xref: /linux/mm/memory.c (revision 93b694d096cc10994c817730d4d50288f9ae3d66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93 
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98 
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102 
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112 
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121 					1;
122 #else
123 					2;
124 #endif
125 
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129 	/*
130 	 * Those arches which don't have hw access flag feature need to
131 	 * implement their own helper. By default, "true" means pagefault
132 	 * will be hit on old pte.
133 	 */
134 	return true;
135 }
136 #endif
137 
138 static int __init disable_randmaps(char *s)
139 {
140 	randomize_va_space = 0;
141 	return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144 
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147 
148 unsigned long highest_memmap_pfn __read_mostly;
149 
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
153 static int __init init_zero_pfn(void)
154 {
155 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 	return 0;
157 }
158 core_initcall(init_zero_pfn);
159 
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162 	trace_rss_stat(mm, member, count);
163 }
164 
165 #if defined(SPLIT_RSS_COUNTING)
166 
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169 	int i;
170 
171 	for (i = 0; i < NR_MM_COUNTERS; i++) {
172 		if (current->rss_stat.count[i]) {
173 			add_mm_counter(mm, i, current->rss_stat.count[i]);
174 			current->rss_stat.count[i] = 0;
175 		}
176 	}
177 	current->rss_stat.events = 0;
178 }
179 
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182 	struct task_struct *task = current;
183 
184 	if (likely(task->mm == mm))
185 		task->rss_stat.count[member] += val;
186 	else
187 		add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191 
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH	(64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196 	if (unlikely(task != current))
197 		return;
198 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199 		sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202 
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205 
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209 
210 #endif /* SPLIT_RSS_COUNTING */
211 
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 			   unsigned long addr)
218 {
219 	pgtable_t token = pmd_pgtable(*pmd);
220 	pmd_clear(pmd);
221 	pte_free_tlb(tlb, token, addr);
222 	mm_dec_nr_ptes(tlb->mm);
223 }
224 
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 				unsigned long addr, unsigned long end,
227 				unsigned long floor, unsigned long ceiling)
228 {
229 	pmd_t *pmd;
230 	unsigned long next;
231 	unsigned long start;
232 
233 	start = addr;
234 	pmd = pmd_offset(pud, addr);
235 	do {
236 		next = pmd_addr_end(addr, end);
237 		if (pmd_none_or_clear_bad(pmd))
238 			continue;
239 		free_pte_range(tlb, pmd, addr);
240 	} while (pmd++, addr = next, addr != end);
241 
242 	start &= PUD_MASK;
243 	if (start < floor)
244 		return;
245 	if (ceiling) {
246 		ceiling &= PUD_MASK;
247 		if (!ceiling)
248 			return;
249 	}
250 	if (end - 1 > ceiling - 1)
251 		return;
252 
253 	pmd = pmd_offset(pud, start);
254 	pud_clear(pud);
255 	pmd_free_tlb(tlb, pmd, start);
256 	mm_dec_nr_pmds(tlb->mm);
257 }
258 
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260 				unsigned long addr, unsigned long end,
261 				unsigned long floor, unsigned long ceiling)
262 {
263 	pud_t *pud;
264 	unsigned long next;
265 	unsigned long start;
266 
267 	start = addr;
268 	pud = pud_offset(p4d, addr);
269 	do {
270 		next = pud_addr_end(addr, end);
271 		if (pud_none_or_clear_bad(pud))
272 			continue;
273 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274 	} while (pud++, addr = next, addr != end);
275 
276 	start &= P4D_MASK;
277 	if (start < floor)
278 		return;
279 	if (ceiling) {
280 		ceiling &= P4D_MASK;
281 		if (!ceiling)
282 			return;
283 	}
284 	if (end - 1 > ceiling - 1)
285 		return;
286 
287 	pud = pud_offset(p4d, start);
288 	p4d_clear(p4d);
289 	pud_free_tlb(tlb, pud, start);
290 	mm_dec_nr_puds(tlb->mm);
291 }
292 
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 				unsigned long addr, unsigned long end,
295 				unsigned long floor, unsigned long ceiling)
296 {
297 	p4d_t *p4d;
298 	unsigned long next;
299 	unsigned long start;
300 
301 	start = addr;
302 	p4d = p4d_offset(pgd, addr);
303 	do {
304 		next = p4d_addr_end(addr, end);
305 		if (p4d_none_or_clear_bad(p4d))
306 			continue;
307 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 	} while (p4d++, addr = next, addr != end);
309 
310 	start &= PGDIR_MASK;
311 	if (start < floor)
312 		return;
313 	if (ceiling) {
314 		ceiling &= PGDIR_MASK;
315 		if (!ceiling)
316 			return;
317 	}
318 	if (end - 1 > ceiling - 1)
319 		return;
320 
321 	p4d = p4d_offset(pgd, start);
322 	pgd_clear(pgd);
323 	p4d_free_tlb(tlb, p4d, start);
324 }
325 
326 /*
327  * This function frees user-level page tables of a process.
328  */
329 void free_pgd_range(struct mmu_gather *tlb,
330 			unsigned long addr, unsigned long end,
331 			unsigned long floor, unsigned long ceiling)
332 {
333 	pgd_t *pgd;
334 	unsigned long next;
335 
336 	/*
337 	 * The next few lines have given us lots of grief...
338 	 *
339 	 * Why are we testing PMD* at this top level?  Because often
340 	 * there will be no work to do at all, and we'd prefer not to
341 	 * go all the way down to the bottom just to discover that.
342 	 *
343 	 * Why all these "- 1"s?  Because 0 represents both the bottom
344 	 * of the address space and the top of it (using -1 for the
345 	 * top wouldn't help much: the masks would do the wrong thing).
346 	 * The rule is that addr 0 and floor 0 refer to the bottom of
347 	 * the address space, but end 0 and ceiling 0 refer to the top
348 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 	 * that end 0 case should be mythical).
350 	 *
351 	 * Wherever addr is brought up or ceiling brought down, we must
352 	 * be careful to reject "the opposite 0" before it confuses the
353 	 * subsequent tests.  But what about where end is brought down
354 	 * by PMD_SIZE below? no, end can't go down to 0 there.
355 	 *
356 	 * Whereas we round start (addr) and ceiling down, by different
357 	 * masks at different levels, in order to test whether a table
358 	 * now has no other vmas using it, so can be freed, we don't
359 	 * bother to round floor or end up - the tests don't need that.
360 	 */
361 
362 	addr &= PMD_MASK;
363 	if (addr < floor) {
364 		addr += PMD_SIZE;
365 		if (!addr)
366 			return;
367 	}
368 	if (ceiling) {
369 		ceiling &= PMD_MASK;
370 		if (!ceiling)
371 			return;
372 	}
373 	if (end - 1 > ceiling - 1)
374 		end -= PMD_SIZE;
375 	if (addr > end - 1)
376 		return;
377 	/*
378 	 * We add page table cache pages with PAGE_SIZE,
379 	 * (see pte_free_tlb()), flush the tlb if we need
380 	 */
381 	tlb_change_page_size(tlb, PAGE_SIZE);
382 	pgd = pgd_offset(tlb->mm, addr);
383 	do {
384 		next = pgd_addr_end(addr, end);
385 		if (pgd_none_or_clear_bad(pgd))
386 			continue;
387 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388 	} while (pgd++, addr = next, addr != end);
389 }
390 
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392 		unsigned long floor, unsigned long ceiling)
393 {
394 	while (vma) {
395 		struct vm_area_struct *next = vma->vm_next;
396 		unsigned long addr = vma->vm_start;
397 
398 		/*
399 		 * Hide vma from rmap and truncate_pagecache before freeing
400 		 * pgtables
401 		 */
402 		unlink_anon_vmas(vma);
403 		unlink_file_vma(vma);
404 
405 		if (is_vm_hugetlb_page(vma)) {
406 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407 				floor, next ? next->vm_start : ceiling);
408 		} else {
409 			/*
410 			 * Optimization: gather nearby vmas into one call down
411 			 */
412 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413 			       && !is_vm_hugetlb_page(next)) {
414 				vma = next;
415 				next = vma->vm_next;
416 				unlink_anon_vmas(vma);
417 				unlink_file_vma(vma);
418 			}
419 			free_pgd_range(tlb, addr, vma->vm_end,
420 				floor, next ? next->vm_start : ceiling);
421 		}
422 		vma = next;
423 	}
424 }
425 
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428 	spinlock_t *ptl;
429 	pgtable_t new = pte_alloc_one(mm);
430 	if (!new)
431 		return -ENOMEM;
432 
433 	/*
434 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 	 * visible before the pte is made visible to other CPUs by being
436 	 * put into page tables.
437 	 *
438 	 * The other side of the story is the pointer chasing in the page
439 	 * table walking code (when walking the page table without locking;
440 	 * ie. most of the time). Fortunately, these data accesses consist
441 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 	 * being the notable exception) will already guarantee loads are
443 	 * seen in-order. See the alpha page table accessors for the
444 	 * smp_rmb() barriers in page table walking code.
445 	 */
446 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447 
448 	ptl = pmd_lock(mm, pmd);
449 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
450 		mm_inc_nr_ptes(mm);
451 		pmd_populate(mm, pmd, new);
452 		new = NULL;
453 	}
454 	spin_unlock(ptl);
455 	if (new)
456 		pte_free(mm, new);
457 	return 0;
458 }
459 
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462 	pte_t *new = pte_alloc_one_kernel(&init_mm);
463 	if (!new)
464 		return -ENOMEM;
465 
466 	smp_wmb(); /* See comment in __pte_alloc */
467 
468 	spin_lock(&init_mm.page_table_lock);
469 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
470 		pmd_populate_kernel(&init_mm, pmd, new);
471 		new = NULL;
472 	}
473 	spin_unlock(&init_mm.page_table_lock);
474 	if (new)
475 		pte_free_kernel(&init_mm, new);
476 	return 0;
477 }
478 
479 static inline void init_rss_vec(int *rss)
480 {
481 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483 
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486 	int i;
487 
488 	if (current->mm == mm)
489 		sync_mm_rss(mm);
490 	for (i = 0; i < NR_MM_COUNTERS; i++)
491 		if (rss[i])
492 			add_mm_counter(mm, i, rss[i]);
493 }
494 
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 			  pte_t pte, struct page *page)
504 {
505 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506 	p4d_t *p4d = p4d_offset(pgd, addr);
507 	pud_t *pud = pud_offset(p4d, addr);
508 	pmd_t *pmd = pmd_offset(pud, addr);
509 	struct address_space *mapping;
510 	pgoff_t index;
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			return;
523 		}
524 		if (nr_unshown) {
525 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 				 nr_unshown);
527 			nr_unshown = 0;
528 		}
529 		nr_shown = 0;
530 	}
531 	if (nr_shown++ == 0)
532 		resume = jiffies + 60 * HZ;
533 
534 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 	index = linear_page_index(vma, addr);
536 
537 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538 		 current->comm,
539 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
540 	if (page)
541 		dump_page(page, "bad pte");
542 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545 		 vma->vm_file,
546 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 		 mapping ? mapping->a_ops->readpage : NULL);
549 	dump_stack();
550 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552 
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 			    pte_t pte)
597 {
598 	unsigned long pfn = pte_pfn(pte);
599 
600 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601 		if (likely(!pte_special(pte)))
602 			goto check_pfn;
603 		if (vma->vm_ops && vma->vm_ops->find_special_page)
604 			return vma->vm_ops->find_special_page(vma, addr);
605 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 			return NULL;
607 		if (is_zero_pfn(pfn))
608 			return NULL;
609 		if (pte_devmap(pte))
610 			return NULL;
611 
612 		print_bad_pte(vma, addr, pte, NULL);
613 		return NULL;
614 	}
615 
616 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617 
618 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 		if (vma->vm_flags & VM_MIXEDMAP) {
620 			if (!pfn_valid(pfn))
621 				return NULL;
622 			goto out;
623 		} else {
624 			unsigned long off;
625 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 			if (pfn == vma->vm_pgoff + off)
627 				return NULL;
628 			if (!is_cow_mapping(vma->vm_flags))
629 				return NULL;
630 		}
631 	}
632 
633 	if (is_zero_pfn(pfn))
634 		return NULL;
635 
636 check_pfn:
637 	if (unlikely(pfn > highest_memmap_pfn)) {
638 		print_bad_pte(vma, addr, pte, NULL);
639 		return NULL;
640 	}
641 
642 	/*
643 	 * NOTE! We still have PageReserved() pages in the page tables.
644 	 * eg. VDSO mappings can cause them to exist.
645 	 */
646 out:
647 	return pfn_to_page(pfn);
648 }
649 
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 				pmd_t pmd)
653 {
654 	unsigned long pfn = pmd_pfn(pmd);
655 
656 	/*
657 	 * There is no pmd_special() but there may be special pmds, e.g.
658 	 * in a direct-access (dax) mapping, so let's just replicate the
659 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660 	 */
661 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 		if (vma->vm_flags & VM_MIXEDMAP) {
663 			if (!pfn_valid(pfn))
664 				return NULL;
665 			goto out;
666 		} else {
667 			unsigned long off;
668 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 			if (pfn == vma->vm_pgoff + off)
670 				return NULL;
671 			if (!is_cow_mapping(vma->vm_flags))
672 				return NULL;
673 		}
674 	}
675 
676 	if (pmd_devmap(pmd))
677 		return NULL;
678 	if (is_huge_zero_pmd(pmd))
679 		return NULL;
680 	if (unlikely(pfn > highest_memmap_pfn))
681 		return NULL;
682 
683 	/*
684 	 * NOTE! We still have PageReserved() pages in the page tables.
685 	 * eg. VDSO mappings can cause them to exist.
686 	 */
687 out:
688 	return pfn_to_page(pfn);
689 }
690 #endif
691 
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697 
698 static unsigned long
699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701 		unsigned long addr, int *rss)
702 {
703 	unsigned long vm_flags = vma->vm_flags;
704 	pte_t pte = *src_pte;
705 	struct page *page;
706 	swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 	if (likely(!non_swap_entry(entry))) {
709 		if (swap_duplicate(entry) < 0)
710 			return entry.val;
711 
712 		/* make sure dst_mm is on swapoff's mmlist. */
713 		if (unlikely(list_empty(&dst_mm->mmlist))) {
714 			spin_lock(&mmlist_lock);
715 			if (list_empty(&dst_mm->mmlist))
716 				list_add(&dst_mm->mmlist,
717 						&src_mm->mmlist);
718 			spin_unlock(&mmlist_lock);
719 		}
720 		rss[MM_SWAPENTS]++;
721 	} else if (is_migration_entry(entry)) {
722 		page = migration_entry_to_page(entry);
723 
724 		rss[mm_counter(page)]++;
725 
726 		if (is_write_migration_entry(entry) &&
727 				is_cow_mapping(vm_flags)) {
728 			/*
729 			 * COW mappings require pages in both
730 			 * parent and child to be set to read.
731 			 */
732 			make_migration_entry_read(&entry);
733 			pte = swp_entry_to_pte(entry);
734 			if (pte_swp_soft_dirty(*src_pte))
735 				pte = pte_swp_mksoft_dirty(pte);
736 			if (pte_swp_uffd_wp(*src_pte))
737 				pte = pte_swp_mkuffd_wp(pte);
738 			set_pte_at(src_mm, addr, src_pte, pte);
739 		}
740 	} else if (is_device_private_entry(entry)) {
741 		page = device_private_entry_to_page(entry);
742 
743 		/*
744 		 * Update rss count even for unaddressable pages, as
745 		 * they should treated just like normal pages in this
746 		 * respect.
747 		 *
748 		 * We will likely want to have some new rss counters
749 		 * for unaddressable pages, at some point. But for now
750 		 * keep things as they are.
751 		 */
752 		get_page(page);
753 		rss[mm_counter(page)]++;
754 		page_dup_rmap(page, false);
755 
756 		/*
757 		 * We do not preserve soft-dirty information, because so
758 		 * far, checkpoint/restore is the only feature that
759 		 * requires that. And checkpoint/restore does not work
760 		 * when a device driver is involved (you cannot easily
761 		 * save and restore device driver state).
762 		 */
763 		if (is_write_device_private_entry(entry) &&
764 		    is_cow_mapping(vm_flags)) {
765 			make_device_private_entry_read(&entry);
766 			pte = swp_entry_to_pte(entry);
767 			if (pte_swp_uffd_wp(*src_pte))
768 				pte = pte_swp_mkuffd_wp(pte);
769 			set_pte_at(src_mm, addr, src_pte, pte);
770 		}
771 	}
772 	set_pte_at(dst_mm, addr, dst_pte, pte);
773 	return 0;
774 }
775 
776 /*
777  * Copy a present and normal page if necessary.
778  *
779  * NOTE! The usual case is that this doesn't need to do
780  * anything, and can just return a positive value. That
781  * will let the caller know that it can just increase
782  * the page refcount and re-use the pte the traditional
783  * way.
784  *
785  * But _if_ we need to copy it because it needs to be
786  * pinned in the parent (and the child should get its own
787  * copy rather than just a reference to the same page),
788  * we'll do that here and return zero to let the caller
789  * know we're done.
790  *
791  * And if we need a pre-allocated page but don't yet have
792  * one, return a negative error to let the preallocation
793  * code know so that it can do so outside the page table
794  * lock.
795  */
796 static inline int
797 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
798 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
799 		  struct page **prealloc, pte_t pte, struct page *page)
800 {
801 	struct mm_struct *src_mm = src_vma->vm_mm;
802 	struct page *new_page;
803 
804 	if (!is_cow_mapping(src_vma->vm_flags))
805 		return 1;
806 
807 	/*
808 	 * What we want to do is to check whether this page may
809 	 * have been pinned by the parent process.  If so,
810 	 * instead of wrprotect the pte on both sides, we copy
811 	 * the page immediately so that we'll always guarantee
812 	 * the pinned page won't be randomly replaced in the
813 	 * future.
814 	 *
815 	 * The page pinning checks are just "has this mm ever
816 	 * seen pinning", along with the (inexact) check of
817 	 * the page count. That might give false positives for
818 	 * for pinning, but it will work correctly.
819 	 */
820 	if (likely(!atomic_read(&src_mm->has_pinned)))
821 		return 1;
822 	if (likely(!page_maybe_dma_pinned(page)))
823 		return 1;
824 
825 	new_page = *prealloc;
826 	if (!new_page)
827 		return -EAGAIN;
828 
829 	/*
830 	 * We have a prealloc page, all good!  Take it
831 	 * over and copy the page & arm it.
832 	 */
833 	*prealloc = NULL;
834 	copy_user_highpage(new_page, page, addr, src_vma);
835 	__SetPageUptodate(new_page);
836 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
837 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
838 	rss[mm_counter(new_page)]++;
839 
840 	/* All done, just insert the new page copy in the child */
841 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
842 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
843 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
844 	return 0;
845 }
846 
847 /*
848  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
849  * is required to copy this pte.
