1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 117 return false; 118 119 return pte_marker_uffd_wp(vmf->orig_pte); 120 } 121 122 /* 123 * A number of key systems in x86 including ioremap() rely on the assumption 124 * that high_memory defines the upper bound on direct map memory, then end 125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 127 * and ZONE_HIGHMEM. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 do { 368 unsigned long addr = vma->vm_start; 369 struct vm_area_struct *next; 370 371 /* 372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 373 * be 0. This will underflow and is okay. 374 */ 375 next = mas_find(mas, ceiling - 1); 376 377 /* 378 * Hide vma from rmap and truncate_pagecache before freeing 379 * pgtables 380 */ 381 if (mm_wr_locked) 382 vma_start_write(vma); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 386 if (is_vm_hugetlb_page(vma)) { 387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 388 floor, next ? next->vm_start : ceiling); 389 } else { 390 /* 391 * Optimization: gather nearby vmas into one call down 392 */ 393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 394 && !is_vm_hugetlb_page(next)) { 395 vma = next; 396 next = mas_find(mas, ceiling - 1); 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 unlink_file_vma(vma); 401 } 402 free_pgd_range(tlb, addr, vma->vm_end, 403 floor, next ? next->vm_start : ceiling); 404 } 405 vma = next; 406 } while (vma); 407 } 408 409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 410 { 411 spinlock_t *ptl = pmd_lock(mm, pmd); 412 413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 414 mm_inc_nr_ptes(mm); 415 /* 416 * Ensure all pte setup (eg. pte page lock and page clearing) are 417 * visible before the pte is made visible to other CPUs by being 418 * put into page tables. 419 * 420 * The other side of the story is the pointer chasing in the page 421 * table walking code (when walking the page table without locking; 422 * ie. most of the time). Fortunately, these data accesses consist 423 * of a chain of data-dependent loads, meaning most CPUs (alpha 424 * being the notable exception) will already guarantee loads are 425 * seen in-order. See the alpha page table accessors for the 426 * smp_rmb() barriers in page table walking code. 427 */ 428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 429 pmd_populate(mm, pmd, *pte); 430 *pte = NULL; 431 } 432 spin_unlock(ptl); 433 } 434 435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 436 { 437 pgtable_t new = pte_alloc_one(mm); 438 if (!new) 439 return -ENOMEM; 440 441 pmd_install(mm, pmd, &new); 442 if (new) 443 pte_free(mm, new); 444 return 0; 445 } 446 447 int __pte_alloc_kernel(pmd_t *pmd) 448 { 449 pte_t *new = pte_alloc_one_kernel(&init_mm); 450 if (!new) 451 return -ENOMEM; 452 453 spin_lock(&init_mm.page_table_lock); 454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 455 smp_wmb(); /* See comment in pmd_install() */ 456 pmd_populate_kernel(&init_mm, pmd, new); 457 new = NULL; 458 } 459 spin_unlock(&init_mm.page_table_lock); 460 if (new) 461 pte_free_kernel(&init_mm, new); 462 return 0; 463 } 464 465 static inline void init_rss_vec(int *rss) 466 { 467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 468 } 469 470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 471 { 472 int i; 473 474 if (current->mm == mm) 475 sync_mm_rss(mm); 476 for (i = 0; i < NR_MM_COUNTERS; i++) 477 if (rss[i]) 478 add_mm_counter(mm, i, rss[i]); 479 } 480 481 /* 482 * This function is called to print an error when a bad pte 483 * is found. For example, we might have a PFN-mapped pte in 484 * a region that doesn't allow it. 485 * 486 * The calling function must still handle the error. 487 */ 488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 489 pte_t pte, struct page *page) 490 { 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 492 p4d_t *p4d = p4d_offset(pgd, addr); 493 pud_t *pud = pud_offset(p4d, addr); 494 pmd_t *pmd = pmd_offset(pud, addr); 495 struct address_space *mapping; 496 pgoff_t index; 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 521 index = linear_page_index(vma, addr); 522 523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 524 current->comm, 525 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 526 if (page) 527 dump_page(page, "bad pte"); 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 531 vma->vm_file, 532 vma->vm_ops ? vma->vm_ops->fault : NULL, 533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 534 mapping ? mapping->a_ops->read_folio : NULL); 535 dump_stack(); 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 537 } 538 539 /* 540 * vm_normal_page -- This function gets the "struct page" associated with a pte. 541 * 542 * "Special" mappings do not wish to be associated with a "struct page" (either 543 * it doesn't exist, or it exists but they don't want to touch it). In this 544 * case, NULL is returned here. "Normal" mappings do have a struct page. 545 * 546 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 547 * pte bit, in which case this function is trivial. Secondly, an architecture 548 * may not have a spare pte bit, which requires a more complicated scheme, 549 * described below. 550 * 551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 552 * special mapping (even if there are underlying and valid "struct pages"). 553 * COWed pages of a VM_PFNMAP are always normal. 554 * 555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 558 * mapping will always honor the rule 559 * 560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 561 * 562 * And for normal mappings this is false. 563 * 564 * This restricts such mappings to be a linear translation from virtual address 565 * to pfn. To get around this restriction, we allow arbitrary mappings so long 566 * as the vma is not a COW mapping; in that case, we know that all ptes are 567 * special (because none can have been COWed). 568 * 569 * 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 571 * 572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 573 * page" backing, however the difference is that _all_ pages with a struct 574 * page (that is, those where pfn_valid is true) are refcounted and considered 575 * normal pages by the VM. The disadvantage is that pages are refcounted 576 * (which can be slower and simply not an option for some PFNMAP users). The 577 * advantage is that we don't have to follow the strict linearity rule of 578 * PFNMAP mappings in order to support COWable mappings. 579 * 580 */ 581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 582 pte_t pte) 583 { 584 unsigned long pfn = pte_pfn(pte); 585 586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 587 if (likely(!pte_special(pte))) 588 goto check_pfn; 589 if (vma->vm_ops && vma->vm_ops->find_special_page) 590 return vma->vm_ops->find_special_page(vma, addr); 591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 592 return NULL; 593 if (is_zero_pfn(pfn)) 594 return NULL; 595 if (pte_devmap(pte)) 596 /* 597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 598 * and will have refcounts incremented on their struct pages 599 * when they are inserted into PTEs, thus they are safe to 600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 601 * do not have refcounts. Example of legacy ZONE_DEVICE is 602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 603 */ 604 return NULL; 605 606 print_bad_pte(vma, addr, pte, NULL); 607 return NULL; 608 } 609 610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 611 612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 613 if (vma->vm_flags & VM_MIXEDMAP) { 614 if (!pfn_valid(pfn)) 615 return NULL; 616 goto out; 617 } else { 618 unsigned long off; 619 off = (addr - vma->vm_start) >> PAGE_SHIFT; 620 if (pfn == vma->vm_pgoff + off) 621 return NULL; 622 if (!is_cow_mapping(vma->vm_flags)) 623 return NULL; 624 } 625 } 626 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 630 check_pfn: 631 if (unlikely(pfn > highest_memmap_pfn)) { 632 print_bad_pte(vma, addr, pte, NULL); 633 return NULL; 634 } 635 636 /* 637 * NOTE! We still have PageReserved() pages in the page tables. 638 * eg. VDSO mappings can cause them to exist. 639 */ 640 out: 641 return pfn_to_page(pfn); 642 } 643 644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 645 pte_t pte) 646 { 647 struct page *page = vm_normal_page(vma, addr, pte); 648 649 if (page) 650 return page_folio(page); 651 return NULL; 652 } 653 654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 656 pmd_t pmd) 657 { 658 unsigned long pfn = pmd_pfn(pmd); 659 660 /* 661 * There is no pmd_special() but there may be special pmds, e.g. 662 * in a direct-access (dax) mapping, so let's just replicate the 663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 664 */ 665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 666 if (vma->vm_flags & VM_MIXEDMAP) { 667 if (!pfn_valid(pfn)) 668 return NULL; 669 goto out; 670 } else { 671 unsigned long off; 672 off = (addr - vma->vm_start) >> PAGE_SHIFT; 673 if (pfn == vma->vm_pgoff + off) 674 return NULL; 675 if (!is_cow_mapping(vma->vm_flags)) 676 return NULL; 677 } 678 } 679 680 if (pmd_devmap(pmd)) 681 return NULL; 682 if (is_huge_zero_pmd(pmd)) 683 return NULL; 684 if (unlikely(pfn > highest_memmap_pfn)) 685 return NULL; 686 687 /* 688 * NOTE! We still have PageReserved() pages in the page tables. 689 * eg. VDSO mappings can cause them to exist. 690 */ 691 out: 692 return pfn_to_page(pfn); 693 } 694 #endif 695 696 static void restore_exclusive_pte(struct vm_area_struct *vma, 697 struct page *page, unsigned long address, 698 pte_t *ptep) 699 { 700 pte_t orig_pte; 701 pte_t pte; 702 swp_entry_t entry; 703 704 orig_pte = ptep_get(ptep); 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 706 if (pte_swp_soft_dirty(orig_pte)) 707 pte = pte_mksoft_dirty(pte); 708 709 entry = pte_to_swp_entry(orig_pte); 710 if (pte_swp_uffd_wp(orig_pte)) 711 pte = pte_mkuffd_wp(pte); 712 else if (is_writable_device_exclusive_entry(entry)) 713 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 714 715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 716 717 /* 718 * No need to take a page reference as one was already 719 * created when the swap entry was made. 720 */ 721 if (PageAnon(page)) 722 page_add_anon_rmap(page, vma, address, RMAP_NONE); 723 else 724 /* 725 * Currently device exclusive access only supports anonymous 726 * memory so the entry shouldn't point to a filebacked page. 727 */ 728 WARN_ON_ONCE(1); 729 730 set_pte_at(vma->vm_mm, address, ptep, pte); 731 732 /* 733 * No need to invalidate - it was non-present before. However 734 * secondary CPUs may have mappings that need invalidating. 735 */ 736 update_mmu_cache(vma, address, ptep); 737 } 738 739 /* 740 * Tries to restore an exclusive pte if the page lock can be acquired without 741 * sleeping. 742 */ 743 static int 744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 745 unsigned long addr) 746 { 747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 748 struct page *page = pfn_swap_entry_to_page(entry); 749 750 if (trylock_page(page)) { 751 restore_exclusive_pte(vma, page, addr, src_pte); 752 unlock_page(page); 753 return 0; 754 } 755 756 return -EBUSY; 757 } 758 759 /* 760 * copy one vm_area from one task to the other. Assumes the page tables 761 * already present in the new task to be cleared in the whole range 762 * covered by this vma. 763 */ 764 765 static unsigned long 766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 768 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 769 { 770 unsigned long vm_flags = dst_vma->vm_flags; 771 pte_t orig_pte = ptep_get(src_pte); 772 pte_t pte = orig_pte; 773 struct page *page; 774 swp_entry_t entry = pte_to_swp_entry(orig_pte); 775 776 if (likely(!non_swap_entry(entry))) { 777 if (swap_duplicate(entry) < 0) 778 return -EIO; 779 780 /* make sure dst_mm is on swapoff's mmlist. */ 781 if (unlikely(list_empty(&dst_mm->mmlist))) { 782 spin_lock(&mmlist_lock); 783 if (list_empty(&dst_mm->mmlist)) 784 list_add(&dst_mm->mmlist, 785 &src_mm->mmlist); 786 spin_unlock(&mmlist_lock); 787 } 788 /* Mark the swap entry as shared. */ 789 if (pte_swp_exclusive(orig_pte)) { 790 pte = pte_swp_clear_exclusive(orig_pte); 791 set_pte_at(src_mm, addr, src_pte, pte); 792 } 793 rss[MM_SWAPENTS]++; 794 } else if (is_migration_entry(entry)) { 795 page = pfn_swap_entry_to_page(entry); 796 797 rss[mm_counter(page)]++; 798 799 if (!is_readable_migration_entry(entry) && 800 is_cow_mapping(vm_flags)) { 801 /* 802 * COW mappings require pages in both parent and child 803 * to be set to read. A previously exclusive entry is 804 * now shared. 805 */ 806 entry = make_readable_migration_entry( 807 swp_offset(entry)); 808 pte = swp_entry_to_pte(entry); 809 if (pte_swp_soft_dirty(orig_pte)) 810 pte = pte_swp_mksoft_dirty(pte); 811 if (pte_swp_uffd_wp(orig_pte)) 812 pte = pte_swp_mkuffd_wp(pte); 813 set_pte_at(src_mm, addr, src_pte, pte); 814 } 815 } else if (is_device_private_entry(entry)) { 816 page = pfn_swap_entry_to_page(entry); 817 818 /* 819 * Update rss count even for unaddressable pages, as 820 * they should treated just like normal pages in this 821 * respect. 822 * 823 * We will likely want to have some new rss counters 824 * for unaddressable pages, at some point. But for now 825 * keep things as they are. 826 */ 827 get_page(page); 828 rss[mm_counter(page)]++; 829 /* Cannot fail as these pages cannot get pinned. */ 830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 831 832 /* 833 * We do not preserve soft-dirty information, because so 834 * far, checkpoint/restore is the only feature that 835 * requires that. And checkpoint/restore does not work 836 * when a device driver is involved (you cannot easily 837 * save and restore device driver state). 838 */ 839 if (is_writable_device_private_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 entry = make_readable_device_private_entry( 842 swp_offset(entry)); 843 pte = swp_entry_to_pte(entry); 844 if (pte_swp_uffd_wp(orig_pte)) 845 pte = pte_swp_mkuffd_wp(pte); 846 set_pte_at(src_mm, addr, src_pte, pte); 847 } 848 } else if (is_device_exclusive_entry(entry)) { 849 /* 850 * Make device exclusive entries present by restoring the 851 * original entry then copying as for a present pte. Device 852 * exclusive entries currently only support private writable 853 * (ie. COW) mappings. 854 */ 855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 856 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 857 return -EBUSY; 858 return -ENOENT; 859 } else if (is_pte_marker_entry(entry)) { 860 pte_marker marker = copy_pte_marker(entry, dst_vma); 861 862 if (marker) 863 set_pte_at(dst_mm, addr, dst_pte, 864 make_pte_marker(marker)); 865 return 0; 866 } 867 if (!userfaultfd_wp(dst_vma)) 868 pte = pte_swp_clear_uffd_wp(pte); 869 set_pte_at(dst_mm, addr, dst_pte, pte); 870 return 0; 871 } 872 873 /* 874 * Copy a present and normal page. 875 * 876 * NOTE! The usual case is that this isn't required; 877 * instead, the caller can just increase the page refcount 878 * and re-use the pte the traditional way. 879 * 880 * And if we need a pre-allocated page but don't yet have 881 * one, return a negative error to let the preallocation 882 * code know so that it can do so outside the page table 883 * lock. 884 */ 885 static inline int 886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 888 struct folio **prealloc, struct page *page) 889 { 890 struct folio *new_folio; 891 pte_t pte; 892 893 new_folio = *prealloc; 894 if (!new_folio) 895 return -EAGAIN; 896 897 /* 898 * We have a prealloc page, all good! Take it 899 * over and copy the page & arm it. 900 */ 901 *prealloc = NULL; 902 copy_user_highpage(&new_folio->page, page, addr, src_vma); 903 __folio_mark_uptodate(new_folio); 904 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 905 folio_add_lru_vma(new_folio, dst_vma); 906 rss[MM_ANONPAGES]++; 907 908 /* All done, just insert the new page copy in the child */ 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 912 /* Uffd-wp needs to be delivered to dest pte as well */ 913 pte = pte_mkuffd_wp(pte); 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 915 return 0; 916 } 917 918 /* 919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 920 * is required to copy this pte. 921 */ 922 static inline int 923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 925 struct folio **prealloc) 926 { 927 struct mm_struct *src_mm = src_vma->vm_mm; 928 unsigned long vm_flags = src_vma->vm_flags; 929 pte_t pte = ptep_get(src_pte); 930 struct page *page; 931 struct folio *folio; 932 933 page = vm_normal_page(src_vma, addr, pte); 934 if (page) 935 folio = page_folio(page); 936 if (page && folio_test_anon(folio)) { 937 /* 938 * If this page may have been pinned by the parent process, 939 * copy the page immediately for the child so that we'll always 940 * guarantee the pinned page won't be randomly replaced in the 941 * future. 942 */ 943 folio_get(folio); 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 945 /* Page may be pinned, we have to copy. */ 946 folio_put(folio); 947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 948 addr, rss, prealloc, page); 949 } 950 rss[MM_ANONPAGES]++; 951 } else if (page) { 952 folio_get(folio); 953 page_dup_file_rmap(page, false); 954 rss[mm_counter_file(page)]++; 955 } 956 957 /* 958 * If it's a COW mapping, write protect it both 959 * in the parent and the child 960 */ 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 962 ptep_set_wrprotect(src_mm, addr, src_pte); 963 pte = pte_wrprotect(pte); 964 } 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 966 967 /* 968 * If it's a shared mapping, mark it clean in 969 * the child 970 */ 971 if (vm_flags & VM_SHARED) 972 pte = pte_mkclean(pte); 973 pte = pte_mkold(pte); 974 975 if (!userfaultfd_wp(dst_vma)) 976 pte = pte_clear_uffd_wp(pte); 977 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 979 return 0; 980 } 981 982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 983 struct vm_area_struct *vma, unsigned long addr) 984 { 985 struct folio *new_folio; 986 987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 988 if (!new_folio) 989 return NULL; 990 991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 992 folio_put(new_folio); 993 return NULL; 994 } 995 folio_throttle_swaprate(new_folio, GFP_KERNEL); 996 997 return new_folio; 998 } 999 1000 static int 1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1003 unsigned long end) 1004 { 1005 struct mm_struct *dst_mm = dst_vma->vm_mm; 1006 struct mm_struct *src_mm = src_vma->vm_mm; 1007 pte_t *orig_src_pte, *orig_dst_pte; 1008 pte_t *src_pte, *dst_pte; 1009 pte_t ptent; 1010 spinlock_t *src_ptl, *dst_ptl; 1011 int progress, ret = 0; 1012 int rss[NR_MM_COUNTERS]; 1013 swp_entry_t entry = (swp_entry_t){0}; 1014 struct folio *prealloc = NULL; 1015 1016 again: 1017 progress = 0; 1018 init_rss_vec(rss); 1019 1020 /* 1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1022 * error handling here, assume that exclusive mmap_lock on dst and src 1023 * protects anon from unexpected THP transitions; with shmem and file 1024 * protected by mmap_lock-less collapse skipping areas with anon_vma 1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1026 * can remove such assumptions later, but this is good enough for now. 1027 */ 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1029 if (!dst_pte) { 1030 ret = -ENOMEM; 1031 goto out; 1032 } 1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1034 if (!src_pte) { 1035 pte_unmap_unlock(dst_pte, dst_ptl); 1036 /* ret == 0 */ 1037 goto out; 1038 } 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1040 orig_src_pte = src_pte; 1041 orig_dst_pte = dst_pte; 1042 arch_enter_lazy_mmu_mode(); 1043 1044 do { 1045 /* 1046 * We are holding two locks at this point - either of them 1047 * could generate latencies in another task on another CPU. 1048 */ 1049 if (progress >= 32) { 1050 progress = 0; 1051 if (need_resched() || 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1053 break; 1054 } 1055 ptent = ptep_get(src_pte); 1056 if (pte_none(ptent)) { 1057 progress++; 1058 continue; 1059 } 1060 if (unlikely(!pte_present(ptent))) { 1061 ret = copy_nonpresent_pte(dst_mm, src_mm, 1062 dst_pte, src_pte, 1063 dst_vma, src_vma, 1064 addr, rss); 1065 if (ret == -EIO) { 1066 entry = pte_to_swp_entry(ptep_get(src_pte)); 1067 break; 1068 } else if (ret == -EBUSY) { 1069 break; 1070 } else if (!ret) { 1071 progress += 8; 1072 continue; 1073 } 1074 1075 /* 1076 * Device exclusive entry restored, continue by copying 1077 * the now present pte. 1078 */ 1079 WARN_ON_ONCE(ret != -ENOENT); 1080 } 1081 /* copy_present_pte() will clear `*prealloc' if consumed */ 1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1083 addr, rss, &prealloc); 1084 /* 1085 * If we need a pre-allocated page for this pte, drop the 1086 * locks, allocate, and try again. 1087 */ 1088 if (unlikely(ret == -EAGAIN)) 1089 break; 1090 if (unlikely(prealloc)) { 1091 /* 1092 * pre-alloc page cannot be reused by next time so as 1093 * to strictly follow mempolicy (e.g., alloc_page_vma() 1094 * will allocate page according to address). This 1095 * could only happen if one pinned pte changed. 