xref: /linux/mm/memory.c (revision 8ce936c2f1a68c3a4f46578eed016ff92a67fbc6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96 
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100 
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110 
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119 					1;
120 #else
121 					2;
122 #endif
123 
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127 	/*
128 	 * Those arches which don't have hw access flag feature need to
129 	 * implement their own helper. By default, "true" means pagefault
130 	 * will be hit on old pte.
131 	 */
132 	return true;
133 }
134 #endif
135 
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139 	/*
140 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 	 * some architectures, even if it's performed in hardware. By
142 	 * default, "false" means prefaulted entries will be 'young'.
143 	 */
144 	return false;
145 }
146 #endif
147 
148 static int __init disable_randmaps(char *s)
149 {
150 	randomize_va_space = 0;
151 	return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154 
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157 
158 unsigned long highest_memmap_pfn __read_mostly;
159 
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 	return 0;
167 }
168 early_initcall(init_zero_pfn);
169 
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172 	trace_rss_stat(mm, member, count);
173 }
174 
175 #if defined(SPLIT_RSS_COUNTING)
176 
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179 	int i;
180 
181 	for (i = 0; i < NR_MM_COUNTERS; i++) {
182 		if (current->rss_stat.count[i]) {
183 			add_mm_counter(mm, i, current->rss_stat.count[i]);
184 			current->rss_stat.count[i] = 0;
185 		}
186 	}
187 	current->rss_stat.events = 0;
188 }
189 
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192 	struct task_struct *task = current;
193 
194 	if (likely(task->mm == mm))
195 		task->rss_stat.count[member] += val;
196 	else
197 		add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201 
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH	(64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 	if (unlikely(task != current))
207 		return;
208 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209 		sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212 
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215 
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219 
220 #endif /* SPLIT_RSS_COUNTING */
221 
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 			   unsigned long addr)
228 {
229 	pgtable_t token = pmd_pgtable(*pmd);
230 	pmd_clear(pmd);
231 	pte_free_tlb(tlb, token, addr);
232 	mm_dec_nr_ptes(tlb->mm);
233 }
234 
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 				unsigned long addr, unsigned long end,
237 				unsigned long floor, unsigned long ceiling)
238 {
239 	pmd_t *pmd;
240 	unsigned long next;
241 	unsigned long start;
242 
243 	start = addr;
244 	pmd = pmd_offset(pud, addr);
245 	do {
246 		next = pmd_addr_end(addr, end);
247 		if (pmd_none_or_clear_bad(pmd))
248 			continue;
249 		free_pte_range(tlb, pmd, addr);
250 	} while (pmd++, addr = next, addr != end);
251 
252 	start &= PUD_MASK;
253 	if (start < floor)
254 		return;
255 	if (ceiling) {
256 		ceiling &= PUD_MASK;
257 		if (!ceiling)
258 			return;
259 	}
260 	if (end - 1 > ceiling - 1)
261 		return;
262 
263 	pmd = pmd_offset(pud, start);
264 	pud_clear(pud);
265 	pmd_free_tlb(tlb, pmd, start);
266 	mm_dec_nr_pmds(tlb->mm);
267 }
268 
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270 				unsigned long addr, unsigned long end,
271 				unsigned long floor, unsigned long ceiling)
272 {
273 	pud_t *pud;
274 	unsigned long next;
275 	unsigned long start;
276 
277 	start = addr;
278 	pud = pud_offset(p4d, addr);
279 	do {
280 		next = pud_addr_end(addr, end);
281 		if (pud_none_or_clear_bad(pud))
282 			continue;
283 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284 	} while (pud++, addr = next, addr != end);
285 
286 	start &= P4D_MASK;
287 	if (start < floor)
288 		return;
289 	if (ceiling) {
290 		ceiling &= P4D_MASK;
291 		if (!ceiling)
292 			return;
293 	}
294 	if (end - 1 > ceiling - 1)
295 		return;
296 
297 	pud = pud_offset(p4d, start);
298 	p4d_clear(p4d);
299 	pud_free_tlb(tlb, pud, start);
300 	mm_dec_nr_puds(tlb->mm);
301 }
302 
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 				unsigned long addr, unsigned long end,
305 				unsigned long floor, unsigned long ceiling)
306 {
307 	p4d_t *p4d;
308 	unsigned long next;
309 	unsigned long start;
310 
311 	start = addr;
312 	p4d = p4d_offset(pgd, addr);
313 	do {
314 		next = p4d_addr_end(addr, end);
315 		if (p4d_none_or_clear_bad(p4d))
316 			continue;
317 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 	} while (p4d++, addr = next, addr != end);
319 
320 	start &= PGDIR_MASK;
321 	if (start < floor)
322 		return;
323 	if (ceiling) {
324 		ceiling &= PGDIR_MASK;
325 		if (!ceiling)
326 			return;
327 	}
328 	if (end - 1 > ceiling - 1)
329 		return;
330 
331 	p4d = p4d_offset(pgd, start);
332 	pgd_clear(pgd);
333 	p4d_free_tlb(tlb, p4d, start);
334 }
335 
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340 			unsigned long addr, unsigned long end,
341 			unsigned long floor, unsigned long ceiling)
342 {
343 	pgd_t *pgd;
344 	unsigned long next;
345 
346 	/*
347 	 * The next few lines have given us lots of grief...
348 	 *
349 	 * Why are we testing PMD* at this top level?  Because often
350 	 * there will be no work to do at all, and we'd prefer not to
351 	 * go all the way down to the bottom just to discover that.
352 	 *
353 	 * Why all these "- 1"s?  Because 0 represents both the bottom
354 	 * of the address space and the top of it (using -1 for the
355 	 * top wouldn't help much: the masks would do the wrong thing).
356 	 * The rule is that addr 0 and floor 0 refer to the bottom of
357 	 * the address space, but end 0 and ceiling 0 refer to the top
358 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 	 * that end 0 case should be mythical).
360 	 *
361 	 * Wherever addr is brought up or ceiling brought down, we must
362 	 * be careful to reject "the opposite 0" before it confuses the
363 	 * subsequent tests.  But what about where end is brought down
364 	 * by PMD_SIZE below? no, end can't go down to 0 there.
365 	 *
366 	 * Whereas we round start (addr) and ceiling down, by different
367 	 * masks at different levels, in order to test whether a table
368 	 * now has no other vmas using it, so can be freed, we don't
369 	 * bother to round floor or end up - the tests don't need that.
370 	 */
371 
372 	addr &= PMD_MASK;
373 	if (addr < floor) {
374 		addr += PMD_SIZE;
375 		if (!addr)
376 			return;
377 	}
378 	if (ceiling) {
379 		ceiling &= PMD_MASK;
380 		if (!ceiling)
381 			return;
382 	}
383 	if (end - 1 > ceiling - 1)
384 		end -= PMD_SIZE;
385 	if (addr > end - 1)
386 		return;
387 	/*
388 	 * We add page table cache pages with PAGE_SIZE,
389 	 * (see pte_free_tlb()), flush the tlb if we need
390 	 */
391 	tlb_change_page_size(tlb, PAGE_SIZE);
392 	pgd = pgd_offset(tlb->mm, addr);
393 	do {
394 		next = pgd_addr_end(addr, end);
395 		if (pgd_none_or_clear_bad(pgd))
396 			continue;
397 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398 	} while (pgd++, addr = next, addr != end);
399 }
400 
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402 		unsigned long floor, unsigned long ceiling)
403 {
404 	while (vma) {
405 		struct vm_area_struct *next = vma->vm_next;
406 		unsigned long addr = vma->vm_start;
407 
408 		/*
409 		 * Hide vma from rmap and truncate_pagecache before freeing
410 		 * pgtables
411 		 */
412 		unlink_anon_vmas(vma);
413 		unlink_file_vma(vma);
414 
415 		if (is_vm_hugetlb_page(vma)) {
416 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		} else {
419 			/*
420 			 * Optimization: gather nearby vmas into one call down
421 			 */
422 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423 			       && !is_vm_hugetlb_page(next)) {
424 				vma = next;
425 				next = vma->vm_next;
426 				unlink_anon_vmas(vma);
427 				unlink_file_vma(vma);
428 			}
429 			free_pgd_range(tlb, addr, vma->vm_end,
430 				floor, next ? next->vm_start : ceiling);
431 		}
432 		vma = next;
433 	}
434 }
435 
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438 	spinlock_t *ptl;
439 	pgtable_t new = pte_alloc_one(mm);
440 	if (!new)
441 		return -ENOMEM;
442 
443 	/*
444 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 	 * visible before the pte is made visible to other CPUs by being
446 	 * put into page tables.
447 	 *
448 	 * The other side of the story is the pointer chasing in the page
449 	 * table walking code (when walking the page table without locking;
450 	 * ie. most of the time). Fortunately, these data accesses consist
451 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 	 * being the notable exception) will already guarantee loads are
453 	 * seen in-order. See the alpha page table accessors for the
454 	 * smp_rmb() barriers in page table walking code.
455 	 */
456 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 
458 	ptl = pmd_lock(mm, pmd);
459 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
460 		mm_inc_nr_ptes(mm);
461 		pmd_populate(mm, pmd, new);
462 		new = NULL;
463 	}
464 	spin_unlock(ptl);
465 	if (new)
466 		pte_free(mm, new);
467 	return 0;
468 }
469 
470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472 	pte_t *new = pte_alloc_one_kernel(&init_mm);
473 	if (!new)
474 		return -ENOMEM;
475 
476 	smp_wmb(); /* See comment in __pte_alloc */
477 
478 	spin_lock(&init_mm.page_table_lock);
479 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
480 		pmd_populate_kernel(&init_mm, pmd, new);
481 		new = NULL;
482 	}
483 	spin_unlock(&init_mm.page_table_lock);
484 	if (new)
485 		pte_free_kernel(&init_mm, new);
486 	return 0;
487 }
488 
489 static inline void init_rss_vec(int *rss)
490 {
491 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493 
494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496 	int i;
497 
498 	if (current->mm == mm)
499 		sync_mm_rss(mm);
500 	for (i = 0; i < NR_MM_COUNTERS; i++)
501 		if (rss[i])
502 			add_mm_counter(mm, i, rss[i]);
503 }
504 
505 /*
506  * This function is called to print an error when a bad pte
507  * is found. For example, we might have a PFN-mapped pte in
508  * a region that doesn't allow it.
509  *
510  * The calling function must still handle the error.
511  */
512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 			  pte_t pte, struct page *page)
514 {
515 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516 	p4d_t *p4d = p4d_offset(pgd, addr);
517 	pud_t *pud = pud_offset(p4d, addr);
518 	pmd_t *pmd = pmd_offset(pud, addr);
519 	struct address_space *mapping;
520 	pgoff_t index;
521 	static unsigned long resume;
522 	static unsigned long nr_shown;
523 	static unsigned long nr_unshown;
524 
525 	/*
526 	 * Allow a burst of 60 reports, then keep quiet for that minute;
527 	 * or allow a steady drip of one report per second.
528 	 */
529 	if (nr_shown == 60) {
530 		if (time_before(jiffies, resume)) {
531 			nr_unshown++;
532 			return;
533 		}
534 		if (nr_unshown) {
535 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 				 nr_unshown);
537 			nr_unshown = 0;
538 		}
539 		nr_shown = 0;
540 	}
541 	if (nr_shown++ == 0)
542 		resume = jiffies + 60 * HZ;
543 
544 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 	index = linear_page_index(vma, addr);
546 
547 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
548 		 current->comm,
549 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
550 	if (page)
551 		dump_page(page, "bad pte");
552 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555 		 vma->vm_file,
556 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 		 mapping ? mapping->a_ops->readpage : NULL);
559 	dump_stack();
560 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562 
563 /*
564  * vm_normal_page -- This function gets the "struct page" associated with a pte.
565  *
566  * "Special" mappings do not wish to be associated with a "struct page" (either
567  * it doesn't exist, or it exists but they don't want to touch it). In this
568  * case, NULL is returned here. "Normal" mappings do have a struct page.
569  *
570  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571  * pte bit, in which case this function is trivial. Secondly, an architecture
572  * may not have a spare pte bit, which requires a more complicated scheme,
573  * described below.
574  *
575  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576  * special mapping (even if there are underlying and valid "struct pages").
577  * COWed pages of a VM_PFNMAP are always normal.
578  *
579  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582  * mapping will always honor the rule
583  *
584  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585  *
586  * And for normal mappings this is false.
587  *
588  * This restricts such mappings to be a linear translation from virtual address
589  * to pfn. To get around this restriction, we allow arbitrary mappings so long
590  * as the vma is not a COW mapping; in that case, we know that all ptes are
591  * special (because none can have been COWed).
592  *
593  *
594  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595  *
596  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597  * page" backing, however the difference is that _all_ pages with a struct
598  * page (that is, those where pfn_valid is true) are refcounted and considered
599  * normal pages by the VM. The disadvantage is that pages are refcounted
600  * (which can be slower and simply not an option for some PFNMAP users). The
601  * advantage is that we don't have to follow the strict linearity rule of
602  * PFNMAP mappings in order to support COWable mappings.
603  *
604  */
605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 			    pte_t pte)
607 {
608 	unsigned long pfn = pte_pfn(pte);
609 
610 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611 		if (likely(!pte_special(pte)))
612 			goto check_pfn;
613 		if (vma->vm_ops && vma->vm_ops->find_special_page)
614 			return vma->vm_ops->find_special_page(vma, addr);
615 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 			return NULL;
617 		if (is_zero_pfn(pfn))
618 			return NULL;
619 		if (pte_devmap(pte))
620 			return NULL;
621 
622 		print_bad_pte(vma, addr, pte, NULL);
623 		return NULL;
624 	}
625 
626 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627 
628 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 		if (vma->vm_flags & VM_MIXEDMAP) {
630 			if (!pfn_valid(pfn))
631 				return NULL;
632 			goto out;
633 		} else {
634 			unsigned long off;
635 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
636 			if (pfn == vma->vm_pgoff + off)
637 				return NULL;
638 			if (!is_cow_mapping(vma->vm_flags))
639 				return NULL;
640 		}
641 	}
642 
643 	if (is_zero_pfn(pfn))
644 		return NULL;
645 
646 check_pfn:
647 	if (unlikely(pfn > highest_memmap_pfn)) {
648 		print_bad_pte(vma, addr, pte, NULL);
649 		return NULL;
650 	}
651 
652 	/*
653 	 * NOTE! We still have PageReserved() pages in the page tables.
654 	 * eg. VDSO mappings can cause them to exist.
655 	 */
656 out:
657 	return pfn_to_page(pfn);
658 }
659 
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 				pmd_t pmd)
663 {
664 	unsigned long pfn = pmd_pfn(pmd);
665 
666 	/*
667 	 * There is no pmd_special() but there may be special pmds, e.g.
668 	 * in a direct-access (dax) mapping, so let's just replicate the
669 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670 	 */
671 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 		if (vma->vm_flags & VM_MIXEDMAP) {
673 			if (!pfn_valid(pfn))
674 				return NULL;
675 			goto out;
676 		} else {
677 			unsigned long off;
678 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 			if (pfn == vma->vm_pgoff + off)
680 				return NULL;
681 			if (!is_cow_mapping(vma->vm_flags))
682 				return NULL;
683 		}
684 	}
685 
686 	if (pmd_devmap(pmd))
687 		return NULL;
688 	if (is_huge_zero_pmd(pmd))
689 		return NULL;
690 	if (unlikely(pfn > highest_memmap_pfn))
691 		return NULL;
692 
693 	/*
694 	 * NOTE! We still have PageReserved() pages in the page tables.
695 	 * eg. VDSO mappings can cause them to exist.
696 	 */
697 out:
698 	return pfn_to_page(pfn);
699 }
700 #endif
701 
702 static void restore_exclusive_pte(struct vm_area_struct *vma,
703 				  struct page *page, unsigned long address,
704 				  pte_t *ptep)
705 {
706 	pte_t pte;
707 	swp_entry_t entry;
708 
709 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
710 	if (pte_swp_soft_dirty(*ptep))
711 		pte = pte_mksoft_dirty(pte);
712 
713 	entry = pte_to_swp_entry(*ptep);
714 	if (pte_swp_uffd_wp(*ptep))
715 		pte = pte_mkuffd_wp(pte);
716 	else if (is_writable_device_exclusive_entry(entry))
717 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718 
719 	set_pte_at(vma->vm_mm, address, ptep, pte);
720 
721 	/*
722 	 * No need to take a page reference as one was already
723 	 * created when the swap entry was made.
724 	 */
725 	if (PageAnon(page))
726 		page_add_anon_rmap(page, vma, address, false);
727 	else
728 		/*
729 		 * Currently device exclusive access only supports anonymous
730 		 * memory so the entry shouldn't point to a filebacked page.
731 		 */
732 		WARN_ON_ONCE(!PageAnon(page));
733 
734 	if (vma->vm_flags & VM_LOCKED)
735 		mlock_vma_page(page);
736 
737 	/*
738 	 * No need to invalidate - it was non-present before. However
739 	 * secondary CPUs may have mappings that need invalidating.
740 	 */
741 	update_mmu_cache(vma, address, ptep);
742 }
743 
744 /*
745  * Tries to restore an exclusive pte if the page lock can be acquired without
746  * sleeping.
747  */
748 static int
749 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750 			unsigned long addr)
751 {
752 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
753 	struct page *page = pfn_swap_entry_to_page(entry);
754 
755 	if (trylock_page(page)) {
756 		restore_exclusive_pte(vma, page, addr, src_pte);
757 		unlock_page(page);
758 		return 0;
759 	}
760 
761 	return -EBUSY;
762 }
763 
764 /*
765  * copy one vm_area from one task to the other. Assumes the page tables
766  * already present in the new task to be cleared in the whole range
767  * covered by this vma.
768  */
769 
770 static unsigned long
771 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
772 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
773 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
774 {
775 	unsigned long vm_flags = dst_vma->vm_flags;
776 	pte_t pte = *src_pte;
777 	struct page *page;
778 	swp_entry_t entry = pte_to_swp_entry(pte);
779 
780 	if (likely(!non_swap_entry(entry))) {
781 		if (swap_duplicate(entry) < 0)
782 			return -EIO;
783 
784 		/* make sure dst_mm is on swapoff's mmlist. */
785 		if (unlikely(list_empty(&dst_mm->mmlist))) {
786 			spin_lock(&mmlist_lock);
787 			if (list_empty(&dst_mm->mmlist))
788 				list_add(&dst_mm->mmlist,
789 						&src_mm->mmlist);
790 			spin_unlock(&mmlist_lock);
791 		}
792 		rss[MM_SWAPENTS]++;
793 	} else if (is_migration_entry(entry)) {
794 		page = pfn_swap_entry_to_page(entry);
795 
796 		rss[mm_counter(page)]++;
797 
798 		if (is_writable_migration_entry(entry) &&
799 				is_cow_mapping(vm_flags)) {
800 			/*
801 			 * COW mappings require pages in both
802 			 * parent and child to be set to read.
803 			 */
804 			entry = make_readable_migration_entry(
805 							swp_offset(entry));
806 			pte = swp_entry_to_pte(entry);
807 			if (pte_swp_soft_dirty(*src_pte))
808 				pte = pte_swp_mksoft_dirty(pte);
809 			if (pte_swp_uffd_wp(*src_pte))
810 				pte = pte_swp_mkuffd_wp(pte);
811 			set_pte_at(src_mm, addr, src_pte, pte);
812 		}
813 	} else if (is_device_private_entry(entry)) {
814 		page = pfn_swap_entry_to_page(entry);
815 
816 		/*
817 		 * Update rss count even for unaddressable pages, as
818 		 * they should treated just like normal pages in this
819 		 * respect.
820 		 *
821 		 * We will likely want to have some new rss counters
822 		 * for unaddressable pages, at some point. But for now
823 		 * keep things as they are.
824 		 */
825 		get_page(page);
826 		rss[mm_counter(page)]++;
827 		page_dup_rmap(page, false);
828 
829 		/*
830 		 * We do not preserve soft-dirty information, because so
831 		 * far, checkpoint/restore is the only feature that
832 		 * requires that. And checkpoint/restore does not work
833 		 * when a device driver is involved (you cannot easily
834 		 * save and restore device driver state).
835 		 */
836 		if (is_writable_device_private_entry(entry) &&
837 		    is_cow_mapping(vm_flags)) {
838 			entry = make_readable_device_private_entry(
839 							swp_offset(entry));
840 			pte = swp_entry_to_pte(entry);
841 			if (pte_swp_uffd_wp(*src_pte))
842 				pte = pte_swp_mkuffd_wp(pte);
843 			set_pte_at(src_mm, addr, src_pte, pte);
844 		}
845 	} else if (is_device_exclusive_entry(entry)) {
846 		/*
847 		 * Make device exclusive entries present by restoring the
848 		 * original entry then copying as for a present pte. Device
849 		 * exclusive entries currently only support private writable
850 		 * (ie. COW) mappings.
