1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/memory-tiers.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 #include <linux/sched/sysctl.h> 78 79 #include <trace/events/kmem.h> 80 81 #include <asm/io.h> 82 #include <asm/mmu_context.h> 83 #include <asm/pgalloc.h> 84 #include <linux/uaccess.h> 85 #include <asm/tlb.h> 86 #include <asm/tlbflush.h> 87 88 #include "pgalloc-track.h" 89 #include "internal.h" 90 #include "swap.h" 91 92 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 93 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 94 #endif 95 96 static vm_fault_t do_fault(struct vm_fault *vmf); 97 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 98 static bool vmf_pte_changed(struct vm_fault *vmf); 99 100 /* 101 * Return true if the original pte was a uffd-wp pte marker (so the pte was 102 * wr-protected). 103 */ 104 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 105 { 106 if (!userfaultfd_wp(vmf->vma)) 107 return false; 108 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 109 return false; 110 111 return pte_marker_uffd_wp(vmf->orig_pte); 112 } 113 114 /* 115 * Randomize the address space (stacks, mmaps, brk, etc.). 116 * 117 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 118 * as ancient (libc5 based) binaries can segfault. ) 119 */ 120 int randomize_va_space __read_mostly = 121 #ifdef CONFIG_COMPAT_BRK 122 1; 123 #else 124 2; 125 #endif 126 127 static const struct ctl_table mmu_sysctl_table[] = { 128 { 129 .procname = "randomize_va_space", 130 .data = &randomize_va_space, 131 .maxlen = sizeof(int), 132 .mode = 0644, 133 .proc_handler = proc_dointvec, 134 }, 135 }; 136 137 static int __init init_mm_sysctl(void) 138 { 139 register_sysctl_init("kernel", mmu_sysctl_table); 140 return 0; 141 } 142 143 subsys_initcall(init_mm_sysctl); 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /** 299 * free_pgd_range - Unmap and free page tables in the range 300 * @tlb: the mmu_gather containing pending TLB flush info 301 * @addr: virtual address start 302 * @end: virtual address end 303 * @floor: lowest address boundary 304 * @ceiling: highest address boundary 305 * 306 * This function tears down all user-level page tables in the 307 * specified virtual address range [@addr..@end). It is part of 308 * the memory unmap flow. 309 */ 310 void free_pgd_range(struct mmu_gather *tlb, 311 unsigned long addr, unsigned long end, 312 unsigned long floor, unsigned long ceiling) 313 { 314 pgd_t *pgd; 315 unsigned long next; 316 317 /* 318 * The next few lines have given us lots of grief... 319 * 320 * Why are we testing PMD* at this top level? Because often 321 * there will be no work to do at all, and we'd prefer not to 322 * go all the way down to the bottom just to discover that. 323 * 324 * Why all these "- 1"s? Because 0 represents both the bottom 325 * of the address space and the top of it (using -1 for the 326 * top wouldn't help much: the masks would do the wrong thing). 327 * The rule is that addr 0 and floor 0 refer to the bottom of 328 * the address space, but end 0 and ceiling 0 refer to the top 329 * Comparisons need to use "end - 1" and "ceiling - 1" (though 330 * that end 0 case should be mythical). 331 * 332 * Wherever addr is brought up or ceiling brought down, we must 333 * be careful to reject "the opposite 0" before it confuses the 334 * subsequent tests. But what about where end is brought down 335 * by PMD_SIZE below? no, end can't go down to 0 there. 336 * 337 * Whereas we round start (addr) and ceiling down, by different 338 * masks at different levels, in order to test whether a table 339 * now has no other vmas using it, so can be freed, we don't 340 * bother to round floor or end up - the tests don't need that. 341 */ 342 343 addr &= PMD_MASK; 344 if (addr < floor) { 345 addr += PMD_SIZE; 346 if (!addr) 347 return; 348 } 349 if (ceiling) { 350 ceiling &= PMD_MASK; 351 if (!ceiling) 352 return; 353 } 354 if (end - 1 > ceiling - 1) 355 end -= PMD_SIZE; 356 if (addr > end - 1) 357 return; 358 /* 359 * We add page table cache pages with PAGE_SIZE, 360 * (see pte_free_tlb()), flush the tlb if we need 361 */ 362 tlb_change_page_size(tlb, PAGE_SIZE); 363 pgd = pgd_offset(tlb->mm, addr); 364 do { 365 next = pgd_addr_end(addr, end); 366 if (pgd_none_or_clear_bad(pgd)) 367 continue; 368 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 369 } while (pgd++, addr = next, addr != end); 370 } 371 372 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 373 struct vm_area_struct *vma, unsigned long floor, 374 unsigned long ceiling, bool mm_wr_locked) 375 { 376 struct unlink_vma_file_batch vb; 377 378 tlb_free_vmas(tlb); 379 380 do { 381 unsigned long addr = vma->vm_start; 382 struct vm_area_struct *next; 383 384 /* 385 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 386 * be 0. This will underflow and is okay. 387 */ 388 next = mas_find(mas, ceiling - 1); 389 if (unlikely(xa_is_zero(next))) 390 next = NULL; 391 392 /* 393 * Hide vma from rmap and truncate_pagecache before freeing 394 * pgtables 395 */ 396 if (mm_wr_locked) 397 vma_start_write(vma); 398 unlink_anon_vmas(vma); 399 400 unlink_file_vma_batch_init(&vb); 401 unlink_file_vma_batch_add(&vb, vma); 402 403 /* 404 * Optimization: gather nearby vmas into one call down 405 */ 406 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 407 vma = next; 408 next = mas_find(mas, ceiling - 1); 409 if (unlikely(xa_is_zero(next))) 410 next = NULL; 411 if (mm_wr_locked) 412 vma_start_write(vma); 413 unlink_anon_vmas(vma); 414 unlink_file_vma_batch_add(&vb, vma); 415 } 416 unlink_file_vma_batch_final(&vb); 417 418 free_pgd_range(tlb, addr, vma->vm_end, 419 floor, next ? next->vm_start : ceiling); 420 vma = next; 421 } while (vma); 422 } 423 424 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 425 { 426 spinlock_t *ptl = pmd_lock(mm, pmd); 427 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 429 mm_inc_nr_ptes(mm); 430 /* 431 * Ensure all pte setup (eg. pte page lock and page clearing) are 432 * visible before the pte is made visible to other CPUs by being 433 * put into page tables. 434 * 435 * The other side of the story is the pointer chasing in the page 436 * table walking code (when walking the page table without locking; 437 * ie. most of the time). Fortunately, these data accesses consist 438 * of a chain of data-dependent loads, meaning most CPUs (alpha 439 * being the notable exception) will already guarantee loads are 440 * seen in-order. See the alpha page table accessors for the 441 * smp_rmb() barriers in page table walking code. 442 */ 443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 444 pmd_populate(mm, pmd, *pte); 445 *pte = NULL; 446 } 447 spin_unlock(ptl); 448 } 449 450 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 451 { 452 pgtable_t new = pte_alloc_one(mm); 453 if (!new) 454 return -ENOMEM; 455 456 pmd_install(mm, pmd, &new); 457 if (new) 458 pte_free(mm, new); 459 return 0; 460 } 461 462 int __pte_alloc_kernel(pmd_t *pmd) 463 { 464 pte_t *new = pte_alloc_one_kernel(&init_mm); 465 if (!new) 466 return -ENOMEM; 467 468 spin_lock(&init_mm.page_table_lock); 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 470 smp_wmb(); /* See comment in pmd_install() */ 471 pmd_populate_kernel(&init_mm, pmd, new); 472 new = NULL; 473 } 474 spin_unlock(&init_mm.page_table_lock); 475 if (new) 476 pte_free_kernel(&init_mm, new); 477 return 0; 478 } 479 480 static inline void init_rss_vec(int *rss) 481 { 482 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 483 } 484 485 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 486 { 487 int i; 488 489 for (i = 0; i < NR_MM_COUNTERS; i++) 490 if (rss[i]) 491 add_mm_counter(mm, i, rss[i]); 492 } 493 494 static bool is_bad_page_map_ratelimited(void) 495 { 496 static unsigned long resume; 497 static unsigned long nr_shown; 498 static unsigned long nr_unshown; 499 500 /* 501 * Allow a burst of 60 reports, then keep quiet for that minute; 502 * or allow a steady drip of one report per second. 503 */ 504 if (nr_shown == 60) { 505 if (time_before(jiffies, resume)) { 506 nr_unshown++; 507 return true; 508 } 509 if (nr_unshown) { 510 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 511 nr_unshown); 512 nr_unshown = 0; 513 } 514 nr_shown = 0; 515 } 516 if (nr_shown++ == 0) 517 resume = jiffies + 60 * HZ; 518 return false; 519 } 520 521 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr) 522 { 523 unsigned long long pgdv, p4dv, pudv, pmdv; 524 p4d_t p4d, *p4dp; 525 pud_t pud, *pudp; 526 pmd_t pmd, *pmdp; 527 pgd_t *pgdp; 528 529 /* 530 * Although this looks like a fully lockless pgtable walk, it is not: 531 * see locking requirements for print_bad_page_map(). 532 */ 533 pgdp = pgd_offset(mm, addr); 534 pgdv = pgd_val(*pgdp); 535 536 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) { 537 pr_alert("pgd:%08llx\n", pgdv); 538 return; 539 } 540 541 p4dp = p4d_offset(pgdp, addr); 542 p4d = p4dp_get(p4dp); 543 p4dv = p4d_val(p4d); 544 545 if (!p4d_present(p4d) || p4d_leaf(p4d)) { 546 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv); 547 return; 548 } 549 550 pudp = pud_offset(p4dp, addr); 551 pud = pudp_get(pudp); 552 pudv = pud_val(pud); 553 554 if (!pud_present(pud) || pud_leaf(pud)) { 555 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv); 556 return; 557 } 558 559 pmdp = pmd_offset(pudp, addr); 560 pmd = pmdp_get(pmdp); 561 pmdv = pmd_val(pmd); 562 563 /* 564 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE, 565 * because the table should already be mapped by the caller and 566 * doing another map would be bad. print_bad_page_map() should 567 * already take care of printing the PTE. 568 */ 569 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv, 570 p4dv, pudv, pmdv); 571 } 572 573 /* 574 * This function is called to print an error when a bad page table entry (e.g., 575 * corrupted page table entry) is found. For example, we might have a 576 * PFN-mapped pte in a region that doesn't allow it. 577 * 578 * The calling function must still handle the error. 579 * 580 * This function must be called during a proper page table walk, as it will 581 * re-walk the page table to dump information: the caller MUST prevent page 582 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf 583 * page table lock. 584 */ 585 static void print_bad_page_map(struct vm_area_struct *vma, 586 unsigned long addr, unsigned long long entry, struct page *page, 587 enum pgtable_level level) 588 { 589 struct address_space *mapping; 590 pgoff_t index; 591 592 if (is_bad_page_map_ratelimited()) 593 return; 594 595 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 596 index = linear_page_index(vma, addr); 597 598 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm, 599 pgtable_level_to_str(level), entry); 600 __print_bad_page_map_pgtable(vma->vm_mm, addr); 601 if (page) 602 dump_page(page, "bad page map"); 603 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 604 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 605 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 606 vma->vm_file, 607 vma->vm_ops ? vma->vm_ops->fault : NULL, 608 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 609 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 610 mapping ? mapping->a_ops->read_folio : NULL); 611 dump_stack(); 612 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 613 } 614 #define print_bad_pte(vma, addr, pte, page) \ 615 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE) 616 617 /** 618 * __vm_normal_page() - Get the "struct page" associated with a page table entry. 619 * @vma: The VMA mapping the page table entry. 620 * @addr: The address where the page table entry is mapped. 621 * @pfn: The PFN stored in the page table entry. 622 * @special: Whether the page table entry is marked "special". 623 * @level: The page table level for error reporting purposes only. 624 * @entry: The page table entry value for error reporting purposes only. 625 * 626 * "Special" mappings do not wish to be associated with a "struct page" (either 627 * it doesn't exist, or it exists but they don't want to touch it). In this 628 * case, NULL is returned here. "Normal" mappings do have a struct page and 629 * are ordinarily refcounted. 630 * 631 * Page mappings of the shared zero folios are always considered "special", as 632 * they are not ordinarily refcounted: neither the refcount nor the mapcount 633 * of these folios is adjusted when mapping them into user page tables. 634 * Selected page table walkers (such as GUP) can still identify mappings of the 635 * shared zero folios and work with the underlying "struct page". 636 * 637 * There are 2 broad cases. Firstly, an architecture may define a "special" 638 * page table entry bit, such as pte_special(), in which case this function is 639 * trivial. Secondly, an architecture may not have a spare page table 640 * entry bit, which requires a more complicated scheme, described below. 641 * 642 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on 643 * page table entries that actually map "normal" pages: however, that page 644 * cannot be looked up through the PFN stored in the page table entry, but 645 * instead will be looked up through vm_ops->find_normal_page(). So far, this 646 * only applies to PTEs. 647 * 648 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 649 * special mapping (even if there are underlying and valid "struct pages"). 650 * COWed pages of a VM_PFNMAP are always normal. 651 * 652 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 653 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 654 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 655 * mapping will always honor the rule 656 * 657 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 658 * 659 * And for normal mappings this is false. 660 * 661 * This restricts such mappings to be a linear translation from virtual address 662 * to pfn. To get around this restriction, we allow arbitrary mappings so long 663 * as the vma is not a COW mapping; in that case, we know that all ptes are 664 * special (because none can have been COWed). 665 * 666 * 667 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 668 * 669 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 670 * page" backing, however the difference is that _all_ pages with a struct 671 * page (that is, those where pfn_valid is true, except the shared zero 672 * folios) are refcounted and considered normal pages by the VM. 673 * 674 * The disadvantage is that pages are refcounted (which can be slower and 675 * simply not an option for some PFNMAP users). The advantage is that we 676 * don't have to follow the strict linearity rule of PFNMAP mappings in 677 * order to support COWable mappings. 678 * 679 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 680 * NULL if this is a "special" mapping. 681 */ 682 static inline struct page *__vm_normal_page(struct vm_area_struct *vma, 683 unsigned long addr, unsigned long pfn, bool special, 684 unsigned long long entry, enum pgtable_level level) 685 { 686 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 687 if (unlikely(special)) { 688 #ifdef CONFIG_FIND_NORMAL_PAGE 689 if (vma->vm_ops && vma->vm_ops->find_normal_page) 690 return vma->vm_ops->find_normal_page(vma, addr); 691 #endif /* CONFIG_FIND_NORMAL_PAGE */ 692 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 693 return NULL; 694 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 695 return NULL; 696 697 print_bad_page_map(vma, addr, entry, NULL, level); 698 return NULL; 699 } 700 /* 701 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table 702 * mappings (incl. shared zero folios) are marked accordingly. 703 */ 704 } else { 705 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) { 706 if (vma->vm_flags & VM_MIXEDMAP) { 707 /* If it has a "struct page", it's "normal". */ 708 if (!pfn_valid(pfn)) 709 return NULL; 710 } else { 711 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 712 713 /* Only CoW'ed anon folios are "normal". */ 714 if (pfn == vma->vm_pgoff + off) 715 return NULL; 716 if (!is_cow_mapping(vma->vm_flags)) 717 return NULL; 718 } 719 } 720 721 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)) 722 return NULL; 723 } 724 725 if (unlikely(pfn > highest_memmap_pfn)) { 726 /* Corrupted page table entry. */ 727 print_bad_page_map(vma, addr, entry, NULL, level); 728 return NULL; 729 } 730 /* 731 * NOTE! We still have PageReserved() pages in the page tables. 732 * For example, VDSO mappings can cause them to exist. 733 */ 734 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn)); 735 return pfn_to_page(pfn); 736 } 737 738 /** 739 * vm_normal_page() - Get the "struct page" associated with a PTE 740 * @vma: The VMA mapping the @pte. 741 * @addr: The address where the @pte is mapped. 742 * @pte: The PTE. 743 * 744 * Get the "struct page" associated with a PTE. See __vm_normal_page() 745 * for details on "normal" and "special" mappings. 746 * 747 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 748 * NULL if this is a "special" mapping. 749 */ 750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 751 pte_t pte) 752 { 753 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte), 754 pte_val(pte), PGTABLE_LEVEL_PTE); 755 } 756 757 /** 758 * vm_normal_folio() - Get the "struct folio" associated with a PTE 759 * @vma: The VMA mapping the @pte. 760 * @addr: The address where the @pte is mapped. 761 * @pte: The PTE. 762 * 763 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 764 * for details on "normal" and "special" mappings. 765 * 766 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 767 * NULL if this is a "special" mapping. 768 */ 769 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 770 pte_t pte) 771 { 772 struct page *page = vm_normal_page(vma, addr, pte); 773 774 if (page) 775 return page_folio(page); 776 return NULL; 777 } 778 779 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 780 /** 781 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD 782 * @vma: The VMA mapping the @pmd. 783 * @addr: The address where the @pmd is mapped. 784 * @pmd: The PMD. 785 * 786 * Get the "struct page" associated with a PTE. See __vm_normal_page() 787 * for details on "normal" and "special" mappings. 788 * 789 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 790 * NULL if this is a "special" mapping. 791 */ 792 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 793 pmd_t pmd) 794 { 795 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd), 796 pmd_val(pmd), PGTABLE_LEVEL_PMD); 797 } 798 799 /** 800 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD 801 * @vma: The VMA mapping the @pmd. 802 * @addr: The address where the @pmd is mapped. 803 * @pmd: The PMD. 804 * 805 * Get the "struct folio" associated with a PTE. See __vm_normal_page() 806 * for details on "normal" and "special" mappings. 807 * 808 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns 809 * NULL if this is a "special" mapping. 810 */ 811 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 812 unsigned long addr, pmd_t pmd) 813 { 814 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 815 816 if (page) 817 return page_folio(page); 818 return NULL; 819 } 820 821 /** 822 * vm_normal_page_pud() - Get the "struct page" associated with a PUD 823 * @vma: The VMA mapping the @pud. 824 * @addr: The address where the @pud is mapped. 825 * @pud: The PUD. 826 * 827 * Get the "struct page" associated with a PUD. See __vm_normal_page() 828 * for details on "normal" and "special" mappings. 829 * 830 * Return: Returns the "struct page" if this is a "normal" mapping. Returns 831 * NULL if this is a "special" mapping. 832 */ 833 struct page *vm_normal_page_pud(struct vm_area_struct *vma, 834 unsigned long addr, pud_t pud) 835 { 836 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud), 837 pud_val(pud), PGTABLE_LEVEL_PUD); 838 } 839 #endif 840 841 /** 842 * restore_exclusive_pte - Restore a device-exclusive entry 843 * @vma: VMA covering @address 844 * @folio: the mapped folio 845 * @page: the mapped folio page 846 * @address: the virtual address 847 * @ptep: pte pointer into the locked page table mapping the folio page 848 * @orig_pte: pte value at @ptep 849 * 850 * Restore a device-exclusive non-swap entry to an ordinary present pte. 851 * 852 * The folio and the page table must be locked, and MMU notifiers must have 853 * been called to invalidate any (exclusive) device mappings. 854 * 855 * Locking the folio makes sure that anybody who just converted the pte to 856 * a device-exclusive entry can map it into the device to make forward 857 * progress without others converting it back until the folio was unlocked. 858 * 859 * If the folio lock ever becomes an issue, we can stop relying on the folio 860 * lock; it might make some scenarios with heavy thrashing less likely to 861 * make forward progress, but these scenarios might not be valid use cases. 862 * 863 * Note that the folio lock does not protect against all cases of concurrent 864 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 865 * must use MMU notifiers to sync against any concurrent changes. 866 */ 867 static void restore_exclusive_pte(struct vm_area_struct *vma, 868 struct folio *folio, struct page *page, unsigned long address, 869 pte_t *ptep, pte_t orig_pte) 870 { 871 pte_t pte; 872 873 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 874 875 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 876 if (pte_swp_soft_dirty(orig_pte)) 877 pte = pte_mksoft_dirty(pte); 878 879 if (pte_swp_uffd_wp(orig_pte)) 880 pte = pte_mkuffd_wp(pte); 881 882 if ((vma->vm_flags & VM_WRITE) && 883 can_change_pte_writable(vma, address, pte)) { 884 if (folio_test_dirty(folio)) 885 pte = pte_mkdirty(pte); 886 pte = pte_mkwrite(pte, vma); 887 } 888 set_pte_at(vma->vm_mm, address, ptep, pte); 889 890 /* 891 * No need to invalidate - it was non-present before. However 892 * secondary CPUs may have mappings that need invalidating. 893 */ 894 update_mmu_cache(vma, address, ptep); 895 } 896 897 /* 898 * Tries to restore an exclusive pte if the page lock can be acquired without 899 * sleeping. 900 */ 901 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 902 unsigned long addr, pte_t *ptep, pte_t orig_pte) 903 { 904 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 905 struct folio *folio = page_folio(page); 906 907 if (folio_trylock(folio)) { 908 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 909 folio_unlock(folio); 910 return 0; 911 } 912 913 return -EBUSY; 914 } 915 916 /* 917 * copy one vm_area from one task to the other. Assumes the page tables 918 * already present in the new task to be cleared in the whole range 919 * covered by this vma. 920 */ 921 922 static unsigned long 923 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 924 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 925 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 926 { 927 vm_flags_t vm_flags = dst_vma->vm_flags; 928 pte_t orig_pte = ptep_get(src_pte); 929 pte_t pte = orig_pte; 930 struct folio *folio; 931 struct page *page; 932 swp_entry_t entry = pte_to_swp_entry(orig_pte); 933 934 if (likely(!non_swap_entry(entry))) { 935 if (swap_duplicate(entry) < 0) 936 return -EIO; 937 938 /* make sure dst_mm is on swapoff's mmlist. */ 939 if (unlikely(list_empty(&dst_mm->mmlist))) { 940 spin_lock(&mmlist_lock); 941 if (list_empty(&dst_mm->mmlist)) 942 list_add(&dst_mm->mmlist, 943 &src_mm->mmlist); 944 spin_unlock(&mmlist_lock); 945 } 946 /* Mark the swap entry as shared. */ 947 if (pte_swp_exclusive(orig_pte)) { 948 pte = pte_swp_clear_exclusive(orig_pte); 949 set_pte_at(src_mm, addr, src_pte, pte); 950 } 951 rss[MM_SWAPENTS]++; 952 } else if (is_migration_entry(entry)) { 953 folio = pfn_swap_entry_folio(entry); 954 955 rss[mm_counter(folio)]++; 956 957 if (!is_readable_migration_entry(entry) && 958 is_cow_mapping(vm_flags)) { 959 /* 960 * COW mappings require pages in both parent and child 961 * to be set to read. A previously exclusive entry is 962 * now shared. 963 */ 964 entry = make_readable_migration_entry( 965 swp_offset(entry)); 966 pte = swp_entry_to_pte(entry); 967 if (pte_swp_soft_dirty(orig_pte)) 968 pte = pte_swp_mksoft_dirty(pte); 969 if (pte_swp_uffd_wp(orig_pte)) 970 pte = pte_swp_mkuffd_wp(pte); 971 set_pte_at(src_mm, addr, src_pte, pte); 972 } 973 } else if (is_device_private_entry(entry)) { 974 page = pfn_swap_entry_to_page(entry); 975 folio = page_folio(page); 976 977 /* 978 * Update rss count even for unaddressable pages, as 979 * they should treated just like normal pages in this 980 * respect. 981 * 982 * We will likely want to have some new rss counters 983 * for unaddressable pages, at some point. But for now 984 * keep things as they are. 985 */ 986 folio_get(folio); 987 rss[mm_counter(folio)]++; 988 /* Cannot fail as these pages cannot get pinned. */ 989 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 990 991 /* 992 * We do not preserve soft-dirty information, because so 993 * far, checkpoint/restore is the only feature that 994 * requires that. And checkpoint/restore does not work 995 * when a device driver is involved (you cannot easily 996 * save and restore device driver state). 997 */ 998 if (is_writable_device_private_entry(entry) && 999 is_cow_mapping(vm_flags)) { 1000 entry = make_readable_device_private_entry( 1001 swp_offset(entry)); 1002 pte = swp_entry_to_pte(entry); 1003 if (pte_swp_uffd_wp(orig_pte)) 1004 pte = pte_swp_mkuffd_wp(pte); 1005 set_pte_at(src_mm, addr, src_pte, pte); 1006 } 1007 } else if (is_device_exclusive_entry(entry)) { 1008 /* 1009 * Make device exclusive entries present by restoring the 1010 * original entry then copying as for a present pte. Device 1011 * exclusive entries currently only support private writable 1012 * (ie. COW) mappings. 1013 */ 1014 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 1015 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 1016 return -EBUSY; 1017 return -ENOENT; 1018 } else if (is_pte_marker_entry(entry)) { 1019 pte_marker marker = copy_pte_marker(entry, dst_vma); 1020 1021 if (marker) 1022 set_pte_at(dst_mm, addr, dst_pte, 1023 make_pte_marker(marker)); 1024 return 0; 1025 } 1026 if (!userfaultfd_wp(dst_vma)) 1027 pte = pte_swp_clear_uffd_wp(pte); 1028 set_pte_at(dst_mm, addr, dst_pte, pte); 1029 return 0; 1030 } 1031 1032 /* 1033 * Copy a present and normal page. 1034 * 1035 * NOTE! The usual case is that this isn't required; 1036 * instead, the caller can just increase the page refcount 1037 * and re-use the pte the traditional way. 1038 * 1039 * And if we need a pre-allocated page but don't yet have 1040 * one, return a negative error to let the preallocation 1041 * code know so that it can do so outside the page table 1042 * lock. 1043 */ 1044 static inline int 1045 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1046 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 1047 struct folio **prealloc, struct page *page) 1048 { 1049 struct folio *new_folio; 1050 pte_t pte; 1051 1052 new_folio = *prealloc; 1053 if (!new_folio) 1054 return -EAGAIN; 1055 1056 /* 1057 * We have a prealloc page, all good! Take it 1058 * over and copy the page & arm it. 1059 */ 1060 1061 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 1062 return -EHWPOISON; 1063 1064 *prealloc = NULL; 1065 __folio_mark_uptodate(new_folio); 1066 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 1067 folio_add_lru_vma(new_folio, dst_vma); 1068 rss[MM_ANONPAGES]++; 1069 1070 /* All done, just insert the new page copy in the child */ 1071 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 1072 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 1073 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 1074 /* Uffd-wp needs to be delivered to dest pte as well */ 1075 pte = pte_mkuffd_wp(pte); 1076 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 1077 return 0; 1078 } 1079 1080 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 1081 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 1082 pte_t pte, unsigned long addr, int nr) 1083 { 1084 struct mm_struct *src_mm = src_vma->vm_mm; 1085 1086 /* If it's a COW mapping, write protect it both processes. */ 1087 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 1088 wrprotect_ptes(src_mm, addr, src_pte, nr); 1089 pte = pte_wrprotect(pte); 1090 } 1091 1092 /* If it's a shared mapping, mark it clean in the child. */ 1093 if (src_vma->vm_flags & VM_SHARED) 1094 pte = pte_mkclean(pte); 1095 pte = pte_mkold(pte); 1096 1097 if (!userfaultfd_wp(dst_vma)) 1098 pte = pte_clear_uffd_wp(pte); 1099 1100 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 1101 } 1102 1103 /* 1104 * Copy one present PTE, trying to batch-process subsequent PTEs that map 1105 * consecutive pages of the same folio by copying them as well. 1106 * 1107 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 1108 * Otherwise, returns the number of copied PTEs (at least 1). 