1096 */ 1097 folio_put(prealloc); 1098 prealloc = NULL; 1099 } 1100 progress += 8; 1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1102 1103 arch_leave_lazy_mmu_mode(); 1104 pte_unmap_unlock(orig_src_pte, src_ptl); 1105 add_mm_rss_vec(dst_mm, rss); 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1107 cond_resched(); 1108 1109 if (ret == -EIO) { 1110 VM_WARN_ON_ONCE(!entry.val); 1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 entry.val = 0; 1116 } else if (ret == -EBUSY) { 1117 goto out; 1118 } else if (ret == -EAGAIN) { 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1120 if (!prealloc) 1121 return -ENOMEM; 1122 } else if (ret) { 1123 VM_WARN_ON_ONCE(1); 1124 } 1125 1126 /* We've captured and resolved the error. Reset, try again. */ 1127 ret = 0; 1128 1129 if (addr != end) 1130 goto again; 1131 out: 1132 if (unlikely(prealloc)) 1133 folio_put(prealloc); 1134 return ret; 1135 } 1136 1137 static inline int 1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1140 unsigned long end) 1141 { 1142 struct mm_struct *dst_mm = dst_vma->vm_mm; 1143 struct mm_struct *src_mm = src_vma->vm_mm; 1144 pmd_t *src_pmd, *dst_pmd; 1145 unsigned long next; 1146 1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1148 if (!dst_pmd) 1149 return -ENOMEM; 1150 src_pmd = pmd_offset(src_pud, addr); 1151 do { 1152 next = pmd_addr_end(addr, end); 1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1154 || pmd_devmap(*src_pmd)) { 1155 int err; 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1158 addr, dst_vma, src_vma); 1159 if (err == -ENOMEM) 1160 return -ENOMEM; 1161 if (!err) 1162 continue; 1163 /* fall through */ 1164 } 1165 if (pmd_none_or_clear_bad(src_pmd)) 1166 continue; 1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1168 addr, next)) 1169 return -ENOMEM; 1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1171 return 0; 1172 } 1173 1174 static inline int 1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1177 unsigned long end) 1178 { 1179 struct mm_struct *dst_mm = dst_vma->vm_mm; 1180 struct mm_struct *src_mm = src_vma->vm_mm; 1181 pud_t *src_pud, *dst_pud; 1182 unsigned long next; 1183 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1185 if (!dst_pud) 1186 return -ENOMEM; 1187 src_pud = pud_offset(src_p4d, addr); 1188 do { 1189 next = pud_addr_end(addr, end); 1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1191 int err; 1192 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1194 err = copy_huge_pud(dst_mm, src_mm, 1195 dst_pud, src_pud, addr, src_vma); 1196 if (err == -ENOMEM) 1197 return -ENOMEM; 1198 if (!err) 1199 continue; 1200 /* fall through */ 1201 } 1202 if (pud_none_or_clear_bad(src_pud)) 1203 continue; 1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1205 addr, next)) 1206 return -ENOMEM; 1207 } while (dst_pud++, src_pud++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 static inline int 1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1214 unsigned long end) 1215 { 1216 struct mm_struct *dst_mm = dst_vma->vm_mm; 1217 p4d_t *src_p4d, *dst_p4d; 1218 unsigned long next; 1219 1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1221 if (!dst_p4d) 1222 return -ENOMEM; 1223 src_p4d = p4d_offset(src_pgd, addr); 1224 do { 1225 next = p4d_addr_end(addr, end); 1226 if (p4d_none_or_clear_bad(src_p4d)) 1227 continue; 1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1229 addr, next)) 1230 return -ENOMEM; 1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1232 return 0; 1233 } 1234 1235 /* 1236 * Return true if the vma needs to copy the pgtable during this fork(). Return 1237 * false when we can speed up fork() by allowing lazy page faults later until 1238 * when the child accesses the memory range. 1239 */ 1240 static bool 1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1242 { 1243 /* 1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1246 * contains uffd-wp protection information, that's something we can't 1247 * retrieve from page cache, and skip copying will lose those info. 1248 */ 1249 if (userfaultfd_wp(dst_vma)) 1250 return true; 1251 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1253 return true; 1254 1255 if (src_vma->anon_vma) 1256 return true; 1257 1258 /* 1259 * Don't copy ptes where a page fault will fill them correctly. Fork 1260 * becomes much lighter when there are big shared or private readonly 1261 * mappings. The tradeoff is that copy_page_range is more efficient 1262 * than faulting. 1263 */ 1264 return false; 1265 } 1266 1267 int 1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1269 { 1270 pgd_t *src_pgd, *dst_pgd; 1271 unsigned long next; 1272 unsigned long addr = src_vma->vm_start; 1273 unsigned long end = src_vma->vm_end; 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 struct mmu_notifier_range range; 1277 bool is_cow; 1278 int ret; 1279 1280 if (!vma_needs_copy(dst_vma, src_vma)) 1281 return 0; 1282 1283 if (is_vm_hugetlb_page(src_vma)) 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1285 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1287 /* 1288 * We do not free on error cases below as remove_vma 1289 * gets called on error from higher level routine 1290 */ 1291 ret = track_pfn_copy(src_vma); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 /* 1297 * We need to invalidate the secondary MMU mappings only when 1298 * there could be a permission downgrade on the ptes of the 1299 * parent mm. And a permission downgrade will only happen if 1300 * is_cow_mapping() returns true. 1301 */ 1302 is_cow = is_cow_mapping(src_vma->vm_flags); 1303 1304 if (is_cow) { 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1306 0, src_mm, addr, end); 1307 mmu_notifier_invalidate_range_start(&range); 1308 /* 1309 * Disabling preemption is not needed for the write side, as 1310 * the read side doesn't spin, but goes to the mmap_lock. 1311 * 1312 * Use the raw variant of the seqcount_t write API to avoid 1313 * lockdep complaining about preemptibility. 1314 */ 1315 vma_assert_write_locked(src_vma); 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1317 } 1318 1319 ret = 0; 1320 dst_pgd = pgd_offset(dst_mm, addr); 1321 src_pgd = pgd_offset(src_mm, addr); 1322 do { 1323 next = pgd_addr_end(addr, end); 1324 if (pgd_none_or_clear_bad(src_pgd)) 1325 continue; 1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1327 addr, next))) { 1328 untrack_pfn_clear(dst_vma); 1329 ret = -ENOMEM; 1330 break; 1331 } 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1333 1334 if (is_cow) { 1335 raw_write_seqcount_end(&src_mm->write_protect_seq); 1336 mmu_notifier_invalidate_range_end(&range); 1337 } 1338 return ret; 1339 } 1340 1341 /* Whether we should zap all COWed (private) pages too */ 1342 static inline bool should_zap_cows(struct zap_details *details) 1343 { 1344 /* By default, zap all pages */ 1345 if (!details) 1346 return true; 1347 1348 /* Or, we zap COWed pages only if the caller wants to */ 1349 return details->even_cows; 1350 } 1351 1352 /* Decides whether we should zap this page with the page pointer specified */ 1353 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1354 { 1355 /* If we can make a decision without *page.. */ 1356 if (should_zap_cows(details)) 1357 return true; 1358 1359 /* E.g. the caller passes NULL for the case of a zero page */ 1360 if (!page) 1361 return true; 1362 1363 /* Otherwise we should only zap non-anon pages */ 1364 return !PageAnon(page); 1365 } 1366 1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1368 { 1369 if (!details) 1370 return false; 1371 1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1373 } 1374 1375 /* 1376 * This function makes sure that we'll replace the none pte with an uffd-wp 1377 * swap special pte marker when necessary. Must be with the pgtable lock held. 1378 */ 1379 static inline void 1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1381 unsigned long addr, pte_t *pte, 1382 struct zap_details *details, pte_t pteval) 1383 { 1384 /* Zap on anonymous always means dropping everything */ 1385 if (vma_is_anonymous(vma)) 1386 return; 1387 1388 if (zap_drop_file_uffd_wp(details)) 1389 return; 1390 1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1392 } 1393 1394 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 struct mm_struct *mm = tlb->mm; 1400 int force_flush = 0; 1401 int rss[NR_MM_COUNTERS]; 1402 spinlock_t *ptl; 1403 pte_t *start_pte; 1404 pte_t *pte; 1405 swp_entry_t entry; 1406 1407 tlb_change_page_size(tlb, PAGE_SIZE); 1408 init_rss_vec(rss); 1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1410 if (!pte) 1411 return addr; 1412 1413 flush_tlb_batched_pending(mm); 1414 arch_enter_lazy_mmu_mode(); 1415 do { 1416 pte_t ptent = ptep_get(pte); 1417 struct page *page; 1418 1419 if (pte_none(ptent)) 1420 continue; 1421 1422 if (need_resched()) 1423 break; 1424 1425 if (pte_present(ptent)) { 1426 unsigned int delay_rmap; 1427 1428 page = vm_normal_page(vma, addr, ptent); 1429 if (unlikely(!should_zap_page(details, page))) 1430 continue; 1431 ptent = ptep_get_and_clear_full(mm, addr, pte, 1432 tlb->fullmm); 1433 arch_check_zapped_pte(vma, ptent); 1434 tlb_remove_tlb_entry(tlb, pte, addr); 1435 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1436 ptent); 1437 if (unlikely(!page)) { 1438 ksm_might_unmap_zero_page(mm, ptent); 1439 continue; 1440 } 1441 1442 delay_rmap = 0; 1443 if (!PageAnon(page)) { 1444 if (pte_dirty(ptent)) { 1445 set_page_dirty(page); 1446 if (tlb_delay_rmap(tlb)) { 1447 delay_rmap = 1; 1448 force_flush = 1; 1449 } 1450 } 1451 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1452 mark_page_accessed(page); 1453 } 1454 rss[mm_counter(page)]--; 1455 if (!delay_rmap) { 1456 page_remove_rmap(page, vma, false); 1457 if (unlikely(page_mapcount(page) < 0)) 1458 print_bad_pte(vma, addr, ptent, page); 1459 } 1460 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1461 force_flush = 1; 1462 addr += PAGE_SIZE; 1463 break; 1464 } 1465 continue; 1466 } 1467 1468 entry = pte_to_swp_entry(ptent); 1469 if (is_device_private_entry(entry) || 1470 is_device_exclusive_entry(entry)) { 1471 page = pfn_swap_entry_to_page(entry); 1472 if (unlikely(!should_zap_page(details, page))) 1473 continue; 1474 /* 1475 * Both device private/exclusive mappings should only 1476 * work with anonymous page so far, so we don't need to 1477 * consider uffd-wp bit when zap. For more information, 1478 * see zap_install_uffd_wp_if_needed(). 1479 */ 1480 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1481 rss[mm_counter(page)]--; 1482 if (is_device_private_entry(entry)) 1483 page_remove_rmap(page, vma, false); 1484 put_page(page); 1485 } else if (!non_swap_entry(entry)) { 1486 /* Genuine swap entry, hence a private anon page */ 1487 if (!should_zap_cows(details)) 1488 continue; 1489 rss[MM_SWAPENTS]--; 1490 if (unlikely(!free_swap_and_cache(entry))) 1491 print_bad_pte(vma, addr, ptent, NULL); 1492 } else if (is_migration_entry(entry)) { 1493 page = pfn_swap_entry_to_page(entry); 1494 if (!should_zap_page(details, page)) 1495 continue; 1496 rss[mm_counter(page)]--; 1497 } else if (pte_marker_entry_uffd_wp(entry)) { 1498 /* 1499 * For anon: always drop the marker; for file: only 1500 * drop the marker if explicitly requested. 1501 */ 1502 if (!vma_is_anonymous(vma) && 1503 !zap_drop_file_uffd_wp(details)) 1504 continue; 1505 } else if (is_hwpoison_entry(entry) || 1506 is_poisoned_swp_entry(entry)) { 1507 if (!should_zap_cows(details)) 1508 continue; 1509 } else { 1510 /* We should have covered all the swap entry types */ 1511 WARN_ON_ONCE(1); 1512 } 1513 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1514 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1515 } while (pte++, addr += PAGE_SIZE, addr != end); 1516 1517 add_mm_rss_vec(mm, rss); 1518 arch_leave_lazy_mmu_mode(); 1519 1520 /* Do the actual TLB flush before dropping ptl */ 1521 if (force_flush) { 1522 tlb_flush_mmu_tlbonly(tlb); 1523 tlb_flush_rmaps(tlb, vma); 1524 } 1525 pte_unmap_unlock(start_pte, ptl); 1526 1527 /* 1528 * If we forced a TLB flush (either due to running out of 1529 * batch buffers or because we needed to flush dirty TLB 1530 * entries before releasing the ptl), free the batched 1531 * memory too. Come back again if we didn't do everything. 1532 */ 1533 if (force_flush) 1534 tlb_flush_mmu(tlb); 1535 1536 return addr; 1537 } 1538 1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1540 struct vm_area_struct *vma, pud_t *pud, 1541 unsigned long addr, unsigned long end, 1542 struct zap_details *details) 1543 { 1544 pmd_t *pmd; 1545 unsigned long next; 1546 1547 pmd = pmd_offset(pud, addr); 1548 do { 1549 next = pmd_addr_end(addr, end); 1550 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1551 if (next - addr != HPAGE_PMD_SIZE) 1552 __split_huge_pmd(vma, pmd, addr, false, NULL); 1553 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1554 addr = next; 1555 continue; 1556 } 1557 /* fall through */ 1558 } else if (details && details->single_folio && 1559 folio_test_pmd_mappable(details->single_folio) && 1560 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1561 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1562 /* 1563 * Take and drop THP pmd lock so that we cannot return 1564 * prematurely, while zap_huge_pmd() has cleared *pmd, 1565 * but not yet decremented compound_mapcount(). 1566 */ 1567 spin_unlock(ptl); 1568 } 1569 if (pmd_none(*pmd)) { 1570 addr = next; 1571 continue; 1572 } 1573 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1574 if (addr != next) 1575 pmd--; 1576 } while (pmd++, cond_resched(), addr != end); 1577 1578 return addr; 1579 } 1580 1581 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1582 struct vm_area_struct *vma, p4d_t *p4d, 1583 unsigned long addr, unsigned long end, 1584 struct zap_details *details) 1585 { 1586 pud_t *pud; 1587 unsigned long next; 1588 1589 pud = pud_offset(p4d, addr); 1590 do { 1591 next = pud_addr_end(addr, end); 1592 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1593 if (next - addr != HPAGE_PUD_SIZE) { 1594 mmap_assert_locked(tlb->mm); 1595 split_huge_pud(vma, pud, addr); 1596 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1597 goto next; 1598 /* fall through */ 1599 } 1600 if (pud_none_or_clear_bad(pud)) 1601 continue; 1602 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1603 next: 1604 cond_resched(); 1605 } while (pud++, addr = next, addr != end); 1606 1607 return addr; 1608 } 1609 1610 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1611 struct vm_area_struct *vma, pgd_t *pgd, 1612 unsigned long addr, unsigned long end, 1613 struct zap_details *details) 1614 { 1615 p4d_t *p4d; 1616 unsigned long next; 1617 1618 p4d = p4d_offset(pgd, addr); 1619 do { 1620 next = p4d_addr_end(addr, end); 1621 if (p4d_none_or_clear_bad(p4d)) 1622 continue; 1623 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1624 } while (p4d++, addr = next, addr != end); 1625 1626 return addr; 1627 } 1628 1629 void unmap_page_range(struct mmu_gather *tlb, 1630 struct vm_area_struct *vma, 1631 unsigned long addr, unsigned long end, 1632 struct zap_details *details) 1633 { 1634 pgd_t *pgd; 1635 unsigned long next; 1636 1637 BUG_ON(addr >= end); 1638 tlb_start_vma(tlb, vma); 1639 pgd = pgd_offset(vma->vm_mm, addr); 1640 do { 1641 next = pgd_addr_end(addr, end); 1642 if (pgd_none_or_clear_bad(pgd)) 1643 continue; 1644 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1645 } while (pgd++, addr = next, addr != end); 1646 tlb_end_vma(tlb, vma); 1647 } 1648 1649 1650 static void unmap_single_vma(struct mmu_gather *tlb, 1651 struct vm_area_struct *vma, unsigned long start_addr, 1652 unsigned long end_addr, 1653 struct zap_details *details, bool mm_wr_locked) 1654 { 1655 unsigned long start = max(vma->vm_start, start_addr); 1656 unsigned long end; 1657 1658 if (start >= vma->vm_end) 1659 return; 1660 end = min(vma->vm_end, end_addr); 1661 if (end <= vma->vm_start) 1662 return; 1663 1664 if (vma->vm_file) 1665 uprobe_munmap(vma, start, end); 1666 1667 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1668 untrack_pfn(vma, 0, 0, mm_wr_locked); 1669 1670 if (start != end) { 1671 if (unlikely(is_vm_hugetlb_page(vma))) { 1672 /* 1673 * It is undesirable to test vma->vm_file as it 1674 * should be non-null for valid hugetlb area. 1675 * However, vm_file will be NULL in the error 1676 * cleanup path of mmap_region. When 1677 * hugetlbfs ->mmap method fails, 1678 * mmap_region() nullifies vma->vm_file 1679 * before calling this function to clean up. 1680 * Since no pte has actually been setup, it is 1681 * safe to do nothing in this case. 1682 */ 1683 if (vma->vm_file) { 1684 zap_flags_t zap_flags = details ? 1685 details->zap_flags : 0; 1686 __unmap_hugepage_range_final(tlb, vma, start, end, 1687 NULL, zap_flags); 1688 } 1689 } else 1690 unmap_page_range(tlb, vma, start, end, details); 1691 } 1692 } 1693 1694 /** 1695 * unmap_vmas - unmap a range of memory covered by a list of vma's 1696 * @tlb: address of the caller's struct mmu_gather 1697 * @mas: the maple state 1698 * @vma: the starting vma 1699 * @start_addr: virtual address at which to start unmapping 1700 * @end_addr: virtual address at which to end unmapping 1701 * @tree_end: The maximum index to check 1702 * @mm_wr_locked: lock flag 1703 * 1704 * Unmap all pages in the vma list. 1705 * 1706 * Only addresses between `start' and `end' will be unmapped. 1707 * 1708 * The VMA list must be sorted in ascending virtual address order. 1709 * 1710 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1711 * range after unmap_vmas() returns. So the only responsibility here is to 1712 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1713 * drops the lock and schedules. 1714 */ 1715 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1716 struct vm_area_struct *vma, unsigned long start_addr, 1717 unsigned long end_addr, unsigned long tree_end, 1718 bool mm_wr_locked) 1719 { 1720 struct mmu_notifier_range range; 1721 struct zap_details details = { 1722 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1723 /* Careful - we need to zap private pages too! */ 1724 .even_cows = true, 1725 }; 1726 1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1728 start_addr, end_addr); 1729 mmu_notifier_invalidate_range_start(&range); 1730 do { 1731 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1732 mm_wr_locked); 1733 } while ((vma = mas_find(mas, tree_end - 1)) != NULL); 1734 mmu_notifier_invalidate_range_end(&range); 1735 } 1736 1737 /** 1738 * zap_page_range_single - remove user pages in a given range 1739 * @vma: vm_area_struct holding the applicable pages 1740 * @address: starting address of pages to zap 1741 * @size: number of bytes to zap 1742 * @details: details of shared cache invalidation 1743 * 1744 * The range must fit into one VMA. 1745 */ 1746 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1747 unsigned long size, struct zap_details *details) 1748 { 1749 const unsigned long end = address + size; 1750 struct mmu_notifier_range range; 1751 struct mmu_gather tlb; 1752 1753 lru_add_drain(); 1754 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1755 address, end); 1756 if (is_vm_hugetlb_page(vma)) 1757 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1758 &range.end); 1759 tlb_gather_mmu(&tlb, vma->vm_mm); 1760 update_hiwater_rss(vma->vm_mm); 1761 mmu_notifier_invalidate_range_start(&range); 1762 /* 1763 * unmap 'address-end' not 'range.start-range.end' as range 1764 * could have been expanded for hugetlb pmd sharing. 1765 */ 1766 unmap_single_vma(&tlb, vma, address, end, details, false); 1767 mmu_notifier_invalidate_range_end(&range); 1768 tlb_finish_mmu(&tlb); 1769 } 1770 1771 /** 1772 * zap_vma_ptes - remove ptes mapping the vma 1773 * @vma: vm_area_struct holding ptes to be zapped 1774 * @address: starting address of pages to zap 1775 * @size: number of bytes to zap 1776 * 1777 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1778 * 1779 * The entire address range must be fully contained within the vma. 1780 * 1781 */ 1782 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1783 unsigned long size) 1784 { 1785 if (!range_in_vma(vma, address, address + size) || 1786 !(vma->vm_flags & VM_PFNMAP)) 1787 return; 1788 1789 zap_page_range_single(vma, address, size, NULL); 1790 } 1791 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1792 1793 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1794 { 1795 pgd_t *pgd; 1796 p4d_t *p4d; 1797 pud_t *pud; 1798 pmd_t *pmd; 1799 1800 pgd = pgd_offset(mm, addr); 1801 p4d = p4d_alloc(mm, pgd, addr); 1802 if (!p4d) 1803 return NULL; 1804 pud = pud_alloc(mm, p4d, addr); 1805 if (!pud) 1806 return NULL; 1807 pmd = pmd_alloc(mm, pud, addr); 1808 if (!pmd) 1809 return NULL; 1810 1811 VM_BUG_ON(pmd_trans_huge(*pmd)); 1812 return pmd; 1813 } 1814 1815 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1816 spinlock_t **ptl) 1817 { 1818 pmd_t *pmd = walk_to_pmd(mm, addr); 1819 1820 if (!pmd) 1821 return NULL; 1822 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1823 } 1824 1825 static int validate_page_before_insert(struct page *page) 1826 { 1827 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1828 return -EINVAL; 1829 flush_dcache_page(page); 1830 return 0; 1831 } 1832 1833 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1834 unsigned long addr, struct page *page, pgprot_t prot) 1835 { 1836 if (!pte_none(ptep_get(pte))) 1837 return -EBUSY; 1838 /* Ok, finally just insert the thing.. */ 1839 get_page(page); 1840 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1841 page_add_file_rmap(page, vma, false); 1842 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1843 return 0; 1844 } 1845 1846 /* 1847 * This is the old fallback for page remapping. 1848 * 1849 * For historical reasons, it only allows reserved pages. Only 1850 * old drivers should use this, and they needed to mark their 1851 * pages reserved for the old functions anyway. 