() and we can do that 3479 * through an atomic read in C, which is what pmd_trans_unstable() 3480 * provides. 3481 */ 3482 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd))) 3483 return 0; 3484 /* 3485 * A regular pmd is established and it can't morph into a huge pmd 3486 * from under us anymore at this point because we hold the mmap_sem 3487 * read mode and khugepaged takes it in write mode. So now it's 3488 * safe to run pte_offset_map(). 3489 */ 3490 pte = pte_offset_map(pmd, address); 3491 3492 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3493 } 3494 3495 /* 3496 * By the time we get here, we already hold the mm semaphore 3497 * 3498 * The mmap_sem may have been released depending on flags and our 3499 * return value. See filemap_fault() and __lock_page_or_retry(). 3500 */ 3501 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3502 unsigned long address, unsigned int flags) 3503 { 3504 int ret; 3505 3506 __set_current_state(TASK_RUNNING); 3507 3508 count_vm_event(PGFAULT); 3509 mem_cgroup_count_vm_event(mm, PGFAULT); 3510 3511 /* do counter updates before entering really critical section. */ 3512 check_sync_rss_stat(current); 3513 3514 /* 3515 * Enable the memcg OOM handling for faults triggered in user 3516 * space. Kernel faults are handled more gracefully. 3517 */ 3518 if (flags & FAULT_FLAG_USER) 3519 mem_cgroup_oom_enable(); 3520 3521 ret = __handle_mm_fault(mm, vma, address, flags); 3522 3523 if (flags & FAULT_FLAG_USER) { 3524 mem_cgroup_oom_disable(); 3525 /* 3526 * The task may have entered a memcg OOM situation but 3527 * if the allocation error was handled gracefully (no 3528 * VM_FAULT_OOM), there is no need to kill anything. 3529 * Just clean up the OOM state peacefully. 3530 */ 3531 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3532 mem_cgroup_oom_synchronize(false); 3533 } 3534 3535 return ret; 3536 } 3537 EXPORT_SYMBOL_GPL(handle_mm_fault); 3538 3539 #ifndef __PAGETABLE_PUD_FOLDED 3540 /* 3541 * Allocate page upper directory. 3542 * We've already handled the fast-path in-line. 3543 */ 3544 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3545 { 3546 pud_t *new = pud_alloc_one(mm, address); 3547 if (!new) 3548 return -ENOMEM; 3549 3550 smp_wmb(); /* See comment in __pte_alloc */ 3551 3552 spin_lock(&mm->page_table_lock); 3553 if (pgd_present(*pgd)) /* Another has populated it */ 3554 pud_free(mm, new); 3555 else 3556 pgd_populate(mm, pgd, new); 3557 spin_unlock(&mm->page_table_lock); 3558 return 0; 3559 } 3560 #endif /* __PAGETABLE_PUD_FOLDED */ 3561 3562 #ifndef __PAGETABLE_PMD_FOLDED 3563 /* 3564 * Allocate page middle directory. 3565 * We've already handled the fast-path in-line. 3566 */ 3567 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3568 { 3569 pmd_t *new = pmd_alloc_one(mm, address); 3570 if (!new) 3571 return -ENOMEM; 3572 3573 smp_wmb(); /* See comment in __pte_alloc */ 3574 3575 spin_lock(&mm->page_table_lock); 3576 #ifndef __ARCH_HAS_4LEVEL_HACK 3577 if (!pud_present(*pud)) { 3578 mm_inc_nr_pmds(mm); 3579 pud_populate(mm, pud, new); 3580 } else /* Another has populated it */ 3581 pmd_free(mm, new); 3582 #else 3583 if (!pgd_present(*pud)) { 3584 mm_inc_nr_pmds(mm); 3585 pgd_populate(mm, pud, new); 3586 } else /* Another has populated it */ 3587 pmd_free(mm, new); 3588 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3589 spin_unlock(&mm->page_table_lock); 3590 return 0; 3591 } 3592 #endif /* __PAGETABLE_PMD_FOLDED */ 3593 3594 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3595 pte_t **ptepp, spinlock_t **ptlp) 3596 { 3597 pgd_t *pgd; 3598 pud_t *pud; 3599 pmd_t *pmd; 3600 pte_t *ptep; 3601 3602 pgd = pgd_offset(mm, address); 3603 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3604 goto out; 3605 3606 pud = pud_offset(pgd, address); 3607 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3608 goto out; 3609 3610 pmd = pmd_offset(pud, address); 3611 VM_BUG_ON(pmd_trans_huge(*pmd)); 3612 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3613 goto out; 3614 3615 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3616 if (pmd_huge(*pmd)) 3617 goto out; 3618 3619 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3620 if (!ptep) 3621 goto out; 3622 if (!pte_present(*ptep)) 3623 goto unlock; 3624 *ptepp = ptep; 3625 return 0; 3626 unlock: 3627 pte_unmap_unlock(ptep, *ptlp); 3628 out: 3629 return -EINVAL; 3630 } 3631 3632 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3633 pte_t **ptepp, spinlock_t **ptlp) 3634 { 3635 int res; 3636 3637 /* (void) is needed to make gcc happy */ 3638 (void) __cond_lock(*ptlp, 3639 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3640 return res; 3641 } 3642 3643 /** 3644 * follow_pfn - look up PFN at a user virtual address 3645 * @vma: memory mapping 3646 * @address: user virtual address 3647 * @pfn: location to store found PFN 3648 * 3649 * Only IO mappings and raw PFN mappings are allowed. 