1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 #include <linux/perf_event.h> 74 #include <linux/ptrace.h> 75 #include <linux/vmalloc.h> 76 77 #include <trace/events/kmem.h> 78 79 #include <asm/io.h> 80 #include <asm/mmu_context.h> 81 #include <asm/pgalloc.h> 82 #include <linux/uaccess.h> 83 #include <asm/tlb.h> 84 #include <asm/tlbflush.h> 85 86 #include "pgalloc-track.h" 87 #include "internal.h" 88 89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 91 #endif 92 93 #ifndef CONFIG_NUMA 94 unsigned long max_mapnr; 95 EXPORT_SYMBOL(max_mapnr); 96 97 struct page *mem_map; 98 EXPORT_SYMBOL(mem_map); 99 #endif 100 101 /* 102 * A number of key systems in x86 including ioremap() rely on the assumption 103 * that high_memory defines the upper bound on direct map memory, then end 104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 106 * and ZONE_HIGHMEM. 107 */ 108 void *high_memory; 109 EXPORT_SYMBOL(high_memory); 110 111 /* 112 * Randomize the address space (stacks, mmaps, brk, etc.). 113 * 114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 115 * as ancient (libc5 based) binaries can segfault. ) 116 */ 117 int randomize_va_space __read_mostly = 118 #ifdef CONFIG_COMPAT_BRK 119 1; 120 #else 121 2; 122 #endif 123 124 #ifndef arch_faults_on_old_pte 125 static inline bool arch_faults_on_old_pte(void) 126 { 127 /* 128 * Those arches which don't have hw access flag feature need to 129 * implement their own helper. By default, "true" means pagefault 130 * will be hit on old pte. 131 */ 132 return true; 133 } 134 #endif 135 136 #ifndef arch_wants_old_prefaulted_pte 137 static inline bool arch_wants_old_prefaulted_pte(void) 138 { 139 /* 140 * Transitioning a PTE from 'old' to 'young' can be expensive on 141 * some architectures, even if it's performed in hardware. By 142 * default, "false" means prefaulted entries will be 'young'. 143 */ 144 return false; 145 } 146 #endif 147 148 static int __init disable_randmaps(char *s) 149 { 150 randomize_va_space = 0; 151 return 1; 152 } 153 __setup("norandmaps", disable_randmaps); 154 155 unsigned long zero_pfn __read_mostly; 156 EXPORT_SYMBOL(zero_pfn); 157 158 unsigned long highest_memmap_pfn __read_mostly; 159 160 /* 161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 162 */ 163 static int __init init_zero_pfn(void) 164 { 165 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 166 return 0; 167 } 168 early_initcall(init_zero_pfn); 169 170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 171 { 172 trace_rss_stat(mm, member, count); 173 } 174 175 #if defined(SPLIT_RSS_COUNTING) 176 177 void sync_mm_rss(struct mm_struct *mm) 178 { 179 int i; 180 181 for (i = 0; i < NR_MM_COUNTERS; i++) { 182 if (current->rss_stat.count[i]) { 183 add_mm_counter(mm, i, current->rss_stat.count[i]); 184 current->rss_stat.count[i] = 0; 185 } 186 } 187 current->rss_stat.events = 0; 188 } 189 190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 191 { 192 struct task_struct *task = current; 193 194 if (likely(task->mm == mm)) 195 task->rss_stat.count[member] += val; 196 else 197 add_mm_counter(mm, member, val); 198 } 199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 201 202 /* sync counter once per 64 page faults */ 203 #define TASK_RSS_EVENTS_THRESH (64) 204 static void check_sync_rss_stat(struct task_struct *task) 205 { 206 if (unlikely(task != current)) 207 return; 208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 209 sync_mm_rss(task->mm); 210 } 211 #else /* SPLIT_RSS_COUNTING */ 212 213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 215 216 static void check_sync_rss_stat(struct task_struct *task) 217 { 218 } 219 220 #endif /* SPLIT_RSS_COUNTING */ 221 222 /* 223 * Note: this doesn't free the actual pages themselves. That 224 * has been handled earlier when unmapping all the memory regions. 225 */ 226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 227 unsigned long addr) 228 { 229 pgtable_t token = pmd_pgtable(*pmd); 230 pmd_clear(pmd); 231 pte_free_tlb(tlb, token, addr); 232 mm_dec_nr_ptes(tlb->mm); 233 } 234 235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 236 unsigned long addr, unsigned long end, 237 unsigned long floor, unsigned long ceiling) 238 { 239 pmd_t *pmd; 240 unsigned long next; 241 unsigned long start; 242 243 start = addr; 244 pmd = pmd_offset(pud, addr); 245 do { 246 next = pmd_addr_end(addr, end); 247 if (pmd_none_or_clear_bad(pmd)) 248 continue; 249 free_pte_range(tlb, pmd, addr); 250 } while (pmd++, addr = next, addr != end); 251 252 start &= PUD_MASK; 253 if (start < floor) 254 return; 255 if (ceiling) { 256 ceiling &= PUD_MASK; 257 if (!ceiling) 258 return; 259 } 260 if (end - 1 > ceiling - 1) 261 return; 262 263 pmd = pmd_offset(pud, start); 264 pud_clear(pud); 265 pmd_free_tlb(tlb, pmd, start); 266 mm_dec_nr_pmds(tlb->mm); 267 } 268 269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 270 unsigned long addr, unsigned long end, 271 unsigned long floor, unsigned long ceiling) 272 { 273 pud_t *pud; 274 unsigned long next; 275 unsigned long start; 276 277 start = addr; 278 pud = pud_offset(p4d, addr); 279 do { 280 next = pud_addr_end(addr, end); 281 if (pud_none_or_clear_bad(pud)) 282 continue; 283 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 284 } while (pud++, addr = next, addr != end); 285 286 start &= P4D_MASK; 287 if (start < floor) 288 return; 289 if (ceiling) { 290 ceiling &= P4D_MASK; 291 if (!ceiling) 292 return; 293 } 294 if (end - 1 > ceiling - 1) 295 return; 296 297 pud = pud_offset(p4d, start); 298 p4d_clear(p4d); 299 pud_free_tlb(tlb, pud, start); 300 mm_dec_nr_puds(tlb->mm); 301 } 302 303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 304 unsigned long addr, unsigned long end, 305 unsigned long floor, unsigned long ceiling) 306 { 307 p4d_t *p4d; 308 unsigned long next; 309 unsigned long start; 310 311 start = addr; 312 p4d = p4d_offset(pgd, addr); 313 do { 314 next = p4d_addr_end(addr, end); 315 if (p4d_none_or_clear_bad(p4d)) 316 continue; 317 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 318 } while (p4d++, addr = next, addr != end); 319 320 start &= PGDIR_MASK; 321 if (start < floor) 322 return; 323 if (ceiling) { 324 ceiling &= PGDIR_MASK; 325 if (!ceiling) 326 return; 327 } 328 if (end - 1 > ceiling - 1) 329 return; 330 331 p4d = p4d_offset(pgd, start); 332 pgd_clear(pgd); 333 p4d_free_tlb(tlb, p4d, start); 334 } 335 336 /* 337 * This function frees user-level page tables of a process. 338 */ 339 void free_pgd_range(struct mmu_gather *tlb, 340 unsigned long addr, unsigned long end, 341 unsigned long floor, unsigned long ceiling) 342 { 343 pgd_t *pgd; 344 unsigned long next; 345 346 /* 347 * The next few lines have given us lots of grief... 348 * 349 * Why are we testing PMD* at this top level? Because often 350 * there will be no work to do at all, and we'd prefer not to 351 * go all the way down to the bottom just to discover that. 352 * 353 * Why all these "- 1"s? Because 0 represents both the bottom 354 * of the address space and the top of it (using -1 for the 355 * top wouldn't help much: the masks would do the wrong thing). 356 * The rule is that addr 0 and floor 0 refer to the bottom of 357 * the address space, but end 0 and ceiling 0 refer to the top 358 * Comparisons need to use "end - 1" and "ceiling - 1" (though 359 * that end 0 case should be mythical). 360 * 361 * Wherever addr is brought up or ceiling brought down, we must 362 * be careful to reject "the opposite 0" before it confuses the 363 * subsequent tests. But what about where end is brought down 364 * by PMD_SIZE below? no, end can't go down to 0 there. 365 * 366 * Whereas we round start (addr) and ceiling down, by different 367 * masks at different levels, in order to test whether a table 368 * now has no other vmas using it, so can be freed, we don't 369 * bother to round floor or end up - the tests don't need that. 370 */ 371 372 addr &= PMD_MASK; 373 if (addr < floor) { 374 addr += PMD_SIZE; 375 if (!addr) 376 return; 377 } 378 if (ceiling) { 379 ceiling &= PMD_MASK; 380 if (!ceiling) 381 return; 382 } 383 if (end - 1 > ceiling - 1) 384 end -= PMD_SIZE; 385 if (addr > end - 1) 386 return; 387 /* 388 * We add page table cache pages with PAGE_SIZE, 389 * (see pte_free_tlb()), flush the tlb if we need 390 */ 391 tlb_change_page_size(tlb, PAGE_SIZE); 392 pgd = pgd_offset(tlb->mm, addr); 393 do { 394 next = pgd_addr_end(addr, end); 395 if (pgd_none_or_clear_bad(pgd)) 396 continue; 397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 398 } while (pgd++, addr = next, addr != end); 399 } 400 401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 402 unsigned long floor, unsigned long ceiling) 403 { 404 while (vma) { 405 struct vm_area_struct *next = vma->vm_next; 406 unsigned long addr = vma->vm_start; 407 408 /* 409 * Hide vma from rmap and truncate_pagecache before freeing 410 * pgtables 411 */ 412 unlink_anon_vmas(vma); 413 unlink_file_vma(vma); 414 415 if (is_vm_hugetlb_page(vma)) { 416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 417 floor, next ? next->vm_start : ceiling); 418 } else { 419 /* 420 * Optimization: gather nearby vmas into one call down 421 */ 422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 423 && !is_vm_hugetlb_page(next)) { 424 vma = next; 425 next = vma->vm_next; 426 unlink_anon_vmas(vma); 427 unlink_file_vma(vma); 428 } 429 free_pgd_range(tlb, addr, vma->vm_end, 430 floor, next ? next->vm_start : ceiling); 431 } 432 vma = next; 433 } 434 } 435 436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 437 { 438 spinlock_t *ptl; 439 pgtable_t new = pte_alloc_one(mm); 440 if (!new) 441 return -ENOMEM; 442 443 /* 444 * Ensure all pte setup (eg. pte page lock and page clearing) are 445 * visible before the pte is made visible to other CPUs by being 446 * put into page tables. 447 * 448 * The other side of the story is the pointer chasing in the page 449 * table walking code (when walking the page table without locking; 450 * ie. most of the time). Fortunately, these data accesses consist 451 * of a chain of data-dependent loads, meaning most CPUs (alpha 452 * being the notable exception) will already guarantee loads are 453 * seen in-order. See the alpha page table accessors for the 454 * smp_rmb() barriers in page table walking code. 455 */ 456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 457 458 ptl = pmd_lock(mm, pmd); 459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 460 mm_inc_nr_ptes(mm); 461 pmd_populate(mm, pmd, new); 462 new = NULL; 463 } 464 spin_unlock(ptl); 465 if (new) 466 pte_free(mm, new); 467 return 0; 468 } 469 470 int __pte_alloc_kernel(pmd_t *pmd) 471 { 472 pte_t *new = pte_alloc_one_kernel(&init_mm); 473 if (!new) 474 return -ENOMEM; 475 476 smp_wmb(); /* See comment in __pte_alloc */ 477 478 spin_lock(&init_mm.page_table_lock); 479 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 480 pmd_populate_kernel(&init_mm, pmd, new); 481 new = NULL; 482 } 483 spin_unlock(&init_mm.page_table_lock); 484 if (new) 485 pte_free_kernel(&init_mm, new); 486 return 0; 487 } 488 489 static inline void init_rss_vec(int *rss) 490 { 491 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 492 } 493 494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 495 { 496 int i; 497 498 if (current->mm == mm) 499 sync_mm_rss(mm); 500 for (i = 0; i < NR_MM_COUNTERS; i++) 501 if (rss[i]) 502 add_mm_counter(mm, i, rss[i]); 503 } 504 505 /* 506 * This function is called to print an error when a bad pte 507 * is found. For example, we might have a PFN-mapped pte in 508 * a region that doesn't allow it. 509 * 510 * The calling function must still handle the error. 511 */ 512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 513 pte_t pte, struct page *page) 514 { 515 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 516 p4d_t *p4d = p4d_offset(pgd, addr); 517 pud_t *pud = pud_offset(p4d, addr); 518 pmd_t *pmd = pmd_offset(pud, addr); 519 struct address_space *mapping; 520 pgoff_t index; 521 static unsigned long resume; 522 static unsigned long nr_shown; 523 static unsigned long nr_unshown; 524 525 /* 526 * Allow a burst of 60 reports, then keep quiet for that minute; 527 * or allow a steady drip of one report per second. 528 */ 529 if (nr_shown == 60) { 530 if (time_before(jiffies, resume)) { 531 nr_unshown++; 532 return; 533 } 534 if (nr_unshown) { 535 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 536 nr_unshown); 537 nr_unshown = 0; 538 } 539 nr_shown = 0; 540 } 541 if (nr_shown++ == 0) 542 resume = jiffies + 60 * HZ; 543 544 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 545 index = linear_page_index(vma, addr); 546 547 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 548 current->comm, 549 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 550 if (page) 551 dump_page(page, "bad pte"); 552 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 553 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 554 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 555 vma->vm_file, 556 vma->vm_ops ? vma->vm_ops->fault : NULL, 557 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 558 mapping ? mapping->a_ops->readpage : NULL); 559 dump_stack(); 560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 561 } 562 563 /* 564 * vm_normal_page -- This function gets the "struct page" associated with a pte. 565 * 566 * "Special" mappings do not wish to be associated with a "struct page" (either 567 * it doesn't exist, or it exists but they don't want to touch it). In this 568 * case, NULL is returned here. "Normal" mappings do have a struct page. 569 * 570 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 571 * pte bit, in which case this function is trivial. Secondly, an architecture 572 * may not have a spare pte bit, which requires a more complicated scheme, 573 * described below. 574 * 575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 576 * special mapping (even if there are underlying and valid "struct pages"). 577 * COWed pages of a VM_PFNMAP are always normal. 578 * 579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 582 * mapping will always honor the rule 583 * 584 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 585 * 586 * And for normal mappings this is false. 587 * 588 * This restricts such mappings to be a linear translation from virtual address 589 * to pfn. To get around this restriction, we allow arbitrary mappings so long 590 * as the vma is not a COW mapping; in that case, we know that all ptes are 591 * special (because none can have been COWed). 592 * 593 * 594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 595 * 596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 597 * page" backing, however the difference is that _all_ pages with a struct 598 * page (that is, those where pfn_valid is true) are refcounted and considered 599 * normal pages by the VM. The disadvantage is that pages are refcounted 600 * (which can be slower and simply not an option for some PFNMAP users). The 601 * advantage is that we don't have to follow the strict linearity rule of 602 * PFNMAP mappings in order to support COWable mappings. 603 * 604 */ 605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 606 pte_t pte) 607 { 608 unsigned long pfn = pte_pfn(pte); 609 610 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 611 if (likely(!pte_special(pte))) 612 goto check_pfn; 613 if (vma->vm_ops && vma->vm_ops->find_special_page) 614 return vma->vm_ops->find_special_page(vma, addr); 615 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 616 return NULL; 617 if (is_zero_pfn(pfn)) 618 return NULL; 619 if (pte_devmap(pte)) 620 return NULL; 621 622 print_bad_pte(vma, addr, pte, NULL); 623 return NULL; 624 } 625 626 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 627 628 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 629 if (vma->vm_flags & VM_MIXEDMAP) { 630 if (!pfn_valid(pfn)) 631 return NULL; 632 goto out; 633 } else { 634 unsigned long off; 635 off = (addr - vma->vm_start) >> PAGE_SHIFT; 636 if (pfn == vma->vm_pgoff + off) 637 return NULL; 638 if (!is_cow_mapping(vma->vm_flags)) 639 return NULL; 640 } 641 } 642 643 if (is_zero_pfn(pfn)) 644 return NULL; 645 646 check_pfn: 647 if (unlikely(pfn > highest_memmap_pfn)) { 648 print_bad_pte(vma, addr, pte, NULL); 649 return NULL; 650 } 651 652 /* 653 * NOTE! We still have PageReserved() pages in the page tables. 654 * eg. VDSO mappings can cause them to exist. 655 */ 656 out: 657 return pfn_to_page(pfn); 658 } 659 660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 662 pmd_t pmd) 663 { 664 unsigned long pfn = pmd_pfn(pmd); 665 666 /* 667 * There is no pmd_special() but there may be special pmds, e.g. 668 * in a direct-access (dax) mapping, so let's just replicate the 669 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 670 */ 671 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 672 if (vma->vm_flags & VM_MIXEDMAP) { 673 if (!pfn_valid(pfn)) 674 return NULL; 675 goto out; 676 } else { 677 unsigned long off; 678 off = (addr - vma->vm_start) >> PAGE_SHIFT; 679 if (pfn == vma->vm_pgoff + off) 680 return NULL; 681 if (!is_cow_mapping(vma->vm_flags)) 682 return NULL; 683 } 684 } 685 686 if (pmd_devmap(pmd)) 687 return NULL; 688 if (is_huge_zero_pmd(pmd)) 689 return NULL; 690 if (unlikely(pfn > highest_memmap_pfn)) 691 return NULL; 692 693 /* 694 * NOTE! We still have PageReserved() pages in the page tables. 695 * eg. VDSO mappings can cause them to exist. 696 */ 697 out: 698 return pfn_to_page(pfn); 699 } 700 #endif 701 702 static void restore_exclusive_pte(struct vm_area_struct *vma, 703 struct page *page, unsigned long address, 704 pte_t *ptep) 705 { 706 pte_t pte; 707 swp_entry_t entry; 708 709 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 710 if (pte_swp_soft_dirty(*ptep)) 711 pte = pte_mksoft_dirty(pte); 712 713 entry = pte_to_swp_entry(*ptep); 714 if (pte_swp_uffd_wp(*ptep)) 715 pte = pte_mkuffd_wp(pte); 716 else if (is_writable_device_exclusive_entry(entry)) 717 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 718 719 set_pte_at(vma->vm_mm, address, ptep, pte); 720 721 /* 722 * No need to take a page reference as one was already 723 * created when the swap entry was made. 724 */ 725 if (PageAnon(page)) 726 page_add_anon_rmap(page, vma, address, false); 727 else 728 /* 729 * Currently device exclusive access only supports anonymous 730 * memory so the entry shouldn't point to a filebacked page. 731 */ 732 WARN_ON_ONCE(!PageAnon(page)); 733 734 if (vma->vm_flags & VM_LOCKED) 735 mlock_vma_page(page); 736 737 /* 738 * No need to invalidate - it was non-present before. However 739 * secondary CPUs may have mappings that need invalidating. 740 */ 741 update_mmu_cache(vma, address, ptep); 742 } 743 744 /* 745 * Tries to restore an exclusive pte if the page lock can be acquired without 746 * sleeping. 747 */ 748 static int 749 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 750 unsigned long addr) 751 { 752 swp_entry_t entry = pte_to_swp_entry(*src_pte); 753 struct page *page = pfn_swap_entry_to_page(entry); 754 755 if (trylock_page(page)) { 756 restore_exclusive_pte(vma, page, addr, src_pte); 757 unlock_page(page); 758 return 0; 759 } 760 761 return -EBUSY; 762 } 763 764 /* 765 * copy one vm_area from one task to the other. Assumes the page tables 766 * already present in the new task to be cleared in the whole range 767 * covered by this vma. 768 */ 769 770 static unsigned long 771 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 772 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 773 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 774 { 775 unsigned long vm_flags = dst_vma->vm_flags; 776 pte_t pte = *src_pte; 777 struct page *page; 778 swp_entry_t entry = pte_to_swp_entry(pte); 779 780 if (likely(!non_swap_entry(entry))) { 781 if (swap_duplicate(entry) < 0) 782 return -EIO; 783 784 /* make sure dst_mm is on swapoff's mmlist. */ 785 if (unlikely(list_empty(&dst_mm->mmlist))) { 786 spin_lock(&mmlist_lock); 787 if (list_empty(&dst_mm->mmlist)) 788 list_add(&dst_mm->mmlist, 789 &src_mm->mmlist); 790 spin_unlock(&mmlist_lock); 791 } 792 rss[MM_SWAPENTS]++; 793 } else if (is_migration_entry(entry)) { 794 page = pfn_swap_entry_to_page(entry); 795 796 rss[mm_counter(page)]++; 797 798 if (is_writable_migration_entry(entry) && 799 is_cow_mapping(vm_flags)) { 800 /* 801 * COW mappings require pages in both 802 * parent and child to be set to read. 803 */ 804 entry = make_readable_migration_entry( 805 swp_offset(entry)); 806 pte = swp_entry_to_pte(entry); 807 if (pte_swp_soft_dirty(*src_pte)) 808 pte = pte_swp_mksoft_dirty(pte); 809 if (pte_swp_uffd_wp(*src_pte)) 810 pte = pte_swp_mkuffd_wp(pte); 811 set_pte_at(src_mm, addr, src_pte, pte); 812 } 813 } else if (is_device_private_entry(entry)) { 814 page = pfn_swap_entry_to_page(entry); 815 816 /* 817 * Update rss count even for unaddressable pages, as 818 * they should treated just like normal pages in this 819 * respect. 