1109 */ 1110 static inline int 1111 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1112 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1113 int max_nr, int *rss, struct folio **prealloc) 1114 { 1115 fpb_t flags = FPB_MERGE_WRITE; 1116 struct page *page; 1117 struct folio *folio; 1118 int err, nr; 1119 1120 page = vm_normal_page(src_vma, addr, pte); 1121 if (unlikely(!page)) 1122 goto copy_pte; 1123 1124 folio = page_folio(page); 1125 1126 /* 1127 * If we likely have to copy, just don't bother with batching. Make 1128 * sure that the common "small folio" case is as fast as possible 1129 * by keeping the batching logic separate. 1130 */ 1131 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1132 if (!(src_vma->vm_flags & VM_SHARED)) 1133 flags |= FPB_RESPECT_DIRTY; 1134 if (vma_soft_dirty_enabled(src_vma)) 1135 flags |= FPB_RESPECT_SOFT_DIRTY; 1136 1137 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1138 folio_ref_add(folio, nr); 1139 if (folio_test_anon(folio)) { 1140 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1141 nr, dst_vma, src_vma))) { 1142 folio_ref_sub(folio, nr); 1143 return -EAGAIN; 1144 } 1145 rss[MM_ANONPAGES] += nr; 1146 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1147 } else { 1148 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1149 rss[mm_counter_file(folio)] += nr; 1150 } 1151 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1152 addr, nr); 1153 return nr; 1154 } 1155 1156 folio_get(folio); 1157 if (folio_test_anon(folio)) { 1158 /* 1159 * If this page may have been pinned by the parent process, 1160 * copy the page immediately for the child so that we'll always 1161 * guarantee the pinned page won't be randomly replaced in the 1162 * future. 1163 */ 1164 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1165 /* Page may be pinned, we have to copy. */ 1166 folio_put(folio); 1167 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1168 addr, rss, prealloc, page); 1169 return err ? err : 1; 1170 } 1171 rss[MM_ANONPAGES]++; 1172 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1173 } else { 1174 folio_dup_file_rmap_pte(folio, page, dst_vma); 1175 rss[mm_counter_file(folio)]++; 1176 } 1177 1178 copy_pte: 1179 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1180 return 1; 1181 } 1182 1183 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1184 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1185 { 1186 struct folio *new_folio; 1187 1188 if (need_zero) 1189 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1190 else 1191 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1192 1193 if (!new_folio) 1194 return NULL; 1195 1196 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1197 folio_put(new_folio); 1198 return NULL; 1199 } 1200 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1201 1202 return new_folio; 1203 } 1204 1205 static int 1206 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1207 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1208 unsigned long end) 1209 { 1210 struct mm_struct *dst_mm = dst_vma->vm_mm; 1211 struct mm_struct *src_mm = src_vma->vm_mm; 1212 pte_t *orig_src_pte, *orig_dst_pte; 1213 pte_t *src_pte, *dst_pte; 1214 pmd_t dummy_pmdval; 1215 pte_t ptent; 1216 spinlock_t *src_ptl, *dst_ptl; 1217 int progress, max_nr, ret = 0; 1218 int rss[NR_MM_COUNTERS]; 1219 swp_entry_t entry = (swp_entry_t){0}; 1220 struct folio *prealloc = NULL; 1221 int nr; 1222 1223 again: 1224 progress = 0; 1225 init_rss_vec(rss); 1226 1227 /* 1228 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1229 * error handling here, assume that exclusive mmap_lock on dst and src 1230 * protects anon from unexpected THP transitions; with shmem and file 1231 * protected by mmap_lock-less collapse skipping areas with anon_vma 1232 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1233 * can remove such assumptions later, but this is good enough for now. 1234 */ 1235 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1236 if (!dst_pte) { 1237 ret = -ENOMEM; 1238 goto out; 1239 } 1240 1241 /* 1242 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1243 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1244 * the PTE page is stable, and there is no need to get pmdval and do 1245 * pmd_same() check. 1246 */ 1247 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1248 &src_ptl); 1249 if (!src_pte) { 1250 pte_unmap_unlock(dst_pte, dst_ptl); 1251 /* ret == 0 */ 1252 goto out; 1253 } 1254 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1255 orig_src_pte = src_pte; 1256 orig_dst_pte = dst_pte; 1257 arch_enter_lazy_mmu_mode(); 1258 1259 do { 1260 nr = 1; 1261 1262 /* 1263 * We are holding two locks at this point - either of them 1264 * could generate latencies in another task on another CPU. 1265 */ 1266 if (progress >= 32) { 1267 progress = 0; 1268 if (need_resched() || 1269 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1270 break; 1271 } 1272 ptent = ptep_get(src_pte); 1273 if (pte_none(ptent)) { 1274 progress++; 1275 continue; 1276 } 1277 if (unlikely(!pte_present(ptent))) { 1278 ret = copy_nonpresent_pte(dst_mm, src_mm, 1279 dst_pte, src_pte, 1280 dst_vma, src_vma, 1281 addr, rss); 1282 if (ret == -EIO) { 1283 entry = pte_to_swp_entry(ptep_get(src_pte)); 1284 break; 1285 } else if (ret == -EBUSY) { 1286 break; 1287 } else if (!ret) { 1288 progress += 8; 1289 continue; 1290 } 1291 ptent = ptep_get(src_pte); 1292 VM_WARN_ON_ONCE(!pte_present(ptent)); 1293 1294 /* 1295 * Device exclusive entry restored, continue by copying 1296 * the now present pte. 1297 */ 1298 WARN_ON_ONCE(ret != -ENOENT); 1299 } 1300 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1301 max_nr = (end - addr) / PAGE_SIZE; 1302 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1303 ptent, addr, max_nr, rss, &prealloc); 1304 /* 1305 * If we need a pre-allocated page for this pte, drop the 1306 * locks, allocate, and try again. 1307 * If copy failed due to hwpoison in source page, break out. 1308 */ 1309 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1310 break; 1311 if (unlikely(prealloc)) { 1312 /* 1313 * pre-alloc page cannot be reused by next time so as 1314 * to strictly follow mempolicy (e.g., alloc_page_vma() 1315 * will allocate page according to address). This 1316 * could only happen if one pinned pte changed. 1317 */ 1318 folio_put(prealloc); 1319 prealloc = NULL; 1320 } 1321 nr = ret; 1322 progress += 8 * nr; 1323 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1324 addr != end); 1325 1326 arch_leave_lazy_mmu_mode(); 1327 pte_unmap_unlock(orig_src_pte, src_ptl); 1328 add_mm_rss_vec(dst_mm, rss); 1329 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1330 cond_resched(); 1331 1332 if (ret == -EIO) { 1333 VM_WARN_ON_ONCE(!entry.val); 1334 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1335 ret = -ENOMEM; 1336 goto out; 1337 } 1338 entry.val = 0; 1339 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1340 goto out; 1341 } else if (ret == -EAGAIN) { 1342 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1343 if (!prealloc) 1344 return -ENOMEM; 1345 } else if (ret < 0) { 1346 VM_WARN_ON_ONCE(1); 1347 } 1348 1349 /* We've captured and resolved the error. Reset, try again. */ 1350 ret = 0; 1351 1352 if (addr != end) 1353 goto again; 1354 out: 1355 if (unlikely(prealloc)) 1356 folio_put(prealloc); 1357 return ret; 1358 } 1359 1360 static inline int 1361 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1362 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1363 unsigned long end) 1364 { 1365 struct mm_struct *dst_mm = dst_vma->vm_mm; 1366 struct mm_struct *src_mm = src_vma->vm_mm; 1367 pmd_t *src_pmd, *dst_pmd; 1368 unsigned long next; 1369 1370 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1371 if (!dst_pmd) 1372 return -ENOMEM; 1373 src_pmd = pmd_offset(src_pud, addr); 1374 do { 1375 next = pmd_addr_end(addr, end); 1376 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)) { 1377 int err; 1378 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1379 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1380 addr, dst_vma, src_vma); 1381 if (err == -ENOMEM) 1382 return -ENOMEM; 1383 if (!err) 1384 continue; 1385 /* fall through */ 1386 } 1387 if (pmd_none_or_clear_bad(src_pmd)) 1388 continue; 1389 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1390 addr, next)) 1391 return -ENOMEM; 1392 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1393 return 0; 1394 } 1395 1396 static inline int 1397 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1398 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1399 unsigned long end) 1400 { 1401 struct mm_struct *dst_mm = dst_vma->vm_mm; 1402 struct mm_struct *src_mm = src_vma->vm_mm; 1403 pud_t *src_pud, *dst_pud; 1404 unsigned long next; 1405 1406 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1407 if (!dst_pud) 1408 return -ENOMEM; 1409 src_pud = pud_offset(src_p4d, addr); 1410 do { 1411 next = pud_addr_end(addr, end); 1412 if (pud_trans_huge(*src_pud)) { 1413 int err; 1414 1415 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1416 err = copy_huge_pud(dst_mm, src_mm, 1417 dst_pud, src_pud, addr, src_vma); 1418 if (err == -ENOMEM) 1419 return -ENOMEM; 1420 if (!err) 1421 continue; 1422 /* fall through */ 1423 } 1424 if (pud_none_or_clear_bad(src_pud)) 1425 continue; 1426 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1427 addr, next)) 1428 return -ENOMEM; 1429 } while (dst_pud++, src_pud++, addr = next, addr != end); 1430 return 0; 1431 } 1432 1433 static inline int 1434 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1435 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1436 unsigned long end) 1437 { 1438 struct mm_struct *dst_mm = dst_vma->vm_mm; 1439 p4d_t *src_p4d, *dst_p4d; 1440 unsigned long next; 1441 1442 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1443 if (!dst_p4d) 1444 return -ENOMEM; 1445 src_p4d = p4d_offset(src_pgd, addr); 1446 do { 1447 next = p4d_addr_end(addr, end); 1448 if (p4d_none_or_clear_bad(src_p4d)) 1449 continue; 1450 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1451 addr, next)) 1452 return -ENOMEM; 1453 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1454 return 0; 1455 } 1456 1457 /* 1458 * Return true if the vma needs to copy the pgtable during this fork(). Return 1459 * false when we can speed up fork() by allowing lazy page faults later until 1460 * when the child accesses the memory range. 1461 */ 1462 static bool 1463 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1464 { 1465 /* 1466 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1467 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1468 * contains uffd-wp protection information, that's something we can't 1469 * retrieve from page cache, and skip copying will lose those info. 1470 */ 1471 if (userfaultfd_wp(dst_vma)) 1472 return true; 1473 1474 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1475 return true; 1476 1477 if (src_vma->anon_vma) 1478 return true; 1479 1480 /* 1481 * Don't copy ptes where a page fault will fill them correctly. Fork 1482 * becomes much lighter when there are big shared or private readonly 1483 * mappings. The tradeoff is that copy_page_range is more efficient 1484 * than faulting. 1485 */ 1486 return false; 1487 } 1488 1489 int 1490 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1491 { 1492 pgd_t *src_pgd, *dst_pgd; 1493 unsigned long addr = src_vma->vm_start; 1494 unsigned long end = src_vma->vm_end; 1495 struct mm_struct *dst_mm = dst_vma->vm_mm; 1496 struct mm_struct *src_mm = src_vma->vm_mm; 1497 struct mmu_notifier_range range; 1498 unsigned long next; 1499 bool is_cow; 1500 int ret; 1501 1502 if (!vma_needs_copy(dst_vma, src_vma)) 1503 return 0; 1504 1505 if (is_vm_hugetlb_page(src_vma)) 1506 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1507 1508 /* 1509 * We need to invalidate the secondary MMU mappings only when 1510 * there could be a permission downgrade on the ptes of the 1511 * parent mm. And a permission downgrade will only happen if 1512 * is_cow_mapping() returns true. 1513 */ 1514 is_cow = is_cow_mapping(src_vma->vm_flags); 1515 1516 if (is_cow) { 1517 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1518 0, src_mm, addr, end); 1519 mmu_notifier_invalidate_range_start(&range); 1520 /* 1521 * Disabling preemption is not needed for the write side, as 1522 * the read side doesn't spin, but goes to the mmap_lock. 1523 * 1524 * Use the raw variant of the seqcount_t write API to avoid 1525 * lockdep complaining about preemptibility. 1526 */ 1527 vma_assert_write_locked(src_vma); 1528 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1529 } 1530 1531 ret = 0; 1532 dst_pgd = pgd_offset(dst_mm, addr); 1533 src_pgd = pgd_offset(src_mm, addr); 1534 do { 1535 next = pgd_addr_end(addr, end); 1536 if (pgd_none_or_clear_bad(src_pgd)) 1537 continue; 1538 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1539 addr, next))) { 1540 ret = -ENOMEM; 1541 break; 1542 } 1543 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1544 1545 if (is_cow) { 1546 raw_write_seqcount_end(&src_mm->write_protect_seq); 1547 mmu_notifier_invalidate_range_end(&range); 1548 } 1549 return ret; 1550 } 1551 1552 /* Whether we should zap all COWed (private) pages too */ 1553 static inline bool should_zap_cows(struct zap_details *details) 1554 { 1555 /* By default, zap all pages */ 1556 if (!details || details->reclaim_pt) 1557 return true; 1558 1559 /* Or, we zap COWed pages only if the caller wants to */ 1560 return details->even_cows; 1561 } 1562 1563 /* Decides whether we should zap this folio with the folio pointer specified */ 1564 static inline bool should_zap_folio(struct zap_details *details, 1565 struct folio *folio) 1566 { 1567 /* If we can make a decision without *folio.. */ 1568 if (should_zap_cows(details)) 1569 return true; 1570 1571 /* Otherwise we should only zap non-anon folios */ 1572 return !folio_test_anon(folio); 1573 } 1574 1575 static inline bool zap_drop_markers(struct zap_details *details) 1576 { 1577 if (!details) 1578 return false; 1579 1580 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1581 } 1582 1583 /* 1584 * This function makes sure that we'll replace the none pte with an uffd-wp 1585 * swap special pte marker when necessary. Must be with the pgtable lock held. 1586 * 1587 * Returns true if uffd-wp ptes was installed, false otherwise. 1588 */ 1589 static inline bool 1590 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1591 unsigned long addr, pte_t *pte, int nr, 1592 struct zap_details *details, pte_t pteval) 1593 { 1594 bool was_installed = false; 1595 1596 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1597 /* Zap on anonymous always means dropping everything */ 1598 if (vma_is_anonymous(vma)) 1599 return false; 1600 1601 if (zap_drop_markers(details)) 1602 return false; 1603 1604 for (;;) { 1605 /* the PFN in the PTE is irrelevant. */ 1606 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1607 was_installed = true; 1608 if (--nr == 0) 1609 break; 1610 pte++; 1611 addr += PAGE_SIZE; 1612 } 1613 #endif 1614 return was_installed; 1615 } 1616 1617 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1618 struct vm_area_struct *vma, struct folio *folio, 1619 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1620 unsigned long addr, struct zap_details *details, int *rss, 1621 bool *force_flush, bool *force_break, bool *any_skipped) 1622 { 1623 struct mm_struct *mm = tlb->mm; 1624 bool delay_rmap = false; 1625 1626 if (!folio_test_anon(folio)) { 1627 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1628 if (pte_dirty(ptent)) { 1629 folio_mark_dirty(folio); 1630 if (tlb_delay_rmap(tlb)) { 1631 delay_rmap = true; 1632 *force_flush = true; 1633 } 1634 } 1635 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1636 folio_mark_accessed(folio); 1637 rss[mm_counter(folio)] -= nr; 1638 } else { 1639 /* We don't need up-to-date accessed/dirty bits. */ 1640 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1641 rss[MM_ANONPAGES] -= nr; 1642 } 1643 /* Checking a single PTE in a batch is sufficient. */ 1644 arch_check_zapped_pte(vma, ptent); 1645 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1646 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1647 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1648 nr, details, ptent); 1649 1650 if (!delay_rmap) { 1651 folio_remove_rmap_ptes(folio, page, nr, vma); 1652 1653 if (unlikely(folio_mapcount(folio) < 0)) 1654 print_bad_pte(vma, addr, ptent, page); 1655 } 1656 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1657 *force_flush = true; 1658 *force_break = true; 1659 } 1660 } 1661 1662 /* 1663 * Zap or skip at least one present PTE, trying to batch-process subsequent 1664 * PTEs that map consecutive pages of the same folio. 1665 * 1666 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1667 */ 1668 static inline int zap_present_ptes(struct mmu_gather *tlb, 1669 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1670 unsigned int max_nr, unsigned long addr, 1671 struct zap_details *details, int *rss, bool *force_flush, 1672 bool *force_break, bool *any_skipped) 1673 { 1674 struct mm_struct *mm = tlb->mm; 1675 struct folio *folio; 1676 struct page *page; 1677 int nr; 1678 1679 page = vm_normal_page(vma, addr, ptent); 1680 if (!page) { 1681 /* We don't need up-to-date accessed/dirty bits. */ 1682 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1683 arch_check_zapped_pte(vma, ptent); 1684 tlb_remove_tlb_entry(tlb, pte, addr); 1685 if (userfaultfd_pte_wp(vma, ptent)) 1686 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1687 pte, 1, details, ptent); 1688 ksm_might_unmap_zero_page(mm, ptent); 1689 return 1; 1690 } 1691 1692 folio = page_folio(page); 1693 if (unlikely(!should_zap_folio(details, folio))) { 1694 *any_skipped = true; 1695 return 1; 1696 } 1697 1698 /* 1699 * Make sure that the common "small folio" case is as fast as possible 1700 * by keeping the batching logic separate. 1701 */ 1702 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1703 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1704 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1705 addr, details, rss, force_flush, 1706 force_break, any_skipped); 1707 return nr; 1708 } 1709 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1710 details, rss, force_flush, force_break, any_skipped); 1711 return 1; 1712 } 1713 1714 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1715 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1716 unsigned int max_nr, unsigned long addr, 1717 struct zap_details *details, int *rss, bool *any_skipped) 1718 { 1719 swp_entry_t entry; 1720 int nr = 1; 1721 1722 *any_skipped = true; 1723 entry = pte_to_swp_entry(ptent); 1724 if (is_device_private_entry(entry) || 1725 is_device_exclusive_entry(entry)) { 1726 struct page *page = pfn_swap_entry_to_page(entry); 1727 struct folio *folio = page_folio(page); 1728 1729 if (unlikely(!should_zap_folio(details, folio))) 1730 return 1; 1731 /* 1732 * Both device private/exclusive mappings should only 1733 * work with anonymous page so far, so we don't need to 1734 * consider uffd-wp bit when zap. For more information, 1735 * see zap_install_uffd_wp_if_needed(). 1736 */ 1737 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1738 rss[mm_counter(folio)]--; 1739 folio_remove_rmap_pte(folio, page, vma); 1740 folio_put(folio); 1741 } else if (!non_swap_entry(entry)) { 1742 /* Genuine swap entries, hence a private anon pages */ 1743 if (!should_zap_cows(details)) 1744 return 1; 1745 1746 nr = swap_pte_batch(pte, max_nr, ptent); 1747 rss[MM_SWAPENTS] -= nr; 1748 free_swap_and_cache_nr(entry, nr); 1749 } else if (is_migration_entry(entry)) { 1750 struct folio *folio = pfn_swap_entry_folio(entry); 1751 1752 if (!should_zap_folio(details, folio)) 1753 return 1; 1754 rss[mm_counter(folio)]--; 1755 } else if (pte_marker_entry_uffd_wp(entry)) { 1756 /* 1757 * For anon: always drop the marker; for file: only 1758 * drop the marker if explicitly requested. 1759 */ 1760 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1761 return 1; 1762 } else if (is_guard_swp_entry(entry)) { 1763 /* 1764 * Ordinary zapping should not remove guard PTE 1765 * markers. Only do so if we should remove PTE markers 1766 * in general. 1767 */ 1768 if (!zap_drop_markers(details)) 1769 return 1; 1770 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1771 if (!should_zap_cows(details)) 1772 return 1; 1773 } else { 1774 /* We should have covered all the swap entry types */ 1775 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1776 WARN_ON_ONCE(1); 1777 } 1778 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1779 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1780 1781 return nr; 1782 } 1783 1784 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1785 struct vm_area_struct *vma, pte_t *pte, 1786 unsigned long addr, unsigned long end, 1787 struct zap_details *details, int *rss, 1788 bool *force_flush, bool *force_break, 1789 bool *any_skipped) 1790 { 1791 pte_t ptent = ptep_get(pte); 1792 int max_nr = (end - addr) / PAGE_SIZE; 1793 int nr = 0; 1794 1795 /* Skip all consecutive none ptes */ 1796 if (pte_none(ptent)) { 1797 for (nr = 1; nr < max_nr; nr++) { 1798 ptent = ptep_get(pte + nr); 1799 if (!pte_none(ptent)) 1800 break; 1801 } 1802 max_nr -= nr; 1803 if (!max_nr) 1804 return nr; 1805 pte += nr; 1806 addr += nr * PAGE_SIZE; 1807 } 1808 1809 if (pte_present(ptent)) 1810 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1811 details, rss, force_flush, force_break, 1812 any_skipped); 1813 else 1814 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1815 details, rss, any_skipped); 1816 1817 return nr; 1818 } 1819 1820 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1821 struct vm_area_struct *vma, pmd_t *pmd, 1822 unsigned long addr, unsigned long end, 1823 struct zap_details *details) 1824 { 1825 bool force_flush = false, force_break = false; 1826 struct mm_struct *mm = tlb->mm; 1827 int rss[NR_MM_COUNTERS]; 1828 spinlock_t *ptl; 1829 pte_t *start_pte; 1830 pte_t *pte; 1831 pmd_t pmdval; 1832 unsigned long start = addr; 1833 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1834 bool direct_reclaim = true; 1835 int nr; 1836 1837 retry: 1838 tlb_change_page_size(tlb, PAGE_SIZE); 1839 init_rss_vec(rss); 1840 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1841 if (!pte) 1842 return addr; 1843 1844 flush_tlb_batched_pending(mm); 1845 arch_enter_lazy_mmu_mode(); 1846 do { 1847 bool any_skipped = false; 1848 1849 if (need_resched()) { 1850 direct_reclaim = false; 1851 break; 1852 } 1853 1854 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1855 &force_flush, &force_break, &any_skipped); 1856 if (any_skipped) 1857 can_reclaim_pt = false; 1858 if (unlikely(force_break)) { 1859 addr += nr * PAGE_SIZE; 1860 direct_reclaim = false; 1861 break; 1862 } 1863 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1864 1865 /* 1866 * Fast path: try to hold the pmd lock and unmap the PTE page. 1867 * 1868 * If the pte lock was released midway (retry case), or if the attempt 1869 * to hold the pmd lock failed, then we need to recheck all pte entries 1870 * to ensure they are still none, thereby preventing the pte entries 1871 * from being repopulated by another thread. 1872 */ 1873 if (can_reclaim_pt && direct_reclaim && addr == end) 1874 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1875 1876 add_mm_rss_vec(mm, rss); 1877 arch_leave_lazy_mmu_mode(); 1878 1879 /* Do the actual TLB flush before dropping ptl */ 1880 if (force_flush) { 1881 tlb_flush_mmu_tlbonly(tlb); 1882 tlb_flush_rmaps(tlb, vma); 1883 } 1884 pte_unmap_unlock(start_pte, ptl); 1885 1886 /* 1887 * If we forced a TLB flush (either due to running out of 1888 * batch buffers or because we needed to flush dirty TLB 1889 * entries before releasing the ptl), free the batched 1890 * memory too. Come back again if we didn't do everything. 1891 */ 1892 if (force_flush) 1893 tlb_flush_mmu(tlb); 1894 1895 if (addr != end) { 1896 cond_resched(); 1897 force_flush = false; 1898 force_break = false; 1899 goto retry; 1900 } 1901 1902 if (can_reclaim_pt) { 1903 if (direct_reclaim) 1904 free_pte(mm, start, tlb, pmdval); 1905 else 1906 try_to_free_pte(mm, pmd, start, tlb); 1907 } 1908 1909 return addr; 1910 } 1911 1912 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1913 struct vm_area_struct *vma, pud_t *pud, 1914 unsigned long addr, unsigned long end, 1915 struct zap_details *details) 1916 { 1917 pmd_t *pmd; 1918 unsigned long next; 1919 1920 pmd = pmd_offset(pud, addr); 1921 do { 1922 next = pmd_addr_end(addr, end); 1923 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) { 1924 if (next - addr != HPAGE_PMD_SIZE) 1925 __split_huge_pmd(vma, pmd, addr, false); 1926 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1927 addr = next; 1928 continue; 1929 } 1930 /* fall through */ 1931 } else if (details && details->single_folio && 1932 folio_test_pmd_mappable(details->single_folio) && 1933 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1934 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1935 /* 1936 * Take and drop THP pmd lock so that we cannot return 1937 * prematurely, while zap_huge_pmd() has cleared *pmd, 1938 * but not yet decremented compound_mapcount(). 