3650 * 3651 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3652 */ 3653 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3654 unsigned long *pfn) 3655 { 3656 int ret = -EINVAL; 3657 spinlock_t *ptl; 3658 pte_t *ptep; 3659 3660 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3661 return ret; 3662 3663 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3664 if (ret) 3665 return ret; 3666 *pfn = pte_pfn(*ptep); 3667 pte_unmap_unlock(ptep, ptl); 3668 return 0; 3669 } 3670 EXPORT_SYMBOL(follow_pfn); 3671 3672 #ifdef CONFIG_HAVE_IOREMAP_PROT 3673 int follow_phys(struct vm_area_struct *vma, 3674 unsigned long address, unsigned int flags, 3675 unsigned long *prot, resource_size_t *phys) 3676 { 3677 int ret = -EINVAL; 3678 pte_t *ptep, pte; 3679 spinlock_t *ptl; 3680 3681 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3682 goto out; 3683 3684 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3685 goto out; 3686 pte = *ptep; 3687 3688 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3689 goto unlock; 3690 3691 *prot = pgprot_val(pte_pgprot(pte)); 3692 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3693 3694 ret = 0; 3695 unlock: 3696 pte_unmap_unlock(ptep, ptl); 3697 out: 3698 return ret; 3699 } 3700 3701 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3702 void *buf, int len, int write) 3703 { 3704 resource_size_t phys_addr; 3705 unsigned long prot = 0; 3706 void __iomem *maddr; 3707 int offset = addr & (PAGE_SIZE-1); 3708 3709 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3710 return -EINVAL; 3711 3712 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3713 if (write) 3714 memcpy_toio(maddr + offset, buf, len); 3715 else 3716 memcpy_fromio(buf, maddr + offset, len); 3717 iounmap(maddr); 3718 3719 return len; 3720 } 3721 EXPORT_SYMBOL_GPL(generic_access_phys); 3722 #endif 3723 3724 /* 3725 * Access another process' address space as given in mm. If non-NULL, use the 3726 * given task for page fault accounting. 3727 */ 3728 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3729 unsigned long addr, void *buf, int len, int write) 3730 { 3731 struct vm_area_struct *vma; 3732 void *old_buf = buf; 3733 3734 down_read(&mm->mmap_sem); 3735 /* ignore errors, just check how much was successfully transferred */ 3736 while (len) { 3737 int bytes, ret, offset; 3738 void *maddr; 3739 struct page *page = NULL; 3740 3741 ret = get_user_pages_remote(tsk, mm, addr, 1, 3742 write, 1, &page, &vma); 3743 if (ret <= 0) { 3744 #ifndef CONFIG_HAVE_IOREMAP_PROT 3745 break; 3746 #else 3747 /* 3748 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3749 * we can access using slightly different code. 3750 */ 3751 vma = find_vma(mm, addr); 3752 if (!vma || vma->vm_start > addr) 3753 break; 3754 if (vma->vm_ops && vma->vm_ops->access) 3755 ret = vma->vm_ops->access(vma, addr, buf, 3756 len, write); 3757 if (ret <= 0) 3758 break; 3759 bytes = ret; 3760 #endif 3761 } else { 3762 bytes = len; 3763 offset = addr & (PAGE_SIZE-1); 3764 if (bytes > PAGE_SIZE-offset) 3765 bytes = PAGE_SIZE-offset; 3766 3767 maddr = kmap(page); 3768 if (write) { 3769 copy_to_user_page(vma, page, addr, 3770 maddr + offset, buf, bytes); 3771 set_page_dirty_lock(page); 3772 } else { 3773 copy_from_user_page(vma, page, addr, 3774 buf, maddr + offset, bytes); 3775 } 3776 kunmap(page); 3777 put_page(page); 3778 } 3779 len -= bytes; 3780 buf += bytes; 3781 addr += bytes; 3782 } 3783 up_read(&mm->mmap_sem); 3784 3785 return buf - old_buf; 3786 } 3787 3788 /** 3789 * access_remote_vm - access another process' address space 3790 * @mm: the mm_struct of the target address space 3791 * @addr: start address to access 3792 * @buf: source or destination buffer 3793 * @len: number of bytes to transfer 3794 * @write: whether the access is a write 3795 * 3796 * The caller must hold a reference on @mm. 3797 */ 3798 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3799 void *buf, int len, int write) 3800 { 3801 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3802 } 3803 3804 /* 3805 * Access another process' address space. 