1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 78 #include <trace/events/kmem.h> 79 80 #include <asm/io.h> 81 #include <asm/mmu_context.h> 82 #include <asm/pgalloc.h> 83 #include <linux/uaccess.h> 84 #include <asm/tlb.h> 85 #include <asm/tlbflush.h> 86 87 #include "pgalloc-track.h" 88 #include "internal.h" 89 90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 92 #endif 93 94 #ifndef CONFIG_NEED_MULTIPLE_NODES 95 /* use the per-pgdat data instead for discontigmem - mbligh */ 96 unsigned long max_mapnr; 97 EXPORT_SYMBOL(max_mapnr); 98 99 struct page *mem_map; 100 EXPORT_SYMBOL(mem_map); 101 #endif 102 103 /* 104 * A number of key systems in x86 including ioremap() rely on the assumption 105 * that high_memory defines the upper bound on direct map memory, then end 106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 108 * and ZONE_HIGHMEM. 109 */ 110 void *high_memory; 111 EXPORT_SYMBOL(high_memory); 112 113 /* 114 * Randomize the address space (stacks, mmaps, brk, etc.). 115 * 116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 117 * as ancient (libc5 based) binaries can segfault. ) 118 */ 119 int randomize_va_space __read_mostly = 120 #ifdef CONFIG_COMPAT_BRK 121 1; 122 #else 123 2; 124 #endif 125 126 #ifndef arch_faults_on_old_pte 127 static inline bool arch_faults_on_old_pte(void) 128 { 129 /* 130 * Those arches which don't have hw access flag feature need to 131 * implement their own helper. By default, "true" means pagefault 132 * will be hit on old pte. 133 */ 134 return true; 135 } 136 #endif 137 138 static int __init disable_randmaps(char *s) 139 { 140 randomize_va_space = 0; 141 return 1; 142 } 143 __setup("norandmaps", disable_randmaps); 144 145 unsigned long zero_pfn __read_mostly; 146 EXPORT_SYMBOL(zero_pfn); 147 148 unsigned long highest_memmap_pfn __read_mostly; 149 150 /* 151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 152 */ 153 static int __init init_zero_pfn(void) 154 { 155 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 156 return 0; 157 } 158 core_initcall(init_zero_pfn); 159 160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 161 { 162 trace_rss_stat(mm, member, count); 163 } 164 165 #if defined(SPLIT_RSS_COUNTING) 166 167 void sync_mm_rss(struct mm_struct *mm) 168 { 169 int i; 170 171 for (i = 0; i < NR_MM_COUNTERS; i++) { 172 if (current->rss_stat.count[i]) { 173 add_mm_counter(mm, i, current->rss_stat.count[i]); 174 current->rss_stat.count[i] = 0; 175 } 176 } 177 current->rss_stat.events = 0; 178 } 179 180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 181 { 182 struct task_struct *task = current; 183 184 if (likely(task->mm == mm)) 185 task->rss_stat.count[member] += val; 186 else 187 add_mm_counter(mm, member, val); 188 } 189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 191 192 /* sync counter once per 64 page faults */ 193 #define TASK_RSS_EVENTS_THRESH (64) 194 static void check_sync_rss_stat(struct task_struct *task) 195 { 196 if (unlikely(task != current)) 197 return; 198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 199 sync_mm_rss(task->mm); 200 } 201 #else /* SPLIT_RSS_COUNTING */ 202 203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 205 206 static void check_sync_rss_stat(struct task_struct *task) 207 { 208 } 209 210 #endif /* SPLIT_RSS_COUNTING */ 211 212 /* 213 * Note: this doesn't free the actual pages themselves. That 214 * has been handled earlier when unmapping all the memory regions. 215 */ 216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 217 unsigned long addr) 218 { 219 pgtable_t token = pmd_pgtable(*pmd); 220 pmd_clear(pmd); 221 pte_free_tlb(tlb, token, addr); 222 mm_dec_nr_ptes(tlb->mm); 223 } 224 225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 226 unsigned long addr, unsigned long end, 227 unsigned long floor, unsigned long ceiling) 228 { 229 pmd_t *pmd; 230 unsigned long next; 231 unsigned long start; 232 233 start = addr; 234 pmd = pmd_offset(pud, addr); 235 do { 236 next = pmd_addr_end(addr, end); 237 if (pmd_none_or_clear_bad(pmd)) 238 continue; 239 free_pte_range(tlb, pmd, addr); 240 } while (pmd++, addr = next, addr != end); 241 242 start &= PUD_MASK; 243 if (start < floor) 244 return; 245 if (ceiling) { 246 ceiling &= PUD_MASK; 247 if (!ceiling) 248 return; 249 } 250 if (end - 1 > ceiling - 1) 251 return; 252 253 pmd = pmd_offset(pud, start); 254 pud_clear(pud); 255 pmd_free_tlb(tlb, pmd, start); 256 mm_dec_nr_pmds(tlb->mm); 257 } 258 259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 260 unsigned long addr, unsigned long end, 261 unsigned long floor, unsigned long ceiling) 262 { 263 pud_t *pud; 264 unsigned long next; 265 unsigned long start; 266 267 start = addr; 268 pud = pud_offset(p4d, addr); 269 do { 270 next = pud_addr_end(addr, end); 271 if (pud_none_or_clear_bad(pud)) 272 continue; 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 274 } while (pud++, addr = next, addr != end); 275 276 start &= P4D_MASK; 277 if (start < floor) 278 return; 279 if (ceiling) { 280 ceiling &= P4D_MASK; 281 if (!ceiling) 282 return; 283 } 284 if (end - 1 > ceiling - 1) 285 return; 286 287 pud = pud_offset(p4d, start); 288 p4d_clear(p4d); 289 pud_free_tlb(tlb, pud, start); 290 mm_dec_nr_puds(tlb->mm); 291 } 292 293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 p4d_t *p4d; 298 unsigned long next; 299 unsigned long start; 300 301 start = addr; 302 p4d = p4d_offset(pgd, addr); 303 do { 304 next = p4d_addr_end(addr, end); 305 if (p4d_none_or_clear_bad(p4d)) 306 continue; 307 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 308 } while (p4d++, addr = next, addr != end); 309 310 start &= PGDIR_MASK; 311 if (start < floor) 312 return; 313 if (ceiling) { 314 ceiling &= PGDIR_MASK; 315 if (!ceiling) 316 return; 317 } 318 if (end - 1 > ceiling - 1) 319 return; 320 321 p4d = p4d_offset(pgd, start); 322 pgd_clear(pgd); 323 p4d_free_tlb(tlb, p4d, start); 324 } 325 326 /* 327 * This function frees user-level page tables of a process. 328 */ 329 void free_pgd_range(struct mmu_gather *tlb, 330 unsigned long addr, unsigned long end, 331 unsigned long floor, unsigned long ceiling) 332 { 333 pgd_t *pgd; 334 unsigned long next; 335 336 /* 337 * The next few lines have given us lots of grief... 338 * 339 * Why are we testing PMD* at this top level? Because often 340 * there will be no work to do at all, and we'd prefer not to 341 * go all the way down to the bottom just to discover that. 342 * 343 * Why all these "- 1"s? Because 0 represents both the bottom 344 * of the address space and the top of it (using -1 for the 345 * top wouldn't help much: the masks would do the wrong thing). 346 * The rule is that addr 0 and floor 0 refer to the bottom of 347 * the address space, but end 0 and ceiling 0 refer to the top 348 * Comparisons need to use "end - 1" and "ceiling - 1" (though 349 * that end 0 case should be mythical). 350 * 351 * Wherever addr is brought up or ceiling brought down, we must 352 * be careful to reject "the opposite 0" before it confuses the 353 * subsequent tests. But what about where end is brought down 354 * by PMD_SIZE below? no, end can't go down to 0 there. 355 * 356 * Whereas we round start (addr) and ceiling down, by different 357 * masks at different levels, in order to test whether a table 358 * now has no other vmas using it, so can be freed, we don't 359 * bother to round floor or end up - the tests don't need that. 360 */ 361 362 addr &= PMD_MASK; 363 if (addr < floor) { 364 addr += PMD_SIZE; 365 if (!addr) 366 return; 367 } 368 if (ceiling) { 369 ceiling &= PMD_MASK; 370 if (!ceiling) 371 return; 372 } 373 if (end - 1 > ceiling - 1) 374 end -= PMD_SIZE; 375 if (addr > end - 1) 376 return; 377 /* 378 * We add page table cache pages with PAGE_SIZE, 379 * (see pte_free_tlb()), flush the tlb if we need 380 */ 381 tlb_change_page_size(tlb, PAGE_SIZE); 382 pgd = pgd_offset(tlb->mm, addr); 383 do { 384 next = pgd_addr_end(addr, end); 385 if (pgd_none_or_clear_bad(pgd)) 386 continue; 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 388 } while (pgd++, addr = next, addr != end); 389 } 390 391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 392 unsigned long floor, unsigned long ceiling) 393 { 394 while (vma) { 395 struct vm_area_struct *next = vma->vm_next; 396 unsigned long addr = vma->vm_start; 397 398 /* 399 * Hide vma from rmap and truncate_pagecache before freeing 400 * pgtables 401 */ 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 405 if (is_vm_hugetlb_page(vma)) { 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 407 floor, next ? next->vm_start : ceiling); 408 } else { 409 /* 410 * Optimization: gather nearby vmas into one call down 411 */ 412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 413 && !is_vm_hugetlb_page(next)) { 414 vma = next; 415 next = vma->vm_next; 416 unlink_anon_vmas(vma); 417 unlink_file_vma(vma); 418 } 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 } 422 vma = next; 423 } 424 } 425 426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 427 { 428 spinlock_t *ptl; 429 pgtable_t new = pte_alloc_one(mm); 430 if (!new) 431 return -ENOMEM; 432 433 /* 434 * Ensure all pte setup (eg. pte page lock and page clearing) are 435 * visible before the pte is made visible to other CPUs by being 436 * put into page tables. 437 * 438 * The other side of the story is the pointer chasing in the page 439 * table walking code (when walking the page table without locking; 440 * ie. most of the time). Fortunately, these data accesses consist 441 * of a chain of data-dependent loads, meaning most CPUs (alpha 442 * being the notable exception) will already guarantee loads are 443 * seen in-order. See the alpha page table accessors for the 444 * smp_rmb() barriers in page table walking code. 445 */ 446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 447 448 ptl = pmd_lock(mm, pmd); 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 450 mm_inc_nr_ptes(mm); 451 pmd_populate(mm, pmd, new); 452 new = NULL; 453 } 454 spin_unlock(ptl); 455 if (new) 456 pte_free(mm, new); 457 return 0; 458 } 459 460 int __pte_alloc_kernel(pmd_t *pmd) 461 { 462 pte_t *new = pte_alloc_one_kernel(&init_mm); 463 if (!new) 464 return -ENOMEM; 465 466 smp_wmb(); /* See comment in __pte_alloc */ 467 468 spin_lock(&init_mm.page_table_lock); 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 470 pmd_populate_kernel(&init_mm, pmd, new); 471 new = NULL; 472 } 473 spin_unlock(&init_mm.page_table_lock); 474 if (new) 475 pte_free_kernel(&init_mm, new); 476 return 0; 477 } 478 479 static inline void init_rss_vec(int *rss) 480 { 481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 482 } 483 484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 485 { 486 int i; 487 488 if (current->mm == mm) 489 sync_mm_rss(mm); 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 /* 496 * This function is called to print an error when a bad pte 497 * is found. For example, we might have a PFN-mapped pte in 498 * a region that doesn't allow it. 499 * 500 * The calling function must still handle the error. 501 */ 502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 503 pte_t pte, struct page *page) 504 { 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 506 p4d_t *p4d = p4d_offset(pgd, addr); 507 pud_t *pud = pud_offset(p4d, addr); 508 pmd_t *pmd = pmd_offset(pud, addr); 509 struct address_space *mapping; 510 pgoff_t index; 511 static unsigned long resume; 512 static unsigned long nr_shown; 513 static unsigned long nr_unshown; 514 515 /* 516 * Allow a burst of 60 reports, then keep quiet for that minute; 517 * or allow a steady drip of one report per second. 518 */ 519 if (nr_shown == 60) { 520 if (time_before(jiffies, resume)) { 521 nr_unshown++; 522 return; 523 } 524 if (nr_unshown) { 525 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 526 nr_unshown); 527 nr_unshown = 0; 528 } 529 nr_shown = 0; 530 } 531 if (nr_shown++ == 0) 532 resume = jiffies + 60 * HZ; 533 534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 535 index = linear_page_index(vma, addr); 536 537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 538 current->comm, 539 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 540 if (page) 541 dump_page(page, "bad pte"); 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 545 vma->vm_file, 546 vma->vm_ops ? vma->vm_ops->fault : NULL, 547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 548 mapping ? mapping->a_ops->readpage : NULL); 549 dump_stack(); 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 551 } 552 553 /* 554 * vm_normal_page -- This function gets the "struct page" associated with a pte. 555 * 556 * "Special" mappings do not wish to be associated with a "struct page" (either 557 * it doesn't exist, or it exists but they don't want to touch it). In this 558 * case, NULL is returned here. "Normal" mappings do have a struct page. 559 * 560 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 561 * pte bit, in which case this function is trivial. Secondly, an architecture 562 * may not have a spare pte bit, which requires a more complicated scheme, 563 * described below. 564 * 565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 566 * special mapping (even if there are underlying and valid "struct pages"). 567 * COWed pages of a VM_PFNMAP are always normal. 568 * 569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 572 * mapping will always honor the rule 573 * 574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 575 * 576 * And for normal mappings this is false. 577 * 578 * This restricts such mappings to be a linear translation from virtual address 579 * to pfn. To get around this restriction, we allow arbitrary mappings so long 580 * as the vma is not a COW mapping; in that case, we know that all ptes are 581 * special (because none can have been COWed). 582 * 583 * 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 585 * 586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 587 * page" backing, however the difference is that _all_ pages with a struct 588 * page (that is, those where pfn_valid is true) are refcounted and considered 589 * normal pages by the VM. The disadvantage is that pages are refcounted 590 * (which can be slower and simply not an option for some PFNMAP users). The 591 * advantage is that we don't have to follow the strict linearity rule of 592 * PFNMAP mappings in order to support COWable mappings. 593 * 594 */ 595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 596 pte_t pte) 597 { 598 unsigned long pfn = pte_pfn(pte); 599 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 601 if (likely(!pte_special(pte))) 602 goto check_pfn; 603 if (vma->vm_ops && vma->vm_ops->find_special_page) 604 return vma->vm_ops->find_special_page(vma, addr); 605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 606 return NULL; 607 if (is_zero_pfn(pfn)) 608 return NULL; 609 if (pte_devmap(pte)) 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 652 pmd_t pmd) 653 { 654 unsigned long pfn = pmd_pfn(pmd); 655 656 /* 657 * There is no pmd_special() but there may be special pmds, e.g. 658 * in a direct-access (dax) mapping, so let's just replicate the 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 660 */ 661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 662 if (vma->vm_flags & VM_MIXEDMAP) { 663 if (!pfn_valid(pfn)) 664 return NULL; 665 goto out; 666 } else { 667 unsigned long off; 668 off = (addr - vma->vm_start) >> PAGE_SHIFT; 669 if (pfn == vma->vm_pgoff + off) 670 return NULL; 671 if (!is_cow_mapping(vma->vm_flags)) 672 return NULL; 673 } 674 } 675 676 if (pmd_devmap(pmd)) 677 return NULL; 678 if (is_huge_zero_pmd(pmd)) 679 return NULL; 680 if (unlikely(pfn > highest_memmap_pfn)) 681 return NULL; 682 683 /* 684 * NOTE! We still have PageReserved() pages in the page tables. 685 * eg. VDSO mappings can cause them to exist. 686 */ 687 out: 688 return pfn_to_page(pfn); 689 } 690 #endif 691 692 /* 693 * copy one vm_area from one task to the other. Assumes the page tables 694 * already present in the new task to be cleared in the whole range 695 * covered by this vma. 696 */ 697 698 static unsigned long 699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 701 unsigned long addr, int *rss) 702 { 703 unsigned long vm_flags = vma->vm_flags; 704 pte_t pte = *src_pte; 705 struct page *page; 706 swp_entry_t entry = pte_to_swp_entry(pte); 707 708 if (likely(!non_swap_entry(entry))) { 709 if (swap_duplicate(entry) < 0) 710 return entry.val; 711 712 /* make sure dst_mm is on swapoff's mmlist. */ 713 if (unlikely(list_empty(&dst_mm->mmlist))) { 714 spin_lock(&mmlist_lock); 715 if (list_empty(&dst_mm->mmlist)) 716 list_add(&dst_mm->mmlist, 717 &src_mm->mmlist); 718 spin_unlock(&mmlist_lock); 719 } 720 rss[MM_SWAPENTS]++; 721 } else if (is_migration_entry(entry)) { 722 page = migration_entry_to_page(entry); 723 724 rss[mm_counter(page)]++; 725 726 if (is_write_migration_entry(entry) && 727 is_cow_mapping(vm_flags)) { 728 /* 729 * COW mappings require pages in both 730 * parent and child to be set to read. 731 */ 732 make_migration_entry_read(&entry); 733 pte = swp_entry_to_pte(entry); 734 if (pte_swp_soft_dirty(*src_pte)) 735 pte = pte_swp_mksoft_dirty(pte); 736 if (pte_swp_uffd_wp(*src_pte)) 737 pte = pte_swp_mkuffd_wp(pte); 738 set_pte_at(src_mm, addr, src_pte, pte); 739 } 740 } else if (is_device_private_entry(entry)) { 741 page = device_private_entry_to_page(entry); 742 743 /* 744 * Update rss count even for unaddressable pages, as 745 * they should treated just like normal pages in this 746 * respect. 747 * 748 * We will likely want to have some new rss counters 749 * for unaddressable pages, at some point. But for now 750 * keep things as they are. 751 */ 752 get_page(page); 753 rss[mm_counter(page)]++; 754 page_dup_rmap(page, false); 755 756 /* 757 * We do not preserve soft-dirty information, because so 758 * far, checkpoint/restore is the only feature that 759 * requires that. And checkpoint/restore does not work 760 * when a device driver is involved (you cannot easily 761 * save and restore device driver state). 762 */ 763 if (is_write_device_private_entry(entry) && 764 is_cow_mapping(vm_flags)) { 765 make_device_private_entry_read(&entry); 766 pte = swp_entry_to_pte(entry); 767 if (pte_swp_uffd_wp(*src_pte)) 768 pte = pte_swp_mkuffd_wp(pte); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 set_pte_at(dst_mm, addr, dst_pte, pte); 773 return 0; 774 } 775 776 /* 777 * Copy a present and normal page if necessary. 778 * 779 * NOTE! The usual case is that this doesn't need to do 780 * anything, and can just return a positive value. That 781 * will let the caller know that it can just increase 782 * the page refcount and re-use the pte the traditional 783 * way. 784 * 785 * But _if_ we need to copy it because it needs to be 786 * pinned in the parent (and the child should get its own 787 * copy rather than just a reference to the same page), 788 * we'll do that here and return zero to let the caller 789 * know we're done. 790 * 791 * And if we need a pre-allocated page but don't yet have 792 * one, return a negative error to let the preallocation 793 * code know so that it can do so outside the page table 794 * lock. 795 */ 796 static inline int 797 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 798 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 799 struct page **prealloc, pte_t pte, struct page *page) 800 { 801 struct mm_struct *src_mm = src_vma->vm_mm; 802 struct page *new_page; 803 804 if (!is_cow_mapping(src_vma->vm_flags)) 805 return 1; 806 807 /* 808 * What we want to do is to check whether this page may 809 * have been pinned by the parent process. If so, 810 * instead of wrprotect the pte on both sides, we copy 811 * the page immediately so that we'll always guarantee 812 * the pinned page won't be randomly replaced in the 813 * future. 