851 		 */
852 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
853 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
854 			return -EBUSY;
855 		return -ENOENT;
856 	}
857 	if (!userfaultfd_wp(dst_vma))
858 		pte = pte_swp_clear_uffd_wp(pte);
859 	set_pte_at(dst_mm, addr, dst_pte, pte);
860 	return 0;
861 }
862 
863 /*
864  * Copy a present and normal page if necessary.
865  *
866  * NOTE! The usual case is that this doesn't need to do
867  * anything, and can just return a positive value. That
868  * will let the caller know that it can just increase
869  * the page refcount and re-use the pte the traditional
870  * way.
871  *
872  * But _if_ we need to copy it because it needs to be
873  * pinned in the parent (and the child should get its own
874  * copy rather than just a reference to the same page),
875  * we'll do that here and return zero to let the caller
876  * know we're done.
877  *
878  * And if we need a pre-allocated page but don't yet have
879  * one, return a negative error to let the preallocation
880  * code know so that it can do so outside the page table
881  * lock.
882  */
883 static inline int
884 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886 		  struct page **prealloc, pte_t pte, struct page *page)
887 {
888 	struct page *new_page;
889 
890 	/*
891 	 * What we want to do is to check whether this page may
892 	 * have been pinned by the parent process.  If so,
893 	 * instead of wrprotect the pte on both sides, we copy
894 	 * the page immediately so that we'll always guarantee
895 	 * the pinned page won't be randomly replaced in the
896 	 * future.
897 	 *
898 	 * The page pinning checks are just "has this mm ever
899 	 * seen pinning", along with the (inexact) check of
900 	 * the page count. That might give false positives for
901 	 * for pinning, but it will work correctly.
902 	 */
903 	if (likely(!page_needs_cow_for_dma(src_vma, page)))
904 		return 1;
905 
906 	new_page = *prealloc;
907 	if (!new_page)
908 		return -EAGAIN;
909 
910 	/*
911 	 * We have a prealloc page, all good!  Take it
912 	 * over and copy the page & arm it.
913 	 */
914 	*prealloc = NULL;
915 	copy_user_highpage(new_page, page, addr, src_vma);
916 	__SetPageUptodate(new_page);
917 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
918 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
919 	rss[mm_counter(new_page)]++;
920 
921 	/* All done, just insert the new page copy in the child */
922 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
923 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
924 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
925 		/* Uffd-wp needs to be delivered to dest pte as well */
926 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
927 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
928 	return 0;
929 }
930 
931 /*
932  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
933  * is required to copy this pte.
934  */
935 static inline int
936 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938 		 struct page **prealloc)
939 {
940 	struct mm_struct *src_mm = src_vma->vm_mm;
941 	unsigned long vm_flags = src_vma->vm_flags;
942 	pte_t pte = *src_pte;
943 	struct page *page;
944 
945 	page = vm_normal_page(src_vma, addr, pte);
946 	if (page) {
947 		int retval;
948 
949 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 					   addr, rss, prealloc, pte, page);
951 		if (retval <= 0)
952 			return retval;
953 
954 		get_page(page);
955 		page_dup_rmap(page, false);
956 		rss[mm_counter(page)]++;
957 	}
958 
959 	/*
960 	 * If it's a COW mapping, write protect it both
961 	 * in the parent and the child
962 	 */
963 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964 		ptep_set_wrprotect(src_mm, addr, src_pte);
965 		pte = pte_wrprotect(pte);
966 	}
967 
968 	/*
969 	 * If it's a shared mapping, mark it clean in
970 	 * the child
971 	 */
972 	if (vm_flags & VM_SHARED)
973 		pte = pte_mkclean(pte);
974 	pte = pte_mkold(pte);
975 
976 	if (!userfaultfd_wp(dst_vma))
977 		pte = pte_clear_uffd_wp(pte);
978 
979 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
980 	return 0;
981 }
982 
983 static inline struct page *
984 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
985 		   unsigned long addr)
986 {
987 	struct page *new_page;
988 
989 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
990 	if (!new_page)
991 		return NULL;
992 
993 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
994 		put_page(new_page);
995 		return NULL;
996 	}
997 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
998 
999 	return new_page;
1000 }
1001 
1002 static int
1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 	       unsigned long end)
1006 {
1007 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 	struct mm_struct *src_mm = src_vma->vm_mm;
1009 	pte_t *orig_src_pte, *orig_dst_pte;
1010 	pte_t *src_pte, *dst_pte;
1011 	spinlock_t *src_ptl, *dst_ptl;
1012 	int progress, ret = 0;
1013 	int rss[NR_MM_COUNTERS];
1014 	swp_entry_t entry = (swp_entry_t){0};
1015 	struct page *prealloc = NULL;
1016 
1017 again:
1018 	progress = 0;
1019 	init_rss_vec(rss);
1020 
1021 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1022 	if (!dst_pte) {
1023 		ret = -ENOMEM;
1024 		goto out;
1025 	}
1026 	src_pte = pte_offset_map(src_pmd, addr);
1027 	src_ptl = pte_lockptr(src_mm, src_pmd);
1028 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1029 	orig_src_pte = src_pte;
1030 	orig_dst_pte = dst_pte;
1031 	arch_enter_lazy_mmu_mode();
1032 
1033 	do {
1034 		/*
1035 		 * We are holding two locks at this point - either of them
1036 		 * could generate latencies in another task on another CPU.
1037 		 */
1038 		if (progress >= 32) {
1039 			progress = 0;
1040 			if (need_resched() ||
1041 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1042 				break;
1043 		}
1044 		if (pte_none(*src_pte)) {
1045 			progress++;
1046 			continue;
1047 		}
1048 		if (unlikely(!pte_present(*src_pte))) {
1049 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1050 						  dst_pte, src_pte,
1051 						  dst_vma, src_vma,
1052 						  addr, rss);
1053 			if (ret == -EIO) {
1054 				entry = pte_to_swp_entry(*src_pte);
1055 				break;
1056 			} else if (ret == -EBUSY) {
1057 				break;
1058 			} else if (!ret) {
1059 				progress += 8;
1060 				continue;
1061 			}
1062 
1063 			/*
1064 			 * Device exclusive entry restored, continue by copying
1065 			 * the now present pte.
1066 			 */
1067 			WARN_ON_ONCE(ret != -ENOENT);
1068 		}
1069 		/* copy_present_pte() will clear `*prealloc' if consumed */
1070 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071 				       addr, rss, &prealloc);
1072 		/*
1073 		 * If we need a pre-allocated page for this pte, drop the
1074 		 * locks, allocate, and try again.
1075 		 */
1076 		if (unlikely(ret == -EAGAIN))
1077 			break;
1078 		if (unlikely(prealloc)) {
1079 			/*
1080 			 * pre-alloc page cannot be reused by next time so as
1081 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1082 			 * will allocate page according to address).  This
1083 			 * could only happen if one pinned pte changed.
1084 			 */
1085 			put_page(prealloc);
1086 			prealloc = NULL;
1087 		}
1088 		progress += 8;
1089 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1090 
1091 	arch_leave_lazy_mmu_mode();
1092 	spin_unlock(src_ptl);
1093 	pte_unmap(orig_src_pte);
1094 	add_mm_rss_vec(dst_mm, rss);
1095 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1096 	cond_resched();
1097 
1098 	if (ret == -EIO) {
1099 		VM_WARN_ON_ONCE(!entry.val);
1100 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101 			ret = -ENOMEM;
1102 			goto out;
1103 		}
1104 		entry.val = 0;
1105 	} else if (ret == -EBUSY) {
1106 		goto out;
1107 	} else if (ret ==  -EAGAIN) {
1108 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1109 		if (!prealloc)
1110 			return -ENOMEM;
1111 	} else if (ret) {
1112 		VM_WARN_ON_ONCE(1);
1113 	}
1114 
1115 	/* We've captured and resolved the error. Reset, try again. */
1116 	ret = 0;
1117 
1118 	if (addr != end)
1119 		goto again;
1120 out:
1121 	if (unlikely(prealloc))
1122 		put_page(prealloc);
1123 	return ret;
1124 }
1125 
1126 static inline int
1127 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129 	       unsigned long end)
1130 {
1131 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1132 	struct mm_struct *src_mm = src_vma->vm_mm;
1133 	pmd_t *src_pmd, *dst_pmd;
1134 	unsigned long next;
1135 
1136 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137 	if (!dst_pmd)
1138 		return -ENOMEM;
1139 	src_pmd = pmd_offset(src_pud, addr);
1140 	do {
1141 		next = pmd_addr_end(addr, end);
1142 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143 			|| pmd_devmap(*src_pmd)) {
1144 			int err;
1145 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1146 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147 					    addr, dst_vma, src_vma);
1148 			if (err == -ENOMEM)
1149 				return -ENOMEM;
1150 			if (!err)
1151 				continue;
1152 			/* fall through */
1153 		}
1154 		if (pmd_none_or_clear_bad(src_pmd))
1155 			continue;
1156 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157 				   addr, next))
1158 			return -ENOMEM;
1159 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160 	return 0;
1161 }
1162 
1163 static inline int
1164 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166 	       unsigned long end)
1167 {
1168 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1169 	struct mm_struct *src_mm = src_vma->vm_mm;
1170 	pud_t *src_pud, *dst_pud;
1171 	unsigned long next;
1172 
1173 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1174 	if (!dst_pud)
1175 		return -ENOMEM;
1176 	src_pud = pud_offset(src_p4d, addr);
1177 	do {
1178 		next = pud_addr_end(addr, end);
1179 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180 			int err;
1181 
1182 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1183 			err = copy_huge_pud(dst_mm, src_mm,
1184 					    dst_pud, src_pud, addr, src_vma);
1185 			if (err == -ENOMEM)
1186 				return -ENOMEM;
1187 			if (!err)
1188 				continue;
1189 			/* fall through */
1190 		}
1191 		if (pud_none_or_clear_bad(src_pud))
1192 			continue;
1193 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194 				   addr, next))
1195 			return -ENOMEM;
1196 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1197 	return 0;
1198 }
1199 
1200 static inline int
1201 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203 	       unsigned long end)
1204 {
1205 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1206 	p4d_t *src_p4d, *dst_p4d;
1207 	unsigned long next;
1208 
1209 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210 	if (!dst_p4d)
1211 		return -ENOMEM;
1212 	src_p4d = p4d_offset(src_pgd, addr);
1213 	do {
1214 		next = p4d_addr_end(addr, end);
1215 		if (p4d_none_or_clear_bad(src_p4d))
1216 			continue;
1217 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218 				   addr, next))
1219 			return -ENOMEM;
1220 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221 	return 0;
1222 }
1223 
1224 int
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227 	pgd_t *src_pgd, *dst_pgd;
1228 	unsigned long next;
1229 	unsigned long addr = src_vma->vm_start;
1230 	unsigned long end = src_vma->vm_end;
1231 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1232 	struct mm_struct *src_mm = src_vma->vm_mm;
1233 	struct mmu_notifier_range range;
1234 	bool is_cow;
1235 	int ret;
1236 
1237 	/*
1238 	 * Don't copy ptes where a page fault will fill them correctly.
1239 	 * Fork becomes much lighter when there are big shared or private
1240 	 * readonly mappings. The tradeoff is that copy_page_range is more
1241 	 * efficient than faulting.
1242 	 */
1243 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244 	    !src_vma->anon_vma)
1245 		return 0;
1246 
1247 	if (is_vm_hugetlb_page(src_vma))
1248 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1249 
1250 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1251 		/*
1252 		 * We do not free on error cases below as remove_vma
1253 		 * gets called on error from higher level routine
1254 		 */
1255 		ret = track_pfn_copy(src_vma);
1256 		if (ret)
1257 			return ret;
1258 	}
1259 
1260 	/*
1261 	 * We need to invalidate the secondary MMU mappings only when
1262 	 * there could be a permission downgrade on the ptes of the
1263 	 * parent mm. And a permission downgrade will only happen if
1264 	 * is_cow_mapping() returns true.
1265 	 */
1266 	is_cow = is_cow_mapping(src_vma->vm_flags);
1267 
1268 	if (is_cow) {
1269 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1270 					0, src_vma, src_mm, addr, end);
1271 		mmu_notifier_invalidate_range_start(&range);
1272 		/*
1273 		 * Disabling preemption is not needed for the write side, as
1274 		 * the read side doesn't spin, but goes to the mmap_lock.
1275 		 *
1276 		 * Use the raw variant of the seqcount_t write API to avoid
1277 		 * lockdep complaining about preemptibility.
1278 		 */
1279 		mmap_assert_write_locked(src_mm);
1280 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1281 	}
1282 
1283 	ret = 0;
1284 	dst_pgd = pgd_offset(dst_mm, addr);
1285 	src_pgd = pgd_offset(src_mm, addr);
1286 	do {
1287 		next = pgd_addr_end(addr, end);
1288 		if (pgd_none_or_clear_bad(src_pgd))
1289 			continue;
1290 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291 					    addr, next))) {
1292 			ret = -ENOMEM;
1293 			break;
1294 		}
1295 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1296 
1297 	if (is_cow) {
1298 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1299 		mmu_notifier_invalidate_range_end(&range);
1300 	}
1301 	return ret;
1302 }
1303 
1304 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1305 				struct vm_area_struct *vma, pmd_t *pmd,
1306 				unsigned long addr, unsigned long end,
1307 				struct zap_details *details)
1308 {
1309 	struct mm_struct *mm = tlb->mm;
1310 	int force_flush = 0;
1311 	int rss[NR_MM_COUNTERS];
1312 	spinlock_t *ptl;
1313 	pte_t *start_pte;
1314 	pte_t *pte;
1315 	swp_entry_t entry;
1316 
1317 	tlb_change_page_size(tlb, PAGE_SIZE);
1318 again:
1319 	init_rss_vec(rss);
1320 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1321 	pte = start_pte;
1322 	flush_tlb_batched_pending(mm);
1323 	arch_enter_lazy_mmu_mode();
1324 	do {
1325 		pte_t ptent = *pte;
1326 		if (pte_none(ptent))
1327 			continue;
1328 
1329 		if (need_resched())
1330 			break;
1331 
1332 		if (pte_present(ptent)) {
1333 			struct page *page;
1334 
1335 			page = vm_normal_page(vma, addr, ptent);
1336 			if (unlikely(details) && page) {
1337 				/*
1338 				 * unmap_shared_mapping_pages() wants to
1339 				 * invalidate cache without truncating:
1340 				 * unmap shared but keep private pages.
1341 				 */
1342 				if (details->check_mapping &&
1343 				    details->check_mapping != page_rmapping(page))
1344 					continue;
1345 			}
1346 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1347 							tlb->fullmm);
1348 			tlb_remove_tlb_entry(tlb, pte, addr);
1349 			if (unlikely(!page))
1350 				continue;
1351 
1352 			if (!PageAnon(page)) {
1353 				if (pte_dirty(ptent)) {
1354 					force_flush = 1;
1355 					set_page_dirty(page);
1356 				}
1357 				if (pte_young(ptent) &&
1358 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1359 					mark_page_accessed(page);
1360 			}
1361 			rss[mm_counter(page)]--;
1362 			page_remove_rmap(page, false);
1363 			if (unlikely(page_mapcount(page) < 0))
1364 				print_bad_pte(vma, addr, ptent, page);
1365 			if (unlikely(__tlb_remove_page(tlb, page))) {
1366 				force_flush = 1;
1367 				addr += PAGE_SIZE;
1368 				break;
1369 			}
1370 			continue;
1371 		}
1372 
1373 		entry = pte_to_swp_entry(ptent);
1374 		if (is_device_private_entry(entry) ||
1375 		    is_device_exclusive_entry(entry)) {
1376 			struct page *page = pfn_swap_entry_to_page(entry);
1377 
1378 			if (unlikely(details && details->check_mapping)) {
1379 				/*
1380 				 * unmap_shared_mapping_pages() wants to
1381 				 * invalidate cache without truncating:
1382 				 * unmap shared but keep private pages.
1383 				 */
1384 				if (details->check_mapping !=
1385 				    page_rmapping(page))
1386 					continue;
1387 			}
1388 
1389 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1390 			rss[mm_counter(page)]--;
1391 
1392 			if (is_device_private_entry(entry))
1393 				page_remove_rmap(page, false);
1394 
1395 			put_page(page);
1396 			continue;
1397 		}
1398 
1399 		/* If details->check_mapping, we leave swap entries. */
1400 		if (unlikely(details))
1401 			continue;
1402 
1403 		if (!non_swap_entry(entry))
1404 			rss[MM_SWAPENTS]--;
1405 		else if (is_migration_entry(entry)) {
1406 			struct page *page;
1407 
1408 			page = pfn_swap_entry_to_page(entry);
1409 			rss[mm_counter(page)]--;
1410 		}
1411 		if (unlikely(!free_swap_and_cache(entry)))
1412 			print_bad_pte(vma, addr, ptent, NULL);
1413 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1414 	} while (pte++, addr += PAGE_SIZE, addr != end);
1415 
1416 	add_mm_rss_vec(mm, rss);
1417 	arch_leave_lazy_mmu_mode();
1418 
1419 	/* Do the actual TLB flush before dropping ptl */
1420 	if (force_flush)
1421 		tlb_flush_mmu_tlbonly(tlb);
1422 	pte_unmap_unlock(start_pte, ptl);
1423 
1424 	/*
1425 	 * If we forced a TLB flush (either due to running out of
1426 	 * batch buffers or because we needed to flush dirty TLB
1427 	 * entries before releasing the ptl), free the batched
1428 	 * memory too. Restart if we didn't do everything.
1429 	 */
1430 	if (force_flush) {
1431 		force_flush = 0;
1432 		tlb_flush_mmu(tlb);
1433 	}
1434 
1435 	if (addr != end) {
1436 		cond_resched();
1437 		goto again;
1438 	}
1439 
1440 	return addr;
1441 }
1442 
1443 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1444 				struct vm_area_struct *vma, pud_t *pud,
1445 				unsigned long addr, unsigned long end,
1446 				struct zap_details *details)
1447 {
1448 	pmd_t *pmd;
1449 	unsigned long next;
1450 
1451 	pmd = pmd_offset(pud, addr);
1452 	do {
1453 		next = pmd_addr_end(addr, end);
1454 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1455 			if (next - addr != HPAGE_PMD_SIZE)
1456 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1457 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1458 				goto next;
1459 			/* fall through */
1460 		} else if (details && details->single_page &&
1461 			   PageTransCompound(details->single_page) &&
1462 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1463 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1464 			/*
1465 			 * Take and drop THP pmd lock so that we cannot return
1466 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1467 			 * but not yet decremented compound_mapcount().
1468 			 */
1469 			spin_unlock(ptl);
1470 		}
1471 
1472 		/*
1473 		 * Here there can be other concurrent MADV_DONTNEED or
1474 		 * trans huge page faults running, and if the pmd is
1475 		 * none or trans huge it can change under us. This is
1476 		 * because MADV_DONTNEED holds the mmap_lock in read
1477 		 * mode.
