xref: /linux/mm/memory.c (revision 94e48d6aafef23143f92eadd010c505c49487576)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96 
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100 
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110 
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119 					1;
120 #else
121 					2;
122 #endif
123 
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127 	/*
128 	 * Those arches which don't have hw access flag feature need to
129 	 * implement their own helper. By default, "true" means pagefault
130 	 * will be hit on old pte.
131 	 */
132 	return true;
133 }
134 #endif
135 
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139 	/*
140 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 	 * some architectures, even if it's performed in hardware. By
142 	 * default, "false" means prefaulted entries will be 'young'.
143 	 */
144 	return false;
145 }
146 #endif
147 
148 static int __init disable_randmaps(char *s)
149 {
150 	randomize_va_space = 0;
151 	return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154 
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157 
158 unsigned long highest_memmap_pfn __read_mostly;
159 
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 	return 0;
167 }
168 early_initcall(init_zero_pfn);
169 
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172 	trace_rss_stat(mm, member, count);
173 }
174 
175 #if defined(SPLIT_RSS_COUNTING)
176 
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179 	int i;
180 
181 	for (i = 0; i < NR_MM_COUNTERS; i++) {
182 		if (current->rss_stat.count[i]) {
183 			add_mm_counter(mm, i, current->rss_stat.count[i]);
184 			current->rss_stat.count[i] = 0;
185 		}
186 	}
187 	current->rss_stat.events = 0;
188 }
189 
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192 	struct task_struct *task = current;
193 
194 	if (likely(task->mm == mm))
195 		task->rss_stat.count[member] += val;
196 	else
197 		add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201 
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH	(64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 	if (unlikely(task != current))
207 		return;
208 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209 		sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212 
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215 
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219 
220 #endif /* SPLIT_RSS_COUNTING */
221 
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 			   unsigned long addr)
228 {
229 	pgtable_t token = pmd_pgtable(*pmd);
230 	pmd_clear(pmd);
231 	pte_free_tlb(tlb, token, addr);
232 	mm_dec_nr_ptes(tlb->mm);
233 }
234 
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 				unsigned long addr, unsigned long end,
237 				unsigned long floor, unsigned long ceiling)
238 {
239 	pmd_t *pmd;
240 	unsigned long next;
241 	unsigned long start;
242 
243 	start = addr;
244 	pmd = pmd_offset(pud, addr);
245 	do {
246 		next = pmd_addr_end(addr, end);
247 		if (pmd_none_or_clear_bad(pmd))
248 			continue;
249 		free_pte_range(tlb, pmd, addr);
250 	} while (pmd++, addr = next, addr != end);
251 
252 	start &= PUD_MASK;
253 	if (start < floor)
254 		return;
255 	if (ceiling) {
256 		ceiling &= PUD_MASK;
257 		if (!ceiling)
258 			return;
259 	}
260 	if (end - 1 > ceiling - 1)
261 		return;
262 
263 	pmd = pmd_offset(pud, start);
264 	pud_clear(pud);
265 	pmd_free_tlb(tlb, pmd, start);
266 	mm_dec_nr_pmds(tlb->mm);
267 }
268 
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270 				unsigned long addr, unsigned long end,
271 				unsigned long floor, unsigned long ceiling)
272 {
273 	pud_t *pud;
274 	unsigned long next;
275 	unsigned long start;
276 
277 	start = addr;
278 	pud = pud_offset(p4d, addr);
279 	do {
280 		next = pud_addr_end(addr, end);
281 		if (pud_none_or_clear_bad(pud))
282 			continue;
283 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284 	} while (pud++, addr = next, addr != end);
285 
286 	start &= P4D_MASK;
287 	if (start < floor)
288 		return;
289 	if (ceiling) {
290 		ceiling &= P4D_MASK;
291 		if (!ceiling)
292 			return;
293 	}
294 	if (end - 1 > ceiling - 1)
295 		return;
296 
297 	pud = pud_offset(p4d, start);
298 	p4d_clear(p4d);
299 	pud_free_tlb(tlb, pud, start);
300 	mm_dec_nr_puds(tlb->mm);
301 }
302 
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 				unsigned long addr, unsigned long end,
305 				unsigned long floor, unsigned long ceiling)
306 {
307 	p4d_t *p4d;
308 	unsigned long next;
309 	unsigned long start;
310 
311 	start = addr;
312 	p4d = p4d_offset(pgd, addr);
313 	do {
314 		next = p4d_addr_end(addr, end);
315 		if (p4d_none_or_clear_bad(p4d))
316 			continue;
317 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 	} while (p4d++, addr = next, addr != end);
319 
320 	start &= PGDIR_MASK;
321 	if (start < floor)
322 		return;
323 	if (ceiling) {
324 		ceiling &= PGDIR_MASK;
325 		if (!ceiling)
326 			return;
327 	}
328 	if (end - 1 > ceiling - 1)
329 		return;
330 
331 	p4d = p4d_offset(pgd, start);
332 	pgd_clear(pgd);
333 	p4d_free_tlb(tlb, p4d, start);
334 }
335 
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340 			unsigned long addr, unsigned long end,
341 			unsigned long floor, unsigned long ceiling)
342 {
343 	pgd_t *pgd;
344 	unsigned long next;
345 
346 	/*
347 	 * The next few lines have given us lots of grief...
348 	 *
349 	 * Why are we testing PMD* at this top level?  Because often
350 	 * there will be no work to do at all, and we'd prefer not to
351 	 * go all the way down to the bottom just to discover that.
352 	 *
353 	 * Why all these "- 1"s?  Because 0 represents both the bottom
354 	 * of the address space and the top of it (using -1 for the
355 	 * top wouldn't help much: the masks would do the wrong thing).
356 	 * The rule is that addr 0 and floor 0 refer to the bottom of
357 	 * the address space, but end 0 and ceiling 0 refer to the top
358 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 	 * that end 0 case should be mythical).
360 	 *
361 	 * Wherever addr is brought up or ceiling brought down, we must
362 	 * be careful to reject "the opposite 0" before it confuses the
363 	 * subsequent tests.  But what about where end is brought down
364 	 * by PMD_SIZE below? no, end can't go down to 0 there.
365 	 *
366 	 * Whereas we round start (addr) and ceiling down, by different
367 	 * masks at different levels, in order to test whether a table
368 	 * now has no other vmas using it, so can be freed, we don't
369 	 * bother to round floor or end up - the tests don't need that.
370 	 */
371 
372 	addr &= PMD_MASK;
373 	if (addr < floor) {
374 		addr += PMD_SIZE;
375 		if (!addr)
376 			return;
377 	}
378 	if (ceiling) {
379 		ceiling &= PMD_MASK;
380 		if (!ceiling)
381 			return;
382 	}
383 	if (end - 1 > ceiling - 1)
384 		end -= PMD_SIZE;
385 	if (addr > end - 1)
386 		return;
387 	/*
388 	 * We add page table cache pages with PAGE_SIZE,
389 	 * (see pte_free_tlb()), flush the tlb if we need
390 	 */
391 	tlb_change_page_size(tlb, PAGE_SIZE);
392 	pgd = pgd_offset(tlb->mm, addr);
393 	do {
394 		next = pgd_addr_end(addr, end);
395 		if (pgd_none_or_clear_bad(pgd))
396 			continue;
397 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398 	} while (pgd++, addr = next, addr != end);
399 }
400 
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402 		unsigned long floor, unsigned long ceiling)
403 {
404 	while (vma) {
405 		struct vm_area_struct *next = vma->vm_next;
406 		unsigned long addr = vma->vm_start;
407 
408 		/*
409 		 * Hide vma from rmap and truncate_pagecache before freeing
410 		 * pgtables
411 		 */
412 		unlink_anon_vmas(vma);
413 		unlink_file_vma(vma);
414 
415 		if (is_vm_hugetlb_page(vma)) {
416 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		} else {
419 			/*
420 			 * Optimization: gather nearby vmas into one call down
421 			 */
422 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423 			       && !is_vm_hugetlb_page(next)) {
424 				vma = next;
425 				next = vma->vm_next;
426 				unlink_anon_vmas(vma);
427 				unlink_file_vma(vma);
428 			}
429 			free_pgd_range(tlb, addr, vma->vm_end,
430 				floor, next ? next->vm_start : ceiling);
431 		}
432 		vma = next;
433 	}
434 }
435 
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438 	spinlock_t *ptl;
439 	pgtable_t new = pte_alloc_one(mm);
440 	if (!new)
441 		return -ENOMEM;
442 
443 	/*
444 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 	 * visible before the pte is made visible to other CPUs by being
446 	 * put into page tables.
447 	 *
448 	 * The other side of the story is the pointer chasing in the page
449 	 * table walking code (when walking the page table without locking;
450 	 * ie. most of the time). Fortunately, these data accesses consist
451 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 	 * being the notable exception) will already guarantee loads are
453 	 * seen in-order. See the alpha page table accessors for the
454 	 * smp_rmb() barriers in page table walking code.
455 	 */
456 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 
458 	ptl = pmd_lock(mm, pmd);
459 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
460 		mm_inc_nr_ptes(mm);
461 		pmd_populate(mm, pmd, new);
462 		new = NULL;
463 	}
464 	spin_unlock(ptl);
465 	if (new)
466 		pte_free(mm, new);
467 	return 0;
468 }
469 
470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472 	pte_t *new = pte_alloc_one_kernel(&init_mm);
473 	if (!new)
474 		return -ENOMEM;
475 
476 	smp_wmb(); /* See comment in __pte_alloc */
477 
478 	spin_lock(&init_mm.page_table_lock);
479 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
480 		pmd_populate_kernel(&init_mm, pmd, new);
481 		new = NULL;
482 	}
483 	spin_unlock(&init_mm.page_table_lock);
484 	if (new)
485 		pte_free_kernel(&init_mm, new);
486 	return 0;
487 }
488 
489 static inline void init_rss_vec(int *rss)
490 {
491 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493 
494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496 	int i;
497 
498 	if (current->mm == mm)
499 		sync_mm_rss(mm);
500 	for (i = 0; i < NR_MM_COUNTERS; i++)
501 		if (rss[i])
502 			add_mm_counter(mm, i, rss[i]);
503 }
504 
505 /*
506  * This function is called to print an error when a bad pte
507  * is found. For example, we might have a PFN-mapped pte in
508  * a region that doesn't allow it.
509  *
510  * The calling function must still handle the error.
511  */
512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 			  pte_t pte, struct page *page)
514 {
515 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516 	p4d_t *p4d = p4d_offset(pgd, addr);
517 	pud_t *pud = pud_offset(p4d, addr);
518 	pmd_t *pmd = pmd_offset(pud, addr);
519 	struct address_space *mapping;
520 	pgoff_t index;
521 	static unsigned long resume;
522 	static unsigned long nr_shown;
523 	static unsigned long nr_unshown;
524 
525 	/*
526 	 * Allow a burst of 60 reports, then keep quiet for that minute;
527 	 * or allow a steady drip of one report per second.
528 	 */
529 	if (nr_shown == 60) {
530 		if (time_before(jiffies, resume)) {
531 			nr_unshown++;
532 			return;
533 		}
534 		if (nr_unshown) {
535 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 				 nr_unshown);
537 			nr_unshown = 0;
538 		}
539 		nr_shown = 0;
540 	}
541 	if (nr_shown++ == 0)
542 		resume = jiffies + 60 * HZ;
543 
544 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 	index = linear_page_index(vma, addr);
546 
547 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
548 		 current->comm,
549 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
550 	if (page)
551 		dump_page(page, "bad pte");
552 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555 		 vma->vm_file,
556 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 		 mapping ? mapping->a_ops->readpage : NULL);
559 	dump_stack();
560 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562 
563 /*
564  * vm_normal_page -- This function gets the "struct page" associated with a pte.
565  *
566  * "Special" mappings do not wish to be associated with a "struct page" (either
567  * it doesn't exist, or it exists but they don't want to touch it). In this
568  * case, NULL is returned here. "Normal" mappings do have a struct page.
569  *
570  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571  * pte bit, in which case this function is trivial. Secondly, an architecture
572  * may not have a spare pte bit, which requires a more complicated scheme,
573  * described below.
574  *
575  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576  * special mapping (even if there are underlying and valid "struct pages").
577  * COWed pages of a VM_PFNMAP are always normal.
578  *
579  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582  * mapping will always honor the rule
583  *
584  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585  *
586  * And for normal mappings this is false.
587  *
588  * This restricts such mappings to be a linear translation from virtual address
589  * to pfn. To get around this restriction, we allow arbitrary mappings so long
590  * as the vma is not a COW mapping; in that case, we know that all ptes are
591  * special (because none can have been COWed).
592  *
593  *
594  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595  *
596  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597  * page" backing, however the difference is that _all_ pages with a struct
598  * page (that is, those where pfn_valid is true) are refcounted and considered
599  * normal pages by the VM. The disadvantage is that pages are refcounted
600  * (which can be slower and simply not an option for some PFNMAP users). The
601  * advantage is that we don't have to follow the strict linearity rule of
602  * PFNMAP mappings in order to support COWable mappings.
603  *
604  */
605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 			    pte_t pte)
607 {
608 	unsigned long pfn = pte_pfn(pte);
609 
610 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611 		if (likely(!pte_special(pte)))
612 			goto check_pfn;
613 		if (vma->vm_ops && vma->vm_ops->find_special_page)
614 			return vma->vm_ops->find_special_page(vma, addr);
615 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 			return NULL;
617 		if (is_zero_pfn(pfn))
618 			return NULL;
619 		if (pte_devmap(pte))
620 			return NULL;
621 
622 		print_bad_pte(vma, addr, pte, NULL);
623 		return NULL;
624 	}
625 
626 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627 
628 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 		if (vma->vm_flags & VM_MIXEDMAP) {
630 			if (!pfn_valid(pfn))
631 				return NULL;
632 			goto out;
633 		} else {
634 			unsigned long off;
635 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
636 			if (pfn == vma->vm_pgoff + off)
637 				return NULL;
638 			if (!is_cow_mapping(vma->vm_flags))
639 				return NULL;
640 		}
641 	}
642 
643 	if (is_zero_pfn(pfn))
644 		return NULL;
645 
646 check_pfn:
647 	if (unlikely(pfn > highest_memmap_pfn)) {
648 		print_bad_pte(vma, addr, pte, NULL);
649 		return NULL;
650 	}
651 
652 	/*
653 	 * NOTE! We still have PageReserved() pages in the page tables.
654 	 * eg. VDSO mappings can cause them to exist.
655 	 */
656 out:
657 	return pfn_to_page(pfn);
658 }
659 
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 				pmd_t pmd)
663 {
664 	unsigned long pfn = pmd_pfn(pmd);
665 
666 	/*
667 	 * There is no pmd_special() but there may be special pmds, e.g.
668 	 * in a direct-access (dax) mapping, so let's just replicate the
669 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670 	 */
671 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 		if (vma->vm_flags & VM_MIXEDMAP) {
673 			if (!pfn_valid(pfn))
674 				return NULL;
675 			goto out;
676 		} else {
677 			unsigned long off;
678 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 			if (pfn == vma->vm_pgoff + off)
680 				return NULL;
681 			if (!is_cow_mapping(vma->vm_flags))
682 				return NULL;
683 		}
684 	}
685 
686 	if (pmd_devmap(pmd))
687 		return NULL;
688 	if (is_huge_zero_pmd(pmd))
689 		return NULL;
690 	if (unlikely(pfn > highest_memmap_pfn))
691 		return NULL;
692 
693 	/*
694 	 * NOTE! We still have PageReserved() pages in the page tables.
695 	 * eg. VDSO mappings can cause them to exist.
696 	 */
697 out:
698 	return pfn_to_page(pfn);
699 }
700 #endif
701 
702 /*
703  * copy one vm_area from one task to the other. Assumes the page tables
704  * already present in the new task to be cleared in the whole range
705  * covered by this vma.
706  */
707 
708 static unsigned long
709 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
711 		unsigned long addr, int *rss)
712 {
713 	unsigned long vm_flags = vma->vm_flags;
714 	pte_t pte = *src_pte;
715 	struct page *page;
716 	swp_entry_t entry = pte_to_swp_entry(pte);
717 
718 	if (likely(!non_swap_entry(entry))) {
719 		if (swap_duplicate(entry) < 0)
720 			return entry.val;
721 
722 		/* make sure dst_mm is on swapoff's mmlist. */
723 		if (unlikely(list_empty(&dst_mm->mmlist))) {
724 			spin_lock(&mmlist_lock);
725 			if (list_empty(&dst_mm->mmlist))
726 				list_add(&dst_mm->mmlist,
727 						&src_mm->mmlist);
728 			spin_unlock(&mmlist_lock);
729 		}
730 		rss[MM_SWAPENTS]++;
731 	} else if (is_migration_entry(entry)) {
732 		page = migration_entry_to_page(entry);
733 
734 		rss[mm_counter(page)]++;
735 
736 		if (is_write_migration_entry(entry) &&
737 				is_cow_mapping(vm_flags)) {
738 			/*
739 			 * COW mappings require pages in both
740 			 * parent and child to be set to read.
741 			 */
742 			make_migration_entry_read(&entry);
743 			pte = swp_entry_to_pte(entry);
744 			if (pte_swp_soft_dirty(*src_pte))
745 				pte = pte_swp_mksoft_dirty(pte);
746 			if (pte_swp_uffd_wp(*src_pte))
747 				pte = pte_swp_mkuffd_wp(pte);
748 			set_pte_at(src_mm, addr, src_pte, pte);
749 		}
750 	} else if (is_device_private_entry(entry)) {
751 		page = device_private_entry_to_page(entry);
752 
753 		/*
754 		 * Update rss count even for unaddressable pages, as
755 		 * they should treated just like normal pages in this
756 		 * respect.
757 		 *
758 		 * We will likely want to have some new rss counters
759 		 * for unaddressable pages, at some point. But for now
760 		 * keep things as they are.
761 		 */
762 		get_page(page);
763 		rss[mm_counter(page)]++;
764 		page_dup_rmap(page, false);
765 
766 		/*
767 		 * We do not preserve soft-dirty information, because so
768 		 * far, checkpoint/restore is the only feature that
769 		 * requires that. And checkpoint/restore does not work
770 		 * when a device driver is involved (you cannot easily
771 		 * save and restore device driver state).
772 		 */
773 		if (is_write_device_private_entry(entry) &&
774 		    is_cow_mapping(vm_flags)) {
775 			make_device_private_entry_read(&entry);
776 			pte = swp_entry_to_pte(entry);
777 			if (pte_swp_uffd_wp(*src_pte))
778 				pte = pte_swp_mkuffd_wp(pte);
779 			set_pte_at(src_mm, addr, src_pte, pte);
780 		}
781 	}
782 	set_pte_at(dst_mm, addr, dst_pte, pte);
783 	return 0;
784 }
785 
786 /*
787  * Copy a present and normal page if necessary.
788  *
789  * NOTE! The usual case is that this doesn't need to do
790  * anything, and can just return a positive value. That
791  * will let the caller know that it can just increase
792  * the page refcount and re-use the pte the traditional
793  * way.
794  *
795  * But _if_ we need to copy it because it needs to be
796  * pinned in the parent (and the child should get its own
797  * copy rather than just a reference to the same page),
798  * we'll do that here and return zero to let the caller
799  * know we're done.
800  *
801  * And if we need a pre-allocated page but don't yet have
802  * one, return a negative error to let the preallocation
803  * code know so that it can do so outside the page table
804  * lock.
805  */
806 static inline int
807 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
808 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
809 		  struct page **prealloc, pte_t pte, struct page *page)
810 {
811 	struct page *new_page;
812 
813 	/*
814 	 * What we want to do is to check whether this page may
815 	 * have been pinned by the parent process.  If so,
816 	 * instead of wrprotect the pte on both sides, we copy
817 	 * the page immediately so that we'll always guarantee
818 	 * the pinned page won't be randomly replaced in the
819 	 * future.
820 	 *
821 	 * The page pinning checks are just "has this mm ever
822 	 * seen pinning", along with the (inexact) check of
823 	 * the page count. That might give false positives for
824 	 * for pinning, but it will work correctly.