1852 */ 1853 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1854 struct page *page, pgprot_t prot) 1855 { 1856 int retval; 1857 pte_t *pte; 1858 spinlock_t *ptl; 1859 1860 retval = validate_page_before_insert(page); 1861 if (retval) 1862 goto out; 1863 retval = -ENOMEM; 1864 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1865 if (!pte) 1866 goto out; 1867 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1868 pte_unmap_unlock(pte, ptl); 1869 out: 1870 return retval; 1871 } 1872 1873 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1874 unsigned long addr, struct page *page, pgprot_t prot) 1875 { 1876 int err; 1877 1878 if (!page_count(page)) 1879 return -EINVAL; 1880 err = validate_page_before_insert(page); 1881 if (err) 1882 return err; 1883 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1884 } 1885 1886 /* insert_pages() amortizes the cost of spinlock operations 1887 * when inserting pages in a loop. 1888 */ 1889 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1890 struct page **pages, unsigned long *num, pgprot_t prot) 1891 { 1892 pmd_t *pmd = NULL; 1893 pte_t *start_pte, *pte; 1894 spinlock_t *pte_lock; 1895 struct mm_struct *const mm = vma->vm_mm; 1896 unsigned long curr_page_idx = 0; 1897 unsigned long remaining_pages_total = *num; 1898 unsigned long pages_to_write_in_pmd; 1899 int ret; 1900 more: 1901 ret = -EFAULT; 1902 pmd = walk_to_pmd(mm, addr); 1903 if (!pmd) 1904 goto out; 1905 1906 pages_to_write_in_pmd = min_t(unsigned long, 1907 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1908 1909 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1910 ret = -ENOMEM; 1911 if (pte_alloc(mm, pmd)) 1912 goto out; 1913 1914 while (pages_to_write_in_pmd) { 1915 int pte_idx = 0; 1916 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1917 1918 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1919 if (!start_pte) { 1920 ret = -EFAULT; 1921 goto out; 1922 } 1923 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1924 int err = insert_page_in_batch_locked(vma, pte, 1925 addr, pages[curr_page_idx], prot); 1926 if (unlikely(err)) { 1927 pte_unmap_unlock(start_pte, pte_lock); 1928 ret = err; 1929 remaining_pages_total -= pte_idx; 1930 goto out; 1931 } 1932 addr += PAGE_SIZE; 1933 ++curr_page_idx; 1934 } 1935 pte_unmap_unlock(start_pte, pte_lock); 1936 pages_to_write_in_pmd -= batch_size; 1937 remaining_pages_total -= batch_size; 1938 } 1939 if (remaining_pages_total) 1940 goto more; 1941 ret = 0; 1942 out: 1943 *num = remaining_pages_total; 1944 return ret; 1945 } 1946 1947 /** 1948 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1949 * @vma: user vma to map to 1950 * @addr: target start user address of these pages 1951 * @pages: source kernel pages 1952 * @num: in: number of pages to map. out: number of pages that were *not* 1953 * mapped. (0 means all pages were successfully mapped). 1954 * 1955 * Preferred over vm_insert_page() when inserting multiple pages. 1956 * 1957 * In case of error, we may have mapped a subset of the provided 1958 * pages. It is the caller's responsibility to account for this case. 1959 * 1960 * The same restrictions apply as in vm_insert_page(). 1961 */ 1962 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1963 struct page **pages, unsigned long *num) 1964 { 1965 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1966 1967 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1968 return -EFAULT; 1969 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1970 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1971 BUG_ON(vma->vm_flags & VM_PFNMAP); 1972 vm_flags_set(vma, VM_MIXEDMAP); 1973 } 1974 /* Defer page refcount checking till we're about to map that page. */ 1975 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1976 } 1977 EXPORT_SYMBOL(vm_insert_pages); 1978 1979 /** 1980 * vm_insert_page - insert single page into user vma 1981 * @vma: user vma to map to 1982 * @addr: target user address of this page 1983 * @page: source kernel page 1984 * 1985 * This allows drivers to insert individual pages they've allocated 1986 * into a user vma. 1987 * 1988 * The page has to be a nice clean _individual_ kernel allocation. 1989 * If you allocate a compound page, you need to have marked it as 1990 * such (__GFP_COMP), or manually just split the page up yourself 1991 * (see split_page()). 1992 * 1993 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1994 * took an arbitrary page protection parameter. This doesn't allow 1995 * that. Your vma protection will have to be set up correctly, which 1996 * means that if you want a shared writable mapping, you'd better 1997 * ask for a shared writable mapping! 1998 * 1999 * The page does not need to be reserved. 2000 * 2001 * Usually this function is called from f_op->mmap() handler 2002 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2003 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2004 * function from other places, for example from page-fault handler. 2005 * 2006 * Return: %0 on success, negative error code otherwise. 2007 */ 2008 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2009 struct page *page) 2010 { 2011 if (addr < vma->vm_start || addr >= vma->vm_end) 2012 return -EFAULT; 2013 if (!page_count(page)) 2014 return -EINVAL; 2015 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2016 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2017 BUG_ON(vma->vm_flags & VM_PFNMAP); 2018 vm_flags_set(vma, VM_MIXEDMAP); 2019 } 2020 return insert_page(vma, addr, page, vma->vm_page_prot); 2021 } 2022 EXPORT_SYMBOL(vm_insert_page); 2023 2024 /* 2025 * __vm_map_pages - maps range of kernel pages into user vma 2026 * @vma: user vma to map to 2027 * @pages: pointer to array of source kernel pages 2028 * @num: number of pages in page array 2029 * @offset: user's requested vm_pgoff 2030 * 2031 * This allows drivers to map range of kernel pages into a user vma. 2032 * 2033 * Return: 0 on success and error code otherwise. 2034 */ 2035 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2036 unsigned long num, unsigned long offset) 2037 { 2038 unsigned long count = vma_pages(vma); 2039 unsigned long uaddr = vma->vm_start; 2040 int ret, i; 2041 2042 /* Fail if the user requested offset is beyond the end of the object */ 2043 if (offset >= num) 2044 return -ENXIO; 2045 2046 /* Fail if the user requested size exceeds available object size */ 2047 if (count > num - offset) 2048 return -ENXIO; 2049 2050 for (i = 0; i < count; i++) { 2051 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2052 if (ret < 0) 2053 return ret; 2054 uaddr += PAGE_SIZE; 2055 } 2056 2057 return 0; 2058 } 2059 2060 /** 2061 * vm_map_pages - maps range of kernel pages starts with non zero offset 2062 * @vma: user vma to map to 2063 * @pages: pointer to array of source kernel pages 2064 * @num: number of pages in page array 2065 * 2066 * Maps an object consisting of @num pages, catering for the user's 2067 * requested vm_pgoff 2068 * 2069 * If we fail to insert any page into the vma, the function will return 2070 * immediately leaving any previously inserted pages present. Callers 2071 * from the mmap handler may immediately return the error as their caller 2072 * will destroy the vma, removing any successfully inserted pages. Other 2073 * callers should make their own arrangements for calling unmap_region(). 2074 * 2075 * Context: Process context. Called by mmap handlers. 2076 * Return: 0 on success and error code otherwise. 2077 */ 2078 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2079 unsigned long num) 2080 { 2081 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2082 } 2083 EXPORT_SYMBOL(vm_map_pages); 2084 2085 /** 2086 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2087 * @vma: user vma to map to 2088 * @pages: pointer to array of source kernel pages 2089 * @num: number of pages in page array 2090 * 2091 * Similar to vm_map_pages(), except that it explicitly sets the offset 2092 * to 0. This function is intended for the drivers that did not consider 2093 * vm_pgoff. 2094 * 2095 * Context: Process context. Called by mmap handlers. 2096 * Return: 0 on success and error code otherwise. 2097 */ 2098 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2099 unsigned long num) 2100 { 2101 return __vm_map_pages(vma, pages, num, 0); 2102 } 2103 EXPORT_SYMBOL(vm_map_pages_zero); 2104 2105 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2106 pfn_t pfn, pgprot_t prot, bool mkwrite) 2107 { 2108 struct mm_struct *mm = vma->vm_mm; 2109 pte_t *pte, entry; 2110 spinlock_t *ptl; 2111 2112 pte = get_locked_pte(mm, addr, &ptl); 2113 if (!pte) 2114 return VM_FAULT_OOM; 2115 entry = ptep_get(pte); 2116 if (!pte_none(entry)) { 2117 if (mkwrite) { 2118 /* 2119 * For read faults on private mappings the PFN passed 2120 * in may not match the PFN we have mapped if the 2121 * mapped PFN is a writeable COW page. In the mkwrite 2122 * case we are creating a writable PTE for a shared 2123 * mapping and we expect the PFNs to match. If they 2124 * don't match, we are likely racing with block 2125 * allocation and mapping invalidation so just skip the 2126 * update. 2127 */ 2128 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2129 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2130 goto out_unlock; 2131 } 2132 entry = pte_mkyoung(entry); 2133 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2134 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2135 update_mmu_cache(vma, addr, pte); 2136 } 2137 goto out_unlock; 2138 } 2139 2140 /* Ok, finally just insert the thing.. */ 2141 if (pfn_t_devmap(pfn)) 2142 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2143 else 2144 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2145 2146 if (mkwrite) { 2147 entry = pte_mkyoung(entry); 2148 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2149 } 2150 2151 set_pte_at(mm, addr, pte, entry); 2152 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2153 2154 out_unlock: 2155 pte_unmap_unlock(pte, ptl); 2156 return VM_FAULT_NOPAGE; 2157 } 2158 2159 /** 2160 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2161 * @vma: user vma to map to 2162 * @addr: target user address of this page 2163 * @pfn: source kernel pfn 2164 * @pgprot: pgprot flags for the inserted page 2165 * 2166 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2167 * to override pgprot on a per-page basis. 2168 * 2169 * This only makes sense for IO mappings, and it makes no sense for 2170 * COW mappings. In general, using multiple vmas is preferable; 2171 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2172 * impractical. 2173 * 2174 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2175 * caching- and encryption bits different than those of @vma->vm_page_prot, 2176 * because the caching- or encryption mode may not be known at mmap() time. 2177 * 2178 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2179 * to set caching and encryption bits for those vmas (except for COW pages). 2180 * This is ensured by core vm only modifying these page table entries using 2181 * functions that don't touch caching- or encryption bits, using pte_modify() 2182 * if needed. (See for example mprotect()). 2183 * 2184 * Also when new page-table entries are created, this is only done using the 2185 * fault() callback, and never using the value of vma->vm_page_prot, 2186 * except for page-table entries that point to anonymous pages as the result 2187 * of COW. 2188 * 2189 * Context: Process context. May allocate using %GFP_KERNEL. 2190 * Return: vm_fault_t value. 2191 */ 2192 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2193 unsigned long pfn, pgprot_t pgprot) 2194 { 2195 /* 2196 * Technically, architectures with pte_special can avoid all these 2197 * restrictions (same for remap_pfn_range). However we would like 2198 * consistency in testing and feature parity among all, so we should 2199 * try to keep these invariants in place for everybody. 2200 */ 2201 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2202 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2203 (VM_PFNMAP|VM_MIXEDMAP)); 2204 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2205 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2206 2207 if (addr < vma->vm_start || addr >= vma->vm_end) 2208 return VM_FAULT_SIGBUS; 2209 2210 if (!pfn_modify_allowed(pfn, pgprot)) 2211 return VM_FAULT_SIGBUS; 2212 2213 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2214 2215 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2216 false); 2217 } 2218 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2219 2220 /** 2221 * vmf_insert_pfn - insert single pfn into user vma 2222 * @vma: user vma to map to 2223 * @addr: target user address of this page 2224 * @pfn: source kernel pfn 2225 * 2226 * Similar to vm_insert_page, this allows drivers to insert individual pages 2227 * they've allocated into a user vma. Same comments apply. 2228 * 2229 * This function should only be called from a vm_ops->fault handler, and 2230 * in that case the handler should return the result of this function. 2231 * 2232 * vma cannot be a COW mapping. 2233 * 2234 * As this is called only for pages that do not currently exist, we 2235 * do not need to flush old virtual caches or the TLB. 2236 * 2237 * Context: Process context. May allocate using %GFP_KERNEL. 2238 * Return: vm_fault_t value. 2239 */ 2240 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2241 unsigned long pfn) 2242 { 2243 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2244 } 2245 EXPORT_SYMBOL(vmf_insert_pfn); 2246 2247 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2248 { 2249 /* these checks mirror the abort conditions in vm_normal_page */ 2250 if (vma->vm_flags & VM_MIXEDMAP) 2251 return true; 2252 if (pfn_t_devmap(pfn)) 2253 return true; 2254 if (pfn_t_special(pfn)) 2255 return true; 2256 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2257 return true; 2258 return false; 2259 } 2260 2261 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2262 unsigned long addr, pfn_t pfn, bool mkwrite) 2263 { 2264 pgprot_t pgprot = vma->vm_page_prot; 2265 int err; 2266 2267 BUG_ON(!vm_mixed_ok(vma, pfn)); 2268 2269 if (addr < vma->vm_start || addr >= vma->vm_end) 2270 return VM_FAULT_SIGBUS; 2271 2272 track_pfn_insert(vma, &pgprot, pfn); 2273 2274 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2275 return VM_FAULT_SIGBUS; 2276 2277 /* 2278 * If we don't have pte special, then we have to use the pfn_valid() 2279 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2280 * refcount the page if pfn_valid is true (hence insert_page rather 2281 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2282 * without pte special, it would there be refcounted as a normal page. 2283 */ 2284 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2285 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2286 struct page *page; 2287 2288 /* 2289 * At this point we are committed to insert_page() 2290 * regardless of whether the caller specified flags that 2291 * result in pfn_t_has_page() == false. 2292 */ 2293 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2294 err = insert_page(vma, addr, page, pgprot); 2295 } else { 2296 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2297 } 2298 2299 if (err == -ENOMEM) 2300 return VM_FAULT_OOM; 2301 if (err < 0 && err != -EBUSY) 2302 return VM_FAULT_SIGBUS; 2303 2304 return VM_FAULT_NOPAGE; 2305 } 2306 2307 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2308 pfn_t pfn) 2309 { 2310 return __vm_insert_mixed(vma, addr, pfn, false); 2311 } 2312 EXPORT_SYMBOL(vmf_insert_mixed); 2313 2314 /* 2315 * If the insertion of PTE failed because someone else already added a 2316 * different entry in the mean time, we treat that as success as we assume 2317 * the same entry was actually inserted. 2318 */ 2319 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2320 unsigned long addr, pfn_t pfn) 2321 { 2322 return __vm_insert_mixed(vma, addr, pfn, true); 2323 } 2324 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2325 2326 /* 2327 * maps a range of physical memory into the requested pages. the old 2328 * mappings are removed. any references to nonexistent pages results 2329 * in null mappings (currently treated as "copy-on-access") 2330 */ 2331 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2332 unsigned long addr, unsigned long end, 2333 unsigned long pfn, pgprot_t prot) 2334 { 2335 pte_t *pte, *mapped_pte; 2336 spinlock_t *ptl; 2337 int err = 0; 2338 2339 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2340 if (!pte) 2341 return -ENOMEM; 2342 arch_enter_lazy_mmu_mode(); 2343 do { 2344 BUG_ON(!pte_none(ptep_get(pte))); 2345 if (!pfn_modify_allowed(pfn, prot)) { 2346 err = -EACCES; 2347 break; 2348 } 2349 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2350 pfn++; 2351 } while (pte++, addr += PAGE_SIZE, addr != end); 2352 arch_leave_lazy_mmu_mode(); 2353 pte_unmap_unlock(mapped_pte, ptl); 2354 return err; 2355 } 2356 2357 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2358 unsigned long addr, unsigned long end, 2359 unsigned long pfn, pgprot_t prot) 2360 { 2361 pmd_t *pmd; 2362 unsigned long next; 2363 int err; 2364 2365 pfn -= addr >> PAGE_SHIFT; 2366 pmd = pmd_alloc(mm, pud, addr); 2367 if (!pmd) 2368 return -ENOMEM; 2369 VM_BUG_ON(pmd_trans_huge(*pmd)); 2370 do { 2371 next = pmd_addr_end(addr, end); 2372 err = remap_pte_range(mm, pmd, addr, next, 2373 pfn + (addr >> PAGE_SHIFT), prot); 2374 if (err) 2375 return err; 2376 } while (pmd++, addr = next, addr != end); 2377 return 0; 2378 } 2379 2380 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2381 unsigned long addr, unsigned long end, 2382 unsigned long pfn, pgprot_t prot) 2383 { 2384 pud_t *pud; 2385 unsigned long next; 2386 int err; 2387 2388 pfn -= addr >> PAGE_SHIFT; 2389 pud = pud_alloc(mm, p4d, addr); 2390 if (!pud) 2391 return -ENOMEM; 2392 do { 2393 next = pud_addr_end(addr, end); 2394 err = remap_pmd_range(mm, pud, addr, next, 2395 pfn + (addr >> PAGE_SHIFT), prot); 2396 if (err) 2397 return err; 2398 } while (pud++, addr = next, addr != end); 2399 return 0; 2400 } 2401 2402 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2403 unsigned long addr, unsigned long end, 2404 unsigned long pfn, pgprot_t prot) 2405 { 2406 p4d_t *p4d; 2407 unsigned long next; 2408 int err; 2409 2410 pfn -= addr >> PAGE_SHIFT; 2411 p4d = p4d_alloc(mm, pgd, addr); 2412 if (!p4d) 2413 return -ENOMEM; 2414 do { 2415 next = p4d_addr_end(addr, end); 2416 err = remap_pud_range(mm, p4d, addr, next, 2417 pfn + (addr >> PAGE_SHIFT), prot); 2418 if (err) 2419 return err; 2420 } while (p4d++, addr = next, addr != end); 2421 return 0; 2422 } 2423 2424 /* 2425 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2426 * must have pre-validated the caching bits of the pgprot_t. 2427 */ 2428 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2429 unsigned long pfn, unsigned long size, pgprot_t prot) 2430 { 2431 pgd_t *pgd; 2432 unsigned long next; 2433 unsigned long end = addr + PAGE_ALIGN(size); 2434 struct mm_struct *mm = vma->vm_mm; 2435 int err; 2436 2437 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2438 return -EINVAL; 2439 2440 /* 2441 * Physically remapped pages are special. Tell the 2442 * rest of the world about it: 2443 * VM_IO tells people not to look at these pages 2444 * (accesses can have side effects). 2445 * VM_PFNMAP tells the core MM that the base pages are just 2446 * raw PFN mappings, and do not have a "struct page" associated 2447 * with them. 2448 * VM_DONTEXPAND 2449 * Disable vma merging and expanding with mremap(). 2450 * VM_DONTDUMP 2451 * Omit vma from core dump, even when VM_IO turned off. 2452 * 2453 * There's a horrible special case to handle copy-on-write 2454 * behaviour that some programs depend on. We mark the "original" 2455 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2456 * See vm_normal_page() for details. 2457 */ 2458 if (is_cow_mapping(vma->vm_flags)) { 2459 if (addr != vma->vm_start || end != vma->vm_end) 2460 return -EINVAL; 2461 vma->vm_pgoff = pfn; 2462 } 2463 2464 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2465 2466 BUG_ON(addr >= end); 2467 pfn -= addr >> PAGE_SHIFT; 2468 pgd = pgd_offset(mm, addr); 2469 flush_cache_range(vma, addr, end); 2470 do { 2471 next = pgd_addr_end(addr, end); 2472 err = remap_p4d_range(mm, pgd, addr, next, 2473 pfn + (addr >> PAGE_SHIFT), prot); 2474 if (err) 2475 return err; 2476 } while (pgd++, addr = next, addr != end); 2477 2478 return 0; 2479 } 2480 2481 /** 2482 * remap_pfn_range - remap kernel memory to userspace 2483 * @vma: user vma to map to 2484 * @addr: target page aligned user address to start at 2485 * @pfn: page frame number of kernel physical memory address 2486 * @size: size of mapping area 2487 * @prot: page protection flags for this mapping 2488 * 2489 * Note: this is only safe if the mm semaphore is held when called. 2490 * 2491 * Return: %0 on success, negative error code otherwise. 2492 */ 2493 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2494 unsigned long pfn, unsigned long size, pgprot_t prot) 2495 { 2496 int err; 2497 2498 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2499 if (err) 2500 return -EINVAL; 2501 2502 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2503 if (err) 2504 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2505 return err; 2506 } 2507 EXPORT_SYMBOL(remap_pfn_range); 2508 2509 /** 2510 * vm_iomap_memory - remap memory to userspace 2511 * @vma: user vma to map to 2512 * @start: start of the physical memory to be mapped 2513 * @len: size of area 2514 * 2515 * This is a simplified io_remap_pfn_range() for common driver use. The 2516 * driver just needs to give us the physical memory range to be mapped, 2517 * we'll figure out the rest from the vma information. 2518 * 2519 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2520 * whatever write-combining details or similar. 2521 * 2522 * Return: %0 on success, negative error code otherwise. 