850  */
851 static inline int
852 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
853 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
854 		 struct page **prealloc)
855 {
856 	struct mm_struct *src_mm = src_vma->vm_mm;
857 	unsigned long vm_flags = src_vma->vm_flags;
858 	pte_t pte = *src_pte;
859 	struct page *page;
860 
861 	page = vm_normal_page(src_vma, addr, pte);
862 	if (page) {
863 		int retval;
864 
865 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
866 					   addr, rss, prealloc, pte, page);
867 		if (retval <= 0)
868 			return retval;
869 
870 		get_page(page);
871 		page_dup_rmap(page, false);
872 		rss[mm_counter(page)]++;
873 	}
874 
875 	/*
876 	 * If it's a COW mapping, write protect it both
877 	 * in the parent and the child
878 	 */
879 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
880 		ptep_set_wrprotect(src_mm, addr, src_pte);
881 		pte = pte_wrprotect(pte);
882 	}
883 
884 	/*
885 	 * If it's a shared mapping, mark it clean in
886 	 * the child
887 	 */
888 	if (vm_flags & VM_SHARED)
889 		pte = pte_mkclean(pte);
890 	pte = pte_mkold(pte);
891 
892 	/*
893 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
894 	 * does not have the VM_UFFD_WP, which means that the uffd
895 	 * fork event is not enabled.
896 	 */
897 	if (!(vm_flags & VM_UFFD_WP))
898 		pte = pte_clear_uffd_wp(pte);
899 
900 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
901 	return 0;
902 }
903 
904 static inline struct page *
905 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
906 		   unsigned long addr)
907 {
908 	struct page *new_page;
909 
910 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
911 	if (!new_page)
912 		return NULL;
913 
914 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
915 		put_page(new_page);
916 		return NULL;
917 	}
918 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
919 
920 	return new_page;
921 }
922 
923 static int
924 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
925 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
926 	       unsigned long end)
927 {
928 	struct mm_struct *dst_mm = dst_vma->vm_mm;
929 	struct mm_struct *src_mm = src_vma->vm_mm;
930 	pte_t *orig_src_pte, *orig_dst_pte;
931 	pte_t *src_pte, *dst_pte;
932 	spinlock_t *src_ptl, *dst_ptl;
933 	int progress, ret = 0;
934 	int rss[NR_MM_COUNTERS];
935 	swp_entry_t entry = (swp_entry_t){0};
936 	struct page *prealloc = NULL;
937 
938 again:
939 	progress = 0;
940 	init_rss_vec(rss);
941 
942 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943 	if (!dst_pte) {
944 		ret = -ENOMEM;
945 		goto out;
946 	}
947 	src_pte = pte_offset_map(src_pmd, addr);
948 	src_ptl = pte_lockptr(src_mm, src_pmd);
949 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
950 	orig_src_pte = src_pte;
951 	orig_dst_pte = dst_pte;
952 	arch_enter_lazy_mmu_mode();
953 
954 	do {
955 		/*
956 		 * We are holding two locks at this point - either of them
957 		 * could generate latencies in another task on another CPU.
958 		 */
959 		if (progress >= 32) {
960 			progress = 0;
961 			if (need_resched() ||
962 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
963 				break;
964 		}
965 		if (pte_none(*src_pte)) {
966 			progress++;
967 			continue;
968 		}
969 		if (unlikely(!pte_present(*src_pte))) {
970 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
971 							dst_pte, src_pte,
972 							src_vma, addr, rss);
973 			if (entry.val)
974 				break;
975 			progress += 8;
976 			continue;
977 		}
978 		/* copy_present_pte() will clear `*prealloc' if consumed */
979 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
980 				       addr, rss, &prealloc);
981 		/*
982 		 * If we need a pre-allocated page for this pte, drop the
983 		 * locks, allocate, and try again.
984 		 */
985 		if (unlikely(ret == -EAGAIN))
986 			break;
987 		if (unlikely(prealloc)) {
988 			/*
989 			 * pre-alloc page cannot be reused by next time so as
990 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
991 			 * will allocate page according to address).  This
992 			 * could only happen if one pinned pte changed.
993 			 */
994 			put_page(prealloc);
995 			prealloc = NULL;
996 		}
997 		progress += 8;
998 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
999 
1000 	arch_leave_lazy_mmu_mode();
1001 	spin_unlock(src_ptl);
1002 	pte_unmap(orig_src_pte);
1003 	add_mm_rss_vec(dst_mm, rss);
1004 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1005 	cond_resched();
1006 
1007 	if (entry.val) {
1008 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1009 			ret = -ENOMEM;
1010 			goto out;
1011 		}
1012 		entry.val = 0;
1013 	} else if (ret) {
1014 		WARN_ON_ONCE(ret != -EAGAIN);
1015 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1016 		if (!prealloc)
1017 			return -ENOMEM;
1018 		/* We've captured and resolved the error. Reset, try again. */
1019 		ret = 0;
1020 	}
1021 	if (addr != end)
1022 		goto again;
1023 out:
1024 	if (unlikely(prealloc))
1025 		put_page(prealloc);
1026 	return ret;
1027 }
1028 
1029 static inline int
1030 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1031 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1032 	       unsigned long end)
1033 {
1034 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1035 	struct mm_struct *src_mm = src_vma->vm_mm;
1036 	pmd_t *src_pmd, *dst_pmd;
1037 	unsigned long next;
1038 
1039 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040 	if (!dst_pmd)
1041 		return -ENOMEM;
1042 	src_pmd = pmd_offset(src_pud, addr);
1043 	do {
1044 		next = pmd_addr_end(addr, end);
1045 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046 			|| pmd_devmap(*src_pmd)) {
1047 			int err;
1048 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1049 			err = copy_huge_pmd(dst_mm, src_mm,
1050 					    dst_pmd, src_pmd, addr, src_vma);
1051 			if (err == -ENOMEM)
1052 				return -ENOMEM;
1053 			if (!err)
1054 				continue;
1055 			/* fall through */
1056 		}
1057 		if (pmd_none_or_clear_bad(src_pmd))
1058 			continue;
1059 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1060 				   addr, next))
1061 			return -ENOMEM;
1062 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063 	return 0;
1064 }
1065 
1066 static inline int
1067 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1068 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1069 	       unsigned long end)
1070 {
1071 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1072 	struct mm_struct *src_mm = src_vma->vm_mm;
1073 	pud_t *src_pud, *dst_pud;
1074 	unsigned long next;
1075 
1076 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1077 	if (!dst_pud)
1078 		return -ENOMEM;
1079 	src_pud = pud_offset(src_p4d, addr);
1080 	do {
1081 		next = pud_addr_end(addr, end);
1082 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1083 			int err;
1084 
1085 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1086 			err = copy_huge_pud(dst_mm, src_mm,
1087 					    dst_pud, src_pud, addr, src_vma);
1088 			if (err == -ENOMEM)
1089 				return -ENOMEM;
1090 			if (!err)
1091 				continue;
1092 			/* fall through */
1093 		}
1094 		if (pud_none_or_clear_bad(src_pud))
1095 			continue;
1096 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1097 				   addr, next))
1098 			return -ENOMEM;
1099 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1100 	return 0;
1101 }
1102 
1103 static inline int
1104 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1105 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1106 	       unsigned long end)
1107 {
1108 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1109 	p4d_t *src_p4d, *dst_p4d;
1110 	unsigned long next;
1111 
1112 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1113 	if (!dst_p4d)
1114 		return -ENOMEM;
1115 	src_p4d = p4d_offset(src_pgd, addr);
1116 	do {
1117 		next = p4d_addr_end(addr, end);
1118 		if (p4d_none_or_clear_bad(src_p4d))
1119 			continue;
1120 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1121 				   addr, next))
1122 			return -ENOMEM;
1123 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1124 	return 0;
1125 }
1126 
1127 int
1128 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1129 {
1130 	pgd_t *src_pgd, *dst_pgd;
1131 	unsigned long next;
1132 	unsigned long addr = src_vma->vm_start;
1133 	unsigned long end = src_vma->vm_end;
1134 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1135 	struct mm_struct *src_mm = src_vma->vm_mm;
1136 	struct mmu_notifier_range range;
1137 	bool is_cow;
1138 	int ret;
1139 
1140 	/*
1141 	 * Don't copy ptes where a page fault will fill them correctly.
1142 	 * Fork becomes much lighter when there are big shared or private
1143 	 * readonly mappings. The tradeoff is that copy_page_range is more
1144 	 * efficient than faulting.
1145 	 */
1146 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1147 	    !src_vma->anon_vma)
1148 		return 0;
1149 
1150 	if (is_vm_hugetlb_page(src_vma))
1151 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1152 
1153 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1154 		/*
1155 		 * We do not free on error cases below as remove_vma
1156 		 * gets called on error from higher level routine
1157 		 */
1158 		ret = track_pfn_copy(src_vma);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 
1163 	/*
1164 	 * We need to invalidate the secondary MMU mappings only when
1165 	 * there could be a permission downgrade on the ptes of the
1166 	 * parent mm. And a permission downgrade will only happen if
1167 	 * is_cow_mapping() returns true.
1168 	 */
1169 	is_cow = is_cow_mapping(src_vma->vm_flags);
1170 
1171 	if (is_cow) {
1172 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1173 					0, src_vma, src_mm, addr, end);
1174 		mmu_notifier_invalidate_range_start(&range);
1175 	}
1176 
1177 	ret = 0;
1178 	dst_pgd = pgd_offset(dst_mm, addr);
1179 	src_pgd = pgd_offset(src_mm, addr);
1180 	do {
1181 		next = pgd_addr_end(addr, end);
1182 		if (pgd_none_or_clear_bad(src_pgd))
1183 			continue;
1184 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1185 					    addr, next))) {
1186 			ret = -ENOMEM;
1187 			break;
1188 		}
1189 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1190 
1191 	if (is_cow)
1192 		mmu_notifier_invalidate_range_end(&range);
1193 	return ret;
1194 }
1195 
1196 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1197 				struct vm_area_struct *vma, pmd_t *pmd,
1198 				unsigned long addr, unsigned long end,
1199 				struct zap_details *details)
1200 {
1201 	struct mm_struct *mm = tlb->mm;
1202 	int force_flush = 0;
1203 	int rss[NR_MM_COUNTERS];
1204 	spinlock_t *ptl;
1205 	pte_t *start_pte;
1206 	pte_t *pte;
1207 	swp_entry_t entry;
1208 
1209 	tlb_change_page_size(tlb, PAGE_SIZE);
1210 again:
1211 	init_rss_vec(rss);
1212 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1213 	pte = start_pte;
1214 	flush_tlb_batched_pending(mm);
1215 	arch_enter_lazy_mmu_mode();
1216 	do {
1217 		pte_t ptent = *pte;
1218 		if (pte_none(ptent))
1219 			continue;
1220 
1221 		if (need_resched())
1222 			break;
1223 
1224 		if (pte_present(ptent)) {
1225 			struct page *page;
1226 
1227 			page = vm_normal_page(vma, addr, ptent);
1228 			if (unlikely(details) && page) {
1229 				/*
1230 				 * unmap_shared_mapping_pages() wants to
1231 				 * invalidate cache without truncating:
1232 				 * unmap shared but keep private pages.
1233 				 */
1234 				if (details->check_mapping &&
1235 				    details->check_mapping != page_rmapping(page))
1236 					continue;
1237 			}
1238 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1239 							tlb->fullmm);
1240 			tlb_remove_tlb_entry(tlb, pte, addr);
1241 			if (unlikely(!page))
1242 				continue;
1243 
1244 			if (!PageAnon(page)) {
1245 				if (pte_dirty(ptent)) {
1246 					force_flush = 1;
1247 					set_page_dirty(page);
1248 				}
1249 				if (pte_young(ptent) &&
1250 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1251 					mark_page_accessed(page);
1252 			}
1253 			rss[mm_counter(page)]--;
1254 			page_remove_rmap(page, false);
1255 			if (unlikely(page_mapcount(page) < 0))
1256 				print_bad_pte(vma, addr, ptent, page);
1257 			if (unlikely(__tlb_remove_page(tlb, page))) {
1258 				force_flush = 1;
1259 				addr += PAGE_SIZE;
1260 				break;
1261 			}
1262 			continue;
1263 		}
1264 
1265 		entry = pte_to_swp_entry(ptent);
1266 		if (is_device_private_entry(entry)) {
1267 			struct page *page = device_private_entry_to_page(entry);
1268 
1269 			if (unlikely(details && details->check_mapping)) {
1270 				/*
1271 				 * unmap_shared_mapping_pages() wants to
1272 				 * invalidate cache without truncating:
1273 				 * unmap shared but keep private pages.
1274 				 */
1275 				if (details->check_mapping !=
1276 				    page_rmapping(page))
1277 					continue;
1278 			}
1279 
1280 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1281 			rss[mm_counter(page)]--;
1282 			page_remove_rmap(page, false);
1283 			put_page(page);
1284 			continue;
1285 		}
1286 
1287 		/* If details->check_mapping, we leave swap entries. */
1288 		if (unlikely(details))
1289 			continue;
1290 
1291 		if (!non_swap_entry(entry))
1292 			rss[MM_SWAPENTS]--;
1293 		else if (is_migration_entry(entry)) {
1294 			struct page *page;
1295 
1296 			page = migration_entry_to_page(entry);
1297 			rss[mm_counter(page)]--;
1298 		}
1299 		if (unlikely(!free_swap_and_cache(entry)))
1300 			print_bad_pte(vma, addr, ptent, NULL);
1301 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1302 	} while (pte++, addr += PAGE_SIZE, addr != end);
1303 
1304 	add_mm_rss_vec(mm, rss);
1305 	arch_leave_lazy_mmu_mode();
1306 
1307 	/* Do the actual TLB flush before dropping ptl */
1308 	if (force_flush)
1309 		tlb_flush_mmu_tlbonly(tlb);
1310 	pte_unmap_unlock(start_pte, ptl);
1311 
1312 	/*
1313 	 * If we forced a TLB flush (either due to running out of
1314 	 * batch buffers or because we needed to flush dirty TLB
1315 	 * entries before releasing the ptl), free the batched
1316 	 * memory too. Restart if we didn't do everything.
1317 	 */
1318 	if (force_flush) {
1319 		force_flush = 0;
1320 		tlb_flush_mmu(tlb);
1321 	}
1322 
1323 	if (addr != end) {
1324 		cond_resched();
1325 		goto again;
1326 	}
1327 
1328 	return addr;
1329 }
1330 
1331 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1332 				struct vm_area_struct *vma, pud_t *pud,
1333 				unsigned long addr, unsigned long end,
1334 				struct zap_details *details)
1335 {
1336 	pmd_t *pmd;
1337 	unsigned long next;
1338 
1339 	pmd = pmd_offset(pud, addr);
1340 	do {
1341 		next = pmd_addr_end(addr, end);
1342 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1343 			if (next - addr != HPAGE_PMD_SIZE)
1344 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1345 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1346 				goto next;
1347 			/* fall through */
1348 		}
1349 		/*
1350 		 * Here there can be other concurrent MADV_DONTNEED or
1351 		 * trans huge page faults running, and if the pmd is
1352 		 * none or trans huge it can change under us. This is
1353 		 * because MADV_DONTNEED holds the mmap_lock in read
1354 		 * mode.
1355 		 */
1356 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1357 			goto next;
1358 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1359 next:
1360 		cond_resched();
1361 	} while (pmd++, addr = next, addr != end);
1362 
1363 	return addr;
1364 }
1365 
1366 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1367 				struct vm_area_struct *vma, p4d_t *p4d,
1368 				unsigned long addr, unsigned long end,
1369 				struct zap_details *details)
1370 {
1371 	pud_t *pud;
1372 	unsigned long next;
1373 
1374 	pud = pud_offset(p4d, addr);
1375 	do {
1376 		next = pud_addr_end(addr, end);
1377 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1378 			if (next - addr != HPAGE_PUD_SIZE) {
1379 				mmap_assert_locked(tlb->mm);
1380 				split_huge_pud(vma, pud, addr);
1381 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1382 				goto next;
1383 			/* fall through */
1384 		}
1385 		if (pud_none_or_clear_bad(pud))
1386 			continue;
1387 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1388 next:
1389 		cond_resched();
1390 	} while (pud++, addr = next, addr != end);
1391 
1392 	return addr;
1393 }
1394 
1395 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1396 				struct vm_area_struct *vma, pgd_t *pgd,
1397 				unsigned long addr, unsigned long end,
1398 				struct zap_details *details)
1399 {
1400 	p4d_t *p4d;
1401 	unsigned long next;
1402 
1403 	p4d = p4d_offset(pgd, addr);
1404 	do {
1405 		next = p4d_addr_end(addr, end);
1406 		if (p4d_none_or_clear_bad(p4d))
1407 			continue;
1408 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1409 	} while (p4d++, addr = next, addr != end);
1410 
1411 	return addr;
1412 }
1413 
1414 void unmap_page_range(struct mmu_gather *tlb,
1415 			     struct vm_area_struct *vma,
1416 			     unsigned long addr, unsigned long end,
1417 			     struct zap_details *details)
1418 {
1419 	pgd_t *pgd;
1420 	unsigned long next;
1421 
1422 	BUG_ON(addr >= end);
1423 	tlb_start_vma(tlb, vma);
1424 	pgd = pgd_offset(vma->vm_mm, addr);
1425 	do {
1426 		next = pgd_addr_end(addr, end);
1427 		if (pgd_none_or_clear_bad(pgd))
1428 			continue;
1429 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1430 	} while (pgd++, addr = next, addr != end);
1431 	tlb_end_vma(tlb, vma);
1432 }
1433 
1434 
1435 static void unmap_single_vma(struct mmu_gather *tlb,
1436 		struct vm_area_struct *vma, unsigned long start_addr,
1437 		unsigned long end_addr,
1438 		struct zap_details *details)
1439 {
1440 	unsigned long start = max(vma->vm_start, start_addr);
1441 	unsigned long end;
1442 
1443 	if (start >= vma->vm_end)
1444 		return;
1445 	end = min(vma->vm_end, end_addr);
1446 	if (end <= vma->vm_start)
1447 		return;
1448 
1449 	if (vma->vm_file)
1450 		uprobe_munmap(vma, start, end);
1451 
1452 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1453 		untrack_pfn(vma, 0, 0);
1454 
1455 	if (start != end) {
1456 		if (unlikely(is_vm_hugetlb_page(vma))) {
1457 			/*
1458 			 * It is undesirable to test vma->vm_file as it
1459 			 * should be non-null for valid hugetlb area.
1460 			 * However, vm_file will be NULL in the error
1461 			 * cleanup path of mmap_region. When
1462 			 * hugetlbfs ->mmap method fails,
1463 			 * mmap_region() nullifies vma->vm_file
1464 			 * before calling this function to clean up.
1465 			 * Since no pte has actually been setup, it is
1466 			 * safe to do nothing in this case.
1467 			 */
1468 			if (vma->vm_file) {
1469 				i_mmap_lock_write(vma->vm_file->f_mapping);
1470 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1471 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1472 			}
1473 		} else
1474 			unmap_page_range(tlb, vma, start, end, details);
1475 	}
1476 }
1477 
1478 /**
1479  * unmap_vmas - unmap a range of memory covered by a list of vma's
1480  * @tlb: address of the caller's struct mmu_gather
1481  * @vma: the starting vma
1482  * @start_addr: virtual address at which to start unmapping
1483  * @end_addr: virtual address at which to end unmapping
1484  *
1485  * Unmap all pages in the vma list.
1486  *
1487  * Only addresses between `start' and `end' will be unmapped.
1488  *
1489  * The VMA list must be sorted in ascending virtual address order.
1490  *
1491  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1492  * range after unmap_vmas() returns.  So the only responsibility here is to
1493  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1494  * drops the lock and schedules.