825 	 */
826 	if (likely(!page_needs_cow_for_dma(src_vma, page)))
827 		return 1;
828 
829 	new_page = *prealloc;
830 	if (!new_page)
831 		return -EAGAIN;
832 
833 	/*
834 	 * We have a prealloc page, all good!  Take it
835 	 * over and copy the page & arm it.
836 	 */
837 	*prealloc = NULL;
838 	copy_user_highpage(new_page, page, addr, src_vma);
839 	__SetPageUptodate(new_page);
840 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
841 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
842 	rss[mm_counter(new_page)]++;
843 
844 	/* All done, just insert the new page copy in the child */
845 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
846 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
847 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
848 	return 0;
849 }
850 
851 /*
852  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
853  * is required to copy this pte.
854  */
855 static inline int
856 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
857 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
858 		 struct page **prealloc)
859 {
860 	struct mm_struct *src_mm = src_vma->vm_mm;
861 	unsigned long vm_flags = src_vma->vm_flags;
862 	pte_t pte = *src_pte;
863 	struct page *page;
864 
865 	page = vm_normal_page(src_vma, addr, pte);
866 	if (page) {
867 		int retval;
868 
869 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
870 					   addr, rss, prealloc, pte, page);
871 		if (retval <= 0)
872 			return retval;
873 
874 		get_page(page);
875 		page_dup_rmap(page, false);
876 		rss[mm_counter(page)]++;
877 	}
878 
879 	/*
880 	 * If it's a COW mapping, write protect it both
881 	 * in the parent and the child
882 	 */
883 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
884 		ptep_set_wrprotect(src_mm, addr, src_pte);
885 		pte = pte_wrprotect(pte);
886 	}
887 
888 	/*
889 	 * If it's a shared mapping, mark it clean in
890 	 * the child
891 	 */
892 	if (vm_flags & VM_SHARED)
893 		pte = pte_mkclean(pte);
894 	pte = pte_mkold(pte);
895 
896 	/*
897 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
898 	 * does not have the VM_UFFD_WP, which means that the uffd
899 	 * fork event is not enabled.
900 	 */
901 	if (!(vm_flags & VM_UFFD_WP))
902 		pte = pte_clear_uffd_wp(pte);
903 
904 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
905 	return 0;
906 }
907 
908 static inline struct page *
909 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
910 		   unsigned long addr)
911 {
912 	struct page *new_page;
913 
914 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
915 	if (!new_page)
916 		return NULL;
917 
918 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
919 		put_page(new_page);
920 		return NULL;
921 	}
922 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
923 
924 	return new_page;
925 }
926 
927 static int
928 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
929 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
930 	       unsigned long end)
931 {
932 	struct mm_struct *dst_mm = dst_vma->vm_mm;
933 	struct mm_struct *src_mm = src_vma->vm_mm;
934 	pte_t *orig_src_pte, *orig_dst_pte;
935 	pte_t *src_pte, *dst_pte;
936 	spinlock_t *src_ptl, *dst_ptl;
937 	int progress, ret = 0;
938 	int rss[NR_MM_COUNTERS];
939 	swp_entry_t entry = (swp_entry_t){0};
940 	struct page *prealloc = NULL;
941 
942 again:
943 	progress = 0;
944 	init_rss_vec(rss);
945 
946 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
947 	if (!dst_pte) {
948 		ret = -ENOMEM;
949 		goto out;
950 	}
951 	src_pte = pte_offset_map(src_pmd, addr);
952 	src_ptl = pte_lockptr(src_mm, src_pmd);
953 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
954 	orig_src_pte = src_pte;
955 	orig_dst_pte = dst_pte;
956 	arch_enter_lazy_mmu_mode();
957 
958 	do {
959 		/*
960 		 * We are holding two locks at this point - either of them
961 		 * could generate latencies in another task on another CPU.
962 		 */
963 		if (progress >= 32) {
964 			progress = 0;
965 			if (need_resched() ||
966 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
967 				break;
968 		}
969 		if (pte_none(*src_pte)) {
970 			progress++;
971 			continue;
972 		}
973 		if (unlikely(!pte_present(*src_pte))) {
974 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
975 							dst_pte, src_pte,
976 							src_vma, addr, rss);
977 			if (entry.val)
978 				break;
979 			progress += 8;
980 			continue;
981 		}
982 		/* copy_present_pte() will clear `*prealloc' if consumed */
983 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
984 				       addr, rss, &prealloc);
985 		/*
986 		 * If we need a pre-allocated page for this pte, drop the
987 		 * locks, allocate, and try again.
988 		 */
989 		if (unlikely(ret == -EAGAIN))
990 			break;
991 		if (unlikely(prealloc)) {
992 			/*
993 			 * pre-alloc page cannot be reused by next time so as
994 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
995 			 * will allocate page according to address).  This
996 			 * could only happen if one pinned pte changed.
997 			 */
998 			put_page(prealloc);
999 			prealloc = NULL;
1000 		}
1001 		progress += 8;
1002 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1003 
1004 	arch_leave_lazy_mmu_mode();
1005 	spin_unlock(src_ptl);
1006 	pte_unmap(orig_src_pte);
1007 	add_mm_rss_vec(dst_mm, rss);
1008 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1009 	cond_resched();
1010 
1011 	if (entry.val) {
1012 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1013 			ret = -ENOMEM;
1014 			goto out;
1015 		}
1016 		entry.val = 0;
1017 	} else if (ret) {
1018 		WARN_ON_ONCE(ret != -EAGAIN);
1019 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1020 		if (!prealloc)
1021 			return -ENOMEM;
1022 		/* We've captured and resolved the error. Reset, try again. */
1023 		ret = 0;
1024 	}
1025 	if (addr != end)
1026 		goto again;
1027 out:
1028 	if (unlikely(prealloc))
1029 		put_page(prealloc);
1030 	return ret;
1031 }
1032 
1033 static inline int
1034 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1035 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1036 	       unsigned long end)
1037 {
1038 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1039 	struct mm_struct *src_mm = src_vma->vm_mm;
1040 	pmd_t *src_pmd, *dst_pmd;
1041 	unsigned long next;
1042 
1043 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1044 	if (!dst_pmd)
1045 		return -ENOMEM;
1046 	src_pmd = pmd_offset(src_pud, addr);
1047 	do {
1048 		next = pmd_addr_end(addr, end);
1049 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1050 			|| pmd_devmap(*src_pmd)) {
1051 			int err;
1052 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1053 			err = copy_huge_pmd(dst_mm, src_mm,
1054 					    dst_pmd, src_pmd, addr, src_vma);
1055 			if (err == -ENOMEM)
1056 				return -ENOMEM;
1057 			if (!err)
1058 				continue;
1059 			/* fall through */
1060 		}
1061 		if (pmd_none_or_clear_bad(src_pmd))
1062 			continue;
1063 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1064 				   addr, next))
1065 			return -ENOMEM;
1066 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1067 	return 0;
1068 }
1069 
1070 static inline int
1071 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1072 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1073 	       unsigned long end)
1074 {
1075 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1076 	struct mm_struct *src_mm = src_vma->vm_mm;
1077 	pud_t *src_pud, *dst_pud;
1078 	unsigned long next;
1079 
1080 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1081 	if (!dst_pud)
1082 		return -ENOMEM;
1083 	src_pud = pud_offset(src_p4d, addr);
1084 	do {
1085 		next = pud_addr_end(addr, end);
1086 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1087 			int err;
1088 
1089 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1090 			err = copy_huge_pud(dst_mm, src_mm,
1091 					    dst_pud, src_pud, addr, src_vma);
1092 			if (err == -ENOMEM)
1093 				return -ENOMEM;
1094 			if (!err)
1095 				continue;
1096 			/* fall through */
1097 		}
1098 		if (pud_none_or_clear_bad(src_pud))
1099 			continue;
1100 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1101 				   addr, next))
1102 			return -ENOMEM;
1103 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1104 	return 0;
1105 }
1106 
1107 static inline int
1108 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1109 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1110 	       unsigned long end)
1111 {
1112 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1113 	p4d_t *src_p4d, *dst_p4d;
1114 	unsigned long next;
1115 
1116 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1117 	if (!dst_p4d)
1118 		return -ENOMEM;
1119 	src_p4d = p4d_offset(src_pgd, addr);
1120 	do {
1121 		next = p4d_addr_end(addr, end);
1122 		if (p4d_none_or_clear_bad(src_p4d))
1123 			continue;
1124 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1125 				   addr, next))
1126 			return -ENOMEM;
1127 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1128 	return 0;
1129 }
1130 
1131 int
1132 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1133 {
1134 	pgd_t *src_pgd, *dst_pgd;
1135 	unsigned long next;
1136 	unsigned long addr = src_vma->vm_start;
1137 	unsigned long end = src_vma->vm_end;
1138 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1139 	struct mm_struct *src_mm = src_vma->vm_mm;
1140 	struct mmu_notifier_range range;
1141 	bool is_cow;
1142 	int ret;
1143 
1144 	/*
1145 	 * Don't copy ptes where a page fault will fill them correctly.
1146 	 * Fork becomes much lighter when there are big shared or private
1147 	 * readonly mappings. The tradeoff is that copy_page_range is more
1148 	 * efficient than faulting.
1149 	 */
1150 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1151 	    !src_vma->anon_vma)
1152 		return 0;
1153 
1154 	if (is_vm_hugetlb_page(src_vma))
1155 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1156 
1157 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1158 		/*
1159 		 * We do not free on error cases below as remove_vma
1160 		 * gets called on error from higher level routine
1161 		 */
1162 		ret = track_pfn_copy(src_vma);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	/*
1168 	 * We need to invalidate the secondary MMU mappings only when
1169 	 * there could be a permission downgrade on the ptes of the
1170 	 * parent mm. And a permission downgrade will only happen if
1171 	 * is_cow_mapping() returns true.
1172 	 */
1173 	is_cow = is_cow_mapping(src_vma->vm_flags);
1174 
1175 	if (is_cow) {
1176 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1177 					0, src_vma, src_mm, addr, end);
1178 		mmu_notifier_invalidate_range_start(&range);
1179 		/*
1180 		 * Disabling preemption is not needed for the write side, as
1181 		 * the read side doesn't spin, but goes to the mmap_lock.
1182 		 *
1183 		 * Use the raw variant of the seqcount_t write API to avoid
1184 		 * lockdep complaining about preemptibility.
1185 		 */
1186 		mmap_assert_write_locked(src_mm);
1187 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1188 	}
1189 
1190 	ret = 0;
1191 	dst_pgd = pgd_offset(dst_mm, addr);
1192 	src_pgd = pgd_offset(src_mm, addr);
1193 	do {
1194 		next = pgd_addr_end(addr, end);
1195 		if (pgd_none_or_clear_bad(src_pgd))
1196 			continue;
1197 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1198 					    addr, next))) {
1199 			ret = -ENOMEM;
1200 			break;
1201 		}
1202 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1203 
1204 	if (is_cow) {
1205 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1206 		mmu_notifier_invalidate_range_end(&range);
1207 	}
1208 	return ret;
1209 }
1210 
1211 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1212 				struct vm_area_struct *vma, pmd_t *pmd,
1213 				unsigned long addr, unsigned long end,
1214 				struct zap_details *details)
1215 {
1216 	struct mm_struct *mm = tlb->mm;
1217 	int force_flush = 0;
1218 	int rss[NR_MM_COUNTERS];
1219 	spinlock_t *ptl;
1220 	pte_t *start_pte;
1221 	pte_t *pte;
1222 	swp_entry_t entry;
1223 
1224 	tlb_change_page_size(tlb, PAGE_SIZE);
1225 again:
1226 	init_rss_vec(rss);
1227 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228 	pte = start_pte;
1229 	flush_tlb_batched_pending(mm);
1230 	arch_enter_lazy_mmu_mode();
1231 	do {
1232 		pte_t ptent = *pte;
1233 		if (pte_none(ptent))
1234 			continue;
1235 
1236 		if (need_resched())
1237 			break;
1238 
1239 		if (pte_present(ptent)) {
1240 			struct page *page;
1241 
1242 			page = vm_normal_page(vma, addr, ptent);
1243 			if (unlikely(details) && page) {
1244 				/*
1245 				 * unmap_shared_mapping_pages() wants to
1246 				 * invalidate cache without truncating:
1247 				 * unmap shared but keep private pages.
1248 				 */
1249 				if (details->check_mapping &&
1250 				    details->check_mapping != page_rmapping(page))
1251 					continue;
1252 			}
1253 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1254 							tlb->fullmm);
1255 			tlb_remove_tlb_entry(tlb, pte, addr);
1256 			if (unlikely(!page))
1257 				continue;
1258 
1259 			if (!PageAnon(page)) {
1260 				if (pte_dirty(ptent)) {
1261 					force_flush = 1;
1262 					set_page_dirty(page);
1263 				}
1264 				if (pte_young(ptent) &&
1265 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1266 					mark_page_accessed(page);
1267 			}
1268 			rss[mm_counter(page)]--;
1269 			page_remove_rmap(page, false);
1270 			if (unlikely(page_mapcount(page) < 0))
1271 				print_bad_pte(vma, addr, ptent, page);
1272 			if (unlikely(__tlb_remove_page(tlb, page))) {
1273 				force_flush = 1;
1274 				addr += PAGE_SIZE;
1275 				break;
1276 			}
1277 			continue;
1278 		}
1279 
1280 		entry = pte_to_swp_entry(ptent);
1281 		if (is_device_private_entry(entry)) {
1282 			struct page *page = device_private_entry_to_page(entry);
1283 
1284 			if (unlikely(details && details->check_mapping)) {
1285 				/*
1286 				 * unmap_shared_mapping_pages() wants to
1287 				 * invalidate cache without truncating:
1288 				 * unmap shared but keep private pages.
1289 				 */
1290 				if (details->check_mapping !=
1291 				    page_rmapping(page))
1292 					continue;
1293 			}
1294 
1295 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1296 			rss[mm_counter(page)]--;
1297 			page_remove_rmap(page, false);
1298 			put_page(page);
1299 			continue;
1300 		}
1301 
1302 		/* If details->check_mapping, we leave swap entries. */
1303 		if (unlikely(details))
1304 			continue;
1305 
1306 		if (!non_swap_entry(entry))
1307 			rss[MM_SWAPENTS]--;
1308 		else if (is_migration_entry(entry)) {
1309 			struct page *page;
1310 
1311 			page = migration_entry_to_page(entry);
1312 			rss[mm_counter(page)]--;
1313 		}
1314 		if (unlikely(!free_swap_and_cache(entry)))
1315 			print_bad_pte(vma, addr, ptent, NULL);
1316 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1317 	} while (pte++, addr += PAGE_SIZE, addr != end);
1318 
1319 	add_mm_rss_vec(mm, rss);
1320 	arch_leave_lazy_mmu_mode();
1321 
1322 	/* Do the actual TLB flush before dropping ptl */
1323 	if (force_flush)
1324 		tlb_flush_mmu_tlbonly(tlb);
1325 	pte_unmap_unlock(start_pte, ptl);
1326 
1327 	/*
1328 	 * If we forced a TLB flush (either due to running out of
1329 	 * batch buffers or because we needed to flush dirty TLB
1330 	 * entries before releasing the ptl), free the batched
1331 	 * memory too. Restart if we didn't do everything.
1332 	 */
1333 	if (force_flush) {
1334 		force_flush = 0;
1335 		tlb_flush_mmu(tlb);
1336 	}
1337 
1338 	if (addr != end) {
1339 		cond_resched();
1340 		goto again;
1341 	}
1342 
1343 	return addr;
1344 }
1345 
1346 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1347 				struct vm_area_struct *vma, pud_t *pud,
1348 				unsigned long addr, unsigned long end,
1349 				struct zap_details *details)
1350 {
1351 	pmd_t *pmd;
1352 	unsigned long next;
1353 
1354 	pmd = pmd_offset(pud, addr);
1355 	do {
1356 		next = pmd_addr_end(addr, end);
1357 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1358 			if (next - addr != HPAGE_PMD_SIZE)
1359 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1360 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1361 				goto next;
1362 			/* fall through */
1363 		} else if (details && details->single_page &&
1364 			   PageTransCompound(details->single_page) &&
1365 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1366 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1367 			/*
1368 			 * Take and drop THP pmd lock so that we cannot return
1369 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1370 			 * but not yet decremented compound_mapcount().
1371 			 */
1372 			spin_unlock(ptl);
1373 		}
1374 
1375 		/*
1376 		 * Here there can be other concurrent MADV_DONTNEED or
1377 		 * trans huge page faults running, and if the pmd is
1378 		 * none or trans huge it can change under us. This is
1379 		 * because MADV_DONTNEED holds the mmap_lock in read
1380 		 * mode.
1381 		 */
1382 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1383 			goto next;
1384 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1385 next:
1386 		cond_resched();
1387 	} while (pmd++, addr = next, addr != end);
1388 
1389 	return addr;
1390 }
1391 
1392 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1393 				struct vm_area_struct *vma, p4d_t *p4d,
1394 				unsigned long addr, unsigned long end,
1395 				struct zap_details *details)
1396 {
1397 	pud_t *pud;
1398 	unsigned long next;
1399 
1400 	pud = pud_offset(p4d, addr);
1401 	do {
1402 		next = pud_addr_end(addr, end);
1403 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1404 			if (next - addr != HPAGE_PUD_SIZE) {
1405 				mmap_assert_locked(tlb->mm);
1406 				split_huge_pud(vma, pud, addr);
1407 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1408 				goto next;
1409 			/* fall through */
1410 		}
1411 		if (pud_none_or_clear_bad(pud))
1412 			continue;
1413 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1414 next:
1415 		cond_resched();
1416 	} while (pud++, addr = next, addr != end);
1417 
1418 	return addr;
1419 }
1420 
1421 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1422 				struct vm_area_struct *vma, pgd_t *pgd,
1423 				unsigned long addr, unsigned long end,
1424 				struct zap_details *details)
1425 {
1426 	p4d_t *p4d;
1427 	unsigned long next;
1428 
1429 	p4d = p4d_offset(pgd, addr);
1430 	do {
1431 		next = p4d_addr_end(addr, end);
1432 		if (p4d_none_or_clear_bad(p4d))
1433 			continue;
1434 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1435 	} while (p4d++, addr = next, addr != end);
1436 
1437 	return addr;
1438 }
1439 
1440 void unmap_page_range(struct mmu_gather *tlb,
1441 			     struct vm_area_struct *vma,
1442 			     unsigned long addr, unsigned long end,
1443 			     struct zap_details *details)
1444 {
1445 	pgd_t *pgd;
1446 	unsigned long next;
1447 
1448 	BUG_ON(addr >= end);
1449 	tlb_start_vma(tlb, vma);
1450 	pgd = pgd_offset(vma->vm_mm, addr);
1451 	do {
1452 		next = pgd_addr_end(addr, end);
1453 		if (pgd_none_or_clear_bad(pgd))
1454 			continue;
1455 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1456 	} while (pgd++, addr = next, addr != end);
1457 	tlb_end_vma(tlb, vma);
1458 }
1459 
1460 
1461 static void unmap_single_vma(struct mmu_gather *tlb,
1462 		struct vm_area_struct *vma, unsigned long start_addr,
1463 		unsigned long end_addr,
1464 		struct zap_details *details)
1465 {
1466 	unsigned long start = max(vma->vm_start, start_addr);
1467 	unsigned long end;
1468 
1469 	if (start >= vma->vm_end)
1470 		return;
1471 	end = min(vma->vm_end, end_addr);
1472 	if (end <= vma->vm_start)
1473 		return;
1474 
1475 	if (vma->vm_file)
1476 		uprobe_munmap(vma, start, end);
1477 
1478 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1479 		untrack_pfn(vma, 0, 0);
1480 
1481 	if (start != end) {
1482 		if (unlikely(is_vm_hugetlb_page(vma))) {
1483 			/*
1484 			 * It is undesirable to test vma->vm_file as it
1485 			 * should be non-null for valid hugetlb area.