820 * 821 * We will likely want to have some new rss counters 822 * for unaddressable pages, at some point. But for now 823 * keep things as they are. 824 */ 825 get_page(page); 826 rss[mm_counter(page)]++; 827 page_dup_rmap(page, false); 828 829 /* 830 * We do not preserve soft-dirty information, because so 831 * far, checkpoint/restore is the only feature that 832 * requires that. And checkpoint/restore does not work 833 * when a device driver is involved (you cannot easily 834 * save and restore device driver state). 835 */ 836 if (is_writable_device_private_entry(entry) && 837 is_cow_mapping(vm_flags)) { 838 entry = make_readable_device_private_entry( 839 swp_offset(entry)); 840 pte = swp_entry_to_pte(entry); 841 if (pte_swp_uffd_wp(*src_pte)) 842 pte = pte_swp_mkuffd_wp(pte); 843 set_pte_at(src_mm, addr, src_pte, pte); 844 } 845 } else if (is_device_exclusive_entry(entry)) { 846 /* 847 * Make device exclusive entries present by restoring the 848 * original entry then copying as for a present pte. Device 849 * exclusive entries currently only support private writable 850 * (ie. COW) mappings. 851 */ 852 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 853 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 854 return -EBUSY; 855 return -ENOENT; 856 } 857 if (!userfaultfd_wp(dst_vma)) 858 pte = pte_swp_clear_uffd_wp(pte); 859 set_pte_at(dst_mm, addr, dst_pte, pte); 860 return 0; 861 } 862 863 /* 864 * Copy a present and normal page if necessary. 865 * 866 * NOTE! The usual case is that this doesn't need to do 867 * anything, and can just return a positive value. That 868 * will let the caller know that it can just increase 869 * the page refcount and re-use the pte the traditional 870 * way. 871 * 872 * But _if_ we need to copy it because it needs to be 873 * pinned in the parent (and the child should get its own 874 * copy rather than just a reference to the same page), 875 * we'll do that here and return zero to let the caller 876 * know we're done. 877 * 878 * And if we need a pre-allocated page but don't yet have 879 * one, return a negative error to let the preallocation 880 * code know so that it can do so outside the page table 881 * lock. 882 */ 883 static inline int 884 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 885 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 886 struct page **prealloc, pte_t pte, struct page *page) 887 { 888 struct page *new_page; 889 890 /* 891 * What we want to do is to check whether this page may 892 * have been pinned by the parent process. If so, 893 * instead of wrprotect the pte on both sides, we copy 894 * the page immediately so that we'll always guarantee 895 * the pinned page won't be randomly replaced in the 896 * future. 897 * 898 * The page pinning checks are just "has this mm ever 899 * seen pinning", along with the (inexact) check of 900 * the page count. That might give false positives for 901 * for pinning, but it will work correctly. 902 */ 903 if (likely(!page_needs_cow_for_dma(src_vma, page))) 904 return 1; 905 906 new_page = *prealloc; 907 if (!new_page) 908 return -EAGAIN; 909 910 /* 911 * We have a prealloc page, all good! Take it 912 * over and copy the page & arm it. 913 */ 914 *prealloc = NULL; 915 copy_user_highpage(new_page, page, addr, src_vma); 916 __SetPageUptodate(new_page); 917 page_add_new_anon_rmap(new_page, dst_vma, addr, false); 918 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 919 rss[mm_counter(new_page)]++; 920 921 /* All done, just insert the new page copy in the child */ 922 pte = mk_pte(new_page, dst_vma->vm_page_prot); 923 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 924 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 925 /* Uffd-wp needs to be delivered to dest pte as well */ 926 pte = pte_wrprotect(pte_mkuffd_wp(pte)); 927 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 928 return 0; 929 } 930 931 /* 932 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 933 * is required to copy this pte. 934 */ 935 static inline int 936 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 937 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 938 struct page **prealloc) 939 { 940 struct mm_struct *src_mm = src_vma->vm_mm; 941 unsigned long vm_flags = src_vma->vm_flags; 942 pte_t pte = *src_pte; 943 struct page *page; 944 945 page = vm_normal_page(src_vma, addr, pte); 946 if (page) { 947 int retval; 948 949 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 950 addr, rss, prealloc, pte, page); 951 if (retval <= 0) 952 return retval; 953 954 get_page(page); 955 page_dup_rmap(page, false); 956 rss[mm_counter(page)]++; 957 } 958 959 /* 960 * If it's a COW mapping, write protect it both 961 * in the parent and the child 962 */ 963 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 964 ptep_set_wrprotect(src_mm, addr, src_pte); 965 pte = pte_wrprotect(pte); 966 } 967 968 /* 969 * If it's a shared mapping, mark it clean in 970 * the child 971 */ 972 if (vm_flags & VM_SHARED) 973 pte = pte_mkclean(pte); 974 pte = pte_mkold(pte); 975 976 if (!userfaultfd_wp(dst_vma)) 977 pte = pte_clear_uffd_wp(pte); 978 979 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 980 return 0; 981 } 982 983 static inline struct page * 984 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 985 unsigned long addr) 986 { 987 struct page *new_page; 988 989 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 990 if (!new_page) 991 return NULL; 992 993 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { 994 put_page(new_page); 995 return NULL; 996 } 997 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 998 999 return new_page; 1000 } 1001 1002 static int 1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1004 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1005 unsigned long end) 1006 { 1007 struct mm_struct *dst_mm = dst_vma->vm_mm; 1008 struct mm_struct *src_mm = src_vma->vm_mm; 1009 pte_t *orig_src_pte, *orig_dst_pte; 1010 pte_t *src_pte, *dst_pte; 1011 spinlock_t *src_ptl, *dst_ptl; 1012 int progress, ret = 0; 1013 int rss[NR_MM_COUNTERS]; 1014 swp_entry_t entry = (swp_entry_t){0}; 1015 struct page *prealloc = NULL; 1016 1017 again: 1018 progress = 0; 1019 init_rss_vec(rss); 1020 1021 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1022 if (!dst_pte) { 1023 ret = -ENOMEM; 1024 goto out; 1025 } 1026 src_pte = pte_offset_map(src_pmd, addr); 1027 src_ptl = pte_lockptr(src_mm, src_pmd); 1028 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1029 orig_src_pte = src_pte; 1030 orig_dst_pte = dst_pte; 1031 arch_enter_lazy_mmu_mode(); 1032 1033 do { 1034 /* 1035 * We are holding two locks at this point - either of them 1036 * could generate latencies in another task on another CPU. 1037 */ 1038 if (progress >= 32) { 1039 progress = 0; 1040 if (need_resched() || 1041 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1042 break; 1043 } 1044 if (pte_none(*src_pte)) { 1045 progress++; 1046 continue; 1047 } 1048 if (unlikely(!pte_present(*src_pte))) { 1049 ret = copy_nonpresent_pte(dst_mm, src_mm, 1050 dst_pte, src_pte, 1051 dst_vma, src_vma, 1052 addr, rss); 1053 if (ret == -EIO) { 1054 entry = pte_to_swp_entry(*src_pte); 1055 break; 1056 } else if (ret == -EBUSY) { 1057 break; 1058 } else if (!ret) { 1059 progress += 8; 1060 continue; 1061 } 1062 1063 /* 1064 * Device exclusive entry restored, continue by copying 1065 * the now present pte. 1066 */ 1067 WARN_ON_ONCE(ret != -ENOENT); 1068 } 1069 /* copy_present_pte() will clear `*prealloc' if consumed */ 1070 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1071 addr, rss, &prealloc); 1072 /* 1073 * If we need a pre-allocated page for this pte, drop the 1074 * locks, allocate, and try again. 1075 */ 1076 if (unlikely(ret == -EAGAIN)) 1077 break; 1078 if (unlikely(prealloc)) { 1079 /* 1080 * pre-alloc page cannot be reused by next time so as 1081 * to strictly follow mempolicy (e.g., alloc_page_vma() 1082 * will allocate page according to address). This 1083 * could only happen if one pinned pte changed. 1084 */ 1085 put_page(prealloc); 1086 prealloc = NULL; 1087 } 1088 progress += 8; 1089 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1090 1091 arch_leave_lazy_mmu_mode(); 1092 spin_unlock(src_ptl); 1093 pte_unmap(orig_src_pte); 1094 add_mm_rss_vec(dst_mm, rss); 1095 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1096 cond_resched(); 1097 1098 if (ret == -EIO) { 1099 VM_WARN_ON_ONCE(!entry.val); 1100 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1101 ret = -ENOMEM; 1102 goto out; 1103 } 1104 entry.val = 0; 1105 } else if (ret == -EBUSY) { 1106 goto out; 1107 } else if (ret == -EAGAIN) { 1108 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1109 if (!prealloc) 1110 return -ENOMEM; 1111 } else if (ret) { 1112 VM_WARN_ON_ONCE(1); 1113 } 1114 1115 /* We've captured and resolved the error. Reset, try again. */ 1116 ret = 0; 1117 1118 if (addr != end) 1119 goto again; 1120 out: 1121 if (unlikely(prealloc)) 1122 put_page(prealloc); 1123 return ret; 1124 } 1125 1126 static inline int 1127 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1128 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1129 unsigned long end) 1130 { 1131 struct mm_struct *dst_mm = dst_vma->vm_mm; 1132 struct mm_struct *src_mm = src_vma->vm_mm; 1133 pmd_t *src_pmd, *dst_pmd; 1134 unsigned long next; 1135 1136 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1137 if (!dst_pmd) 1138 return -ENOMEM; 1139 src_pmd = pmd_offset(src_pud, addr); 1140 do { 1141 next = pmd_addr_end(addr, end); 1142 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1143 || pmd_devmap(*src_pmd)) { 1144 int err; 1145 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1146 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1147 addr, dst_vma, src_vma); 1148 if (err == -ENOMEM) 1149 return -ENOMEM; 1150 if (!err) 1151 continue; 1152 /* fall through */ 1153 } 1154 if (pmd_none_or_clear_bad(src_pmd)) 1155 continue; 1156 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1157 addr, next)) 1158 return -ENOMEM; 1159 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1160 return 0; 1161 } 1162 1163 static inline int 1164 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1165 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1166 unsigned long end) 1167 { 1168 struct mm_struct *dst_mm = dst_vma->vm_mm; 1169 struct mm_struct *src_mm = src_vma->vm_mm; 1170 pud_t *src_pud, *dst_pud; 1171 unsigned long next; 1172 1173 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1174 if (!dst_pud) 1175 return -ENOMEM; 1176 src_pud = pud_offset(src_p4d, addr); 1177 do { 1178 next = pud_addr_end(addr, end); 1179 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1180 int err; 1181 1182 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1183 err = copy_huge_pud(dst_mm, src_mm, 1184 dst_pud, src_pud, addr, src_vma); 1185 if (err == -ENOMEM) 1186 return -ENOMEM; 1187 if (!err) 1188 continue; 1189 /* fall through */ 1190 } 1191 if (pud_none_or_clear_bad(src_pud)) 1192 continue; 1193 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1194 addr, next)) 1195 return -ENOMEM; 1196 } while (dst_pud++, src_pud++, addr = next, addr != end); 1197 return 0; 1198 } 1199 1200 static inline int 1201 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1202 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1203 unsigned long end) 1204 { 1205 struct mm_struct *dst_mm = dst_vma->vm_mm; 1206 p4d_t *src_p4d, *dst_p4d; 1207 unsigned long next; 1208 1209 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1210 if (!dst_p4d) 1211 return -ENOMEM; 1212 src_p4d = p4d_offset(src_pgd, addr); 1213 do { 1214 next = p4d_addr_end(addr, end); 1215 if (p4d_none_or_clear_bad(src_p4d)) 1216 continue; 1217 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1218 addr, next)) 1219 return -ENOMEM; 1220 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1221 return 0; 1222 } 1223 1224 int 1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1226 { 1227 pgd_t *src_pgd, *dst_pgd; 1228 unsigned long next; 1229 unsigned long addr = src_vma->vm_start; 1230 unsigned long end = src_vma->vm_end; 1231 struct mm_struct *dst_mm = dst_vma->vm_mm; 1232 struct mm_struct *src_mm = src_vma->vm_mm; 1233 struct mmu_notifier_range range; 1234 bool is_cow; 1235 int ret; 1236 1237 /* 1238 * Don't copy ptes where a page fault will fill them correctly. 1239 * Fork becomes much lighter when there are big shared or private 1240 * readonly mappings. The tradeoff is that copy_page_range is more 1241 * efficient than faulting. 1242 */ 1243 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1244 !src_vma->anon_vma) 1245 return 0; 1246 1247 if (is_vm_hugetlb_page(src_vma)) 1248 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1249 1250 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1251 /* 1252 * We do not free on error cases below as remove_vma 1253 * gets called on error from higher level routine 1254 */ 1255 ret = track_pfn_copy(src_vma); 1256 if (ret) 1257 return ret; 1258 } 1259 1260 /* 1261 * We need to invalidate the secondary MMU mappings only when 1262 * there could be a permission downgrade on the ptes of the 1263 * parent mm. And a permission downgrade will only happen if 1264 * is_cow_mapping() returns true. 1265 */ 1266 is_cow = is_cow_mapping(src_vma->vm_flags); 1267 1268 if (is_cow) { 1269 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1270 0, src_vma, src_mm, addr, end); 1271 mmu_notifier_invalidate_range_start(&range); 1272 /* 1273 * Disabling preemption is not needed for the write side, as 1274 * the read side doesn't spin, but goes to the mmap_lock. 1275 * 1276 * Use the raw variant of the seqcount_t write API to avoid 1277 * lockdep complaining about preemptibility. 1278 */ 1279 mmap_assert_write_locked(src_mm); 1280 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1281 } 1282 1283 ret = 0; 1284 dst_pgd = pgd_offset(dst_mm, addr); 1285 src_pgd = pgd_offset(src_mm, addr); 1286 do { 1287 next = pgd_addr_end(addr, end); 1288 if (pgd_none_or_clear_bad(src_pgd)) 1289 continue; 1290 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1291 addr, next))) { 1292 ret = -ENOMEM; 1293 break; 1294 } 1295 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1296 1297 if (is_cow) { 1298 raw_write_seqcount_end(&src_mm->write_protect_seq); 1299 mmu_notifier_invalidate_range_end(&range); 1300 } 1301 return ret; 1302 } 1303 1304 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1305 struct vm_area_struct *vma, pmd_t *pmd, 1306 unsigned long addr, unsigned long end, 1307 struct zap_details *details) 1308 { 1309 struct mm_struct *mm = tlb->mm; 1310 int force_flush = 0; 1311 int rss[NR_MM_COUNTERS]; 1312 spinlock_t *ptl; 1313 pte_t *start_pte; 1314 pte_t *pte; 1315 swp_entry_t entry; 1316 1317 tlb_change_page_size(tlb, PAGE_SIZE); 1318 again: 1319 init_rss_vec(rss); 1320 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1321 pte = start_pte; 1322 flush_tlb_batched_pending(mm); 1323 arch_enter_lazy_mmu_mode(); 1324 do { 1325 pte_t ptent = *pte; 1326 if (pte_none(ptent)) 1327 continue; 1328 1329 if (need_resched()) 1330 break; 1331 1332 if (pte_present(ptent)) { 1333 struct page *page; 1334 1335 page = vm_normal_page(vma, addr, ptent); 1336 if (unlikely(details) && page) { 1337 /* 1338 * unmap_shared_mapping_pages() wants to 1339 * invalidate cache without truncating: 1340 * unmap shared but keep private pages. 1341 */ 1342 if (details->check_mapping && 1343 details->check_mapping != page_rmapping(page)) 1344 continue; 1345 } 1346 ptent = ptep_get_and_clear_full(mm, addr, pte, 1347 tlb->fullmm); 1348 tlb_remove_tlb_entry(tlb, pte, addr); 1349 if (unlikely(!page)) 1350 continue; 1351 1352 if (!PageAnon(page)) { 1353 if (pte_dirty(ptent)) { 1354 force_flush = 1; 1355 set_page_dirty(page); 1356 } 1357 if (pte_young(ptent) && 1358 likely(!(vma->vm_flags & VM_SEQ_READ))) 1359 mark_page_accessed(page); 1360 } 1361 rss[mm_counter(page)]--; 1362 page_remove_rmap(page, false); 1363 if (unlikely(page_mapcount(page) < 0)) 1364 print_bad_pte(vma, addr, ptent, page); 1365 if (unlikely(__tlb_remove_page(tlb, page))) { 1366 force_flush = 1; 1367 addr += PAGE_SIZE; 1368 break; 1369 } 1370 continue; 1371 } 1372 1373 entry = pte_to_swp_entry(ptent); 1374 if (is_device_private_entry(entry) || 1375 is_device_exclusive_entry(entry)) { 1376 struct page *page = pfn_swap_entry_to_page(entry); 1377 1378 if (unlikely(details && details->check_mapping)) { 1379 /* 1380 * unmap_shared_mapping_pages() wants to 1381 * invalidate cache without truncating: 1382 * unmap shared but keep private pages. 1383 */ 1384 if (details->check_mapping != 1385 page_rmapping(page)) 1386 continue; 1387 } 1388 1389 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1390 rss[mm_counter(page)]--; 1391 1392 if (is_device_private_entry(entry)) 1393 page_remove_rmap(page, false); 1394 1395 put_page(page); 1396 continue; 1397 } 1398 1399 /* If details->check_mapping, we leave swap entries. */ 1400 if (unlikely(details)) 1401 continue; 1402 1403 if (!non_swap_entry(entry)) 1404 rss[MM_SWAPENTS]--; 1405 else if (is_migration_entry(entry)) { 1406 struct page *page; 1407 1408 page = pfn_swap_entry_to_page(entry); 1409 rss[mm_counter(page)]--; 1410 } 1411 if (unlikely(!free_swap_and_cache(entry))) 1412 print_bad_pte(vma, addr, ptent, NULL); 1413 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1414 } while (pte++, addr += PAGE_SIZE, addr != end); 1415 1416 add_mm_rss_vec(mm, rss); 1417 arch_leave_lazy_mmu_mode(); 1418 1419 /* Do the actual TLB flush before dropping ptl */ 1420 if (force_flush) 1421 tlb_flush_mmu_tlbonly(tlb); 1422 pte_unmap_unlock(start_pte, ptl); 1423 1424 /* 1425 * If we forced a TLB flush (either due to running out of 1426 * batch buffers or because we needed to flush dirty TLB 1427 * entries before releasing the ptl), free the batched 1428 * memory too. Restart if we didn't do everything. 1429 */ 1430 if (force_flush) { 1431 force_flush = 0; 1432 tlb_flush_mmu(tlb); 1433 } 1434 1435 if (addr != end) { 1436 cond_resched(); 1437 goto again; 1438 } 1439 1440 return addr; 1441 } 1442 1443 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1444 struct vm_area_struct *vma, pud_t *pud, 1445 unsigned long addr, unsigned long end, 1446 struct zap_details *details) 1447 { 1448 pmd_t *pmd; 1449 unsigned long next; 1450 1451 pmd = pmd_offset(pud, addr); 1452 do { 1453 next = pmd_addr_end(addr, end); 1454 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1455 if (next - addr != HPAGE_PMD_SIZE) 1456 __split_huge_pmd(vma, pmd, addr, false, NULL); 1457 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1458 goto next; 1459 /* fall through */ 1460 } else if (details && details->single_page && 1461 PageTransCompound(details->single_page) && 1462 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1463 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1464 /* 1465 * Take and drop THP pmd lock so that we cannot return 1466 * prematurely, while zap_huge_pmd() has cleared *pmd, 1467 * but not yet decremented compound_mapcount(). 