1495  */
1496 void unmap_vmas(struct mmu_gather *tlb,
1497 		struct vm_area_struct *vma, unsigned long start_addr,
1498 		unsigned long end_addr)
1499 {
1500 	struct mmu_notifier_range range;
1501 
1502 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1503 				start_addr, end_addr);
1504 	mmu_notifier_invalidate_range_start(&range);
1505 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1506 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1507 	mmu_notifier_invalidate_range_end(&range);
1508 }
1509 
1510 /**
1511  * zap_page_range - remove user pages in a given range
1512  * @vma: vm_area_struct holding the applicable pages
1513  * @start: starting address of pages to zap
1514  * @size: number of bytes to zap
1515  *
1516  * Caller must protect the VMA list
1517  */
1518 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1519 		unsigned long size)
1520 {
1521 	struct mmu_notifier_range range;
1522 	struct mmu_gather tlb;
1523 
1524 	lru_add_drain();
1525 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1526 				start, start + size);
1527 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1528 	update_hiwater_rss(vma->vm_mm);
1529 	mmu_notifier_invalidate_range_start(&range);
1530 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1531 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1532 	mmu_notifier_invalidate_range_end(&range);
1533 	tlb_finish_mmu(&tlb, start, range.end);
1534 }
1535 
1536 /**
1537  * zap_page_range_single - remove user pages in a given range
1538  * @vma: vm_area_struct holding the applicable pages
1539  * @address: starting address of pages to zap
1540  * @size: number of bytes to zap
1541  * @details: details of shared cache invalidation
1542  *
1543  * The range must fit into one VMA.
1544  */
1545 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1546 		unsigned long size, struct zap_details *details)
1547 {
1548 	struct mmu_notifier_range range;
1549 	struct mmu_gather tlb;
1550 
1551 	lru_add_drain();
1552 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1553 				address, address + size);
1554 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1555 	update_hiwater_rss(vma->vm_mm);
1556 	mmu_notifier_invalidate_range_start(&range);
1557 	unmap_single_vma(&tlb, vma, address, range.end, details);
1558 	mmu_notifier_invalidate_range_end(&range);
1559 	tlb_finish_mmu(&tlb, address, range.end);
1560 }
1561 
1562 /**
1563  * zap_vma_ptes - remove ptes mapping the vma
1564  * @vma: vm_area_struct holding ptes to be zapped
1565  * @address: starting address of pages to zap
1566  * @size: number of bytes to zap
1567  *
1568  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1569  *
1570  * The entire address range must be fully contained within the vma.
1571  *
1572  */
1573 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1574 		unsigned long size)
1575 {
1576 	if (address < vma->vm_start || address + size > vma->vm_end ||
1577 	    		!(vma->vm_flags & VM_PFNMAP))
1578 		return;
1579 
1580 	zap_page_range_single(vma, address, size, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1583 
1584 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1585 {
1586 	pgd_t *pgd;
1587 	p4d_t *p4d;
1588 	pud_t *pud;
1589 	pmd_t *pmd;
1590 
1591 	pgd = pgd_offset(mm, addr);
1592 	p4d = p4d_alloc(mm, pgd, addr);
1593 	if (!p4d)
1594 		return NULL;
1595 	pud = pud_alloc(mm, p4d, addr);
1596 	if (!pud)
1597 		return NULL;
1598 	pmd = pmd_alloc(mm, pud, addr);
1599 	if (!pmd)
1600 		return NULL;
1601 
1602 	VM_BUG_ON(pmd_trans_huge(*pmd));
1603 	return pmd;
1604 }
1605 
1606 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1607 			spinlock_t **ptl)
1608 {
1609 	pmd_t *pmd = walk_to_pmd(mm, addr);
1610 
1611 	if (!pmd)
1612 		return NULL;
1613 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1614 }
1615 
1616 static int validate_page_before_insert(struct page *page)
1617 {
1618 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1619 		return -EINVAL;
1620 	flush_dcache_page(page);
1621 	return 0;
1622 }
1623 
1624 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1625 			unsigned long addr, struct page *page, pgprot_t prot)
1626 {
1627 	if (!pte_none(*pte))
1628 		return -EBUSY;
1629 	/* Ok, finally just insert the thing.. */
1630 	get_page(page);
1631 	inc_mm_counter_fast(mm, mm_counter_file(page));
1632 	page_add_file_rmap(page, false);
1633 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1634 	return 0;
1635 }
1636 
1637 /*
1638  * This is the old fallback for page remapping.
1639  *
1640  * For historical reasons, it only allows reserved pages. Only
1641  * old drivers should use this, and they needed to mark their
1642  * pages reserved for the old functions anyway.
1643  */
1644 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1645 			struct page *page, pgprot_t prot)
1646 {
1647 	struct mm_struct *mm = vma->vm_mm;
1648 	int retval;
1649 	pte_t *pte;
1650 	spinlock_t *ptl;
1651 
1652 	retval = validate_page_before_insert(page);
1653 	if (retval)
1654 		goto out;
1655 	retval = -ENOMEM;
1656 	pte = get_locked_pte(mm, addr, &ptl);
1657 	if (!pte)
1658 		goto out;
1659 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1660 	pte_unmap_unlock(pte, ptl);
1661 out:
1662 	return retval;
1663 }
1664 
1665 #ifdef pte_index
1666 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1667 			unsigned long addr, struct page *page, pgprot_t prot)
1668 {
1669 	int err;
1670 
1671 	if (!page_count(page))
1672 		return -EINVAL;
1673 	err = validate_page_before_insert(page);
1674 	if (err)
1675 		return err;
1676 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1677 }
1678 
1679 /* insert_pages() amortizes the cost of spinlock operations
1680  * when inserting pages in a loop. Arch *must* define pte_index.
1681  */
1682 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1683 			struct page **pages, unsigned long *num, pgprot_t prot)
1684 {
1685 	pmd_t *pmd = NULL;
1686 	pte_t *start_pte, *pte;
1687 	spinlock_t *pte_lock;
1688 	struct mm_struct *const mm = vma->vm_mm;
1689 	unsigned long curr_page_idx = 0;
1690 	unsigned long remaining_pages_total = *num;
1691 	unsigned long pages_to_write_in_pmd;
1692 	int ret;
1693 more:
1694 	ret = -EFAULT;
1695 	pmd = walk_to_pmd(mm, addr);
1696 	if (!pmd)
1697 		goto out;
1698 
1699 	pages_to_write_in_pmd = min_t(unsigned long,
1700 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1701 
1702 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1703 	ret = -ENOMEM;
1704 	if (pte_alloc(mm, pmd))
1705 		goto out;
1706 
1707 	while (pages_to_write_in_pmd) {
1708 		int pte_idx = 0;
1709 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1710 
1711 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1712 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1713 			int err = insert_page_in_batch_locked(mm, pte,
1714 				addr, pages[curr_page_idx], prot);
1715 			if (unlikely(err)) {
1716 				pte_unmap_unlock(start_pte, pte_lock);
1717 				ret = err;
1718 				remaining_pages_total -= pte_idx;
1719 				goto out;
1720 			}
1721 			addr += PAGE_SIZE;
1722 			++curr_page_idx;
1723 		}
1724 		pte_unmap_unlock(start_pte, pte_lock);
1725 		pages_to_write_in_pmd -= batch_size;
1726 		remaining_pages_total -= batch_size;
1727 	}
1728 	if (remaining_pages_total)
1729 		goto more;
1730 	ret = 0;
1731 out:
1732 	*num = remaining_pages_total;
1733 	return ret;
1734 }
1735 #endif  /* ifdef pte_index */
1736 
1737 /**
1738  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1739  * @vma: user vma to map to
1740  * @addr: target start user address of these pages
1741  * @pages: source kernel pages
1742  * @num: in: number of pages to map. out: number of pages that were *not*
1743  * mapped. (0 means all pages were successfully mapped).
1744  *
1745  * Preferred over vm_insert_page() when inserting multiple pages.
1746  *
1747  * In case of error, we may have mapped a subset of the provided
1748  * pages. It is the caller's responsibility to account for this case.
1749  *
1750  * The same restrictions apply as in vm_insert_page().
1751  */
1752 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1753 			struct page **pages, unsigned long *num)
1754 {
1755 #ifdef pte_index
1756 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1757 
1758 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1759 		return -EFAULT;
1760 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1761 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1762 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1763 		vma->vm_flags |= VM_MIXEDMAP;
1764 	}
1765 	/* Defer page refcount checking till we're about to map that page. */
1766 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1767 #else
1768 	unsigned long idx = 0, pgcount = *num;
1769 	int err = -EINVAL;
1770 
1771 	for (; idx < pgcount; ++idx) {
1772 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1773 		if (err)
1774 			break;
1775 	}
1776 	*num = pgcount - idx;
1777 	return err;
1778 #endif  /* ifdef pte_index */
1779 }
1780 EXPORT_SYMBOL(vm_insert_pages);
1781 
1782 /**
1783  * vm_insert_page - insert single page into user vma
1784  * @vma: user vma to map to
1785  * @addr: target user address of this page
1786  * @page: source kernel page
1787  *
1788  * This allows drivers to insert individual pages they've allocated
1789  * into a user vma.
1790  *
1791  * The page has to be a nice clean _individual_ kernel allocation.
1792  * If you allocate a compound page, you need to have marked it as
1793  * such (__GFP_COMP), or manually just split the page up yourself
1794  * (see split_page()).
1795  *
1796  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1797  * took an arbitrary page protection parameter. This doesn't allow
1798  * that. Your vma protection will have to be set up correctly, which
1799  * means that if you want a shared writable mapping, you'd better
1800  * ask for a shared writable mapping!
1801  *
1802  * The page does not need to be reserved.
1803  *
1804  * Usually this function is called from f_op->mmap() handler
1805  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1806  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1807  * function from other places, for example from page-fault handler.
1808  *
1809  * Return: %0 on success, negative error code otherwise.
1810  */
1811 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1812 			struct page *page)
1813 {
1814 	if (addr < vma->vm_start || addr >= vma->vm_end)
1815 		return -EFAULT;
1816 	if (!page_count(page))
1817 		return -EINVAL;
1818 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1819 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1820 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1821 		vma->vm_flags |= VM_MIXEDMAP;
1822 	}
1823 	return insert_page(vma, addr, page, vma->vm_page_prot);
1824 }
1825 EXPORT_SYMBOL(vm_insert_page);
1826 
1827 /*
1828  * __vm_map_pages - maps range of kernel pages into user vma
1829  * @vma: user vma to map to
1830  * @pages: pointer to array of source kernel pages
1831  * @num: number of pages in page array
1832  * @offset: user's requested vm_pgoff
1833  *
1834  * This allows drivers to map range of kernel pages into a user vma.
1835  *
1836  * Return: 0 on success and error code otherwise.
1837  */
1838 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1839 				unsigned long num, unsigned long offset)
1840 {
1841 	unsigned long count = vma_pages(vma);
1842 	unsigned long uaddr = vma->vm_start;
1843 	int ret, i;
1844 
1845 	/* Fail if the user requested offset is beyond the end of the object */
1846 	if (offset >= num)
1847 		return -ENXIO;
1848 
1849 	/* Fail if the user requested size exceeds available object size */
1850 	if (count > num - offset)
1851 		return -ENXIO;
1852 
1853 	for (i = 0; i < count; i++) {
1854 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1855 		if (ret < 0)
1856 			return ret;
1857 		uaddr += PAGE_SIZE;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 /**
1864  * vm_map_pages - maps range of kernel pages starts with non zero offset
1865  * @vma: user vma to map to
1866  * @pages: pointer to array of source kernel pages
1867  * @num: number of pages in page array
1868  *
1869  * Maps an object consisting of @num pages, catering for the user's
1870  * requested vm_pgoff
1871  *
1872  * If we fail to insert any page into the vma, the function will return
1873  * immediately leaving any previously inserted pages present.  Callers
1874  * from the mmap handler may immediately return the error as their caller
1875  * will destroy the vma, removing any successfully inserted pages. Other
1876  * callers should make their own arrangements for calling unmap_region().
1877  *
1878  * Context: Process context. Called by mmap handlers.
1879  * Return: 0 on success and error code otherwise.
1880  */
1881 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1882 				unsigned long num)
1883 {
1884 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1885 }
1886 EXPORT_SYMBOL(vm_map_pages);
1887 
1888 /**
1889  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1890  * @vma: user vma to map to
1891  * @pages: pointer to array of source kernel pages
1892  * @num: number of pages in page array
1893  *
1894  * Similar to vm_map_pages(), except that it explicitly sets the offset
1895  * to 0. This function is intended for the drivers that did not consider
1896  * vm_pgoff.
1897  *
1898  * Context: Process context. Called by mmap handlers.
1899  * Return: 0 on success and error code otherwise.
1900  */
1901 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1902 				unsigned long num)
1903 {
1904 	return __vm_map_pages(vma, pages, num, 0);
1905 }
1906 EXPORT_SYMBOL(vm_map_pages_zero);
1907 
1908 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1909 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1910 {
1911 	struct mm_struct *mm = vma->vm_mm;
1912 	pte_t *pte, entry;
1913 	spinlock_t *ptl;
1914 
1915 	pte = get_locked_pte(mm, addr, &ptl);
1916 	if (!pte)
1917 		return VM_FAULT_OOM;
1918 	if (!pte_none(*pte)) {
1919 		if (mkwrite) {
1920 			/*
1921 			 * For read faults on private mappings the PFN passed
1922 			 * in may not match the PFN we have mapped if the
1923 			 * mapped PFN is a writeable COW page.  In the mkwrite
1924 			 * case we are creating a writable PTE for a shared
1925 			 * mapping and we expect the PFNs to match. If they
1926 			 * don't match, we are likely racing with block
1927 			 * allocation and mapping invalidation so just skip the
1928 			 * update.
1929 			 */
1930 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1931 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1932 				goto out_unlock;
1933 			}
1934 			entry = pte_mkyoung(*pte);
1935 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1936 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1937 				update_mmu_cache(vma, addr, pte);
1938 		}
1939 		goto out_unlock;
1940 	}
1941 
1942 	/* Ok, finally just insert the thing.. */
1943 	if (pfn_t_devmap(pfn))
1944 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1945 	else
1946 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1947 
1948 	if (mkwrite) {
1949 		entry = pte_mkyoung(entry);
1950 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1951 	}
1952 
1953 	set_pte_at(mm, addr, pte, entry);
1954 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1955 
1956 out_unlock:
1957 	pte_unmap_unlock(pte, ptl);
1958 	return VM_FAULT_NOPAGE;
1959 }
1960 
1961 /**
1962  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1963  * @vma: user vma to map to
1964  * @addr: target user address of this page
1965  * @pfn: source kernel pfn
1966  * @pgprot: pgprot flags for the inserted page
1967  *
1968  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1969  * to override pgprot on a per-page basis.
1970  *
1971  * This only makes sense for IO mappings, and it makes no sense for
1972  * COW mappings.  In general, using multiple vmas is preferable;
1973  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1974  * impractical.
1975  *
1976  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1977  * a value of @pgprot different from that of @vma->vm_page_prot.
1978  *
1979  * Context: Process context.  May allocate using %GFP_KERNEL.
1980  * Return: vm_fault_t value.
1981  */
1982 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1983 			unsigned long pfn, pgprot_t pgprot)
1984 {
1985 	/*
1986 	 * Technically, architectures with pte_special can avoid all these
1987 	 * restrictions (same for remap_pfn_range).  However we would like
1988 	 * consistency in testing and feature parity among all, so we should
1989 	 * try to keep these invariants in place for everybody.
1990 	 */
1991 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1992 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1993 						(VM_PFNMAP|VM_MIXEDMAP));
1994 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1995 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1996 
1997 	if (addr < vma->vm_start || addr >= vma->vm_end)
1998 		return VM_FAULT_SIGBUS;
1999 
2000 	if (!pfn_modify_allowed(pfn, pgprot))
2001 		return VM_FAULT_SIGBUS;
2002 
2003 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2004 
2005 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2006 			false);
2007 }
2008 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2009 
2010 /**
2011  * vmf_insert_pfn - insert single pfn into user vma
2012  * @vma: user vma to map to
2013  * @addr: target user address of this page
2014  * @pfn: source kernel pfn
2015  *
2016  * Similar to vm_insert_page, this allows drivers to insert individual pages
2017  * they've allocated into a user vma. Same comments apply.
2018  *
2019  * This function should only be called from a vm_ops->fault handler, and
2020  * in that case the handler should return the result of this function.
2021  *
2022  * vma cannot be a COW mapping.
2023  *
2024  * As this is called only for pages that do not currently exist, we
2025  * do not need to flush old virtual caches or the TLB.
2026  *
2027  * Context: Process context.  May allocate using %GFP_KERNEL.
2028  * Return: vm_fault_t value.
2029  */
2030 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2031 			unsigned long pfn)
2032 {
2033 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2034 }
2035 EXPORT_SYMBOL(vmf_insert_pfn);
2036 
2037 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2038 {
2039 	/* these checks mirror the abort conditions in vm_normal_page */
2040 	if (vma->vm_flags & VM_MIXEDMAP)
2041 		return true;
2042 	if (pfn_t_devmap(pfn))
2043 		return true;
2044 	if (pfn_t_special(pfn))
2045 		return true;
2046 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2047 		return true;
2048 	return false;
2049 }
2050 
2051 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2052 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2053 		bool mkwrite)
2054 {
2055 	int err;
2056 
2057 	BUG_ON(!vm_mixed_ok(vma, pfn));
2058 
2059 	if (addr < vma->vm_start || addr >= vma->vm_end)
2060 		return VM_FAULT_SIGBUS;
2061 
2062 	track_pfn_insert(vma, &pgprot, pfn);
2063 
2064 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2065 		return VM_FAULT_SIGBUS;
2066 
2067 	/*
2068 	 * If we don't have pte special, then we have to use the pfn_valid()
2069 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2070 	 * refcount the page if pfn_valid is true (hence insert_page rather
2071 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2072 	 * without pte special, it would there be refcounted as a normal page.
2073 	 */
2074 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2075 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2076 		struct page *page;
2077 
2078 		/*
2079 		 * At this point we are committed to insert_page()
2080 		 * regardless of whether the caller specified flags that
2081 		 * result in pfn_t_has_page() == false.
2082 		 */
2083 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2084 		err = insert_page(vma, addr, page, pgprot);
2085 	} else {
2086 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2087 	}
2088 
2089 	if (err == -ENOMEM)
2090 		return VM_FAULT_OOM;
2091 	if (err < 0 && err != -EBUSY)
2092 		return VM_FAULT_SIGBUS;
2093 
2094 	return VM_FAULT_NOPAGE;
2095 }
2096 
2097 /**
2098  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2099  * @vma: user vma to map to
2100  * @addr: target user address of this page
2101  * @pfn: source kernel pfn
2102  * @pgprot: pgprot flags for the inserted page
2103  *
2104  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2105  * to override pgprot on a per-page basis.
2106  *
2107  * Typically this function should be used by drivers to set caching- and
2108  * encryption bits different than those of @vma->vm_page_prot, because
2109  * the caching- or encryption mode may not be known at mmap() time.
2110  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2111  * to set caching and encryption bits for those vmas (except for COW pages).