1486 			 * However, vm_file will be NULL in the error
1487 			 * cleanup path of mmap_region. When
1488 			 * hugetlbfs ->mmap method fails,
1489 			 * mmap_region() nullifies vma->vm_file
1490 			 * before calling this function to clean up.
1491 			 * Since no pte has actually been setup, it is
1492 			 * safe to do nothing in this case.
1493 			 */
1494 			if (vma->vm_file) {
1495 				i_mmap_lock_write(vma->vm_file->f_mapping);
1496 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1497 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1498 			}
1499 		} else
1500 			unmap_page_range(tlb, vma, start, end, details);
1501 	}
1502 }
1503 
1504 /**
1505  * unmap_vmas - unmap a range of memory covered by a list of vma's
1506  * @tlb: address of the caller's struct mmu_gather
1507  * @vma: the starting vma
1508  * @start_addr: virtual address at which to start unmapping
1509  * @end_addr: virtual address at which to end unmapping
1510  *
1511  * Unmap all pages in the vma list.
1512  *
1513  * Only addresses between `start' and `end' will be unmapped.
1514  *
1515  * The VMA list must be sorted in ascending virtual address order.
1516  *
1517  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1518  * range after unmap_vmas() returns.  So the only responsibility here is to
1519  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1520  * drops the lock and schedules.
1521  */
1522 void unmap_vmas(struct mmu_gather *tlb,
1523 		struct vm_area_struct *vma, unsigned long start_addr,
1524 		unsigned long end_addr)
1525 {
1526 	struct mmu_notifier_range range;
1527 
1528 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1529 				start_addr, end_addr);
1530 	mmu_notifier_invalidate_range_start(&range);
1531 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1532 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1533 	mmu_notifier_invalidate_range_end(&range);
1534 }
1535 
1536 /**
1537  * zap_page_range - remove user pages in a given range
1538  * @vma: vm_area_struct holding the applicable pages
1539  * @start: starting address of pages to zap
1540  * @size: number of bytes to zap
1541  *
1542  * Caller must protect the VMA list
1543  */
1544 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1545 		unsigned long size)
1546 {
1547 	struct mmu_notifier_range range;
1548 	struct mmu_gather tlb;
1549 
1550 	lru_add_drain();
1551 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1552 				start, start + size);
1553 	tlb_gather_mmu(&tlb, vma->vm_mm);
1554 	update_hiwater_rss(vma->vm_mm);
1555 	mmu_notifier_invalidate_range_start(&range);
1556 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1557 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1558 	mmu_notifier_invalidate_range_end(&range);
1559 	tlb_finish_mmu(&tlb);
1560 }
1561 
1562 /**
1563  * zap_page_range_single - remove user pages in a given range
1564  * @vma: vm_area_struct holding the applicable pages
1565  * @address: starting address of pages to zap
1566  * @size: number of bytes to zap
1567  * @details: details of shared cache invalidation
1568  *
1569  * The range must fit into one VMA.
1570  */
1571 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1572 		unsigned long size, struct zap_details *details)
1573 {
1574 	struct mmu_notifier_range range;
1575 	struct mmu_gather tlb;
1576 
1577 	lru_add_drain();
1578 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1579 				address, address + size);
1580 	tlb_gather_mmu(&tlb, vma->vm_mm);
1581 	update_hiwater_rss(vma->vm_mm);
1582 	mmu_notifier_invalidate_range_start(&range);
1583 	unmap_single_vma(&tlb, vma, address, range.end, details);
1584 	mmu_notifier_invalidate_range_end(&range);
1585 	tlb_finish_mmu(&tlb);
1586 }
1587 
1588 /**
1589  * zap_vma_ptes - remove ptes mapping the vma
1590  * @vma: vm_area_struct holding ptes to be zapped
1591  * @address: starting address of pages to zap
1592  * @size: number of bytes to zap
1593  *
1594  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1595  *
1596  * The entire address range must be fully contained within the vma.
1597  *
1598  */
1599 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1600 		unsigned long size)
1601 {
1602 	if (address < vma->vm_start || address + size > vma->vm_end ||
1603 	    		!(vma->vm_flags & VM_PFNMAP))
1604 		return;
1605 
1606 	zap_page_range_single(vma, address, size, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1609 
1610 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1611 {
1612 	pgd_t *pgd;
1613 	p4d_t *p4d;
1614 	pud_t *pud;
1615 	pmd_t *pmd;
1616 
1617 	pgd = pgd_offset(mm, addr);
1618 	p4d = p4d_alloc(mm, pgd, addr);
1619 	if (!p4d)
1620 		return NULL;
1621 	pud = pud_alloc(mm, p4d, addr);
1622 	if (!pud)
1623 		return NULL;
1624 	pmd = pmd_alloc(mm, pud, addr);
1625 	if (!pmd)
1626 		return NULL;
1627 
1628 	VM_BUG_ON(pmd_trans_huge(*pmd));
1629 	return pmd;
1630 }
1631 
1632 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1633 			spinlock_t **ptl)
1634 {
1635 	pmd_t *pmd = walk_to_pmd(mm, addr);
1636 
1637 	if (!pmd)
1638 		return NULL;
1639 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1640 }
1641 
1642 static int validate_page_before_insert(struct page *page)
1643 {
1644 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1645 		return -EINVAL;
1646 	flush_dcache_page(page);
1647 	return 0;
1648 }
1649 
1650 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1651 			unsigned long addr, struct page *page, pgprot_t prot)
1652 {
1653 	if (!pte_none(*pte))
1654 		return -EBUSY;
1655 	/* Ok, finally just insert the thing.. */
1656 	get_page(page);
1657 	inc_mm_counter_fast(mm, mm_counter_file(page));
1658 	page_add_file_rmap(page, false);
1659 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1660 	return 0;
1661 }
1662 
1663 /*
1664  * This is the old fallback for page remapping.
1665  *
1666  * For historical reasons, it only allows reserved pages. Only
1667  * old drivers should use this, and they needed to mark their
1668  * pages reserved for the old functions anyway.
1669  */
1670 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1671 			struct page *page, pgprot_t prot)
1672 {
1673 	struct mm_struct *mm = vma->vm_mm;
1674 	int retval;
1675 	pte_t *pte;
1676 	spinlock_t *ptl;
1677 
1678 	retval = validate_page_before_insert(page);
1679 	if (retval)
1680 		goto out;
1681 	retval = -ENOMEM;
1682 	pte = get_locked_pte(mm, addr, &ptl);
1683 	if (!pte)
1684 		goto out;
1685 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1686 	pte_unmap_unlock(pte, ptl);
1687 out:
1688 	return retval;
1689 }
1690 
1691 #ifdef pte_index
1692 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1693 			unsigned long addr, struct page *page, pgprot_t prot)
1694 {
1695 	int err;
1696 
1697 	if (!page_count(page))
1698 		return -EINVAL;
1699 	err = validate_page_before_insert(page);
1700 	if (err)
1701 		return err;
1702 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1703 }
1704 
1705 /* insert_pages() amortizes the cost of spinlock operations
1706  * when inserting pages in a loop. Arch *must* define pte_index.
1707  */
1708 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1709 			struct page **pages, unsigned long *num, pgprot_t prot)
1710 {
1711 	pmd_t *pmd = NULL;
1712 	pte_t *start_pte, *pte;
1713 	spinlock_t *pte_lock;
1714 	struct mm_struct *const mm = vma->vm_mm;
1715 	unsigned long curr_page_idx = 0;
1716 	unsigned long remaining_pages_total = *num;
1717 	unsigned long pages_to_write_in_pmd;
1718 	int ret;
1719 more:
1720 	ret = -EFAULT;
1721 	pmd = walk_to_pmd(mm, addr);
1722 	if (!pmd)
1723 		goto out;
1724 
1725 	pages_to_write_in_pmd = min_t(unsigned long,
1726 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1727 
1728 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1729 	ret = -ENOMEM;
1730 	if (pte_alloc(mm, pmd))
1731 		goto out;
1732 
1733 	while (pages_to_write_in_pmd) {
1734 		int pte_idx = 0;
1735 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1736 
1737 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1738 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1739 			int err = insert_page_in_batch_locked(mm, pte,
1740 				addr, pages[curr_page_idx], prot);
1741 			if (unlikely(err)) {
1742 				pte_unmap_unlock(start_pte, pte_lock);
1743 				ret = err;
1744 				remaining_pages_total -= pte_idx;
1745 				goto out;
1746 			}
1747 			addr += PAGE_SIZE;
1748 			++curr_page_idx;
1749 		}
1750 		pte_unmap_unlock(start_pte, pte_lock);
1751 		pages_to_write_in_pmd -= batch_size;
1752 		remaining_pages_total -= batch_size;
1753 	}
1754 	if (remaining_pages_total)
1755 		goto more;
1756 	ret = 0;
1757 out:
1758 	*num = remaining_pages_total;
1759 	return ret;
1760 }
1761 #endif  /* ifdef pte_index */
1762 
1763 /**
1764  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1765  * @vma: user vma to map to
1766  * @addr: target start user address of these pages
1767  * @pages: source kernel pages
1768  * @num: in: number of pages to map. out: number of pages that were *not*
1769  * mapped. (0 means all pages were successfully mapped).
1770  *
1771  * Preferred over vm_insert_page() when inserting multiple pages.
1772  *
1773  * In case of error, we may have mapped a subset of the provided
1774  * pages. It is the caller's responsibility to account for this case.
1775  *
1776  * The same restrictions apply as in vm_insert_page().
1777  */
1778 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1779 			struct page **pages, unsigned long *num)
1780 {
1781 #ifdef pte_index
1782 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1783 
1784 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1785 		return -EFAULT;
1786 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1787 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1788 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1789 		vma->vm_flags |= VM_MIXEDMAP;
1790 	}
1791 	/* Defer page refcount checking till we're about to map that page. */
1792 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1793 #else
1794 	unsigned long idx = 0, pgcount = *num;
1795 	int err = -EINVAL;
1796 
1797 	for (; idx < pgcount; ++idx) {
1798 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1799 		if (err)
1800 			break;
1801 	}
1802 	*num = pgcount - idx;
1803 	return err;
1804 #endif  /* ifdef pte_index */
1805 }
1806 EXPORT_SYMBOL(vm_insert_pages);
1807 
1808 /**
1809  * vm_insert_page - insert single page into user vma
1810  * @vma: user vma to map to
1811  * @addr: target user address of this page
1812  * @page: source kernel page
1813  *
1814  * This allows drivers to insert individual pages they've allocated
1815  * into a user vma.
1816  *
1817  * The page has to be a nice clean _individual_ kernel allocation.
1818  * If you allocate a compound page, you need to have marked it as
1819  * such (__GFP_COMP), or manually just split the page up yourself
1820  * (see split_page()).
1821  *
1822  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1823  * took an arbitrary page protection parameter. This doesn't allow
1824  * that. Your vma protection will have to be set up correctly, which
1825  * means that if you want a shared writable mapping, you'd better
1826  * ask for a shared writable mapping!
1827  *
1828  * The page does not need to be reserved.
1829  *
1830  * Usually this function is called from f_op->mmap() handler
1831  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1832  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1833  * function from other places, for example from page-fault handler.
1834  *
1835  * Return: %0 on success, negative error code otherwise.
1836  */
1837 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1838 			struct page *page)
1839 {
1840 	if (addr < vma->vm_start || addr >= vma->vm_end)
1841 		return -EFAULT;
1842 	if (!page_count(page))
1843 		return -EINVAL;
1844 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1845 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1846 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1847 		vma->vm_flags |= VM_MIXEDMAP;
1848 	}
1849 	return insert_page(vma, addr, page, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_insert_page);
1852 
1853 /*
1854  * __vm_map_pages - maps range of kernel pages into user vma
1855  * @vma: user vma to map to
1856  * @pages: pointer to array of source kernel pages
1857  * @num: number of pages in page array
1858  * @offset: user's requested vm_pgoff
1859  *
1860  * This allows drivers to map range of kernel pages into a user vma.
1861  *
1862  * Return: 0 on success and error code otherwise.
1863  */
1864 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1865 				unsigned long num, unsigned long offset)
1866 {
1867 	unsigned long count = vma_pages(vma);
1868 	unsigned long uaddr = vma->vm_start;
1869 	int ret, i;
1870 
1871 	/* Fail if the user requested offset is beyond the end of the object */
1872 	if (offset >= num)
1873 		return -ENXIO;
1874 
1875 	/* Fail if the user requested size exceeds available object size */
1876 	if (count > num - offset)
1877 		return -ENXIO;
1878 
1879 	for (i = 0; i < count; i++) {
1880 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1881 		if (ret < 0)
1882 			return ret;
1883 		uaddr += PAGE_SIZE;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 /**
1890  * vm_map_pages - maps range of kernel pages starts with non zero offset
1891  * @vma: user vma to map to
1892  * @pages: pointer to array of source kernel pages
1893  * @num: number of pages in page array
1894  *
1895  * Maps an object consisting of @num pages, catering for the user's
1896  * requested vm_pgoff
1897  *
1898  * If we fail to insert any page into the vma, the function will return
1899  * immediately leaving any previously inserted pages present.  Callers
1900  * from the mmap handler may immediately return the error as their caller
1901  * will destroy the vma, removing any successfully inserted pages. Other
1902  * callers should make their own arrangements for calling unmap_region().
1903  *
1904  * Context: Process context. Called by mmap handlers.
1905  * Return: 0 on success and error code otherwise.
1906  */
1907 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1908 				unsigned long num)
1909 {
1910 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1911 }
1912 EXPORT_SYMBOL(vm_map_pages);
1913 
1914 /**
1915  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1916  * @vma: user vma to map to
1917  * @pages: pointer to array of source kernel pages
1918  * @num: number of pages in page array
1919  *
1920  * Similar to vm_map_pages(), except that it explicitly sets the offset
1921  * to 0. This function is intended for the drivers that did not consider
1922  * vm_pgoff.
1923  *
1924  * Context: Process context. Called by mmap handlers.
1925  * Return: 0 on success and error code otherwise.
1926  */
1927 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1928 				unsigned long num)
1929 {
1930 	return __vm_map_pages(vma, pages, num, 0);
1931 }
1932 EXPORT_SYMBOL(vm_map_pages_zero);
1933 
1934 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1935 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1936 {
1937 	struct mm_struct *mm = vma->vm_mm;
1938 	pte_t *pte, entry;
1939 	spinlock_t *ptl;
1940 
1941 	pte = get_locked_pte(mm, addr, &ptl);
1942 	if (!pte)
1943 		return VM_FAULT_OOM;
1944 	if (!pte_none(*pte)) {
1945 		if (mkwrite) {
1946 			/*
1947 			 * For read faults on private mappings the PFN passed
1948 			 * in may not match the PFN we have mapped if the
1949 			 * mapped PFN is a writeable COW page.  In the mkwrite
1950 			 * case we are creating a writable PTE for a shared
1951 			 * mapping and we expect the PFNs to match. If they
1952 			 * don't match, we are likely racing with block
1953 			 * allocation and mapping invalidation so just skip the
1954 			 * update.
1955 			 */
1956 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1957 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1958 				goto out_unlock;
1959 			}
1960 			entry = pte_mkyoung(*pte);
1961 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1962 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1963 				update_mmu_cache(vma, addr, pte);
1964 		}
1965 		goto out_unlock;
1966 	}
1967 
1968 	/* Ok, finally just insert the thing.. */
1969 	if (pfn_t_devmap(pfn))
1970 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1971 	else
1972 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1973 
1974 	if (mkwrite) {
1975 		entry = pte_mkyoung(entry);
1976 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1977 	}
1978 
1979 	set_pte_at(mm, addr, pte, entry);
1980 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1981 
1982 out_unlock:
1983 	pte_unmap_unlock(pte, ptl);
1984 	return VM_FAULT_NOPAGE;
1985 }
1986 
1987 /**
1988  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1989  * @vma: user vma to map to
1990  * @addr: target user address of this page
1991  * @pfn: source kernel pfn
1992  * @pgprot: pgprot flags for the inserted page
1993  *
1994  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1995  * to override pgprot on a per-page basis.
1996  *
1997  * This only makes sense for IO mappings, and it makes no sense for
1998  * COW mappings.  In general, using multiple vmas is preferable;
1999  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2000  * impractical.
2001  *
2002  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2003  * a value of @pgprot different from that of @vma->vm_page_prot.
2004  *
2005  * Context: Process context.  May allocate using %GFP_KERNEL.
2006  * Return: vm_fault_t value.
2007  */
2008 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2009 			unsigned long pfn, pgprot_t pgprot)
2010 {
2011 	/*
2012 	 * Technically, architectures with pte_special can avoid all these
2013 	 * restrictions (same for remap_pfn_range).  However we would like
2014 	 * consistency in testing and feature parity among all, so we should
2015 	 * try to keep these invariants in place for everybody.
2016 	 */
2017 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2018 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2019 						(VM_PFNMAP|VM_MIXEDMAP));
2020 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2021 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2022 
2023 	if (addr < vma->vm_start || addr >= vma->vm_end)
2024 		return VM_FAULT_SIGBUS;
2025 
2026 	if (!pfn_modify_allowed(pfn, pgprot))
2027 		return VM_FAULT_SIGBUS;
2028 
2029 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2030 
2031 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2032 			false);
2033 }
2034 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2035 
2036 /**
2037  * vmf_insert_pfn - insert single pfn into user vma
2038  * @vma: user vma to map to
2039  * @addr: target user address of this page
2040  * @pfn: source kernel pfn
2041  *
2042  * Similar to vm_insert_page, this allows drivers to insert individual pages
2043  * they've allocated into a user vma. Same comments apply.
2044  *
2045  * This function should only be called from a vm_ops->fault handler, and
2046  * in that case the handler should return the result of this function.
2047  *
2048  * vma cannot be a COW mapping.
2049  *
2050  * As this is called only for pages that do not currently exist, we
2051  * do not need to flush old virtual caches or the TLB.
2052  *
2053  * Context: Process context.  May allocate using %GFP_KERNEL.
2054  * Return: vm_fault_t value.
2055  */
2056 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2057 			unsigned long pfn)
2058 {
2059 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2060 }
2061 EXPORT_SYMBOL(vmf_insert_pfn);
2062 
2063 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2064 {
2065 	/* these checks mirror the abort conditions in vm_normal_page */
2066 	if (vma->vm_flags & VM_MIXEDMAP)
2067 		return true;
2068 	if (pfn_t_devmap(pfn))
2069 		return true;
2070 	if (pfn_t_special(pfn))
2071 		return true;
2072 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2073 		return true;
2074 	return false;
2075 }
2076 
2077 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2078 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2079 		bool mkwrite)
2080 {
2081 	int err;
2082 
2083 	BUG_ON(!vm_mixed_ok(vma, pfn));
2084 
2085 	if (addr < vma->vm_start || addr >= vma->vm_end)
2086 		return VM_FAULT_SIGBUS;
2087 
2088 	track_pfn_insert(vma, &pgprot, pfn);
2089 
2090 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2091 		return VM_FAULT_SIGBUS;
2092 
2093 	/*
2094 	 * If we don't have pte special, then we have to use the pfn_valid()
2095 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2096 	 * refcount the page if pfn_valid is true (hence insert_page rather
2097 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2098 	 * without pte special, it would there be refcounted as a normal page.
2099 	 */
2100 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2101 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2102 		struct page *page;
2103 
2104 		/*
2105 		 * At this point we are committed to insert_page()
2106 		 * regardless of whether the caller specified flags that
2107 		 * result in pfn_t_has_page() == false.
2108 		 */
2109 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2110 		err = insert_page(vma, addr, page, pgprot);
2111 	} else {
2112 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2113 	}
2114 
2115 	if (err == -ENOMEM)
2116 		return VM_FAULT_OOM;
2117 	if (err < 0 && err != -EBUSY)
2118 		return VM_FAULT_SIGBUS;
2119 
2120 	return VM_FAULT_NOPAGE;
2121 }
2122 
2123 /**
2124  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2125  * @vma: user vma to map to
2126  * @addr: target user address of this page
2127  * @pfn: source kernel pfn
2128  * @pgprot: pgprot flags for the inserted page
2129  *
2130  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2131  * to override pgprot on a per-page basis.