814 * 815 * The page pinning checks are just "has this mm ever 816 * seen pinning", along with the (inexact) check of 817 * the page count. That might give false positives for 818 * for pinning, but it will work correctly. 819 */ 820 if (likely(!atomic_read(&src_mm->has_pinned))) 821 return 1; 822 if (likely(!page_maybe_dma_pinned(page))) 823 return 1; 824 825 new_page = *prealloc; 826 if (!new_page) 827 return -EAGAIN; 828 829 /* 830 * We have a prealloc page, all good! Take it 831 * over and copy the page & arm it. 832 */ 833 *prealloc = NULL; 834 copy_user_highpage(new_page, page, addr, src_vma); 835 __SetPageUptodate(new_page); 836 page_add_new_anon_rmap(new_page, dst_vma, addr, false); 837 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 838 rss[mm_counter(new_page)]++; 839 840 /* All done, just insert the new page copy in the child */ 841 pte = mk_pte(new_page, dst_vma->vm_page_prot); 842 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 843 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 844 return 0; 845 } 846 847 /* 848 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 849 * is required to copy this pte. 850 */ 851 static inline int 852 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 853 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 854 struct page **prealloc) 855 { 856 struct mm_struct *src_mm = src_vma->vm_mm; 857 unsigned long vm_flags = src_vma->vm_flags; 858 pte_t pte = *src_pte; 859 struct page *page; 860 861 page = vm_normal_page(src_vma, addr, pte); 862 if (page) { 863 int retval; 864 865 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 866 addr, rss, prealloc, pte, page); 867 if (retval <= 0) 868 return retval; 869 870 get_page(page); 871 page_dup_rmap(page, false); 872 rss[mm_counter(page)]++; 873 } 874 875 /* 876 * If it's a COW mapping, write protect it both 877 * in the parent and the child 878 */ 879 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 880 ptep_set_wrprotect(src_mm, addr, src_pte); 881 pte = pte_wrprotect(pte); 882 } 883 884 /* 885 * If it's a shared mapping, mark it clean in 886 * the child 887 */ 888 if (vm_flags & VM_SHARED) 889 pte = pte_mkclean(pte); 890 pte = pte_mkold(pte); 891 892 /* 893 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 894 * does not have the VM_UFFD_WP, which means that the uffd 895 * fork event is not enabled. 896 */ 897 if (!(vm_flags & VM_UFFD_WP)) 898 pte = pte_clear_uffd_wp(pte); 899 900 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 901 return 0; 902 } 903 904 static inline struct page * 905 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 906 unsigned long addr) 907 { 908 struct page *new_page; 909 910 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 911 if (!new_page) 912 return NULL; 913 914 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { 915 put_page(new_page); 916 return NULL; 917 } 918 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 919 920 return new_page; 921 } 922 923 static int 924 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 925 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 926 unsigned long end) 927 { 928 struct mm_struct *dst_mm = dst_vma->vm_mm; 929 struct mm_struct *src_mm = src_vma->vm_mm; 930 pte_t *orig_src_pte, *orig_dst_pte; 931 pte_t *src_pte, *dst_pte; 932 spinlock_t *src_ptl, *dst_ptl; 933 int progress, ret = 0; 934 int rss[NR_MM_COUNTERS]; 935 swp_entry_t entry = (swp_entry_t){0}; 936 struct page *prealloc = NULL; 937 938 again: 939 progress = 0; 940 init_rss_vec(rss); 941 942 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 943 if (!dst_pte) { 944 ret = -ENOMEM; 945 goto out; 946 } 947 src_pte = pte_offset_map(src_pmd, addr); 948 src_ptl = pte_lockptr(src_mm, src_pmd); 949 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 950 orig_src_pte = src_pte; 951 orig_dst_pte = dst_pte; 952 arch_enter_lazy_mmu_mode(); 953 954 do { 955 /* 956 * We are holding two locks at this point - either of them 957 * could generate latencies in another task on another CPU. 958 */ 959 if (progress >= 32) { 960 progress = 0; 961 if (need_resched() || 962 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 963 break; 964 } 965 if (pte_none(*src_pte)) { 966 progress++; 967 continue; 968 } 969 if (unlikely(!pte_present(*src_pte))) { 970 entry.val = copy_nonpresent_pte(dst_mm, src_mm, 971 dst_pte, src_pte, 972 src_vma, addr, rss); 973 if (entry.val) 974 break; 975 progress += 8; 976 continue; 977 } 978 /* copy_present_pte() will clear `*prealloc' if consumed */ 979 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 980 addr, rss, &prealloc); 981 /* 982 * If we need a pre-allocated page for this pte, drop the 983 * locks, allocate, and try again. 984 */ 985 if (unlikely(ret == -EAGAIN)) 986 break; 987 if (unlikely(prealloc)) { 988 /* 989 * pre-alloc page cannot be reused by next time so as 990 * to strictly follow mempolicy (e.g., alloc_page_vma() 991 * will allocate page according to address). This 992 * could only happen if one pinned pte changed. 993 */ 994 put_page(prealloc); 995 prealloc = NULL; 996 } 997 progress += 8; 998 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 999 1000 arch_leave_lazy_mmu_mode(); 1001 spin_unlock(src_ptl); 1002 pte_unmap(orig_src_pte); 1003 add_mm_rss_vec(dst_mm, rss); 1004 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1005 cond_resched(); 1006 1007 if (entry.val) { 1008 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1009 ret = -ENOMEM; 1010 goto out; 1011 } 1012 entry.val = 0; 1013 } else if (ret) { 1014 WARN_ON_ONCE(ret != -EAGAIN); 1015 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1016 if (!prealloc) 1017 return -ENOMEM; 1018 /* We've captured and resolved the error. Reset, try again. */ 1019 ret = 0; 1020 } 1021 if (addr != end) 1022 goto again; 1023 out: 1024 if (unlikely(prealloc)) 1025 put_page(prealloc); 1026 return ret; 1027 } 1028 1029 static inline int 1030 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1031 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1032 unsigned long end) 1033 { 1034 struct mm_struct *dst_mm = dst_vma->vm_mm; 1035 struct mm_struct *src_mm = src_vma->vm_mm; 1036 pmd_t *src_pmd, *dst_pmd; 1037 unsigned long next; 1038 1039 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1040 if (!dst_pmd) 1041 return -ENOMEM; 1042 src_pmd = pmd_offset(src_pud, addr); 1043 do { 1044 next = pmd_addr_end(addr, end); 1045 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1046 || pmd_devmap(*src_pmd)) { 1047 int err; 1048 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1049 err = copy_huge_pmd(dst_mm, src_mm, 1050 dst_pmd, src_pmd, addr, src_vma); 1051 if (err == -ENOMEM) 1052 return -ENOMEM; 1053 if (!err) 1054 continue; 1055 /* fall through */ 1056 } 1057 if (pmd_none_or_clear_bad(src_pmd)) 1058 continue; 1059 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1060 addr, next)) 1061 return -ENOMEM; 1062 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1063 return 0; 1064 } 1065 1066 static inline int 1067 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1068 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1069 unsigned long end) 1070 { 1071 struct mm_struct *dst_mm = dst_vma->vm_mm; 1072 struct mm_struct *src_mm = src_vma->vm_mm; 1073 pud_t *src_pud, *dst_pud; 1074 unsigned long next; 1075 1076 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1077 if (!dst_pud) 1078 return -ENOMEM; 1079 src_pud = pud_offset(src_p4d, addr); 1080 do { 1081 next = pud_addr_end(addr, end); 1082 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1083 int err; 1084 1085 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1086 err = copy_huge_pud(dst_mm, src_mm, 1087 dst_pud, src_pud, addr, src_vma); 1088 if (err == -ENOMEM) 1089 return -ENOMEM; 1090 if (!err) 1091 continue; 1092 /* fall through */ 1093 } 1094 if (pud_none_or_clear_bad(src_pud)) 1095 continue; 1096 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1097 addr, next)) 1098 return -ENOMEM; 1099 } while (dst_pud++, src_pud++, addr = next, addr != end); 1100 return 0; 1101 } 1102 1103 static inline int 1104 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1105 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1106 unsigned long end) 1107 { 1108 struct mm_struct *dst_mm = dst_vma->vm_mm; 1109 p4d_t *src_p4d, *dst_p4d; 1110 unsigned long next; 1111 1112 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1113 if (!dst_p4d) 1114 return -ENOMEM; 1115 src_p4d = p4d_offset(src_pgd, addr); 1116 do { 1117 next = p4d_addr_end(addr, end); 1118 if (p4d_none_or_clear_bad(src_p4d)) 1119 continue; 1120 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1121 addr, next)) 1122 return -ENOMEM; 1123 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1124 return 0; 1125 } 1126 1127 int 1128 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1129 { 1130 pgd_t *src_pgd, *dst_pgd; 1131 unsigned long next; 1132 unsigned long addr = src_vma->vm_start; 1133 unsigned long end = src_vma->vm_end; 1134 struct mm_struct *dst_mm = dst_vma->vm_mm; 1135 struct mm_struct *src_mm = src_vma->vm_mm; 1136 struct mmu_notifier_range range; 1137 bool is_cow; 1138 int ret; 1139 1140 /* 1141 * Don't copy ptes where a page fault will fill them correctly. 1142 * Fork becomes much lighter when there are big shared or private 1143 * readonly mappings. The tradeoff is that copy_page_range is more 1144 * efficient than faulting. 1145 */ 1146 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1147 !src_vma->anon_vma) 1148 return 0; 1149 1150 if (is_vm_hugetlb_page(src_vma)) 1151 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1152 1153 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1154 /* 1155 * We do not free on error cases below as remove_vma 1156 * gets called on error from higher level routine 1157 */ 1158 ret = track_pfn_copy(src_vma); 1159 if (ret) 1160 return ret; 1161 } 1162 1163 /* 1164 * We need to invalidate the secondary MMU mappings only when 1165 * there could be a permission downgrade on the ptes of the 1166 * parent mm. And a permission downgrade will only happen if 1167 * is_cow_mapping() returns true. 1168 */ 1169 is_cow = is_cow_mapping(src_vma->vm_flags); 1170 1171 if (is_cow) { 1172 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1173 0, src_vma, src_mm, addr, end); 1174 mmu_notifier_invalidate_range_start(&range); 1175 } 1176 1177 ret = 0; 1178 dst_pgd = pgd_offset(dst_mm, addr); 1179 src_pgd = pgd_offset(src_mm, addr); 1180 do { 1181 next = pgd_addr_end(addr, end); 1182 if (pgd_none_or_clear_bad(src_pgd)) 1183 continue; 1184 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1185 addr, next))) { 1186 ret = -ENOMEM; 1187 break; 1188 } 1189 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1190 1191 if (is_cow) 1192 mmu_notifier_invalidate_range_end(&range); 1193 return ret; 1194 } 1195 1196 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1197 struct vm_area_struct *vma, pmd_t *pmd, 1198 unsigned long addr, unsigned long end, 1199 struct zap_details *details) 1200 { 1201 struct mm_struct *mm = tlb->mm; 1202 int force_flush = 0; 1203 int rss[NR_MM_COUNTERS]; 1204 spinlock_t *ptl; 1205 pte_t *start_pte; 1206 pte_t *pte; 1207 swp_entry_t entry; 1208 1209 tlb_change_page_size(tlb, PAGE_SIZE); 1210 again: 1211 init_rss_vec(rss); 1212 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1213 pte = start_pte; 1214 flush_tlb_batched_pending(mm); 1215 arch_enter_lazy_mmu_mode(); 1216 do { 1217 pte_t ptent = *pte; 1218 if (pte_none(ptent)) 1219 continue; 1220 1221 if (need_resched()) 1222 break; 1223 1224 if (pte_present(ptent)) { 1225 struct page *page; 1226 1227 page = vm_normal_page(vma, addr, ptent); 1228 if (unlikely(details) && page) { 1229 /* 1230 * unmap_shared_mapping_pages() wants to 1231 * invalidate cache without truncating: 1232 * unmap shared but keep private pages. 1233 */ 1234 if (details->check_mapping && 1235 details->check_mapping != page_rmapping(page)) 1236 continue; 1237 } 1238 ptent = ptep_get_and_clear_full(mm, addr, pte, 1239 tlb->fullmm); 1240 tlb_remove_tlb_entry(tlb, pte, addr); 1241 if (unlikely(!page)) 1242 continue; 1243 1244 if (!PageAnon(page)) { 1245 if (pte_dirty(ptent)) { 1246 force_flush = 1; 1247 set_page_dirty(page); 1248 } 1249 if (pte_young(ptent) && 1250 likely(!(vma->vm_flags & VM_SEQ_READ))) 1251 mark_page_accessed(page); 1252 } 1253 rss[mm_counter(page)]--; 1254 page_remove_rmap(page, false); 1255 if (unlikely(page_mapcount(page) < 0)) 1256 print_bad_pte(vma, addr, ptent, page); 1257 if (unlikely(__tlb_remove_page(tlb, page))) { 1258 force_flush = 1; 1259 addr += PAGE_SIZE; 1260 break; 1261 } 1262 continue; 1263 } 1264 1265 entry = pte_to_swp_entry(ptent); 1266 if (is_device_private_entry(entry)) { 1267 struct page *page = device_private_entry_to_page(entry); 1268 1269 if (unlikely(details && details->check_mapping)) { 1270 /* 1271 * unmap_shared_mapping_pages() wants to 1272 * invalidate cache without truncating: 1273 * unmap shared but keep private pages. 1274 */ 1275 if (details->check_mapping != 1276 page_rmapping(page)) 1277 continue; 1278 } 1279 1280 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1281 rss[mm_counter(page)]--; 1282 page_remove_rmap(page, false); 1283 put_page(page); 1284 continue; 1285 } 1286 1287 /* If details->check_mapping, we leave swap entries. */ 1288 if (unlikely(details)) 1289 continue; 1290 1291 if (!non_swap_entry(entry)) 1292 rss[MM_SWAPENTS]--; 1293 else if (is_migration_entry(entry)) { 1294 struct page *page; 1295 1296 page = migration_entry_to_page(entry); 1297 rss[mm_counter(page)]--; 1298 } 1299 if (unlikely(!free_swap_and_cache(entry))) 1300 print_bad_pte(vma, addr, ptent, NULL); 1301 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1302 } while (pte++, addr += PAGE_SIZE, addr != end); 1303 1304 add_mm_rss_vec(mm, rss); 1305 arch_leave_lazy_mmu_mode(); 1306 1307 /* Do the actual TLB flush before dropping ptl */ 1308 if (force_flush) 1309 tlb_flush_mmu_tlbonly(tlb); 1310 pte_unmap_unlock(start_pte, ptl); 1311 1312 /* 1313 * If we forced a TLB flush (either due to running out of 1314 * batch buffers or because we needed to flush dirty TLB 1315 * entries before releasing the ptl), free the batched 1316 * memory too. Restart if we didn't do everything. 1317 */ 1318 if (force_flush) { 1319 force_flush = 0; 1320 tlb_flush_mmu(tlb); 1321 } 1322 1323 if (addr != end) { 1324 cond_resched(); 1325 goto again; 1326 } 1327 1328 return addr; 1329 } 1330 1331 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1332 struct vm_area_struct *vma, pud_t *pud, 1333 unsigned long addr, unsigned long end, 1334 struct zap_details *details) 1335 { 1336 pmd_t *pmd; 1337 unsigned long next; 1338 1339 pmd = pmd_offset(pud, addr); 1340 do { 1341 next = pmd_addr_end(addr, end); 1342 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1343 if (next - addr != HPAGE_PMD_SIZE) 1344 __split_huge_pmd(vma, pmd, addr, false, NULL); 1345 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1346 goto next; 1347 /* fall through */ 1348 } 1349 /* 1350 * Here there can be other concurrent MADV_DONTNEED or 1351 * trans huge page faults running, and if the pmd is 1352 * none or trans huge it can change under us. This is 1353 * because MADV_DONTNEED holds the mmap_lock in read 1354 * mode. 1355 */ 1356 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1357 goto next; 1358 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1359 next: 1360 cond_resched(); 1361 } while (pmd++, addr = next, addr != end); 1362 1363 return addr; 1364 } 1365 1366 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1367 struct vm_area_struct *vma, p4d_t *p4d, 1368 unsigned long addr, unsigned long end, 1369 struct zap_details *details) 1370 { 1371 pud_t *pud; 1372 unsigned long next; 1373 1374 pud = pud_offset(p4d, addr); 1375 do { 1376 next = pud_addr_end(addr, end); 1377 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1378 if (next - addr != HPAGE_PUD_SIZE) { 1379 mmap_assert_locked(tlb->mm); 1380 split_huge_pud(vma, pud, addr); 1381 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1382 goto next; 1383 /* fall through */ 1384 } 1385 if (pud_none_or_clear_bad(pud)) 1386 continue; 1387 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1388 next: 1389 cond_resched(); 1390 } while (pud++, addr = next, addr != end); 1391 1392 return addr; 1393 } 1394 1395 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1396 struct vm_area_struct *vma, pgd_t *pgd, 1397 unsigned long addr, unsigned long end, 1398 struct zap_details *details) 1399 { 1400 p4d_t *p4d; 1401 unsigned long next; 1402 1403 p4d = p4d_offset(pgd, addr); 1404 do { 1405 next = p4d_addr_end(addr, end); 1406 if (p4d_none_or_clear_bad(p4d)) 1407 continue; 1408 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1409 } while (p4d++, addr = next, addr != end); 1410 1411 return addr; 1412 } 1413 1414 void unmap_page_range(struct mmu_gather *tlb, 1415 struct vm_area_struct *vma, 1416 unsigned long addr, unsigned long end, 1417 struct zap_details *details) 1418 { 1419 pgd_t *pgd; 1420 unsigned long next; 1421 1422 BUG_ON(addr >= end); 1423 tlb_start_vma(tlb, vma); 1424 pgd = pgd_offset(vma->vm_mm, addr); 1425 do { 1426 next = pgd_addr_end(addr, end); 1427 if (pgd_none_or_clear_bad(pgd)) 1428 continue; 1429 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1430 } while (pgd++, addr = next, addr != end); 1431 tlb_end_vma(tlb, vma); 1432 } 1433 1434 1435 static void unmap_single_vma(struct mmu_gather *tlb, 1436 struct vm_area_struct *vma, unsigned long start_addr, 1437 unsigned long end_addr, 1438 struct zap_details *details) 1439 { 1440 unsigned long start = max(vma->vm_start, start_addr); 1441 unsigned long end; 1442 1443 if (start >= vma->vm_end) 1444 return; 1445 end = min(vma->vm_end, end_addr); 1446 if (end <= vma->vm_start) 1447 return; 1448 1449 if (vma->vm_file) 1450 uprobe_munmap(vma, start, end); 1451 1452 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1453 untrack_pfn(vma, 0, 0); 1454 1455 if (start != end) { 1456 if (unlikely(is_vm_hugetlb_page(vma))) { 1457 /* 1458 * It is undesirable to test vma->vm_file as it 1459 * should be non-null for valid hugetlb area. 1460 * However, vm_file will be NULL in the error 1461 * cleanup path of mmap_region. When 1462 * hugetlbfs ->mmap method fails, 1463 * mmap_region() nullifies vma->vm_file 1464 * before calling this function to clean up. 1465 * Since no pte has actually been setup, it is 1466 * safe to do nothing in this case. 1467 */ 1468 if (vma->vm_file) { 1469 i_mmap_lock_write(vma->vm_file->f_mapping); 1470 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1471 i_mmap_unlock_write(vma->vm_file->f_mapping); 1472 } 1473 } else 1474 unmap_page_range(tlb, vma, start, end, details); 1475 } 1476 } 1477 1478 /** 1479 * unmap_vmas - unmap a range of memory covered by a list of vma's 1480 * @tlb: address of the caller's struct mmu_gather 1481 * @vma: the starting vma 1482 * @start_addr: virtual address at which to start unmapping 1483 * @end_addr: virtual address at which to end unmapping 1484 * 1485 * Unmap all pages in the vma list. 1486 * 1487 * Only addresses between `start' and `end' will be unmapped. 