2523 */ 2524 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2525 { 2526 unsigned long vm_len, pfn, pages; 2527 2528 /* Check that the physical memory area passed in looks valid */ 2529 if (start + len < start) 2530 return -EINVAL; 2531 /* 2532 * You *really* shouldn't map things that aren't page-aligned, 2533 * but we've historically allowed it because IO memory might 2534 * just have smaller alignment. 2535 */ 2536 len += start & ~PAGE_MASK; 2537 pfn = start >> PAGE_SHIFT; 2538 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2539 if (pfn + pages < pfn) 2540 return -EINVAL; 2541 2542 /* We start the mapping 'vm_pgoff' pages into the area */ 2543 if (vma->vm_pgoff > pages) 2544 return -EINVAL; 2545 pfn += vma->vm_pgoff; 2546 pages -= vma->vm_pgoff; 2547 2548 /* Can we fit all of the mapping? */ 2549 vm_len = vma->vm_end - vma->vm_start; 2550 if (vm_len >> PAGE_SHIFT > pages) 2551 return -EINVAL; 2552 2553 /* Ok, let it rip */ 2554 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2555 } 2556 EXPORT_SYMBOL(vm_iomap_memory); 2557 2558 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2559 unsigned long addr, unsigned long end, 2560 pte_fn_t fn, void *data, bool create, 2561 pgtbl_mod_mask *mask) 2562 { 2563 pte_t *pte, *mapped_pte; 2564 int err = 0; 2565 spinlock_t *ptl; 2566 2567 if (create) { 2568 mapped_pte = pte = (mm == &init_mm) ? 2569 pte_alloc_kernel_track(pmd, addr, mask) : 2570 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2571 if (!pte) 2572 return -ENOMEM; 2573 } else { 2574 mapped_pte = pte = (mm == &init_mm) ? 2575 pte_offset_kernel(pmd, addr) : 2576 pte_offset_map_lock(mm, pmd, addr, &ptl); 2577 if (!pte) 2578 return -EINVAL; 2579 } 2580 2581 arch_enter_lazy_mmu_mode(); 2582 2583 if (fn) { 2584 do { 2585 if (create || !pte_none(ptep_get(pte))) { 2586 err = fn(pte++, addr, data); 2587 if (err) 2588 break; 2589 } 2590 } while (addr += PAGE_SIZE, addr != end); 2591 } 2592 *mask |= PGTBL_PTE_MODIFIED; 2593 2594 arch_leave_lazy_mmu_mode(); 2595 2596 if (mm != &init_mm) 2597 pte_unmap_unlock(mapped_pte, ptl); 2598 return err; 2599 } 2600 2601 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2602 unsigned long addr, unsigned long end, 2603 pte_fn_t fn, void *data, bool create, 2604 pgtbl_mod_mask *mask) 2605 { 2606 pmd_t *pmd; 2607 unsigned long next; 2608 int err = 0; 2609 2610 BUG_ON(pud_huge(*pud)); 2611 2612 if (create) { 2613 pmd = pmd_alloc_track(mm, pud, addr, mask); 2614 if (!pmd) 2615 return -ENOMEM; 2616 } else { 2617 pmd = pmd_offset(pud, addr); 2618 } 2619 do { 2620 next = pmd_addr_end(addr, end); 2621 if (pmd_none(*pmd) && !create) 2622 continue; 2623 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2624 return -EINVAL; 2625 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2626 if (!create) 2627 continue; 2628 pmd_clear_bad(pmd); 2629 } 2630 err = apply_to_pte_range(mm, pmd, addr, next, 2631 fn, data, create, mask); 2632 if (err) 2633 break; 2634 } while (pmd++, addr = next, addr != end); 2635 2636 return err; 2637 } 2638 2639 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2640 unsigned long addr, unsigned long end, 2641 pte_fn_t fn, void *data, bool create, 2642 pgtbl_mod_mask *mask) 2643 { 2644 pud_t *pud; 2645 unsigned long next; 2646 int err = 0; 2647 2648 if (create) { 2649 pud = pud_alloc_track(mm, p4d, addr, mask); 2650 if (!pud) 2651 return -ENOMEM; 2652 } else { 2653 pud = pud_offset(p4d, addr); 2654 } 2655 do { 2656 next = pud_addr_end(addr, end); 2657 if (pud_none(*pud) && !create) 2658 continue; 2659 if (WARN_ON_ONCE(pud_leaf(*pud))) 2660 return -EINVAL; 2661 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2662 if (!create) 2663 continue; 2664 pud_clear_bad(pud); 2665 } 2666 err = apply_to_pmd_range(mm, pud, addr, next, 2667 fn, data, create, mask); 2668 if (err) 2669 break; 2670 } while (pud++, addr = next, addr != end); 2671 2672 return err; 2673 } 2674 2675 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2676 unsigned long addr, unsigned long end, 2677 pte_fn_t fn, void *data, bool create, 2678 pgtbl_mod_mask *mask) 2679 { 2680 p4d_t *p4d; 2681 unsigned long next; 2682 int err = 0; 2683 2684 if (create) { 2685 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2686 if (!p4d) 2687 return -ENOMEM; 2688 } else { 2689 p4d = p4d_offset(pgd, addr); 2690 } 2691 do { 2692 next = p4d_addr_end(addr, end); 2693 if (p4d_none(*p4d) && !create) 2694 continue; 2695 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2696 return -EINVAL; 2697 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2698 if (!create) 2699 continue; 2700 p4d_clear_bad(p4d); 2701 } 2702 err = apply_to_pud_range(mm, p4d, addr, next, 2703 fn, data, create, mask); 2704 if (err) 2705 break; 2706 } while (p4d++, addr = next, addr != end); 2707 2708 return err; 2709 } 2710 2711 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2712 unsigned long size, pte_fn_t fn, 2713 void *data, bool create) 2714 { 2715 pgd_t *pgd; 2716 unsigned long start = addr, next; 2717 unsigned long end = addr + size; 2718 pgtbl_mod_mask mask = 0; 2719 int err = 0; 2720 2721 if (WARN_ON(addr >= end)) 2722 return -EINVAL; 2723 2724 pgd = pgd_offset(mm, addr); 2725 do { 2726 next = pgd_addr_end(addr, end); 2727 if (pgd_none(*pgd) && !create) 2728 continue; 2729 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2730 return -EINVAL; 2731 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2732 if (!create) 2733 continue; 2734 pgd_clear_bad(pgd); 2735 } 2736 err = apply_to_p4d_range(mm, pgd, addr, next, 2737 fn, data, create, &mask); 2738 if (err) 2739 break; 2740 } while (pgd++, addr = next, addr != end); 2741 2742 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2743 arch_sync_kernel_mappings(start, start + size); 2744 2745 return err; 2746 } 2747 2748 /* 2749 * Scan a region of virtual memory, filling in page tables as necessary 2750 * and calling a provided function on each leaf page table. 2751 */ 2752 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2753 unsigned long size, pte_fn_t fn, void *data) 2754 { 2755 return __apply_to_page_range(mm, addr, size, fn, data, true); 2756 } 2757 EXPORT_SYMBOL_GPL(apply_to_page_range); 2758 2759 /* 2760 * Scan a region of virtual memory, calling a provided function on 2761 * each leaf page table where it exists. 2762 * 2763 * Unlike apply_to_page_range, this does _not_ fill in page tables 2764 * where they are absent. 2765 */ 2766 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2767 unsigned long size, pte_fn_t fn, void *data) 2768 { 2769 return __apply_to_page_range(mm, addr, size, fn, data, false); 2770 } 2771 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2772 2773 /* 2774 * handle_pte_fault chooses page fault handler according to an entry which was 2775 * read non-atomically. Before making any commitment, on those architectures 2776 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2777 * parts, do_swap_page must check under lock before unmapping the pte and 2778 * proceeding (but do_wp_page is only called after already making such a check; 2779 * and do_anonymous_page can safely check later on). 2780 */ 2781 static inline int pte_unmap_same(struct vm_fault *vmf) 2782 { 2783 int same = 1; 2784 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2785 if (sizeof(pte_t) > sizeof(unsigned long)) { 2786 spin_lock(vmf->ptl); 2787 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2788 spin_unlock(vmf->ptl); 2789 } 2790 #endif 2791 pte_unmap(vmf->pte); 2792 vmf->pte = NULL; 2793 return same; 2794 } 2795 2796 /* 2797 * Return: 2798 * 0: copied succeeded 2799 * -EHWPOISON: copy failed due to hwpoison in source page 2800 * -EAGAIN: copied failed (some other reason) 2801 */ 2802 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2803 struct vm_fault *vmf) 2804 { 2805 int ret; 2806 void *kaddr; 2807 void __user *uaddr; 2808 struct vm_area_struct *vma = vmf->vma; 2809 struct mm_struct *mm = vma->vm_mm; 2810 unsigned long addr = vmf->address; 2811 2812 if (likely(src)) { 2813 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2814 memory_failure_queue(page_to_pfn(src), 0); 2815 return -EHWPOISON; 2816 } 2817 return 0; 2818 } 2819 2820 /* 2821 * If the source page was a PFN mapping, we don't have 2822 * a "struct page" for it. We do a best-effort copy by 2823 * just copying from the original user address. If that 2824 * fails, we just zero-fill it. Live with it. 2825 */ 2826 kaddr = kmap_atomic(dst); 2827 uaddr = (void __user *)(addr & PAGE_MASK); 2828 2829 /* 2830 * On architectures with software "accessed" bits, we would 2831 * take a double page fault, so mark it accessed here. 2832 */ 2833 vmf->pte = NULL; 2834 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2835 pte_t entry; 2836 2837 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2838 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2839 /* 2840 * Other thread has already handled the fault 2841 * and update local tlb only 2842 */ 2843 if (vmf->pte) 2844 update_mmu_tlb(vma, addr, vmf->pte); 2845 ret = -EAGAIN; 2846 goto pte_unlock; 2847 } 2848 2849 entry = pte_mkyoung(vmf->orig_pte); 2850 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2851 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 2852 } 2853 2854 /* 2855 * This really shouldn't fail, because the page is there 2856 * in the page tables. But it might just be unreadable, 2857 * in which case we just give up and fill the result with 2858 * zeroes. 2859 */ 2860 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2861 if (vmf->pte) 2862 goto warn; 2863 2864 /* Re-validate under PTL if the page is still mapped */ 2865 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2866 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2867 /* The PTE changed under us, update local tlb */ 2868 if (vmf->pte) 2869 update_mmu_tlb(vma, addr, vmf->pte); 2870 ret = -EAGAIN; 2871 goto pte_unlock; 2872 } 2873 2874 /* 2875 * The same page can be mapped back since last copy attempt. 2876 * Try to copy again under PTL. 2877 */ 2878 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2879 /* 2880 * Give a warn in case there can be some obscure 2881 * use-case 2882 */ 2883 warn: 2884 WARN_ON_ONCE(1); 2885 clear_page(kaddr); 2886 } 2887 } 2888 2889 ret = 0; 2890 2891 pte_unlock: 2892 if (vmf->pte) 2893 pte_unmap_unlock(vmf->pte, vmf->ptl); 2894 kunmap_atomic(kaddr); 2895 flush_dcache_page(dst); 2896 2897 return ret; 2898 } 2899 2900 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2901 { 2902 struct file *vm_file = vma->vm_file; 2903 2904 if (vm_file) 2905 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2906 2907 /* 2908 * Special mappings (e.g. VDSO) do not have any file so fake 2909 * a default GFP_KERNEL for them. 2910 */ 2911 return GFP_KERNEL; 2912 } 2913 2914 /* 2915 * Notify the address space that the page is about to become writable so that 2916 * it can prohibit this or wait for the page to get into an appropriate state. 2917 * 2918 * We do this without the lock held, so that it can sleep if it needs to. 2919 */ 2920 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 2921 { 2922 vm_fault_t ret; 2923 unsigned int old_flags = vmf->flags; 2924 2925 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2926 2927 if (vmf->vma->vm_file && 2928 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2929 return VM_FAULT_SIGBUS; 2930 2931 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2932 /* Restore original flags so that caller is not surprised */ 2933 vmf->flags = old_flags; 2934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2935 return ret; 2936 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2937 folio_lock(folio); 2938 if (!folio->mapping) { 2939 folio_unlock(folio); 2940 return 0; /* retry */ 2941 } 2942 ret |= VM_FAULT_LOCKED; 2943 } else 2944 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2945 return ret; 2946 } 2947 2948 /* 2949 * Handle dirtying of a page in shared file mapping on a write fault. 2950 * 2951 * The function expects the page to be locked and unlocks it. 2952 */ 2953 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2954 { 2955 struct vm_area_struct *vma = vmf->vma; 2956 struct address_space *mapping; 2957 struct folio *folio = page_folio(vmf->page); 2958 bool dirtied; 2959 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2960 2961 dirtied = folio_mark_dirty(folio); 2962 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2963 /* 2964 * Take a local copy of the address_space - folio.mapping may be zeroed 2965 * by truncate after folio_unlock(). The address_space itself remains 2966 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 2967 * release semantics to prevent the compiler from undoing this copying. 2968 */ 2969 mapping = folio_raw_mapping(folio); 2970 folio_unlock(folio); 2971 2972 if (!page_mkwrite) 2973 file_update_time(vma->vm_file); 2974 2975 /* 2976 * Throttle page dirtying rate down to writeback speed. 2977 * 2978 * mapping may be NULL here because some device drivers do not 2979 * set page.mapping but still dirty their pages 2980 * 2981 * Drop the mmap_lock before waiting on IO, if we can. The file 2982 * is pinning the mapping, as per above. 2983 */ 2984 if ((dirtied || page_mkwrite) && mapping) { 2985 struct file *fpin; 2986 2987 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2988 balance_dirty_pages_ratelimited(mapping); 2989 if (fpin) { 2990 fput(fpin); 2991 return VM_FAULT_COMPLETED; 2992 } 2993 } 2994 2995 return 0; 2996 } 2997 2998 /* 2999 * Handle write page faults for pages that can be reused in the current vma 3000 * 3001 * This can happen either due to the mapping being with the VM_SHARED flag, 3002 * or due to us being the last reference standing to the page. In either 3003 * case, all we need to do here is to mark the page as writable and update 3004 * any related book-keeping. 3005 */ 3006 static inline void wp_page_reuse(struct vm_fault *vmf) 3007 __releases(vmf->ptl) 3008 { 3009 struct vm_area_struct *vma = vmf->vma; 3010 struct page *page = vmf->page; 3011 pte_t entry; 3012 3013 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3014 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3015 3016 /* 3017 * Clear the pages cpupid information as the existing 3018 * information potentially belongs to a now completely 3019 * unrelated process. 3020 */ 3021 if (page) 3022 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3023 3024 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3025 entry = pte_mkyoung(vmf->orig_pte); 3026 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3027 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3028 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3029 pte_unmap_unlock(vmf->pte, vmf->ptl); 3030 count_vm_event(PGREUSE); 3031 } 3032 3033 /* 3034 * Handle the case of a page which we actually need to copy to a new page, 3035 * either due to COW or unsharing. 3036 * 3037 * Called with mmap_lock locked and the old page referenced, but 3038 * without the ptl held. 3039 * 3040 * High level logic flow: 3041 * 3042 * - Allocate a page, copy the content of the old page to the new one. 3043 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3044 * - Take the PTL. If the pte changed, bail out and release the allocated page 3045 * - If the pte is still the way we remember it, update the page table and all 3046 * relevant references. This includes dropping the reference the page-table 3047 * held to the old page, as well as updating the rmap. 3048 * - In any case, unlock the PTL and drop the reference we took to the old page. 3049 */ 3050 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3051 { 3052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3053 struct vm_area_struct *vma = vmf->vma; 3054 struct mm_struct *mm = vma->vm_mm; 3055 struct folio *old_folio = NULL; 3056 struct folio *new_folio = NULL; 3057 pte_t entry; 3058 int page_copied = 0; 3059 struct mmu_notifier_range range; 3060 int ret; 3061 3062 delayacct_wpcopy_start(); 3063 3064 if (vmf->page) 3065 old_folio = page_folio(vmf->page); 3066 if (unlikely(anon_vma_prepare(vma))) 3067 goto oom; 3068 3069 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3070 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3071 if (!new_folio) 3072 goto oom; 3073 } else { 3074 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3075 vmf->address, false); 3076 if (!new_folio) 3077 goto oom; 3078 3079 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3080 if (ret) { 3081 /* 3082 * COW failed, if the fault was solved by other, 3083 * it's fine. If not, userspace would re-fault on 3084 * the same address and we will handle the fault 3085 * from the second attempt. 3086 * The -EHWPOISON case will not be retried. 3087 */ 3088 folio_put(new_folio); 3089 if (old_folio) 3090 folio_put(old_folio); 3091 3092 delayacct_wpcopy_end(); 3093 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3094 } 3095 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3096 } 3097 3098 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3099 goto oom_free_new; 3100 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3101 3102 __folio_mark_uptodate(new_folio); 3103 3104 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3105 vmf->address & PAGE_MASK, 3106 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3107 mmu_notifier_invalidate_range_start(&range); 3108 3109 /* 3110 * Re-check the pte - we dropped the lock 3111 */ 3112 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3113 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3114 if (old_folio) { 3115 if (!folio_test_anon(old_folio)) { 3116 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3117 inc_mm_counter(mm, MM_ANONPAGES); 3118 } 3119 } else { 3120 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3121 inc_mm_counter(mm, MM_ANONPAGES); 3122 } 3123 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3124 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3125 entry = pte_sw_mkyoung(entry); 3126 if (unlikely(unshare)) { 3127 if (pte_soft_dirty(vmf->orig_pte)) 3128 entry = pte_mksoft_dirty(entry); 3129 if (pte_uffd_wp(vmf->orig_pte)) 3130 entry = pte_mkuffd_wp(entry); 3131 } else { 3132 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3133 } 3134 3135 /* 3136 * Clear the pte entry and flush it first, before updating the 3137 * pte with the new entry, to keep TLBs on different CPUs in 3138 * sync. This code used to set the new PTE then flush TLBs, but 3139 * that left a window where the new PTE could be loaded into 3140 * some TLBs while the old PTE remains in others. 3141 */ 3142 ptep_clear_flush(vma, vmf->address, vmf->pte); 3143 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3144 folio_add_lru_vma(new_folio, vma); 3145 /* 3146 * We call the notify macro here because, when using secondary 3147 * mmu page tables (such as kvm shadow page tables), we want the 3148 * new page to be mapped directly into the secondary page table. 3149 */ 3150 BUG_ON(unshare && pte_write(entry)); 3151 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3152 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3153 if (old_folio) { 3154 /* 3155 * Only after switching the pte to the new page may 3156 * we remove the mapcount here. Otherwise another 3157 * process may come and find the rmap count decremented 3158 * before the pte is switched to the new page, and 3159 * "reuse" the old page writing into it while our pte 3160 * here still points into it and can be read by other 3161 * threads. 3162 * 3163 * The critical issue is to order this 3164 * page_remove_rmap with the ptp_clear_flush above. 3165 * Those stores are ordered by (if nothing else,) 3166 * the barrier present in the atomic_add_negative 3167 * in page_remove_rmap. 3168 * 3169 * Then the TLB flush in ptep_clear_flush ensures that 3170 * no process can access the old page before the 3171 * decremented mapcount is visible. And the old page 3172 * cannot be reused until after the decremented 3173 * mapcount is visible. So transitively, TLBs to 3174 * old page will be flushed before it can be reused. 3175 */ 3176 page_remove_rmap(vmf->page, vma, false); 3177 } 3178 3179 /* Free the old page.. */ 3180 new_folio = old_folio; 3181 page_copied = 1; 3182 pte_unmap_unlock(vmf->pte, vmf->ptl); 3183 } else if (vmf->pte) { 3184 update_mmu_tlb(vma, vmf->address, vmf->pte); 3185 pte_unmap_unlock(vmf->pte, vmf->ptl); 3186 } 3187 3188 mmu_notifier_invalidate_range_end(&range); 3189 3190 if (new_folio) 3191 folio_put(new_folio); 3192 if (old_folio) { 3193 if (page_copied) 3194 free_swap_cache(&old_folio->page); 3195 folio_put(old_folio); 3196 } 3197 3198 delayacct_wpcopy_end(); 3199 return 0; 3200 oom_free_new: 3201 folio_put(new_folio); 3202 oom: 3203 if (old_folio) 3204 folio_put(old_folio); 3205 3206 delayacct_wpcopy_end(); 3207 return VM_FAULT_OOM; 3208 } 3209 3210 /** 3211 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3212 * writeable once the page is prepared 3213 * 3214 * @vmf: structure describing the fault 3215 * 3216 * This function handles all that is needed to finish a write page fault in a 3217 * shared mapping due to PTE being read-only once the mapped page is prepared. 3218 * It handles locking of PTE and modifying it. 3219 * 3220 * The function expects the page to be locked or other protection against 3221 * concurrent faults / writeback (such as DAX radix tree locks). 