2112  * This is ensured by core vm only modifying these page table entries using
2113  * functions that don't touch caching- or encryption bits, using pte_modify()
2114  * if needed. (See for example mprotect()).
2115  * Also when new page-table entries are created, this is only done using the
2116  * fault() callback, and never using the value of vma->vm_page_prot,
2117  * except for page-table entries that point to anonymous pages as the result
2118  * of COW.
2119  *
2120  * Context: Process context.  May allocate using %GFP_KERNEL.
2121  * Return: vm_fault_t value.
2122  */
2123 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2124 				 pfn_t pfn, pgprot_t pgprot)
2125 {
2126 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2127 }
2128 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2129 
2130 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2131 		pfn_t pfn)
2132 {
2133 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2134 }
2135 EXPORT_SYMBOL(vmf_insert_mixed);
2136 
2137 /*
2138  *  If the insertion of PTE failed because someone else already added a
2139  *  different entry in the mean time, we treat that as success as we assume
2140  *  the same entry was actually inserted.
2141  */
2142 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2143 		unsigned long addr, pfn_t pfn)
2144 {
2145 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2146 }
2147 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2148 
2149 /*
2150  * maps a range of physical memory into the requested pages. the old
2151  * mappings are removed. any references to nonexistent pages results
2152  * in null mappings (currently treated as "copy-on-access")
2153  */
2154 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2155 			unsigned long addr, unsigned long end,
2156 			unsigned long pfn, pgprot_t prot)
2157 {
2158 	pte_t *pte;
2159 	spinlock_t *ptl;
2160 	int err = 0;
2161 
2162 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2163 	if (!pte)
2164 		return -ENOMEM;
2165 	arch_enter_lazy_mmu_mode();
2166 	do {
2167 		BUG_ON(!pte_none(*pte));
2168 		if (!pfn_modify_allowed(pfn, prot)) {
2169 			err = -EACCES;
2170 			break;
2171 		}
2172 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2173 		pfn++;
2174 	} while (pte++, addr += PAGE_SIZE, addr != end);
2175 	arch_leave_lazy_mmu_mode();
2176 	pte_unmap_unlock(pte - 1, ptl);
2177 	return err;
2178 }
2179 
2180 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2181 			unsigned long addr, unsigned long end,
2182 			unsigned long pfn, pgprot_t prot)
2183 {
2184 	pmd_t *pmd;
2185 	unsigned long next;
2186 	int err;
2187 
2188 	pfn -= addr >> PAGE_SHIFT;
2189 	pmd = pmd_alloc(mm, pud, addr);
2190 	if (!pmd)
2191 		return -ENOMEM;
2192 	VM_BUG_ON(pmd_trans_huge(*pmd));
2193 	do {
2194 		next = pmd_addr_end(addr, end);
2195 		err = remap_pte_range(mm, pmd, addr, next,
2196 				pfn + (addr >> PAGE_SHIFT), prot);
2197 		if (err)
2198 			return err;
2199 	} while (pmd++, addr = next, addr != end);
2200 	return 0;
2201 }
2202 
2203 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2204 			unsigned long addr, unsigned long end,
2205 			unsigned long pfn, pgprot_t prot)
2206 {
2207 	pud_t *pud;
2208 	unsigned long next;
2209 	int err;
2210 
2211 	pfn -= addr >> PAGE_SHIFT;
2212 	pud = pud_alloc(mm, p4d, addr);
2213 	if (!pud)
2214 		return -ENOMEM;
2215 	do {
2216 		next = pud_addr_end(addr, end);
2217 		err = remap_pmd_range(mm, pud, addr, next,
2218 				pfn + (addr >> PAGE_SHIFT), prot);
2219 		if (err)
2220 			return err;
2221 	} while (pud++, addr = next, addr != end);
2222 	return 0;
2223 }
2224 
2225 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2226 			unsigned long addr, unsigned long end,
2227 			unsigned long pfn, pgprot_t prot)
2228 {
2229 	p4d_t *p4d;
2230 	unsigned long next;
2231 	int err;
2232 
2233 	pfn -= addr >> PAGE_SHIFT;
2234 	p4d = p4d_alloc(mm, pgd, addr);
2235 	if (!p4d)
2236 		return -ENOMEM;
2237 	do {
2238 		next = p4d_addr_end(addr, end);
2239 		err = remap_pud_range(mm, p4d, addr, next,
2240 				pfn + (addr >> PAGE_SHIFT), prot);
2241 		if (err)
2242 			return err;
2243 	} while (p4d++, addr = next, addr != end);
2244 	return 0;
2245 }
2246 
2247 /**
2248  * remap_pfn_range - remap kernel memory to userspace
2249  * @vma: user vma to map to
2250  * @addr: target page aligned user address to start at
2251  * @pfn: page frame number of kernel physical memory address
2252  * @size: size of mapping area
2253  * @prot: page protection flags for this mapping
2254  *
2255  * Note: this is only safe if the mm semaphore is held when called.
2256  *
2257  * Return: %0 on success, negative error code otherwise.
2258  */
2259 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2260 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2261 {
2262 	pgd_t *pgd;
2263 	unsigned long next;
2264 	unsigned long end = addr + PAGE_ALIGN(size);
2265 	struct mm_struct *mm = vma->vm_mm;
2266 	unsigned long remap_pfn = pfn;
2267 	int err;
2268 
2269 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2270 		return -EINVAL;
2271 
2272 	/*
2273 	 * Physically remapped pages are special. Tell the
2274 	 * rest of the world about it:
2275 	 *   VM_IO tells people not to look at these pages
2276 	 *	(accesses can have side effects).
2277 	 *   VM_PFNMAP tells the core MM that the base pages are just
2278 	 *	raw PFN mappings, and do not have a "struct page" associated
2279 	 *	with them.
2280 	 *   VM_DONTEXPAND
2281 	 *      Disable vma merging and expanding with mremap().
2282 	 *   VM_DONTDUMP
2283 	 *      Omit vma from core dump, even when VM_IO turned off.
2284 	 *
2285 	 * There's a horrible special case to handle copy-on-write
2286 	 * behaviour that some programs depend on. We mark the "original"
2287 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2288 	 * See vm_normal_page() for details.
2289 	 */
2290 	if (is_cow_mapping(vma->vm_flags)) {
2291 		if (addr != vma->vm_start || end != vma->vm_end)
2292 			return -EINVAL;
2293 		vma->vm_pgoff = pfn;
2294 	}
2295 
2296 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2297 	if (err)
2298 		return -EINVAL;
2299 
2300 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2301 
2302 	BUG_ON(addr >= end);
2303 	pfn -= addr >> PAGE_SHIFT;
2304 	pgd = pgd_offset(mm, addr);
2305 	flush_cache_range(vma, addr, end);
2306 	do {
2307 		next = pgd_addr_end(addr, end);
2308 		err = remap_p4d_range(mm, pgd, addr, next,
2309 				pfn + (addr >> PAGE_SHIFT), prot);
2310 		if (err)
2311 			break;
2312 	} while (pgd++, addr = next, addr != end);
2313 
2314 	if (err)
2315 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2316 
2317 	return err;
2318 }
2319 EXPORT_SYMBOL(remap_pfn_range);
2320 
2321 /**
2322  * vm_iomap_memory - remap memory to userspace
2323  * @vma: user vma to map to
2324  * @start: start of the physical memory to be mapped
2325  * @len: size of area
2326  *
2327  * This is a simplified io_remap_pfn_range() for common driver use. The
2328  * driver just needs to give us the physical memory range to be mapped,
2329  * we'll figure out the rest from the vma information.
2330  *
2331  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2332  * whatever write-combining details or similar.
2333  *
2334  * Return: %0 on success, negative error code otherwise.
2335  */
2336 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2337 {
2338 	unsigned long vm_len, pfn, pages;
2339 
2340 	/* Check that the physical memory area passed in looks valid */
2341 	if (start + len < start)
2342 		return -EINVAL;
2343 	/*
2344 	 * You *really* shouldn't map things that aren't page-aligned,
2345 	 * but we've historically allowed it because IO memory might
2346 	 * just have smaller alignment.
2347 	 */
2348 	len += start & ~PAGE_MASK;
2349 	pfn = start >> PAGE_SHIFT;
2350 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2351 	if (pfn + pages < pfn)
2352 		return -EINVAL;
2353 
2354 	/* We start the mapping 'vm_pgoff' pages into the area */
2355 	if (vma->vm_pgoff > pages)
2356 		return -EINVAL;
2357 	pfn += vma->vm_pgoff;
2358 	pages -= vma->vm_pgoff;
2359 
2360 	/* Can we fit all of the mapping? */
2361 	vm_len = vma->vm_end - vma->vm_start;
2362 	if (vm_len >> PAGE_SHIFT > pages)
2363 		return -EINVAL;
2364 
2365 	/* Ok, let it rip */
2366 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2367 }
2368 EXPORT_SYMBOL(vm_iomap_memory);
2369 
2370 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2371 				     unsigned long addr, unsigned long end,
2372 				     pte_fn_t fn, void *data, bool create,
2373 				     pgtbl_mod_mask *mask)
2374 {
2375 	pte_t *pte;
2376 	int err = 0;
2377 	spinlock_t *ptl;
2378 
2379 	if (create) {
2380 		pte = (mm == &init_mm) ?
2381 			pte_alloc_kernel_track(pmd, addr, mask) :
2382 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2383 		if (!pte)
2384 			return -ENOMEM;
2385 	} else {
2386 		pte = (mm == &init_mm) ?
2387 			pte_offset_kernel(pmd, addr) :
2388 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2389 	}
2390 
2391 	BUG_ON(pmd_huge(*pmd));
2392 
2393 	arch_enter_lazy_mmu_mode();
2394 
2395 	do {
2396 		if (create || !pte_none(*pte)) {
2397 			err = fn(pte++, addr, data);
2398 			if (err)
2399 				break;
2400 		}
2401 	} while (addr += PAGE_SIZE, addr != end);
2402 	*mask |= PGTBL_PTE_MODIFIED;
2403 
2404 	arch_leave_lazy_mmu_mode();
2405 
2406 	if (mm != &init_mm)
2407 		pte_unmap_unlock(pte-1, ptl);
2408 	return err;
2409 }
2410 
2411 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2412 				     unsigned long addr, unsigned long end,
2413 				     pte_fn_t fn, void *data, bool create,
2414 				     pgtbl_mod_mask *mask)
2415 {
2416 	pmd_t *pmd;
2417 	unsigned long next;
2418 	int err = 0;
2419 
2420 	BUG_ON(pud_huge(*pud));
2421 
2422 	if (create) {
2423 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2424 		if (!pmd)
2425 			return -ENOMEM;
2426 	} else {
2427 		pmd = pmd_offset(pud, addr);
2428 	}
2429 	do {
2430 		next = pmd_addr_end(addr, end);
2431 		if (create || !pmd_none_or_clear_bad(pmd)) {
2432 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2433 						 create, mask);
2434 			if (err)
2435 				break;
2436 		}
2437 	} while (pmd++, addr = next, addr != end);
2438 	return err;
2439 }
2440 
2441 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2442 				     unsigned long addr, unsigned long end,
2443 				     pte_fn_t fn, void *data, bool create,
2444 				     pgtbl_mod_mask *mask)
2445 {
2446 	pud_t *pud;
2447 	unsigned long next;
2448 	int err = 0;
2449 
2450 	if (create) {
2451 		pud = pud_alloc_track(mm, p4d, addr, mask);
2452 		if (!pud)
2453 			return -ENOMEM;
2454 	} else {
2455 		pud = pud_offset(p4d, addr);
2456 	}
2457 	do {
2458 		next = pud_addr_end(addr, end);
2459 		if (create || !pud_none_or_clear_bad(pud)) {
2460 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2461 						 create, mask);
2462 			if (err)
2463 				break;
2464 		}
2465 	} while (pud++, addr = next, addr != end);
2466 	return err;
2467 }
2468 
2469 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2470 				     unsigned long addr, unsigned long end,
2471 				     pte_fn_t fn, void *data, bool create,
2472 				     pgtbl_mod_mask *mask)
2473 {
2474 	p4d_t *p4d;
2475 	unsigned long next;
2476 	int err = 0;
2477 
2478 	if (create) {
2479 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2480 		if (!p4d)
2481 			return -ENOMEM;
2482 	} else {
2483 		p4d = p4d_offset(pgd, addr);
2484 	}
2485 	do {
2486 		next = p4d_addr_end(addr, end);
2487 		if (create || !p4d_none_or_clear_bad(p4d)) {
2488 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2489 						 create, mask);
2490 			if (err)
2491 				break;
2492 		}
2493 	} while (p4d++, addr = next, addr != end);
2494 	return err;
2495 }
2496 
2497 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2498 				 unsigned long size, pte_fn_t fn,
2499 				 void *data, bool create)
2500 {
2501 	pgd_t *pgd;
2502 	unsigned long start = addr, next;
2503 	unsigned long end = addr + size;
2504 	pgtbl_mod_mask mask = 0;
2505 	int err = 0;
2506 
2507 	if (WARN_ON(addr >= end))
2508 		return -EINVAL;
2509 
2510 	pgd = pgd_offset(mm, addr);
2511 	do {
2512 		next = pgd_addr_end(addr, end);
2513 		if (!create && pgd_none_or_clear_bad(pgd))
2514 			continue;
2515 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2516 		if (err)
2517 			break;
2518 	} while (pgd++, addr = next, addr != end);
2519 
2520 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2521 		arch_sync_kernel_mappings(start, start + size);
2522 
2523 	return err;
2524 }
2525 
2526 /*
2527  * Scan a region of virtual memory, filling in page tables as necessary
2528  * and calling a provided function on each leaf page table.
2529  */
2530 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2531 			unsigned long size, pte_fn_t fn, void *data)
2532 {
2533 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2534 }
2535 EXPORT_SYMBOL_GPL(apply_to_page_range);
2536 
2537 /*
2538  * Scan a region of virtual memory, calling a provided function on
2539  * each leaf page table where it exists.
2540  *
2541  * Unlike apply_to_page_range, this does _not_ fill in page tables
2542  * where they are absent.
2543  */
2544 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2545 				 unsigned long size, pte_fn_t fn, void *data)
2546 {
2547 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2548 }
2549 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2550 
2551 /*
2552  * handle_pte_fault chooses page fault handler according to an entry which was
2553  * read non-atomically.  Before making any commitment, on those architectures
2554  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2555  * parts, do_swap_page must check under lock before unmapping the pte and
2556  * proceeding (but do_wp_page is only called after already making such a check;
2557  * and do_anonymous_page can safely check later on).
2558  */
2559 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2560 				pte_t *page_table, pte_t orig_pte)
2561 {
2562 	int same = 1;
2563 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2564 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2565 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2566 		spin_lock(ptl);
2567 		same = pte_same(*page_table, orig_pte);
2568 		spin_unlock(ptl);
2569 	}
2570 #endif
2571 	pte_unmap(page_table);
2572 	return same;
2573 }
2574 
2575 static inline bool cow_user_page(struct page *dst, struct page *src,
2576 				 struct vm_fault *vmf)
2577 {
2578 	bool ret;
2579 	void *kaddr;
2580 	void __user *uaddr;
2581 	bool locked = false;
2582 	struct vm_area_struct *vma = vmf->vma;
2583 	struct mm_struct *mm = vma->vm_mm;
2584 	unsigned long addr = vmf->address;
2585 
2586 	if (likely(src)) {
2587 		copy_user_highpage(dst, src, addr, vma);
2588 		return true;
2589 	}
2590 
2591 	/*
2592 	 * If the source page was a PFN mapping, we don't have
2593 	 * a "struct page" for it. We do a best-effort copy by
2594 	 * just copying from the original user address. If that
2595 	 * fails, we just zero-fill it. Live with it.
2596 	 */
2597 	kaddr = kmap_atomic(dst);
2598 	uaddr = (void __user *)(addr & PAGE_MASK);
2599 
2600 	/*
2601 	 * On architectures with software "accessed" bits, we would
2602 	 * take a double page fault, so mark it accessed here.
2603 	 */
2604 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2605 		pte_t entry;
2606 
2607 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2608 		locked = true;
2609 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2610 			/*
2611 			 * Other thread has already handled the fault
2612 			 * and update local tlb only
2613 			 */
2614 			update_mmu_tlb(vma, addr, vmf->pte);
2615 			ret = false;
2616 			goto pte_unlock;
2617 		}
2618 
2619 		entry = pte_mkyoung(vmf->orig_pte);
2620 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2621 			update_mmu_cache(vma, addr, vmf->pte);
2622 	}
2623 
2624 	/*
2625 	 * This really shouldn't fail, because the page is there
2626 	 * in the page tables. But it might just be unreadable,
2627 	 * in which case we just give up and fill the result with
2628 	 * zeroes.
2629 	 */
2630 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2631 		if (locked)
2632 			goto warn;
2633 
2634 		/* Re-validate under PTL if the page is still mapped */
2635 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2636 		locked = true;
2637 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2638 			/* The PTE changed under us, update local tlb */
2639 			update_mmu_tlb(vma, addr, vmf->pte);
2640 			ret = false;
2641 			goto pte_unlock;
2642 		}
2643 
2644 		/*
2645 		 * The same page can be mapped back since last copy attempt.
2646 		 * Try to copy again under PTL.
2647 		 */
2648 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2649 			/*
2650 			 * Give a warn in case there can be some obscure
2651 			 * use-case
2652 			 */
2653 warn:
2654 			WARN_ON_ONCE(1);
2655 			clear_page(kaddr);
2656 		}
2657 	}
2658 
2659 	ret = true;
2660 
2661 pte_unlock:
2662 	if (locked)
2663 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2664 	kunmap_atomic(kaddr);
2665 	flush_dcache_page(dst);
2666 
2667 	return ret;
2668 }
2669 
2670 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2671 {
2672 	struct file *vm_file = vma->vm_file;
2673 
2674 	if (vm_file)
2675 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2676 
2677 	/*
2678 	 * Special mappings (e.g. VDSO) do not have any file so fake
2679 	 * a default GFP_KERNEL for them.
2680 	 */
2681 	return GFP_KERNEL;
2682 }
2683 
2684 /*
2685  * Notify the address space that the page is about to become writable so that
2686  * it can prohibit this or wait for the page to get into an appropriate state.
2687  *
2688  * We do this without the lock held, so that it can sleep if it needs to.
2689  */
2690 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2691 {
2692 	vm_fault_t ret;
2693 	struct page *page = vmf->page;
2694 	unsigned int old_flags = vmf->flags;
2695 
2696 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2697 
2698 	if (vmf->vma->vm_file &&
2699 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2700 		return VM_FAULT_SIGBUS;
2701 
2702 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2703 	/* Restore original flags so that caller is not surprised */
2704 	vmf->flags = old_flags;
2705 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2706 		return ret;
2707 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2708 		lock_page(page);
2709 		if (!page->mapping) {
2710 			unlock_page(page);
2711 			return 0; /* retry */
2712 		}
2713 		ret |= VM_FAULT_LOCKED;
2714 	} else
2715 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2716 	return ret;
2717 }
2718 
2719 /*
2720  * Handle dirtying of a page in shared file mapping on a write fault.
2721  *
2722  * The function expects the page to be locked and unlocks it.