1488 * 1489 * The VMA list must be sorted in ascending virtual address order. 1490 * 1491 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1492 * range after unmap_vmas() returns. So the only responsibility here is to 1493 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1494 * drops the lock and schedules. 1495 */ 1496 void unmap_vmas(struct mmu_gather *tlb, 1497 struct vm_area_struct *vma, unsigned long start_addr, 1498 unsigned long end_addr) 1499 { 1500 struct mmu_notifier_range range; 1501 1502 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1503 start_addr, end_addr); 1504 mmu_notifier_invalidate_range_start(&range); 1505 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1506 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1507 mmu_notifier_invalidate_range_end(&range); 1508 } 1509 1510 /** 1511 * zap_page_range - remove user pages in a given range 1512 * @vma: vm_area_struct holding the applicable pages 1513 * @start: starting address of pages to zap 1514 * @size: number of bytes to zap 1515 * 1516 * Caller must protect the VMA list 1517 */ 1518 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1519 unsigned long size) 1520 { 1521 struct mmu_notifier_range range; 1522 struct mmu_gather tlb; 1523 1524 lru_add_drain(); 1525 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1526 start, start + size); 1527 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1528 update_hiwater_rss(vma->vm_mm); 1529 mmu_notifier_invalidate_range_start(&range); 1530 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1531 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1532 mmu_notifier_invalidate_range_end(&range); 1533 tlb_finish_mmu(&tlb, start, range.end); 1534 } 1535 1536 /** 1537 * zap_page_range_single - remove user pages in a given range 1538 * @vma: vm_area_struct holding the applicable pages 1539 * @address: starting address of pages to zap 1540 * @size: number of bytes to zap 1541 * @details: details of shared cache invalidation 1542 * 1543 * The range must fit into one VMA. 1544 */ 1545 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1546 unsigned long size, struct zap_details *details) 1547 { 1548 struct mmu_notifier_range range; 1549 struct mmu_gather tlb; 1550 1551 lru_add_drain(); 1552 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1553 address, address + size); 1554 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1555 update_hiwater_rss(vma->vm_mm); 1556 mmu_notifier_invalidate_range_start(&range); 1557 unmap_single_vma(&tlb, vma, address, range.end, details); 1558 mmu_notifier_invalidate_range_end(&range); 1559 tlb_finish_mmu(&tlb, address, range.end); 1560 } 1561 1562 /** 1563 * zap_vma_ptes - remove ptes mapping the vma 1564 * @vma: vm_area_struct holding ptes to be zapped 1565 * @address: starting address of pages to zap 1566 * @size: number of bytes to zap 1567 * 1568 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1569 * 1570 * The entire address range must be fully contained within the vma. 1571 * 1572 */ 1573 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1574 unsigned long size) 1575 { 1576 if (address < vma->vm_start || address + size > vma->vm_end || 1577 !(vma->vm_flags & VM_PFNMAP)) 1578 return; 1579 1580 zap_page_range_single(vma, address, size, NULL); 1581 } 1582 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1583 1584 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1585 { 1586 pgd_t *pgd; 1587 p4d_t *p4d; 1588 pud_t *pud; 1589 pmd_t *pmd; 1590 1591 pgd = pgd_offset(mm, addr); 1592 p4d = p4d_alloc(mm, pgd, addr); 1593 if (!p4d) 1594 return NULL; 1595 pud = pud_alloc(mm, p4d, addr); 1596 if (!pud) 1597 return NULL; 1598 pmd = pmd_alloc(mm, pud, addr); 1599 if (!pmd) 1600 return NULL; 1601 1602 VM_BUG_ON(pmd_trans_huge(*pmd)); 1603 return pmd; 1604 } 1605 1606 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1607 spinlock_t **ptl) 1608 { 1609 pmd_t *pmd = walk_to_pmd(mm, addr); 1610 1611 if (!pmd) 1612 return NULL; 1613 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1614 } 1615 1616 static int validate_page_before_insert(struct page *page) 1617 { 1618 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1619 return -EINVAL; 1620 flush_dcache_page(page); 1621 return 0; 1622 } 1623 1624 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1625 unsigned long addr, struct page *page, pgprot_t prot) 1626 { 1627 if (!pte_none(*pte)) 1628 return -EBUSY; 1629 /* Ok, finally just insert the thing.. */ 1630 get_page(page); 1631 inc_mm_counter_fast(mm, mm_counter_file(page)); 1632 page_add_file_rmap(page, false); 1633 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1634 return 0; 1635 } 1636 1637 /* 1638 * This is the old fallback for page remapping. 1639 * 1640 * For historical reasons, it only allows reserved pages. Only 1641 * old drivers should use this, and they needed to mark their 1642 * pages reserved for the old functions anyway. 1643 */ 1644 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1645 struct page *page, pgprot_t prot) 1646 { 1647 struct mm_struct *mm = vma->vm_mm; 1648 int retval; 1649 pte_t *pte; 1650 spinlock_t *ptl; 1651 1652 retval = validate_page_before_insert(page); 1653 if (retval) 1654 goto out; 1655 retval = -ENOMEM; 1656 pte = get_locked_pte(mm, addr, &ptl); 1657 if (!pte) 1658 goto out; 1659 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1660 pte_unmap_unlock(pte, ptl); 1661 out: 1662 return retval; 1663 } 1664 1665 #ifdef pte_index 1666 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1667 unsigned long addr, struct page *page, pgprot_t prot) 1668 { 1669 int err; 1670 1671 if (!page_count(page)) 1672 return -EINVAL; 1673 err = validate_page_before_insert(page); 1674 if (err) 1675 return err; 1676 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1677 } 1678 1679 /* insert_pages() amortizes the cost of spinlock operations 1680 * when inserting pages in a loop. Arch *must* define pte_index. 1681 */ 1682 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1683 struct page **pages, unsigned long *num, pgprot_t prot) 1684 { 1685 pmd_t *pmd = NULL; 1686 pte_t *start_pte, *pte; 1687 spinlock_t *pte_lock; 1688 struct mm_struct *const mm = vma->vm_mm; 1689 unsigned long curr_page_idx = 0; 1690 unsigned long remaining_pages_total = *num; 1691 unsigned long pages_to_write_in_pmd; 1692 int ret; 1693 more: 1694 ret = -EFAULT; 1695 pmd = walk_to_pmd(mm, addr); 1696 if (!pmd) 1697 goto out; 1698 1699 pages_to_write_in_pmd = min_t(unsigned long, 1700 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1701 1702 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1703 ret = -ENOMEM; 1704 if (pte_alloc(mm, pmd)) 1705 goto out; 1706 1707 while (pages_to_write_in_pmd) { 1708 int pte_idx = 0; 1709 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1710 1711 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1712 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1713 int err = insert_page_in_batch_locked(mm, pte, 1714 addr, pages[curr_page_idx], prot); 1715 if (unlikely(err)) { 1716 pte_unmap_unlock(start_pte, pte_lock); 1717 ret = err; 1718 remaining_pages_total -= pte_idx; 1719 goto out; 1720 } 1721 addr += PAGE_SIZE; 1722 ++curr_page_idx; 1723 } 1724 pte_unmap_unlock(start_pte, pte_lock); 1725 pages_to_write_in_pmd -= batch_size; 1726 remaining_pages_total -= batch_size; 1727 } 1728 if (remaining_pages_total) 1729 goto more; 1730 ret = 0; 1731 out: 1732 *num = remaining_pages_total; 1733 return ret; 1734 } 1735 #endif /* ifdef pte_index */ 1736 1737 /** 1738 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1739 * @vma: user vma to map to 1740 * @addr: target start user address of these pages 1741 * @pages: source kernel pages 1742 * @num: in: number of pages to map. out: number of pages that were *not* 1743 * mapped. (0 means all pages were successfully mapped). 1744 * 1745 * Preferred over vm_insert_page() when inserting multiple pages. 1746 * 1747 * In case of error, we may have mapped a subset of the provided 1748 * pages. It is the caller's responsibility to account for this case. 1749 * 1750 * The same restrictions apply as in vm_insert_page(). 1751 */ 1752 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1753 struct page **pages, unsigned long *num) 1754 { 1755 #ifdef pte_index 1756 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1757 1758 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1759 return -EFAULT; 1760 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1761 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1762 BUG_ON(vma->vm_flags & VM_PFNMAP); 1763 vma->vm_flags |= VM_MIXEDMAP; 1764 } 1765 /* Defer page refcount checking till we're about to map that page. */ 1766 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1767 #else 1768 unsigned long idx = 0, pgcount = *num; 1769 int err = -EINVAL; 1770 1771 for (; idx < pgcount; ++idx) { 1772 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1773 if (err) 1774 break; 1775 } 1776 *num = pgcount - idx; 1777 return err; 1778 #endif /* ifdef pte_index */ 1779 } 1780 EXPORT_SYMBOL(vm_insert_pages); 1781 1782 /** 1783 * vm_insert_page - insert single page into user vma 1784 * @vma: user vma to map to 1785 * @addr: target user address of this page 1786 * @page: source kernel page 1787 * 1788 * This allows drivers to insert individual pages they've allocated 1789 * into a user vma. 1790 * 1791 * The page has to be a nice clean _individual_ kernel allocation. 1792 * If you allocate a compound page, you need to have marked it as 1793 * such (__GFP_COMP), or manually just split the page up yourself 1794 * (see split_page()). 1795 * 1796 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1797 * took an arbitrary page protection parameter. This doesn't allow 1798 * that. Your vma protection will have to be set up correctly, which 1799 * means that if you want a shared writable mapping, you'd better 1800 * ask for a shared writable mapping! 1801 * 1802 * The page does not need to be reserved. 1803 * 1804 * Usually this function is called from f_op->mmap() handler 1805 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1806 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1807 * function from other places, for example from page-fault handler. 1808 * 1809 * Return: %0 on success, negative error code otherwise. 1810 */ 1811 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1812 struct page *page) 1813 { 1814 if (addr < vma->vm_start || addr >= vma->vm_end) 1815 return -EFAULT; 1816 if (!page_count(page)) 1817 return -EINVAL; 1818 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1819 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1820 BUG_ON(vma->vm_flags & VM_PFNMAP); 1821 vma->vm_flags |= VM_MIXEDMAP; 1822 } 1823 return insert_page(vma, addr, page, vma->vm_page_prot); 1824 } 1825 EXPORT_SYMBOL(vm_insert_page); 1826 1827 /* 1828 * __vm_map_pages - maps range of kernel pages into user vma 1829 * @vma: user vma to map to 1830 * @pages: pointer to array of source kernel pages 1831 * @num: number of pages in page array 1832 * @offset: user's requested vm_pgoff 1833 * 1834 * This allows drivers to map range of kernel pages into a user vma. 1835 * 1836 * Return: 0 on success and error code otherwise. 1837 */ 1838 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1839 unsigned long num, unsigned long offset) 1840 { 1841 unsigned long count = vma_pages(vma); 1842 unsigned long uaddr = vma->vm_start; 1843 int ret, i; 1844 1845 /* Fail if the user requested offset is beyond the end of the object */ 1846 if (offset >= num) 1847 return -ENXIO; 1848 1849 /* Fail if the user requested size exceeds available object size */ 1850 if (count > num - offset) 1851 return -ENXIO; 1852 1853 for (i = 0; i < count; i++) { 1854 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1855 if (ret < 0) 1856 return ret; 1857 uaddr += PAGE_SIZE; 1858 } 1859 1860 return 0; 1861 } 1862 1863 /** 1864 * vm_map_pages - maps range of kernel pages starts with non zero offset 1865 * @vma: user vma to map to 1866 * @pages: pointer to array of source kernel pages 1867 * @num: number of pages in page array 1868 * 1869 * Maps an object consisting of @num pages, catering for the user's 1870 * requested vm_pgoff 1871 * 1872 * If we fail to insert any page into the vma, the function will return 1873 * immediately leaving any previously inserted pages present. Callers 1874 * from the mmap handler may immediately return the error as their caller 1875 * will destroy the vma, removing any successfully inserted pages. Other 1876 * callers should make their own arrangements for calling unmap_region(). 1877 * 1878 * Context: Process context. Called by mmap handlers. 1879 * Return: 0 on success and error code otherwise. 1880 */ 1881 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1882 unsigned long num) 1883 { 1884 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1885 } 1886 EXPORT_SYMBOL(vm_map_pages); 1887 1888 /** 1889 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1890 * @vma: user vma to map to 1891 * @pages: pointer to array of source kernel pages 1892 * @num: number of pages in page array 1893 * 1894 * Similar to vm_map_pages(), except that it explicitly sets the offset 1895 * to 0. This function is intended for the drivers that did not consider 1896 * vm_pgoff. 1897 * 1898 * Context: Process context. Called by mmap handlers. 1899 * Return: 0 on success and error code otherwise. 1900 */ 1901 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1902 unsigned long num) 1903 { 1904 return __vm_map_pages(vma, pages, num, 0); 1905 } 1906 EXPORT_SYMBOL(vm_map_pages_zero); 1907 1908 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1909 pfn_t pfn, pgprot_t prot, bool mkwrite) 1910 { 1911 struct mm_struct *mm = vma->vm_mm; 1912 pte_t *pte, entry; 1913 spinlock_t *ptl; 1914 1915 pte = get_locked_pte(mm, addr, &ptl); 1916 if (!pte) 1917 return VM_FAULT_OOM; 1918 if (!pte_none(*pte)) { 1919 if (mkwrite) { 1920 /* 1921 * For read faults on private mappings the PFN passed 1922 * in may not match the PFN we have mapped if the 1923 * mapped PFN is a writeable COW page. In the mkwrite 1924 * case we are creating a writable PTE for a shared 1925 * mapping and we expect the PFNs to match. If they 1926 * don't match, we are likely racing with block 1927 * allocation and mapping invalidation so just skip the 1928 * update. 1929 */ 1930 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1931 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1932 goto out_unlock; 1933 } 1934 entry = pte_mkyoung(*pte); 1935 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1936 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1937 update_mmu_cache(vma, addr, pte); 1938 } 1939 goto out_unlock; 1940 } 1941 1942 /* Ok, finally just insert the thing.. */ 1943 if (pfn_t_devmap(pfn)) 1944 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1945 else 1946 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1947 1948 if (mkwrite) { 1949 entry = pte_mkyoung(entry); 1950 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1951 } 1952 1953 set_pte_at(mm, addr, pte, entry); 1954 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1955 1956 out_unlock: 1957 pte_unmap_unlock(pte, ptl); 1958 return VM_FAULT_NOPAGE; 1959 } 1960 1961 /** 1962 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1963 * @vma: user vma to map to 1964 * @addr: target user address of this page 1965 * @pfn: source kernel pfn 1966 * @pgprot: pgprot flags for the inserted page 1967 * 1968 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1969 * to override pgprot on a per-page basis. 1970 * 1971 * This only makes sense for IO mappings, and it makes no sense for 1972 * COW mappings. In general, using multiple vmas is preferable; 1973 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1974 * impractical. 1975 * 1976 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1977 * a value of @pgprot different from that of @vma->vm_page_prot. 1978 * 1979 * Context: Process context. May allocate using %GFP_KERNEL. 1980 * Return: vm_fault_t value. 1981 */ 1982 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1983 unsigned long pfn, pgprot_t pgprot) 1984 { 1985 /* 1986 * Technically, architectures with pte_special can avoid all these 1987 * restrictions (same for remap_pfn_range). However we would like 1988 * consistency in testing and feature parity among all, so we should 1989 * try to keep these invariants in place for everybody. 1990 */ 1991 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1992 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1993 (VM_PFNMAP|VM_MIXEDMAP)); 1994 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1995 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1996 1997 if (addr < vma->vm_start || addr >= vma->vm_end) 1998 return VM_FAULT_SIGBUS; 1999 2000 if (!pfn_modify_allowed(pfn, pgprot)) 2001 return VM_FAULT_SIGBUS; 2002 2003 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2004 2005 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2006 false); 2007 } 2008 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2009 2010 /** 2011 * vmf_insert_pfn - insert single pfn into user vma 2012 * @vma: user vma to map to 2013 * @addr: target user address of this page 2014 * @pfn: source kernel pfn 2015 * 2016 * Similar to vm_insert_page, this allows drivers to insert individual pages 2017 * they've allocated into a user vma. Same comments apply. 2018 * 2019 * This function should only be called from a vm_ops->fault handler, and 2020 * in that case the handler should return the result of this function. 2021 * 2022 * vma cannot be a COW mapping. 2023 * 2024 * As this is called only for pages that do not currently exist, we 2025 * do not need to flush old virtual caches or the TLB. 2026 * 2027 * Context: Process context. May allocate using %GFP_KERNEL. 2028 * Return: vm_fault_t value. 2029 */ 2030 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2031 unsigned long pfn) 2032 { 2033 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2034 } 2035 EXPORT_SYMBOL(vmf_insert_pfn); 2036 2037 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2038 { 2039 /* these checks mirror the abort conditions in vm_normal_page */ 2040 if (vma->vm_flags & VM_MIXEDMAP) 2041 return true; 2042 if (pfn_t_devmap(pfn)) 2043 return true; 2044 if (pfn_t_special(pfn)) 2045 return true; 2046 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2047 return true; 2048 return false; 2049 } 2050 2051 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2052 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2053 bool mkwrite) 2054 { 2055 int err; 2056 2057 BUG_ON(!vm_mixed_ok(vma, pfn)); 2058 2059 if (addr < vma->vm_start || addr >= vma->vm_end) 2060 return VM_FAULT_SIGBUS; 2061 2062 track_pfn_insert(vma, &pgprot, pfn); 2063 2064 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2065 return VM_FAULT_SIGBUS; 2066 2067 /* 2068 * If we don't have pte special, then we have to use the pfn_valid() 2069 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2070 * refcount the page if pfn_valid is true (hence insert_page rather 2071 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2072 * without pte special, it would there be refcounted as a normal page. 2073 */ 2074 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2075 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2076 struct page *page; 2077 2078 /* 2079 * At this point we are committed to insert_page() 2080 * regardless of whether the caller specified flags that 2081 * result in pfn_t_has_page() == false. 