3222 * 3223 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3224 * we acquired PTE lock. 3225 */ 3226 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3227 { 3228 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3229 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3230 &vmf->ptl); 3231 if (!vmf->pte) 3232 return VM_FAULT_NOPAGE; 3233 /* 3234 * We might have raced with another page fault while we released the 3235 * pte_offset_map_lock. 3236 */ 3237 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3238 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3239 pte_unmap_unlock(vmf->pte, vmf->ptl); 3240 return VM_FAULT_NOPAGE; 3241 } 3242 wp_page_reuse(vmf); 3243 return 0; 3244 } 3245 3246 /* 3247 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3248 * mapping 3249 */ 3250 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3251 { 3252 struct vm_area_struct *vma = vmf->vma; 3253 3254 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3255 vm_fault_t ret; 3256 3257 pte_unmap_unlock(vmf->pte, vmf->ptl); 3258 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3259 vma_end_read(vmf->vma); 3260 return VM_FAULT_RETRY; 3261 } 3262 3263 vmf->flags |= FAULT_FLAG_MKWRITE; 3264 ret = vma->vm_ops->pfn_mkwrite(vmf); 3265 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3266 return ret; 3267 return finish_mkwrite_fault(vmf); 3268 } 3269 wp_page_reuse(vmf); 3270 return 0; 3271 } 3272 3273 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3274 __releases(vmf->ptl) 3275 { 3276 struct vm_area_struct *vma = vmf->vma; 3277 vm_fault_t ret = 0; 3278 3279 folio_get(folio); 3280 3281 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3282 vm_fault_t tmp; 3283 3284 pte_unmap_unlock(vmf->pte, vmf->ptl); 3285 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3286 folio_put(folio); 3287 vma_end_read(vmf->vma); 3288 return VM_FAULT_RETRY; 3289 } 3290 3291 tmp = do_page_mkwrite(vmf, folio); 3292 if (unlikely(!tmp || (tmp & 3293 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3294 folio_put(folio); 3295 return tmp; 3296 } 3297 tmp = finish_mkwrite_fault(vmf); 3298 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3299 folio_unlock(folio); 3300 folio_put(folio); 3301 return tmp; 3302 } 3303 } else { 3304 wp_page_reuse(vmf); 3305 folio_lock(folio); 3306 } 3307 ret |= fault_dirty_shared_page(vmf); 3308 folio_put(folio); 3309 3310 return ret; 3311 } 3312 3313 /* 3314 * This routine handles present pages, when 3315 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3316 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3317 * (FAULT_FLAG_UNSHARE) 3318 * 3319 * It is done by copying the page to a new address and decrementing the 3320 * shared-page counter for the old page. 3321 * 3322 * Note that this routine assumes that the protection checks have been 3323 * done by the caller (the low-level page fault routine in most cases). 3324 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3325 * done any necessary COW. 3326 * 3327 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3328 * though the page will change only once the write actually happens. This 3329 * avoids a few races, and potentially makes it more efficient. 3330 * 3331 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3332 * but allow concurrent faults), with pte both mapped and locked. 3333 * We return with mmap_lock still held, but pte unmapped and unlocked. 3334 */ 3335 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3336 __releases(vmf->ptl) 3337 { 3338 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3339 struct vm_area_struct *vma = vmf->vma; 3340 struct folio *folio = NULL; 3341 3342 if (likely(!unshare)) { 3343 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3344 pte_unmap_unlock(vmf->pte, vmf->ptl); 3345 return handle_userfault(vmf, VM_UFFD_WP); 3346 } 3347 3348 /* 3349 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3350 * is flushed in this case before copying. 3351 */ 3352 if (unlikely(userfaultfd_wp(vmf->vma) && 3353 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3354 flush_tlb_page(vmf->vma, vmf->address); 3355 } 3356 3357 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3358 3359 if (vmf->page) 3360 folio = page_folio(vmf->page); 3361 3362 /* 3363 * Shared mapping: we are guaranteed to have VM_WRITE and 3364 * FAULT_FLAG_WRITE set at this point. 3365 */ 3366 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3367 /* 3368 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3369 * VM_PFNMAP VMA. 3370 * 3371 * We should not cow pages in a shared writeable mapping. 3372 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3373 */ 3374 if (!vmf->page) 3375 return wp_pfn_shared(vmf); 3376 return wp_page_shared(vmf, folio); 3377 } 3378 3379 /* 3380 * Private mapping: create an exclusive anonymous page copy if reuse 3381 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3382 */ 3383 if (folio && folio_test_anon(folio)) { 3384 /* 3385 * If the page is exclusive to this process we must reuse the 3386 * page without further checks. 3387 */ 3388 if (PageAnonExclusive(vmf->page)) 3389 goto reuse; 3390 3391 /* 3392 * We have to verify under folio lock: these early checks are 3393 * just an optimization to avoid locking the folio and freeing 3394 * the swapcache if there is little hope that we can reuse. 3395 * 3396 * KSM doesn't necessarily raise the folio refcount. 3397 */ 3398 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3399 goto copy; 3400 if (!folio_test_lru(folio)) 3401 /* 3402 * We cannot easily detect+handle references from 3403 * remote LRU caches or references to LRU folios. 3404 */ 3405 lru_add_drain(); 3406 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3407 goto copy; 3408 if (!folio_trylock(folio)) 3409 goto copy; 3410 if (folio_test_swapcache(folio)) 3411 folio_free_swap(folio); 3412 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3413 folio_unlock(folio); 3414 goto copy; 3415 } 3416 /* 3417 * Ok, we've got the only folio reference from our mapping 3418 * and the folio is locked, it's dark out, and we're wearing 3419 * sunglasses. Hit it. 3420 */ 3421 page_move_anon_rmap(vmf->page, vma); 3422 folio_unlock(folio); 3423 reuse: 3424 if (unlikely(unshare)) { 3425 pte_unmap_unlock(vmf->pte, vmf->ptl); 3426 return 0; 3427 } 3428 wp_page_reuse(vmf); 3429 return 0; 3430 } 3431 copy: 3432 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) { 3433 pte_unmap_unlock(vmf->pte, vmf->ptl); 3434 vma_end_read(vmf->vma); 3435 return VM_FAULT_RETRY; 3436 } 3437 3438 /* 3439 * Ok, we need to copy. Oh, well.. 3440 */ 3441 if (folio) 3442 folio_get(folio); 3443 3444 pte_unmap_unlock(vmf->pte, vmf->ptl); 3445 #ifdef CONFIG_KSM 3446 if (folio && folio_test_ksm(folio)) 3447 count_vm_event(COW_KSM); 3448 #endif 3449 return wp_page_copy(vmf); 3450 } 3451 3452 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3453 unsigned long start_addr, unsigned long end_addr, 3454 struct zap_details *details) 3455 { 3456 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3457 } 3458 3459 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3460 pgoff_t first_index, 3461 pgoff_t last_index, 3462 struct zap_details *details) 3463 { 3464 struct vm_area_struct *vma; 3465 pgoff_t vba, vea, zba, zea; 3466 3467 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3468 vba = vma->vm_pgoff; 3469 vea = vba + vma_pages(vma) - 1; 3470 zba = max(first_index, vba); 3471 zea = min(last_index, vea); 3472 3473 unmap_mapping_range_vma(vma, 3474 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3475 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3476 details); 3477 } 3478 } 3479 3480 /** 3481 * unmap_mapping_folio() - Unmap single folio from processes. 3482 * @folio: The locked folio to be unmapped. 3483 * 3484 * Unmap this folio from any userspace process which still has it mmaped. 3485 * Typically, for efficiency, the range of nearby pages has already been 3486 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3487 * truncation or invalidation holds the lock on a folio, it may find that 3488 * the page has been remapped again: and then uses unmap_mapping_folio() 3489 * to unmap it finally. 3490 */ 3491 void unmap_mapping_folio(struct folio *folio) 3492 { 3493 struct address_space *mapping = folio->mapping; 3494 struct zap_details details = { }; 3495 pgoff_t first_index; 3496 pgoff_t last_index; 3497 3498 VM_BUG_ON(!folio_test_locked(folio)); 3499 3500 first_index = folio->index; 3501 last_index = folio_next_index(folio) - 1; 3502 3503 details.even_cows = false; 3504 details.single_folio = folio; 3505 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3506 3507 i_mmap_lock_read(mapping); 3508 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3509 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3510 last_index, &details); 3511 i_mmap_unlock_read(mapping); 3512 } 3513 3514 /** 3515 * unmap_mapping_pages() - Unmap pages from processes. 3516 * @mapping: The address space containing pages to be unmapped. 3517 * @start: Index of first page to be unmapped. 3518 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3519 * @even_cows: Whether to unmap even private COWed pages. 3520 * 3521 * Unmap the pages in this address space from any userspace process which 3522 * has them mmaped. Generally, you want to remove COWed pages as well when 3523 * a file is being truncated, but not when invalidating pages from the page 3524 * cache. 3525 */ 3526 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3527 pgoff_t nr, bool even_cows) 3528 { 3529 struct zap_details details = { }; 3530 pgoff_t first_index = start; 3531 pgoff_t last_index = start + nr - 1; 3532 3533 details.even_cows = even_cows; 3534 if (last_index < first_index) 3535 last_index = ULONG_MAX; 3536 3537 i_mmap_lock_read(mapping); 3538 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3539 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3540 last_index, &details); 3541 i_mmap_unlock_read(mapping); 3542 } 3543 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3544 3545 /** 3546 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3547 * address_space corresponding to the specified byte range in the underlying 3548 * file. 3549 * 3550 * @mapping: the address space containing mmaps to be unmapped. 3551 * @holebegin: byte in first page to unmap, relative to the start of 3552 * the underlying file. This will be rounded down to a PAGE_SIZE 3553 * boundary. Note that this is different from truncate_pagecache(), which 3554 * must keep the partial page. In contrast, we must get rid of 3555 * partial pages. 3556 * @holelen: size of prospective hole in bytes. This will be rounded 3557 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3558 * end of the file. 3559 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3560 * but 0 when invalidating pagecache, don't throw away private data. 3561 */ 3562 void unmap_mapping_range(struct address_space *mapping, 3563 loff_t const holebegin, loff_t const holelen, int even_cows) 3564 { 3565 pgoff_t hba = holebegin >> PAGE_SHIFT; 3566 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3567 3568 /* Check for overflow. */ 3569 if (sizeof(holelen) > sizeof(hlen)) { 3570 long long holeend = 3571 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3572 if (holeend & ~(long long)ULONG_MAX) 3573 hlen = ULONG_MAX - hba + 1; 3574 } 3575 3576 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3577 } 3578 EXPORT_SYMBOL(unmap_mapping_range); 3579 3580 /* 3581 * Restore a potential device exclusive pte to a working pte entry 3582 */ 3583 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3584 { 3585 struct folio *folio = page_folio(vmf->page); 3586 struct vm_area_struct *vma = vmf->vma; 3587 struct mmu_notifier_range range; 3588 vm_fault_t ret; 3589 3590 /* 3591 * We need a reference to lock the folio because we don't hold 3592 * the PTL so a racing thread can remove the device-exclusive 3593 * entry and unmap it. If the folio is free the entry must 3594 * have been removed already. If it happens to have already 3595 * been re-allocated after being freed all we do is lock and 3596 * unlock it. 3597 */ 3598 if (!folio_try_get(folio)) 3599 return 0; 3600 3601 ret = folio_lock_or_retry(folio, vmf); 3602 if (ret) { 3603 folio_put(folio); 3604 return ret; 3605 } 3606 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3607 vma->vm_mm, vmf->address & PAGE_MASK, 3608 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3609 mmu_notifier_invalidate_range_start(&range); 3610 3611 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3612 &vmf->ptl); 3613 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3614 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3615 3616 if (vmf->pte) 3617 pte_unmap_unlock(vmf->pte, vmf->ptl); 3618 folio_unlock(folio); 3619 folio_put(folio); 3620 3621 mmu_notifier_invalidate_range_end(&range); 3622 return 0; 3623 } 3624 3625 static inline bool should_try_to_free_swap(struct folio *folio, 3626 struct vm_area_struct *vma, 3627 unsigned int fault_flags) 3628 { 3629 if (!folio_test_swapcache(folio)) 3630 return false; 3631 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3632 folio_test_mlocked(folio)) 3633 return true; 3634 /* 3635 * If we want to map a page that's in the swapcache writable, we 3636 * have to detect via the refcount if we're really the exclusive 3637 * user. Try freeing the swapcache to get rid of the swapcache 3638 * reference only in case it's likely that we'll be the exlusive user. 3639 */ 3640 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3641 folio_ref_count(folio) == 2; 3642 } 3643 3644 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3645 { 3646 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3647 vmf->address, &vmf->ptl); 3648 if (!vmf->pte) 3649 return 0; 3650 /* 3651 * Be careful so that we will only recover a special uffd-wp pte into a 3652 * none pte. Otherwise it means the pte could have changed, so retry. 3653 * 3654 * This should also cover the case where e.g. the pte changed 3655 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3656 * So is_pte_marker() check is not enough to safely drop the pte. 3657 */ 3658 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3659 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3660 pte_unmap_unlock(vmf->pte, vmf->ptl); 3661 return 0; 3662 } 3663 3664 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3665 { 3666 if (vma_is_anonymous(vmf->vma)) 3667 return do_anonymous_page(vmf); 3668 else 3669 return do_fault(vmf); 3670 } 3671 3672 /* 3673 * This is actually a page-missing access, but with uffd-wp special pte 3674 * installed. It means this pte was wr-protected before being unmapped. 3675 */ 3676 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3677 { 3678 /* 3679 * Just in case there're leftover special ptes even after the region 3680 * got unregistered - we can simply clear them. 3681 */ 3682 if (unlikely(!userfaultfd_wp(vmf->vma))) 3683 return pte_marker_clear(vmf); 3684 3685 return do_pte_missing(vmf); 3686 } 3687 3688 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3689 { 3690 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3691 unsigned long marker = pte_marker_get(entry); 3692 3693 /* 3694 * PTE markers should never be empty. If anything weird happened, 3695 * the best thing to do is to kill the process along with its mm. 3696 */ 3697 if (WARN_ON_ONCE(!marker)) 3698 return VM_FAULT_SIGBUS; 3699 3700 /* Higher priority than uffd-wp when data corrupted */ 3701 if (marker & PTE_MARKER_POISONED) 3702 return VM_FAULT_HWPOISON; 3703 3704 if (pte_marker_entry_uffd_wp(entry)) 3705 return pte_marker_handle_uffd_wp(vmf); 3706 3707 /* This is an unknown pte marker */ 3708 return VM_FAULT_SIGBUS; 3709 } 3710 3711 /* 3712 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3713 * but allow concurrent faults), and pte mapped but not yet locked. 3714 * We return with pte unmapped and unlocked. 3715 * 3716 * We return with the mmap_lock locked or unlocked in the same cases 3717 * as does filemap_fault(). 3718 */ 3719 vm_fault_t do_swap_page(struct vm_fault *vmf) 3720 { 3721 struct vm_area_struct *vma = vmf->vma; 3722 struct folio *swapcache, *folio = NULL; 3723 struct page *page; 3724 struct swap_info_struct *si = NULL; 3725 rmap_t rmap_flags = RMAP_NONE; 3726 bool exclusive = false; 3727 swp_entry_t entry; 3728 pte_t pte; 3729 vm_fault_t ret = 0; 3730 void *shadow = NULL; 3731 3732 if (!pte_unmap_same(vmf)) 3733 goto out; 3734 3735 entry = pte_to_swp_entry(vmf->orig_pte); 3736 if (unlikely(non_swap_entry(entry))) { 3737 if (is_migration_entry(entry)) { 3738 migration_entry_wait(vma->vm_mm, vmf->pmd, 3739 vmf->address); 3740 } else if (is_device_exclusive_entry(entry)) { 3741 vmf->page = pfn_swap_entry_to_page(entry); 3742 ret = remove_device_exclusive_entry(vmf); 3743 } else if (is_device_private_entry(entry)) { 3744 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3745 /* 3746 * migrate_to_ram is not yet ready to operate 3747 * under VMA lock. 3748 */ 3749 vma_end_read(vma); 3750 ret = VM_FAULT_RETRY; 3751 goto out; 3752 } 3753 3754 vmf->page = pfn_swap_entry_to_page(entry); 3755 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3756 vmf->address, &vmf->ptl); 3757 if (unlikely(!vmf->pte || 3758 !pte_same(ptep_get(vmf->pte), 3759 vmf->orig_pte))) 3760 goto unlock; 3761 3762 /* 3763 * Get a page reference while we know the page can't be 3764 * freed. 3765 */ 3766 get_page(vmf->page); 3767 pte_unmap_unlock(vmf->pte, vmf->ptl); 3768 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3769 put_page(vmf->page); 3770 } else if (is_hwpoison_entry(entry)) { 3771 ret = VM_FAULT_HWPOISON; 3772 } else if (is_pte_marker_entry(entry)) { 3773 ret = handle_pte_marker(vmf); 3774 } else { 3775 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3776 ret = VM_FAULT_SIGBUS; 3777 } 3778 goto out; 3779 } 3780 3781 /* Prevent swapoff from happening to us. */ 3782 si = get_swap_device(entry); 3783 if (unlikely(!si)) 3784 goto out; 3785 3786 folio = swap_cache_get_folio(entry, vma, vmf->address); 3787 if (folio) 3788 page = folio_file_page(folio, swp_offset(entry)); 3789 swapcache = folio; 3790 3791 if (!folio) { 3792 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3793 __swap_count(entry) == 1) { 3794 /* skip swapcache */ 3795 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3796 vma, vmf->address, false); 3797 page = &folio->page; 3798 if (folio) { 3799 __folio_set_locked(folio); 3800 __folio_set_swapbacked(folio); 3801 3802 if (mem_cgroup_swapin_charge_folio(folio, 3803 vma->vm_mm, GFP_KERNEL, 3804 entry)) { 3805 ret = VM_FAULT_OOM; 3806 goto out_page; 3807 } 3808 mem_cgroup_swapin_uncharge_swap(entry); 3809 3810 shadow = get_shadow_from_swap_cache(entry); 3811 if (shadow) 3812 workingset_refault(folio, shadow); 3813 3814 folio_add_lru(folio); 3815 3816 /* To provide entry to swap_readpage() */ 3817 folio->swap = entry; 3818 swap_readpage(page, true, NULL); 3819 folio->private = NULL; 3820 } 3821 } else { 3822 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3823 vmf); 3824 if (page) 3825 folio = page_folio(page); 3826 swapcache = folio; 3827 } 3828 3829 if (!folio) { 3830 /* 3831 * Back out if somebody else faulted in this pte 3832 * while we released the pte lock. 3833 */ 3834 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3835 vmf->address, &vmf->ptl); 3836 if (likely(vmf->pte && 3837 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3838 ret = VM_FAULT_OOM; 3839 goto unlock; 3840 } 3841 3842 /* Had to read the page from swap area: Major fault */ 3843 ret = VM_FAULT_MAJOR; 3844 count_vm_event(PGMAJFAULT); 3845 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3846 } else if (PageHWPoison(page)) { 3847 /* 3848 * hwpoisoned dirty swapcache pages are kept for killing 3849 * owner processes (which may be unknown at hwpoison time) 3850 */ 3851 ret = VM_FAULT_HWPOISON; 3852 goto out_release; 3853 } 3854 3855 ret |= folio_lock_or_retry(folio, vmf); 3856 if (ret & VM_FAULT_RETRY) 3857 goto out_release; 3858 3859 if (swapcache) { 3860 /* 3861 * Make sure folio_free_swap() or swapoff did not release the 3862 * swapcache from under us. The page pin, and pte_same test 3863 * below, are not enough to exclude that. Even if it is still 3864 * swapcache, we need to check that the page's swap has not 3865 * changed. 3866 */ 3867 if (unlikely(!folio_test_swapcache(folio) || 3868 page_swap_entry(page).val != entry.val)) 3869 goto out_page; 3870 3871 /* 3872 * KSM sometimes has to copy on read faults, for example, if 3873 * page->index of !PageKSM() pages would be nonlinear inside the 3874 * anon VMA -- PageKSM() is lost on actual swapout. 3875 */ 3876 page = ksm_might_need_to_copy(page, vma, vmf->address); 3877 if (unlikely(!page)) { 3878 ret = VM_FAULT_OOM; 3879 goto out_page; 3880 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3881 ret = VM_FAULT_HWPOISON; 3882 goto out_page; 3883 } 3884 folio = page_folio(page); 3885 3886 /* 3887 * If we want to map a page that's in the swapcache writable, we 3888 * have to detect via the refcount if we're really the exclusive 3889 * owner. Try removing the extra reference from the local LRU 3890 * caches if required. 3891 */ 3892 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3893 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3894 lru_add_drain(); 3895 } 3896 3897 folio_throttle_swaprate(folio, GFP_KERNEL); 3898 3899 /* 3900 * Back out if somebody else already faulted in this pte. 3901 */ 3902 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3903 &vmf->ptl); 3904 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3905 goto out_nomap; 3906 3907 if (unlikely(!folio_test_uptodate(folio))) { 3908 ret = VM_FAULT_SIGBUS; 3909 goto out_nomap; 3910 } 3911 3912 /* 3913 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3914 * must never point at an anonymous page in the swapcache that is 3915 * PG_anon_exclusive. Sanity check that this holds and especially, that 3916 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3917 * check after taking the PT lock and making sure that nobody 3918 * concurrently faulted in this page and set PG_anon_exclusive. 3919 */ 3920 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3921 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3922 3923 /* 3924 * Check under PT lock (to protect against concurrent fork() sharing 3925 * the swap entry concurrently) for certainly exclusive pages. 