2723  */
2724 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2725 {
2726 	struct vm_area_struct *vma = vmf->vma;
2727 	struct address_space *mapping;
2728 	struct page *page = vmf->page;
2729 	bool dirtied;
2730 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2731 
2732 	dirtied = set_page_dirty(page);
2733 	VM_BUG_ON_PAGE(PageAnon(page), page);
2734 	/*
2735 	 * Take a local copy of the address_space - page.mapping may be zeroed
2736 	 * by truncate after unlock_page().   The address_space itself remains
2737 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2738 	 * release semantics to prevent the compiler from undoing this copying.
2739 	 */
2740 	mapping = page_rmapping(page);
2741 	unlock_page(page);
2742 
2743 	if (!page_mkwrite)
2744 		file_update_time(vma->vm_file);
2745 
2746 	/*
2747 	 * Throttle page dirtying rate down to writeback speed.
2748 	 *
2749 	 * mapping may be NULL here because some device drivers do not
2750 	 * set page.mapping but still dirty their pages
2751 	 *
2752 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2753 	 * is pinning the mapping, as per above.
2754 	 */
2755 	if ((dirtied || page_mkwrite) && mapping) {
2756 		struct file *fpin;
2757 
2758 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2759 		balance_dirty_pages_ratelimited(mapping);
2760 		if (fpin) {
2761 			fput(fpin);
2762 			return VM_FAULT_RETRY;
2763 		}
2764 	}
2765 
2766 	return 0;
2767 }
2768 
2769 /*
2770  * Handle write page faults for pages that can be reused in the current vma
2771  *
2772  * This can happen either due to the mapping being with the VM_SHARED flag,
2773  * or due to us being the last reference standing to the page. In either
2774  * case, all we need to do here is to mark the page as writable and update
2775  * any related book-keeping.
2776  */
2777 static inline void wp_page_reuse(struct vm_fault *vmf)
2778 	__releases(vmf->ptl)
2779 {
2780 	struct vm_area_struct *vma = vmf->vma;
2781 	struct page *page = vmf->page;
2782 	pte_t entry;
2783 	/*
2784 	 * Clear the pages cpupid information as the existing
2785 	 * information potentially belongs to a now completely
2786 	 * unrelated process.
2787 	 */
2788 	if (page)
2789 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2790 
2791 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2792 	entry = pte_mkyoung(vmf->orig_pte);
2793 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2794 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2795 		update_mmu_cache(vma, vmf->address, vmf->pte);
2796 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2797 	count_vm_event(PGREUSE);
2798 }
2799 
2800 /*
2801  * Handle the case of a page which we actually need to copy to a new page.
2802  *
2803  * Called with mmap_lock locked and the old page referenced, but
2804  * without the ptl held.
2805  *
2806  * High level logic flow:
2807  *
2808  * - Allocate a page, copy the content of the old page to the new one.
2809  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2810  * - Take the PTL. If the pte changed, bail out and release the allocated page
2811  * - If the pte is still the way we remember it, update the page table and all
2812  *   relevant references. This includes dropping the reference the page-table
2813  *   held to the old page, as well as updating the rmap.
2814  * - In any case, unlock the PTL and drop the reference we took to the old page.
2815  */
2816 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2817 {
2818 	struct vm_area_struct *vma = vmf->vma;
2819 	struct mm_struct *mm = vma->vm_mm;
2820 	struct page *old_page = vmf->page;
2821 	struct page *new_page = NULL;
2822 	pte_t entry;
2823 	int page_copied = 0;
2824 	struct mmu_notifier_range range;
2825 
2826 	if (unlikely(anon_vma_prepare(vma)))
2827 		goto oom;
2828 
2829 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2830 		new_page = alloc_zeroed_user_highpage_movable(vma,
2831 							      vmf->address);
2832 		if (!new_page)
2833 			goto oom;
2834 	} else {
2835 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2836 				vmf->address);
2837 		if (!new_page)
2838 			goto oom;
2839 
2840 		if (!cow_user_page(new_page, old_page, vmf)) {
2841 			/*
2842 			 * COW failed, if the fault was solved by other,
2843 			 * it's fine. If not, userspace would re-fault on
2844 			 * the same address and we will handle the fault
2845 			 * from the second attempt.
2846 			 */
2847 			put_page(new_page);
2848 			if (old_page)
2849 				put_page(old_page);
2850 			return 0;
2851 		}
2852 	}
2853 
2854 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2855 		goto oom_free_new;
2856 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2857 
2858 	__SetPageUptodate(new_page);
2859 
2860 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2861 				vmf->address & PAGE_MASK,
2862 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2863 	mmu_notifier_invalidate_range_start(&range);
2864 
2865 	/*
2866 	 * Re-check the pte - we dropped the lock
2867 	 */
2868 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2869 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2870 		if (old_page) {
2871 			if (!PageAnon(old_page)) {
2872 				dec_mm_counter_fast(mm,
2873 						mm_counter_file(old_page));
2874 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2875 			}
2876 		} else {
2877 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2878 		}
2879 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2880 		entry = mk_pte(new_page, vma->vm_page_prot);
2881 		entry = pte_sw_mkyoung(entry);
2882 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2883 		/*
2884 		 * Clear the pte entry and flush it first, before updating the
2885 		 * pte with the new entry. This will avoid a race condition
2886 		 * seen in the presence of one thread doing SMC and another
2887 		 * thread doing COW.
2888 		 */
2889 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2890 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2891 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2892 		/*
2893 		 * We call the notify macro here because, when using secondary
2894 		 * mmu page tables (such as kvm shadow page tables), we want the
2895 		 * new page to be mapped directly into the secondary page table.
2896 		 */
2897 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2898 		update_mmu_cache(vma, vmf->address, vmf->pte);
2899 		if (old_page) {
2900 			/*
2901 			 * Only after switching the pte to the new page may
2902 			 * we remove the mapcount here. Otherwise another
2903 			 * process may come and find the rmap count decremented
2904 			 * before the pte is switched to the new page, and
2905 			 * "reuse" the old page writing into it while our pte
2906 			 * here still points into it and can be read by other
2907 			 * threads.
2908 			 *
2909 			 * The critical issue is to order this
2910 			 * page_remove_rmap with the ptp_clear_flush above.
2911 			 * Those stores are ordered by (if nothing else,)
2912 			 * the barrier present in the atomic_add_negative
2913 			 * in page_remove_rmap.
2914 			 *
2915 			 * Then the TLB flush in ptep_clear_flush ensures that
2916 			 * no process can access the old page before the
2917 			 * decremented mapcount is visible. And the old page
2918 			 * cannot be reused until after the decremented
2919 			 * mapcount is visible. So transitively, TLBs to
2920 			 * old page will be flushed before it can be reused.
2921 			 */
2922 			page_remove_rmap(old_page, false);
2923 		}
2924 
2925 		/* Free the old page.. */
2926 		new_page = old_page;
2927 		page_copied = 1;
2928 	} else {
2929 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2930 	}
2931 
2932 	if (new_page)
2933 		put_page(new_page);
2934 
2935 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2936 	/*
2937 	 * No need to double call mmu_notifier->invalidate_range() callback as
2938 	 * the above ptep_clear_flush_notify() did already call it.
2939 	 */
2940 	mmu_notifier_invalidate_range_only_end(&range);
2941 	if (old_page) {
2942 		/*
2943 		 * Don't let another task, with possibly unlocked vma,
2944 		 * keep the mlocked page.
2945 		 */
2946 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2947 			lock_page(old_page);	/* LRU manipulation */
2948 			if (PageMlocked(old_page))
2949 				munlock_vma_page(old_page);
2950 			unlock_page(old_page);
2951 		}
2952 		put_page(old_page);
2953 	}
2954 	return page_copied ? VM_FAULT_WRITE : 0;
2955 oom_free_new:
2956 	put_page(new_page);
2957 oom:
2958 	if (old_page)
2959 		put_page(old_page);
2960 	return VM_FAULT_OOM;
2961 }
2962 
2963 /**
2964  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2965  *			  writeable once the page is prepared
2966  *
2967  * @vmf: structure describing the fault
2968  *
2969  * This function handles all that is needed to finish a write page fault in a
2970  * shared mapping due to PTE being read-only once the mapped page is prepared.
2971  * It handles locking of PTE and modifying it.
2972  *
2973  * The function expects the page to be locked or other protection against
2974  * concurrent faults / writeback (such as DAX radix tree locks).
2975  *
2976  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2977  * we acquired PTE lock.
2978  */
2979 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2980 {
2981 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2982 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2983 				       &vmf->ptl);
2984 	/*
2985 	 * We might have raced with another page fault while we released the
2986 	 * pte_offset_map_lock.
2987 	 */
2988 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2989 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2990 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2991 		return VM_FAULT_NOPAGE;
2992 	}
2993 	wp_page_reuse(vmf);
2994 	return 0;
2995 }
2996 
2997 /*
2998  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2999  * mapping
3000  */
3001 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3002 {
3003 	struct vm_area_struct *vma = vmf->vma;
3004 
3005 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3006 		vm_fault_t ret;
3007 
3008 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3009 		vmf->flags |= FAULT_FLAG_MKWRITE;
3010 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3011 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3012 			return ret;
3013 		return finish_mkwrite_fault(vmf);
3014 	}
3015 	wp_page_reuse(vmf);
3016 	return VM_FAULT_WRITE;
3017 }
3018 
3019 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3020 	__releases(vmf->ptl)
3021 {
3022 	struct vm_area_struct *vma = vmf->vma;
3023 	vm_fault_t ret = VM_FAULT_WRITE;
3024 
3025 	get_page(vmf->page);
3026 
3027 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3028 		vm_fault_t tmp;
3029 
3030 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3031 		tmp = do_page_mkwrite(vmf);
3032 		if (unlikely(!tmp || (tmp &
3033 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3034 			put_page(vmf->page);
3035 			return tmp;
3036 		}
3037 		tmp = finish_mkwrite_fault(vmf);
3038 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3039 			unlock_page(vmf->page);
3040 			put_page(vmf->page);
3041 			return tmp;
3042 		}
3043 	} else {
3044 		wp_page_reuse(vmf);
3045 		lock_page(vmf->page);
3046 	}
3047 	ret |= fault_dirty_shared_page(vmf);
3048 	put_page(vmf->page);
3049 
3050 	return ret;
3051 }
3052 
3053 /*
3054  * This routine handles present pages, when users try to write
3055  * to a shared page. It is done by copying the page to a new address
3056  * and decrementing the shared-page counter for the old page.
3057  *
3058  * Note that this routine assumes that the protection checks have been
3059  * done by the caller (the low-level page fault routine in most cases).
3060  * Thus we can safely just mark it writable once we've done any necessary
3061  * COW.
3062  *
3063  * We also mark the page dirty at this point even though the page will
3064  * change only once the write actually happens. This avoids a few races,
3065  * and potentially makes it more efficient.
3066  *
3067  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3068  * but allow concurrent faults), with pte both mapped and locked.
3069  * We return with mmap_lock still held, but pte unmapped and unlocked.
3070  */
3071 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3072 	__releases(vmf->ptl)
3073 {
3074 	struct vm_area_struct *vma = vmf->vma;
3075 
3076 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3077 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3078 		return handle_userfault(vmf, VM_UFFD_WP);
3079 	}
3080 
3081 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3082 	if (!vmf->page) {
3083 		/*
3084 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3085 		 * VM_PFNMAP VMA.
3086 		 *
3087 		 * We should not cow pages in a shared writeable mapping.
3088 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3089 		 */
3090 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3091 				     (VM_WRITE|VM_SHARED))
3092 			return wp_pfn_shared(vmf);
3093 
3094 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3095 		return wp_page_copy(vmf);
3096 	}
3097 
3098 	/*
3099 	 * Take out anonymous pages first, anonymous shared vmas are
3100 	 * not dirty accountable.
3101 	 */
3102 	if (PageAnon(vmf->page)) {
3103 		struct page *page = vmf->page;
3104 
3105 		/* PageKsm() doesn't necessarily raise the page refcount */
3106 		if (PageKsm(page) || page_count(page) != 1)
3107 			goto copy;
3108 		if (!trylock_page(page))
3109 			goto copy;
3110 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3111 			unlock_page(page);
3112 			goto copy;
3113 		}
3114 		/*
3115 		 * Ok, we've got the only map reference, and the only
3116 		 * page count reference, and the page is locked,
3117 		 * it's dark out, and we're wearing sunglasses. Hit it.
3118 		 */
3119 		unlock_page(page);
3120 		wp_page_reuse(vmf);
3121 		return VM_FAULT_WRITE;
3122 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3123 					(VM_WRITE|VM_SHARED))) {
3124 		return wp_page_shared(vmf);
3125 	}
3126 copy:
3127 	/*
3128 	 * Ok, we need to copy. Oh, well..
3129 	 */
3130 	get_page(vmf->page);
3131 
3132 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3133 	return wp_page_copy(vmf);
3134 }
3135 
3136 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3137 		unsigned long start_addr, unsigned long end_addr,
3138 		struct zap_details *details)
3139 {
3140 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3141 }
3142 
3143 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3144 					    struct zap_details *details)
3145 {
3146 	struct vm_area_struct *vma;
3147 	pgoff_t vba, vea, zba, zea;
3148 
3149 	vma_interval_tree_foreach(vma, root,
3150 			details->first_index, details->last_index) {
3151 
3152 		vba = vma->vm_pgoff;
3153 		vea = vba + vma_pages(vma) - 1;
3154 		zba = details->first_index;
3155 		if (zba < vba)
3156 			zba = vba;
3157 		zea = details->last_index;
3158 		if (zea > vea)
3159 			zea = vea;
3160 
3161 		unmap_mapping_range_vma(vma,
3162 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3163 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3164 				details);
3165 	}
3166 }
3167 
3168 /**
3169  * unmap_mapping_pages() - Unmap pages from processes.
3170  * @mapping: The address space containing pages to be unmapped.
3171  * @start: Index of first page to be unmapped.
3172  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3173  * @even_cows: Whether to unmap even private COWed pages.
3174  *
3175  * Unmap the pages in this address space from any userspace process which
3176  * has them mmaped.  Generally, you want to remove COWed pages as well when
3177  * a file is being truncated, but not when invalidating pages from the page
3178  * cache.
3179  */
3180 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3181 		pgoff_t nr, bool even_cows)
3182 {
3183 	struct zap_details details = { };
3184 
3185 	details.check_mapping = even_cows ? NULL : mapping;
3186 	details.first_index = start;
3187 	details.last_index = start + nr - 1;
3188 	if (details.last_index < details.first_index)
3189 		details.last_index = ULONG_MAX;
3190 
3191 	i_mmap_lock_write(mapping);
3192 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3193 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3194 	i_mmap_unlock_write(mapping);
3195 }
3196 
3197 /**
3198  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3199  * address_space corresponding to the specified byte range in the underlying
3200  * file.
3201  *
3202  * @mapping: the address space containing mmaps to be unmapped.
3203  * @holebegin: byte in first page to unmap, relative to the start of
3204  * the underlying file.  This will be rounded down to a PAGE_SIZE
3205  * boundary.  Note that this is different from truncate_pagecache(), which
3206  * must keep the partial page.  In contrast, we must get rid of
3207  * partial pages.
3208  * @holelen: size of prospective hole in bytes.  This will be rounded
3209  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3210  * end of the file.
3211  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3212  * but 0 when invalidating pagecache, don't throw away private data.
3213  */
3214 void unmap_mapping_range(struct address_space *mapping,
3215 		loff_t const holebegin, loff_t const holelen, int even_cows)
3216 {
3217 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3218 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3219 
3220 	/* Check for overflow. */
3221 	if (sizeof(holelen) > sizeof(hlen)) {
3222 		long long holeend =
3223 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3224 		if (holeend & ~(long long)ULONG_MAX)
3225 			hlen = ULONG_MAX - hba + 1;
3226 	}
3227 
3228 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3229 }
3230 EXPORT_SYMBOL(unmap_mapping_range);
3231 
3232 /*
3233  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3234  * but allow concurrent faults), and pte mapped but not yet locked.
3235  * We return with pte unmapped and unlocked.
3236  *
3237  * We return with the mmap_lock locked or unlocked in the same cases
3238  * as does filemap_fault().
3239  */
3240 vm_fault_t do_swap_page(struct vm_fault *vmf)
3241 {
3242 	struct vm_area_struct *vma = vmf->vma;
3243 	struct page *page = NULL, *swapcache;
3244 	swp_entry_t entry;
3245 	pte_t pte;
3246 	int locked;
3247 	int exclusive = 0;
3248 	vm_fault_t ret = 0;
3249 	void *shadow = NULL;
3250 
3251 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3252 		goto out;
3253 
3254 	entry = pte_to_swp_entry(vmf->orig_pte);
3255 	if (unlikely(non_swap_entry(entry))) {
3256 		if (is_migration_entry(entry)) {
3257 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3258 					     vmf->address);
3259 		} else if (is_device_private_entry(entry)) {
3260 			vmf->page = device_private_entry_to_page(entry);
3261 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3262 		} else if (is_hwpoison_entry(entry)) {
3263 			ret = VM_FAULT_HWPOISON;
3264 		} else {
3265 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3266 			ret = VM_FAULT_SIGBUS;
3267 		}
3268 		goto out;
3269 	}
3270 
3271 
3272 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3273 	page = lookup_swap_cache(entry, vma, vmf->address);
3274 	swapcache = page;
3275 
3276 	if (!page) {
3277 		struct swap_info_struct *si = swp_swap_info(entry);
3278 
3279 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3280 		    __swap_count(entry) == 1) {
3281 			/* skip swapcache */
3282 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3283 							vmf->address);
3284 			if (page) {
3285 				int err;
3286 
3287 				__SetPageLocked(page);
3288 				__SetPageSwapBacked(page);
3289 				set_page_private(page, entry.val);
3290 
3291 				/* Tell memcg to use swap ownership records */
3292 				SetPageSwapCache(page);
3293 				err = mem_cgroup_charge(page, vma->vm_mm,
3294 							GFP_KERNEL);
3295 				ClearPageSwapCache(page);
3296 				if (err) {
3297 					ret = VM_FAULT_OOM;
3298 					goto out_page;
3299 				}
3300 
3301 				shadow = get_shadow_from_swap_cache(entry);
3302 				if (shadow)
3303 					workingset_refault(page, shadow);
3304 
3305 				lru_cache_add(page);
3306 				swap_readpage(page, true);
3307 			}
3308 		} else {
3309 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3310 						vmf);
3311 			swapcache = page;
3312 		}
3313 
3314 		if (!page) {
3315 			/*
3316 			 * Back out if somebody else faulted in this pte
3317 			 * while we released the pte lock.
3318 			 */
3319 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3320 					vmf->address, &vmf->ptl);
3321 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3322 				ret = VM_FAULT_OOM;
3323 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3324 			goto unlock;
3325 		}
3326 
3327 		/* Had to read the page from swap area: Major fault */
3328 		ret = VM_FAULT_MAJOR;
3329 		count_vm_event(PGMAJFAULT);
3330 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3331 	} else if (PageHWPoison(page)) {
3332 		/*
3333 		 * hwpoisoned dirty swapcache pages are kept for killing
3334 		 * owner processes (which may be unknown at hwpoison time)
3335 		 */
3336 		ret = VM_FAULT_HWPOISON;
3337 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3338 		goto out_release;
3339 	}
3340 
3341 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3342 
3343 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3344 	if (!locked) {
3345 		ret |= VM_FAULT_RETRY;
3346 		goto out_release;
3347 	}
3348 
3349 	/*
3350 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3351 	 * release the swapcache from under us.  The page pin, and pte_same
3352 	 * test below, are not enough to exclude that.  Even if it is still
3353 	 * swapcache, we need to check that the page's swap has not changed.