1468 */ 1469 spin_unlock(ptl); 1470 } 1471 1472 /* 1473 * Here there can be other concurrent MADV_DONTNEED or 1474 * trans huge page faults running, and if the pmd is 1475 * none or trans huge it can change under us. This is 1476 * because MADV_DONTNEED holds the mmap_lock in read 1477 * mode. 1478 */ 1479 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1480 goto next; 1481 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1482 next: 1483 cond_resched(); 1484 } while (pmd++, addr = next, addr != end); 1485 1486 return addr; 1487 } 1488 1489 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1490 struct vm_area_struct *vma, p4d_t *p4d, 1491 unsigned long addr, unsigned long end, 1492 struct zap_details *details) 1493 { 1494 pud_t *pud; 1495 unsigned long next; 1496 1497 pud = pud_offset(p4d, addr); 1498 do { 1499 next = pud_addr_end(addr, end); 1500 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1501 if (next - addr != HPAGE_PUD_SIZE) { 1502 mmap_assert_locked(tlb->mm); 1503 split_huge_pud(vma, pud, addr); 1504 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1505 goto next; 1506 /* fall through */ 1507 } 1508 if (pud_none_or_clear_bad(pud)) 1509 continue; 1510 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1511 next: 1512 cond_resched(); 1513 } while (pud++, addr = next, addr != end); 1514 1515 return addr; 1516 } 1517 1518 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1519 struct vm_area_struct *vma, pgd_t *pgd, 1520 unsigned long addr, unsigned long end, 1521 struct zap_details *details) 1522 { 1523 p4d_t *p4d; 1524 unsigned long next; 1525 1526 p4d = p4d_offset(pgd, addr); 1527 do { 1528 next = p4d_addr_end(addr, end); 1529 if (p4d_none_or_clear_bad(p4d)) 1530 continue; 1531 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1532 } while (p4d++, addr = next, addr != end); 1533 1534 return addr; 1535 } 1536 1537 void unmap_page_range(struct mmu_gather *tlb, 1538 struct vm_area_struct *vma, 1539 unsigned long addr, unsigned long end, 1540 struct zap_details *details) 1541 { 1542 pgd_t *pgd; 1543 unsigned long next; 1544 1545 BUG_ON(addr >= end); 1546 tlb_start_vma(tlb, vma); 1547 pgd = pgd_offset(vma->vm_mm, addr); 1548 do { 1549 next = pgd_addr_end(addr, end); 1550 if (pgd_none_or_clear_bad(pgd)) 1551 continue; 1552 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1553 } while (pgd++, addr = next, addr != end); 1554 tlb_end_vma(tlb, vma); 1555 } 1556 1557 1558 static void unmap_single_vma(struct mmu_gather *tlb, 1559 struct vm_area_struct *vma, unsigned long start_addr, 1560 unsigned long end_addr, 1561 struct zap_details *details) 1562 { 1563 unsigned long start = max(vma->vm_start, start_addr); 1564 unsigned long end; 1565 1566 if (start >= vma->vm_end) 1567 return; 1568 end = min(vma->vm_end, end_addr); 1569 if (end <= vma->vm_start) 1570 return; 1571 1572 if (vma->vm_file) 1573 uprobe_munmap(vma, start, end); 1574 1575 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1576 untrack_pfn(vma, 0, 0); 1577 1578 if (start != end) { 1579 if (unlikely(is_vm_hugetlb_page(vma))) { 1580 /* 1581 * It is undesirable to test vma->vm_file as it 1582 * should be non-null for valid hugetlb area. 1583 * However, vm_file will be NULL in the error 1584 * cleanup path of mmap_region. When 1585 * hugetlbfs ->mmap method fails, 1586 * mmap_region() nullifies vma->vm_file 1587 * before calling this function to clean up. 1588 * Since no pte has actually been setup, it is 1589 * safe to do nothing in this case. 1590 */ 1591 if (vma->vm_file) { 1592 i_mmap_lock_write(vma->vm_file->f_mapping); 1593 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1594 i_mmap_unlock_write(vma->vm_file->f_mapping); 1595 } 1596 } else 1597 unmap_page_range(tlb, vma, start, end, details); 1598 } 1599 } 1600 1601 /** 1602 * unmap_vmas - unmap a range of memory covered by a list of vma's 1603 * @tlb: address of the caller's struct mmu_gather 1604 * @vma: the starting vma 1605 * @start_addr: virtual address at which to start unmapping 1606 * @end_addr: virtual address at which to end unmapping 1607 * 1608 * Unmap all pages in the vma list. 1609 * 1610 * Only addresses between `start' and `end' will be unmapped. 1611 * 1612 * The VMA list must be sorted in ascending virtual address order. 1613 * 1614 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1615 * range after unmap_vmas() returns. So the only responsibility here is to 1616 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1617 * drops the lock and schedules. 1618 */ 1619 void unmap_vmas(struct mmu_gather *tlb, 1620 struct vm_area_struct *vma, unsigned long start_addr, 1621 unsigned long end_addr) 1622 { 1623 struct mmu_notifier_range range; 1624 1625 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1626 start_addr, end_addr); 1627 mmu_notifier_invalidate_range_start(&range); 1628 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1629 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1630 mmu_notifier_invalidate_range_end(&range); 1631 } 1632 1633 /** 1634 * zap_page_range - remove user pages in a given range 1635 * @vma: vm_area_struct holding the applicable pages 1636 * @start: starting address of pages to zap 1637 * @size: number of bytes to zap 1638 * 1639 * Caller must protect the VMA list 1640 */ 1641 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1642 unsigned long size) 1643 { 1644 struct mmu_notifier_range range; 1645 struct mmu_gather tlb; 1646 1647 lru_add_drain(); 1648 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1649 start, start + size); 1650 tlb_gather_mmu(&tlb, vma->vm_mm); 1651 update_hiwater_rss(vma->vm_mm); 1652 mmu_notifier_invalidate_range_start(&range); 1653 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1654 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1655 mmu_notifier_invalidate_range_end(&range); 1656 tlb_finish_mmu(&tlb); 1657 } 1658 1659 /** 1660 * zap_page_range_single - remove user pages in a given range 1661 * @vma: vm_area_struct holding the applicable pages 1662 * @address: starting address of pages to zap 1663 * @size: number of bytes to zap 1664 * @details: details of shared cache invalidation 1665 * 1666 * The range must fit into one VMA. 1667 */ 1668 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1669 unsigned long size, struct zap_details *details) 1670 { 1671 struct mmu_notifier_range range; 1672 struct mmu_gather tlb; 1673 1674 lru_add_drain(); 1675 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1676 address, address + size); 1677 tlb_gather_mmu(&tlb, vma->vm_mm); 1678 update_hiwater_rss(vma->vm_mm); 1679 mmu_notifier_invalidate_range_start(&range); 1680 unmap_single_vma(&tlb, vma, address, range.end, details); 1681 mmu_notifier_invalidate_range_end(&range); 1682 tlb_finish_mmu(&tlb); 1683 } 1684 1685 /** 1686 * zap_vma_ptes - remove ptes mapping the vma 1687 * @vma: vm_area_struct holding ptes to be zapped 1688 * @address: starting address of pages to zap 1689 * @size: number of bytes to zap 1690 * 1691 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1692 * 1693 * The entire address range must be fully contained within the vma. 1694 * 1695 */ 1696 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1697 unsigned long size) 1698 { 1699 if (address < vma->vm_start || address + size > vma->vm_end || 1700 !(vma->vm_flags & VM_PFNMAP)) 1701 return; 1702 1703 zap_page_range_single(vma, address, size, NULL); 1704 } 1705 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1706 1707 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1708 { 1709 pgd_t *pgd; 1710 p4d_t *p4d; 1711 pud_t *pud; 1712 pmd_t *pmd; 1713 1714 pgd = pgd_offset(mm, addr); 1715 p4d = p4d_alloc(mm, pgd, addr); 1716 if (!p4d) 1717 return NULL; 1718 pud = pud_alloc(mm, p4d, addr); 1719 if (!pud) 1720 return NULL; 1721 pmd = pmd_alloc(mm, pud, addr); 1722 if (!pmd) 1723 return NULL; 1724 1725 VM_BUG_ON(pmd_trans_huge(*pmd)); 1726 return pmd; 1727 } 1728 1729 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1730 spinlock_t **ptl) 1731 { 1732 pmd_t *pmd = walk_to_pmd(mm, addr); 1733 1734 if (!pmd) 1735 return NULL; 1736 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1737 } 1738 1739 static int validate_page_before_insert(struct page *page) 1740 { 1741 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1742 return -EINVAL; 1743 flush_dcache_page(page); 1744 return 0; 1745 } 1746 1747 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1748 unsigned long addr, struct page *page, pgprot_t prot) 1749 { 1750 if (!pte_none(*pte)) 1751 return -EBUSY; 1752 /* Ok, finally just insert the thing.. */ 1753 get_page(page); 1754 inc_mm_counter_fast(mm, mm_counter_file(page)); 1755 page_add_file_rmap(page, false); 1756 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1757 return 0; 1758 } 1759 1760 /* 1761 * This is the old fallback for page remapping. 1762 * 1763 * For historical reasons, it only allows reserved pages. Only 1764 * old drivers should use this, and they needed to mark their 1765 * pages reserved for the old functions anyway. 1766 */ 1767 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1768 struct page *page, pgprot_t prot) 1769 { 1770 struct mm_struct *mm = vma->vm_mm; 1771 int retval; 1772 pte_t *pte; 1773 spinlock_t *ptl; 1774 1775 retval = validate_page_before_insert(page); 1776 if (retval) 1777 goto out; 1778 retval = -ENOMEM; 1779 pte = get_locked_pte(mm, addr, &ptl); 1780 if (!pte) 1781 goto out; 1782 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1783 pte_unmap_unlock(pte, ptl); 1784 out: 1785 return retval; 1786 } 1787 1788 #ifdef pte_index 1789 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1790 unsigned long addr, struct page *page, pgprot_t prot) 1791 { 1792 int err; 1793 1794 if (!page_count(page)) 1795 return -EINVAL; 1796 err = validate_page_before_insert(page); 1797 if (err) 1798 return err; 1799 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1800 } 1801 1802 /* insert_pages() amortizes the cost of spinlock operations 1803 * when inserting pages in a loop. Arch *must* define pte_index. 1804 */ 1805 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1806 struct page **pages, unsigned long *num, pgprot_t prot) 1807 { 1808 pmd_t *pmd = NULL; 1809 pte_t *start_pte, *pte; 1810 spinlock_t *pte_lock; 1811 struct mm_struct *const mm = vma->vm_mm; 1812 unsigned long curr_page_idx = 0; 1813 unsigned long remaining_pages_total = *num; 1814 unsigned long pages_to_write_in_pmd; 1815 int ret; 1816 more: 1817 ret = -EFAULT; 1818 pmd = walk_to_pmd(mm, addr); 1819 if (!pmd) 1820 goto out; 1821 1822 pages_to_write_in_pmd = min_t(unsigned long, 1823 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1824 1825 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1826 ret = -ENOMEM; 1827 if (pte_alloc(mm, pmd)) 1828 goto out; 1829 1830 while (pages_to_write_in_pmd) { 1831 int pte_idx = 0; 1832 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1833 1834 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1835 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1836 int err = insert_page_in_batch_locked(mm, pte, 1837 addr, pages[curr_page_idx], prot); 1838 if (unlikely(err)) { 1839 pte_unmap_unlock(start_pte, pte_lock); 1840 ret = err; 1841 remaining_pages_total -= pte_idx; 1842 goto out; 1843 } 1844 addr += PAGE_SIZE; 1845 ++curr_page_idx; 1846 } 1847 pte_unmap_unlock(start_pte, pte_lock); 1848 pages_to_write_in_pmd -= batch_size; 1849 remaining_pages_total -= batch_size; 1850 } 1851 if (remaining_pages_total) 1852 goto more; 1853 ret = 0; 1854 out: 1855 *num = remaining_pages_total; 1856 return ret; 1857 } 1858 #endif /* ifdef pte_index */ 1859 1860 /** 1861 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1862 * @vma: user vma to map to 1863 * @addr: target start user address of these pages 1864 * @pages: source kernel pages 1865 * @num: in: number of pages to map. out: number of pages that were *not* 1866 * mapped. (0 means all pages were successfully mapped). 1867 * 1868 * Preferred over vm_insert_page() when inserting multiple pages. 1869 * 1870 * In case of error, we may have mapped a subset of the provided 1871 * pages. It is the caller's responsibility to account for this case. 1872 * 1873 * The same restrictions apply as in vm_insert_page(). 1874 */ 1875 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1876 struct page **pages, unsigned long *num) 1877 { 1878 #ifdef pte_index 1879 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1880 1881 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1882 return -EFAULT; 1883 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1884 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1885 BUG_ON(vma->vm_flags & VM_PFNMAP); 1886 vma->vm_flags |= VM_MIXEDMAP; 1887 } 1888 /* Defer page refcount checking till we're about to map that page. */ 1889 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1890 #else 1891 unsigned long idx = 0, pgcount = *num; 1892 int err = -EINVAL; 1893 1894 for (; idx < pgcount; ++idx) { 1895 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1896 if (err) 1897 break; 1898 } 1899 *num = pgcount - idx; 1900 return err; 1901 #endif /* ifdef pte_index */ 1902 } 1903 EXPORT_SYMBOL(vm_insert_pages); 1904 1905 /** 1906 * vm_insert_page - insert single page into user vma 1907 * @vma: user vma to map to 1908 * @addr: target user address of this page 1909 * @page: source kernel page 1910 * 1911 * This allows drivers to insert individual pages they've allocated 1912 * into a user vma. 1913 * 1914 * The page has to be a nice clean _individual_ kernel allocation. 1915 * If you allocate a compound page, you need to have marked it as 1916 * such (__GFP_COMP), or manually just split the page up yourself 1917 * (see split_page()). 1918 * 1919 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1920 * took an arbitrary page protection parameter. This doesn't allow 1921 * that. Your vma protection will have to be set up correctly, which 1922 * means that if you want a shared writable mapping, you'd better 1923 * ask for a shared writable mapping! 1924 * 1925 * The page does not need to be reserved. 1926 * 1927 * Usually this function is called from f_op->mmap() handler 1928 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1929 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1930 * function from other places, for example from page-fault handler. 1931 * 1932 * Return: %0 on success, negative error code otherwise. 1933 */ 1934 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1935 struct page *page) 1936 { 1937 if (addr < vma->vm_start || addr >= vma->vm_end) 1938 return -EFAULT; 1939 if (!page_count(page)) 1940 return -EINVAL; 1941 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1942 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1943 BUG_ON(vma->vm_flags & VM_PFNMAP); 1944 vma->vm_flags |= VM_MIXEDMAP; 1945 } 1946 return insert_page(vma, addr, page, vma->vm_page_prot); 1947 } 1948 EXPORT_SYMBOL(vm_insert_page); 1949 1950 /* 1951 * __vm_map_pages - maps range of kernel pages into user vma 1952 * @vma: user vma to map to 1953 * @pages: pointer to array of source kernel pages 1954 * @num: number of pages in page array 1955 * @offset: user's requested vm_pgoff 1956 * 1957 * This allows drivers to map range of kernel pages into a user vma. 1958 * 1959 * Return: 0 on success and error code otherwise. 1960 */ 1961 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1962 unsigned long num, unsigned long offset) 1963 { 1964 unsigned long count = vma_pages(vma); 1965 unsigned long uaddr = vma->vm_start; 1966 int ret, i; 1967 1968 /* Fail if the user requested offset is beyond the end of the object */ 1969 if (offset >= num) 1970 return -ENXIO; 1971 1972 /* Fail if the user requested size exceeds available object size */ 1973 if (count > num - offset) 1974 return -ENXIO; 1975 1976 for (i = 0; i < count; i++) { 1977 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1978 if (ret < 0) 1979 return ret; 1980 uaddr += PAGE_SIZE; 1981 } 1982 1983 return 0; 1984 } 1985 1986 /** 1987 * vm_map_pages - maps range of kernel pages starts with non zero offset 1988 * @vma: user vma to map to 1989 * @pages: pointer to array of source kernel pages 1990 * @num: number of pages in page array 1991 * 1992 * Maps an object consisting of @num pages, catering for the user's 1993 * requested vm_pgoff 1994 * 1995 * If we fail to insert any page into the vma, the function will return 1996 * immediately leaving any previously inserted pages present. Callers 1997 * from the mmap handler may immediately return the error as their caller 1998 * will destroy the vma, removing any successfully inserted pages. Other 1999 * callers should make their own arrangements for calling unmap_region(). 2000 * 2001 * Context: Process context. Called by mmap handlers. 2002 * Return: 0 on success and error code otherwise. 2003 */ 2004 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2005 unsigned long num) 2006 { 2007 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2008 } 2009 EXPORT_SYMBOL(vm_map_pages); 2010 2011 /** 2012 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2013 * @vma: user vma to map to 2014 * @pages: pointer to array of source kernel pages 2015 * @num: number of pages in page array 2016 * 2017 * Similar to vm_map_pages(), except that it explicitly sets the offset 2018 * to 0. This function is intended for the drivers that did not consider 2019 * vm_pgoff. 2020 * 2021 * Context: Process context. Called by mmap handlers. 2022 * Return: 0 on success and error code otherwise. 2023 */ 2024 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2025 unsigned long num) 2026 { 2027 return __vm_map_pages(vma, pages, num, 0); 2028 } 2029 EXPORT_SYMBOL(vm_map_pages_zero); 2030 2031 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2032 pfn_t pfn, pgprot_t prot, bool mkwrite) 2033 { 2034 struct mm_struct *mm = vma->vm_mm; 2035 pte_t *pte, entry; 2036 spinlock_t *ptl; 2037 2038 pte = get_locked_pte(mm, addr, &ptl); 2039 if (!pte) 2040 return VM_FAULT_OOM; 2041 if (!pte_none(*pte)) { 2042 if (mkwrite) { 2043 /* 2044 * For read faults on private mappings the PFN passed 2045 * in may not match the PFN we have mapped if the 2046 * mapped PFN is a writeable COW page. In the mkwrite 2047 * case we are creating a writable PTE for a shared 2048 * mapping and we expect the PFNs to match. If they 2049 * don't match, we are likely racing with block 2050 * allocation and mapping invalidation so just skip the 2051 * update. 2052 */ 2053 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2054 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2055 goto out_unlock; 2056 } 2057 entry = pte_mkyoung(*pte); 2058 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2059 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2060 update_mmu_cache(vma, addr, pte); 2061 } 2062 goto out_unlock; 2063 } 2064 2065 /* Ok, finally just insert the thing.. */ 2066 if (pfn_t_devmap(pfn)) 2067 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2068 else 2069 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2070 2071 if (mkwrite) { 2072 entry = pte_mkyoung(entry); 2073 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2074 } 2075 2076 set_pte_at(mm, addr, pte, entry); 2077 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2078 2079 out_unlock: 2080 pte_unmap_unlock(pte, ptl); 2081 return VM_FAULT_NOPAGE; 2082 } 2083 2084 /** 2085 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2086 * @vma: user vma to map to 2087 * @addr: target user address of this page 2088 * @pfn: source kernel pfn 2089 * @pgprot: pgprot flags for the inserted page 2090 * 2091 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2092 * to override pgprot on a per-page basis. 2093 * 2094 * This only makes sense for IO mappings, and it makes no sense for 2095 * COW mappings. In general, using multiple vmas is preferable; 2096 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2097 * impractical. 2098 * 2099 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2100 * a value of @pgprot different from that of @vma->vm_page_prot. 2101 * 2102 * Context: Process context. May allocate using %GFP_KERNEL. 2103 * Return: vm_fault_t value. 2104 */ 2105 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2106 unsigned long pfn, pgprot_t pgprot) 2107 { 2108 /* 2109 * Technically, architectures with pte_special can avoid all these 2110 * restrictions (same for remap_pfn_range). However we would like 2111 * consistency in testing and feature parity among all, so we should 2112 * try to keep these invariants in place for everybody. 2113 */ 2114 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2115 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2116 (VM_PFNMAP|VM_MIXEDMAP)); 2117 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2118 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2119 2120 if (addr < vma->vm_start || addr >= vma->vm_end) 2121 return VM_FAULT_SIGBUS; 2122 2123 if (!pfn_modify_allowed(pfn, pgprot)) 2124 return VM_FAULT_SIGBUS; 2125 2126 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2127 2128 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2129 false); 2130 } 2131 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2132 2133 /** 2134 * vmf_insert_pfn - insert single pfn into user vma 2135 * @vma: user vma to map to 2136 * @addr: target user address of this page 2137 * @pfn: source kernel pfn 2138 * 2139 * Similar to vm_insert_page, this allows drivers to insert individual pages 2140 * they've allocated into a user vma. Same comments apply. 