2082 */ 2083 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2084 err = insert_page(vma, addr, page, pgprot); 2085 } else { 2086 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2087 } 2088 2089 if (err == -ENOMEM) 2090 return VM_FAULT_OOM; 2091 if (err < 0 && err != -EBUSY) 2092 return VM_FAULT_SIGBUS; 2093 2094 return VM_FAULT_NOPAGE; 2095 } 2096 2097 /** 2098 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2099 * @vma: user vma to map to 2100 * @addr: target user address of this page 2101 * @pfn: source kernel pfn 2102 * @pgprot: pgprot flags for the inserted page 2103 * 2104 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2105 * to override pgprot on a per-page basis. 2106 * 2107 * Typically this function should be used by drivers to set caching- and 2108 * encryption bits different than those of @vma->vm_page_prot, because 2109 * the caching- or encryption mode may not be known at mmap() time. 2110 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2111 * to set caching and encryption bits for those vmas (except for COW pages). 2112 * This is ensured by core vm only modifying these page table entries using 2113 * functions that don't touch caching- or encryption bits, using pte_modify() 2114 * if needed. (See for example mprotect()). 2115 * Also when new page-table entries are created, this is only done using the 2116 * fault() callback, and never using the value of vma->vm_page_prot, 2117 * except for page-table entries that point to anonymous pages as the result 2118 * of COW. 2119 * 2120 * Context: Process context. May allocate using %GFP_KERNEL. 2121 * Return: vm_fault_t value. 2122 */ 2123 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2124 pfn_t pfn, pgprot_t pgprot) 2125 { 2126 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2127 } 2128 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2129 2130 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2131 pfn_t pfn) 2132 { 2133 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2134 } 2135 EXPORT_SYMBOL(vmf_insert_mixed); 2136 2137 /* 2138 * If the insertion of PTE failed because someone else already added a 2139 * different entry in the mean time, we treat that as success as we assume 2140 * the same entry was actually inserted. 2141 */ 2142 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2143 unsigned long addr, pfn_t pfn) 2144 { 2145 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2146 } 2147 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2148 2149 /* 2150 * maps a range of physical memory into the requested pages. the old 2151 * mappings are removed. any references to nonexistent pages results 2152 * in null mappings (currently treated as "copy-on-access") 2153 */ 2154 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2155 unsigned long addr, unsigned long end, 2156 unsigned long pfn, pgprot_t prot) 2157 { 2158 pte_t *pte; 2159 spinlock_t *ptl; 2160 int err = 0; 2161 2162 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2163 if (!pte) 2164 return -ENOMEM; 2165 arch_enter_lazy_mmu_mode(); 2166 do { 2167 BUG_ON(!pte_none(*pte)); 2168 if (!pfn_modify_allowed(pfn, prot)) { 2169 err = -EACCES; 2170 break; 2171 } 2172 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2173 pfn++; 2174 } while (pte++, addr += PAGE_SIZE, addr != end); 2175 arch_leave_lazy_mmu_mode(); 2176 pte_unmap_unlock(pte - 1, ptl); 2177 return err; 2178 } 2179 2180 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2181 unsigned long addr, unsigned long end, 2182 unsigned long pfn, pgprot_t prot) 2183 { 2184 pmd_t *pmd; 2185 unsigned long next; 2186 int err; 2187 2188 pfn -= addr >> PAGE_SHIFT; 2189 pmd = pmd_alloc(mm, pud, addr); 2190 if (!pmd) 2191 return -ENOMEM; 2192 VM_BUG_ON(pmd_trans_huge(*pmd)); 2193 do { 2194 next = pmd_addr_end(addr, end); 2195 err = remap_pte_range(mm, pmd, addr, next, 2196 pfn + (addr >> PAGE_SHIFT), prot); 2197 if (err) 2198 return err; 2199 } while (pmd++, addr = next, addr != end); 2200 return 0; 2201 } 2202 2203 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2204 unsigned long addr, unsigned long end, 2205 unsigned long pfn, pgprot_t prot) 2206 { 2207 pud_t *pud; 2208 unsigned long next; 2209 int err; 2210 2211 pfn -= addr >> PAGE_SHIFT; 2212 pud = pud_alloc(mm, p4d, addr); 2213 if (!pud) 2214 return -ENOMEM; 2215 do { 2216 next = pud_addr_end(addr, end); 2217 err = remap_pmd_range(mm, pud, addr, next, 2218 pfn + (addr >> PAGE_SHIFT), prot); 2219 if (err) 2220 return err; 2221 } while (pud++, addr = next, addr != end); 2222 return 0; 2223 } 2224 2225 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2226 unsigned long addr, unsigned long end, 2227 unsigned long pfn, pgprot_t prot) 2228 { 2229 p4d_t *p4d; 2230 unsigned long next; 2231 int err; 2232 2233 pfn -= addr >> PAGE_SHIFT; 2234 p4d = p4d_alloc(mm, pgd, addr); 2235 if (!p4d) 2236 return -ENOMEM; 2237 do { 2238 next = p4d_addr_end(addr, end); 2239 err = remap_pud_range(mm, p4d, addr, next, 2240 pfn + (addr >> PAGE_SHIFT), prot); 2241 if (err) 2242 return err; 2243 } while (p4d++, addr = next, addr != end); 2244 return 0; 2245 } 2246 2247 /** 2248 * remap_pfn_range - remap kernel memory to userspace 2249 * @vma: user vma to map to 2250 * @addr: target page aligned user address to start at 2251 * @pfn: page frame number of kernel physical memory address 2252 * @size: size of mapping area 2253 * @prot: page protection flags for this mapping 2254 * 2255 * Note: this is only safe if the mm semaphore is held when called. 2256 * 2257 * Return: %0 on success, negative error code otherwise. 2258 */ 2259 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2260 unsigned long pfn, unsigned long size, pgprot_t prot) 2261 { 2262 pgd_t *pgd; 2263 unsigned long next; 2264 unsigned long end = addr + PAGE_ALIGN(size); 2265 struct mm_struct *mm = vma->vm_mm; 2266 unsigned long remap_pfn = pfn; 2267 int err; 2268 2269 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2270 return -EINVAL; 2271 2272 /* 2273 * Physically remapped pages are special. Tell the 2274 * rest of the world about it: 2275 * VM_IO tells people not to look at these pages 2276 * (accesses can have side effects). 2277 * VM_PFNMAP tells the core MM that the base pages are just 2278 * raw PFN mappings, and do not have a "struct page" associated 2279 * with them. 2280 * VM_DONTEXPAND 2281 * Disable vma merging and expanding with mremap(). 2282 * VM_DONTDUMP 2283 * Omit vma from core dump, even when VM_IO turned off. 2284 * 2285 * There's a horrible special case to handle copy-on-write 2286 * behaviour that some programs depend on. We mark the "original" 2287 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2288 * See vm_normal_page() for details. 2289 */ 2290 if (is_cow_mapping(vma->vm_flags)) { 2291 if (addr != vma->vm_start || end != vma->vm_end) 2292 return -EINVAL; 2293 vma->vm_pgoff = pfn; 2294 } 2295 2296 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2297 if (err) 2298 return -EINVAL; 2299 2300 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2301 2302 BUG_ON(addr >= end); 2303 pfn -= addr >> PAGE_SHIFT; 2304 pgd = pgd_offset(mm, addr); 2305 flush_cache_range(vma, addr, end); 2306 do { 2307 next = pgd_addr_end(addr, end); 2308 err = remap_p4d_range(mm, pgd, addr, next, 2309 pfn + (addr >> PAGE_SHIFT), prot); 2310 if (err) 2311 break; 2312 } while (pgd++, addr = next, addr != end); 2313 2314 if (err) 2315 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2316 2317 return err; 2318 } 2319 EXPORT_SYMBOL(remap_pfn_range); 2320 2321 /** 2322 * vm_iomap_memory - remap memory to userspace 2323 * @vma: user vma to map to 2324 * @start: start of the physical memory to be mapped 2325 * @len: size of area 2326 * 2327 * This is a simplified io_remap_pfn_range() for common driver use. The 2328 * driver just needs to give us the physical memory range to be mapped, 2329 * we'll figure out the rest from the vma information. 2330 * 2331 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2332 * whatever write-combining details or similar. 2333 * 2334 * Return: %0 on success, negative error code otherwise. 2335 */ 2336 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2337 { 2338 unsigned long vm_len, pfn, pages; 2339 2340 /* Check that the physical memory area passed in looks valid */ 2341 if (start + len < start) 2342 return -EINVAL; 2343 /* 2344 * You *really* shouldn't map things that aren't page-aligned, 2345 * but we've historically allowed it because IO memory might 2346 * just have smaller alignment. 2347 */ 2348 len += start & ~PAGE_MASK; 2349 pfn = start >> PAGE_SHIFT; 2350 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2351 if (pfn + pages < pfn) 2352 return -EINVAL; 2353 2354 /* We start the mapping 'vm_pgoff' pages into the area */ 2355 if (vma->vm_pgoff > pages) 2356 return -EINVAL; 2357 pfn += vma->vm_pgoff; 2358 pages -= vma->vm_pgoff; 2359 2360 /* Can we fit all of the mapping? */ 2361 vm_len = vma->vm_end - vma->vm_start; 2362 if (vm_len >> PAGE_SHIFT > pages) 2363 return -EINVAL; 2364 2365 /* Ok, let it rip */ 2366 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2367 } 2368 EXPORT_SYMBOL(vm_iomap_memory); 2369 2370 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2371 unsigned long addr, unsigned long end, 2372 pte_fn_t fn, void *data, bool create, 2373 pgtbl_mod_mask *mask) 2374 { 2375 pte_t *pte; 2376 int err = 0; 2377 spinlock_t *ptl; 2378 2379 if (create) { 2380 pte = (mm == &init_mm) ? 2381 pte_alloc_kernel_track(pmd, addr, mask) : 2382 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2383 if (!pte) 2384 return -ENOMEM; 2385 } else { 2386 pte = (mm == &init_mm) ? 2387 pte_offset_kernel(pmd, addr) : 2388 pte_offset_map_lock(mm, pmd, addr, &ptl); 2389 } 2390 2391 BUG_ON(pmd_huge(*pmd)); 2392 2393 arch_enter_lazy_mmu_mode(); 2394 2395 do { 2396 if (create || !pte_none(*pte)) { 2397 err = fn(pte++, addr, data); 2398 if (err) 2399 break; 2400 } 2401 } while (addr += PAGE_SIZE, addr != end); 2402 *mask |= PGTBL_PTE_MODIFIED; 2403 2404 arch_leave_lazy_mmu_mode(); 2405 2406 if (mm != &init_mm) 2407 pte_unmap_unlock(pte-1, ptl); 2408 return err; 2409 } 2410 2411 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2412 unsigned long addr, unsigned long end, 2413 pte_fn_t fn, void *data, bool create, 2414 pgtbl_mod_mask *mask) 2415 { 2416 pmd_t *pmd; 2417 unsigned long next; 2418 int err = 0; 2419 2420 BUG_ON(pud_huge(*pud)); 2421 2422 if (create) { 2423 pmd = pmd_alloc_track(mm, pud, addr, mask); 2424 if (!pmd) 2425 return -ENOMEM; 2426 } else { 2427 pmd = pmd_offset(pud, addr); 2428 } 2429 do { 2430 next = pmd_addr_end(addr, end); 2431 if (create || !pmd_none_or_clear_bad(pmd)) { 2432 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2433 create, mask); 2434 if (err) 2435 break; 2436 } 2437 } while (pmd++, addr = next, addr != end); 2438 return err; 2439 } 2440 2441 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2442 unsigned long addr, unsigned long end, 2443 pte_fn_t fn, void *data, bool create, 2444 pgtbl_mod_mask *mask) 2445 { 2446 pud_t *pud; 2447 unsigned long next; 2448 int err = 0; 2449 2450 if (create) { 2451 pud = pud_alloc_track(mm, p4d, addr, mask); 2452 if (!pud) 2453 return -ENOMEM; 2454 } else { 2455 pud = pud_offset(p4d, addr); 2456 } 2457 do { 2458 next = pud_addr_end(addr, end); 2459 if (create || !pud_none_or_clear_bad(pud)) { 2460 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2461 create, mask); 2462 if (err) 2463 break; 2464 } 2465 } while (pud++, addr = next, addr != end); 2466 return err; 2467 } 2468 2469 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2470 unsigned long addr, unsigned long end, 2471 pte_fn_t fn, void *data, bool create, 2472 pgtbl_mod_mask *mask) 2473 { 2474 p4d_t *p4d; 2475 unsigned long next; 2476 int err = 0; 2477 2478 if (create) { 2479 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2480 if (!p4d) 2481 return -ENOMEM; 2482 } else { 2483 p4d = p4d_offset(pgd, addr); 2484 } 2485 do { 2486 next = p4d_addr_end(addr, end); 2487 if (create || !p4d_none_or_clear_bad(p4d)) { 2488 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2489 create, mask); 2490 if (err) 2491 break; 2492 } 2493 } while (p4d++, addr = next, addr != end); 2494 return err; 2495 } 2496 2497 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2498 unsigned long size, pte_fn_t fn, 2499 void *data, bool create) 2500 { 2501 pgd_t *pgd; 2502 unsigned long start = addr, next; 2503 unsigned long end = addr + size; 2504 pgtbl_mod_mask mask = 0; 2505 int err = 0; 2506 2507 if (WARN_ON(addr >= end)) 2508 return -EINVAL; 2509 2510 pgd = pgd_offset(mm, addr); 2511 do { 2512 next = pgd_addr_end(addr, end); 2513 if (!create && pgd_none_or_clear_bad(pgd)) 2514 continue; 2515 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); 2516 if (err) 2517 break; 2518 } while (pgd++, addr = next, addr != end); 2519 2520 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2521 arch_sync_kernel_mappings(start, start + size); 2522 2523 return err; 2524 } 2525 2526 /* 2527 * Scan a region of virtual memory, filling in page tables as necessary 2528 * and calling a provided function on each leaf page table. 2529 */ 2530 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2531 unsigned long size, pte_fn_t fn, void *data) 2532 { 2533 return __apply_to_page_range(mm, addr, size, fn, data, true); 2534 } 2535 EXPORT_SYMBOL_GPL(apply_to_page_range); 2536 2537 /* 2538 * Scan a region of virtual memory, calling a provided function on 2539 * each leaf page table where it exists. 2540 * 2541 * Unlike apply_to_page_range, this does _not_ fill in page tables 2542 * where they are absent. 2543 */ 2544 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2545 unsigned long size, pte_fn_t fn, void *data) 2546 { 2547 return __apply_to_page_range(mm, addr, size, fn, data, false); 2548 } 2549 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2550 2551 /* 2552 * handle_pte_fault chooses page fault handler according to an entry which was 2553 * read non-atomically. Before making any commitment, on those architectures 2554 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2555 * parts, do_swap_page must check under lock before unmapping the pte and 2556 * proceeding (but do_wp_page is only called after already making such a check; 2557 * and do_anonymous_page can safely check later on). 2558 */ 2559 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2560 pte_t *page_table, pte_t orig_pte) 2561 { 2562 int same = 1; 2563 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2564 if (sizeof(pte_t) > sizeof(unsigned long)) { 2565 spinlock_t *ptl = pte_lockptr(mm, pmd); 2566 spin_lock(ptl); 2567 same = pte_same(*page_table, orig_pte); 2568 spin_unlock(ptl); 2569 } 2570 #endif 2571 pte_unmap(page_table); 2572 return same; 2573 } 2574 2575 static inline bool cow_user_page(struct page *dst, struct page *src, 2576 struct vm_fault *vmf) 2577 { 2578 bool ret; 2579 void *kaddr; 2580 void __user *uaddr; 2581 bool locked = false; 2582 struct vm_area_struct *vma = vmf->vma; 2583 struct mm_struct *mm = vma->vm_mm; 2584 unsigned long addr = vmf->address; 2585 2586 if (likely(src)) { 2587 copy_user_highpage(dst, src, addr, vma); 2588 return true; 2589 } 2590 2591 /* 2592 * If the source page was a PFN mapping, we don't have 2593 * a "struct page" for it. We do a best-effort copy by 2594 * just copying from the original user address. If that 2595 * fails, we just zero-fill it. Live with it. 2596 */ 2597 kaddr = kmap_atomic(dst); 2598 uaddr = (void __user *)(addr & PAGE_MASK); 2599 2600 /* 2601 * On architectures with software "accessed" bits, we would 2602 * take a double page fault, so mark it accessed here. 2603 */ 2604 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2605 pte_t entry; 2606 2607 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2608 locked = true; 2609 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2610 /* 2611 * Other thread has already handled the fault 2612 * and update local tlb only 2613 */ 2614 update_mmu_tlb(vma, addr, vmf->pte); 2615 ret = false; 2616 goto pte_unlock; 2617 } 2618 2619 entry = pte_mkyoung(vmf->orig_pte); 2620 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2621 update_mmu_cache(vma, addr, vmf->pte); 2622 } 2623 2624 /* 2625 * This really shouldn't fail, because the page is there 2626 * in the page tables. But it might just be unreadable, 2627 * in which case we just give up and fill the result with 2628 * zeroes. 2629 */ 2630 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2631 if (locked) 2632 goto warn; 2633 2634 /* Re-validate under PTL if the page is still mapped */ 2635 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2636 locked = true; 2637 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2638 /* The PTE changed under us, update local tlb */ 2639 update_mmu_tlb(vma, addr, vmf->pte); 2640 ret = false; 2641 goto pte_unlock; 2642 } 2643 2644 /* 2645 * The same page can be mapped back since last copy attempt. 2646 * Try to copy again under PTL. 2647 */ 2648 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2649 /* 2650 * Give a warn in case there can be some obscure 2651 * use-case 2652 */ 2653 warn: 2654 WARN_ON_ONCE(1); 2655 clear_page(kaddr); 2656 } 2657 } 2658 2659 ret = true; 2660 2661 pte_unlock: 2662 if (locked) 2663 pte_unmap_unlock(vmf->pte, vmf->ptl); 2664 kunmap_atomic(kaddr); 2665 flush_dcache_page(dst); 2666 2667 return ret; 2668 } 2669 2670 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2671 { 2672 struct file *vm_file = vma->vm_file; 2673 2674 if (vm_file) 2675 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2676 2677 /* 2678 * Special mappings (e.g. VDSO) do not have any file so fake 2679 * a default GFP_KERNEL for them. 2680 */ 2681 return GFP_KERNEL; 2682 } 2683 2684 /* 2685 * Notify the address space that the page is about to become writable so that 2686 * it can prohibit this or wait for the page to get into an appropriate state. 2687 * 2688 * We do this without the lock held, so that it can sleep if it needs to. 2689 */ 2690 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2691 { 2692 vm_fault_t ret; 2693 struct page *page = vmf->page; 2694 unsigned int old_flags = vmf->flags; 2695 2696 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2697 2698 if (vmf->vma->vm_file && 2699 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2700 return VM_FAULT_SIGBUS; 2701 2702 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2703 /* Restore original flags so that caller is not surprised */ 2704 vmf->flags = old_flags; 2705 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2706 return ret; 2707 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2708 lock_page(page); 2709 if (!page->mapping) { 2710 unlock_page(page); 2711 return 0; /* retry */ 2712 } 2713 ret |= VM_FAULT_LOCKED; 2714 } else 2715 VM_BUG_ON_PAGE(!PageLocked(page), page); 2716 return ret; 2717 } 2718 2719 /* 2720 * Handle dirtying of a page in shared file mapping on a write fault. 