3926 */ 3927 if (!folio_test_ksm(folio)) { 3928 exclusive = pte_swp_exclusive(vmf->orig_pte); 3929 if (folio != swapcache) { 3930 /* 3931 * We have a fresh page that is not exposed to the 3932 * swapcache -> certainly exclusive. 3933 */ 3934 exclusive = true; 3935 } else if (exclusive && folio_test_writeback(folio) && 3936 data_race(si->flags & SWP_STABLE_WRITES)) { 3937 /* 3938 * This is tricky: not all swap backends support 3939 * concurrent page modifications while under writeback. 3940 * 3941 * So if we stumble over such a page in the swapcache 3942 * we must not set the page exclusive, otherwise we can 3943 * map it writable without further checks and modify it 3944 * while still under writeback. 3945 * 3946 * For these problematic swap backends, simply drop the 3947 * exclusive marker: this is perfectly fine as we start 3948 * writeback only if we fully unmapped the page and 3949 * there are no unexpected references on the page after 3950 * unmapping succeeded. After fully unmapped, no 3951 * further GUP references (FOLL_GET and FOLL_PIN) can 3952 * appear, so dropping the exclusive marker and mapping 3953 * it only R/O is fine. 3954 */ 3955 exclusive = false; 3956 } 3957 } 3958 3959 /* 3960 * Some architectures may have to restore extra metadata to the page 3961 * when reading from swap. This metadata may be indexed by swap entry 3962 * so this must be called before swap_free(). 3963 */ 3964 arch_swap_restore(entry, folio); 3965 3966 /* 3967 * Remove the swap entry and conditionally try to free up the swapcache. 3968 * We're already holding a reference on the page but haven't mapped it 3969 * yet. 3970 */ 3971 swap_free(entry); 3972 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3973 folio_free_swap(folio); 3974 3975 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3976 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3977 pte = mk_pte(page, vma->vm_page_prot); 3978 3979 /* 3980 * Same logic as in do_wp_page(); however, optimize for pages that are 3981 * certainly not shared either because we just allocated them without 3982 * exposing them to the swapcache or because the swap entry indicates 3983 * exclusivity. 3984 */ 3985 if (!folio_test_ksm(folio) && 3986 (exclusive || folio_ref_count(folio) == 1)) { 3987 if (vmf->flags & FAULT_FLAG_WRITE) { 3988 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3989 vmf->flags &= ~FAULT_FLAG_WRITE; 3990 } 3991 rmap_flags |= RMAP_EXCLUSIVE; 3992 } 3993 flush_icache_page(vma, page); 3994 if (pte_swp_soft_dirty(vmf->orig_pte)) 3995 pte = pte_mksoft_dirty(pte); 3996 if (pte_swp_uffd_wp(vmf->orig_pte)) 3997 pte = pte_mkuffd_wp(pte); 3998 vmf->orig_pte = pte; 3999 4000 /* ksm created a completely new copy */ 4001 if (unlikely(folio != swapcache && swapcache)) { 4002 page_add_new_anon_rmap(page, vma, vmf->address); 4003 folio_add_lru_vma(folio, vma); 4004 } else { 4005 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 4006 } 4007 4008 VM_BUG_ON(!folio_test_anon(folio) || 4009 (pte_write(pte) && !PageAnonExclusive(page))); 4010 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4011 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4012 4013 folio_unlock(folio); 4014 if (folio != swapcache && swapcache) { 4015 /* 4016 * Hold the lock to avoid the swap entry to be reused 4017 * until we take the PT lock for the pte_same() check 4018 * (to avoid false positives from pte_same). For 4019 * further safety release the lock after the swap_free 4020 * so that the swap count won't change under a 4021 * parallel locked swapcache. 4022 */ 4023 folio_unlock(swapcache); 4024 folio_put(swapcache); 4025 } 4026 4027 if (vmf->flags & FAULT_FLAG_WRITE) { 4028 ret |= do_wp_page(vmf); 4029 if (ret & VM_FAULT_ERROR) 4030 ret &= VM_FAULT_ERROR; 4031 goto out; 4032 } 4033 4034 /* No need to invalidate - it was non-present before */ 4035 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4036 unlock: 4037 if (vmf->pte) 4038 pte_unmap_unlock(vmf->pte, vmf->ptl); 4039 out: 4040 if (si) 4041 put_swap_device(si); 4042 return ret; 4043 out_nomap: 4044 if (vmf->pte) 4045 pte_unmap_unlock(vmf->pte, vmf->ptl); 4046 out_page: 4047 folio_unlock(folio); 4048 out_release: 4049 folio_put(folio); 4050 if (folio != swapcache && swapcache) { 4051 folio_unlock(swapcache); 4052 folio_put(swapcache); 4053 } 4054 if (si) 4055 put_swap_device(si); 4056 return ret; 4057 } 4058 4059 /* 4060 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4061 * but allow concurrent faults), and pte mapped but not yet locked. 4062 * We return with mmap_lock still held, but pte unmapped and unlocked. 4063 */ 4064 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4065 { 4066 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4067 struct vm_area_struct *vma = vmf->vma; 4068 struct folio *folio; 4069 vm_fault_t ret = 0; 4070 pte_t entry; 4071 4072 /* File mapping without ->vm_ops ? */ 4073 if (vma->vm_flags & VM_SHARED) 4074 return VM_FAULT_SIGBUS; 4075 4076 /* 4077 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4078 * be distinguished from a transient failure of pte_offset_map(). 4079 */ 4080 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4081 return VM_FAULT_OOM; 4082 4083 /* Use the zero-page for reads */ 4084 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4085 !mm_forbids_zeropage(vma->vm_mm)) { 4086 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4087 vma->vm_page_prot)); 4088 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4089 vmf->address, &vmf->ptl); 4090 if (!vmf->pte) 4091 goto unlock; 4092 if (vmf_pte_changed(vmf)) { 4093 update_mmu_tlb(vma, vmf->address, vmf->pte); 4094 goto unlock; 4095 } 4096 ret = check_stable_address_space(vma->vm_mm); 4097 if (ret) 4098 goto unlock; 4099 /* Deliver the page fault to userland, check inside PT lock */ 4100 if (userfaultfd_missing(vma)) { 4101 pte_unmap_unlock(vmf->pte, vmf->ptl); 4102 return handle_userfault(vmf, VM_UFFD_MISSING); 4103 } 4104 goto setpte; 4105 } 4106 4107 /* Allocate our own private page. */ 4108 if (unlikely(anon_vma_prepare(vma))) 4109 goto oom; 4110 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4111 if (!folio) 4112 goto oom; 4113 4114 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4115 goto oom_free_page; 4116 folio_throttle_swaprate(folio, GFP_KERNEL); 4117 4118 /* 4119 * The memory barrier inside __folio_mark_uptodate makes sure that 4120 * preceding stores to the page contents become visible before 4121 * the set_pte_at() write. 4122 */ 4123 __folio_mark_uptodate(folio); 4124 4125 entry = mk_pte(&folio->page, vma->vm_page_prot); 4126 entry = pte_sw_mkyoung(entry); 4127 if (vma->vm_flags & VM_WRITE) 4128 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4129 4130 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4131 &vmf->ptl); 4132 if (!vmf->pte) 4133 goto release; 4134 if (vmf_pte_changed(vmf)) { 4135 update_mmu_tlb(vma, vmf->address, vmf->pte); 4136 goto release; 4137 } 4138 4139 ret = check_stable_address_space(vma->vm_mm); 4140 if (ret) 4141 goto release; 4142 4143 /* Deliver the page fault to userland, check inside PT lock */ 4144 if (userfaultfd_missing(vma)) { 4145 pte_unmap_unlock(vmf->pte, vmf->ptl); 4146 folio_put(folio); 4147 return handle_userfault(vmf, VM_UFFD_MISSING); 4148 } 4149 4150 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4151 folio_add_new_anon_rmap(folio, vma, vmf->address); 4152 folio_add_lru_vma(folio, vma); 4153 setpte: 4154 if (uffd_wp) 4155 entry = pte_mkuffd_wp(entry); 4156 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4157 4158 /* No need to invalidate - it was non-present before */ 4159 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4160 unlock: 4161 if (vmf->pte) 4162 pte_unmap_unlock(vmf->pte, vmf->ptl); 4163 return ret; 4164 release: 4165 folio_put(folio); 4166 goto unlock; 4167 oom_free_page: 4168 folio_put(folio); 4169 oom: 4170 return VM_FAULT_OOM; 4171 } 4172 4173 /* 4174 * The mmap_lock must have been held on entry, and may have been 4175 * released depending on flags and vma->vm_ops->fault() return value. 4176 * See filemap_fault() and __lock_page_retry(). 4177 */ 4178 static vm_fault_t __do_fault(struct vm_fault *vmf) 4179 { 4180 struct vm_area_struct *vma = vmf->vma; 4181 vm_fault_t ret; 4182 4183 /* 4184 * Preallocate pte before we take page_lock because this might lead to 4185 * deadlocks for memcg reclaim which waits for pages under writeback: 4186 * lock_page(A) 4187 * SetPageWriteback(A) 4188 * unlock_page(A) 4189 * lock_page(B) 4190 * lock_page(B) 4191 * pte_alloc_one 4192 * shrink_page_list 4193 * wait_on_page_writeback(A) 4194 * SetPageWriteback(B) 4195 * unlock_page(B) 4196 * # flush A, B to clear the writeback 4197 */ 4198 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4199 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4200 if (!vmf->prealloc_pte) 4201 return VM_FAULT_OOM; 4202 } 4203 4204 ret = vma->vm_ops->fault(vmf); 4205 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4206 VM_FAULT_DONE_COW))) 4207 return ret; 4208 4209 if (unlikely(PageHWPoison(vmf->page))) { 4210 struct page *page = vmf->page; 4211 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4212 if (ret & VM_FAULT_LOCKED) { 4213 if (page_mapped(page)) 4214 unmap_mapping_pages(page_mapping(page), 4215 page->index, 1, false); 4216 /* Retry if a clean page was removed from the cache. */ 4217 if (invalidate_inode_page(page)) 4218 poisonret = VM_FAULT_NOPAGE; 4219 unlock_page(page); 4220 } 4221 put_page(page); 4222 vmf->page = NULL; 4223 return poisonret; 4224 } 4225 4226 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4227 lock_page(vmf->page); 4228 else 4229 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4230 4231 return ret; 4232 } 4233 4234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4235 static void deposit_prealloc_pte(struct vm_fault *vmf) 4236 { 4237 struct vm_area_struct *vma = vmf->vma; 4238 4239 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4240 /* 4241 * We are going to consume the prealloc table, 4242 * count that as nr_ptes. 4243 */ 4244 mm_inc_nr_ptes(vma->vm_mm); 4245 vmf->prealloc_pte = NULL; 4246 } 4247 4248 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4249 { 4250 struct vm_area_struct *vma = vmf->vma; 4251 bool write = vmf->flags & FAULT_FLAG_WRITE; 4252 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4253 pmd_t entry; 4254 vm_fault_t ret = VM_FAULT_FALLBACK; 4255 4256 if (!transhuge_vma_suitable(vma, haddr)) 4257 return ret; 4258 4259 page = compound_head(page); 4260 if (compound_order(page) != HPAGE_PMD_ORDER) 4261 return ret; 4262 4263 /* 4264 * Just backoff if any subpage of a THP is corrupted otherwise 4265 * the corrupted page may mapped by PMD silently to escape the 4266 * check. This kind of THP just can be PTE mapped. Access to 4267 * the corrupted subpage should trigger SIGBUS as expected. 4268 */ 4269 if (unlikely(PageHasHWPoisoned(page))) 4270 return ret; 4271 4272 /* 4273 * Archs like ppc64 need additional space to store information 4274 * related to pte entry. Use the preallocated table for that. 4275 */ 4276 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4277 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4278 if (!vmf->prealloc_pte) 4279 return VM_FAULT_OOM; 4280 } 4281 4282 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4283 if (unlikely(!pmd_none(*vmf->pmd))) 4284 goto out; 4285 4286 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4287 4288 entry = mk_huge_pmd(page, vma->vm_page_prot); 4289 if (write) 4290 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4291 4292 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4293 page_add_file_rmap(page, vma, true); 4294 4295 /* 4296 * deposit and withdraw with pmd lock held 4297 */ 4298 if (arch_needs_pgtable_deposit()) 4299 deposit_prealloc_pte(vmf); 4300 4301 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4302 4303 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4304 4305 /* fault is handled */ 4306 ret = 0; 4307 count_vm_event(THP_FILE_MAPPED); 4308 out: 4309 spin_unlock(vmf->ptl); 4310 return ret; 4311 } 4312 #else 4313 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4314 { 4315 return VM_FAULT_FALLBACK; 4316 } 4317 #endif 4318 4319 /** 4320 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4321 * @vmf: Fault decription. 4322 * @folio: The folio that contains @page. 4323 * @page: The first page to create a PTE for. 4324 * @nr: The number of PTEs to create. 4325 * @addr: The first address to create a PTE for. 4326 */ 4327 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4328 struct page *page, unsigned int nr, unsigned long addr) 4329 { 4330 struct vm_area_struct *vma = vmf->vma; 4331 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4332 bool write = vmf->flags & FAULT_FLAG_WRITE; 4333 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4334 pte_t entry; 4335 4336 flush_icache_pages(vma, page, nr); 4337 entry = mk_pte(page, vma->vm_page_prot); 4338 4339 if (prefault && arch_wants_old_prefaulted_pte()) 4340 entry = pte_mkold(entry); 4341 else 4342 entry = pte_sw_mkyoung(entry); 4343 4344 if (write) 4345 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4346 if (unlikely(uffd_wp)) 4347 entry = pte_mkuffd_wp(entry); 4348 /* copy-on-write page */ 4349 if (write && !(vma->vm_flags & VM_SHARED)) { 4350 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4351 VM_BUG_ON_FOLIO(nr != 1, folio); 4352 folio_add_new_anon_rmap(folio, vma, addr); 4353 folio_add_lru_vma(folio, vma); 4354 } else { 4355 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr); 4356 folio_add_file_rmap_range(folio, page, nr, vma, false); 4357 } 4358 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4359 4360 /* no need to invalidate: a not-present page won't be cached */ 4361 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4362 } 4363 4364 static bool vmf_pte_changed(struct vm_fault *vmf) 4365 { 4366 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4367 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4368 4369 return !pte_none(ptep_get(vmf->pte)); 4370 } 4371 4372 /** 4373 * finish_fault - finish page fault once we have prepared the page to fault 4374 * 4375 * @vmf: structure describing the fault 4376 * 4377 * This function handles all that is needed to finish a page fault once the 4378 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4379 * given page, adds reverse page mapping, handles memcg charges and LRU 4380 * addition. 4381 * 4382 * The function expects the page to be locked and on success it consumes a 4383 * reference of a page being mapped (for the PTE which maps it). 4384 * 4385 * Return: %0 on success, %VM_FAULT_ code in case of error. 4386 */ 4387 vm_fault_t finish_fault(struct vm_fault *vmf) 4388 { 4389 struct vm_area_struct *vma = vmf->vma; 4390 struct page *page; 4391 vm_fault_t ret; 4392 4393 /* Did we COW the page? */ 4394 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4395 page = vmf->cow_page; 4396 else 4397 page = vmf->page; 4398 4399 /* 4400 * check even for read faults because we might have lost our CoWed 4401 * page 4402 */ 4403 if (!(vma->vm_flags & VM_SHARED)) { 4404 ret = check_stable_address_space(vma->vm_mm); 4405 if (ret) 4406 return ret; 4407 } 4408 4409 if (pmd_none(*vmf->pmd)) { 4410 if (PageTransCompound(page)) { 4411 ret = do_set_pmd(vmf, page); 4412 if (ret != VM_FAULT_FALLBACK) 4413 return ret; 4414 } 4415 4416 if (vmf->prealloc_pte) 4417 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4418 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4419 return VM_FAULT_OOM; 4420 } 4421 4422 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4423 vmf->address, &vmf->ptl); 4424 if (!vmf->pte) 4425 return VM_FAULT_NOPAGE; 4426 4427 /* Re-check under ptl */ 4428 if (likely(!vmf_pte_changed(vmf))) { 4429 struct folio *folio = page_folio(page); 4430 4431 set_pte_range(vmf, folio, page, 1, vmf->address); 4432 ret = 0; 4433 } else { 4434 update_mmu_tlb(vma, vmf->address, vmf->pte); 4435 ret = VM_FAULT_NOPAGE; 4436 } 4437 4438 pte_unmap_unlock(vmf->pte, vmf->ptl); 4439 return ret; 4440 } 4441 4442 static unsigned long fault_around_pages __read_mostly = 4443 65536 >> PAGE_SHIFT; 4444 4445 #ifdef CONFIG_DEBUG_FS 4446 static int fault_around_bytes_get(void *data, u64 *val) 4447 { 4448 *val = fault_around_pages << PAGE_SHIFT; 4449 return 0; 4450 } 4451 4452 /* 4453 * fault_around_bytes must be rounded down to the nearest page order as it's 4454 * what do_fault_around() expects to see. 4455 */ 4456 static int fault_around_bytes_set(void *data, u64 val) 4457 { 4458 if (val / PAGE_SIZE > PTRS_PER_PTE) 4459 return -EINVAL; 4460 4461 /* 4462 * The minimum value is 1 page, however this results in no fault-around 4463 * at all. See should_fault_around(). 4464 */ 4465 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4466 4467 return 0; 4468 } 4469 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4470 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4471 4472 static int __init fault_around_debugfs(void) 4473 { 4474 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4475 &fault_around_bytes_fops); 4476 return 0; 4477 } 4478 late_initcall(fault_around_debugfs); 4479 #endif 4480 4481 /* 4482 * do_fault_around() tries to map few pages around the fault address. The hope 4483 * is that the pages will be needed soon and this will lower the number of 4484 * faults to handle. 4485 * 4486 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4487 * not ready to be mapped: not up-to-date, locked, etc. 4488 * 4489 * This function doesn't cross VMA or page table boundaries, in order to call 4490 * map_pages() and acquire a PTE lock only once. 4491 * 4492 * fault_around_pages defines how many pages we'll try to map. 4493 * do_fault_around() expects it to be set to a power of two less than or equal 4494 * to PTRS_PER_PTE. 4495 * 4496 * The virtual address of the area that we map is naturally aligned to 4497 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4498 * (and therefore to page order). This way it's easier to guarantee 4499 * that we don't cross page table boundaries. 4500 */ 4501 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4502 { 4503 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4504 pgoff_t pte_off = pte_index(vmf->address); 4505 /* The page offset of vmf->address within the VMA. */ 4506 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4507 pgoff_t from_pte, to_pte; 4508 vm_fault_t ret; 4509 4510 /* The PTE offset of the start address, clamped to the VMA. */ 4511 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4512 pte_off - min(pte_off, vma_off)); 4513 4514 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4515 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4516 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4517 4518 if (pmd_none(*vmf->pmd)) { 4519 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4520 if (!vmf->prealloc_pte) 4521 return VM_FAULT_OOM; 4522 } 4523 4524 rcu_read_lock(); 4525 ret = vmf->vma->vm_ops->map_pages(vmf, 4526 vmf->pgoff + from_pte - pte_off, 4527 vmf->pgoff + to_pte - pte_off); 4528 rcu_read_unlock(); 4529 4530 return ret; 4531 } 4532 4533 /* Return true if we should do read fault-around, false otherwise */ 4534 static inline bool should_fault_around(struct vm_fault *vmf) 4535 { 4536 /* No ->map_pages? No way to fault around... */ 4537 if (!vmf->vma->vm_ops->map_pages) 4538 return false; 4539 4540 if (uffd_disable_fault_around(vmf->vma)) 4541 return false; 4542 4543 /* A single page implies no faulting 'around' at all. */ 4544 return fault_around_pages > 1; 4545 } 4546 4547 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4548 { 4549 vm_fault_t ret = 0; 4550 struct folio *folio; 4551 4552 /* 4553 * Let's call ->map_pages() first and use ->fault() as fallback 4554 * if page by the offset is not ready to be mapped (cold cache or 4555 * something). 4556 */ 4557 if (should_fault_around(vmf)) { 4558 ret = do_fault_around(vmf); 4559 if (ret) 4560 return ret; 4561 } 4562 4563 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4564 vma_end_read(vmf->vma); 4565 return VM_FAULT_RETRY; 4566 } 4567 4568 ret = __do_fault(vmf); 4569 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4570 return ret; 4571 4572 ret |= finish_fault(vmf); 4573 folio = page_folio(vmf->page); 4574 folio_unlock(folio); 4575 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4576 folio_put(folio); 4577 return ret; 4578 } 4579 4580 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4581 { 4582 struct vm_area_struct *vma = vmf->vma; 4583 vm_fault_t ret; 4584 4585 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4586 vma_end_read(vma); 4587 return VM_FAULT_RETRY; 4588 } 4589 4590 if (unlikely(anon_vma_prepare(vma))) 4591 return VM_FAULT_OOM; 4592 4593 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4594 if (!vmf->cow_page) 4595 return VM_FAULT_OOM; 4596 4597 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4598 GFP_KERNEL)) { 4599 put_page(vmf->cow_page); 4600 return VM_FAULT_OOM; 4601 } 4602 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4603 4604 ret = __do_fault(vmf); 4605 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4606 goto uncharge_out; 4607 if (ret & VM_FAULT_DONE_COW) 4608 return ret; 4609 4610 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4611 __SetPageUptodate(vmf->cow_page); 4612 4613 ret |= finish_fault(vmf); 4614 unlock_page(vmf->page); 4615 put_page(vmf->page); 4616 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4617 goto uncharge_out; 4618 return ret; 4619 uncharge_out: 4620 put_page(vmf->cow_page); 4621 return ret; 4622 } 4623 4624 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4625 { 4626 struct vm_area_struct *vma = vmf->vma; 4627 vm_fault_t ret, tmp; 4628 struct folio *folio; 4629 4630 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4631 vma_end_read(vma); 4632 return VM_FAULT_RETRY; 4633 } 4634 4635 ret = __do_fault(vmf); 4636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4637 return ret; 4638 4639 folio = page_folio(vmf->page); 4640 4641 /* 4642 * Check if the backing address space wants to know that the page is 4643 * about to become writable 4644 */ 4645 if (vma->vm_ops->page_mkwrite) { 4646 folio_unlock(folio); 4647 tmp = do_page_mkwrite(vmf, folio); 4648 if (unlikely(!tmp || 4649 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4650 folio_put(folio); 4651 return tmp; 4652 } 4653 } 4654 4655 ret |= finish_fault(vmf); 4656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4657 VM_FAULT_RETRY))) { 4658 folio_unlock(folio); 4659 folio_put(folio); 4660 return ret; 4661 } 4662 4663 ret |= fault_dirty_shared_page(vmf); 4664 return ret; 4665 } 4666 4667 /* 4668 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4669 * but allow concurrent faults). 