1939 */ 1940 spin_unlock(ptl); 1941 } 1942 if (pmd_none(*pmd)) { 1943 addr = next; 1944 continue; 1945 } 1946 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1947 if (addr != next) 1948 pmd--; 1949 } while (pmd++, cond_resched(), addr != end); 1950 1951 return addr; 1952 } 1953 1954 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1955 struct vm_area_struct *vma, p4d_t *p4d, 1956 unsigned long addr, unsigned long end, 1957 struct zap_details *details) 1958 { 1959 pud_t *pud; 1960 unsigned long next; 1961 1962 pud = pud_offset(p4d, addr); 1963 do { 1964 next = pud_addr_end(addr, end); 1965 if (pud_trans_huge(*pud)) { 1966 if (next - addr != HPAGE_PUD_SIZE) { 1967 mmap_assert_locked(tlb->mm); 1968 split_huge_pud(vma, pud, addr); 1969 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1970 goto next; 1971 /* fall through */ 1972 } 1973 if (pud_none_or_clear_bad(pud)) 1974 continue; 1975 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1976 next: 1977 cond_resched(); 1978 } while (pud++, addr = next, addr != end); 1979 1980 return addr; 1981 } 1982 1983 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1984 struct vm_area_struct *vma, pgd_t *pgd, 1985 unsigned long addr, unsigned long end, 1986 struct zap_details *details) 1987 { 1988 p4d_t *p4d; 1989 unsigned long next; 1990 1991 p4d = p4d_offset(pgd, addr); 1992 do { 1993 next = p4d_addr_end(addr, end); 1994 if (p4d_none_or_clear_bad(p4d)) 1995 continue; 1996 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1997 } while (p4d++, addr = next, addr != end); 1998 1999 return addr; 2000 } 2001 2002 void unmap_page_range(struct mmu_gather *tlb, 2003 struct vm_area_struct *vma, 2004 unsigned long addr, unsigned long end, 2005 struct zap_details *details) 2006 { 2007 pgd_t *pgd; 2008 unsigned long next; 2009 2010 BUG_ON(addr >= end); 2011 tlb_start_vma(tlb, vma); 2012 pgd = pgd_offset(vma->vm_mm, addr); 2013 do { 2014 next = pgd_addr_end(addr, end); 2015 if (pgd_none_or_clear_bad(pgd)) 2016 continue; 2017 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 2018 } while (pgd++, addr = next, addr != end); 2019 tlb_end_vma(tlb, vma); 2020 } 2021 2022 2023 static void unmap_single_vma(struct mmu_gather *tlb, 2024 struct vm_area_struct *vma, unsigned long start_addr, 2025 unsigned long end_addr, 2026 struct zap_details *details, bool mm_wr_locked) 2027 { 2028 unsigned long start = max(vma->vm_start, start_addr); 2029 unsigned long end; 2030 2031 if (start >= vma->vm_end) 2032 return; 2033 end = min(vma->vm_end, end_addr); 2034 if (end <= vma->vm_start) 2035 return; 2036 2037 if (vma->vm_file) 2038 uprobe_munmap(vma, start, end); 2039 2040 if (start != end) { 2041 if (unlikely(is_vm_hugetlb_page(vma))) { 2042 /* 2043 * It is undesirable to test vma->vm_file as it 2044 * should be non-null for valid hugetlb area. 2045 * However, vm_file will be NULL in the error 2046 * cleanup path of mmap_region. When 2047 * hugetlbfs ->mmap method fails, 2048 * mmap_region() nullifies vma->vm_file 2049 * before calling this function to clean up. 2050 * Since no pte has actually been setup, it is 2051 * safe to do nothing in this case. 2052 */ 2053 if (vma->vm_file) { 2054 zap_flags_t zap_flags = details ? 2055 details->zap_flags : 0; 2056 __unmap_hugepage_range(tlb, vma, start, end, 2057 NULL, zap_flags); 2058 } 2059 } else 2060 unmap_page_range(tlb, vma, start, end, details); 2061 } 2062 } 2063 2064 /** 2065 * unmap_vmas - unmap a range of memory covered by a list of vma's 2066 * @tlb: address of the caller's struct mmu_gather 2067 * @mas: the maple state 2068 * @vma: the starting vma 2069 * @start_addr: virtual address at which to start unmapping 2070 * @end_addr: virtual address at which to end unmapping 2071 * @tree_end: The maximum index to check 2072 * @mm_wr_locked: lock flag 2073 * 2074 * Unmap all pages in the vma list. 2075 * 2076 * Only addresses between `start' and `end' will be unmapped. 2077 * 2078 * The VMA list must be sorted in ascending virtual address order. 2079 * 2080 * unmap_vmas() assumes that the caller will flush the whole unmapped address 2081 * range after unmap_vmas() returns. So the only responsibility here is to 2082 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 2083 * drops the lock and schedules. 2084 */ 2085 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2086 struct vm_area_struct *vma, unsigned long start_addr, 2087 unsigned long end_addr, unsigned long tree_end, 2088 bool mm_wr_locked) 2089 { 2090 struct mmu_notifier_range range; 2091 struct zap_details details = { 2092 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 2093 /* Careful - we need to zap private pages too! */ 2094 .even_cows = true, 2095 }; 2096 2097 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 2098 start_addr, end_addr); 2099 mmu_notifier_invalidate_range_start(&range); 2100 do { 2101 unsigned long start = start_addr; 2102 unsigned long end = end_addr; 2103 hugetlb_zap_begin(vma, &start, &end); 2104 unmap_single_vma(tlb, vma, start, end, &details, 2105 mm_wr_locked); 2106 hugetlb_zap_end(vma, &details); 2107 vma = mas_find(mas, tree_end - 1); 2108 } while (vma && likely(!xa_is_zero(vma))); 2109 mmu_notifier_invalidate_range_end(&range); 2110 } 2111 2112 /** 2113 * zap_page_range_single_batched - remove user pages in a given range 2114 * @tlb: pointer to the caller's struct mmu_gather 2115 * @vma: vm_area_struct holding the applicable pages 2116 * @address: starting address of pages to remove 2117 * @size: number of bytes to remove 2118 * @details: details of shared cache invalidation 2119 * 2120 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2121 * hugetlb, @tlb is flushed and re-initialized by this function. 2122 */ 2123 void zap_page_range_single_batched(struct mmu_gather *tlb, 2124 struct vm_area_struct *vma, unsigned long address, 2125 unsigned long size, struct zap_details *details) 2126 { 2127 const unsigned long end = address + size; 2128 struct mmu_notifier_range range; 2129 2130 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2131 2132 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2133 address, end); 2134 hugetlb_zap_begin(vma, &range.start, &range.end); 2135 update_hiwater_rss(vma->vm_mm); 2136 mmu_notifier_invalidate_range_start(&range); 2137 /* 2138 * unmap 'address-end' not 'range.start-range.end' as range 2139 * could have been expanded for hugetlb pmd sharing. 2140 */ 2141 unmap_single_vma(tlb, vma, address, end, details, false); 2142 mmu_notifier_invalidate_range_end(&range); 2143 if (is_vm_hugetlb_page(vma)) { 2144 /* 2145 * flush tlb and free resources before hugetlb_zap_end(), to 2146 * avoid concurrent page faults' allocation failure. 2147 */ 2148 tlb_finish_mmu(tlb); 2149 hugetlb_zap_end(vma, details); 2150 tlb_gather_mmu(tlb, vma->vm_mm); 2151 } 2152 } 2153 2154 /** 2155 * zap_page_range_single - remove user pages in a given range 2156 * @vma: vm_area_struct holding the applicable pages 2157 * @address: starting address of pages to zap 2158 * @size: number of bytes to zap 2159 * @details: details of shared cache invalidation 2160 * 2161 * The range must fit into one VMA. 2162 */ 2163 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2164 unsigned long size, struct zap_details *details) 2165 { 2166 struct mmu_gather tlb; 2167 2168 tlb_gather_mmu(&tlb, vma->vm_mm); 2169 zap_page_range_single_batched(&tlb, vma, address, size, details); 2170 tlb_finish_mmu(&tlb); 2171 } 2172 2173 /** 2174 * zap_vma_ptes - remove ptes mapping the vma 2175 * @vma: vm_area_struct holding ptes to be zapped 2176 * @address: starting address of pages to zap 2177 * @size: number of bytes to zap 2178 * 2179 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2180 * 2181 * The entire address range must be fully contained within the vma. 2182 * 2183 */ 2184 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2185 unsigned long size) 2186 { 2187 if (!range_in_vma(vma, address, address + size) || 2188 !(vma->vm_flags & VM_PFNMAP)) 2189 return; 2190 2191 zap_page_range_single(vma, address, size, NULL); 2192 } 2193 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2194 2195 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2196 { 2197 pgd_t *pgd; 2198 p4d_t *p4d; 2199 pud_t *pud; 2200 pmd_t *pmd; 2201 2202 pgd = pgd_offset(mm, addr); 2203 p4d = p4d_alloc(mm, pgd, addr); 2204 if (!p4d) 2205 return NULL; 2206 pud = pud_alloc(mm, p4d, addr); 2207 if (!pud) 2208 return NULL; 2209 pmd = pmd_alloc(mm, pud, addr); 2210 if (!pmd) 2211 return NULL; 2212 2213 VM_BUG_ON(pmd_trans_huge(*pmd)); 2214 return pmd; 2215 } 2216 2217 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2218 spinlock_t **ptl) 2219 { 2220 pmd_t *pmd = walk_to_pmd(mm, addr); 2221 2222 if (!pmd) 2223 return NULL; 2224 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2225 } 2226 2227 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2228 { 2229 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2230 /* 2231 * Whoever wants to forbid the zeropage after some zeropages 2232 * might already have been mapped has to scan the page tables and 2233 * bail out on any zeropages. Zeropages in COW mappings can 2234 * be unshared using FAULT_FLAG_UNSHARE faults. 2235 */ 2236 if (mm_forbids_zeropage(vma->vm_mm)) 2237 return false; 2238 /* zeropages in COW mappings are common and unproblematic. */ 2239 if (is_cow_mapping(vma->vm_flags)) 2240 return true; 2241 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2242 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2243 return true; 2244 /* 2245 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2246 * find the shared zeropage and longterm-pin it, which would 2247 * be problematic as soon as the zeropage gets replaced by a different 2248 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2249 * now differ to what GUP looked up. FSDAX is incompatible to 2250 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2251 * check_vma_flags). 2252 */ 2253 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2254 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2255 } 2256 2257 static int validate_page_before_insert(struct vm_area_struct *vma, 2258 struct page *page) 2259 { 2260 struct folio *folio = page_folio(page); 2261 2262 if (!folio_ref_count(folio)) 2263 return -EINVAL; 2264 if (unlikely(is_zero_folio(folio))) { 2265 if (!vm_mixed_zeropage_allowed(vma)) 2266 return -EINVAL; 2267 return 0; 2268 } 2269 if (folio_test_anon(folio) || folio_test_slab(folio) || 2270 page_has_type(page)) 2271 return -EINVAL; 2272 flush_dcache_folio(folio); 2273 return 0; 2274 } 2275 2276 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2277 unsigned long addr, struct page *page, 2278 pgprot_t prot, bool mkwrite) 2279 { 2280 struct folio *folio = page_folio(page); 2281 pte_t pteval = ptep_get(pte); 2282 2283 if (!pte_none(pteval)) { 2284 if (!mkwrite) 2285 return -EBUSY; 2286 2287 /* see insert_pfn(). */ 2288 if (pte_pfn(pteval) != page_to_pfn(page)) { 2289 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2290 return -EFAULT; 2291 } 2292 pteval = maybe_mkwrite(pteval, vma); 2293 pteval = pte_mkyoung(pteval); 2294 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2295 update_mmu_cache(vma, addr, pte); 2296 return 0; 2297 } 2298 2299 /* Ok, finally just insert the thing.. */ 2300 pteval = mk_pte(page, prot); 2301 if (unlikely(is_zero_folio(folio))) { 2302 pteval = pte_mkspecial(pteval); 2303 } else { 2304 folio_get(folio); 2305 pteval = mk_pte(page, prot); 2306 if (mkwrite) { 2307 pteval = pte_mkyoung(pteval); 2308 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2309 } 2310 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2311 folio_add_file_rmap_pte(folio, page, vma); 2312 } 2313 set_pte_at(vma->vm_mm, addr, pte, pteval); 2314 return 0; 2315 } 2316 2317 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2318 struct page *page, pgprot_t prot, bool mkwrite) 2319 { 2320 int retval; 2321 pte_t *pte; 2322 spinlock_t *ptl; 2323 2324 retval = validate_page_before_insert(vma, page); 2325 if (retval) 2326 goto out; 2327 retval = -ENOMEM; 2328 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2329 if (!pte) 2330 goto out; 2331 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2332 mkwrite); 2333 pte_unmap_unlock(pte, ptl); 2334 out: 2335 return retval; 2336 } 2337 2338 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2339 unsigned long addr, struct page *page, pgprot_t prot) 2340 { 2341 int err; 2342 2343 err = validate_page_before_insert(vma, page); 2344 if (err) 2345 return err; 2346 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2347 } 2348 2349 /* insert_pages() amortizes the cost of spinlock operations 2350 * when inserting pages in a loop. 2351 */ 2352 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2353 struct page **pages, unsigned long *num, pgprot_t prot) 2354 { 2355 pmd_t *pmd = NULL; 2356 pte_t *start_pte, *pte; 2357 spinlock_t *pte_lock; 2358 struct mm_struct *const mm = vma->vm_mm; 2359 unsigned long curr_page_idx = 0; 2360 unsigned long remaining_pages_total = *num; 2361 unsigned long pages_to_write_in_pmd; 2362 int ret; 2363 more: 2364 ret = -EFAULT; 2365 pmd = walk_to_pmd(mm, addr); 2366 if (!pmd) 2367 goto out; 2368 2369 pages_to_write_in_pmd = min_t(unsigned long, 2370 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2371 2372 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2373 ret = -ENOMEM; 2374 if (pte_alloc(mm, pmd)) 2375 goto out; 2376 2377 while (pages_to_write_in_pmd) { 2378 int pte_idx = 0; 2379 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2380 2381 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2382 if (!start_pte) { 2383 ret = -EFAULT; 2384 goto out; 2385 } 2386 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2387 int err = insert_page_in_batch_locked(vma, pte, 2388 addr, pages[curr_page_idx], prot); 2389 if (unlikely(err)) { 2390 pte_unmap_unlock(start_pte, pte_lock); 2391 ret = err; 2392 remaining_pages_total -= pte_idx; 2393 goto out; 2394 } 2395 addr += PAGE_SIZE; 2396 ++curr_page_idx; 2397 } 2398 pte_unmap_unlock(start_pte, pte_lock); 2399 pages_to_write_in_pmd -= batch_size; 2400 remaining_pages_total -= batch_size; 2401 } 2402 if (remaining_pages_total) 2403 goto more; 2404 ret = 0; 2405 out: 2406 *num = remaining_pages_total; 2407 return ret; 2408 } 2409 2410 /** 2411 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2412 * @vma: user vma to map to 2413 * @addr: target start user address of these pages 2414 * @pages: source kernel pages 2415 * @num: in: number of pages to map. out: number of pages that were *not* 2416 * mapped. (0 means all pages were successfully mapped). 2417 * 2418 * Preferred over vm_insert_page() when inserting multiple pages. 2419 * 2420 * In case of error, we may have mapped a subset of the provided 2421 * pages. It is the caller's responsibility to account for this case. 2422 * 2423 * The same restrictions apply as in vm_insert_page(). 2424 */ 2425 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2426 struct page **pages, unsigned long *num) 2427 { 2428 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2429 2430 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2431 return -EFAULT; 2432 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2433 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2434 BUG_ON(vma->vm_flags & VM_PFNMAP); 2435 vm_flags_set(vma, VM_MIXEDMAP); 2436 } 2437 /* Defer page refcount checking till we're about to map that page. */ 2438 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2439 } 2440 EXPORT_SYMBOL(vm_insert_pages); 2441 2442 /** 2443 * vm_insert_page - insert single page into user vma 2444 * @vma: user vma to map to 2445 * @addr: target user address of this page 2446 * @page: source kernel page 2447 * 2448 * This allows drivers to insert individual pages they've allocated 2449 * into a user vma. The zeropage is supported in some VMAs, 2450 * see vm_mixed_zeropage_allowed(). 2451 * 2452 * The page has to be a nice clean _individual_ kernel allocation. 2453 * If you allocate a compound page, you need to have marked it as 2454 * such (__GFP_COMP), or manually just split the page up yourself 2455 * (see split_page()). 2456 * 2457 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2458 * took an arbitrary page protection parameter. This doesn't allow 2459 * that. Your vma protection will have to be set up correctly, which 2460 * means that if you want a shared writable mapping, you'd better 2461 * ask for a shared writable mapping! 2462 * 2463 * The page does not need to be reserved. 2464 * 2465 * Usually this function is called from f_op->mmap() handler 2466 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2467 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2468 * function from other places, for example from page-fault handler. 2469 * 2470 * Return: %0 on success, negative error code otherwise. 2471 */ 2472 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2473 struct page *page) 2474 { 2475 if (addr < vma->vm_start || addr >= vma->vm_end) 2476 return -EFAULT; 2477 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2478 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2479 BUG_ON(vma->vm_flags & VM_PFNMAP); 2480 vm_flags_set(vma, VM_MIXEDMAP); 2481 } 2482 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2483 } 2484 EXPORT_SYMBOL(vm_insert_page); 2485 2486 /* 2487 * __vm_map_pages - maps range of kernel pages into user vma 2488 * @vma: user vma to map to 2489 * @pages: pointer to array of source kernel pages 2490 * @num: number of pages in page array 2491 * @offset: user's requested vm_pgoff 2492 * 2493 * This allows drivers to map range of kernel pages into a user vma. 2494 * The zeropage is supported in some VMAs, see 2495 * vm_mixed_zeropage_allowed(). 2496 * 2497 * Return: 0 on success and error code otherwise. 2498 */ 2499 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2500 unsigned long num, unsigned long offset) 2501 { 2502 unsigned long count = vma_pages(vma); 2503 unsigned long uaddr = vma->vm_start; 2504 int ret, i; 2505 2506 /* Fail if the user requested offset is beyond the end of the object */ 2507 if (offset >= num) 2508 return -ENXIO; 2509 2510 /* Fail if the user requested size exceeds available object size */ 2511 if (count > num - offset) 2512 return -ENXIO; 2513 2514 for (i = 0; i < count; i++) { 2515 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2516 if (ret < 0) 2517 return ret; 2518 uaddr += PAGE_SIZE; 2519 } 2520 2521 return 0; 2522 } 2523 2524 /** 2525 * vm_map_pages - maps range of kernel pages starts with non zero offset 2526 * @vma: user vma to map to 2527 * @pages: pointer to array of source kernel pages 2528 * @num: number of pages in page array 2529 * 2530 * Maps an object consisting of @num pages, catering for the user's 2531 * requested vm_pgoff 2532 * 2533 * If we fail to insert any page into the vma, the function will return 2534 * immediately leaving any previously inserted pages present. Callers 2535 * from the mmap handler may immediately return the error as their caller 2536 * will destroy the vma, removing any successfully inserted pages. Other 2537 * callers should make their own arrangements for calling unmap_region(). 2538 * 2539 * Context: Process context. Called by mmap handlers. 2540 * Return: 0 on success and error code otherwise. 2541 */ 2542 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2543 unsigned long num) 2544 { 2545 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2546 } 2547 EXPORT_SYMBOL(vm_map_pages); 2548 2549 /** 2550 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2551 * @vma: user vma to map to 2552 * @pages: pointer to array of source kernel pages 2553 * @num: number of pages in page array 2554 * 2555 * Similar to vm_map_pages(), except that it explicitly sets the offset 2556 * to 0. This function is intended for the drivers that did not consider 2557 * vm_pgoff. 2558 * 2559 * Context: Process context. Called by mmap handlers. 2560 * Return: 0 on success and error code otherwise. 2561 */ 2562 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2563 unsigned long num) 2564 { 2565 return __vm_map_pages(vma, pages, num, 0); 2566 } 2567 EXPORT_SYMBOL(vm_map_pages_zero); 2568 2569 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2570 unsigned long pfn, pgprot_t prot, bool mkwrite) 2571 { 2572 struct mm_struct *mm = vma->vm_mm; 2573 pte_t *pte, entry; 2574 spinlock_t *ptl; 2575 2576 pte = get_locked_pte(mm, addr, &ptl); 2577 if (!pte) 2578 return VM_FAULT_OOM; 2579 entry = ptep_get(pte); 2580 if (!pte_none(entry)) { 2581 if (mkwrite) { 2582 /* 2583 * For read faults on private mappings the PFN passed 2584 * in may not match the PFN we have mapped if the 2585 * mapped PFN is a writeable COW page. In the mkwrite 2586 * case we are creating a writable PTE for a shared 2587 * mapping and we expect the PFNs to match. If they 2588 * don't match, we are likely racing with block 2589 * allocation and mapping invalidation so just skip the 2590 * update. 2591 */ 2592 if (pte_pfn(entry) != pfn) { 2593 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2594 goto out_unlock; 2595 } 2596 entry = pte_mkyoung(entry); 2597 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2598 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2599 update_mmu_cache(vma, addr, pte); 2600 } 2601 goto out_unlock; 2602 } 2603 2604 /* Ok, finally just insert the thing.. */ 2605 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2606 2607 if (mkwrite) { 2608 entry = pte_mkyoung(entry); 2609 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2610 } 2611 2612 set_pte_at(mm, addr, pte, entry); 2613 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2614 2615 out_unlock: 2616 pte_unmap_unlock(pte, ptl); 2617 return VM_FAULT_NOPAGE; 2618 } 2619 2620 /** 2621 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2622 * @vma: user vma to map to 2623 * @addr: target user address of this page 2624 * @pfn: source kernel pfn 2625 * @pgprot: pgprot flags for the inserted page 2626 * 2627 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2628 * to override pgprot on a per-page basis. 2629 * 2630 * This only makes sense for IO mappings, and it makes no sense for 2631 * COW mappings. In general, using multiple vmas is preferable; 2632 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2633 * impractical. 2634 * 2635 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2636 * caching- and encryption bits different than those of @vma->vm_page_prot, 2637 * because the caching- or encryption mode may not be known at mmap() time. 2638 * 2639 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2640 * to set caching and encryption bits for those vmas (except for COW pages). 2641 * This is ensured by core vm only modifying these page table entries using 2642 * functions that don't touch caching- or encryption bits, using pte_modify() 2643 * if needed. (See for example mprotect()). 2644 * 2645 * Also when new page-table entries are created, this is only done using the 2646 * fault() callback, and never using the value of vma->vm_page_prot, 2647 * except for page-table entries that point to anonymous pages as the result 2648 * of COW. 2649 * 2650 * Context: Process context. May allocate using %GFP_KERNEL. 2651 * Return: vm_fault_t value. 2652 */ 2653 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2654 unsigned long pfn, pgprot_t pgprot) 2655 { 2656 /* 2657 * Technically, architectures with pte_special can avoid all these 2658 * restrictions (same for remap_pfn_range). However we would like 2659 * consistency in testing and feature parity among all, so we should 2660 * try to keep these invariants in place for everybody. 2661 */ 2662 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2663 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2664 (VM_PFNMAP|VM_MIXEDMAP)); 2665 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2666 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2667 2668 if (addr < vma->vm_start || addr >= vma->vm_end) 2669 return VM_FAULT_SIGBUS; 2670 2671 if (!pfn_modify_allowed(pfn, pgprot)) 2672 return VM_FAULT_SIGBUS; 2673 2674 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2675 2676 return insert_pfn(vma, addr, pfn, pgprot, false); 2677 } 2678 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2679 2680 /** 2681 * vmf_insert_pfn - insert single pfn into user vma 2682 * @vma: user vma to map to 2683 * @addr: target user address of this page 2684 * @pfn: source kernel pfn 2685 * 2686 * Similar to vm_insert_page, this allows drivers to insert individual pages 2687 * they've allocated into a user vma. Same comments apply. 2688 * 2689 * This function should only be called from a vm_ops->fault handler, and 2690 * in that case the handler should return the result of this function. 2691 * 2692 * vma cannot be a COW mapping. 2693 * 2694 * As this is called only for pages that do not currently exist, we 2695 * do not need to flush old virtual caches or the TLB. 2696 * 2697 * Context: Process context. May allocate using %GFP_KERNEL. 2698 * Return: vm_fault_t value. 2699 */ 2700 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2701 unsigned long pfn) 2702 { 2703 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2704 } 2705 EXPORT_SYMBOL(vmf_insert_pfn); 2706 2707 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2708 bool mkwrite) 2709 { 2710 if (unlikely(is_zero_pfn(pfn)) && 2711 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2712 return false; 2713 /* these checks mirror the abort conditions in vm_normal_page */ 2714 if (vma->vm_flags & VM_MIXEDMAP) 2715 return true; 2716 if (is_zero_pfn(pfn)) 2717 return true; 2718 return false; 2719 } 2720 2721 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2722 unsigned long addr, unsigned long pfn, bool mkwrite) 2723 { 2724 pgprot_t pgprot = vma->vm_page_prot; 2725 int err; 2726 2727 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2728 return VM_FAULT_SIGBUS; 2729 2730 if (addr < vma->vm_start || addr >= vma->vm_end) 2731 return VM_FAULT_SIGBUS; 2732 2733 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2734 2735 if (!pfn_modify_allowed(pfn, pgprot)) 2736 return VM_FAULT_SIGBUS; 2737 2738 /* 2739 * If we don't have pte special, then we have to use the pfn_valid() 2740 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2741 * refcount the page if pfn_valid is true (hence insert_page rather 2742 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2743 * without pte special, it would there be refcounted as a normal page. 2744 */ 2745 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2746 struct page *page; 2747 2748 /* 2749 * At this point we are committed to insert_page() 2750 * regardless of whether the caller specified flags that 2751 * result in pfn_t_has_page() == false. 2752 */ 2753 page = pfn_to_page(pfn); 2754 err = insert_page(vma, addr, page, pgprot, mkwrite); 2755 } else { 2756 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2757 } 2758 2759 if (err == -ENOMEM) 2760 return VM_FAULT_OOM; 2761 if (err < 0 && err != -EBUSY) 2762 return VM_FAULT_SIGBUS; 2763 2764 return VM_FAULT_NOPAGE; 2765 } 2766 2767 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2768 bool write) 2769 { 2770 pgprot_t pgprot = vmf->vma->vm_page_prot; 2771 unsigned long addr = vmf->address; 2772 int err; 2773 2774 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2775 return VM_FAULT_SIGBUS; 2776 2777 err = insert_page(vmf->vma, addr, page, pgprot, write); 2778 if (err == -ENOMEM) 2779 return VM_FAULT_OOM; 2780 if (err < 0 && err != -EBUSY) 2781 return VM_FAULT_SIGBUS; 2782 2783 return VM_FAULT_NOPAGE; 2784 } 2785 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2786 2787 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2788 unsigned long pfn) 2789 { 2790 return __vm_insert_mixed(vma, addr, pfn, false); 2791 } 2792 EXPORT_SYMBOL(vmf_insert_mixed); 2793 2794 /* 2795 * If the insertion of PTE failed because someone else already added a 2796 * different entry in the mean time, we treat that as success as we assume 2797 * the same entry was actually inserted. 