3806 * Source/target buffer must be kernel space, 3807 * Do not walk the page table directly, use get_user_pages 3808 */ 3809 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3810 void *buf, int len, int write) 3811 { 3812 struct mm_struct *mm; 3813 int ret; 3814 3815 mm = get_task_mm(tsk); 3816 if (!mm) 3817 return 0; 3818 3819 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3820 mmput(mm); 3821 3822 return ret; 3823 } 3824 3825 /* 3826 * Print the name of a VMA. 3827 */ 3828 void print_vma_addr(char *prefix, unsigned long ip) 3829 { 3830 struct mm_struct *mm = current->mm; 3831 struct vm_area_struct *vma; 3832 3833 /* 3834 * Do not print if we are in atomic 3835 * contexts (in exception stacks, etc.): 3836 */ 3837 if (preempt_count()) 3838 return; 3839 3840 down_read(&mm->mmap_sem); 3841 vma = find_vma(mm, ip); 3842 if (vma && vma->vm_file) { 3843 struct file *f = vma->vm_file; 3844 char *buf = (char *)__get_free_page(GFP_KERNEL); 3845 if (buf) { 3846 char *p; 3847 3848 p = file_path(f, buf, PAGE_SIZE); 3849 if (IS_ERR(p)) 3850 p = "?"; 3851 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3852 vma->vm_start, 3853 vma->vm_end - vma->vm_start); 3854 free_page((unsigned long)buf); 3855 } 3856 } 3857 up_read(&mm->mmap_sem); 3858 } 3859 3860 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3861 void __might_fault(const char *file, int line) 3862 { 3863 /* 3864 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3865 * holding the mmap_sem, this is safe because kernel memory doesn't 3866 * get paged out, therefore we'll never actually fault, and the 3867 * below annotations will generate false positives. 3868 */ 3869 if (segment_eq(get_fs(), KERNEL_DS)) 3870 return; 3871 if (pagefault_disabled()) 3872 return; 3873 __might_sleep(file, line, 0); 3874 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3875 if (current->mm) 3876 might_lock_read(¤t->mm->mmap_sem); 3877 #endif 3878 } 3879 EXPORT_SYMBOL(__might_fault); 3880 #endif 3881 3882 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3883 static void clear_gigantic_page(struct page *page, 3884 unsigned long addr, 3885 unsigned int pages_per_huge_page) 3886 { 3887 int i; 3888 struct page *p = page; 3889 3890 might_sleep(); 3891 for (i = 0; i < pages_per_huge_page; 3892 i++, p = mem_map_next(p, page, i)) { 3893 cond_resched(); 3894 clear_user_highpage(p, addr + i * PAGE_SIZE); 3895 } 3896 } 3897 void clear_huge_page(struct page *page, 3898 unsigned long addr, unsigned int pages_per_huge_page) 3899 { 3900 int i; 3901 3902 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3903 clear_gigantic_page(page, addr, pages_per_huge_page); 3904 return; 3905 } 3906 3907 might_sleep(); 3908 for (i = 0; i < pages_per_huge_page; i++) { 3909 cond_resched(); 3910 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3911 } 3912 } 3913 3914 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3915 unsigned long addr, 3916 struct vm_area_struct *vma, 3917 unsigned int pages_per_huge_page) 3918 { 3919 int i; 3920 struct page *dst_base = dst; 3921 struct page *src_base = src; 3922 3923 for (i = 0; i < pages_per_huge_page; ) { 3924 cond_resched(); 3925 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3926 3927 i++; 3928 dst = mem_map_next(dst, dst_base, i); 3929 src = mem_map_next(src, src_base, i); 3930 } 3931 } 3932 3933 void copy_user_huge_page(struct page *dst, struct page *src, 3934 unsigned long addr, struct vm_area_struct *vma, 3935 unsigned int pages_per_huge_page) 3936 { 3937 int i; 3938 3939 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3940 copy_user_gigantic_page(dst, src, addr, vma, 3941 pages_per_huge_page); 3942 return; 3943 } 3944 3945 might_sleep(); 3946 for (i = 0; i < pages_per_huge_page; i++) { 3947 cond_resched(); 3948 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3949 } 3950 } 3951 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3952 3953 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3954 3955 static struct kmem_cache *page_ptl_cachep; 3956 3957 void __init ptlock_cache_init(void) 3958 { 3959 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3960 SLAB_PANIC, NULL); 3961 } 3962 3963 bool ptlock_alloc(struct page *page) 3964 { 3965 spinlock_t *ptl; 3966 3967 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3968 if (!ptl) 3969 return false; 3970 page->ptl = ptl; 3971 return true; 3972 } 3973 3974 void ptlock_free(struct page *page) 3975 { 3976 kmem_cache_free(page_ptl_cachep, page->ptl); 3977 } 3978 #endif 3979