1478 		 */
1479 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1480 			goto next;
1481 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1482 next:
1483 		cond_resched();
1484 	} while (pmd++, addr = next, addr != end);
1485 
1486 	return addr;
1487 }
1488 
1489 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1490 				struct vm_area_struct *vma, p4d_t *p4d,
1491 				unsigned long addr, unsigned long end,
1492 				struct zap_details *details)
1493 {
1494 	pud_t *pud;
1495 	unsigned long next;
1496 
1497 	pud = pud_offset(p4d, addr);
1498 	do {
1499 		next = pud_addr_end(addr, end);
1500 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1501 			if (next - addr != HPAGE_PUD_SIZE) {
1502 				mmap_assert_locked(tlb->mm);
1503 				split_huge_pud(vma, pud, addr);
1504 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1505 				goto next;
1506 			/* fall through */
1507 		}
1508 		if (pud_none_or_clear_bad(pud))
1509 			continue;
1510 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1511 next:
1512 		cond_resched();
1513 	} while (pud++, addr = next, addr != end);
1514 
1515 	return addr;
1516 }
1517 
1518 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1519 				struct vm_area_struct *vma, pgd_t *pgd,
1520 				unsigned long addr, unsigned long end,
1521 				struct zap_details *details)
1522 {
1523 	p4d_t *p4d;
1524 	unsigned long next;
1525 
1526 	p4d = p4d_offset(pgd, addr);
1527 	do {
1528 		next = p4d_addr_end(addr, end);
1529 		if (p4d_none_or_clear_bad(p4d))
1530 			continue;
1531 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1532 	} while (p4d++, addr = next, addr != end);
1533 
1534 	return addr;
1535 }
1536 
1537 void unmap_page_range(struct mmu_gather *tlb,
1538 			     struct vm_area_struct *vma,
1539 			     unsigned long addr, unsigned long end,
1540 			     struct zap_details *details)
1541 {
1542 	pgd_t *pgd;
1543 	unsigned long next;
1544 
1545 	BUG_ON(addr >= end);
1546 	tlb_start_vma(tlb, vma);
1547 	pgd = pgd_offset(vma->vm_mm, addr);
1548 	do {
1549 		next = pgd_addr_end(addr, end);
1550 		if (pgd_none_or_clear_bad(pgd))
1551 			continue;
1552 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1553 	} while (pgd++, addr = next, addr != end);
1554 	tlb_end_vma(tlb, vma);
1555 }
1556 
1557 
1558 static void unmap_single_vma(struct mmu_gather *tlb,
1559 		struct vm_area_struct *vma, unsigned long start_addr,
1560 		unsigned long end_addr,
1561 		struct zap_details *details)
1562 {
1563 	unsigned long start = max(vma->vm_start, start_addr);
1564 	unsigned long end;
1565 
1566 	if (start >= vma->vm_end)
1567 		return;
1568 	end = min(vma->vm_end, end_addr);
1569 	if (end <= vma->vm_start)
1570 		return;
1571 
1572 	if (vma->vm_file)
1573 		uprobe_munmap(vma, start, end);
1574 
1575 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1576 		untrack_pfn(vma, 0, 0);
1577 
1578 	if (start != end) {
1579 		if (unlikely(is_vm_hugetlb_page(vma))) {
1580 			/*
1581 			 * It is undesirable to test vma->vm_file as it
1582 			 * should be non-null for valid hugetlb area.
1583 			 * However, vm_file will be NULL in the error
1584 			 * cleanup path of mmap_region. When
1585 			 * hugetlbfs ->mmap method fails,
1586 			 * mmap_region() nullifies vma->vm_file
1587 			 * before calling this function to clean up.
1588 			 * Since no pte has actually been setup, it is
1589 			 * safe to do nothing in this case.
1590 			 */
1591 			if (vma->vm_file) {
1592 				i_mmap_lock_write(vma->vm_file->f_mapping);
1593 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1594 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1595 			}
1596 		} else
1597 			unmap_page_range(tlb, vma, start, end, details);
1598 	}
1599 }
1600 
1601 /**
1602  * unmap_vmas - unmap a range of memory covered by a list of vma's
1603  * @tlb: address of the caller's struct mmu_gather
1604  * @vma: the starting vma
1605  * @start_addr: virtual address at which to start unmapping
1606  * @end_addr: virtual address at which to end unmapping
1607  *
1608  * Unmap all pages in the vma list.
1609  *
1610  * Only addresses between `start' and `end' will be unmapped.
1611  *
1612  * The VMA list must be sorted in ascending virtual address order.
1613  *
1614  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1615  * range after unmap_vmas() returns.  So the only responsibility here is to
1616  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1617  * drops the lock and schedules.
1618  */
1619 void unmap_vmas(struct mmu_gather *tlb,
1620 		struct vm_area_struct *vma, unsigned long start_addr,
1621 		unsigned long end_addr)
1622 {
1623 	struct mmu_notifier_range range;
1624 
1625 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1626 				start_addr, end_addr);
1627 	mmu_notifier_invalidate_range_start(&range);
1628 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1629 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1630 	mmu_notifier_invalidate_range_end(&range);
1631 }
1632 
1633 /**
1634  * zap_page_range - remove user pages in a given range
1635  * @vma: vm_area_struct holding the applicable pages
1636  * @start: starting address of pages to zap
1637  * @size: number of bytes to zap
1638  *
1639  * Caller must protect the VMA list
1640  */
1641 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1642 		unsigned long size)
1643 {
1644 	struct mmu_notifier_range range;
1645 	struct mmu_gather tlb;
1646 
1647 	lru_add_drain();
1648 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1649 				start, start + size);
1650 	tlb_gather_mmu(&tlb, vma->vm_mm);
1651 	update_hiwater_rss(vma->vm_mm);
1652 	mmu_notifier_invalidate_range_start(&range);
1653 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1654 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1655 	mmu_notifier_invalidate_range_end(&range);
1656 	tlb_finish_mmu(&tlb);
1657 }
1658 
1659 /**
1660  * zap_page_range_single - remove user pages in a given range
1661  * @vma: vm_area_struct holding the applicable pages
1662  * @address: starting address of pages to zap
1663  * @size: number of bytes to zap
1664  * @details: details of shared cache invalidation
1665  *
1666  * The range must fit into one VMA.
1667  */
1668 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1669 		unsigned long size, struct zap_details *details)
1670 {
1671 	struct mmu_notifier_range range;
1672 	struct mmu_gather tlb;
1673 
1674 	lru_add_drain();
1675 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1676 				address, address + size);
1677 	tlb_gather_mmu(&tlb, vma->vm_mm);
1678 	update_hiwater_rss(vma->vm_mm);
1679 	mmu_notifier_invalidate_range_start(&range);
1680 	unmap_single_vma(&tlb, vma, address, range.end, details);
1681 	mmu_notifier_invalidate_range_end(&range);
1682 	tlb_finish_mmu(&tlb);
1683 }
1684 
1685 /**
1686  * zap_vma_ptes - remove ptes mapping the vma
1687  * @vma: vm_area_struct holding ptes to be zapped
1688  * @address: starting address of pages to zap
1689  * @size: number of bytes to zap
1690  *
1691  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1692  *
1693  * The entire address range must be fully contained within the vma.
1694  *
1695  */
1696 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1697 		unsigned long size)
1698 {
1699 	if (address < vma->vm_start || address + size > vma->vm_end ||
1700 	    		!(vma->vm_flags & VM_PFNMAP))
1701 		return;
1702 
1703 	zap_page_range_single(vma, address, size, NULL);
1704 }
1705 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1706 
1707 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1708 {
1709 	pgd_t *pgd;
1710 	p4d_t *p4d;
1711 	pud_t *pud;
1712 	pmd_t *pmd;
1713 
1714 	pgd = pgd_offset(mm, addr);
1715 	p4d = p4d_alloc(mm, pgd, addr);
1716 	if (!p4d)
1717 		return NULL;
1718 	pud = pud_alloc(mm, p4d, addr);
1719 	if (!pud)
1720 		return NULL;
1721 	pmd = pmd_alloc(mm, pud, addr);
1722 	if (!pmd)
1723 		return NULL;
1724 
1725 	VM_BUG_ON(pmd_trans_huge(*pmd));
1726 	return pmd;
1727 }
1728 
1729 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1730 			spinlock_t **ptl)
1731 {
1732 	pmd_t *pmd = walk_to_pmd(mm, addr);
1733 
1734 	if (!pmd)
1735 		return NULL;
1736 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1737 }
1738 
1739 static int validate_page_before_insert(struct page *page)
1740 {
1741 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1742 		return -EINVAL;
1743 	flush_dcache_page(page);
1744 	return 0;
1745 }
1746 
1747 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1748 			unsigned long addr, struct page *page, pgprot_t prot)
1749 {
1750 	if (!pte_none(*pte))
1751 		return -EBUSY;
1752 	/* Ok, finally just insert the thing.. */
1753 	get_page(page);
1754 	inc_mm_counter_fast(mm, mm_counter_file(page));
1755 	page_add_file_rmap(page, false);
1756 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1757 	return 0;
1758 }
1759 
1760 /*
1761  * This is the old fallback for page remapping.
1762  *
1763  * For historical reasons, it only allows reserved pages. Only
1764  * old drivers should use this, and they needed to mark their
1765  * pages reserved for the old functions anyway.
1766  */
1767 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1768 			struct page *page, pgprot_t prot)
1769 {
1770 	struct mm_struct *mm = vma->vm_mm;
1771 	int retval;
1772 	pte_t *pte;
1773 	spinlock_t *ptl;
1774 
1775 	retval = validate_page_before_insert(page);
1776 	if (retval)
1777 		goto out;
1778 	retval = -ENOMEM;
1779 	pte = get_locked_pte(mm, addr, &ptl);
1780 	if (!pte)
1781 		goto out;
1782 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1783 	pte_unmap_unlock(pte, ptl);
1784 out:
1785 	return retval;
1786 }
1787 
1788 #ifdef pte_index
1789 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1790 			unsigned long addr, struct page *page, pgprot_t prot)
1791 {
1792 	int err;
1793 
1794 	if (!page_count(page))
1795 		return -EINVAL;
1796 	err = validate_page_before_insert(page);
1797 	if (err)
1798 		return err;
1799 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1800 }
1801 
1802 /* insert_pages() amortizes the cost of spinlock operations
1803  * when inserting pages in a loop. Arch *must* define pte_index.
1804  */
1805 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1806 			struct page **pages, unsigned long *num, pgprot_t prot)
1807 {
1808 	pmd_t *pmd = NULL;
1809 	pte_t *start_pte, *pte;
1810 	spinlock_t *pte_lock;
1811 	struct mm_struct *const mm = vma->vm_mm;
1812 	unsigned long curr_page_idx = 0;
1813 	unsigned long remaining_pages_total = *num;
1814 	unsigned long pages_to_write_in_pmd;
1815 	int ret;
1816 more:
1817 	ret = -EFAULT;
1818 	pmd = walk_to_pmd(mm, addr);
1819 	if (!pmd)
1820 		goto out;
1821 
1822 	pages_to_write_in_pmd = min_t(unsigned long,
1823 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1824 
1825 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1826 	ret = -ENOMEM;
1827 	if (pte_alloc(mm, pmd))
1828 		goto out;
1829 
1830 	while (pages_to_write_in_pmd) {
1831 		int pte_idx = 0;
1832 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1833 
1834 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1835 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1836 			int err = insert_page_in_batch_locked(mm, pte,
1837 				addr, pages[curr_page_idx], prot);
1838 			if (unlikely(err)) {
1839 				pte_unmap_unlock(start_pte, pte_lock);
1840 				ret = err;
1841 				remaining_pages_total -= pte_idx;
1842 				goto out;
1843 			}
1844 			addr += PAGE_SIZE;
1845 			++curr_page_idx;
1846 		}
1847 		pte_unmap_unlock(start_pte, pte_lock);
1848 		pages_to_write_in_pmd -= batch_size;
1849 		remaining_pages_total -= batch_size;
1850 	}
1851 	if (remaining_pages_total)
1852 		goto more;
1853 	ret = 0;
1854 out:
1855 	*num = remaining_pages_total;
1856 	return ret;
1857 }
1858 #endif  /* ifdef pte_index */
1859 
1860 /**
1861  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1862  * @vma: user vma to map to
1863  * @addr: target start user address of these pages
1864  * @pages: source kernel pages
1865  * @num: in: number of pages to map. out: number of pages that were *not*
1866  * mapped. (0 means all pages were successfully mapped).
1867  *
1868  * Preferred over vm_insert_page() when inserting multiple pages.
1869  *
1870  * In case of error, we may have mapped a subset of the provided
1871  * pages. It is the caller's responsibility to account for this case.
1872  *
1873  * The same restrictions apply as in vm_insert_page().
1874  */
1875 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1876 			struct page **pages, unsigned long *num)
1877 {
1878 #ifdef pte_index
1879 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1880 
1881 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1882 		return -EFAULT;
1883 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1884 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1885 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1886 		vma->vm_flags |= VM_MIXEDMAP;
1887 	}
1888 	/* Defer page refcount checking till we're about to map that page. */
1889 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1890 #else
1891 	unsigned long idx = 0, pgcount = *num;
1892 	int err = -EINVAL;
1893 
1894 	for (; idx < pgcount; ++idx) {
1895 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1896 		if (err)
1897 			break;
1898 	}
1899 	*num = pgcount - idx;
1900 	return err;
1901 #endif  /* ifdef pte_index */
1902 }
1903 EXPORT_SYMBOL(vm_insert_pages);
1904 
1905 /**
1906  * vm_insert_page - insert single page into user vma
1907  * @vma: user vma to map to
1908  * @addr: target user address of this page
1909  * @page: source kernel page
1910  *
1911  * This allows drivers to insert individual pages they've allocated
1912  * into a user vma.
1913  *
1914  * The page has to be a nice clean _individual_ kernel allocation.
1915  * If you allocate a compound page, you need to have marked it as
1916  * such (__GFP_COMP), or manually just split the page up yourself
1917  * (see split_page()).
1918  *
1919  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1920  * took an arbitrary page protection parameter. This doesn't allow
1921  * that. Your vma protection will have to be set up correctly, which
1922  * means that if you want a shared writable mapping, you'd better
1923  * ask for a shared writable mapping!
1924  *
1925  * The page does not need to be reserved.
1926  *
1927  * Usually this function is called from f_op->mmap() handler
1928  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1929  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1930  * function from other places, for example from page-fault handler.
1931  *
1932  * Return: %0 on success, negative error code otherwise.
1933  */
1934 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1935 			struct page *page)
1936 {
1937 	if (addr < vma->vm_start || addr >= vma->vm_end)
1938 		return -EFAULT;
1939 	if (!page_count(page))
1940 		return -EINVAL;
1941 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1942 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1943 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1944 		vma->vm_flags |= VM_MIXEDMAP;
1945 	}
1946 	return insert_page(vma, addr, page, vma->vm_page_prot);
1947 }
1948 EXPORT_SYMBOL(vm_insert_page);
1949 
1950 /*
1951  * __vm_map_pages - maps range of kernel pages into user vma
1952  * @vma: user vma to map to
1953  * @pages: pointer to array of source kernel pages
1954  * @num: number of pages in page array
1955  * @offset: user's requested vm_pgoff
1956  *
1957  * This allows drivers to map range of kernel pages into a user vma.
1958  *
1959  * Return: 0 on success and error code otherwise.
1960  */
1961 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1962 				unsigned long num, unsigned long offset)
1963 {
1964 	unsigned long count = vma_pages(vma);
1965 	unsigned long uaddr = vma->vm_start;
1966 	int ret, i;
1967 
1968 	/* Fail if the user requested offset is beyond the end of the object */
1969 	if (offset >= num)
1970 		return -ENXIO;
1971 
1972 	/* Fail if the user requested size exceeds available object size */
1973 	if (count > num - offset)
1974 		return -ENXIO;
1975 
1976 	for (i = 0; i < count; i++) {
1977 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1978 		if (ret < 0)
1979 			return ret;
1980 		uaddr += PAGE_SIZE;
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 /**
1987  * vm_map_pages - maps range of kernel pages starts with non zero offset
1988  * @vma: user vma to map to
1989  * @pages: pointer to array of source kernel pages
1990  * @num: number of pages in page array
1991  *
1992  * Maps an object consisting of @num pages, catering for the user's
1993  * requested vm_pgoff
1994  *
1995  * If we fail to insert any page into the vma, the function will return
1996  * immediately leaving any previously inserted pages present.  Callers
1997  * from the mmap handler may immediately return the error as their caller
1998  * will destroy the vma, removing any successfully inserted pages. Other
1999  * callers should make their own arrangements for calling unmap_region().
2000  *
2001  * Context: Process context. Called by mmap handlers.
2002  * Return: 0 on success and error code otherwise.
2003  */
2004 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2005 				unsigned long num)
2006 {
2007 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2008 }
2009 EXPORT_SYMBOL(vm_map_pages);
2010 
2011 /**
2012  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2013  * @vma: user vma to map to
2014  * @pages: pointer to array of source kernel pages
2015  * @num: number of pages in page array
2016  *
2017  * Similar to vm_map_pages(), except that it explicitly sets the offset
2018  * to 0. This function is intended for the drivers that did not consider
2019  * vm_pgoff.
2020  *
2021  * Context: Process context. Called by mmap handlers.
2022  * Return: 0 on success and error code otherwise.
2023  */
2024 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2025 				unsigned long num)
2026 {
2027 	return __vm_map_pages(vma, pages, num, 0);
2028 }
2029 EXPORT_SYMBOL(vm_map_pages_zero);
2030 
2031 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2032 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2033 {
2034 	struct mm_struct *mm = vma->vm_mm;
2035 	pte_t *pte, entry;
2036 	spinlock_t *ptl;
2037 
2038 	pte = get_locked_pte(mm, addr, &ptl);
2039 	if (!pte)
2040 		return VM_FAULT_OOM;
2041 	if (!pte_none(*pte)) {
2042 		if (mkwrite) {
2043 			/*
2044 			 * For read faults on private mappings the PFN passed
2045 			 * in may not match the PFN we have mapped if the
2046 			 * mapped PFN is a writeable COW page.  In the mkwrite
2047 			 * case we are creating a writable PTE for a shared
2048 			 * mapping and we expect the PFNs to match. If they
2049 			 * don't match, we are likely racing with block
2050 			 * allocation and mapping invalidation so just skip the
2051 			 * update.
2052 			 */
2053 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2054 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2055 				goto out_unlock;
2056 			}
2057 			entry = pte_mkyoung(*pte);
2058 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2059 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2060 				update_mmu_cache(vma, addr, pte);
2061 		}
2062 		goto out_unlock;
2063 	}
2064 
2065 	/* Ok, finally just insert the thing.. */
2066 	if (pfn_t_devmap(pfn))
2067 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2068 	else
2069 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2070 
2071 	if (mkwrite) {
2072 		entry = pte_mkyoung(entry);
2073 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074 	}
2075 
2076 	set_pte_at(mm, addr, pte, entry);
2077 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2078 
2079 out_unlock:
2080 	pte_unmap_unlock(pte, ptl);
2081 	return VM_FAULT_NOPAGE;
2082 }
2083 
2084 /**
2085  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2086  * @vma: user vma to map to
2087  * @addr: target user address of this page
2088  * @pfn: source kernel pfn
2089  * @pgprot: pgprot flags for the inserted page
2090  *
2091  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2092  * to override pgprot on a per-page basis.
2093  *
2094  * This only makes sense for IO mappings, and it makes no sense for
2095  * COW mappings.  In general, using multiple vmas is preferable;
2096  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2097  * impractical.
2098  *
2099  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2100  * a value of @pgprot different from that of @vma->vm_page_prot.
2101  *
2102  * Context: Process context.  May allocate using %GFP_KERNEL.
2103  * Return: vm_fault_t value.
2104  */
2105 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2106 			unsigned long pfn, pgprot_t pgprot)
2107 {
2108 	/*
2109 	 * Technically, architectures with pte_special can avoid all these
2110 	 * restrictions (same for remap_pfn_range).  However we would like
2111 	 * consistency in testing and feature parity among all, so we should
2112 	 * try to keep these invariants in place for everybody.
2113 	 */
2114 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2115 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2116 						(VM_PFNMAP|VM_MIXEDMAP));
2117 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2118 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2119 
2120 	if (addr < vma->vm_start || addr >= vma->vm_end)
2121 		return VM_FAULT_SIGBUS;
2122 
2123 	if (!pfn_modify_allowed(pfn, pgprot))
2124 		return VM_FAULT_SIGBUS;
2125 
2126 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2127 
2128 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2129 			false);
2130 }
2131 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2132 
2133 /**
2134  * vmf_insert_pfn - insert single pfn into user vma
2135  * @vma: user vma to map to
2136  * @addr: target user address of this page
2137  * @pfn: source kernel pfn
2138  *
2139  * Similar to vm_insert_page, this allows drivers to insert individual pages
2140  * they've allocated into a user vma. Same comments apply.
2141  *
2142  * This function should only be called from a vm_ops->fault handler, and
2143  * in that case the handler should return the result of this function.
2144  *
2145  * vma cannot be a COW mapping.
2146  *
2147  * As this is called only for pages that do not currently exist, we
2148  * do not need to flush old virtual caches or the TLB.
2149  *
2150  * Context: Process context.  May allocate using %GFP_KERNEL.
2151  * Return: vm_fault_t value.