2721 * 2722 * The function expects the page to be locked and unlocks it. 2723 */ 2724 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2725 { 2726 struct vm_area_struct *vma = vmf->vma; 2727 struct address_space *mapping; 2728 struct page *page = vmf->page; 2729 bool dirtied; 2730 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2731 2732 dirtied = set_page_dirty(page); 2733 VM_BUG_ON_PAGE(PageAnon(page), page); 2734 /* 2735 * Take a local copy of the address_space - page.mapping may be zeroed 2736 * by truncate after unlock_page(). The address_space itself remains 2737 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2738 * release semantics to prevent the compiler from undoing this copying. 2739 */ 2740 mapping = page_rmapping(page); 2741 unlock_page(page); 2742 2743 if (!page_mkwrite) 2744 file_update_time(vma->vm_file); 2745 2746 /* 2747 * Throttle page dirtying rate down to writeback speed. 2748 * 2749 * mapping may be NULL here because some device drivers do not 2750 * set page.mapping but still dirty their pages 2751 * 2752 * Drop the mmap_lock before waiting on IO, if we can. The file 2753 * is pinning the mapping, as per above. 2754 */ 2755 if ((dirtied || page_mkwrite) && mapping) { 2756 struct file *fpin; 2757 2758 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2759 balance_dirty_pages_ratelimited(mapping); 2760 if (fpin) { 2761 fput(fpin); 2762 return VM_FAULT_RETRY; 2763 } 2764 } 2765 2766 return 0; 2767 } 2768 2769 /* 2770 * Handle write page faults for pages that can be reused in the current vma 2771 * 2772 * This can happen either due to the mapping being with the VM_SHARED flag, 2773 * or due to us being the last reference standing to the page. In either 2774 * case, all we need to do here is to mark the page as writable and update 2775 * any related book-keeping. 2776 */ 2777 static inline void wp_page_reuse(struct vm_fault *vmf) 2778 __releases(vmf->ptl) 2779 { 2780 struct vm_area_struct *vma = vmf->vma; 2781 struct page *page = vmf->page; 2782 pte_t entry; 2783 /* 2784 * Clear the pages cpupid information as the existing 2785 * information potentially belongs to a now completely 2786 * unrelated process. 2787 */ 2788 if (page) 2789 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2790 2791 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2792 entry = pte_mkyoung(vmf->orig_pte); 2793 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2794 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2795 update_mmu_cache(vma, vmf->address, vmf->pte); 2796 pte_unmap_unlock(vmf->pte, vmf->ptl); 2797 count_vm_event(PGREUSE); 2798 } 2799 2800 /* 2801 * Handle the case of a page which we actually need to copy to a new page. 2802 * 2803 * Called with mmap_lock locked and the old page referenced, but 2804 * without the ptl held. 2805 * 2806 * High level logic flow: 2807 * 2808 * - Allocate a page, copy the content of the old page to the new one. 2809 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2810 * - Take the PTL. If the pte changed, bail out and release the allocated page 2811 * - If the pte is still the way we remember it, update the page table and all 2812 * relevant references. This includes dropping the reference the page-table 2813 * held to the old page, as well as updating the rmap. 2814 * - In any case, unlock the PTL and drop the reference we took to the old page. 2815 */ 2816 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2817 { 2818 struct vm_area_struct *vma = vmf->vma; 2819 struct mm_struct *mm = vma->vm_mm; 2820 struct page *old_page = vmf->page; 2821 struct page *new_page = NULL; 2822 pte_t entry; 2823 int page_copied = 0; 2824 struct mmu_notifier_range range; 2825 2826 if (unlikely(anon_vma_prepare(vma))) 2827 goto oom; 2828 2829 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2830 new_page = alloc_zeroed_user_highpage_movable(vma, 2831 vmf->address); 2832 if (!new_page) 2833 goto oom; 2834 } else { 2835 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2836 vmf->address); 2837 if (!new_page) 2838 goto oom; 2839 2840 if (!cow_user_page(new_page, old_page, vmf)) { 2841 /* 2842 * COW failed, if the fault was solved by other, 2843 * it's fine. If not, userspace would re-fault on 2844 * the same address and we will handle the fault 2845 * from the second attempt. 2846 */ 2847 put_page(new_page); 2848 if (old_page) 2849 put_page(old_page); 2850 return 0; 2851 } 2852 } 2853 2854 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2855 goto oom_free_new; 2856 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2857 2858 __SetPageUptodate(new_page); 2859 2860 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2861 vmf->address & PAGE_MASK, 2862 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2863 mmu_notifier_invalidate_range_start(&range); 2864 2865 /* 2866 * Re-check the pte - we dropped the lock 2867 */ 2868 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2869 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2870 if (old_page) { 2871 if (!PageAnon(old_page)) { 2872 dec_mm_counter_fast(mm, 2873 mm_counter_file(old_page)); 2874 inc_mm_counter_fast(mm, MM_ANONPAGES); 2875 } 2876 } else { 2877 inc_mm_counter_fast(mm, MM_ANONPAGES); 2878 } 2879 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2880 entry = mk_pte(new_page, vma->vm_page_prot); 2881 entry = pte_sw_mkyoung(entry); 2882 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2883 /* 2884 * Clear the pte entry and flush it first, before updating the 2885 * pte with the new entry. This will avoid a race condition 2886 * seen in the presence of one thread doing SMC and another 2887 * thread doing COW. 2888 */ 2889 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2890 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2891 lru_cache_add_inactive_or_unevictable(new_page, vma); 2892 /* 2893 * We call the notify macro here because, when using secondary 2894 * mmu page tables (such as kvm shadow page tables), we want the 2895 * new page to be mapped directly into the secondary page table. 2896 */ 2897 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2898 update_mmu_cache(vma, vmf->address, vmf->pte); 2899 if (old_page) { 2900 /* 2901 * Only after switching the pte to the new page may 2902 * we remove the mapcount here. Otherwise another 2903 * process may come and find the rmap count decremented 2904 * before the pte is switched to the new page, and 2905 * "reuse" the old page writing into it while our pte 2906 * here still points into it and can be read by other 2907 * threads. 2908 * 2909 * The critical issue is to order this 2910 * page_remove_rmap with the ptp_clear_flush above. 2911 * Those stores are ordered by (if nothing else,) 2912 * the barrier present in the atomic_add_negative 2913 * in page_remove_rmap. 2914 * 2915 * Then the TLB flush in ptep_clear_flush ensures that 2916 * no process can access the old page before the 2917 * decremented mapcount is visible. And the old page 2918 * cannot be reused until after the decremented 2919 * mapcount is visible. So transitively, TLBs to 2920 * old page will be flushed before it can be reused. 2921 */ 2922 page_remove_rmap(old_page, false); 2923 } 2924 2925 /* Free the old page.. */ 2926 new_page = old_page; 2927 page_copied = 1; 2928 } else { 2929 update_mmu_tlb(vma, vmf->address, vmf->pte); 2930 } 2931 2932 if (new_page) 2933 put_page(new_page); 2934 2935 pte_unmap_unlock(vmf->pte, vmf->ptl); 2936 /* 2937 * No need to double call mmu_notifier->invalidate_range() callback as 2938 * the above ptep_clear_flush_notify() did already call it. 2939 */ 2940 mmu_notifier_invalidate_range_only_end(&range); 2941 if (old_page) { 2942 /* 2943 * Don't let another task, with possibly unlocked vma, 2944 * keep the mlocked page. 2945 */ 2946 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2947 lock_page(old_page); /* LRU manipulation */ 2948 if (PageMlocked(old_page)) 2949 munlock_vma_page(old_page); 2950 unlock_page(old_page); 2951 } 2952 put_page(old_page); 2953 } 2954 return page_copied ? VM_FAULT_WRITE : 0; 2955 oom_free_new: 2956 put_page(new_page); 2957 oom: 2958 if (old_page) 2959 put_page(old_page); 2960 return VM_FAULT_OOM; 2961 } 2962 2963 /** 2964 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2965 * writeable once the page is prepared 2966 * 2967 * @vmf: structure describing the fault 2968 * 2969 * This function handles all that is needed to finish a write page fault in a 2970 * shared mapping due to PTE being read-only once the mapped page is prepared. 2971 * It handles locking of PTE and modifying it. 2972 * 2973 * The function expects the page to be locked or other protection against 2974 * concurrent faults / writeback (such as DAX radix tree locks). 2975 * 2976 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2977 * we acquired PTE lock. 2978 */ 2979 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2980 { 2981 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2982 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2983 &vmf->ptl); 2984 /* 2985 * We might have raced with another page fault while we released the 2986 * pte_offset_map_lock. 2987 */ 2988 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2989 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 2990 pte_unmap_unlock(vmf->pte, vmf->ptl); 2991 return VM_FAULT_NOPAGE; 2992 } 2993 wp_page_reuse(vmf); 2994 return 0; 2995 } 2996 2997 /* 2998 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2999 * mapping 3000 */ 3001 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3002 { 3003 struct vm_area_struct *vma = vmf->vma; 3004 3005 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3006 vm_fault_t ret; 3007 3008 pte_unmap_unlock(vmf->pte, vmf->ptl); 3009 vmf->flags |= FAULT_FLAG_MKWRITE; 3010 ret = vma->vm_ops->pfn_mkwrite(vmf); 3011 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3012 return ret; 3013 return finish_mkwrite_fault(vmf); 3014 } 3015 wp_page_reuse(vmf); 3016 return VM_FAULT_WRITE; 3017 } 3018 3019 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3020 __releases(vmf->ptl) 3021 { 3022 struct vm_area_struct *vma = vmf->vma; 3023 vm_fault_t ret = VM_FAULT_WRITE; 3024 3025 get_page(vmf->page); 3026 3027 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3028 vm_fault_t tmp; 3029 3030 pte_unmap_unlock(vmf->pte, vmf->ptl); 3031 tmp = do_page_mkwrite(vmf); 3032 if (unlikely(!tmp || (tmp & 3033 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3034 put_page(vmf->page); 3035 return tmp; 3036 } 3037 tmp = finish_mkwrite_fault(vmf); 3038 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3039 unlock_page(vmf->page); 3040 put_page(vmf->page); 3041 return tmp; 3042 } 3043 } else { 3044 wp_page_reuse(vmf); 3045 lock_page(vmf->page); 3046 } 3047 ret |= fault_dirty_shared_page(vmf); 3048 put_page(vmf->page); 3049 3050 return ret; 3051 } 3052 3053 /* 3054 * This routine handles present pages, when users try to write 3055 * to a shared page. It is done by copying the page to a new address 3056 * and decrementing the shared-page counter for the old page. 3057 * 3058 * Note that this routine assumes that the protection checks have been 3059 * done by the caller (the low-level page fault routine in most cases). 3060 * Thus we can safely just mark it writable once we've done any necessary 3061 * COW. 3062 * 3063 * We also mark the page dirty at this point even though the page will 3064 * change only once the write actually happens. This avoids a few races, 3065 * and potentially makes it more efficient. 3066 * 3067 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3068 * but allow concurrent faults), with pte both mapped and locked. 3069 * We return with mmap_lock still held, but pte unmapped and unlocked. 3070 */ 3071 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3072 __releases(vmf->ptl) 3073 { 3074 struct vm_area_struct *vma = vmf->vma; 3075 3076 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3077 pte_unmap_unlock(vmf->pte, vmf->ptl); 3078 return handle_userfault(vmf, VM_UFFD_WP); 3079 } 3080 3081 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3082 if (!vmf->page) { 3083 /* 3084 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3085 * VM_PFNMAP VMA. 3086 * 3087 * We should not cow pages in a shared writeable mapping. 3088 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3089 */ 3090 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3091 (VM_WRITE|VM_SHARED)) 3092 return wp_pfn_shared(vmf); 3093 3094 pte_unmap_unlock(vmf->pte, vmf->ptl); 3095 return wp_page_copy(vmf); 3096 } 3097 3098 /* 3099 * Take out anonymous pages first, anonymous shared vmas are 3100 * not dirty accountable. 3101 */ 3102 if (PageAnon(vmf->page)) { 3103 struct page *page = vmf->page; 3104 3105 /* PageKsm() doesn't necessarily raise the page refcount */ 3106 if (PageKsm(page) || page_count(page) != 1) 3107 goto copy; 3108 if (!trylock_page(page)) 3109 goto copy; 3110 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3111 unlock_page(page); 3112 goto copy; 3113 } 3114 /* 3115 * Ok, we've got the only map reference, and the only 3116 * page count reference, and the page is locked, 3117 * it's dark out, and we're wearing sunglasses. Hit it. 3118 */ 3119 unlock_page(page); 3120 wp_page_reuse(vmf); 3121 return VM_FAULT_WRITE; 3122 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3123 (VM_WRITE|VM_SHARED))) { 3124 return wp_page_shared(vmf); 3125 } 3126 copy: 3127 /* 3128 * Ok, we need to copy. Oh, well.. 3129 */ 3130 get_page(vmf->page); 3131 3132 pte_unmap_unlock(vmf->pte, vmf->ptl); 3133 return wp_page_copy(vmf); 3134 } 3135 3136 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3137 unsigned long start_addr, unsigned long end_addr, 3138 struct zap_details *details) 3139 { 3140 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3141 } 3142 3143 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3144 struct zap_details *details) 3145 { 3146 struct vm_area_struct *vma; 3147 pgoff_t vba, vea, zba, zea; 3148 3149 vma_interval_tree_foreach(vma, root, 3150 details->first_index, details->last_index) { 3151 3152 vba = vma->vm_pgoff; 3153 vea = vba + vma_pages(vma) - 1; 3154 zba = details->first_index; 3155 if (zba < vba) 3156 zba = vba; 3157 zea = details->last_index; 3158 if (zea > vea) 3159 zea = vea; 3160 3161 unmap_mapping_range_vma(vma, 3162 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3163 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3164 details); 3165 } 3166 } 3167 3168 /** 3169 * unmap_mapping_pages() - Unmap pages from processes. 3170 * @mapping: The address space containing pages to be unmapped. 3171 * @start: Index of first page to be unmapped. 3172 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3173 * @even_cows: Whether to unmap even private COWed pages. 3174 * 3175 * Unmap the pages in this address space from any userspace process which 3176 * has them mmaped. Generally, you want to remove COWed pages as well when 3177 * a file is being truncated, but not when invalidating pages from the page 3178 * cache. 3179 */ 3180 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3181 pgoff_t nr, bool even_cows) 3182 { 3183 struct zap_details details = { }; 3184 3185 details.check_mapping = even_cows ? NULL : mapping; 3186 details.first_index = start; 3187 details.last_index = start + nr - 1; 3188 if (details.last_index < details.first_index) 3189 details.last_index = ULONG_MAX; 3190 3191 i_mmap_lock_write(mapping); 3192 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3193 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3194 i_mmap_unlock_write(mapping); 3195 } 3196 3197 /** 3198 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3199 * address_space corresponding to the specified byte range in the underlying 3200 * file. 3201 * 3202 * @mapping: the address space containing mmaps to be unmapped. 3203 * @holebegin: byte in first page to unmap, relative to the start of 3204 * the underlying file. This will be rounded down to a PAGE_SIZE 3205 * boundary. Note that this is different from truncate_pagecache(), which 3206 * must keep the partial page. In contrast, we must get rid of 3207 * partial pages. 3208 * @holelen: size of prospective hole in bytes. This will be rounded 3209 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3210 * end of the file. 3211 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3212 * but 0 when invalidating pagecache, don't throw away private data. 3213 */ 3214 void unmap_mapping_range(struct address_space *mapping, 3215 loff_t const holebegin, loff_t const holelen, int even_cows) 3216 { 3217 pgoff_t hba = holebegin >> PAGE_SHIFT; 3218 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3219 3220 /* Check for overflow. */ 3221 if (sizeof(holelen) > sizeof(hlen)) { 3222 long long holeend = 3223 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3224 if (holeend & ~(long long)ULONG_MAX) 3225 hlen = ULONG_MAX - hba + 1; 3226 } 3227 3228 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3229 } 3230 EXPORT_SYMBOL(unmap_mapping_range); 3231 3232 /* 3233 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3234 * but allow concurrent faults), and pte mapped but not yet locked. 3235 * We return with pte unmapped and unlocked. 3236 * 3237 * We return with the mmap_lock locked or unlocked in the same cases 3238 * as does filemap_fault(). 