2798 */ 2799 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2800 unsigned long addr, unsigned long pfn) 2801 { 2802 return __vm_insert_mixed(vma, addr, pfn, true); 2803 } 2804 2805 /* 2806 * maps a range of physical memory into the requested pages. the old 2807 * mappings are removed. any references to nonexistent pages results 2808 * in null mappings (currently treated as "copy-on-access") 2809 */ 2810 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2811 unsigned long addr, unsigned long end, 2812 unsigned long pfn, pgprot_t prot) 2813 { 2814 pte_t *pte, *mapped_pte; 2815 spinlock_t *ptl; 2816 int err = 0; 2817 2818 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2819 if (!pte) 2820 return -ENOMEM; 2821 arch_enter_lazy_mmu_mode(); 2822 do { 2823 BUG_ON(!pte_none(ptep_get(pte))); 2824 if (!pfn_modify_allowed(pfn, prot)) { 2825 err = -EACCES; 2826 break; 2827 } 2828 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2829 pfn++; 2830 } while (pte++, addr += PAGE_SIZE, addr != end); 2831 arch_leave_lazy_mmu_mode(); 2832 pte_unmap_unlock(mapped_pte, ptl); 2833 return err; 2834 } 2835 2836 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2837 unsigned long addr, unsigned long end, 2838 unsigned long pfn, pgprot_t prot) 2839 { 2840 pmd_t *pmd; 2841 unsigned long next; 2842 int err; 2843 2844 pfn -= addr >> PAGE_SHIFT; 2845 pmd = pmd_alloc(mm, pud, addr); 2846 if (!pmd) 2847 return -ENOMEM; 2848 VM_BUG_ON(pmd_trans_huge(*pmd)); 2849 do { 2850 next = pmd_addr_end(addr, end); 2851 err = remap_pte_range(mm, pmd, addr, next, 2852 pfn + (addr >> PAGE_SHIFT), prot); 2853 if (err) 2854 return err; 2855 } while (pmd++, addr = next, addr != end); 2856 return 0; 2857 } 2858 2859 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2860 unsigned long addr, unsigned long end, 2861 unsigned long pfn, pgprot_t prot) 2862 { 2863 pud_t *pud; 2864 unsigned long next; 2865 int err; 2866 2867 pfn -= addr >> PAGE_SHIFT; 2868 pud = pud_alloc(mm, p4d, addr); 2869 if (!pud) 2870 return -ENOMEM; 2871 do { 2872 next = pud_addr_end(addr, end); 2873 err = remap_pmd_range(mm, pud, addr, next, 2874 pfn + (addr >> PAGE_SHIFT), prot); 2875 if (err) 2876 return err; 2877 } while (pud++, addr = next, addr != end); 2878 return 0; 2879 } 2880 2881 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2882 unsigned long addr, unsigned long end, 2883 unsigned long pfn, pgprot_t prot) 2884 { 2885 p4d_t *p4d; 2886 unsigned long next; 2887 int err; 2888 2889 pfn -= addr >> PAGE_SHIFT; 2890 p4d = p4d_alloc(mm, pgd, addr); 2891 if (!p4d) 2892 return -ENOMEM; 2893 do { 2894 next = p4d_addr_end(addr, end); 2895 err = remap_pud_range(mm, p4d, addr, next, 2896 pfn + (addr >> PAGE_SHIFT), prot); 2897 if (err) 2898 return err; 2899 } while (p4d++, addr = next, addr != end); 2900 return 0; 2901 } 2902 2903 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2904 unsigned long pfn, unsigned long size, pgprot_t prot) 2905 { 2906 pgd_t *pgd; 2907 unsigned long next; 2908 unsigned long end = addr + PAGE_ALIGN(size); 2909 struct mm_struct *mm = vma->vm_mm; 2910 int err; 2911 2912 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2913 return -EINVAL; 2914 2915 /* 2916 * Physically remapped pages are special. Tell the 2917 * rest of the world about it: 2918 * VM_IO tells people not to look at these pages 2919 * (accesses can have side effects). 2920 * VM_PFNMAP tells the core MM that the base pages are just 2921 * raw PFN mappings, and do not have a "struct page" associated 2922 * with them. 2923 * VM_DONTEXPAND 2924 * Disable vma merging and expanding with mremap(). 2925 * VM_DONTDUMP 2926 * Omit vma from core dump, even when VM_IO turned off. 2927 * 2928 * There's a horrible special case to handle copy-on-write 2929 * behaviour that some programs depend on. We mark the "original" 2930 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2931 * See vm_normal_page() for details. 2932 */ 2933 if (is_cow_mapping(vma->vm_flags)) { 2934 if (addr != vma->vm_start || end != vma->vm_end) 2935 return -EINVAL; 2936 vma->vm_pgoff = pfn; 2937 } 2938 2939 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2940 2941 BUG_ON(addr >= end); 2942 pfn -= addr >> PAGE_SHIFT; 2943 pgd = pgd_offset(mm, addr); 2944 flush_cache_range(vma, addr, end); 2945 do { 2946 next = pgd_addr_end(addr, end); 2947 err = remap_p4d_range(mm, pgd, addr, next, 2948 pfn + (addr >> PAGE_SHIFT), prot); 2949 if (err) 2950 return err; 2951 } while (pgd++, addr = next, addr != end); 2952 2953 return 0; 2954 } 2955 2956 /* 2957 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2958 * must have pre-validated the caching bits of the pgprot_t. 2959 */ 2960 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2961 unsigned long pfn, unsigned long size, pgprot_t prot) 2962 { 2963 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2964 2965 if (!error) 2966 return 0; 2967 2968 /* 2969 * A partial pfn range mapping is dangerous: it does not 2970 * maintain page reference counts, and callers may free 2971 * pages due to the error. So zap it early. 2972 */ 2973 zap_page_range_single(vma, addr, size, NULL); 2974 return error; 2975 } 2976 2977 #ifdef __HAVE_PFNMAP_TRACKING 2978 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2979 unsigned long size, pgprot_t *prot) 2980 { 2981 struct pfnmap_track_ctx *ctx; 2982 2983 if (pfnmap_track(pfn, size, prot)) 2984 return ERR_PTR(-EINVAL); 2985 2986 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2987 if (unlikely(!ctx)) { 2988 pfnmap_untrack(pfn, size); 2989 return ERR_PTR(-ENOMEM); 2990 } 2991 2992 ctx->pfn = pfn; 2993 ctx->size = size; 2994 kref_init(&ctx->kref); 2995 return ctx; 2996 } 2997 2998 void pfnmap_track_ctx_release(struct kref *ref) 2999 { 3000 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 3001 3002 pfnmap_untrack(ctx->pfn, ctx->size); 3003 kfree(ctx); 3004 } 3005 #endif /* __HAVE_PFNMAP_TRACKING */ 3006 3007 /** 3008 * remap_pfn_range - remap kernel memory to userspace 3009 * @vma: user vma to map to 3010 * @addr: target page aligned user address to start at 3011 * @pfn: page frame number of kernel physical memory address 3012 * @size: size of mapping area 3013 * @prot: page protection flags for this mapping 3014 * 3015 * Note: this is only safe if the mm semaphore is held when called. 3016 * 3017 * Return: %0 on success, negative error code otherwise. 3018 */ 3019 #ifdef __HAVE_PFNMAP_TRACKING 3020 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3021 unsigned long pfn, unsigned long size, pgprot_t prot) 3022 { 3023 struct pfnmap_track_ctx *ctx = NULL; 3024 int err; 3025 3026 size = PAGE_ALIGN(size); 3027 3028 /* 3029 * If we cover the full VMA, we'll perform actual tracking, and 3030 * remember to untrack when the last reference to our tracking 3031 * context from a VMA goes away. We'll keep tracking the whole pfn 3032 * range even during VMA splits and partial unmapping. 3033 * 3034 * If we only cover parts of the VMA, we'll only setup the cachemode 3035 * in the pgprot for the pfn range. 3036 */ 3037 if (addr == vma->vm_start && addr + size == vma->vm_end) { 3038 if (vma->pfnmap_track_ctx) 3039 return -EINVAL; 3040 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 3041 if (IS_ERR(ctx)) 3042 return PTR_ERR(ctx); 3043 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 3044 return -EINVAL; 3045 } 3046 3047 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3048 if (ctx) { 3049 if (err) 3050 kref_put(&ctx->kref, pfnmap_track_ctx_release); 3051 else 3052 vma->pfnmap_track_ctx = ctx; 3053 } 3054 return err; 3055 } 3056 3057 #else 3058 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 3059 unsigned long pfn, unsigned long size, pgprot_t prot) 3060 { 3061 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 3062 } 3063 #endif 3064 EXPORT_SYMBOL(remap_pfn_range); 3065 3066 /** 3067 * vm_iomap_memory - remap memory to userspace 3068 * @vma: user vma to map to 3069 * @start: start of the physical memory to be mapped 3070 * @len: size of area 3071 * 3072 * This is a simplified io_remap_pfn_range() for common driver use. The 3073 * driver just needs to give us the physical memory range to be mapped, 3074 * we'll figure out the rest from the vma information. 3075 * 3076 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 3077 * whatever write-combining details or similar. 3078 * 3079 * Return: %0 on success, negative error code otherwise. 3080 */ 3081 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 3082 { 3083 unsigned long vm_len, pfn, pages; 3084 3085 /* Check that the physical memory area passed in looks valid */ 3086 if (start + len < start) 3087 return -EINVAL; 3088 /* 3089 * You *really* shouldn't map things that aren't page-aligned, 3090 * but we've historically allowed it because IO memory might 3091 * just have smaller alignment. 3092 */ 3093 len += start & ~PAGE_MASK; 3094 pfn = start >> PAGE_SHIFT; 3095 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3096 if (pfn + pages < pfn) 3097 return -EINVAL; 3098 3099 /* We start the mapping 'vm_pgoff' pages into the area */ 3100 if (vma->vm_pgoff > pages) 3101 return -EINVAL; 3102 pfn += vma->vm_pgoff; 3103 pages -= vma->vm_pgoff; 3104 3105 /* Can we fit all of the mapping? */ 3106 vm_len = vma->vm_end - vma->vm_start; 3107 if (vm_len >> PAGE_SHIFT > pages) 3108 return -EINVAL; 3109 3110 /* Ok, let it rip */ 3111 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3112 } 3113 EXPORT_SYMBOL(vm_iomap_memory); 3114 3115 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3116 unsigned long addr, unsigned long end, 3117 pte_fn_t fn, void *data, bool create, 3118 pgtbl_mod_mask *mask) 3119 { 3120 pte_t *pte, *mapped_pte; 3121 int err = 0; 3122 spinlock_t *ptl; 3123 3124 if (create) { 3125 mapped_pte = pte = (mm == &init_mm) ? 3126 pte_alloc_kernel_track(pmd, addr, mask) : 3127 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3128 if (!pte) 3129 return -ENOMEM; 3130 } else { 3131 mapped_pte = pte = (mm == &init_mm) ? 3132 pte_offset_kernel(pmd, addr) : 3133 pte_offset_map_lock(mm, pmd, addr, &ptl); 3134 if (!pte) 3135 return -EINVAL; 3136 } 3137 3138 arch_enter_lazy_mmu_mode(); 3139 3140 if (fn) { 3141 do { 3142 if (create || !pte_none(ptep_get(pte))) { 3143 err = fn(pte, addr, data); 3144 if (err) 3145 break; 3146 } 3147 } while (pte++, addr += PAGE_SIZE, addr != end); 3148 } 3149 *mask |= PGTBL_PTE_MODIFIED; 3150 3151 arch_leave_lazy_mmu_mode(); 3152 3153 if (mm != &init_mm) 3154 pte_unmap_unlock(mapped_pte, ptl); 3155 return err; 3156 } 3157 3158 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3159 unsigned long addr, unsigned long end, 3160 pte_fn_t fn, void *data, bool create, 3161 pgtbl_mod_mask *mask) 3162 { 3163 pmd_t *pmd; 3164 unsigned long next; 3165 int err = 0; 3166 3167 BUG_ON(pud_leaf(*pud)); 3168 3169 if (create) { 3170 pmd = pmd_alloc_track(mm, pud, addr, mask); 3171 if (!pmd) 3172 return -ENOMEM; 3173 } else { 3174 pmd = pmd_offset(pud, addr); 3175 } 3176 do { 3177 next = pmd_addr_end(addr, end); 3178 if (pmd_none(*pmd) && !create) 3179 continue; 3180 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3181 return -EINVAL; 3182 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3183 if (!create) 3184 continue; 3185 pmd_clear_bad(pmd); 3186 } 3187 err = apply_to_pte_range(mm, pmd, addr, next, 3188 fn, data, create, mask); 3189 if (err) 3190 break; 3191 } while (pmd++, addr = next, addr != end); 3192 3193 return err; 3194 } 3195 3196 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3197 unsigned long addr, unsigned long end, 3198 pte_fn_t fn, void *data, bool create, 3199 pgtbl_mod_mask *mask) 3200 { 3201 pud_t *pud; 3202 unsigned long next; 3203 int err = 0; 3204 3205 if (create) { 3206 pud = pud_alloc_track(mm, p4d, addr, mask); 3207 if (!pud) 3208 return -ENOMEM; 3209 } else { 3210 pud = pud_offset(p4d, addr); 3211 } 3212 do { 3213 next = pud_addr_end(addr, end); 3214 if (pud_none(*pud) && !create) 3215 continue; 3216 if (WARN_ON_ONCE(pud_leaf(*pud))) 3217 return -EINVAL; 3218 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3219 if (!create) 3220 continue; 3221 pud_clear_bad(pud); 3222 } 3223 err = apply_to_pmd_range(mm, pud, addr, next, 3224 fn, data, create, mask); 3225 if (err) 3226 break; 3227 } while (pud++, addr = next, addr != end); 3228 3229 return err; 3230 } 3231 3232 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3233 unsigned long addr, unsigned long end, 3234 pte_fn_t fn, void *data, bool create, 3235 pgtbl_mod_mask *mask) 3236 { 3237 p4d_t *p4d; 3238 unsigned long next; 3239 int err = 0; 3240 3241 if (create) { 3242 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3243 if (!p4d) 3244 return -ENOMEM; 3245 } else { 3246 p4d = p4d_offset(pgd, addr); 3247 } 3248 do { 3249 next = p4d_addr_end(addr, end); 3250 if (p4d_none(*p4d) && !create) 3251 continue; 3252 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3253 return -EINVAL; 3254 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3255 if (!create) 3256 continue; 3257 p4d_clear_bad(p4d); 3258 } 3259 err = apply_to_pud_range(mm, p4d, addr, next, 3260 fn, data, create, mask); 3261 if (err) 3262 break; 3263 } while (p4d++, addr = next, addr != end); 3264 3265 return err; 3266 } 3267 3268 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3269 unsigned long size, pte_fn_t fn, 3270 void *data, bool create) 3271 { 3272 pgd_t *pgd; 3273 unsigned long start = addr, next; 3274 unsigned long end = addr + size; 3275 pgtbl_mod_mask mask = 0; 3276 int err = 0; 3277 3278 if (WARN_ON(addr >= end)) 3279 return -EINVAL; 3280 3281 pgd = pgd_offset(mm, addr); 3282 do { 3283 next = pgd_addr_end(addr, end); 3284 if (pgd_none(*pgd) && !create) 3285 continue; 3286 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3287 err = -EINVAL; 3288 break; 3289 } 3290 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3291 if (!create) 3292 continue; 3293 pgd_clear_bad(pgd); 3294 } 3295 err = apply_to_p4d_range(mm, pgd, addr, next, 3296 fn, data, create, &mask); 3297 if (err) 3298 break; 3299 } while (pgd++, addr = next, addr != end); 3300 3301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3302 arch_sync_kernel_mappings(start, start + size); 3303 3304 return err; 3305 } 3306 3307 /* 3308 * Scan a region of virtual memory, filling in page tables as necessary 3309 * and calling a provided function on each leaf page table. 3310 */ 3311 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3312 unsigned long size, pte_fn_t fn, void *data) 3313 { 3314 return __apply_to_page_range(mm, addr, size, fn, data, true); 3315 } 3316 EXPORT_SYMBOL_GPL(apply_to_page_range); 3317 3318 /* 3319 * Scan a region of virtual memory, calling a provided function on 3320 * each leaf page table where it exists. 3321 * 3322 * Unlike apply_to_page_range, this does _not_ fill in page tables 3323 * where they are absent. 3324 */ 3325 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3326 unsigned long size, pte_fn_t fn, void *data) 3327 { 3328 return __apply_to_page_range(mm, addr, size, fn, data, false); 3329 } 3330 3331 /* 3332 * handle_pte_fault chooses page fault handler according to an entry which was 3333 * read non-atomically. Before making any commitment, on those architectures 3334 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3335 * parts, do_swap_page must check under lock before unmapping the pte and 3336 * proceeding (but do_wp_page is only called after already making such a check; 3337 * and do_anonymous_page can safely check later on). 3338 */ 3339 static inline int pte_unmap_same(struct vm_fault *vmf) 3340 { 3341 int same = 1; 3342 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3343 if (sizeof(pte_t) > sizeof(unsigned long)) { 3344 spin_lock(vmf->ptl); 3345 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3346 spin_unlock(vmf->ptl); 3347 } 3348 #endif 3349 pte_unmap(vmf->pte); 3350 vmf->pte = NULL; 3351 return same; 3352 } 3353 3354 /* 3355 * Return: 3356 * 0: copied succeeded 3357 * -EHWPOISON: copy failed due to hwpoison in source page 3358 * -EAGAIN: copied failed (some other reason) 3359 */ 3360 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3361 struct vm_fault *vmf) 3362 { 3363 int ret; 3364 void *kaddr; 3365 void __user *uaddr; 3366 struct vm_area_struct *vma = vmf->vma; 3367 struct mm_struct *mm = vma->vm_mm; 3368 unsigned long addr = vmf->address; 3369 3370 if (likely(src)) { 3371 if (copy_mc_user_highpage(dst, src, addr, vma)) 3372 return -EHWPOISON; 3373 return 0; 3374 } 3375 3376 /* 3377 * If the source page was a PFN mapping, we don't have 3378 * a "struct page" for it. We do a best-effort copy by 3379 * just copying from the original user address. If that 3380 * fails, we just zero-fill it. Live with it. 3381 */ 3382 kaddr = kmap_local_page(dst); 3383 pagefault_disable(); 3384 uaddr = (void __user *)(addr & PAGE_MASK); 3385 3386 /* 3387 * On architectures with software "accessed" bits, we would 3388 * take a double page fault, so mark it accessed here. 3389 */ 3390 vmf->pte = NULL; 3391 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3392 pte_t entry; 3393 3394 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3395 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3396 /* 3397 * Other thread has already handled the fault 3398 * and update local tlb only 3399 */ 3400 if (vmf->pte) 3401 update_mmu_tlb(vma, addr, vmf->pte); 3402 ret = -EAGAIN; 3403 goto pte_unlock; 3404 } 3405 3406 entry = pte_mkyoung(vmf->orig_pte); 3407 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3408 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3409 } 3410 3411 /* 3412 * This really shouldn't fail, because the page is there 3413 * in the page tables. But it might just be unreadable, 3414 * in which case we just give up and fill the result with 3415 * zeroes. 3416 */ 3417 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3418 if (vmf->pte) 3419 goto warn; 3420 3421 /* Re-validate under PTL if the page is still mapped */ 3422 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3423 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3424 /* The PTE changed under us, update local tlb */ 3425 if (vmf->pte) 3426 update_mmu_tlb(vma, addr, vmf->pte); 3427 ret = -EAGAIN; 3428 goto pte_unlock; 3429 } 3430 3431 /* 3432 * The same page can be mapped back since last copy attempt. 3433 * Try to copy again under PTL. 3434 */ 3435 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3436 /* 3437 * Give a warn in case there can be some obscure 3438 * use-case 3439 */ 3440 warn: 3441 WARN_ON_ONCE(1); 3442 clear_page(kaddr); 3443 } 3444 } 3445 3446 ret = 0; 3447 3448 pte_unlock: 3449 if (vmf->pte) 3450 pte_unmap_unlock(vmf->pte, vmf->ptl); 3451 pagefault_enable(); 3452 kunmap_local(kaddr); 3453 flush_dcache_page(dst); 3454 3455 return ret; 3456 } 3457 3458 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3459 { 3460 struct file *vm_file = vma->vm_file; 3461 3462 if (vm_file) 3463 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3464 3465 /* 3466 * Special mappings (e.g. VDSO) do not have any file so fake 3467 * a default GFP_KERNEL for them. 3468 */ 3469 return GFP_KERNEL; 3470 } 3471 3472 /* 3473 * Notify the address space that the page is about to become writable so that 3474 * it can prohibit this or wait for the page to get into an appropriate state. 3475 * 3476 * We do this without the lock held, so that it can sleep if it needs to. 3477 */ 3478 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3479 { 3480 vm_fault_t ret; 3481 unsigned int old_flags = vmf->flags; 3482 3483 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3484 3485 if (vmf->vma->vm_file && 3486 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3487 return VM_FAULT_SIGBUS; 3488 3489 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3490 /* Restore original flags so that caller is not surprised */ 3491 vmf->flags = old_flags; 3492 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3493 return ret; 3494 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3495 folio_lock(folio); 3496 if (!folio->mapping) { 3497 folio_unlock(folio); 3498 return 0; /* retry */ 3499 } 3500 ret |= VM_FAULT_LOCKED; 3501 } else 3502 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3503 return ret; 3504 } 3505 3506 /* 3507 * Handle dirtying of a page in shared file mapping on a write fault. 3508 * 3509 * The function expects the page to be locked and unlocks it. 3510 */ 3511 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3512 { 3513 struct vm_area_struct *vma = vmf->vma; 3514 struct address_space *mapping; 3515 struct folio *folio = page_folio(vmf->page); 3516 bool dirtied; 3517 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3518 3519 dirtied = folio_mark_dirty(folio); 3520 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3521 /* 3522 * Take a local copy of the address_space - folio.mapping may be zeroed 3523 * by truncate after folio_unlock(). The address_space itself remains 3524 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3525 * release semantics to prevent the compiler from undoing this copying. 3526 */ 3527 mapping = folio_raw_mapping(folio); 3528 folio_unlock(folio); 3529 3530 if (!page_mkwrite) 3531 file_update_time(vma->vm_file); 3532 3533 /* 3534 * Throttle page dirtying rate down to writeback speed. 3535 * 3536 * mapping may be NULL here because some device drivers do not 3537 * set page.mapping but still dirty their pages 3538 * 3539 * Drop the mmap_lock before waiting on IO, if we can. The file 3540 * is pinning the mapping, as per above. 3541 */ 3542 if ((dirtied || page_mkwrite) && mapping) { 3543 struct file *fpin; 3544 3545 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3546 balance_dirty_pages_ratelimited(mapping); 3547 if (fpin) { 3548 fput(fpin); 3549 return VM_FAULT_COMPLETED; 3550 } 3551 } 3552 3553 return 0; 3554 } 3555 3556 /* 3557 * Handle write page faults for pages that can be reused in the current vma 3558 * 3559 * This can happen either due to the mapping being with the VM_SHARED flag, 3560 * or due to us being the last reference standing to the page. In either 3561 * case, all we need to do here is to mark the page as writable and update 3562 * any related book-keeping. 3563 */ 3564 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3565 __releases(vmf->ptl) 3566 { 3567 struct vm_area_struct *vma = vmf->vma; 3568 pte_t entry; 3569 3570 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3571 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3572 3573 if (folio) { 3574 VM_BUG_ON(folio_test_anon(folio) && 3575 !PageAnonExclusive(vmf->page)); 3576 /* 3577 * Clear the folio's cpupid information as the existing 3578 * information potentially belongs to a now completely 3579 * unrelated process. 3580 */ 3581 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3582 } 3583 3584 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3585 entry = pte_mkyoung(vmf->orig_pte); 3586 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3587 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3588 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3589 pte_unmap_unlock(vmf->pte, vmf->ptl); 3590 count_vm_event(PGREUSE); 3591 } 3592 3593 /* 3594 * We could add a bitflag somewhere, but for now, we know that all 3595 * vm_ops that have a ->map_pages have been audited and don't need 3596 * the mmap_lock to be held. 3597 */ 3598 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3599 { 3600 struct vm_area_struct *vma = vmf->vma; 3601 3602 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3603 return 0; 3604 vma_end_read(vma); 3605 return VM_FAULT_RETRY; 3606 } 3607 3608 /** 3609 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3610 * @vmf: The vm_fault descriptor passed from the fault handler. 3611 * 3612 * When preparing to insert an anonymous page into a VMA from a 3613 * fault handler, call this function rather than anon_vma_prepare(). 3614 * If this vma does not already have an associated anon_vma and we are 3615 * only protected by the per-VMA lock, the caller must retry with the 3616 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3617 * determine if this VMA can share its anon_vma, and that's not safe to 3618 * do with only the per-VMA lock held for this VMA. 3619 * 3620 * Return: 0 if fault handling can proceed. Any other value should be 3621 * returned to the caller. 3622 */ 3623 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3624 { 3625 struct vm_area_struct *vma = vmf->vma; 3626 vm_fault_t ret = 0; 3627 3628 if (likely(vma->anon_vma)) 3629 return 0; 3630 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3631 if (!mmap_read_trylock(vma->vm_mm)) 3632 return VM_FAULT_RETRY; 3633 } 3634 if (__anon_vma_prepare(vma)) 3635 ret = VM_FAULT_OOM; 3636 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3637 mmap_read_unlock(vma->vm_mm); 3638 return ret; 3639 } 3640 3641 /* 3642 * Handle the case of a page which we actually need to copy to a new page, 3643 * either due to COW or unsharing. 3644 * 3645 * Called with mmap_lock locked and the old page referenced, but 3646 * without the ptl held. 3647 * 3648 * High level logic flow: 3649 * 3650 * - Allocate a page, copy the content of the old page to the new one. 3651 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3652 * - Take the PTL. If the pte changed, bail out and release the allocated page 3653 * - If the pte is still the way we remember it, update the page table and all 3654 * relevant references. This includes dropping the reference the page-table 3655 * held to the old page, as well as updating the rmap. 3656 * - In any case, unlock the PTL and drop the reference we took to the old page. 3657 */ 3658 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3659 { 3660 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3661 struct vm_area_struct *vma = vmf->vma; 3662 struct mm_struct *mm = vma->vm_mm; 3663 struct folio *old_folio = NULL; 3664 struct folio *new_folio = NULL; 3665 pte_t entry; 3666 int page_copied = 0; 3667 struct mmu_notifier_range range; 3668 vm_fault_t ret; 3669 bool pfn_is_zero; 3670 3671 delayacct_wpcopy_start(); 3672 3673 if (vmf->page) 3674 old_folio = page_folio(vmf->page); 3675 ret = vmf_anon_prepare(vmf); 3676 if (unlikely(ret)) 3677 goto out; 3678 3679 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3680 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3681 if (!new_folio) 3682 goto oom; 3683 3684 if (!pfn_is_zero) { 3685 int err; 3686 3687 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3688 if (err) { 3689 /* 3690 * COW failed, if the fault was solved by other, 3691 * it's fine. If not, userspace would re-fault on 3692 * the same address and we will handle the fault 3693 * from the second attempt. 3694 * The -EHWPOISON case will not be retried. 3695 */ 3696 folio_put(new_folio); 3697 if (old_folio) 3698 folio_put(old_folio); 3699 3700 delayacct_wpcopy_end(); 3701 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3702 } 3703 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3704 } 3705 3706 __folio_mark_uptodate(new_folio); 3707 3708 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3709 vmf->address & PAGE_MASK, 3710 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3711 mmu_notifier_invalidate_range_start(&range); 3712 3713 /* 3714 * Re-check the pte - we dropped the lock 3715 */ 3716 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3717 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3718 if (old_folio) { 3719 if (!folio_test_anon(old_folio)) { 3720 dec_mm_counter(mm, mm_counter_file(old_folio)); 3721 inc_mm_counter(mm, MM_ANONPAGES); 3722 } 3723 } else { 3724 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3725 inc_mm_counter(mm, MM_ANONPAGES); 3726 } 3727 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3728 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3729 entry = pte_sw_mkyoung(entry); 3730 if (unlikely(unshare)) { 3731 if (pte_soft_dirty(vmf->orig_pte)) 3732 entry = pte_mksoft_dirty(entry); 3733 if (pte_uffd_wp(vmf->orig_pte)) 3734 entry = pte_mkuffd_wp(entry); 3735 } else { 3736 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3737 } 3738 3739 /* 3740 * Clear the pte entry and flush it first, before updating the 3741 * pte with the new entry, to keep TLBs on different CPUs in 3742 * sync. This code used to set the new PTE then flush TLBs, but 3743 * that left a window where the new PTE could be loaded into 3744 * some TLBs while the old PTE remains in others. 