2152  */
2153 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2154 			unsigned long pfn)
2155 {
2156 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2157 }
2158 EXPORT_SYMBOL(vmf_insert_pfn);
2159 
2160 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2161 {
2162 	/* these checks mirror the abort conditions in vm_normal_page */
2163 	if (vma->vm_flags & VM_MIXEDMAP)
2164 		return true;
2165 	if (pfn_t_devmap(pfn))
2166 		return true;
2167 	if (pfn_t_special(pfn))
2168 		return true;
2169 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2170 		return true;
2171 	return false;
2172 }
2173 
2174 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2175 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2176 		bool mkwrite)
2177 {
2178 	int err;
2179 
2180 	BUG_ON(!vm_mixed_ok(vma, pfn));
2181 
2182 	if (addr < vma->vm_start || addr >= vma->vm_end)
2183 		return VM_FAULT_SIGBUS;
2184 
2185 	track_pfn_insert(vma, &pgprot, pfn);
2186 
2187 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2188 		return VM_FAULT_SIGBUS;
2189 
2190 	/*
2191 	 * If we don't have pte special, then we have to use the pfn_valid()
2192 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2193 	 * refcount the page if pfn_valid is true (hence insert_page rather
2194 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2195 	 * without pte special, it would there be refcounted as a normal page.
2196 	 */
2197 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2198 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2199 		struct page *page;
2200 
2201 		/*
2202 		 * At this point we are committed to insert_page()
2203 		 * regardless of whether the caller specified flags that
2204 		 * result in pfn_t_has_page() == false.
2205 		 */
2206 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2207 		err = insert_page(vma, addr, page, pgprot);
2208 	} else {
2209 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2210 	}
2211 
2212 	if (err == -ENOMEM)
2213 		return VM_FAULT_OOM;
2214 	if (err < 0 && err != -EBUSY)
2215 		return VM_FAULT_SIGBUS;
2216 
2217 	return VM_FAULT_NOPAGE;
2218 }
2219 
2220 /**
2221  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2222  * @vma: user vma to map to
2223  * @addr: target user address of this page
2224  * @pfn: source kernel pfn
2225  * @pgprot: pgprot flags for the inserted page
2226  *
2227  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2228  * to override pgprot on a per-page basis.
2229  *
2230  * Typically this function should be used by drivers to set caching- and
2231  * encryption bits different than those of @vma->vm_page_prot, because
2232  * the caching- or encryption mode may not be known at mmap() time.
2233  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2234  * to set caching and encryption bits for those vmas (except for COW pages).
2235  * This is ensured by core vm only modifying these page table entries using
2236  * functions that don't touch caching- or encryption bits, using pte_modify()
2237  * if needed. (See for example mprotect()).
2238  * Also when new page-table entries are created, this is only done using the
2239  * fault() callback, and never using the value of vma->vm_page_prot,
2240  * except for page-table entries that point to anonymous pages as the result
2241  * of COW.
2242  *
2243  * Context: Process context.  May allocate using %GFP_KERNEL.
2244  * Return: vm_fault_t value.
2245  */
2246 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2247 				 pfn_t pfn, pgprot_t pgprot)
2248 {
2249 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2250 }
2251 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2252 
2253 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2254 		pfn_t pfn)
2255 {
2256 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2257 }
2258 EXPORT_SYMBOL(vmf_insert_mixed);
2259 
2260 /*
2261  *  If the insertion of PTE failed because someone else already added a
2262  *  different entry in the mean time, we treat that as success as we assume
2263  *  the same entry was actually inserted.
2264  */
2265 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2266 		unsigned long addr, pfn_t pfn)
2267 {
2268 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2269 }
2270 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2271 
2272 /*
2273  * maps a range of physical memory into the requested pages. the old
2274  * mappings are removed. any references to nonexistent pages results
2275  * in null mappings (currently treated as "copy-on-access")
2276  */
2277 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2278 			unsigned long addr, unsigned long end,
2279 			unsigned long pfn, pgprot_t prot)
2280 {
2281 	pte_t *pte, *mapped_pte;
2282 	spinlock_t *ptl;
2283 	int err = 0;
2284 
2285 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2286 	if (!pte)
2287 		return -ENOMEM;
2288 	arch_enter_lazy_mmu_mode();
2289 	do {
2290 		BUG_ON(!pte_none(*pte));
2291 		if (!pfn_modify_allowed(pfn, prot)) {
2292 			err = -EACCES;
2293 			break;
2294 		}
2295 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2296 		pfn++;
2297 	} while (pte++, addr += PAGE_SIZE, addr != end);
2298 	arch_leave_lazy_mmu_mode();
2299 	pte_unmap_unlock(mapped_pte, ptl);
2300 	return err;
2301 }
2302 
2303 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2304 			unsigned long addr, unsigned long end,
2305 			unsigned long pfn, pgprot_t prot)
2306 {
2307 	pmd_t *pmd;
2308 	unsigned long next;
2309 	int err;
2310 
2311 	pfn -= addr >> PAGE_SHIFT;
2312 	pmd = pmd_alloc(mm, pud, addr);
2313 	if (!pmd)
2314 		return -ENOMEM;
2315 	VM_BUG_ON(pmd_trans_huge(*pmd));
2316 	do {
2317 		next = pmd_addr_end(addr, end);
2318 		err = remap_pte_range(mm, pmd, addr, next,
2319 				pfn + (addr >> PAGE_SHIFT), prot);
2320 		if (err)
2321 			return err;
2322 	} while (pmd++, addr = next, addr != end);
2323 	return 0;
2324 }
2325 
2326 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2327 			unsigned long addr, unsigned long end,
2328 			unsigned long pfn, pgprot_t prot)
2329 {
2330 	pud_t *pud;
2331 	unsigned long next;
2332 	int err;
2333 
2334 	pfn -= addr >> PAGE_SHIFT;
2335 	pud = pud_alloc(mm, p4d, addr);
2336 	if (!pud)
2337 		return -ENOMEM;
2338 	do {
2339 		next = pud_addr_end(addr, end);
2340 		err = remap_pmd_range(mm, pud, addr, next,
2341 				pfn + (addr >> PAGE_SHIFT), prot);
2342 		if (err)
2343 			return err;
2344 	} while (pud++, addr = next, addr != end);
2345 	return 0;
2346 }
2347 
2348 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2349 			unsigned long addr, unsigned long end,
2350 			unsigned long pfn, pgprot_t prot)
2351 {
2352 	p4d_t *p4d;
2353 	unsigned long next;
2354 	int err;
2355 
2356 	pfn -= addr >> PAGE_SHIFT;
2357 	p4d = p4d_alloc(mm, pgd, addr);
2358 	if (!p4d)
2359 		return -ENOMEM;
2360 	do {
2361 		next = p4d_addr_end(addr, end);
2362 		err = remap_pud_range(mm, p4d, addr, next,
2363 				pfn + (addr >> PAGE_SHIFT), prot);
2364 		if (err)
2365 			return err;
2366 	} while (p4d++, addr = next, addr != end);
2367 	return 0;
2368 }
2369 
2370 /*
2371  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2372  * must have pre-validated the caching bits of the pgprot_t.
2373  */
2374 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2375 		unsigned long pfn, unsigned long size, pgprot_t prot)
2376 {
2377 	pgd_t *pgd;
2378 	unsigned long next;
2379 	unsigned long end = addr + PAGE_ALIGN(size);
2380 	struct mm_struct *mm = vma->vm_mm;
2381 	int err;
2382 
2383 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2384 		return -EINVAL;
2385 
2386 	/*
2387 	 * Physically remapped pages are special. Tell the
2388 	 * rest of the world about it:
2389 	 *   VM_IO tells people not to look at these pages
2390 	 *	(accesses can have side effects).
2391 	 *   VM_PFNMAP tells the core MM that the base pages are just
2392 	 *	raw PFN mappings, and do not have a "struct page" associated
2393 	 *	with them.
2394 	 *   VM_DONTEXPAND
2395 	 *      Disable vma merging and expanding with mremap().
2396 	 *   VM_DONTDUMP
2397 	 *      Omit vma from core dump, even when VM_IO turned off.
2398 	 *
2399 	 * There's a horrible special case to handle copy-on-write
2400 	 * behaviour that some programs depend on. We mark the "original"
2401 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2402 	 * See vm_normal_page() for details.
2403 	 */
2404 	if (is_cow_mapping(vma->vm_flags)) {
2405 		if (addr != vma->vm_start || end != vma->vm_end)
2406 			return -EINVAL;
2407 		vma->vm_pgoff = pfn;
2408 	}
2409 
2410 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2411 
2412 	BUG_ON(addr >= end);
2413 	pfn -= addr >> PAGE_SHIFT;
2414 	pgd = pgd_offset(mm, addr);
2415 	flush_cache_range(vma, addr, end);
2416 	do {
2417 		next = pgd_addr_end(addr, end);
2418 		err = remap_p4d_range(mm, pgd, addr, next,
2419 				pfn + (addr >> PAGE_SHIFT), prot);
2420 		if (err)
2421 			return err;
2422 	} while (pgd++, addr = next, addr != end);
2423 
2424 	return 0;
2425 }
2426 
2427 /**
2428  * remap_pfn_range - remap kernel memory to userspace
2429  * @vma: user vma to map to
2430  * @addr: target page aligned user address to start at
2431  * @pfn: page frame number of kernel physical memory address
2432  * @size: size of mapping area
2433  * @prot: page protection flags for this mapping
2434  *
2435  * Note: this is only safe if the mm semaphore is held when called.
2436  *
2437  * Return: %0 on success, negative error code otherwise.
2438  */
2439 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2440 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2441 {
2442 	int err;
2443 
2444 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2445 	if (err)
2446 		return -EINVAL;
2447 
2448 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2449 	if (err)
2450 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2451 	return err;
2452 }
2453 EXPORT_SYMBOL(remap_pfn_range);
2454 
2455 /**
2456  * vm_iomap_memory - remap memory to userspace
2457  * @vma: user vma to map to
2458  * @start: start of the physical memory to be mapped
2459  * @len: size of area
2460  *
2461  * This is a simplified io_remap_pfn_range() for common driver use. The
2462  * driver just needs to give us the physical memory range to be mapped,
2463  * we'll figure out the rest from the vma information.
2464  *
2465  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2466  * whatever write-combining details or similar.
2467  *
2468  * Return: %0 on success, negative error code otherwise.
2469  */
2470 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2471 {
2472 	unsigned long vm_len, pfn, pages;
2473 
2474 	/* Check that the physical memory area passed in looks valid */
2475 	if (start + len < start)
2476 		return -EINVAL;
2477 	/*
2478 	 * You *really* shouldn't map things that aren't page-aligned,
2479 	 * but we've historically allowed it because IO memory might
2480 	 * just have smaller alignment.
2481 	 */
2482 	len += start & ~PAGE_MASK;
2483 	pfn = start >> PAGE_SHIFT;
2484 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2485 	if (pfn + pages < pfn)
2486 		return -EINVAL;
2487 
2488 	/* We start the mapping 'vm_pgoff' pages into the area */
2489 	if (vma->vm_pgoff > pages)
2490 		return -EINVAL;
2491 	pfn += vma->vm_pgoff;
2492 	pages -= vma->vm_pgoff;
2493 
2494 	/* Can we fit all of the mapping? */
2495 	vm_len = vma->vm_end - vma->vm_start;
2496 	if (vm_len >> PAGE_SHIFT > pages)
2497 		return -EINVAL;
2498 
2499 	/* Ok, let it rip */
2500 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2501 }
2502 EXPORT_SYMBOL(vm_iomap_memory);
2503 
2504 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2505 				     unsigned long addr, unsigned long end,
2506 				     pte_fn_t fn, void *data, bool create,
2507 				     pgtbl_mod_mask *mask)
2508 {
2509 	pte_t *pte, *mapped_pte;
2510 	int err = 0;
2511 	spinlock_t *ptl;
2512 
2513 	if (create) {
2514 		mapped_pte = pte = (mm == &init_mm) ?
2515 			pte_alloc_kernel_track(pmd, addr, mask) :
2516 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2517 		if (!pte)
2518 			return -ENOMEM;
2519 	} else {
2520 		mapped_pte = pte = (mm == &init_mm) ?
2521 			pte_offset_kernel(pmd, addr) :
2522 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2523 	}
2524 
2525 	BUG_ON(pmd_huge(*pmd));
2526 
2527 	arch_enter_lazy_mmu_mode();
2528 
2529 	if (fn) {
2530 		do {
2531 			if (create || !pte_none(*pte)) {
2532 				err = fn(pte++, addr, data);
2533 				if (err)
2534 					break;
2535 			}
2536 		} while (addr += PAGE_SIZE, addr != end);
2537 	}
2538 	*mask |= PGTBL_PTE_MODIFIED;
2539 
2540 	arch_leave_lazy_mmu_mode();
2541 
2542 	if (mm != &init_mm)
2543 		pte_unmap_unlock(mapped_pte, ptl);
2544 	return err;
2545 }
2546 
2547 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2548 				     unsigned long addr, unsigned long end,
2549 				     pte_fn_t fn, void *data, bool create,
2550 				     pgtbl_mod_mask *mask)
2551 {
2552 	pmd_t *pmd;
2553 	unsigned long next;
2554 	int err = 0;
2555 
2556 	BUG_ON(pud_huge(*pud));
2557 
2558 	if (create) {
2559 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2560 		if (!pmd)
2561 			return -ENOMEM;
2562 	} else {
2563 		pmd = pmd_offset(pud, addr);
2564 	}
2565 	do {
2566 		next = pmd_addr_end(addr, end);
2567 		if (pmd_none(*pmd) && !create)
2568 			continue;
2569 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2570 			return -EINVAL;
2571 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2572 			if (!create)
2573 				continue;
2574 			pmd_clear_bad(pmd);
2575 		}
2576 		err = apply_to_pte_range(mm, pmd, addr, next,
2577 					 fn, data, create, mask);
2578 		if (err)
2579 			break;
2580 	} while (pmd++, addr = next, addr != end);
2581 
2582 	return err;
2583 }
2584 
2585 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2586 				     unsigned long addr, unsigned long end,
2587 				     pte_fn_t fn, void *data, bool create,
2588 				     pgtbl_mod_mask *mask)
2589 {
2590 	pud_t *pud;
2591 	unsigned long next;
2592 	int err = 0;
2593 
2594 	if (create) {
2595 		pud = pud_alloc_track(mm, p4d, addr, mask);
2596 		if (!pud)
2597 			return -ENOMEM;
2598 	} else {
2599 		pud = pud_offset(p4d, addr);
2600 	}
2601 	do {
2602 		next = pud_addr_end(addr, end);
2603 		if (pud_none(*pud) && !create)
2604 			continue;
2605 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2606 			return -EINVAL;
2607 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2608 			if (!create)
2609 				continue;
2610 			pud_clear_bad(pud);
2611 		}
2612 		err = apply_to_pmd_range(mm, pud, addr, next,
2613 					 fn, data, create, mask);
2614 		if (err)
2615 			break;
2616 	} while (pud++, addr = next, addr != end);
2617 
2618 	return err;
2619 }
2620 
2621 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2622 				     unsigned long addr, unsigned long end,
2623 				     pte_fn_t fn, void *data, bool create,
2624 				     pgtbl_mod_mask *mask)
2625 {
2626 	p4d_t *p4d;
2627 	unsigned long next;
2628 	int err = 0;
2629 
2630 	if (create) {
2631 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2632 		if (!p4d)
2633 			return -ENOMEM;
2634 	} else {
2635 		p4d = p4d_offset(pgd, addr);
2636 	}
2637 	do {
2638 		next = p4d_addr_end(addr, end);
2639 		if (p4d_none(*p4d) && !create)
2640 			continue;
2641 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2642 			return -EINVAL;
2643 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2644 			if (!create)
2645 				continue;
2646 			p4d_clear_bad(p4d);
2647 		}
2648 		err = apply_to_pud_range(mm, p4d, addr, next,
2649 					 fn, data, create, mask);
2650 		if (err)
2651 			break;
2652 	} while (p4d++, addr = next, addr != end);
2653 
2654 	return err;
2655 }
2656 
2657 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2658 				 unsigned long size, pte_fn_t fn,
2659 				 void *data, bool create)
2660 {
2661 	pgd_t *pgd;
2662 	unsigned long start = addr, next;
2663 	unsigned long end = addr + size;
2664 	pgtbl_mod_mask mask = 0;
2665 	int err = 0;
2666 
2667 	if (WARN_ON(addr >= end))
2668 		return -EINVAL;
2669 
2670 	pgd = pgd_offset(mm, addr);
2671 	do {
2672 		next = pgd_addr_end(addr, end);
2673 		if (pgd_none(*pgd) && !create)
2674 			continue;
2675 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2676 			return -EINVAL;
2677 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2678 			if (!create)
2679 				continue;
2680 			pgd_clear_bad(pgd);
2681 		}
2682 		err = apply_to_p4d_range(mm, pgd, addr, next,
2683 					 fn, data, create, &mask);
2684 		if (err)
2685 			break;
2686 	} while (pgd++, addr = next, addr != end);
2687 
2688 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2689 		arch_sync_kernel_mappings(start, start + size);
2690 
2691 	return err;
2692 }
2693 
2694 /*
2695  * Scan a region of virtual memory, filling in page tables as necessary
2696  * and calling a provided function on each leaf page table.
2697  */
2698 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2699 			unsigned long size, pte_fn_t fn, void *data)
2700 {
2701 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2702 }
2703 EXPORT_SYMBOL_GPL(apply_to_page_range);
2704 
2705 /*
2706  * Scan a region of virtual memory, calling a provided function on
2707  * each leaf page table where it exists.
2708  *
2709  * Unlike apply_to_page_range, this does _not_ fill in page tables
2710  * where they are absent.
2711  */
2712 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2713 				 unsigned long size, pte_fn_t fn, void *data)
2714 {
2715 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2716 }
2717 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2718 
2719 /*
2720  * handle_pte_fault chooses page fault handler according to an entry which was
2721  * read non-atomically.  Before making any commitment, on those architectures
2722  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2723  * parts, do_swap_page must check under lock before unmapping the pte and
2724  * proceeding (but do_wp_page is only called after already making such a check;
2725  * and do_anonymous_page can safely check later on).
2726  */
2727 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2728 				pte_t *page_table, pte_t orig_pte)
2729 {
2730 	int same = 1;
2731 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2732 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2733 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2734 		spin_lock(ptl);
2735 		same = pte_same(*page_table, orig_pte);
2736 		spin_unlock(ptl);
2737 	}
2738 #endif
2739 	pte_unmap(page_table);
2740 	return same;
2741 }
2742 
2743 static inline bool cow_user_page(struct page *dst, struct page *src,
2744 				 struct vm_fault *vmf)
2745 {
2746 	bool ret;
2747 	void *kaddr;
2748 	void __user *uaddr;
2749 	bool locked = false;
2750 	struct vm_area_struct *vma = vmf->vma;
2751 	struct mm_struct *mm = vma->vm_mm;
2752 	unsigned long addr = vmf->address;
2753 
2754 	if (likely(src)) {
2755 		copy_user_highpage(dst, src, addr, vma);
2756 		return true;
2757 	}
2758 
2759 	/*
2760 	 * If the source page was a PFN mapping, we don't have
2761 	 * a "struct page" for it. We do a best-effort copy by
2762 	 * just copying from the original user address. If that
2763 	 * fails, we just zero-fill it. Live with it.
2764 	 */
2765 	kaddr = kmap_atomic(dst);
2766 	uaddr = (void __user *)(addr & PAGE_MASK);
2767 
2768 	/*
2769 	 * On architectures with software "accessed" bits, we would
2770 	 * take a double page fault, so mark it accessed here.
2771 	 */
2772 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2773 		pte_t entry;
2774 
2775 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2776 		locked = true;
2777 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2778 			/*
2779 			 * Other thread has already handled the fault
2780 			 * and update local tlb only
2781 			 */
2782 			update_mmu_tlb(vma, addr, vmf->pte);
2783 			ret = false;
2784 			goto pte_unlock;
2785 		}
2786 
2787 		entry = pte_mkyoung(vmf->orig_pte);
2788 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2789 			update_mmu_cache(vma, addr, vmf->pte);
2790 	}
2791 
2792 	/*
2793 	 * This really shouldn't fail, because the page is there
2794 	 * in the page tables. But it might just be unreadable,
2795 	 * in which case we just give up and fill the result with
2796 	 * zeroes.
2797 	 */
2798 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2799 		if (locked)
2800 			goto warn;
2801 
2802 		/* Re-validate under PTL if the page is still mapped */
2803 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2804 		locked = true;
2805 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2806 			/* The PTE changed under us, update local tlb */
2807 			update_mmu_tlb(vma, addr, vmf->pte);
2808 			ret = false;
2809 			goto pte_unlock;
2810 		}
2811 
2812 		/*
2813 		 * The same page can be mapped back since last copy attempt.
2814 		 * Try to copy again under PTL.