3354 	 */
3355 	if (unlikely((!PageSwapCache(page) ||
3356 			page_private(page) != entry.val)) && swapcache)
3357 		goto out_page;
3358 
3359 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3360 	if (unlikely(!page)) {
3361 		ret = VM_FAULT_OOM;
3362 		page = swapcache;
3363 		goto out_page;
3364 	}
3365 
3366 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3367 
3368 	/*
3369 	 * Back out if somebody else already faulted in this pte.
3370 	 */
3371 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3372 			&vmf->ptl);
3373 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3374 		goto out_nomap;
3375 
3376 	if (unlikely(!PageUptodate(page))) {
3377 		ret = VM_FAULT_SIGBUS;
3378 		goto out_nomap;
3379 	}
3380 
3381 	/*
3382 	 * The page isn't present yet, go ahead with the fault.
3383 	 *
3384 	 * Be careful about the sequence of operations here.
3385 	 * To get its accounting right, reuse_swap_page() must be called
3386 	 * while the page is counted on swap but not yet in mapcount i.e.
3387 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3388 	 * must be called after the swap_free(), or it will never succeed.
3389 	 */
3390 
3391 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3392 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3393 	pte = mk_pte(page, vma->vm_page_prot);
3394 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3395 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3396 		vmf->flags &= ~FAULT_FLAG_WRITE;
3397 		ret |= VM_FAULT_WRITE;
3398 		exclusive = RMAP_EXCLUSIVE;
3399 	}
3400 	flush_icache_page(vma, page);
3401 	if (pte_swp_soft_dirty(vmf->orig_pte))
3402 		pte = pte_mksoft_dirty(pte);
3403 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3404 		pte = pte_mkuffd_wp(pte);
3405 		pte = pte_wrprotect(pte);
3406 	}
3407 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3408 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3409 	vmf->orig_pte = pte;
3410 
3411 	/* ksm created a completely new copy */
3412 	if (unlikely(page != swapcache && swapcache)) {
3413 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3414 		lru_cache_add_inactive_or_unevictable(page, vma);
3415 	} else {
3416 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3417 	}
3418 
3419 	swap_free(entry);
3420 	if (mem_cgroup_swap_full(page) ||
3421 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3422 		try_to_free_swap(page);
3423 	unlock_page(page);
3424 	if (page != swapcache && swapcache) {
3425 		/*
3426 		 * Hold the lock to avoid the swap entry to be reused
3427 		 * until we take the PT lock for the pte_same() check
3428 		 * (to avoid false positives from pte_same). For
3429 		 * further safety release the lock after the swap_free
3430 		 * so that the swap count won't change under a
3431 		 * parallel locked swapcache.
3432 		 */
3433 		unlock_page(swapcache);
3434 		put_page(swapcache);
3435 	}
3436 
3437 	if (vmf->flags & FAULT_FLAG_WRITE) {
3438 		ret |= do_wp_page(vmf);
3439 		if (ret & VM_FAULT_ERROR)
3440 			ret &= VM_FAULT_ERROR;
3441 		goto out;
3442 	}
3443 
3444 	/* No need to invalidate - it was non-present before */
3445 	update_mmu_cache(vma, vmf->address, vmf->pte);
3446 unlock:
3447 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 out:
3449 	return ret;
3450 out_nomap:
3451 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3452 out_page:
3453 	unlock_page(page);
3454 out_release:
3455 	put_page(page);
3456 	if (page != swapcache && swapcache) {
3457 		unlock_page(swapcache);
3458 		put_page(swapcache);
3459 	}
3460 	return ret;
3461 }
3462 
3463 /*
3464  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3465  * but allow concurrent faults), and pte mapped but not yet locked.
3466  * We return with mmap_lock still held, but pte unmapped and unlocked.
3467  */
3468 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3469 {
3470 	struct vm_area_struct *vma = vmf->vma;
3471 	struct page *page;
3472 	vm_fault_t ret = 0;
3473 	pte_t entry;
3474 
3475 	/* File mapping without ->vm_ops ? */
3476 	if (vma->vm_flags & VM_SHARED)
3477 		return VM_FAULT_SIGBUS;
3478 
3479 	/*
3480 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3481 	 * pte_offset_map() on pmds where a huge pmd might be created
3482 	 * from a different thread.
3483 	 *
3484 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3485 	 * parallel threads are excluded by other means.
3486 	 *
3487 	 * Here we only have mmap_read_lock(mm).
3488 	 */
3489 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3490 		return VM_FAULT_OOM;
3491 
3492 	/* See the comment in pte_alloc_one_map() */
3493 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3494 		return 0;
3495 
3496 	/* Use the zero-page for reads */
3497 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3498 			!mm_forbids_zeropage(vma->vm_mm)) {
3499 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3500 						vma->vm_page_prot));
3501 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3502 				vmf->address, &vmf->ptl);
3503 		if (!pte_none(*vmf->pte)) {
3504 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3505 			goto unlock;
3506 		}
3507 		ret = check_stable_address_space(vma->vm_mm);
3508 		if (ret)
3509 			goto unlock;
3510 		/* Deliver the page fault to userland, check inside PT lock */
3511 		if (userfaultfd_missing(vma)) {
3512 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 			return handle_userfault(vmf, VM_UFFD_MISSING);
3514 		}
3515 		goto setpte;
3516 	}
3517 
3518 	/* Allocate our own private page. */
3519 	if (unlikely(anon_vma_prepare(vma)))
3520 		goto oom;
3521 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3522 	if (!page)
3523 		goto oom;
3524 
3525 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3526 		goto oom_free_page;
3527 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3528 
3529 	/*
3530 	 * The memory barrier inside __SetPageUptodate makes sure that
3531 	 * preceding stores to the page contents become visible before
3532 	 * the set_pte_at() write.
3533 	 */
3534 	__SetPageUptodate(page);
3535 
3536 	entry = mk_pte(page, vma->vm_page_prot);
3537 	entry = pte_sw_mkyoung(entry);
3538 	if (vma->vm_flags & VM_WRITE)
3539 		entry = pte_mkwrite(pte_mkdirty(entry));
3540 
3541 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3542 			&vmf->ptl);
3543 	if (!pte_none(*vmf->pte)) {
3544 		update_mmu_cache(vma, vmf->address, vmf->pte);
3545 		goto release;
3546 	}
3547 
3548 	ret = check_stable_address_space(vma->vm_mm);
3549 	if (ret)
3550 		goto release;
3551 
3552 	/* Deliver the page fault to userland, check inside PT lock */
3553 	if (userfaultfd_missing(vma)) {
3554 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3555 		put_page(page);
3556 		return handle_userfault(vmf, VM_UFFD_MISSING);
3557 	}
3558 
3559 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3560 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3561 	lru_cache_add_inactive_or_unevictable(page, vma);
3562 setpte:
3563 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3564 
3565 	/* No need to invalidate - it was non-present before */
3566 	update_mmu_cache(vma, vmf->address, vmf->pte);
3567 unlock:
3568 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3569 	return ret;
3570 release:
3571 	put_page(page);
3572 	goto unlock;
3573 oom_free_page:
3574 	put_page(page);
3575 oom:
3576 	return VM_FAULT_OOM;
3577 }
3578 
3579 /*
3580  * The mmap_lock must have been held on entry, and may have been
3581  * released depending on flags and vma->vm_ops->fault() return value.
3582  * See filemap_fault() and __lock_page_retry().
3583  */
3584 static vm_fault_t __do_fault(struct vm_fault *vmf)
3585 {
3586 	struct vm_area_struct *vma = vmf->vma;
3587 	vm_fault_t ret;
3588 
3589 	/*
3590 	 * Preallocate pte before we take page_lock because this might lead to
3591 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3592 	 *				lock_page(A)
3593 	 *				SetPageWriteback(A)
3594 	 *				unlock_page(A)
3595 	 * lock_page(B)
3596 	 *				lock_page(B)
3597 	 * pte_alloc_one
3598 	 *   shrink_page_list
3599 	 *     wait_on_page_writeback(A)
3600 	 *				SetPageWriteback(B)
3601 	 *				unlock_page(B)
3602 	 *				# flush A, B to clear the writeback
3603 	 */
3604 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3605 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3606 		if (!vmf->prealloc_pte)
3607 			return VM_FAULT_OOM;
3608 		smp_wmb(); /* See comment in __pte_alloc() */
3609 	}
3610 
3611 	ret = vma->vm_ops->fault(vmf);
3612 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3613 			    VM_FAULT_DONE_COW)))
3614 		return ret;
3615 
3616 	if (unlikely(PageHWPoison(vmf->page))) {
3617 		if (ret & VM_FAULT_LOCKED)
3618 			unlock_page(vmf->page);
3619 		put_page(vmf->page);
3620 		vmf->page = NULL;
3621 		return VM_FAULT_HWPOISON;
3622 	}
3623 
3624 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3625 		lock_page(vmf->page);
3626 	else
3627 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3628 
3629 	return ret;
3630 }
3631 
3632 /*
3633  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3634  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3635  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3636  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3637  */
3638 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3639 {
3640 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3641 }
3642 
3643 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3644 {
3645 	struct vm_area_struct *vma = vmf->vma;
3646 
3647 	if (!pmd_none(*vmf->pmd))
3648 		goto map_pte;
3649 	if (vmf->prealloc_pte) {
3650 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3651 		if (unlikely(!pmd_none(*vmf->pmd))) {
3652 			spin_unlock(vmf->ptl);
3653 			goto map_pte;
3654 		}
3655 
3656 		mm_inc_nr_ptes(vma->vm_mm);
3657 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3658 		spin_unlock(vmf->ptl);
3659 		vmf->prealloc_pte = NULL;
3660 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3661 		return VM_FAULT_OOM;
3662 	}
3663 map_pte:
3664 	/*
3665 	 * If a huge pmd materialized under us just retry later.  Use
3666 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3667 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3668 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3669 	 * running immediately after a huge pmd fault in a different thread of
3670 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3671 	 * All we have to ensure is that it is a regular pmd that we can walk
3672 	 * with pte_offset_map() and we can do that through an atomic read in
3673 	 * C, which is what pmd_trans_unstable() provides.
3674 	 */
3675 	if (pmd_devmap_trans_unstable(vmf->pmd))
3676 		return VM_FAULT_NOPAGE;
3677 
3678 	/*
3679 	 * At this point we know that our vmf->pmd points to a page of ptes
3680 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3681 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3682 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3683 	 * be valid and we will re-check to make sure the vmf->pte isn't
3684 	 * pte_none() under vmf->ptl protection when we return to
3685 	 * alloc_set_pte().
3686 	 */
3687 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3688 			&vmf->ptl);
3689 	return 0;
3690 }
3691 
3692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3693 static void deposit_prealloc_pte(struct vm_fault *vmf)
3694 {
3695 	struct vm_area_struct *vma = vmf->vma;
3696 
3697 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3698 	/*
3699 	 * We are going to consume the prealloc table,
3700 	 * count that as nr_ptes.
3701 	 */
3702 	mm_inc_nr_ptes(vma->vm_mm);
3703 	vmf->prealloc_pte = NULL;
3704 }
3705 
3706 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3707 {
3708 	struct vm_area_struct *vma = vmf->vma;
3709 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3710 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3711 	pmd_t entry;
3712 	int i;
3713 	vm_fault_t ret;
3714 
3715 	if (!transhuge_vma_suitable(vma, haddr))
3716 		return VM_FAULT_FALLBACK;
3717 
3718 	ret = VM_FAULT_FALLBACK;
3719 	page = compound_head(page);
3720 
3721 	/*
3722 	 * Archs like ppc64 need additonal space to store information
3723 	 * related to pte entry. Use the preallocated table for that.
3724 	 */
3725 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3726 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3727 		if (!vmf->prealloc_pte)
3728 			return VM_FAULT_OOM;
3729 		smp_wmb(); /* See comment in __pte_alloc() */
3730 	}
3731 
3732 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3733 	if (unlikely(!pmd_none(*vmf->pmd)))
3734 		goto out;
3735 
3736 	for (i = 0; i < HPAGE_PMD_NR; i++)
3737 		flush_icache_page(vma, page + i);
3738 
3739 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3740 	if (write)
3741 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3742 
3743 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3744 	page_add_file_rmap(page, true);
3745 	/*
3746 	 * deposit and withdraw with pmd lock held
3747 	 */
3748 	if (arch_needs_pgtable_deposit())
3749 		deposit_prealloc_pte(vmf);
3750 
3751 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3752 
3753 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3754 
3755 	/* fault is handled */
3756 	ret = 0;
3757 	count_vm_event(THP_FILE_MAPPED);
3758 out:
3759 	spin_unlock(vmf->ptl);
3760 	return ret;
3761 }
3762 #else
3763 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3764 {
3765 	BUILD_BUG();
3766 	return 0;
3767 }
3768 #endif
3769 
3770 /**
3771  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3772  * mapping. If needed, the function allocates page table or use pre-allocated.
3773  *
3774  * @vmf: fault environment
3775  * @page: page to map
3776  *
3777  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3778  * return.
3779  *
3780  * Target users are page handler itself and implementations of
3781  * vm_ops->map_pages.
3782  *
3783  * Return: %0 on success, %VM_FAULT_ code in case of error.
3784  */
3785 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3786 {
3787 	struct vm_area_struct *vma = vmf->vma;
3788 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3789 	pte_t entry;
3790 	vm_fault_t ret;
3791 
3792 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3793 		ret = do_set_pmd(vmf, page);
3794 		if (ret != VM_FAULT_FALLBACK)
3795 			return ret;
3796 	}
3797 
3798 	if (!vmf->pte) {
3799 		ret = pte_alloc_one_map(vmf);
3800 		if (ret)
3801 			return ret;
3802 	}
3803 
3804 	/* Re-check under ptl */
3805 	if (unlikely(!pte_none(*vmf->pte))) {
3806 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3807 		return VM_FAULT_NOPAGE;
3808 	}
3809 
3810 	flush_icache_page(vma, page);
3811 	entry = mk_pte(page, vma->vm_page_prot);
3812 	entry = pte_sw_mkyoung(entry);
3813 	if (write)
3814 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3815 	/* copy-on-write page */
3816 	if (write && !(vma->vm_flags & VM_SHARED)) {
3817 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3818 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3819 		lru_cache_add_inactive_or_unevictable(page, vma);
3820 	} else {
3821 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3822 		page_add_file_rmap(page, false);
3823 	}
3824 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3825 
3826 	/* no need to invalidate: a not-present page won't be cached */
3827 	update_mmu_cache(vma, vmf->address, vmf->pte);
3828 
3829 	return 0;
3830 }
3831 
3832 
3833 /**
3834  * finish_fault - finish page fault once we have prepared the page to fault
3835  *
3836  * @vmf: structure describing the fault
3837  *
3838  * This function handles all that is needed to finish a page fault once the
3839  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3840  * given page, adds reverse page mapping, handles memcg charges and LRU
3841  * addition.
3842  *
3843  * The function expects the page to be locked and on success it consumes a
3844  * reference of a page being mapped (for the PTE which maps it).
3845  *
3846  * Return: %0 on success, %VM_FAULT_ code in case of error.
3847  */
3848 vm_fault_t finish_fault(struct vm_fault *vmf)
3849 {
3850 	struct page *page;
3851 	vm_fault_t ret = 0;
3852 
3853 	/* Did we COW the page? */
3854 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3855 	    !(vmf->vma->vm_flags & VM_SHARED))
3856 		page = vmf->cow_page;
3857 	else
3858 		page = vmf->page;
3859 
3860 	/*
3861 	 * check even for read faults because we might have lost our CoWed
3862 	 * page
3863 	 */
3864 	if (!(vmf->vma->vm_flags & VM_SHARED))
3865 		ret = check_stable_address_space(vmf->vma->vm_mm);
3866 	if (!ret)
3867 		ret = alloc_set_pte(vmf, page);
3868 	if (vmf->pte)
3869 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3870 	return ret;
3871 }
3872 
3873 static unsigned long fault_around_bytes __read_mostly =
3874 	rounddown_pow_of_two(65536);
3875 
3876 #ifdef CONFIG_DEBUG_FS
3877 static int fault_around_bytes_get(void *data, u64 *val)
3878 {
3879 	*val = fault_around_bytes;
3880 	return 0;
3881 }
3882 
3883 /*
3884  * fault_around_bytes must be rounded down to the nearest page order as it's
3885  * what do_fault_around() expects to see.
3886  */
3887 static int fault_around_bytes_set(void *data, u64 val)
3888 {
3889 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3890 		return -EINVAL;
3891 	if (val > PAGE_SIZE)
3892 		fault_around_bytes = rounddown_pow_of_two(val);
3893 	else
3894 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3895 	return 0;
3896 }
3897 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3898 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3899 
3900 static int __init fault_around_debugfs(void)
3901 {
3902 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3903 				   &fault_around_bytes_fops);
3904 	return 0;
3905 }
3906 late_initcall(fault_around_debugfs);
3907 #endif
3908 
3909 /*
3910  * do_fault_around() tries to map few pages around the fault address. The hope
3911  * is that the pages will be needed soon and this will lower the number of
3912  * faults to handle.
3913  *
3914  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3915  * not ready to be mapped: not up-to-date, locked, etc.
3916  *
3917  * This function is called with the page table lock taken. In the split ptlock
3918  * case the page table lock only protects only those entries which belong to
3919  * the page table corresponding to the fault address.
3920  *
3921  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3922  * only once.
3923  *
3924  * fault_around_bytes defines how many bytes we'll try to map.
3925  * do_fault_around() expects it to be set to a power of two less than or equal
3926  * to PTRS_PER_PTE.
3927  *
3928  * The virtual address of the area that we map is naturally aligned to
3929  * fault_around_bytes rounded down to the machine page size
3930  * (and therefore to page order).  This way it's easier to guarantee
3931  * that we don't cross page table boundaries.
3932  */
3933 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3934 {
3935 	unsigned long address = vmf->address, nr_pages, mask;
3936 	pgoff_t start_pgoff = vmf->pgoff;
3937 	pgoff_t end_pgoff;
3938 	int off;
3939 	vm_fault_t ret = 0;
3940 
3941 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3942 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3943 
3944 	vmf->address = max(address & mask, vmf->vma->vm_start);
3945 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3946 	start_pgoff -= off;
3947 
3948 	/*
3949 	 *  end_pgoff is either the end of the page table, the end of
3950 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3951 	 */
3952 	end_pgoff = start_pgoff -
3953 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3954 		PTRS_PER_PTE - 1;
3955 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3956 			start_pgoff + nr_pages - 1);
3957 
3958 	if (pmd_none(*vmf->pmd)) {
3959 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3960 		if (!vmf->prealloc_pte)
3961 			goto out;
3962 		smp_wmb(); /* See comment in __pte_alloc() */
3963 	}
3964 
3965 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3966 
3967 	/* Huge page is mapped? Page fault is solved */
3968 	if (pmd_trans_huge(*vmf->pmd)) {
3969 		ret = VM_FAULT_NOPAGE;
3970 		goto out;
3971 	}
3972 
3973 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3974 	if (!vmf->pte)
3975 		goto out;
3976 
3977 	/* check if the page fault is solved */
3978 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3979 	if (!pte_none(*vmf->pte))
3980 		ret = VM_FAULT_NOPAGE;
3981 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 out:
3983 	vmf->address = address;
3984 	vmf->pte = NULL;
3985 	return ret;
3986 }
3987 
3988 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3989 {
3990 	struct vm_area_struct *vma = vmf->vma;
3991 	vm_fault_t ret = 0;
3992 
3993 	/*
3994 	 * Let's call ->map_pages() first and use ->fault() as fallback
3995 	 * if page by the offset is not ready to be mapped (cold cache or
3996 	 * something).