2132  *
2133  * Typically this function should be used by drivers to set caching- and
2134  * encryption bits different than those of @vma->vm_page_prot, because
2135  * the caching- or encryption mode may not be known at mmap() time.
2136  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2137  * to set caching and encryption bits for those vmas (except for COW pages).
2138  * This is ensured by core vm only modifying these page table entries using
2139  * functions that don't touch caching- or encryption bits, using pte_modify()
2140  * if needed. (See for example mprotect()).
2141  * Also when new page-table entries are created, this is only done using the
2142  * fault() callback, and never using the value of vma->vm_page_prot,
2143  * except for page-table entries that point to anonymous pages as the result
2144  * of COW.
2145  *
2146  * Context: Process context.  May allocate using %GFP_KERNEL.
2147  * Return: vm_fault_t value.
2148  */
2149 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2150 				 pfn_t pfn, pgprot_t pgprot)
2151 {
2152 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2153 }
2154 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2155 
2156 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2157 		pfn_t pfn)
2158 {
2159 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2160 }
2161 EXPORT_SYMBOL(vmf_insert_mixed);
2162 
2163 /*
2164  *  If the insertion of PTE failed because someone else already added a
2165  *  different entry in the mean time, we treat that as success as we assume
2166  *  the same entry was actually inserted.
2167  */
2168 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2169 		unsigned long addr, pfn_t pfn)
2170 {
2171 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2172 }
2173 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2174 
2175 /*
2176  * maps a range of physical memory into the requested pages. the old
2177  * mappings are removed. any references to nonexistent pages results
2178  * in null mappings (currently treated as "copy-on-access")
2179  */
2180 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2181 			unsigned long addr, unsigned long end,
2182 			unsigned long pfn, pgprot_t prot)
2183 {
2184 	pte_t *pte, *mapped_pte;
2185 	spinlock_t *ptl;
2186 	int err = 0;
2187 
2188 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2189 	if (!pte)
2190 		return -ENOMEM;
2191 	arch_enter_lazy_mmu_mode();
2192 	do {
2193 		BUG_ON(!pte_none(*pte));
2194 		if (!pfn_modify_allowed(pfn, prot)) {
2195 			err = -EACCES;
2196 			break;
2197 		}
2198 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2199 		pfn++;
2200 	} while (pte++, addr += PAGE_SIZE, addr != end);
2201 	arch_leave_lazy_mmu_mode();
2202 	pte_unmap_unlock(mapped_pte, ptl);
2203 	return err;
2204 }
2205 
2206 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2207 			unsigned long addr, unsigned long end,
2208 			unsigned long pfn, pgprot_t prot)
2209 {
2210 	pmd_t *pmd;
2211 	unsigned long next;
2212 	int err;
2213 
2214 	pfn -= addr >> PAGE_SHIFT;
2215 	pmd = pmd_alloc(mm, pud, addr);
2216 	if (!pmd)
2217 		return -ENOMEM;
2218 	VM_BUG_ON(pmd_trans_huge(*pmd));
2219 	do {
2220 		next = pmd_addr_end(addr, end);
2221 		err = remap_pte_range(mm, pmd, addr, next,
2222 				pfn + (addr >> PAGE_SHIFT), prot);
2223 		if (err)
2224 			return err;
2225 	} while (pmd++, addr = next, addr != end);
2226 	return 0;
2227 }
2228 
2229 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2230 			unsigned long addr, unsigned long end,
2231 			unsigned long pfn, pgprot_t prot)
2232 {
2233 	pud_t *pud;
2234 	unsigned long next;
2235 	int err;
2236 
2237 	pfn -= addr >> PAGE_SHIFT;
2238 	pud = pud_alloc(mm, p4d, addr);
2239 	if (!pud)
2240 		return -ENOMEM;
2241 	do {
2242 		next = pud_addr_end(addr, end);
2243 		err = remap_pmd_range(mm, pud, addr, next,
2244 				pfn + (addr >> PAGE_SHIFT), prot);
2245 		if (err)
2246 			return err;
2247 	} while (pud++, addr = next, addr != end);
2248 	return 0;
2249 }
2250 
2251 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2252 			unsigned long addr, unsigned long end,
2253 			unsigned long pfn, pgprot_t prot)
2254 {
2255 	p4d_t *p4d;
2256 	unsigned long next;
2257 	int err;
2258 
2259 	pfn -= addr >> PAGE_SHIFT;
2260 	p4d = p4d_alloc(mm, pgd, addr);
2261 	if (!p4d)
2262 		return -ENOMEM;
2263 	do {
2264 		next = p4d_addr_end(addr, end);
2265 		err = remap_pud_range(mm, p4d, addr, next,
2266 				pfn + (addr >> PAGE_SHIFT), prot);
2267 		if (err)
2268 			return err;
2269 	} while (p4d++, addr = next, addr != end);
2270 	return 0;
2271 }
2272 
2273 /*
2274  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2275  * must have pre-validated the caching bits of the pgprot_t.
2276  */
2277 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2278 		unsigned long pfn, unsigned long size, pgprot_t prot)
2279 {
2280 	pgd_t *pgd;
2281 	unsigned long next;
2282 	unsigned long end = addr + PAGE_ALIGN(size);
2283 	struct mm_struct *mm = vma->vm_mm;
2284 	int err;
2285 
2286 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2287 		return -EINVAL;
2288 
2289 	/*
2290 	 * Physically remapped pages are special. Tell the
2291 	 * rest of the world about it:
2292 	 *   VM_IO tells people not to look at these pages
2293 	 *	(accesses can have side effects).
2294 	 *   VM_PFNMAP tells the core MM that the base pages are just
2295 	 *	raw PFN mappings, and do not have a "struct page" associated
2296 	 *	with them.
2297 	 *   VM_DONTEXPAND
2298 	 *      Disable vma merging and expanding with mremap().
2299 	 *   VM_DONTDUMP
2300 	 *      Omit vma from core dump, even when VM_IO turned off.
2301 	 *
2302 	 * There's a horrible special case to handle copy-on-write
2303 	 * behaviour that some programs depend on. We mark the "original"
2304 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2305 	 * See vm_normal_page() for details.
2306 	 */
2307 	if (is_cow_mapping(vma->vm_flags)) {
2308 		if (addr != vma->vm_start || end != vma->vm_end)
2309 			return -EINVAL;
2310 		vma->vm_pgoff = pfn;
2311 	}
2312 
2313 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2314 
2315 	BUG_ON(addr >= end);
2316 	pfn -= addr >> PAGE_SHIFT;
2317 	pgd = pgd_offset(mm, addr);
2318 	flush_cache_range(vma, addr, end);
2319 	do {
2320 		next = pgd_addr_end(addr, end);
2321 		err = remap_p4d_range(mm, pgd, addr, next,
2322 				pfn + (addr >> PAGE_SHIFT), prot);
2323 		if (err)
2324 			return err;
2325 	} while (pgd++, addr = next, addr != end);
2326 
2327 	return 0;
2328 }
2329 
2330 /**
2331  * remap_pfn_range - remap kernel memory to userspace
2332  * @vma: user vma to map to
2333  * @addr: target page aligned user address to start at
2334  * @pfn: page frame number of kernel physical memory address
2335  * @size: size of mapping area
2336  * @prot: page protection flags for this mapping
2337  *
2338  * Note: this is only safe if the mm semaphore is held when called.
2339  *
2340  * Return: %0 on success, negative error code otherwise.
2341  */
2342 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2343 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2344 {
2345 	int err;
2346 
2347 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2348 	if (err)
2349 		return -EINVAL;
2350 
2351 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2352 	if (err)
2353 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2354 	return err;
2355 }
2356 EXPORT_SYMBOL(remap_pfn_range);
2357 
2358 /**
2359  * vm_iomap_memory - remap memory to userspace
2360  * @vma: user vma to map to
2361  * @start: start of the physical memory to be mapped
2362  * @len: size of area
2363  *
2364  * This is a simplified io_remap_pfn_range() for common driver use. The
2365  * driver just needs to give us the physical memory range to be mapped,
2366  * we'll figure out the rest from the vma information.
2367  *
2368  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2369  * whatever write-combining details or similar.
2370  *
2371  * Return: %0 on success, negative error code otherwise.
2372  */
2373 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2374 {
2375 	unsigned long vm_len, pfn, pages;
2376 
2377 	/* Check that the physical memory area passed in looks valid */
2378 	if (start + len < start)
2379 		return -EINVAL;
2380 	/*
2381 	 * You *really* shouldn't map things that aren't page-aligned,
2382 	 * but we've historically allowed it because IO memory might
2383 	 * just have smaller alignment.
2384 	 */
2385 	len += start & ~PAGE_MASK;
2386 	pfn = start >> PAGE_SHIFT;
2387 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2388 	if (pfn + pages < pfn)
2389 		return -EINVAL;
2390 
2391 	/* We start the mapping 'vm_pgoff' pages into the area */
2392 	if (vma->vm_pgoff > pages)
2393 		return -EINVAL;
2394 	pfn += vma->vm_pgoff;
2395 	pages -= vma->vm_pgoff;
2396 
2397 	/* Can we fit all of the mapping? */
2398 	vm_len = vma->vm_end - vma->vm_start;
2399 	if (vm_len >> PAGE_SHIFT > pages)
2400 		return -EINVAL;
2401 
2402 	/* Ok, let it rip */
2403 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2404 }
2405 EXPORT_SYMBOL(vm_iomap_memory);
2406 
2407 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2408 				     unsigned long addr, unsigned long end,
2409 				     pte_fn_t fn, void *data, bool create,
2410 				     pgtbl_mod_mask *mask)
2411 {
2412 	pte_t *pte, *mapped_pte;
2413 	int err = 0;
2414 	spinlock_t *ptl;
2415 
2416 	if (create) {
2417 		mapped_pte = pte = (mm == &init_mm) ?
2418 			pte_alloc_kernel_track(pmd, addr, mask) :
2419 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2420 		if (!pte)
2421 			return -ENOMEM;
2422 	} else {
2423 		mapped_pte = pte = (mm == &init_mm) ?
2424 			pte_offset_kernel(pmd, addr) :
2425 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2426 	}
2427 
2428 	BUG_ON(pmd_huge(*pmd));
2429 
2430 	arch_enter_lazy_mmu_mode();
2431 
2432 	if (fn) {
2433 		do {
2434 			if (create || !pte_none(*pte)) {
2435 				err = fn(pte++, addr, data);
2436 				if (err)
2437 					break;
2438 			}
2439 		} while (addr += PAGE_SIZE, addr != end);
2440 	}
2441 	*mask |= PGTBL_PTE_MODIFIED;
2442 
2443 	arch_leave_lazy_mmu_mode();
2444 
2445 	if (mm != &init_mm)
2446 		pte_unmap_unlock(mapped_pte, ptl);
2447 	return err;
2448 }
2449 
2450 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2451 				     unsigned long addr, unsigned long end,
2452 				     pte_fn_t fn, void *data, bool create,
2453 				     pgtbl_mod_mask *mask)
2454 {
2455 	pmd_t *pmd;
2456 	unsigned long next;
2457 	int err = 0;
2458 
2459 	BUG_ON(pud_huge(*pud));
2460 
2461 	if (create) {
2462 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2463 		if (!pmd)
2464 			return -ENOMEM;
2465 	} else {
2466 		pmd = pmd_offset(pud, addr);
2467 	}
2468 	do {
2469 		next = pmd_addr_end(addr, end);
2470 		if (pmd_none(*pmd) && !create)
2471 			continue;
2472 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2473 			return -EINVAL;
2474 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2475 			if (!create)
2476 				continue;
2477 			pmd_clear_bad(pmd);
2478 		}
2479 		err = apply_to_pte_range(mm, pmd, addr, next,
2480 					 fn, data, create, mask);
2481 		if (err)
2482 			break;
2483 	} while (pmd++, addr = next, addr != end);
2484 
2485 	return err;
2486 }
2487 
2488 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2489 				     unsigned long addr, unsigned long end,
2490 				     pte_fn_t fn, void *data, bool create,
2491 				     pgtbl_mod_mask *mask)
2492 {
2493 	pud_t *pud;
2494 	unsigned long next;
2495 	int err = 0;
2496 
2497 	if (create) {
2498 		pud = pud_alloc_track(mm, p4d, addr, mask);
2499 		if (!pud)
2500 			return -ENOMEM;
2501 	} else {
2502 		pud = pud_offset(p4d, addr);
2503 	}
2504 	do {
2505 		next = pud_addr_end(addr, end);
2506 		if (pud_none(*pud) && !create)
2507 			continue;
2508 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2509 			return -EINVAL;
2510 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2511 			if (!create)
2512 				continue;
2513 			pud_clear_bad(pud);
2514 		}
2515 		err = apply_to_pmd_range(mm, pud, addr, next,
2516 					 fn, data, create, mask);
2517 		if (err)
2518 			break;
2519 	} while (pud++, addr = next, addr != end);
2520 
2521 	return err;
2522 }
2523 
2524 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2525 				     unsigned long addr, unsigned long end,
2526 				     pte_fn_t fn, void *data, bool create,
2527 				     pgtbl_mod_mask *mask)
2528 {
2529 	p4d_t *p4d;
2530 	unsigned long next;
2531 	int err = 0;
2532 
2533 	if (create) {
2534 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2535 		if (!p4d)
2536 			return -ENOMEM;
2537 	} else {
2538 		p4d = p4d_offset(pgd, addr);
2539 	}
2540 	do {
2541 		next = p4d_addr_end(addr, end);
2542 		if (p4d_none(*p4d) && !create)
2543 			continue;
2544 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2545 			return -EINVAL;
2546 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2547 			if (!create)
2548 				continue;
2549 			p4d_clear_bad(p4d);
2550 		}
2551 		err = apply_to_pud_range(mm, p4d, addr, next,
2552 					 fn, data, create, mask);
2553 		if (err)
2554 			break;
2555 	} while (p4d++, addr = next, addr != end);
2556 
2557 	return err;
2558 }
2559 
2560 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2561 				 unsigned long size, pte_fn_t fn,
2562 				 void *data, bool create)
2563 {
2564 	pgd_t *pgd;
2565 	unsigned long start = addr, next;
2566 	unsigned long end = addr + size;
2567 	pgtbl_mod_mask mask = 0;
2568 	int err = 0;
2569 
2570 	if (WARN_ON(addr >= end))
2571 		return -EINVAL;
2572 
2573 	pgd = pgd_offset(mm, addr);
2574 	do {
2575 		next = pgd_addr_end(addr, end);
2576 		if (pgd_none(*pgd) && !create)
2577 			continue;
2578 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2579 			return -EINVAL;
2580 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2581 			if (!create)
2582 				continue;
2583 			pgd_clear_bad(pgd);
2584 		}
2585 		err = apply_to_p4d_range(mm, pgd, addr, next,
2586 					 fn, data, create, &mask);
2587 		if (err)
2588 			break;
2589 	} while (pgd++, addr = next, addr != end);
2590 
2591 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2592 		arch_sync_kernel_mappings(start, start + size);
2593 
2594 	return err;
2595 }
2596 
2597 /*
2598  * Scan a region of virtual memory, filling in page tables as necessary
2599  * and calling a provided function on each leaf page table.
2600  */
2601 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2602 			unsigned long size, pte_fn_t fn, void *data)
2603 {
2604 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2605 }
2606 EXPORT_SYMBOL_GPL(apply_to_page_range);
2607 
2608 /*
2609  * Scan a region of virtual memory, calling a provided function on
2610  * each leaf page table where it exists.
2611  *
2612  * Unlike apply_to_page_range, this does _not_ fill in page tables
2613  * where they are absent.
2614  */
2615 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2616 				 unsigned long size, pte_fn_t fn, void *data)
2617 {
2618 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2619 }
2620 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2621 
2622 /*
2623  * handle_pte_fault chooses page fault handler according to an entry which was
2624  * read non-atomically.  Before making any commitment, on those architectures
2625  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2626  * parts, do_swap_page must check under lock before unmapping the pte and
2627  * proceeding (but do_wp_page is only called after already making such a check;
2628  * and do_anonymous_page can safely check later on).
2629  */
2630 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2631 				pte_t *page_table, pte_t orig_pte)
2632 {
2633 	int same = 1;
2634 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2635 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2636 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2637 		spin_lock(ptl);
2638 		same = pte_same(*page_table, orig_pte);
2639 		spin_unlock(ptl);
2640 	}
2641 #endif
2642 	pte_unmap(page_table);
2643 	return same;
2644 }
2645 
2646 static inline bool cow_user_page(struct page *dst, struct page *src,
2647 				 struct vm_fault *vmf)
2648 {
2649 	bool ret;
2650 	void *kaddr;
2651 	void __user *uaddr;
2652 	bool locked = false;
2653 	struct vm_area_struct *vma = vmf->vma;
2654 	struct mm_struct *mm = vma->vm_mm;
2655 	unsigned long addr = vmf->address;
2656 
2657 	if (likely(src)) {
2658 		copy_user_highpage(dst, src, addr, vma);
2659 		return true;
2660 	}
2661 
2662 	/*
2663 	 * If the source page was a PFN mapping, we don't have
2664 	 * a "struct page" for it. We do a best-effort copy by
2665 	 * just copying from the original user address. If that
2666 	 * fails, we just zero-fill it. Live with it.
2667 	 */
2668 	kaddr = kmap_atomic(dst);
2669 	uaddr = (void __user *)(addr & PAGE_MASK);
2670 
2671 	/*
2672 	 * On architectures with software "accessed" bits, we would
2673 	 * take a double page fault, so mark it accessed here.
2674 	 */
2675 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2676 		pte_t entry;
2677 
2678 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2679 		locked = true;
2680 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2681 			/*
2682 			 * Other thread has already handled the fault
2683 			 * and update local tlb only
2684 			 */
2685 			update_mmu_tlb(vma, addr, vmf->pte);
2686 			ret = false;
2687 			goto pte_unlock;
2688 		}
2689 
2690 		entry = pte_mkyoung(vmf->orig_pte);
2691 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2692 			update_mmu_cache(vma, addr, vmf->pte);
2693 	}
2694 
2695 	/*
2696 	 * This really shouldn't fail, because the page is there
2697 	 * in the page tables. But it might just be unreadable,
2698 	 * in which case we just give up and fill the result with
2699 	 * zeroes.
2700 	 */
2701 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2702 		if (locked)
2703 			goto warn;
2704 
2705 		/* Re-validate under PTL if the page is still mapped */
2706 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2707 		locked = true;
2708 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2709 			/* The PTE changed under us, update local tlb */
2710 			update_mmu_tlb(vma, addr, vmf->pte);
2711 			ret = false;
2712 			goto pte_unlock;
2713 		}
2714 
2715 		/*
2716 		 * The same page can be mapped back since last copy attempt.
2717 		 * Try to copy again under PTL.
2718 		 */
2719 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2720 			/*
2721 			 * Give a warn in case there can be some obscure
2722 			 * use-case
2723 			 */
2724 warn:
2725 			WARN_ON_ONCE(1);
2726 			clear_page(kaddr);
2727 		}
2728 	}
2729 
2730 	ret = true;
2731 
2732 pte_unlock:
2733 	if (locked)
2734 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2735 	kunmap_atomic(kaddr);
2736 	flush_dcache_page(dst);
2737 
2738 	return ret;
2739 }
2740 
2741 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2742 {
2743 	struct file *vm_file = vma->vm_file;
2744 
2745 	if (vm_file)
2746 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2747 
2748 	/*
2749 	 * Special mappings (e.g. VDSO) do not have any file so fake
2750 	 * a default GFP_KERNEL for them.
2751 	 */
2752 	return GFP_KERNEL;
2753 }
2754 
2755 /*
2756  * Notify the address space that the page is about to become writable so that
2757  * it can prohibit this or wait for the page to get into an appropriate state.