2815 		 */
2816 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2817 			/*
2818 			 * Give a warn in case there can be some obscure
2819 			 * use-case
2820 			 */
2821 warn:
2822 			WARN_ON_ONCE(1);
2823 			clear_page(kaddr);
2824 		}
2825 	}
2826 
2827 	ret = true;
2828 
2829 pte_unlock:
2830 	if (locked)
2831 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2832 	kunmap_atomic(kaddr);
2833 	flush_dcache_page(dst);
2834 
2835 	return ret;
2836 }
2837 
2838 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2839 {
2840 	struct file *vm_file = vma->vm_file;
2841 
2842 	if (vm_file)
2843 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2844 
2845 	/*
2846 	 * Special mappings (e.g. VDSO) do not have any file so fake
2847 	 * a default GFP_KERNEL for them.
2848 	 */
2849 	return GFP_KERNEL;
2850 }
2851 
2852 /*
2853  * Notify the address space that the page is about to become writable so that
2854  * it can prohibit this or wait for the page to get into an appropriate state.
2855  *
2856  * We do this without the lock held, so that it can sleep if it needs to.
2857  */
2858 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2859 {
2860 	vm_fault_t ret;
2861 	struct page *page = vmf->page;
2862 	unsigned int old_flags = vmf->flags;
2863 
2864 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2865 
2866 	if (vmf->vma->vm_file &&
2867 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2868 		return VM_FAULT_SIGBUS;
2869 
2870 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2871 	/* Restore original flags so that caller is not surprised */
2872 	vmf->flags = old_flags;
2873 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2874 		return ret;
2875 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2876 		lock_page(page);
2877 		if (!page->mapping) {
2878 			unlock_page(page);
2879 			return 0; /* retry */
2880 		}
2881 		ret |= VM_FAULT_LOCKED;
2882 	} else
2883 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2884 	return ret;
2885 }
2886 
2887 /*
2888  * Handle dirtying of a page in shared file mapping on a write fault.
2889  *
2890  * The function expects the page to be locked and unlocks it.
2891  */
2892 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2893 {
2894 	struct vm_area_struct *vma = vmf->vma;
2895 	struct address_space *mapping;
2896 	struct page *page = vmf->page;
2897 	bool dirtied;
2898 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2899 
2900 	dirtied = set_page_dirty(page);
2901 	VM_BUG_ON_PAGE(PageAnon(page), page);
2902 	/*
2903 	 * Take a local copy of the address_space - page.mapping may be zeroed
2904 	 * by truncate after unlock_page().   The address_space itself remains
2905 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2906 	 * release semantics to prevent the compiler from undoing this copying.
2907 	 */
2908 	mapping = page_rmapping(page);
2909 	unlock_page(page);
2910 
2911 	if (!page_mkwrite)
2912 		file_update_time(vma->vm_file);
2913 
2914 	/*
2915 	 * Throttle page dirtying rate down to writeback speed.
2916 	 *
2917 	 * mapping may be NULL here because some device drivers do not
2918 	 * set page.mapping but still dirty their pages
2919 	 *
2920 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2921 	 * is pinning the mapping, as per above.
2922 	 */
2923 	if ((dirtied || page_mkwrite) && mapping) {
2924 		struct file *fpin;
2925 
2926 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2927 		balance_dirty_pages_ratelimited(mapping);
2928 		if (fpin) {
2929 			fput(fpin);
2930 			return VM_FAULT_RETRY;
2931 		}
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 /*
2938  * Handle write page faults for pages that can be reused in the current vma
2939  *
2940  * This can happen either due to the mapping being with the VM_SHARED flag,
2941  * or due to us being the last reference standing to the page. In either
2942  * case, all we need to do here is to mark the page as writable and update
2943  * any related book-keeping.
2944  */
2945 static inline void wp_page_reuse(struct vm_fault *vmf)
2946 	__releases(vmf->ptl)
2947 {
2948 	struct vm_area_struct *vma = vmf->vma;
2949 	struct page *page = vmf->page;
2950 	pte_t entry;
2951 	/*
2952 	 * Clear the pages cpupid information as the existing
2953 	 * information potentially belongs to a now completely
2954 	 * unrelated process.
2955 	 */
2956 	if (page)
2957 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2958 
2959 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2960 	entry = pte_mkyoung(vmf->orig_pte);
2961 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2962 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2963 		update_mmu_cache(vma, vmf->address, vmf->pte);
2964 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2965 	count_vm_event(PGREUSE);
2966 }
2967 
2968 /*
2969  * Handle the case of a page which we actually need to copy to a new page.
2970  *
2971  * Called with mmap_lock locked and the old page referenced, but
2972  * without the ptl held.
2973  *
2974  * High level logic flow:
2975  *
2976  * - Allocate a page, copy the content of the old page to the new one.
2977  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2978  * - Take the PTL. If the pte changed, bail out and release the allocated page
2979  * - If the pte is still the way we remember it, update the page table and all
2980  *   relevant references. This includes dropping the reference the page-table
2981  *   held to the old page, as well as updating the rmap.
2982  * - In any case, unlock the PTL and drop the reference we took to the old page.
2983  */
2984 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2985 {
2986 	struct vm_area_struct *vma = vmf->vma;
2987 	struct mm_struct *mm = vma->vm_mm;
2988 	struct page *old_page = vmf->page;
2989 	struct page *new_page = NULL;
2990 	pte_t entry;
2991 	int page_copied = 0;
2992 	struct mmu_notifier_range range;
2993 
2994 	if (unlikely(anon_vma_prepare(vma)))
2995 		goto oom;
2996 
2997 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2998 		new_page = alloc_zeroed_user_highpage_movable(vma,
2999 							      vmf->address);
3000 		if (!new_page)
3001 			goto oom;
3002 	} else {
3003 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3004 				vmf->address);
3005 		if (!new_page)
3006 			goto oom;
3007 
3008 		if (!cow_user_page(new_page, old_page, vmf)) {
3009 			/*
3010 			 * COW failed, if the fault was solved by other,
3011 			 * it's fine. If not, userspace would re-fault on
3012 			 * the same address and we will handle the fault
3013 			 * from the second attempt.
3014 			 */
3015 			put_page(new_page);
3016 			if (old_page)
3017 				put_page(old_page);
3018 			return 0;
3019 		}
3020 	}
3021 
3022 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3023 		goto oom_free_new;
3024 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3025 
3026 	__SetPageUptodate(new_page);
3027 
3028 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3029 				vmf->address & PAGE_MASK,
3030 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3031 	mmu_notifier_invalidate_range_start(&range);
3032 
3033 	/*
3034 	 * Re-check the pte - we dropped the lock
3035 	 */
3036 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3037 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3038 		if (old_page) {
3039 			if (!PageAnon(old_page)) {
3040 				dec_mm_counter_fast(mm,
3041 						mm_counter_file(old_page));
3042 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3043 			}
3044 		} else {
3045 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3046 		}
3047 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3048 		entry = mk_pte(new_page, vma->vm_page_prot);
3049 		entry = pte_sw_mkyoung(entry);
3050 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3051 
3052 		/*
3053 		 * Clear the pte entry and flush it first, before updating the
3054 		 * pte with the new entry, to keep TLBs on different CPUs in
3055 		 * sync. This code used to set the new PTE then flush TLBs, but
3056 		 * that left a window where the new PTE could be loaded into
3057 		 * some TLBs while the old PTE remains in others.
3058 		 */
3059 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3060 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3061 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3062 		/*
3063 		 * We call the notify macro here because, when using secondary
3064 		 * mmu page tables (such as kvm shadow page tables), we want the
3065 		 * new page to be mapped directly into the secondary page table.
3066 		 */
3067 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3068 		update_mmu_cache(vma, vmf->address, vmf->pte);
3069 		if (old_page) {
3070 			/*
3071 			 * Only after switching the pte to the new page may
3072 			 * we remove the mapcount here. Otherwise another
3073 			 * process may come and find the rmap count decremented
3074 			 * before the pte is switched to the new page, and
3075 			 * "reuse" the old page writing into it while our pte
3076 			 * here still points into it and can be read by other
3077 			 * threads.
3078 			 *
3079 			 * The critical issue is to order this
3080 			 * page_remove_rmap with the ptp_clear_flush above.
3081 			 * Those stores are ordered by (if nothing else,)
3082 			 * the barrier present in the atomic_add_negative
3083 			 * in page_remove_rmap.
3084 			 *
3085 			 * Then the TLB flush in ptep_clear_flush ensures that
3086 			 * no process can access the old page before the
3087 			 * decremented mapcount is visible. And the old page
3088 			 * cannot be reused until after the decremented
3089 			 * mapcount is visible. So transitively, TLBs to
3090 			 * old page will be flushed before it can be reused.
3091 			 */
3092 			page_remove_rmap(old_page, false);
3093 		}
3094 
3095 		/* Free the old page.. */
3096 		new_page = old_page;
3097 		page_copied = 1;
3098 	} else {
3099 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3100 	}
3101 
3102 	if (new_page)
3103 		put_page(new_page);
3104 
3105 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3106 	/*
3107 	 * No need to double call mmu_notifier->invalidate_range() callback as
3108 	 * the above ptep_clear_flush_notify() did already call it.
3109 	 */
3110 	mmu_notifier_invalidate_range_only_end(&range);
3111 	if (old_page) {
3112 		/*
3113 		 * Don't let another task, with possibly unlocked vma,
3114 		 * keep the mlocked page.
3115 		 */
3116 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3117 			lock_page(old_page);	/* LRU manipulation */
3118 			if (PageMlocked(old_page))
3119 				munlock_vma_page(old_page);
3120 			unlock_page(old_page);
3121 		}
3122 		if (page_copied)
3123 			free_swap_cache(old_page);
3124 		put_page(old_page);
3125 	}
3126 	return page_copied ? VM_FAULT_WRITE : 0;
3127 oom_free_new:
3128 	put_page(new_page);
3129 oom:
3130 	if (old_page)
3131 		put_page(old_page);
3132 	return VM_FAULT_OOM;
3133 }
3134 
3135 /**
3136  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3137  *			  writeable once the page is prepared
3138  *
3139  * @vmf: structure describing the fault
3140  *
3141  * This function handles all that is needed to finish a write page fault in a
3142  * shared mapping due to PTE being read-only once the mapped page is prepared.
3143  * It handles locking of PTE and modifying it.
3144  *
3145  * The function expects the page to be locked or other protection against
3146  * concurrent faults / writeback (such as DAX radix tree locks).
3147  *
3148  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3149  * we acquired PTE lock.
3150  */
3151 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3152 {
3153 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3154 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3155 				       &vmf->ptl);
3156 	/*
3157 	 * We might have raced with another page fault while we released the
3158 	 * pte_offset_map_lock.
3159 	 */
3160 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3161 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3162 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3163 		return VM_FAULT_NOPAGE;
3164 	}
3165 	wp_page_reuse(vmf);
3166 	return 0;
3167 }
3168 
3169 /*
3170  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3171  * mapping
3172  */
3173 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3174 {
3175 	struct vm_area_struct *vma = vmf->vma;
3176 
3177 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3178 		vm_fault_t ret;
3179 
3180 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3181 		vmf->flags |= FAULT_FLAG_MKWRITE;
3182 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3183 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3184 			return ret;
3185 		return finish_mkwrite_fault(vmf);
3186 	}
3187 	wp_page_reuse(vmf);
3188 	return VM_FAULT_WRITE;
3189 }
3190 
3191 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3192 	__releases(vmf->ptl)
3193 {
3194 	struct vm_area_struct *vma = vmf->vma;
3195 	vm_fault_t ret = VM_FAULT_WRITE;
3196 
3197 	get_page(vmf->page);
3198 
3199 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3200 		vm_fault_t tmp;
3201 
3202 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3203 		tmp = do_page_mkwrite(vmf);
3204 		if (unlikely(!tmp || (tmp &
3205 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3206 			put_page(vmf->page);
3207 			return tmp;
3208 		}
3209 		tmp = finish_mkwrite_fault(vmf);
3210 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3211 			unlock_page(vmf->page);
3212 			put_page(vmf->page);
3213 			return tmp;
3214 		}
3215 	} else {
3216 		wp_page_reuse(vmf);
3217 		lock_page(vmf->page);
3218 	}
3219 	ret |= fault_dirty_shared_page(vmf);
3220 	put_page(vmf->page);
3221 
3222 	return ret;
3223 }
3224 
3225 /*
3226  * This routine handles present pages, when users try to write
3227  * to a shared page. It is done by copying the page to a new address
3228  * and decrementing the shared-page counter for the old page.
3229  *
3230  * Note that this routine assumes that the protection checks have been
3231  * done by the caller (the low-level page fault routine in most cases).
3232  * Thus we can safely just mark it writable once we've done any necessary
3233  * COW.
3234  *
3235  * We also mark the page dirty at this point even though the page will
3236  * change only once the write actually happens. This avoids a few races,
3237  * and potentially makes it more efficient.
3238  *
3239  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3240  * but allow concurrent faults), with pte both mapped and locked.
3241  * We return with mmap_lock still held, but pte unmapped and unlocked.
3242  */
3243 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3244 	__releases(vmf->ptl)
3245 {
3246 	struct vm_area_struct *vma = vmf->vma;
3247 
3248 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3249 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3250 		return handle_userfault(vmf, VM_UFFD_WP);
3251 	}
3252 
3253 	/*
3254 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3255 	 * is flushed in this case before copying.
3256 	 */
3257 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3258 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3259 		flush_tlb_page(vmf->vma, vmf->address);
3260 
3261 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3262 	if (!vmf->page) {
3263 		/*
3264 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3265 		 * VM_PFNMAP VMA.
3266 		 *
3267 		 * We should not cow pages in a shared writeable mapping.
3268 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3269 		 */
3270 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3271 				     (VM_WRITE|VM_SHARED))
3272 			return wp_pfn_shared(vmf);
3273 
3274 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3275 		return wp_page_copy(vmf);
3276 	}
3277 
3278 	/*
3279 	 * Take out anonymous pages first, anonymous shared vmas are
3280 	 * not dirty accountable.
3281 	 */
3282 	if (PageAnon(vmf->page)) {
3283 		struct page *page = vmf->page;
3284 
3285 		/* PageKsm() doesn't necessarily raise the page refcount */
3286 		if (PageKsm(page) || page_count(page) != 1)
3287 			goto copy;
3288 		if (!trylock_page(page))
3289 			goto copy;
3290 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3291 			unlock_page(page);
3292 			goto copy;
3293 		}
3294 		/*
3295 		 * Ok, we've got the only map reference, and the only
3296 		 * page count reference, and the page is locked,
3297 		 * it's dark out, and we're wearing sunglasses. Hit it.
3298 		 */
3299 		unlock_page(page);
3300 		wp_page_reuse(vmf);
3301 		return VM_FAULT_WRITE;
3302 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3303 					(VM_WRITE|VM_SHARED))) {
3304 		return wp_page_shared(vmf);
3305 	}
3306 copy:
3307 	/*
3308 	 * Ok, we need to copy. Oh, well..
3309 	 */
3310 	get_page(vmf->page);
3311 
3312 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3313 	return wp_page_copy(vmf);
3314 }
3315 
3316 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3317 		unsigned long start_addr, unsigned long end_addr,
3318 		struct zap_details *details)
3319 {
3320 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3321 }
3322 
3323 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3324 					    struct zap_details *details)
3325 {
3326 	struct vm_area_struct *vma;
3327 	pgoff_t vba, vea, zba, zea;
3328 
3329 	vma_interval_tree_foreach(vma, root,
3330 			details->first_index, details->last_index) {
3331 
3332 		vba = vma->vm_pgoff;
3333 		vea = vba + vma_pages(vma) - 1;
3334 		zba = details->first_index;
3335 		if (zba < vba)
3336 			zba = vba;
3337 		zea = details->last_index;
3338 		if (zea > vea)
3339 			zea = vea;
3340 
3341 		unmap_mapping_range_vma(vma,
3342 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3343 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3344 				details);
3345 	}
3346 }
3347 
3348 /**
3349  * unmap_mapping_page() - Unmap single page from processes.
3350  * @page: The locked page to be unmapped.
3351  *
3352  * Unmap this page from any userspace process which still has it mmaped.
3353  * Typically, for efficiency, the range of nearby pages has already been
3354  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3355  * truncation or invalidation holds the lock on a page, it may find that
3356  * the page has been remapped again: and then uses unmap_mapping_page()
3357  * to unmap it finally.
3358  */
3359 void unmap_mapping_page(struct page *page)
3360 {
3361 	struct address_space *mapping = page->mapping;
3362 	struct zap_details details = { };
3363 
3364 	VM_BUG_ON(!PageLocked(page));
3365 	VM_BUG_ON(PageTail(page));
3366 
3367 	details.check_mapping = mapping;
3368 	details.first_index = page->index;
3369 	details.last_index = page->index + thp_nr_pages(page) - 1;
3370 	details.single_page = page;
3371 
3372 	i_mmap_lock_write(mapping);
3373 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3374 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3375 	i_mmap_unlock_write(mapping);
3376 }
3377 
3378 /**
3379  * unmap_mapping_pages() - Unmap pages from processes.
3380  * @mapping: The address space containing pages to be unmapped.
3381  * @start: Index of first page to be unmapped.
3382  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3383  * @even_cows: Whether to unmap even private COWed pages.
3384  *
3385  * Unmap the pages in this address space from any userspace process which
3386  * has them mmaped.  Generally, you want to remove COWed pages as well when
3387  * a file is being truncated, but not when invalidating pages from the page
3388  * cache.
3389  */
3390 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3391 		pgoff_t nr, bool even_cows)
3392 {
3393 	struct zap_details details = { };
3394 
3395 	details.check_mapping = even_cows ? NULL : mapping;
3396 	details.first_index = start;
3397 	details.last_index = start + nr - 1;
3398 	if (details.last_index < details.first_index)
3399 		details.last_index = ULONG_MAX;
3400 
3401 	i_mmap_lock_write(mapping);
3402 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3403 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3404 	i_mmap_unlock_write(mapping);
3405 }
3406 
3407 /**
3408  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3409  * address_space corresponding to the specified byte range in the underlying
3410  * file.
3411  *
3412  * @mapping: the address space containing mmaps to be unmapped.
3413  * @holebegin: byte in first page to unmap, relative to the start of
3414  * the underlying file.  This will be rounded down to a PAGE_SIZE
3415  * boundary.  Note that this is different from truncate_pagecache(), which
3416  * must keep the partial page.  In contrast, we must get rid of
3417  * partial pages.
3418  * @holelen: size of prospective hole in bytes.  This will be rounded
3419  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3420  * end of the file.
3421  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3422  * but 0 when invalidating pagecache, don't throw away private data.
3423  */
3424 void unmap_mapping_range(struct address_space *mapping,
3425 		loff_t const holebegin, loff_t const holelen, int even_cows)
3426 {
3427 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3428 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3429 
3430 	/* Check for overflow. */
3431 	if (sizeof(holelen) > sizeof(hlen)) {
3432 		long long holeend =
3433 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3434 		if (holeend & ~(long long)ULONG_MAX)
3435 			hlen = ULONG_MAX - hba + 1;
3436 	}
3437 
3438 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3439 }
3440 EXPORT_SYMBOL(unmap_mapping_range);
3441 
3442 /*
3443  * Restore a potential device exclusive pte to a working pte entry
3444  */
3445 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3446 {
3447 	struct page *page = vmf->page;
3448 	struct vm_area_struct *vma = vmf->vma;
3449 	struct mmu_notifier_range range;
3450 
3451 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3452 		return VM_FAULT_RETRY;
3453 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3454 				vma->vm_mm, vmf->address & PAGE_MASK,
3455 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3456 	mmu_notifier_invalidate_range_start(&range);
3457 
3458 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3459 				&vmf->ptl);
3460 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3461 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3462 
3463 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 	unlock_page(page);
3465 
3466 	mmu_notifier_invalidate_range_end(&range);
3467 	return 0;
3468 }
3469 
3470 /*
3471  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3472  * but allow concurrent faults), and pte mapped but not yet locked.
3473  * We return with pte unmapped and unlocked.
3474  *
3475  * We return with the mmap_lock locked or unlocked in the same cases
3476  * as does filemap_fault().