3997 	 */
3998 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3999 		ret = do_fault_around(vmf);
4000 		if (ret)
4001 			return ret;
4002 	}
4003 
4004 	ret = __do_fault(vmf);
4005 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4006 		return ret;
4007 
4008 	ret |= finish_fault(vmf);
4009 	unlock_page(vmf->page);
4010 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4011 		put_page(vmf->page);
4012 	return ret;
4013 }
4014 
4015 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4016 {
4017 	struct vm_area_struct *vma = vmf->vma;
4018 	vm_fault_t ret;
4019 
4020 	if (unlikely(anon_vma_prepare(vma)))
4021 		return VM_FAULT_OOM;
4022 
4023 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4024 	if (!vmf->cow_page)
4025 		return VM_FAULT_OOM;
4026 
4027 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4028 		put_page(vmf->cow_page);
4029 		return VM_FAULT_OOM;
4030 	}
4031 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4032 
4033 	ret = __do_fault(vmf);
4034 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4035 		goto uncharge_out;
4036 	if (ret & VM_FAULT_DONE_COW)
4037 		return ret;
4038 
4039 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4040 	__SetPageUptodate(vmf->cow_page);
4041 
4042 	ret |= finish_fault(vmf);
4043 	unlock_page(vmf->page);
4044 	put_page(vmf->page);
4045 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4046 		goto uncharge_out;
4047 	return ret;
4048 uncharge_out:
4049 	put_page(vmf->cow_page);
4050 	return ret;
4051 }
4052 
4053 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4054 {
4055 	struct vm_area_struct *vma = vmf->vma;
4056 	vm_fault_t ret, tmp;
4057 
4058 	ret = __do_fault(vmf);
4059 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4060 		return ret;
4061 
4062 	/*
4063 	 * Check if the backing address space wants to know that the page is
4064 	 * about to become writable
4065 	 */
4066 	if (vma->vm_ops->page_mkwrite) {
4067 		unlock_page(vmf->page);
4068 		tmp = do_page_mkwrite(vmf);
4069 		if (unlikely(!tmp ||
4070 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4071 			put_page(vmf->page);
4072 			return tmp;
4073 		}
4074 	}
4075 
4076 	ret |= finish_fault(vmf);
4077 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4078 					VM_FAULT_RETRY))) {
4079 		unlock_page(vmf->page);
4080 		put_page(vmf->page);
4081 		return ret;
4082 	}
4083 
4084 	ret |= fault_dirty_shared_page(vmf);
4085 	return ret;
4086 }
4087 
4088 /*
4089  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4090  * but allow concurrent faults).
4091  * The mmap_lock may have been released depending on flags and our
4092  * return value.  See filemap_fault() and __lock_page_or_retry().
4093  * If mmap_lock is released, vma may become invalid (for example
4094  * by other thread calling munmap()).
4095  */
4096 static vm_fault_t do_fault(struct vm_fault *vmf)
4097 {
4098 	struct vm_area_struct *vma = vmf->vma;
4099 	struct mm_struct *vm_mm = vma->vm_mm;
4100 	vm_fault_t ret;
4101 
4102 	/*
4103 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4104 	 */
4105 	if (!vma->vm_ops->fault) {
4106 		/*
4107 		 * If we find a migration pmd entry or a none pmd entry, which
4108 		 * should never happen, return SIGBUS
4109 		 */
4110 		if (unlikely(!pmd_present(*vmf->pmd)))
4111 			ret = VM_FAULT_SIGBUS;
4112 		else {
4113 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4114 						       vmf->pmd,
4115 						       vmf->address,
4116 						       &vmf->ptl);
4117 			/*
4118 			 * Make sure this is not a temporary clearing of pte
4119 			 * by holding ptl and checking again. A R/M/W update
4120 			 * of pte involves: take ptl, clearing the pte so that
4121 			 * we don't have concurrent modification by hardware
4122 			 * followed by an update.
4123 			 */
4124 			if (unlikely(pte_none(*vmf->pte)))
4125 				ret = VM_FAULT_SIGBUS;
4126 			else
4127 				ret = VM_FAULT_NOPAGE;
4128 
4129 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4130 		}
4131 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4132 		ret = do_read_fault(vmf);
4133 	else if (!(vma->vm_flags & VM_SHARED))
4134 		ret = do_cow_fault(vmf);
4135 	else
4136 		ret = do_shared_fault(vmf);
4137 
4138 	/* preallocated pagetable is unused: free it */
4139 	if (vmf->prealloc_pte) {
4140 		pte_free(vm_mm, vmf->prealloc_pte);
4141 		vmf->prealloc_pte = NULL;
4142 	}
4143 	return ret;
4144 }
4145 
4146 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4147 				unsigned long addr, int page_nid,
4148 				int *flags)
4149 {
4150 	get_page(page);
4151 
4152 	count_vm_numa_event(NUMA_HINT_FAULTS);
4153 	if (page_nid == numa_node_id()) {
4154 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4155 		*flags |= TNF_FAULT_LOCAL;
4156 	}
4157 
4158 	return mpol_misplaced(page, vma, addr);
4159 }
4160 
4161 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4162 {
4163 	struct vm_area_struct *vma = vmf->vma;
4164 	struct page *page = NULL;
4165 	int page_nid = NUMA_NO_NODE;
4166 	int last_cpupid;
4167 	int target_nid;
4168 	bool migrated = false;
4169 	pte_t pte, old_pte;
4170 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4171 	int flags = 0;
4172 
4173 	/*
4174 	 * The "pte" at this point cannot be used safely without
4175 	 * validation through pte_unmap_same(). It's of NUMA type but
4176 	 * the pfn may be screwed if the read is non atomic.
4177 	 */
4178 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4179 	spin_lock(vmf->ptl);
4180 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4181 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4182 		goto out;
4183 	}
4184 
4185 	/*
4186 	 * Make it present again, Depending on how arch implementes non
4187 	 * accessible ptes, some can allow access by kernel mode.
4188 	 */
4189 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4190 	pte = pte_modify(old_pte, vma->vm_page_prot);
4191 	pte = pte_mkyoung(pte);
4192 	if (was_writable)
4193 		pte = pte_mkwrite(pte);
4194 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4195 	update_mmu_cache(vma, vmf->address, vmf->pte);
4196 
4197 	page = vm_normal_page(vma, vmf->address, pte);
4198 	if (!page) {
4199 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4200 		return 0;
4201 	}
4202 
4203 	/* TODO: handle PTE-mapped THP */
4204 	if (PageCompound(page)) {
4205 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4206 		return 0;
4207 	}
4208 
4209 	/*
4210 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4211 	 * much anyway since they can be in shared cache state. This misses
4212 	 * the case where a mapping is writable but the process never writes
4213 	 * to it but pte_write gets cleared during protection updates and
4214 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4215 	 * background writeback, dirty balancing and application behaviour.
4216 	 */
4217 	if (!pte_write(pte))
4218 		flags |= TNF_NO_GROUP;
4219 
4220 	/*
4221 	 * Flag if the page is shared between multiple address spaces. This
4222 	 * is later used when determining whether to group tasks together
4223 	 */
4224 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4225 		flags |= TNF_SHARED;
4226 
4227 	last_cpupid = page_cpupid_last(page);
4228 	page_nid = page_to_nid(page);
4229 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4230 			&flags);
4231 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4232 	if (target_nid == NUMA_NO_NODE) {
4233 		put_page(page);
4234 		goto out;
4235 	}
4236 
4237 	/* Migrate to the requested node */
4238 	migrated = migrate_misplaced_page(page, vma, target_nid);
4239 	if (migrated) {
4240 		page_nid = target_nid;
4241 		flags |= TNF_MIGRATED;
4242 	} else
4243 		flags |= TNF_MIGRATE_FAIL;
4244 
4245 out:
4246 	if (page_nid != NUMA_NO_NODE)
4247 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4248 	return 0;
4249 }
4250 
4251 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4252 {
4253 	if (vma_is_anonymous(vmf->vma))
4254 		return do_huge_pmd_anonymous_page(vmf);
4255 	if (vmf->vma->vm_ops->huge_fault)
4256 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4257 	return VM_FAULT_FALLBACK;
4258 }
4259 
4260 /* `inline' is required to avoid gcc 4.1.2 build error */
4261 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4262 {
4263 	if (vma_is_anonymous(vmf->vma)) {
4264 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4265 			return handle_userfault(vmf, VM_UFFD_WP);
4266 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4267 	}
4268 	if (vmf->vma->vm_ops->huge_fault) {
4269 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4270 
4271 		if (!(ret & VM_FAULT_FALLBACK))
4272 			return ret;
4273 	}
4274 
4275 	/* COW or write-notify handled on pte level: split pmd. */
4276 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4277 
4278 	return VM_FAULT_FALLBACK;
4279 }
4280 
4281 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4282 {
4283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4284 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4285 	/* No support for anonymous transparent PUD pages yet */
4286 	if (vma_is_anonymous(vmf->vma))
4287 		goto split;
4288 	if (vmf->vma->vm_ops->huge_fault) {
4289 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4290 
4291 		if (!(ret & VM_FAULT_FALLBACK))
4292 			return ret;
4293 	}
4294 split:
4295 	/* COW or write-notify not handled on PUD level: split pud.*/
4296 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4298 	return VM_FAULT_FALLBACK;
4299 }
4300 
4301 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4302 {
4303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4304 	/* No support for anonymous transparent PUD pages yet */
4305 	if (vma_is_anonymous(vmf->vma))
4306 		return VM_FAULT_FALLBACK;
4307 	if (vmf->vma->vm_ops->huge_fault)
4308 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4309 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4310 	return VM_FAULT_FALLBACK;
4311 }
4312 
4313 /*
4314  * These routines also need to handle stuff like marking pages dirty
4315  * and/or accessed for architectures that don't do it in hardware (most
4316  * RISC architectures).  The early dirtying is also good on the i386.
4317  *
4318  * There is also a hook called "update_mmu_cache()" that architectures
4319  * with external mmu caches can use to update those (ie the Sparc or
4320  * PowerPC hashed page tables that act as extended TLBs).
4321  *
4322  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4323  * concurrent faults).
4324  *
4325  * The mmap_lock may have been released depending on flags and our return value.
4326  * See filemap_fault() and __lock_page_or_retry().
4327  */
4328 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4329 {
4330 	pte_t entry;
4331 
4332 	if (unlikely(pmd_none(*vmf->pmd))) {
4333 		/*
4334 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4335 		 * want to allocate huge page, and if we expose page table
4336 		 * for an instant, it will be difficult to retract from
4337 		 * concurrent faults and from rmap lookups.
4338 		 */
4339 		vmf->pte = NULL;
4340 	} else {
4341 		/* See comment in pte_alloc_one_map() */
4342 		if (pmd_devmap_trans_unstable(vmf->pmd))
4343 			return 0;
4344 		/*
4345 		 * A regular pmd is established and it can't morph into a huge
4346 		 * pmd from under us anymore at this point because we hold the
4347 		 * mmap_lock read mode and khugepaged takes it in write mode.
4348 		 * So now it's safe to run pte_offset_map().
4349 		 */
4350 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4351 		vmf->orig_pte = *vmf->pte;
4352 
4353 		/*
4354 		 * some architectures can have larger ptes than wordsize,
4355 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4356 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4357 		 * accesses.  The code below just needs a consistent view
4358 		 * for the ifs and we later double check anyway with the
4359 		 * ptl lock held. So here a barrier will do.
4360 		 */
4361 		barrier();
4362 		if (pte_none(vmf->orig_pte)) {
4363 			pte_unmap(vmf->pte);
4364 			vmf->pte = NULL;
4365 		}
4366 	}
4367 
4368 	if (!vmf->pte) {
4369 		if (vma_is_anonymous(vmf->vma))
4370 			return do_anonymous_page(vmf);
4371 		else
4372 			return do_fault(vmf);
4373 	}
4374 
4375 	if (!pte_present(vmf->orig_pte))
4376 		return do_swap_page(vmf);
4377 
4378 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4379 		return do_numa_page(vmf);
4380 
4381 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4382 	spin_lock(vmf->ptl);
4383 	entry = vmf->orig_pte;
4384 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4385 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4386 		goto unlock;
4387 	}
4388 	if (vmf->flags & FAULT_FLAG_WRITE) {
4389 		if (!pte_write(entry))
4390 			return do_wp_page(vmf);
4391 		entry = pte_mkdirty(entry);
4392 	}
4393 	entry = pte_mkyoung(entry);
4394 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4395 				vmf->flags & FAULT_FLAG_WRITE)) {
4396 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4397 	} else {
4398 		/* Skip spurious TLB flush for retried page fault */
4399 		if (vmf->flags & FAULT_FLAG_TRIED)
4400 			goto unlock;
4401 		/*
4402 		 * This is needed only for protection faults but the arch code
4403 		 * is not yet telling us if this is a protection fault or not.
4404 		 * This still avoids useless tlb flushes for .text page faults
4405 		 * with threads.
4406 		 */
4407 		if (vmf->flags & FAULT_FLAG_WRITE)
4408 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4409 	}
4410 unlock:
4411 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4412 	return 0;
4413 }
4414 
4415 /*
4416  * By the time we get here, we already hold the mm semaphore
4417  *
4418  * The mmap_lock may have been released depending on flags and our
4419  * return value.  See filemap_fault() and __lock_page_or_retry().
4420  */
4421 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4422 		unsigned long address, unsigned int flags)
4423 {
4424 	struct vm_fault vmf = {
4425 		.vma = vma,
4426 		.address = address & PAGE_MASK,
4427 		.flags = flags,
4428 		.pgoff = linear_page_index(vma, address),
4429 		.gfp_mask = __get_fault_gfp_mask(vma),
4430 	};
4431 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4432 	struct mm_struct *mm = vma->vm_mm;
4433 	pgd_t *pgd;
4434 	p4d_t *p4d;
4435 	vm_fault_t ret;
4436 
4437 	pgd = pgd_offset(mm, address);
4438 	p4d = p4d_alloc(mm, pgd, address);
4439 	if (!p4d)
4440 		return VM_FAULT_OOM;
4441 
4442 	vmf.pud = pud_alloc(mm, p4d, address);
4443 	if (!vmf.pud)
4444 		return VM_FAULT_OOM;
4445 retry_pud:
4446 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4447 		ret = create_huge_pud(&vmf);
4448 		if (!(ret & VM_FAULT_FALLBACK))
4449 			return ret;
4450 	} else {
4451 		pud_t orig_pud = *vmf.pud;
4452 
4453 		barrier();
4454 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4455 
4456 			/* NUMA case for anonymous PUDs would go here */
4457 
4458 			if (dirty && !pud_write(orig_pud)) {
4459 				ret = wp_huge_pud(&vmf, orig_pud);
4460 				if (!(ret & VM_FAULT_FALLBACK))
4461 					return ret;
4462 			} else {
4463 				huge_pud_set_accessed(&vmf, orig_pud);
4464 				return 0;
4465 			}
4466 		}
4467 	}
4468 
4469 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4470 	if (!vmf.pmd)
4471 		return VM_FAULT_OOM;
4472 
4473 	/* Huge pud page fault raced with pmd_alloc? */
4474 	if (pud_trans_unstable(vmf.pud))
4475 		goto retry_pud;
4476 
4477 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4478 		ret = create_huge_pmd(&vmf);
4479 		if (!(ret & VM_FAULT_FALLBACK))
4480 			return ret;
4481 	} else {
4482 		pmd_t orig_pmd = *vmf.pmd;
4483 
4484 		barrier();
4485 		if (unlikely(is_swap_pmd(orig_pmd))) {
4486 			VM_BUG_ON(thp_migration_supported() &&
4487 					  !is_pmd_migration_entry(orig_pmd));
4488 			if (is_pmd_migration_entry(orig_pmd))
4489 				pmd_migration_entry_wait(mm, vmf.pmd);
4490 			return 0;
4491 		}
4492 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4493 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4494 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4495 
4496 			if (dirty && !pmd_write(orig_pmd)) {
4497 				ret = wp_huge_pmd(&vmf, orig_pmd);
4498 				if (!(ret & VM_FAULT_FALLBACK))
4499 					return ret;
4500 			} else {
4501 				huge_pmd_set_accessed(&vmf, orig_pmd);
4502 				return 0;
4503 			}
4504 		}
4505 	}
4506 
4507 	return handle_pte_fault(&vmf);
4508 }
4509 
4510 /**
4511  * mm_account_fault - Do page fault accountings
4512  *
4513  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4514  *        of perf event counters, but we'll still do the per-task accounting to
4515  *        the task who triggered this page fault.
4516  * @address: the faulted address.
4517  * @flags: the fault flags.
4518  * @ret: the fault retcode.
4519  *
4520  * This will take care of most of the page fault accountings.  Meanwhile, it
4521  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4522  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4523  * still be in per-arch page fault handlers at the entry of page fault.
4524  */
4525 static inline void mm_account_fault(struct pt_regs *regs,
4526 				    unsigned long address, unsigned int flags,
4527 				    vm_fault_t ret)
4528 {
4529 	bool major;
4530 
4531 	/*
4532 	 * We don't do accounting for some specific faults:
4533 	 *
4534 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4535 	 *   includes arch_vma_access_permitted() failing before reaching here.
4536 	 *   So this is not a "this many hardware page faults" counter.  We
4537 	 *   should use the hw profiling for that.
4538 	 *
4539 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4540 	 *   once they're completed.
4541 	 */
4542 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4543 		return;
4544 
4545 	/*
4546 	 * We define the fault as a major fault when the final successful fault
4547 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4548 	 * handle it immediately previously).
4549 	 */
4550 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4551 
4552 	if (major)
4553 		current->maj_flt++;
4554 	else
4555 		current->min_flt++;
4556 
4557 	/*
4558 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4559 	 * accounting for the per thread fault counters who triggered the
4560 	 * fault, and we skip the perf event updates.
4561 	 */
4562 	if (!regs)
4563 		return;
4564 
4565 	if (major)
4566 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4567 	else
4568 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4569 }
4570 
4571 /*
4572  * By the time we get here, we already hold the mm semaphore
4573  *
4574  * The mmap_lock may have been released depending on flags and our
4575  * return value.  See filemap_fault() and __lock_page_or_retry().
4576  */
4577 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4578 			   unsigned int flags, struct pt_regs *regs)
4579 {
4580 	vm_fault_t ret;
4581 
4582 	__set_current_state(TASK_RUNNING);
4583 
4584 	count_vm_event(PGFAULT);
4585 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4586 
4587 	/* do counter updates before entering really critical section. */
4588 	check_sync_rss_stat(current);
4589 
4590 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4591 					    flags & FAULT_FLAG_INSTRUCTION,
4592 					    flags & FAULT_FLAG_REMOTE))
4593 		return VM_FAULT_SIGSEGV;
4594 
4595 	/*
4596 	 * Enable the memcg OOM handling for faults triggered in user
4597 	 * space.  Kernel faults are handled more gracefully.