3239 */ 3240 vm_fault_t do_swap_page(struct vm_fault *vmf) 3241 { 3242 struct vm_area_struct *vma = vmf->vma; 3243 struct page *page = NULL, *swapcache; 3244 swp_entry_t entry; 3245 pte_t pte; 3246 int locked; 3247 int exclusive = 0; 3248 vm_fault_t ret = 0; 3249 void *shadow = NULL; 3250 3251 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3252 goto out; 3253 3254 entry = pte_to_swp_entry(vmf->orig_pte); 3255 if (unlikely(non_swap_entry(entry))) { 3256 if (is_migration_entry(entry)) { 3257 migration_entry_wait(vma->vm_mm, vmf->pmd, 3258 vmf->address); 3259 } else if (is_device_private_entry(entry)) { 3260 vmf->page = device_private_entry_to_page(entry); 3261 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3262 } else if (is_hwpoison_entry(entry)) { 3263 ret = VM_FAULT_HWPOISON; 3264 } else { 3265 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3266 ret = VM_FAULT_SIGBUS; 3267 } 3268 goto out; 3269 } 3270 3271 3272 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3273 page = lookup_swap_cache(entry, vma, vmf->address); 3274 swapcache = page; 3275 3276 if (!page) { 3277 struct swap_info_struct *si = swp_swap_info(entry); 3278 3279 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3280 __swap_count(entry) == 1) { 3281 /* skip swapcache */ 3282 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3283 vmf->address); 3284 if (page) { 3285 int err; 3286 3287 __SetPageLocked(page); 3288 __SetPageSwapBacked(page); 3289 set_page_private(page, entry.val); 3290 3291 /* Tell memcg to use swap ownership records */ 3292 SetPageSwapCache(page); 3293 err = mem_cgroup_charge(page, vma->vm_mm, 3294 GFP_KERNEL); 3295 ClearPageSwapCache(page); 3296 if (err) { 3297 ret = VM_FAULT_OOM; 3298 goto out_page; 3299 } 3300 3301 shadow = get_shadow_from_swap_cache(entry); 3302 if (shadow) 3303 workingset_refault(page, shadow); 3304 3305 lru_cache_add(page); 3306 swap_readpage(page, true); 3307 } 3308 } else { 3309 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3310 vmf); 3311 swapcache = page; 3312 } 3313 3314 if (!page) { 3315 /* 3316 * Back out if somebody else faulted in this pte 3317 * while we released the pte lock. 3318 */ 3319 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3320 vmf->address, &vmf->ptl); 3321 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3322 ret = VM_FAULT_OOM; 3323 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3324 goto unlock; 3325 } 3326 3327 /* Had to read the page from swap area: Major fault */ 3328 ret = VM_FAULT_MAJOR; 3329 count_vm_event(PGMAJFAULT); 3330 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3331 } else if (PageHWPoison(page)) { 3332 /* 3333 * hwpoisoned dirty swapcache pages are kept for killing 3334 * owner processes (which may be unknown at hwpoison time) 3335 */ 3336 ret = VM_FAULT_HWPOISON; 3337 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3338 goto out_release; 3339 } 3340 3341 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3342 3343 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3344 if (!locked) { 3345 ret |= VM_FAULT_RETRY; 3346 goto out_release; 3347 } 3348 3349 /* 3350 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3351 * release the swapcache from under us. The page pin, and pte_same 3352 * test below, are not enough to exclude that. Even if it is still 3353 * swapcache, we need to check that the page's swap has not changed. 3354 */ 3355 if (unlikely((!PageSwapCache(page) || 3356 page_private(page) != entry.val)) && swapcache) 3357 goto out_page; 3358 3359 page = ksm_might_need_to_copy(page, vma, vmf->address); 3360 if (unlikely(!page)) { 3361 ret = VM_FAULT_OOM; 3362 page = swapcache; 3363 goto out_page; 3364 } 3365 3366 cgroup_throttle_swaprate(page, GFP_KERNEL); 3367 3368 /* 3369 * Back out if somebody else already faulted in this pte. 3370 */ 3371 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3372 &vmf->ptl); 3373 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3374 goto out_nomap; 3375 3376 if (unlikely(!PageUptodate(page))) { 3377 ret = VM_FAULT_SIGBUS; 3378 goto out_nomap; 3379 } 3380 3381 /* 3382 * The page isn't present yet, go ahead with the fault. 3383 * 3384 * Be careful about the sequence of operations here. 3385 * To get its accounting right, reuse_swap_page() must be called 3386 * while the page is counted on swap but not yet in mapcount i.e. 3387 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3388 * must be called after the swap_free(), or it will never succeed. 3389 */ 3390 3391 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3392 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3393 pte = mk_pte(page, vma->vm_page_prot); 3394 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3395 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3396 vmf->flags &= ~FAULT_FLAG_WRITE; 3397 ret |= VM_FAULT_WRITE; 3398 exclusive = RMAP_EXCLUSIVE; 3399 } 3400 flush_icache_page(vma, page); 3401 if (pte_swp_soft_dirty(vmf->orig_pte)) 3402 pte = pte_mksoft_dirty(pte); 3403 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3404 pte = pte_mkuffd_wp(pte); 3405 pte = pte_wrprotect(pte); 3406 } 3407 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3408 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3409 vmf->orig_pte = pte; 3410 3411 /* ksm created a completely new copy */ 3412 if (unlikely(page != swapcache && swapcache)) { 3413 page_add_new_anon_rmap(page, vma, vmf->address, false); 3414 lru_cache_add_inactive_or_unevictable(page, vma); 3415 } else { 3416 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3417 } 3418 3419 swap_free(entry); 3420 if (mem_cgroup_swap_full(page) || 3421 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3422 try_to_free_swap(page); 3423 unlock_page(page); 3424 if (page != swapcache && swapcache) { 3425 /* 3426 * Hold the lock to avoid the swap entry to be reused 3427 * until we take the PT lock for the pte_same() check 3428 * (to avoid false positives from pte_same). For 3429 * further safety release the lock after the swap_free 3430 * so that the swap count won't change under a 3431 * parallel locked swapcache. 3432 */ 3433 unlock_page(swapcache); 3434 put_page(swapcache); 3435 } 3436 3437 if (vmf->flags & FAULT_FLAG_WRITE) { 3438 ret |= do_wp_page(vmf); 3439 if (ret & VM_FAULT_ERROR) 3440 ret &= VM_FAULT_ERROR; 3441 goto out; 3442 } 3443 3444 /* No need to invalidate - it was non-present before */ 3445 update_mmu_cache(vma, vmf->address, vmf->pte); 3446 unlock: 3447 pte_unmap_unlock(vmf->pte, vmf->ptl); 3448 out: 3449 return ret; 3450 out_nomap: 3451 pte_unmap_unlock(vmf->pte, vmf->ptl); 3452 out_page: 3453 unlock_page(page); 3454 out_release: 3455 put_page(page); 3456 if (page != swapcache && swapcache) { 3457 unlock_page(swapcache); 3458 put_page(swapcache); 3459 } 3460 return ret; 3461 } 3462 3463 /* 3464 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3465 * but allow concurrent faults), and pte mapped but not yet locked. 3466 * We return with mmap_lock still held, but pte unmapped and unlocked. 3467 */ 3468 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3469 { 3470 struct vm_area_struct *vma = vmf->vma; 3471 struct page *page; 3472 vm_fault_t ret = 0; 3473 pte_t entry; 3474 3475 /* File mapping without ->vm_ops ? */ 3476 if (vma->vm_flags & VM_SHARED) 3477 return VM_FAULT_SIGBUS; 3478 3479 /* 3480 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3481 * pte_offset_map() on pmds where a huge pmd might be created 3482 * from a different thread. 3483 * 3484 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3485 * parallel threads are excluded by other means. 3486 * 3487 * Here we only have mmap_read_lock(mm). 3488 */ 3489 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3490 return VM_FAULT_OOM; 3491 3492 /* See the comment in pte_alloc_one_map() */ 3493 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3494 return 0; 3495 3496 /* Use the zero-page for reads */ 3497 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3498 !mm_forbids_zeropage(vma->vm_mm)) { 3499 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3500 vma->vm_page_prot)); 3501 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3502 vmf->address, &vmf->ptl); 3503 if (!pte_none(*vmf->pte)) { 3504 update_mmu_tlb(vma, vmf->address, vmf->pte); 3505 goto unlock; 3506 } 3507 ret = check_stable_address_space(vma->vm_mm); 3508 if (ret) 3509 goto unlock; 3510 /* Deliver the page fault to userland, check inside PT lock */ 3511 if (userfaultfd_missing(vma)) { 3512 pte_unmap_unlock(vmf->pte, vmf->ptl); 3513 return handle_userfault(vmf, VM_UFFD_MISSING); 3514 } 3515 goto setpte; 3516 } 3517 3518 /* Allocate our own private page. */ 3519 if (unlikely(anon_vma_prepare(vma))) 3520 goto oom; 3521 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3522 if (!page) 3523 goto oom; 3524 3525 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3526 goto oom_free_page; 3527 cgroup_throttle_swaprate(page, GFP_KERNEL); 3528 3529 /* 3530 * The memory barrier inside __SetPageUptodate makes sure that 3531 * preceding stores to the page contents become visible before 3532 * the set_pte_at() write. 3533 */ 3534 __SetPageUptodate(page); 3535 3536 entry = mk_pte(page, vma->vm_page_prot); 3537 entry = pte_sw_mkyoung(entry); 3538 if (vma->vm_flags & VM_WRITE) 3539 entry = pte_mkwrite(pte_mkdirty(entry)); 3540 3541 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3542 &vmf->ptl); 3543 if (!pte_none(*vmf->pte)) { 3544 update_mmu_cache(vma, vmf->address, vmf->pte); 3545 goto release; 3546 } 3547 3548 ret = check_stable_address_space(vma->vm_mm); 3549 if (ret) 3550 goto release; 3551 3552 /* Deliver the page fault to userland, check inside PT lock */ 3553 if (userfaultfd_missing(vma)) { 3554 pte_unmap_unlock(vmf->pte, vmf->ptl); 3555 put_page(page); 3556 return handle_userfault(vmf, VM_UFFD_MISSING); 3557 } 3558 3559 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3560 page_add_new_anon_rmap(page, vma, vmf->address, false); 3561 lru_cache_add_inactive_or_unevictable(page, vma); 3562 setpte: 3563 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3564 3565 /* No need to invalidate - it was non-present before */ 3566 update_mmu_cache(vma, vmf->address, vmf->pte); 3567 unlock: 3568 pte_unmap_unlock(vmf->pte, vmf->ptl); 3569 return ret; 3570 release: 3571 put_page(page); 3572 goto unlock; 3573 oom_free_page: 3574 put_page(page); 3575 oom: 3576 return VM_FAULT_OOM; 3577 } 3578 3579 /* 3580 * The mmap_lock must have been held on entry, and may have been 3581 * released depending on flags and vma->vm_ops->fault() return value. 3582 * See filemap_fault() and __lock_page_retry(). 3583 */ 3584 static vm_fault_t __do_fault(struct vm_fault *vmf) 3585 { 3586 struct vm_area_struct *vma = vmf->vma; 3587 vm_fault_t ret; 3588 3589 /* 3590 * Preallocate pte before we take page_lock because this might lead to 3591 * deadlocks for memcg reclaim which waits for pages under writeback: 3592 * lock_page(A) 3593 * SetPageWriteback(A) 3594 * unlock_page(A) 3595 * lock_page(B) 3596 * lock_page(B) 3597 * pte_alloc_one 3598 * shrink_page_list 3599 * wait_on_page_writeback(A) 3600 * SetPageWriteback(B) 3601 * unlock_page(B) 3602 * # flush A, B to clear the writeback 3603 */ 3604 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3605 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3606 if (!vmf->prealloc_pte) 3607 return VM_FAULT_OOM; 3608 smp_wmb(); /* See comment in __pte_alloc() */ 3609 } 3610 3611 ret = vma->vm_ops->fault(vmf); 3612 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3613 VM_FAULT_DONE_COW))) 3614 return ret; 3615 3616 if (unlikely(PageHWPoison(vmf->page))) { 3617 if (ret & VM_FAULT_LOCKED) 3618 unlock_page(vmf->page); 3619 put_page(vmf->page); 3620 vmf->page = NULL; 3621 return VM_FAULT_HWPOISON; 3622 } 3623 3624 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3625 lock_page(vmf->page); 3626 else 3627 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3628 3629 return ret; 3630 } 3631 3632 /* 3633 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3634 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3635 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3636 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3637 */ 3638 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3639 { 3640 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3641 } 3642 3643 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3644 { 3645 struct vm_area_struct *vma = vmf->vma; 3646 3647 if (!pmd_none(*vmf->pmd)) 3648 goto map_pte; 3649 if (vmf->prealloc_pte) { 3650 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3651 if (unlikely(!pmd_none(*vmf->pmd))) { 3652 spin_unlock(vmf->ptl); 3653 goto map_pte; 3654 } 3655 3656 mm_inc_nr_ptes(vma->vm_mm); 3657 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3658 spin_unlock(vmf->ptl); 3659 vmf->prealloc_pte = NULL; 3660 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3661 return VM_FAULT_OOM; 3662 } 3663 map_pte: 3664 /* 3665 * If a huge pmd materialized under us just retry later. Use 3666 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3667 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3668 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3669 * running immediately after a huge pmd fault in a different thread of 3670 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3671 * All we have to ensure is that it is a regular pmd that we can walk 3672 * with pte_offset_map() and we can do that through an atomic read in 3673 * C, which is what pmd_trans_unstable() provides. 3674 */ 3675 if (pmd_devmap_trans_unstable(vmf->pmd)) 3676 return VM_FAULT_NOPAGE; 3677 3678 /* 3679 * At this point we know that our vmf->pmd points to a page of ptes 3680 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3681 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3682 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3683 * be valid and we will re-check to make sure the vmf->pte isn't 3684 * pte_none() under vmf->ptl protection when we return to 3685 * alloc_set_pte(). 3686 */ 3687 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3688 &vmf->ptl); 3689 return 0; 3690 } 3691 3692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3693 static void deposit_prealloc_pte(struct vm_fault *vmf) 3694 { 3695 struct vm_area_struct *vma = vmf->vma; 3696 3697 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3698 /* 3699 * We are going to consume the prealloc table, 3700 * count that as nr_ptes. 3701 */ 3702 mm_inc_nr_ptes(vma->vm_mm); 3703 vmf->prealloc_pte = NULL; 3704 } 3705 3706 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3707 { 3708 struct vm_area_struct *vma = vmf->vma; 3709 bool write = vmf->flags & FAULT_FLAG_WRITE; 3710 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3711 pmd_t entry; 3712 int i; 3713 vm_fault_t ret; 3714 3715 if (!transhuge_vma_suitable(vma, haddr)) 3716 return VM_FAULT_FALLBACK; 3717 3718 ret = VM_FAULT_FALLBACK; 3719 page = compound_head(page); 3720 3721 /* 3722 * Archs like ppc64 need additonal space to store information 3723 * related to pte entry. Use the preallocated table for that. 3724 */ 3725 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3726 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3727 if (!vmf->prealloc_pte) 3728 return VM_FAULT_OOM; 3729 smp_wmb(); /* See comment in __pte_alloc() */ 3730 } 3731 3732 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3733 if (unlikely(!pmd_none(*vmf->pmd))) 3734 goto out; 3735 3736 for (i = 0; i < HPAGE_PMD_NR; i++) 3737 flush_icache_page(vma, page + i); 3738 3739 entry = mk_huge_pmd(page, vma->vm_page_prot); 3740 if (write) 3741 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3742 3743 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3744 page_add_file_rmap(page, true); 3745 /* 3746 * deposit and withdraw with pmd lock held 3747 */ 3748 if (arch_needs_pgtable_deposit()) 3749 deposit_prealloc_pte(vmf); 3750 3751 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3752 3753 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3754 3755 /* fault is handled */ 3756 ret = 0; 3757 count_vm_event(THP_FILE_MAPPED); 3758 out: 3759 spin_unlock(vmf->ptl); 3760 return ret; 3761 } 3762 #else 3763 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3764 { 3765 BUILD_BUG(); 3766 return 0; 3767 } 3768 #endif 3769 3770 /** 3771 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3772 * mapping. If needed, the function allocates page table or use pre-allocated. 3773 * 3774 * @vmf: fault environment 3775 * @page: page to map 3776 * 3777 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3778 * return. 3779 * 3780 * Target users are page handler itself and implementations of 3781 * vm_ops->map_pages. 3782 * 3783 * Return: %0 on success, %VM_FAULT_ code in case of error. 3784 */ 3785 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3786 { 3787 struct vm_area_struct *vma = vmf->vma; 3788 bool write = vmf->flags & FAULT_FLAG_WRITE; 3789 pte_t entry; 3790 vm_fault_t ret; 3791 3792 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3793 ret = do_set_pmd(vmf, page); 3794 if (ret != VM_FAULT_FALLBACK) 3795 return ret; 3796 } 3797 3798 if (!vmf->pte) { 3799 ret = pte_alloc_one_map(vmf); 3800 if (ret) 3801 return ret; 3802 } 3803 3804 /* Re-check under ptl */ 3805 if (unlikely(!pte_none(*vmf->pte))) { 3806 update_mmu_tlb(vma, vmf->address, vmf->pte); 3807 return VM_FAULT_NOPAGE; 3808 } 3809 3810 flush_icache_page(vma, page); 3811 entry = mk_pte(page, vma->vm_page_prot); 3812 entry = pte_sw_mkyoung(entry); 3813 if (write) 3814 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3815 /* copy-on-write page */ 3816 if (write && !(vma->vm_flags & VM_SHARED)) { 3817 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3818 page_add_new_anon_rmap(page, vma, vmf->address, false); 3819 lru_cache_add_inactive_or_unevictable(page, vma); 3820 } else { 3821 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3822 page_add_file_rmap(page, false); 3823 } 3824 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3825 3826 /* no need to invalidate: a not-present page won't be cached */ 3827 update_mmu_cache(vma, vmf->address, vmf->pte); 3828 3829 return 0; 3830 } 3831 3832 3833 /** 3834 * finish_fault - finish page fault once we have prepared the page to fault 3835 * 3836 * @vmf: structure describing the fault 3837 * 3838 * This function handles all that is needed to finish a page fault once the 3839 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3840 * given page, adds reverse page mapping, handles memcg charges and LRU 3841 * addition. 3842 * 3843 * The function expects the page to be locked and on success it consumes a 3844 * reference of a page being mapped (for the PTE which maps it). 3845 * 3846 * Return: %0 on success, %VM_FAULT_ code in case of error. 3847 */ 3848 vm_fault_t finish_fault(struct vm_fault *vmf) 3849 { 3850 struct page *page; 3851 vm_fault_t ret = 0; 3852 3853 /* Did we COW the page? */ 3854 if ((vmf->flags & FAULT_FLAG_WRITE) && 3855 !(vmf->vma->vm_flags & VM_SHARED)) 3856 page = vmf->cow_page; 3857 else 3858 page = vmf->page; 3859 3860 /* 3861 * check even for read faults because we might have lost our CoWed 3862 * page 3863 */ 3864 if (!(vmf->vma->vm_flags & VM_SHARED)) 3865 ret = check_stable_address_space(vmf->vma->vm_mm); 3866 if (!ret) 3867 ret = alloc_set_pte(vmf, page); 3868 if (vmf->pte) 3869 pte_unmap_unlock(vmf->pte, vmf->ptl); 3870 return ret; 3871 } 3872 3873 static unsigned long fault_around_bytes __read_mostly = 3874 rounddown_pow_of_two(65536); 3875 3876 #ifdef CONFIG_DEBUG_FS 3877 static int fault_around_bytes_get(void *data, u64 *val) 3878 { 3879 *val = fault_around_bytes; 3880 return 0; 3881 } 3882 3883 /* 3884 * fault_around_bytes must be rounded down to the nearest page order as it's 3885 * what do_fault_around() expects to see. 3886 */ 3887 static int fault_around_bytes_set(void *data, u64 val) 3888 { 3889 if (val / PAGE_SIZE > PTRS_PER_PTE) 3890 return -EINVAL; 3891 if (val > PAGE_SIZE) 3892 fault_around_bytes = rounddown_pow_of_two(val); 3893 else 3894 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3895 return 0; 3896 } 3897 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3898 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3899 3900 static int __init fault_around_debugfs(void) 3901 { 3902 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3903 &fault_around_bytes_fops); 3904 return 0; 3905 } 3906 late_initcall(fault_around_debugfs); 3907 #endif 3908 3909 /* 3910 * do_fault_around() tries to map few pages around the fault address. The hope 3911 * is that the pages will be needed soon and this will lower the number of 3912 * faults to handle. 