3477  */
3478 vm_fault_t do_swap_page(struct vm_fault *vmf)
3479 {
3480 	struct vm_area_struct *vma = vmf->vma;
3481 	struct page *page = NULL, *swapcache;
3482 	struct swap_info_struct *si = NULL;
3483 	swp_entry_t entry;
3484 	pte_t pte;
3485 	int locked;
3486 	int exclusive = 0;
3487 	vm_fault_t ret = 0;
3488 	void *shadow = NULL;
3489 
3490 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3491 		goto out;
3492 
3493 	entry = pte_to_swp_entry(vmf->orig_pte);
3494 	if (unlikely(non_swap_entry(entry))) {
3495 		if (is_migration_entry(entry)) {
3496 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3497 					     vmf->address);
3498 		} else if (is_device_exclusive_entry(entry)) {
3499 			vmf->page = pfn_swap_entry_to_page(entry);
3500 			ret = remove_device_exclusive_entry(vmf);
3501 		} else if (is_device_private_entry(entry)) {
3502 			vmf->page = pfn_swap_entry_to_page(entry);
3503 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3504 		} else if (is_hwpoison_entry(entry)) {
3505 			ret = VM_FAULT_HWPOISON;
3506 		} else {
3507 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3508 			ret = VM_FAULT_SIGBUS;
3509 		}
3510 		goto out;
3511 	}
3512 
3513 	/* Prevent swapoff from happening to us. */
3514 	si = get_swap_device(entry);
3515 	if (unlikely(!si))
3516 		goto out;
3517 
3518 	delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3519 	page = lookup_swap_cache(entry, vma, vmf->address);
3520 	swapcache = page;
3521 
3522 	if (!page) {
3523 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3524 		    __swap_count(entry) == 1) {
3525 			/* skip swapcache */
3526 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3527 							vmf->address);
3528 			if (page) {
3529 				__SetPageLocked(page);
3530 				__SetPageSwapBacked(page);
3531 
3532 				if (mem_cgroup_swapin_charge_page(page,
3533 					vma->vm_mm, GFP_KERNEL, entry)) {
3534 					ret = VM_FAULT_OOM;
3535 					goto out_page;
3536 				}
3537 				mem_cgroup_swapin_uncharge_swap(entry);
3538 
3539 				shadow = get_shadow_from_swap_cache(entry);
3540 				if (shadow)
3541 					workingset_refault(page, shadow);
3542 
3543 				lru_cache_add(page);
3544 
3545 				/* To provide entry to swap_readpage() */
3546 				set_page_private(page, entry.val);
3547 				swap_readpage(page, true);
3548 				set_page_private(page, 0);
3549 			}
3550 		} else {
3551 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3552 						vmf);
3553 			swapcache = page;
3554 		}
3555 
3556 		if (!page) {
3557 			/*
3558 			 * Back out if somebody else faulted in this pte
3559 			 * while we released the pte lock.
3560 			 */
3561 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3562 					vmf->address, &vmf->ptl);
3563 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3564 				ret = VM_FAULT_OOM;
3565 			delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3566 			goto unlock;
3567 		}
3568 
3569 		/* Had to read the page from swap area: Major fault */
3570 		ret = VM_FAULT_MAJOR;
3571 		count_vm_event(PGMAJFAULT);
3572 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3573 	} else if (PageHWPoison(page)) {
3574 		/*
3575 		 * hwpoisoned dirty swapcache pages are kept for killing
3576 		 * owner processes (which may be unknown at hwpoison time)
3577 		 */
3578 		ret = VM_FAULT_HWPOISON;
3579 		delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3580 		goto out_release;
3581 	}
3582 
3583 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3584 
3585 	delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3586 	if (!locked) {
3587 		ret |= VM_FAULT_RETRY;
3588 		goto out_release;
3589 	}
3590 
3591 	/*
3592 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3593 	 * release the swapcache from under us.  The page pin, and pte_same
3594 	 * test below, are not enough to exclude that.  Even if it is still
3595 	 * swapcache, we need to check that the page's swap has not changed.
3596 	 */
3597 	if (unlikely((!PageSwapCache(page) ||
3598 			page_private(page) != entry.val)) && swapcache)
3599 		goto out_page;
3600 
3601 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3602 	if (unlikely(!page)) {
3603 		ret = VM_FAULT_OOM;
3604 		page = swapcache;
3605 		goto out_page;
3606 	}
3607 
3608 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3609 
3610 	/*
3611 	 * Back out if somebody else already faulted in this pte.
3612 	 */
3613 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3614 			&vmf->ptl);
3615 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3616 		goto out_nomap;
3617 
3618 	if (unlikely(!PageUptodate(page))) {
3619 		ret = VM_FAULT_SIGBUS;
3620 		goto out_nomap;
3621 	}
3622 
3623 	/*
3624 	 * The page isn't present yet, go ahead with the fault.
3625 	 *
3626 	 * Be careful about the sequence of operations here.
3627 	 * To get its accounting right, reuse_swap_page() must be called
3628 	 * while the page is counted on swap but not yet in mapcount i.e.
3629 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3630 	 * must be called after the swap_free(), or it will never succeed.
3631 	 */
3632 
3633 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3634 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3635 	pte = mk_pte(page, vma->vm_page_prot);
3636 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3637 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3638 		vmf->flags &= ~FAULT_FLAG_WRITE;
3639 		ret |= VM_FAULT_WRITE;
3640 		exclusive = RMAP_EXCLUSIVE;
3641 	}
3642 	flush_icache_page(vma, page);
3643 	if (pte_swp_soft_dirty(vmf->orig_pte))
3644 		pte = pte_mksoft_dirty(pte);
3645 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3646 		pte = pte_mkuffd_wp(pte);
3647 		pte = pte_wrprotect(pte);
3648 	}
3649 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3650 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3651 	vmf->orig_pte = pte;
3652 
3653 	/* ksm created a completely new copy */
3654 	if (unlikely(page != swapcache && swapcache)) {
3655 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3656 		lru_cache_add_inactive_or_unevictable(page, vma);
3657 	} else {
3658 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3659 	}
3660 
3661 	swap_free(entry);
3662 	if (mem_cgroup_swap_full(page) ||
3663 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3664 		try_to_free_swap(page);
3665 	unlock_page(page);
3666 	if (page != swapcache && swapcache) {
3667 		/*
3668 		 * Hold the lock to avoid the swap entry to be reused
3669 		 * until we take the PT lock for the pte_same() check
3670 		 * (to avoid false positives from pte_same). For
3671 		 * further safety release the lock after the swap_free
3672 		 * so that the swap count won't change under a
3673 		 * parallel locked swapcache.
3674 		 */
3675 		unlock_page(swapcache);
3676 		put_page(swapcache);
3677 	}
3678 
3679 	if (vmf->flags & FAULT_FLAG_WRITE) {
3680 		ret |= do_wp_page(vmf);
3681 		if (ret & VM_FAULT_ERROR)
3682 			ret &= VM_FAULT_ERROR;
3683 		goto out;
3684 	}
3685 
3686 	/* No need to invalidate - it was non-present before */
3687 	update_mmu_cache(vma, vmf->address, vmf->pte);
3688 unlock:
3689 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3690 out:
3691 	if (si)
3692 		put_swap_device(si);
3693 	return ret;
3694 out_nomap:
3695 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3696 out_page:
3697 	unlock_page(page);
3698 out_release:
3699 	put_page(page);
3700 	if (page != swapcache && swapcache) {
3701 		unlock_page(swapcache);
3702 		put_page(swapcache);
3703 	}
3704 	if (si)
3705 		put_swap_device(si);
3706 	return ret;
3707 }
3708 
3709 /*
3710  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3711  * but allow concurrent faults), and pte mapped but not yet locked.
3712  * We return with mmap_lock still held, but pte unmapped and unlocked.
3713  */
3714 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3715 {
3716 	struct vm_area_struct *vma = vmf->vma;
3717 	struct page *page;
3718 	vm_fault_t ret = 0;
3719 	pte_t entry;
3720 
3721 	/* File mapping without ->vm_ops ? */
3722 	if (vma->vm_flags & VM_SHARED)
3723 		return VM_FAULT_SIGBUS;
3724 
3725 	/*
3726 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3727 	 * pte_offset_map() on pmds where a huge pmd might be created
3728 	 * from a different thread.
3729 	 *
3730 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3731 	 * parallel threads are excluded by other means.
3732 	 *
3733 	 * Here we only have mmap_read_lock(mm).
3734 	 */
3735 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3736 		return VM_FAULT_OOM;
3737 
3738 	/* See comment in handle_pte_fault() */
3739 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3740 		return 0;
3741 
3742 	/* Use the zero-page for reads */
3743 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3744 			!mm_forbids_zeropage(vma->vm_mm)) {
3745 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3746 						vma->vm_page_prot));
3747 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3748 				vmf->address, &vmf->ptl);
3749 		if (!pte_none(*vmf->pte)) {
3750 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3751 			goto unlock;
3752 		}
3753 		ret = check_stable_address_space(vma->vm_mm);
3754 		if (ret)
3755 			goto unlock;
3756 		/* Deliver the page fault to userland, check inside PT lock */
3757 		if (userfaultfd_missing(vma)) {
3758 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3759 			return handle_userfault(vmf, VM_UFFD_MISSING);
3760 		}
3761 		goto setpte;
3762 	}
3763 
3764 	/* Allocate our own private page. */
3765 	if (unlikely(anon_vma_prepare(vma)))
3766 		goto oom;
3767 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3768 	if (!page)
3769 		goto oom;
3770 
3771 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3772 		goto oom_free_page;
3773 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3774 
3775 	/*
3776 	 * The memory barrier inside __SetPageUptodate makes sure that
3777 	 * preceding stores to the page contents become visible before
3778 	 * the set_pte_at() write.
3779 	 */
3780 	__SetPageUptodate(page);
3781 
3782 	entry = mk_pte(page, vma->vm_page_prot);
3783 	entry = pte_sw_mkyoung(entry);
3784 	if (vma->vm_flags & VM_WRITE)
3785 		entry = pte_mkwrite(pte_mkdirty(entry));
3786 
3787 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3788 			&vmf->ptl);
3789 	if (!pte_none(*vmf->pte)) {
3790 		update_mmu_cache(vma, vmf->address, vmf->pte);
3791 		goto release;
3792 	}
3793 
3794 	ret = check_stable_address_space(vma->vm_mm);
3795 	if (ret)
3796 		goto release;
3797 
3798 	/* Deliver the page fault to userland, check inside PT lock */
3799 	if (userfaultfd_missing(vma)) {
3800 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3801 		put_page(page);
3802 		return handle_userfault(vmf, VM_UFFD_MISSING);
3803 	}
3804 
3805 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3806 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3807 	lru_cache_add_inactive_or_unevictable(page, vma);
3808 setpte:
3809 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3810 
3811 	/* No need to invalidate - it was non-present before */
3812 	update_mmu_cache(vma, vmf->address, vmf->pte);
3813 unlock:
3814 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3815 	return ret;
3816 release:
3817 	put_page(page);
3818 	goto unlock;
3819 oom_free_page:
3820 	put_page(page);
3821 oom:
3822 	return VM_FAULT_OOM;
3823 }
3824 
3825 /*
3826  * The mmap_lock must have been held on entry, and may have been
3827  * released depending on flags and vma->vm_ops->fault() return value.
3828  * See filemap_fault() and __lock_page_retry().
3829  */
3830 static vm_fault_t __do_fault(struct vm_fault *vmf)
3831 {
3832 	struct vm_area_struct *vma = vmf->vma;
3833 	vm_fault_t ret;
3834 
3835 	/*
3836 	 * Preallocate pte before we take page_lock because this might lead to
3837 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3838 	 *				lock_page(A)
3839 	 *				SetPageWriteback(A)
3840 	 *				unlock_page(A)
3841 	 * lock_page(B)
3842 	 *				lock_page(B)
3843 	 * pte_alloc_one
3844 	 *   shrink_page_list
3845 	 *     wait_on_page_writeback(A)
3846 	 *				SetPageWriteback(B)
3847 	 *				unlock_page(B)
3848 	 *				# flush A, B to clear the writeback
3849 	 */
3850 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3851 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3852 		if (!vmf->prealloc_pte)
3853 			return VM_FAULT_OOM;
3854 		smp_wmb(); /* See comment in __pte_alloc() */
3855 	}
3856 
3857 	ret = vma->vm_ops->fault(vmf);
3858 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3859 			    VM_FAULT_DONE_COW)))
3860 		return ret;
3861 
3862 	if (unlikely(PageHWPoison(vmf->page))) {
3863 		if (ret & VM_FAULT_LOCKED)
3864 			unlock_page(vmf->page);
3865 		put_page(vmf->page);
3866 		vmf->page = NULL;
3867 		return VM_FAULT_HWPOISON;
3868 	}
3869 
3870 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3871 		lock_page(vmf->page);
3872 	else
3873 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3874 
3875 	return ret;
3876 }
3877 
3878 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3879 static void deposit_prealloc_pte(struct vm_fault *vmf)
3880 {
3881 	struct vm_area_struct *vma = vmf->vma;
3882 
3883 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3884 	/*
3885 	 * We are going to consume the prealloc table,
3886 	 * count that as nr_ptes.
3887 	 */
3888 	mm_inc_nr_ptes(vma->vm_mm);
3889 	vmf->prealloc_pte = NULL;
3890 }
3891 
3892 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3893 {
3894 	struct vm_area_struct *vma = vmf->vma;
3895 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3896 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3897 	pmd_t entry;
3898 	int i;
3899 	vm_fault_t ret = VM_FAULT_FALLBACK;
3900 
3901 	if (!transhuge_vma_suitable(vma, haddr))
3902 		return ret;
3903 
3904 	page = compound_head(page);
3905 	if (compound_order(page) != HPAGE_PMD_ORDER)
3906 		return ret;
3907 
3908 	/*
3909 	 * Archs like ppc64 need additional space to store information
3910 	 * related to pte entry. Use the preallocated table for that.
3911 	 */
3912 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3913 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3914 		if (!vmf->prealloc_pte)
3915 			return VM_FAULT_OOM;
3916 		smp_wmb(); /* See comment in __pte_alloc() */
3917 	}
3918 
3919 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3920 	if (unlikely(!pmd_none(*vmf->pmd)))
3921 		goto out;
3922 
3923 	for (i = 0; i < HPAGE_PMD_NR; i++)
3924 		flush_icache_page(vma, page + i);
3925 
3926 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3927 	if (write)
3928 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3929 
3930 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3931 	page_add_file_rmap(page, true);
3932 	/*
3933 	 * deposit and withdraw with pmd lock held
3934 	 */
3935 	if (arch_needs_pgtable_deposit())
3936 		deposit_prealloc_pte(vmf);
3937 
3938 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3939 
3940 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3941 
3942 	/* fault is handled */
3943 	ret = 0;
3944 	count_vm_event(THP_FILE_MAPPED);
3945 out:
3946 	spin_unlock(vmf->ptl);
3947 	return ret;
3948 }
3949 #else
3950 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3951 {
3952 	return VM_FAULT_FALLBACK;
3953 }
3954 #endif
3955 
3956 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3957 {
3958 	struct vm_area_struct *vma = vmf->vma;
3959 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3960 	bool prefault = vmf->address != addr;
3961 	pte_t entry;
3962 
3963 	flush_icache_page(vma, page);
3964 	entry = mk_pte(page, vma->vm_page_prot);
3965 
3966 	if (prefault && arch_wants_old_prefaulted_pte())
3967 		entry = pte_mkold(entry);
3968 	else
3969 		entry = pte_sw_mkyoung(entry);
3970 
3971 	if (write)
3972 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3973 	/* copy-on-write page */
3974 	if (write && !(vma->vm_flags & VM_SHARED)) {
3975 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3976 		page_add_new_anon_rmap(page, vma, addr, false);
3977 		lru_cache_add_inactive_or_unevictable(page, vma);
3978 	} else {
3979 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3980 		page_add_file_rmap(page, false);
3981 	}
3982 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3983 }
3984 
3985 /**
3986  * finish_fault - finish page fault once we have prepared the page to fault
3987  *
3988  * @vmf: structure describing the fault
3989  *
3990  * This function handles all that is needed to finish a page fault once the
3991  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3992  * given page, adds reverse page mapping, handles memcg charges and LRU
3993  * addition.
3994  *
3995  * The function expects the page to be locked and on success it consumes a
3996  * reference of a page being mapped (for the PTE which maps it).
3997  *
3998  * Return: %0 on success, %VM_FAULT_ code in case of error.
3999  */
4000 vm_fault_t finish_fault(struct vm_fault *vmf)
4001 {
4002 	struct vm_area_struct *vma = vmf->vma;
4003 	struct page *page;
4004 	vm_fault_t ret;
4005 
4006 	/* Did we COW the page? */
4007 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4008 		page = vmf->cow_page;
4009 	else
4010 		page = vmf->page;
4011 
4012 	/*
4013 	 * check even for read faults because we might have lost our CoWed
4014 	 * page
4015 	 */
4016 	if (!(vma->vm_flags & VM_SHARED)) {
4017 		ret = check_stable_address_space(vma->vm_mm);
4018 		if (ret)
4019 			return ret;
4020 	}
4021 
4022 	if (pmd_none(*vmf->pmd)) {
4023 		if (PageTransCompound(page)) {
4024 			ret = do_set_pmd(vmf, page);
4025 			if (ret != VM_FAULT_FALLBACK)
4026 				return ret;
4027 		}
4028 
4029 		if (vmf->prealloc_pte) {
4030 			vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4031 			if (likely(pmd_none(*vmf->pmd))) {
4032 				mm_inc_nr_ptes(vma->vm_mm);
4033 				pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4034 				vmf->prealloc_pte = NULL;
4035 			}
4036 			spin_unlock(vmf->ptl);
4037 		} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4038 			return VM_FAULT_OOM;
4039 		}
4040 	}
4041 
4042 	/* See comment in handle_pte_fault() */
4043 	if (pmd_devmap_trans_unstable(vmf->pmd))
4044 		return 0;
4045 
4046 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4047 				      vmf->address, &vmf->ptl);
4048 	ret = 0;
4049 	/* Re-check under ptl */
4050 	if (likely(pte_none(*vmf->pte)))
4051 		do_set_pte(vmf, page, vmf->address);
4052 	else
4053 		ret = VM_FAULT_NOPAGE;
4054 
4055 	update_mmu_tlb(vma, vmf->address, vmf->pte);
4056 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4057 	return ret;
4058 }
4059 
4060 static unsigned long fault_around_bytes __read_mostly =
4061 	rounddown_pow_of_two(65536);
4062 
4063 #ifdef CONFIG_DEBUG_FS
4064 static int fault_around_bytes_get(void *data, u64 *val)
4065 {
4066 	*val = fault_around_bytes;
4067 	return 0;
4068 }
4069 
4070 /*
4071  * fault_around_bytes must be rounded down to the nearest page order as it's
4072  * what do_fault_around() expects to see.
4073  */
4074 static int fault_around_bytes_set(void *data, u64 val)
4075 {
4076 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4077 		return -EINVAL;
4078 	if (val > PAGE_SIZE)
4079 		fault_around_bytes = rounddown_pow_of_two(val);
4080 	else
4081 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4082 	return 0;
4083 }
4084 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4085 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4086 
4087 static int __init fault_around_debugfs(void)
4088 {
4089 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4090 				   &fault_around_bytes_fops);
4091 	return 0;
4092 }
4093 late_initcall(fault_around_debugfs);
4094 #endif
4095 
4096 /*
4097  * do_fault_around() tries to map few pages around the fault address. The hope
4098  * is that the pages will be needed soon and this will lower the number of
4099  * faults to handle.
4100  *
4101  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4102  * not ready to be mapped: not up-to-date, locked, etc.
4103  *
4104  * This function is called with the page table lock taken. In the split ptlock
4105  * case the page table lock only protects only those entries which belong to
4106  * the page table corresponding to the fault address.
4107  *
4108  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4109  * only once.
4110  *
4111  * fault_around_bytes defines how many bytes we'll try to map.
4112  * do_fault_around() expects it to be set to a power of two less than or equal
4113  * to PTRS_PER_PTE.
4114  *
4115  * The virtual address of the area that we map is naturally aligned to
4116  * fault_around_bytes rounded down to the machine page size
4117  * (and therefore to page order).  This way it's easier to guarantee
4118  * that we don't cross page table boundaries.
4119  */
4120 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4121 {
4122 	unsigned long address = vmf->address, nr_pages, mask;
4123 	pgoff_t start_pgoff = vmf->pgoff;
4124 	pgoff_t end_pgoff;
4125 	int off;
4126 
4127 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4128 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4129 
4130 	address = max(address & mask, vmf->vma->vm_start);
4131 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4132 	start_pgoff -= off;
4133 
4134 	/*
4135 	 *  end_pgoff is either the end of the page table, the end of
4136 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4137 	 */
4138 	end_pgoff = start_pgoff -
4139 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4140 		PTRS_PER_PTE - 1;
4141 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4142 			start_pgoff + nr_pages - 1);
4143 
4144 	if (pmd_none(*vmf->pmd)) {
4145 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4146 		if (!vmf->prealloc_pte)
4147 			return VM_FAULT_OOM;
4148 		smp_wmb(); /* See comment in __pte_alloc() */
4149 	}
4150 
4151 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4152 }
4153 
4154 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4155 {
4156 	struct vm_area_struct *vma = vmf->vma;
4157 	vm_fault_t ret = 0;
4158 
4159 	/*
4160 	 * Let's call ->map_pages() first and use ->fault() as fallback
4161 	 * if page by the offset is not ready to be mapped (cold cache or
4162 	 * something).