4598 	 */
4599 	if (flags & FAULT_FLAG_USER)
4600 		mem_cgroup_enter_user_fault();
4601 
4602 	if (unlikely(is_vm_hugetlb_page(vma)))
4603 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4604 	else
4605 		ret = __handle_mm_fault(vma, address, flags);
4606 
4607 	if (flags & FAULT_FLAG_USER) {
4608 		mem_cgroup_exit_user_fault();
4609 		/*
4610 		 * The task may have entered a memcg OOM situation but
4611 		 * if the allocation error was handled gracefully (no
4612 		 * VM_FAULT_OOM), there is no need to kill anything.
4613 		 * Just clean up the OOM state peacefully.
4614 		 */
4615 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4616 			mem_cgroup_oom_synchronize(false);
4617 	}
4618 
4619 	mm_account_fault(regs, address, flags, ret);
4620 
4621 	return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(handle_mm_fault);
4624 
4625 #ifndef __PAGETABLE_P4D_FOLDED
4626 /*
4627  * Allocate p4d page table.
4628  * We've already handled the fast-path in-line.
4629  */
4630 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4631 {
4632 	p4d_t *new = p4d_alloc_one(mm, address);
4633 	if (!new)
4634 		return -ENOMEM;
4635 
4636 	smp_wmb(); /* See comment in __pte_alloc */
4637 
4638 	spin_lock(&mm->page_table_lock);
4639 	if (pgd_present(*pgd))		/* Another has populated it */
4640 		p4d_free(mm, new);
4641 	else
4642 		pgd_populate(mm, pgd, new);
4643 	spin_unlock(&mm->page_table_lock);
4644 	return 0;
4645 }
4646 #endif /* __PAGETABLE_P4D_FOLDED */
4647 
4648 #ifndef __PAGETABLE_PUD_FOLDED
4649 /*
4650  * Allocate page upper directory.
4651  * We've already handled the fast-path in-line.
4652  */
4653 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4654 {
4655 	pud_t *new = pud_alloc_one(mm, address);
4656 	if (!new)
4657 		return -ENOMEM;
4658 
4659 	smp_wmb(); /* See comment in __pte_alloc */
4660 
4661 	spin_lock(&mm->page_table_lock);
4662 	if (!p4d_present(*p4d)) {
4663 		mm_inc_nr_puds(mm);
4664 		p4d_populate(mm, p4d, new);
4665 	} else	/* Another has populated it */
4666 		pud_free(mm, new);
4667 	spin_unlock(&mm->page_table_lock);
4668 	return 0;
4669 }
4670 #endif /* __PAGETABLE_PUD_FOLDED */
4671 
4672 #ifndef __PAGETABLE_PMD_FOLDED
4673 /*
4674  * Allocate page middle directory.
4675  * We've already handled the fast-path in-line.
4676  */
4677 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4678 {
4679 	spinlock_t *ptl;
4680 	pmd_t *new = pmd_alloc_one(mm, address);
4681 	if (!new)
4682 		return -ENOMEM;
4683 
4684 	smp_wmb(); /* See comment in __pte_alloc */
4685 
4686 	ptl = pud_lock(mm, pud);
4687 	if (!pud_present(*pud)) {
4688 		mm_inc_nr_pmds(mm);
4689 		pud_populate(mm, pud, new);
4690 	} else	/* Another has populated it */
4691 		pmd_free(mm, new);
4692 	spin_unlock(ptl);
4693 	return 0;
4694 }
4695 #endif /* __PAGETABLE_PMD_FOLDED */
4696 
4697 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4698 			    struct mmu_notifier_range *range,
4699 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4700 {
4701 	pgd_t *pgd;
4702 	p4d_t *p4d;
4703 	pud_t *pud;
4704 	pmd_t *pmd;
4705 	pte_t *ptep;
4706 
4707 	pgd = pgd_offset(mm, address);
4708 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4709 		goto out;
4710 
4711 	p4d = p4d_offset(pgd, address);
4712 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4713 		goto out;
4714 
4715 	pud = pud_offset(p4d, address);
4716 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4717 		goto out;
4718 
4719 	pmd = pmd_offset(pud, address);
4720 	VM_BUG_ON(pmd_trans_huge(*pmd));
4721 
4722 	if (pmd_huge(*pmd)) {
4723 		if (!pmdpp)
4724 			goto out;
4725 
4726 		if (range) {
4727 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4728 						NULL, mm, address & PMD_MASK,
4729 						(address & PMD_MASK) + PMD_SIZE);
4730 			mmu_notifier_invalidate_range_start(range);
4731 		}
4732 		*ptlp = pmd_lock(mm, pmd);
4733 		if (pmd_huge(*pmd)) {
4734 			*pmdpp = pmd;
4735 			return 0;
4736 		}
4737 		spin_unlock(*ptlp);
4738 		if (range)
4739 			mmu_notifier_invalidate_range_end(range);
4740 	}
4741 
4742 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4743 		goto out;
4744 
4745 	if (range) {
4746 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4747 					address & PAGE_MASK,
4748 					(address & PAGE_MASK) + PAGE_SIZE);
4749 		mmu_notifier_invalidate_range_start(range);
4750 	}
4751 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4752 	if (!pte_present(*ptep))
4753 		goto unlock;
4754 	*ptepp = ptep;
4755 	return 0;
4756 unlock:
4757 	pte_unmap_unlock(ptep, *ptlp);
4758 	if (range)
4759 		mmu_notifier_invalidate_range_end(range);
4760 out:
4761 	return -EINVAL;
4762 }
4763 
4764 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4765 			     pte_t **ptepp, spinlock_t **ptlp)
4766 {
4767 	int res;
4768 
4769 	/* (void) is needed to make gcc happy */
4770 	(void) __cond_lock(*ptlp,
4771 			   !(res = __follow_pte_pmd(mm, address, NULL,
4772 						    ptepp, NULL, ptlp)));
4773 	return res;
4774 }
4775 
4776 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4777 		   struct mmu_notifier_range *range,
4778 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4779 {
4780 	int res;
4781 
4782 	/* (void) is needed to make gcc happy */
4783 	(void) __cond_lock(*ptlp,
4784 			   !(res = __follow_pte_pmd(mm, address, range,
4785 						    ptepp, pmdpp, ptlp)));
4786 	return res;
4787 }
4788 EXPORT_SYMBOL(follow_pte_pmd);
4789 
4790 /**
4791  * follow_pfn - look up PFN at a user virtual address
4792  * @vma: memory mapping
4793  * @address: user virtual address
4794  * @pfn: location to store found PFN
4795  *
4796  * Only IO mappings and raw PFN mappings are allowed.
4797  *
4798  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4799  */
4800 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4801 	unsigned long *pfn)
4802 {
4803 	int ret = -EINVAL;
4804 	spinlock_t *ptl;
4805 	pte_t *ptep;
4806 
4807 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4808 		return ret;
4809 
4810 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4811 	if (ret)
4812 		return ret;
4813 	*pfn = pte_pfn(*ptep);
4814 	pte_unmap_unlock(ptep, ptl);
4815 	return 0;
4816 }
4817 EXPORT_SYMBOL(follow_pfn);
4818 
4819 #ifdef CONFIG_HAVE_IOREMAP_PROT
4820 int follow_phys(struct vm_area_struct *vma,
4821 		unsigned long address, unsigned int flags,
4822 		unsigned long *prot, resource_size_t *phys)
4823 {
4824 	int ret = -EINVAL;
4825 	pte_t *ptep, pte;
4826 	spinlock_t *ptl;
4827 
4828 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4829 		goto out;
4830 
4831 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4832 		goto out;
4833 	pte = *ptep;
4834 
4835 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4836 		goto unlock;
4837 
4838 	*prot = pgprot_val(pte_pgprot(pte));
4839 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4840 
4841 	ret = 0;
4842 unlock:
4843 	pte_unmap_unlock(ptep, ptl);
4844 out:
4845 	return ret;
4846 }
4847 
4848 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4849 			void *buf, int len, int write)
4850 {
4851 	resource_size_t phys_addr;
4852 	unsigned long prot = 0;
4853 	void __iomem *maddr;
4854 	int offset = addr & (PAGE_SIZE-1);
4855 
4856 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4857 		return -EINVAL;
4858 
4859 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4860 	if (!maddr)
4861 		return -ENOMEM;
4862 
4863 	if (write)
4864 		memcpy_toio(maddr + offset, buf, len);
4865 	else
4866 		memcpy_fromio(buf, maddr + offset, len);
4867 	iounmap(maddr);
4868 
4869 	return len;
4870 }
4871 EXPORT_SYMBOL_GPL(generic_access_phys);
4872 #endif
4873 
4874 /*
4875  * Access another process' address space as given in mm.  If non-NULL, use the
4876  * given task for page fault accounting.
4877  */
4878 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4879 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4880 {
4881 	struct vm_area_struct *vma;
4882 	void *old_buf = buf;
4883 	int write = gup_flags & FOLL_WRITE;
4884 
4885 	if (mmap_read_lock_killable(mm))
4886 		return 0;
4887 
4888 	/* ignore errors, just check how much was successfully transferred */
4889 	while (len) {
4890 		int bytes, ret, offset;
4891 		void *maddr;
4892 		struct page *page = NULL;
4893 
4894 		ret = get_user_pages_remote(mm, addr, 1,
4895 				gup_flags, &page, &vma, NULL);
4896 		if (ret <= 0) {
4897 #ifndef CONFIG_HAVE_IOREMAP_PROT
4898 			break;
4899 #else
4900 			/*
4901 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4902 			 * we can access using slightly different code.
4903 			 */
4904 			vma = find_vma(mm, addr);
4905 			if (!vma || vma->vm_start > addr)
4906 				break;
4907 			if (vma->vm_ops && vma->vm_ops->access)
4908 				ret = vma->vm_ops->access(vma, addr, buf,
4909 							  len, write);
4910 			if (ret <= 0)
4911 				break;
4912 			bytes = ret;
4913 #endif
4914 		} else {
4915 			bytes = len;
4916 			offset = addr & (PAGE_SIZE-1);
4917 			if (bytes > PAGE_SIZE-offset)
4918 				bytes = PAGE_SIZE-offset;
4919 
4920 			maddr = kmap(page);
4921 			if (write) {
4922 				copy_to_user_page(vma, page, addr,
4923 						  maddr + offset, buf, bytes);
4924 				set_page_dirty_lock(page);
4925 			} else {
4926 				copy_from_user_page(vma, page, addr,
4927 						    buf, maddr + offset, bytes);
4928 			}
4929 			kunmap(page);
4930 			put_page(page);
4931 		}
4932 		len -= bytes;
4933 		buf += bytes;
4934 		addr += bytes;
4935 	}
4936 	mmap_read_unlock(mm);
4937 
4938 	return buf - old_buf;
4939 }
4940 
4941 /**
4942  * access_remote_vm - access another process' address space
4943  * @mm:		the mm_struct of the target address space
4944  * @addr:	start address to access
4945  * @buf:	source or destination buffer
4946  * @len:	number of bytes to transfer
4947  * @gup_flags:	flags modifying lookup behaviour
4948  *
4949  * The caller must hold a reference on @mm.
4950  *
4951  * Return: number of bytes copied from source to destination.
4952  */
4953 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4954 		void *buf, int len, unsigned int gup_flags)
4955 {
4956 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4957 }
4958 
4959 /*
4960  * Access another process' address space.
4961  * Source/target buffer must be kernel space,
4962  * Do not walk the page table directly, use get_user_pages
4963  */
4964 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4965 		void *buf, int len, unsigned int gup_flags)
4966 {
4967 	struct mm_struct *mm;
4968 	int ret;
4969 
4970 	mm = get_task_mm(tsk);
4971 	if (!mm)
4972 		return 0;
4973 
4974 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4975 
4976 	mmput(mm);
4977 
4978 	return ret;
4979 }
4980 EXPORT_SYMBOL_GPL(access_process_vm);
4981 
4982 /*
4983  * Print the name of a VMA.
4984  */
4985 void print_vma_addr(char *prefix, unsigned long ip)
4986 {
4987 	struct mm_struct *mm = current->mm;
4988 	struct vm_area_struct *vma;
4989 
4990 	/*
4991 	 * we might be running from an atomic context so we cannot sleep
4992 	 */
4993 	if (!mmap_read_trylock(mm))
4994 		return;
4995 
4996 	vma = find_vma(mm, ip);
4997 	if (vma && vma->vm_file) {
4998 		struct file *f = vma->vm_file;
4999 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5000 		if (buf) {
5001 			char *p;
5002 
5003 			p = file_path(f, buf, PAGE_SIZE);
5004 			if (IS_ERR(p))
5005 				p = "?";
5006 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5007 					vma->vm_start,
5008 					vma->vm_end - vma->vm_start);
5009 			free_page((unsigned long)buf);
5010 		}
5011 	}
5012 	mmap_read_unlock(mm);
5013 }
5014 
5015 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5016 void __might_fault(const char *file, int line)
5017 {
5018 	/*
5019 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5020 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5021 	 * get paged out, therefore we'll never actually fault, and the
5022 	 * below annotations will generate false positives.
5023 	 */
5024 	if (uaccess_kernel())
5025 		return;
5026 	if (pagefault_disabled())
5027 		return;
5028 	__might_sleep(file, line, 0);
5029 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5030 	if (current->mm)
5031 		might_lock_read(&current->mm->mmap_lock);
5032 #endif
5033 }
5034 EXPORT_SYMBOL(__might_fault);
5035 #endif
5036 
5037 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5038 /*
5039  * Process all subpages of the specified huge page with the specified
5040  * operation.  The target subpage will be processed last to keep its
5041  * cache lines hot.
5042  */
5043 static inline void process_huge_page(
5044 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5045 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5046 	void *arg)
5047 {
5048 	int i, n, base, l;
5049 	unsigned long addr = addr_hint &
5050 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5051 
5052 	/* Process target subpage last to keep its cache lines hot */
5053 	might_sleep();
5054 	n = (addr_hint - addr) / PAGE_SIZE;
5055 	if (2 * n <= pages_per_huge_page) {
5056 		/* If target subpage in first half of huge page */
5057 		base = 0;
5058 		l = n;
5059 		/* Process subpages at the end of huge page */
5060 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5061 			cond_resched();
5062 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5063 		}
5064 	} else {
5065 		/* If target subpage in second half of huge page */
5066 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5067 		l = pages_per_huge_page - n;
5068 		/* Process subpages at the begin of huge page */
5069 		for (i = 0; i < base; i++) {
5070 			cond_resched();
5071 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5072 		}
5073 	}
5074 	/*
5075 	 * Process remaining subpages in left-right-left-right pattern
5076 	 * towards the target subpage
5077 	 */
5078 	for (i = 0; i < l; i++) {
5079 		int left_idx = base + i;
5080 		int right_idx = base + 2 * l - 1 - i;
5081 
5082 		cond_resched();
5083 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5084 		cond_resched();
5085 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5086 	}
5087 }
5088 
5089 static void clear_gigantic_page(struct page *page,
5090 				unsigned long addr,
5091 				unsigned int pages_per_huge_page)
5092 {
5093 	int i;
5094 	struct page *p = page;
5095 
5096 	might_sleep();
5097 	for (i = 0; i < pages_per_huge_page;
5098 	     i++, p = mem_map_next(p, page, i)) {
5099 		cond_resched();
5100 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5101 	}
5102 }
5103 
5104 static void clear_subpage(unsigned long addr, int idx, void *arg)
5105 {
5106 	struct page *page = arg;
5107 
5108 	clear_user_highpage(page + idx, addr);
5109 }
5110 
5111 void clear_huge_page(struct page *page,
5112 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5113 {
5114 	unsigned long addr = addr_hint &
5115 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5116 
5117 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5118 		clear_gigantic_page(page, addr, pages_per_huge_page);
5119 		return;
5120 	}
5121 
5122 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5123 }
5124 
5125 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5126 				    unsigned long addr,
5127 				    struct vm_area_struct *vma,
5128 				    unsigned int pages_per_huge_page)
5129 {
5130 	int i;
5131 	struct page *dst_base = dst;
5132 	struct page *src_base = src;
5133 
5134 	for (i = 0; i < pages_per_huge_page; ) {
5135 		cond_resched();
5136 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5137 
5138 		i++;
5139 		dst = mem_map_next(dst, dst_base, i);
5140 		src = mem_map_next(src, src_base, i);
5141 	}
5142 }
5143 
5144 struct copy_subpage_arg {
5145 	struct page *dst;
5146 	struct page *src;
5147 	struct vm_area_struct *vma;
5148 };
5149 
5150 static void copy_subpage(unsigned long addr, int idx, void *arg)
5151 {
5152 	struct copy_subpage_arg *copy_arg = arg;
5153 
5154 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5155 			   addr, copy_arg->vma);
5156 }
5157 
5158 void copy_user_huge_page(struct page *dst, struct page *src,
5159 			 unsigned long addr_hint, struct vm_area_struct *vma,
5160 			 unsigned int pages_per_huge_page)
5161 {
5162 	unsigned long addr = addr_hint &
5163 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5164 	struct copy_subpage_arg arg = {
5165 		.dst = dst,
5166 		.src = src,
5167 		.vma = vma,
5168 	};
5169 
5170 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5171 		copy_user_gigantic_page(dst, src, addr, vma,
5172 					pages_per_huge_page);
5173 		return;
5174 	}
5175 
5176 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5177 }
5178 
5179 long copy_huge_page_from_user(struct page *dst_page,
5180 				const void __user *usr_src,
5181 				unsigned int pages_per_huge_page,
5182 				bool allow_pagefault)
5183 {
5184 	void *src = (void *)usr_src;
5185 	void *page_kaddr;
5186 	unsigned long i, rc = 0;
5187 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5188 
5189 	for (i = 0; i < pages_per_huge_page; i++) {
5190 		if (allow_pagefault)
5191 			page_kaddr = kmap(dst_page + i);
5192 		else
5193 			page_kaddr = kmap_atomic(dst_page + i);
5194 		rc = copy_from_user(page_kaddr,
5195 				(const void __user *)(src + i * PAGE_SIZE),
5196 				PAGE_SIZE);
5197 		if (allow_pagefault)
5198 			kunmap(dst_page + i);
5199 		else
5200 			kunmap_atomic(page_kaddr);
5201 
5202 		ret_val -= (PAGE_SIZE - rc);
5203 		if (rc)
5204 			break;
5205 
5206 		cond_resched();
5207 	}
5208 	return ret_val;
5209 }
5210 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5211 
5212 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5213 
5214 static struct kmem_cache *page_ptl_cachep;
5215 
5216 void __init ptlock_cache_init(void)
5217 {
5218 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5219 			SLAB_PANIC, NULL);
5220 }
5221 
5222 bool ptlock_alloc(struct page *page)
5223 {
5224 	spinlock_t *ptl;
5225 
5226 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5227 	if (!ptl)
5228 		return false;
5229 	page->ptl = ptl;
5230 	return true;
5231 }
5232 
5233 void ptlock_free(struct page *page)
5234 {
5235 	kmem_cache_free(page_ptl_cachep, page->ptl);
5236 }
5237 #endif
5238