3745 */ 3746 ptep_clear_flush(vma, vmf->address, vmf->pte); 3747 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3748 folio_add_lru_vma(new_folio, vma); 3749 BUG_ON(unshare && pte_write(entry)); 3750 set_pte_at(mm, vmf->address, vmf->pte, entry); 3751 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3752 if (old_folio) { 3753 /* 3754 * Only after switching the pte to the new page may 3755 * we remove the mapcount here. Otherwise another 3756 * process may come and find the rmap count decremented 3757 * before the pte is switched to the new page, and 3758 * "reuse" the old page writing into it while our pte 3759 * here still points into it and can be read by other 3760 * threads. 3761 * 3762 * The critical issue is to order this 3763 * folio_remove_rmap_pte() with the ptp_clear_flush 3764 * above. Those stores are ordered by (if nothing else,) 3765 * the barrier present in the atomic_add_negative 3766 * in folio_remove_rmap_pte(); 3767 * 3768 * Then the TLB flush in ptep_clear_flush ensures that 3769 * no process can access the old page before the 3770 * decremented mapcount is visible. And the old page 3771 * cannot be reused until after the decremented 3772 * mapcount is visible. So transitively, TLBs to 3773 * old page will be flushed before it can be reused. 3774 */ 3775 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3776 } 3777 3778 /* Free the old page.. */ 3779 new_folio = old_folio; 3780 page_copied = 1; 3781 pte_unmap_unlock(vmf->pte, vmf->ptl); 3782 } else if (vmf->pte) { 3783 update_mmu_tlb(vma, vmf->address, vmf->pte); 3784 pte_unmap_unlock(vmf->pte, vmf->ptl); 3785 } 3786 3787 mmu_notifier_invalidate_range_end(&range); 3788 3789 if (new_folio) 3790 folio_put(new_folio); 3791 if (old_folio) { 3792 if (page_copied) 3793 free_swap_cache(old_folio); 3794 folio_put(old_folio); 3795 } 3796 3797 delayacct_wpcopy_end(); 3798 return 0; 3799 oom: 3800 ret = VM_FAULT_OOM; 3801 out: 3802 if (old_folio) 3803 folio_put(old_folio); 3804 3805 delayacct_wpcopy_end(); 3806 return ret; 3807 } 3808 3809 /** 3810 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3811 * writeable once the page is prepared 3812 * 3813 * @vmf: structure describing the fault 3814 * @folio: the folio of vmf->page 3815 * 3816 * This function handles all that is needed to finish a write page fault in a 3817 * shared mapping due to PTE being read-only once the mapped page is prepared. 3818 * It handles locking of PTE and modifying it. 3819 * 3820 * The function expects the page to be locked or other protection against 3821 * concurrent faults / writeback (such as DAX radix tree locks). 3822 * 3823 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3824 * we acquired PTE lock. 3825 */ 3826 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3827 { 3828 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3829 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3830 &vmf->ptl); 3831 if (!vmf->pte) 3832 return VM_FAULT_NOPAGE; 3833 /* 3834 * We might have raced with another page fault while we released the 3835 * pte_offset_map_lock. 3836 */ 3837 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3838 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3839 pte_unmap_unlock(vmf->pte, vmf->ptl); 3840 return VM_FAULT_NOPAGE; 3841 } 3842 wp_page_reuse(vmf, folio); 3843 return 0; 3844 } 3845 3846 /* 3847 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3848 * mapping 3849 */ 3850 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3851 { 3852 struct vm_area_struct *vma = vmf->vma; 3853 3854 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3855 vm_fault_t ret; 3856 3857 pte_unmap_unlock(vmf->pte, vmf->ptl); 3858 ret = vmf_can_call_fault(vmf); 3859 if (ret) 3860 return ret; 3861 3862 vmf->flags |= FAULT_FLAG_MKWRITE; 3863 ret = vma->vm_ops->pfn_mkwrite(vmf); 3864 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3865 return ret; 3866 return finish_mkwrite_fault(vmf, NULL); 3867 } 3868 wp_page_reuse(vmf, NULL); 3869 return 0; 3870 } 3871 3872 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3873 __releases(vmf->ptl) 3874 { 3875 struct vm_area_struct *vma = vmf->vma; 3876 vm_fault_t ret = 0; 3877 3878 folio_get(folio); 3879 3880 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3881 vm_fault_t tmp; 3882 3883 pte_unmap_unlock(vmf->pte, vmf->ptl); 3884 tmp = vmf_can_call_fault(vmf); 3885 if (tmp) { 3886 folio_put(folio); 3887 return tmp; 3888 } 3889 3890 tmp = do_page_mkwrite(vmf, folio); 3891 if (unlikely(!tmp || (tmp & 3892 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3893 folio_put(folio); 3894 return tmp; 3895 } 3896 tmp = finish_mkwrite_fault(vmf, folio); 3897 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3898 folio_unlock(folio); 3899 folio_put(folio); 3900 return tmp; 3901 } 3902 } else { 3903 wp_page_reuse(vmf, folio); 3904 folio_lock(folio); 3905 } 3906 ret |= fault_dirty_shared_page(vmf); 3907 folio_put(folio); 3908 3909 return ret; 3910 } 3911 3912 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3913 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3914 struct vm_area_struct *vma) 3915 { 3916 bool exclusive = false; 3917 3918 /* Let's just free up a large folio if only a single page is mapped. */ 3919 if (folio_large_mapcount(folio) <= 1) 3920 return false; 3921 3922 /* 3923 * The assumption for anonymous folios is that each page can only get 3924 * mapped once into each MM. The only exception are KSM folios, which 3925 * are always small. 3926 * 3927 * Each taken mapcount must be paired with exactly one taken reference, 3928 * whereby the refcount must be incremented before the mapcount when 3929 * mapping a page, and the refcount must be decremented after the 3930 * mapcount when unmapping a page. 3931 * 3932 * If all folio references are from mappings, and all mappings are in 3933 * the page tables of this MM, then this folio is exclusive to this MM. 3934 */ 3935 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3936 return false; 3937 3938 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3939 3940 if (unlikely(folio_test_swapcache(folio))) { 3941 /* 3942 * Note: freeing up the swapcache will fail if some PTEs are 3943 * still swap entries. 3944 */ 3945 if (!folio_trylock(folio)) 3946 return false; 3947 folio_free_swap(folio); 3948 folio_unlock(folio); 3949 } 3950 3951 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3952 return false; 3953 3954 /* Stabilize the mapcount vs. refcount and recheck. */ 3955 folio_lock_large_mapcount(folio); 3956 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3957 3958 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3959 goto unlock; 3960 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3961 goto unlock; 3962 3963 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3964 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3965 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3966 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3967 3968 /* 3969 * Do we need the folio lock? Likely not. If there would have been 3970 * references from page migration/swapout, we would have detected 3971 * an additional folio reference and never ended up here. 3972 */ 3973 exclusive = true; 3974 unlock: 3975 folio_unlock_large_mapcount(folio); 3976 return exclusive; 3977 } 3978 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3979 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3980 struct vm_area_struct *vma) 3981 { 3982 BUILD_BUG(); 3983 } 3984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3985 3986 static bool wp_can_reuse_anon_folio(struct folio *folio, 3987 struct vm_area_struct *vma) 3988 { 3989 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3990 return __wp_can_reuse_large_anon_folio(folio, vma); 3991 3992 /* 3993 * We have to verify under folio lock: these early checks are 3994 * just an optimization to avoid locking the folio and freeing 3995 * the swapcache if there is little hope that we can reuse. 3996 * 3997 * KSM doesn't necessarily raise the folio refcount. 3998 */ 3999 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 4000 return false; 4001 if (!folio_test_lru(folio)) 4002 /* 4003 * We cannot easily detect+handle references from 4004 * remote LRU caches or references to LRU folios. 4005 */ 4006 lru_add_drain(); 4007 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 4008 return false; 4009 if (!folio_trylock(folio)) 4010 return false; 4011 if (folio_test_swapcache(folio)) 4012 folio_free_swap(folio); 4013 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 4014 folio_unlock(folio); 4015 return false; 4016 } 4017 /* 4018 * Ok, we've got the only folio reference from our mapping 4019 * and the folio is locked, it's dark out, and we're wearing 4020 * sunglasses. Hit it. 4021 */ 4022 folio_move_anon_rmap(folio, vma); 4023 folio_unlock(folio); 4024 return true; 4025 } 4026 4027 /* 4028 * This routine handles present pages, when 4029 * * users try to write to a shared page (FAULT_FLAG_WRITE) 4030 * * GUP wants to take a R/O pin on a possibly shared anonymous page 4031 * (FAULT_FLAG_UNSHARE) 4032 * 4033 * It is done by copying the page to a new address and decrementing the 4034 * shared-page counter for the old page. 4035 * 4036 * Note that this routine assumes that the protection checks have been 4037 * done by the caller (the low-level page fault routine in most cases). 4038 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 4039 * done any necessary COW. 4040 * 4041 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 4042 * though the page will change only once the write actually happens. This 4043 * avoids a few races, and potentially makes it more efficient. 4044 * 4045 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4046 * but allow concurrent faults), with pte both mapped and locked. 4047 * We return with mmap_lock still held, but pte unmapped and unlocked. 4048 */ 4049 static vm_fault_t do_wp_page(struct vm_fault *vmf) 4050 __releases(vmf->ptl) 4051 { 4052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4053 struct vm_area_struct *vma = vmf->vma; 4054 struct folio *folio = NULL; 4055 pte_t pte; 4056 4057 if (likely(!unshare)) { 4058 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 4059 if (!userfaultfd_wp_async(vma)) { 4060 pte_unmap_unlock(vmf->pte, vmf->ptl); 4061 return handle_userfault(vmf, VM_UFFD_WP); 4062 } 4063 4064 /* 4065 * Nothing needed (cache flush, TLB invalidations, 4066 * etc.) because we're only removing the uffd-wp bit, 4067 * which is completely invisible to the user. 4068 */ 4069 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 4070 4071 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4072 /* 4073 * Update this to be prepared for following up CoW 4074 * handling 4075 */ 4076 vmf->orig_pte = pte; 4077 } 4078 4079 /* 4080 * Userfaultfd write-protect can defer flushes. Ensure the TLB 4081 * is flushed in this case before copying. 4082 */ 4083 if (unlikely(userfaultfd_wp(vmf->vma) && 4084 mm_tlb_flush_pending(vmf->vma->vm_mm))) 4085 flush_tlb_page(vmf->vma, vmf->address); 4086 } 4087 4088 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 4089 4090 if (vmf->page) 4091 folio = page_folio(vmf->page); 4092 4093 /* 4094 * Shared mapping: we are guaranteed to have VM_WRITE and 4095 * FAULT_FLAG_WRITE set at this point. 4096 */ 4097 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4098 /* 4099 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4100 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4101 * 4102 * We should not cow pages in a shared writeable mapping. 4103 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4104 */ 4105 if (!vmf->page || is_fsdax_page(vmf->page)) { 4106 vmf->page = NULL; 4107 return wp_pfn_shared(vmf); 4108 } 4109 return wp_page_shared(vmf, folio); 4110 } 4111 4112 /* 4113 * Private mapping: create an exclusive anonymous page copy if reuse 4114 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4115 * 4116 * If we encounter a page that is marked exclusive, we must reuse 4117 * the page without further checks. 4118 */ 4119 if (folio && folio_test_anon(folio) && 4120 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4121 if (!PageAnonExclusive(vmf->page)) 4122 SetPageAnonExclusive(vmf->page); 4123 if (unlikely(unshare)) { 4124 pte_unmap_unlock(vmf->pte, vmf->ptl); 4125 return 0; 4126 } 4127 wp_page_reuse(vmf, folio); 4128 return 0; 4129 } 4130 /* 4131 * Ok, we need to copy. Oh, well.. 4132 */ 4133 if (folio) 4134 folio_get(folio); 4135 4136 pte_unmap_unlock(vmf->pte, vmf->ptl); 4137 #ifdef CONFIG_KSM 4138 if (folio && folio_test_ksm(folio)) 4139 count_vm_event(COW_KSM); 4140 #endif 4141 return wp_page_copy(vmf); 4142 } 4143 4144 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4145 unsigned long start_addr, unsigned long end_addr, 4146 struct zap_details *details) 4147 { 4148 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4149 } 4150 4151 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4152 pgoff_t first_index, 4153 pgoff_t last_index, 4154 struct zap_details *details) 4155 { 4156 struct vm_area_struct *vma; 4157 pgoff_t vba, vea, zba, zea; 4158 4159 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4160 vba = vma->vm_pgoff; 4161 vea = vba + vma_pages(vma) - 1; 4162 zba = max(first_index, vba); 4163 zea = min(last_index, vea); 4164 4165 unmap_mapping_range_vma(vma, 4166 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4167 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4168 details); 4169 } 4170 } 4171 4172 /** 4173 * unmap_mapping_folio() - Unmap single folio from processes. 4174 * @folio: The locked folio to be unmapped. 4175 * 4176 * Unmap this folio from any userspace process which still has it mmaped. 4177 * Typically, for efficiency, the range of nearby pages has already been 4178 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4179 * truncation or invalidation holds the lock on a folio, it may find that 4180 * the page has been remapped again: and then uses unmap_mapping_folio() 4181 * to unmap it finally. 4182 */ 4183 void unmap_mapping_folio(struct folio *folio) 4184 { 4185 struct address_space *mapping = folio->mapping; 4186 struct zap_details details = { }; 4187 pgoff_t first_index; 4188 pgoff_t last_index; 4189 4190 VM_BUG_ON(!folio_test_locked(folio)); 4191 4192 first_index = folio->index; 4193 last_index = folio_next_index(folio) - 1; 4194 4195 details.even_cows = false; 4196 details.single_folio = folio; 4197 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4198 4199 i_mmap_lock_read(mapping); 4200 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4201 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4202 last_index, &details); 4203 i_mmap_unlock_read(mapping); 4204 } 4205 4206 /** 4207 * unmap_mapping_pages() - Unmap pages from processes. 4208 * @mapping: The address space containing pages to be unmapped. 4209 * @start: Index of first page to be unmapped. 4210 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4211 * @even_cows: Whether to unmap even private COWed pages. 4212 * 4213 * Unmap the pages in this address space from any userspace process which 4214 * has them mmaped. Generally, you want to remove COWed pages as well when 4215 * a file is being truncated, but not when invalidating pages from the page 4216 * cache. 4217 */ 4218 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4219 pgoff_t nr, bool even_cows) 4220 { 4221 struct zap_details details = { }; 4222 pgoff_t first_index = start; 4223 pgoff_t last_index = start + nr - 1; 4224 4225 details.even_cows = even_cows; 4226 if (last_index < first_index) 4227 last_index = ULONG_MAX; 4228 4229 i_mmap_lock_read(mapping); 4230 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4231 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4232 last_index, &details); 4233 i_mmap_unlock_read(mapping); 4234 } 4235 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4236 4237 /** 4238 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4239 * address_space corresponding to the specified byte range in the underlying 4240 * file. 4241 * 4242 * @mapping: the address space containing mmaps to be unmapped. 4243 * @holebegin: byte in first page to unmap, relative to the start of 4244 * the underlying file. This will be rounded down to a PAGE_SIZE 4245 * boundary. Note that this is different from truncate_pagecache(), which 4246 * must keep the partial page. In contrast, we must get rid of 4247 * partial pages. 4248 * @holelen: size of prospective hole in bytes. This will be rounded 4249 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4250 * end of the file. 4251 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4252 * but 0 when invalidating pagecache, don't throw away private data. 4253 */ 4254 void unmap_mapping_range(struct address_space *mapping, 4255 loff_t const holebegin, loff_t const holelen, int even_cows) 4256 { 4257 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4258 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4259 4260 /* Check for overflow. */ 4261 if (sizeof(holelen) > sizeof(hlen)) { 4262 long long holeend = 4263 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4264 if (holeend & ~(long long)ULONG_MAX) 4265 hlen = ULONG_MAX - hba + 1; 4266 } 4267 4268 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4269 } 4270 EXPORT_SYMBOL(unmap_mapping_range); 4271 4272 /* 4273 * Restore a potential device exclusive pte to a working pte entry 4274 */ 4275 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4276 { 4277 struct folio *folio = page_folio(vmf->page); 4278 struct vm_area_struct *vma = vmf->vma; 4279 struct mmu_notifier_range range; 4280 vm_fault_t ret; 4281 4282 /* 4283 * We need a reference to lock the folio because we don't hold 4284 * the PTL so a racing thread can remove the device-exclusive 4285 * entry and unmap it. If the folio is free the entry must 4286 * have been removed already. If it happens to have already 4287 * been re-allocated after being freed all we do is lock and 4288 * unlock it. 4289 */ 4290 if (!folio_try_get(folio)) 4291 return 0; 4292 4293 ret = folio_lock_or_retry(folio, vmf); 4294 if (ret) { 4295 folio_put(folio); 4296 return ret; 4297 } 4298 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4299 vma->vm_mm, vmf->address & PAGE_MASK, 4300 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4301 mmu_notifier_invalidate_range_start(&range); 4302 4303 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4304 &vmf->ptl); 4305 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4306 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4307 vmf->pte, vmf->orig_pte); 4308 4309 if (vmf->pte) 4310 pte_unmap_unlock(vmf->pte, vmf->ptl); 4311 folio_unlock(folio); 4312 folio_put(folio); 4313 4314 mmu_notifier_invalidate_range_end(&range); 4315 return 0; 4316 } 4317 4318 static inline bool should_try_to_free_swap(struct folio *folio, 4319 struct vm_area_struct *vma, 4320 unsigned int fault_flags) 4321 { 4322 if (!folio_test_swapcache(folio)) 4323 return false; 4324 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4325 folio_test_mlocked(folio)) 4326 return true; 4327 /* 4328 * If we want to map a page that's in the swapcache writable, we 4329 * have to detect via the refcount if we're really the exclusive 4330 * user. Try freeing the swapcache to get rid of the swapcache 4331 * reference only in case it's likely that we'll be the exlusive user. 4332 */ 4333 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4334 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4335 } 4336 4337 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4338 { 4339 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4340 vmf->address, &vmf->ptl); 4341 if (!vmf->pte) 4342 return 0; 4343 /* 4344 * Be careful so that we will only recover a special uffd-wp pte into a 4345 * none pte. Otherwise it means the pte could have changed, so retry. 4346 * 4347 * This should also cover the case where e.g. the pte changed 4348 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4349 * So is_pte_marker() check is not enough to safely drop the pte. 4350 */ 4351 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4352 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4353 pte_unmap_unlock(vmf->pte, vmf->ptl); 4354 return 0; 4355 } 4356 4357 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4358 { 4359 if (vma_is_anonymous(vmf->vma)) 4360 return do_anonymous_page(vmf); 4361 else 4362 return do_fault(vmf); 4363 } 4364 4365 /* 4366 * This is actually a page-missing access, but with uffd-wp special pte 4367 * installed. It means this pte was wr-protected before being unmapped. 4368 */ 4369 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4370 { 4371 /* 4372 * Just in case there're leftover special ptes even after the region 4373 * got unregistered - we can simply clear them. 4374 */ 4375 if (unlikely(!userfaultfd_wp(vmf->vma))) 4376 return pte_marker_clear(vmf); 4377 4378 return do_pte_missing(vmf); 4379 } 4380 4381 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4382 { 4383 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4384 unsigned long marker = pte_marker_get(entry); 4385 4386 /* 4387 * PTE markers should never be empty. If anything weird happened, 4388 * the best thing to do is to kill the process along with its mm. 4389 */ 4390 if (WARN_ON_ONCE(!marker)) 4391 return VM_FAULT_SIGBUS; 4392 4393 /* Higher priority than uffd-wp when data corrupted */ 4394 if (marker & PTE_MARKER_POISONED) 4395 return VM_FAULT_HWPOISON; 4396 4397 /* Hitting a guard page is always a fatal condition. */ 4398 if (marker & PTE_MARKER_GUARD) 4399 return VM_FAULT_SIGSEGV; 4400 4401 if (pte_marker_entry_uffd_wp(entry)) 4402 return pte_marker_handle_uffd_wp(vmf); 4403 4404 /* This is an unknown pte marker */ 4405 return VM_FAULT_SIGBUS; 4406 } 4407 4408 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4409 { 4410 struct vm_area_struct *vma = vmf->vma; 4411 struct folio *folio; 4412 swp_entry_t entry; 4413 4414 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4415 if (!folio) 4416 return NULL; 4417 4418 entry = pte_to_swp_entry(vmf->orig_pte); 4419 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4420 GFP_KERNEL, entry)) { 4421 folio_put(folio); 4422 return NULL; 4423 } 4424 4425 return folio; 4426 } 4427 4428 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4429 /* 4430 * Check if the PTEs within a range are contiguous swap entries 4431 * and have consistent swapcache, zeromap. 4432 */ 4433 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4434 { 4435 unsigned long addr; 4436 swp_entry_t entry; 4437 int idx; 4438 pte_t pte; 4439 4440 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4441 idx = (vmf->address - addr) / PAGE_SIZE; 4442 pte = ptep_get(ptep); 4443 4444 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4445 return false; 4446 entry = pte_to_swp_entry(pte); 4447 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4448 return false; 4449 4450 /* 4451 * swap_read_folio() can't handle the case a large folio is hybridly 4452 * from different backends. And they are likely corner cases. Similar 4453 * things might be added once zswap support large folios. 4454 */ 4455 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4456 return false; 4457 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4458 return false; 4459 4460 return true; 4461 } 4462 4463 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4464 unsigned long addr, 4465 unsigned long orders) 4466 { 4467 int order, nr; 4468 4469 order = highest_order(orders); 4470 4471 /* 4472 * To swap in a THP with nr pages, we require that its first swap_offset 4473 * is aligned with that number, as it was when the THP was swapped out. 4474 * This helps filter out most invalid entries. 4475 */ 4476 while (orders) { 4477 nr = 1 << order; 4478 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4479 break; 4480 order = next_order(&orders, order); 4481 } 4482 4483 return orders; 4484 } 4485 4486 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4487 { 4488 struct vm_area_struct *vma = vmf->vma; 4489 unsigned long orders; 4490 struct folio *folio; 4491 unsigned long addr; 4492 swp_entry_t entry; 4493 spinlock_t *ptl; 4494 pte_t *pte; 4495 gfp_t gfp; 4496 int order; 4497 4498 /* 4499 * If uffd is active for the vma we need per-page fault fidelity to 4500 * maintain the uffd semantics. 4501 */ 4502 if (unlikely(userfaultfd_armed(vma))) 4503 goto fallback; 4504 4505 /* 4506 * A large swapped out folio could be partially or fully in zswap. We 4507 * lack handling for such cases, so fallback to swapping in order-0 4508 * folio. 4509 */ 4510 if (!zswap_never_enabled()) 4511 goto fallback; 4512 4513 entry = pte_to_swp_entry(vmf->orig_pte); 4514 /* 4515 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4516 * and suitable for swapping THP. 4517 */ 4518 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 4519 BIT(PMD_ORDER) - 1); 4520 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4521 orders = thp_swap_suitable_orders(swp_offset(entry), 4522 vmf->address, orders); 4523 4524 if (!orders) 4525 goto fallback; 4526 4527 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4528 vmf->address & PMD_MASK, &ptl); 4529 if (unlikely(!pte)) 4530 goto fallback; 4531 4532 /* 4533 * For do_swap_page, find the highest order where the aligned range is 4534 * completely swap entries with contiguous swap offsets. 4535 */ 4536 order = highest_order(orders); 4537 while (orders) { 4538 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4539 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4540 break; 4541 order = next_order(&orders, order); 4542 } 4543 4544 pte_unmap_unlock(pte, ptl); 4545 4546 /* Try allocating the highest of the remaining orders. */ 4547 gfp = vma_thp_gfp_mask(vma); 4548 while (orders) { 4549 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4550 folio = vma_alloc_folio(gfp, order, vma, addr); 4551 if (folio) { 4552 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4553 gfp, entry)) 4554 return folio; 4555 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4556 folio_put(folio); 4557 } 4558 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4559 order = next_order(&orders, order); 4560 } 4561 4562 fallback: 4563 return __alloc_swap_folio(vmf); 4564 } 4565 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4566 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4567 { 4568 return __alloc_swap_folio(vmf); 4569 } 4570 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4571 4572 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4573 4574 /* 4575 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4576 * but allow concurrent faults), and pte mapped but not yet locked. 4577 * We return with pte unmapped and unlocked. 4578 * 4579 * We return with the mmap_lock locked or unlocked in the same cases 4580 * as does filemap_fault(). 