4670 * The mmap_lock may have been released depending on flags and our 4671 * return value. See filemap_fault() and __folio_lock_or_retry(). 4672 * If mmap_lock is released, vma may become invalid (for example 4673 * by other thread calling munmap()). 4674 */ 4675 static vm_fault_t do_fault(struct vm_fault *vmf) 4676 { 4677 struct vm_area_struct *vma = vmf->vma; 4678 struct mm_struct *vm_mm = vma->vm_mm; 4679 vm_fault_t ret; 4680 4681 /* 4682 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4683 */ 4684 if (!vma->vm_ops->fault) { 4685 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4686 vmf->address, &vmf->ptl); 4687 if (unlikely(!vmf->pte)) 4688 ret = VM_FAULT_SIGBUS; 4689 else { 4690 /* 4691 * Make sure this is not a temporary clearing of pte 4692 * by holding ptl and checking again. A R/M/W update 4693 * of pte involves: take ptl, clearing the pte so that 4694 * we don't have concurrent modification by hardware 4695 * followed by an update. 4696 */ 4697 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4698 ret = VM_FAULT_SIGBUS; 4699 else 4700 ret = VM_FAULT_NOPAGE; 4701 4702 pte_unmap_unlock(vmf->pte, vmf->ptl); 4703 } 4704 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4705 ret = do_read_fault(vmf); 4706 else if (!(vma->vm_flags & VM_SHARED)) 4707 ret = do_cow_fault(vmf); 4708 else 4709 ret = do_shared_fault(vmf); 4710 4711 /* preallocated pagetable is unused: free it */ 4712 if (vmf->prealloc_pte) { 4713 pte_free(vm_mm, vmf->prealloc_pte); 4714 vmf->prealloc_pte = NULL; 4715 } 4716 return ret; 4717 } 4718 4719 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4720 unsigned long addr, int page_nid, int *flags) 4721 { 4722 get_page(page); 4723 4724 /* Record the current PID acceesing VMA */ 4725 vma_set_access_pid_bit(vma); 4726 4727 count_vm_numa_event(NUMA_HINT_FAULTS); 4728 if (page_nid == numa_node_id()) { 4729 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4730 *flags |= TNF_FAULT_LOCAL; 4731 } 4732 4733 return mpol_misplaced(page, vma, addr); 4734 } 4735 4736 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4737 { 4738 struct vm_area_struct *vma = vmf->vma; 4739 struct page *page = NULL; 4740 int page_nid = NUMA_NO_NODE; 4741 bool writable = false; 4742 int last_cpupid; 4743 int target_nid; 4744 pte_t pte, old_pte; 4745 int flags = 0; 4746 4747 /* 4748 * The "pte" at this point cannot be used safely without 4749 * validation through pte_unmap_same(). It's of NUMA type but 4750 * the pfn may be screwed if the read is non atomic. 4751 */ 4752 spin_lock(vmf->ptl); 4753 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4754 pte_unmap_unlock(vmf->pte, vmf->ptl); 4755 goto out; 4756 } 4757 4758 /* Get the normal PTE */ 4759 old_pte = ptep_get(vmf->pte); 4760 pte = pte_modify(old_pte, vma->vm_page_prot); 4761 4762 /* 4763 * Detect now whether the PTE could be writable; this information 4764 * is only valid while holding the PT lock. 4765 */ 4766 writable = pte_write(pte); 4767 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4768 can_change_pte_writable(vma, vmf->address, pte)) 4769 writable = true; 4770 4771 page = vm_normal_page(vma, vmf->address, pte); 4772 if (!page || is_zone_device_page(page)) 4773 goto out_map; 4774 4775 /* TODO: handle PTE-mapped THP */ 4776 if (PageCompound(page)) 4777 goto out_map; 4778 4779 /* 4780 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4781 * much anyway since they can be in shared cache state. This misses 4782 * the case where a mapping is writable but the process never writes 4783 * to it but pte_write gets cleared during protection updates and 4784 * pte_dirty has unpredictable behaviour between PTE scan updates, 4785 * background writeback, dirty balancing and application behaviour. 4786 */ 4787 if (!writable) 4788 flags |= TNF_NO_GROUP; 4789 4790 /* 4791 * Flag if the page is shared between multiple address spaces. This 4792 * is later used when determining whether to group tasks together 4793 */ 4794 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4795 flags |= TNF_SHARED; 4796 4797 page_nid = page_to_nid(page); 4798 /* 4799 * For memory tiering mode, cpupid of slow memory page is used 4800 * to record page access time. So use default value. 4801 */ 4802 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4803 !node_is_toptier(page_nid)) 4804 last_cpupid = (-1 & LAST_CPUPID_MASK); 4805 else 4806 last_cpupid = page_cpupid_last(page); 4807 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4808 &flags); 4809 if (target_nid == NUMA_NO_NODE) { 4810 put_page(page); 4811 goto out_map; 4812 } 4813 pte_unmap_unlock(vmf->pte, vmf->ptl); 4814 writable = false; 4815 4816 /* Migrate to the requested node */ 4817 if (migrate_misplaced_page(page, vma, target_nid)) { 4818 page_nid = target_nid; 4819 flags |= TNF_MIGRATED; 4820 } else { 4821 flags |= TNF_MIGRATE_FAIL; 4822 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4823 vmf->address, &vmf->ptl); 4824 if (unlikely(!vmf->pte)) 4825 goto out; 4826 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4827 pte_unmap_unlock(vmf->pte, vmf->ptl); 4828 goto out; 4829 } 4830 goto out_map; 4831 } 4832 4833 out: 4834 if (page_nid != NUMA_NO_NODE) 4835 task_numa_fault(last_cpupid, page_nid, 1, flags); 4836 return 0; 4837 out_map: 4838 /* 4839 * Make it present again, depending on how arch implements 4840 * non-accessible ptes, some can allow access by kernel mode. 4841 */ 4842 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4843 pte = pte_modify(old_pte, vma->vm_page_prot); 4844 pte = pte_mkyoung(pte); 4845 if (writable) 4846 pte = pte_mkwrite(pte, vma); 4847 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4848 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4849 pte_unmap_unlock(vmf->pte, vmf->ptl); 4850 goto out; 4851 } 4852 4853 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4854 { 4855 struct vm_area_struct *vma = vmf->vma; 4856 if (vma_is_anonymous(vma)) 4857 return do_huge_pmd_anonymous_page(vmf); 4858 if (vma->vm_ops->huge_fault) 4859 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4860 return VM_FAULT_FALLBACK; 4861 } 4862 4863 /* `inline' is required to avoid gcc 4.1.2 build error */ 4864 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4865 { 4866 struct vm_area_struct *vma = vmf->vma; 4867 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4868 vm_fault_t ret; 4869 4870 if (vma_is_anonymous(vma)) { 4871 if (likely(!unshare) && 4872 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) 4873 return handle_userfault(vmf, VM_UFFD_WP); 4874 return do_huge_pmd_wp_page(vmf); 4875 } 4876 4877 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4878 if (vma->vm_ops->huge_fault) { 4879 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4880 if (!(ret & VM_FAULT_FALLBACK)) 4881 return ret; 4882 } 4883 } 4884 4885 /* COW or write-notify handled on pte level: split pmd. */ 4886 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 4887 4888 return VM_FAULT_FALLBACK; 4889 } 4890 4891 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4892 { 4893 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4894 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4895 struct vm_area_struct *vma = vmf->vma; 4896 /* No support for anonymous transparent PUD pages yet */ 4897 if (vma_is_anonymous(vma)) 4898 return VM_FAULT_FALLBACK; 4899 if (vma->vm_ops->huge_fault) 4900 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4901 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4902 return VM_FAULT_FALLBACK; 4903 } 4904 4905 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4906 { 4907 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4908 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4909 struct vm_area_struct *vma = vmf->vma; 4910 vm_fault_t ret; 4911 4912 /* No support for anonymous transparent PUD pages yet */ 4913 if (vma_is_anonymous(vma)) 4914 goto split; 4915 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4916 if (vma->vm_ops->huge_fault) { 4917 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4918 if (!(ret & VM_FAULT_FALLBACK)) 4919 return ret; 4920 } 4921 } 4922 split: 4923 /* COW or write-notify not handled on PUD level: split pud.*/ 4924 __split_huge_pud(vma, vmf->pud, vmf->address); 4925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4926 return VM_FAULT_FALLBACK; 4927 } 4928 4929 /* 4930 * These routines also need to handle stuff like marking pages dirty 4931 * and/or accessed for architectures that don't do it in hardware (most 4932 * RISC architectures). The early dirtying is also good on the i386. 4933 * 4934 * There is also a hook called "update_mmu_cache()" that architectures 4935 * with external mmu caches can use to update those (ie the Sparc or 4936 * PowerPC hashed page tables that act as extended TLBs). 4937 * 4938 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4939 * concurrent faults). 4940 * 4941 * The mmap_lock may have been released depending on flags and our return value. 4942 * See filemap_fault() and __folio_lock_or_retry(). 4943 */ 4944 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4945 { 4946 pte_t entry; 4947 4948 if (unlikely(pmd_none(*vmf->pmd))) { 4949 /* 4950 * Leave __pte_alloc() until later: because vm_ops->fault may 4951 * want to allocate huge page, and if we expose page table 4952 * for an instant, it will be difficult to retract from 4953 * concurrent faults and from rmap lookups. 4954 */ 4955 vmf->pte = NULL; 4956 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4957 } else { 4958 /* 4959 * A regular pmd is established and it can't morph into a huge 4960 * pmd by anon khugepaged, since that takes mmap_lock in write 4961 * mode; but shmem or file collapse to THP could still morph 4962 * it into a huge pmd: just retry later if so. 4963 */ 4964 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 4965 vmf->address, &vmf->ptl); 4966 if (unlikely(!vmf->pte)) 4967 return 0; 4968 vmf->orig_pte = ptep_get_lockless(vmf->pte); 4969 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4970 4971 if (pte_none(vmf->orig_pte)) { 4972 pte_unmap(vmf->pte); 4973 vmf->pte = NULL; 4974 } 4975 } 4976 4977 if (!vmf->pte) 4978 return do_pte_missing(vmf); 4979 4980 if (!pte_present(vmf->orig_pte)) 4981 return do_swap_page(vmf); 4982 4983 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4984 return do_numa_page(vmf); 4985 4986 spin_lock(vmf->ptl); 4987 entry = vmf->orig_pte; 4988 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 4989 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4990 goto unlock; 4991 } 4992 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4993 if (!pte_write(entry)) 4994 return do_wp_page(vmf); 4995 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4996 entry = pte_mkdirty(entry); 4997 } 4998 entry = pte_mkyoung(entry); 4999 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5000 vmf->flags & FAULT_FLAG_WRITE)) { 5001 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5002 vmf->pte, 1); 5003 } else { 5004 /* Skip spurious TLB flush for retried page fault */ 5005 if (vmf->flags & FAULT_FLAG_TRIED) 5006 goto unlock; 5007 /* 5008 * This is needed only for protection faults but the arch code 5009 * is not yet telling us if this is a protection fault or not. 5010 * This still avoids useless tlb flushes for .text page faults 5011 * with threads. 5012 */ 5013 if (vmf->flags & FAULT_FLAG_WRITE) 5014 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5015 vmf->pte); 5016 } 5017 unlock: 5018 pte_unmap_unlock(vmf->pte, vmf->ptl); 5019 return 0; 5020 } 5021 5022 /* 5023 * On entry, we hold either the VMA lock or the mmap_lock 5024 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5025 * the result, the mmap_lock is not held on exit. See filemap_fault() 5026 * and __folio_lock_or_retry(). 5027 */ 5028 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5029 unsigned long address, unsigned int flags) 5030 { 5031 struct vm_fault vmf = { 5032 .vma = vma, 5033 .address = address & PAGE_MASK, 5034 .real_address = address, 5035 .flags = flags, 5036 .pgoff = linear_page_index(vma, address), 5037 .gfp_mask = __get_fault_gfp_mask(vma), 5038 }; 5039 struct mm_struct *mm = vma->vm_mm; 5040 unsigned long vm_flags = vma->vm_flags; 5041 pgd_t *pgd; 5042 p4d_t *p4d; 5043 vm_fault_t ret; 5044 5045 pgd = pgd_offset(mm, address); 5046 p4d = p4d_alloc(mm, pgd, address); 5047 if (!p4d) 5048 return VM_FAULT_OOM; 5049 5050 vmf.pud = pud_alloc(mm, p4d, address); 5051 if (!vmf.pud) 5052 return VM_FAULT_OOM; 5053 retry_pud: 5054 if (pud_none(*vmf.pud) && 5055 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5056 ret = create_huge_pud(&vmf); 5057 if (!(ret & VM_FAULT_FALLBACK)) 5058 return ret; 5059 } else { 5060 pud_t orig_pud = *vmf.pud; 5061 5062 barrier(); 5063 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5064 5065 /* 5066 * TODO once we support anonymous PUDs: NUMA case and 5067 * FAULT_FLAG_UNSHARE handling. 5068 */ 5069 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5070 ret = wp_huge_pud(&vmf, orig_pud); 5071 if (!(ret & VM_FAULT_FALLBACK)) 5072 return ret; 5073 } else { 5074 huge_pud_set_accessed(&vmf, orig_pud); 5075 return 0; 5076 } 5077 } 5078 } 5079 5080 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5081 if (!vmf.pmd) 5082 return VM_FAULT_OOM; 5083 5084 /* Huge pud page fault raced with pmd_alloc? */ 5085 if (pud_trans_unstable(vmf.pud)) 5086 goto retry_pud; 5087 5088 if (pmd_none(*vmf.pmd) && 5089 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5090 ret = create_huge_pmd(&vmf); 5091 if (!(ret & VM_FAULT_FALLBACK)) 5092 return ret; 5093 } else { 5094 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5095 5096 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5097 VM_BUG_ON(thp_migration_supported() && 5098 !is_pmd_migration_entry(vmf.orig_pmd)); 5099 if (is_pmd_migration_entry(vmf.orig_pmd)) 5100 pmd_migration_entry_wait(mm, vmf.pmd); 5101 return 0; 5102 } 5103 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5104 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5105 return do_huge_pmd_numa_page(&vmf); 5106 5107 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5108 !pmd_write(vmf.orig_pmd)) { 5109 ret = wp_huge_pmd(&vmf); 5110 if (!(ret & VM_FAULT_FALLBACK)) 5111 return ret; 5112 } else { 5113 huge_pmd_set_accessed(&vmf); 5114 return 0; 5115 } 5116 } 5117 } 5118 5119 return handle_pte_fault(&vmf); 5120 } 5121 5122 /** 5123 * mm_account_fault - Do page fault accounting 5124 * @mm: mm from which memcg should be extracted. It can be NULL. 5125 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5126 * of perf event counters, but we'll still do the per-task accounting to 5127 * the task who triggered this page fault. 5128 * @address: the faulted address. 5129 * @flags: the fault flags. 5130 * @ret: the fault retcode. 5131 * 5132 * This will take care of most of the page fault accounting. Meanwhile, it 5133 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5134 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5135 * still be in per-arch page fault handlers at the entry of page fault. 5136 */ 5137 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5138 unsigned long address, unsigned int flags, 5139 vm_fault_t ret) 5140 { 5141 bool major; 5142 5143 /* Incomplete faults will be accounted upon completion. */ 5144 if (ret & VM_FAULT_RETRY) 5145 return; 5146 5147 /* 5148 * To preserve the behavior of older kernels, PGFAULT counters record 5149 * both successful and failed faults, as opposed to perf counters, 5150 * which ignore failed cases. 5151 */ 5152 count_vm_event(PGFAULT); 5153 count_memcg_event_mm(mm, PGFAULT); 5154 5155 /* 5156 * Do not account for unsuccessful faults (e.g. when the address wasn't 5157 * valid). That includes arch_vma_access_permitted() failing before 5158 * reaching here. So this is not a "this many hardware page faults" 5159 * counter. We should use the hw profiling for that. 5160 */ 5161 if (ret & VM_FAULT_ERROR) 5162 return; 5163 5164 /* 5165 * We define the fault as a major fault when the final successful fault 5166 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5167 * handle it immediately previously). 5168 */ 5169 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5170 5171 if (major) 5172 current->maj_flt++; 5173 else 5174 current->min_flt++; 5175 5176 /* 5177 * If the fault is done for GUP, regs will be NULL. We only do the 5178 * accounting for the per thread fault counters who triggered the 5179 * fault, and we skip the perf event updates. 5180 */ 5181 if (!regs) 5182 return; 5183 5184 if (major) 5185 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5186 else 5187 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5188 } 5189 5190 #ifdef CONFIG_LRU_GEN 5191 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5192 { 5193 /* the LRU algorithm only applies to accesses with recency */ 5194 current->in_lru_fault = vma_has_recency(vma); 5195 } 5196 5197 static void lru_gen_exit_fault(void) 5198 { 5199 current->in_lru_fault = false; 5200 } 5201 #else 5202 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5203 { 5204 } 5205 5206 static void lru_gen_exit_fault(void) 5207 { 5208 } 5209 #endif /* CONFIG_LRU_GEN */ 5210 5211 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5212 unsigned int *flags) 5213 { 5214 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5215 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5216 return VM_FAULT_SIGSEGV; 5217 /* 5218 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5219 * just treat it like an ordinary read-fault otherwise. 5220 */ 5221 if (!is_cow_mapping(vma->vm_flags)) 5222 *flags &= ~FAULT_FLAG_UNSHARE; 5223 } else if (*flags & FAULT_FLAG_WRITE) { 5224 /* Write faults on read-only mappings are impossible ... */ 5225 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5226 return VM_FAULT_SIGSEGV; 5227 /* ... and FOLL_FORCE only applies to COW mappings. */ 5228 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5229 !is_cow_mapping(vma->vm_flags))) 5230 return VM_FAULT_SIGSEGV; 5231 } 5232 #ifdef CONFIG_PER_VMA_LOCK 5233 /* 5234 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5235 * the assumption that lock is dropped on VM_FAULT_RETRY. 5236 */ 5237 if (WARN_ON_ONCE((*flags & 5238 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5239 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5240 return VM_FAULT_SIGSEGV; 5241 #endif 5242 5243 return 0; 5244 } 5245 5246 /* 5247 * By the time we get here, we already hold the mm semaphore 5248 * 5249 * The mmap_lock may have been released depending on flags and our 5250 * return value. See filemap_fault() and __folio_lock_or_retry(). 5251 */ 5252 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5253 unsigned int flags, struct pt_regs *regs) 5254 { 5255 /* If the fault handler drops the mmap_lock, vma may be freed */ 5256 struct mm_struct *mm = vma->vm_mm; 5257 vm_fault_t ret; 5258 5259 __set_current_state(TASK_RUNNING); 5260 5261 ret = sanitize_fault_flags(vma, &flags); 5262 if (ret) 5263 goto out; 5264 5265 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5266 flags & FAULT_FLAG_INSTRUCTION, 5267 flags & FAULT_FLAG_REMOTE)) { 5268 ret = VM_FAULT_SIGSEGV; 5269 goto out; 5270 } 5271 5272 /* 5273 * Enable the memcg OOM handling for faults triggered in user 5274 * space. Kernel faults are handled more gracefully. 5275 */ 5276 if (flags & FAULT_FLAG_USER) 5277 mem_cgroup_enter_user_fault(); 5278 5279 lru_gen_enter_fault(vma); 5280 5281 if (unlikely(is_vm_hugetlb_page(vma))) 5282 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5283 else 5284 ret = __handle_mm_fault(vma, address, flags); 5285 5286 lru_gen_exit_fault(); 5287 5288 if (flags & FAULT_FLAG_USER) { 5289 mem_cgroup_exit_user_fault(); 5290 /* 5291 * The task may have entered a memcg OOM situation but 5292 * if the allocation error was handled gracefully (no 5293 * VM_FAULT_OOM), there is no need to kill anything. 5294 * Just clean up the OOM state peacefully. 5295 */ 5296 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5297 mem_cgroup_oom_synchronize(false); 5298 } 5299 out: 5300 mm_account_fault(mm, regs, address, flags, ret); 5301 5302 return ret; 5303 } 5304 EXPORT_SYMBOL_GPL(handle_mm_fault); 5305 5306 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5307 #include <linux/extable.h> 5308 5309 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5310 { 5311 if (likely(mmap_read_trylock(mm))) 5312 return true; 5313 5314 if (regs && !user_mode(regs)) { 5315 unsigned long ip = instruction_pointer(regs); 5316 if (!search_exception_tables(ip)) 5317 return false; 5318 } 5319 5320 return !mmap_read_lock_killable(mm); 5321 } 5322 5323 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5324 { 5325 /* 5326 * We don't have this operation yet. 5327 * 5328 * It should be easy enough to do: it's basically a 5329 * atomic_long_try_cmpxchg_acquire() 5330 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5331 * it also needs the proper lockdep magic etc. 5332 */ 5333 return false; 5334 } 5335 5336 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5337 { 5338 mmap_read_unlock(mm); 5339 if (regs && !user_mode(regs)) { 5340 unsigned long ip = instruction_pointer(regs); 5341 if (!search_exception_tables(ip)) 5342 return false; 5343 } 5344 return !mmap_write_lock_killable(mm); 5345 } 5346 5347 /* 5348 * Helper for page fault handling. 