2758  *
2759  * We do this without the lock held, so that it can sleep if it needs to.
2760  */
2761 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2762 {
2763 	vm_fault_t ret;
2764 	struct page *page = vmf->page;
2765 	unsigned int old_flags = vmf->flags;
2766 
2767 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2768 
2769 	if (vmf->vma->vm_file &&
2770 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2771 		return VM_FAULT_SIGBUS;
2772 
2773 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2774 	/* Restore original flags so that caller is not surprised */
2775 	vmf->flags = old_flags;
2776 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2777 		return ret;
2778 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2779 		lock_page(page);
2780 		if (!page->mapping) {
2781 			unlock_page(page);
2782 			return 0; /* retry */
2783 		}
2784 		ret |= VM_FAULT_LOCKED;
2785 	} else
2786 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2787 	return ret;
2788 }
2789 
2790 /*
2791  * Handle dirtying of a page in shared file mapping on a write fault.
2792  *
2793  * The function expects the page to be locked and unlocks it.
2794  */
2795 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2796 {
2797 	struct vm_area_struct *vma = vmf->vma;
2798 	struct address_space *mapping;
2799 	struct page *page = vmf->page;
2800 	bool dirtied;
2801 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2802 
2803 	dirtied = set_page_dirty(page);
2804 	VM_BUG_ON_PAGE(PageAnon(page), page);
2805 	/*
2806 	 * Take a local copy of the address_space - page.mapping may be zeroed
2807 	 * by truncate after unlock_page().   The address_space itself remains
2808 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2809 	 * release semantics to prevent the compiler from undoing this copying.
2810 	 */
2811 	mapping = page_rmapping(page);
2812 	unlock_page(page);
2813 
2814 	if (!page_mkwrite)
2815 		file_update_time(vma->vm_file);
2816 
2817 	/*
2818 	 * Throttle page dirtying rate down to writeback speed.
2819 	 *
2820 	 * mapping may be NULL here because some device drivers do not
2821 	 * set page.mapping but still dirty their pages
2822 	 *
2823 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2824 	 * is pinning the mapping, as per above.
2825 	 */
2826 	if ((dirtied || page_mkwrite) && mapping) {
2827 		struct file *fpin;
2828 
2829 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2830 		balance_dirty_pages_ratelimited(mapping);
2831 		if (fpin) {
2832 			fput(fpin);
2833 			return VM_FAULT_RETRY;
2834 		}
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 /*
2841  * Handle write page faults for pages that can be reused in the current vma
2842  *
2843  * This can happen either due to the mapping being with the VM_SHARED flag,
2844  * or due to us being the last reference standing to the page. In either
2845  * case, all we need to do here is to mark the page as writable and update
2846  * any related book-keeping.
2847  */
2848 static inline void wp_page_reuse(struct vm_fault *vmf)
2849 	__releases(vmf->ptl)
2850 {
2851 	struct vm_area_struct *vma = vmf->vma;
2852 	struct page *page = vmf->page;
2853 	pte_t entry;
2854 	/*
2855 	 * Clear the pages cpupid information as the existing
2856 	 * information potentially belongs to a now completely
2857 	 * unrelated process.
2858 	 */
2859 	if (page)
2860 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2861 
2862 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2863 	entry = pte_mkyoung(vmf->orig_pte);
2864 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2865 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2866 		update_mmu_cache(vma, vmf->address, vmf->pte);
2867 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2868 	count_vm_event(PGREUSE);
2869 }
2870 
2871 /*
2872  * Handle the case of a page which we actually need to copy to a new page.
2873  *
2874  * Called with mmap_lock locked and the old page referenced, but
2875  * without the ptl held.
2876  *
2877  * High level logic flow:
2878  *
2879  * - Allocate a page, copy the content of the old page to the new one.
2880  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2881  * - Take the PTL. If the pte changed, bail out and release the allocated page
2882  * - If the pte is still the way we remember it, update the page table and all
2883  *   relevant references. This includes dropping the reference the page-table
2884  *   held to the old page, as well as updating the rmap.
2885  * - In any case, unlock the PTL and drop the reference we took to the old page.
2886  */
2887 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2888 {
2889 	struct vm_area_struct *vma = vmf->vma;
2890 	struct mm_struct *mm = vma->vm_mm;
2891 	struct page *old_page = vmf->page;
2892 	struct page *new_page = NULL;
2893 	pte_t entry;
2894 	int page_copied = 0;
2895 	struct mmu_notifier_range range;
2896 
2897 	if (unlikely(anon_vma_prepare(vma)))
2898 		goto oom;
2899 
2900 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2901 		new_page = alloc_zeroed_user_highpage_movable(vma,
2902 							      vmf->address);
2903 		if (!new_page)
2904 			goto oom;
2905 	} else {
2906 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2907 				vmf->address);
2908 		if (!new_page)
2909 			goto oom;
2910 
2911 		if (!cow_user_page(new_page, old_page, vmf)) {
2912 			/*
2913 			 * COW failed, if the fault was solved by other,
2914 			 * it's fine. If not, userspace would re-fault on
2915 			 * the same address and we will handle the fault
2916 			 * from the second attempt.
2917 			 */
2918 			put_page(new_page);
2919 			if (old_page)
2920 				put_page(old_page);
2921 			return 0;
2922 		}
2923 	}
2924 
2925 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2926 		goto oom_free_new;
2927 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2928 
2929 	__SetPageUptodate(new_page);
2930 
2931 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2932 				vmf->address & PAGE_MASK,
2933 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2934 	mmu_notifier_invalidate_range_start(&range);
2935 
2936 	/*
2937 	 * Re-check the pte - we dropped the lock
2938 	 */
2939 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2940 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2941 		if (old_page) {
2942 			if (!PageAnon(old_page)) {
2943 				dec_mm_counter_fast(mm,
2944 						mm_counter_file(old_page));
2945 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2946 			}
2947 		} else {
2948 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2949 		}
2950 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2951 		entry = mk_pte(new_page, vma->vm_page_prot);
2952 		entry = pte_sw_mkyoung(entry);
2953 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2954 
2955 		/*
2956 		 * Clear the pte entry and flush it first, before updating the
2957 		 * pte with the new entry, to keep TLBs on different CPUs in
2958 		 * sync. This code used to set the new PTE then flush TLBs, but
2959 		 * that left a window where the new PTE could be loaded into
2960 		 * some TLBs while the old PTE remains in others.
2961 		 */
2962 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2963 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2964 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2965 		/*
2966 		 * We call the notify macro here because, when using secondary
2967 		 * mmu page tables (such as kvm shadow page tables), we want the
2968 		 * new page to be mapped directly into the secondary page table.
2969 		 */
2970 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2971 		update_mmu_cache(vma, vmf->address, vmf->pte);
2972 		if (old_page) {
2973 			/*
2974 			 * Only after switching the pte to the new page may
2975 			 * we remove the mapcount here. Otherwise another
2976 			 * process may come and find the rmap count decremented
2977 			 * before the pte is switched to the new page, and
2978 			 * "reuse" the old page writing into it while our pte
2979 			 * here still points into it and can be read by other
2980 			 * threads.
2981 			 *
2982 			 * The critical issue is to order this
2983 			 * page_remove_rmap with the ptp_clear_flush above.
2984 			 * Those stores are ordered by (if nothing else,)
2985 			 * the barrier present in the atomic_add_negative
2986 			 * in page_remove_rmap.
2987 			 *
2988 			 * Then the TLB flush in ptep_clear_flush ensures that
2989 			 * no process can access the old page before the
2990 			 * decremented mapcount is visible. And the old page
2991 			 * cannot be reused until after the decremented
2992 			 * mapcount is visible. So transitively, TLBs to
2993 			 * old page will be flushed before it can be reused.
2994 			 */
2995 			page_remove_rmap(old_page, false);
2996 		}
2997 
2998 		/* Free the old page.. */
2999 		new_page = old_page;
3000 		page_copied = 1;
3001 	} else {
3002 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3003 	}
3004 
3005 	if (new_page)
3006 		put_page(new_page);
3007 
3008 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3009 	/*
3010 	 * No need to double call mmu_notifier->invalidate_range() callback as
3011 	 * the above ptep_clear_flush_notify() did already call it.
3012 	 */
3013 	mmu_notifier_invalidate_range_only_end(&range);
3014 	if (old_page) {
3015 		/*
3016 		 * Don't let another task, with possibly unlocked vma,
3017 		 * keep the mlocked page.
3018 		 */
3019 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3020 			lock_page(old_page);	/* LRU manipulation */
3021 			if (PageMlocked(old_page))
3022 				munlock_vma_page(old_page);
3023 			unlock_page(old_page);
3024 		}
3025 		if (page_copied)
3026 			free_swap_cache(old_page);
3027 		put_page(old_page);
3028 	}
3029 	return page_copied ? VM_FAULT_WRITE : 0;
3030 oom_free_new:
3031 	put_page(new_page);
3032 oom:
3033 	if (old_page)
3034 		put_page(old_page);
3035 	return VM_FAULT_OOM;
3036 }
3037 
3038 /**
3039  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3040  *			  writeable once the page is prepared
3041  *
3042  * @vmf: structure describing the fault
3043  *
3044  * This function handles all that is needed to finish a write page fault in a
3045  * shared mapping due to PTE being read-only once the mapped page is prepared.
3046  * It handles locking of PTE and modifying it.
3047  *
3048  * The function expects the page to be locked or other protection against
3049  * concurrent faults / writeback (such as DAX radix tree locks).
3050  *
3051  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3052  * we acquired PTE lock.
3053  */
3054 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3055 {
3056 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3057 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3058 				       &vmf->ptl);
3059 	/*
3060 	 * We might have raced with another page fault while we released the
3061 	 * pte_offset_map_lock.
3062 	 */
3063 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3064 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3065 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3066 		return VM_FAULT_NOPAGE;
3067 	}
3068 	wp_page_reuse(vmf);
3069 	return 0;
3070 }
3071 
3072 /*
3073  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3074  * mapping
3075  */
3076 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3077 {
3078 	struct vm_area_struct *vma = vmf->vma;
3079 
3080 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3081 		vm_fault_t ret;
3082 
3083 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3084 		vmf->flags |= FAULT_FLAG_MKWRITE;
3085 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3086 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3087 			return ret;
3088 		return finish_mkwrite_fault(vmf);
3089 	}
3090 	wp_page_reuse(vmf);
3091 	return VM_FAULT_WRITE;
3092 }
3093 
3094 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3095 	__releases(vmf->ptl)
3096 {
3097 	struct vm_area_struct *vma = vmf->vma;
3098 	vm_fault_t ret = VM_FAULT_WRITE;
3099 
3100 	get_page(vmf->page);
3101 
3102 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3103 		vm_fault_t tmp;
3104 
3105 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3106 		tmp = do_page_mkwrite(vmf);
3107 		if (unlikely(!tmp || (tmp &
3108 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3109 			put_page(vmf->page);
3110 			return tmp;
3111 		}
3112 		tmp = finish_mkwrite_fault(vmf);
3113 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3114 			unlock_page(vmf->page);
3115 			put_page(vmf->page);
3116 			return tmp;
3117 		}
3118 	} else {
3119 		wp_page_reuse(vmf);
3120 		lock_page(vmf->page);
3121 	}
3122 	ret |= fault_dirty_shared_page(vmf);
3123 	put_page(vmf->page);
3124 
3125 	return ret;
3126 }
3127 
3128 /*
3129  * This routine handles present pages, when users try to write
3130  * to a shared page. It is done by copying the page to a new address
3131  * and decrementing the shared-page counter for the old page.
3132  *
3133  * Note that this routine assumes that the protection checks have been
3134  * done by the caller (the low-level page fault routine in most cases).
3135  * Thus we can safely just mark it writable once we've done any necessary
3136  * COW.
3137  *
3138  * We also mark the page dirty at this point even though the page will
3139  * change only once the write actually happens. This avoids a few races,
3140  * and potentially makes it more efficient.
3141  *
3142  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3143  * but allow concurrent faults), with pte both mapped and locked.
3144  * We return with mmap_lock still held, but pte unmapped and unlocked.
3145  */
3146 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3147 	__releases(vmf->ptl)
3148 {
3149 	struct vm_area_struct *vma = vmf->vma;
3150 
3151 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3152 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3153 		return handle_userfault(vmf, VM_UFFD_WP);
3154 	}
3155 
3156 	/*
3157 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3158 	 * is flushed in this case before copying.
3159 	 */
3160 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3161 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3162 		flush_tlb_page(vmf->vma, vmf->address);
3163 
3164 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3165 	if (!vmf->page) {
3166 		/*
3167 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3168 		 * VM_PFNMAP VMA.
3169 		 *
3170 		 * We should not cow pages in a shared writeable mapping.
3171 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3172 		 */
3173 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3174 				     (VM_WRITE|VM_SHARED))
3175 			return wp_pfn_shared(vmf);
3176 
3177 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3178 		return wp_page_copy(vmf);
3179 	}
3180 
3181 	/*
3182 	 * Take out anonymous pages first, anonymous shared vmas are
3183 	 * not dirty accountable.
3184 	 */
3185 	if (PageAnon(vmf->page)) {
3186 		struct page *page = vmf->page;
3187 
3188 		/* PageKsm() doesn't necessarily raise the page refcount */
3189 		if (PageKsm(page) || page_count(page) != 1)
3190 			goto copy;
3191 		if (!trylock_page(page))
3192 			goto copy;
3193 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3194 			unlock_page(page);
3195 			goto copy;
3196 		}
3197 		/*
3198 		 * Ok, we've got the only map reference, and the only
3199 		 * page count reference, and the page is locked,
3200 		 * it's dark out, and we're wearing sunglasses. Hit it.
3201 		 */
3202 		unlock_page(page);
3203 		wp_page_reuse(vmf);
3204 		return VM_FAULT_WRITE;
3205 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3206 					(VM_WRITE|VM_SHARED))) {
3207 		return wp_page_shared(vmf);
3208 	}
3209 copy:
3210 	/*
3211 	 * Ok, we need to copy. Oh, well..
3212 	 */
3213 	get_page(vmf->page);
3214 
3215 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3216 	return wp_page_copy(vmf);
3217 }
3218 
3219 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3220 		unsigned long start_addr, unsigned long end_addr,
3221 		struct zap_details *details)
3222 {
3223 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3224 }
3225 
3226 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3227 					    struct zap_details *details)
3228 {
3229 	struct vm_area_struct *vma;
3230 	pgoff_t vba, vea, zba, zea;
3231 
3232 	vma_interval_tree_foreach(vma, root,
3233 			details->first_index, details->last_index) {
3234 
3235 		vba = vma->vm_pgoff;
3236 		vea = vba + vma_pages(vma) - 1;
3237 		zba = details->first_index;
3238 		if (zba < vba)
3239 			zba = vba;
3240 		zea = details->last_index;
3241 		if (zea > vea)
3242 			zea = vea;
3243 
3244 		unmap_mapping_range_vma(vma,
3245 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3246 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3247 				details);
3248 	}
3249 }
3250 
3251 /**
3252  * unmap_mapping_page() - Unmap single page from processes.
3253  * @page: The locked page to be unmapped.
3254  *
3255  * Unmap this page from any userspace process which still has it mmaped.
3256  * Typically, for efficiency, the range of nearby pages has already been
3257  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3258  * truncation or invalidation holds the lock on a page, it may find that
3259  * the page has been remapped again: and then uses unmap_mapping_page()
3260  * to unmap it finally.
3261  */
3262 void unmap_mapping_page(struct page *page)
3263 {
3264 	struct address_space *mapping = page->mapping;
3265 	struct zap_details details = { };
3266 
3267 	VM_BUG_ON(!PageLocked(page));
3268 	VM_BUG_ON(PageTail(page));
3269 
3270 	details.check_mapping = mapping;
3271 	details.first_index = page->index;
3272 	details.last_index = page->index + thp_nr_pages(page) - 1;
3273 	details.single_page = page;
3274 
3275 	i_mmap_lock_write(mapping);
3276 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3277 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3278 	i_mmap_unlock_write(mapping);
3279 }
3280 
3281 /**
3282  * unmap_mapping_pages() - Unmap pages from processes.
3283  * @mapping: The address space containing pages to be unmapped.
3284  * @start: Index of first page to be unmapped.
3285  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3286  * @even_cows: Whether to unmap even private COWed pages.
3287  *
3288  * Unmap the pages in this address space from any userspace process which
3289  * has them mmaped.  Generally, you want to remove COWed pages as well when
3290  * a file is being truncated, but not when invalidating pages from the page
3291  * cache.
3292  */
3293 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3294 		pgoff_t nr, bool even_cows)
3295 {
3296 	struct zap_details details = { };
3297 
3298 	details.check_mapping = even_cows ? NULL : mapping;
3299 	details.first_index = start;
3300 	details.last_index = start + nr - 1;
3301 	if (details.last_index < details.first_index)
3302 		details.last_index = ULONG_MAX;
3303 
3304 	i_mmap_lock_write(mapping);
3305 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3306 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3307 	i_mmap_unlock_write(mapping);
3308 }
3309 
3310 /**
3311  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3312  * address_space corresponding to the specified byte range in the underlying
3313  * file.
3314  *
3315  * @mapping: the address space containing mmaps to be unmapped.
3316  * @holebegin: byte in first page to unmap, relative to the start of
3317  * the underlying file.  This will be rounded down to a PAGE_SIZE
3318  * boundary.  Note that this is different from truncate_pagecache(), which
3319  * must keep the partial page.  In contrast, we must get rid of
3320  * partial pages.
3321  * @holelen: size of prospective hole in bytes.  This will be rounded
3322  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3323  * end of the file.
3324  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3325  * but 0 when invalidating pagecache, don't throw away private data.
3326  */
3327 void unmap_mapping_range(struct address_space *mapping,
3328 		loff_t const holebegin, loff_t const holelen, int even_cows)
3329 {
3330 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3331 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3332 
3333 	/* Check for overflow. */
3334 	if (sizeof(holelen) > sizeof(hlen)) {
3335 		long long holeend =
3336 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3337 		if (holeend & ~(long long)ULONG_MAX)
3338 			hlen = ULONG_MAX - hba + 1;
3339 	}
3340 
3341 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3342 }
3343 EXPORT_SYMBOL(unmap_mapping_range);
3344 
3345 /*
3346  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3347  * but allow concurrent faults), and pte mapped but not yet locked.
3348  * We return with pte unmapped and unlocked.
3349  *
3350  * We return with the mmap_lock locked or unlocked in the same cases
3351  * as does filemap_fault().
3352  */
3353 vm_fault_t do_swap_page(struct vm_fault *vmf)
3354 {
3355 	struct vm_area_struct *vma = vmf->vma;
3356 	struct page *page = NULL, *swapcache;
3357 	struct swap_info_struct *si = NULL;
3358 	swp_entry_t entry;
3359 	pte_t pte;
3360 	int locked;
3361 	int exclusive = 0;
3362 	vm_fault_t ret = 0;
3363 	void *shadow = NULL;
3364 
3365 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3366 		goto out;
3367 
3368 	entry = pte_to_swp_entry(vmf->orig_pte);
3369 	if (unlikely(non_swap_entry(entry))) {
3370 		if (is_migration_entry(entry)) {
3371 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3372 					     vmf->address);
3373 		} else if (is_device_private_entry(entry)) {
3374 			vmf->page = device_private_entry_to_page(entry);
3375 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3376 		} else if (is_hwpoison_entry(entry)) {
3377 			ret = VM_FAULT_HWPOISON;
3378 		} else {
3379 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3380 			ret = VM_FAULT_SIGBUS;
3381 		}
3382 		goto out;
3383 	}
3384 
3385 	/* Prevent swapoff from happening to us. */
3386 	si = get_swap_device(entry);
3387 	if (unlikely(!si))
3388 		goto out;
3389 
3390 	delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3391 	page = lookup_swap_cache(entry, vma, vmf->address);
3392 	swapcache = page;
3393 
3394 	if (!page) {
3395 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3396 		    __swap_count(entry) == 1) {
3397 			/* skip swapcache */
3398 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3399 							vmf->address);
3400 			if (page) {
3401 				__SetPageLocked(page);
3402 				__SetPageSwapBacked(page);
3403 
3404 				if (mem_cgroup_swapin_charge_page(page,
3405 					vma->vm_mm, GFP_KERNEL, entry)) {
3406 					ret = VM_FAULT_OOM;
3407 					goto out_page;
3408 				}
3409 				mem_cgroup_swapin_uncharge_swap(entry);
3410 
3411 				shadow = get_shadow_from_swap_cache(entry);
3412 				if (shadow)
3413 					workingset_refault(page, shadow);
3414 
3415 				lru_cache_add(page);
3416 
3417 				/* To provide entry to swap_readpage() */
3418 				set_page_private(page, entry.val);
3419 				swap_readpage(page, true);
3420 				set_page_private(page, 0);
3421 			}
3422 		} else {
3423 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3424 						vmf);
3425 			swapcache = page;
3426 		}
3427 
3428 		if (!page) {
3429 			/*
3430 			 * Back out if somebody else faulted in this pte
3431 			 * while we released the pte lock.