4581 */ 4582 vm_fault_t do_swap_page(struct vm_fault *vmf) 4583 { 4584 struct vm_area_struct *vma = vmf->vma; 4585 struct folio *swapcache, *folio = NULL; 4586 DECLARE_WAITQUEUE(wait, current); 4587 struct page *page; 4588 struct swap_info_struct *si = NULL; 4589 rmap_t rmap_flags = RMAP_NONE; 4590 bool need_clear_cache = false; 4591 bool exclusive = false; 4592 swp_entry_t entry; 4593 pte_t pte; 4594 vm_fault_t ret = 0; 4595 void *shadow = NULL; 4596 int nr_pages; 4597 unsigned long page_idx; 4598 unsigned long address; 4599 pte_t *ptep; 4600 4601 if (!pte_unmap_same(vmf)) 4602 goto out; 4603 4604 entry = pte_to_swp_entry(vmf->orig_pte); 4605 if (unlikely(non_swap_entry(entry))) { 4606 if (is_migration_entry(entry)) { 4607 migration_entry_wait(vma->vm_mm, vmf->pmd, 4608 vmf->address); 4609 } else if (is_device_exclusive_entry(entry)) { 4610 vmf->page = pfn_swap_entry_to_page(entry); 4611 ret = remove_device_exclusive_entry(vmf); 4612 } else if (is_device_private_entry(entry)) { 4613 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4614 /* 4615 * migrate_to_ram is not yet ready to operate 4616 * under VMA lock. 4617 */ 4618 vma_end_read(vma); 4619 ret = VM_FAULT_RETRY; 4620 goto out; 4621 } 4622 4623 vmf->page = pfn_swap_entry_to_page(entry); 4624 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4625 vmf->address, &vmf->ptl); 4626 if (unlikely(!vmf->pte || 4627 !pte_same(ptep_get(vmf->pte), 4628 vmf->orig_pte))) 4629 goto unlock; 4630 4631 /* 4632 * Get a page reference while we know the page can't be 4633 * freed. 4634 */ 4635 if (trylock_page(vmf->page)) { 4636 struct dev_pagemap *pgmap; 4637 4638 get_page(vmf->page); 4639 pte_unmap_unlock(vmf->pte, vmf->ptl); 4640 pgmap = page_pgmap(vmf->page); 4641 ret = pgmap->ops->migrate_to_ram(vmf); 4642 unlock_page(vmf->page); 4643 put_page(vmf->page); 4644 } else { 4645 pte_unmap_unlock(vmf->pte, vmf->ptl); 4646 } 4647 } else if (is_hwpoison_entry(entry)) { 4648 ret = VM_FAULT_HWPOISON; 4649 } else if (is_pte_marker_entry(entry)) { 4650 ret = handle_pte_marker(vmf); 4651 } else { 4652 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4653 ret = VM_FAULT_SIGBUS; 4654 } 4655 goto out; 4656 } 4657 4658 /* Prevent swapoff from happening to us. */ 4659 si = get_swap_device(entry); 4660 if (unlikely(!si)) 4661 goto out; 4662 4663 folio = swap_cache_get_folio(entry, vma, vmf->address); 4664 if (folio) 4665 page = folio_file_page(folio, swp_offset(entry)); 4666 swapcache = folio; 4667 4668 if (!folio) { 4669 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4670 __swap_count(entry) == 1) { 4671 /* skip swapcache */ 4672 folio = alloc_swap_folio(vmf); 4673 if (folio) { 4674 __folio_set_locked(folio); 4675 __folio_set_swapbacked(folio); 4676 4677 nr_pages = folio_nr_pages(folio); 4678 if (folio_test_large(folio)) 4679 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4680 /* 4681 * Prevent parallel swapin from proceeding with 4682 * the cache flag. Otherwise, another thread 4683 * may finish swapin first, free the entry, and 4684 * swapout reusing the same entry. It's 4685 * undetectable as pte_same() returns true due 4686 * to entry reuse. 4687 */ 4688 if (swapcache_prepare(entry, nr_pages)) { 4689 /* 4690 * Relax a bit to prevent rapid 4691 * repeated page faults. 4692 */ 4693 add_wait_queue(&swapcache_wq, &wait); 4694 schedule_timeout_uninterruptible(1); 4695 remove_wait_queue(&swapcache_wq, &wait); 4696 goto out_page; 4697 } 4698 need_clear_cache = true; 4699 4700 memcg1_swapin(entry, nr_pages); 4701 4702 shadow = get_shadow_from_swap_cache(entry); 4703 if (shadow) 4704 workingset_refault(folio, shadow); 4705 4706 folio_add_lru(folio); 4707 4708 /* To provide entry to swap_read_folio() */ 4709 folio->swap = entry; 4710 swap_read_folio(folio, NULL); 4711 folio->private = NULL; 4712 } 4713 } else { 4714 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4715 vmf); 4716 swapcache = folio; 4717 } 4718 4719 if (!folio) { 4720 /* 4721 * Back out if somebody else faulted in this pte 4722 * while we released the pte lock. 4723 */ 4724 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4725 vmf->address, &vmf->ptl); 4726 if (likely(vmf->pte && 4727 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4728 ret = VM_FAULT_OOM; 4729 goto unlock; 4730 } 4731 4732 /* Had to read the page from swap area: Major fault */ 4733 ret = VM_FAULT_MAJOR; 4734 count_vm_event(PGMAJFAULT); 4735 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4736 page = folio_file_page(folio, swp_offset(entry)); 4737 } else if (PageHWPoison(page)) { 4738 /* 4739 * hwpoisoned dirty swapcache pages are kept for killing 4740 * owner processes (which may be unknown at hwpoison time) 4741 */ 4742 ret = VM_FAULT_HWPOISON; 4743 goto out_release; 4744 } 4745 4746 ret |= folio_lock_or_retry(folio, vmf); 4747 if (ret & VM_FAULT_RETRY) 4748 goto out_release; 4749 4750 if (swapcache) { 4751 /* 4752 * Make sure folio_free_swap() or swapoff did not release the 4753 * swapcache from under us. The page pin, and pte_same test 4754 * below, are not enough to exclude that. Even if it is still 4755 * swapcache, we need to check that the page's swap has not 4756 * changed. 4757 */ 4758 if (unlikely(!folio_test_swapcache(folio) || 4759 page_swap_entry(page).val != entry.val)) 4760 goto out_page; 4761 4762 /* 4763 * KSM sometimes has to copy on read faults, for example, if 4764 * folio->index of non-ksm folios would be nonlinear inside the 4765 * anon VMA -- the ksm flag is lost on actual swapout. 4766 */ 4767 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4768 if (unlikely(!folio)) { 4769 ret = VM_FAULT_OOM; 4770 folio = swapcache; 4771 goto out_page; 4772 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4773 ret = VM_FAULT_HWPOISON; 4774 folio = swapcache; 4775 goto out_page; 4776 } 4777 if (folio != swapcache) 4778 page = folio_page(folio, 0); 4779 4780 /* 4781 * If we want to map a page that's in the swapcache writable, we 4782 * have to detect via the refcount if we're really the exclusive 4783 * owner. Try removing the extra reference from the local LRU 4784 * caches if required. 4785 */ 4786 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4787 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4788 lru_add_drain(); 4789 } 4790 4791 folio_throttle_swaprate(folio, GFP_KERNEL); 4792 4793 /* 4794 * Back out if somebody else already faulted in this pte. 4795 */ 4796 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4797 &vmf->ptl); 4798 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4799 goto out_nomap; 4800 4801 if (unlikely(!folio_test_uptodate(folio))) { 4802 ret = VM_FAULT_SIGBUS; 4803 goto out_nomap; 4804 } 4805 4806 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4807 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4808 unsigned long nr = folio_nr_pages(folio); 4809 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4810 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4811 pte_t *folio_ptep = vmf->pte - idx; 4812 pte_t folio_pte = ptep_get(folio_ptep); 4813 4814 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4815 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4816 goto out_nomap; 4817 4818 page_idx = idx; 4819 address = folio_start; 4820 ptep = folio_ptep; 4821 goto check_folio; 4822 } 4823 4824 nr_pages = 1; 4825 page_idx = 0; 4826 address = vmf->address; 4827 ptep = vmf->pte; 4828 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4829 int nr = folio_nr_pages(folio); 4830 unsigned long idx = folio_page_idx(folio, page); 4831 unsigned long folio_start = address - idx * PAGE_SIZE; 4832 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4833 pte_t *folio_ptep; 4834 pte_t folio_pte; 4835 4836 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4837 goto check_folio; 4838 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4839 goto check_folio; 4840 4841 folio_ptep = vmf->pte - idx; 4842 folio_pte = ptep_get(folio_ptep); 4843 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4844 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4845 goto check_folio; 4846 4847 page_idx = idx; 4848 address = folio_start; 4849 ptep = folio_ptep; 4850 nr_pages = nr; 4851 entry = folio->swap; 4852 page = &folio->page; 4853 } 4854 4855 check_folio: 4856 /* 4857 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4858 * must never point at an anonymous page in the swapcache that is 4859 * PG_anon_exclusive. Sanity check that this holds and especially, that 4860 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4861 * check after taking the PT lock and making sure that nobody 4862 * concurrently faulted in this page and set PG_anon_exclusive. 4863 */ 4864 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4865 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4866 4867 /* 4868 * Check under PT lock (to protect against concurrent fork() sharing 4869 * the swap entry concurrently) for certainly exclusive pages. 4870 */ 4871 if (!folio_test_ksm(folio)) { 4872 exclusive = pte_swp_exclusive(vmf->orig_pte); 4873 if (folio != swapcache) { 4874 /* 4875 * We have a fresh page that is not exposed to the 4876 * swapcache -> certainly exclusive. 4877 */ 4878 exclusive = true; 4879 } else if (exclusive && folio_test_writeback(folio) && 4880 data_race(si->flags & SWP_STABLE_WRITES)) { 4881 /* 4882 * This is tricky: not all swap backends support 4883 * concurrent page modifications while under writeback. 4884 * 4885 * So if we stumble over such a page in the swapcache 4886 * we must not set the page exclusive, otherwise we can 4887 * map it writable without further checks and modify it 4888 * while still under writeback. 4889 * 4890 * For these problematic swap backends, simply drop the 4891 * exclusive marker: this is perfectly fine as we start 4892 * writeback only if we fully unmapped the page and 4893 * there are no unexpected references on the page after 4894 * unmapping succeeded. After fully unmapped, no 4895 * further GUP references (FOLL_GET and FOLL_PIN) can 4896 * appear, so dropping the exclusive marker and mapping 4897 * it only R/O is fine. 4898 */ 4899 exclusive = false; 4900 } 4901 } 4902 4903 /* 4904 * Some architectures may have to restore extra metadata to the page 4905 * when reading from swap. This metadata may be indexed by swap entry 4906 * so this must be called before swap_free(). 4907 */ 4908 arch_swap_restore(folio_swap(entry, folio), folio); 4909 4910 /* 4911 * Remove the swap entry and conditionally try to free up the swapcache. 4912 * We're already holding a reference on the page but haven't mapped it 4913 * yet. 4914 */ 4915 swap_free_nr(entry, nr_pages); 4916 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4917 folio_free_swap(folio); 4918 4919 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4920 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4921 pte = mk_pte(page, vma->vm_page_prot); 4922 if (pte_swp_soft_dirty(vmf->orig_pte)) 4923 pte = pte_mksoft_dirty(pte); 4924 if (pte_swp_uffd_wp(vmf->orig_pte)) 4925 pte = pte_mkuffd_wp(pte); 4926 4927 /* 4928 * Same logic as in do_wp_page(); however, optimize for pages that are 4929 * certainly not shared either because we just allocated them without 4930 * exposing them to the swapcache or because the swap entry indicates 4931 * exclusivity. 4932 */ 4933 if (!folio_test_ksm(folio) && 4934 (exclusive || folio_ref_count(folio) == 1)) { 4935 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4936 !pte_needs_soft_dirty_wp(vma, pte)) { 4937 pte = pte_mkwrite(pte, vma); 4938 if (vmf->flags & FAULT_FLAG_WRITE) { 4939 pte = pte_mkdirty(pte); 4940 vmf->flags &= ~FAULT_FLAG_WRITE; 4941 } 4942 } 4943 rmap_flags |= RMAP_EXCLUSIVE; 4944 } 4945 folio_ref_add(folio, nr_pages - 1); 4946 flush_icache_pages(vma, page, nr_pages); 4947 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4948 4949 /* ksm created a completely new copy */ 4950 if (unlikely(folio != swapcache && swapcache)) { 4951 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4952 folio_add_lru_vma(folio, vma); 4953 } else if (!folio_test_anon(folio)) { 4954 /* 4955 * We currently only expect small !anon folios which are either 4956 * fully exclusive or fully shared, or new allocated large 4957 * folios which are fully exclusive. If we ever get large 4958 * folios within swapcache here, we have to be careful. 4959 */ 4960 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4961 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4962 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4963 } else { 4964 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4965 rmap_flags); 4966 } 4967 4968 VM_BUG_ON(!folio_test_anon(folio) || 4969 (pte_write(pte) && !PageAnonExclusive(page))); 4970 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4971 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4972 pte, pte, nr_pages); 4973 4974 folio_unlock(folio); 4975 if (folio != swapcache && swapcache) { 4976 /* 4977 * Hold the lock to avoid the swap entry to be reused 4978 * until we take the PT lock for the pte_same() check 4979 * (to avoid false positives from pte_same). For 4980 * further safety release the lock after the swap_free 4981 * so that the swap count won't change under a 4982 * parallel locked swapcache. 4983 */ 4984 folio_unlock(swapcache); 4985 folio_put(swapcache); 4986 } 4987 4988 if (vmf->flags & FAULT_FLAG_WRITE) { 4989 ret |= do_wp_page(vmf); 4990 if (ret & VM_FAULT_ERROR) 4991 ret &= VM_FAULT_ERROR; 4992 goto out; 4993 } 4994 4995 /* No need to invalidate - it was non-present before */ 4996 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4997 unlock: 4998 if (vmf->pte) 4999 pte_unmap_unlock(vmf->pte, vmf->ptl); 5000 out: 5001 /* Clear the swap cache pin for direct swapin after PTL unlock */ 5002 if (need_clear_cache) { 5003 swapcache_clear(si, entry, nr_pages); 5004 if (waitqueue_active(&swapcache_wq)) 5005 wake_up(&swapcache_wq); 5006 } 5007 if (si) 5008 put_swap_device(si); 5009 return ret; 5010 out_nomap: 5011 if (vmf->pte) 5012 pte_unmap_unlock(vmf->pte, vmf->ptl); 5013 out_page: 5014 folio_unlock(folio); 5015 out_release: 5016 folio_put(folio); 5017 if (folio != swapcache && swapcache) { 5018 folio_unlock(swapcache); 5019 folio_put(swapcache); 5020 } 5021 if (need_clear_cache) { 5022 swapcache_clear(si, entry, nr_pages); 5023 if (waitqueue_active(&swapcache_wq)) 5024 wake_up(&swapcache_wq); 5025 } 5026 if (si) 5027 put_swap_device(si); 5028 return ret; 5029 } 5030 5031 static bool pte_range_none(pte_t *pte, int nr_pages) 5032 { 5033 int i; 5034 5035 for (i = 0; i < nr_pages; i++) { 5036 if (!pte_none(ptep_get_lockless(pte + i))) 5037 return false; 5038 } 5039 5040 return true; 5041 } 5042 5043 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 5044 { 5045 struct vm_area_struct *vma = vmf->vma; 5046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5047 unsigned long orders; 5048 struct folio *folio; 5049 unsigned long addr; 5050 pte_t *pte; 5051 gfp_t gfp; 5052 int order; 5053 5054 /* 5055 * If uffd is active for the vma we need per-page fault fidelity to 5056 * maintain the uffd semantics. 5057 */ 5058 if (unlikely(userfaultfd_armed(vma))) 5059 goto fallback; 5060 5061 /* 5062 * Get a list of all the (large) orders below PMD_ORDER that are enabled 5063 * for this vma. Then filter out the orders that can't be allocated over 5064 * the faulting address and still be fully contained in the vma. 5065 */ 5066 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT, 5067 BIT(PMD_ORDER) - 1); 5068 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 5069 5070 if (!orders) 5071 goto fallback; 5072 5073 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 5074 if (!pte) 5075 return ERR_PTR(-EAGAIN); 5076 5077 /* 5078 * Find the highest order where the aligned range is completely 5079 * pte_none(). Note that all remaining orders will be completely 5080 * pte_none(). 5081 */ 5082 order = highest_order(orders); 5083 while (orders) { 5084 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5085 if (pte_range_none(pte + pte_index(addr), 1 << order)) 5086 break; 5087 order = next_order(&orders, order); 5088 } 5089 5090 pte_unmap(pte); 5091 5092 if (!orders) 5093 goto fallback; 5094 5095 /* Try allocating the highest of the remaining orders. */ 5096 gfp = vma_thp_gfp_mask(vma); 5097 while (orders) { 5098 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5099 folio = vma_alloc_folio(gfp, order, vma, addr); 5100 if (folio) { 5101 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5102 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5103 folio_put(folio); 5104 goto next; 5105 } 5106 folio_throttle_swaprate(folio, gfp); 5107 /* 5108 * When a folio is not zeroed during allocation 5109 * (__GFP_ZERO not used) or user folios require special 5110 * handling, folio_zero_user() is used to make sure 5111 * that the page corresponding to the faulting address 5112 * will be hot in the cache after zeroing. 5113 */ 5114 if (user_alloc_needs_zeroing()) 5115 folio_zero_user(folio, vmf->address); 5116 return folio; 5117 } 5118 next: 5119 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5120 order = next_order(&orders, order); 5121 } 5122 5123 fallback: 5124 #endif 5125 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5126 } 5127 5128 /* 5129 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5130 * but allow concurrent faults), and pte mapped but not yet locked. 5131 * We return with mmap_lock still held, but pte unmapped and unlocked. 5132 */ 5133 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5134 { 5135 struct vm_area_struct *vma = vmf->vma; 5136 unsigned long addr = vmf->address; 5137 struct folio *folio; 5138 vm_fault_t ret = 0; 5139 int nr_pages = 1; 5140 pte_t entry; 5141 5142 /* File mapping without ->vm_ops ? */ 5143 if (vma->vm_flags & VM_SHARED) 5144 return VM_FAULT_SIGBUS; 5145 5146 /* 5147 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5148 * be distinguished from a transient failure of pte_offset_map(). 5149 */ 5150 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5151 return VM_FAULT_OOM; 5152 5153 /* Use the zero-page for reads */ 5154 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5155 !mm_forbids_zeropage(vma->vm_mm)) { 5156 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5157 vma->vm_page_prot)); 5158 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5159 vmf->address, &vmf->ptl); 5160 if (!vmf->pte) 5161 goto unlock; 5162 if (vmf_pte_changed(vmf)) { 5163 update_mmu_tlb(vma, vmf->address, vmf->pte); 5164 goto unlock; 5165 } 5166 ret = check_stable_address_space(vma->vm_mm); 5167 if (ret) 5168 goto unlock; 5169 /* Deliver the page fault to userland, check inside PT lock */ 5170 if (userfaultfd_missing(vma)) { 5171 pte_unmap_unlock(vmf->pte, vmf->ptl); 5172 return handle_userfault(vmf, VM_UFFD_MISSING); 5173 } 5174 goto setpte; 5175 } 5176 5177 /* Allocate our own private page. */ 5178 ret = vmf_anon_prepare(vmf); 5179 if (ret) 5180 return ret; 5181 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5182 folio = alloc_anon_folio(vmf); 5183 if (IS_ERR(folio)) 5184 return 0; 5185 if (!folio) 5186 goto oom; 5187 5188 nr_pages = folio_nr_pages(folio); 5189 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5190 5191 /* 5192 * The memory barrier inside __folio_mark_uptodate makes sure that 5193 * preceding stores to the page contents become visible before 5194 * the set_pte_at() write. 5195 */ 5196 __folio_mark_uptodate(folio); 5197 5198 entry = folio_mk_pte(folio, vma->vm_page_prot); 5199 entry = pte_sw_mkyoung(entry); 5200 if (vma->vm_flags & VM_WRITE) 5201 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5202 5203 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5204 if (!vmf->pte) 5205 goto release; 5206 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5207 update_mmu_tlb(vma, addr, vmf->pte); 5208 goto release; 5209 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5210 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5211 goto release; 5212 } 5213 5214 ret = check_stable_address_space(vma->vm_mm); 5215 if (ret) 5216 goto release; 5217 5218 /* Deliver the page fault to userland, check inside PT lock */ 5219 if (userfaultfd_missing(vma)) { 5220 pte_unmap_unlock(vmf->pte, vmf->ptl); 5221 folio_put(folio); 5222 return handle_userfault(vmf, VM_UFFD_MISSING); 5223 } 5224 5225 folio_ref_add(folio, nr_pages - 1); 5226 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5227 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5228 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5229 folio_add_lru_vma(folio, vma); 5230 setpte: 5231 if (vmf_orig_pte_uffd_wp(vmf)) 5232 entry = pte_mkuffd_wp(entry); 5233 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5234 5235 /* No need to invalidate - it was non-present before */ 5236 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5237 unlock: 5238 if (vmf->pte) 5239 pte_unmap_unlock(vmf->pte, vmf->ptl); 5240 return ret; 5241 release: 5242 folio_put(folio); 5243 goto unlock; 5244 oom: 5245 return VM_FAULT_OOM; 5246 } 5247 5248 /* 5249 * The mmap_lock must have been held on entry, and may have been 5250 * released depending on flags and vma->vm_ops->fault() return value. 5251 * See filemap_fault() and __lock_page_retry(). 5252 */ 5253 static vm_fault_t __do_fault(struct vm_fault *vmf) 5254 { 5255 struct vm_area_struct *vma = vmf->vma; 5256 struct folio *folio; 5257 vm_fault_t ret; 5258 5259 /* 5260 * Preallocate pte before we take page_lock because this might lead to 5261 * deadlocks for memcg reclaim which waits for pages under writeback: 5262 * lock_page(A) 5263 * SetPageWriteback(A) 5264 * unlock_page(A) 5265 * lock_page(B) 5266 * lock_page(B) 5267 * pte_alloc_one 5268 * shrink_folio_list 5269 * wait_on_page_writeback(A) 5270 * SetPageWriteback(B) 5271 * unlock_page(B) 5272 * # flush A, B to clear the writeback 5273 */ 5274 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5275 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5276 if (!vmf->prealloc_pte) 5277 return VM_FAULT_OOM; 5278 } 5279 5280 ret = vma->vm_ops->fault(vmf); 5281 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5282 VM_FAULT_DONE_COW))) 5283 return ret; 5284 5285 folio = page_folio(vmf->page); 5286 if (unlikely(PageHWPoison(vmf->page))) { 5287 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5288 if (ret & VM_FAULT_LOCKED) { 5289 if (page_mapped(vmf->page)) 5290 unmap_mapping_folio(folio); 5291 /* Retry if a clean folio was removed from the cache. */ 5292 if (mapping_evict_folio(folio->mapping, folio)) 5293 poisonret = VM_FAULT_NOPAGE; 5294 folio_unlock(folio); 5295 } 5296 folio_put(folio); 5297 vmf->page = NULL; 5298 return poisonret; 5299 } 5300 5301 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5302 folio_lock(folio); 5303 else 5304 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5305 5306 return ret; 5307 } 5308 5309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5310 static void deposit_prealloc_pte(struct vm_fault *vmf) 5311 { 5312 struct vm_area_struct *vma = vmf->vma; 5313 5314 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5315 /* 5316 * We are going to consume the prealloc table, 5317 * count that as nr_ptes. 5318 */ 5319 mm_inc_nr_ptes(vma->vm_mm); 5320 vmf->prealloc_pte = NULL; 5321 } 5322 5323 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5324 { 5325 struct vm_area_struct *vma = vmf->vma; 5326 bool write = vmf->flags & FAULT_FLAG_WRITE; 5327 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5328 pmd_t entry; 5329 vm_fault_t ret = VM_FAULT_FALLBACK; 5330 5331 /* 5332 * It is too late to allocate a small folio, we already have a large 5333 * folio in the pagecache: especially s390 KVM cannot tolerate any 5334 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5335 * PMD mappings if THPs are disabled. As we already have a THP, 5336 * behave as if we are forcing a collapse. 5337 */ 5338 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags, 5339 /* forced_collapse=*/ true)) 5340 return ret; 5341 5342 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5343 return ret; 5344 5345 if (folio_order(folio) != HPAGE_PMD_ORDER) 5346 return ret; 5347 page = &folio->page; 5348 5349 /* 5350 * Just backoff if any subpage of a THP is corrupted otherwise 5351 * the corrupted page may mapped by PMD silently to escape the 5352 * check. This kind of THP just can be PTE mapped. Access to 5353 * the corrupted subpage should trigger SIGBUS as expected. 5354 */ 5355 if (unlikely(folio_test_has_hwpoisoned(folio))) 5356 return ret; 5357 5358 /* 5359 * Archs like ppc64 need additional space to store information 5360 * related to pte entry. Use the preallocated table for that. 5361 */ 5362 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5363 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5364 if (!vmf->prealloc_pte) 5365 return VM_FAULT_OOM; 5366 } 5367 5368 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5369 if (unlikely(!pmd_none(*vmf->pmd))) 5370 goto out; 5371 5372 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5373 5374 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5375 if (write) 5376 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5377 5378 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5379 folio_add_file_rmap_pmd(folio, page, vma); 5380 5381 /* 5382 * deposit and withdraw with pmd lock held 5383 */ 5384 if (arch_needs_pgtable_deposit()) 5385 deposit_prealloc_pte(vmf); 5386 5387 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5388 5389 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5390 5391 /* fault is handled */ 5392 ret = 0; 5393 count_vm_event(THP_FILE_MAPPED); 5394 out: 5395 spin_unlock(vmf->ptl); 5396 return ret; 5397 } 5398 #else 5399 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5400 { 5401 return VM_FAULT_FALLBACK; 5402 } 5403 #endif 5404 5405 /** 5406 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5407 * @vmf: Fault decription. 5408 * @folio: The folio that contains @page. 5409 * @page: The first page to create a PTE for. 5410 * @nr: The number of PTEs to create. 5411 * @addr: The first address to create a PTE for. 5412 */ 5413 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5414 struct page *page, unsigned int nr, unsigned long addr) 5415 { 5416 struct vm_area_struct *vma = vmf->vma; 5417 bool write = vmf->flags & FAULT_FLAG_WRITE; 5418 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5419 pte_t entry; 5420 5421 flush_icache_pages(vma, page, nr); 5422 entry = mk_pte(page, vma->vm_page_prot); 5423 5424 if (prefault && arch_wants_old_prefaulted_pte()) 5425 entry = pte_mkold(entry); 5426 else 5427 entry = pte_sw_mkyoung(entry); 5428 5429 if (write) 5430 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5431 else if (pte_write(entry) && folio_test_dirty(folio)) 5432 entry = pte_mkdirty(entry); 5433 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5434 entry = pte_mkuffd_wp(entry); 5435 /* copy-on-write page */ 5436 if (write && !(vma->vm_flags & VM_SHARED)) { 5437 VM_BUG_ON_FOLIO(nr != 1, folio); 5438 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5439 folio_add_lru_vma(folio, vma); 5440 } else { 5441 folio_add_file_rmap_ptes(folio, page, nr, vma); 5442 } 5443 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5444 5445 /* no need to invalidate: a not-present page won't be cached */ 5446 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5447 } 5448 5449 static bool vmf_pte_changed(struct vm_fault *vmf) 5450 { 5451 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5452 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5453 5454 return !pte_none(ptep_get(vmf->pte)); 5455 } 5456 5457 /** 5458 * finish_fault - finish page fault once we have prepared the page to fault 5459 * 5460 * @vmf: structure describing the fault 5461 * 5462 * This function handles all that is needed to finish a page fault once the 5463 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5464 * given page, adds reverse page mapping, handles memcg charges and LRU 5465 * addition. 