3913 * 3914 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3915 * not ready to be mapped: not up-to-date, locked, etc. 3916 * 3917 * This function is called with the page table lock taken. In the split ptlock 3918 * case the page table lock only protects only those entries which belong to 3919 * the page table corresponding to the fault address. 3920 * 3921 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3922 * only once. 3923 * 3924 * fault_around_bytes defines how many bytes we'll try to map. 3925 * do_fault_around() expects it to be set to a power of two less than or equal 3926 * to PTRS_PER_PTE. 3927 * 3928 * The virtual address of the area that we map is naturally aligned to 3929 * fault_around_bytes rounded down to the machine page size 3930 * (and therefore to page order). This way it's easier to guarantee 3931 * that we don't cross page table boundaries. 3932 */ 3933 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3934 { 3935 unsigned long address = vmf->address, nr_pages, mask; 3936 pgoff_t start_pgoff = vmf->pgoff; 3937 pgoff_t end_pgoff; 3938 int off; 3939 vm_fault_t ret = 0; 3940 3941 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3942 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3943 3944 vmf->address = max(address & mask, vmf->vma->vm_start); 3945 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3946 start_pgoff -= off; 3947 3948 /* 3949 * end_pgoff is either the end of the page table, the end of 3950 * the vma or nr_pages from start_pgoff, depending what is nearest. 3951 */ 3952 end_pgoff = start_pgoff - 3953 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3954 PTRS_PER_PTE - 1; 3955 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3956 start_pgoff + nr_pages - 1); 3957 3958 if (pmd_none(*vmf->pmd)) { 3959 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3960 if (!vmf->prealloc_pte) 3961 goto out; 3962 smp_wmb(); /* See comment in __pte_alloc() */ 3963 } 3964 3965 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3966 3967 /* Huge page is mapped? Page fault is solved */ 3968 if (pmd_trans_huge(*vmf->pmd)) { 3969 ret = VM_FAULT_NOPAGE; 3970 goto out; 3971 } 3972 3973 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3974 if (!vmf->pte) 3975 goto out; 3976 3977 /* check if the page fault is solved */ 3978 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3979 if (!pte_none(*vmf->pte)) 3980 ret = VM_FAULT_NOPAGE; 3981 pte_unmap_unlock(vmf->pte, vmf->ptl); 3982 out: 3983 vmf->address = address; 3984 vmf->pte = NULL; 3985 return ret; 3986 } 3987 3988 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3989 { 3990 struct vm_area_struct *vma = vmf->vma; 3991 vm_fault_t ret = 0; 3992 3993 /* 3994 * Let's call ->map_pages() first and use ->fault() as fallback 3995 * if page by the offset is not ready to be mapped (cold cache or 3996 * something). 3997 */ 3998 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3999 ret = do_fault_around(vmf); 4000 if (ret) 4001 return ret; 4002 } 4003 4004 ret = __do_fault(vmf); 4005 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4006 return ret; 4007 4008 ret |= finish_fault(vmf); 4009 unlock_page(vmf->page); 4010 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4011 put_page(vmf->page); 4012 return ret; 4013 } 4014 4015 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4016 { 4017 struct vm_area_struct *vma = vmf->vma; 4018 vm_fault_t ret; 4019 4020 if (unlikely(anon_vma_prepare(vma))) 4021 return VM_FAULT_OOM; 4022 4023 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4024 if (!vmf->cow_page) 4025 return VM_FAULT_OOM; 4026 4027 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 4028 put_page(vmf->cow_page); 4029 return VM_FAULT_OOM; 4030 } 4031 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4032 4033 ret = __do_fault(vmf); 4034 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4035 goto uncharge_out; 4036 if (ret & VM_FAULT_DONE_COW) 4037 return ret; 4038 4039 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4040 __SetPageUptodate(vmf->cow_page); 4041 4042 ret |= finish_fault(vmf); 4043 unlock_page(vmf->page); 4044 put_page(vmf->page); 4045 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4046 goto uncharge_out; 4047 return ret; 4048 uncharge_out: 4049 put_page(vmf->cow_page); 4050 return ret; 4051 } 4052 4053 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4054 { 4055 struct vm_area_struct *vma = vmf->vma; 4056 vm_fault_t ret, tmp; 4057 4058 ret = __do_fault(vmf); 4059 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4060 return ret; 4061 4062 /* 4063 * Check if the backing address space wants to know that the page is 4064 * about to become writable 4065 */ 4066 if (vma->vm_ops->page_mkwrite) { 4067 unlock_page(vmf->page); 4068 tmp = do_page_mkwrite(vmf); 4069 if (unlikely(!tmp || 4070 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4071 put_page(vmf->page); 4072 return tmp; 4073 } 4074 } 4075 4076 ret |= finish_fault(vmf); 4077 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4078 VM_FAULT_RETRY))) { 4079 unlock_page(vmf->page); 4080 put_page(vmf->page); 4081 return ret; 4082 } 4083 4084 ret |= fault_dirty_shared_page(vmf); 4085 return ret; 4086 } 4087 4088 /* 4089 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4090 * but allow concurrent faults). 4091 * The mmap_lock may have been released depending on flags and our 4092 * return value. See filemap_fault() and __lock_page_or_retry(). 4093 * If mmap_lock is released, vma may become invalid (for example 4094 * by other thread calling munmap()). 4095 */ 4096 static vm_fault_t do_fault(struct vm_fault *vmf) 4097 { 4098 struct vm_area_struct *vma = vmf->vma; 4099 struct mm_struct *vm_mm = vma->vm_mm; 4100 vm_fault_t ret; 4101 4102 /* 4103 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4104 */ 4105 if (!vma->vm_ops->fault) { 4106 /* 4107 * If we find a migration pmd entry or a none pmd entry, which 4108 * should never happen, return SIGBUS 4109 */ 4110 if (unlikely(!pmd_present(*vmf->pmd))) 4111 ret = VM_FAULT_SIGBUS; 4112 else { 4113 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4114 vmf->pmd, 4115 vmf->address, 4116 &vmf->ptl); 4117 /* 4118 * Make sure this is not a temporary clearing of pte 4119 * by holding ptl and checking again. A R/M/W update 4120 * of pte involves: take ptl, clearing the pte so that 4121 * we don't have concurrent modification by hardware 4122 * followed by an update. 4123 */ 4124 if (unlikely(pte_none(*vmf->pte))) 4125 ret = VM_FAULT_SIGBUS; 4126 else 4127 ret = VM_FAULT_NOPAGE; 4128 4129 pte_unmap_unlock(vmf->pte, vmf->ptl); 4130 } 4131 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4132 ret = do_read_fault(vmf); 4133 else if (!(vma->vm_flags & VM_SHARED)) 4134 ret = do_cow_fault(vmf); 4135 else 4136 ret = do_shared_fault(vmf); 4137 4138 /* preallocated pagetable is unused: free it */ 4139 if (vmf->prealloc_pte) { 4140 pte_free(vm_mm, vmf->prealloc_pte); 4141 vmf->prealloc_pte = NULL; 4142 } 4143 return ret; 4144 } 4145 4146 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4147 unsigned long addr, int page_nid, 4148 int *flags) 4149 { 4150 get_page(page); 4151 4152 count_vm_numa_event(NUMA_HINT_FAULTS); 4153 if (page_nid == numa_node_id()) { 4154 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4155 *flags |= TNF_FAULT_LOCAL; 4156 } 4157 4158 return mpol_misplaced(page, vma, addr); 4159 } 4160 4161 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4162 { 4163 struct vm_area_struct *vma = vmf->vma; 4164 struct page *page = NULL; 4165 int page_nid = NUMA_NO_NODE; 4166 int last_cpupid; 4167 int target_nid; 4168 bool migrated = false; 4169 pte_t pte, old_pte; 4170 bool was_writable = pte_savedwrite(vmf->orig_pte); 4171 int flags = 0; 4172 4173 /* 4174 * The "pte" at this point cannot be used safely without 4175 * validation through pte_unmap_same(). It's of NUMA type but 4176 * the pfn may be screwed if the read is non atomic. 4177 */ 4178 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4179 spin_lock(vmf->ptl); 4180 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4181 pte_unmap_unlock(vmf->pte, vmf->ptl); 4182 goto out; 4183 } 4184 4185 /* 4186 * Make it present again, Depending on how arch implementes non 4187 * accessible ptes, some can allow access by kernel mode. 4188 */ 4189 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4190 pte = pte_modify(old_pte, vma->vm_page_prot); 4191 pte = pte_mkyoung(pte); 4192 if (was_writable) 4193 pte = pte_mkwrite(pte); 4194 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4195 update_mmu_cache(vma, vmf->address, vmf->pte); 4196 4197 page = vm_normal_page(vma, vmf->address, pte); 4198 if (!page) { 4199 pte_unmap_unlock(vmf->pte, vmf->ptl); 4200 return 0; 4201 } 4202 4203 /* TODO: handle PTE-mapped THP */ 4204 if (PageCompound(page)) { 4205 pte_unmap_unlock(vmf->pte, vmf->ptl); 4206 return 0; 4207 } 4208 4209 /* 4210 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4211 * much anyway since they can be in shared cache state. This misses 4212 * the case where a mapping is writable but the process never writes 4213 * to it but pte_write gets cleared during protection updates and 4214 * pte_dirty has unpredictable behaviour between PTE scan updates, 4215 * background writeback, dirty balancing and application behaviour. 4216 */ 4217 if (!pte_write(pte)) 4218 flags |= TNF_NO_GROUP; 4219 4220 /* 4221 * Flag if the page is shared between multiple address spaces. This 4222 * is later used when determining whether to group tasks together 4223 */ 4224 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4225 flags |= TNF_SHARED; 4226 4227 last_cpupid = page_cpupid_last(page); 4228 page_nid = page_to_nid(page); 4229 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4230 &flags); 4231 pte_unmap_unlock(vmf->pte, vmf->ptl); 4232 if (target_nid == NUMA_NO_NODE) { 4233 put_page(page); 4234 goto out; 4235 } 4236 4237 /* Migrate to the requested node */ 4238 migrated = migrate_misplaced_page(page, vma, target_nid); 4239 if (migrated) { 4240 page_nid = target_nid; 4241 flags |= TNF_MIGRATED; 4242 } else 4243 flags |= TNF_MIGRATE_FAIL; 4244 4245 out: 4246 if (page_nid != NUMA_NO_NODE) 4247 task_numa_fault(last_cpupid, page_nid, 1, flags); 4248 return 0; 4249 } 4250 4251 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4252 { 4253 if (vma_is_anonymous(vmf->vma)) 4254 return do_huge_pmd_anonymous_page(vmf); 4255 if (vmf->vma->vm_ops->huge_fault) 4256 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4257 return VM_FAULT_FALLBACK; 4258 } 4259 4260 /* `inline' is required to avoid gcc 4.1.2 build error */ 4261 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4262 { 4263 if (vma_is_anonymous(vmf->vma)) { 4264 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4265 return handle_userfault(vmf, VM_UFFD_WP); 4266 return do_huge_pmd_wp_page(vmf, orig_pmd); 4267 } 4268 if (vmf->vma->vm_ops->huge_fault) { 4269 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4270 4271 if (!(ret & VM_FAULT_FALLBACK)) 4272 return ret; 4273 } 4274 4275 /* COW or write-notify handled on pte level: split pmd. */ 4276 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4277 4278 return VM_FAULT_FALLBACK; 4279 } 4280 4281 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4282 { 4283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4284 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4285 /* No support for anonymous transparent PUD pages yet */ 4286 if (vma_is_anonymous(vmf->vma)) 4287 goto split; 4288 if (vmf->vma->vm_ops->huge_fault) { 4289 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4290 4291 if (!(ret & VM_FAULT_FALLBACK)) 4292 return ret; 4293 } 4294 split: 4295 /* COW or write-notify not handled on PUD level: split pud.*/ 4296 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4298 return VM_FAULT_FALLBACK; 4299 } 4300 4301 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4302 { 4303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4304 /* No support for anonymous transparent PUD pages yet */ 4305 if (vma_is_anonymous(vmf->vma)) 4306 return VM_FAULT_FALLBACK; 4307 if (vmf->vma->vm_ops->huge_fault) 4308 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4309 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4310 return VM_FAULT_FALLBACK; 4311 } 4312 4313 /* 4314 * These routines also need to handle stuff like marking pages dirty 4315 * and/or accessed for architectures that don't do it in hardware (most 4316 * RISC architectures). The early dirtying is also good on the i386. 4317 * 4318 * There is also a hook called "update_mmu_cache()" that architectures 4319 * with external mmu caches can use to update those (ie the Sparc or 4320 * PowerPC hashed page tables that act as extended TLBs). 4321 * 4322 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4323 * concurrent faults). 4324 * 4325 * The mmap_lock may have been released depending on flags and our return value. 4326 * See filemap_fault() and __lock_page_or_retry(). 4327 */ 4328 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4329 { 4330 pte_t entry; 4331 4332 if (unlikely(pmd_none(*vmf->pmd))) { 4333 /* 4334 * Leave __pte_alloc() until later: because vm_ops->fault may 4335 * want to allocate huge page, and if we expose page table 4336 * for an instant, it will be difficult to retract from 4337 * concurrent faults and from rmap lookups. 4338 */ 4339 vmf->pte = NULL; 4340 } else { 4341 /* See comment in pte_alloc_one_map() */ 4342 if (pmd_devmap_trans_unstable(vmf->pmd)) 4343 return 0; 4344 /* 4345 * A regular pmd is established and it can't morph into a huge 4346 * pmd from under us anymore at this point because we hold the 4347 * mmap_lock read mode and khugepaged takes it in write mode. 4348 * So now it's safe to run pte_offset_map(). 4349 */ 4350 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4351 vmf->orig_pte = *vmf->pte; 4352 4353 /* 4354 * some architectures can have larger ptes than wordsize, 4355 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4356 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4357 * accesses. The code below just needs a consistent view 4358 * for the ifs and we later double check anyway with the 4359 * ptl lock held. So here a barrier will do. 4360 */ 4361 barrier(); 4362 if (pte_none(vmf->orig_pte)) { 4363 pte_unmap(vmf->pte); 4364 vmf->pte = NULL; 4365 } 4366 } 4367 4368 if (!vmf->pte) { 4369 if (vma_is_anonymous(vmf->vma)) 4370 return do_anonymous_page(vmf); 4371 else 4372 return do_fault(vmf); 4373 } 4374 4375 if (!pte_present(vmf->orig_pte)) 4376 return do_swap_page(vmf); 4377 4378 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4379 return do_numa_page(vmf); 4380 4381 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4382 spin_lock(vmf->ptl); 4383 entry = vmf->orig_pte; 4384 if (unlikely(!pte_same(*vmf->pte, entry))) { 4385 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4386 goto unlock; 4387 } 4388 if (vmf->flags & FAULT_FLAG_WRITE) { 4389 if (!pte_write(entry)) 4390 return do_wp_page(vmf); 4391 entry = pte_mkdirty(entry); 4392 } 4393 entry = pte_mkyoung(entry); 4394 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4395 vmf->flags & FAULT_FLAG_WRITE)) { 4396 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4397 } else { 4398 /* Skip spurious TLB flush for retried page fault */ 4399 if (vmf->flags & FAULT_FLAG_TRIED) 4400 goto unlock; 4401 /* 4402 * This is needed only for protection faults but the arch code 4403 * is not yet telling us if this is a protection fault or not. 4404 * This still avoids useless tlb flushes for .text page faults 4405 * with threads. 4406 */ 4407 if (vmf->flags & FAULT_FLAG_WRITE) 4408 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4409 } 4410 unlock: 4411 pte_unmap_unlock(vmf->pte, vmf->ptl); 4412 return 0; 4413 } 4414 4415 /* 4416 * By the time we get here, we already hold the mm semaphore 4417 * 4418 * The mmap_lock may have been released depending on flags and our 4419 * return value. See filemap_fault() and __lock_page_or_retry(). 4420 */ 4421 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4422 unsigned long address, unsigned int flags) 4423 { 4424 struct vm_fault vmf = { 4425 .vma = vma, 4426 .address = address & PAGE_MASK, 4427 .flags = flags, 4428 .pgoff = linear_page_index(vma, address), 4429 .gfp_mask = __get_fault_gfp_mask(vma), 4430 }; 4431 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4432 struct mm_struct *mm = vma->vm_mm; 4433 pgd_t *pgd; 4434 p4d_t *p4d; 4435 vm_fault_t ret; 4436 4437 pgd = pgd_offset(mm, address); 4438 p4d = p4d_alloc(mm, pgd, address); 4439 if (!p4d) 4440 return VM_FAULT_OOM; 4441 4442 vmf.pud = pud_alloc(mm, p4d, address); 4443 if (!vmf.pud) 4444 return VM_FAULT_OOM; 4445 retry_pud: 4446 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4447 ret = create_huge_pud(&vmf); 4448 if (!(ret & VM_FAULT_FALLBACK)) 4449 return ret; 4450 } else { 4451 pud_t orig_pud = *vmf.pud; 4452 4453 barrier(); 4454 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4455 4456 /* NUMA case for anonymous PUDs would go here */ 4457 4458 if (dirty && !pud_write(orig_pud)) { 4459 ret = wp_huge_pud(&vmf, orig_pud); 4460 if (!(ret & VM_FAULT_FALLBACK)) 4461 return ret; 4462 } else { 4463 huge_pud_set_accessed(&vmf, orig_pud); 4464 return 0; 4465 } 4466 } 4467 } 4468 4469 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4470 if (!vmf.pmd) 4471 return VM_FAULT_OOM; 4472 4473 /* Huge pud page fault raced with pmd_alloc? */ 4474 if (pud_trans_unstable(vmf.pud)) 4475 goto retry_pud; 4476 4477 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4478 ret = create_huge_pmd(&vmf); 4479 if (!(ret & VM_FAULT_FALLBACK)) 4480 return ret; 4481 } else { 4482 pmd_t orig_pmd = *vmf.pmd; 4483 4484 barrier(); 4485 if (unlikely(is_swap_pmd(orig_pmd))) { 4486 VM_BUG_ON(thp_migration_supported() && 4487 !is_pmd_migration_entry(orig_pmd)); 4488 if (is_pmd_migration_entry(orig_pmd)) 4489 pmd_migration_entry_wait(mm, vmf.pmd); 4490 return 0; 4491 } 4492 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4493 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4494 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4495 4496 if (dirty && !pmd_write(orig_pmd)) { 4497 ret = wp_huge_pmd(&vmf, orig_pmd); 4498 if (!(ret & VM_FAULT_FALLBACK)) 4499 return ret; 4500 } else { 4501 huge_pmd_set_accessed(&vmf, orig_pmd); 4502 return 0; 4503 } 4504 } 4505 } 4506 4507 return handle_pte_fault(&vmf); 4508 } 4509 4510 /** 4511 * mm_account_fault - Do page fault accountings 4512 * 4513 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4514 * of perf event counters, but we'll still do the per-task accounting to 4515 * the task who triggered this page fault. 4516 * @address: the faulted address. 4517 * @flags: the fault flags. 4518 * @ret: the fault retcode. 4519 * 4520 * This will take care of most of the page fault accountings. Meanwhile, it 4521 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4522 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4523 * still be in per-arch page fault handlers at the entry of page fault. 