2141 * 2142 * This function should only be called from a vm_ops->fault handler, and 2143 * in that case the handler should return the result of this function. 2144 * 2145 * vma cannot be a COW mapping. 2146 * 2147 * As this is called only for pages that do not currently exist, we 2148 * do not need to flush old virtual caches or the TLB. 2149 * 2150 * Context: Process context. May allocate using %GFP_KERNEL. 2151 * Return: vm_fault_t value. 2152 */ 2153 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2154 unsigned long pfn) 2155 { 2156 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2157 } 2158 EXPORT_SYMBOL(vmf_insert_pfn); 2159 2160 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2161 { 2162 /* these checks mirror the abort conditions in vm_normal_page */ 2163 if (vma->vm_flags & VM_MIXEDMAP) 2164 return true; 2165 if (pfn_t_devmap(pfn)) 2166 return true; 2167 if (pfn_t_special(pfn)) 2168 return true; 2169 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2170 return true; 2171 return false; 2172 } 2173 2174 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2175 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2176 bool mkwrite) 2177 { 2178 int err; 2179 2180 BUG_ON(!vm_mixed_ok(vma, pfn)); 2181 2182 if (addr < vma->vm_start || addr >= vma->vm_end) 2183 return VM_FAULT_SIGBUS; 2184 2185 track_pfn_insert(vma, &pgprot, pfn); 2186 2187 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2188 return VM_FAULT_SIGBUS; 2189 2190 /* 2191 * If we don't have pte special, then we have to use the pfn_valid() 2192 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2193 * refcount the page if pfn_valid is true (hence insert_page rather 2194 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2195 * without pte special, it would there be refcounted as a normal page. 2196 */ 2197 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2198 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2199 struct page *page; 2200 2201 /* 2202 * At this point we are committed to insert_page() 2203 * regardless of whether the caller specified flags that 2204 * result in pfn_t_has_page() == false. 2205 */ 2206 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2207 err = insert_page(vma, addr, page, pgprot); 2208 } else { 2209 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2210 } 2211 2212 if (err == -ENOMEM) 2213 return VM_FAULT_OOM; 2214 if (err < 0 && err != -EBUSY) 2215 return VM_FAULT_SIGBUS; 2216 2217 return VM_FAULT_NOPAGE; 2218 } 2219 2220 /** 2221 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2222 * @vma: user vma to map to 2223 * @addr: target user address of this page 2224 * @pfn: source kernel pfn 2225 * @pgprot: pgprot flags for the inserted page 2226 * 2227 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2228 * to override pgprot on a per-page basis. 2229 * 2230 * Typically this function should be used by drivers to set caching- and 2231 * encryption bits different than those of @vma->vm_page_prot, because 2232 * the caching- or encryption mode may not be known at mmap() time. 2233 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2234 * to set caching and encryption bits for those vmas (except for COW pages). 2235 * This is ensured by core vm only modifying these page table entries using 2236 * functions that don't touch caching- or encryption bits, using pte_modify() 2237 * if needed. (See for example mprotect()). 2238 * Also when new page-table entries are created, this is only done using the 2239 * fault() callback, and never using the value of vma->vm_page_prot, 2240 * except for page-table entries that point to anonymous pages as the result 2241 * of COW. 2242 * 2243 * Context: Process context. May allocate using %GFP_KERNEL. 2244 * Return: vm_fault_t value. 2245 */ 2246 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2247 pfn_t pfn, pgprot_t pgprot) 2248 { 2249 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2250 } 2251 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2252 2253 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2254 pfn_t pfn) 2255 { 2256 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2257 } 2258 EXPORT_SYMBOL(vmf_insert_mixed); 2259 2260 /* 2261 * If the insertion of PTE failed because someone else already added a 2262 * different entry in the mean time, we treat that as success as we assume 2263 * the same entry was actually inserted. 2264 */ 2265 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2266 unsigned long addr, pfn_t pfn) 2267 { 2268 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2269 } 2270 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2271 2272 /* 2273 * maps a range of physical memory into the requested pages. the old 2274 * mappings are removed. any references to nonexistent pages results 2275 * in null mappings (currently treated as "copy-on-access") 2276 */ 2277 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2278 unsigned long addr, unsigned long end, 2279 unsigned long pfn, pgprot_t prot) 2280 { 2281 pte_t *pte, *mapped_pte; 2282 spinlock_t *ptl; 2283 int err = 0; 2284 2285 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2286 if (!pte) 2287 return -ENOMEM; 2288 arch_enter_lazy_mmu_mode(); 2289 do { 2290 BUG_ON(!pte_none(*pte)); 2291 if (!pfn_modify_allowed(pfn, prot)) { 2292 err = -EACCES; 2293 break; 2294 } 2295 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2296 pfn++; 2297 } while (pte++, addr += PAGE_SIZE, addr != end); 2298 arch_leave_lazy_mmu_mode(); 2299 pte_unmap_unlock(mapped_pte, ptl); 2300 return err; 2301 } 2302 2303 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2304 unsigned long addr, unsigned long end, 2305 unsigned long pfn, pgprot_t prot) 2306 { 2307 pmd_t *pmd; 2308 unsigned long next; 2309 int err; 2310 2311 pfn -= addr >> PAGE_SHIFT; 2312 pmd = pmd_alloc(mm, pud, addr); 2313 if (!pmd) 2314 return -ENOMEM; 2315 VM_BUG_ON(pmd_trans_huge(*pmd)); 2316 do { 2317 next = pmd_addr_end(addr, end); 2318 err = remap_pte_range(mm, pmd, addr, next, 2319 pfn + (addr >> PAGE_SHIFT), prot); 2320 if (err) 2321 return err; 2322 } while (pmd++, addr = next, addr != end); 2323 return 0; 2324 } 2325 2326 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2327 unsigned long addr, unsigned long end, 2328 unsigned long pfn, pgprot_t prot) 2329 { 2330 pud_t *pud; 2331 unsigned long next; 2332 int err; 2333 2334 pfn -= addr >> PAGE_SHIFT; 2335 pud = pud_alloc(mm, p4d, addr); 2336 if (!pud) 2337 return -ENOMEM; 2338 do { 2339 next = pud_addr_end(addr, end); 2340 err = remap_pmd_range(mm, pud, addr, next, 2341 pfn + (addr >> PAGE_SHIFT), prot); 2342 if (err) 2343 return err; 2344 } while (pud++, addr = next, addr != end); 2345 return 0; 2346 } 2347 2348 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2349 unsigned long addr, unsigned long end, 2350 unsigned long pfn, pgprot_t prot) 2351 { 2352 p4d_t *p4d; 2353 unsigned long next; 2354 int err; 2355 2356 pfn -= addr >> PAGE_SHIFT; 2357 p4d = p4d_alloc(mm, pgd, addr); 2358 if (!p4d) 2359 return -ENOMEM; 2360 do { 2361 next = p4d_addr_end(addr, end); 2362 err = remap_pud_range(mm, p4d, addr, next, 2363 pfn + (addr >> PAGE_SHIFT), prot); 2364 if (err) 2365 return err; 2366 } while (p4d++, addr = next, addr != end); 2367 return 0; 2368 } 2369 2370 /* 2371 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2372 * must have pre-validated the caching bits of the pgprot_t. 2373 */ 2374 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2375 unsigned long pfn, unsigned long size, pgprot_t prot) 2376 { 2377 pgd_t *pgd; 2378 unsigned long next; 2379 unsigned long end = addr + PAGE_ALIGN(size); 2380 struct mm_struct *mm = vma->vm_mm; 2381 int err; 2382 2383 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2384 return -EINVAL; 2385 2386 /* 2387 * Physically remapped pages are special. Tell the 2388 * rest of the world about it: 2389 * VM_IO tells people not to look at these pages 2390 * (accesses can have side effects). 2391 * VM_PFNMAP tells the core MM that the base pages are just 2392 * raw PFN mappings, and do not have a "struct page" associated 2393 * with them. 2394 * VM_DONTEXPAND 2395 * Disable vma merging and expanding with mremap(). 2396 * VM_DONTDUMP 2397 * Omit vma from core dump, even when VM_IO turned off. 2398 * 2399 * There's a horrible special case to handle copy-on-write 2400 * behaviour that some programs depend on. We mark the "original" 2401 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2402 * See vm_normal_page() for details. 2403 */ 2404 if (is_cow_mapping(vma->vm_flags)) { 2405 if (addr != vma->vm_start || end != vma->vm_end) 2406 return -EINVAL; 2407 vma->vm_pgoff = pfn; 2408 } 2409 2410 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2411 2412 BUG_ON(addr >= end); 2413 pfn -= addr >> PAGE_SHIFT; 2414 pgd = pgd_offset(mm, addr); 2415 flush_cache_range(vma, addr, end); 2416 do { 2417 next = pgd_addr_end(addr, end); 2418 err = remap_p4d_range(mm, pgd, addr, next, 2419 pfn + (addr >> PAGE_SHIFT), prot); 2420 if (err) 2421 return err; 2422 } while (pgd++, addr = next, addr != end); 2423 2424 return 0; 2425 } 2426 2427 /** 2428 * remap_pfn_range - remap kernel memory to userspace 2429 * @vma: user vma to map to 2430 * @addr: target page aligned user address to start at 2431 * @pfn: page frame number of kernel physical memory address 2432 * @size: size of mapping area 2433 * @prot: page protection flags for this mapping 2434 * 2435 * Note: this is only safe if the mm semaphore is held when called. 2436 * 2437 * Return: %0 on success, negative error code otherwise. 2438 */ 2439 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2440 unsigned long pfn, unsigned long size, pgprot_t prot) 2441 { 2442 int err; 2443 2444 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2445 if (err) 2446 return -EINVAL; 2447 2448 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2449 if (err) 2450 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2451 return err; 2452 } 2453 EXPORT_SYMBOL(remap_pfn_range); 2454 2455 /** 2456 * vm_iomap_memory - remap memory to userspace 2457 * @vma: user vma to map to 2458 * @start: start of the physical memory to be mapped 2459 * @len: size of area 2460 * 2461 * This is a simplified io_remap_pfn_range() for common driver use. The 2462 * driver just needs to give us the physical memory range to be mapped, 2463 * we'll figure out the rest from the vma information. 2464 * 2465 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2466 * whatever write-combining details or similar. 2467 * 2468 * Return: %0 on success, negative error code otherwise. 2469 */ 2470 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2471 { 2472 unsigned long vm_len, pfn, pages; 2473 2474 /* Check that the physical memory area passed in looks valid */ 2475 if (start + len < start) 2476 return -EINVAL; 2477 /* 2478 * You *really* shouldn't map things that aren't page-aligned, 2479 * but we've historically allowed it because IO memory might 2480 * just have smaller alignment. 2481 */ 2482 len += start & ~PAGE_MASK; 2483 pfn = start >> PAGE_SHIFT; 2484 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2485 if (pfn + pages < pfn) 2486 return -EINVAL; 2487 2488 /* We start the mapping 'vm_pgoff' pages into the area */ 2489 if (vma->vm_pgoff > pages) 2490 return -EINVAL; 2491 pfn += vma->vm_pgoff; 2492 pages -= vma->vm_pgoff; 2493 2494 /* Can we fit all of the mapping? */ 2495 vm_len = vma->vm_end - vma->vm_start; 2496 if (vm_len >> PAGE_SHIFT > pages) 2497 return -EINVAL; 2498 2499 /* Ok, let it rip */ 2500 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2501 } 2502 EXPORT_SYMBOL(vm_iomap_memory); 2503 2504 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2505 unsigned long addr, unsigned long end, 2506 pte_fn_t fn, void *data, bool create, 2507 pgtbl_mod_mask *mask) 2508 { 2509 pte_t *pte, *mapped_pte; 2510 int err = 0; 2511 spinlock_t *ptl; 2512 2513 if (create) { 2514 mapped_pte = pte = (mm == &init_mm) ? 2515 pte_alloc_kernel_track(pmd, addr, mask) : 2516 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2517 if (!pte) 2518 return -ENOMEM; 2519 } else { 2520 mapped_pte = pte = (mm == &init_mm) ? 2521 pte_offset_kernel(pmd, addr) : 2522 pte_offset_map_lock(mm, pmd, addr, &ptl); 2523 } 2524 2525 BUG_ON(pmd_huge(*pmd)); 2526 2527 arch_enter_lazy_mmu_mode(); 2528 2529 if (fn) { 2530 do { 2531 if (create || !pte_none(*pte)) { 2532 err = fn(pte++, addr, data); 2533 if (err) 2534 break; 2535 } 2536 } while (addr += PAGE_SIZE, addr != end); 2537 } 2538 *mask |= PGTBL_PTE_MODIFIED; 2539 2540 arch_leave_lazy_mmu_mode(); 2541 2542 if (mm != &init_mm) 2543 pte_unmap_unlock(mapped_pte, ptl); 2544 return err; 2545 } 2546 2547 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2548 unsigned long addr, unsigned long end, 2549 pte_fn_t fn, void *data, bool create, 2550 pgtbl_mod_mask *mask) 2551 { 2552 pmd_t *pmd; 2553 unsigned long next; 2554 int err = 0; 2555 2556 BUG_ON(pud_huge(*pud)); 2557 2558 if (create) { 2559 pmd = pmd_alloc_track(mm, pud, addr, mask); 2560 if (!pmd) 2561 return -ENOMEM; 2562 } else { 2563 pmd = pmd_offset(pud, addr); 2564 } 2565 do { 2566 next = pmd_addr_end(addr, end); 2567 if (pmd_none(*pmd) && !create) 2568 continue; 2569 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2570 return -EINVAL; 2571 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2572 if (!create) 2573 continue; 2574 pmd_clear_bad(pmd); 2575 } 2576 err = apply_to_pte_range(mm, pmd, addr, next, 2577 fn, data, create, mask); 2578 if (err) 2579 break; 2580 } while (pmd++, addr = next, addr != end); 2581 2582 return err; 2583 } 2584 2585 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2586 unsigned long addr, unsigned long end, 2587 pte_fn_t fn, void *data, bool create, 2588 pgtbl_mod_mask *mask) 2589 { 2590 pud_t *pud; 2591 unsigned long next; 2592 int err = 0; 2593 2594 if (create) { 2595 pud = pud_alloc_track(mm, p4d, addr, mask); 2596 if (!pud) 2597 return -ENOMEM; 2598 } else { 2599 pud = pud_offset(p4d, addr); 2600 } 2601 do { 2602 next = pud_addr_end(addr, end); 2603 if (pud_none(*pud) && !create) 2604 continue; 2605 if (WARN_ON_ONCE(pud_leaf(*pud))) 2606 return -EINVAL; 2607 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2608 if (!create) 2609 continue; 2610 pud_clear_bad(pud); 2611 } 2612 err = apply_to_pmd_range(mm, pud, addr, next, 2613 fn, data, create, mask); 2614 if (err) 2615 break; 2616 } while (pud++, addr = next, addr != end); 2617 2618 return err; 2619 } 2620 2621 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2622 unsigned long addr, unsigned long end, 2623 pte_fn_t fn, void *data, bool create, 2624 pgtbl_mod_mask *mask) 2625 { 2626 p4d_t *p4d; 2627 unsigned long next; 2628 int err = 0; 2629 2630 if (create) { 2631 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2632 if (!p4d) 2633 return -ENOMEM; 2634 } else { 2635 p4d = p4d_offset(pgd, addr); 2636 } 2637 do { 2638 next = p4d_addr_end(addr, end); 2639 if (p4d_none(*p4d) && !create) 2640 continue; 2641 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2642 return -EINVAL; 2643 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2644 if (!create) 2645 continue; 2646 p4d_clear_bad(p4d); 2647 } 2648 err = apply_to_pud_range(mm, p4d, addr, next, 2649 fn, data, create, mask); 2650 if (err) 2651 break; 2652 } while (p4d++, addr = next, addr != end); 2653 2654 return err; 2655 } 2656 2657 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2658 unsigned long size, pte_fn_t fn, 2659 void *data, bool create) 2660 { 2661 pgd_t *pgd; 2662 unsigned long start = addr, next; 2663 unsigned long end = addr + size; 2664 pgtbl_mod_mask mask = 0; 2665 int err = 0; 2666 2667 if (WARN_ON(addr >= end)) 2668 return -EINVAL; 2669 2670 pgd = pgd_offset(mm, addr); 2671 do { 2672 next = pgd_addr_end(addr, end); 2673 if (pgd_none(*pgd) && !create) 2674 continue; 2675 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2676 return -EINVAL; 2677 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2678 if (!create) 2679 continue; 2680 pgd_clear_bad(pgd); 2681 } 2682 err = apply_to_p4d_range(mm, pgd, addr, next, 2683 fn, data, create, &mask); 2684 if (err) 2685 break; 2686 } while (pgd++, addr = next, addr != end); 2687 2688 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2689 arch_sync_kernel_mappings(start, start + size); 2690 2691 return err; 2692 } 2693 2694 /* 2695 * Scan a region of virtual memory, filling in page tables as necessary 2696 * and calling a provided function on each leaf page table. 2697 */ 2698 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2699 unsigned long size, pte_fn_t fn, void *data) 2700 { 2701 return __apply_to_page_range(mm, addr, size, fn, data, true); 2702 } 2703 EXPORT_SYMBOL_GPL(apply_to_page_range); 2704 2705 /* 2706 * Scan a region of virtual memory, calling a provided function on 2707 * each leaf page table where it exists. 2708 * 2709 * Unlike apply_to_page_range, this does _not_ fill in page tables 2710 * where they are absent. 2711 */ 2712 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2713 unsigned long size, pte_fn_t fn, void *data) 2714 { 2715 return __apply_to_page_range(mm, addr, size, fn, data, false); 2716 } 2717 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2718 2719 /* 2720 * handle_pte_fault chooses page fault handler according to an entry which was 2721 * read non-atomically. Before making any commitment, on those architectures 2722 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2723 * parts, do_swap_page must check under lock before unmapping the pte and 2724 * proceeding (but do_wp_page is only called after already making such a check; 2725 * and do_anonymous_page can safely check later on). 2726 */ 2727 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2728 pte_t *page_table, pte_t orig_pte) 2729 { 2730 int same = 1; 2731 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2732 if (sizeof(pte_t) > sizeof(unsigned long)) { 2733 spinlock_t *ptl = pte_lockptr(mm, pmd); 2734 spin_lock(ptl); 2735 same = pte_same(*page_table, orig_pte); 2736 spin_unlock(ptl); 2737 } 2738 #endif 2739 pte_unmap(page_table); 2740 return same; 2741 } 2742 2743 static inline bool cow_user_page(struct page *dst, struct page *src, 2744 struct vm_fault *vmf) 2745 { 2746 bool ret; 2747 void *kaddr; 2748 void __user *uaddr; 2749 bool locked = false; 2750 struct vm_area_struct *vma = vmf->vma; 2751 struct mm_struct *mm = vma->vm_mm; 2752 unsigned long addr = vmf->address; 2753 2754 if (likely(src)) { 2755 copy_user_highpage(dst, src, addr, vma); 2756 return true; 2757 } 2758 2759 /* 2760 * If the source page was a PFN mapping, we don't have 2761 * a "struct page" for it. We do a best-effort copy by 2762 * just copying from the original user address. If that 2763 * fails, we just zero-fill it. Live with it. 2764 */ 2765 kaddr = kmap_atomic(dst); 2766 uaddr = (void __user *)(addr & PAGE_MASK); 2767 2768 /* 2769 * On architectures with software "accessed" bits, we would 2770 * take a double page fault, so mark it accessed here. 2771 */ 2772 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2773 pte_t entry; 2774 2775 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2776 locked = true; 2777 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2778 /* 2779 * Other thread has already handled the fault 2780 * and update local tlb only 2781 */ 2782 update_mmu_tlb(vma, addr, vmf->pte); 2783 ret = false; 2784 goto pte_unlock; 2785 } 2786 2787 entry = pte_mkyoung(vmf->orig_pte); 2788 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2789 update_mmu_cache(vma, addr, vmf->pte); 2790 } 2791 2792 /* 2793 * This really shouldn't fail, because the page is there 2794 * in the page tables. But it might just be unreadable, 2795 * in which case we just give up and fill the result with 2796 * zeroes. 2797 */ 2798 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2799 if (locked) 2800 goto warn; 2801 2802 /* Re-validate under PTL if the page is still mapped */ 2803 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2804 locked = true; 2805 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2806 /* The PTE changed under us, update local tlb */ 2807 update_mmu_tlb(vma, addr, vmf->pte); 2808 ret = false; 2809 goto pte_unlock; 2810 } 2811 2812 /* 2813 * The same page can be mapped back since last copy attempt. 