5466 * 5467 * The function expects the page to be locked and on success it consumes a 5468 * reference of a page being mapped (for the PTE which maps it). 5469 * 5470 * Return: %0 on success, %VM_FAULT_ code in case of error. 5471 */ 5472 vm_fault_t finish_fault(struct vm_fault *vmf) 5473 { 5474 struct vm_area_struct *vma = vmf->vma; 5475 struct page *page; 5476 struct folio *folio; 5477 vm_fault_t ret; 5478 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5479 !(vma->vm_flags & VM_SHARED); 5480 int type, nr_pages; 5481 unsigned long addr; 5482 bool needs_fallback = false; 5483 5484 fallback: 5485 addr = vmf->address; 5486 5487 /* Did we COW the page? */ 5488 if (is_cow) 5489 page = vmf->cow_page; 5490 else 5491 page = vmf->page; 5492 5493 folio = page_folio(page); 5494 /* 5495 * check even for read faults because we might have lost our CoWed 5496 * page 5497 */ 5498 if (!(vma->vm_flags & VM_SHARED)) { 5499 ret = check_stable_address_space(vma->vm_mm); 5500 if (ret) 5501 return ret; 5502 } 5503 5504 if (pmd_none(*vmf->pmd)) { 5505 if (folio_test_pmd_mappable(folio)) { 5506 ret = do_set_pmd(vmf, folio, page); 5507 if (ret != VM_FAULT_FALLBACK) 5508 return ret; 5509 } 5510 5511 if (vmf->prealloc_pte) 5512 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5513 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5514 return VM_FAULT_OOM; 5515 } 5516 5517 nr_pages = folio_nr_pages(folio); 5518 5519 /* 5520 * Using per-page fault to maintain the uffd semantics, and same 5521 * approach also applies to non shmem/tmpfs faults to avoid 5522 * inflating the RSS of the process. 5523 */ 5524 if (!vma_is_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5525 unlikely(needs_fallback)) { 5526 nr_pages = 1; 5527 } else if (nr_pages > 1) { 5528 pgoff_t idx = folio_page_idx(folio, page); 5529 /* The page offset of vmf->address within the VMA. */ 5530 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5531 /* The index of the entry in the pagetable for fault page. */ 5532 pgoff_t pte_off = pte_index(vmf->address); 5533 5534 /* 5535 * Fallback to per-page fault in case the folio size in page 5536 * cache beyond the VMA limits and PMD pagetable limits. 5537 */ 5538 if (unlikely(vma_off < idx || 5539 vma_off + (nr_pages - idx) > vma_pages(vma) || 5540 pte_off < idx || 5541 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5542 nr_pages = 1; 5543 } else { 5544 /* Now we can set mappings for the whole large folio. */ 5545 addr = vmf->address - idx * PAGE_SIZE; 5546 page = &folio->page; 5547 } 5548 } 5549 5550 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5551 addr, &vmf->ptl); 5552 if (!vmf->pte) 5553 return VM_FAULT_NOPAGE; 5554 5555 /* Re-check under ptl */ 5556 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5557 update_mmu_tlb(vma, addr, vmf->pte); 5558 ret = VM_FAULT_NOPAGE; 5559 goto unlock; 5560 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5561 needs_fallback = true; 5562 pte_unmap_unlock(vmf->pte, vmf->ptl); 5563 goto fallback; 5564 } 5565 5566 folio_ref_add(folio, nr_pages - 1); 5567 set_pte_range(vmf, folio, page, nr_pages, addr); 5568 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5569 add_mm_counter(vma->vm_mm, type, nr_pages); 5570 ret = 0; 5571 5572 unlock: 5573 pte_unmap_unlock(vmf->pte, vmf->ptl); 5574 return ret; 5575 } 5576 5577 static unsigned long fault_around_pages __read_mostly = 5578 65536 >> PAGE_SHIFT; 5579 5580 #ifdef CONFIG_DEBUG_FS 5581 static int fault_around_bytes_get(void *data, u64 *val) 5582 { 5583 *val = fault_around_pages << PAGE_SHIFT; 5584 return 0; 5585 } 5586 5587 /* 5588 * fault_around_bytes must be rounded down to the nearest page order as it's 5589 * what do_fault_around() expects to see. 5590 */ 5591 static int fault_around_bytes_set(void *data, u64 val) 5592 { 5593 if (val / PAGE_SIZE > PTRS_PER_PTE) 5594 return -EINVAL; 5595 5596 /* 5597 * The minimum value is 1 page, however this results in no fault-around 5598 * at all. See should_fault_around(). 5599 */ 5600 val = max(val, PAGE_SIZE); 5601 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5602 5603 return 0; 5604 } 5605 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5606 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5607 5608 static int __init fault_around_debugfs(void) 5609 { 5610 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5611 &fault_around_bytes_fops); 5612 return 0; 5613 } 5614 late_initcall(fault_around_debugfs); 5615 #endif 5616 5617 /* 5618 * do_fault_around() tries to map few pages around the fault address. The hope 5619 * is that the pages will be needed soon and this will lower the number of 5620 * faults to handle. 5621 * 5622 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5623 * not ready to be mapped: not up-to-date, locked, etc. 5624 * 5625 * This function doesn't cross VMA or page table boundaries, in order to call 5626 * map_pages() and acquire a PTE lock only once. 5627 * 5628 * fault_around_pages defines how many pages we'll try to map. 5629 * do_fault_around() expects it to be set to a power of two less than or equal 5630 * to PTRS_PER_PTE. 5631 * 5632 * The virtual address of the area that we map is naturally aligned to 5633 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5634 * (and therefore to page order). This way it's easier to guarantee 5635 * that we don't cross page table boundaries. 5636 */ 5637 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5638 { 5639 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5640 pgoff_t pte_off = pte_index(vmf->address); 5641 /* The page offset of vmf->address within the VMA. */ 5642 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5643 pgoff_t from_pte, to_pte; 5644 vm_fault_t ret; 5645 5646 /* The PTE offset of the start address, clamped to the VMA. */ 5647 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5648 pte_off - min(pte_off, vma_off)); 5649 5650 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5651 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5652 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5653 5654 if (pmd_none(*vmf->pmd)) { 5655 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5656 if (!vmf->prealloc_pte) 5657 return VM_FAULT_OOM; 5658 } 5659 5660 rcu_read_lock(); 5661 ret = vmf->vma->vm_ops->map_pages(vmf, 5662 vmf->pgoff + from_pte - pte_off, 5663 vmf->pgoff + to_pte - pte_off); 5664 rcu_read_unlock(); 5665 5666 return ret; 5667 } 5668 5669 /* Return true if we should do read fault-around, false otherwise */ 5670 static inline bool should_fault_around(struct vm_fault *vmf) 5671 { 5672 /* No ->map_pages? No way to fault around... */ 5673 if (!vmf->vma->vm_ops->map_pages) 5674 return false; 5675 5676 if (uffd_disable_fault_around(vmf->vma)) 5677 return false; 5678 5679 /* A single page implies no faulting 'around' at all. */ 5680 return fault_around_pages > 1; 5681 } 5682 5683 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5684 { 5685 vm_fault_t ret = 0; 5686 struct folio *folio; 5687 5688 /* 5689 * Let's call ->map_pages() first and use ->fault() as fallback 5690 * if page by the offset is not ready to be mapped (cold cache or 5691 * something). 5692 */ 5693 if (should_fault_around(vmf)) { 5694 ret = do_fault_around(vmf); 5695 if (ret) 5696 return ret; 5697 } 5698 5699 ret = vmf_can_call_fault(vmf); 5700 if (ret) 5701 return ret; 5702 5703 ret = __do_fault(vmf); 5704 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5705 return ret; 5706 5707 ret |= finish_fault(vmf); 5708 folio = page_folio(vmf->page); 5709 folio_unlock(folio); 5710 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5711 folio_put(folio); 5712 return ret; 5713 } 5714 5715 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5716 { 5717 struct vm_area_struct *vma = vmf->vma; 5718 struct folio *folio; 5719 vm_fault_t ret; 5720 5721 ret = vmf_can_call_fault(vmf); 5722 if (!ret) 5723 ret = vmf_anon_prepare(vmf); 5724 if (ret) 5725 return ret; 5726 5727 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5728 if (!folio) 5729 return VM_FAULT_OOM; 5730 5731 vmf->cow_page = &folio->page; 5732 5733 ret = __do_fault(vmf); 5734 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5735 goto uncharge_out; 5736 if (ret & VM_FAULT_DONE_COW) 5737 return ret; 5738 5739 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5740 ret = VM_FAULT_HWPOISON; 5741 goto unlock; 5742 } 5743 __folio_mark_uptodate(folio); 5744 5745 ret |= finish_fault(vmf); 5746 unlock: 5747 unlock_page(vmf->page); 5748 put_page(vmf->page); 5749 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5750 goto uncharge_out; 5751 return ret; 5752 uncharge_out: 5753 folio_put(folio); 5754 return ret; 5755 } 5756 5757 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5758 { 5759 struct vm_area_struct *vma = vmf->vma; 5760 vm_fault_t ret, tmp; 5761 struct folio *folio; 5762 5763 ret = vmf_can_call_fault(vmf); 5764 if (ret) 5765 return ret; 5766 5767 ret = __do_fault(vmf); 5768 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5769 return ret; 5770 5771 folio = page_folio(vmf->page); 5772 5773 /* 5774 * Check if the backing address space wants to know that the page is 5775 * about to become writable 5776 */ 5777 if (vma->vm_ops->page_mkwrite) { 5778 folio_unlock(folio); 5779 tmp = do_page_mkwrite(vmf, folio); 5780 if (unlikely(!tmp || 5781 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5782 folio_put(folio); 5783 return tmp; 5784 } 5785 } 5786 5787 ret |= finish_fault(vmf); 5788 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5789 VM_FAULT_RETRY))) { 5790 folio_unlock(folio); 5791 folio_put(folio); 5792 return ret; 5793 } 5794 5795 ret |= fault_dirty_shared_page(vmf); 5796 return ret; 5797 } 5798 5799 /* 5800 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5801 * but allow concurrent faults). 5802 * The mmap_lock may have been released depending on flags and our 5803 * return value. See filemap_fault() and __folio_lock_or_retry(). 5804 * If mmap_lock is released, vma may become invalid (for example 5805 * by other thread calling munmap()). 5806 */ 5807 static vm_fault_t do_fault(struct vm_fault *vmf) 5808 { 5809 struct vm_area_struct *vma = vmf->vma; 5810 struct mm_struct *vm_mm = vma->vm_mm; 5811 vm_fault_t ret; 5812 5813 /* 5814 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5815 */ 5816 if (!vma->vm_ops->fault) { 5817 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5818 vmf->address, &vmf->ptl); 5819 if (unlikely(!vmf->pte)) 5820 ret = VM_FAULT_SIGBUS; 5821 else { 5822 /* 5823 * Make sure this is not a temporary clearing of pte 5824 * by holding ptl and checking again. A R/M/W update 5825 * of pte involves: take ptl, clearing the pte so that 5826 * we don't have concurrent modification by hardware 5827 * followed by an update. 5828 */ 5829 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5830 ret = VM_FAULT_SIGBUS; 5831 else 5832 ret = VM_FAULT_NOPAGE; 5833 5834 pte_unmap_unlock(vmf->pte, vmf->ptl); 5835 } 5836 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5837 ret = do_read_fault(vmf); 5838 else if (!(vma->vm_flags & VM_SHARED)) 5839 ret = do_cow_fault(vmf); 5840 else 5841 ret = do_shared_fault(vmf); 5842 5843 /* preallocated pagetable is unused: free it */ 5844 if (vmf->prealloc_pte) { 5845 pte_free(vm_mm, vmf->prealloc_pte); 5846 vmf->prealloc_pte = NULL; 5847 } 5848 return ret; 5849 } 5850 5851 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5852 unsigned long addr, int *flags, 5853 bool writable, int *last_cpupid) 5854 { 5855 struct vm_area_struct *vma = vmf->vma; 5856 5857 /* 5858 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5859 * much anyway since they can be in shared cache state. This misses 5860 * the case where a mapping is writable but the process never writes 5861 * to it but pte_write gets cleared during protection updates and 5862 * pte_dirty has unpredictable behaviour between PTE scan updates, 5863 * background writeback, dirty balancing and application behaviour. 5864 */ 5865 if (!writable) 5866 *flags |= TNF_NO_GROUP; 5867 5868 /* 5869 * Flag if the folio is shared between multiple address spaces. This 5870 * is later used when determining whether to group tasks together 5871 */ 5872 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5873 *flags |= TNF_SHARED; 5874 /* 5875 * For memory tiering mode, cpupid of slow memory page is used 5876 * to record page access time. So use default value. 5877 */ 5878 if (folio_use_access_time(folio)) 5879 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5880 else 5881 *last_cpupid = folio_last_cpupid(folio); 5882 5883 /* Record the current PID acceesing VMA */ 5884 vma_set_access_pid_bit(vma); 5885 5886 count_vm_numa_event(NUMA_HINT_FAULTS); 5887 #ifdef CONFIG_NUMA_BALANCING 5888 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5889 #endif 5890 if (folio_nid(folio) == numa_node_id()) { 5891 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5892 *flags |= TNF_FAULT_LOCAL; 5893 } 5894 5895 return mpol_misplaced(folio, vmf, addr); 5896 } 5897 5898 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5899 unsigned long fault_addr, pte_t *fault_pte, 5900 bool writable) 5901 { 5902 pte_t pte, old_pte; 5903 5904 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5905 pte = pte_modify(old_pte, vma->vm_page_prot); 5906 pte = pte_mkyoung(pte); 5907 if (writable) 5908 pte = pte_mkwrite(pte, vma); 5909 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5910 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5911 } 5912 5913 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5914 struct folio *folio, pte_t fault_pte, 5915 bool ignore_writable, bool pte_write_upgrade) 5916 { 5917 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5918 unsigned long start, end, addr = vmf->address; 5919 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5920 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5921 pte_t *start_ptep; 5922 5923 /* Stay within the VMA and within the page table. */ 5924 start = max3(addr_start, pt_start, vma->vm_start); 5925 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5926 vma->vm_end); 5927 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5928 5929 /* Restore all PTEs' mapping of the large folio */ 5930 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5931 pte_t ptent = ptep_get(start_ptep); 5932 bool writable = false; 5933 5934 if (!pte_present(ptent) || !pte_protnone(ptent)) 5935 continue; 5936 5937 if (pfn_folio(pte_pfn(ptent)) != folio) 5938 continue; 5939 5940 if (!ignore_writable) { 5941 ptent = pte_modify(ptent, vma->vm_page_prot); 5942 writable = pte_write(ptent); 5943 if (!writable && pte_write_upgrade && 5944 can_change_pte_writable(vma, addr, ptent)) 5945 writable = true; 5946 } 5947 5948 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5949 } 5950 } 5951 5952 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5953 { 5954 struct vm_area_struct *vma = vmf->vma; 5955 struct folio *folio = NULL; 5956 int nid = NUMA_NO_NODE; 5957 bool writable = false, ignore_writable = false; 5958 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5959 int last_cpupid; 5960 int target_nid; 5961 pte_t pte, old_pte; 5962 int flags = 0, nr_pages; 5963 5964 /* 5965 * The pte cannot be used safely until we verify, while holding the page 5966 * table lock, that its contents have not changed during fault handling. 5967 */ 5968 spin_lock(vmf->ptl); 5969 /* Read the live PTE from the page tables: */ 5970 old_pte = ptep_get(vmf->pte); 5971 5972 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5973 pte_unmap_unlock(vmf->pte, vmf->ptl); 5974 return 0; 5975 } 5976 5977 pte = pte_modify(old_pte, vma->vm_page_prot); 5978 5979 /* 5980 * Detect now whether the PTE could be writable; this information 5981 * is only valid while holding the PT lock. 5982 */ 5983 writable = pte_write(pte); 5984 if (!writable && pte_write_upgrade && 5985 can_change_pte_writable(vma, vmf->address, pte)) 5986 writable = true; 5987 5988 folio = vm_normal_folio(vma, vmf->address, pte); 5989 if (!folio || folio_is_zone_device(folio)) 5990 goto out_map; 5991 5992 nid = folio_nid(folio); 5993 nr_pages = folio_nr_pages(folio); 5994 5995 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5996 writable, &last_cpupid); 5997 if (target_nid == NUMA_NO_NODE) 5998 goto out_map; 5999 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 6000 flags |= TNF_MIGRATE_FAIL; 6001 goto out_map; 6002 } 6003 /* The folio is isolated and isolation code holds a folio reference. */ 6004 pte_unmap_unlock(vmf->pte, vmf->ptl); 6005 writable = false; 6006 ignore_writable = true; 6007 6008 /* Migrate to the requested node */ 6009 if (!migrate_misplaced_folio(folio, target_nid)) { 6010 nid = target_nid; 6011 flags |= TNF_MIGRATED; 6012 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6013 return 0; 6014 } 6015 6016 flags |= TNF_MIGRATE_FAIL; 6017 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 6018 vmf->address, &vmf->ptl); 6019 if (unlikely(!vmf->pte)) 6020 return 0; 6021 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 6022 pte_unmap_unlock(vmf->pte, vmf->ptl); 6023 return 0; 6024 } 6025 out_map: 6026 /* 6027 * Make it present again, depending on how arch implements 6028 * non-accessible ptes, some can allow access by kernel mode. 6029 */ 6030 if (folio && folio_test_large(folio)) 6031 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 6032 pte_write_upgrade); 6033 else 6034 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 6035 writable); 6036 pte_unmap_unlock(vmf->pte, vmf->ptl); 6037 6038 if (nid != NUMA_NO_NODE) 6039 task_numa_fault(last_cpupid, nid, nr_pages, flags); 6040 return 0; 6041 } 6042 6043 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 6044 { 6045 struct vm_area_struct *vma = vmf->vma; 6046 if (vma_is_anonymous(vma)) 6047 return do_huge_pmd_anonymous_page(vmf); 6048 if (vma->vm_ops->huge_fault) 6049 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6050 return VM_FAULT_FALLBACK; 6051 } 6052 6053 /* `inline' is required to avoid gcc 4.1.2 build error */ 6054 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 6055 { 6056 struct vm_area_struct *vma = vmf->vma; 6057 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6058 vm_fault_t ret; 6059 6060 if (vma_is_anonymous(vma)) { 6061 if (likely(!unshare) && 6062 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 6063 if (userfaultfd_wp_async(vmf->vma)) 6064 goto split; 6065 return handle_userfault(vmf, VM_UFFD_WP); 6066 } 6067 return do_huge_pmd_wp_page(vmf); 6068 } 6069 6070 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6071 if (vma->vm_ops->huge_fault) { 6072 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 6073 if (!(ret & VM_FAULT_FALLBACK)) 6074 return ret; 6075 } 6076 } 6077 6078 split: 6079 /* COW or write-notify handled on pte level: split pmd. */ 6080 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 6081 6082 return VM_FAULT_FALLBACK; 6083 } 6084 6085 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 6086 { 6087 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6088 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6089 struct vm_area_struct *vma = vmf->vma; 6090 /* No support for anonymous transparent PUD pages yet */ 6091 if (vma_is_anonymous(vma)) 6092 return VM_FAULT_FALLBACK; 6093 if (vma->vm_ops->huge_fault) 6094 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6095 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6096 return VM_FAULT_FALLBACK; 6097 } 6098 6099 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6100 { 6101 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6102 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6103 struct vm_area_struct *vma = vmf->vma; 6104 vm_fault_t ret; 6105 6106 /* No support for anonymous transparent PUD pages yet */ 6107 if (vma_is_anonymous(vma)) 6108 goto split; 6109 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6110 if (vma->vm_ops->huge_fault) { 6111 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6112 if (!(ret & VM_FAULT_FALLBACK)) 6113 return ret; 6114 } 6115 } 6116 split: 6117 /* COW or write-notify not handled on PUD level: split pud.*/ 6118 __split_huge_pud(vma, vmf->pud, vmf->address); 6119 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6120 return VM_FAULT_FALLBACK; 6121 } 6122 6123 /* 6124 * These routines also need to handle stuff like marking pages dirty 6125 * and/or accessed for architectures that don't do it in hardware (most 6126 * RISC architectures). The early dirtying is also good on the i386. 6127 * 6128 * There is also a hook called "update_mmu_cache()" that architectures 6129 * with external mmu caches can use to update those (ie the Sparc or 6130 * PowerPC hashed page tables that act as extended TLBs). 6131 * 6132 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6133 * concurrent faults). 6134 * 6135 * The mmap_lock may have been released depending on flags and our return value. 6136 * See filemap_fault() and __folio_lock_or_retry(). 6137 */ 6138 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6139 { 6140 pte_t entry; 6141 6142 if (unlikely(pmd_none(*vmf->pmd))) { 6143 /* 6144 * Leave __pte_alloc() until later: because vm_ops->fault may 6145 * want to allocate huge page, and if we expose page table 6146 * for an instant, it will be difficult to retract from 6147 * concurrent faults and from rmap lookups. 6148 */ 6149 vmf->pte = NULL; 6150 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6151 } else { 6152 pmd_t dummy_pmdval; 6153 6154 /* 6155 * A regular pmd is established and it can't morph into a huge 6156 * pmd by anon khugepaged, since that takes mmap_lock in write 6157 * mode; but shmem or file collapse to THP could still morph 6158 * it into a huge pmd: just retry later if so. 6159 * 6160 * Use the maywrite version to indicate that vmf->pte may be 6161 * modified, but since we will use pte_same() to detect the 6162 * change of the !pte_none() entry, there is no need to recheck 6163 * the pmdval. Here we chooes to pass a dummy variable instead 6164 * of NULL, which helps new user think about why this place is 6165 * special. 6166 */ 6167 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6168 vmf->address, &dummy_pmdval, 6169 &vmf->ptl); 6170 if (unlikely(!vmf->pte)) 6171 return 0; 6172 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6173 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6174 6175 if (pte_none(vmf->orig_pte)) { 6176 pte_unmap(vmf->pte); 6177 vmf->pte = NULL; 6178 } 6179 } 6180 6181 if (!vmf->pte) 6182 return do_pte_missing(vmf); 6183 6184 if (!pte_present(vmf->orig_pte)) 6185 return do_swap_page(vmf); 6186 6187 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6188 return do_numa_page(vmf); 6189 6190 spin_lock(vmf->ptl); 6191 entry = vmf->orig_pte; 6192 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6193 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6194 goto unlock; 6195 } 6196 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6197 if (!pte_write(entry)) 6198 return do_wp_page(vmf); 6199 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6200 entry = pte_mkdirty(entry); 6201 } 6202 entry = pte_mkyoung(entry); 6203 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6204 vmf->flags & FAULT_FLAG_WRITE)) { 6205 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6206 vmf->pte, 1); 6207 } else { 6208 /* Skip spurious TLB flush for retried page fault */ 6209 if (vmf->flags & FAULT_FLAG_TRIED) 6210 goto unlock; 6211 /* 6212 * This is needed only for protection faults but the arch code 6213 * is not yet telling us if this is a protection fault or not. 6214 * This still avoids useless tlb flushes for .text page faults 6215 * with threads. 6216 */ 6217 if (vmf->flags & FAULT_FLAG_WRITE) 6218 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6219 vmf->pte); 6220 } 6221 unlock: 6222 pte_unmap_unlock(vmf->pte, vmf->ptl); 6223 return 0; 6224 } 6225 6226 /* 6227 * On entry, we hold either the VMA lock or the mmap_lock 6228 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6229 * the result, the mmap_lock is not held on exit. See filemap_fault() 6230 * and __folio_lock_or_retry(). 6231 */ 6232 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6233 unsigned long address, unsigned int flags) 6234 { 6235 struct vm_fault vmf = { 6236 .vma = vma, 6237 .address = address & PAGE_MASK, 6238 .real_address = address, 6239 .flags = flags, 6240 .pgoff = linear_page_index(vma, address), 6241 .gfp_mask = __get_fault_gfp_mask(vma), 6242 }; 6243 struct mm_struct *mm = vma->vm_mm; 6244 vm_flags_t vm_flags = vma->vm_flags; 6245 pgd_t *pgd; 6246 p4d_t *p4d; 6247 vm_fault_t ret; 6248 6249 pgd = pgd_offset(mm, address); 6250 p4d = p4d_alloc(mm, pgd, address); 6251 if (!p4d) 6252 return VM_FAULT_OOM; 6253 6254 vmf.pud = pud_alloc(mm, p4d, address); 6255 if (!vmf.pud) 6256 return VM_FAULT_OOM; 6257 retry_pud: 6258 if (pud_none(*vmf.pud) && 6259 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) { 6260 ret = create_huge_pud(&vmf); 6261 if (!(ret & VM_FAULT_FALLBACK)) 6262 return ret; 6263 } else { 6264 pud_t orig_pud = *vmf.pud; 6265 6266 barrier(); 6267 if (pud_trans_huge(orig_pud)) { 6268 6269 /* 6270 * TODO once we support anonymous PUDs: NUMA case and 6271 * FAULT_FLAG_UNSHARE handling. 6272 */ 6273 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6274 ret = wp_huge_pud(&vmf, orig_pud); 6275 if (!(ret & VM_FAULT_FALLBACK)) 6276 return ret; 6277 } else { 6278 huge_pud_set_accessed(&vmf, orig_pud); 6279 return 0; 6280 } 6281 } 6282 } 6283 6284 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6285 if (!vmf.pmd) 6286 return VM_FAULT_OOM; 6287 6288 /* Huge pud page fault raced with pmd_alloc? */ 6289 if (pud_trans_unstable(vmf.pud)) 6290 goto retry_pud; 6291 6292 if (pmd_none(*vmf.pmd) && 6293 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) { 6294 ret = create_huge_pmd(&vmf); 6295 if (!(ret & VM_FAULT_FALLBACK)) 6296 return ret; 6297 } else { 6298 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6299 6300 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6301 VM_BUG_ON(thp_migration_supported() && 6302 !is_pmd_migration_entry(vmf.orig_pmd)); 6303 if (is_pmd_migration_entry(vmf.orig_pmd)) 6304 pmd_migration_entry_wait(mm, vmf.pmd); 6305 return 0; 6306 } 6307 if (pmd_trans_huge(vmf.orig_pmd)) { 6308 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6309 return do_huge_pmd_numa_page(&vmf); 6310 6311 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6312 !pmd_write(vmf.orig_pmd)) { 6313 ret = wp_huge_pmd(&vmf); 6314 if (!(ret & VM_FAULT_FALLBACK)) 6315 return ret; 6316 } else { 6317 huge_pmd_set_accessed(&vmf); 6318 return 0; 6319 } 6320 } 6321 } 6322 6323 return handle_pte_fault(&vmf); 6324 } 6325 6326 /** 6327 * mm_account_fault - Do page fault accounting 6328 * @mm: mm from which memcg should be extracted. It can be NULL. 6329 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6330 * of perf event counters, but we'll still do the per-task accounting to 6331 * the task who triggered this page fault. 6332 * @address: the faulted address. 6333 * @flags: the fault flags. 6334 * @ret: the fault retcode. 6335 * 6336 * This will take care of most of the page fault accounting. Meanwhile, it 6337 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6338 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6339 * still be in per-arch page fault handlers at the entry of page fault. 