3432 			 */
3433 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3434 					vmf->address, &vmf->ptl);
3435 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3436 				ret = VM_FAULT_OOM;
3437 			delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3438 			goto unlock;
3439 		}
3440 
3441 		/* Had to read the page from swap area: Major fault */
3442 		ret = VM_FAULT_MAJOR;
3443 		count_vm_event(PGMAJFAULT);
3444 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3445 	} else if (PageHWPoison(page)) {
3446 		/*
3447 		 * hwpoisoned dirty swapcache pages are kept for killing
3448 		 * owner processes (which may be unknown at hwpoison time)
3449 		 */
3450 		ret = VM_FAULT_HWPOISON;
3451 		delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3452 		goto out_release;
3453 	}
3454 
3455 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3456 
3457 	delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3458 	if (!locked) {
3459 		ret |= VM_FAULT_RETRY;
3460 		goto out_release;
3461 	}
3462 
3463 	/*
3464 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3465 	 * release the swapcache from under us.  The page pin, and pte_same
3466 	 * test below, are not enough to exclude that.  Even if it is still
3467 	 * swapcache, we need to check that the page's swap has not changed.
3468 	 */
3469 	if (unlikely((!PageSwapCache(page) ||
3470 			page_private(page) != entry.val)) && swapcache)
3471 		goto out_page;
3472 
3473 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3474 	if (unlikely(!page)) {
3475 		ret = VM_FAULT_OOM;
3476 		page = swapcache;
3477 		goto out_page;
3478 	}
3479 
3480 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3481 
3482 	/*
3483 	 * Back out if somebody else already faulted in this pte.
3484 	 */
3485 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3486 			&vmf->ptl);
3487 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3488 		goto out_nomap;
3489 
3490 	if (unlikely(!PageUptodate(page))) {
3491 		ret = VM_FAULT_SIGBUS;
3492 		goto out_nomap;
3493 	}
3494 
3495 	/*
3496 	 * The page isn't present yet, go ahead with the fault.
3497 	 *
3498 	 * Be careful about the sequence of operations here.
3499 	 * To get its accounting right, reuse_swap_page() must be called
3500 	 * while the page is counted on swap but not yet in mapcount i.e.
3501 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3502 	 * must be called after the swap_free(), or it will never succeed.
3503 	 */
3504 
3505 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3506 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3507 	pte = mk_pte(page, vma->vm_page_prot);
3508 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3509 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3510 		vmf->flags &= ~FAULT_FLAG_WRITE;
3511 		ret |= VM_FAULT_WRITE;
3512 		exclusive = RMAP_EXCLUSIVE;
3513 	}
3514 	flush_icache_page(vma, page);
3515 	if (pte_swp_soft_dirty(vmf->orig_pte))
3516 		pte = pte_mksoft_dirty(pte);
3517 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3518 		pte = pte_mkuffd_wp(pte);
3519 		pte = pte_wrprotect(pte);
3520 	}
3521 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3522 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3523 	vmf->orig_pte = pte;
3524 
3525 	/* ksm created a completely new copy */
3526 	if (unlikely(page != swapcache && swapcache)) {
3527 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3528 		lru_cache_add_inactive_or_unevictable(page, vma);
3529 	} else {
3530 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3531 	}
3532 
3533 	swap_free(entry);
3534 	if (mem_cgroup_swap_full(page) ||
3535 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3536 		try_to_free_swap(page);
3537 	unlock_page(page);
3538 	if (page != swapcache && swapcache) {
3539 		/*
3540 		 * Hold the lock to avoid the swap entry to be reused
3541 		 * until we take the PT lock for the pte_same() check
3542 		 * (to avoid false positives from pte_same). For
3543 		 * further safety release the lock after the swap_free
3544 		 * so that the swap count won't change under a
3545 		 * parallel locked swapcache.
3546 		 */
3547 		unlock_page(swapcache);
3548 		put_page(swapcache);
3549 	}
3550 
3551 	if (vmf->flags & FAULT_FLAG_WRITE) {
3552 		ret |= do_wp_page(vmf);
3553 		if (ret & VM_FAULT_ERROR)
3554 			ret &= VM_FAULT_ERROR;
3555 		goto out;
3556 	}
3557 
3558 	/* No need to invalidate - it was non-present before */
3559 	update_mmu_cache(vma, vmf->address, vmf->pte);
3560 unlock:
3561 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3562 out:
3563 	if (si)
3564 		put_swap_device(si);
3565 	return ret;
3566 out_nomap:
3567 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3568 out_page:
3569 	unlock_page(page);
3570 out_release:
3571 	put_page(page);
3572 	if (page != swapcache && swapcache) {
3573 		unlock_page(swapcache);
3574 		put_page(swapcache);
3575 	}
3576 	if (si)
3577 		put_swap_device(si);
3578 	return ret;
3579 }
3580 
3581 /*
3582  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3583  * but allow concurrent faults), and pte mapped but not yet locked.
3584  * We return with mmap_lock still held, but pte unmapped and unlocked.
3585  */
3586 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3587 {
3588 	struct vm_area_struct *vma = vmf->vma;
3589 	struct page *page;
3590 	vm_fault_t ret = 0;
3591 	pte_t entry;
3592 
3593 	/* File mapping without ->vm_ops ? */
3594 	if (vma->vm_flags & VM_SHARED)
3595 		return VM_FAULT_SIGBUS;
3596 
3597 	/*
3598 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3599 	 * pte_offset_map() on pmds where a huge pmd might be created
3600 	 * from a different thread.
3601 	 *
3602 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3603 	 * parallel threads are excluded by other means.
3604 	 *
3605 	 * Here we only have mmap_read_lock(mm).
3606 	 */
3607 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3608 		return VM_FAULT_OOM;
3609 
3610 	/* See comment in handle_pte_fault() */
3611 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3612 		return 0;
3613 
3614 	/* Use the zero-page for reads */
3615 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3616 			!mm_forbids_zeropage(vma->vm_mm)) {
3617 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3618 						vma->vm_page_prot));
3619 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3620 				vmf->address, &vmf->ptl);
3621 		if (!pte_none(*vmf->pte)) {
3622 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3623 			goto unlock;
3624 		}
3625 		ret = check_stable_address_space(vma->vm_mm);
3626 		if (ret)
3627 			goto unlock;
3628 		/* Deliver the page fault to userland, check inside PT lock */
3629 		if (userfaultfd_missing(vma)) {
3630 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3631 			return handle_userfault(vmf, VM_UFFD_MISSING);
3632 		}
3633 		goto setpte;
3634 	}
3635 
3636 	/* Allocate our own private page. */
3637 	if (unlikely(anon_vma_prepare(vma)))
3638 		goto oom;
3639 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3640 	if (!page)
3641 		goto oom;
3642 
3643 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3644 		goto oom_free_page;
3645 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3646 
3647 	/*
3648 	 * The memory barrier inside __SetPageUptodate makes sure that
3649 	 * preceding stores to the page contents become visible before
3650 	 * the set_pte_at() write.
3651 	 */
3652 	__SetPageUptodate(page);
3653 
3654 	entry = mk_pte(page, vma->vm_page_prot);
3655 	entry = pte_sw_mkyoung(entry);
3656 	if (vma->vm_flags & VM_WRITE)
3657 		entry = pte_mkwrite(pte_mkdirty(entry));
3658 
3659 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3660 			&vmf->ptl);
3661 	if (!pte_none(*vmf->pte)) {
3662 		update_mmu_cache(vma, vmf->address, vmf->pte);
3663 		goto release;
3664 	}
3665 
3666 	ret = check_stable_address_space(vma->vm_mm);
3667 	if (ret)
3668 		goto release;
3669 
3670 	/* Deliver the page fault to userland, check inside PT lock */
3671 	if (userfaultfd_missing(vma)) {
3672 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3673 		put_page(page);
3674 		return handle_userfault(vmf, VM_UFFD_MISSING);
3675 	}
3676 
3677 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3678 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3679 	lru_cache_add_inactive_or_unevictable(page, vma);
3680 setpte:
3681 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3682 
3683 	/* No need to invalidate - it was non-present before */
3684 	update_mmu_cache(vma, vmf->address, vmf->pte);
3685 unlock:
3686 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3687 	return ret;
3688 release:
3689 	put_page(page);
3690 	goto unlock;
3691 oom_free_page:
3692 	put_page(page);
3693 oom:
3694 	return VM_FAULT_OOM;
3695 }
3696 
3697 /*
3698  * The mmap_lock must have been held on entry, and may have been
3699  * released depending on flags and vma->vm_ops->fault() return value.
3700  * See filemap_fault() and __lock_page_retry().
3701  */
3702 static vm_fault_t __do_fault(struct vm_fault *vmf)
3703 {
3704 	struct vm_area_struct *vma = vmf->vma;
3705 	vm_fault_t ret;
3706 
3707 	/*
3708 	 * Preallocate pte before we take page_lock because this might lead to
3709 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3710 	 *				lock_page(A)
3711 	 *				SetPageWriteback(A)
3712 	 *				unlock_page(A)
3713 	 * lock_page(B)
3714 	 *				lock_page(B)
3715 	 * pte_alloc_one
3716 	 *   shrink_page_list
3717 	 *     wait_on_page_writeback(A)
3718 	 *				SetPageWriteback(B)
3719 	 *				unlock_page(B)
3720 	 *				# flush A, B to clear the writeback
3721 	 */
3722 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3723 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3724 		if (!vmf->prealloc_pte)
3725 			return VM_FAULT_OOM;
3726 		smp_wmb(); /* See comment in __pte_alloc() */
3727 	}
3728 
3729 	ret = vma->vm_ops->fault(vmf);
3730 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3731 			    VM_FAULT_DONE_COW)))
3732 		return ret;
3733 
3734 	if (unlikely(PageHWPoison(vmf->page))) {
3735 		if (ret & VM_FAULT_LOCKED)
3736 			unlock_page(vmf->page);
3737 		put_page(vmf->page);
3738 		vmf->page = NULL;
3739 		return VM_FAULT_HWPOISON;
3740 	}
3741 
3742 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3743 		lock_page(vmf->page);
3744 	else
3745 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3746 
3747 	return ret;
3748 }
3749 
3750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3751 static void deposit_prealloc_pte(struct vm_fault *vmf)
3752 {
3753 	struct vm_area_struct *vma = vmf->vma;
3754 
3755 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3756 	/*
3757 	 * We are going to consume the prealloc table,
3758 	 * count that as nr_ptes.
3759 	 */
3760 	mm_inc_nr_ptes(vma->vm_mm);
3761 	vmf->prealloc_pte = NULL;
3762 }
3763 
3764 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3765 {
3766 	struct vm_area_struct *vma = vmf->vma;
3767 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3768 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3769 	pmd_t entry;
3770 	int i;
3771 	vm_fault_t ret = VM_FAULT_FALLBACK;
3772 
3773 	if (!transhuge_vma_suitable(vma, haddr))
3774 		return ret;
3775 
3776 	page = compound_head(page);
3777 	if (compound_order(page) != HPAGE_PMD_ORDER)
3778 		return ret;
3779 
3780 	/*
3781 	 * Archs like ppc64 need additional space to store information
3782 	 * related to pte entry. Use the preallocated table for that.
3783 	 */
3784 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3785 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3786 		if (!vmf->prealloc_pte)
3787 			return VM_FAULT_OOM;
3788 		smp_wmb(); /* See comment in __pte_alloc() */
3789 	}
3790 
3791 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3792 	if (unlikely(!pmd_none(*vmf->pmd)))
3793 		goto out;
3794 
3795 	for (i = 0; i < HPAGE_PMD_NR; i++)
3796 		flush_icache_page(vma, page + i);
3797 
3798 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3799 	if (write)
3800 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3801 
3802 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3803 	page_add_file_rmap(page, true);
3804 	/*
3805 	 * deposit and withdraw with pmd lock held
3806 	 */
3807 	if (arch_needs_pgtable_deposit())
3808 		deposit_prealloc_pte(vmf);
3809 
3810 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3811 
3812 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3813 
3814 	/* fault is handled */
3815 	ret = 0;
3816 	count_vm_event(THP_FILE_MAPPED);
3817 out:
3818 	spin_unlock(vmf->ptl);
3819 	return ret;
3820 }
3821 #else
3822 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3823 {
3824 	return VM_FAULT_FALLBACK;
3825 }
3826 #endif
3827 
3828 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3829 {
3830 	struct vm_area_struct *vma = vmf->vma;
3831 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3832 	bool prefault = vmf->address != addr;
3833 	pte_t entry;
3834 
3835 	flush_icache_page(vma, page);
3836 	entry = mk_pte(page, vma->vm_page_prot);
3837 
3838 	if (prefault && arch_wants_old_prefaulted_pte())
3839 		entry = pte_mkold(entry);
3840 	else
3841 		entry = pte_sw_mkyoung(entry);
3842 
3843 	if (write)
3844 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3845 	/* copy-on-write page */
3846 	if (write && !(vma->vm_flags & VM_SHARED)) {
3847 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3848 		page_add_new_anon_rmap(page, vma, addr, false);
3849 		lru_cache_add_inactive_or_unevictable(page, vma);
3850 	} else {
3851 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3852 		page_add_file_rmap(page, false);
3853 	}
3854 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3855 }
3856 
3857 /**
3858  * finish_fault - finish page fault once we have prepared the page to fault
3859  *
3860  * @vmf: structure describing the fault
3861  *
3862  * This function handles all that is needed to finish a page fault once the
3863  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3864  * given page, adds reverse page mapping, handles memcg charges and LRU
3865  * addition.
3866  *
3867  * The function expects the page to be locked and on success it consumes a
3868  * reference of a page being mapped (for the PTE which maps it).
3869  *
3870  * Return: %0 on success, %VM_FAULT_ code in case of error.
3871  */
3872 vm_fault_t finish_fault(struct vm_fault *vmf)
3873 {
3874 	struct vm_area_struct *vma = vmf->vma;
3875 	struct page *page;
3876 	vm_fault_t ret;
3877 
3878 	/* Did we COW the page? */
3879 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3880 		page = vmf->cow_page;
3881 	else
3882 		page = vmf->page;
3883 
3884 	/*
3885 	 * check even for read faults because we might have lost our CoWed
3886 	 * page
3887 	 */
3888 	if (!(vma->vm_flags & VM_SHARED)) {
3889 		ret = check_stable_address_space(vma->vm_mm);
3890 		if (ret)
3891 			return ret;
3892 	}
3893 
3894 	if (pmd_none(*vmf->pmd)) {
3895 		if (PageTransCompound(page)) {
3896 			ret = do_set_pmd(vmf, page);
3897 			if (ret != VM_FAULT_FALLBACK)
3898 				return ret;
3899 		}
3900 
3901 		if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3902 			return VM_FAULT_OOM;
3903 	}
3904 
3905 	/* See comment in handle_pte_fault() */
3906 	if (pmd_devmap_trans_unstable(vmf->pmd))
3907 		return 0;
3908 
3909 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3910 				      vmf->address, &vmf->ptl);
3911 	ret = 0;
3912 	/* Re-check under ptl */
3913 	if (likely(pte_none(*vmf->pte)))
3914 		do_set_pte(vmf, page, vmf->address);
3915 	else
3916 		ret = VM_FAULT_NOPAGE;
3917 
3918 	update_mmu_tlb(vma, vmf->address, vmf->pte);
3919 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3920 	return ret;
3921 }
3922 
3923 static unsigned long fault_around_bytes __read_mostly =
3924 	rounddown_pow_of_two(65536);
3925 
3926 #ifdef CONFIG_DEBUG_FS
3927 static int fault_around_bytes_get(void *data, u64 *val)
3928 {
3929 	*val = fault_around_bytes;
3930 	return 0;
3931 }
3932 
3933 /*
3934  * fault_around_bytes must be rounded down to the nearest page order as it's
3935  * what do_fault_around() expects to see.
3936  */
3937 static int fault_around_bytes_set(void *data, u64 val)
3938 {
3939 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3940 		return -EINVAL;
3941 	if (val > PAGE_SIZE)
3942 		fault_around_bytes = rounddown_pow_of_two(val);
3943 	else
3944 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3945 	return 0;
3946 }
3947 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3948 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3949 
3950 static int __init fault_around_debugfs(void)
3951 {
3952 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3953 				   &fault_around_bytes_fops);
3954 	return 0;
3955 }
3956 late_initcall(fault_around_debugfs);
3957 #endif
3958 
3959 /*
3960  * do_fault_around() tries to map few pages around the fault address. The hope
3961  * is that the pages will be needed soon and this will lower the number of
3962  * faults to handle.
3963  *
3964  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3965  * not ready to be mapped: not up-to-date, locked, etc.
3966  *
3967  * This function is called with the page table lock taken. In the split ptlock
3968  * case the page table lock only protects only those entries which belong to
3969  * the page table corresponding to the fault address.
3970  *
3971  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3972  * only once.
3973  *
3974  * fault_around_bytes defines how many bytes we'll try to map.
3975  * do_fault_around() expects it to be set to a power of two less than or equal
3976  * to PTRS_PER_PTE.
3977  *
3978  * The virtual address of the area that we map is naturally aligned to
3979  * fault_around_bytes rounded down to the machine page size
3980  * (and therefore to page order).  This way it's easier to guarantee
3981  * that we don't cross page table boundaries.
3982  */
3983 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3984 {
3985 	unsigned long address = vmf->address, nr_pages, mask;
3986 	pgoff_t start_pgoff = vmf->pgoff;
3987 	pgoff_t end_pgoff;
3988 	int off;
3989 
3990 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3991 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3992 
3993 	address = max(address & mask, vmf->vma->vm_start);
3994 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3995 	start_pgoff -= off;
3996 
3997 	/*
3998 	 *  end_pgoff is either the end of the page table, the end of
3999 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4000 	 */
4001 	end_pgoff = start_pgoff -
4002 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4003 		PTRS_PER_PTE - 1;
4004 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4005 			start_pgoff + nr_pages - 1);
4006 
4007 	if (pmd_none(*vmf->pmd)) {
4008 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4009 		if (!vmf->prealloc_pte)
4010 			return VM_FAULT_OOM;
4011 		smp_wmb(); /* See comment in __pte_alloc() */
4012 	}
4013 
4014 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4015 }
4016 
4017 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4018 {
4019 	struct vm_area_struct *vma = vmf->vma;
4020 	vm_fault_t ret = 0;
4021 
4022 	/*
4023 	 * Let's call ->map_pages() first and use ->fault() as fallback
4024 	 * if page by the offset is not ready to be mapped (cold cache or
4025 	 * something).