2814 * Try to copy again under PTL. 2815 */ 2816 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2817 /* 2818 * Give a warn in case there can be some obscure 2819 * use-case 2820 */ 2821 warn: 2822 WARN_ON_ONCE(1); 2823 clear_page(kaddr); 2824 } 2825 } 2826 2827 ret = true; 2828 2829 pte_unlock: 2830 if (locked) 2831 pte_unmap_unlock(vmf->pte, vmf->ptl); 2832 kunmap_atomic(kaddr); 2833 flush_dcache_page(dst); 2834 2835 return ret; 2836 } 2837 2838 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2839 { 2840 struct file *vm_file = vma->vm_file; 2841 2842 if (vm_file) 2843 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2844 2845 /* 2846 * Special mappings (e.g. VDSO) do not have any file so fake 2847 * a default GFP_KERNEL for them. 2848 */ 2849 return GFP_KERNEL; 2850 } 2851 2852 /* 2853 * Notify the address space that the page is about to become writable so that 2854 * it can prohibit this or wait for the page to get into an appropriate state. 2855 * 2856 * We do this without the lock held, so that it can sleep if it needs to. 2857 */ 2858 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2859 { 2860 vm_fault_t ret; 2861 struct page *page = vmf->page; 2862 unsigned int old_flags = vmf->flags; 2863 2864 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2865 2866 if (vmf->vma->vm_file && 2867 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2868 return VM_FAULT_SIGBUS; 2869 2870 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2871 /* Restore original flags so that caller is not surprised */ 2872 vmf->flags = old_flags; 2873 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2874 return ret; 2875 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2876 lock_page(page); 2877 if (!page->mapping) { 2878 unlock_page(page); 2879 return 0; /* retry */ 2880 } 2881 ret |= VM_FAULT_LOCKED; 2882 } else 2883 VM_BUG_ON_PAGE(!PageLocked(page), page); 2884 return ret; 2885 } 2886 2887 /* 2888 * Handle dirtying of a page in shared file mapping on a write fault. 2889 * 2890 * The function expects the page to be locked and unlocks it. 2891 */ 2892 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2893 { 2894 struct vm_area_struct *vma = vmf->vma; 2895 struct address_space *mapping; 2896 struct page *page = vmf->page; 2897 bool dirtied; 2898 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2899 2900 dirtied = set_page_dirty(page); 2901 VM_BUG_ON_PAGE(PageAnon(page), page); 2902 /* 2903 * Take a local copy of the address_space - page.mapping may be zeroed 2904 * by truncate after unlock_page(). The address_space itself remains 2905 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2906 * release semantics to prevent the compiler from undoing this copying. 2907 */ 2908 mapping = page_rmapping(page); 2909 unlock_page(page); 2910 2911 if (!page_mkwrite) 2912 file_update_time(vma->vm_file); 2913 2914 /* 2915 * Throttle page dirtying rate down to writeback speed. 2916 * 2917 * mapping may be NULL here because some device drivers do not 2918 * set page.mapping but still dirty their pages 2919 * 2920 * Drop the mmap_lock before waiting on IO, if we can. The file 2921 * is pinning the mapping, as per above. 2922 */ 2923 if ((dirtied || page_mkwrite) && mapping) { 2924 struct file *fpin; 2925 2926 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2927 balance_dirty_pages_ratelimited(mapping); 2928 if (fpin) { 2929 fput(fpin); 2930 return VM_FAULT_RETRY; 2931 } 2932 } 2933 2934 return 0; 2935 } 2936 2937 /* 2938 * Handle write page faults for pages that can be reused in the current vma 2939 * 2940 * This can happen either due to the mapping being with the VM_SHARED flag, 2941 * or due to us being the last reference standing to the page. In either 2942 * case, all we need to do here is to mark the page as writable and update 2943 * any related book-keeping. 2944 */ 2945 static inline void wp_page_reuse(struct vm_fault *vmf) 2946 __releases(vmf->ptl) 2947 { 2948 struct vm_area_struct *vma = vmf->vma; 2949 struct page *page = vmf->page; 2950 pte_t entry; 2951 /* 2952 * Clear the pages cpupid information as the existing 2953 * information potentially belongs to a now completely 2954 * unrelated process. 2955 */ 2956 if (page) 2957 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2958 2959 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2960 entry = pte_mkyoung(vmf->orig_pte); 2961 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2962 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2963 update_mmu_cache(vma, vmf->address, vmf->pte); 2964 pte_unmap_unlock(vmf->pte, vmf->ptl); 2965 count_vm_event(PGREUSE); 2966 } 2967 2968 /* 2969 * Handle the case of a page which we actually need to copy to a new page. 2970 * 2971 * Called with mmap_lock locked and the old page referenced, but 2972 * without the ptl held. 2973 * 2974 * High level logic flow: 2975 * 2976 * - Allocate a page, copy the content of the old page to the new one. 2977 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2978 * - Take the PTL. If the pte changed, bail out and release the allocated page 2979 * - If the pte is still the way we remember it, update the page table and all 2980 * relevant references. This includes dropping the reference the page-table 2981 * held to the old page, as well as updating the rmap. 2982 * - In any case, unlock the PTL and drop the reference we took to the old page. 2983 */ 2984 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2985 { 2986 struct vm_area_struct *vma = vmf->vma; 2987 struct mm_struct *mm = vma->vm_mm; 2988 struct page *old_page = vmf->page; 2989 struct page *new_page = NULL; 2990 pte_t entry; 2991 int page_copied = 0; 2992 struct mmu_notifier_range range; 2993 2994 if (unlikely(anon_vma_prepare(vma))) 2995 goto oom; 2996 2997 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2998 new_page = alloc_zeroed_user_highpage_movable(vma, 2999 vmf->address); 3000 if (!new_page) 3001 goto oom; 3002 } else { 3003 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3004 vmf->address); 3005 if (!new_page) 3006 goto oom; 3007 3008 if (!cow_user_page(new_page, old_page, vmf)) { 3009 /* 3010 * COW failed, if the fault was solved by other, 3011 * it's fine. If not, userspace would re-fault on 3012 * the same address and we will handle the fault 3013 * from the second attempt. 3014 */ 3015 put_page(new_page); 3016 if (old_page) 3017 put_page(old_page); 3018 return 0; 3019 } 3020 } 3021 3022 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 3023 goto oom_free_new; 3024 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3025 3026 __SetPageUptodate(new_page); 3027 3028 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3029 vmf->address & PAGE_MASK, 3030 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3031 mmu_notifier_invalidate_range_start(&range); 3032 3033 /* 3034 * Re-check the pte - we dropped the lock 3035 */ 3036 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3037 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3038 if (old_page) { 3039 if (!PageAnon(old_page)) { 3040 dec_mm_counter_fast(mm, 3041 mm_counter_file(old_page)); 3042 inc_mm_counter_fast(mm, MM_ANONPAGES); 3043 } 3044 } else { 3045 inc_mm_counter_fast(mm, MM_ANONPAGES); 3046 } 3047 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3048 entry = mk_pte(new_page, vma->vm_page_prot); 3049 entry = pte_sw_mkyoung(entry); 3050 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3051 3052 /* 3053 * Clear the pte entry and flush it first, before updating the 3054 * pte with the new entry, to keep TLBs on different CPUs in 3055 * sync. This code used to set the new PTE then flush TLBs, but 3056 * that left a window where the new PTE could be loaded into 3057 * some TLBs while the old PTE remains in others. 3058 */ 3059 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3060 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 3061 lru_cache_add_inactive_or_unevictable(new_page, vma); 3062 /* 3063 * We call the notify macro here because, when using secondary 3064 * mmu page tables (such as kvm shadow page tables), we want the 3065 * new page to be mapped directly into the secondary page table. 3066 */ 3067 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3068 update_mmu_cache(vma, vmf->address, vmf->pte); 3069 if (old_page) { 3070 /* 3071 * Only after switching the pte to the new page may 3072 * we remove the mapcount here. Otherwise another 3073 * process may come and find the rmap count decremented 3074 * before the pte is switched to the new page, and 3075 * "reuse" the old page writing into it while our pte 3076 * here still points into it and can be read by other 3077 * threads. 3078 * 3079 * The critical issue is to order this 3080 * page_remove_rmap with the ptp_clear_flush above. 3081 * Those stores are ordered by (if nothing else,) 3082 * the barrier present in the atomic_add_negative 3083 * in page_remove_rmap. 3084 * 3085 * Then the TLB flush in ptep_clear_flush ensures that 3086 * no process can access the old page before the 3087 * decremented mapcount is visible. And the old page 3088 * cannot be reused until after the decremented 3089 * mapcount is visible. So transitively, TLBs to 3090 * old page will be flushed before it can be reused. 3091 */ 3092 page_remove_rmap(old_page, false); 3093 } 3094 3095 /* Free the old page.. */ 3096 new_page = old_page; 3097 page_copied = 1; 3098 } else { 3099 update_mmu_tlb(vma, vmf->address, vmf->pte); 3100 } 3101 3102 if (new_page) 3103 put_page(new_page); 3104 3105 pte_unmap_unlock(vmf->pte, vmf->ptl); 3106 /* 3107 * No need to double call mmu_notifier->invalidate_range() callback as 3108 * the above ptep_clear_flush_notify() did already call it. 3109 */ 3110 mmu_notifier_invalidate_range_only_end(&range); 3111 if (old_page) { 3112 /* 3113 * Don't let another task, with possibly unlocked vma, 3114 * keep the mlocked page. 3115 */ 3116 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 3117 lock_page(old_page); /* LRU manipulation */ 3118 if (PageMlocked(old_page)) 3119 munlock_vma_page(old_page); 3120 unlock_page(old_page); 3121 } 3122 if (page_copied) 3123 free_swap_cache(old_page); 3124 put_page(old_page); 3125 } 3126 return page_copied ? VM_FAULT_WRITE : 0; 3127 oom_free_new: 3128 put_page(new_page); 3129 oom: 3130 if (old_page) 3131 put_page(old_page); 3132 return VM_FAULT_OOM; 3133 } 3134 3135 /** 3136 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3137 * writeable once the page is prepared 3138 * 3139 * @vmf: structure describing the fault 3140 * 3141 * This function handles all that is needed to finish a write page fault in a 3142 * shared mapping due to PTE being read-only once the mapped page is prepared. 3143 * It handles locking of PTE and modifying it. 3144 * 3145 * The function expects the page to be locked or other protection against 3146 * concurrent faults / writeback (such as DAX radix tree locks). 3147 * 3148 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3149 * we acquired PTE lock. 3150 */ 3151 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3152 { 3153 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3154 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3155 &vmf->ptl); 3156 /* 3157 * We might have raced with another page fault while we released the 3158 * pte_offset_map_lock. 3159 */ 3160 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3161 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3162 pte_unmap_unlock(vmf->pte, vmf->ptl); 3163 return VM_FAULT_NOPAGE; 3164 } 3165 wp_page_reuse(vmf); 3166 return 0; 3167 } 3168 3169 /* 3170 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3171 * mapping 3172 */ 3173 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3174 { 3175 struct vm_area_struct *vma = vmf->vma; 3176 3177 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3178 vm_fault_t ret; 3179 3180 pte_unmap_unlock(vmf->pte, vmf->ptl); 3181 vmf->flags |= FAULT_FLAG_MKWRITE; 3182 ret = vma->vm_ops->pfn_mkwrite(vmf); 3183 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3184 return ret; 3185 return finish_mkwrite_fault(vmf); 3186 } 3187 wp_page_reuse(vmf); 3188 return VM_FAULT_WRITE; 3189 } 3190 3191 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3192 __releases(vmf->ptl) 3193 { 3194 struct vm_area_struct *vma = vmf->vma; 3195 vm_fault_t ret = VM_FAULT_WRITE; 3196 3197 get_page(vmf->page); 3198 3199 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3200 vm_fault_t tmp; 3201 3202 pte_unmap_unlock(vmf->pte, vmf->ptl); 3203 tmp = do_page_mkwrite(vmf); 3204 if (unlikely(!tmp || (tmp & 3205 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3206 put_page(vmf->page); 3207 return tmp; 3208 } 3209 tmp = finish_mkwrite_fault(vmf); 3210 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3211 unlock_page(vmf->page); 3212 put_page(vmf->page); 3213 return tmp; 3214 } 3215 } else { 3216 wp_page_reuse(vmf); 3217 lock_page(vmf->page); 3218 } 3219 ret |= fault_dirty_shared_page(vmf); 3220 put_page(vmf->page); 3221 3222 return ret; 3223 } 3224 3225 /* 3226 * This routine handles present pages, when users try to write 3227 * to a shared page. It is done by copying the page to a new address 3228 * and decrementing the shared-page counter for the old page. 3229 * 3230 * Note that this routine assumes that the protection checks have been 3231 * done by the caller (the low-level page fault routine in most cases). 3232 * Thus we can safely just mark it writable once we've done any necessary 3233 * COW. 3234 * 3235 * We also mark the page dirty at this point even though the page will 3236 * change only once the write actually happens. This avoids a few races, 3237 * and potentially makes it more efficient. 3238 * 3239 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3240 * but allow concurrent faults), with pte both mapped and locked. 3241 * We return with mmap_lock still held, but pte unmapped and unlocked. 3242 */ 3243 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3244 __releases(vmf->ptl) 3245 { 3246 struct vm_area_struct *vma = vmf->vma; 3247 3248 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3249 pte_unmap_unlock(vmf->pte, vmf->ptl); 3250 return handle_userfault(vmf, VM_UFFD_WP); 3251 } 3252 3253 /* 3254 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3255 * is flushed in this case before copying. 3256 */ 3257 if (unlikely(userfaultfd_wp(vmf->vma) && 3258 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3259 flush_tlb_page(vmf->vma, vmf->address); 3260 3261 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3262 if (!vmf->page) { 3263 /* 3264 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3265 * VM_PFNMAP VMA. 3266 * 3267 * We should not cow pages in a shared writeable mapping. 3268 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3269 */ 3270 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3271 (VM_WRITE|VM_SHARED)) 3272 return wp_pfn_shared(vmf); 3273 3274 pte_unmap_unlock(vmf->pte, vmf->ptl); 3275 return wp_page_copy(vmf); 3276 } 3277 3278 /* 3279 * Take out anonymous pages first, anonymous shared vmas are 3280 * not dirty accountable. 3281 */ 3282 if (PageAnon(vmf->page)) { 3283 struct page *page = vmf->page; 3284 3285 /* PageKsm() doesn't necessarily raise the page refcount */ 3286 if (PageKsm(page) || page_count(page) != 1) 3287 goto copy; 3288 if (!trylock_page(page)) 3289 goto copy; 3290 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3291 unlock_page(page); 3292 goto copy; 3293 } 3294 /* 3295 * Ok, we've got the only map reference, and the only 3296 * page count reference, and the page is locked, 3297 * it's dark out, and we're wearing sunglasses. Hit it. 3298 */ 3299 unlock_page(page); 3300 wp_page_reuse(vmf); 3301 return VM_FAULT_WRITE; 3302 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3303 (VM_WRITE|VM_SHARED))) { 3304 return wp_page_shared(vmf); 3305 } 3306 copy: 3307 /* 3308 * Ok, we need to copy. Oh, well.. 3309 */ 3310 get_page(vmf->page); 3311 3312 pte_unmap_unlock(vmf->pte, vmf->ptl); 3313 return wp_page_copy(vmf); 3314 } 3315 3316 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3317 unsigned long start_addr, unsigned long end_addr, 3318 struct zap_details *details) 3319 { 3320 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3321 } 3322 3323 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3324 struct zap_details *details) 3325 { 3326 struct vm_area_struct *vma; 3327 pgoff_t vba, vea, zba, zea; 3328 3329 vma_interval_tree_foreach(vma, root, 3330 details->first_index, details->last_index) { 3331 3332 vba = vma->vm_pgoff; 3333 vea = vba + vma_pages(vma) - 1; 3334 zba = details->first_index; 3335 if (zba < vba) 3336 zba = vba; 3337 zea = details->last_index; 3338 if (zea > vea) 3339 zea = vea; 3340 3341 unmap_mapping_range_vma(vma, 3342 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3343 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3344 details); 3345 } 3346 } 3347 3348 /** 3349 * unmap_mapping_page() - Unmap single page from processes. 3350 * @page: The locked page to be unmapped. 3351 * 3352 * Unmap this page from any userspace process which still has it mmaped. 3353 * Typically, for efficiency, the range of nearby pages has already been 3354 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3355 * truncation or invalidation holds the lock on a page, it may find that 3356 * the page has been remapped again: and then uses unmap_mapping_page() 3357 * to unmap it finally. 3358 */ 3359 void unmap_mapping_page(struct page *page) 3360 { 3361 struct address_space *mapping = page->mapping; 3362 struct zap_details details = { }; 3363 3364 VM_BUG_ON(!PageLocked(page)); 3365 VM_BUG_ON(PageTail(page)); 3366 3367 details.check_mapping = mapping; 3368 details.first_index = page->index; 3369 details.last_index = page->index + thp_nr_pages(page) - 1; 3370 details.single_page = page; 3371 3372 i_mmap_lock_write(mapping); 3373 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3374 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3375 i_mmap_unlock_write(mapping); 3376 } 3377 3378 /** 3379 * unmap_mapping_pages() - Unmap pages from processes. 3380 * @mapping: The address space containing pages to be unmapped. 3381 * @start: Index of first page to be unmapped. 3382 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3383 * @even_cows: Whether to unmap even private COWed pages. 3384 * 3385 * Unmap the pages in this address space from any userspace process which 3386 * has them mmaped. Generally, you want to remove COWed pages as well when 3387 * a file is being truncated, but not when invalidating pages from the page 3388 * cache. 3389 */ 3390 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3391 pgoff_t nr, bool even_cows) 3392 { 3393 struct zap_details details = { }; 3394 3395 details.check_mapping = even_cows ? NULL : mapping; 3396 details.first_index = start; 3397 details.last_index = start + nr - 1; 3398 if (details.last_index < details.first_index) 3399 details.last_index = ULONG_MAX; 3400 3401 i_mmap_lock_write(mapping); 3402 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3403 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3404 i_mmap_unlock_write(mapping); 3405 } 3406 3407 /** 3408 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3409 * address_space corresponding to the specified byte range in the underlying 3410 * file. 3411 * 3412 * @mapping: the address space containing mmaps to be unmapped. 3413 * @holebegin: byte in first page to unmap, relative to the start of 3414 * the underlying file. This will be rounded down to a PAGE_SIZE 3415 * boundary. Note that this is different from truncate_pagecache(), which 3416 * must keep the partial page. In contrast, we must get rid of 3417 * partial pages. 