6340 */ 6341 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6342 unsigned long address, unsigned int flags, 6343 vm_fault_t ret) 6344 { 6345 bool major; 6346 6347 /* Incomplete faults will be accounted upon completion. */ 6348 if (ret & VM_FAULT_RETRY) 6349 return; 6350 6351 /* 6352 * To preserve the behavior of older kernels, PGFAULT counters record 6353 * both successful and failed faults, as opposed to perf counters, 6354 * which ignore failed cases. 6355 */ 6356 count_vm_event(PGFAULT); 6357 count_memcg_event_mm(mm, PGFAULT); 6358 6359 /* 6360 * Do not account for unsuccessful faults (e.g. when the address wasn't 6361 * valid). That includes arch_vma_access_permitted() failing before 6362 * reaching here. So this is not a "this many hardware page faults" 6363 * counter. We should use the hw profiling for that. 6364 */ 6365 if (ret & VM_FAULT_ERROR) 6366 return; 6367 6368 /* 6369 * We define the fault as a major fault when the final successful fault 6370 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6371 * handle it immediately previously). 6372 */ 6373 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6374 6375 if (major) 6376 current->maj_flt++; 6377 else 6378 current->min_flt++; 6379 6380 /* 6381 * If the fault is done for GUP, regs will be NULL. We only do the 6382 * accounting for the per thread fault counters who triggered the 6383 * fault, and we skip the perf event updates. 6384 */ 6385 if (!regs) 6386 return; 6387 6388 if (major) 6389 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6390 else 6391 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6392 } 6393 6394 #ifdef CONFIG_LRU_GEN 6395 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6396 { 6397 /* the LRU algorithm only applies to accesses with recency */ 6398 current->in_lru_fault = vma_has_recency(vma); 6399 } 6400 6401 static void lru_gen_exit_fault(void) 6402 { 6403 current->in_lru_fault = false; 6404 } 6405 #else 6406 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6407 { 6408 } 6409 6410 static void lru_gen_exit_fault(void) 6411 { 6412 } 6413 #endif /* CONFIG_LRU_GEN */ 6414 6415 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6416 unsigned int *flags) 6417 { 6418 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6419 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6420 return VM_FAULT_SIGSEGV; 6421 /* 6422 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6423 * just treat it like an ordinary read-fault otherwise. 6424 */ 6425 if (!is_cow_mapping(vma->vm_flags)) 6426 *flags &= ~FAULT_FLAG_UNSHARE; 6427 } else if (*flags & FAULT_FLAG_WRITE) { 6428 /* Write faults on read-only mappings are impossible ... */ 6429 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6430 return VM_FAULT_SIGSEGV; 6431 /* ... and FOLL_FORCE only applies to COW mappings. */ 6432 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6433 !is_cow_mapping(vma->vm_flags))) 6434 return VM_FAULT_SIGSEGV; 6435 } 6436 #ifdef CONFIG_PER_VMA_LOCK 6437 /* 6438 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6439 * the assumption that lock is dropped on VM_FAULT_RETRY. 6440 */ 6441 if (WARN_ON_ONCE((*flags & 6442 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6443 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6444 return VM_FAULT_SIGSEGV; 6445 #endif 6446 6447 return 0; 6448 } 6449 6450 /* 6451 * By the time we get here, we already hold either the VMA lock or the 6452 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6453 * 6454 * The mmap_lock may have been released depending on flags and our 6455 * return value. See filemap_fault() and __folio_lock_or_retry(). 6456 */ 6457 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6458 unsigned int flags, struct pt_regs *regs) 6459 { 6460 /* If the fault handler drops the mmap_lock, vma may be freed */ 6461 struct mm_struct *mm = vma->vm_mm; 6462 vm_fault_t ret; 6463 bool is_droppable; 6464 6465 __set_current_state(TASK_RUNNING); 6466 6467 ret = sanitize_fault_flags(vma, &flags); 6468 if (ret) 6469 goto out; 6470 6471 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6472 flags & FAULT_FLAG_INSTRUCTION, 6473 flags & FAULT_FLAG_REMOTE)) { 6474 ret = VM_FAULT_SIGSEGV; 6475 goto out; 6476 } 6477 6478 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6479 6480 /* 6481 * Enable the memcg OOM handling for faults triggered in user 6482 * space. Kernel faults are handled more gracefully. 6483 */ 6484 if (flags & FAULT_FLAG_USER) 6485 mem_cgroup_enter_user_fault(); 6486 6487 lru_gen_enter_fault(vma); 6488 6489 if (unlikely(is_vm_hugetlb_page(vma))) 6490 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6491 else 6492 ret = __handle_mm_fault(vma, address, flags); 6493 6494 /* 6495 * Warning: It is no longer safe to dereference vma-> after this point, 6496 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6497 * vma might be destroyed from underneath us. 6498 */ 6499 6500 lru_gen_exit_fault(); 6501 6502 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6503 if (is_droppable) 6504 ret &= ~VM_FAULT_OOM; 6505 6506 if (flags & FAULT_FLAG_USER) { 6507 mem_cgroup_exit_user_fault(); 6508 /* 6509 * The task may have entered a memcg OOM situation but 6510 * if the allocation error was handled gracefully (no 6511 * VM_FAULT_OOM), there is no need to kill anything. 6512 * Just clean up the OOM state peacefully. 6513 */ 6514 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6515 mem_cgroup_oom_synchronize(false); 6516 } 6517 out: 6518 mm_account_fault(mm, regs, address, flags, ret); 6519 6520 return ret; 6521 } 6522 EXPORT_SYMBOL_GPL(handle_mm_fault); 6523 6524 #ifndef __PAGETABLE_P4D_FOLDED 6525 /* 6526 * Allocate p4d page table. 6527 * We've already handled the fast-path in-line. 6528 */ 6529 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6530 { 6531 p4d_t *new = p4d_alloc_one(mm, address); 6532 if (!new) 6533 return -ENOMEM; 6534 6535 spin_lock(&mm->page_table_lock); 6536 if (pgd_present(*pgd)) { /* Another has populated it */ 6537 p4d_free(mm, new); 6538 } else { 6539 smp_wmb(); /* See comment in pmd_install() */ 6540 pgd_populate(mm, pgd, new); 6541 } 6542 spin_unlock(&mm->page_table_lock); 6543 return 0; 6544 } 6545 #endif /* __PAGETABLE_P4D_FOLDED */ 6546 6547 #ifndef __PAGETABLE_PUD_FOLDED 6548 /* 6549 * Allocate page upper directory. 6550 * We've already handled the fast-path in-line. 6551 */ 6552 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6553 { 6554 pud_t *new = pud_alloc_one(mm, address); 6555 if (!new) 6556 return -ENOMEM; 6557 6558 spin_lock(&mm->page_table_lock); 6559 if (!p4d_present(*p4d)) { 6560 mm_inc_nr_puds(mm); 6561 smp_wmb(); /* See comment in pmd_install() */ 6562 p4d_populate(mm, p4d, new); 6563 } else /* Another has populated it */ 6564 pud_free(mm, new); 6565 spin_unlock(&mm->page_table_lock); 6566 return 0; 6567 } 6568 #endif /* __PAGETABLE_PUD_FOLDED */ 6569 6570 #ifndef __PAGETABLE_PMD_FOLDED 6571 /* 6572 * Allocate page middle directory. 6573 * We've already handled the fast-path in-line. 6574 */ 6575 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6576 { 6577 spinlock_t *ptl; 6578 pmd_t *new = pmd_alloc_one(mm, address); 6579 if (!new) 6580 return -ENOMEM; 6581 6582 ptl = pud_lock(mm, pud); 6583 if (!pud_present(*pud)) { 6584 mm_inc_nr_pmds(mm); 6585 smp_wmb(); /* See comment in pmd_install() */ 6586 pud_populate(mm, pud, new); 6587 } else { /* Another has populated it */ 6588 pmd_free(mm, new); 6589 } 6590 spin_unlock(ptl); 6591 return 0; 6592 } 6593 #endif /* __PAGETABLE_PMD_FOLDED */ 6594 6595 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6596 spinlock_t *lock, pte_t *ptep, 6597 pgprot_t pgprot, unsigned long pfn_base, 6598 unsigned long addr_mask, bool writable, 6599 bool special) 6600 { 6601 args->lock = lock; 6602 args->ptep = ptep; 6603 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6604 args->addr_mask = addr_mask; 6605 args->pgprot = pgprot; 6606 args->writable = writable; 6607 args->special = special; 6608 } 6609 6610 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6611 { 6612 #ifdef CONFIG_LOCKDEP 6613 struct file *file = vma->vm_file; 6614 struct address_space *mapping = file ? file->f_mapping : NULL; 6615 6616 if (mapping) 6617 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6618 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6619 else 6620 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6621 #endif 6622 } 6623 6624 /** 6625 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6626 * @args: Pointer to struct @follow_pfnmap_args 6627 * 6628 * The caller needs to setup args->vma and args->address to point to the 6629 * virtual address as the target of such lookup. On a successful return, 6630 * the results will be put into other output fields. 6631 * 6632 * After the caller finished using the fields, the caller must invoke 6633 * another follow_pfnmap_end() to proper releases the locks and resources 6634 * of such look up request. 6635 * 6636 * During the start() and end() calls, the results in @args will be valid 6637 * as proper locks will be held. After the end() is called, all the fields 6638 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6639 * use of such information after end() may require proper synchronizations 6640 * by the caller with page table updates, otherwise it can create a 6641 * security bug. 6642 * 6643 * If the PTE maps a refcounted page, callers are responsible to protect 6644 * against invalidation with MMU notifiers; otherwise access to the PFN at 6645 * a later point in time can trigger use-after-free. 6646 * 6647 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6648 * should be taken for read, and the mmap semaphore cannot be released 6649 * before the end() is invoked. 6650 * 6651 * This function must not be used to modify PTE content. 6652 * 6653 * Return: zero on success, negative otherwise. 6654 */ 6655 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6656 { 6657 struct vm_area_struct *vma = args->vma; 6658 unsigned long address = args->address; 6659 struct mm_struct *mm = vma->vm_mm; 6660 spinlock_t *lock; 6661 pgd_t *pgdp; 6662 p4d_t *p4dp, p4d; 6663 pud_t *pudp, pud; 6664 pmd_t *pmdp, pmd; 6665 pte_t *ptep, pte; 6666 6667 pfnmap_lockdep_assert(vma); 6668 6669 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6670 goto out; 6671 6672 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6673 goto out; 6674 retry: 6675 pgdp = pgd_offset(mm, address); 6676 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6677 goto out; 6678 6679 p4dp = p4d_offset(pgdp, address); 6680 p4d = READ_ONCE(*p4dp); 6681 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6682 goto out; 6683 6684 pudp = pud_offset(p4dp, address); 6685 pud = READ_ONCE(*pudp); 6686 if (pud_none(pud)) 6687 goto out; 6688 if (pud_leaf(pud)) { 6689 lock = pud_lock(mm, pudp); 6690 if (!unlikely(pud_leaf(pud))) { 6691 spin_unlock(lock); 6692 goto retry; 6693 } 6694 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6695 pud_pfn(pud), PUD_MASK, pud_write(pud), 6696 pud_special(pud)); 6697 return 0; 6698 } 6699 6700 pmdp = pmd_offset(pudp, address); 6701 pmd = pmdp_get_lockless(pmdp); 6702 if (pmd_leaf(pmd)) { 6703 lock = pmd_lock(mm, pmdp); 6704 if (!unlikely(pmd_leaf(pmd))) { 6705 spin_unlock(lock); 6706 goto retry; 6707 } 6708 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6709 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6710 pmd_special(pmd)); 6711 return 0; 6712 } 6713 6714 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6715 if (!ptep) 6716 goto out; 6717 pte = ptep_get(ptep); 6718 if (!pte_present(pte)) 6719 goto unlock; 6720 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6721 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6722 pte_special(pte)); 6723 return 0; 6724 unlock: 6725 pte_unmap_unlock(ptep, lock); 6726 out: 6727 return -EINVAL; 6728 } 6729 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6730 6731 /** 6732 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6733 * @args: Pointer to struct @follow_pfnmap_args 6734 * 6735 * Must be used in pair of follow_pfnmap_start(). See the start() function 6736 * above for more information. 6737 */ 6738 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6739 { 6740 if (args->lock) 6741 spin_unlock(args->lock); 6742 if (args->ptep) 6743 pte_unmap(args->ptep); 6744 } 6745 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6746 6747 #ifdef CONFIG_HAVE_IOREMAP_PROT 6748 /** 6749 * generic_access_phys - generic implementation for iomem mmap access 6750 * @vma: the vma to access 6751 * @addr: userspace address, not relative offset within @vma 6752 * @buf: buffer to read/write 6753 * @len: length of transfer 6754 * @write: set to FOLL_WRITE when writing, otherwise reading 6755 * 6756 * This is a generic implementation for &vm_operations_struct.access for an 6757 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6758 * not page based. 6759 */ 6760 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6761 void *buf, int len, int write) 6762 { 6763 resource_size_t phys_addr; 6764 pgprot_t prot = __pgprot(0); 6765 void __iomem *maddr; 6766 int offset = offset_in_page(addr); 6767 int ret = -EINVAL; 6768 bool writable; 6769 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6770 6771 retry: 6772 if (follow_pfnmap_start(&args)) 6773 return -EINVAL; 6774 prot = args.pgprot; 6775 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6776 writable = args.writable; 6777 follow_pfnmap_end(&args); 6778 6779 if ((write & FOLL_WRITE) && !writable) 6780 return -EINVAL; 6781 6782 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6783 if (!maddr) 6784 return -ENOMEM; 6785 6786 if (follow_pfnmap_start(&args)) 6787 goto out_unmap; 6788 6789 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6790 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6791 (writable != args.writable)) { 6792 follow_pfnmap_end(&args); 6793 iounmap(maddr); 6794 goto retry; 6795 } 6796 6797 if (write) 6798 memcpy_toio(maddr + offset, buf, len); 6799 else 6800 memcpy_fromio(buf, maddr + offset, len); 6801 ret = len; 6802 follow_pfnmap_end(&args); 6803 out_unmap: 6804 iounmap(maddr); 6805 6806 return ret; 6807 } 6808 EXPORT_SYMBOL_GPL(generic_access_phys); 6809 #endif 6810 6811 /* 6812 * Access another process' address space as given in mm. 6813 */ 6814 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6815 void *buf, int len, unsigned int gup_flags) 6816 { 6817 void *old_buf = buf; 6818 int write = gup_flags & FOLL_WRITE; 6819 6820 if (mmap_read_lock_killable(mm)) 6821 return 0; 6822 6823 /* Untag the address before looking up the VMA */ 6824 addr = untagged_addr_remote(mm, addr); 6825 6826 /* Avoid triggering the temporary warning in __get_user_pages */ 6827 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6828 return 0; 6829 6830 /* ignore errors, just check how much was successfully transferred */ 6831 while (len) { 6832 int bytes, offset; 6833 void *maddr; 6834 struct folio *folio; 6835 struct vm_area_struct *vma = NULL; 6836 struct page *page = get_user_page_vma_remote(mm, addr, 6837 gup_flags, &vma); 6838 6839 if (IS_ERR(page)) { 6840 /* We might need to expand the stack to access it */ 6841 vma = vma_lookup(mm, addr); 6842 if (!vma) { 6843 vma = expand_stack(mm, addr); 6844 6845 /* mmap_lock was dropped on failure */ 6846 if (!vma) 6847 return buf - old_buf; 6848 6849 /* Try again if stack expansion worked */ 6850 continue; 6851 } 6852 6853 /* 6854 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6855 * we can access using slightly different code. 6856 */ 6857 bytes = 0; 6858 #ifdef CONFIG_HAVE_IOREMAP_PROT 6859 if (vma->vm_ops && vma->vm_ops->access) 6860 bytes = vma->vm_ops->access(vma, addr, buf, 6861 len, write); 6862 #endif 6863 if (bytes <= 0) 6864 break; 6865 } else { 6866 folio = page_folio(page); 6867 bytes = len; 6868 offset = addr & (PAGE_SIZE-1); 6869 if (bytes > PAGE_SIZE-offset) 6870 bytes = PAGE_SIZE-offset; 6871 6872 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6873 if (write) { 6874 copy_to_user_page(vma, page, addr, 6875 maddr + offset, buf, bytes); 6876 folio_mark_dirty_lock(folio); 6877 } else { 6878 copy_from_user_page(vma, page, addr, 6879 buf, maddr + offset, bytes); 6880 } 6881 folio_release_kmap(folio, maddr); 6882 } 6883 len -= bytes; 6884 buf += bytes; 6885 addr += bytes; 6886 } 6887 mmap_read_unlock(mm); 6888 6889 return buf - old_buf; 6890 } 6891 6892 /** 6893 * access_remote_vm - access another process' address space 6894 * @mm: the mm_struct of the target address space 6895 * @addr: start address to access 6896 * @buf: source or destination buffer 6897 * @len: number of bytes to transfer 6898 * @gup_flags: flags modifying lookup behaviour 6899 * 6900 * The caller must hold a reference on @mm. 6901 * 6902 * Return: number of bytes copied from source to destination. 6903 */ 6904 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6905 void *buf, int len, unsigned int gup_flags) 6906 { 6907 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6908 } 6909 6910 /* 6911 * Access another process' address space. 6912 * Source/target buffer must be kernel space, 6913 * Do not walk the page table directly, use get_user_pages 6914 */ 6915 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6916 void *buf, int len, unsigned int gup_flags) 6917 { 6918 struct mm_struct *mm; 6919 int ret; 6920 6921 mm = get_task_mm(tsk); 6922 if (!mm) 6923 return 0; 6924 6925 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6926 6927 mmput(mm); 6928 6929 return ret; 6930 } 6931 EXPORT_SYMBOL_GPL(access_process_vm); 6932 6933 #ifdef CONFIG_BPF_SYSCALL 6934 /* 6935 * Copy a string from another process's address space as given in mm. 6936 * If there is any error return -EFAULT. 6937 */ 6938 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6939 void *buf, int len, unsigned int gup_flags) 6940 { 6941 void *old_buf = buf; 6942 int err = 0; 6943 6944 *(char *)buf = '\0'; 6945 6946 if (mmap_read_lock_killable(mm)) 6947 return -EFAULT; 6948 6949 addr = untagged_addr_remote(mm, addr); 6950 6951 /* Avoid triggering the temporary warning in __get_user_pages */ 6952 if (!vma_lookup(mm, addr)) { 6953 err = -EFAULT; 6954 goto out; 6955 } 6956 6957 while (len) { 6958 int bytes, offset, retval; 6959 void *maddr; 6960 struct folio *folio; 6961 struct page *page; 6962 struct vm_area_struct *vma = NULL; 6963 6964 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6965 if (IS_ERR(page)) { 6966 /* 6967 * Treat as a total failure for now until we decide how 6968 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6969 * stack expansion. 6970 */ 6971 *(char *)buf = '\0'; 6972 err = -EFAULT; 6973 goto out; 6974 } 6975 6976 folio = page_folio(page); 6977 bytes = len; 6978 offset = addr & (PAGE_SIZE - 1); 6979 if (bytes > PAGE_SIZE - offset) 6980 bytes = PAGE_SIZE - offset; 6981 6982 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6983 retval = strscpy(buf, maddr + offset, bytes); 6984 if (retval >= 0) { 6985 /* Found the end of the string */ 6986 buf += retval; 6987 folio_release_kmap(folio, maddr); 6988 break; 6989 } 6990 6991 buf += bytes - 1; 6992 /* 6993 * Because strscpy always NUL terminates we need to 6994 * copy the last byte in the page if we are going to 6995 * load more pages 6996 */ 6997 if (bytes != len) { 6998 addr += bytes - 1; 6999 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 7000 buf += 1; 7001 addr += 1; 7002 } 7003 len -= bytes; 7004 7005 folio_release_kmap(folio, maddr); 7006 } 7007 7008 out: 7009 mmap_read_unlock(mm); 7010 if (err) 7011 return err; 7012 return buf - old_buf; 7013 } 7014 7015 /** 7016 * copy_remote_vm_str - copy a string from another process's address space. 7017 * @tsk: the task of the target address space 7018 * @addr: start address to read from 7019 * @buf: destination buffer 7020 * @len: number of bytes to copy 7021 * @gup_flags: flags modifying lookup behaviour 7022 * 7023 * The caller must hold a reference on @mm. 7024 * 7025 * Return: number of bytes copied from @addr (source) to @buf (destination); 7026 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7027 * buffer. On any error, return -EFAULT. 7028 */ 7029 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7030 void *buf, int len, unsigned int gup_flags) 7031 { 7032 struct mm_struct *mm; 7033 int ret; 7034 7035 if (unlikely(len == 0)) 7036 return 0; 7037 7038 mm = get_task_mm(tsk); 7039 if (!mm) { 7040 *(char *)buf = '\0'; 7041 return -EFAULT; 7042 } 7043 7044 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7045 7046 mmput(mm); 7047 7048 return ret; 7049 } 7050 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7051 #endif /* CONFIG_BPF_SYSCALL */ 7052 7053 /* 7054 * Print the name of a VMA. 7055 */ 7056 void print_vma_addr(char *prefix, unsigned long ip) 7057 { 7058 struct mm_struct *mm = current->mm; 7059 struct vm_area_struct *vma; 7060 7061 /* 7062 * we might be running from an atomic context so we cannot sleep 7063 */ 7064 if (!mmap_read_trylock(mm)) 7065 return; 7066 7067 vma = vma_lookup(mm, ip); 7068 if (vma && vma->vm_file) { 7069 struct file *f = vma->vm_file; 7070 ip -= vma->vm_start; 7071 ip += vma->vm_pgoff << PAGE_SHIFT; 7072 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7073 vma->vm_start, 7074 vma->vm_end - vma->vm_start); 7075 } 7076 mmap_read_unlock(mm); 7077 } 7078 7079 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7080 void __might_fault(const char *file, int line) 7081 { 7082 if (pagefault_disabled()) 7083 return; 7084 __might_sleep(file, line); 7085 if (current->mm) 7086 might_lock_read(¤t->mm->mmap_lock); 7087 } 7088 EXPORT_SYMBOL(__might_fault); 7089 #endif 7090 7091 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7092 /* 7093 * Process all subpages of the specified huge page with the specified 7094 * operation. The target subpage will be processed last to keep its 7095 * cache lines hot. 7096 */ 7097 static inline int process_huge_page( 7098 unsigned long addr_hint, unsigned int nr_pages, 7099 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7100 void *arg) 7101 { 7102 int i, n, base, l, ret; 7103 unsigned long addr = addr_hint & 7104 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7105 7106 /* Process target subpage last to keep its cache lines hot */ 7107 might_sleep(); 7108 n = (addr_hint - addr) / PAGE_SIZE; 7109 if (2 * n <= nr_pages) { 7110 /* If target subpage in first half of huge page */ 7111 base = 0; 7112 l = n; 7113 /* Process subpages at the end of huge page */ 7114 for (i = nr_pages - 1; i >= 2 * n; i--) { 7115 cond_resched(); 7116 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7117 if (ret) 7118 return ret; 7119 } 7120 } else { 7121 /* If target subpage in second half of huge page */ 7122 base = nr_pages - 2 * (nr_pages - n); 7123 l = nr_pages - n; 7124 /* Process subpages at the begin of huge page */ 7125 for (i = 0; i < base; i++) { 7126 cond_resched(); 7127 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7128 if (ret) 7129 return ret; 7130 } 7131 } 7132 /* 7133 * Process remaining subpages in left-right-left-right pattern 7134 * towards the target subpage 7135 */ 7136 for (i = 0; i < l; i++) { 7137 int left_idx = base + i; 7138 int right_idx = base + 2 * l - 1 - i; 7139 7140 cond_resched(); 7141 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7142 if (ret) 7143 return ret; 7144 cond_resched(); 7145 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7146 if (ret) 7147 return ret; 7148 } 7149 return 0; 7150 } 7151 7152 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7153 unsigned int nr_pages) 7154 { 7155 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7156 int i; 7157 7158 might_sleep(); 7159 for (i = 0; i < nr_pages; i++) { 7160 cond_resched(); 7161 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7162 } 7163 } 7164 7165 static int clear_subpage(unsigned long addr, int idx, void *arg) 7166 { 7167 struct folio *folio = arg; 7168 7169 clear_user_highpage(folio_page(folio, idx), addr); 7170 return 0; 7171 } 7172 7173 /** 7174 * folio_zero_user - Zero a folio which will be mapped to userspace. 7175 * @folio: The folio to zero. 7176 * @addr_hint: The address will be accessed or the base address if uncelar. 7177 */ 7178 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7179 { 7180 unsigned int nr_pages = folio_nr_pages(folio); 7181 7182 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7183 clear_gigantic_page(folio, addr_hint, nr_pages); 7184 else 7185 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7186 } 7187 7188 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7189 unsigned long addr_hint, 7190 struct vm_area_struct *vma, 7191 unsigned int nr_pages) 7192 { 7193 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7194 struct page *dst_page; 7195 struct page *src_page; 7196 int i; 7197 7198 for (i = 0; i < nr_pages; i++) { 7199 dst_page = folio_page(dst, i); 7200 src_page = folio_page(src, i); 7201 7202 cond_resched(); 7203 if (copy_mc_user_highpage(dst_page, src_page, 7204 addr + i*PAGE_SIZE, vma)) 7205 return -EHWPOISON; 7206 } 7207 return 0; 7208 } 7209 7210 struct copy_subpage_arg { 7211 struct folio *dst; 7212 struct folio *src; 7213 struct vm_area_struct *vma; 7214 }; 7215 7216 static int copy_subpage(unsigned long addr, int idx, void *arg) 7217 { 7218 struct copy_subpage_arg *copy_arg = arg; 7219 struct page *dst = folio_page(copy_arg->dst, idx); 7220 struct page *src = folio_page(copy_arg->src, idx); 7221 7222 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7223 return -EHWPOISON; 7224 return 0; 7225 } 7226 7227 int copy_user_large_folio(struct folio *dst, struct folio *src, 7228 unsigned long addr_hint, struct vm_area_struct *vma) 7229 { 7230 unsigned int nr_pages = folio_nr_pages(dst); 7231 struct copy_subpage_arg arg = { 7232 .dst = dst, 7233 .src = src, 7234 .vma = vma, 7235 }; 7236 7237 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7238 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7239 7240 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7241 } 7242 7243 long copy_folio_from_user(struct folio *dst_folio, 7244 const void __user *usr_src, 7245 bool allow_pagefault) 7246 { 7247 void *kaddr; 7248 unsigned long i, rc = 0; 7249 unsigned int nr_pages = folio_nr_pages(dst_folio); 7250 unsigned long ret_val = nr_pages * PAGE_SIZE; 7251 struct page *subpage; 7252 7253 for (i = 0; i < nr_pages; i++) { 7254 subpage = folio_page(dst_folio, i); 7255 kaddr = kmap_local_page(subpage); 7256 if (!allow_pagefault) 7257 pagefault_disable(); 7258 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7259 if (!allow_pagefault) 7260 pagefault_enable(); 7261 kunmap_local(kaddr); 7262 7263 ret_val -= (PAGE_SIZE - rc); 7264 if (rc) 7265 break; 7266 7267 flush_dcache_page(subpage); 7268 7269 cond_resched(); 7270 } 7271 return ret_val; 7272 } 7273 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7274 7275 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7276 7277 static struct kmem_cache *page_ptl_cachep; 7278 7279 void __init ptlock_cache_init(void) 7280 { 7281 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7282 SLAB_PANIC, NULL); 7283 } 7284 7285 bool ptlock_alloc(struct ptdesc *ptdesc) 7286 { 7287 spinlock_t *ptl; 7288 7289 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7290 if (!ptl) 7291 return false; 7292 ptdesc->ptl = ptl; 7293 return true; 7294 } 7295 7296 void ptlock_free(struct ptdesc *ptdesc) 7297 { 7298 if (ptdesc->ptl) 7299 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7300 } 7301 #endif 7302 7303 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7304 { 7305 if (is_vm_hugetlb_page(vma)) 7306 hugetlb_vma_lock_read(vma); 7307 } 7308 7309 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7310 { 7311 if (is_vm_hugetlb_page(vma)) 7312 hugetlb_vma_unlock_read(vma); 7313 } 7314