4026 	 */
4027 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4028 		ret = do_fault_around(vmf);
4029 		if (ret)
4030 			return ret;
4031 	}
4032 
4033 	ret = __do_fault(vmf);
4034 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4035 		return ret;
4036 
4037 	ret |= finish_fault(vmf);
4038 	unlock_page(vmf->page);
4039 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4040 		put_page(vmf->page);
4041 	return ret;
4042 }
4043 
4044 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4045 {
4046 	struct vm_area_struct *vma = vmf->vma;
4047 	vm_fault_t ret;
4048 
4049 	if (unlikely(anon_vma_prepare(vma)))
4050 		return VM_FAULT_OOM;
4051 
4052 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4053 	if (!vmf->cow_page)
4054 		return VM_FAULT_OOM;
4055 
4056 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4057 		put_page(vmf->cow_page);
4058 		return VM_FAULT_OOM;
4059 	}
4060 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4061 
4062 	ret = __do_fault(vmf);
4063 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4064 		goto uncharge_out;
4065 	if (ret & VM_FAULT_DONE_COW)
4066 		return ret;
4067 
4068 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4069 	__SetPageUptodate(vmf->cow_page);
4070 
4071 	ret |= finish_fault(vmf);
4072 	unlock_page(vmf->page);
4073 	put_page(vmf->page);
4074 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4075 		goto uncharge_out;
4076 	return ret;
4077 uncharge_out:
4078 	put_page(vmf->cow_page);
4079 	return ret;
4080 }
4081 
4082 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4083 {
4084 	struct vm_area_struct *vma = vmf->vma;
4085 	vm_fault_t ret, tmp;
4086 
4087 	ret = __do_fault(vmf);
4088 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4089 		return ret;
4090 
4091 	/*
4092 	 * Check if the backing address space wants to know that the page is
4093 	 * about to become writable
4094 	 */
4095 	if (vma->vm_ops->page_mkwrite) {
4096 		unlock_page(vmf->page);
4097 		tmp = do_page_mkwrite(vmf);
4098 		if (unlikely(!tmp ||
4099 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4100 			put_page(vmf->page);
4101 			return tmp;
4102 		}
4103 	}
4104 
4105 	ret |= finish_fault(vmf);
4106 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4107 					VM_FAULT_RETRY))) {
4108 		unlock_page(vmf->page);
4109 		put_page(vmf->page);
4110 		return ret;
4111 	}
4112 
4113 	ret |= fault_dirty_shared_page(vmf);
4114 	return ret;
4115 }
4116 
4117 /*
4118  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4119  * but allow concurrent faults).
4120  * The mmap_lock may have been released depending on flags and our
4121  * return value.  See filemap_fault() and __lock_page_or_retry().
4122  * If mmap_lock is released, vma may become invalid (for example
4123  * by other thread calling munmap()).
4124  */
4125 static vm_fault_t do_fault(struct vm_fault *vmf)
4126 {
4127 	struct vm_area_struct *vma = vmf->vma;
4128 	struct mm_struct *vm_mm = vma->vm_mm;
4129 	vm_fault_t ret;
4130 
4131 	/*
4132 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4133 	 */
4134 	if (!vma->vm_ops->fault) {
4135 		/*
4136 		 * If we find a migration pmd entry or a none pmd entry, which
4137 		 * should never happen, return SIGBUS
4138 		 */
4139 		if (unlikely(!pmd_present(*vmf->pmd)))
4140 			ret = VM_FAULT_SIGBUS;
4141 		else {
4142 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4143 						       vmf->pmd,
4144 						       vmf->address,
4145 						       &vmf->ptl);
4146 			/*
4147 			 * Make sure this is not a temporary clearing of pte
4148 			 * by holding ptl and checking again. A R/M/W update
4149 			 * of pte involves: take ptl, clearing the pte so that
4150 			 * we don't have concurrent modification by hardware
4151 			 * followed by an update.
4152 			 */
4153 			if (unlikely(pte_none(*vmf->pte)))
4154 				ret = VM_FAULT_SIGBUS;
4155 			else
4156 				ret = VM_FAULT_NOPAGE;
4157 
4158 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4159 		}
4160 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4161 		ret = do_read_fault(vmf);
4162 	else if (!(vma->vm_flags & VM_SHARED))
4163 		ret = do_cow_fault(vmf);
4164 	else
4165 		ret = do_shared_fault(vmf);
4166 
4167 	/* preallocated pagetable is unused: free it */
4168 	if (vmf->prealloc_pte) {
4169 		pte_free(vm_mm, vmf->prealloc_pte);
4170 		vmf->prealloc_pte = NULL;
4171 	}
4172 	return ret;
4173 }
4174 
4175 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4176 				unsigned long addr, int page_nid,
4177 				int *flags)
4178 {
4179 	get_page(page);
4180 
4181 	count_vm_numa_event(NUMA_HINT_FAULTS);
4182 	if (page_nid == numa_node_id()) {
4183 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4184 		*flags |= TNF_FAULT_LOCAL;
4185 	}
4186 
4187 	return mpol_misplaced(page, vma, addr);
4188 }
4189 
4190 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4191 {
4192 	struct vm_area_struct *vma = vmf->vma;
4193 	struct page *page = NULL;
4194 	int page_nid = NUMA_NO_NODE;
4195 	int last_cpupid;
4196 	int target_nid;
4197 	pte_t pte, old_pte;
4198 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4199 	int flags = 0;
4200 
4201 	/*
4202 	 * The "pte" at this point cannot be used safely without
4203 	 * validation through pte_unmap_same(). It's of NUMA type but
4204 	 * the pfn may be screwed if the read is non atomic.
4205 	 */
4206 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4207 	spin_lock(vmf->ptl);
4208 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4209 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4210 		goto out;
4211 	}
4212 
4213 	/* Get the normal PTE  */
4214 	old_pte = ptep_get(vmf->pte);
4215 	pte = pte_modify(old_pte, vma->vm_page_prot);
4216 
4217 	page = vm_normal_page(vma, vmf->address, pte);
4218 	if (!page)
4219 		goto out_map;
4220 
4221 	/* TODO: handle PTE-mapped THP */
4222 	if (PageCompound(page))
4223 		goto out_map;
4224 
4225 	/*
4226 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4227 	 * much anyway since they can be in shared cache state. This misses
4228 	 * the case where a mapping is writable but the process never writes
4229 	 * to it but pte_write gets cleared during protection updates and
4230 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4231 	 * background writeback, dirty balancing and application behaviour.
4232 	 */
4233 	if (!was_writable)
4234 		flags |= TNF_NO_GROUP;
4235 
4236 	/*
4237 	 * Flag if the page is shared between multiple address spaces. This
4238 	 * is later used when determining whether to group tasks together
4239 	 */
4240 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4241 		flags |= TNF_SHARED;
4242 
4243 	last_cpupid = page_cpupid_last(page);
4244 	page_nid = page_to_nid(page);
4245 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4246 			&flags);
4247 	if (target_nid == NUMA_NO_NODE) {
4248 		put_page(page);
4249 		goto out_map;
4250 	}
4251 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4252 
4253 	/* Migrate to the requested node */
4254 	if (migrate_misplaced_page(page, vma, target_nid)) {
4255 		page_nid = target_nid;
4256 		flags |= TNF_MIGRATED;
4257 	} else {
4258 		flags |= TNF_MIGRATE_FAIL;
4259 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4260 		spin_lock(vmf->ptl);
4261 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4262 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4263 			goto out;
4264 		}
4265 		goto out_map;
4266 	}
4267 
4268 out:
4269 	if (page_nid != NUMA_NO_NODE)
4270 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4271 	return 0;
4272 out_map:
4273 	/*
4274 	 * Make it present again, depending on how arch implements
4275 	 * non-accessible ptes, some can allow access by kernel mode.
4276 	 */
4277 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4278 	pte = pte_modify(old_pte, vma->vm_page_prot);
4279 	pte = pte_mkyoung(pte);
4280 	if (was_writable)
4281 		pte = pte_mkwrite(pte);
4282 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4283 	update_mmu_cache(vma, vmf->address, vmf->pte);
4284 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4285 	goto out;
4286 }
4287 
4288 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4289 {
4290 	if (vma_is_anonymous(vmf->vma))
4291 		return do_huge_pmd_anonymous_page(vmf);
4292 	if (vmf->vma->vm_ops->huge_fault)
4293 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4294 	return VM_FAULT_FALLBACK;
4295 }
4296 
4297 /* `inline' is required to avoid gcc 4.1.2 build error */
4298 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4299 {
4300 	if (vma_is_anonymous(vmf->vma)) {
4301 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4302 			return handle_userfault(vmf, VM_UFFD_WP);
4303 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4304 	}
4305 	if (vmf->vma->vm_ops->huge_fault) {
4306 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4307 
4308 		if (!(ret & VM_FAULT_FALLBACK))
4309 			return ret;
4310 	}
4311 
4312 	/* COW or write-notify handled on pte level: split pmd. */
4313 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4314 
4315 	return VM_FAULT_FALLBACK;
4316 }
4317 
4318 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4319 {
4320 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4321 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4322 	/* No support for anonymous transparent PUD pages yet */
4323 	if (vma_is_anonymous(vmf->vma))
4324 		goto split;
4325 	if (vmf->vma->vm_ops->huge_fault) {
4326 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4327 
4328 		if (!(ret & VM_FAULT_FALLBACK))
4329 			return ret;
4330 	}
4331 split:
4332 	/* COW or write-notify not handled on PUD level: split pud.*/
4333 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4334 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4335 	return VM_FAULT_FALLBACK;
4336 }
4337 
4338 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4339 {
4340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4341 	/* No support for anonymous transparent PUD pages yet */
4342 	if (vma_is_anonymous(vmf->vma))
4343 		return VM_FAULT_FALLBACK;
4344 	if (vmf->vma->vm_ops->huge_fault)
4345 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4346 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4347 	return VM_FAULT_FALLBACK;
4348 }
4349 
4350 /*
4351  * These routines also need to handle stuff like marking pages dirty
4352  * and/or accessed for architectures that don't do it in hardware (most
4353  * RISC architectures).  The early dirtying is also good on the i386.
4354  *
4355  * There is also a hook called "update_mmu_cache()" that architectures
4356  * with external mmu caches can use to update those (ie the Sparc or
4357  * PowerPC hashed page tables that act as extended TLBs).
4358  *
4359  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4360  * concurrent faults).
4361  *
4362  * The mmap_lock may have been released depending on flags and our return value.
4363  * See filemap_fault() and __lock_page_or_retry().
4364  */
4365 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4366 {
4367 	pte_t entry;
4368 
4369 	if (unlikely(pmd_none(*vmf->pmd))) {
4370 		/*
4371 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4372 		 * want to allocate huge page, and if we expose page table
4373 		 * for an instant, it will be difficult to retract from
4374 		 * concurrent faults and from rmap lookups.
4375 		 */
4376 		vmf->pte = NULL;
4377 	} else {
4378 		/*
4379 		 * If a huge pmd materialized under us just retry later.  Use
4380 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4381 		 * of pmd_trans_huge() to ensure the pmd didn't become
4382 		 * pmd_trans_huge under us and then back to pmd_none, as a
4383 		 * result of MADV_DONTNEED running immediately after a huge pmd
4384 		 * fault in a different thread of this mm, in turn leading to a
4385 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4386 		 * that it is a regular pmd that we can walk with
4387 		 * pte_offset_map() and we can do that through an atomic read
4388 		 * in C, which is what pmd_trans_unstable() provides.
4389 		 */
4390 		if (pmd_devmap_trans_unstable(vmf->pmd))
4391 			return 0;
4392 		/*
4393 		 * A regular pmd is established and it can't morph into a huge
4394 		 * pmd from under us anymore at this point because we hold the
4395 		 * mmap_lock read mode and khugepaged takes it in write mode.
4396 		 * So now it's safe to run pte_offset_map().
4397 		 */
4398 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4399 		vmf->orig_pte = *vmf->pte;
4400 
4401 		/*
4402 		 * some architectures can have larger ptes than wordsize,
4403 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4404 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4405 		 * accesses.  The code below just needs a consistent view
4406 		 * for the ifs and we later double check anyway with the
4407 		 * ptl lock held. So here a barrier will do.
4408 		 */
4409 		barrier();
4410 		if (pte_none(vmf->orig_pte)) {
4411 			pte_unmap(vmf->pte);
4412 			vmf->pte = NULL;
4413 		}
4414 	}
4415 
4416 	if (!vmf->pte) {
4417 		if (vma_is_anonymous(vmf->vma))
4418 			return do_anonymous_page(vmf);
4419 		else
4420 			return do_fault(vmf);
4421 	}
4422 
4423 	if (!pte_present(vmf->orig_pte))
4424 		return do_swap_page(vmf);
4425 
4426 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4427 		return do_numa_page(vmf);
4428 
4429 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4430 	spin_lock(vmf->ptl);
4431 	entry = vmf->orig_pte;
4432 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4433 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4434 		goto unlock;
4435 	}
4436 	if (vmf->flags & FAULT_FLAG_WRITE) {
4437 		if (!pte_write(entry))
4438 			return do_wp_page(vmf);
4439 		entry = pte_mkdirty(entry);
4440 	}
4441 	entry = pte_mkyoung(entry);
4442 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4443 				vmf->flags & FAULT_FLAG_WRITE)) {
4444 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4445 	} else {
4446 		/* Skip spurious TLB flush for retried page fault */
4447 		if (vmf->flags & FAULT_FLAG_TRIED)
4448 			goto unlock;
4449 		/*
4450 		 * This is needed only for protection faults but the arch code
4451 		 * is not yet telling us if this is a protection fault or not.
4452 		 * This still avoids useless tlb flushes for .text page faults
4453 		 * with threads.
4454 		 */
4455 		if (vmf->flags & FAULT_FLAG_WRITE)
4456 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4457 	}
4458 unlock:
4459 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4460 	return 0;
4461 }
4462 
4463 /*
4464  * By the time we get here, we already hold the mm semaphore
4465  *
4466  * The mmap_lock may have been released depending on flags and our
4467  * return value.  See filemap_fault() and __lock_page_or_retry().
4468  */
4469 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4470 		unsigned long address, unsigned int flags)
4471 {
4472 	struct vm_fault vmf = {
4473 		.vma = vma,
4474 		.address = address & PAGE_MASK,
4475 		.flags = flags,
4476 		.pgoff = linear_page_index(vma, address),
4477 		.gfp_mask = __get_fault_gfp_mask(vma),
4478 	};
4479 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4480 	struct mm_struct *mm = vma->vm_mm;
4481 	pgd_t *pgd;
4482 	p4d_t *p4d;
4483 	vm_fault_t ret;
4484 
4485 	pgd = pgd_offset(mm, address);
4486 	p4d = p4d_alloc(mm, pgd, address);
4487 	if (!p4d)
4488 		return VM_FAULT_OOM;
4489 
4490 	vmf.pud = pud_alloc(mm, p4d, address);
4491 	if (!vmf.pud)
4492 		return VM_FAULT_OOM;
4493 retry_pud:
4494 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4495 		ret = create_huge_pud(&vmf);
4496 		if (!(ret & VM_FAULT_FALLBACK))
4497 			return ret;
4498 	} else {
4499 		pud_t orig_pud = *vmf.pud;
4500 
4501 		barrier();
4502 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4503 
4504 			/* NUMA case for anonymous PUDs would go here */
4505 
4506 			if (dirty && !pud_write(orig_pud)) {
4507 				ret = wp_huge_pud(&vmf, orig_pud);
4508 				if (!(ret & VM_FAULT_FALLBACK))
4509 					return ret;
4510 			} else {
4511 				huge_pud_set_accessed(&vmf, orig_pud);
4512 				return 0;
4513 			}
4514 		}
4515 	}
4516 
4517 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4518 	if (!vmf.pmd)
4519 		return VM_FAULT_OOM;
4520 
4521 	/* Huge pud page fault raced with pmd_alloc? */
4522 	if (pud_trans_unstable(vmf.pud))
4523 		goto retry_pud;
4524 
4525 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4526 		ret = create_huge_pmd(&vmf);
4527 		if (!(ret & VM_FAULT_FALLBACK))
4528 			return ret;
4529 	} else {
4530 		pmd_t orig_pmd = *vmf.pmd;
4531 
4532 		barrier();
4533 		if (unlikely(is_swap_pmd(orig_pmd))) {
4534 			VM_BUG_ON(thp_migration_supported() &&
4535 					  !is_pmd_migration_entry(orig_pmd));
4536 			if (is_pmd_migration_entry(orig_pmd))
4537 				pmd_migration_entry_wait(mm, vmf.pmd);
4538 			return 0;
4539 		}
4540 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4541 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4542 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4543 
4544 			if (dirty && !pmd_write(orig_pmd)) {
4545 				ret = wp_huge_pmd(&vmf, orig_pmd);
4546 				if (!(ret & VM_FAULT_FALLBACK))
4547 					return ret;
4548 			} else {
4549 				huge_pmd_set_accessed(&vmf, orig_pmd);
4550 				return 0;
4551 			}
4552 		}
4553 	}
4554 
4555 	return handle_pte_fault(&vmf);
4556 }
4557 
4558 /**
4559  * mm_account_fault - Do page fault accounting
4560  *
4561  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4562  *        of perf event counters, but we'll still do the per-task accounting to
4563  *        the task who triggered this page fault.
4564  * @address: the faulted address.
4565  * @flags: the fault flags.
4566  * @ret: the fault retcode.
4567  *
4568  * This will take care of most of the page fault accounting.  Meanwhile, it
4569  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4570  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4571  * still be in per-arch page fault handlers at the entry of page fault.
4572  */
4573 static inline void mm_account_fault(struct pt_regs *regs,
4574 				    unsigned long address, unsigned int flags,
4575 				    vm_fault_t ret)
4576 {
4577 	bool major;
4578 
4579 	/*
4580 	 * We don't do accounting for some specific faults:
4581 	 *
4582 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4583 	 *   includes arch_vma_access_permitted() failing before reaching here.
4584 	 *   So this is not a "this many hardware page faults" counter.  We
4585 	 *   should use the hw profiling for that.
4586 	 *
4587 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4588 	 *   once they're completed.
4589 	 */
4590 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4591 		return;
4592 
4593 	/*
4594 	 * We define the fault as a major fault when the final successful fault
4595 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4596 	 * handle it immediately previously).
4597 	 */
4598 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4599 
4600 	if (major)
4601 		current->maj_flt++;
4602 	else
4603 		current->min_flt++;
4604 
4605 	/*
4606 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4607 	 * accounting for the per thread fault counters who triggered the
4608 	 * fault, and we skip the perf event updates.
4609 	 */
4610 	if (!regs)
4611 		return;
4612 
4613 	if (major)
4614 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4615 	else
4616 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4617 }
4618 
4619 /*
4620  * By the time we get here, we already hold the mm semaphore
4621  *
4622  * The mmap_lock may have been released depending on flags and our
4623  * return value.  See filemap_fault() and __lock_page_or_retry().
4624  */
4625 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4626 			   unsigned int flags, struct pt_regs *regs)
4627 {
4628 	vm_fault_t ret;
4629 
4630 	__set_current_state(TASK_RUNNING);
4631 
4632 	count_vm_event(PGFAULT);
4633 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4634 
4635 	/* do counter updates before entering really critical section. */
4636 	check_sync_rss_stat(current);
4637 
4638 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4639 					    flags & FAULT_FLAG_INSTRUCTION,
4640 					    flags & FAULT_FLAG_REMOTE))
4641 		return VM_FAULT_SIGSEGV;
4642 
4643 	/*
4644 	 * Enable the memcg OOM handling for faults triggered in user
4645 	 * space.  Kernel faults are handled more gracefully.
4646 	 */
4647 	if (flags & FAULT_FLAG_USER)
4648 		mem_cgroup_enter_user_fault();
4649 
4650 	if (unlikely(is_vm_hugetlb_page(vma)))
4651 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4652 	else
4653 		ret = __handle_mm_fault(vma, address, flags);
4654 
4655 	if (flags & FAULT_FLAG_USER) {
4656 		mem_cgroup_exit_user_fault();
4657 		/*
4658 		 * The task may have entered a memcg OOM situation but
4659 		 * if the allocation error was handled gracefully (no
4660 		 * VM_FAULT_OOM), there is no need to kill anything.
4661 		 * Just clean up the OOM state peacefully.