3418 * @holelen: size of prospective hole in bytes. This will be rounded 3419 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3420 * end of the file. 3421 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3422 * but 0 when invalidating pagecache, don't throw away private data. 3423 */ 3424 void unmap_mapping_range(struct address_space *mapping, 3425 loff_t const holebegin, loff_t const holelen, int even_cows) 3426 { 3427 pgoff_t hba = holebegin >> PAGE_SHIFT; 3428 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3429 3430 /* Check for overflow. */ 3431 if (sizeof(holelen) > sizeof(hlen)) { 3432 long long holeend = 3433 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3434 if (holeend & ~(long long)ULONG_MAX) 3435 hlen = ULONG_MAX - hba + 1; 3436 } 3437 3438 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3439 } 3440 EXPORT_SYMBOL(unmap_mapping_range); 3441 3442 /* 3443 * Restore a potential device exclusive pte to a working pte entry 3444 */ 3445 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3446 { 3447 struct page *page = vmf->page; 3448 struct vm_area_struct *vma = vmf->vma; 3449 struct mmu_notifier_range range; 3450 3451 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) 3452 return VM_FAULT_RETRY; 3453 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 3454 vma->vm_mm, vmf->address & PAGE_MASK, 3455 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3456 mmu_notifier_invalidate_range_start(&range); 3457 3458 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3459 &vmf->ptl); 3460 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3461 restore_exclusive_pte(vma, page, vmf->address, vmf->pte); 3462 3463 pte_unmap_unlock(vmf->pte, vmf->ptl); 3464 unlock_page(page); 3465 3466 mmu_notifier_invalidate_range_end(&range); 3467 return 0; 3468 } 3469 3470 /* 3471 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3472 * but allow concurrent faults), and pte mapped but not yet locked. 3473 * We return with pte unmapped and unlocked. 3474 * 3475 * We return with the mmap_lock locked or unlocked in the same cases 3476 * as does filemap_fault(). 3477 */ 3478 vm_fault_t do_swap_page(struct vm_fault *vmf) 3479 { 3480 struct vm_area_struct *vma = vmf->vma; 3481 struct page *page = NULL, *swapcache; 3482 struct swap_info_struct *si = NULL; 3483 swp_entry_t entry; 3484 pte_t pte; 3485 int locked; 3486 int exclusive = 0; 3487 vm_fault_t ret = 0; 3488 void *shadow = NULL; 3489 3490 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3491 goto out; 3492 3493 entry = pte_to_swp_entry(vmf->orig_pte); 3494 if (unlikely(non_swap_entry(entry))) { 3495 if (is_migration_entry(entry)) { 3496 migration_entry_wait(vma->vm_mm, vmf->pmd, 3497 vmf->address); 3498 } else if (is_device_exclusive_entry(entry)) { 3499 vmf->page = pfn_swap_entry_to_page(entry); 3500 ret = remove_device_exclusive_entry(vmf); 3501 } else if (is_device_private_entry(entry)) { 3502 vmf->page = pfn_swap_entry_to_page(entry); 3503 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3504 } else if (is_hwpoison_entry(entry)) { 3505 ret = VM_FAULT_HWPOISON; 3506 } else { 3507 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3508 ret = VM_FAULT_SIGBUS; 3509 } 3510 goto out; 3511 } 3512 3513 /* Prevent swapoff from happening to us. */ 3514 si = get_swap_device(entry); 3515 if (unlikely(!si)) 3516 goto out; 3517 3518 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN); 3519 page = lookup_swap_cache(entry, vma, vmf->address); 3520 swapcache = page; 3521 3522 if (!page) { 3523 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3524 __swap_count(entry) == 1) { 3525 /* skip swapcache */ 3526 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3527 vmf->address); 3528 if (page) { 3529 __SetPageLocked(page); 3530 __SetPageSwapBacked(page); 3531 3532 if (mem_cgroup_swapin_charge_page(page, 3533 vma->vm_mm, GFP_KERNEL, entry)) { 3534 ret = VM_FAULT_OOM; 3535 goto out_page; 3536 } 3537 mem_cgroup_swapin_uncharge_swap(entry); 3538 3539 shadow = get_shadow_from_swap_cache(entry); 3540 if (shadow) 3541 workingset_refault(page, shadow); 3542 3543 lru_cache_add(page); 3544 3545 /* To provide entry to swap_readpage() */ 3546 set_page_private(page, entry.val); 3547 swap_readpage(page, true); 3548 set_page_private(page, 0); 3549 } 3550 } else { 3551 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3552 vmf); 3553 swapcache = page; 3554 } 3555 3556 if (!page) { 3557 /* 3558 * Back out if somebody else faulted in this pte 3559 * while we released the pte lock. 3560 */ 3561 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3562 vmf->address, &vmf->ptl); 3563 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3564 ret = VM_FAULT_OOM; 3565 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3566 goto unlock; 3567 } 3568 3569 /* Had to read the page from swap area: Major fault */ 3570 ret = VM_FAULT_MAJOR; 3571 count_vm_event(PGMAJFAULT); 3572 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3573 } else if (PageHWPoison(page)) { 3574 /* 3575 * hwpoisoned dirty swapcache pages are kept for killing 3576 * owner processes (which may be unknown at hwpoison time) 3577 */ 3578 ret = VM_FAULT_HWPOISON; 3579 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3580 goto out_release; 3581 } 3582 3583 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3584 3585 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); 3586 if (!locked) { 3587 ret |= VM_FAULT_RETRY; 3588 goto out_release; 3589 } 3590 3591 /* 3592 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3593 * release the swapcache from under us. The page pin, and pte_same 3594 * test below, are not enough to exclude that. Even if it is still 3595 * swapcache, we need to check that the page's swap has not changed. 3596 */ 3597 if (unlikely((!PageSwapCache(page) || 3598 page_private(page) != entry.val)) && swapcache) 3599 goto out_page; 3600 3601 page = ksm_might_need_to_copy(page, vma, vmf->address); 3602 if (unlikely(!page)) { 3603 ret = VM_FAULT_OOM; 3604 page = swapcache; 3605 goto out_page; 3606 } 3607 3608 cgroup_throttle_swaprate(page, GFP_KERNEL); 3609 3610 /* 3611 * Back out if somebody else already faulted in this pte. 3612 */ 3613 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3614 &vmf->ptl); 3615 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3616 goto out_nomap; 3617 3618 if (unlikely(!PageUptodate(page))) { 3619 ret = VM_FAULT_SIGBUS; 3620 goto out_nomap; 3621 } 3622 3623 /* 3624 * The page isn't present yet, go ahead with the fault. 3625 * 3626 * Be careful about the sequence of operations here. 3627 * To get its accounting right, reuse_swap_page() must be called 3628 * while the page is counted on swap but not yet in mapcount i.e. 3629 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3630 * must be called after the swap_free(), or it will never succeed. 3631 */ 3632 3633 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3634 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3635 pte = mk_pte(page, vma->vm_page_prot); 3636 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3637 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3638 vmf->flags &= ~FAULT_FLAG_WRITE; 3639 ret |= VM_FAULT_WRITE; 3640 exclusive = RMAP_EXCLUSIVE; 3641 } 3642 flush_icache_page(vma, page); 3643 if (pte_swp_soft_dirty(vmf->orig_pte)) 3644 pte = pte_mksoft_dirty(pte); 3645 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3646 pte = pte_mkuffd_wp(pte); 3647 pte = pte_wrprotect(pte); 3648 } 3649 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3650 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3651 vmf->orig_pte = pte; 3652 3653 /* ksm created a completely new copy */ 3654 if (unlikely(page != swapcache && swapcache)) { 3655 page_add_new_anon_rmap(page, vma, vmf->address, false); 3656 lru_cache_add_inactive_or_unevictable(page, vma); 3657 } else { 3658 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3659 } 3660 3661 swap_free(entry); 3662 if (mem_cgroup_swap_full(page) || 3663 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3664 try_to_free_swap(page); 3665 unlock_page(page); 3666 if (page != swapcache && swapcache) { 3667 /* 3668 * Hold the lock to avoid the swap entry to be reused 3669 * until we take the PT lock for the pte_same() check 3670 * (to avoid false positives from pte_same). For 3671 * further safety release the lock after the swap_free 3672 * so that the swap count won't change under a 3673 * parallel locked swapcache. 3674 */ 3675 unlock_page(swapcache); 3676 put_page(swapcache); 3677 } 3678 3679 if (vmf->flags & FAULT_FLAG_WRITE) { 3680 ret |= do_wp_page(vmf); 3681 if (ret & VM_FAULT_ERROR) 3682 ret &= VM_FAULT_ERROR; 3683 goto out; 3684 } 3685 3686 /* No need to invalidate - it was non-present before */ 3687 update_mmu_cache(vma, vmf->address, vmf->pte); 3688 unlock: 3689 pte_unmap_unlock(vmf->pte, vmf->ptl); 3690 out: 3691 if (si) 3692 put_swap_device(si); 3693 return ret; 3694 out_nomap: 3695 pte_unmap_unlock(vmf->pte, vmf->ptl); 3696 out_page: 3697 unlock_page(page); 3698 out_release: 3699 put_page(page); 3700 if (page != swapcache && swapcache) { 3701 unlock_page(swapcache); 3702 put_page(swapcache); 3703 } 3704 if (si) 3705 put_swap_device(si); 3706 return ret; 3707 } 3708 3709 /* 3710 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3711 * but allow concurrent faults), and pte mapped but not yet locked. 3712 * We return with mmap_lock still held, but pte unmapped and unlocked. 3713 */ 3714 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3715 { 3716 struct vm_area_struct *vma = vmf->vma; 3717 struct page *page; 3718 vm_fault_t ret = 0; 3719 pte_t entry; 3720 3721 /* File mapping without ->vm_ops ? */ 3722 if (vma->vm_flags & VM_SHARED) 3723 return VM_FAULT_SIGBUS; 3724 3725 /* 3726 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3727 * pte_offset_map() on pmds where a huge pmd might be created 3728 * from a different thread. 3729 * 3730 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3731 * parallel threads are excluded by other means. 3732 * 3733 * Here we only have mmap_read_lock(mm). 3734 */ 3735 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3736 return VM_FAULT_OOM; 3737 3738 /* See comment in handle_pte_fault() */ 3739 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3740 return 0; 3741 3742 /* Use the zero-page for reads */ 3743 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3744 !mm_forbids_zeropage(vma->vm_mm)) { 3745 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3746 vma->vm_page_prot)); 3747 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3748 vmf->address, &vmf->ptl); 3749 if (!pte_none(*vmf->pte)) { 3750 update_mmu_tlb(vma, vmf->address, vmf->pte); 3751 goto unlock; 3752 } 3753 ret = check_stable_address_space(vma->vm_mm); 3754 if (ret) 3755 goto unlock; 3756 /* Deliver the page fault to userland, check inside PT lock */ 3757 if (userfaultfd_missing(vma)) { 3758 pte_unmap_unlock(vmf->pte, vmf->ptl); 3759 return handle_userfault(vmf, VM_UFFD_MISSING); 3760 } 3761 goto setpte; 3762 } 3763 3764 /* Allocate our own private page. */ 3765 if (unlikely(anon_vma_prepare(vma))) 3766 goto oom; 3767 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3768 if (!page) 3769 goto oom; 3770 3771 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3772 goto oom_free_page; 3773 cgroup_throttle_swaprate(page, GFP_KERNEL); 3774 3775 /* 3776 * The memory barrier inside __SetPageUptodate makes sure that 3777 * preceding stores to the page contents become visible before 3778 * the set_pte_at() write. 3779 */ 3780 __SetPageUptodate(page); 3781 3782 entry = mk_pte(page, vma->vm_page_prot); 3783 entry = pte_sw_mkyoung(entry); 3784 if (vma->vm_flags & VM_WRITE) 3785 entry = pte_mkwrite(pte_mkdirty(entry)); 3786 3787 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3788 &vmf->ptl); 3789 if (!pte_none(*vmf->pte)) { 3790 update_mmu_cache(vma, vmf->address, vmf->pte); 3791 goto release; 3792 } 3793 3794 ret = check_stable_address_space(vma->vm_mm); 3795 if (ret) 3796 goto release; 3797 3798 /* Deliver the page fault to userland, check inside PT lock */ 3799 if (userfaultfd_missing(vma)) { 3800 pte_unmap_unlock(vmf->pte, vmf->ptl); 3801 put_page(page); 3802 return handle_userfault(vmf, VM_UFFD_MISSING); 3803 } 3804 3805 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3806 page_add_new_anon_rmap(page, vma, vmf->address, false); 3807 lru_cache_add_inactive_or_unevictable(page, vma); 3808 setpte: 3809 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3810 3811 /* No need to invalidate - it was non-present before */ 3812 update_mmu_cache(vma, vmf->address, vmf->pte); 3813 unlock: 3814 pte_unmap_unlock(vmf->pte, vmf->ptl); 3815 return ret; 3816 release: 3817 put_page(page); 3818 goto unlock; 3819 oom_free_page: 3820 put_page(page); 3821 oom: 3822 return VM_FAULT_OOM; 3823 } 3824 3825 /* 3826 * The mmap_lock must have been held on entry, and may have been 3827 * released depending on flags and vma->vm_ops->fault() return value. 3828 * See filemap_fault() and __lock_page_retry(). 3829 */ 3830 static vm_fault_t __do_fault(struct vm_fault *vmf) 3831 { 3832 struct vm_area_struct *vma = vmf->vma; 3833 vm_fault_t ret; 3834 3835 /* 3836 * Preallocate pte before we take page_lock because this might lead to 3837 * deadlocks for memcg reclaim which waits for pages under writeback: 3838 * lock_page(A) 3839 * SetPageWriteback(A) 3840 * unlock_page(A) 3841 * lock_page(B) 3842 * lock_page(B) 3843 * pte_alloc_one 3844 * shrink_page_list 3845 * wait_on_page_writeback(A) 3846 * SetPageWriteback(B) 3847 * unlock_page(B) 3848 * # flush A, B to clear the writeback 3849 */ 3850 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3851 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3852 if (!vmf->prealloc_pte) 3853 return VM_FAULT_OOM; 3854 smp_wmb(); /* See comment in __pte_alloc() */ 3855 } 3856 3857 ret = vma->vm_ops->fault(vmf); 3858 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3859 VM_FAULT_DONE_COW))) 3860 return ret; 3861 3862 if (unlikely(PageHWPoison(vmf->page))) { 3863 if (ret & VM_FAULT_LOCKED) 3864 unlock_page(vmf->page); 3865 put_page(vmf->page); 3866 vmf->page = NULL; 3867 return VM_FAULT_HWPOISON; 3868 } 3869 3870 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3871 lock_page(vmf->page); 3872 else 3873 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3874 3875 return ret; 3876 } 3877 3878 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3879 static void deposit_prealloc_pte(struct vm_fault *vmf) 3880 { 3881 struct vm_area_struct *vma = vmf->vma; 3882 3883 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3884 /* 3885 * We are going to consume the prealloc table, 3886 * count that as nr_ptes. 3887 */ 3888 mm_inc_nr_ptes(vma->vm_mm); 3889 vmf->prealloc_pte = NULL; 3890 } 3891 3892 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3893 { 3894 struct vm_area_struct *vma = vmf->vma; 3895 bool write = vmf->flags & FAULT_FLAG_WRITE; 3896 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3897 pmd_t entry; 3898 int i; 3899 vm_fault_t ret = VM_FAULT_FALLBACK; 3900 3901 if (!transhuge_vma_suitable(vma, haddr)) 3902 return ret; 3903 3904 page = compound_head(page); 3905 if (compound_order(page) != HPAGE_PMD_ORDER) 3906 return ret; 3907 3908 /* 3909 * Archs like ppc64 need additional space to store information 3910 * related to pte entry. Use the preallocated table for that. 3911 */ 3912 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3913 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3914 if (!vmf->prealloc_pte) 3915 return VM_FAULT_OOM; 3916 smp_wmb(); /* See comment in __pte_alloc() */ 3917 } 3918 3919 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3920 if (unlikely(!pmd_none(*vmf->pmd))) 3921 goto out; 3922 3923 for (i = 0; i < HPAGE_PMD_NR; i++) 3924 flush_icache_page(vma, page + i); 3925 3926 entry = mk_huge_pmd(page, vma->vm_page_prot); 3927 if (write) 3928 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3929 3930 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3931 page_add_file_rmap(page, true); 3932 /* 3933 * deposit and withdraw with pmd lock held 3934 */ 3935 if (arch_needs_pgtable_deposit()) 3936 deposit_prealloc_pte(vmf); 3937 3938 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3939 3940 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3941 3942 /* fault is handled */ 3943 ret = 0; 3944 count_vm_event(THP_FILE_MAPPED); 3945 out: 3946 spin_unlock(vmf->ptl); 3947 return ret; 3948 } 3949 #else 3950 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3951 { 3952 return VM_FAULT_FALLBACK; 3953 } 3954 #endif 3955 3956 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 3957 { 3958 struct vm_area_struct *vma = vmf->vma; 3959 bool write = vmf->flags & FAULT_FLAG_WRITE; 3960 bool prefault = vmf->address != addr; 3961 pte_t entry; 3962 3963 flush_icache_page(vma, page); 3964 entry = mk_pte(page, vma->vm_page_prot); 3965 3966 if (prefault && arch_wants_old_prefaulted_pte()) 3967 entry = pte_mkold(entry); 3968 else 3969 entry = pte_sw_mkyoung(entry); 3970 3971 if (write) 3972 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3973 /* copy-on-write page */ 3974 if (write && !(vma->vm_flags & VM_SHARED)) { 3975 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3976 page_add_new_anon_rmap(page, vma, addr, false); 3977 lru_cache_add_inactive_or_unevictable(page, vma); 3978 } else { 3979 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3980 page_add_file_rmap(page, false); 3981 } 3982 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 3983 } 3984 3985 /** 3986 * finish_fault - finish page fault once we have prepared the page to fault 3987 * 3988 * @vmf: structure describing the fault 3989 * 3990 * This function handles all that is needed to finish a page fault once the 3991 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3992 * given page, adds reverse page mapping, handles memcg charges and LRU 3993 * addition. 3994 * 3995 * The function expects the page to be locked and on success it consumes a 3996 * reference of a page being mapped (for the PTE which maps it). 3997 * 3998 * Return: %0 on success, %VM_FAULT_ code in case of error. 3999 */ 4000 vm_fault_t finish_fault(struct vm_fault *vmf) 4001 { 4002 struct vm_area_struct *vma = vmf->vma; 4003 struct page *page; 4004 vm_fault_t ret; 4005 4006 /* Did we COW the page? */ 4007 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4008 page = vmf->cow_page; 4009 else 4010 page = vmf->page; 4011 4012 /* 4013 * check even for read faults because we might have lost our CoWed 4014 * page 4015 */ 4016 if (!(vma->vm_flags & VM_SHARED)) { 4017 ret = check_stable_address_space(vma->vm_mm); 4018 if (ret) 4019 return ret; 4020 } 4021 4022 if (pmd_none(*vmf->pmd)) { 4023 if (PageTransCompound(page)) { 4024 ret = do_set_pmd(vmf, page); 4025 if (ret != VM_FAULT_FALLBACK) 4026 return ret; 4027 } 4028 4029 if (vmf->prealloc_pte) { 4030 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4031 if (likely(pmd_none(*vmf->pmd))) { 4032 mm_inc_nr_ptes(vma->vm_mm); 4033 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4034 vmf->prealloc_pte = NULL; 4035 } 4036 spin_unlock(vmf->ptl); 4037 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 4038 return VM_FAULT_OOM; 4039 } 4040 } 4041 4042 /* See comment in handle_pte_fault() */ 4043 if (pmd_devmap_trans_unstable(vmf->pmd)) 4044 return 0; 4045 4046 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4047 vmf->address, &vmf->ptl); 4048 ret = 0; 4049 /* Re-check under ptl */ 4050 if (likely(pte_none(*vmf->pte))) 4051 do_set_pte(vmf, page, vmf->address); 4052 else 4053 ret = VM_FAULT_NOPAGE; 4054 4055 update_mmu_tlb(vma, vmf->address, vmf->pte); 4056 pte_unmap_unlock(vmf->pte, vmf->ptl); 4057 return ret; 4058 } 4059 4060 static unsigned long fault_around_bytes __read_mostly = 4061 rounddown_pow_of_two(65536); 4062 4063 #ifdef CONFIG_DEBUG_FS 4064 static int fault_around_bytes_get(void *data, u64 *val) 4065 { 4066 *val = fault_around_bytes; 4067 return 0; 4068 } 4069 4070 /* 4071 * fault_around_bytes must be rounded down to the nearest page order as it's 4072 * what do_fault_around() expects to see. 4073 */ 4074 static int fault_around_bytes_set(void *data, u64 val) 4075 { 4076 if (val / PAGE_SIZE > PTRS_PER_PTE) 4077 return -EINVAL; 4078 if (val > PAGE_SIZE) 4079 fault_around_bytes = rounddown_pow_of_two(val); 4080 else 4081 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4082 return 0; 4083 } 4084 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4085 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4086 4087 static int __init fault_around_debugfs(void) 4088 { 4089 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4090 &fault_around_bytes_fops); 4091 return 0; 4092 } 4093 late_initcall(fault_around_debugfs); 4094 #endif 4095 4096 /* 4097 * do_fault_around() tries to map few pages around the fault address. The hope 4098 * is that the pages will be needed soon and this will lower the number of 4099 * faults to handle. 