4524 */ 4525 static inline void mm_account_fault(struct pt_regs *regs, 4526 unsigned long address, unsigned int flags, 4527 vm_fault_t ret) 4528 { 4529 bool major; 4530 4531 /* 4532 * We don't do accounting for some specific faults: 4533 * 4534 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4535 * includes arch_vma_access_permitted() failing before reaching here. 4536 * So this is not a "this many hardware page faults" counter. We 4537 * should use the hw profiling for that. 4538 * 4539 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4540 * once they're completed. 4541 */ 4542 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4543 return; 4544 4545 /* 4546 * We define the fault as a major fault when the final successful fault 4547 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4548 * handle it immediately previously). 4549 */ 4550 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4551 4552 if (major) 4553 current->maj_flt++; 4554 else 4555 current->min_flt++; 4556 4557 /* 4558 * If the fault is done for GUP, regs will be NULL. We only do the 4559 * accounting for the per thread fault counters who triggered the 4560 * fault, and we skip the perf event updates. 4561 */ 4562 if (!regs) 4563 return; 4564 4565 if (major) 4566 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4567 else 4568 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4569 } 4570 4571 /* 4572 * By the time we get here, we already hold the mm semaphore 4573 * 4574 * The mmap_lock may have been released depending on flags and our 4575 * return value. See filemap_fault() and __lock_page_or_retry(). 4576 */ 4577 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4578 unsigned int flags, struct pt_regs *regs) 4579 { 4580 vm_fault_t ret; 4581 4582 __set_current_state(TASK_RUNNING); 4583 4584 count_vm_event(PGFAULT); 4585 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4586 4587 /* do counter updates before entering really critical section. */ 4588 check_sync_rss_stat(current); 4589 4590 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4591 flags & FAULT_FLAG_INSTRUCTION, 4592 flags & FAULT_FLAG_REMOTE)) 4593 return VM_FAULT_SIGSEGV; 4594 4595 /* 4596 * Enable the memcg OOM handling for faults triggered in user 4597 * space. Kernel faults are handled more gracefully. 4598 */ 4599 if (flags & FAULT_FLAG_USER) 4600 mem_cgroup_enter_user_fault(); 4601 4602 if (unlikely(is_vm_hugetlb_page(vma))) 4603 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4604 else 4605 ret = __handle_mm_fault(vma, address, flags); 4606 4607 if (flags & FAULT_FLAG_USER) { 4608 mem_cgroup_exit_user_fault(); 4609 /* 4610 * The task may have entered a memcg OOM situation but 4611 * if the allocation error was handled gracefully (no 4612 * VM_FAULT_OOM), there is no need to kill anything. 4613 * Just clean up the OOM state peacefully. 4614 */ 4615 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4616 mem_cgroup_oom_synchronize(false); 4617 } 4618 4619 mm_account_fault(regs, address, flags, ret); 4620 4621 return ret; 4622 } 4623 EXPORT_SYMBOL_GPL(handle_mm_fault); 4624 4625 #ifndef __PAGETABLE_P4D_FOLDED 4626 /* 4627 * Allocate p4d page table. 4628 * We've already handled the fast-path in-line. 4629 */ 4630 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4631 { 4632 p4d_t *new = p4d_alloc_one(mm, address); 4633 if (!new) 4634 return -ENOMEM; 4635 4636 smp_wmb(); /* See comment in __pte_alloc */ 4637 4638 spin_lock(&mm->page_table_lock); 4639 if (pgd_present(*pgd)) /* Another has populated it */ 4640 p4d_free(mm, new); 4641 else 4642 pgd_populate(mm, pgd, new); 4643 spin_unlock(&mm->page_table_lock); 4644 return 0; 4645 } 4646 #endif /* __PAGETABLE_P4D_FOLDED */ 4647 4648 #ifndef __PAGETABLE_PUD_FOLDED 4649 /* 4650 * Allocate page upper directory. 4651 * We've already handled the fast-path in-line. 4652 */ 4653 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4654 { 4655 pud_t *new = pud_alloc_one(mm, address); 4656 if (!new) 4657 return -ENOMEM; 4658 4659 smp_wmb(); /* See comment in __pte_alloc */ 4660 4661 spin_lock(&mm->page_table_lock); 4662 if (!p4d_present(*p4d)) { 4663 mm_inc_nr_puds(mm); 4664 p4d_populate(mm, p4d, new); 4665 } else /* Another has populated it */ 4666 pud_free(mm, new); 4667 spin_unlock(&mm->page_table_lock); 4668 return 0; 4669 } 4670 #endif /* __PAGETABLE_PUD_FOLDED */ 4671 4672 #ifndef __PAGETABLE_PMD_FOLDED 4673 /* 4674 * Allocate page middle directory. 4675 * We've already handled the fast-path in-line. 4676 */ 4677 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4678 { 4679 spinlock_t *ptl; 4680 pmd_t *new = pmd_alloc_one(mm, address); 4681 if (!new) 4682 return -ENOMEM; 4683 4684 smp_wmb(); /* See comment in __pte_alloc */ 4685 4686 ptl = pud_lock(mm, pud); 4687 if (!pud_present(*pud)) { 4688 mm_inc_nr_pmds(mm); 4689 pud_populate(mm, pud, new); 4690 } else /* Another has populated it */ 4691 pmd_free(mm, new); 4692 spin_unlock(ptl); 4693 return 0; 4694 } 4695 #endif /* __PAGETABLE_PMD_FOLDED */ 4696 4697 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4698 struct mmu_notifier_range *range, 4699 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4700 { 4701 pgd_t *pgd; 4702 p4d_t *p4d; 4703 pud_t *pud; 4704 pmd_t *pmd; 4705 pte_t *ptep; 4706 4707 pgd = pgd_offset(mm, address); 4708 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4709 goto out; 4710 4711 p4d = p4d_offset(pgd, address); 4712 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4713 goto out; 4714 4715 pud = pud_offset(p4d, address); 4716 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4717 goto out; 4718 4719 pmd = pmd_offset(pud, address); 4720 VM_BUG_ON(pmd_trans_huge(*pmd)); 4721 4722 if (pmd_huge(*pmd)) { 4723 if (!pmdpp) 4724 goto out; 4725 4726 if (range) { 4727 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4728 NULL, mm, address & PMD_MASK, 4729 (address & PMD_MASK) + PMD_SIZE); 4730 mmu_notifier_invalidate_range_start(range); 4731 } 4732 *ptlp = pmd_lock(mm, pmd); 4733 if (pmd_huge(*pmd)) { 4734 *pmdpp = pmd; 4735 return 0; 4736 } 4737 spin_unlock(*ptlp); 4738 if (range) 4739 mmu_notifier_invalidate_range_end(range); 4740 } 4741 4742 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4743 goto out; 4744 4745 if (range) { 4746 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4747 address & PAGE_MASK, 4748 (address & PAGE_MASK) + PAGE_SIZE); 4749 mmu_notifier_invalidate_range_start(range); 4750 } 4751 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4752 if (!pte_present(*ptep)) 4753 goto unlock; 4754 *ptepp = ptep; 4755 return 0; 4756 unlock: 4757 pte_unmap_unlock(ptep, *ptlp); 4758 if (range) 4759 mmu_notifier_invalidate_range_end(range); 4760 out: 4761 return -EINVAL; 4762 } 4763 4764 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4765 pte_t **ptepp, spinlock_t **ptlp) 4766 { 4767 int res; 4768 4769 /* (void) is needed to make gcc happy */ 4770 (void) __cond_lock(*ptlp, 4771 !(res = __follow_pte_pmd(mm, address, NULL, 4772 ptepp, NULL, ptlp))); 4773 return res; 4774 } 4775 4776 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4777 struct mmu_notifier_range *range, 4778 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4779 { 4780 int res; 4781 4782 /* (void) is needed to make gcc happy */ 4783 (void) __cond_lock(*ptlp, 4784 !(res = __follow_pte_pmd(mm, address, range, 4785 ptepp, pmdpp, ptlp))); 4786 return res; 4787 } 4788 EXPORT_SYMBOL(follow_pte_pmd); 4789 4790 /** 4791 * follow_pfn - look up PFN at a user virtual address 4792 * @vma: memory mapping 4793 * @address: user virtual address 4794 * @pfn: location to store found PFN 4795 * 4796 * Only IO mappings and raw PFN mappings are allowed. 4797 * 4798 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4799 */ 4800 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4801 unsigned long *pfn) 4802 { 4803 int ret = -EINVAL; 4804 spinlock_t *ptl; 4805 pte_t *ptep; 4806 4807 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4808 return ret; 4809 4810 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4811 if (ret) 4812 return ret; 4813 *pfn = pte_pfn(*ptep); 4814 pte_unmap_unlock(ptep, ptl); 4815 return 0; 4816 } 4817 EXPORT_SYMBOL(follow_pfn); 4818 4819 #ifdef CONFIG_HAVE_IOREMAP_PROT 4820 int follow_phys(struct vm_area_struct *vma, 4821 unsigned long address, unsigned int flags, 4822 unsigned long *prot, resource_size_t *phys) 4823 { 4824 int ret = -EINVAL; 4825 pte_t *ptep, pte; 4826 spinlock_t *ptl; 4827 4828 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4829 goto out; 4830 4831 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4832 goto out; 4833 pte = *ptep; 4834 4835 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4836 goto unlock; 4837 4838 *prot = pgprot_val(pte_pgprot(pte)); 4839 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4840 4841 ret = 0; 4842 unlock: 4843 pte_unmap_unlock(ptep, ptl); 4844 out: 4845 return ret; 4846 } 4847 4848 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4849 void *buf, int len, int write) 4850 { 4851 resource_size_t phys_addr; 4852 unsigned long prot = 0; 4853 void __iomem *maddr; 4854 int offset = addr & (PAGE_SIZE-1); 4855 4856 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4857 return -EINVAL; 4858 4859 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4860 if (!maddr) 4861 return -ENOMEM; 4862 4863 if (write) 4864 memcpy_toio(maddr + offset, buf, len); 4865 else 4866 memcpy_fromio(buf, maddr + offset, len); 4867 iounmap(maddr); 4868 4869 return len; 4870 } 4871 EXPORT_SYMBOL_GPL(generic_access_phys); 4872 #endif 4873 4874 /* 4875 * Access another process' address space as given in mm. If non-NULL, use the 4876 * given task for page fault accounting. 4877 */ 4878 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4879 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4880 { 4881 struct vm_area_struct *vma; 4882 void *old_buf = buf; 4883 int write = gup_flags & FOLL_WRITE; 4884 4885 if (mmap_read_lock_killable(mm)) 4886 return 0; 4887 4888 /* ignore errors, just check how much was successfully transferred */ 4889 while (len) { 4890 int bytes, ret, offset; 4891 void *maddr; 4892 struct page *page = NULL; 4893 4894 ret = get_user_pages_remote(mm, addr, 1, 4895 gup_flags, &page, &vma, NULL); 4896 if (ret <= 0) { 4897 #ifndef CONFIG_HAVE_IOREMAP_PROT 4898 break; 4899 #else 4900 /* 4901 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4902 * we can access using slightly different code. 4903 */ 4904 vma = find_vma(mm, addr); 4905 if (!vma || vma->vm_start > addr) 4906 break; 4907 if (vma->vm_ops && vma->vm_ops->access) 4908 ret = vma->vm_ops->access(vma, addr, buf, 4909 len, write); 4910 if (ret <= 0) 4911 break; 4912 bytes = ret; 4913 #endif 4914 } else { 4915 bytes = len; 4916 offset = addr & (PAGE_SIZE-1); 4917 if (bytes > PAGE_SIZE-offset) 4918 bytes = PAGE_SIZE-offset; 4919 4920 maddr = kmap(page); 4921 if (write) { 4922 copy_to_user_page(vma, page, addr, 4923 maddr + offset, buf, bytes); 4924 set_page_dirty_lock(page); 4925 } else { 4926 copy_from_user_page(vma, page, addr, 4927 buf, maddr + offset, bytes); 4928 } 4929 kunmap(page); 4930 put_page(page); 4931 } 4932 len -= bytes; 4933 buf += bytes; 4934 addr += bytes; 4935 } 4936 mmap_read_unlock(mm); 4937 4938 return buf - old_buf; 4939 } 4940 4941 /** 4942 * access_remote_vm - access another process' address space 4943 * @mm: the mm_struct of the target address space 4944 * @addr: start address to access 4945 * @buf: source or destination buffer 4946 * @len: number of bytes to transfer 4947 * @gup_flags: flags modifying lookup behaviour 4948 * 4949 * The caller must hold a reference on @mm. 4950 * 4951 * Return: number of bytes copied from source to destination. 4952 */ 4953 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4954 void *buf, int len, unsigned int gup_flags) 4955 { 4956 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4957 } 4958 4959 /* 4960 * Access another process' address space. 4961 * Source/target buffer must be kernel space, 4962 * Do not walk the page table directly, use get_user_pages 4963 */ 4964 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4965 void *buf, int len, unsigned int gup_flags) 4966 { 4967 struct mm_struct *mm; 4968 int ret; 4969 4970 mm = get_task_mm(tsk); 4971 if (!mm) 4972 return 0; 4973 4974 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4975 4976 mmput(mm); 4977 4978 return ret; 4979 } 4980 EXPORT_SYMBOL_GPL(access_process_vm); 4981 4982 /* 4983 * Print the name of a VMA. 4984 */ 4985 void print_vma_addr(char *prefix, unsigned long ip) 4986 { 4987 struct mm_struct *mm = current->mm; 4988 struct vm_area_struct *vma; 4989 4990 /* 4991 * we might be running from an atomic context so we cannot sleep 4992 */ 4993 if (!mmap_read_trylock(mm)) 4994 return; 4995 4996 vma = find_vma(mm, ip); 4997 if (vma && vma->vm_file) { 4998 struct file *f = vma->vm_file; 4999 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5000 if (buf) { 5001 char *p; 5002 5003 p = file_path(f, buf, PAGE_SIZE); 5004 if (IS_ERR(p)) 5005 p = "?"; 5006 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5007 vma->vm_start, 5008 vma->vm_end - vma->vm_start); 5009 free_page((unsigned long)buf); 5010 } 5011 } 5012 mmap_read_unlock(mm); 5013 } 5014 5015 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5016 void __might_fault(const char *file, int line) 5017 { 5018 /* 5019 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5020 * holding the mmap_lock, this is safe because kernel memory doesn't 5021 * get paged out, therefore we'll never actually fault, and the 5022 * below annotations will generate false positives. 5023 */ 5024 if (uaccess_kernel()) 5025 return; 5026 if (pagefault_disabled()) 5027 return; 5028 __might_sleep(file, line, 0); 5029 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5030 if (current->mm) 5031 might_lock_read(¤t->mm->mmap_lock); 5032 #endif 5033 } 5034 EXPORT_SYMBOL(__might_fault); 5035 #endif 5036 5037 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5038 /* 5039 * Process all subpages of the specified huge page with the specified 5040 * operation. The target subpage will be processed last to keep its 5041 * cache lines hot. 5042 */ 5043 static inline void process_huge_page( 5044 unsigned long addr_hint, unsigned int pages_per_huge_page, 5045 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5046 void *arg) 5047 { 5048 int i, n, base, l; 5049 unsigned long addr = addr_hint & 5050 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5051 5052 /* Process target subpage last to keep its cache lines hot */ 5053 might_sleep(); 5054 n = (addr_hint - addr) / PAGE_SIZE; 5055 if (2 * n <= pages_per_huge_page) { 5056 /* If target subpage in first half of huge page */ 5057 base = 0; 5058 l = n; 5059 /* Process subpages at the end of huge page */ 5060 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5061 cond_resched(); 5062 process_subpage(addr + i * PAGE_SIZE, i, arg); 5063 } 5064 } else { 5065 /* If target subpage in second half of huge page */ 5066 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5067 l = pages_per_huge_page - n; 5068 /* Process subpages at the begin of huge page */ 5069 for (i = 0; i < base; i++) { 5070 cond_resched(); 5071 process_subpage(addr + i * PAGE_SIZE, i, arg); 5072 } 5073 } 5074 /* 5075 * Process remaining subpages in left-right-left-right pattern 5076 * towards the target subpage 5077 */ 5078 for (i = 0; i < l; i++) { 5079 int left_idx = base + i; 5080 int right_idx = base + 2 * l - 1 - i; 5081 5082 cond_resched(); 5083 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5084 cond_resched(); 5085 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5086 } 5087 } 5088 5089 static void clear_gigantic_page(struct page *page, 5090 unsigned long addr, 5091 unsigned int pages_per_huge_page) 5092 { 5093 int i; 5094 struct page *p = page; 5095 5096 might_sleep(); 5097 for (i = 0; i < pages_per_huge_page; 5098 i++, p = mem_map_next(p, page, i)) { 5099 cond_resched(); 5100 clear_user_highpage(p, addr + i * PAGE_SIZE); 5101 } 5102 } 5103 5104 static void clear_subpage(unsigned long addr, int idx, void *arg) 5105 { 5106 struct page *page = arg; 5107 5108 clear_user_highpage(page + idx, addr); 5109 } 5110 5111 void clear_huge_page(struct page *page, 5112 unsigned long addr_hint, unsigned int pages_per_huge_page) 5113 { 5114 unsigned long addr = addr_hint & 5115 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5116 5117 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5118 clear_gigantic_page(page, addr, pages_per_huge_page); 5119 return; 5120 } 5121 5122 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5123 } 5124 5125 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5126 unsigned long addr, 5127 struct vm_area_struct *vma, 5128 unsigned int pages_per_huge_page) 5129 { 5130 int i; 5131 struct page *dst_base = dst; 5132 struct page *src_base = src; 5133 5134 for (i = 0; i < pages_per_huge_page; ) { 5135 cond_resched(); 5136 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5137 5138 i++; 5139 dst = mem_map_next(dst, dst_base, i); 5140 src = mem_map_next(src, src_base, i); 5141 } 5142 } 5143 5144 struct copy_subpage_arg { 5145 struct page *dst; 5146 struct page *src; 5147 struct vm_area_struct *vma; 5148 }; 5149 5150 static void copy_subpage(unsigned long addr, int idx, void *arg) 5151 { 5152 struct copy_subpage_arg *copy_arg = arg; 5153 5154 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5155 addr, copy_arg->vma); 5156 } 5157 5158 void copy_user_huge_page(struct page *dst, struct page *src, 5159 unsigned long addr_hint, struct vm_area_struct *vma, 5160 unsigned int pages_per_huge_page) 5161 { 5162 unsigned long addr = addr_hint & 5163 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5164 struct copy_subpage_arg arg = { 5165 .dst = dst, 5166 .src = src, 5167 .vma = vma, 5168 }; 5169 5170 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5171 copy_user_gigantic_page(dst, src, addr, vma, 5172 pages_per_huge_page); 5173 return; 5174 } 5175 5176 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5177 } 5178 5179 long copy_huge_page_from_user(struct page *dst_page, 5180 const void __user *usr_src, 5181 unsigned int pages_per_huge_page, 5182 bool allow_pagefault) 5183 { 5184 void *src = (void *)usr_src; 5185 void *page_kaddr; 5186 unsigned long i, rc = 0; 5187 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5188 5189 for (i = 0; i < pages_per_huge_page; i++) { 5190 if (allow_pagefault) 5191 page_kaddr = kmap(dst_page + i); 5192 else 5193 page_kaddr = kmap_atomic(dst_page + i); 5194 rc = copy_from_user(page_kaddr, 5195 (const void __user *)(src + i * PAGE_SIZE), 5196 PAGE_SIZE); 5197 if (allow_pagefault) 5198 kunmap(dst_page + i); 5199 else 5200 kunmap_atomic(page_kaddr); 5201 5202 ret_val -= (PAGE_SIZE - rc); 5203 if (rc) 5204 break; 5205 5206 cond_resched(); 5207 } 5208 return ret_val; 5209 } 5210 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5211 5212 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5213 5214 static struct kmem_cache *page_ptl_cachep; 5215 5216 void __init ptlock_cache_init(void) 5217 { 5218 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5219 SLAB_PANIC, NULL); 5220 } 5221 5222 bool ptlock_alloc(struct page *page) 5223 { 5224 spinlock_t *ptl; 5225 5226 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5227 if (!ptl) 5228 return false; 5229 page->ptl = ptl; 5230 return true; 5231 } 5232 5233 void ptlock_free(struct page *page) 5234 { 5235 kmem_cache_free(page_ptl_cachep, page->ptl); 5236 } 5237 #endif 5238