4163 	 */
4164 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4165 		if (likely(!userfaultfd_minor(vmf->vma))) {
4166 			ret = do_fault_around(vmf);
4167 			if (ret)
4168 				return ret;
4169 		}
4170 	}
4171 
4172 	ret = __do_fault(vmf);
4173 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4174 		return ret;
4175 
4176 	ret |= finish_fault(vmf);
4177 	unlock_page(vmf->page);
4178 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4179 		put_page(vmf->page);
4180 	return ret;
4181 }
4182 
4183 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4184 {
4185 	struct vm_area_struct *vma = vmf->vma;
4186 	vm_fault_t ret;
4187 
4188 	if (unlikely(anon_vma_prepare(vma)))
4189 		return VM_FAULT_OOM;
4190 
4191 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4192 	if (!vmf->cow_page)
4193 		return VM_FAULT_OOM;
4194 
4195 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4196 		put_page(vmf->cow_page);
4197 		return VM_FAULT_OOM;
4198 	}
4199 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4200 
4201 	ret = __do_fault(vmf);
4202 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4203 		goto uncharge_out;
4204 	if (ret & VM_FAULT_DONE_COW)
4205 		return ret;
4206 
4207 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4208 	__SetPageUptodate(vmf->cow_page);
4209 
4210 	ret |= finish_fault(vmf);
4211 	unlock_page(vmf->page);
4212 	put_page(vmf->page);
4213 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4214 		goto uncharge_out;
4215 	return ret;
4216 uncharge_out:
4217 	put_page(vmf->cow_page);
4218 	return ret;
4219 }
4220 
4221 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4222 {
4223 	struct vm_area_struct *vma = vmf->vma;
4224 	vm_fault_t ret, tmp;
4225 
4226 	ret = __do_fault(vmf);
4227 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4228 		return ret;
4229 
4230 	/*
4231 	 * Check if the backing address space wants to know that the page is
4232 	 * about to become writable
4233 	 */
4234 	if (vma->vm_ops->page_mkwrite) {
4235 		unlock_page(vmf->page);
4236 		tmp = do_page_mkwrite(vmf);
4237 		if (unlikely(!tmp ||
4238 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4239 			put_page(vmf->page);
4240 			return tmp;
4241 		}
4242 	}
4243 
4244 	ret |= finish_fault(vmf);
4245 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4246 					VM_FAULT_RETRY))) {
4247 		unlock_page(vmf->page);
4248 		put_page(vmf->page);
4249 		return ret;
4250 	}
4251 
4252 	ret |= fault_dirty_shared_page(vmf);
4253 	return ret;
4254 }
4255 
4256 /*
4257  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4258  * but allow concurrent faults).
4259  * The mmap_lock may have been released depending on flags and our
4260  * return value.  See filemap_fault() and __lock_page_or_retry().
4261  * If mmap_lock is released, vma may become invalid (for example
4262  * by other thread calling munmap()).
4263  */
4264 static vm_fault_t do_fault(struct vm_fault *vmf)
4265 {
4266 	struct vm_area_struct *vma = vmf->vma;
4267 	struct mm_struct *vm_mm = vma->vm_mm;
4268 	vm_fault_t ret;
4269 
4270 	/*
4271 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4272 	 */
4273 	if (!vma->vm_ops->fault) {
4274 		/*
4275 		 * If we find a migration pmd entry or a none pmd entry, which
4276 		 * should never happen, return SIGBUS
4277 		 */
4278 		if (unlikely(!pmd_present(*vmf->pmd)))
4279 			ret = VM_FAULT_SIGBUS;
4280 		else {
4281 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4282 						       vmf->pmd,
4283 						       vmf->address,
4284 						       &vmf->ptl);
4285 			/*
4286 			 * Make sure this is not a temporary clearing of pte
4287 			 * by holding ptl and checking again. A R/M/W update
4288 			 * of pte involves: take ptl, clearing the pte so that
4289 			 * we don't have concurrent modification by hardware
4290 			 * followed by an update.
4291 			 */
4292 			if (unlikely(pte_none(*vmf->pte)))
4293 				ret = VM_FAULT_SIGBUS;
4294 			else
4295 				ret = VM_FAULT_NOPAGE;
4296 
4297 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4298 		}
4299 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4300 		ret = do_read_fault(vmf);
4301 	else if (!(vma->vm_flags & VM_SHARED))
4302 		ret = do_cow_fault(vmf);
4303 	else
4304 		ret = do_shared_fault(vmf);
4305 
4306 	/* preallocated pagetable is unused: free it */
4307 	if (vmf->prealloc_pte) {
4308 		pte_free(vm_mm, vmf->prealloc_pte);
4309 		vmf->prealloc_pte = NULL;
4310 	}
4311 	return ret;
4312 }
4313 
4314 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4315 		      unsigned long addr, int page_nid, int *flags)
4316 {
4317 	get_page(page);
4318 
4319 	count_vm_numa_event(NUMA_HINT_FAULTS);
4320 	if (page_nid == numa_node_id()) {
4321 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4322 		*flags |= TNF_FAULT_LOCAL;
4323 	}
4324 
4325 	return mpol_misplaced(page, vma, addr);
4326 }
4327 
4328 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4329 {
4330 	struct vm_area_struct *vma = vmf->vma;
4331 	struct page *page = NULL;
4332 	int page_nid = NUMA_NO_NODE;
4333 	int last_cpupid;
4334 	int target_nid;
4335 	pte_t pte, old_pte;
4336 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4337 	int flags = 0;
4338 
4339 	/*
4340 	 * The "pte" at this point cannot be used safely without
4341 	 * validation through pte_unmap_same(). It's of NUMA type but
4342 	 * the pfn may be screwed if the read is non atomic.
4343 	 */
4344 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4345 	spin_lock(vmf->ptl);
4346 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4347 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4348 		goto out;
4349 	}
4350 
4351 	/* Get the normal PTE  */
4352 	old_pte = ptep_get(vmf->pte);
4353 	pte = pte_modify(old_pte, vma->vm_page_prot);
4354 
4355 	page = vm_normal_page(vma, vmf->address, pte);
4356 	if (!page)
4357 		goto out_map;
4358 
4359 	/* TODO: handle PTE-mapped THP */
4360 	if (PageCompound(page))
4361 		goto out_map;
4362 
4363 	/*
4364 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4365 	 * much anyway since they can be in shared cache state. This misses
4366 	 * the case where a mapping is writable but the process never writes
4367 	 * to it but pte_write gets cleared during protection updates and
4368 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4369 	 * background writeback, dirty balancing and application behaviour.
4370 	 */
4371 	if (!was_writable)
4372 		flags |= TNF_NO_GROUP;
4373 
4374 	/*
4375 	 * Flag if the page is shared between multiple address spaces. This
4376 	 * is later used when determining whether to group tasks together
4377 	 */
4378 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4379 		flags |= TNF_SHARED;
4380 
4381 	last_cpupid = page_cpupid_last(page);
4382 	page_nid = page_to_nid(page);
4383 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4384 			&flags);
4385 	if (target_nid == NUMA_NO_NODE) {
4386 		put_page(page);
4387 		goto out_map;
4388 	}
4389 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4390 
4391 	/* Migrate to the requested node */
4392 	if (migrate_misplaced_page(page, vma, target_nid)) {
4393 		page_nid = target_nid;
4394 		flags |= TNF_MIGRATED;
4395 	} else {
4396 		flags |= TNF_MIGRATE_FAIL;
4397 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4398 		spin_lock(vmf->ptl);
4399 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4400 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4401 			goto out;
4402 		}
4403 		goto out_map;
4404 	}
4405 
4406 out:
4407 	if (page_nid != NUMA_NO_NODE)
4408 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4409 	return 0;
4410 out_map:
4411 	/*
4412 	 * Make it present again, depending on how arch implements
4413 	 * non-accessible ptes, some can allow access by kernel mode.
4414 	 */
4415 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4416 	pte = pte_modify(old_pte, vma->vm_page_prot);
4417 	pte = pte_mkyoung(pte);
4418 	if (was_writable)
4419 		pte = pte_mkwrite(pte);
4420 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4421 	update_mmu_cache(vma, vmf->address, vmf->pte);
4422 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4423 	goto out;
4424 }
4425 
4426 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4427 {
4428 	if (vma_is_anonymous(vmf->vma))
4429 		return do_huge_pmd_anonymous_page(vmf);
4430 	if (vmf->vma->vm_ops->huge_fault)
4431 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4432 	return VM_FAULT_FALLBACK;
4433 }
4434 
4435 /* `inline' is required to avoid gcc 4.1.2 build error */
4436 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4437 {
4438 	if (vma_is_anonymous(vmf->vma)) {
4439 		if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4440 			return handle_userfault(vmf, VM_UFFD_WP);
4441 		return do_huge_pmd_wp_page(vmf);
4442 	}
4443 	if (vmf->vma->vm_ops->huge_fault) {
4444 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4445 
4446 		if (!(ret & VM_FAULT_FALLBACK))
4447 			return ret;
4448 	}
4449 
4450 	/* COW or write-notify handled on pte level: split pmd. */
4451 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4452 
4453 	return VM_FAULT_FALLBACK;
4454 }
4455 
4456 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4457 {
4458 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4459 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4460 	/* No support for anonymous transparent PUD pages yet */
4461 	if (vma_is_anonymous(vmf->vma))
4462 		goto split;
4463 	if (vmf->vma->vm_ops->huge_fault) {
4464 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4465 
4466 		if (!(ret & VM_FAULT_FALLBACK))
4467 			return ret;
4468 	}
4469 split:
4470 	/* COW or write-notify not handled on PUD level: split pud.*/
4471 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4472 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4473 	return VM_FAULT_FALLBACK;
4474 }
4475 
4476 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4477 {
4478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4479 	/* No support for anonymous transparent PUD pages yet */
4480 	if (vma_is_anonymous(vmf->vma))
4481 		return VM_FAULT_FALLBACK;
4482 	if (vmf->vma->vm_ops->huge_fault)
4483 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4484 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4485 	return VM_FAULT_FALLBACK;
4486 }
4487 
4488 /*
4489  * These routines also need to handle stuff like marking pages dirty
4490  * and/or accessed for architectures that don't do it in hardware (most
4491  * RISC architectures).  The early dirtying is also good on the i386.
4492  *
4493  * There is also a hook called "update_mmu_cache()" that architectures
4494  * with external mmu caches can use to update those (ie the Sparc or
4495  * PowerPC hashed page tables that act as extended TLBs).
4496  *
4497  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4498  * concurrent faults).
4499  *
4500  * The mmap_lock may have been released depending on flags and our return value.
4501  * See filemap_fault() and __lock_page_or_retry().
4502  */
4503 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4504 {
4505 	pte_t entry;
4506 
4507 	if (unlikely(pmd_none(*vmf->pmd))) {
4508 		/*
4509 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4510 		 * want to allocate huge page, and if we expose page table
4511 		 * for an instant, it will be difficult to retract from
4512 		 * concurrent faults and from rmap lookups.
4513 		 */
4514 		vmf->pte = NULL;
4515 	} else {
4516 		/*
4517 		 * If a huge pmd materialized under us just retry later.  Use
4518 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4519 		 * of pmd_trans_huge() to ensure the pmd didn't become
4520 		 * pmd_trans_huge under us and then back to pmd_none, as a
4521 		 * result of MADV_DONTNEED running immediately after a huge pmd
4522 		 * fault in a different thread of this mm, in turn leading to a
4523 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4524 		 * that it is a regular pmd that we can walk with
4525 		 * pte_offset_map() and we can do that through an atomic read
4526 		 * in C, which is what pmd_trans_unstable() provides.
4527 		 */
4528 		if (pmd_devmap_trans_unstable(vmf->pmd))
4529 			return 0;
4530 		/*
4531 		 * A regular pmd is established and it can't morph into a huge
4532 		 * pmd from under us anymore at this point because we hold the
4533 		 * mmap_lock read mode and khugepaged takes it in write mode.
4534 		 * So now it's safe to run pte_offset_map().
4535 		 */
4536 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4537 		vmf->orig_pte = *vmf->pte;
4538 
4539 		/*
4540 		 * some architectures can have larger ptes than wordsize,
4541 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4542 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4543 		 * accesses.  The code below just needs a consistent view
4544 		 * for the ifs and we later double check anyway with the
4545 		 * ptl lock held. So here a barrier will do.
4546 		 */
4547 		barrier();
4548 		if (pte_none(vmf->orig_pte)) {
4549 			pte_unmap(vmf->pte);
4550 			vmf->pte = NULL;
4551 		}
4552 	}
4553 
4554 	if (!vmf->pte) {
4555 		if (vma_is_anonymous(vmf->vma))
4556 			return do_anonymous_page(vmf);
4557 		else
4558 			return do_fault(vmf);
4559 	}
4560 
4561 	if (!pte_present(vmf->orig_pte))
4562 		return do_swap_page(vmf);
4563 
4564 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4565 		return do_numa_page(vmf);
4566 
4567 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4568 	spin_lock(vmf->ptl);
4569 	entry = vmf->orig_pte;
4570 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4571 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4572 		goto unlock;
4573 	}
4574 	if (vmf->flags & FAULT_FLAG_WRITE) {
4575 		if (!pte_write(entry))
4576 			return do_wp_page(vmf);
4577 		entry = pte_mkdirty(entry);
4578 	}
4579 	entry = pte_mkyoung(entry);
4580 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4581 				vmf->flags & FAULT_FLAG_WRITE)) {
4582 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4583 	} else {
4584 		/* Skip spurious TLB flush for retried page fault */
4585 		if (vmf->flags & FAULT_FLAG_TRIED)
4586 			goto unlock;
4587 		/*
4588 		 * This is needed only for protection faults but the arch code
4589 		 * is not yet telling us if this is a protection fault or not.
4590 		 * This still avoids useless tlb flushes for .text page faults
4591 		 * with threads.
4592 		 */
4593 		if (vmf->flags & FAULT_FLAG_WRITE)
4594 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4595 	}
4596 unlock:
4597 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4598 	return 0;
4599 }
4600 
4601 /*
4602  * By the time we get here, we already hold the mm semaphore
4603  *
4604  * The mmap_lock may have been released depending on flags and our
4605  * return value.  See filemap_fault() and __lock_page_or_retry().
4606  */
4607 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4608 		unsigned long address, unsigned int flags)
4609 {
4610 	struct vm_fault vmf = {
4611 		.vma = vma,
4612 		.address = address & PAGE_MASK,
4613 		.flags = flags,
4614 		.pgoff = linear_page_index(vma, address),
4615 		.gfp_mask = __get_fault_gfp_mask(vma),
4616 	};
4617 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4618 	struct mm_struct *mm = vma->vm_mm;
4619 	pgd_t *pgd;
4620 	p4d_t *p4d;
4621 	vm_fault_t ret;
4622 
4623 	pgd = pgd_offset(mm, address);
4624 	p4d = p4d_alloc(mm, pgd, address);
4625 	if (!p4d)
4626 		return VM_FAULT_OOM;
4627 
4628 	vmf.pud = pud_alloc(mm, p4d, address);
4629 	if (!vmf.pud)
4630 		return VM_FAULT_OOM;
4631 retry_pud:
4632 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4633 		ret = create_huge_pud(&vmf);
4634 		if (!(ret & VM_FAULT_FALLBACK))
4635 			return ret;
4636 	} else {
4637 		pud_t orig_pud = *vmf.pud;
4638 
4639 		barrier();
4640 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4641 
4642 			/* NUMA case for anonymous PUDs would go here */
4643 
4644 			if (dirty && !pud_write(orig_pud)) {
4645 				ret = wp_huge_pud(&vmf, orig_pud);
4646 				if (!(ret & VM_FAULT_FALLBACK))
4647 					return ret;
4648 			} else {
4649 				huge_pud_set_accessed(&vmf, orig_pud);
4650 				return 0;
4651 			}
4652 		}
4653 	}
4654 
4655 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4656 	if (!vmf.pmd)
4657 		return VM_FAULT_OOM;
4658 
4659 	/* Huge pud page fault raced with pmd_alloc? */
4660 	if (pud_trans_unstable(vmf.pud))
4661 		goto retry_pud;
4662 
4663 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4664 		ret = create_huge_pmd(&vmf);
4665 		if (!(ret & VM_FAULT_FALLBACK))
4666 			return ret;
4667 	} else {
4668 		vmf.orig_pmd = *vmf.pmd;
4669 
4670 		barrier();
4671 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4672 			VM_BUG_ON(thp_migration_supported() &&
4673 					  !is_pmd_migration_entry(vmf.orig_pmd));
4674 			if (is_pmd_migration_entry(vmf.orig_pmd))
4675 				pmd_migration_entry_wait(mm, vmf.pmd);
4676 			return 0;
4677 		}
4678 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4679 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4680 				return do_huge_pmd_numa_page(&vmf);
4681 
4682 			if (dirty && !pmd_write(vmf.orig_pmd)) {
4683 				ret = wp_huge_pmd(&vmf);
4684 				if (!(ret & VM_FAULT_FALLBACK))
4685 					return ret;
4686 			} else {
4687 				huge_pmd_set_accessed(&vmf);
4688 				return 0;
4689 			}
4690 		}
4691 	}
4692 
4693 	return handle_pte_fault(&vmf);
4694 }
4695 
4696 /**
4697  * mm_account_fault - Do page fault accounting
4698  *
4699  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4700  *        of perf event counters, but we'll still do the per-task accounting to
4701  *        the task who triggered this page fault.
4702  * @address: the faulted address.
4703  * @flags: the fault flags.
4704  * @ret: the fault retcode.
4705  *
4706  * This will take care of most of the page fault accounting.  Meanwhile, it
4707  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4708  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4709  * still be in per-arch page fault handlers at the entry of page fault.
4710  */
4711 static inline void mm_account_fault(struct pt_regs *regs,
4712 				    unsigned long address, unsigned int flags,
4713 				    vm_fault_t ret)
4714 {
4715 	bool major;
4716 
4717 	/*
4718 	 * We don't do accounting for some specific faults:
4719 	 *
4720 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4721 	 *   includes arch_vma_access_permitted() failing before reaching here.
4722 	 *   So this is not a "this many hardware page faults" counter.  We
4723 	 *   should use the hw profiling for that.
4724 	 *
4725 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4726 	 *   once they're completed.
4727 	 */
4728 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4729 		return;
4730 
4731 	/*
4732 	 * We define the fault as a major fault when the final successful fault
4733 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4734 	 * handle it immediately previously).
4735 	 */
4736 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4737 
4738 	if (major)
4739 		current->maj_flt++;
4740 	else
4741 		current->min_flt++;
4742 
4743 	/*
4744 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4745 	 * accounting for the per thread fault counters who triggered the
4746 	 * fault, and we skip the perf event updates.
4747 	 */
4748 	if (!regs)
4749 		return;
4750 
4751 	if (major)
4752 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4753 	else
4754 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4755 }
4756 
4757 /*
4758  * By the time we get here, we already hold the mm semaphore
4759  *
4760  * The mmap_lock may have been released depending on flags and our
4761  * return value.  See filemap_fault() and __lock_page_or_retry().
4762  */
4763 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4764 			   unsigned int flags, struct pt_regs *regs)
4765 {
4766 	vm_fault_t ret;
4767 
4768 	__set_current_state(TASK_RUNNING);
4769 
4770 	count_vm_event(PGFAULT);
4771 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4772 
4773 	/* do counter updates before entering really critical section. */
4774 	check_sync_rss_stat(current);
4775 
4776 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4777 					    flags & FAULT_FLAG_INSTRUCTION,
4778 					    flags & FAULT_FLAG_REMOTE))
4779 		return VM_FAULT_SIGSEGV;
4780 
4781 	/*
4782 	 * Enable the memcg OOM handling for faults triggered in user
4783 	 * space.  Kernel faults are handled more gracefully.