4100 * 4101 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4102 * not ready to be mapped: not up-to-date, locked, etc. 4103 * 4104 * This function is called with the page table lock taken. In the split ptlock 4105 * case the page table lock only protects only those entries which belong to 4106 * the page table corresponding to the fault address. 4107 * 4108 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4109 * only once. 4110 * 4111 * fault_around_bytes defines how many bytes we'll try to map. 4112 * do_fault_around() expects it to be set to a power of two less than or equal 4113 * to PTRS_PER_PTE. 4114 * 4115 * The virtual address of the area that we map is naturally aligned to 4116 * fault_around_bytes rounded down to the machine page size 4117 * (and therefore to page order). This way it's easier to guarantee 4118 * that we don't cross page table boundaries. 4119 */ 4120 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4121 { 4122 unsigned long address = vmf->address, nr_pages, mask; 4123 pgoff_t start_pgoff = vmf->pgoff; 4124 pgoff_t end_pgoff; 4125 int off; 4126 4127 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4128 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4129 4130 address = max(address & mask, vmf->vma->vm_start); 4131 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4132 start_pgoff -= off; 4133 4134 /* 4135 * end_pgoff is either the end of the page table, the end of 4136 * the vma or nr_pages from start_pgoff, depending what is nearest. 4137 */ 4138 end_pgoff = start_pgoff - 4139 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4140 PTRS_PER_PTE - 1; 4141 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4142 start_pgoff + nr_pages - 1); 4143 4144 if (pmd_none(*vmf->pmd)) { 4145 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4146 if (!vmf->prealloc_pte) 4147 return VM_FAULT_OOM; 4148 smp_wmb(); /* See comment in __pte_alloc() */ 4149 } 4150 4151 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4152 } 4153 4154 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4155 { 4156 struct vm_area_struct *vma = vmf->vma; 4157 vm_fault_t ret = 0; 4158 4159 /* 4160 * Let's call ->map_pages() first and use ->fault() as fallback 4161 * if page by the offset is not ready to be mapped (cold cache or 4162 * something). 4163 */ 4164 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 4165 if (likely(!userfaultfd_minor(vmf->vma))) { 4166 ret = do_fault_around(vmf); 4167 if (ret) 4168 return ret; 4169 } 4170 } 4171 4172 ret = __do_fault(vmf); 4173 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4174 return ret; 4175 4176 ret |= finish_fault(vmf); 4177 unlock_page(vmf->page); 4178 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4179 put_page(vmf->page); 4180 return ret; 4181 } 4182 4183 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4184 { 4185 struct vm_area_struct *vma = vmf->vma; 4186 vm_fault_t ret; 4187 4188 if (unlikely(anon_vma_prepare(vma))) 4189 return VM_FAULT_OOM; 4190 4191 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4192 if (!vmf->cow_page) 4193 return VM_FAULT_OOM; 4194 4195 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 4196 put_page(vmf->cow_page); 4197 return VM_FAULT_OOM; 4198 } 4199 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4200 4201 ret = __do_fault(vmf); 4202 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4203 goto uncharge_out; 4204 if (ret & VM_FAULT_DONE_COW) 4205 return ret; 4206 4207 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4208 __SetPageUptodate(vmf->cow_page); 4209 4210 ret |= finish_fault(vmf); 4211 unlock_page(vmf->page); 4212 put_page(vmf->page); 4213 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4214 goto uncharge_out; 4215 return ret; 4216 uncharge_out: 4217 put_page(vmf->cow_page); 4218 return ret; 4219 } 4220 4221 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4222 { 4223 struct vm_area_struct *vma = vmf->vma; 4224 vm_fault_t ret, tmp; 4225 4226 ret = __do_fault(vmf); 4227 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4228 return ret; 4229 4230 /* 4231 * Check if the backing address space wants to know that the page is 4232 * about to become writable 4233 */ 4234 if (vma->vm_ops->page_mkwrite) { 4235 unlock_page(vmf->page); 4236 tmp = do_page_mkwrite(vmf); 4237 if (unlikely(!tmp || 4238 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4239 put_page(vmf->page); 4240 return tmp; 4241 } 4242 } 4243 4244 ret |= finish_fault(vmf); 4245 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4246 VM_FAULT_RETRY))) { 4247 unlock_page(vmf->page); 4248 put_page(vmf->page); 4249 return ret; 4250 } 4251 4252 ret |= fault_dirty_shared_page(vmf); 4253 return ret; 4254 } 4255 4256 /* 4257 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4258 * but allow concurrent faults). 4259 * The mmap_lock may have been released depending on flags and our 4260 * return value. See filemap_fault() and __lock_page_or_retry(). 4261 * If mmap_lock is released, vma may become invalid (for example 4262 * by other thread calling munmap()). 4263 */ 4264 static vm_fault_t do_fault(struct vm_fault *vmf) 4265 { 4266 struct vm_area_struct *vma = vmf->vma; 4267 struct mm_struct *vm_mm = vma->vm_mm; 4268 vm_fault_t ret; 4269 4270 /* 4271 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4272 */ 4273 if (!vma->vm_ops->fault) { 4274 /* 4275 * If we find a migration pmd entry or a none pmd entry, which 4276 * should never happen, return SIGBUS 4277 */ 4278 if (unlikely(!pmd_present(*vmf->pmd))) 4279 ret = VM_FAULT_SIGBUS; 4280 else { 4281 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4282 vmf->pmd, 4283 vmf->address, 4284 &vmf->ptl); 4285 /* 4286 * Make sure this is not a temporary clearing of pte 4287 * by holding ptl and checking again. A R/M/W update 4288 * of pte involves: take ptl, clearing the pte so that 4289 * we don't have concurrent modification by hardware 4290 * followed by an update. 4291 */ 4292 if (unlikely(pte_none(*vmf->pte))) 4293 ret = VM_FAULT_SIGBUS; 4294 else 4295 ret = VM_FAULT_NOPAGE; 4296 4297 pte_unmap_unlock(vmf->pte, vmf->ptl); 4298 } 4299 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4300 ret = do_read_fault(vmf); 4301 else if (!(vma->vm_flags & VM_SHARED)) 4302 ret = do_cow_fault(vmf); 4303 else 4304 ret = do_shared_fault(vmf); 4305 4306 /* preallocated pagetable is unused: free it */ 4307 if (vmf->prealloc_pte) { 4308 pte_free(vm_mm, vmf->prealloc_pte); 4309 vmf->prealloc_pte = NULL; 4310 } 4311 return ret; 4312 } 4313 4314 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4315 unsigned long addr, int page_nid, int *flags) 4316 { 4317 get_page(page); 4318 4319 count_vm_numa_event(NUMA_HINT_FAULTS); 4320 if (page_nid == numa_node_id()) { 4321 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4322 *flags |= TNF_FAULT_LOCAL; 4323 } 4324 4325 return mpol_misplaced(page, vma, addr); 4326 } 4327 4328 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4329 { 4330 struct vm_area_struct *vma = vmf->vma; 4331 struct page *page = NULL; 4332 int page_nid = NUMA_NO_NODE; 4333 int last_cpupid; 4334 int target_nid; 4335 pte_t pte, old_pte; 4336 bool was_writable = pte_savedwrite(vmf->orig_pte); 4337 int flags = 0; 4338 4339 /* 4340 * The "pte" at this point cannot be used safely without 4341 * validation through pte_unmap_same(). It's of NUMA type but 4342 * the pfn may be screwed if the read is non atomic. 4343 */ 4344 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4345 spin_lock(vmf->ptl); 4346 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4347 pte_unmap_unlock(vmf->pte, vmf->ptl); 4348 goto out; 4349 } 4350 4351 /* Get the normal PTE */ 4352 old_pte = ptep_get(vmf->pte); 4353 pte = pte_modify(old_pte, vma->vm_page_prot); 4354 4355 page = vm_normal_page(vma, vmf->address, pte); 4356 if (!page) 4357 goto out_map; 4358 4359 /* TODO: handle PTE-mapped THP */ 4360 if (PageCompound(page)) 4361 goto out_map; 4362 4363 /* 4364 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4365 * much anyway since they can be in shared cache state. This misses 4366 * the case where a mapping is writable but the process never writes 4367 * to it but pte_write gets cleared during protection updates and 4368 * pte_dirty has unpredictable behaviour between PTE scan updates, 4369 * background writeback, dirty balancing and application behaviour. 4370 */ 4371 if (!was_writable) 4372 flags |= TNF_NO_GROUP; 4373 4374 /* 4375 * Flag if the page is shared between multiple address spaces. This 4376 * is later used when determining whether to group tasks together 4377 */ 4378 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4379 flags |= TNF_SHARED; 4380 4381 last_cpupid = page_cpupid_last(page); 4382 page_nid = page_to_nid(page); 4383 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4384 &flags); 4385 if (target_nid == NUMA_NO_NODE) { 4386 put_page(page); 4387 goto out_map; 4388 } 4389 pte_unmap_unlock(vmf->pte, vmf->ptl); 4390 4391 /* Migrate to the requested node */ 4392 if (migrate_misplaced_page(page, vma, target_nid)) { 4393 page_nid = target_nid; 4394 flags |= TNF_MIGRATED; 4395 } else { 4396 flags |= TNF_MIGRATE_FAIL; 4397 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4398 spin_lock(vmf->ptl); 4399 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4400 pte_unmap_unlock(vmf->pte, vmf->ptl); 4401 goto out; 4402 } 4403 goto out_map; 4404 } 4405 4406 out: 4407 if (page_nid != NUMA_NO_NODE) 4408 task_numa_fault(last_cpupid, page_nid, 1, flags); 4409 return 0; 4410 out_map: 4411 /* 4412 * Make it present again, depending on how arch implements 4413 * non-accessible ptes, some can allow access by kernel mode. 4414 */ 4415 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4416 pte = pte_modify(old_pte, vma->vm_page_prot); 4417 pte = pte_mkyoung(pte); 4418 if (was_writable) 4419 pte = pte_mkwrite(pte); 4420 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4421 update_mmu_cache(vma, vmf->address, vmf->pte); 4422 pte_unmap_unlock(vmf->pte, vmf->ptl); 4423 goto out; 4424 } 4425 4426 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4427 { 4428 if (vma_is_anonymous(vmf->vma)) 4429 return do_huge_pmd_anonymous_page(vmf); 4430 if (vmf->vma->vm_ops->huge_fault) 4431 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4432 return VM_FAULT_FALLBACK; 4433 } 4434 4435 /* `inline' is required to avoid gcc 4.1.2 build error */ 4436 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4437 { 4438 if (vma_is_anonymous(vmf->vma)) { 4439 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4440 return handle_userfault(vmf, VM_UFFD_WP); 4441 return do_huge_pmd_wp_page(vmf); 4442 } 4443 if (vmf->vma->vm_ops->huge_fault) { 4444 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4445 4446 if (!(ret & VM_FAULT_FALLBACK)) 4447 return ret; 4448 } 4449 4450 /* COW or write-notify handled on pte level: split pmd. */ 4451 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4452 4453 return VM_FAULT_FALLBACK; 4454 } 4455 4456 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4457 { 4458 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4459 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4460 /* No support for anonymous transparent PUD pages yet */ 4461 if (vma_is_anonymous(vmf->vma)) 4462 goto split; 4463 if (vmf->vma->vm_ops->huge_fault) { 4464 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4465 4466 if (!(ret & VM_FAULT_FALLBACK)) 4467 return ret; 4468 } 4469 split: 4470 /* COW or write-notify not handled on PUD level: split pud.*/ 4471 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4472 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4473 return VM_FAULT_FALLBACK; 4474 } 4475 4476 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4477 { 4478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4479 /* No support for anonymous transparent PUD pages yet */ 4480 if (vma_is_anonymous(vmf->vma)) 4481 return VM_FAULT_FALLBACK; 4482 if (vmf->vma->vm_ops->huge_fault) 4483 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4484 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4485 return VM_FAULT_FALLBACK; 4486 } 4487 4488 /* 4489 * These routines also need to handle stuff like marking pages dirty 4490 * and/or accessed for architectures that don't do it in hardware (most 4491 * RISC architectures). The early dirtying is also good on the i386. 4492 * 4493 * There is also a hook called "update_mmu_cache()" that architectures 4494 * with external mmu caches can use to update those (ie the Sparc or 4495 * PowerPC hashed page tables that act as extended TLBs). 4496 * 4497 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4498 * concurrent faults). 4499 * 4500 * The mmap_lock may have been released depending on flags and our return value. 4501 * See filemap_fault() and __lock_page_or_retry(). 4502 */ 4503 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4504 { 4505 pte_t entry; 4506 4507 if (unlikely(pmd_none(*vmf->pmd))) { 4508 /* 4509 * Leave __pte_alloc() until later: because vm_ops->fault may 4510 * want to allocate huge page, and if we expose page table 4511 * for an instant, it will be difficult to retract from 4512 * concurrent faults and from rmap lookups. 4513 */ 4514 vmf->pte = NULL; 4515 } else { 4516 /* 4517 * If a huge pmd materialized under us just retry later. Use 4518 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4519 * of pmd_trans_huge() to ensure the pmd didn't become 4520 * pmd_trans_huge under us and then back to pmd_none, as a 4521 * result of MADV_DONTNEED running immediately after a huge pmd 4522 * fault in a different thread of this mm, in turn leading to a 4523 * misleading pmd_trans_huge() retval. All we have to ensure is 4524 * that it is a regular pmd that we can walk with 4525 * pte_offset_map() and we can do that through an atomic read 4526 * in C, which is what pmd_trans_unstable() provides. 4527 */ 4528 if (pmd_devmap_trans_unstable(vmf->pmd)) 4529 return 0; 4530 /* 4531 * A regular pmd is established and it can't morph into a huge 4532 * pmd from under us anymore at this point because we hold the 4533 * mmap_lock read mode and khugepaged takes it in write mode. 4534 * So now it's safe to run pte_offset_map(). 4535 */ 4536 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4537 vmf->orig_pte = *vmf->pte; 4538 4539 /* 4540 * some architectures can have larger ptes than wordsize, 4541 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4542 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4543 * accesses. The code below just needs a consistent view 4544 * for the ifs and we later double check anyway with the 4545 * ptl lock held. So here a barrier will do. 4546 */ 4547 barrier(); 4548 if (pte_none(vmf->orig_pte)) { 4549 pte_unmap(vmf->pte); 4550 vmf->pte = NULL; 4551 } 4552 } 4553 4554 if (!vmf->pte) { 4555 if (vma_is_anonymous(vmf->vma)) 4556 return do_anonymous_page(vmf); 4557 else 4558 return do_fault(vmf); 4559 } 4560 4561 if (!pte_present(vmf->orig_pte)) 4562 return do_swap_page(vmf); 4563 4564 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4565 return do_numa_page(vmf); 4566 4567 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4568 spin_lock(vmf->ptl); 4569 entry = vmf->orig_pte; 4570 if (unlikely(!pte_same(*vmf->pte, entry))) { 4571 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4572 goto unlock; 4573 } 4574 if (vmf->flags & FAULT_FLAG_WRITE) { 4575 if (!pte_write(entry)) 4576 return do_wp_page(vmf); 4577 entry = pte_mkdirty(entry); 4578 } 4579 entry = pte_mkyoung(entry); 4580 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4581 vmf->flags & FAULT_FLAG_WRITE)) { 4582 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4583 } else { 4584 /* Skip spurious TLB flush for retried page fault */ 4585 if (vmf->flags & FAULT_FLAG_TRIED) 4586 goto unlock; 4587 /* 4588 * This is needed only for protection faults but the arch code 4589 * is not yet telling us if this is a protection fault or not. 4590 * This still avoids useless tlb flushes for .text page faults 4591 * with threads. 4592 */ 4593 if (vmf->flags & FAULT_FLAG_WRITE) 4594 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4595 } 4596 unlock: 4597 pte_unmap_unlock(vmf->pte, vmf->ptl); 4598 return 0; 4599 } 4600 4601 /* 4602 * By the time we get here, we already hold the mm semaphore 4603 * 4604 * The mmap_lock may have been released depending on flags and our 4605 * return value. See filemap_fault() and __lock_page_or_retry(). 4606 */ 4607 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4608 unsigned long address, unsigned int flags) 4609 { 4610 struct vm_fault vmf = { 4611 .vma = vma, 4612 .address = address & PAGE_MASK, 4613 .flags = flags, 4614 .pgoff = linear_page_index(vma, address), 4615 .gfp_mask = __get_fault_gfp_mask(vma), 4616 }; 4617 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4618 struct mm_struct *mm = vma->vm_mm; 4619 pgd_t *pgd; 4620 p4d_t *p4d; 4621 vm_fault_t ret; 4622 4623 pgd = pgd_offset(mm, address); 4624 p4d = p4d_alloc(mm, pgd, address); 4625 if (!p4d) 4626 return VM_FAULT_OOM; 4627 4628 vmf.pud = pud_alloc(mm, p4d, address); 4629 if (!vmf.pud) 4630 return VM_FAULT_OOM; 4631 retry_pud: 4632 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4633 ret = create_huge_pud(&vmf); 4634 if (!(ret & VM_FAULT_FALLBACK)) 4635 return ret; 4636 } else { 4637 pud_t orig_pud = *vmf.pud; 4638 4639 barrier(); 4640 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4641 4642 /* NUMA case for anonymous PUDs would go here */ 4643 4644 if (dirty && !pud_write(orig_pud)) { 4645 ret = wp_huge_pud(&vmf, orig_pud); 4646 if (!(ret & VM_FAULT_FALLBACK)) 4647 return ret; 4648 } else { 4649 huge_pud_set_accessed(&vmf, orig_pud); 4650 return 0; 4651 } 4652 } 4653 } 4654 4655 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4656 if (!vmf.pmd) 4657 return VM_FAULT_OOM; 4658 4659 /* Huge pud page fault raced with pmd_alloc? */ 4660 if (pud_trans_unstable(vmf.pud)) 4661 goto retry_pud; 4662 4663 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4664 ret = create_huge_pmd(&vmf); 4665 if (!(ret & VM_FAULT_FALLBACK)) 4666 return ret; 4667 } else { 4668 vmf.orig_pmd = *vmf.pmd; 4669 4670 barrier(); 4671 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 4672 VM_BUG_ON(thp_migration_supported() && 4673 !is_pmd_migration_entry(vmf.orig_pmd)); 4674 if (is_pmd_migration_entry(vmf.orig_pmd)) 4675 pmd_migration_entry_wait(mm, vmf.pmd); 4676 return 0; 4677 } 4678 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 4679 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 4680 return do_huge_pmd_numa_page(&vmf); 4681 4682 if (dirty && !pmd_write(vmf.orig_pmd)) { 4683 ret = wp_huge_pmd(&vmf); 4684 if (!(ret & VM_FAULT_FALLBACK)) 4685 return ret; 4686 } else { 4687 huge_pmd_set_accessed(&vmf); 4688 return 0; 4689 } 4690 } 4691 } 4692 4693 return handle_pte_fault(&vmf); 4694 } 4695 4696 /** 4697 * mm_account_fault - Do page fault accounting 4698 * 4699 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4700 * of perf event counters, but we'll still do the per-task accounting to 4701 * the task who triggered this page fault. 4702 * @address: the faulted address. 4703 * @flags: the fault flags. 4704 * @ret: the fault retcode. 4705 * 4706 * This will take care of most of the page fault accounting. Meanwhile, it 4707 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4708 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4709 * still be in per-arch page fault handlers at the entry of page fault. 4710 */ 4711 static inline void mm_account_fault(struct pt_regs *regs, 4712 unsigned long address, unsigned int flags, 4713 vm_fault_t ret) 4714 { 4715 bool major; 4716 4717 /* 4718 * We don't do accounting for some specific faults: 4719 * 4720 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4721 * includes arch_vma_access_permitted() failing before reaching here. 4722 * So this is not a "this many hardware page faults" counter. We 4723 * should use the hw profiling for that. 4724 * 4725 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4726 * once they're completed. 4727 */ 4728 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4729 return; 4730 4731 /* 4732 * We define the fault as a major fault when the final successful fault 4733 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4734 * handle it immediately previously). 