5349 * 5350 * This is kind of equivalend to "mmap_read_lock()" followed 5351 * by "find_extend_vma()", except it's a lot more careful about 5352 * the locking (and will drop the lock on failure). 5353 * 5354 * For example, if we have a kernel bug that causes a page 5355 * fault, we don't want to just use mmap_read_lock() to get 5356 * the mm lock, because that would deadlock if the bug were 5357 * to happen while we're holding the mm lock for writing. 5358 * 5359 * So this checks the exception tables on kernel faults in 5360 * order to only do this all for instructions that are actually 5361 * expected to fault. 5362 * 5363 * We can also actually take the mm lock for writing if we 5364 * need to extend the vma, which helps the VM layer a lot. 5365 */ 5366 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5367 unsigned long addr, struct pt_regs *regs) 5368 { 5369 struct vm_area_struct *vma; 5370 5371 if (!get_mmap_lock_carefully(mm, regs)) 5372 return NULL; 5373 5374 vma = find_vma(mm, addr); 5375 if (likely(vma && (vma->vm_start <= addr))) 5376 return vma; 5377 5378 /* 5379 * Well, dang. We might still be successful, but only 5380 * if we can extend a vma to do so. 5381 */ 5382 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5383 mmap_read_unlock(mm); 5384 return NULL; 5385 } 5386 5387 /* 5388 * We can try to upgrade the mmap lock atomically, 5389 * in which case we can continue to use the vma 5390 * we already looked up. 5391 * 5392 * Otherwise we'll have to drop the mmap lock and 5393 * re-take it, and also look up the vma again, 5394 * re-checking it. 5395 */ 5396 if (!mmap_upgrade_trylock(mm)) { 5397 if (!upgrade_mmap_lock_carefully(mm, regs)) 5398 return NULL; 5399 5400 vma = find_vma(mm, addr); 5401 if (!vma) 5402 goto fail; 5403 if (vma->vm_start <= addr) 5404 goto success; 5405 if (!(vma->vm_flags & VM_GROWSDOWN)) 5406 goto fail; 5407 } 5408 5409 if (expand_stack_locked(vma, addr)) 5410 goto fail; 5411 5412 success: 5413 mmap_write_downgrade(mm); 5414 return vma; 5415 5416 fail: 5417 mmap_write_unlock(mm); 5418 return NULL; 5419 } 5420 #endif 5421 5422 #ifdef CONFIG_PER_VMA_LOCK 5423 /* 5424 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5425 * stable and not isolated. If the VMA is not found or is being modified the 5426 * function returns NULL. 5427 */ 5428 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5429 unsigned long address) 5430 { 5431 MA_STATE(mas, &mm->mm_mt, address, address); 5432 struct vm_area_struct *vma; 5433 5434 rcu_read_lock(); 5435 retry: 5436 vma = mas_walk(&mas); 5437 if (!vma) 5438 goto inval; 5439 5440 if (!vma_start_read(vma)) 5441 goto inval; 5442 5443 /* 5444 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5445 * This check must happen after vma_start_read(); otherwise, a 5446 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5447 * from its anon_vma. 5448 */ 5449 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5450 goto inval_end_read; 5451 5452 /* Check since vm_start/vm_end might change before we lock the VMA */ 5453 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5454 goto inval_end_read; 5455 5456 /* Check if the VMA got isolated after we found it */ 5457 if (vma->detached) { 5458 vma_end_read(vma); 5459 count_vm_vma_lock_event(VMA_LOCK_MISS); 5460 /* The area was replaced with another one */ 5461 goto retry; 5462 } 5463 5464 rcu_read_unlock(); 5465 return vma; 5466 5467 inval_end_read: 5468 vma_end_read(vma); 5469 inval: 5470 rcu_read_unlock(); 5471 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5472 return NULL; 5473 } 5474 #endif /* CONFIG_PER_VMA_LOCK */ 5475 5476 #ifndef __PAGETABLE_P4D_FOLDED 5477 /* 5478 * Allocate p4d page table. 5479 * We've already handled the fast-path in-line. 5480 */ 5481 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5482 { 5483 p4d_t *new = p4d_alloc_one(mm, address); 5484 if (!new) 5485 return -ENOMEM; 5486 5487 spin_lock(&mm->page_table_lock); 5488 if (pgd_present(*pgd)) { /* Another has populated it */ 5489 p4d_free(mm, new); 5490 } else { 5491 smp_wmb(); /* See comment in pmd_install() */ 5492 pgd_populate(mm, pgd, new); 5493 } 5494 spin_unlock(&mm->page_table_lock); 5495 return 0; 5496 } 5497 #endif /* __PAGETABLE_P4D_FOLDED */ 5498 5499 #ifndef __PAGETABLE_PUD_FOLDED 5500 /* 5501 * Allocate page upper directory. 5502 * We've already handled the fast-path in-line. 5503 */ 5504 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5505 { 5506 pud_t *new = pud_alloc_one(mm, address); 5507 if (!new) 5508 return -ENOMEM; 5509 5510 spin_lock(&mm->page_table_lock); 5511 if (!p4d_present(*p4d)) { 5512 mm_inc_nr_puds(mm); 5513 smp_wmb(); /* See comment in pmd_install() */ 5514 p4d_populate(mm, p4d, new); 5515 } else /* Another has populated it */ 5516 pud_free(mm, new); 5517 spin_unlock(&mm->page_table_lock); 5518 return 0; 5519 } 5520 #endif /* __PAGETABLE_PUD_FOLDED */ 5521 5522 #ifndef __PAGETABLE_PMD_FOLDED 5523 /* 5524 * Allocate page middle directory. 5525 * We've already handled the fast-path in-line. 5526 */ 5527 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5528 { 5529 spinlock_t *ptl; 5530 pmd_t *new = pmd_alloc_one(mm, address); 5531 if (!new) 5532 return -ENOMEM; 5533 5534 ptl = pud_lock(mm, pud); 5535 if (!pud_present(*pud)) { 5536 mm_inc_nr_pmds(mm); 5537 smp_wmb(); /* See comment in pmd_install() */ 5538 pud_populate(mm, pud, new); 5539 } else { /* Another has populated it */ 5540 pmd_free(mm, new); 5541 } 5542 spin_unlock(ptl); 5543 return 0; 5544 } 5545 #endif /* __PAGETABLE_PMD_FOLDED */ 5546 5547 /** 5548 * follow_pte - look up PTE at a user virtual address 5549 * @mm: the mm_struct of the target address space 5550 * @address: user virtual address 5551 * @ptepp: location to store found PTE 5552 * @ptlp: location to store the lock for the PTE 5553 * 5554 * On a successful return, the pointer to the PTE is stored in @ptepp; 5555 * the corresponding lock is taken and its location is stored in @ptlp. 5556 * The contents of the PTE are only stable until @ptlp is released; 5557 * any further use, if any, must be protected against invalidation 5558 * with MMU notifiers. 5559 * 5560 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5561 * should be taken for read. 5562 * 5563 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5564 * it is not a good general-purpose API. 5565 * 5566 * Return: zero on success, -ve otherwise. 5567 */ 5568 int follow_pte(struct mm_struct *mm, unsigned long address, 5569 pte_t **ptepp, spinlock_t **ptlp) 5570 { 5571 pgd_t *pgd; 5572 p4d_t *p4d; 5573 pud_t *pud; 5574 pmd_t *pmd; 5575 pte_t *ptep; 5576 5577 pgd = pgd_offset(mm, address); 5578 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5579 goto out; 5580 5581 p4d = p4d_offset(pgd, address); 5582 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5583 goto out; 5584 5585 pud = pud_offset(p4d, address); 5586 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5587 goto out; 5588 5589 pmd = pmd_offset(pud, address); 5590 VM_BUG_ON(pmd_trans_huge(*pmd)); 5591 5592 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5593 if (!ptep) 5594 goto out; 5595 if (!pte_present(ptep_get(ptep))) 5596 goto unlock; 5597 *ptepp = ptep; 5598 return 0; 5599 unlock: 5600 pte_unmap_unlock(ptep, *ptlp); 5601 out: 5602 return -EINVAL; 5603 } 5604 EXPORT_SYMBOL_GPL(follow_pte); 5605 5606 /** 5607 * follow_pfn - look up PFN at a user virtual address 5608 * @vma: memory mapping 5609 * @address: user virtual address 5610 * @pfn: location to store found PFN 5611 * 5612 * Only IO mappings and raw PFN mappings are allowed. 5613 * 5614 * This function does not allow the caller to read the permissions 5615 * of the PTE. Do not use it. 5616 * 5617 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5618 */ 5619 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5620 unsigned long *pfn) 5621 { 5622 int ret = -EINVAL; 5623 spinlock_t *ptl; 5624 pte_t *ptep; 5625 5626 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5627 return ret; 5628 5629 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5630 if (ret) 5631 return ret; 5632 *pfn = pte_pfn(ptep_get(ptep)); 5633 pte_unmap_unlock(ptep, ptl); 5634 return 0; 5635 } 5636 EXPORT_SYMBOL(follow_pfn); 5637 5638 #ifdef CONFIG_HAVE_IOREMAP_PROT 5639 int follow_phys(struct vm_area_struct *vma, 5640 unsigned long address, unsigned int flags, 5641 unsigned long *prot, resource_size_t *phys) 5642 { 5643 int ret = -EINVAL; 5644 pte_t *ptep, pte; 5645 spinlock_t *ptl; 5646 5647 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5648 goto out; 5649 5650 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5651 goto out; 5652 pte = ptep_get(ptep); 5653 5654 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5655 goto unlock; 5656 5657 *prot = pgprot_val(pte_pgprot(pte)); 5658 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5659 5660 ret = 0; 5661 unlock: 5662 pte_unmap_unlock(ptep, ptl); 5663 out: 5664 return ret; 5665 } 5666 5667 /** 5668 * generic_access_phys - generic implementation for iomem mmap access 5669 * @vma: the vma to access 5670 * @addr: userspace address, not relative offset within @vma 5671 * @buf: buffer to read/write 5672 * @len: length of transfer 5673 * @write: set to FOLL_WRITE when writing, otherwise reading 5674 * 5675 * This is a generic implementation for &vm_operations_struct.access for an 5676 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5677 * not page based. 5678 */ 5679 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5680 void *buf, int len, int write) 5681 { 5682 resource_size_t phys_addr; 5683 unsigned long prot = 0; 5684 void __iomem *maddr; 5685 pte_t *ptep, pte; 5686 spinlock_t *ptl; 5687 int offset = offset_in_page(addr); 5688 int ret = -EINVAL; 5689 5690 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5691 return -EINVAL; 5692 5693 retry: 5694 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5695 return -EINVAL; 5696 pte = ptep_get(ptep); 5697 pte_unmap_unlock(ptep, ptl); 5698 5699 prot = pgprot_val(pte_pgprot(pte)); 5700 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5701 5702 if ((write & FOLL_WRITE) && !pte_write(pte)) 5703 return -EINVAL; 5704 5705 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5706 if (!maddr) 5707 return -ENOMEM; 5708 5709 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5710 goto out_unmap; 5711 5712 if (!pte_same(pte, ptep_get(ptep))) { 5713 pte_unmap_unlock(ptep, ptl); 5714 iounmap(maddr); 5715 5716 goto retry; 5717 } 5718 5719 if (write) 5720 memcpy_toio(maddr + offset, buf, len); 5721 else 5722 memcpy_fromio(buf, maddr + offset, len); 5723 ret = len; 5724 pte_unmap_unlock(ptep, ptl); 5725 out_unmap: 5726 iounmap(maddr); 5727 5728 return ret; 5729 } 5730 EXPORT_SYMBOL_GPL(generic_access_phys); 5731 #endif 5732 5733 /* 5734 * Access another process' address space as given in mm. 5735 */ 5736 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5737 int len, unsigned int gup_flags) 5738 { 5739 void *old_buf = buf; 5740 int write = gup_flags & FOLL_WRITE; 5741 5742 if (mmap_read_lock_killable(mm)) 5743 return 0; 5744 5745 /* Untag the address before looking up the VMA */ 5746 addr = untagged_addr_remote(mm, addr); 5747 5748 /* Avoid triggering the temporary warning in __get_user_pages */ 5749 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5750 return 0; 5751 5752 /* ignore errors, just check how much was successfully transferred */ 5753 while (len) { 5754 int bytes, offset; 5755 void *maddr; 5756 struct vm_area_struct *vma = NULL; 5757 struct page *page = get_user_page_vma_remote(mm, addr, 5758 gup_flags, &vma); 5759 5760 if (IS_ERR_OR_NULL(page)) { 5761 /* We might need to expand the stack to access it */ 5762 vma = vma_lookup(mm, addr); 5763 if (!vma) { 5764 vma = expand_stack(mm, addr); 5765 5766 /* mmap_lock was dropped on failure */ 5767 if (!vma) 5768 return buf - old_buf; 5769 5770 /* Try again if stack expansion worked */ 5771 continue; 5772 } 5773 5774 5775 /* 5776 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5777 * we can access using slightly different code. 5778 */ 5779 bytes = 0; 5780 #ifdef CONFIG_HAVE_IOREMAP_PROT 5781 if (vma->vm_ops && vma->vm_ops->access) 5782 bytes = vma->vm_ops->access(vma, addr, buf, 5783 len, write); 5784 #endif 5785 if (bytes <= 0) 5786 break; 5787 } else { 5788 bytes = len; 5789 offset = addr & (PAGE_SIZE-1); 5790 if (bytes > PAGE_SIZE-offset) 5791 bytes = PAGE_SIZE-offset; 5792 5793 maddr = kmap(page); 5794 if (write) { 5795 copy_to_user_page(vma, page, addr, 5796 maddr + offset, buf, bytes); 5797 set_page_dirty_lock(page); 5798 } else { 5799 copy_from_user_page(vma, page, addr, 5800 buf, maddr + offset, bytes); 5801 } 5802 kunmap(page); 5803 put_page(page); 5804 } 5805 len -= bytes; 5806 buf += bytes; 5807 addr += bytes; 5808 } 5809 mmap_read_unlock(mm); 5810 5811 return buf - old_buf; 5812 } 5813 5814 /** 5815 * access_remote_vm - access another process' address space 5816 * @mm: the mm_struct of the target address space 5817 * @addr: start address to access 5818 * @buf: source or destination buffer 5819 * @len: number of bytes to transfer 5820 * @gup_flags: flags modifying lookup behaviour 5821 * 5822 * The caller must hold a reference on @mm. 5823 * 5824 * Return: number of bytes copied from source to destination. 5825 */ 5826 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5827 void *buf, int len, unsigned int gup_flags) 5828 { 5829 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5830 } 5831 5832 /* 5833 * Access another process' address space. 5834 * Source/target buffer must be kernel space, 5835 * Do not walk the page table directly, use get_user_pages 5836 */ 5837 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5838 void *buf, int len, unsigned int gup_flags) 5839 { 5840 struct mm_struct *mm; 5841 int ret; 5842 5843 mm = get_task_mm(tsk); 5844 if (!mm) 5845 return 0; 5846 5847 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5848 5849 mmput(mm); 5850 5851 return ret; 5852 } 5853 EXPORT_SYMBOL_GPL(access_process_vm); 5854 5855 /* 5856 * Print the name of a VMA. 5857 */ 5858 void print_vma_addr(char *prefix, unsigned long ip) 5859 { 5860 struct mm_struct *mm = current->mm; 5861 struct vm_area_struct *vma; 5862 5863 /* 5864 * we might be running from an atomic context so we cannot sleep 5865 */ 5866 if (!mmap_read_trylock(mm)) 5867 return; 5868 5869 vma = find_vma(mm, ip); 5870 if (vma && vma->vm_file) { 5871 struct file *f = vma->vm_file; 5872 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5873 if (buf) { 5874 char *p; 5875 5876 p = file_path(f, buf, PAGE_SIZE); 5877 if (IS_ERR(p)) 5878 p = "?"; 5879 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5880 vma->vm_start, 5881 vma->vm_end - vma->vm_start); 5882 free_page((unsigned long)buf); 5883 } 5884 } 5885 mmap_read_unlock(mm); 5886 } 5887 5888 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5889 void __might_fault(const char *file, int line) 5890 { 5891 if (pagefault_disabled()) 5892 return; 5893 __might_sleep(file, line); 5894 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5895 if (current->mm) 5896 might_lock_read(¤t->mm->mmap_lock); 5897 #endif 5898 } 5899 EXPORT_SYMBOL(__might_fault); 5900 #endif 5901 5902 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5903 /* 5904 * Process all subpages of the specified huge page with the specified 5905 * operation. The target subpage will be processed last to keep its 5906 * cache lines hot. 5907 */ 5908 static inline int process_huge_page( 5909 unsigned long addr_hint, unsigned int pages_per_huge_page, 5910 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5911 void *arg) 5912 { 5913 int i, n, base, l, ret; 5914 unsigned long addr = addr_hint & 5915 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5916 5917 /* Process target subpage last to keep its cache lines hot */ 5918 might_sleep(); 5919 n = (addr_hint - addr) / PAGE_SIZE; 5920 if (2 * n <= pages_per_huge_page) { 5921 /* If target subpage in first half of huge page */ 5922 base = 0; 5923 l = n; 5924 /* Process subpages at the end of huge page */ 5925 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5926 cond_resched(); 5927 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5928 if (ret) 5929 return ret; 5930 } 5931 } else { 5932 /* If target subpage in second half of huge page */ 5933 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5934 l = pages_per_huge_page - n; 5935 /* Process subpages at the begin of huge page */ 5936 for (i = 0; i < base; i++) { 5937 cond_resched(); 5938 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5939 if (ret) 5940 return ret; 5941 } 5942 } 5943 /* 5944 * Process remaining subpages in left-right-left-right pattern 5945 * towards the target subpage 5946 */ 5947 for (i = 0; i < l; i++) { 5948 int left_idx = base + i; 5949 int right_idx = base + 2 * l - 1 - i; 5950 5951 cond_resched(); 5952 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5953 if (ret) 5954 return ret; 5955 cond_resched(); 5956 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5957 if (ret) 5958 return ret; 5959 } 5960 return 0; 5961 } 5962 5963 static void clear_gigantic_page(struct page *page, 5964 unsigned long addr, 5965 unsigned int pages_per_huge_page) 5966 { 5967 int i; 5968 struct page *p; 5969 5970 might_sleep(); 5971 for (i = 0; i < pages_per_huge_page; i++) { 5972 p = nth_page(page, i); 5973 cond_resched(); 5974 clear_user_highpage(p, addr + i * PAGE_SIZE); 5975 } 5976 } 5977 5978 static int clear_subpage(unsigned long addr, int idx, void *arg) 5979 { 5980 struct page *page = arg; 5981 5982 clear_user_highpage(page + idx, addr); 5983 return 0; 5984 } 5985 5986 void clear_huge_page(struct page *page, 5987 unsigned long addr_hint, unsigned int pages_per_huge_page) 5988 { 5989 unsigned long addr = addr_hint & 5990 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5991 5992 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5993 clear_gigantic_page(page, addr, pages_per_huge_page); 5994 return; 5995 } 5996 5997 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5998 } 5999 6000 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6001 unsigned long addr, 6002 struct vm_area_struct *vma, 6003 unsigned int pages_per_huge_page) 6004 { 6005 int i; 6006 struct page *dst_page; 6007 struct page *src_page; 6008 6009 for (i = 0; i < pages_per_huge_page; i++) { 6010 dst_page = folio_page(dst, i); 6011 src_page = folio_page(src, i); 6012 6013 cond_resched(); 6014 if (copy_mc_user_highpage(dst_page, src_page, 6015 addr + i*PAGE_SIZE, vma)) { 6016 memory_failure_queue(page_to_pfn(src_page), 0); 6017 return -EHWPOISON; 6018 } 6019 } 6020 return 0; 6021 } 6022 6023 struct copy_subpage_arg { 6024 struct page *dst; 6025 struct page *src; 6026 struct vm_area_struct *vma; 6027 }; 6028 6029 static int copy_subpage(unsigned long addr, int idx, void *arg) 6030 { 6031 struct copy_subpage_arg *copy_arg = arg; 6032 6033 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6034 addr, copy_arg->vma)) { 6035 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 6036 return -EHWPOISON; 6037 } 6038 return 0; 6039 } 6040 6041 int copy_user_large_folio(struct folio *dst, struct folio *src, 6042 unsigned long addr_hint, struct vm_area_struct *vma) 6043 { 6044 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6045 unsigned long addr = addr_hint & 6046 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6047 struct copy_subpage_arg arg = { 6048 .dst = &dst->page, 6049 .src = &src->page, 6050 .vma = vma, 6051 }; 6052 6053 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6054 return copy_user_gigantic_page(dst, src, addr, vma, 6055 pages_per_huge_page); 6056 6057 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6058 } 6059 6060 long copy_folio_from_user(struct folio *dst_folio, 6061 const void __user *usr_src, 6062 bool allow_pagefault) 6063 { 6064 void *kaddr; 6065 unsigned long i, rc = 0; 6066 unsigned int nr_pages = folio_nr_pages(dst_folio); 6067 unsigned long ret_val = nr_pages * PAGE_SIZE; 6068 struct page *subpage; 6069 6070 for (i = 0; i < nr_pages; i++) { 6071 subpage = folio_page(dst_folio, i); 6072 kaddr = kmap_local_page(subpage); 6073 if (!allow_pagefault) 6074 pagefault_disable(); 6075 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6076 if (!allow_pagefault) 6077 pagefault_enable(); 6078 kunmap_local(kaddr); 6079 6080 ret_val -= (PAGE_SIZE - rc); 6081 if (rc) 6082 break; 6083 6084 flush_dcache_page(subpage); 6085 6086 cond_resched(); 6087 } 6088 return ret_val; 6089 } 6090 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6091 6092 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6093 6094 static struct kmem_cache *page_ptl_cachep; 6095 6096 void __init ptlock_cache_init(void) 6097 { 6098 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6099 SLAB_PANIC, NULL); 6100 } 6101 6102 bool ptlock_alloc(struct ptdesc *ptdesc) 6103 { 6104 spinlock_t *ptl; 6105 6106 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6107 if (!ptl) 6108 return false; 6109 ptdesc->ptl = ptl; 6110 return true; 6111 } 6112 6113 void ptlock_free(struct ptdesc *ptdesc) 6114 { 6115 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6116 } 6117 #endif 6118