4784 	 */
4785 	if (flags & FAULT_FLAG_USER)
4786 		mem_cgroup_enter_user_fault();
4787 
4788 	if (unlikely(is_vm_hugetlb_page(vma)))
4789 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4790 	else
4791 		ret = __handle_mm_fault(vma, address, flags);
4792 
4793 	if (flags & FAULT_FLAG_USER) {
4794 		mem_cgroup_exit_user_fault();
4795 		/*
4796 		 * The task may have entered a memcg OOM situation but
4797 		 * if the allocation error was handled gracefully (no
4798 		 * VM_FAULT_OOM), there is no need to kill anything.
4799 		 * Just clean up the OOM state peacefully.
4800 		 */
4801 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4802 			mem_cgroup_oom_synchronize(false);
4803 	}
4804 
4805 	mm_account_fault(regs, address, flags, ret);
4806 
4807 	return ret;
4808 }
4809 EXPORT_SYMBOL_GPL(handle_mm_fault);
4810 
4811 #ifndef __PAGETABLE_P4D_FOLDED
4812 /*
4813  * Allocate p4d page table.
4814  * We've already handled the fast-path in-line.
4815  */
4816 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4817 {
4818 	p4d_t *new = p4d_alloc_one(mm, address);
4819 	if (!new)
4820 		return -ENOMEM;
4821 
4822 	smp_wmb(); /* See comment in __pte_alloc */
4823 
4824 	spin_lock(&mm->page_table_lock);
4825 	if (pgd_present(*pgd))		/* Another has populated it */
4826 		p4d_free(mm, new);
4827 	else
4828 		pgd_populate(mm, pgd, new);
4829 	spin_unlock(&mm->page_table_lock);
4830 	return 0;
4831 }
4832 #endif /* __PAGETABLE_P4D_FOLDED */
4833 
4834 #ifndef __PAGETABLE_PUD_FOLDED
4835 /*
4836  * Allocate page upper directory.
4837  * We've already handled the fast-path in-line.
4838  */
4839 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4840 {
4841 	pud_t *new = pud_alloc_one(mm, address);
4842 	if (!new)
4843 		return -ENOMEM;
4844 
4845 	smp_wmb(); /* See comment in __pte_alloc */
4846 
4847 	spin_lock(&mm->page_table_lock);
4848 	if (!p4d_present(*p4d)) {
4849 		mm_inc_nr_puds(mm);
4850 		p4d_populate(mm, p4d, new);
4851 	} else	/* Another has populated it */
4852 		pud_free(mm, new);
4853 	spin_unlock(&mm->page_table_lock);
4854 	return 0;
4855 }
4856 #endif /* __PAGETABLE_PUD_FOLDED */
4857 
4858 #ifndef __PAGETABLE_PMD_FOLDED
4859 /*
4860  * Allocate page middle directory.
4861  * We've already handled the fast-path in-line.
4862  */
4863 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4864 {
4865 	spinlock_t *ptl;
4866 	pmd_t *new = pmd_alloc_one(mm, address);
4867 	if (!new)
4868 		return -ENOMEM;
4869 
4870 	smp_wmb(); /* See comment in __pte_alloc */
4871 
4872 	ptl = pud_lock(mm, pud);
4873 	if (!pud_present(*pud)) {
4874 		mm_inc_nr_pmds(mm);
4875 		pud_populate(mm, pud, new);
4876 	} else	/* Another has populated it */
4877 		pmd_free(mm, new);
4878 	spin_unlock(ptl);
4879 	return 0;
4880 }
4881 #endif /* __PAGETABLE_PMD_FOLDED */
4882 
4883 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4884 			  struct mmu_notifier_range *range, pte_t **ptepp,
4885 			  pmd_t **pmdpp, spinlock_t **ptlp)
4886 {
4887 	pgd_t *pgd;
4888 	p4d_t *p4d;
4889 	pud_t *pud;
4890 	pmd_t *pmd;
4891 	pte_t *ptep;
4892 
4893 	pgd = pgd_offset(mm, address);
4894 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4895 		goto out;
4896 
4897 	p4d = p4d_offset(pgd, address);
4898 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4899 		goto out;
4900 
4901 	pud = pud_offset(p4d, address);
4902 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4903 		goto out;
4904 
4905 	pmd = pmd_offset(pud, address);
4906 	VM_BUG_ON(pmd_trans_huge(*pmd));
4907 
4908 	if (pmd_huge(*pmd)) {
4909 		if (!pmdpp)
4910 			goto out;
4911 
4912 		if (range) {
4913 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4914 						NULL, mm, address & PMD_MASK,
4915 						(address & PMD_MASK) + PMD_SIZE);
4916 			mmu_notifier_invalidate_range_start(range);
4917 		}
4918 		*ptlp = pmd_lock(mm, pmd);
4919 		if (pmd_huge(*pmd)) {
4920 			*pmdpp = pmd;
4921 			return 0;
4922 		}
4923 		spin_unlock(*ptlp);
4924 		if (range)
4925 			mmu_notifier_invalidate_range_end(range);
4926 	}
4927 
4928 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4929 		goto out;
4930 
4931 	if (range) {
4932 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4933 					address & PAGE_MASK,
4934 					(address & PAGE_MASK) + PAGE_SIZE);
4935 		mmu_notifier_invalidate_range_start(range);
4936 	}
4937 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4938 	if (!pte_present(*ptep))
4939 		goto unlock;
4940 	*ptepp = ptep;
4941 	return 0;
4942 unlock:
4943 	pte_unmap_unlock(ptep, *ptlp);
4944 	if (range)
4945 		mmu_notifier_invalidate_range_end(range);
4946 out:
4947 	return -EINVAL;
4948 }
4949 
4950 /**
4951  * follow_pte - look up PTE at a user virtual address
4952  * @mm: the mm_struct of the target address space
4953  * @address: user virtual address
4954  * @ptepp: location to store found PTE
4955  * @ptlp: location to store the lock for the PTE
4956  *
4957  * On a successful return, the pointer to the PTE is stored in @ptepp;
4958  * the corresponding lock is taken and its location is stored in @ptlp.
4959  * The contents of the PTE are only stable until @ptlp is released;
4960  * any further use, if any, must be protected against invalidation
4961  * with MMU notifiers.
4962  *
4963  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4964  * should be taken for read.
4965  *
4966  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4967  * it is not a good general-purpose API.
4968  *
4969  * Return: zero on success, -ve otherwise.
4970  */
4971 int follow_pte(struct mm_struct *mm, unsigned long address,
4972 	       pte_t **ptepp, spinlock_t **ptlp)
4973 {
4974 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4975 }
4976 EXPORT_SYMBOL_GPL(follow_pte);
4977 
4978 /**
4979  * follow_pfn - look up PFN at a user virtual address
4980  * @vma: memory mapping
4981  * @address: user virtual address
4982  * @pfn: location to store found PFN
4983  *
4984  * Only IO mappings and raw PFN mappings are allowed.
4985  *
4986  * This function does not allow the caller to read the permissions
4987  * of the PTE.  Do not use it.
4988  *
4989  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4990  */
4991 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4992 	unsigned long *pfn)
4993 {
4994 	int ret = -EINVAL;
4995 	spinlock_t *ptl;
4996 	pte_t *ptep;
4997 
4998 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4999 		return ret;
5000 
5001 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5002 	if (ret)
5003 		return ret;
5004 	*pfn = pte_pfn(*ptep);
5005 	pte_unmap_unlock(ptep, ptl);
5006 	return 0;
5007 }
5008 EXPORT_SYMBOL(follow_pfn);
5009 
5010 #ifdef CONFIG_HAVE_IOREMAP_PROT
5011 int follow_phys(struct vm_area_struct *vma,
5012 		unsigned long address, unsigned int flags,
5013 		unsigned long *prot, resource_size_t *phys)
5014 {
5015 	int ret = -EINVAL;
5016 	pte_t *ptep, pte;
5017 	spinlock_t *ptl;
5018 
5019 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5020 		goto out;
5021 
5022 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5023 		goto out;
5024 	pte = *ptep;
5025 
5026 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5027 		goto unlock;
5028 
5029 	*prot = pgprot_val(pte_pgprot(pte));
5030 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5031 
5032 	ret = 0;
5033 unlock:
5034 	pte_unmap_unlock(ptep, ptl);
5035 out:
5036 	return ret;
5037 }
5038 
5039 /**
5040  * generic_access_phys - generic implementation for iomem mmap access
5041  * @vma: the vma to access
5042  * @addr: userspace address, not relative offset within @vma
5043  * @buf: buffer to read/write
5044  * @len: length of transfer
5045  * @write: set to FOLL_WRITE when writing, otherwise reading
5046  *
5047  * This is a generic implementation for &vm_operations_struct.access for an
5048  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5049  * not page based.
5050  */
5051 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5052 			void *buf, int len, int write)
5053 {
5054 	resource_size_t phys_addr;
5055 	unsigned long prot = 0;
5056 	void __iomem *maddr;
5057 	pte_t *ptep, pte;
5058 	spinlock_t *ptl;
5059 	int offset = offset_in_page(addr);
5060 	int ret = -EINVAL;
5061 
5062 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5063 		return -EINVAL;
5064 
5065 retry:
5066 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5067 		return -EINVAL;
5068 	pte = *ptep;
5069 	pte_unmap_unlock(ptep, ptl);
5070 
5071 	prot = pgprot_val(pte_pgprot(pte));
5072 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5073 
5074 	if ((write & FOLL_WRITE) && !pte_write(pte))
5075 		return -EINVAL;
5076 
5077 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5078 	if (!maddr)
5079 		return -ENOMEM;
5080 
5081 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5082 		goto out_unmap;
5083 
5084 	if (!pte_same(pte, *ptep)) {
5085 		pte_unmap_unlock(ptep, ptl);
5086 		iounmap(maddr);
5087 
5088 		goto retry;
5089 	}
5090 
5091 	if (write)
5092 		memcpy_toio(maddr + offset, buf, len);
5093 	else
5094 		memcpy_fromio(buf, maddr + offset, len);
5095 	ret = len;
5096 	pte_unmap_unlock(ptep, ptl);
5097 out_unmap:
5098 	iounmap(maddr);
5099 
5100 	return ret;
5101 }
5102 EXPORT_SYMBOL_GPL(generic_access_phys);
5103 #endif
5104 
5105 /*
5106  * Access another process' address space as given in mm.
5107  */
5108 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5109 		       int len, unsigned int gup_flags)
5110 {
5111 	struct vm_area_struct *vma;
5112 	void *old_buf = buf;
5113 	int write = gup_flags & FOLL_WRITE;
5114 
5115 	if (mmap_read_lock_killable(mm))
5116 		return 0;
5117 
5118 	/* ignore errors, just check how much was successfully transferred */
5119 	while (len) {
5120 		int bytes, ret, offset;
5121 		void *maddr;
5122 		struct page *page = NULL;
5123 
5124 		ret = get_user_pages_remote(mm, addr, 1,
5125 				gup_flags, &page, &vma, NULL);
5126 		if (ret <= 0) {
5127 #ifndef CONFIG_HAVE_IOREMAP_PROT
5128 			break;
5129 #else
5130 			/*
5131 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5132 			 * we can access using slightly different code.
5133 			 */
5134 			vma = vma_lookup(mm, addr);
5135 			if (!vma)
5136 				break;
5137 			if (vma->vm_ops && vma->vm_ops->access)
5138 				ret = vma->vm_ops->access(vma, addr, buf,
5139 							  len, write);
5140 			if (ret <= 0)
5141 				break;
5142 			bytes = ret;
5143 #endif
5144 		} else {
5145 			bytes = len;
5146 			offset = addr & (PAGE_SIZE-1);
5147 			if (bytes > PAGE_SIZE-offset)
5148 				bytes = PAGE_SIZE-offset;
5149 
5150 			maddr = kmap(page);
5151 			if (write) {
5152 				copy_to_user_page(vma, page, addr,
5153 						  maddr + offset, buf, bytes);
5154 				set_page_dirty_lock(page);
5155 			} else {
5156 				copy_from_user_page(vma, page, addr,
5157 						    buf, maddr + offset, bytes);
5158 			}
5159 			kunmap(page);
5160 			put_page(page);
5161 		}
5162 		len -= bytes;
5163 		buf += bytes;
5164 		addr += bytes;
5165 	}
5166 	mmap_read_unlock(mm);
5167 
5168 	return buf - old_buf;
5169 }
5170 
5171 /**
5172  * access_remote_vm - access another process' address space
5173  * @mm:		the mm_struct of the target address space
5174  * @addr:	start address to access
5175  * @buf:	source or destination buffer
5176  * @len:	number of bytes to transfer
5177  * @gup_flags:	flags modifying lookup behaviour
5178  *
5179  * The caller must hold a reference on @mm.
5180  *
5181  * Return: number of bytes copied from source to destination.
5182  */
5183 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5184 		void *buf, int len, unsigned int gup_flags)
5185 {
5186 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5187 }
5188 
5189 /*
5190  * Access another process' address space.
5191  * Source/target buffer must be kernel space,
5192  * Do not walk the page table directly, use get_user_pages
5193  */
5194 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5195 		void *buf, int len, unsigned int gup_flags)
5196 {
5197 	struct mm_struct *mm;
5198 	int ret;
5199 
5200 	mm = get_task_mm(tsk);
5201 	if (!mm)
5202 		return 0;
5203 
5204 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5205 
5206 	mmput(mm);
5207 
5208 	return ret;
5209 }
5210 EXPORT_SYMBOL_GPL(access_process_vm);
5211 
5212 /*
5213  * Print the name of a VMA.
5214  */
5215 void print_vma_addr(char *prefix, unsigned long ip)
5216 {
5217 	struct mm_struct *mm = current->mm;
5218 	struct vm_area_struct *vma;
5219 
5220 	/*
5221 	 * we might be running from an atomic context so we cannot sleep
5222 	 */
5223 	if (!mmap_read_trylock(mm))
5224 		return;
5225 
5226 	vma = find_vma(mm, ip);
5227 	if (vma && vma->vm_file) {
5228 		struct file *f = vma->vm_file;
5229 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5230 		if (buf) {
5231 			char *p;
5232 
5233 			p = file_path(f, buf, PAGE_SIZE);
5234 			if (IS_ERR(p))
5235 				p = "?";
5236 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5237 					vma->vm_start,
5238 					vma->vm_end - vma->vm_start);
5239 			free_page((unsigned long)buf);
5240 		}
5241 	}
5242 	mmap_read_unlock(mm);
5243 }
5244 
5245 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5246 void __might_fault(const char *file, int line)
5247 {
5248 	/*
5249 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5250 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5251 	 * get paged out, therefore we'll never actually fault, and the
5252 	 * below annotations will generate false positives.
5253 	 */
5254 	if (uaccess_kernel())
5255 		return;
5256 	if (pagefault_disabled())
5257 		return;
5258 	__might_sleep(file, line, 0);
5259 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5260 	if (current->mm)
5261 		might_lock_read(&current->mm->mmap_lock);
5262 #endif
5263 }
5264 EXPORT_SYMBOL(__might_fault);
5265 #endif
5266 
5267 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5268 /*
5269  * Process all subpages of the specified huge page with the specified
5270  * operation.  The target subpage will be processed last to keep its
5271  * cache lines hot.
5272  */
5273 static inline void process_huge_page(
5274 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5275 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5276 	void *arg)
5277 {
5278 	int i, n, base, l;
5279 	unsigned long addr = addr_hint &
5280 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5281 
5282 	/* Process target subpage last to keep its cache lines hot */
5283 	might_sleep();
5284 	n = (addr_hint - addr) / PAGE_SIZE;
5285 	if (2 * n <= pages_per_huge_page) {
5286 		/* If target subpage in first half of huge page */
5287 		base = 0;
5288 		l = n;
5289 		/* Process subpages at the end of huge page */
5290 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5291 			cond_resched();
5292 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5293 		}
5294 	} else {
5295 		/* If target subpage in second half of huge page */
5296 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5297 		l = pages_per_huge_page - n;
5298 		/* Process subpages at the begin of huge page */
5299 		for (i = 0; i < base; i++) {
5300 			cond_resched();
5301 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5302 		}
5303 	}
5304 	/*
5305 	 * Process remaining subpages in left-right-left-right pattern
5306 	 * towards the target subpage
5307 	 */
5308 	for (i = 0; i < l; i++) {
5309 		int left_idx = base + i;
5310 		int right_idx = base + 2 * l - 1 - i;
5311 
5312 		cond_resched();
5313 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5314 		cond_resched();
5315 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5316 	}
5317 }
5318 
5319 static void clear_gigantic_page(struct page *page,
5320 				unsigned long addr,
5321 				unsigned int pages_per_huge_page)
5322 {
5323 	int i;
5324 	struct page *p = page;
5325 
5326 	might_sleep();
5327 	for (i = 0; i < pages_per_huge_page;
5328 	     i++, p = mem_map_next(p, page, i)) {
5329 		cond_resched();
5330 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5331 	}
5332 }
5333 
5334 static void clear_subpage(unsigned long addr, int idx, void *arg)
5335 {
5336 	struct page *page = arg;
5337 
5338 	clear_user_highpage(page + idx, addr);
5339 }
5340 
5341 void clear_huge_page(struct page *page,
5342 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5343 {
5344 	unsigned long addr = addr_hint &
5345 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5346 
5347 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5348 		clear_gigantic_page(page, addr, pages_per_huge_page);
5349 		return;
5350 	}
5351 
5352 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5353 }
5354 
5355 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5356 				    unsigned long addr,
5357 				    struct vm_area_struct *vma,
5358 				    unsigned int pages_per_huge_page)
5359 {
5360 	int i;
5361 	struct page *dst_base = dst;
5362 	struct page *src_base = src;
5363 
5364 	for (i = 0; i < pages_per_huge_page; ) {
5365 		cond_resched();
5366 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5367 
5368 		i++;
5369 		dst = mem_map_next(dst, dst_base, i);
5370 		src = mem_map_next(src, src_base, i);
5371 	}
5372 }
5373 
5374 struct copy_subpage_arg {
5375 	struct page *dst;
5376 	struct page *src;
5377 	struct vm_area_struct *vma;
5378 };
5379 
5380 static void copy_subpage(unsigned long addr, int idx, void *arg)
5381 {
5382 	struct copy_subpage_arg *copy_arg = arg;
5383 
5384 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5385 			   addr, copy_arg->vma);
5386 }
5387 
5388 void copy_user_huge_page(struct page *dst, struct page *src,
5389 			 unsigned long addr_hint, struct vm_area_struct *vma,
5390 			 unsigned int pages_per_huge_page)
5391 {
5392 	unsigned long addr = addr_hint &
5393 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5394 	struct copy_subpage_arg arg = {
5395 		.dst = dst,
5396 		.src = src,
5397 		.vma = vma,
5398 	};
5399 
5400 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5401 		copy_user_gigantic_page(dst, src, addr, vma,
5402 					pages_per_huge_page);
5403 		return;
5404 	}
5405 
5406 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5407 }
5408 
5409 long copy_huge_page_from_user(struct page *dst_page,
5410 				const void __user *usr_src,
5411 				unsigned int pages_per_huge_page,
5412 				bool allow_pagefault)
5413 {
5414 	void *src = (void *)usr_src;
5415 	void *page_kaddr;
5416 	unsigned long i, rc = 0;
5417 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5418 	struct page *subpage = dst_page;
5419 
5420 	for (i = 0; i < pages_per_huge_page;
5421 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5422 		if (allow_pagefault)
5423 			page_kaddr = kmap(subpage);
5424 		else
5425 			page_kaddr = kmap_atomic(subpage);
5426 		rc = copy_from_user(page_kaddr,
5427 				(const void __user *)(src + i * PAGE_SIZE),
5428 				PAGE_SIZE);
5429 		if (allow_pagefault)
5430 			kunmap(subpage);
5431 		else
5432 			kunmap_atomic(page_kaddr);
5433 
5434 		ret_val -= (PAGE_SIZE - rc);
5435 		if (rc)
5436 			break;
5437 
5438 		cond_resched();
5439 	}
5440 	return ret_val;
5441 }
5442 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5443 
5444 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5445 
5446 static struct kmem_cache *page_ptl_cachep;
5447 
5448 void __init ptlock_cache_init(void)
5449 {
5450 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5451 			SLAB_PANIC, NULL);
5452 }
5453 
5454 bool ptlock_alloc(struct page *page)
5455 {
5456 	spinlock_t *ptl;
5457 
5458 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5459 	if (!ptl)
5460 		return false;
5461 	page->ptl = ptl;
5462 	return true;
5463 }
5464 
5465 void ptlock_free(struct page *page)
5466 {
5467 	kmem_cache_free(page_ptl_cachep, page->ptl);
5468 }
5469 #endif
5470