4735 */ 4736 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4737 4738 if (major) 4739 current->maj_flt++; 4740 else 4741 current->min_flt++; 4742 4743 /* 4744 * If the fault is done for GUP, regs will be NULL. We only do the 4745 * accounting for the per thread fault counters who triggered the 4746 * fault, and we skip the perf event updates. 4747 */ 4748 if (!regs) 4749 return; 4750 4751 if (major) 4752 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4753 else 4754 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4755 } 4756 4757 /* 4758 * By the time we get here, we already hold the mm semaphore 4759 * 4760 * The mmap_lock may have been released depending on flags and our 4761 * return value. See filemap_fault() and __lock_page_or_retry(). 4762 */ 4763 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4764 unsigned int flags, struct pt_regs *regs) 4765 { 4766 vm_fault_t ret; 4767 4768 __set_current_state(TASK_RUNNING); 4769 4770 count_vm_event(PGFAULT); 4771 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4772 4773 /* do counter updates before entering really critical section. */ 4774 check_sync_rss_stat(current); 4775 4776 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4777 flags & FAULT_FLAG_INSTRUCTION, 4778 flags & FAULT_FLAG_REMOTE)) 4779 return VM_FAULT_SIGSEGV; 4780 4781 /* 4782 * Enable the memcg OOM handling for faults triggered in user 4783 * space. Kernel faults are handled more gracefully. 4784 */ 4785 if (flags & FAULT_FLAG_USER) 4786 mem_cgroup_enter_user_fault(); 4787 4788 if (unlikely(is_vm_hugetlb_page(vma))) 4789 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4790 else 4791 ret = __handle_mm_fault(vma, address, flags); 4792 4793 if (flags & FAULT_FLAG_USER) { 4794 mem_cgroup_exit_user_fault(); 4795 /* 4796 * The task may have entered a memcg OOM situation but 4797 * if the allocation error was handled gracefully (no 4798 * VM_FAULT_OOM), there is no need to kill anything. 4799 * Just clean up the OOM state peacefully. 4800 */ 4801 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4802 mem_cgroup_oom_synchronize(false); 4803 } 4804 4805 mm_account_fault(regs, address, flags, ret); 4806 4807 return ret; 4808 } 4809 EXPORT_SYMBOL_GPL(handle_mm_fault); 4810 4811 #ifndef __PAGETABLE_P4D_FOLDED 4812 /* 4813 * Allocate p4d page table. 4814 * We've already handled the fast-path in-line. 4815 */ 4816 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4817 { 4818 p4d_t *new = p4d_alloc_one(mm, address); 4819 if (!new) 4820 return -ENOMEM; 4821 4822 smp_wmb(); /* See comment in __pte_alloc */ 4823 4824 spin_lock(&mm->page_table_lock); 4825 if (pgd_present(*pgd)) /* Another has populated it */ 4826 p4d_free(mm, new); 4827 else 4828 pgd_populate(mm, pgd, new); 4829 spin_unlock(&mm->page_table_lock); 4830 return 0; 4831 } 4832 #endif /* __PAGETABLE_P4D_FOLDED */ 4833 4834 #ifndef __PAGETABLE_PUD_FOLDED 4835 /* 4836 * Allocate page upper directory. 4837 * We've already handled the fast-path in-line. 4838 */ 4839 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4840 { 4841 pud_t *new = pud_alloc_one(mm, address); 4842 if (!new) 4843 return -ENOMEM; 4844 4845 smp_wmb(); /* See comment in __pte_alloc */ 4846 4847 spin_lock(&mm->page_table_lock); 4848 if (!p4d_present(*p4d)) { 4849 mm_inc_nr_puds(mm); 4850 p4d_populate(mm, p4d, new); 4851 } else /* Another has populated it */ 4852 pud_free(mm, new); 4853 spin_unlock(&mm->page_table_lock); 4854 return 0; 4855 } 4856 #endif /* __PAGETABLE_PUD_FOLDED */ 4857 4858 #ifndef __PAGETABLE_PMD_FOLDED 4859 /* 4860 * Allocate page middle directory. 4861 * We've already handled the fast-path in-line. 4862 */ 4863 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4864 { 4865 spinlock_t *ptl; 4866 pmd_t *new = pmd_alloc_one(mm, address); 4867 if (!new) 4868 return -ENOMEM; 4869 4870 smp_wmb(); /* See comment in __pte_alloc */ 4871 4872 ptl = pud_lock(mm, pud); 4873 if (!pud_present(*pud)) { 4874 mm_inc_nr_pmds(mm); 4875 pud_populate(mm, pud, new); 4876 } else /* Another has populated it */ 4877 pmd_free(mm, new); 4878 spin_unlock(ptl); 4879 return 0; 4880 } 4881 #endif /* __PAGETABLE_PMD_FOLDED */ 4882 4883 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 4884 struct mmu_notifier_range *range, pte_t **ptepp, 4885 pmd_t **pmdpp, spinlock_t **ptlp) 4886 { 4887 pgd_t *pgd; 4888 p4d_t *p4d; 4889 pud_t *pud; 4890 pmd_t *pmd; 4891 pte_t *ptep; 4892 4893 pgd = pgd_offset(mm, address); 4894 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4895 goto out; 4896 4897 p4d = p4d_offset(pgd, address); 4898 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4899 goto out; 4900 4901 pud = pud_offset(p4d, address); 4902 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4903 goto out; 4904 4905 pmd = pmd_offset(pud, address); 4906 VM_BUG_ON(pmd_trans_huge(*pmd)); 4907 4908 if (pmd_huge(*pmd)) { 4909 if (!pmdpp) 4910 goto out; 4911 4912 if (range) { 4913 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4914 NULL, mm, address & PMD_MASK, 4915 (address & PMD_MASK) + PMD_SIZE); 4916 mmu_notifier_invalidate_range_start(range); 4917 } 4918 *ptlp = pmd_lock(mm, pmd); 4919 if (pmd_huge(*pmd)) { 4920 *pmdpp = pmd; 4921 return 0; 4922 } 4923 spin_unlock(*ptlp); 4924 if (range) 4925 mmu_notifier_invalidate_range_end(range); 4926 } 4927 4928 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4929 goto out; 4930 4931 if (range) { 4932 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4933 address & PAGE_MASK, 4934 (address & PAGE_MASK) + PAGE_SIZE); 4935 mmu_notifier_invalidate_range_start(range); 4936 } 4937 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4938 if (!pte_present(*ptep)) 4939 goto unlock; 4940 *ptepp = ptep; 4941 return 0; 4942 unlock: 4943 pte_unmap_unlock(ptep, *ptlp); 4944 if (range) 4945 mmu_notifier_invalidate_range_end(range); 4946 out: 4947 return -EINVAL; 4948 } 4949 4950 /** 4951 * follow_pte - look up PTE at a user virtual address 4952 * @mm: the mm_struct of the target address space 4953 * @address: user virtual address 4954 * @ptepp: location to store found PTE 4955 * @ptlp: location to store the lock for the PTE 4956 * 4957 * On a successful return, the pointer to the PTE is stored in @ptepp; 4958 * the corresponding lock is taken and its location is stored in @ptlp. 4959 * The contents of the PTE are only stable until @ptlp is released; 4960 * any further use, if any, must be protected against invalidation 4961 * with MMU notifiers. 4962 * 4963 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 4964 * should be taken for read. 4965 * 4966 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 4967 * it is not a good general-purpose API. 4968 * 4969 * Return: zero on success, -ve otherwise. 4970 */ 4971 int follow_pte(struct mm_struct *mm, unsigned long address, 4972 pte_t **ptepp, spinlock_t **ptlp) 4973 { 4974 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); 4975 } 4976 EXPORT_SYMBOL_GPL(follow_pte); 4977 4978 /** 4979 * follow_pfn - look up PFN at a user virtual address 4980 * @vma: memory mapping 4981 * @address: user virtual address 4982 * @pfn: location to store found PFN 4983 * 4984 * Only IO mappings and raw PFN mappings are allowed. 4985 * 4986 * This function does not allow the caller to read the permissions 4987 * of the PTE. Do not use it. 4988 * 4989 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4990 */ 4991 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4992 unsigned long *pfn) 4993 { 4994 int ret = -EINVAL; 4995 spinlock_t *ptl; 4996 pte_t *ptep; 4997 4998 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4999 return ret; 5000 5001 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5002 if (ret) 5003 return ret; 5004 *pfn = pte_pfn(*ptep); 5005 pte_unmap_unlock(ptep, ptl); 5006 return 0; 5007 } 5008 EXPORT_SYMBOL(follow_pfn); 5009 5010 #ifdef CONFIG_HAVE_IOREMAP_PROT 5011 int follow_phys(struct vm_area_struct *vma, 5012 unsigned long address, unsigned int flags, 5013 unsigned long *prot, resource_size_t *phys) 5014 { 5015 int ret = -EINVAL; 5016 pte_t *ptep, pte; 5017 spinlock_t *ptl; 5018 5019 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5020 goto out; 5021 5022 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5023 goto out; 5024 pte = *ptep; 5025 5026 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5027 goto unlock; 5028 5029 *prot = pgprot_val(pte_pgprot(pte)); 5030 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5031 5032 ret = 0; 5033 unlock: 5034 pte_unmap_unlock(ptep, ptl); 5035 out: 5036 return ret; 5037 } 5038 5039 /** 5040 * generic_access_phys - generic implementation for iomem mmap access 5041 * @vma: the vma to access 5042 * @addr: userspace address, not relative offset within @vma 5043 * @buf: buffer to read/write 5044 * @len: length of transfer 5045 * @write: set to FOLL_WRITE when writing, otherwise reading 5046 * 5047 * This is a generic implementation for &vm_operations_struct.access for an 5048 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5049 * not page based. 5050 */ 5051 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5052 void *buf, int len, int write) 5053 { 5054 resource_size_t phys_addr; 5055 unsigned long prot = 0; 5056 void __iomem *maddr; 5057 pte_t *ptep, pte; 5058 spinlock_t *ptl; 5059 int offset = offset_in_page(addr); 5060 int ret = -EINVAL; 5061 5062 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5063 return -EINVAL; 5064 5065 retry: 5066 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5067 return -EINVAL; 5068 pte = *ptep; 5069 pte_unmap_unlock(ptep, ptl); 5070 5071 prot = pgprot_val(pte_pgprot(pte)); 5072 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5073 5074 if ((write & FOLL_WRITE) && !pte_write(pte)) 5075 return -EINVAL; 5076 5077 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5078 if (!maddr) 5079 return -ENOMEM; 5080 5081 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5082 goto out_unmap; 5083 5084 if (!pte_same(pte, *ptep)) { 5085 pte_unmap_unlock(ptep, ptl); 5086 iounmap(maddr); 5087 5088 goto retry; 5089 } 5090 5091 if (write) 5092 memcpy_toio(maddr + offset, buf, len); 5093 else 5094 memcpy_fromio(buf, maddr + offset, len); 5095 ret = len; 5096 pte_unmap_unlock(ptep, ptl); 5097 out_unmap: 5098 iounmap(maddr); 5099 5100 return ret; 5101 } 5102 EXPORT_SYMBOL_GPL(generic_access_phys); 5103 #endif 5104 5105 /* 5106 * Access another process' address space as given in mm. 5107 */ 5108 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5109 int len, unsigned int gup_flags) 5110 { 5111 struct vm_area_struct *vma; 5112 void *old_buf = buf; 5113 int write = gup_flags & FOLL_WRITE; 5114 5115 if (mmap_read_lock_killable(mm)) 5116 return 0; 5117 5118 /* ignore errors, just check how much was successfully transferred */ 5119 while (len) { 5120 int bytes, ret, offset; 5121 void *maddr; 5122 struct page *page = NULL; 5123 5124 ret = get_user_pages_remote(mm, addr, 1, 5125 gup_flags, &page, &vma, NULL); 5126 if (ret <= 0) { 5127 #ifndef CONFIG_HAVE_IOREMAP_PROT 5128 break; 5129 #else 5130 /* 5131 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5132 * we can access using slightly different code. 5133 */ 5134 vma = vma_lookup(mm, addr); 5135 if (!vma) 5136 break; 5137 if (vma->vm_ops && vma->vm_ops->access) 5138 ret = vma->vm_ops->access(vma, addr, buf, 5139 len, write); 5140 if (ret <= 0) 5141 break; 5142 bytes = ret; 5143 #endif 5144 } else { 5145 bytes = len; 5146 offset = addr & (PAGE_SIZE-1); 5147 if (bytes > PAGE_SIZE-offset) 5148 bytes = PAGE_SIZE-offset; 5149 5150 maddr = kmap(page); 5151 if (write) { 5152 copy_to_user_page(vma, page, addr, 5153 maddr + offset, buf, bytes); 5154 set_page_dirty_lock(page); 5155 } else { 5156 copy_from_user_page(vma, page, addr, 5157 buf, maddr + offset, bytes); 5158 } 5159 kunmap(page); 5160 put_page(page); 5161 } 5162 len -= bytes; 5163 buf += bytes; 5164 addr += bytes; 5165 } 5166 mmap_read_unlock(mm); 5167 5168 return buf - old_buf; 5169 } 5170 5171 /** 5172 * access_remote_vm - access another process' address space 5173 * @mm: the mm_struct of the target address space 5174 * @addr: start address to access 5175 * @buf: source or destination buffer 5176 * @len: number of bytes to transfer 5177 * @gup_flags: flags modifying lookup behaviour 5178 * 5179 * The caller must hold a reference on @mm. 5180 * 5181 * Return: number of bytes copied from source to destination. 5182 */ 5183 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5184 void *buf, int len, unsigned int gup_flags) 5185 { 5186 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5187 } 5188 5189 /* 5190 * Access another process' address space. 5191 * Source/target buffer must be kernel space, 5192 * Do not walk the page table directly, use get_user_pages 5193 */ 5194 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5195 void *buf, int len, unsigned int gup_flags) 5196 { 5197 struct mm_struct *mm; 5198 int ret; 5199 5200 mm = get_task_mm(tsk); 5201 if (!mm) 5202 return 0; 5203 5204 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5205 5206 mmput(mm); 5207 5208 return ret; 5209 } 5210 EXPORT_SYMBOL_GPL(access_process_vm); 5211 5212 /* 5213 * Print the name of a VMA. 5214 */ 5215 void print_vma_addr(char *prefix, unsigned long ip) 5216 { 5217 struct mm_struct *mm = current->mm; 5218 struct vm_area_struct *vma; 5219 5220 /* 5221 * we might be running from an atomic context so we cannot sleep 5222 */ 5223 if (!mmap_read_trylock(mm)) 5224 return; 5225 5226 vma = find_vma(mm, ip); 5227 if (vma && vma->vm_file) { 5228 struct file *f = vma->vm_file; 5229 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5230 if (buf) { 5231 char *p; 5232 5233 p = file_path(f, buf, PAGE_SIZE); 5234 if (IS_ERR(p)) 5235 p = "?"; 5236 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5237 vma->vm_start, 5238 vma->vm_end - vma->vm_start); 5239 free_page((unsigned long)buf); 5240 } 5241 } 5242 mmap_read_unlock(mm); 5243 } 5244 5245 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5246 void __might_fault(const char *file, int line) 5247 { 5248 /* 5249 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5250 * holding the mmap_lock, this is safe because kernel memory doesn't 5251 * get paged out, therefore we'll never actually fault, and the 5252 * below annotations will generate false positives. 5253 */ 5254 if (uaccess_kernel()) 5255 return; 5256 if (pagefault_disabled()) 5257 return; 5258 __might_sleep(file, line, 0); 5259 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5260 if (current->mm) 5261 might_lock_read(¤t->mm->mmap_lock); 5262 #endif 5263 } 5264 EXPORT_SYMBOL(__might_fault); 5265 #endif 5266 5267 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5268 /* 5269 * Process all subpages of the specified huge page with the specified 5270 * operation. The target subpage will be processed last to keep its 5271 * cache lines hot. 5272 */ 5273 static inline void process_huge_page( 5274 unsigned long addr_hint, unsigned int pages_per_huge_page, 5275 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5276 void *arg) 5277 { 5278 int i, n, base, l; 5279 unsigned long addr = addr_hint & 5280 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5281 5282 /* Process target subpage last to keep its cache lines hot */ 5283 might_sleep(); 5284 n = (addr_hint - addr) / PAGE_SIZE; 5285 if (2 * n <= pages_per_huge_page) { 5286 /* If target subpage in first half of huge page */ 5287 base = 0; 5288 l = n; 5289 /* Process subpages at the end of huge page */ 5290 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5291 cond_resched(); 5292 process_subpage(addr + i * PAGE_SIZE, i, arg); 5293 } 5294 } else { 5295 /* If target subpage in second half of huge page */ 5296 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5297 l = pages_per_huge_page - n; 5298 /* Process subpages at the begin of huge page */ 5299 for (i = 0; i < base; i++) { 5300 cond_resched(); 5301 process_subpage(addr + i * PAGE_SIZE, i, arg); 5302 } 5303 } 5304 /* 5305 * Process remaining subpages in left-right-left-right pattern 5306 * towards the target subpage 5307 */ 5308 for (i = 0; i < l; i++) { 5309 int left_idx = base + i; 5310 int right_idx = base + 2 * l - 1 - i; 5311 5312 cond_resched(); 5313 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5314 cond_resched(); 5315 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5316 } 5317 } 5318 5319 static void clear_gigantic_page(struct page *page, 5320 unsigned long addr, 5321 unsigned int pages_per_huge_page) 5322 { 5323 int i; 5324 struct page *p = page; 5325 5326 might_sleep(); 5327 for (i = 0; i < pages_per_huge_page; 5328 i++, p = mem_map_next(p, page, i)) { 5329 cond_resched(); 5330 clear_user_highpage(p, addr + i * PAGE_SIZE); 5331 } 5332 } 5333 5334 static void clear_subpage(unsigned long addr, int idx, void *arg) 5335 { 5336 struct page *page = arg; 5337 5338 clear_user_highpage(page + idx, addr); 5339 } 5340 5341 void clear_huge_page(struct page *page, 5342 unsigned long addr_hint, unsigned int pages_per_huge_page) 5343 { 5344 unsigned long addr = addr_hint & 5345 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5346 5347 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5348 clear_gigantic_page(page, addr, pages_per_huge_page); 5349 return; 5350 } 5351 5352 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5353 } 5354 5355 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5356 unsigned long addr, 5357 struct vm_area_struct *vma, 5358 unsigned int pages_per_huge_page) 5359 { 5360 int i; 5361 struct page *dst_base = dst; 5362 struct page *src_base = src; 5363 5364 for (i = 0; i < pages_per_huge_page; ) { 5365 cond_resched(); 5366 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5367 5368 i++; 5369 dst = mem_map_next(dst, dst_base, i); 5370 src = mem_map_next(src, src_base, i); 5371 } 5372 } 5373 5374 struct copy_subpage_arg { 5375 struct page *dst; 5376 struct page *src; 5377 struct vm_area_struct *vma; 5378 }; 5379 5380 static void copy_subpage(unsigned long addr, int idx, void *arg) 5381 { 5382 struct copy_subpage_arg *copy_arg = arg; 5383 5384 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5385 addr, copy_arg->vma); 5386 } 5387 5388 void copy_user_huge_page(struct page *dst, struct page *src, 5389 unsigned long addr_hint, struct vm_area_struct *vma, 5390 unsigned int pages_per_huge_page) 5391 { 5392 unsigned long addr = addr_hint & 5393 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5394 struct copy_subpage_arg arg = { 5395 .dst = dst, 5396 .src = src, 5397 .vma = vma, 5398 }; 5399 5400 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5401 copy_user_gigantic_page(dst, src, addr, vma, 5402 pages_per_huge_page); 5403 return; 5404 } 5405 5406 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5407 } 5408 5409 long copy_huge_page_from_user(struct page *dst_page, 5410 const void __user *usr_src, 5411 unsigned int pages_per_huge_page, 5412 bool allow_pagefault) 5413 { 5414 void *src = (void *)usr_src; 5415 void *page_kaddr; 5416 unsigned long i, rc = 0; 5417 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5418 struct page *subpage = dst_page; 5419 5420 for (i = 0; i < pages_per_huge_page; 5421 i++, subpage = mem_map_next(subpage, dst_page, i)) { 5422 if (allow_pagefault) 5423 page_kaddr = kmap(subpage); 5424 else 5425 page_kaddr = kmap_atomic(subpage); 5426 rc = copy_from_user(page_kaddr, 5427 (const void __user *)(src + i * PAGE_SIZE), 5428 PAGE_SIZE); 5429 if (allow_pagefault) 5430 kunmap(subpage); 5431 else 5432 kunmap_atomic(page_kaddr); 5433 5434 ret_val -= (PAGE_SIZE - rc); 5435 if (rc) 5436 break; 5437 5438 cond_resched(); 5439 } 5440 return ret_val; 5441 } 5442 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5443 5444 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5445 5446 static struct kmem_cache *page_ptl_cachep; 5447 5448 void __init ptlock_cache_init(void) 5449 { 5450 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5451 SLAB_PANIC, NULL); 5452 } 5453 5454 bool ptlock_alloc(struct page *page) 5455 { 5456 spinlock_t *ptl; 5457 5458 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5459 if (!ptl) 5460 return false; 5461 page->ptl = ptl; 5462 return true; 5463 } 5464 5465 void ptlock_free(struct page *page) 5466 { 5467 kmem_cache_free(page_ptl_cachep, page->ptl); 5468 } 5469 #endif 5470