4662 		 */
4663 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4664 			mem_cgroup_oom_synchronize(false);
4665 	}
4666 
4667 	mm_account_fault(regs, address, flags, ret);
4668 
4669 	return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(handle_mm_fault);
4672 
4673 #ifndef __PAGETABLE_P4D_FOLDED
4674 /*
4675  * Allocate p4d page table.
4676  * We've already handled the fast-path in-line.
4677  */
4678 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4679 {
4680 	p4d_t *new = p4d_alloc_one(mm, address);
4681 	if (!new)
4682 		return -ENOMEM;
4683 
4684 	smp_wmb(); /* See comment in __pte_alloc */
4685 
4686 	spin_lock(&mm->page_table_lock);
4687 	if (pgd_present(*pgd))		/* Another has populated it */
4688 		p4d_free(mm, new);
4689 	else
4690 		pgd_populate(mm, pgd, new);
4691 	spin_unlock(&mm->page_table_lock);
4692 	return 0;
4693 }
4694 #endif /* __PAGETABLE_P4D_FOLDED */
4695 
4696 #ifndef __PAGETABLE_PUD_FOLDED
4697 /*
4698  * Allocate page upper directory.
4699  * We've already handled the fast-path in-line.
4700  */
4701 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4702 {
4703 	pud_t *new = pud_alloc_one(mm, address);
4704 	if (!new)
4705 		return -ENOMEM;
4706 
4707 	smp_wmb(); /* See comment in __pte_alloc */
4708 
4709 	spin_lock(&mm->page_table_lock);
4710 	if (!p4d_present(*p4d)) {
4711 		mm_inc_nr_puds(mm);
4712 		p4d_populate(mm, p4d, new);
4713 	} else	/* Another has populated it */
4714 		pud_free(mm, new);
4715 	spin_unlock(&mm->page_table_lock);
4716 	return 0;
4717 }
4718 #endif /* __PAGETABLE_PUD_FOLDED */
4719 
4720 #ifndef __PAGETABLE_PMD_FOLDED
4721 /*
4722  * Allocate page middle directory.
4723  * We've already handled the fast-path in-line.
4724  */
4725 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4726 {
4727 	spinlock_t *ptl;
4728 	pmd_t *new = pmd_alloc_one(mm, address);
4729 	if (!new)
4730 		return -ENOMEM;
4731 
4732 	smp_wmb(); /* See comment in __pte_alloc */
4733 
4734 	ptl = pud_lock(mm, pud);
4735 	if (!pud_present(*pud)) {
4736 		mm_inc_nr_pmds(mm);
4737 		pud_populate(mm, pud, new);
4738 	} else	/* Another has populated it */
4739 		pmd_free(mm, new);
4740 	spin_unlock(ptl);
4741 	return 0;
4742 }
4743 #endif /* __PAGETABLE_PMD_FOLDED */
4744 
4745 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4746 			  struct mmu_notifier_range *range, pte_t **ptepp,
4747 			  pmd_t **pmdpp, spinlock_t **ptlp)
4748 {
4749 	pgd_t *pgd;
4750 	p4d_t *p4d;
4751 	pud_t *pud;
4752 	pmd_t *pmd;
4753 	pte_t *ptep;
4754 
4755 	pgd = pgd_offset(mm, address);
4756 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4757 		goto out;
4758 
4759 	p4d = p4d_offset(pgd, address);
4760 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4761 		goto out;
4762 
4763 	pud = pud_offset(p4d, address);
4764 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4765 		goto out;
4766 
4767 	pmd = pmd_offset(pud, address);
4768 	VM_BUG_ON(pmd_trans_huge(*pmd));
4769 
4770 	if (pmd_huge(*pmd)) {
4771 		if (!pmdpp)
4772 			goto out;
4773 
4774 		if (range) {
4775 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4776 						NULL, mm, address & PMD_MASK,
4777 						(address & PMD_MASK) + PMD_SIZE);
4778 			mmu_notifier_invalidate_range_start(range);
4779 		}
4780 		*ptlp = pmd_lock(mm, pmd);
4781 		if (pmd_huge(*pmd)) {
4782 			*pmdpp = pmd;
4783 			return 0;
4784 		}
4785 		spin_unlock(*ptlp);
4786 		if (range)
4787 			mmu_notifier_invalidate_range_end(range);
4788 	}
4789 
4790 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4791 		goto out;
4792 
4793 	if (range) {
4794 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4795 					address & PAGE_MASK,
4796 					(address & PAGE_MASK) + PAGE_SIZE);
4797 		mmu_notifier_invalidate_range_start(range);
4798 	}
4799 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4800 	if (!pte_present(*ptep))
4801 		goto unlock;
4802 	*ptepp = ptep;
4803 	return 0;
4804 unlock:
4805 	pte_unmap_unlock(ptep, *ptlp);
4806 	if (range)
4807 		mmu_notifier_invalidate_range_end(range);
4808 out:
4809 	return -EINVAL;
4810 }
4811 
4812 /**
4813  * follow_pte - look up PTE at a user virtual address
4814  * @mm: the mm_struct of the target address space
4815  * @address: user virtual address
4816  * @ptepp: location to store found PTE
4817  * @ptlp: location to store the lock for the PTE
4818  *
4819  * On a successful return, the pointer to the PTE is stored in @ptepp;
4820  * the corresponding lock is taken and its location is stored in @ptlp.
4821  * The contents of the PTE are only stable until @ptlp is released;
4822  * any further use, if any, must be protected against invalidation
4823  * with MMU notifiers.
4824  *
4825  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4826  * should be taken for read.
4827  *
4828  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4829  * it is not a good general-purpose API.
4830  *
4831  * Return: zero on success, -ve otherwise.
4832  */
4833 int follow_pte(struct mm_struct *mm, unsigned long address,
4834 	       pte_t **ptepp, spinlock_t **ptlp)
4835 {
4836 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4837 }
4838 EXPORT_SYMBOL_GPL(follow_pte);
4839 
4840 /**
4841  * follow_pfn - look up PFN at a user virtual address
4842  * @vma: memory mapping
4843  * @address: user virtual address
4844  * @pfn: location to store found PFN
4845  *
4846  * Only IO mappings and raw PFN mappings are allowed.
4847  *
4848  * This function does not allow the caller to read the permissions
4849  * of the PTE.  Do not use it.
4850  *
4851  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4852  */
4853 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4854 	unsigned long *pfn)
4855 {
4856 	int ret = -EINVAL;
4857 	spinlock_t *ptl;
4858 	pte_t *ptep;
4859 
4860 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4861 		return ret;
4862 
4863 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4864 	if (ret)
4865 		return ret;
4866 	*pfn = pte_pfn(*ptep);
4867 	pte_unmap_unlock(ptep, ptl);
4868 	return 0;
4869 }
4870 EXPORT_SYMBOL(follow_pfn);
4871 
4872 #ifdef CONFIG_HAVE_IOREMAP_PROT
4873 int follow_phys(struct vm_area_struct *vma,
4874 		unsigned long address, unsigned int flags,
4875 		unsigned long *prot, resource_size_t *phys)
4876 {
4877 	int ret = -EINVAL;
4878 	pte_t *ptep, pte;
4879 	spinlock_t *ptl;
4880 
4881 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4882 		goto out;
4883 
4884 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4885 		goto out;
4886 	pte = *ptep;
4887 
4888 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4889 		goto unlock;
4890 
4891 	*prot = pgprot_val(pte_pgprot(pte));
4892 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4893 
4894 	ret = 0;
4895 unlock:
4896 	pte_unmap_unlock(ptep, ptl);
4897 out:
4898 	return ret;
4899 }
4900 
4901 /**
4902  * generic_access_phys - generic implementation for iomem mmap access
4903  * @vma: the vma to access
4904  * @addr: userspace address, not relative offset within @vma
4905  * @buf: buffer to read/write
4906  * @len: length of transfer
4907  * @write: set to FOLL_WRITE when writing, otherwise reading
4908  *
4909  * This is a generic implementation for &vm_operations_struct.access for an
4910  * iomem mapping. This callback is used by access_process_vm() when the @vma is
4911  * not page based.
4912  */
4913 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4914 			void *buf, int len, int write)
4915 {
4916 	resource_size_t phys_addr;
4917 	unsigned long prot = 0;
4918 	void __iomem *maddr;
4919 	pte_t *ptep, pte;
4920 	spinlock_t *ptl;
4921 	int offset = offset_in_page(addr);
4922 	int ret = -EINVAL;
4923 
4924 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4925 		return -EINVAL;
4926 
4927 retry:
4928 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4929 		return -EINVAL;
4930 	pte = *ptep;
4931 	pte_unmap_unlock(ptep, ptl);
4932 
4933 	prot = pgprot_val(pte_pgprot(pte));
4934 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4935 
4936 	if ((write & FOLL_WRITE) && !pte_write(pte))
4937 		return -EINVAL;
4938 
4939 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4940 	if (!maddr)
4941 		return -ENOMEM;
4942 
4943 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4944 		goto out_unmap;
4945 
4946 	if (!pte_same(pte, *ptep)) {
4947 		pte_unmap_unlock(ptep, ptl);
4948 		iounmap(maddr);
4949 
4950 		goto retry;
4951 	}
4952 
4953 	if (write)
4954 		memcpy_toio(maddr + offset, buf, len);
4955 	else
4956 		memcpy_fromio(buf, maddr + offset, len);
4957 	ret = len;
4958 	pte_unmap_unlock(ptep, ptl);
4959 out_unmap:
4960 	iounmap(maddr);
4961 
4962 	return ret;
4963 }
4964 EXPORT_SYMBOL_GPL(generic_access_phys);
4965 #endif
4966 
4967 /*
4968  * Access another process' address space as given in mm.
4969  */
4970 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4971 		       int len, unsigned int gup_flags)
4972 {
4973 	struct vm_area_struct *vma;
4974 	void *old_buf = buf;
4975 	int write = gup_flags & FOLL_WRITE;
4976 
4977 	if (mmap_read_lock_killable(mm))
4978 		return 0;
4979 
4980 	/* ignore errors, just check how much was successfully transferred */
4981 	while (len) {
4982 		int bytes, ret, offset;
4983 		void *maddr;
4984 		struct page *page = NULL;
4985 
4986 		ret = get_user_pages_remote(mm, addr, 1,
4987 				gup_flags, &page, &vma, NULL);
4988 		if (ret <= 0) {
4989 #ifndef CONFIG_HAVE_IOREMAP_PROT
4990 			break;
4991 #else
4992 			/*
4993 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4994 			 * we can access using slightly different code.
4995 			 */
4996 			vma = vma_lookup(mm, addr);
4997 			if (!vma)
4998 				break;
4999 			if (vma->vm_ops && vma->vm_ops->access)
5000 				ret = vma->vm_ops->access(vma, addr, buf,
5001 							  len, write);
5002 			if (ret <= 0)
5003 				break;
5004 			bytes = ret;
5005 #endif
5006 		} else {
5007 			bytes = len;
5008 			offset = addr & (PAGE_SIZE-1);
5009 			if (bytes > PAGE_SIZE-offset)
5010 				bytes = PAGE_SIZE-offset;
5011 
5012 			maddr = kmap(page);
5013 			if (write) {
5014 				copy_to_user_page(vma, page, addr,
5015 						  maddr + offset, buf, bytes);
5016 				set_page_dirty_lock(page);
5017 			} else {
5018 				copy_from_user_page(vma, page, addr,
5019 						    buf, maddr + offset, bytes);
5020 			}
5021 			kunmap(page);
5022 			put_page(page);
5023 		}
5024 		len -= bytes;
5025 		buf += bytes;
5026 		addr += bytes;
5027 	}
5028 	mmap_read_unlock(mm);
5029 
5030 	return buf - old_buf;
5031 }
5032 
5033 /**
5034  * access_remote_vm - access another process' address space
5035  * @mm:		the mm_struct of the target address space
5036  * @addr:	start address to access
5037  * @buf:	source or destination buffer
5038  * @len:	number of bytes to transfer
5039  * @gup_flags:	flags modifying lookup behaviour
5040  *
5041  * The caller must hold a reference on @mm.
5042  *
5043  * Return: number of bytes copied from source to destination.
5044  */
5045 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5046 		void *buf, int len, unsigned int gup_flags)
5047 {
5048 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5049 }
5050 
5051 /*
5052  * Access another process' address space.
5053  * Source/target buffer must be kernel space,
5054  * Do not walk the page table directly, use get_user_pages
5055  */
5056 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5057 		void *buf, int len, unsigned int gup_flags)
5058 {
5059 	struct mm_struct *mm;
5060 	int ret;
5061 
5062 	mm = get_task_mm(tsk);
5063 	if (!mm)
5064 		return 0;
5065 
5066 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5067 
5068 	mmput(mm);
5069 
5070 	return ret;
5071 }
5072 EXPORT_SYMBOL_GPL(access_process_vm);
5073 
5074 /*
5075  * Print the name of a VMA.
5076  */
5077 void print_vma_addr(char *prefix, unsigned long ip)
5078 {
5079 	struct mm_struct *mm = current->mm;
5080 	struct vm_area_struct *vma;
5081 
5082 	/*
5083 	 * we might be running from an atomic context so we cannot sleep
5084 	 */
5085 	if (!mmap_read_trylock(mm))
5086 		return;
5087 
5088 	vma = find_vma(mm, ip);
5089 	if (vma && vma->vm_file) {
5090 		struct file *f = vma->vm_file;
5091 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5092 		if (buf) {
5093 			char *p;
5094 
5095 			p = file_path(f, buf, PAGE_SIZE);
5096 			if (IS_ERR(p))
5097 				p = "?";
5098 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5099 					vma->vm_start,
5100 					vma->vm_end - vma->vm_start);
5101 			free_page((unsigned long)buf);
5102 		}
5103 	}
5104 	mmap_read_unlock(mm);
5105 }
5106 
5107 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5108 void __might_fault(const char *file, int line)
5109 {
5110 	/*
5111 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5112 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5113 	 * get paged out, therefore we'll never actually fault, and the
5114 	 * below annotations will generate false positives.
5115 	 */
5116 	if (uaccess_kernel())
5117 		return;
5118 	if (pagefault_disabled())
5119 		return;
5120 	__might_sleep(file, line, 0);
5121 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5122 	if (current->mm)
5123 		might_lock_read(&current->mm->mmap_lock);
5124 #endif
5125 }
5126 EXPORT_SYMBOL(__might_fault);
5127 #endif
5128 
5129 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5130 /*
5131  * Process all subpages of the specified huge page with the specified
5132  * operation.  The target subpage will be processed last to keep its
5133  * cache lines hot.
5134  */
5135 static inline void process_huge_page(
5136 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5137 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5138 	void *arg)
5139 {
5140 	int i, n, base, l;
5141 	unsigned long addr = addr_hint &
5142 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5143 
5144 	/* Process target subpage last to keep its cache lines hot */
5145 	might_sleep();
5146 	n = (addr_hint - addr) / PAGE_SIZE;
5147 	if (2 * n <= pages_per_huge_page) {
5148 		/* If target subpage in first half of huge page */
5149 		base = 0;
5150 		l = n;
5151 		/* Process subpages at the end of huge page */
5152 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5153 			cond_resched();
5154 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5155 		}
5156 	} else {
5157 		/* If target subpage in second half of huge page */
5158 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5159 		l = pages_per_huge_page - n;
5160 		/* Process subpages at the begin of huge page */
5161 		for (i = 0; i < base; i++) {
5162 			cond_resched();
5163 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5164 		}
5165 	}
5166 	/*
5167 	 * Process remaining subpages in left-right-left-right pattern
5168 	 * towards the target subpage
5169 	 */
5170 	for (i = 0; i < l; i++) {
5171 		int left_idx = base + i;
5172 		int right_idx = base + 2 * l - 1 - i;
5173 
5174 		cond_resched();
5175 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5176 		cond_resched();
5177 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5178 	}
5179 }
5180 
5181 static void clear_gigantic_page(struct page *page,
5182 				unsigned long addr,
5183 				unsigned int pages_per_huge_page)
5184 {
5185 	int i;
5186 	struct page *p = page;
5187 
5188 	might_sleep();
5189 	for (i = 0; i < pages_per_huge_page;
5190 	     i++, p = mem_map_next(p, page, i)) {
5191 		cond_resched();
5192 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5193 	}
5194 }
5195 
5196 static void clear_subpage(unsigned long addr, int idx, void *arg)
5197 {
5198 	struct page *page = arg;
5199 
5200 	clear_user_highpage(page + idx, addr);
5201 }
5202 
5203 void clear_huge_page(struct page *page,
5204 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5205 {
5206 	unsigned long addr = addr_hint &
5207 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5208 
5209 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5210 		clear_gigantic_page(page, addr, pages_per_huge_page);
5211 		return;
5212 	}
5213 
5214 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5215 }
5216 
5217 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5218 				    unsigned long addr,
5219 				    struct vm_area_struct *vma,
5220 				    unsigned int pages_per_huge_page)
5221 {
5222 	int i;
5223 	struct page *dst_base = dst;
5224 	struct page *src_base = src;
5225 
5226 	for (i = 0; i < pages_per_huge_page; ) {
5227 		cond_resched();
5228 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5229 
5230 		i++;
5231 		dst = mem_map_next(dst, dst_base, i);
5232 		src = mem_map_next(src, src_base, i);
5233 	}
5234 }
5235 
5236 struct copy_subpage_arg {
5237 	struct page *dst;
5238 	struct page *src;
5239 	struct vm_area_struct *vma;
5240 };
5241 
5242 static void copy_subpage(unsigned long addr, int idx, void *arg)
5243 {
5244 	struct copy_subpage_arg *copy_arg = arg;
5245 
5246 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5247 			   addr, copy_arg->vma);
5248 }
5249 
5250 void copy_user_huge_page(struct page *dst, struct page *src,
5251 			 unsigned long addr_hint, struct vm_area_struct *vma,
5252 			 unsigned int pages_per_huge_page)
5253 {
5254 	unsigned long addr = addr_hint &
5255 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5256 	struct copy_subpage_arg arg = {
5257 		.dst = dst,
5258 		.src = src,
5259 		.vma = vma,
5260 	};
5261 
5262 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5263 		copy_user_gigantic_page(dst, src, addr, vma,
5264 					pages_per_huge_page);
5265 		return;
5266 	}
5267 
5268 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5269 }
5270 
5271 long copy_huge_page_from_user(struct page *dst_page,
5272 				const void __user *usr_src,
5273 				unsigned int pages_per_huge_page,
5274 				bool allow_pagefault)
5275 {
5276 	void *src = (void *)usr_src;
5277 	void *page_kaddr;
5278 	unsigned long i, rc = 0;
5279 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5280 	struct page *subpage = dst_page;
5281 
5282 	for (i = 0; i < pages_per_huge_page;
5283 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5284 		if (allow_pagefault)
5285 			page_kaddr = kmap(subpage);
5286 		else
5287 			page_kaddr = kmap_atomic(subpage);
5288 		rc = copy_from_user(page_kaddr,
5289 				(const void __user *)(src + i * PAGE_SIZE),
5290 				PAGE_SIZE);
5291 		if (allow_pagefault)
5292 			kunmap(subpage);
5293 		else
5294 			kunmap_atomic(page_kaddr);
5295 
5296 		ret_val -= (PAGE_SIZE - rc);
5297 		if (rc)
5298 			break;
5299 
5300 		cond_resched();
5301 	}
5302 	return ret_val;
5303 }
5304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5305 
5306 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5307 
5308 static struct kmem_cache *page_ptl_cachep;
5309 
5310 void __init ptlock_cache_init(void)
5311 {
5312 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5313 			SLAB_PANIC, NULL);
5314 }
5315 
5316 bool ptlock_alloc(struct page *page)
5317 {
5318 	spinlock_t *ptl;
5319 
5320 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5321 	if (!ptl)
5322 		return false;
5323 	page->ptl = ptl;
5324 	return true;
5325 }
5326 
5327 void ptlock_free(struct page *page)
5328 {
5329 	kmem_cache_free(page_ptl_cachep, page->ptl);
5330 }
5331 #endif
5332